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Abstract

Let w(m) be the number of distinct prime factors of m. A celebrated theorem
of Erdos-Kac states that the quantity

w(m) — loglogm
V1oglogm

distributes normally. Let ¢(m) be Euler’s ¢-function. Erdés and Pomerance proved
that the quantity

w(p(m)) — 3(loglogm)®
75 (loglogm)3/2

also distributes normally. In this thesis, we prove these two results. We also prove
a function field analogue of the Erdos-Pomerance Theorem in the setting of the
Carlitz module.
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Chapter 1

Introduction

Let’s begin by recalling some definition:

Definition For m € N, we denote w(m) to be the number of distinct prime divisors
of m, and ©(m) to be the total number of prime divisors of m counting multiplicity.

In 1920, Hardy and Ramanujan proved the following Theorem:

Theorem 1 (Hardy-Ramanujan) For a given function g,, in m, if g, — oo as
m — oo, we have

w(m) — loglogm < } _

Vv1oglogm

This theorem tells us that almost all integers have about loglogm distinct prime
divisors, since we can choose some g, such that for large m, g¢,,+/loglogm =
o(loglogm).

1
lim —# {m <n:
n—oo M,

In 1934, Turén gave a simplified proof of the Hardy-Ramanujan Theorem by an
essentially probabilistic method concerning the frequency, though he didn’t really
know probability theory at that time. For n € N, Turdn proved that

Z(w(m) —loglogn)? < nloglogn,
m<n

from which one can derive Theorem 1. A generalization of this method can be
found in [1].

In 1939, Erdos and Kac proved a refinement of the Hardy-Ramanujan theorem:



Theorem 2 (Erdos-Kac)

1 w(m) — loglogm
lim — <n: <tpy=G(t),
e n# {m =" Vloglogm - (¥

where
1,2

1 t
G(t) = E/ €_§u du

1s the normal distribution.

This showed how the w(m) distributed around the central value loglogm. In par-
ticular, Erdés and Kac made essential use of the sieve method of Brun and some
crude probability theory[1].

We show below the Erdos-Kac Theorem implies the Hardy-Ramanujan theorem.
We have that if the Erdos-Kac theorem is true, then

1 w(m) — loglogm
lim — <n: > =0
e n# {m =" gmy/loglogm © ’

w(m)—loglogm

since has a limiting distribution function G(t), and

gm+/loglogm
o1
lim —#{mgn: — >€}:O,
n—oo M, 'm
That is,
.1 w(m) — loglogm
lim — <n: >ep =0
n1—>HO107’L# {m =" gmy/loglogm ‘
for any given €. Let ¢ = 1, we can get
1 w(m) — loglogm
lim — m<n: < Gm ¢ =1,
nﬂoon#{ - Vvl1oglogm g

which is the Hardy-Ramanujan theorem.

Definition For a function f(x), we say it is strongly additive if for any two numbers
a and b, (a,b) =1, f(ab) = f(a) + f(b) and f(p®) = f(p) for all @ > 1, p a prime
number; It is additive if for any two numbers a and b, (a,b) = 1, f(ab) = f(a)+ f(b).

In 1954-1955, Kubilius and Shapiro proved a generalization of the Erdos-Kac The-
orem:



Theorem 3 (Kubilius-Shapiro) Let f(m) be a real valued function and suppose

that f 1s strongly additive. Let
1/2
2
A(n) = Z%’), B(n) = (Z %) :

p<n
Suppose that for any € > 0, we have

. 1 flp)? _
R AP D

p<n
|f(p)|>eB(n)

Then for any real number n,

1
lim E# {m <n: f(m)—A(n) <tB(n)} = G(t).
That is, the normal value for m <n of f(m) is A(n) and the standard deviation is
B(n).

We can see many applications of Theorem |3 in the book of Elliot [I]. One can
also consider to apply this theorem to functions which are not strongly additive.
In 1985, by applying Brun’s method, Erdés and Pomerance[2] proved a theorem
regarding to the distribution of w(p(m)), where ¢ is Euler’s ¢-function.

Theorem 4 (Erdés-Pomerance)

— L(loglog n)?
lim L4 mgn:w(w(??)) 2(og302gn) <1\ —aw
n-00 N 75 (loglogn)?/

In Chapter 2, we will prove the Erdés-Kac Theorem. Let

1 plm

m ={ g L

where p is prime. Then

w(m) = 5,(m).
p
We define independent random variables {X,, p is prime} satisfying

X, - { 1 with probability ]l);

0 with probability 1 — %.

3



Then we can see that d,(m) and X, behave similarly. Thus applying the Central
Limit Theorem for ZXp, it is possible that w(m) is normally distributed.

p<m

In Chapter 3, we will give the proof of the Erdos-Pomerance Theorem, with the
application of the Bombiere-Vinogradov Theorem. In order to apply this theorem,

we will calculate
Z Q(p—1) and ZQQ(p —1)

p<z p<w

at first. Then we apply the Kubilius-Shapiro Theorem to show that

Q(p(m)) — 5(loglogn)”
\/Lg(log log n)3/2

distributed normally. Then since

Q(p(m)) — w(p(m))
is small enough, Theorem 4] follows.

In Chapter 4, we introduce the Carlitz module and Euler’s ¢-function in the
function field:

Definition Let R be a principal ideal domain, M be a finite R-module. Then we
can write
M = @leR/CiR, where c; € R, Ci’Ci—l,i = 2’ 37 . ,]{;.
For a € M, We define
SO(M) = Hi'c:1cz‘-

Let A = F,[T] be the polynomial ring over the finite field F,, where ¢ = p™ for
some prime number p and m € N. To define the p-function for n € A = F,[T], we
need to define a non-trivial A-Module associated to n.

Definition Let £ = F,(T") be the rational function field over F,. Let 7 be the
Frobenius element defined by 7(X) = X7 We denote k{7} the twisted polynomial
ring, whose multiplication is defined by

b = b1, Vb € k.
The A-Carlitz module C' is the F,-algebra homomorphism
C:A— Kk{r}, f— Cf,

characterized by
Cr=T+r.



Definition Let B be a commutative k-algebra, B, the additive group of B. Using
this A-Carlitz module, we can define a new multiplication of A on B as follows: for
feA ue B,

f “U = Cf(U),

denoted by C(B), which is still an A module.

Given an n € A\ {0}, the new A-module is C'(A/nA). If n is monic and

n = pi'---phe, we have

C(A/nA) = C(A/py A) x --- C(A/p, A)

Then we have following facts: for p prime in A( Here and below, we will say p is
prime instead), we have [1]

C(A/pA) = A/(p— 1A
Also if ¢ # 2, or ¢ = 2 with pt t(t + 1), we have
C(A/pA) = A/(p" — P A;
If g =2 with p | t(t+ 1), then

Al/lp—1A r=1
C(A/prA) =< AJt(t—1)A r=2;
A/ttt —1)A® A/p"—2A r > 3.

Definition Under A-Carlitz module, in this chapter we still denote the correspond-
ing Fuler’s p-function by ¢. For a prime polynomial p € A and r € N, we define

e(p) =p —p "

Then for a general n € A, we define

T

w(n) = H(pz — 1)p®~! when n = p§'p52..p.
i=1

Note that the ¢(n) is again a polynomial.

Definition For n € A, we define the number of distinct prime factors of n by w(n)
and the number of prime factors of n counting multiplicity by Q(n).

5



We will prove a function field analogue for the Erdés-Kac Theorem:

Theorem 5 (Prime Analogue of The Erdés-Kac Theorem)

.1 wlp—1)—logx
lim — od = <t,=0G().
Jim {p eg(p) =, Toir © G(t)

We also prove a function field analogue for the Erdos-Pomerance Theorem:

Theorem 6 (Normal Distribution of w(¢(m))) Let m be a monic polynomial
in F,[X] over the finite field F,, we have

_ 1
lim %# {m < n:deg(m) ==, w(cp(nz)) 2(1?gx)2 < t} = G(1).
T=00 ¢ Tg(ng)i

We will apply an analogue of the Kubilius-Shapiro theorem in the function field
[9] to prove the function field analogue of the Erdos-Pomerance Theorem, following
roughly the same procedures in the proof of Erdés-Pomerance Theorem.

Finally we remark that, since the difference between w and {2 is very small, all
theorems still hold if we change w to (2.



Chapter 2

The Erdos-Kac Theorem

In the original proof of the Erdos-Kac theorem, they used sieve methods which
are difficult. Later, Halberstam proved this theorem using the method of moments
[][5]. His proof was further simplified by Billingsley[§]. Here we will follow the
approach of Billingsley to prove the Erdos-Kac theorem:

Theorem 2(Erdos-Kac) We have

1 w(m) — loglogm
lim — <n: <t,=G(t
P n# {m =" Vv1oglogm - (®)

where

is the normal distribution function.

In the following, we will give a heuristic explanation for the Erdos-Kac Theorem.
Let P, be the probability measure on the space of positive integers that places mass
1/n at each of 1,2, ...,n. Then the Erdés-Kac theorem can be represented as

< t} = G(1).

m) — loglogm

Vvl1oglogm

limPn{mgn:w(

n—oo

We let

m ={ g

where p is prime. Then

w(m) = Zép(m).

7



From the Central Limit Theorem, if §,(m)’s are "independent”, then w(m) is nor-
mally distributed.

To see why the Erdos-Kac theorem is true, we note that

1 1
P,{m: alm} = - [g} ~ when n is large.

For distinct primes py, ..., pg,

pilm, fori=1,... k. < sz|m

Hence
Pn{ﬂ{m: 6i<m>:1}} — Pfm: oy (m) = 1)
=l
n | I1;pi
1
~ H — [ﬁ} when n is large
S LD
= [[Pdm: 6i(m) =1}.
Therefore when m is chosen randomly from 1,...,n and n is large, the random
variables d,,(m),...,d,, (m) are nearly independent and hence it is possible that

they are normally distributed by the Central Limit Theorem.

2.1 Review of Probability Theory

Definition Let X be a random variable with a probability measure P. For t € R,
the function F(t) = P(X < t) is the distribution function of X, and E{X} =
[ tdF(t) is the expectation of X.

Definition We say a sequence of random variables {D,,} converges in probability
P, to 0, if for any € > 0, lim P, {|D,| > €} = 0, denoted by D, Lm0,



Definition ®(t) is the limiting distribution function for a sequence of random
variables {D,} with distribution functions F,(t) respectively, if for any ¢ where
®(t) is continuous, we have

lim F, (t) = ®(t).

n—oo

We need to know some probability facts before proving the Erdés-Kac Theorem.
We have the following lemmas:

Lemma 7 Given a sequence of random variables {D,,}, if lim E{|D,|} =0, then
0.

Pr

D, —

Lemma 8 1)Given two sequences of random variables {D,} and {U,}, if
lim, o E{|D,|} =0, then {U,} has a given limiting distribution function ®(x) if
and only if U, + D,, does.

2)If D, RN 0, U, has a distribution function ®, then D,U, i

3)If random wvariables A, L, 1, B, L, 0, then U, has limiting distribution ® if
and only if AU, + B,, does.

Lemma 9 ®(t) is determined by its moments j, = ffooo t"d®(t),r =0,1,2, ..., i.e,
if the distribution function F,, satisfy ff:o t"dF,(t) — p, for r = 0,1,2, ..., then
F.(t) — ®(t) for each t.

Lemma 10 If F,(t) — ®(t) for each t, and if [7_t"TdF,(t) is bounded in n for
some positive €, then [~ t"dF,(t) — p,.
Lemma 11 Let {U,} be a sequence of independent uniformly bounded variables

with mean 0 and finite variances o?. If Zaf diverges to oo, then the distribution

i=1
of

n

5

converges to ®(t) which is a special case of the central limit theorem.



2.2 Outline of The Proof

Let {a,} be a sequence of positive real numbers such that
a, = o(n), for any € > 0

and

Z 1og log)l/Q) .

For example, we can choose oy, to be n!'/1°81°6™  Then using the fact that qu ==
loglog x + O(1) we have

1
Z — =logloglogn + O(1).

an<p<n

Let {X,, p is prime} be independent random variables satisfying

X

p =

1 with probablhty
0 with probability 1 —=

Let
Sp= Y X
p<an
then . )
- L= (12
=Xy =Xl

are the mean and variance of Sn. Here S,, is correspondent to

m) = Z dp(m

p<an

To prove the Erdos-Kac Theorem, we will prove first that the following state-
ments are equivalent(Part I of the Proof):
(1) The Erdos-Kac theorem:

. w(m) — loglogm
lim P, : <ty =G(t).
0o {m V1oglogm - (®)

10



_ w(m) — loglogn
2)lim P, : <ty =0G(t).
( >n£§o {m loglogn  — } ®)

_ wn(m) —loglogn

lim P, : <ty =Gt
3) oo {m loglogn - } Q
(4) lim P, {m : W < t} = G(b).

Finally(Part IT of the Proof) we will show that as n — oo,

E, {—(w” Lo } =ty

r
Sn

From the method of moments, the above claim implies that (4) in the Part I follows.

2.3 The Proof

Lemma 12

if and only if

Proof: We have
w(m) —loglogn  w(m) — loglogm v/loglogm  loglogm —loglogn

Vioglogn ~ +/loglogm  +/loglogn * Vl1oglogn

From Lemmas [8 and [9} it is sufficient to show that

, Vv1oglogm
limP,im: |—————1|>€p =0,
n—00 Vl1oglogn
and log1 log1
_ oglogm — loglogn
lim P, ; > =0,
noe {m loglogn 6}

for any € > 0.
If n'/?2 < m < n, we have

Vloglogm | Vioglogm — +/loglogn -
Vloglogn B Vloglogn

11



which implies that

1
\/log§ + loglogn < \/loglogm < \/loglogn— 6\/loglogn,

which is loglogn < % = ¢y (€);

> ¢ implies that

v/loglogn < loglogm < loglogn — ey/loglogn,

log log m—loglogn
Vloglogn

that is,
loglogn < e %(log2)* = cy(e).

So when n is bigger than eemw{cﬂe)’cQ(s)}, we have that the above two probabilities

are both smaller than P, {m cm < nl/Q}, which tends to 0 as n — oo. Thus the
Erdos-Kac Theorem is equivalent to

. w(m) — loglogn
lim P, : <
s {m Vioglogn ™ v

I
Q

Lemma 13

. w(m) —loglogn
lim P, : <t, =Gt
Rl {m Vioglogn ™ (®

iof and only if

, wn(m) — loglogn
lim P, : <tpy=0G(t).
e {m Vl1oglogn - (®

Proof: For a function f of positive integers, let

B S} =23 fm

denote its expected value with respect to P,. Since

{25} d Po{m:g(m)=1}< > 1:0((10g10gn)1/2),

an<p an<p an<p<n

12



Then from Lemma [7],

Zan<P 51) i} O
(loglog n)1/? '

Therefore since

wp(m) —loglogn  w(m) —loglogn > e <p Op(M)
(loglogn)/2— (loglogn)/2 (loglogn)/2’

from Lemma |8 the lemma follows.

Lemma 14

, wn(m) — loglogn
lim P, : <t,=G(t
s {m Vvloglogn N ()

if and only if
lim P, {m :

n—oo

Proof: We have that

cn = loglogn 4+ O(1), s =loglogn + O(1),

and
wp(m) —loglogn  wy(m) —c, N wy(m) —loglogn — wy(m) — cn>
Vloglogn B Sn Vl1oglogn Sn

wn(m) = ¢n _ Olwn(m) — loglogn)
Sn, \/loglogn—l—O(l)\/loglogn.
From Lemma 3, we need only to show that

O(wn(m) — loglogn) P,

o,
Vloglogn + O(1)y/loglogn

which is true since
wn(m) — loglogn = o(loglogn).

Lemma 15 We have

lim E, {M} — B, {M} —0.
—0o0 sy sy

n



Proof: By the multinomial theorem and S, = >~ X, we get that E'{S}} is the

sum
Y Y B ).

where ' denotes summing for all tuples (r1,...,7,) with rq,...,
41, =71; Y. denotes summing for all (py,...,p,) with 0 < p; <

r., > 0and r| +

Notice that X, = 0 or 1 and they are independent. Also note that p;’s are

distinct. We have

E{X;i.'X;Z} :E{Xpln'Xpu}:pl'..pu'

Since wy,(m) =Y dp(m), we get

p<an

E{wy(m)} = Z Z rilory 'Z”E {5” 5;2} )

which is just the above one with the summand replaced by E,, {5;} o

similarly,

1 n
En{ém"'épu}zg {pl__.p :|a

1 1{ n ]
P1DPn n{p1Pn

Hence, for any r we have

[E{S} — En{w,}]

AN AN
3| <
i
iM M
—_ =
~——
< 3
A
3 |& M\
SR

Now

-5;5}. And



Thus
[E{(Sn =)} = Bn{(wn =)} < (Z)<—cnrk9ﬂ

1
= —(ap+c) —0 as n — oo,
n
since «,, = o(nf) for any € > 0 and ¢, < a,.

Now by Lemma |§|, in order to prove that the distribution of S“S;nc“ converges to
G, we need only to prove that F {(S”;#} — . Again by Lemma , it’s true if

n

the moment [~ z"t<dF,(z),is bounded in n.

lim E, {M} ..
Sh

n—oo

Lemma 16

Proof: Actually we will show that for every r, we have

o)

Put ¥, = X, — L. We have E{Y?} = E{X2+ % — 221 Then {v,} are inde-

p

pendent. Hence

" / ! "
E{(Sy—ea} = 33 s BV} E{Y)
n=1 n:

where Y’ extends over those u-tuples (r,...,r,) satisfying r; + ... +r, = 7 and
3" extends over those u-tuples (pi, ..., p,) of primes satisfying p; < ... < p, < .
Since E{Y,} = 0, we can require in Y. above that 7y,...,7, > 1. Since |Y,| <
1, r; >2= |E{Y)}| < E{Y?}, the inner sum has modulus at most

Z%Qﬂ“EQﬂS<ZE&ﬂY:ﬁ.

p<an

But if rq,...,r, add to r, and each is at least 2, then 2u < r. For n large enough
that s,, > 1 now we have

. . " ol
EASn—eaH <330
u=1 ’ w

15



Then

Let

t=—00
- Z{nmz(Hi) Pn{m:t—i—l_ <“’“<m>‘%gt+i}}
=0 U i1 u u Sn u
_ il wn(m) — ¢, "
n mzln Sn

Then the rth moment of F,(z) is F, {(“’"S;f") . Thus we have that the rth moment

of F,(x) converges to p,. Combining Lemmas , , and , the Erdos-Kac
theorem follows.

2.4 From w(m) to Q)(m)

It can be shown that Erdos-Kac and Hardy-Ramanujan Theorems hold also if each
prime divisor is counted according to its multiplicity. That is

Corollary 17

. Q(m) — loglogm
| : <t,==G().
vt {m (loglogm) - G(t)

16



Proof: Let §,(m) be the exponent of p in the prime factorization of m, that is,
m = pr‘s;(m). Define Q(m) = > d,(m). For k > 1, §,(m) — d,(m) > k if and
only if p*™t|m, which is an event with P, measure at most p~*~1. Hence

oo , 2
E, {0, —6,} = ZP” {m: 8,(m)—6,(m) >k} < pe
k=1
which implies E, {Q — w} = O(1).

So from Lemmal 8] the Erdos-Kac theorem persists if w(m) is replaced by Q(m)
and similarly we can successively deduce other parts with €(m) in place of w(m).

17



Chapter 3

The Erdos-Pomerence Theorem

In this chapter, we will prove the Erdos-Pomerence Theorem:
Theorem [4[(Erdés-Pomerence)

Q — Llogl 2
lim 1# n< (%0(11)) 2 (log ozg:c) <tb—cn).
z—00 T =5 (loglog )%/

3.1 Preliminaries

We recall some results from analytic number theory and probability number theory
which we needed for our proof of the normal distribution of w(¢(n)):

Lemma 18 (Partial Summation) Given a sequence {c,},n=1,2,..., let C(z) =
Zci. Let f(x) be a differentiable function. Then

i<1

xT

S (i) = C) fx) - / " O(u)df(u).

i=1
Lemma 19 [3] If2 < k < z, then
1  loglogx (log k:)
- = +0|(—=]).
2 p (k) o(k)

Pz
p=1(mod k)

18



Theorem 20 (Brun-Titchmarsh) [71] Let a and q be relatively prime positive
integers and let m(x;q,a) denote the number of primes p < x congruent to a mod
q. Then we have for some constant C'(g) only depends on some ¢ arbitrarily small,

C
p(q)logz
as r — o0, uniformly in a and q, subject to

£

q<x1_.

Theorem 21 (Bombieri-Vinogradov) For any A > 0, there exists a positive
real number B=B(A) such that

mw’ @
max max |7(y;d,a) — < ;
2172 yse (n.d)=1 @(d) (log x)A
= (logz) B
where -
id,a) = 1,1i(x) = —
P<y
p=a(mod d)

Definition For a function f(x), we say it is strongly additive if for any two numbers
a and b, f(a +b) = f(a) + f(b); It is additive if for any two numbers a and b,

(a,0) =1, f(ab) = f(a) + f(b).

Theorem [3(Kubilius-Shapiro) Let f(n) be a real valued function and suppose
that f is strongly additive. Let
) 1/2

A(z) = Z%, B(zx) = (Z

p<w p<w

f(p)?
p
Suppose that for any € > 0, we have

lim 3 f®” _y

r—c0 B(x)?

p<w
|f(p)|>eB(x)

Then for any real number wu,

lim & #{n < f(n) — A(x) < tB(2)} = G(t),

r—00 I

that is, the expected value for n < x of f(n) is A(x) and the standard deviation is
B(z).

19



Lemma 22 (Turan-Kubilius Inequality) [12] Let f(n) be a real valued func-
tion and suppose that f is strongly additive. Let

5 1/2
E(m):Z%, D(@:(Z@) :

p<z p<z

Let A\, denote the smallest number for which the inequality
> If(n) = E@)]” < aA,.D(x)?
n=1

s always satisfied, and set

A = lim sup A,.
Then we have
1.47 < X < 2.08.

3.2 Lemmas

Let ,(n) be the total number of prime factors p < y of n, counting multiplicity.
Note that €,(n) is a completely additive function. Let P(n) denote the largest
prime factor of n and let p, ¢, always denote primes.

Lemma 23 We have

S —on,

= ela)
a>2
q<y

and

1 1
E =C+0 for some constant C.
2 xlogx

20



Proof:

1 1
L T 2D

< q* <z
a>2 a>2
<y q<y
1 1 1 1
<K — <K —+t—=+...+
; q° Z: <q2 ¢’ qiﬁié)
q"<z a<y
a>2
q<y
1
< > = =0().
q<y 9
Since from partial summation and 7(z) ~ ==,
1 1
> <2
2 2
= (p?) =
B x 1 /”” x J 1
~ logz a2 , logx a2
B 1
N rlogx’
Lemma 24 [f3 <y <ux, then
x loglo x
— ogx ogx
Proof:
ZQy(p_l) - Z Z 1
p<z p<z ¢%|p—1
q<y
= Zﬂ'(l‘; q“, 1)
qa
q<y
= Y w(wmg )+ Y w(wigt 1)
q<y q%,a=2
q<y
= S1+ 5.
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For S, consider two ranges for ¢: ¢ < min {y, :1;1/3} and min {y, x1/3} <q<y. We
estimate the first range by the Bombieri-Vinogradov Theorem. Thus we have

>, wlwgl) = ) %+O(bg%m)

qgmin{y,m1/3} q§min{y,x1/3}

log1
x loglogy L0 z O\
log log x
For the second range of S7, we have

Yo wlwme) <0 wlwig )

min{y7x1/3}<q§y g>zl/3

S

p<z ¢|p—1
g>zl/3

< 2m(x) (sinee Z 1< 2)

qlp—1
- 0 (L) ‘
log x

1/3
For S, we break it into two parts also: ¢* < z'/% and z'/? < ¢* < z.

Z m(z, ¢ 1) < Z

q*<z'/3,a>2 q*<z1/3,a>2
q<y q<y

< i(by Lemma [23).

q>x

( )(frorn the Brun-Titchmarsh Theorem)
elq”

log x
log x
Also we have

Z m(x,q% 1) < Z ﬁa < 2°/9,

q*>x1/3,a>2 q*>x1/3,a>2
q<y q<y

Combine above, the lemma is proved.

Lemma 25 If3 <y <z, then

ZQ (1) = z(loglog y)? Lo (xloglogy)
Y - )

log log x

p<z

where the implied constant is uniform.
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Proof: Let u range over the integers with w(u) = 2 and P(u) < y. Then

Yp-17 = > > a2+ > D ab

p<z p<z q%||p—1 p<z q*||p—1

I, _
a<y lc;ﬁqy 1*llp—1
- 33+S4.
We have
5= Xar-0+Y Y @ -0
p<x p<z q%[[p—1
q<y,a>2
< Y o0-D+ Y (@-amn@e )+ Y (@ o)1)
p<x anzI/B qa>$l/3
q<y,a>2 q<y,a>2

0 (xloglogy) '
log x

Let p(d) be the Mébius function. Then

S-YTe-Y Y ow

p<z q%||p—1 1,q<y p<z
1,q<y lb|| 1 u=qg®lb ulp—1

= p q

l#q (u,(p—1)/u)=1

S350 Sl I SRV I

Lg<y p<z \d|(u,(p—1)/u)

u=q®I® ulp—1
= > D uld > ab= > > u(d)r(z,du,1)ab
L,g<y dlu p<z 1L,q<y dlu
u=q*I° ulp—1 u=q®I®
dl(p—1)/u
= Z Z,u(d)w(x,du,l)ab+ Z Z,u(d)w(a:,du,l)ab
ugxl/G dlu z/6<y dlu
u=q°b u=q*1®
1,q<y l,q<y
= Sy1+ Sso.
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For S,1, we have

Si1 = Z ZM

u<zl/6 dlu
;qalb
L,q<y

= > > uldn(

u<zl/6 dlu
u=ql
L,q<y

= Sy1+ 51

m(x, du, 1)ab

u§m1/6
u:qalb
lg<y

dlu

a>2 or b>2

From the Theorem 21} we have

!

54.1 =

Also from the Theorem 21},

17

54.1 =

<

DDy e
u<al/6 du ¥

u=ql
1,q<y

u<lzx
u=gql
Lg<y

log x

x,du, 1)1 + Z Z,u(d)w(

( T
log?

@) 3 o+ (mg—w)

Z Zu m(x,du, 1)ab

u<zgl/6  dlu
u:qalb
L,q<y
a>2 or b>2

li(z) Z %b—i—Qh()

USZBI/G
u:qalb
Lg<y
a>2,p>2

24

>

qlexI/G

q,l<y
b>2

9

z(log log y)? Lo (Iloglogy) |
log

b

v

x,du, 1)ab



Since

PDIEEED DD DR

b 1/6 1< log
! l§<xy = 2<b<6logl
b>2

2
log
Z (logl)

<< log ©
1<y [ Togl
< Z 2 (since log z > 2)
- 2 logl —
<y
- 0(1)7

We have

51.1 < iz Z—

q<y

logz’

For Sy2, We can assume du = ¢%r® for some natural numbers ¢, 7, a, b, since w(u) =
2. Then

Sia < 2 Z m(z;q°r’ 1)ab

qa<7,.b
qa,r.b>x1/6
q,r<y
§2E E (s qr®, 1ab+2§ E m(x;q%r, 1)a
q“* r >a:1/6 q* r>x1/12
q<y b>2 qSy

Since we have

22 Z xq“rbl ab < 2xz Z arb

q% pb>gl/6 q“ r >xq/12
<y r<y q<y r<y
b>2 b>2

< B/ oglogy

<x log log y)
= o) _— s
log
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and

22 Z m(x;¢%r, )a < 22 Z Z a<<z Z a (since Z 1<12

q° p>gl/12 p<z ¢%|p—1 r|p—1 p<z q%|p—1 1/12

r>x
<y 1<y p>gl/12 =y rip—1
(a+2)(a—1)
— 2 e = -
2.2 @t ra=) )
p<z ¢%|p—1 p=z q|lp—1
q<y 9=y
a>1 a>1
< QD d<)y, ) dmgl
p<z ¢%|]p—1 q<y p<z,q®lp—1
q<y a>1
a>1
2 x v
- Z“ ©(q®)log x < log z’

Then Sy = O (%). Combine above we get the lemma.

Lemma 26 If3 <y <z, then

Q,(p—1 1
Z y<pp ) — log logxlog logy — é(log log y)2 + O(IOg log 33),

p<z

where the implied constant is uniform.

Proof: By the partial summation and Lemma [24] we have

Qp—1
Z (p )

p<z p
1 1]
= D -0+ [ 5D 00 - D
p<z 2 p<t

log1 Yloglogt “logl Todt
- o= +/ o8 o8 dt+/ 884t 40 /
log o tlogt , tlogt 5 tlogt
log log y 1
= O <W) + 3 ((loglogy)* — (loglog 2)?)
+ (loglogyloglogx — loglogyloglogy) + O(loglog z — log log 2)

1
= log log x loglogy — 5 (loglogy)? + O(loglog z).
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Lemma 27 If3 <y <z, then

Q,(p—1)°
Z Qp-1)7 = log log z(log log )*
b

p<z

2
e (loglogy)® + O(log log x log log y),

where the implied constant is uniform.

Proof: By partial summation and Lemma [25 we have

Z Qz(p —1)
p<z p
1 9 1 9
= EZQy(p—1)+ t—zzgy@—ndt
p<z 2 p<t

2 Y 2 T 2 T
_ 0 ((log log y) ) +/ (loglogt) d&t +/ (loglogy) Qi+ 0 </ log log ydt
2 Y 2

log x tlogt tlogt

B (loglog y)? 1 5 5
= O < log ¢ + 3 ((loglog y)* — (loglog 2)*)

+ ((log log y)*loglog z — (loglog y)3) + O(log log x loglog y — loglog 2loglog y)

2
= log log (log log y)? — 3 (loglogy)® + O(loglog x loglog ).

3.3 The Erdos-Pomerance Theorem

In this section we use the Kubilius-Shapiro Theorem to the additive function f(n) =
> pin SA(p—1) to prove the Erdos-Pomerance Theorem for Q(p(n)). As for w(p(n)),
we can prove that but for o(x) choices of n < z,
Q(p(n)) —w(e(n)) = O(loglog x logloglog log ).

So Q(p(n)) and w(p(n)) differ not much and then we can get the same result for
w(p(n)).
Theorem {4| (Erdés-Pomerance(For Q(p(n)))) For any real number u, we have

1 1 t
lim — - # {n <z: Qpn)) — =(loglogz)* < ﬁ(loglog :U)3/2} = G(1).

r—0o0 U 2

We want to apply the Kubilius-Shapiro Theorem. But notice that Q(¢(n)) is
not strongly additive, we can’t apply the theorem directly. Let f(n) = ZQ(p— 1).

pln

27
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Then f(n) is strongly additive and does not differ very much from Q(¢(n)). To see
this, write n = p]fl .- pks. We have

Vpm) = (ki—D+-+ki—1)+ ) _Qp—1)

pln
= fm)+(ki+-+k)—s
= f(n) +Q(n) —w(n).

Note that Q(n) —w(n) is normally o(loglog z) by the Hardy-Remanujan Theorem.
So to prove the Erdos-Pomerance Theorem, we need only to prove

lim L. # {n <xz: f(n)— %(bglogx)Q < %(loglogx)?’ﬂ} = G(t).

r—00 I

Apply the Kubilius-Shapiro Theorem to f(n) , by Lemma[24] we have

Alr) = Z%:ZQ@_U

p<w p<w p

1
= §(log log 7)> + O(loglog 7).

By Lemma [25[ we have

Bz} = Z%?)Q -y Q(p; 1)°

p<z p<z
1
= g(log log 7)® 4+ O((log log 7)?).
Now we need only to verify
1 Q(p —1)*
lim — Z (p—) = 0.

T—00 %(log lOg ZL')S p<w

[2(p—1) > (log log z)*/2

Let € > 0 be fixed. Let T = ¢(loglogx)*?/y/3. From Erdos and Sarkozy [6], it
follows that for any y > 2

Z 1 < 27T logy.
n<y
Q(n)>T
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Hence by the partial summation,

Q(p — 1)? Q(n)?
Z (Pp) < Z (n)

p<x n<lx
Qp-1)>T Q(n)>T
= g /1&‘2 > Q(n)dt
n<t
Q( )>T Q(n)>T
< 2 '(logz)? Z 1—|—/ Y(logt)? 1dt
n<x n<t
Q(n)>T Q(n)>T

< 27 TTYlogz)® + 27111 t! logt 3dt
g
2

< 27 TT*(logz)*
= o(1).
So the condition is satisfied and Erdos-Pomerance Theorem follows.

Let wy(n) denote the number of distinct prime factors of n which do not exceed
y. To prove the theorem for w(vi(n)), we need to prove the two lemmas below.
From now on, we always take y = (loglog z)?.

Lemma 28 For all but o(x) choices of n < z,
Q(p(n)) = Qy(p(n) = wlp(n)) — wy(e(n)).
Proof: Write n = p¥ .- p/". Then we have
p(n) =py = T o = 1) - (= 1),

It Q(p(n)) — Qy(p(n)) # wlp(n)) — wy(p(n)), suppose p*|p(n) where p > y and
u < z. Then p and n satisfy one of the below cases:

1) p|n;
2)there is some ¢|n with ¢ = 1(modp?), then p?|p; — 1, where p; — 1 = ¢;

3) there are distinct ¢, g2 with ¢1¢2|n and ¢; = ¢» = 1(modp), then p|p;—1, p|p;—1,
where p; — 1 =q1, pj — 1 = qo.

In the first case, the number of n < x is at most

Z —=o0|— | =o(x).
3 2

yop p Yy
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In the second case, by Lemma , the number of n < z is at most

Y OY r- y oy )

2 2
y<p<zx q<lz y<p<x gD(p) y<p<x go(p)
g=1(mod p?)

Thus by Lemma [23],

¥ X g -eGe) ol

y<p<z q<lzx
¢=1(mod p?)

In the third case, by partial summation and Lemma the number of n < x is
at most

2

T 1 1
> > < quy | > -
P>y q1<q2<w 0192 2 P>y q<z q
¢1=g2=1(mod p) ¢=1(mod p)
1 (loglogx (10gp))2
- ey (e
2 =\ ) p

_ 0 (x(loglogx)2> Lo (xloglogx) Lo (xloglogy)
ylogy y y

= o(x).
Thus combine above we proved this lemma.

Lemma 29 For all but o(z) choices of n < x,
0 < Qy(p(n)) — wy(p(n)) < 2loglog xlog log log log x.

Proof: Here we need to apply Lemma [22| to the additive function Q,(¢(n)), with

B = B0 = 0 D (1) p) = () = 3 A

pk<z
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Then

e p
() )

k>1
1
= loglog zloglogy — é(log log y)? + O(loglog x)

Q,(p—1 Q,((p— 1)pk-t 1
_2(19—2)+Z ((p k)p )(1__>.

= ot p p
k>1

: 0, (p—1
To estimate ) _, %, we have

S < 5 w0 [ Toe-(g)

p<z p<z p<t

log1 1
_ loglogy L0
xlogx xlogx
* (tlogl t
+2/ (—Og %Y 4+0 (—)) 34t
1 logt logt

_ 0 (loglogy> |
xlog x

also we have

0, ((p— 1)p! k=1 Qp—1
3 ((pk)p ) _ o Z(pk N (pk ))

pF<z p pF<z p
k>1 k>1

< O(loglogx).

Thus
E,(x) = loglog x loglog Y1 (loglogy)? + O(loglog z).
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Also

by = ¥ Bl

pF<z

Qy _12 9) k)2
-y B | 0l

p<z pSx
k>1

2
= loglogz(loglogy)? — g(log log y)? + O(loglog x log log ).

Thus, by the Turdn-Kubilius inequality (37, ., (2 (¢(n)) — Ey(2))?* < 322D, (x)?),
we have

Q(p(n)) —w(e(n)) = loglog z loglogloglog x + O(loglog ).

Now we can prove the Erdds-Pomerance Theorem for w(p(n)). If we can
show that but for o(z) choices of n with n < z, we have Q(p(n)) — w(p(n)) =
o((loglog x)*?), then this theorem follows from the previous one immediately, and
it is true from Lemma [28] and Lemma Thus we finished the proof of the Erdos-
Pomerance Theorem.

Remark. Let \(n) be the smallest positive integer such that a*™ = Imodn for all
a with ged(a,n) = 1. We have

II prt),  Am)le(n).

ple(n)

Then w(p(n)) = w(A(n)) < QA (n)) < Q2(p(n)). Thus we can see that it is still true
if we replace Q(¢(n)) in the Erdés-Pomerance theorem with w(A(n)) or Q(A(n)).
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Chapter 4

A Function Field Analogue of
Erdos-Pomerence Theorem

Since the Bombieri-Vinogradov theorem we used in the proof of the Erdds-
Pomerence Theoremis an strong unconditional replacement for the GRH bound,
and we do not need GRH in the function field to get a similar result, it is natural to
ask whether we have an analogue of the Erdos-Pomerance theorem in the function
field.

We need to introduce some definitions in the function field at first.

Definition Let R be a principal ideal domain, M be a finite R-module. Then we

can write
M = @leR/CiR7 where c € R, Ci’Ciflyi = 2’ 3’ ce ’k.
For a € M, We define
o(M) = II;_;c;.

Let A = F,[T] be the polynomial ring over the finite field F,, where ¢ = p™ for
some prime number p and m € N. To define the p-function for n € A = F,[T], we
need to define a non-trivial A-Module associated to n.

Definition Let £ = F,(T") be the rational function field over F,. Let 7 be the
Frobenius element defined by 7(X) = X9. We denote k() the twisted polynomial
ring, whose multiplication is defined by

b = biT,Vb € k.
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The A-Carlitz module C' is the F,-algebra homomorphism
C:A— k{r}, f— Cf,
characterized by

Cr=T+r.

Definition Let B be the commutative k-algebra, B, the additive group of B.
Using this A-Carlitz module, we can define a new multiplication of A on B as
follows: For f € A, u € B,

f “U = Cf(“)?
denoted by C(B), which is still an A module.

Given an n € A\ {0}, the new A-module is C(A/nA). If n is monic and

Tu

n = pi'---ph, we have

C(A/nA) = C(A[pTA) x --- C(A/p, A)

Then we have following facts: for p prime in A, we have [I]
C(A/pA) = A/(p— DA
Also if g # 2, or ¢ = 2 with p1t(t + 1), we have
C(A/pA) = A/ — P4,
If g =2 with p | ¢(t+ 1), then

Al/(p—1A r=1;
C(A/prA) =< AJ/tt—1)A r=2;
A/tt—1)A® A/p"2A r>3.

Definition Under A-Carlitz module, in this chapter we still denote the correspond-
ing Fuler’s p-function by ¢. Now we can define
o(p") :=p" — p" ', for any prime polynomialp € A,r € N.
Then we have
p(n) =, (p; — Dp* ', ¥n € A=TF,[T],and n = py'p3*..p}".
We denote by w(n) the number of distinct prime divisors of n for n € A, and
Q(n)) the number of distinct prime divisors counting multiplicity of n for n € A.

and
w(p(p)) =w(p—1),¥p € A,pa prime polynomial.
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Definition For z € N, define
M(z) = {m € M,deg(m) = z}.

Let
P,{m : m satisfies some conditions}

denote the quantity

Mz )’#{m € M(x) : m satisfies some conditions}.

Notice that P, is a probability measure on M (z). Let f be a function from M (z)
to R, then the expectation of f with respect to P, is denoted by

E,{m: f(m)}: Zf

mEM(ac
In this chapter, we will prove

Theorem [5(Prime Analogue of The Erdés-Kac Theorem)

. wp—1) —logz
lim P, {p: deg(p) = ., <t\—qu).
lim {p eg(p) == N (t)

Theorem [6[Normal Distribution of w(¢(m))) Let m be a monic polynomial
in F,[T] over the finite field F,, we have

lim i# {m : deg(m) = z, wlp(m)) - %(log 7’ < t} =G(t).

z—00 ¥ 1

75(10g 90)

In this chapter, we will often use the lemma below :

Lemma 30 [1] Let A =F,[T], and p a prime polynomial in A. Suppose a,m € A
are relatively prime and that m has positive degree. Consider the set of primes

Sw(av m) = {p €A | p= CL( m),deg(p) = I},

we let w(x,a,m) denote the number of such primes. Then we have



and N
- z
wo) =T ro(L).
x x
where 7(x) is the number of the set of prime polynomials in A of degree x.

In this chapter p will always denote a prime polynomial, m a monic polynomial
in A, where A =TF,[T7.

4.1 w(p—1) to wy(p—1)

To prove the Theorem , we consider to transform wy(p — 1) of w(p — 1), where

Z 1.

deg(p)<y
ple(n)

Lemma 31 If3 <y <x/2, then

q" q"
> wlp—1)= —logy +0 (;) :

deg(p)=x
q° q°
Y wip—1)= ;(logy)2 +0 (Elogy) :
deg(p)=x
and
ql‘

> (wylp—1)—logy)’ =0 (Elogy> :

deg(p)=x

Proof: Let [ denote a prime polynomial too, we have

Z wylp—1) = Z Z 1

= l 1)
deg(p)=c deg(p)= xd‘<fl><y

- >

deg(l)<y P ()
eg(p)=x

o Z <; qdeg(l) -1 +0 (7))

deg()<y
- LY et X o(D)
deg(l) deg()<y



Note that

1 1 qn qn/2
> et - Lo (sro(%

deg(!)<y n<ly

Also,

Thus, by combining the above estimates, we get

Z wy(p—1) = L ogy +0 (q_) :
x x

deg(p)=x

We let u range over the polynomials with w(u) = 2, i.e, u = lyls, l; and [5 are prime
polynomials, [y # l5. Then

2

doow-1 = > | X1

d = d; = lp—1
eg(p)=z eg(p)== s,
= 2 X > >t
deg(D)<y lIlp—1 deg(l1)<y ulp—1
deg(p)=z deg(12)<y y=[115 11 #lo

deg(p)=x
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For the first part, we have

2. 2!

deg()<y I|p—1
deg(p)==

For the second part, we have

SIS SN

deg(l1)<y ulp—1
deg(12)<y y=[11y,1; £y
deg(p)==

Here we have

q" q"
> (0% )

m<y n<y

Z m(x, 1, 1)

deg(l)<y

() o)) wm
Cr (o) e
qx—z() (Z %) =0 <%logy> :

n<y

SIS

NS

l1,l2 ulp—1u=lils

1-> > 1

l1,l2 ulp—1
u=l1l2
l1#l

S5ty (Lo (55) (S0 (%))

m<y n<y

Zmi—%(%w(qf)f

n<y

3 (0 )

m<y n<ly

- g2 4"
(£5 (5 Smr))

m<y n<y

qx qm 1 qn/2
(e

m<y n<y

o(5)

> (T ) o (S5 % )

m<y n<y m<y n<y

log?y + O(logy).
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Also,

n

m/2
Z (O (qm > nzgy n(qmz” — 1>> < O(logy),

m<y

similarly,

> (% > qmﬂlz —© (q:2)> < O(logy).

m<y n<ly

So combine above we get

Z wz(p —1)= q;(logy)2 +0 (q;logy) :

deg(p)=2

Then from above 2 results, we can get

D (wp—1) —logy)’ = D (wp(p—1)+log’y — 2w,(p — 1) logy)
deg(p)=z deg(p)=z

= q—log2y+0 (q_ logy)
x x

+ Z log?y — 210qu—logy—i—0 q—logy
x x

deg(p)=x

=0 (q—logy) .
x

T

From now on, we let y = So then we have

logz*®
Z 1/n = o(y/logx).
T>n>y
Let
1 ifl|p—1,
ap—1)= . P
0 ififp—1,

So wy(p—1) = Z a(p—1).

deg(1)<y

Lemma 32 Let p be a prime polynomial in F,[T] over finite field F,, we have
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lim P, {p : deg(p) = =z, wip— 1)~ logz < t} = G(t)

if and only if

lim P, {p: deg(p) =, <t =Gt).
lim {p cg(p) =z N } (t)

Proof:
Note that
w(p—1) —logx _ wy(p—1)—logx 1 wp—1) —w,(p—-1)
Vogx Vlog x Vlog x
and

Z di(p—1)

wp—1) —wy(p—1) _ des>y

Vlog x Vlog x

Then from Lemma 2 in Chapter 1 we need only to prove that

It’s true since

wp—1)—wp-1)= 3 1
delg()l_);y

= Z PAp—1:5(p—-1)=1}

deg(l)>y

1
= D i

x>deg(l)>y




Since we have already Z 1/n = o(y/log ) from the choice of y, thus we get the
x>n>y
desired result.

4.2 The r-th moment of lim,_, ., P, {w L@y =er o t}

Sy -

For [ a prime polynomial in A, let X; be random variables which satisfy

1
e — 1’

P(X,=1) =

1

P(XZZO):l—qdeg(lTl

We let S, = Z X, and let

deg(l)<y
¢, = E{S,} =logz+ O(1),

sz =Var{S,} =logz + O(1).

Lemma 33

. wy(p—1)—logx
lim P,{p:d =z, <ty=0G(t
lim {p eg(p) =« N (1)

if and only if

lim P, {p :deg(p) = =z, wyp—1) — < t} = G(t).

Sz

Proof: Since

=1 —logr _ w1l —c (w1 logr w1 -c
Viogx Sg Viog x Sg
_ wylp—1) - Olwy(p—1) —logx)
Sz Vg z(y/logz + O(1))

wy(p - 1) — Cx 4 O<Wy<p - 1) - 10g£(:)
Sz Viogz(Vilogz + O(1))’
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then from lemma 2, we need only that

Owylp-1)  n
Viogz(Vlogz + O(1)

This is true since wy(p — 1) = o(y), and from the choice of y we get the desired

result.

Now it remains to prove the lemma below for theorem [5}

Lemma 34 For y given as before, we have

wy(p—1) — ¢,

lim P, {p s deg(p) = z, 2 < t} = G(t).

Sz

Proof: We will need to use the method of moments. Let

F(t) = lim P, {w : Wy(p_sl) % < t}.

r—00 x

The r-th moment of F'(¢) is

/:O’“”"F“): > {35202( ) (I(Hé)_px(m_l

t=—00

)

- Z JL%i( —>TPI{p: (t+%) <Wy(p_sj —

t=—00

_ i} (wy(p— 1) —cx)

m=1

{2}

We know that

T1

E{sr) = sz T'ZE ooxi| o Y x

deg(l)=p1 deg(l)=pu

——

Tu

where > denotes u-tuples (r1,...,7r,) with i +...+7r, =7, s € NUO, and "

denotes u-tuples (p1,...,p,) wWith p; <... <p, <y.
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Notice that

and
E.\ >, &) = > Plp:ip-1)
deg(l)=k1 deg(l)=k1
_ (q_]ﬂ+0 (qk1/2)> . qk?—l +0 (q2)
]{31 ]Cl q*
1 1 1 q’“l/2
— — 40 ) ,
k1 * (k’lqkl/Q) - 2k
we have
E, a4 —E >oxi| o X,
deg(l)=k1 deg(l)=ku deg(l)=k1 deg(l)=ku
1 riky/2 roka/2 ruky /2
< 0 ¢ T 1
qx/2 kll k22 /fZ“
< O(q™™™).
So
1 Y qY "
ES)) —E. () < _
( y> ( y) ¢ (n:l y)
y+1 r
< 1 (q 1) |
T\ g1
and then
T r - r 1 qy—H_l . r—k
1 y+1 _ 1)V r
_ 1 (<q )q +CI>
q* q—1

— 0,as * — o0, from the choice of y.
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From Lemma 3 in Chapter 1, We now only need to prove

S, —E{S,})
sup |E{ [ 2Z=—2 < 00
y=y(x) { ( \/ Var {Sy} > }
Lemma 35 ,
S, — E{S,}
sup |E t T £5 < o0
y=y(z) { ( Vv Var{S,} ) }
Proof: Let V; = X; — qdeg<+)_1= Then
1 Tu
E{(Sy =)} = ZZ .ZE > M >V
7’1 Ty
deg(l)=k1 deg(l)=kuy

Let Zy, = Z Y,. Then

deg(l)=k;

So from above we have
E {(Z/ﬂ)n

Then

kil
k;

g~
EY, (k,“)

(% o()
(

gt —1
qt 2
ki ki
qle1+--~+k‘uru
(Y=
(Ze)™} Kk

e -(34).

i=1
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And
s2 = Var{S,} = E (S, — E(S,)*)

- E PR = (iz>2

deg(l)<y

1<iy,i2<y

i1 0o
qu
~ ..
1112

1<i1,i2<y
2
Yy i
= |27
— 4
=1

Thus E{SSTZ} =1+ 0(1) < oo and the Lemma follows.

Lastly, we can combine above lemmas and then get the analogue for the Erdos-
Kac Theorem in function field as we did in Chapter 1, which is Theorem [5}
Theorem 5| (Prime Analogue of The Erdés-Kac Theorem)

wp—1)—logz
Viogx

lim P, {p : deg(p) = =z,

T—00

< t} = G(1).

4.3 The Normal Distribution of Q(¢(n))

In this section, we prove the following theorem:
Theorem [6] (Normal Distribution of Q(¢(m)) Let m be a monic polynomial
in F,[X] over finite field F,, we have

. des(m) — 5. 2e(m) — 5(logz)” _
xh_}rglo q_””# {m : deg(m) = =, \/Lg(logx)% < t} G(t).

To prove this theorem, we need a theorem which is similar to the Kubilius-
Shapiro theorem, but is effective in function field [9]:
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Theorem 36 (Zhang) Let h(m) be a strongly additive function on F,[T]. For
reN,

A(z) = Z ﬁgﬁz)v)’ B(x) = Z ;g()p)

deg(p)<z deg(p)<z

1 2
m —— 3y LW b _,

T—00 2 deg(p)
B (ac) deg(p)<z, qEr
|h(p)|>eB(x)
then . " A
xhﬂrgo q—x# {deg(m) =z, % < t} = G(t).

To prove Theorem [6] We want to apply this theorem with

h(m) = Q(p(m)).
However, to apply this theorem, h(m) has to be additive. So instead of (p(m)),
we apply the theorem with additive function f(n) = >, Q(p — 1), and we will
prove that the difference between them is small enough. In order to apply this
theorem, we also need A(x) and B(z) to satisfy the requirements:

. f(p)*
xh—>nolo B(x)? Z deg(p) 0,
qies(P) <z q
|f(p)|>eB(x)

where )
3

B f(p) B f(p)?

A(SL’) o qdeg(p)’ B(l’) B qdeg(p)

deg(p)<z deg(p)<z

4.4 Lemmas

At first we need to calculate for ZQy(p —1) and ZQ; (p—1),

p<z p<x

Lemma 37 Let n be a fized polynomial in F,[T], a > 2 and w(x,n,1) = 1.

Then we have

Z m(z,n 1) = O(1).

deg(n)<y
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Proof: Since we have

1 T z/2
W(x,n,l):q)—q——i—()(q >7
T

and

(I)(na) - q(a—l) deg(n) (qdeg(n) _ 1)’
then

Y 2
a 1 q"
> went )<Y e (4

deg(n)<y

Lemma 38 .
w(p
Z deg 5(10g TZ)2 + O(lOg l'),

deg(p)<z

and

1 3 2
S L o Ol s)

deg(p)<z

Proof: By Lemma

D DRECESY

deg(p)<z
_ Z (ﬁlognw (%))

Z w(p - 1) . Z deg(p)=n
qdes®) o qn
n=1
n=1

- 2 (550 ())

1
= §(logx) + O(log ).
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Also, we have

Lemma 39 For 2 <y < x, we have

> 9p-1)= Logy+0 (q—) ,
T z

deg(p)==

and

Z Q;(p —-1) = q;(logy)2 +0 (q;logy) :

deg(p)==

Proof: We have

oo-1) = Y Y 1

deg(p)=z deg(p)=z 1*|p—1
deg()<y
= Z m(x, 1% 1)
deglcllﬁy
= Z m(x,1,1) + Z m(x, 1%, 1)
deg(l)<y deg(l)<y
1% a>2
- Sl + SQ.
By Lemma [38]

51: Z Wy(p_l):%logy+0<%)

deg(p)=z
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We consider S, in two cases, deg(l*) < z'/3 and deg(I*) > z'/3:

Sy = Z m(x, 1% 1) + Z m(x, 1% 1)

deg(l)<y deg(l)<y
deg(19)<z'/3,a>2 deg(1*)>z1/3,a>2

= So1+ S20.

For Sy1, by Lemma [30] and 37, we have

S <Y 1<<—

deg(l*)<a!/3
a>2

For Sy 5, by Lemma [30], we have

52’2 = Z W(x,la,l)

deg(1%)>z1/3
deg i<y
a>2

B 1 qn qn/2 qn qn/2
> (q(“‘””(q”—l) n +O( n n O

2y>2n>x1/3
1 q2n
< ¥ L
(a=1)n(an _ 2
sy @ (¢"=1) n

1
< Z q(a—B)an(qn _ 1)

2y>2n>21/3

= o).

So we have that

Z Qy(p—l):q;logy—i—O(q;).

deg(p)=z

Let u range over the polynomials in F,[7] with w(u) = 2. Then

Z Q2 —1) Z Z a’® + Z Zk1k2 Sz + Sy,

deg(p)== deg(p)=z 1*||p—1 deg(p)=z ulp—1
deg()<y
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where u = [§'152 with 1y, I, distinct primes and deg({y), deg(ly) < v.
Below we calculate S3 and Sy separately:

Sy < Z Qp-1)+ Z (a® — a)m(z,1%, 1) + Z (a® — a)m(x,1%,1).
deg(p)=z deg(1%)<z1/3 deg(1%)>z1/3
deg(l)<y,a>2 deg(l)<y,a>2

(4.3)

For the first part of this sum, we apply Lemma |39} For the second sum, by Lemma
we have

Z (a® —a)m(z,1%,1) < Z (a® — a)m(z, 1%, 1)

deg(1")<z'/3 deg(l)<y

deg(l)<y,a>2 z/3>a>2
< ) (a®—a)=o(x);

zl/3>a>2

For the third part we have

X

2 a 2 q
g (a®* —a)m(z,1%1) < E (a a)x(q(a_l)deg(l))(qdeg(l) Y
deg(1%)>z1/3 deg(1®)>z'/3
deg(l)<y,a>2 deg(l)<y,a>2

IN
(]
IS
[\
|
Q
~—
™
8
—~
2
S
|
=
BALS)
~—
—~
=)
3
|
—
~—

AN
|»Q
8
=
Do
|
Q
S~—
—
Il
Q
VR
[
8
~~

Thus we have
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Also,

54 == Z Z klkg

deg(p)== ulp—1

= > S kikat Y > kik

degu<a!/6 ulp—1 degu>x1/6 ulp—1
deg(l1),deg(l2)<y deg(]za):k:c deg(p)=x
<
u=i1 142 (1) deg((2)<y
u:llll22

k—1
- > D ik —)
Fllp—1 =1
deg(p)==
= S+ Sa2 — Sas.

Here Sy and Sso are the component in Sy containing u satisfying above require-

ments with degree smaller than and bigger than z6 respectively.
We have

5473 = Z O(kg)a

1¥||p—1
deg(p)=z
Since
2. K = >oQp-D+ Y W=kt )
Fllp—1 deg(p)== deg(1%)<z'/3
deg(p)=z deg(1)<y,k>2
+ Z (K — k)m(x,1%,1),
deg(IF)>z1/3

deg(l)<y,k>2

o1



From similar argument for Ss;, we can get that Sy3 = O (%log y) too. Also we
have

Sy = > > kakom(x, du, 1)p(d)

deg(u)<z1/6 dlu
deg(l1),deg(l2) <y u=1}1152

q* N(d) ik
= — ki k O —u(d
DY 5 (ki + O ()
deg(u)<at
deg(l1),deg(l2)<y
¢ k1ks
= ; Z . qkldeg(ll)-i—kzdeg(lz)
deg(u)<z®

deg(l1),deg(l2)<y

q¢* 1 g ¢
- gzzq”+m{n+m+0<n+m>}

n<y m<y

= q—(logy)2 +0 <q—log y> :
T x

For Sy, we let du = 1¢15. Since deg(u) > z'/5, we can assume that deg(ly) > z'/12.

Then

Sio = 2 Z Z ab+ 2 Z Z Z a.

1flp=1 y>deg(ly)>z1/12 deg(p)=z ¢|lp—1 la]lp—1
13]lp—1 b>2 deg(l1)<y y>deg(lo)>x'/12
deg(l)<y a>1
a>1

For the first part we have

Z Z ab < Z am(x,lf,1) Z br(z,15,1)

1flp=1 y>deg(la)>z1/12 deg(l1)<y deg(l2)<y

Blp—1 2>b>2 r>a>2 r>b>2
deg(l1)<y

>za>1

2

< > an(x i 1)

deg(l1)<y
z>a>2

T

< O (q_) by Lemma [37]
x
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For the second part we have

2. 2. 2 e D )

deg(p)=z If|p—1 lalp—1 deg(p)=z I{|p—1
deg(l1)<y deg(lz)>z1/12 deg(l1)<y
a>1 a>1

= > Y (@2+3+-+a)

deg(p)== ({||(p—1)

deg(l1)<y
a>1

< D> @+ Y 9

deg(p)=z I7[(p—1) deg(p)<z
deg(l1)<y
a>1

Since

> Qp-1)=0 (i—xlogy) :

deg(p)<z

also

SOy < Yo Y

deg(p)== (| /(p—1) deg(l1)<y  deg(p)=c
deg(l1)<y p=1(17)
a>1
= Z a’m(z,1§,1)
deg(l1)<y
1<a<zx
< z0(1)
= O(ZL‘),

We can have that

Z Qz(p —-1)= %(logy)z +0 (%logy) .

deg(p)=2

Lemma 40

1 1
> 5~ Gy 08 FOW);

deg(p)<z
p=1(m)
Qp—1) 1.
> ~gwm ~ glog’e+Olloga),
deg(p)<z
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and

Proof:

Also,

D

deg(p)<z

1
Z deg(p)

deg(p)<z
p=1(m)

Q*(p—1)
deg(p) 3

1
= _log® 2 4+ O(log® z).

w=1(m)

11
=2 p > 1
B A

Op—1
ZZ%

n<z deg(p)==

Z %logn—irO (%)

n<x q”

1
Z Oin + O(log )
n<x

1
5 log® z + O(log z) from partial summation.
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Lastly,

Z D(p—1) i%loan—i—O(%logn)

deg(p) n
deg(p)<z 1 n=1 1
~ 1 1
= Z—log2n+0<—loga:>
—~n n

1
= 3 log® z + O(log? x) from partial summation.

Lemma 41 Let g(m) = ZQ(p — 1), then

plm
1
lim i# {m : deg(m) = z, Q(('D(TZL)) 2(13ogm)2 < } = G(t)
z—00 q* 5 (logz)2
if and only if
1 2
lim {m . deg(m) = =, g(mf ;108 2) } — ().
z=00 ¢* —(logz)?

Proof: Note that for m = p}' --- pl*, we have

u

p(m) = [ — Dpi".

i=1
Thus
(st =2 (T[im -0 )+ (I
i=1 i=1
which gives us

Y 2 —1) < Qp(m)) <> Qp—1) +2(m).

plm plm

Also we have Q(m) < x when deg(m) = x. Then from Lemma 3 in chapter 1, we

need that
Q
(m) 5| > 5} = 0.
2

1
lim —# {m tdeg(m) =2, | ———=
= (log)

T—00 qx
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Since the normal order of Q(m) is log #, we have that but for o(¢*) number of monic
polynomials m, with deg(m) = z

o

Q(m) = (14 o(1))logz = o (%(mgx)‘ ) .

Then we have

(logz)2 log% x

and the result follows.

Q 1
(z) :0< >—>Oas:c—>oo,

Lemma 42 1
> Qe(m) = 5¢"(logz)* + O(¢" log z),

deg(m)=x
and

S 0%(p(m) = 1o logx)* + O(g"(log)?).

deg(m)=x

Proof: First let us prove

> 1 Doer-n) = %qx(log )* + O(¢" log z),

deg(m)=z \ plm

and
2

> ([ S0w-1| = jatosn)* + O (og)?).

deg(m)=z \ plm

Then we can use the inequality

> Qp-1) < Qp(m)) < Qp— 1) + Q(m),

plm plm

o6



to get the result.

For Z ZQ(p —1) |, we have

deg(m)=z \ plm

2. | Xee-n) = > > 1

deg(m)=z \ plm deg(p)<z deg(m)=x
plm

deg(p)<z

1
= Sa*(logz)? + O(q” log )

For Z ZQ(p —1) | , we have

deg(m)=z \ plm

2

D ae-n| = D DY Qe-n+ > D> D ap-1nai-1).

deg(m)=x \ p|m deg(m)=z p|m deg(m)<z plm lm
l#p
Since

x 0 _1)
Z D Pp-1) < ¢ Y %

deg(m)=x plm deg(p)<z

1
= ¢ <§ log® x>

= O(¢"log’ ),
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and

Y DN ap-nai-1)

deg(m)<z plm Im

= > D). ep-vai-1) Y 1

deg(l)<z deg(p)<z deg(m)=x
p#l pllm

1
. Up = DU -1 e
)

deg(l)<z deg(p)<z
p#l

2

o Qp—1) Qp—1).,,
= 4 Z qdee(r) +0 Z ( qdee(®) e

deg(p)<z deg(p)<z
and since
Qp-1) ’ " o 7. 3
Z (W —O Zzlogx —O(q log .T),
deg(p)<z n<z
and
2
T Q(p — 1) 1 T 4 x 3
q ( W = Z_lq log T+ O(q log 33'),
deg(p)<z

then

Then with the inequality
Y Qp—1) < Qp(m)) <Y Qp—1) +Q(m),
plm plm

we have

S QAp(m) = 50 (log )’ + Ol log ).

deg(m)=z

o8



Also, since

> [ er-1+am)

deg(m)=z \ plm

- Y (Sow

deg(m)=x

= 2 (20

deg(m)=x

1
= Ld(logz)! + 0

— 1)+ O(log x)

2

-1 | +0 Z ZQ —1)O(log x)

deg(m)=x p|m

¢*(logz)*),

again from the inequality, we have

> Dl

deg(m)=z

¢“(log z)* + O(¢" (log z)?).

Similarly, we have the lemma below:

Lemma 43

> Qp(m)) = ¢"logxlogy + O(q" logy),

deg(m)=x

and

> Q2 (e(m

deg(m)=x

Proof: First let us prove

Z ZQy(p_

deg(m)=z \ plm

and

Z ZQy(p—

deg(m)=z \ plm

)) = ¢*log” zlog® y + O(¢" log” xlog y).

= q"logxzlogy + O(q" logy),

= ¢“log® zlog” y + O(q" log x log® y).
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Then we can use the inequality

> p-1)< m)) <> Q(p— 1)+ Qy(m),
plm

plm

to get the result.

For Z ZQ —1) |, by Lemma [39| we have

deg(m)=z \ plm

Z ZQy(p— Nl = Z Z

deg(m)=z \ plm deg(p)éxdeg(‘m):x
= 2 k- 3 1
deg(p)<z deg(m)=x
plm
= ¢ Z qdeg(p)
deg(p)<z

~ [T logy <
> (5o ()

= ¢"logzlogy + O(¢"logz) from partial summation.
2

For Z Zﬂy(p —1) | , by Lemma [39, we have

deg(m)=z \ plm

1D -1 = Z D@p-D+ D DD Q-1 -1).

deg(m)=x \ p|m deg(m)=z p|m deg(m)<z plm lm
l#p

Since
Qp—1)

> 21 < @ Y e

deg(m)=z p|m deg( )<z

log Y %logy

= 0(q logfclog Y),

IN
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and

D 2.

deg(m)<z plm Ilm
I#p

2. 2. A

deg(l)<z deg(p)<z
p#l

Z Z Q,(p—

deg(l)<z deg(p)<z
p#l

| >

deg(p)<z

and since by Lemma

and

then

>

deg(p)<z

2

deg(m

qdeg(p)

(Qy(p— 1)

A )
qdeg(p)

)=z

plm

Since we have

Z €y (m)

)=x

deg(m

Then with the inequality

we have

Z Q,(p—
plm

Z Q,(p—1)

Qy(p -

qdeg(p)

)=

2

Q,(1—1)

Q-1 > 1

deg(m)=x
pllm
Q-1 L
(1= )qdeg(p>+deg(l)
2
1) . Q,(p—1)
T4 O Z < deg(p)

n<zx

Z%log%

deg(p)<z

)]

> =0 (logxlog2 y) ,

q" log® zlog® y + O(q" log* y log ),

= ¢“log® zlog” y + O(q" log x log®y).

m) <Y 0,

plm

= O(q"logy).

(p—1)+Q,(m),

> Qp(m)) = ¢"logxlogy + O(q" logy).

deg(m)=z
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Also, since

2

S Do -1)+Qm)

deg(m)=z \ plm
2

= > 1Y ap-»| +o| Y > ap-10(ogz)

deg(m)=z \ plm deg(m)=x p|lm

= ¢"log?zlogy + O(¢" log® xlogy),

again from the inequality, we have

> @Q(p(m)) = ¢"log” zlog® y + O(q" log zlog y).

deg(m)=x
From Lemma [42] we have a result below:

Lemma 44

> (Q(gp(m)) — %logg x)2 < ¢®log® .

deg(m)=x
Proof:

> (9etm) - jrosts)

deg(m)=x

= 3 ((etm) — fetm) logha + { 1og's ) by Lemma 12

deg(m)=x
Z log? x

deg(m)=x

1
— log’x (§qx log? z + O(q" log x))

]

1
= 2 log* z + O(q" log® z) +

1 1
= §qx log* z — §qx log* z + O(q" log® z)
< ¢%log’ .
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Lemma 45

Y. (Qe(m)) = wlp(m)))® = o(g" log*** z) for any & > 0.

deg(m)=x

Proof: Let w,(¢(m)) be the number of distinct prime divisors of ¢(m) whose
degrees are > y and 2 (¢(m)) be defined similarly. Then

Y. (Qp(m) —w(e(m)))?

deg(m)=x

= Y (Qpm)) + O (p(m)) — wy(p(m)) — wif (p(m)))*
deg(m)=x

< 3 (9 tm) = wf (pm) + (R (e(m)) + (@, (e(m))?)
deg(m)=x

We then claim that but for o(¢”) choices of deg(m) = = we have

Qy (p(m)) = wy (p(m)) = 0.

To prove this claim, first notice that if there exists some prime p such that p?|p(m),
when degp > y and degm = z, Then p and m satisfy one of three bellow cases:

1) p*lm;

2) There exists some prime polynomial {|m with [ = 1(p?);

3) There exists some prime polynomials [y, Iy with 1 # ls, l1l3|m, and l; = I = 1(p).

In the first case, the number of possible m is

S #{m : pm, deg(m) = . deg(p) = n}

n>y

< ; { (% +0 (q;ﬂ)) (3" +0 (1))}
(-o(=)e)
S5 o ()]
)

63

(]

VAN



In the second case, by Lemma [30] the number of possible m is

3 2 #{m : ljm, deg(m) = =, deg(p) = n}

n>y i=1(p
deg(l)
q" q" q"logx
<YLY Swl=Xt
g (l 2
el Wy =~ (p®)
deg(l)<z
*log x 1
= Zq f <<q$logx-—y
= ng yq
= o(q").

For the third case, the number of possible m, is at most

T

q" q
Z " Z ges(l) gdes(l2)

n>y deg(l1)<deg(l2)<z
11=12=1(p)
2

N 1
< q ZE Z o) (from Lemma [40))

n>y =1(p)
deg()<z
q" logx
- Z deg
n>y
T (logx) 1 T 2
= q -— < ¢ (logz)*—
Z: n q" (log ) ya¥
n>y
= o(q").

So the claim is proved, and as an instant corollary, we have

ST (9 (p(m) — wi (p(m)” < ¢" log?x, with Q(p(m)) < Q(m) < log.

deg(m)=x

Thus we have
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Y (Qp(m) —w(p(m)))?

deg(m)=x

< 2 (@ etm) — i (elm))? + (@ e(m) + (o (e(m)))
deg(m)=x

< ¢"log® x + 2¢" log® x1og” y)

= o(¢"log®** ).

Lemma 46

3 (w«o(m)) ~ 5 log? ) < logs

deg(m)=x

if and only if

1 2
(Q(gp(m)) ~3 log? x) < ¢"log’ x.

deg(m)=x

Proof: This is true since

<

<
<

deg(m)=z eg(m)=x

> (Qp(m)) = w(e(m))) (Ap(m)) + w(p(m)) —log” z)
deg(m)=x

S (plm) — wlem)? +2 3 @plm)) - wlim) ((elm) - 1os’s)
deg(m)=x deg(m)=x

qﬂog%wJ ST (Qem) —wlpm)? 3 (ww(m))—%log%)
deg(m)=x

¢®log® x + 2¢% log®**/? & (for any & > 0, from previous Lemma)

¢ log® z.

Lemma 47

1 — 3 log”
lim —# ¢ m : deg(m) = x,m satisfies wipm)) — 5 log"z <t =G()
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if and only if

Q — Llog”
lim l# m : deg(m) = x,m satisfies (p(m)) — 5log"x <tp,=G({).

T—00 qw 1 3 o
\/3log”

Proof: Since

w(p(m)) — $log*x _ Qp(m)) — slog’z  Q(p(m)) — w(p(m))
\/3log® \/3log* glog’a

then by Lemma 3 we need only to prove that for any ¢ > 0,

lim i# m : deg(m) = x, Uep(m)) = wlp(m) >¢ep =0.

z—o00 ¥ 1 3
q \/3log”x

It is obvious since we have

Z (Q(p(m)) — u)(go(m)))2 < ¢"log’ z, from Lemma 45

deg(m)=x

4.5 Proof

In this section, we will finish the proof of the Theorem 2:

Theorem 2 (Normal Distribution of w(¢(m))) Let m be a polynomial in IF,[T]]
over finite field F,, we have

lim l# {m : deg(m) = =, wp(m) - %(lggx)Q < t} = G(1).

T—00 q$ 1

Tg(log x)3

Now we can apply Zhang’s theorem to get our goal. Recall that in order to
apply this theorem, we need to check for any € > 0,

. 1 f(p)
Jim B(z)? > e 0

qles(P) <z
|f (p)|>eB(z)
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To apply this theorem, we need to let f(p) = Q(p(m)). But from lemma [41] we
know that we can change €2(¢(m)) to g(m) = >, Q(p —1). We already proved

that .
- Y S e s o),

deg(p)<z p|m

N

Q% (p 1 3
B(z) = Z Z deg = 7 log2 z 4+ O(log z).

deg(p)<z p|m

So now we let
1 ifQp—1)>eB(x),
() { (P )_ ()

0 otherwise,

and then the requirement becomes

1 g*(p) 1 P(p-1)
Jim -y B(x)? Z qieE®) = lim =<5 B(z)? a(p) 1o ®) =0.
deg p<z deg(p)<z
lg(p)|>eB(x)

Since

D=
N

Q%*(p—1) o?(p) Q*p—1)
Z a(p)w S Z qdeg(p) Z qdeg(p) ’

deg(p)<z deg(p)<z

we can verify as follow:
From Lemma (39 we have

Z (Qp —1) —logz)® < ¢"log .

deg(p)==

Then we can get

x

Z a(p) = # {deg(p) = x : p satisfies Q(p—1) >eB(2)} K

deg(p)== log T

Since

we have
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> Al < [ Y e [ X | B

deg(p)<a deg(p)<a 1 deg(p)<t 1
1 T gtlogt
< — / A 08 at
log” x 1 q'tlog™t
= O(1).

Form previous lemmas, we have

Z w(m—l):q;logx+0(q;),

deg(m)=x
and N .
Z wim —1) = q—(logaﬁ)2 +0 (q ng) :
T i
degm=z
S0
4
Y ey - Y (Ti)- X %
deg(m)=x deg(m)=z \Illm—1 deg(m)=x l1,l2,l3,l4|m—1

lila,lsla m=1(1y),

1
deg(l;)<z, i=1,2,3,
i=1,2,3,4 deg(m)=x

< DR D W WS T Y N

deg(l)<z m= l(l l1,l2 m= 1 1112) l1,l2,l3 m= 1 lllglg)
deg(m)=x deg(l1)<z deg(m)== deg(l )<z, deg(m)=z
deg(l2)<z i=1,2,3

+ ) Yoo

l1,l2,l3,la  m=1(l112l3l4)
L#AL#I#l deg(m)=x

(" 1" ~— " — ¢ L
€L LT g

m<x n<x k<z d<z

v 1 1 1 1

= ity
m<z n<z k<z d<z

< L (log z)*.
T
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Then by partial summation, we get

D (p—1 1q°
Z L < Z—nq—log4n < log® .
q"

deg(p)
deg(p)<z 4 n<w

Combine above, we have

2
9°(p) 5/2 . 2
Z doe(n) L log”“x =0 (B (:)3)) )
deg p<z

lg(p)|>eB(x)

Then the requirement from Zhang’s theorem is satisfied, and we have

1 — 3 log”
lim —# ¢ m : deg(m) = x, m satisfies glm) — 3log <t =G(@),

T—00 qm 1 3 o
\/3log”x

which completes the proof of Theorem [6]
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