The Normal Distribution of $\omega(\varphi(m))$ in Function Fields

by

Li Li

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Master of Mathematics
in
Pure Mathematics

Waterloo, Ontario, Canada, 2007 © Li Li 2007 I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Abstract

Let $\omega(m)$ be the number of distinct prime factors of m. A celebrated theorem of Erdös-Kac states that the quantity

$$\frac{\omega(m) - \log\log m}{\sqrt{\log\log m}}$$

distributes normally. Let $\varphi(m)$ be Euler's φ -function. Erdös and Pomerance proved that the quantity

$$\frac{\omega(\varphi(m)) - \frac{1}{2}(\log\log m)^2}{\frac{1}{\sqrt{3}}(\log\log m)^{3/2}}$$

also distributes normally. In this thesis, we prove these two results. We also prove a function field analogue of the Erdös-Pomerance Theorem in the setting of the Carlitz module.

Acknowledgments

I extend my sincere gratitude and appreciation to many people who helped me for this thesis.

Firstly, I would like to thank my advisor Yu-Ru Liu for encouragement, patience, support and guidance. I am fortunate to have such an advisor, who introduced me to this area of mathematics, shares her ideas generously, and provides guidance patiently.

I thank Professor David McKinnon and Professor Wentang Kuo for their feedback on my work. Special thanks to Professor Che Tat Ng for spending valuable time to encourage me.

Finally I would like to thank the Department of Mathematics and the University of Waterloo for providing me with financial support in form of teaching assistantships and fellowships.

Dedication

This is dedicated to my parents and my husband.

Contents

1	Intr	roduction	1
2	The	e Erdös-Kac Theorem	7
	2.1	Review of Probability Theory	8
	2.2	Outline of The Proof	10
	2.3	The Proof	11
	2.4	From $\omega(m)$ to $\Omega(m)$	16
3	The Erdös-Pomerence Theorem		18
	3.1	Preliminaries	18
	3.2	Lemmas	20
	3.3	The Erdös-Pomerance Theorem	27
4	A Function Field Analogue of Erdös-Pomerence Theorem		33
	4.1	$\omega(p-1)$ to $\omega_y(p-1)$	36
	4.2	The r-th moment of $\lim_{x\to\infty} P_x \left\{ \omega : \frac{\omega_y(p-1)-c_x}{s_x} \le t \right\} \dots \dots$	41
	4.3	The Normal Distribution of $\Omega(\phi(n))$	45
	4.4	Lemmas	46
	4.5	Proof	66

Chapter 1

Introduction

Let's begin by recalling some definition:

Definition For $m \in \mathbb{N}$, we denote $\omega(m)$ to be the number of distinct prime divisors of m, and $\Omega(m)$ to be the total number of prime divisors of m counting multiplicity.

In 1920, Hardy and Ramanujan proved the following Theorem:

Theorem 1 (Hardy-Ramanujan) For a given function g_m in m, if $g_m \to \infty$ as $m \to \infty$, we have

$$\lim_{n \to \infty} \frac{1}{n} \# \left\{ m \le n : \left| \frac{\omega(m) - \log \log m}{\sqrt{\log \log m}} \right| \le g_m \right\} = 1$$

This theorem tells us that almost all integers have about $\log \log m$ distinct prime divisors, since we can choose some g_m such that for large m, $g_m \sqrt{\log \log m} = o(\log \log m)$.

In 1934, Turán gave a simplified proof of the Hardy-Ramanujan Theorem by an essentially probabilistic method concerning the frequency, though he didn't really know probability theory at that time. For $n \in \mathbb{N}$, Turán proved that

$$\sum_{m \le n} (\omega(m) - \log \log n)^2 \ll n \log \log n,$$

from which one can derive Theorem 1. A generalization of this method can be found in [1].

In 1939, Erdös and Kac proved a refinement of the Hardy-Ramanujan theorem:

Theorem 2 (Erdös-Kac)

$$\lim_{n \to \infty} \frac{1}{n} \# \left\{ m \le n : \frac{\omega(m) - \log \log m}{\sqrt{\log \log m}} \le t \right\} = G(t),$$

where

$$G(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-\frac{1}{2}u^2} du$$

is the normal distribution.

This showed how the $\omega(m)$ distributed around the central value $\log \log m$. In particular, Erdös and Kac made essential use of the sieve method of Brun and some crude probability theory[1].

We show below the Erdös-Kac Theorem implies the Hardy-Ramanujan theorem. We have that if the Erdös-Kac theorem is true, then

$$\lim_{n \to \infty} \frac{1}{n} \# \left\{ m \le n : \left| \frac{\omega(m) - \log \log m}{g_m \sqrt{\log \log m}} \right| > \varepsilon \right\} = 0,$$

since $\frac{\omega(m) - \log \log m}{g_m \sqrt{\log \log m}}$ has a limiting distribution function G(t), and

$$\lim_{n \to \infty} \frac{1}{n} \# \left\{ m \le n : \left| \frac{1}{g_m} \right| > \varepsilon \right\} = 0,$$

That is,

$$\lim_{n \to \infty} \frac{1}{n} \# \left\{ m \le n : \left| \frac{\omega(m) - \log \log m}{q_m \sqrt{\log \log m}} \right| > \epsilon \right\} = 0$$

for any given ϵ . Let $\epsilon = 1$, we can get

$$\lim_{n \to \infty} \frac{1}{n} \# \left\{ m \le n : \left| \frac{\omega(m) - \log \log m}{\sqrt{\log \log m}} \right| < g_m \right\} = 1,$$

which is the Hardy-Ramanujan theorem.

Definition For a function f(x), we say it is *strongly additive* if for any two numbers a and b, (a,b)=1, f(ab)=f(a)+f(b) and $f(p^{\alpha})=f(p)$ for all $\alpha \geq 1$, p a prime number; It is *additive* if for any two numbers a and b, (a,b)=1, f(ab)=f(a)+f(b).

In 1954-1955, Kubilius and Shapiro proved a generalization of the Erdös-Kac Theorem:

Theorem 3 (Kubilius-Shapiro) Let f(m) be a real valued function and suppose that f is strongly additive. Let

$$A(n) = \sum_{p \le n} \frac{f(p)}{p}, \qquad B(n) = \left(\sum_{p \le n} \frac{f(p)^2}{p}\right)^{1/2}.$$

Suppose that for any $\varepsilon > 0$, we have

$$\lim_{n \to \infty} \frac{1}{B(n)^2} \cdot \sum_{\substack{p \le n \\ |f(p)| > \varepsilon B(n)}} \frac{f(p)^2}{p} = 0.$$

Then for any real number n,

$$\lim_{n \to \infty} \frac{1}{n} \# \{ m \le n : f(m) - A(n) \le tB(n) \} = G(t).$$

That is, the normal value for $m \le n$ of f(m) is A(n) and the standard deviation is B(n).

We can see many applications of Theorem 3 in the book of Elliot [1]. One can also consider to apply this theorem to functions which are not strongly additive. In 1985, by applying Brun's method, Erdös and Pomerance[2] proved a theorem regarding to the distribution of $\omega(\varphi(m))$, where φ is Euler's φ -function.

Theorem 4 (Erdös-Pomerance)

$$\lim_{n \to \infty} \frac{1}{n} \# \left\{ m \le n : \frac{\omega(\varphi(m)) - \frac{1}{2} (\log \log n)^2}{\frac{1}{\sqrt{3}} (\log \log n)^{3/2}} \le t \right\} = G(t).$$

In Chapter 2, we will prove the Erdös-Kac Theorem. Let

$$\delta_p(m) = \begin{cases} 1 & p \mid m \\ 0 & p \nmid m \end{cases}$$

where p is prime. Then

$$\omega(m) = \sum_{p} \delta_p(m).$$

We define independent random variables $\{X_p, p \text{ is prime}\}$ satisfying

$$X_p = \begin{cases} 1 & \text{with probability } \frac{1}{p}; \\ 0 & \text{with probability } 1 - \frac{1}{p}. \end{cases}$$

Then we can see that $\delta_p(m)$ and X_p behave similarly. Thus applying the Central Limit Theorem for $\sum_{n \in \mathbb{Z}} X_p$, it is possible that $\omega(m)$ is normally distributed.

In Chapter 3, we will give the proof of the Erdös-Pomerance Theorem, with the application of the Bombiere-Vinogradov Theorem. In order to apply this theorem, we will calculate

$$\sum_{p \le x} \Omega(p-1) \text{ and } \sum_{p \le x} \Omega^2(p-1)$$

at first. Then we apply the Kubilius-Shapiro Theorem to show that

$$\frac{\Omega(\varphi(m)) - \frac{1}{2}(\log\log n)^2}{\frac{1}{\sqrt{3}}(\log\log n)^{3/2}}$$

distributed normally. Then since

$$\Omega(\varphi(m)) - \omega(\varphi(m))$$

is small enough, Theorem 4 follows.

In Chapter 4, we introduce the Carlitz module and Euler's φ -function in the function field:

Definition Let R be a principal ideal domain, M be a finite R-module. Then we can write

$$M = \bigoplus_{i=1}^{k} R/c_i R$$
, where $c_i \in R, c_i | c_{i-1}, i = 2, 3, \dots, k$.

For $a \in M$, We define

$$\varphi(M) = \prod_{i=1}^k c_i.$$

Let $A = \mathbb{F}_q[T]$ be the polynomial ring over the finite field \mathbb{F}_q , where $q = p^m$ for some prime number p and $m \in \mathbb{N}$. To define the φ -function for $n \in A = \mathbb{F}_q[T]$, we need to define a non-trivial A-Module associated to n.

Definition Let $k = \mathbb{F}_q(T)$ be the rational function field over \mathbb{F}_q . Let τ be the Frobenius element defined by $\tau(X) = X^q$. We denote $k\{\tau\}$ the twisted polynomial ring, whose multiplication is defined by

$$\tau b = b^q \tau, \forall b \in k.$$

The A-Carlitz module C is the \mathbb{F}_q -algebra homomorphism

$$C: A \longrightarrow k\{\tau\}, f \mapsto C_f,$$

characterized by

$$C_T = T + \tau.$$

Definition Let B be a commutative k-algebra, B_+ the additive group of B. Using this A-Carlitz module, we can define a new multiplication of A on B as follows: for $f \in A$, $u \in B$,

$$f \cdot u := C_f(u),$$

denoted by C(B), which is still an A module.

Given an $n \in A \setminus \{0\}$, the new A-module is C(A/nA). If n is monic and $n = p_1^{r_1} \cdots p_u^{r_u}$, we have

$$C(A/nA) = C(A/p_1^{r_1}A) \times \cdots \cdot C(A/p_n^{r_n}A)$$

Then we have following facts: for p prime in A(Here and below, we will say p is prime instead), we have [1]

$$C(A/pA) \cong A/(p-1)A$$
.

Also if $q \neq 2$, or q = 2 with $p \nmid t(t+1)$, we have

$$C(A/p^rA) \cong A/(p^r - p^{r-1})A;$$

If q = 2 with $p \mid t(t+1)$, then

$$C(A/p^{r}A) \cong \begin{cases} A/(p-1)A & r = 1; \\ A/t(t-1)A & r = 2; \\ A/t(t-1)A \oplus A/p^{r-2}A & r \ge 3. \end{cases}$$

Definition Under A-Carlitz module, in this chapter we still denote the corresponding Euler's φ -function by φ . For a prime polynomial $p \in A$ and $r \in \mathbb{N}$, we define

$$\varphi(p^r) := p^r - p^{r-1}.$$

Then for a general $n \in A$, we define

$$\varphi(n) = \prod_{i=1}^{r} (p_i - 1)p_i^{\alpha_i - 1}$$
, when $n = p_1^{\alpha_1} p_2^{\alpha_2} ... p_r^{\alpha_r}$.

Note that the $\varphi(n)$ is again a polynomial.

Definition For $n \in A$, we define the number of distinct prime factors of n by $\omega(n)$ and the number of prime factors of n counting multiplicity by $\Omega(n)$.

We will prove a function field analogue for the Erdös-Kac Theorem:

Theorem 5 (Prime Analogue of The Erdös-Kac Theorem)

$$\lim_{x \to \infty} \frac{1}{q^x} \# \left\{ p : \deg(p) = x, \frac{\omega(p-1) - \log x}{\sqrt{\log x}} \le t \right\} = G(t).$$

We also prove a function field analogue for the Erdös-Pomerance Theorem:

Theorem 6 (Normal Distribution of $\omega(\varphi(m))$) Let m be a monic polynomial in $\mathbb{F}_q[X]$ over the finite field \mathbb{F}_q , we have

$$\lim_{x \to \infty} \frac{1}{q^x} \# \left\{ m \le n : \deg(m) = x, \frac{\omega(\varphi(m)) - \frac{1}{2}(\log x)^2}{\frac{1}{\sqrt{3}}(\log x)^{\frac{3}{2}}} \le t \right\} = G(t).$$

We will apply an analogue of the Kubilius-Shapiro theorem in the function field [9] to prove the function field analogue of the Erdös-Pomerance Theorem, following roughly the same procedures in the proof of Erdös-Pomerance Theorem.

Finally we remark that, since the difference between ω and Ω is very small, all theorems still hold if we change ω to Ω .

Chapter 2

The Erdös-Kac Theorem

In the original proof of the Erdös-Kac theorem, they used sieve methods which are difficult. Later, Halberstam proved this theorem using the method of moments [4][5]. His proof was further simplified by Billingsley[8]. Here we will follow the approach of Billingsley to prove the Erdös-Kac theorem:

Theorem 2(Erdös-Kac) We have

$$\lim_{n \to \infty} \frac{1}{n} \# \left\{ m \le n : \frac{\omega(m) - \log \log m}{\sqrt{\log \log m}} \le t \right\} = G(t),$$

where

$$G(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-\frac{1}{2}u^2} du$$

is the normal distribution function.

In the following, we will give a heuristic explanation for the Erdös-Kac Theorem. Let P_n be the probability measure on the space of positive integers that places mass 1/n at each of 1, 2, ..., n. Then the Erdös-Kac theorem can be represented as

$$\lim_{n \to \infty} P_n \left\{ m \le n : \frac{\omega(m) - \log \log m}{\sqrt{\log \log m}} \le t \right\} = G(t).$$

We let

$$\delta_p(m) = \begin{cases} 1 & p \mid m \\ 0 & p \nmid m \end{cases}$$

where p is prime. Then

$$\omega(m) = \sum_{p} \delta_p(m).$$

From the Central Limit Theorem, if $\delta_p(m)$'s are "independent", then $\omega(m)$ is normally distributed.

To see why the Erdös-Kac theorem is true, we note that

$$P_n\{m: a|m\} = \frac{1}{n} \left\lceil \frac{n}{a} \right\rceil \sim \frac{1}{a},$$
 when n is large.

For distinct primes p_1, \ldots, p_k ,

$$p_i|m, \text{ for } i=1,\ldots,k. \iff \prod_i p_i|m.$$

Hence

$$P_{n}\left\{\bigcap_{i} \{m: \, \delta_{p_{i}}(m) = 1\}\right\} = P_{n}\{m: \, \delta_{\prod_{i} p_{i}}(m) = 1\}$$

$$= \frac{1}{n} \left[\frac{n}{\prod_{i} p_{i}}\right]$$

$$\sim \prod_{i} \frac{1}{n} \left[\frac{n}{p_{i}}\right] \quad \text{when } n \text{ is large}$$

$$= \prod_{i} P_{n}\{m: \, \delta_{i}(m) = 1\}.$$

Therefore when m is chosen randomly from $1, \ldots, n$ and n is large, the random variables $\delta_{p_1}(m), \ldots, \delta_{p_k}(m)$ are nearly independent and hence it is possible that they are normally distributed by the Central Limit Theorem.

2.1 Review of Probability Theory

Definition Let X be a random variable with a probability measure P. For $t \in \mathbb{R}$, the function $F(t) = P(X \leq t)$ is the distribution function of X, and $E\{X\} = \int_{-\infty}^{\infty} t dF(t)$ is the expectation of X.

Definition We say a sequence of random variables $\{D_n\}$ converges in probability P_n to 0, if for any $\epsilon > 0$, $\lim_{n \to \infty} P_n\{|D_n| > \epsilon\} = 0$, denoted by $D_n \xrightarrow{P_n} 0$.

Definition $\Phi(t)$ is the *limiting distribution function* for a sequence of random variables $\{D_n\}$ with distribution functions $F_n(t)$ respectively, if for any t where $\Phi(t)$ is continuous, we have

$$\lim_{n\to\infty} F_n(t) = \Phi(t).$$

We need to know some probability facts before proving the Erdös-Kac Theorem. We have the following lemmas:

Lemma 7 Given a sequence of random variables $\{D_n\}$, if $\lim_{n\to\infty} E\{|D_n|\} = 0$, then $D_n \xrightarrow{P_n} 0$.

Lemma 8 1) Given two sequences of random variables $\{D_n\}$ and $\{U_n\}$, if $\lim_{n\to\infty} E\{|D_n|\} = 0$, then $\{U_n\}$ has a given limiting distribution function $\Phi(x)$ if and only if $U_n + D_n$ does.

2) If $D_n \xrightarrow{P_n} 0$, U_n has a distribution function Φ , then $D_n U_n \xrightarrow{P_n} 0$.

3) If random variables $A_n \xrightarrow{P_n} 1$, $B_n \xrightarrow{P_n} 0$, then U_n has limiting distribution Φ if and only if $A_nU_n + B_n$ does.

Lemma 9 $\Phi(t)$ is determined by its moments $\mu_r = \int_{-\infty}^{\infty} t^r d\Phi(t), r = 0, 1, 2, ..., i.e,$ if the distribution function F_n satisfy $\int_{-\infty}^{\infty} t^r dF_n(t) \to \mu_r$ for r = 0, 1, 2, ..., then $F_n(t) \to \Phi(t)$ for each t.

Lemma 10 If $F_n(t) \to \Phi(t)$ for each t, and if $\int_{-\infty}^{\infty} t^{r+\epsilon} dF_n(t)$ is bounded in n for some positive ϵ , then $\int_{-\infty}^{\infty} t^r dF_n(t) \to \mu_r$.

Lemma 11 Let $\{U_n\}$ be a sequence of independent uniformly bounded variables with mean 0 and finite variances σ_i^2 . If $\sum_{i=1}^n \sigma_i^2$ diverges to ∞ , then the distribution of

$$\sum_{i=1}^{n} \frac{U_i}{\left(\sum_{i=1}^{n} \sigma_i^2\right)^{\frac{1}{2}}}$$

converges to $\Phi(t)$ which is a special case of the central limit theorem.

2.2 Outline of The Proof

Let $\{\alpha_n\}$ be a sequence of positive real numbers such that

$$\alpha_n = o(n^{\epsilon}), \quad \text{for any } \epsilon > 0$$

and

$$\sum_{\alpha_n$$

For example, we can choose α_n to be $n^{1/\log \log n}$. Then using the fact that $\sum_{p \leq x} \frac{1}{p} = \log \log x + O(1)$ we have

$$\sum_{\alpha_n$$

Let $\{X_p, p \text{ is prime}\}$ be independent random variables satisfying

$$X_p = \begin{cases} 1 & \text{with probability } \frac{1}{p}; \\ 0 & \text{with probability } 1 - \frac{1}{p}. \end{cases}$$

Let

$$S_n = \sum_{p \le \alpha_n} X_p,$$

then

$$c_n = \sum_{p \le \alpha_n} \frac{1}{p}, \qquad s_n = \sum_{p \le \alpha_n} \frac{1}{p} \left(1 - \frac{1}{p} \right)$$

are the mean and variance of S_n . Here S_n is correspondent to

$$\omega_n(m) = \sum_{p \le \alpha_n} \delta_p(m)$$

To prove the Erdös-Kac Theorem, we will prove first that the following statements are equivalent(Part I of the Proof):

(1) The Erdös-Kac theorem:

$$\lim_{n \to \infty} P_n \left\{ m : \frac{\omega(m) - \log \log m}{\sqrt{\log \log m}} \le t \right\} = G(t).$$

$$(2) \lim_{n \to \infty} P_n \left\{ m : \frac{\omega(m) - \log \log n}{\sqrt{\log \log n}} \le t \right\} = G(t).$$

$$(3) \lim_{n \to \infty} P_n \left\{ m : \frac{\omega_n(m) - \log \log n}{\sqrt{\log \log n}} \le t \right\} = G(t).$$

$$(4) \lim_{n \to \infty} P_n \left\{ m : \frac{\omega_n(m) - c_n}{s_n} \le t \right\} = G(t).$$

(3)
$$\lim_{n \to \infty} P_n \left\{ m : \frac{\omega_n(m) - \log \log n}{\sqrt{\log \log n}} \le t \right\} = G(t).$$

$$(4)\lim_{n\to\infty} P_n \left\{ m : \frac{\omega_n(m) - c_n}{s_n} \le t \right\} = G(t).$$

Finally(Part II of the Proof) we will show that as $n \to \infty$,

$$E_n\left\{\frac{(\omega_n - c_n)^r}{s_n^r}\right\} \to \mu_r$$

From the method of moments, the above claim implies that (4) in the Part I follows.

2.3 The Proof

Lemma 12

$$\lim_{n \to \infty} P_n \left\{ m : \frac{\omega(m) - \log \log m}{\sqrt{\log \log m}} \le t \right\} = G(t)$$

if and only if

$$\lim_{n \to \infty} P_n \left\{ m : \frac{\omega(m) - \log \log n}{\sqrt{\log \log n}} \le t \right\} = G(t).$$

Proof: We have

$$\frac{\omega(m) - \log \log n}{\sqrt{\log \log n}} = \frac{\omega(m) - \log \log m}{\sqrt{\log \log m}} \frac{\sqrt{\log \log m}}{\sqrt{\log \log n}} + \frac{\log \log m - \log \log n}{\sqrt{\log \log n}}.$$

From Lemmas 8 and 9, it is sufficient to show that

$$\lim_{n \to \infty} P_n \left\{ m : \left| \frac{\sqrt{\log \log m}}{\sqrt{\log \log n}} - 1 \right| > \epsilon \right\} = 0,$$

and

$$\lim_{n \to \infty} P_n \left\{ m : \left| \frac{\log \log m - \log \log n}{\sqrt{\log \log n}} \right| > \epsilon \right\} = 0,$$

for any $\epsilon > 0$.

If $n^{1/2} < m \le n$, we have

$$\left|\frac{\sqrt{\log\log m}}{\sqrt{\log\log n}} - 1\right| = \left|\frac{\sqrt{\log\log m} - \sqrt{\log\log n}}{\sqrt{\log\log n}}\right| > \epsilon,$$

which implies that

$$\sqrt{\log \frac{1}{2} + \log \log n} < \sqrt{\log \log m} < \sqrt{\log \log n} - \epsilon \sqrt{\log \log n},$$

which is $\log \log n < \frac{\log \frac{1}{2}}{1 - (1 - \epsilon)^2} = c_1(\epsilon);$

$$\left| \frac{\log \log m - \log \log n}{\sqrt{\log \log n}} \right| > \epsilon \text{ implies that}$$

$$\sqrt{\log \log n} < \log \log m < \log \log n - \epsilon \sqrt{\log \log n}$$

that is,

$$\log \log n < \epsilon^{-2} (\log 2)^2 = c_2(\epsilon).$$

So when n is bigger than $e^{e^{max\{c_1(\epsilon),c_2(\epsilon)\}}}$, we have that the above two probabilities are both smaller than $P_n\{m: m \leq n^{1/2}\}$, which tends to 0 as $n \to \infty$. Thus the Erdös-Kac Theorem is equivalent to

$$\lim_{n \to \infty} P_n \left\{ m : \frac{\omega(m) - \log \log n}{\sqrt{\log \log n}} \le x \right\} = G.$$

Lemma 13

$$\lim_{n \to \infty} P_n \left\{ m : \frac{\omega(m) - \log \log n}{\sqrt{\log \log n}} \le t \right\} = G(t)$$

if and only if

$$\lim_{n \to \infty} P_n \left\{ m : \frac{\omega_n(m) - \log \log n}{\sqrt{\log \log n}} \le t \right\} = G(t).$$

Proof: For a function f of positive integers, let

$$E_n\{f\} = \frac{1}{n} \sum_{m=1}^{n} f(m)$$

denote its expected value with respect to P_n . Since

$$E_n \left\{ \sum_{\alpha_n < p} \delta_p \right\} = \sum_{\alpha_n < p} P_n \left\{ m : \, \delta_p(m) = 1 \right\} \le \sum_{\alpha_n < p \le n} \frac{1}{p} = o((\log \log n)^{1/2}),$$

Then from Lemma 7,

$$\frac{\sum_{\alpha_n < p} \delta_p}{(\log \log n)^{1/2}} \xrightarrow{P_n} 0.$$

Therefore since

$$\frac{\omega_n(m) - \log \log n}{(\log \log n)^{1/2}} = \frac{\omega(m) - \log \log n}{(\log \log n)^{1/2}} - \frac{\sum_{\alpha_n < p} \delta_p(m)}{(\log \log n)^{1/2}},$$

from Lemma 8, the lemma follows.

Lemma 14

$$\lim_{n \to \infty} P_n \left\{ m : \frac{\omega_n(m) - \log \log n}{\sqrt{\log \log n}} \le t \right\} = G(t)$$

if and only if

$$\lim_{n \to \infty} P_n \left\{ m : \frac{\omega_n(m) - c_n}{s_n} \le t \right\} = G(t).$$

Proof: We have that

$$c_n = \log \log n + O(1), \quad s_n^2 = \log \log n + O(1),$$

and

$$\frac{\omega_n(m) - \log \log n}{\sqrt{\log \log n}} = \frac{\omega_n(m) - c_n}{s_n} + \left(\frac{\omega_n(m) - \log \log n}{\sqrt{\log \log n}} - \frac{\omega_n(m) - c_n}{s_n}\right)$$
$$= \frac{\omega_n(m) - c_n}{s_n} + \frac{O(\omega_n(m) - \log \log n)}{\sqrt{\log \log n + O(1)}\sqrt{\log \log n}}.$$

From Lemma 3, we need only to show that

$$\frac{O(\omega_n(m) - \log\log n)}{\sqrt{\log\log n + O(1)}\sqrt{\log\log n}} \xrightarrow{P_n} 0,$$

which is true since

$$\omega_n(m) - \log \log n = o(\log \log n).$$

Lemma 15 We have

$$\lim_{n \longrightarrow \infty} E_n \left\{ \frac{(\omega_n - c_n)^r}{s_n^r} \right\} - E_n \left\{ \frac{(S_n - c_n)^r}{s_n^r} \right\} = 0.$$

Proof: By the multinomial theorem and $S_n = \sum_{p \leq \alpha_n} X_p$ we get that $E\{S_n^r\}$ is the sum

$$\sum_{u=1}^{r} \sum_{u=1}^{r} \frac{r!}{r_1! \cdots r_u!} \sum_{u=1}^{n} E\left\{X_{p_1}^{r_1} \cdots X_{p_u}^{r_u}\right\},\,$$

where \sum' denotes summing for all tuples (r_1, \ldots, r_u) with $r_1, \ldots, r_u \geq 0$ and $r_1 + \cdots + r_u = r$; \sum'' denotes summing for all (p_1, \ldots, p_u) with $0 \leq p_1 \leq \cdots \leq p_u \leq \alpha_n$.

Notice that $X_p = 0$ or 1 and they are independent. Also note that p_i 's are distinct. We have

$$E\left\{X_{p_1}^{r_1}\cdots X_{p_u}^{r_u}\right\} = E\left\{X_{p_1}\cdots X_{p_u}\right\} = \frac{1}{p_1\cdots p_u}.$$

Since $\omega_n(m) = \sum_{p \leq \alpha_n} \delta_p(m)$, we get

$$E\{\omega_n^r(m)\} = \sum_{u=1}^r \sum_{n=1}^r \frac{r!}{r_1! \cdots r_u!} \sum_{n=1}^r E_n\{\delta_{p_1}^{r_1} \cdots \delta_{p_u}^{r_u}\},$$

which is just the above one with the summand replaced by $E_n \left\{ \delta_{p_1}^{r_1} \cdots \delta_{p_u}^{r_u} \right\}$. And similarly,

$$E_n \left\{ \delta_{p_1} \cdots \delta_{p_u} \right\} = \frac{1}{n} \left[\frac{n}{p_1 \cdots p_u} \right],$$

but

$$\left| \frac{1}{p_1 \cdots p_n} - \frac{1}{n} \left[\frac{n}{p_1 \cdots p_n} \right] \right| \le \frac{1}{n}.$$

Hence, for any r we have

$$|E\{S_n^r\} - E_n\{\omega_n^r\}| \leq \sum_{u=1}^r \sum_{n=1}^r \frac{r!}{r_1! \cdots r_u!} \sum_{n=1}^r \frac{1}{n}$$

$$\leq \frac{1}{n} \left(\sum_{p \leq \alpha_n} 1\right)^r \leq \frac{\alpha_n^r}{n}.$$

Now

$$E\{(S_n - c_n)^r\} = \sum_{k=0}^r \binom{r}{k} E\{S_n^k\} (-c_n)^{r-k},$$

$$E_n \{ (\omega_n - c_n)^r \} = \sum_{k=0}^r {r \choose k} E_n \{ \omega_n^k \} (-c_n)^{r-k}.$$

Thus

$$|E\{(S_n - c_n)^r\} - E_n\{(\omega_n - c_n)^r\}| \leq \sum_{k=0}^r {r \choose k} (-c_n)^{r-k} \frac{\alpha_n^k}{n}$$

$$= \frac{1}{n} (\alpha_n + c_n)^r \longrightarrow 0 \quad \text{as } n \to \infty,$$

since $\alpha_n = o(n^{\epsilon})$ for any $\epsilon > 0$ and $c_n \leq \alpha_n$.

Now by Lemma 9, in order to prove that the distribution of $\frac{S_n-c_n}{s_n}$ converges to G, we need only to prove that $E\left\{\frac{(S_n-c_n)^r}{s_n^r}\right\} \to \mu_r$. Again by Lemma 10, it's true if the moment $\int_{-\infty}^{\infty} x^{r+\epsilon} dF_n(x)$, is bounded in n.

Lemma 16

$$\lim_{n \to \infty} E_n \left\{ \frac{(S_n - c_n)^r}{s_n^r} \right\} \longrightarrow 0.$$

Proof: Actually we will show that for every r, we have

$$\lim_{n \to \infty} \sup_{n} \left| E\left\{ \frac{(S_n - c_n)^r}{s_n^r} \right\} \right| < \infty.$$

Put $Y_p = X_p - \frac{1}{p}$. We have $E\left\{Y_p^2\right\} = E\left\{X_p^2 + \frac{1}{p^2} - \frac{2X_p}{p}\right\}$. Then $\{Y_p\}$ are independent. Hence

$$E\{(S_n - c_n)^r\} = \sum_{n=1}^r \sum_{n=1}^r \frac{r!}{r_1! \cdots r_n!} \sum_{n=1}^r E\{Y_{p_1}^{r_1}\} \cdots E\{Y_{p_n}^{r_n}\},$$

where \sum' extends over those u-tuples $(r_1, ..., r_u)$ satisfying $r_1 + ... + r_u = r$ and \sum'' extends over those u-tuples $(p_1, ..., p_u)$ of primes satisfying $p_1 < ... < p_u \le \alpha_n$. Since $E\{Y_p\} = 0$, we can require in \sum' above that $r_1, ..., r_n \ge 1$. Since $|Y_p| \le 1$, $r_i \ge 2 \Rightarrow |E\{Y_p^{r_i}\}| \le E\{Y_p^2\}$, the inner sum has modulus at most

$$\sum'' E\{Y_{p_1}^2\} \cdots E\{Y_{p_u}^2\} \le \left(\sum_{p \le \alpha_n} E\{Y_p^2\}\right)^n = s_n^{2n}.$$

But if r_1, \ldots, r_u add to r, and each is at least 2, then $2u \leq r$. For n large enough that $s_n \geq 1$ now we have

$$|E\{(S_n - c_n)^r\}| \le s_n^r \sum_{u=1}^r \sum_{v=1}^r \frac{r!}{r_1! \cdots r_u!}.$$

Then

$$\sum_{n} \left| E\left\{ \frac{(S_n - c_n)^r}{s_n^r} \right\} \right| < \infty.$$

Let

$$F_n(t) = P_n \left\{ m : \frac{\omega_n(m) - c_n}{s_n} \le t \right\}, \quad \mu_r = \int_{-\infty}^{\infty} t^r dG(t), r = 0, 1, 2, \dots$$

Since

$$\int_{-\infty}^{\infty} t^r dF_n(t)$$

$$= \sum_{t=-\infty}^{\infty} \left\{ \lim_{u \to \infty} \sum_{i=1}^{u} \left(t + \frac{i}{u} \right)^r \left(F_n \left(t + \frac{i}{u} \right) - F_n \left(t + \frac{i-1}{u} \right) \right) \right\}$$

$$= \sum_{t=-\infty}^{\infty} \left\{ \lim_{u \to \infty} \sum_{i=1}^{u} \left(t + \frac{i}{u} \right)^r P_n \left\{ m : t + \frac{i-1}{u} < \frac{\omega_n(m) - c_n}{s_n} \le t + \frac{i}{u} \right\} \right\}$$

$$= \sum_{m=1}^{n} \frac{1}{n} \left(\frac{\omega_n(m) - c_n}{s_n} \right)^r$$

$$= E_n \left\{ \frac{(\omega_n - c_n)^r}{s_n^r} \right\},$$

Then the rth moment of $F_n(x)$ is $E_n\left\{\frac{(\omega_n-c_n)^r}{s_n^r}\right\}$. Thus we have that the rth moment of $F_n(x)$ converges to μ_r . Combining Lemmas 12, 13, 14, 15 and 16, the Erdös-Kac theorem follows.

2.4 From $\omega(m)$ to $\Omega(m)$

It can be shown that Erdös-Kac and Hardy-Ramanujan Theorems hold also if each prime divisor is counted according to its multiplicity. That is

Corollary 17

$$\lim_{n \to \infty} \left\{ m : \frac{\Omega(m) - \log \log m}{(\log \log m)} \le t \right\} = G(t).$$

Proof: Let $\delta_p'(m)$ be the exponent of p in the prime factorization of m, that is, $m = \prod_p p^{\delta_p'(m)}$. Define $\Omega(m) = \sum_p \delta_p'(m)$. For $k \geq 1$, $\delta_p'(m) - \delta_p(m) \geq k$ if and only if $p^{k+1}|m$, which is an event with P_n measure at most p^{-k-1} . Hence

$$E_n \{ \delta'_p - \delta_p \} = \sum_{k=1}^{\infty} P_n \{ m : \delta'_p(m) - \delta_p(m) \ge k \} \le \frac{2}{p^2},$$

which implies $E_n \{\Omega - \omega\} = O(1)$.

So from Lemma 8, the Erdös-Kac theorem persists if $\omega(m)$ is replaced by $\Omega(m)$ and similarly we can successively deduce other parts with $\Omega(m)$ in place of $\omega(m)$.

Chapter 3

The Erdös-Pomerence Theorem

In this chapter, we will prove the Erdös-Pomerence Theorem: Theorem 4(Erdös-Pomerence)

$$\lim_{x \to \infty} \frac{1}{x} \# \left\{ n \le x : \frac{\Omega(\varphi(n)) - \frac{1}{2} (\log \log x)^2}{\frac{1}{\sqrt{3}} (\log \log x)^{3/2}} \le t \right\} = G(t).$$

3.1 Preliminaries

We recall some results from analytic number theory and probability number theory which we needed for our proof of the normal distribution of $\omega(\varphi(n))$:

Lemma 18 (Partial Summation) Given a sequence $\{c_n\}$, $n = 1, 2, ..., let C(x) = \sum_{i \le 1} c_i$. Let f(x) be a differentiable function. Then

$$\sum_{i=1}^{x} c_i f(i) = C(x) f(x) - \int_{1}^{x} C(u) df(u).$$

Lemma 19 [3] If $2 \le k \le x$, then

$$\sum_{\substack{p \leq x \\ p \equiv 1 \pmod{k}}} \frac{1}{p} = \frac{\log\log x}{\varphi(k)} + O\left(\frac{\log k}{\varphi(k)}\right).$$

Theorem 20 (Brun-Titchmarsh) [11] Let a and q be relatively prime positive integers and let $\pi(x;q,a)$ denote the number of primes p < x congruent to a mod q. Then we have for some constant $C(\varepsilon)$ only depends on some ε arbitrarily small,

$$\pi(x, q, a) < \frac{C(\varepsilon)x}{\varphi(q)\log x}$$

as $x \longrightarrow \infty$, uniformly in a and q, subject to

$$q < x^{1-\varepsilon}$$

Theorem 21 (Bombieri-Vinogradov) For any A > 0, there exists a positive real number B=B(A) such that

$$\sum_{\substack{d \le \frac{x^{1/2}}{(\log x)^B}}} \max_{y \le x} \max_{(n,d)=1} \left| \pi(y;d,a) - \frac{\operatorname{li}(y)}{\varphi(d)} \right| \ll \frac{x}{(\log x)^A},$$

where

$$\pi(y; d, a) = \sum_{\substack{p \le y \\ p \equiv a \pmod{d}}} 1, \text{li}(x) = \int_2^x \frac{1}{\log t} dt.$$

Definition For a function f(x), we say it is *strongly additive* if for any two numbers a and b, f(a + b) = f(a) + f(b); It is *additive* if for any two numbers a and b, (a,b) = 1, f(ab) = f(a) + f(b).

Theorem 3(Kubilius-Shapiro) Let f(n) be a real valued function and suppose that f is strongly additive. Let

$$A(x) = \sum_{p \le x} \frac{f(p)}{p}, \qquad B(x) = \left(\sum_{p \le x} \frac{f(p)^2}{p}\right)^{1/2}.$$

Suppose that for any $\varepsilon > 0$, we have

$$\lim_{x \to \infty} \frac{1}{B(x)^2} \cdot \sum_{\substack{p \le x \\ |f(p)| > \varepsilon B(x)}} \frac{f(p)^2}{p} = 0.$$

Then for any real number u,

$$\lim_{x \to \infty} \frac{1}{x} \cdot \# \{ n \le x : f(n) - A(x) \le tB(x) \} = G(t),$$

that is, the expected value for $n \leq x$ of f(n) is A(x) and the standard deviation is B(x).

Lemma 22 (Turán-Kubilius Inequality) [12] Let f(n) be a real valued function and suppose that f is strongly additive. Let

$$E(x) = \sum_{p \le x} \frac{f(p)}{p}, \qquad D(x) = \left(\sum_{p \le x} \frac{f(p)^2}{p}\right)^{1/2}.$$

Let λ_x denote the smallest number for which the inequality

$$\sum_{n=1}^{x} |f(n) - E(x)|^2 \le x\lambda_x D(x)^2$$

is always satisfied, and set

$$\lambda = \lim \sup_{x \to \infty} \lambda_x.$$

Then we have

$$1.47 < \lambda < 2.08$$
.

3.2 Lemmas

Let $\Omega_y(n)$ be the total number of prime factors $p \leq y$ of n, counting multiplicity. Note that $\Omega_y(n)$ is a completely additive function. Let P(n) denote the largest prime factor of n and let p, q, r always denote primes.

Lemma 23 We have

$$\sum_{\substack{q^a \le x \\ a \ge 2 \\ q \le y}} \frac{1}{\varphi(q^a)} = O(1),$$

and

$$\sum_{p < x} \frac{1}{\varphi(p^2)} = C + O\left(\frac{1}{x \log x}\right) \text{ for some constant } C.$$

Proof:

$$\sum_{\substack{q^a \le x \\ a \ge 2 \\ q \le y}} \frac{1}{\varphi(q^a)} = \sum_{\substack{q^a \le x \\ a \ge 2 \\ q \le y}} \frac{1}{q^{a-1}(q-1)}$$

$$\ll \sum_{\substack{q^a \le x \\ a \ge 2 \\ q \le y}} \frac{1}{q^a} \ll \sum_{\substack{q \le y \\ q \ge y}} \left(\frac{1}{q^2} + \frac{1}{q^3} + \dots + \frac{1}{q^{\frac{\log x}{\log 2}}}\right)$$

$$\ll \sum_{\substack{q \le y \\ q \le y}} \frac{1}{q^2} = O(1).$$

Since from partial summation and $\pi(x) \sim \frac{x}{\log x}$,

$$\sum_{p < x} \frac{1}{\varphi(p^2)} \ll \sum_{p < x} \frac{1}{p^2}$$

$$= \frac{x}{\log x} \frac{1}{x^2} - \int_2^x \frac{x}{\log x} d\frac{1}{x^2}$$

$$= C + \frac{1}{x \log x}.$$

Lemma 24 If $3 \le y \le x$, then

$$\sum_{p \le x} \Omega_y(p-1) = \frac{x \log \log y}{\log x} + O\left(\frac{x}{\log x}\right).$$

Proof:

$$\sum_{p \le x} \Omega_y(p-1) = \sum_{p \le x} \sum_{\substack{q^a \mid p-1 \\ q \le y}} 1$$

$$= \sum_{\substack{q^a \\ q \le y}} \pi(x; q^a, 1)$$

$$= \sum_{\substack{q \le y}} \pi(x; q, 1) + \sum_{\substack{q^a, a \ge 2 \\ q \le y}} \pi(x; q^a, 1)$$

$$= S_1 + S_2.$$

For S_1 , consider two ranges for $q: q \leq \min\{y, x^{1/3}\}$ and $\min\{y, x^{1/3}\} < q \leq y$. We estimate the first range by the Bombieri-Vinogradov Theorem. Thus we have

$$\sum_{q \le \min\{y, x^{1/3}\}} \pi(x; q, 1) = \sum_{q \le \min\{y, x^{1/3}\}} \frac{\operatorname{li} x}{\varphi(q)} + O\left(\frac{x}{\log 2x}\right)$$
$$= \frac{x \log \log y}{\log x} + O\left(\frac{x}{\log x}\right).$$

For the second range of S_1 , we have

$$\sum_{\min\{y,x^{1/3}\} < q \le y} \pi(x;q,1) \leq \sum_{q > x^{1/3}} \pi(x;q,1)$$

$$= \sum_{p \le x} \sum_{\substack{q \mid p-1 \\ q > x^{1/3}}} 1$$

$$\leq 2\pi(x) \qquad \left(\text{since } \sum_{\substack{q \mid p-1 \\ q > x^{1/3}}} 1 \le 2\right)$$

$$= O\left(\frac{x}{\log x}\right).$$

For S_2 we break it into two parts also: $q^a \le x^{1/3}$ and $x^{1/3} < q^a \le x$.

$$\sum_{\substack{q^a \leq x^{1/3}, a \geq 2 \\ q \leq y}} \pi(x, q^a, 1) \ll \frac{x}{\log x} \sum_{\substack{q^a \leq x^{1/3}, a \geq 2 \\ q \leq y}} \frac{1}{\varphi(q^a)} \text{(from the Brun-Titchmarsh Theorem)}$$

$$\ll \frac{x}{\log x} \text{(by Lemma 23)}.$$

Also we have

$$\sum_{\substack{q^a \ge x^{1/3}, a \ge 2 \\ q < y}} \pi(x, q^a, 1) \le \sum_{\substack{q^a \ge x^{1/3}, a \ge 2 \\ q < y}} \frac{x}{q^a} \ll x^{5/6}.$$

Combine above, the lemma is proved.

Lemma 25 If $3 \le y \le x$, then

$$\sum_{y \le x} \Omega_y (p-1)^2 = \frac{x(\log \log y)^2}{\log x} + O\left(\frac{x \log \log y}{\log x}\right),$$

where the implied constant is uniform.

Proof: Let u range over the integers with $\omega(u) = 2$ and $P(u) \leq y$. Then

$$\sum_{p \le x} \Omega_y (p-1)^2 = \sum_{p \le x} \sum_{\substack{q^a || p-1 \\ q \le y}} a^2 + \sum_{\substack{p \le x \\ l, q \le y \\ l \ne q}} \sum_{\substack{p^a || p-1 \\ l \ne q}} ab$$

$$= S_3 + S_4.$$

We have

$$S_{3} = \sum_{p \leq x} \Omega_{y}(p-1) + \sum_{p \leq x} \sum_{\substack{q^{a} | | p-1 \\ q \leq y, \, a \geq 2}} (a^{2} - a)$$

$$\leq \sum_{p \leq x} \Omega_{y}(p-1) + \sum_{\substack{q^{a} \leq x^{1/3} \\ q \leq y, \, a \geq 2}} (a^{2} - a)\pi(x; q^{a}, 1) + \sum_{\substack{q^{a} > x^{1/3} \\ q \leq y, \, a \geq 2}} (a^{2} - a)\pi(x; q^{a}, 1)$$

$$= O\left(\frac{x \log \log y}{\log x}\right).$$

Let $\mu(d)$ be the Möbius function. Then

$$S_{4} = \sum_{\substack{p \leq x \\ l,q \leq y \\ l \neq q}} \sum_{\substack{l^{b} \parallel p-1 \\ l \neq q}} ab = \sum_{\substack{l,q \leq y \\ u = q^{a}l^{b} \\ (u,(p-1)/u) = 1}} ab$$

$$= \sum_{\substack{l,q \leq y \\ u = q^{a}l^{b} \\ u = q^{a}l^{b}}} \sum_{\substack{p \leq x \\ u \mid p-1 \\ u \mid p-1}} \left(\sum_{\substack{d \mid (u,(p-1)/u) \\ u \mid p-1 \\ d \mid (p-1)/u}} \mu(d) \right) ab$$

$$= \sum_{\substack{l,q \leq y \\ u = q^{a}l^{b} \\ l,q \leq y}} \sum_{\substack{d \mid u \\ d \mid u}} \mu(d) \sum_{\substack{p \leq x \\ u \mid p-1 \\ d \mid (p-1)/u}} ab = \sum_{\substack{l,q \leq y \\ u = q^{a}l^{b} \\ l,q \leq y}} \sum_{\substack{d \mid u \\ u = q^{a}l^{b} \\ l,q \leq y}} \mu(d)\pi(x,du,1)ab$$

$$= \sum_{\substack{u \leq x^{1/6} < u \\ u = q^{a}l^{b} \\ l,q \leq y}} \sum_{\substack{d \mid u \\ u = q^{a}l^{b} \\ l,q \leq y}} \mu(d)\pi(x,du,1)ab$$

$$= S_{4,1} + S_{4,2}.$$

For $S_{4.1}$, we have

$$S_{4.1} = \sum_{\substack{u \leq x^{1/6} \\ u = q^a l^b \\ l, q \leq y}} \sum_{d|u} \mu(d)\pi(x, du, 1)ab$$

$$= \sum_{\substack{u \leq x^{1/6} \\ u = q^a l \\ l, q \leq y}} \sum_{d|u} \mu(d)\pi(x, du, 1)1 + \sum_{\substack{u \leq x^{1/6} \\ u = q^a l^b \\ l, q \leq y \\ a \geq 2 \text{ or } b \geq 2}} \sum_{d|u} \mu(d)\pi(x, du, 1)ab$$

$$= S'_{4.1} + S''_{4.1}.$$

From the Theorem 21, we have

$$S'_{4.1} = \operatorname{li}(x) \sum_{\substack{u \leq x^{1/6} \\ u = ql \\ l, q \leq y}} \sum_{\substack{d \mid u \\ q \mid d}} \frac{\mu(d)}{\varphi(du)} + O\left(\frac{x}{\log^2 x}\right)$$

$$= \operatorname{li}(x) \sum_{\substack{u \leq x^{1/6} \\ u = ql \\ l, q \leq y}} \frac{1}{u} + O\left(\frac{x}{\log^2 x}\right)$$

$$= \frac{x(\log \log y)^2}{\log x} + O\left(\frac{x \log \log y}{\log x}\right).$$

Also from the Theorem 21,

$$\begin{array}{rcl} S_{4.1}^{''} & = & \displaystyle \sum_{\substack{u \leq x^{1/6} \\ u = q^a l^b \\ l, q \leq y \\ a \geq 2 \text{ or } b \geq 2}} \sum_{\substack{d \mid u \\ l, q \leq y \\ a \geq 2 \text{ or } b \geq 2}} \mu(d) \pi(x, du, 1) ab \\ & \ll & \mathrm{li}(x) \sum_{\substack{u \leq x^{1/6} \\ u = q^a l^b \\ l, q \leq y \\ a \geq 2, b \geq 2}} \frac{ab}{u} + 2\mathrm{li}(x) \sum_{\substack{q l^b \leq x^{1/6} \\ q, l \leq y \\ b \geq 2}} \frac{b}{q l^b}. \end{array}$$

Since

$$\sum_{\substack{l^b \le x^{1/6} \\ \overline{l} \le y \\ b \ge 2}} \frac{b}{l^b} \le \sum_{l \le y} \sum_{2 < b < \frac{\log x}{6 \log l}} \frac{b}{l^b}$$

$$\ll \sum_{l \le y} \frac{\left(\frac{\log x}{\log l}\right)^2}{l^{\frac{\log x}{\log l}}}$$

$$\le \sum_{l \le y} \frac{2}{l^2} (\text{since } \frac{\log x}{\log l} \ge 2)$$

$$= O(1),$$

We have

$$S_{4.1}'' \ll \operatorname{li}(x) \sum_{q \le y} \frac{1}{q}$$
 $\ll \frac{x}{\log x}.$

For $S_{4,2}$, We can assume $du = q^a r^b$ for some natural numbers q, r, a, b, since $\omega(u) = 2$. Then

$$S_{4.2} \leq 2 \sum_{\substack{q^a < r^b \\ q^a r^b > x^{1/6} \\ q, r \leq y}} \pi(x; q^a r^b, 1) ab$$

$$\leq 2 \sum_{\substack{q^a \\ q \leq y}} \sum_{\substack{r^b > x^{1/6} \\ b \geq 2}} \pi(x; q^a r^b, 1) ab + 2 \sum_{\substack{q^a \\ q \leq y}} \sum_{r > x^{1/12}} \pi(x; q^a r, 1) a.$$

Since we have

$$2\sum_{\substack{q^{a}\\q \le y}} \sum_{\substack{r^{b} > x^{1/6}\\r \le y\\b \ge 2}} \pi(x; q^{a}r^{b}, 1)ab \leq 2x \sum_{\substack{q^{a}\\q \le y}} \sum_{\substack{r^{b} > x^{q/12}\\r \le y\\b \ge 2}} \frac{ab}{q^{a}r^{b}}$$

$$\ll x^{23/24} \log \log y$$

$$= o\left(\frac{x \log \log y}{\log x}\right),$$

and

$$2\sum_{\substack{q^a\\q \le y}} \sum_{r > x^{1/12}} \pi(x; q^a r, 1) a \leq 2\sum_{\substack{p \le x\\q^a|p-1\\q \le y}} \sum_{\substack{r|p-1\\r > x^{1/12}}} a \ll \sum_{\substack{p \le x\\q^a|p-1\\q \le y}} \sum_{\substack{q^a|p-1\\q \le y\\a > 1}} a \left(\text{since } \sum_{\substack{r > x^{1/12}\\r|p-1\\r|p-1}} 1 \le 12 \right)$$

$$= \sum_{\substack{p \le x\\q^a|p-1\\q \le y\\a > 1}} \sum_{\substack{q \le y\\a > 1}} (2 + \dots + a) = \sum_{\substack{p \le x\\q^a|p-1\\q \le y\\a > 1}} \frac{(a+2)(a-1)}{2}$$

$$\ll \sum_{\substack{p \le x\\q^a|p-1\\q \le y\\a > 1}} a^2 \ll \sum_{\substack{q \le y\\a > 1}} \sum_{\substack{q \le y\\a > 1}} a^2 \pi x, q^a, 1$$

$$= \sum_{\substack{q \le y\\a \ge 2}} a^2 \frac{x}{\varphi(q^a)\log x} \ll \frac{x}{\log x},$$

Then $S_{4.2} = O\left(\frac{x \log \log y}{\log x}\right)$. Combine above we get the lemma.

Lemma 26 If $3 \le y \le x$, then

$$\sum_{p \le x} \frac{\Omega_y(p-1)}{p} = \log\log x \log\log y - \frac{1}{2}(\log\log y)^2 + O(\log\log x),$$

where the implied constant is uniform.

Proof: By the partial summation and Lemma 24, we have

$$\begin{split} &\sum_{p \leq x} \frac{\Omega_y(p-1)}{p} \\ &= \qquad \frac{1}{x} \sum_{p \leq x} \Omega_y(p-1) + \int_2^x \frac{1}{t^2} \sum_{p \leq t} \Omega_y(p-1) \mathrm{d}t \\ &= \qquad O\left(\frac{\log\log y}{\log x}\right) + \int_2^y \frac{\log\log t}{t\log t} \mathrm{d}t + \int_y^x \frac{\log\log y}{t\log t} \mathrm{d}t + O\left(\int_2^x \frac{\mathrm{d}t}{t\log t}\right) \\ &= \qquad O\left(\frac{\log\log y}{\log x}\right) + \frac{1}{2} \left((\log\log y)^2 - (\log\log 2)^2\right) \\ &+ \qquad (\log\log y \log\log x - \log\log y \log\log y) + O(\log\log x - \log\log 2) \\ &= \qquad \log\log x \log\log y - \frac{1}{2} (\log\log y)^2 + O(\log\log x). \end{split}$$

Lemma 27 If $3 \le y \le x$, then

$$\sum_{p \le x} \frac{\Omega_y (p-1)^2}{p} = \log \log x (\log \log y)^2 - \frac{2}{3} (\log \log y)^3 + O(\log \log x \log \log y),$$

where the implied constant is uniform.

Proof: By partial summation and Lemma 25, we have

$$\begin{split} & \sum_{p \leq x} \frac{\Omega_y^2(p-1)}{p} \\ & = \qquad \frac{1}{x} \sum_{p \leq x} \Omega_y^2(p-1) + \int_2^x \frac{1}{t^2} \sum_{p \leq t} \Omega_y^2(p-1) \mathrm{d}t \\ & = \qquad O\left(\frac{(\log\log y)^2}{\log x}\right) + \int_2^y \frac{(\log\log t)^2}{t\log t} \mathrm{d}t + \int_y^x \frac{(\log\log y)^2}{t\log t} \mathrm{d}t + O\left(\int_2^x \frac{\log\log y}{t\log t} \mathrm{d}t\right) \\ & = \qquad O\left(\frac{(\log\log y)^2}{\log x}\right) + \frac{1}{3} \left((\log\log y)^3 - (\log\log 2)^3\right) \\ & + \qquad \left((\log\log y)^2 \log\log x - (\log\log y)^3\right) + O(\log\log x \log\log y - \log\log 2\log\log y) \\ & = \qquad \log\log x (\log\log y)^2 - \frac{2}{3} (\log\log y)^3 + O(\log\log x \log\log y). \end{split}$$

3.3 The Erdös-Pomerance Theorem

In this section we use the Kubilius-Shapiro Theorem to the additive function $f(n) = \sum_{p|n} \Omega(p-1)$ to prove the Erdös-Pomerance Theorem for $\Omega(\varphi(n))$. As for $\omega(\varphi(n))$, we can prove that but for o(x) choices of $n \leq x$,

$$\Omega(\varphi(n)) - \omega(\varphi(n)) = O(\log \log x \log \log \log \log x).$$

So $\Omega(\varphi(n))$ and $\omega(\varphi(n))$ differ not much and then we can get the same result for $\omega(\varphi(n))$.

Theorem 4 (Erdös-Pomerance(For $\Omega(\varphi(n))$)) For any real number u, we have

$$\lim_{x\to\infty}\frac{1}{x}\cdot\#\left\{n\leq x:\,\Omega(\varphi(n))-\frac{1}{2}(\log\log x)^2\leq\frac{t}{\sqrt{3}}(\log\log x)^{3/2}\right\}=G(t).$$

We want to apply the Kubilius-Shapiro Theorem. But notice that $\Omega(\varphi(n))$ is not strongly additive, we can't apply the theorem directly. Let $f(n) = \sum_{n|n} \Omega(p-1)$.

Then f(n) is strongly additive and does not differ very much from $\Omega(\varphi(n))$. To see this, write $n = p_1^{k_1} \cdots p_s^{k_s}$. We have

$$\Omega(\varphi(n)) = (k_1 - 1) + \dots + (k_s - 1) + \sum_{p|n} \Omega(p - 1)
= f(n) + (k_1 + \dots + k_s) - s
= f(n) + \Omega(n) - \omega(n).$$

Note that $\Omega(n) - \omega(n)$ is normally $o(\log \log x)$ by the Hardy-Remanujan Theorem. So to prove the Erdös-Pomerance Theorem, we need only to prove

$$\lim_{x \to \infty} \frac{1}{x} \cdot \# \left\{ n \le x : f(n) - \frac{1}{2} (\log \log x)^2 \le \frac{t}{\sqrt{3}} (\log \log x)^{3/2} \right\} = G(t).$$

Apply the Kubilius-Shapiro Theorem to f(n), by Lemma 24, we have

$$A(x) = \sum_{p \le x} \frac{f(p)}{p} = \sum_{p \le x} \frac{\Omega(p-1)}{p}$$
$$= \frac{1}{2} (\log \log x)^2 + O(\log \log x).$$

By Lemma 25, we have

$$B(x)^{2} = \sum_{p \le x} \frac{f(p)^{2}}{p} = \sum_{p \le x} \frac{\Omega(p-1)^{2}}{p}$$
$$= \frac{1}{3} (\log \log x)^{3} + O((\log \log x)^{2}).$$

Now we need only to verify

$$\lim_{x \to \infty} \frac{1}{\frac{1}{3} (\log \log x)^3} \sum_{\substack{p \le x \\ |\Omega(p-1)| > \varepsilon \frac{1}{\sqrt{3}} (\log \log x)^{3/2}}} \frac{\Omega(p-1)^2}{p} = 0.$$

Let $\varepsilon > 0$ be fixed. Let $T = \varepsilon(\log\log x)^{3/2}/\sqrt{3}$. From Erdős and Sarkozy [6], it follows that for any $y \ge 2$

$$\sum_{\substack{n \le y \\ \Omega(n) \ge T}} 1 \ll 2^{-T} T^4 y \log y.$$

Hence by the partial summation,

$$\sum_{\substack{p \leq x \\ \Omega(p-1) \geq T}} \frac{\Omega(p-1)^2}{p} \leq \sum_{\substack{n \leq x \\ \Omega(n) \geq T}} \frac{\Omega(n)^2}{n}$$

$$= x^{-1} \sum_{\substack{n \leq x \\ \Omega(n) \geq T}} \Omega(n)^2 + \int_2^x t^{-2} \sum_{\substack{n \leq t \\ \Omega(n) \geq T}} \Omega(n)^2 dt$$

$$\ll x^{-1} (\log x)^2 \sum_{\substack{n \leq x \\ \Omega(n) \geq T}} 1 + \int_2^x t^{-1} (\log t)^2 \sum_{\substack{n \leq t \\ \Omega(n) \geq T}} 1 dt$$

$$\ll 2^{-T} T^4 (\log x)^3 + 2^{-T} T^4 \int_2^x t^{-1} (\log t)^3 dt$$

$$\ll 2^{-T} T^4 (\log x)^4$$

$$= o(1).$$

So the condition is satisfied and Erdös-Pomerance Theorem follows.

Let $\omega_y(n)$ denote the number of distinct prime factors of n which do not exceed y. To prove the theorem for $\omega(vi(n))$, we need to prove the two lemmas below. From now on, we always take $y = (\log \log x)^2$.

Lemma 28 For all but o(x) choices of $n \le x$,

$$\Omega(\varphi(n)) - \Omega_y(\varphi(n)) = \omega(\varphi(n)) - \omega_y(\varphi(n))$$

Proof: Write $n = p_1^{k_1} \cdots p_l^{k_l}$. Then we have

$$\varphi(n) = p_1^{k_1 - 1} \cdots p_l^{k_l - 1} (p_1 - 1) \cdots (p_l - 1).$$

If $\Omega(\varphi(n)) - \Omega_y(\varphi(n)) \neq \omega(\varphi(n)) - \omega_y(\varphi(n))$, suppose $p^2|\varphi(n)$ where p > y and $u \leq x$. Then p and n satisfy one of the below cases:

- 1) $p^3|n;$
- 2)there is some q|n with $q \equiv 1 \pmod{p^2}$, then $p^2|p_1 1$, where $p_i 1 = q$;
- 3) there are distinct q_1, q_2 with $q_1q_2|n$ and $q_1 \equiv q_2 \equiv 1 \pmod{p}$, then $p|p_i-1, p|p_j-1$, where $p_i-1=q_1, p_j-1=q_2$.

In the first case, the number of $n \leq x$ is at most

$$\sum_{y>p} \frac{x}{p^3} = o\left(\frac{x}{y^2}\right) = o(x).$$

In the second case, by Lemma 19, the number of $n \leq x$ is at most

$$\sum_{y$$

Thus by Lemma 23,

$$\sum_{y
$$= o(x).$$$$

In the third case, by partial summation and Lemma 19, the number of $n \leq x$ is at most

$$\sum_{p>y} \sum_{\substack{q_1 < q_2 \le x \\ q_1 \equiv q_2 \equiv 1 \pmod{p}}} \frac{x}{q_1 q_2} \le \frac{1}{2} x \sum_{p>y} \left(\sum_{\substack{q \le x \\ q \equiv 1 \pmod{p}}} \frac{1}{q} \right)^2$$

$$= \frac{1}{2} x \sum_{p>y} \left(\frac{\log \log x}{\varphi(p)} + O\left(\frac{\log p}{p}\right) \right)^2$$

$$= O\left(\frac{x (\log \log x)^2}{y \log y} \right) + O\left(\frac{x \log \log x}{y} \right) + O\left(\frac{x \log \log y}{y} \right)$$

$$= o(x).$$

Thus combine above we proved this lemma.

Lemma 29 For all but o(x) choices of $n \le x$,

$$0 \le \Omega_y(\varphi(n)) - \omega_y(\varphi(n)) \le 2 \log \log x \log \log \log \log x$$
.

Proof: Here we need to apply Lemma 22 to the additive function $\Omega_y(\varphi(n))$, with

$$E(x) := E_y(x) = \sum_{p^k \le x} \frac{\Omega_y(\varphi(p^k))}{p^k} \left(1 - \frac{1}{p} \right), D(x) := D_y(x) = \sum_{p^k \le x} \frac{\Omega_y(\varphi(p^k))^2}{p^k}.$$

Then

$$E_{y}(x) = \sum_{p^{k} \leq x} \frac{\Omega_{y}(\varphi(p^{k}))}{p^{k}} \left(1 - \frac{1}{p}\right)$$

$$= \sum_{p \leq x} \frac{\Omega_{y}(p-1)}{p} \left(1 - \frac{1}{p}\right) + \sum_{\substack{p^{k} \leq x \\ k > 1}} \frac{\Omega_{y}(\varphi(p^{k}))}{p^{k}} \left(1 - \frac{1}{p}\right)$$

$$= \log \log x \log \log y - \frac{1}{2} (\log \log y)^{2} + O(\log \log x)$$

$$- \sum_{\substack{p \leq x \\ k > 1}} \frac{\Omega_{y}(p-1)}{p^{2}} + \sum_{\substack{p^{k} \leq x \\ k > 1}} \frac{\Omega_{y}((p-1)p^{k-1})}{p^{k}} \left(1 - \frac{1}{p}\right).$$

To estimate $\sum_{p \leq x} \frac{\Omega_y(p-1)}{p^2}$, we have

$$\begin{split} \sum_{p \leq x} \frac{\Omega_y(p-1)}{p^2} &= \frac{1}{x^2} \sum_{p \leq x} \Omega_y(p-1) - \int_1^x \sum_{p \leq t} \Omega_y(p-1) \mathrm{d}\left(\frac{1}{t^2}\right) \\ &= \frac{\log \log y}{x \log x} + O\left(\frac{1}{x \log x}\right) \\ &+ 2 \int_1^x \left(\frac{t \log \log y}{\log t} + O\left(\frac{t}{\log t}\right)\right) t^{-3} \mathrm{d}t \\ &= O\left(\frac{\log \log y}{x \log x}\right), \end{split}$$

also we have

$$\sum_{\substack{p^k \le x \\ k > 1}} \frac{\Omega_y((p-1)p^{k-1})}{p^k} = O\left(\sum_{\substack{p^k \le x \\ k > 1}} \left(\frac{k-1}{p^k} + \frac{\Omega_y(p-1)}{p^k}\right)\right) \ll O(\log\log x).$$

Thus

$$E_y(x) = \log \log x \log \log y_{\frac{1}{2}} (\log \log y)^2 + O(\log \log x).$$

Also

$$D_y(x) = \sum_{p^k \le x} \frac{\Omega_y(\varphi(p^k))^2}{p^k}$$

$$= \sum_{p \le x} \frac{\Omega_y(p-1)^2}{p} + O\left(\sum_{\substack{p \le x \ k > 1}} \frac{\Omega(\varphi(p^k))^2}{p^k}\right)$$

$$= \log\log x(\log\log y)^2 - \frac{2}{3}(\log\log y)^3 + O(\log\log x\log\log y).$$

Thus, by the Turán-Kubilius inequality $(\sum_{n\leq x}(\Omega_y(\varphi(n))-E_y(x))^2\leq 32xD_y(x)^2)$, we have

$$\Omega(\varphi(n)) - \omega(\varphi(n)) = \log \log x \log \log \log \log x + O(\log \log x).$$

Now we can prove the Erdös-Pomerance Theorem for $\omega(\varphi(n))$. If we can show that but for o(x) choices of n with $n \leq x$, we have $\Omega(\varphi(n)) - \omega(\varphi(n)) = o((\log \log x)^{3/2})$, then this theorem follows from the previous one immediately, and it is true from Lemma 28 and Lemma 29. Thus we finished the proof of the Erdös-Pomerance Theorem.

Remark. Let $\lambda(n)$ be the smallest positive integer such that $a^{\lambda(n)} \equiv 1 \mod n$ for all a with $\gcd(a,n)=1$. We have

$$\prod_{p|\varphi(n)} p|\lambda(n), \qquad \lambda(n)|\varphi(n).$$

Then $\omega(\varphi(n)) = \omega(\lambda(n)) \leq \Omega(\lambda(n)) \leq \Omega(\varphi(n))$. Thus we can see that it is still true if we replace $\Omega(\varphi(n))$ in the Erdös-Pomerance theorem with $\omega(\lambda(n))$ or $\Omega(\lambda(n))$.

Chapter 4

A Function Field Analogue of Erdös-Pomerence Theorem

Since the Bombieri-Vinogradov theorem we used in the proof of the Erdös-Pomerence Theoremis an strong unconditional replacement for the GRH bound, and we do not need GRH in the function field to get a similar result, it is natural to ask whether we have an analogue of the Erdös-Pomerance theorem in the function field.

We need to introduce some definitions in the function field at first.

Definition Let R be a principal ideal domain, M be a finite R-module. Then we can write

$$M = \bigoplus_{i=1}^{k} R/c_i R$$
, where $c_i \in R$, $c_i | c_{i-1}, i = 2, 3, \dots, k$.

For $a \in M$, We define

$$\varphi(M) = \prod_{i=1}^k c_i.$$

Let $A = \mathbb{F}_q[T]$ be the polynomial ring over the finite field \mathbb{F}_q , where $q = p^m$ for some prime number p and $m \in \mathbb{N}$. To define the φ -function for $n \in A = \mathbb{F}_q[T]$, we need to define a non-trivial A-Module associated to n.

Definition Let $k = \mathbb{F}_q(T)$ be the rational function field over \mathbb{F}_q . Let τ be the Frobenius element defined by $\tau(X) = X^q$. We denote $k(\tau)$ the twisted polynomial ring, whose multiplication is defined by

$$\tau b = b^q \tau, \forall b \in k.$$

The A-Carlitz module C is the \mathbb{F}_q -algebra homomorphism

$$C: A \longrightarrow k\{\tau\}, f \mapsto C_f,$$

characterized by

$$C_T = T + \tau$$
.

Definition Let B be the commutative k-algebra, B_+ the additive group of B. Using this A-Carlitz module, we can define a new multiplication of A on B as follows: For $f \in A$, $u \in B$,

$$f \cdot u := C_f(u),$$

denoted by C(B), which is still an A module.

Given an $n \in A \setminus \{0\}$, the new A-module is C(A/nA). If n is monic and $n = p_1^{r_1} \cdots p_u^{r_u}$, we have

$$C(A/nA) = C(A/p_1^{r_1}A) \times \cdots \cdot C(A/p_n^{r_n}A)$$

Then we have following facts: for p prime in A, we have [1]

$$C(A/pA) \cong A/(p-1)A$$
.

Also if $q \neq 2$, or q = 2 with $p \nmid t(t+1)$, we have

$$C(A/p^rA) \cong A/(p^r - p^{r-1})A;$$

If q = 2 with $p \mid t(t+1)$, then

$$C(A/p^{r}A) \cong \begin{cases} A/(p-1)A & r = 1; \\ A/t(t-1)A & r = 2; \\ A/t(t-1)A \oplus A/p^{r-2}A & r \ge 3. \end{cases}$$

Definition Under A-Carlitz module, in this chapter we still denote the corresponding Euler's φ -function by φ . Now we can define

$$\varphi(p^r) := p^r - p^{r-1}$$
, for any prime polynomial $p \in A, r \in \mathbb{N}$.

Then we have

$$\varphi(n) = \prod_{i=1}^r (p_i - 1) p_i^{\alpha_i - 1}, \forall n \in A = \mathbb{F}_q[T], and \ n = p_1^{\alpha_1} p_2^{\alpha_2} ... p_r^{\alpha_r}.$$

We denote by $\omega(n)$ the number of distinct prime divisors of n for $n \in A$, and $\Omega(n)$) the number of distinct prime divisors counting multiplicity of n for $n \in A$. and

$$\omega(\varphi(p)) = \omega(p-1), \forall p \in A, p \text{ a prime polynomial}.$$

Definition For $x \in \mathbb{N}$, define

$$M(x) = \{ m \in M, \deg(m) = x \}.$$

Let

 $P_x\{m: m \text{ satisfies some conditions}\}$

denote the quantity

$$\frac{1}{|M(x)|} \# \{ m \in M(x) : m \text{ satisfies some conditions} \}.$$

Notice that P_x is a probability measure on M(x). Let f be a function from M(x) to \mathbb{R} , then the expectation of f with respect to P_x is denoted by

$$E_x \{m : f(m)\} := \frac{1}{|M(x)|} \sum_{m \in M(x)} f(m).$$

In this chapter, we will prove

Theorem 5(Prime Analogue of The Erdös-Kac Theorem)

$$\lim_{x \to \infty} P_x \left\{ p : \deg(p) = x, \frac{\omega(p-1) - \log x}{\sqrt{\log x}} \le t \right\} = G(t).$$

Theorem 6(Normal Distribution of $\omega(\varphi(m))$) Let m be a monic polynomial in $\mathbb{F}_q[T]$ over the finite field \mathbb{F}_q , we have

$$\lim_{x \to \infty} \frac{1}{q^x} \# \left\{ m : \deg(m) = x, \frac{\omega(\varphi(m)) - \frac{1}{2}(\log x)^2}{\frac{1}{\sqrt{3}}(\log x)^{\frac{3}{2}}} \le t \right\} = G(t).$$

In this chapter, we will often use the lemma below:

Lemma 30 [1] Let $A = \mathbb{F}_q[T]$, and p a prime polynomial in A. Suppose $a, m \in A$ are relatively prime and that m has positive degree. Consider the set of primes

$$S_x(a, m) = \{ p \in A \mid p \equiv a(m), \deg(p) = x \},\$$

we let $\pi(x, a, m)$ denote the number of such primes. Then we have

$$\pi(x, a, m) = \frac{1}{\Phi(m)} \frac{q^x}{x} + O\left(\frac{q^{\frac{x}{2}}}{x}\right),$$

and

$$\pi(x) = \frac{q^x}{x} + O\left(\frac{q^{\frac{x}{2}}}{x}\right),\,$$

where $\pi(x)$ is the number of the set of prime polynomials in A of degree x.

In this chapter p will always denote a prime polynomial, m a monic polynomial in A, where $A = \mathbb{F}_q[T]$.

4.1 $\omega(p-1)$ **to** $\omega_y(p-1)$

To prove the Theorem 5, we consider to transform $\omega_y(p-1)$ of $\omega(p-1)$, where $\omega_y(\varphi(n)) = \sum_{\substack{\deg(p) \leq y \\ p \mid \varphi(n)}} 1$.:

Lemma 31 If $3 \le y \le x/2$, then

$$\sum_{\deg(p)=x} \omega_y(p-1) = \frac{q^x}{x} \log y + O\left(\frac{q^x}{x}\right),$$

$$\sum_{\deg(p)=x} \omega_y^2(p-1) = \frac{q^x}{x} (\log y)^2 + O\left(\frac{q^x}{x} \log y\right),$$

and

$$\sum_{\deg(p)=x} (\omega_y(p-1) - \log y)^2 = O\left(\frac{q^x}{x}\log y\right).$$

Proof: Let l denote a prime polynomial too, we have

$$\begin{split} \sum_{\deg(p) = x} \omega_y(p-1) &= \sum_{\deg(p) = x} \sum_{\substack{l \mid (p-1) \\ \deg(l) \le y}} 1 \\ &= \sum_{\deg(l) \le y} \sum_{\substack{p \equiv 1(l) \\ \deg(p) = x}} 1 \\ &= \sum_{\deg(l) \le y} \left(\frac{q^x}{x} \frac{1}{q^{\deg(l)} - 1} + O\left(\frac{q^{x/2}}{x}\right) \right) \\ &= \frac{q^x}{x} \sum_{\deg(l) \le y} \frac{1}{q^{\deg(l)} - 1} + \sum_{\deg(l) \le y} O\left(\frac{q^{x/2}}{x}\right). \end{split}$$

Note that

$$\begin{split} \sum_{\deg(l) \leq y} \frac{1}{q^{\deg(l)} - 1} &= \sum_{n \leq y} \frac{1}{q^n - 1} \left(\frac{q^n}{n} + O\left(\frac{q^{n/2}}{n}\right) \right) \\ &= \sum_{n \leq y} \left(\frac{1}{n} + O\left(\frac{1}{nq^{n/2}}\right) \right) \\ &= \log y + O(1). \end{split}$$

Also,

$$\sum_{\deg(l) \le y} \frac{q^{x/2}}{x} = \sum_{n \le y} \frac{q^{x/2}}{x} \left(\frac{q^n}{n}\right)$$

$$= \left(\frac{q^{x/2}}{x}\right) O\left(q^y\right)$$

$$= O\left(\frac{q^x}{x}\right),$$

Thus, by combining the above estimates, we get

$$\sum_{\deg(p)=x} \omega_y(p-1) = \frac{q^x}{x} \log y + O\left(\frac{q^x}{x}\right).$$

We let u range over the polynomials with $\omega(u)=2$, i.e, $u=l_1l_2$, l_1 and l_2 are prime polynomials, $l_1 \neq l_2$. Then

$$\sum_{\deg(p)=x} \omega_y^2(p-1) = \sum_{\deg(p)=x} \left(\sum_{\substack{l|p-1\\\deg(l) \le y}} 1\right)^2$$

$$= \sum_{\deg(l) \le y} \sum_{\substack{l|p-1\\\deg(p)=x}} 1 + \sum_{\substack{\deg(l_1) \le y\\\deg(l_2) \le y}} \sum_{\substack{u|p-1\\\deg(l_2) \le y\\\deg(p)=x}} 1.$$

For the first part, we have

$$\begin{split} \sum_{\deg(l) \leq y} \sum_{\substack{l \mid p-1 \\ \deg(p) = x}} 1 &= \sum_{\deg(l) \leq y} \pi(x, l, 1) \\ &= \sum_{n \leq y} \left(\left(\frac{q^n}{n} \right) + O\left(\frac{q^{n/2}}{n} \right) \right) \frac{1}{\Phi(l)} \frac{q^x}{x} \\ &= \frac{q^x}{x} \sum_{n \leq y} \left(\frac{q^n}{n} + O\left(\frac{q^{n/2}}{n} \right) \right) \frac{1}{q^n - 1} \\ &= \frac{q^x}{x} O\left(\sum_{n \leq y} \frac{1}{n} \right) = O\left(\frac{q^x}{x} \log y \right); \end{split}$$

For the second part, we have

$$\begin{split} \sum_{\substack{\deg(l_1) \leq y \\ \deg(l_2) \leq y \\ u = l_1 l_2, l_1 \neq l_2 \\ \deg(p) = x}} \sum_{\substack{u \mid p - 1 \\ \deg(l_2) \leq y \\ \deg(p) = x}} 1 & = & \sum_{l_1, l_2} \sum_{\substack{u \mid p - 1, u = l_1 l_2 \\ l_1 \neq l_2}} 1 - \sum_{l_1, l_2} \sum_{\substack{u \mid p - 1 \\ u = l_1 l_2 \\ l_1 \neq l_2}} 1 \\ & = & \sum_{\substack{m \leq y \\ m \leq y}} \sum_{n \leq y} \frac{q^x}{x(q^{m+n} - 1)} \left(\frac{q^n}{n} + O\left(\frac{q^{n/2}}{n}\right)\right) \left(\frac{q^m}{m} + O\left(\frac{q^{m/2}}{m}\right)\right) \\ & - & \sum_{n \leq y} \frac{q^x}{x(q^{2n-1})} \left(\frac{q^n}{n} + O\left(\frac{q^{n/2}}{n}\right)\right)^2 \\ & = & \frac{q^x}{x} \sum_{m \leq y} \left(\frac{q^m}{m} \sum_{n \leq y} \frac{q^n}{n(q^{m+n} - 1)}\right) \\ & + & O\left(\frac{q^x}{x} \sum_{m \leq y} \left(\frac{q^m}{m} \sum_{n \leq y} \frac{q^n}{n(q^{m+n} - 1)}\right)\right) \\ & + & O\left(\frac{q^x}{x} \sum_{m \leq y} \left(\frac{q^m}{m} \sum_{n \leq y} \frac{1}{q^{m+n} - 1} \frac{q^{n/2}}{n}\right)\right) \\ & + & O\left(\frac{q^x}{x} \sum_{m \leq y} \left(\frac{q^m}{m} \sum_{n \leq y} \frac{1}{q^{m+n} - 1} \frac{q^{n/2}}{n}\right)\right) \end{split}$$

Here we have

$$\sum_{m \le y} \left(\frac{q^m}{m} \sum_{n \le y} \frac{q^n}{n(q^{m+n} - 1)} \right) = \sum_{m \le y} \left(\frac{q^m}{m} \sum_{n \le y} \frac{1}{q^m n} \right) + O\left(\sum_{m \le y} \frac{q^m}{m} \sum_{n \le y} \frac{1}{nq^{2m+n}} \right)$$
$$= \log^2 y + O(\log y).$$

Also,

$$\sum_{m \leq y} \left(O\left(\frac{q^{m/2}}{m}\right) \sum_{n \leq y} \frac{q^n}{n(q^{m+n}-1)} \right) \ll O(\log y),$$

similarly,

$$\sum_{m \le y} \left(\frac{q^m}{m} \sum_{n \le y} \frac{1}{q^{m+n} - 1} O\left(\frac{q^{n/2}}{n}\right) \right) \ll O(\log y).$$

So combine above we get

$$\sum_{\deg(p)=x} \omega_y^2(p-1) = \frac{q^x}{x} (\log y)^2 + O\left(\frac{q^x}{x} \log y\right).$$

Then from above 2 results, we can get

$$\begin{split} \sum_{\deg(p)=x} (\omega_y(p-1) - \log y)^2 &= \sum_{\deg(p)=x} (\omega_y^2(p-1) + \log^2 y - 2\omega_y(p-1) \log y) \\ &= \frac{q^x}{x} \log^2 y + O\left(\frac{q^x}{x} \log y\right) \\ &+ \sum_{\deg(p)=x} \log^2 y - \left(2 \log y \frac{q^x}{x} \log y + O\left(\frac{q^x}{x} \log y\right)\right) \\ &= O\left(\frac{q^x}{x} \log y\right). \end{split}$$

From now on, we let $y = \frac{x}{\log x}$. So then we have

$$\sum_{x \ge n \ge y} 1/n = o(\sqrt{\log x}).$$

Let

$$\delta_l(p-1) = \begin{cases} 1 & \text{if } l \mid p-1, \\ 0 & \text{if } l \nmid p-1, \end{cases}$$

So
$$\omega_y(p-1) = \sum_{deg(l) \le y} \delta_l(p-1).$$

Lemma 32 Let p be a prime polynomial in $\mathbb{F}_q[T]$ over finite field \mathbb{F}_q , we have

$$\lim_{x \to \infty} P_x \left\{ p : \deg(p) = x, \frac{\omega(p-1) - \log x}{\sqrt{\log x}} \le t \right\} = G(t)$$

if and only if

$$\lim_{x \to \infty} P_x \left\{ p : \deg(p) = x, \frac{\omega_y(p-1) - \log x}{\sqrt{\log x}} \le t \right\} = G(t).$$

Proof:

Note that

$$\frac{\omega(p-1) - \log x}{\sqrt{\log x}} = \frac{\omega_y(p-1) - \log x}{\sqrt{\log x}} + \frac{\omega(p-1) - \omega_y(p-1)}{\sqrt{\log x}}$$

and

$$\frac{\omega(p-1) - \omega_y(p-1)}{\sqrt{\log x}} = \frac{\sum_{\deg(l) \ge y} \delta_l(p-1)}{\sqrt{\log x}}.$$

Then from Lemma 2 in Chapter 1 we need only to prove that

$$\frac{\sum_{\deg(l)\geq y} \delta_l(p-1)}{\sqrt{\log x}} \xrightarrow{P_x} 0.$$

It's true since

$$\omega(p-1) - \omega_y(p-1) = \sum_{\substack{l \mid p-1 \\ \deg(l) \ge y}} 1$$

$$= \sum_{\substack{\deg(l) \ge y}} P_x \left\{ p - 1 : \delta_l(p-1) = 1 \right\}$$

$$= \sum_{x \ge \deg(l) \ge y} \frac{1}{q^{\deg(l)} - 1}$$

$$= \sum_{x \ge n \ge y} \frac{1}{q^n - 1} \left(\frac{q^n}{n} + O\left(\frac{q^{n/2}}{n}\right) \right)$$

$$= O\left(\sum_{x \ge n \ge y} \frac{1}{n} \right)$$

Since we have already $\sum_{x \ge n \ge y} 1/n = o(\sqrt{\log x})$ from the choice of y, thus we get the desired result.

4.2 The r-th moment of $\lim_{x\to\infty} P_x \left\{ \omega : \frac{\omega_y(p-1)-c_x}{s_x} \le t \right\}$

For l a prime polynomial in A, let X_l be random variables which satisfy

$$P(X_l = 1) = \frac{1}{q^{\deg(l)} - 1},$$

$$P(X_l = 0) = 1 - \frac{1}{q^{\deg(l)} - 1}.$$

We let $S_y = \sum_{\deg(l) \le y} X_l$, and let

$$c_x = E\{S_y\} = \log x + O(1),$$

$$s_x^2 = Var\{S_y\} = \log x + O(1).$$

Lemma 33

$$\lim_{x \to \infty} P_x \left\{ p : \deg(p) = x, \frac{\omega_y(p-1) - \log x}{\sqrt{\log x}} \le t \right\} = G(t)$$

if and only if

$$\lim_{x \to \infty} P_x \left\{ p : \deg(p) = x, \frac{\omega_y(p-1) - c_x}{s_x} \le t \right\} = G(t).$$

Proof: Since

$$\frac{\omega_{y}(p-1) - \log x}{\sqrt{\log x}} = \frac{\omega_{y}(p-1) - c_{x}}{s_{x}} + \left(\frac{\omega_{y}(p-1) - \log x}{\sqrt{\log x}} - \frac{\omega_{y}(p-1) - c_{x}}{s_{x}}\right) \\
= \frac{\omega_{y}(p-1) - c_{x}}{s_{x}} + \frac{O(\omega_{y}(p-1) - \log x)}{\sqrt{\log x}(\sqrt{\log x} + O(1))} \\
= \frac{\omega_{y}(p-1) - c_{x}}{s_{x}} + \frac{O(\omega_{y}(p-1) - \log x)}{\sqrt{\log x}(\sqrt{\log x} + O(1))}, \tag{4.1}$$

then from lemma 2, we need only that

$$\frac{O(\omega_y(p-1))}{\sqrt{\log x}(\sqrt{\log x} + O(1))} \xrightarrow{P_x} 0.$$

This is true since $\omega_y(p-1) = o(y)$, and from the choice of y we get the desired result.

Now it remains to prove the lemma below for theorem 5:

Lemma 34 For y given as before, we have

$$\lim_{x \to \infty} P_x \left\{ p : \deg(p) = x, \frac{\omega_y(p-1) - c_x}{s_x} \le t \right\} = G(t).$$

Proof: We will need to use the method of moments. Let

$$F(t) = \lim_{x \to \infty} P_x \left\{ \omega : \frac{\omega_y(p-1) - c_x}{s_x} \le t \right\}.$$

The r-th moment of F(t) is

$$\int_{-\infty}^{+\infty} t^r F(t) = \sum_{t=-\infty}^{\infty} \left\{ \lim_{x \to \infty} \sum_{i=1}^{x} \left(t + \frac{i}{x} \right)^r \left(F_x \left(t + \frac{i}{x} \right) - F_x \left(t + \frac{i-1}{x} \right) \right) \right\}$$

$$= \sum_{t=-\infty}^{\infty} \lim_{x \to \infty} \sum_{i=1}^{x} \left(t + \frac{i}{x} \right)^r P_x \left\{ p : \left(t + \frac{i}{x} \right) < \frac{\omega_y(p-1) - c_x}{s_x} \le t + \frac{i-1}{x} \right\}$$

$$= \sum_{m=1}^{x} \frac{1}{x} \left(\frac{\omega_y(p-1) - c_x}{s_x} \right)$$

$$= E_x \left\{ \left(\frac{\omega_y(p-1) - c_x}{s_x} \right)^r \right\}.$$

We know that

$$E\left\{S_y^r\right\} = \sum_{u=1}^r \sum_{l=1}^r \frac{r!}{r_1! \dots r_u!} \sum_{l=1}^r E\left\{\left(\sum_{\deg(l)=p_1} X_l\right)^{r_1} \dots \left(\sum_{\deg(l)=p_u} X_l\right)^{r_u}\right\},$$

where \sum' denotes *u*-tuples (r_1, \ldots, r_u) with $r_1 + \ldots + r_u = r$, $r'_i s \in \mathbb{N} \cup 0$, and \sum'' denotes *u*-tuples (p_1, \ldots, p_u) with $p_1 < \ldots < p_u \le y$.

Notice that

$$E\left\{ \left(\sum_{\deg(l)=k_1} X_l \right) \dots \left(\sum_{\deg(l)=k_u} X_l \right) \right\} = \frac{\frac{q^{k_1}}{k_1} + O\left(\frac{q^{k_1/2}}{k_1}\right)}{q^{k_1} - 1} \dots \frac{\frac{q^{k_u}}{k_u} + O\left(\frac{q^{k_u/2}}{k_u}\right)}{q^{k_u} - 1}$$

$$= \left(\frac{1}{k_1} + O\left(\frac{1}{k_1 q^{k_1/2}}\right) \right) \dots \left(\frac{1}{k_u} + O\left(\frac{1}{k_u q^{k_u/2}}\right) \right),$$

and

$$E_{x}\left(\sum_{\deg(l)=k_{1}} \delta_{l}\right) = \sum_{\deg(l)=k_{1}} P_{x}\{p: l|p-1\}$$

$$= \left(\frac{q^{k_{1}}}{k_{1}} + O\left(\frac{q^{k_{1}/2}}{k_{1}}\right)\right) \cdot \left(\frac{\frac{q^{x}}{q^{k_{1}-1}} + O\left(q^{\frac{x}{2}}\right)}{q^{x}}\right)$$

$$= \frac{1}{k_{1}} + O\left(\frac{1}{k_{1}q^{k_{1}/2}}\right) + \frac{1}{q^{x/2}} \cdot \frac{q^{k_{1}/2}}{k_{1}},$$

we have

$$E_{x} \left\{ \left(\sum_{\deg(l)=k_{1}} \delta_{l} \right)^{r_{1}} \dots \left(\sum_{\deg(l)=k_{u}} \delta_{l} \right)^{r_{u}} \right\} - E \left\{ \left(\sum_{\deg(l)=k_{1}} X_{l} \right)^{r_{1}} \dots \left(\sum_{\deg(l)=k_{u}} X_{l} \right)^{r_{u}} \right\}$$

$$\ll O\left(\frac{1}{q^{x/2}} \frac{q^{r_{1}k_{1}/2}}{k_{1}^{r_{1}}} \cdot \frac{q^{r_{2}k_{2}/2}}{k_{2}^{r_{2}}} \dots \frac{q^{r_{u}k_{u}/2}}{k_{u}^{r_{u}}} \right)$$

$$\leq O(q^{ry-x}).$$

So

$$E(S_y^r) - E_x(\omega_y^r) \leq \frac{1}{q^{x-ry}} \left(\sum_{n=1}^y \frac{q^y}{y} \right)^r$$

$$\leq \frac{1}{q^{x-ry}} \left(\frac{q^{y+1} - 1}{q - 1} \right)^r,$$

and then

$$|E(S_x - c_x)^r - E(\omega_x - c_x)^r| \leq \sum_{k=0}^r {r \choose k} \left(\frac{1}{q^{x-ry}} \frac{q^{y+1} - 1}{q - 1}\right)^k c_x^{r-k}$$

$$= \frac{1}{q^x} \left(\frac{(q^{y+1} - 1)q^y}{q - 1} + c_x\right)^r$$

$$\longrightarrow 0, \text{ as } x \longrightarrow \infty, \text{ from the choice of } y.$$

From Lemma 3 in Chapter 1, We now only need to prove

$$\sup_{y=y(x)} \left| E\left\{ \left(\frac{S_y - E\left\{ S_y \right\}}{\sqrt{Var\left\{ S_y \right\}}} \right)^r \right\} \right| < \infty.$$

Lemma 35

$$\sup_{y=y(x)} \left| E\left\{ \left(\frac{S_y - E\left\{ S_y \right\}}{\sqrt{Var\left\{ S_y \right\}}} \right)^r \right\} \right| < \infty.$$

Proof: Let $Y_l = X_l - \frac{1}{q^{\deg(l)} - 1}$, Then

$$E\{(S_y - c_x)^r\} = \sum_{u=1}^r \sum_{l=1}^r \frac{r!}{r_1! \dots r_u!} \sum_{l=1}^r E\left\{ \left(\sum_{\deg(l)=k_1} Y_l\right)^{r_1} \dots \left(\sum_{\deg(l)=k_u} Y_l\right)^{r_u} \right\}.$$

Let
$$Z_{k_i} = \sum_{\deg(l)=k_i} Y_l$$
. Then

$$E(Z_{k_i}) = E(Y_l) \left(\frac{q^{k_i}}{k_i} + O\left(\frac{q^{k_i/2}}{k_i}\right) \right)$$

$$= \frac{q^{k_i}}{k_i} \left(1 - \frac{2}{q^{k_i} - 1} \right)$$

$$= \frac{q^{k_i}}{k_i} - \frac{2}{k_i}.$$

So from above we have

$$E\{(Z_{k_1})^{r_1}\dots(Z_{k_u})^{r_u}\} = \frac{q^{k_1r_1+\dots+k_ur_u}}{k_1^{r_1}\dots k_u^{r_u}}$$

Then

$$E\left\{S_y^r\right\} = \left(\sum_{i=1}^y \frac{q^i}{i}\right)^r.$$

And

$$\begin{aligned} s_x^2 &= Var\{S_y\} = E\left(S_y - E(S_y)^2\right) \\ &= E\left\{\left(\sum_{\deg(l) \le y} Y_l\right)^2\right\} = E\left\{\left(\sum_{i=1}^y Z_i\right)^2\right\} \\ &= E\left\{\left(\sum_{1 \le i_1, i_2 \le y} Z_{i_1} Z_{i_2}\right)\right\} \\ &\sim \sum_{1 \le i_1, i_2 \le y} \frac{q^{i_1} q^{i_2}}{i_1 i_2} \\ &= \left(\sum_{i=1}^y \frac{q^i}{i}\right)^2. \end{aligned}$$

Thus
$$\frac{E\{S_y^r\}}{S_x^r} = 1 + O(1) < \infty$$
 and the Lemma follows.

Lastly, we can combine above lemmas and then get the analogue for the Erdös-Kac Theorem in function field as we did in Chapter 1, which is Theorem 5:

Theorem 5 (Prime Analogue of The Erdös-Kac Theorem)

$$\lim_{x \to \infty} P_x \left\{ p : \deg(p) = x, \frac{\omega(p-1) - \log x}{\sqrt{\log x}} \le t \right\} = G(t).$$

4.3 The Normal Distribution of $\Omega(\phi(n))$

In this section, we prove the following theorem:

Theorem 6 (Normal Distribution of $\Omega(\varphi(m))$) Let m be a monic polynomial in $\mathbb{F}_q[X]$ over finite field \mathbb{F}_q , we have

$$\lim_{x \to \infty} \frac{1}{q^x} \# \left\{ m : \deg(m) = x, \frac{\Omega(\varphi(m)) - \frac{1}{2}(\log x)^2}{\frac{1}{\sqrt{3}}(\log x)^{\frac{2}{3}}} \le t \right\} = G(t).$$

To prove this theorem, we need a theorem which is similar to the Kubilius-Shapiro theorem, but is effective in function field [9]:

Theorem 36 (Zhang) Let h(m) be a strongly additive function on $\mathbb{F}_q[T]$. For $x \in \mathbb{N}$,

$$A(x) = \sum_{\deg(p) \le x} \frac{h(p)}{q^{\deg(p)}}, \ B(x) = \left(\sum_{\deg(p) \le x} \frac{h(p)^2}{q^{\deg(p)}}\right)^{\frac{1}{2}}.$$

If $\forall \varepsilon > 0$, we have

$$\lim_{x \to \infty} \frac{1}{B^2(x)} \sum_{\substack{\deg(p) \le x, \\ |h(p)| \ge \varepsilon B(x)}} \frac{h^2(p)}{q^{\deg(p)}} = 0,$$

then

$$\lim_{x \to \infty} \frac{1}{q^x} \# \left\{ \deg(m) = x, \frac{h(m) - A(x)}{B(x)} \le t \right\} = G(t).$$

To prove Theorem 6, We want to apply this theorem with

$$h(m) = \Omega(\varphi(m)).$$

However, to apply this theorem, h(m) has to be additive. So instead of $\Omega(\varphi(m))$, we apply the theorem with additive function $f(n) = \sum_{p|n} \Omega(p-1)$, and we will prove that the difference between them is small enough. In order to apply this theorem, we also need A(x) and B(x) to satisfy the requirements:

$$\lim_{x \to \infty} \frac{1}{B(x)^2} \sum_{\substack{q^{\deg(p)} \le x \\ |f(p)| > \varepsilon \overline{B}(x)}} \frac{f(p)^2}{q^{\deg(p)}} = 0,$$

where

$$A(x) = \sum_{\deg(p) \le x} \frac{f(p)}{q^{\deg(p)}}, \quad B(x) = \left(\sum_{\deg(p) \le x} \frac{f(p)^2}{q^{\deg(p)}}\right)^{\frac{1}{2}}.$$

4.4 Lemmas

At first we need to calculate for $\sum_{p \le x} \Omega_y(p-1)$ and $\sum_{p \le x} \Omega_y^2(p-1)$,

Lemma 37 Let n be a fixed polynomial in $\mathbb{F}_q[T]$, $a \geq 2$ and $\pi(x, n, 1) = \sum_{\substack{\deg(p) = x \\ x \equiv 1(n)}} 1$.

Then we have

$$\sum_{\deg(n) \le y} \pi(x, n^a, 1) = O(1).$$

Proof: Since we have

$$\pi(x, n, 1) = \frac{1}{\Phi(n)} \frac{q^x}{x} + O\left(\frac{q^{x/2}}{x}\right),$$

and

$$\frac{1}{\Phi(n^a)} = \frac{1}{q^{(a-1)\deg(n)}(q^{\deg(n)}-1)},$$

then

$$\sum_{\deg(n) \le y} \pi(x, n^a, 1) \ll \sum_{n=1}^y \frac{1}{q^{(a-1)n}(q^n - 1)} \left(\frac{q^n}{n}\right)^2$$

$$\ll \sum_{n=1}^y \frac{q^n}{n^2(q^n - 1)}$$

$$\ll \sum_{n=1}^y \frac{1}{n^2} = O(1).$$

Lemma 38

$$\sum_{\deg(p) \le x} \frac{\omega(p-1)}{q^{\deg(p)}} = \frac{1}{2} (\log n)^2 + O(\log x),$$

and

$$\sum_{\deg(p) \le x} \frac{\omega^2(p-1)}{q^{\deg(p)}} = \frac{1}{3} \log^3 x + O(\log^2 x).$$

Proof: By Lemma 31

$$\sum_{\deg(p) \le x} \frac{\omega(p-1)}{q^{\deg(p)}} = \sum_{n=1}^{x} \frac{\sum_{\deg(p)=n} \omega(p-1)}{q^n}$$

$$= \sum_{n=1}^{x} \frac{\left(\frac{q^n}{n} \log n + O\left(\frac{q^n}{n}\right)\right)}{q^n}$$

$$= \sum_{n=1}^{x} \left(\frac{\log n}{n} + O\left(\frac{1}{n}\right)\right)$$

$$= \frac{1}{2} (\log x)^2 + O(\log x).$$

Also, we have

$$\sum_{\deg(p) \le x} \frac{\omega^2(p-1)}{q^{\deg(p)}} = \sum_{n=1}^x \frac{\sum_{\deg(p)=n} \omega^2(p-1)}{q^n}$$

$$= \sum_{n=1}^x \frac{\frac{q^n}{n} \log^2 n + O\left(\frac{q^n}{n} \log n\right)}{q^n}$$

$$= \sum_{n=1}^x \left(\frac{\log^2 n}{n} + O\left(\frac{\log n}{n}\right)\right)$$

$$= \frac{1}{3} \log^3 x + O(\log^2 x).$$

Lemma 39 For $2 < y \le x$, we have

$$\sum_{\deg(p)=x} \Omega_y(p-1) = \frac{q^x}{x} \log y + O\left(\frac{q^x}{x}\right),\,$$

and

$$\sum_{\deg(p)=x} \Omega_y^2(p-1) = \frac{q^x}{x} (\log y)^2 + O\left(\frac{q^x}{x} \log y\right).$$

Proof: We have

$$\sum_{\deg(p)=x} \Omega_{y}(p-1) = \sum_{\deg(p)=x} \sum_{\substack{l^{a}|p-1\\ \deg(l) \leq y}} 1$$

$$= \sum_{\substack{l^{a}\\ \deg l \leq y}} \pi(x, l^{a}, 1)$$

$$= \sum_{\deg(l) \leq y} \pi(x, l, 1) + \sum_{\substack{\deg(l) \leq y\\ l^{a}, a \geq 2}} \pi(x, l^{a}, 1)$$

$$= S_{1} + S_{2}.$$

By Lemma 38,

$$S_1 = \sum_{\deg(p)=x} \omega_y(p-1) = \frac{q^x}{x} \log y + O\left(\frac{q^x}{x}\right).$$

We consider S_2 in two cases, $\deg(l^a) \leq x^{1/3}$ and $\deg(l^a) > x^{1/3}$:

$$S_{2} = \sum_{\substack{\deg(l) \leq y \\ \deg(l^{a}) \leq x^{1/3}, a \geq 2}} \pi(x, l^{a}, 1) + \sum_{\substack{\deg(l) \leq y \\ \deg(l^{a}) > x^{1/3}, a \geq 2}} \pi(x, l^{a}, 1)$$

$$= S_{2.1} + S_{2.2}.$$

For $S_{2,1}$, by Lemma 30 and 37, we have

$$S_{2,1} \ll \sum_{\substack{\deg(l^a) \le x^{1/3} \\ a > 2}} 1 \ll \frac{q^x}{x} \sum \frac{1}{\varphi(l^a)} \ll \frac{q^x}{x}.$$

For $S_{2,2}$, by Lemma 30, we have

$$\begin{split} S_{2,2} &= \sum_{\substack{\deg(l^a) > x^{1/3} \\ \deg l \leq y \\ a \geq 2}} \pi(x, l^a, 1) \\ &= \sum_{\substack{2y \geq 2n \geq x^{1/3} \\ 2y \geq 2n \geq x^{1/3}}} \left(\frac{1}{q^{(a-1)n}(q^n - 1)} \cdot \frac{q^n}{n} + O\left(\frac{q^{n/2}}{n}\right) \right) \cdot \left(\frac{q^n}{n} + O\left(\frac{q^{n/2}}{n}\right) \right) \\ &\ll \sum_{\substack{2y \geq 2n \geq x^{1/3} \\ 2y \geq 2n \geq x^{1/3}}} \frac{1}{q^{(a-1)n}(q^n - 1)} \cdot \frac{q^{2n}}{n^2} \\ &\ll \sum_{\substack{2y \geq 2n \geq x^{1/3} \\ q^{(a-3)n}n^2(q^n - 1)}} \frac{1}{q^{(a-3)n}n^2(q^n - 1)} \\ &= O(1). \end{split}$$

So we have that

$$\sum_{\deg(p)=x} \Omega_y(p-1) = \frac{q^x}{x} \log y + O\left(\frac{q^x}{x}\right).$$

Let u range over the polynomials in $\mathbb{F}_q[T]$ with $\omega(u) = 2$. Then

$$\sum_{\deg(p)=x} \Omega_y^2(p-1) = \sum_{\deg(p)=x} \sum_{\substack{l^a | | p-1 \\ \deg(l) \le y}} a^2 + \sum_{\deg(p)=x} \sum_{\substack{u | p-1 \\ u \neq 0}} k_1 k_2 = S_3 + S_4, \tag{4.2}$$

where $u = l_1^{k_1} l_2^{k_2}$ with l_1, l_2 distinct primes and $\deg(l_1), \deg(l_2) \leq y$. Below we calculate S_3 and S_4 separately:

$$S_{3} \leq \sum_{\deg(p)=x} \Omega_{y}(p-1) + \sum_{\substack{\deg(l^{a}) \leq x^{1/3} \\ \deg(l) \leq y, a \geq 2}} (a^{2}-a)\pi(x, l^{a}, 1) + \sum_{\substack{\deg(l^{a}) > x^{1/3} \\ \deg(l) \leq y, a \geq 2}} (a^{2}-a)\pi(x, l^{a}, 1).$$

$$(4.3)$$

For the first part of this sum, we apply Lemma 39; For the second sum, by Lemma 37 we have

$$\sum_{\substack{\deg(l^a) \le x^{1/3} \\ \deg(l) \le y, a \ge 2}} (a^2 - a) \pi(x, l^a, 1) \le \sum_{\substack{\deg(l) \le y \\ x^{1/3} \ge a \ge 2}} (a^2 - a) \pi(x, l^a, 1)$$

$$\le \sum_{x^{1/3} \ge a \ge 2} (a^2 - a) = o(x);$$

For the third part we have

$$\sum_{\substack{\deg(l^a) > x^{1/3} \\ \deg(l) \le y, a \ge 2}} (a^2 - a) \pi(x, l^a, 1) \ll \sum_{\substack{\deg(l^a) > x^{1/3} \\ \deg(l) \le y, a \ge 2}} (a^2 - a) \frac{q^x}{x (q^{(a-1)\deg(l)}) (q^{\deg(l)} - 1)}$$

$$\leq \sum_{a \ge 2} (a^2 - a) \sum_{\substack{x^{\frac{1}{3}} < n < y}} \frac{q^x}{x (q^{(a-1)n}) (q^n - 1)}$$

$$\leq \frac{q^x}{x} \sum_{a > 2} (a^2 - a) \frac{1}{q^{ax^{\frac{1}{3}}}} = O\left(\frac{q^x}{x}\right).$$

Thus we have

$$S_3 = O\left(\frac{q^x}{x}\log y\right).$$

Also,

$$S_{4} = \sum_{\substack{\deg(p)=x \ u|p-1 \\ \deg(l_{1}), \deg(l_{2}) \leq y \ \deg(p)=x \\ u=l_{1}^{k_{1}} l_{2}^{k_{2}}}} \sum_{\substack{k_{1}k_{2} + \sum \\ \deg(p)=x \\ u=l_{1}^{k_{1}} l_{2}^{k_{2}}}} \sum_{\substack{u|p-1 \\ \deg(p)=x \\ deg(p)=x \\ u=l_{1}^{k_{1}} l_{2}^{k_{2}}}} k_{1}k_{2}$$

$$-\sum_{\substack{l^{k} \parallel p-1 \\ \deg(p)=x \\ }} \sum_{i=1}^{k-1} i(k-i)$$

$$= S_{4,1} + S_{4,2} - S_{4,3}.$$

Here $S_{4,1}$ and $S_{4,2}$ are the component in S_4 containing u satisfying above requirements with degree smaller than and bigger than $x^{\frac{1}{6}}$ respectively. We have

$$S_{4,3} = \sum_{\substack{l^k || p-1 \\ \deg(p) = x}} O(k^3),$$

Since

$$\sum_{\substack{l^k || p-1 \\ \deg(p) = x}} k^3 = \sum_{\substack{\deg(p) = x}} \Omega_y(p-1) + \sum_{\substack{\deg(l^k) \le x^{1/3} \\ \deg(l) \le y, k \ge 2}} (k^3 - k)\pi(x, l^k, 1) + \sum_{\substack{\deg(l^k) > x^{1/3} \\ \deg(l) \le y, k \ge 2}} (k^3 - k)\pi(x, l^k, 1),$$

From similar argument for S_3 , we can get that $S_{4,3} = O\left(\frac{q^x}{x}\log y\right)$ too. Also we have

$$S_{4,1} = \sum_{\substack{\deg(u) \le x^{1/6} \\ \deg(l_1), \deg(l_2) \le y}} \sum_{\substack{u = l_1^{k_1} l_2^{k_2} \\ \deg(l_1), \deg(l_2) \le y}} k_1 k_2 \pi(x, du, 1) \mu(d)$$

$$= \frac{q^x}{x} \sum_{\substack{\deg(u) \le x^{\frac{1}{6}} \\ \deg(l_1), \deg(l_2) \le y}} \sum_{\substack{d \mid u \\ \deg(l_1), \deg(l_2) \le y}} \left\{ k_1 k_2 \frac{\mu(d)}{\varphi(du)} + O\left(\frac{k_1 k_2}{xq^{\frac{x}{2}}} \mu(d)\right) \right\}$$

$$= \frac{q^x}{x} \sum_{\substack{\deg(u) \le x^{\frac{1}{6}} \\ \deg(l_1), \deg(l_2) \le y}} \frac{k_1 k_2}{q^{k_1 \deg(l_1) + k_2 \deg(l_2)}}$$

$$= \frac{q^x}{x} \sum_{n \le y} \sum_{m \le y} \frac{1}{q^{n+m}} \left\{ \frac{q^{n+m}}{n+m} + O\left(\frac{q^{\frac{n+m}{2}}}{n+m}\right) \right\}$$

$$= \frac{q^x}{x} (\log y)^2 + O\left(\frac{q^x}{x} \log y\right).$$

For $S_{4,2}$, we let $du = l_1^a l_2^b$. Since $\deg(u) > x^{1/6}$, we can assume that $\deg(l_2) > x^{1/12}$. Then

$$S_{4,2} = 2 \sum_{\substack{l_1^a \parallel p-1 \\ l_2^b \parallel p-1 \\ \deg(l_1) \le y \\ a > 1}} \sum_{\substack{y \ge \deg(l_2) > x^{1/12} \\ b \ge 2}} ab + 2 \sum_{\substack{\deg(p) = x \\ \deg(l_1) \le y \\ a > 1}} \sum_{\substack{l_1^a \parallel p-1 \\ \deg(l_1) \le y \\ a > 1}} a$$

For the first part we have

first part we have
$$\sum_{\substack{l_1^a \parallel p-1 \\ l_2^b \parallel p-1 \\ x > b \geq 2}} \sum_{\substack{y \geq \deg(l_2) > x^{1/12} \\ x > b \geq 2}} ab \ll \sum_{\substack{\deg(l_1) \leq y \\ x > a \geq 2}} a\pi(x, l_1^a, 1) \sum_{\substack{\deg(l_2) \leq y \\ x > b \geq 2}} b\pi(x, l_2^b, 1)$$

$$\ll \left(\sum_{\substack{\deg(l_1) \leq y \\ x > a \geq 2}} a\pi(x, l_1^a, 1) \right)^2$$

$$\ll O\left(\frac{q^x}{x}\right) \text{ by Lemma 37.}$$

For the second part we have

$$\sum_{\substack{\deg(p)=x \ \log(l_1) \leq y \ \deg(l_2) > x^{1/12}}} \sum_{\substack{l_2|p-1 \ \deg(l_1) \leq y \ a > 1}} a \ll \sum_{\substack{\deg(p)=x \ \log(l_1) \leq y \ a > 1}} \sum_{\substack{l_1^a|p-1 \ \deg(l_1) \leq y \ a > 1}} a$$

$$= \sum_{\substack{\deg(p)=x \ \sum_{\substack{l_1^a \parallel (p-1) \ \deg(l_1) \leq y \ a > 1}}} (2+3+\cdot +a)$$

$$\ll \sum_{\substack{\deg(p)=x \ \sum_{\substack{l_1^a \parallel (p-1) \ \deg(l_1) \leq y \ a > 1}}} \sum_{\substack{\deg(p) \leq x \ a > 1}} \alpha^2 + \sum_{\substack{\deg(p) \leq x \ a > 1}} \Omega_y(p-1).$$

Since

$$\sum_{\deg(p) \le x} \Omega_y(p-1) = O\left(\frac{q^x}{x} \log y\right),\,$$

also

$$\begin{split} \sum_{\deg(p)=x} \sum_{\substack{l_1^a || (p-1) \\ \deg(l_1) \leq y \\ a > 1}} a^2 & \ll \sum_{\deg(l_1) \leq y} a^2 \sum_{\deg(p)=x \\ p \equiv 1(l_1^a)} 1 \\ & = \sum_{\substack{\deg(l_1) \leq y \\ 1 < a < x}} a^2 \pi(x, l_1^a, 1) \\ & \ll x O(1) \\ & = O(x), \end{split}$$

We can have that

$$\sum_{\deg(p)=x} \Omega_y^2(p-1) = \frac{q^x}{x} (\log y)^2 + O\left(\frac{q^x}{x} \log y\right).$$

Lemma 40

$$\sum_{\substack{\deg(p) \le x \\ p \equiv 1(m)}} \frac{1}{q^{\deg(p)}} = \frac{1}{\Phi(m)} \log x + O(1),$$

$$\sum_{\deg(p) \le x} \frac{\Omega(p-1)}{q^{\deg(p)}} = \frac{1}{2} \log^2 x + O(\log x),$$

and

$$\sum_{\deg(p) \le x} \frac{\Omega^2(p-1)}{q^{\deg(p)}} = \frac{1}{3} \log^3 x + O(\log^2 x).$$

Proof:

$$\sum_{\substack{\deg(p) \le x \\ p \equiv 1(m)}} \frac{1}{q^{\deg(p)}} = \sum_{n=1}^{x} \sum_{\substack{\deg(p) = n \\ \omega \equiv 1(m)}} \frac{1}{q^{\deg(p)}}$$

$$= \sum_{n=1}^{x} \left(\frac{1}{q^n} \sum_{\substack{\deg(p) = n \\ \omega \equiv 1(m)}} 1 \right)$$

$$= \sum_{n=1}^{x} \left(\frac{1}{q^n} \left(\frac{1}{\Phi(m)} \frac{q^n}{n} + O\left(\frac{q^{n/2}}{n}\right) \right) \right)$$

$$= \sum_{n=1}^{x} \left(\frac{1}{n\Phi(m)} + O\left(\frac{1}{nq^{n/2}}\right) \right)$$

$$= \frac{1}{\Phi(m)} \log x + O(1).$$

Also,

$$\begin{split} \sum_{\deg(p) \leq x} \frac{\Omega(p-1)}{q^{\deg(p)}} &= \sum_{n \leq x} \sum_{\deg(p) = x} \frac{\Omega(p-1)}{q^n} \\ &= \sum_{n \leq x} \frac{\frac{q^n}{n} \log n + O\left(\frac{q^n}{n}\right)}{q^n} \\ &= \sum_{n \leq x} \frac{\log n}{n} + O(\log x) \\ &= \frac{1}{2} \log^2 x + O(\log x) \text{ from partial summation.} \end{split}$$

Lastly,

$$\begin{split} \sum_{\deg(p) \leq x} \frac{\Omega^2(p-1)}{q^{\deg(p)}} &= \sum_{n=1}^x \frac{\frac{q^n}{n} \log^2 n + O\left(\frac{q^n}{n} \log n\right)}{q^n} \\ &= \sum_{n=1}^x \frac{1}{n} \log^2 n + O\left(\frac{1}{n} \log x\right) \\ &= \frac{1}{3} \log^3 x + O(\log^2 x) \text{ from partial summation.} \end{split}$$

Lemma 41 Let $g(m) = \sum_{p|m} \Omega(p-1)$, then

$$\lim_{x \to \infty} \frac{1}{q^x} \# \left\{ m : \deg(m) = x, \frac{\Omega(\varphi(m)) - \frac{1}{2}(\log x)^2}{\frac{1}{\sqrt{3}}(\log x)^{\frac{3}{2}}} \le t \right\} = G(t)$$

if and only if

$$\lim_{x \to \infty} \frac{1}{q^x} \# \left\{ m : \deg(m) = x, \frac{g(m) - \frac{1}{2}(\log x)^2}{\frac{1}{\sqrt{3}}(\log x)^{\frac{3}{2}}} \le t \right\} = G(t).$$

Proof: Note that for $m = p_1^{r_1} \cdots p_u^{r_u}$, we have

$$\varphi(m) = \prod_{i=1}^{u} (p_i - 1) p_i^{r_i - 1}.$$

Thus

$$\Omega(\varphi(m)) = \Omega\left(\prod_{i=1}^{u} (p_i - 1)\right) + \Omega\left(\prod_{i=1}^{u} p_i^{r_i - 1}\right),$$

which gives us

$$\sum_{p|m} \Omega(p-1) \le \Omega(\varphi(m)) \le \sum_{p|m} \Omega(p-1) + \Omega(m).$$

Also we have $\Omega(m) \leq x$ when $\deg(m) = x$. Then from Lemma 3 in chapter 1, we need that

$$\lim_{x \to \infty} \frac{1}{q^x} \# \left\{ m : \deg(m) = x, \left| \frac{\Omega(m)}{\frac{1}{\sqrt{3}} (\log x)^{\frac{3}{2}}} \right| > \varepsilon \right\} = 0.$$

Since the normal order of $\Omega(m)$ is $\log x$, we have that but for $o(q^x)$ number of monic polynomials m, with $\deg(m) = x$

$$\Omega(m) = (1 + o(1)) \log x = o\left(\frac{1}{\sqrt{3}} (\log x)^{\frac{3}{2}}\right).$$

Then we have

$$\frac{\Omega(x)}{(\log x)^{\frac{3}{2}}} = o\left(\frac{1}{\log^{\frac{1}{2}} x}\right) \longrightarrow 0 \text{ as } x \longrightarrow \infty,$$

and the result follows.

Lemma 42

$$\sum_{\deg(m)=x} \Omega(\varphi(m)) = \frac{1}{2} q^x (\log x)^2 + O(q^x \log x),$$

and

$$\sum_{\deg(m)=x} \Omega^2(\varphi(m)) = \frac{1}{4} q^x (\log x)^4 + O(q^x (\log x)^3).$$

Proof: First let us prove

$$\sum_{\deg(m)=x} \left(\sum_{p|m} \Omega(p-1) \right) = \frac{1}{2} q^x (\log x)^2 + O(q^x \log x),$$

and

$$\sum_{\deg(m)=x} \left(\sum_{p|m} \Omega(p-1) \right)^2 = \frac{1}{4} q^x (\log x)^4 + O(q^x (\log x)^3).$$

Then we can use the inequality

$$\sum_{p|m} \Omega(p-1) \le \Omega(\varphi(m)) \le \sum_{p|m} \Omega(p-1) + \Omega(m),$$

to get the result.

For
$$\sum_{\deg(m)=x} \left(\sum_{p|m} \Omega(p-1) \right)$$
, we have

$$\sum_{\deg(m)=x} \left(\sum_{p|m} \Omega(p-1) \right) = \sum_{\deg(p) \le x} \sum_{\deg(m)=x} 1$$

$$= \sum_{\deg(p) \le x} \Omega(p-1) \sum_{\deg(m)=x \atop p|m} 1$$

$$= q^x \sum_{\deg(p) \le x} \frac{\Omega(p-1)}{q^{\deg(p)}}$$

$$= \frac{1}{2} q^x (\log x)^2 + O(q^x \log x).$$

For
$$\sum_{\deg(m)=x} \left(\sum_{p|m} \Omega(p-1) \right)^2$$
, we have

$$\sum_{\deg(m)=x} \left(\sum_{p|m} \Omega(p-1)\right)^2 = \sum_{\deg(m)=x} \sum_{p|m} \Omega^2(p-1) + \sum_{\deg(m)\leq x} \sum_{p|m} \sum_{\substack{l|m\\l\neq p}} \Omega(p-1)\Omega(l-1).$$

Since

$$\sum_{\deg(m)=x} \sum_{p|m} \Omega^2(p-1) \leq q^x \sum_{\deg(p) \leq x} \frac{\Omega^2(p-1)}{q^{\deg(p)}}$$
$$= q^x \left(\frac{1}{3} \log^3 x\right)$$
$$= O(q^x \log^3 x),$$

and

$$\sum_{\deg(m) \le x} \sum_{p|m} \sum_{\substack{l|m \\ l \ne p}} \Omega(p-1)\Omega(l-1)$$

$$= \sum_{\deg(l) \le x} \sum_{\substack{\deg(p) \le x \\ p \ne l}} \Omega(p-1)\Omega(l-1) \sum_{\substack{\deg(m) = x \\ pl|m}} 1$$

$$= \sum_{\deg(l) \le x} \sum_{\substack{\deg(p) \le x \\ p \ne l}} \Omega(p-1)\Omega(l-1) \frac{1}{q^{\deg(p)+\deg(l)}}$$

$$= q^x \left(\sum_{\substack{\deg(p) \le x \\ q \ne l}} \frac{\Omega(p-1)}{q^{\deg(p)}}\right)^2 + O\left(\sum_{\substack{\deg(p) \le x \\ q \ne l}} \frac{\Omega(p-1)}{q^{\deg(p)}}\right)^2\right),$$

and since

$$\sum_{\deg(p) \le x} \left(\frac{\Omega(p-1)}{q^{\deg(p)}} \right)^2 = O\left(\sum_{n \le x} \frac{q^n}{n} \log^2 x \right) = O\left(q^x \log^3 x \right),$$

and

$$q^x \left(\sum_{\deg(p) \le x} \frac{\Omega(p-1)}{q^{\deg(p)}} \right)^2 = \frac{1}{4} q^x \log^4 x + O(q^x \log^3 x),$$

then

$$\sum_{\deg(m)=x} \left(\sum_{p|m} \Omega(p-1) \right)^2 = \frac{1}{4} q^x (\log x)^4 + O(q^x (\log x)^3).$$

Since we have

$$\sum_{\deg(m)=x} \Omega(m) = O(q^x \log x).$$

Then with the inequality

$$\sum_{p|m} \Omega(p-1) \le \Omega(\varphi(m)) \le \sum_{p|m} \Omega(p-1) + \Omega(m),$$

we have

$$\sum_{\deg(m)=x} \Omega(\varphi(m)) = \frac{1}{2} q^x (\log x)^2 + O(q^x \log x).$$

Also, since

$$\sum_{\deg(m)=x} \left(\sum_{p|m} \Omega(p-1) + \Omega(m) \right)^2$$

$$= \sum_{\deg(m)=x} \left(\sum_{p|m} \Omega(p-1) + O(\log x) \right)^2$$

$$= \sum_{\deg(m)=x} \left(\sum_{p|m} \Omega(p-1) \right)^2 + O\left(\sum_{\deg(m)=x} \sum_{p|m} \Omega(p-1)O(\log x) \right)$$

$$= \frac{1}{4} q^x (\log x)^4 + O(q^x (\log x)^3),$$

again from the inequality, we have

$$\sum_{\deg(m)=x} \Omega^2(\varphi(m)) = \frac{1}{4} q^x (\log x)^4 + O(q^x (\log x)^3).$$

Similarly, we have the lemma below:

Lemma 43

$$\sum_{\deg(m)=x} \Omega_y(\varphi(m)) = q^x \log x \log y + O(q^x \log y),$$

and

$$\sum_{\deg(m)=x} \Omega_y^2(\varphi(m)) = q^x \log^2 x \log^2 y + O(q^x \log^2 x \log y).$$

Proof: First let us prove

$$\sum_{\deg(m)=x} \left(\sum_{p|m} \Omega_y(p-1) \right) = q^x \log x \log y + O(q^x \log y),$$

and

$$\sum_{\deg(m)=x} \left(\sum_{p|m} \Omega_y(p-1) \right)^2 = q^x \log^2 x \log^2 y + O(q^x \log x \log^2 y).$$

Then we can use the inequality

$$\sum_{p|m} \Omega_y(p-1) \le \Omega_y(\varphi(m)) \le \sum_{p|m} \Omega_y(p-1) + \Omega_y(m),$$

to get the result.

For
$$\sum_{\deg(m)=x} \left(\sum_{p|m} \Omega_y(p-1)\right)$$
, by Lemma 39 we have

$$\sum_{\deg(m)=x} \left(\sum_{p|m} \Omega_y(p-1) \right) = \sum_{\deg(p) \le x} \sum_{\deg(m)=x} 1$$

$$= \sum_{\deg(p) \le x} \Omega_y(p-1) \sum_{\deg(m)=x} 1$$

$$= q^x \sum_{\deg(p) \le x} \frac{\Omega_y(p-1)}{q^{\deg(p)}}$$

$$= q^x \sum_{n=1}^x \left(\frac{\frac{q^n}{n} \log y}{q^n} + O\left(\frac{\frac{q^n}{n}}{q^n}\right) \right)$$

$$= q^x \log x \log y + O(q^x \log x) \text{ from partial summation.}$$

For
$$\sum_{\deg(m)=x} \left(\sum_{p|m} \Omega_y(p-1)\right)^2$$
, by Lemma 39, we have

$$\sum_{\deg(m)=x} \left(\sum_{p|m} \Omega_y(p-1) \right)^2 = \sum_{\deg(m)=x} \sum_{p|m} \Omega_y^2(p-1) + \sum_{\deg(m)\leq x} \sum_{p|m} \sum_{\substack{l|m\\l\neq p}} \Omega_y(p-1) \Omega_y(l-1).$$

Since

$$\sum_{\deg(m)=x} \sum_{p|m} \Omega_y^2(p-1) \leq q^x \sum_{\deg(p) \leq x} \frac{\Omega_y^2(p-1)}{q^{\deg(p)}}$$

$$= q^x \sum_{n=1}^x \left(\frac{\frac{q^n}{n} \log^2 y}{q^n}\right) + O\left(\frac{\frac{q^n}{n} \log y}{q^n}\right)$$

$$= O(q^x \log x \log^2 y),$$

and

$$\sum_{\deg(m) \leq x} \sum_{p|m} \sum_{\substack{l|m \\ l \neq p}} \Omega_y(p-1)\Omega_y(l-1)$$

$$= \sum_{\deg(l) \leq x} \sum_{\substack{\deg(p) \leq x \\ p \neq l}} \Omega_y(p-1)\Omega_y(l-1) \sum_{\substack{\deg(m) = x \\ pl|m}} 1$$

$$= \sum_{\deg(l) \leq x} \sum_{\substack{\deg(p) \leq x \\ p \neq l}} \Omega_y(p-1)\Omega_y(l-1) \frac{1}{q^{\deg(p) + \deg(l)}}$$

$$= q^x \left(\sum_{\deg(p) \leq x} \frac{\Omega_y(p-1)}{q^{\deg(p)}}\right)^2 + q^x O\left(\sum_{\deg(p) \leq x} \left(\frac{\Omega_y(p-1)}{q^{\deg(p)}}\right)^2\right),$$

and since by Lemma 38

$$\sum_{\deg(p) \le x} \left(\frac{\Omega_y(p-1)}{q^{\deg(p)}} \right)^2 = O\left(\sum_{n \le x} \frac{q^n}{n} \log^2 y \right) = O\left(\log x \log^2 y \right),$$

and

$$q^x \left(\sum_{\deg(p) \le x} \frac{\Omega_y(p-1)}{q^{\deg(p)}} \right)^2 = q^x \log^2 x \log^2 y + O(q^x \log^2 y \log x),$$

then

$$\sum_{\deg(m)=x} \left(\sum_{p|m} \Omega_y(p-1) \right)^2 = q^x \log^2 x \log^2 y + O(q^x \log x \log^2 y).$$

Since we have

$$\sum_{\deg(m)=x} \Omega_y(m) = O(q^x \log y).$$

Then with the inequality

$$\sum_{p|m} \Omega_y(p-1) \le \Omega_y(\varphi(m)) \le \sum_{p|m} \Omega_y(p-1) + \Omega_y(m),$$

we have

$$\sum_{\deg(m)=x} \Omega_y(\varphi(m)) = q^x \log x \log y + O(q^x \log y).$$

Also, since

$$\sum_{\deg(m)=x} \left(\sum_{p|m} \Omega_y(p-1) + \Omega_y(m) \right)^2$$

$$= \sum_{\deg(m)=x} \left(\sum_{p|m} \Omega(p-1) \right)^2 + O\left(\sum_{\deg(m)=x} \sum_{p|m} \Omega(p-1)O(\log x) \right)$$

$$= q^x \log^2 x \log y + O(q^x \log^2 x \log y),$$

again from the inequality, we have

$$\sum_{\deg(m)=x} \Omega^2(\varphi(m)) = q^x \log^2 x \log^2 y + O(q^x \log^2 x \log y).$$

From Lemma 42, we have a result below:

Lemma 44

$$\sum_{\deg(m)=x} \left(\Omega(\varphi(m)) - \frac{1}{2} \log^2 x \right)^2 \ll q^x \log^3 x.$$

Proof:

$$\sum_{\deg(m)=x} \left(\Omega(\varphi(m)) - \frac{1}{2} \log^2 x \right)^2$$

$$= \sum_{\deg(m)=x} \left(\Omega^2(\varphi(m)) - \Omega(\varphi(m)) \log^2 x + \frac{1}{4} \log^4 x \right) \text{ by Lemma 42}$$

$$= \frac{1}{4} \log^4 x + O(q^x \log^3 x) + \frac{1}{4} \sum_{\deg(m)=x} \log^4 x$$

$$- \log^2 x \left(\frac{1}{2} q^x \log^2 x + O(q^x \log x) \right)$$

$$= \frac{1}{2} q^x \log^4 x - \frac{1}{2} q^x \log^4 x + O(q^x \log^3 x)$$

$$\ll q^x \log^3 x.$$

Lemma 45

$$\sum_{\deg(m)=x} (\Omega(\varphi(m)) - \omega(\varphi(m)))^2 = o(q^x \log^{2+\varepsilon} x) \text{ for any } \varepsilon > 0.$$

Proof: Let $\omega_y^+(\varphi(m))$ be the number of distinct prime divisors of $\varphi(m)$ whose degrees are >y and $\Omega_y^+(\varphi(m))$ be defined similarly. Then

$$\sum_{\deg(m)=x} (\Omega(\varphi(m)) - \omega(\varphi(m)))^{2}$$

$$= \sum_{\deg(m)=x} (\Omega_{y}(\varphi(m)) + \Omega_{y}^{+}(\varphi(m)) - \omega_{y}(\varphi(m)) - \omega_{y}^{+}(\varphi(m)))^{2}$$

$$\ll \sum_{\deg(m)=x} ((\Omega_{y}^{+}(\varphi(m)) - \omega_{y}^{+}(\varphi(m)))^{2} + (\Omega_{y}(\varphi(m)))^{2} + (\omega_{y}(\varphi(m)))^{2}).$$

We then claim that but for $o(q^x)$ choices of deg(m) = x we have

$$\Omega_y^+(\varphi(m)) - \omega_y^+(\varphi(m)) = 0.$$

To prove this claim, first notice that if there exists some prime p such that $p^2|\varphi(m)$, when deg p > y and deg m = x, Then p and m satisfy one of three bellow cases:

- 1) $p^3|m;$
- 2) There exists some prime polynomial l|m with $l \equiv 1(p^2)$;
- 3) There exists some prime polynomials l_1, l_2 with $l_1 \neq l_2, l_1 l_2 | m$, and $l_1 \equiv l_2 \equiv 1(p)$.

In the first case, the number of possible m is

$$\sum_{n>y} \#\{m: p^3 | m, \deg(m) = x, \deg(p) = n\}$$

$$\ll \sum_{n>y} \left\{ \left(\frac{q^n}{n} + O\left(\frac{q^{n/2}}{n}\right)\right) (q^{x-3n} + O(1)) \right\}$$

$$\leq \sum_{n>y} \left\{ \left(\frac{q^n}{n} + O\left(\frac{q^{n/2}}{n}\right)\right) q^{x-3n} \right\}$$

$$\leq \sum_{n>y} \left\{ \frac{q^{x-2n}}{n} + O\left(\frac{q^{x-\frac{5}{2}n}}{n}\right) \right\}$$

$$= o(q^x).$$

In the second case, by Lemma 30, the number of possible m is

$$\sum_{n>y} \sum_{\substack{l \equiv 1(p^2) \\ \deg(l) \le x}} \#\{m : l | m, \deg(m) = x, \deg(p) = n\}$$

$$\ll \sum_{n>y} \frac{q^n}{n} \left(\sum_{\substack{l \equiv 1(p^2) \\ \deg(l) \le x}} \frac{q^x}{q^{\deg(l)}} \right) = \sum_{n>y} \frac{q^n}{n} \cdot \frac{q^x \log x}{\varphi(p^2)}$$

$$= \sum_{n>y} \frac{q^x \log x}{nq^n} \ll q^x \log x \cdot \frac{1}{yq^y}$$

$$= o(q^x).$$

For the third case, the number of possible m, is at most

$$\sum_{n>y} \frac{q^n}{n} \left(\sum_{\substack{\deg(l_1) \le \deg(l_2) \le x \\ l_1 \equiv l_2 \equiv 1(p)}} \frac{q^x}{q^{\deg(l_1)} q^{\deg(l_2)}} \right)$$

$$\ll q^x \sum_{n>y} \frac{q^n}{n} \left(\sum_{\substack{l \equiv 1(p) \\ \deg(l) \le x}} \frac{1}{q^{\deg(l)}} \right)^2 \text{ (from Lemma 40)}$$

$$= q^x \sum_{n>y} \frac{q^n}{n} \cdot \frac{(\log x)^2}{(q^{\deg(p)})^2}$$

$$= q^x \sum_{n>y} \frac{(\log x)^2}{n} \cdot \frac{1}{q^n} \le q^x (\log x)^2 \frac{1}{yq^y}$$

$$= o(q^x).$$

So the claim is proved, and as an instant corollary, we have

$$\sum_{\deg(m)=x} \left(\Omega_y^+(\varphi(m)) - \omega_y^+(\varphi(m)) \right)^2 \ll q^x \log^2 x, \text{ with } \Omega(\varphi(m)) \le \Omega(m) < \log x.$$

Thus we have

$$\sum_{\deg(m)=x} (\Omega(\varphi(m)) - \omega(\varphi(m)))^{2}$$

$$\ll \sum_{\deg(m)=x} \left(\left(\Omega_{y}^{+}(\varphi(m)) - \omega_{y}^{+}(\varphi(m)) \right)^{2} + \left(\Omega_{y}(\varphi(m)) \right)^{2} + \left(\omega_{y}(\varphi(m)) \right)^{2} \right)$$

$$\ll q^{x} \log^{2} x + 2q^{x} \log^{2} x \log^{2} y)$$

$$= o(q^{x} \log^{2+\varepsilon} x).$$

Lemma 46

$$\sum_{\deg(m)=x} \left(\omega(\varphi(m)) - \frac{1}{2} \log^2 x \right)^2 \ll q^x \log^3 x$$

if and only if

$$\sum_{\deg(m)=x} \left(\Omega(\varphi(m)) - \frac{1}{2} \log^2 x \right)^2 \ll q^x \log^3 x.$$

Proof: This is true since

$$\sum_{\deg(m)=x} \left(\Omega(\varphi(m)) - \frac{1}{2}\log^2 x\right)^2 - \sum_{\deg(m)=x} \left(\omega(\varphi(m)) - \frac{1}{2}\log^2 x\right)^2$$

$$= \sum_{\deg(m)=x} \left(\Omega(\varphi(m)) - \omega(\varphi(m))\right) \left(\Omega(\varphi(m)) + \omega(\varphi(m)) - \log^2 x\right)$$

$$= \sum_{\deg(m)=x} \left(\Omega(\varphi(m)) - \omega(\varphi(m))\right)^2 + 2\sum_{\deg(m)=x} \left(\Omega(\varphi(m)) - \omega(\varphi(m))\right) \left(\omega(\varphi(m)) - \frac{1}{2}\log^2 x\right)$$

$$\ll q^x \log^3 x + 2\sqrt{\sum_{\deg(m)=x} \left(\Omega(\varphi(m)) - \omega(\varphi(m))\right)^2 \sum_{\deg(m)=x} \left(\omega(\varphi(m)) - \frac{1}{2}\log^2 x\right)^2}$$

$$\ll q^x \log^3 x + 2q^x \log^{5+\varepsilon/2} x \text{ (for any } \varepsilon > 0, \text{ from previous Lemma)}$$

$$\ll q^x \log^3 x.$$

Lemma 47

$$\lim_{x \to \infty} \frac{1}{q^x} \# \left\{ m : \deg(m) = x, m \text{ satisfies } \frac{\omega(\varphi(m)) - \frac{1}{2}\log^2 x}{\sqrt{\frac{1}{3}\log^3 x}} \le t \right\} = G(t)$$

if and only if

$$\lim_{x \to \infty} \frac{1}{q^x} \# \left\{ m : \deg(m) = x, m \text{ satisfies } \frac{\Omega(\varphi(m)) - \frac{1}{2} \log^2 x}{\sqrt{\frac{1}{3} \log^3 x}} \le t \right\} = G(t).$$

Proof: Since

$$\frac{\omega(\varphi(m)) - \frac{1}{2}\log^2 x}{\sqrt{\frac{1}{3}\log^3 x}} = \frac{\Omega(\varphi(m)) - \frac{1}{2}\log^2 x}{\sqrt{\frac{1}{3}\log^3 x}} - \frac{\Omega(\varphi(m)) - \omega(\varphi(m))}{\sqrt{\frac{1}{3}\log^3 x}},$$

then by Lemma 3 we need only to prove that for any q > 0,

$$\lim_{x \to \infty} \frac{1}{q^x} \# \left\{ m : \deg(m) = x, \left| \frac{\Omega(\varphi(m)) - \omega(\varphi(m))}{\sqrt{\frac{1}{3} \log^3 x}} \right| > \varepsilon \right\} = 0.$$

It is obvious since we have

$$\sum_{\deg(m)=x} (\Omega(\varphi(m)) - \omega(\varphi(m)))^2 \ll q^x \log^2 x, \text{ from Lemma 45.}$$

4.5 Proof

In this section, we will finish the proof of the Theorem 2:

Theorem 2 (Normal Distribution of $\omega(\varphi(m))$) Let m be a polynomial in $\mathbb{F}_q[T]$ over finite field \mathbb{F}_q , we have

$$\lim_{x \to \infty} \frac{1}{q^x} \# \left\{ m : \deg(m) = x, \frac{\omega(\varphi(m)) - \frac{1}{2}(\log x)^2}{\frac{1}{\sqrt{3}}(\log x)^{\frac{2}{3}}} \le t \right\} = G(t).$$

Now we can apply Zhang's theorem to get our goal. Recall that in order to apply this theorem, we need to check for any $\varepsilon > 0$,

$$\lim_{x \to \infty} \frac{1}{B(x)^2} \sum_{\substack{q^{\deg(p)} \le x \\ |f(p)| > \varepsilon \overline{B}(x)}} \frac{f^2(p)}{q^{\deg(p)}} = 0.$$

To apply this theorem, we need to let $f(p) = \Omega(\varphi(m))$. But from lemma 41, we know that we can change $\Omega(\varphi(m))$ to $g(m) = \sum_{p|m} \Omega(p-1)$. We already proved that

$$A(x) = \sum_{\deg(p) \le x} \sum_{p \mid m} \frac{\Omega(p-1)}{q^{\deg(p)}} = \frac{1}{2} \log^2 x + O(\log x),$$

$$B(x) = \left(\sum_{\deg(p) \le x} \sum_{p|m} \frac{\Omega^2(p-1)}{q^{\deg(p)}}\right)^{\frac{1}{2}} = \frac{1}{\sqrt{3}} \log^{\frac{3}{2}} x + O(\log x).$$

So now we let

$$\alpha(p) = \begin{cases} 1 & \text{if } \Omega(p-1) \ge \varepsilon B(x), \\ 0 & \text{otherwise,} \end{cases}$$

and then the requirement becomes

$$\lim_{x \to \infty} \frac{1}{B(x)^2} \sum_{\substack{\deg p \le x \\ |q(p)| > \varepsilon B(x)}} \frac{g^2(p)}{q^{\deg(p)}} = \lim_{x \to \infty} \frac{1}{B(x)^2} \sum_{\deg(p) \le x} \alpha(p) \frac{\Omega^2(p-1)}{q^{\deg(p)}} = 0.$$

Since

$$\sum_{\deg(p) \le x} \alpha(p) \frac{\Omega^2(p-1)}{q^{\deg(p)}} \le \left(\sum_{\deg(p) \le x} \frac{\alpha^2(p)}{q^{\deg(p)}}\right)^{\frac{1}{2}} \left(\sum_{\deg(p) \le x} \frac{\Omega^4(p-1)}{q^{\deg(p)}}\right)^{\frac{1}{2}},$$

we can verify as follow:

From Lemma 39, we have

$$\sum_{\deg(p)=x} (\Omega(p-1) - \log x)^2 \ll q^x \log x.$$

Then we can get

$$\sum_{\deg(p)=x} \alpha(p) = \# \left\{ \deg(p) = x : p \text{ satisfies } \Omega(p-1) > \varepsilon B(x) \right\} \ll \frac{q^x}{\log^2 x}.$$

Since

$$\sum_{\deg(p)=x} \alpha(p) = \sum_{\deg(p)=x} \alpha(p)^2,$$

we have

$$\sum_{\deg(p) \le x} \frac{\alpha^2(p)}{q^{\deg(p)}} \ll \left(\sum_{\deg(p) \le x} \alpha^2(p)\right) \frac{1}{q^x} + \int_1^x \left(\sum_{\deg(p) \le t} \alpha^2(p)\right) \frac{\log q}{q^t} dt$$

$$\ll \frac{1}{\log^2 x} + \int_1^x \frac{q^t \log t}{q^t t \log^2 t} dt$$

$$= O(1).$$

Form previous lemmas, we have

$$\sum_{\deg(m)=x} \omega(m-1) = \frac{q^x}{x} \log x + O\left(\frac{q^x}{x}\right),\,$$

and

$$\sum_{\deg m = x} \omega^2(m-1) = \frac{q^x}{x} (\log x)^2 + O\left(\frac{q^x \log x}{x}\right).$$

So

$$\sum_{\deg(m)=x} \omega^{4}(m-1) = \sum_{\deg(m)=x} \left(\sum_{l|m-1} 1\right)^{4} = \sum_{\deg(m)=x} \sum_{l_{1},l_{2},l_{3},l_{4}|m-1} 1$$

$$= \sum_{\substack{l_{1},l_{2},l_{3},l_{4}\\\deg(l_{1})\leq x,\ i=1,2,3,4\\i=1,2,3,4\ \deg(m)=x}} \sum_{\substack{l_{1},l_{2},l_{3}\\\deg(l_{1})\leq x\\\deg(l_{2})\leq x}} 1 + \sum_{\substack{m\equiv1(l_{1}l_{2})\\\deg(l_{1})\leq x\\\deg(l_{2})\leq x}} \sum_{\substack{m\equiv1(l_{1}l_{2})\\\deg(l_{1})\leq x\\\deg(l_{1})\leq x}} 1 + \sum_{\substack{l_{1},l_{2},l_{3}\\\deg(l_{1})\leq x\\i=1,2,3}} \sum_{\substack{m\equiv1(l_{1}l_{2}l_{3})\\\deg(l_{1})\leq x\\i=1,2,3}} 1$$

$$+ \sum_{\substack{l_{1},l_{2},l_{3},l_{4}\\l_{1}\neq l_{2}\neq l_{3}\neq l_{4}\ \deg(m)=x}} 1$$

$$= \sum_{\substack{l_{1},l_{2},l_{3},l_{4}\\l_{1}\neq l_{2}\neq l_{3}\neq l_{4}\ \deg(m)=x}} \frac{1}{\deg(l_{1})\leq x} \sum_{\substack{m\equiv1(l_{1}l_{2})\\\deg(l_{1})\leq x\\d=(m)=x}} 1$$

$$\ll \sum_{\substack{m\leq x\\m\leq x}} \frac{q^{m}}{m} \sum_{n\leq x} \frac{q^{n}}{n} \sum_{k\leq x} \frac{q^{d}}{k} \sum_{d\leq x} \frac{q^{d}}{d} \cdot \frac{q^{x}}{q^{m}q^{n}q^{k}q^{d}}$$

$$= \frac{q^{x}}{x} \sum_{\substack{m\leq x\\m\leq x}} \frac{1}{m} \sum_{n\leq x} \frac{1}{n} \sum_{k\leq x} \frac{1}{k} \sum_{d\leq x} \frac{1}{d}$$

$$\ll \frac{q^{x}}{x} (\log x)^{4}.$$

Then by partial summation, we get

$$\sum_{\deg(p) \le x} \frac{\Omega^4(p-1)}{q^{\deg(p)}} \ll \sum_{n \le x} \frac{1}{q^n} \frac{q^x}{x} \log^4 n \ll \log^5 x.$$

Combine above, we have

$$\sum_{\substack{\deg p \le x \\ |q(p)| > \varepsilon B(x)}} \frac{g^2(p)}{q^{\deg(p)}} \ll \log^{5/2} x = o\left(B^2(x)\right).$$

Then the requirement from Zhang's theorem is satisfied, and we have

$$\lim_{x \to \infty} \frac{1}{q^x} \# \left\{ m : \deg(m) = x, m \text{ satisfies } \frac{g(m) - \frac{1}{2} \log^2 x}{\sqrt{\frac{1}{3} \log^3 x}} \le t \right\} = G(t),$$

which completes the proof of Theorem 6.

Bibliography

- [1] P.D.T.A. Elliott, Probabilistic number theory, 1980.
- [2] P. Erdös and C. Pomerance, On the normal number of prime factors of $\varphi(n)$
- [3] P. Erdös & M. Kac, On the normal number of prime factors of $\varphi(n)$, Rocky Mountain J. Math. 15(1985), 343-352.
- [4] H. Halberstam, On the distribution of additive number-theoretic functions, J. London Math. Soc, 30 (1955),43-53.
- [5] H. Halberstam, On the distribution of additive number-theoretic functions, II, J. London Math. Soc, 31 (1956), 1-14.
- [6] P.Erdös and A. Sárközy, On the number of prime factors of an integer, Acta Sci. Math. (Szeged)42(1980), 237-246.
- [7] P. Turán, On a theorem of Hardy and Ramanujan, J. London Math. Soc. 9(1934), 274-276
- [8] P. Billingsley, On the central limit theorem for the prime divisor functions, Amer.Math. Monthly 76(1969), 132139.
- [9] W. B. Zhang, Probabilistic number theory in additive arithmetic semigroup, In: Analytic Number Theory(B.C. Berndt et al. eds.) Prof. Math., Birkhäuser(1996), 839-884.
- [10] C. N. Hsu, A large sieve inequality for rational function fields, J. Number Theory 58 (1996), 267-287.
- [11] E. C. Titchmarsh, A divisor problem, Rend. Circ. Mat. Palermo 54 (1930), 414-429.
- [12] J. Kubilius, On an inequality for additive arithmetic functions, Acta. Arith. 27(1975), 371-383.