
Efficient Kernel Methods for

Statistical Detection

by

Wanhua Su

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Statistics

Waterloo, Ontario, Canada, 2008

c© Wanhua Su, 2008

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners. I understand that my

thesis may be made electronically available to the public.

ii

Abstract

This research is motivated by a drug discovery problem – the AIDS anti-viral database from

the National Cancer Institute. The objective of the study is to develop effective statistical

methods to model the relationship between the chemical structure of a compound and

its activity against the HIV-1 virus. And as a result, the structure-activity model can be

used to predict the activity of new compounds and thus helps identify those active chemical

compounds that can be used as drug candidates. Since active compounds are generally rare

in a compound library, we recognize the drug discovery problem as an application of the so-

called statistical detection problem. In a typical statistical detection problem, we have data

{yi,xi}n
i=1, where xi is the predictor vector of the ith observation and yi ∈ {0, 1} is its class

label. The objective of a statistical detection problem is to identify class-1 observations,

which are extremely rare. Besides drug discovery problem, other applications of statistical

detection include direct marketing and fraud detection.

We propose a computationally efficient detection method called LAGO, which stands

for ”locally adjusted GO estimator”. The original idea is inspired by an ancient game

known today as ”GO”. The construction of LAGO consists of two steps. In the first step,

we estimate the density of class 1 with an adaptive bandwidth kernel density estimator.

The kernel functions are located at and only at the class-1 observations. The bandwidth

of the kernel function centered at a certain class-1 observation is calculated as the average

distance between this class-1 observation and itsK-nearest class-0 neighbors. In the second

step, we adjust the density estimated in the first step locally according to the density of

class 0. It can be shown that the amount of adjustment in the second step is approximately

inversely proportional to the bandwidth calculated in the first step. Application to the NCI

data demonstrates that LAGO is superior to methods such as K nearest neighbors and

support vector machines.

One drawback of the existing LAGO is that it only provides a point estimate of a

test point’s possibility of being class 1, ignoring the uncertainty of the model. In the

iii

second part of this thesis, we present a Bayesian framework for LAGO, referred to as

BLAGO. This Bayesian approach enables quantification of uncertainty. Non-informative

priors are adopted. The posterior distribution is calculated over a grid of (K,α) pairs by

integrating out β0, β1 using the Laplace approximation, where K and α are two parameters

to construct the LAGO score. The parameters β0, β1 are the coefficients of the logistic

transformation that converts the LAGO score to the probability scale. BLAGO provides

proper probabilistic predictions that have support on (0,1) and captures uncertainty of

the predictions as well. By avoiding Markov chain Monte Carlo algorithms and using the

Laplace approximation, BLAGO is computationally very efficient. Without the need of

cross-validation, BLAGO is even more computationally efficient than LAGO.

iv

Acknowledgements

You Raise Me Up

When I am down and, oh my soul, so weary;

When troubles come and my heart burdened be;

Then, I am still and wait here in the silence, Until you come and sit awhile with me.

You raise me up, so I can stand on mountains;

You raise me up, to walk on stormy seas;

I am strong, when I am on your shoulders;

You raise me up... To more than I can be.

There is no life, no life without its hunger;

Each restless heart beats so imperfectly;

But then you come, and I am filled with wonder;

Sometimes I think, I glimpse eternity.

By Josh Groban

To my supervisors, Dr. Mu Zhu and Dr. Hugh Chipman, without whose insightful

guidance, consistent encouragement and endless support, I would not have been able to

finish this long journey. They are such wonderful mentors that I really enjoy working with

them.

My special gratitude goes to Dr. Jerry F. Lawless, Dr. Ali Ghodsi, Dr. Radu Craiu, Dr.

Kumaraswamy Ponnambalam, and Dr. Mary Thompson for being my thesis (or proposal)

committee members. I also want to thank Dr. Stanley Young and Dr. William Welch for

introducing us to the drug discovery problem.

I would like to thank all the professors, staffs, my fellow graduate students and all

my friends in the Department of Statistics and Actuarial Science, University of Waterloo

v

for their helps in one way or another. I appreciate the inspiring discussion with Fengfei,

Peng Zhang, Ker-ai, Yan Yuan, Sunny, Sofia and Longyang. I also thank Hui Shen, who

”brought” me to the University of Waterloo; Shun-Fu, Situ, and Jane Shen, who provide

help whenever I need and make my life in Canada much easier and more colorful.

All the computation is done on a cluster of computers in the Canada research center

in mathematical modeling at the Department of Mathematics and Statistics, Acadia Uni-

versity. I wish to thank Mr. Duane Currie for teaching me how to run parallel jobs on the

cluster, and other faculty members, staffs in the department for providing me a supportive

and stimulating environment during my visits at Acadia.

For the first time, I really want to formally express my sincere and serious gratitude to

my mom and my sister, who have always been my strongest support. Without their love,

encouragement and understanding, I would not have been what I am.

Last, I would like to dedicate this thesis to my father, my grand-aunt and Dr. Mirriam

Ross. This is not a perfect moment in my life because of the loss of them.

vi

Contents

1 Introduction 1

2 Drug Discovery and Data Mining 5

2.1 Drug Discovery and Development . 5

2.2 The Role of Data Mining in Drug Discovery 8

2.3 Data Sets . 10

2.3.1 The NCI AIDS Anti-viral Database 10

2.3.2 The Mysim Data–A Simulated Data Set 12

2.4 Conclusion . 14

3 Statistical Detection Problems 15

3.1 Introduction . 15

3.2 Some Common Methods . 16

3.2.1 K-Nearest Neighbors (KNN) . 16

3.2.2 Support Vector Machines (SVM) 18

3.2.3 Asymmetric Support Vector Machines (ASVM) 24

3.2.4 Tree-Based Models . 25

3.3 Model Assessment . 26

3.3.1 Misclassification Rate . 27

3.3.2 Hit Curve . 28

vii

3.3.3 Average Precision . 31

3.3.4 ROC Curve . 32

3.3.5 Relation Between ROC and Hit Curve 34

3.3.6 Comparison of AP and AUC ROC 36

3.4 Conclusion . 38

4 LAGO: A Fast Kernel Method for Statistical Detection 41

4.1 LAGO: Locally Adjusted GO Estimator 42

4.1.1 Step 1: Estimating p1 . 43

4.1.2 Step 2: Locally Adjusting p1 . 44

4.1.3 Asymptotic Properties of LAGO . 46

4.1.4 Generalization to Multivariate Case 52

4.1.5 An Illustrative Example . 53

4.2 Connection to Existing Models . 54

4.2.1 RBF Networks . 55

4.2.2 LAGO as an RBF Network . 55

4.2.3 SVM as an RBF Network . 57

4.3 Application to the NCI AIDS Data . 59

4.3.1 Results . 61

4.3.2 Comparison to SVM . 66

4.3.3 Computational Complexity . 67

4.4 Application to Simulated Data . 70

4.4.1 The Mysim Data . 70

4.4.2 The Mysim-LAGO Data . 72

4.5 Conclusion . 76

5 Bayesian LAGO 79

5.1 Motivation . 79

viii

5.2 Literature Review . 81

5.2.1 Transforming Ranking Scores to Probabilities 82

5.2.2 Casting Statistical Methods in Bayesian Framework 83

5.2.3 Pseudo-likelihood . 85

5.2.4 Techniques for Approximate Bayesian Inference 87

5.3 Bayesian LAGO . 90

5.3.1 Likelihood Function . 90

5.3.2 Prior Distributions . 91

5.3.3 Computational Details . 92

5.4 A Frequentist Approach . 97

5.5 Application to the NCI Data . 99

5.5.1 Performance Comparison in Average Precision 99

5.5.2 Performance Comparison in Deviance 103

5.6 Application to the Mysim Data . 106

5.6.1 Performance Comparison in Average Precision 107

5.6.2 BLAGO Inference . 109

5.7 Application to the Mysim-LAGO Data . 111

5.7.1 Performance comparison in Average Precision 112

5.7.2 BLAGO Inference . 114

5.8 Discussion . 122

5.8.1 Bootstrap Confidence Interval . 123

5.8.2 Using Lower Confidence Bound for Ranking 126

5.8.3 MCMC Methods . 130

5.9 Conclusion . 133

6 Conclusions and Future Research 135

6.1 Summary of the Thesis . 135

6.2 Future Research . 137

ix

6.2.1 Asymmetric LAGO . 137

6.2.2 BLAGO-II . 143

6.2.3 Generalize to Multi-class . 147

6.2.4 Categorical Predictors . 149

Appendix 150

Bibliography 152

x

List of Tables

3.1 Misclassification table of classifier M for the NCI data. 28

3.2 Illustration of AP calculation: AP1 = 1
3(1/1 + 2/2 + 3/4) ≈ 0.9167; AP2 =

1
3(1/1 + 2/4 + 3/5) = 0.7. 32

4.1 Training/test split of the NCI data. 59

4.2 Randomly divide the training data into five folds. 60

4.3 Tuning parameters selected for different models using cross-validation 62

4.4 Test-set average precisions of different methods for the NCI data. 63

4.5 Estimated contrasts for the NCI data. 65

4.6 ANOVA analysis of differences among methods for the NCI data. 65

4.7 Numbers of support vectors from classes C0 and C1. 66

4.8 The theoretical computational complexities of KNN, LAGO-G, SVM in training

and predicting. N : the total number of observations in the training set; n0:

number of class-0 training observations; n1: number of class-1 training obser-

vations; nSV : number of support vectors; q: the size of the working set in the

decomposition method. 68

4.9 The computational times (in second) of KNN, LAGO-G, SVM in model fitting

and testing together based on a series of nested subsets of the first split of the

NCI data. 69

4.10 Estimated contrasts for the Mysim data. 71

xi

4.11 ANOVA analysis of differences among methods for the Mysim data. 72

4.12 Estimated contrasts for the Mysim-LAGO data. 74

4.13 ANOVA analysis of differences among methods for the Mysim-LAGO data. . . . 75

5.1 The test-set average precisions on the four random splits of the NCI data using

different methods. 100

5.2 Estimated contrasts for the NCI data. 102

5.3 ANOVA analysis of differences among methods for the NCI data. 102

5.4 Tuning parameters selected for frequentist-LAGO using cross-validated deviance.

The 95% posterior credibility intervals of K and α given by BLAGO. 106

5.5 ANOVA analysis of differences among methods for the Mysim data. 108

5.6 Coverage rate (in %) of the Mysim data over 100 experiments. Points #8 to 10

are in region A and points #11 to 13 are in region B. 109

5.7 Estimated contrasts for the Mysim-LAGO data. 113

5.8 ANOVA analysis of differences among methods for the Mysim-LAGO data. . . . 114

5.9 Coverage, bias, standard deviation, mean square error, average length of the in-

tervals for the 13 representative points calculated by BLAGO, frequentist-LAGO,

and BKNN over 100 experiments. The sample sizes of the training data are

n = 400 and n = 4000. 117

5.10 Coverage rate, average length of the intervals for each location calculated by the

bootstrap method, frequentist-LAGO, BLAGO and BKNN over 100 experiments. 124

5.11 Comparing the test-set average precisions of the NCI data when the posterior

mean and the 2.5th posterior percentile (lowerbound) are used as the ranking

scores. 127

6.1 Comparison of LAGO and ALAGO on a toy example. The optimal results are

obtained by Bayes’ rule. 143

xii

6.2 Top 5 optimal choices of the three tuning parameters—K,α,decay; ”CV AP”

refers to the cross-validated average precision and ”Test AP” refers to the average

precision on the test set. 146

xiii

List of Figures

2.1 Data collection of the NCI database. A compound’s activity is measured by HTS,

and explanatory variables are produced by computational chemistry. Figure is

modified based on an illustration in Welch (2002). 9

2.2 Generating mechanism of the Mysim data. 13

3.1 Simulated example illustrating KNN with K = 5. Here ’∗’ denotes the class-0

observations, ’+’ denotes class-1 observations in the training set and ’?’ denotes

the test data tp1 and tp2. 17

3.2 Two hyperplances of the nine simulated data points. The dashed lines are the

separating hyperplanes (or decision boundaries). The hyperplane with margin1 is

better, since margin1 > margin2. Here, margini = 2γi, i = 1, 2. 20

3.3 The slack variables for eleven simulated data points. Three of them are positive

(ξ1, ξ2, and ξ3), and the other eight are zero. The dashed line is the hyperplane

with a margin of 2γ. 21

3.4 An example of mapping where data can be separated by a linear function in the

feature space but can not in the input space. 22

3.5 Illustration of several typical hit curves. The dash-dotted curve is an ideal curve.

The solid curve is that of random selection. The dotted curve is that of a typical

statistical detection method. 29

xiv

3.6 Hit curves for two different detection methods. Here, hs(500) > hd(500) whereas

Hs(500) < Hd(500). 30

3.7 Illustration of several typical ROC curves. 33

3.8 Left: A CAP curve where aR is the shaded area and aP is marked by the solid

line in bold; Right: An ROC curve and AUC ROC is marked by the solid line in

bold. 35

3.9 Average precision and area under the ROC curve of the permutation study. Stars

indicate those permutations starting with 1. 37

4.1 The ancient game of Go is a game in which each player tries to claim as many terri-

tories as possible on the board. Image taken from http://go.arad.ro/Introducere.html. 45

4.2 Region yields non-zero integrand for the integration in equation (4.11). 48

4.3 A comparison of the average LAGO scores over 10,000 experiments with the the

true density ratios (the line) for each test point. The LAGO scores are multiplied

by 2n0, the scaling factor derived in the previous section. Here, n0 = 960, and

n1 = 240. 51

4.4 The three kernel functions used for LAGO. Left: Gaussian, K(u) = 1√
2π

exp
(

−u2

2

)

.

Middle: Triangular, K(u) = 1−|u|
2 , |u| ≤ 1. Right: Uniform, K(u) = 1

2 , |u| ≤ 1. . . 53

4.5 The LAGO score (dashed line) contributed by two class-1 observations given K = 2. 54

4.6 Illustration of the ripple effects. Left: The density functions of p0 and p1. Right:

The density ratio f = p1

p0
. 56

4.7 Contours of average precision on the four training sets of the NCI data for different

values of α, β, and fixed K = 5. 58

4.8 The average precisions of different methods evaluated on the test data. 63

4.9 Hit curves of different methods for the four random splits of the NCI data. Upper

left: The 1st split; Upper right: The 2nd split; Lower left: The 3rd split; Lower

right: The 4th split. 64

xv

4.10 The test-set average precisions of different methods evaluated on 100 experiments

of the Mysim data. 71

4.11 Probability surface of the Mysim-LAGO data. Dots represent the centers of the

fourteen kernel functions. The bandwidth of all the kernels is r = 0.25, and

(β0, β1) = (−2.8, 45). 73

4.12 The test-set average precisions of different methods evaluated on 100 Mysim-

LAGO data sets. 75

5.1 The test-set average precisions of different methods evaluated on the four random

splits of the NCI data. 100

5.2 Hit curves of different methods for four random splits of the NCI data under

criterion of average precision. Upper left: The 1st split; Upper right: The 2nd

split; Lower left: The 3rd split; Lower right: The 4th split. 101

5.3 Contour plots of log-posterior of the (K,α) pairs for the NCI data. Upper left:

The 1st split; Upper right: The 2nd split; Lower left: The 3rd split; Lower right:

The 4th split. 104

5.4 Contour plots of deviance of (K,α) by cross-validation on the training sets of

the NCI data. Diamonds indicate the optimal choice of the parameters by cross-

validation. Upper left: The 1st split; Upper right: The 2nd split; Lower left: The

3rd split; Lower right: The 4th split. 105

5.5 Data generating mechanism of the Mysim data and thirteen selected points for

coverage analysis. 107

5.6 The test-set average precisions of different methods evaluated on 100 simulated

Mysim data sets. 108

5.7 Boxplots of the 100 experimental posterior means given by BLAGO for each

representative point. Filled dots represent the true probabilities. 110

5.8 Predictions (filled dots) of the 13 representative points and their 95% posterior

credibility intervals. Diamonds are the true probabilities. 111

xvi

5.9 Probability surface of the Mysim-LAGO data given (β0, β1) = (−2.8, 45) and the

locations of 13 representative points. 112

5.10 The test-set average precisions of different methods evaluated on 100 simulated

Mysim-LAGO data that are generated from LAGO. 113

5.11 Boxplots of predictions of 100 experiments for the 13 representative points of the

Mysim-LAGO data. Filled dots represent the true probabilities. Upper: BLAGO;

Middle: frequentist-LAGO; Lower: Bayesian KNN. Left: n = 400, right: n = 4000. 115

5.12 Comparison of the average length of the 100 credibility intervals and four times the

standard deviation of the 100 predicted probabilities given by BLAGO (upper),

frequentist-LAGO (middle) and BKNN (lower) under different sample sizes n =

400 (left) and n = 4000 (right). All comparisons use the Mysim-LAGO data. . . 119

5.13 Bias of the predicted probabilities obtained by BLAGO (solid line), frequentist-

LAGO (slashed line) and BKNN (dotted line) under sample size n = 400 (left)

and n = 4000 (right). Based on the Mysim-LAGO data. 120

5.14 Predictions (filled dots) of the 13 representative points and their 95% posterior

credibility intervals. Diamonds are the true probabilities. Left: n = 400; right:

n = 4000. 122

5.15 Average lengths of 100 intervals versus 4 times the standard deviations of the

corresponding predictions for the 13 representative locations given by BLAGO

and bootstrap method. Both the two reference lines go through the origin, one

with slope 1 and the other with slope 1/2. 126

5.16 Comparing the lower bounds of the credibility intervals (lowerbound, the y-axis)

and the posterior mean (prediction, the x-axis) for the four random splits of the

NCI data. Upper left: the 1st split; Upper right: the 2nd split; Lower left: the

3rd split; Lower right: the 4th split. 128

5.17 The test-set average precisions of lower bound (lowerbound) and posterior mean

(prediction) based on 100 experiments of the Mysim data. 129

xvii

5.18 The test-set average precisions of the lower bound (lowerbound) and the posterior

mean (prediction) based on 100 experiments of the Mysim-LAGO data. Left:

when sample size n = 400; Right: when n = 4000. 130

6.1 Left: Kernel function used in LAGO with K = 2. Right: Kernel function used in

ALAGO with Kl = Kr = 1. Those two points, xi − 2 and xi + 1 indicate the two

nearest class-0 neighbors of xi. 140

6.2 Left: LAGO score versus the true density ratio. Right: ALAGO score versus the

true density ratio . 142

6.3 Left: LAGO prediction versus the true probability. Right: ALAGO prediction

versus the true probability . 142

6.4 Contour plots of test-set average precision for each random split of the NCI data

given the optimal value of decay. 147

xviii

Chapter 1

Introduction

There are a lot of applications for detecting useful items from a huge database, in which

all items can be classified as either object items labeled by 1 or background items labeled

by 0. This is a typical binary classification problem. Any classification method, such as

K-nearest neighbors (KNN), classification tree, support vector machines (SVM), is able

to assign class labels to the data and, hence, identify those class-1 observations. In this

thesis, I focus on the cases where the class-1 observations are extremely rare and define

those applications as the statistical detection problems. Normally, the detected items will

be passed on to the next stages for further investigations, which are relatively expensive.

As a result, it might not be possible to test all the potential items. The ideal solution is

to rank the items in descending order by their possibility of being class 1 and as a result

those more promising items can be picked earlier.

Real examples of the detection problem include drug discovery, direct marketing, credit

card fraud detection, etc. The objective of drug discovery is to select those lead chemical

compounds (from a huge compound library) that can be used as drug agents to fight a

certain disease; the goal of direct marketing is to identify targeted potential customers

from a large population; and the objective of credit card fraud detection is to catch those

fraudulent transactions from numerous transactions.

1

2 Efficient Kernel Methods for Statistical Detection

A novel method, LAGO, which stands for ”locally adjusted GO estimator”, has been

proposed to handle the detection problem. The method was inspired by the game called

”GO”. LAGO is constructed in terms of basis functions, with each basis being a kernel

function centered at a class-1 observation and whose bandwidth is determined by the

average distance from this class-1 observation to its K-nearest class-0 neighbors. We have

applied LAGO to the AIDS anti-viral data set, which is a real drug discovery data set

from the National Cancer Institute (NCI). The results show that LAGO outperforms some

powerful methods such as K-nearest neighbor and support vector machines. This work has

already been published in Technometrics (Zhu, Su and Chipman, 2006).

Even though the value of the LAGO estimate is within (0, 1), it is not a probability.

Moreover, it is only a point estimate and no uncertainty of the estimate is provided. In some

applications, however, a correct ranking of the observations is not enough; what is needed

in addition is an accurately calibrated estimate of the observations’ true probabilities of

being class 1; see Zadrozny and Elkan (2001a, b) for examples. In this thesis, we propose a

Bayesian framework for LAGO (BLAGO) that not only provides a prediction of an item’s

probability of being class 1 but captures the uncertainty of this prediction as well.

The overall structure of the thesis is as follows. Chapter 2 describes the motivating

drug discovery problem and how data mining techniques can be applied in drug discovery.

A detailed description of the NCI AIDS anti-viral database, the main data set across the

thesis, is also given in this chapter. Chapter 3 systematically describes the statistical

detection problem – its set-up, properties and applications. Brief introductions of some

common methods such as KNN, trees and SVM are given as well. I also discuss different

performance metrics for statistical detection. In Chapter 4, our LAGO method is described

in great detail, followed by performance comparisons of LAGO to KNN and SVM with

application to the NCI AIDS data. We also compare the performance of LAGO with

KNN and SVM on two simulated data sets. Chapter 5 discusses the motivation of casting

LAGO into a Bayesian framework and shows our approach. Performance of BLAGO is

Chapter1: Introduction 3

compared to LAGO and other methods on the NCI data and the two simulated data sets.

Conclusions and suggestions for future research are given in Chapter 6.

Chapter 2

Drug Discovery and Data Mining

This chapter briefly describes the cycle of how a new drug is discovered and developed

and how data mining techniques help in the early stage of drug discovery. A detailed

introduction of the AIDS anti-viral database from NCI is given in this chapter as well.

2.1 Drug Discovery and Development

Drug discovery and development of new pharmaceutical products is a long and challenging

process that involves various scientific and medical experts. Drug discovery and develop-

ment can be broken into four main stages: drug discovery, preclinical test, clinical trial,

and post-approval study.

New drugs are discovered in the laboratory by chemists, biologists, scientists and phar-

macologists. There are two main tasks in drug discovery. The first one is to identify

targets – those cellular and/or genetic factors that are associated with a specific disease.

The second task is to search for chemical and biological substances that interact with the

targets and hence are helpful in treating a particular disease. The entire drug discovery

process includes the following activities:

• Target identification. The disease mechanism defines the possible cause(s) of a par-

5

6 Efficient Kernel Methods for Statistical Detection

ticular disorder, as well as the path or phenotype of the disease. Targets might be of

various forms due to different disease mechanisms. For example, they can be some

kind of bacteria, fungi, virus or they can be disease genes. Understanding the disease

mechanism and identifying the target directs research and helps formulate a possible

treatment to slow or reverse the disease process.

• Target validation. Tests are conducted to confirm that a target is critically involved

in a disease process and that modulation of the target is likely to have a therapeutic

effect.

• Lead identification. Lead/active compounds are those substances that have various

interactions with the drug targets and hence are helpful in treating a certain disease.

A compound’s activity against a particular target can be obtained by either in-vitro

(cell-based) or in-vivo (animal model) assays.

• Lead optimization. Studies either in-vivo or in-vitro are conducted to compare vari-

ous lead compounds in their safety, effectiveness, and how they metabolize and affect

the body. The most safe and effective lead compounds are selected for further inves-

tigation.

In the preclinical test stage, those lead compounds identified in drug discovery must

be tested extensively in living organisms (in-vivo) and in cells in the test tube (in-vitro)

to ensure their safety for humans. The results of preclinical tests are used by experts to

determine how to best formulate the drug for its intended clinical effect. These results

include the amount of drug required to effectively treat the disease (potency), extent to

which the drug interacts with the target only rather than other healthy cells (selectivity),

presence of any harmful side effects (toxicity), rate at which the drug works, and how long

it stays effective (metabolism).

Successful drugs in the preclinical testing are passed on to clinical trials – testing on

humans. Clinical trials usually consist of three phases:

Chapter 2: Drug Discovery and Data Mining 7

• Phase I: Studies are conducted on a small number of healthy volunteers to verify

safety and tolerability of the candidate drug. Testing includes observations and care-

ful documentation of how the drug acts in the body – how it is absorbed, distributed,

metabolized and excreted.

• Phase II: Further studies are designed for patients suffering from the disease or con-

dition the drug intends to treat to determine effectiveness and safety of the candidate

drug in humans. Most phase II studies are randomized double-blinded trials, in which

neither the patients nor the investigators know who is receiving the investigational

drug or placebo.

• Phase III: Studies are expanded to gather additional information about safety and

effectiveness that is needed to evaluate the overall benefit-risk relationship of the

drug.

Based on the results of the clinical trial, a document showing substantial evidence that

the drug is safe and effective for its proposed use must be submitted to authorities for

review, such as Food and Drug Administration (FDA) in the U.S.A. Phase IV trials are

conducted after a drug has been approved to market. Studies focus on how well the proven

drug works on a broader population, and what the long-term risks and benefits are.

The drug discovery and development process is designed to make sure that only those

pharmaceutical products that are both safe and effective are brought to market. It takes

the pharmaceutical companies 10 to 12 years on average to discover and present a new

drug to the public. This thesis only focuses on the drug discovery. How techniques of data

mining are applied in drug discovery will be discussed in the following section.

8 Efficient Kernel Methods for Statistical Detection

2.2 The Role of Data Mining in Drug Discovery

Detecting lead compounds is an important procedure in the early stages of drug discovery

and development, because only those lead compounds can be used in further stages. A

compound library is a collection of thousands or millions of compounds. Obviously, in

order to find the most potential drug candidates, biochemists would like to screen as many

compounds as possible. Although the high-throughput screening (HTS) technique makes

it feasible to screen a large number of compounds against one or several targets in a single

day, it is still costly to screen all the available compounds against all the possible targets.

This is especially true in cases where the active compounds are extremely rare, which is

a common scenario in drug discovery. Therefore, it is necessary to come up with new

methods to speed up the assay process.

An alternative approach is to screen only part of the compounds and then build a

model relating activity to compound descriptors. These compound descriptors character-

ize the compounds’ chemical structure. With such a structure activity relationship (SAR)

model, one can predict the activity of the remaining compounds and test only those most

likely to be active (see Figure 2.1). Since the compound descriptors are generated by com-

puter algorithms rather than physically measured, it is often cheap and fast to compute

the values of the descriptors for all the compounds. As a result, the database describing

the compounds’ chemical structure may be enormous depending on the total number of

compounds and the number of descriptors. Therefore, knowledge in data-mining such as

dimension reduction techniques, modelling strategies and model assessment is useful.

Chapter 2: Drug Discovery and Data Mining 9

Computational
 chemistry

 HTS

Chemical

compounds
Remaining

BCUT

BCUT

1 x1

6 x6

 Predicted
activities

Predicted activity>threshold

 library

Activity y

BCUT 1 x1

BCUT 6 x6

Statistical
modelcompounds

Example

Figure 2.1: Data collection of the NCI database. A compound’s activity is measured by HTS,

and explanatory variables are produced by computational chemistry. Figure is modified based on

an illustration in Welch (2002).

10 Efficient Kernel Methods for Statistical Detection

2.3 Data Sets

Two kinds of data sets are used in this thesis: the first one is the NCI AIDS anti-viral

database, which is a real drug discovery data set; and the second one is simulated data.

We generate two sets of simulated data. One is the ”Mysim” data and the other is the the

”Mysim-LAGO” data. In this section, however, only the Mysim data is introduced. The

Mysim-LAGO data set will be discussed later in Chapter 4 after the method of LAGO has

been introduced.

2.3.1 The NCI AIDS Anti-viral Database

The real data set we use is the AIDS anti-viral data set from the National Cancer Institute

(NCI). The target of interest is the HIV-1 virus. The screen utilized a soluble formazan

assay to measure protection of human CEM cells from HIV-1 infection. Compounds pro-

viding at least 50% protection to the CEM cells were retested. Those retested compounds

that provided at least 50% protection were listed as moderately active. Compounds that

reproducibly provided 100% protection were listed as confirmed active. Six descriptors

calculated by GlaxoSmithKline chemists were used to capture the compounds’ chemical

characteristics, such as their surface areas, bonding patterns, charges, hydrogen bond donor

and acceptor ability. The NCI AIDS anti-viral database consists of one integer variable

recording the compound ID, six continuous explanatory variables, and one categorical re-

sponse with three possible values: 0 (inactive), 1 (moderately active) and 2 (confirmed

active). There are 29,812 observations in total, among which only 393 are moderately

active and 215 are confirmed active.

Those six continuous descriptors of the NCI data are called BCUT descriptors, which

are credited to three research groups and individuals. Burden (1989) originally suggested

using a matrix to represent the hydrogen-suppressed connection table of the molecule. To

construct this connectivity matrix, hydrogen atoms are excluded and atomic numbers of

Chapter 2: Drug Discovery and Data Mining 11

the non-hydrogen atoms are put on the diagonal. Off diagonal elements are assigned val-

ues of 0.1 times the nominal bond-type if two atoms are bonded, and 0.001 if the pair of

atoms are not bonded. The two-lowest eigenvalues of the connectivity matrix are used to

describe the chemical structure of the molecule. Burden actually mapped the molecules to

a two-dimensional chemistry-space and argued that structurally similar compounds would

be close to each other in this space. Rusinko and Lipkus (1993) verified Burden’s pro-

posal to be successful in finding structurally similar compounds with application to the

Chemical Abstracts Service (CAS) Registry File. Based on Burden’s (B) idea and CAS’s

(C) validation, Pearlman and Smith (1998) at University of Texas (UT) extended Bur-

den’s suggestion to a multi-dimensional chemistry-space by replacing atomic numbers on

the diagonal with other more relevant atomic properties such as atomic charges, polar-

izabilities, H-bond donor- and acceptor-abilities. Stanton (1999) evaluated the effect of

BCUT numbers as measures of molecule structure in quantitative structure-activity rela-

tionship (QSAR) study and found that BCUT metrics appear to perform better than some

other promising descriptors in capturing structural information. Computational chemists

in GlaxoSmithKline provided a set of 67 BCUT descriptors for the NCI data; however,

these 67 descriptors are highly correlated (Lam, 2001; Lam et al., 2002). In this the-

sis, I only focus on the NCI data with six BCUT descriptors which have much smaller

correlations while preserving most information contained in the 67 BCUT descriptors.

We notice that some compounds have exactly the same BCUT numbers but different

activity responses. These compounds are either the same compound measured more than

once or different compounds that have the same chemical structure in this six-dimensional

subspace. No matter which case might be, we decided to discard those compounds that

share the same values of BCUT descriptors but conflict in activity results. Moreover,

only one compound is kept for those compounds that were measured multiple times and

had consistent activity results. After this data cleaning procedure, there are still 29,242

compounds remaining, among which only 378 are moderately active and 205 are confirmed

12 Efficient Kernel Methods for Statistical Detection

active. To make up a binary detection problem, we treat the inactive compounds as the

class-0 observations and combine the moderately active and confirmed active together as

the class-1 observations. So, we have 28,659 inactive and 583 active compounds in this

non-replicated NCI data set. In the rest of my thesis, whenever I use the NCI data set, I

refer to this non-replicated version.

2.3.2 The Mysim Data–A Simulated Data Set

The simulated data set is two dimensional, distributed within a square [−3, 3] × [−1, 5]

with a distribution as follows (see Figure 2.2):

• The prior distributions for the two classes are π0 = P (y = 0) = 3
4

and π1 = P (y =

1) = 1
4
.

• Given y = 0, the covariates are uniformly distributed over the whole space [−3, 3] ×
[−1, 5]. That is P (x|y = 0) ∼ Uniform([−3, 3] × [−1, 5]).

• Given y = 1,

P (x|y = 1) ∼

Uniform([−2,−1] × [3, 4]) with probability 2
5
,

Uniform([1, 2] × [0, 1]) with probability 3
5
.

Given the distribution above, we are able to generate the simulated data as follows:

generate 300 class-0 observations from [−3, 3] × [−1, 5]; generate 40 class-1 observations

from region A, and another 60 class-1 observations from region B. As a result, there are

300 class-0 items and 100 class-1 items in this simulated data set. Note that regions A and

B contain both class-1 and class-0 observations, while the remaining area contains only

class-0 observations.

Chapter 2: Drug Discovery and Data Mining 13

40 class-1 300 class-0

60 class-1

X1

X2

5

-1

3-3

B

A

Figure 2.2: Generating mechanism of the Mysim data.

This simulated data set has a very good interpretation in drug discovery in that the two

covariates x1, x2 can be viewed as two compound descriptors and the response y indicates

whether the compound is active (y=1) or inactive (y=0); regions A and B can be viewed

as two mechanisms that cause the compounds to be active. Besides identifying active

compounds, distinguishing different activity mechanisms is also an important issue in drug

discovery. In this thesis, however, I will focus only on the first issue—identifying the active

compounds (the class-1 observations). Therefore, we combine items from both regions A

14 Efficient Kernel Methods for Statistical Detection

and B, and treat them as class-1 observations. It is straightforward to show

P (x ∈ A|y = 0) =
area(A)

Total area
=

1

36

P (x ∈ B|y = 0) =
area(B)

Total area
=

1

36

P (x ∈ A|y = 1) =
2

5

P (x ∈ B|y = 1) =
3

5
. (2.1)

By Bayes’ rule, we can also calculate an item’s probability of being class 1, which is

given by

P (y = 1|x ∈ A) =
P (x ∈ A|y = 1)P (y = 1)

P (x ∈ A|y = 1)P (y = 1) + P (x ∈ A|y = 0)P (y = 0)
=

24

29
= 0.8276

P (y = 1|x ∈ B) =
P (x ∈ B|y = 1)P (y = 1)

P (x ∈ B|y = 1)P (y = 1) + P (x ∈ B|y = 0)P (y = 0)
=

36

41
= 0.8780.

2.4 Conclusion

In this chapter I briefly introduce the whole process of how a new drug is discovered and

developed; more detail is focused on how data mining techniques and statistical modeling

can be applied in the early stage of drug discovery to speed up the screening for active

compounds. The essential data set of the thesis, the NCI AIDS anti-viral database, is

described in detail in this chapter. There are two basic simulated data sets used in my

thesis, which I refer to as the ”Mysim” data and the ”Mysim-LAGO” data respectively.

This chapter only gives the generating mechanism of the Mysim data, whereas the gener-

ating mechanism of the Mysim-LAGO data will be shown after the method of LAGO has

been introduced in Chapter 4. I will discuss the statistical detection problem in the next

chapter.

Chapter 3

Statistical Detection Problems

This chapter introduces the statistical detection problem in great detail, including its set-

up, objective, applications, methods and model assessment criteria.

3.1 Introduction

The set up of a statistical detection problem is the same as a binary classification problem.

For each observation, we have a vector of predictors, xi, and the class label yi, indicating

whether the item belongs to the class of interest or not, 1 for yes, 0 for no. There are

two main reasons that we would like to treat statistical detection as a special problem.

Firstly, the frequencies of the two classes are extremely unbalanced. There are only a few

class-1 observations, say 1-2% or even less. In a binary classification problem, however,

the proportions of the two classes are roughly half and half. Secondly, the objective of

statistical detection is to assign a relative ranking to the data according to their possibility

of being class 1, and hence we can identify the class-1 items as early as possible. This is

very different from a two-class classification application whose objective is to assign class

labels to the observations regardless of whether the more potential ones will appear earlier

in the ranking list or not.

15

16 Efficient Kernel Methods for Statistical Detection

Three typical applications of statistical detection are:

1. Drug Discovery: Here xi is a vector of descriptors for a chemical compound and

yi indicates whether the compound is considered an active drug agent for a certain

disease. Most compounds are inactive and we are interested in detecting the active

ones.

2. Credit Card Fraud Detection (Bolton and Hand, 2002): Here xi is a vector of de-

scriptors for a credit card transaction and yi indicates whether the transaction is

fraudulent. Most transactions are not fraudulent and we are interested in catching

the frauds.

3. Direct Marketing: Here xi is a vector of descriptors for a potential customer and yi

indicates whether the potential customer will respond to the advertisement or not.

Most clients will not respond and we are interested in identifying the most likely

respondents.

3.2 Some Common Methods

K-nearest neighbors (KNN) and tree models were shown to be among the most effective

methods for drug discovery (Wang, 2005). Support vector machine (SVM) has a close

relationship with our proposed method. This section gives a brief introduction on these

methods.

3.2.1 K-Nearest Neighbors (KNN)

The idea of KNN (Fix and Hodges, 1951; Cover and Hart, 1967) is very simple and intuitive.

Under the assumption that points close to one another should have a similar response,

KNN classifies a new observation according to the class labels of its K-nearest neighbors.

In order to identify the neighbors, we must decide how to measure the proximity among

Chapter 3 : Statistical Detection Problems 17

points and how to define the neighborhood. The most popular distance metric is the

Euclidean distance. The region of the neighborhood is normally controlled by a tuning

parameter, K, which can be chosen by cross-validation.

Figure 3.1 illustrates how KNN works. In this simulated example, we set K = 5.

Among those five nearest neighbors of the test point tp1 (indicated by symbol ’?’), four

out of five belong to class 0. Therefore, tp1 is classified as a class-0 observation with an

estimated probability of 4/5. Similarly, tp2 (also indicated by a ’?’) is classified as class-1

with an estimated probability of 4/5.

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

?

?

tp1

tp2

Figure 3.1: Simulated example illustrating KNN with K = 5. Here ’∗’ denotes the class-0

observations, ’+’ denotes class-1 observations in the training set and ’?’ denotes the test data

tp1 and tp2.

Though simple, KNN is a very powerful method, particularly for those data having

some types of special local structure. On the other hand, it has some problems as well:

18 Efficient Kernel Methods for Statistical Detection

• The Euclidean distance could be heavily influenced by unimportant explanatory vari-

ables. This problem is especially serious in a high dimensional space. Furthermore,

Euclidean distance is not scale-invariant. Wang (2005, Chapter 5) proposed a so-

called subset KNN method where she suggested building multiple classifiers from

subsets of variables and aggregating them into a single overall classifier. She showed

that subset KNN might deal well with many weak predictors and its performance is

not greatly affected by the curse of dimensionality.

• The method might break down when dealing with categorical data or a mixture of

continuous and categorical variables. A meaningful distance metric must be defined

for these two cases.

• For a fixed number of nearest neighbors, K, the radius of the neighborhood depends

on the density of data. This raises the question of whether K or the radius should

be used to define the neighborhood. To address this issue, Wang (2005, Chapter 4)

suggested choosing a different value of K adaptively for each test point depending

on the density of its neighborhood and the density of the training data as well.

• KNN can be considered to be a weighted average, with equal weights for the K

nearest observations and zero weight for all the others. The abrupt change in weight

may lead to instability in predictions. Hechenbichler and Schliep (2004) proposed and

implemented a weighted KNN method which combines KNN with kernel weights.

3.2.2 Support Vector Machines (SVM)

Support vector machine (SVM) is a novel learning method originally introduced by Cortes

and Vapnik (1995). It includes polynomial classifiers, radial basis function (RBF) networks,

and single-layer neural networks as special cases. In a binary classification problem, suppose

we have data S = {(x1, y1), . . . , (xN , yN)} with xi ∈ R
d and yi ∈ {1,−1}. Notice that the

two classes here are {1,−1} rather than {0, 1} in a typical binary classification problem.

Chapter 3 : Statistical Detection Problems 19

The data are said to be linearly separable if there exists a hyperplane f(x) = 0 that

perfectly separates the two classes; otherwise, the data are linearly nonseparable. The

real-valued function f(x) : R
d → R is called the decision function (DF), which can be

written as

f(x) = 〈w,x〉 + b

= wTx + b.

A new observation x is assigned to class 1 if f(x) ≥ 0 and otherwise to class -1. The

parameters (w, b) can be estimated from the data.

When the data are linearly separable, we can find some hyperplane that perfectly

separates the two classes. Let the margin of a hyperplane (w, b) be 2γ, where γ is the

shortest distance from the hyperplane to a training point. The objective is to find the

hyperplane that produces the largest margin. Figure 3.2 shows two hyperplanes and nine

simulated data points which are linearly separable. Note that each hyperplane is halfway

between the two solid lines. The hyperplane with margin1 is better than the one with

margin2 in that it has a larger margin. Please note that most of the important results and

derivations are based on three books: Vapnik (1995), Cristianini and Shawe-Taylor (2000),

and Hastie et al. (2001).

It can be shown that finding the maximal margin hyperplane (w, b) is equivalent to

solving the following optimization problem

min
w,b

1
2
‖w‖2

subject to yi(w
Txi + b) ≥ 1, i = 1, . . . , N.

(3.1)

When the data are linearly nonseparable, no solution exists for (3.1). One way to deal

with this problem is to still minimize 1
2
‖w‖2 while relax all the constraints by introducing

some slack variables ξ = (ξ1, . . . , ξN). These slack variables allow some observations to be

20 Efficient Kernel Methods for Statistical Detection

+

+

+

+
margin1

margin2

x wT +b=0

γ

γ
1

1

Figure 3.2: Two hyperplances of the nine simulated data points. The dashed lines are the

separating hyperplanes (or decision boundaries). The hyperplane with margin1 is better, since

margin1 > margin2. Here, margini = 2γi, i = 1, 2.

on the wrong side of the margin (see Figure 3.3). The optimization problem for linearly

nonseparable case is

min
w,b

1
2
‖w‖2 + C

∑N
i=1 ξi

subject to yi(w
Txi + b) ≥ 1 − ξi,

ξi ≥ 0, i = 1, . . . , N,

(3.2)

where C (short for Cost) is a regularization parameter controlling the smoothness of the

boundary. A large value of C will discourage any positive ξi and result in an overfit wiggly

boundary; a small value of C will lead to an over smooth boundary. This trade-off enables

our choosing the optimal value of C by cross-validation.

Chapter 3 : Statistical Detection Problems 21

x

x

x

x

x

γ
γ

x

ξ

ξ

ξ 1

2

3

margin=2 γ

x

Figure 3.3: The slack variables for eleven simulated data points. Three of them are positive

(ξ1, ξ2, and ξ3), and the other eight are zero. The dashed line is the hyperplane with a margin of

2γ.

By using the Lagrangian method, both (3.1) and (3.2) can be rephrased as quadratic

programming problems with linear inequality constraints. It can be shown that the solution

for w has the form

ŵ =

N∑

i=1

α̂iyixi,

where αi ≥ 0 are Lagrange multipliers. Those observations with strictly positive coefficients

αi are called support vectors (SV), since the solution hyperplane depends on these vectors

alone. Any margin point (those SV with αi > 0 and ξi = 0) can be used to solve for b.

22 Efficient Kernel Methods for Statistical Detection

Given ŵ and b̂, the decision function is given by

f̂(x) = ŵTx + b̂

=
∑

xi∈sv
α̂iyix

T
i x + b̂. (3.3)

So far, we have focused on SVM with a linear boundary. However, a linear boundary is often

not flexible enough to separate the two classes. Fortunately, SVM can be generalized easily

to construct nonlinear boundaries. The common strategy is to map the original data into a

high dimensional space and then construct a linear boundary classifier in the transformed

space. The original space of the data is called the input space while the transformed high

dimensional space is called the feature space. Figure 3.4 shows an example of a feature

mapping from a two dimensional input space to a two dimensional feature space. The data

can not be separated by a linear function in the input space, but can be in the feature space

under the mapping Φ. Although the same dimension is used in Figure 3.4 for illustration,

the feature space is usually of much higher dimension than the input space.

x

Φ

feature spaceinput space

xx x

xx

x

x

Figure 3.4: An example of mapping where data can be separated by a linear function in the

feature space but can not in the input space.

Chapter 3 : Statistical Detection Problems 23

With a nonlinear mapping Φ, SVM is able to produce nonlinear boundaries in the

input space by constructing a linear boundary in the feature space. The decision function

of SVM now becomes

f̂(x) =
∑

xi∈sv
α̂iyiΦ(xi)

T Φ(x) + b̂, (3.4)

which is in terms of inner products in the feature space. Calculating the inner product of

Φ(xi)
T Φ(x) might be expensive when the feature space is of high dimension. Fortunately,

to calculate (3.4), we do not need to know Φ explicitly but only need to know how to

evaluate the inner products Φ(xi)
T Φ(x). This can be done by using a suitable kernel

function. A kernel function K is defined as

K(xi,xj) = 〈Φ(xi),Φ(xj)〉

= Φ(xi)
T Φ(xj),

where xi,xj are two points in the input space. Many different forms of K are possible,

each leading to a different feature space. Mercer’s theorem (Mercer, 1909) provides one

way to construct kernels. It says that a symmetric function in the input space, K, is a

kernel function if and only if the Gram matrix

K = [K(xi,xj)]
N
i,j=1

is positive semi-definite, i.e., has non-negative eigenvalues. Three common kernels are:

1. polynomial: K(xi,xj) = (γxT
i xj + r)d, γ > 0.

2. radial basis: K(xi,xj) = exp(−γ‖xi − xj‖2), γ > 0.

3. sigmoid: K(xi,xj) = tanh(γxT
i xj + r).

Here, γ, r and d are the kernel parameters that need to be tuned by the training data.

24 Efficient Kernel Methods for Statistical Detection

Given the kernel function K, the decision function (3.4) can be written as

f̂(x) =
∑

xi∈sv
α̂iyiΦ(xi)

T Φ(x) + b̂

=
∑

xi∈sv
α̂iyiK(xi,x) + b̂.

SVM has been implemented in R (Meyer, 2007), which makes use of the C++ implemen-

tation of SVM by Chang and Lin (2007). The function svm implemented in R takes the

majority class as class 1 and the minority one as class -1 by default; therefore, a data

point which is far away from the separating hyperplane on the negative side casts a lot of

confidence that this item belongs to the rare class, and hence should be ranked earlier. For

statistical detection, items can be ranked by their signed distances to the hyperplane in an

increasing order. Those items having a smaller signed distance to the hyperplane would

be detected earlier, because they are more likely to be in the rare class.

The signed distance from one point (xi, yi) to a hyperplane (w, b), sd(xi;w, b), is cal-

culated as

sd(xi, ŵ, b̂) =
1

‖ŵ‖(ŵTxi + b̂)

=
ŵTxi + b̂√

ŵT ŵ
. (3.5)

3.2.3 Asymmetric Support Vector Machines (ASVM)

In statistical detection, the numbers of observations in two classes are unbalanced. Some

researchers (e.g., Veropoulos et al., 1999) have proposed using different penalty parameters

(C+, C−) to differentiate the cost of false positives from that of false negatives. Suppose

that w+ and w− are the weights for class 1 and class -1 respectively. Optimization problem

Chapter 3 : Statistical Detection Problems 25

(3.2) becomes

min
w,b

1
2
‖w‖2 + C+

∑

yi=1

ξi + C−
∑

yi=−1

ξi

subject to yi(w
Txi + b) ≥ 1 − ξi,

ξi ≥ 0, i = 1, . . . , N,

(3.6)

where C+ = Cw+, C− = Cw−. Solving (3.6) is almost the same as solving (3.2). The

only difference is that we have to rewrite constraints involving C as constraints with C+

for yi = 1 and with C− for yi = −1. We call this the asymmetric support vector machine

(ASVM), which can be fitted using the function svm in R package {e1071} with four tuning

parameters — γ, C, w+, and w−. Without loss of generality, we assume w+ = 1 and tune

the remaining three parameters, γ, C, and w−, simultaneously.

3.2.4 Tree-Based Models

As a powerful and conceptually simple method, tree-based models date back at least as

early as Morgan and Sonquist (1963). Hawkins and Kass (1982) and Breiman et al. (1984)

brought statisticians’ attention to tree-based methods (i.e., classification and regression

trees), and Quinlan (1993) made trees popular in machine learning community.

The basic idea of tree methods is very simple. Through binary recursive partitioning,

a tree successively partitions the feature space into a set of rectangles and then fits a

simple model (say a constant) in each one. At each partition, the algorithm automatically

determines the optimal split (including the splitting variable and the splitting point) such

that the resulting two subsets of data are as homogeneous as possible with respect to

the response of interest. This partition process is repeated until the stopping criterion is

satisfied. It is obvious that a very large tree might overfit the data, while a too small tree

might not be able to capture the important structure of the data. The preferred strategy

to control the tree size is to grow a large tree and then prune this large tree using some

cost-complexity criterion, which is a trade-off between the tree size and the goodness of fit

26 Efficient Kernel Methods for Statistical Detection

to the data. See Breiman et al. (1984) or Ripley (1996) for details.

The most common tree-based methods are the regression tree and the classification tree

which model continuous response and categorical response respectively. When growing a

regression tree, the optimal split is the one that minimizes the residual sum of squares; when

building a classification tree, the optimal split can be chosen by minimizing misclassification

error or Gini index or deviance (cross-entropy).

A major advantage of the recursive binary tree is its interpretability. One major prob-

lem with trees is their instability — a small change in the data might lead to a very different

set of splits. Breiman (1996) proposed the idea of bagging to reduce the high variance of

trees by averaging over many trees.

3.3 Model Assessment

Many criteria can be used to evaluate the performance of different models. Caruana and

Niculescu-Mizil (2004) conducted an empirical study to compare nine boolean classification

performance metrics using a variety of models. The performance metrics include accuracy,

lift, F-score, area under the ROC curve, average precision, precision/recall break-even

point, squared error, cross entropy, and probability calibration. They argued that these

nine criteria can be grouped into three categories—squared error, cross entropy and cali-

bration are suitable for cases where probabilistic prediction is of interest; area under the

ROC curve, average precision, break-even point, and lift are proper for applications where

the relative ranking of the predicted value is of major interest; accuracy and F-score are

appropriate when the response depends on whether a prediction is larger than a threshold

or not. This section introduces several widely used performance metrics and discusses what

criteria should be used for statistical detection.

Chapter 3 : Statistical Detection Problems 27

3.3.1 Misclassification Rate

For classification problems, a natural criterion to assess the performance of a model is the

misclassification rate (MR). The misclassification table for a binary case can be presented

as a 2×2 table:

True classification result

label 0 1

0 a (true negative) b (false positive)

1 c (false negative) d (true positive)

And the misclassification rate is given by

MR =
b+ c

a + b+ c+ d
. (3.7)

The misclassification rate, however, is not a suitable performance metric for statistical

detection due to the rarity of class-1 observations. Take the NCI data for example. Suppose

there are 14,622 observations in the test set among which only 292 are active. If a classifier

M0 simply classifies every test compound as inactive. It will misclassify all the 292 active

compounds. The resulting misclassification rate of M0 is 292/14, 622. Suppose another

classifier M is applied to the NCI data and the results are summarized in Table 3.1. The

misclassification rate of M is (22 + 270)/14, 622, which is the same as M0. However, this

does not mean that these two classifiers have the same performance. The classifier M is

definitely more useful than M0 because 22/(22+22) compounds that M classifies as “1” are

actually active, while M0 can not identify a single active compound. The misclassification

rate fails to distinguish superior and inferior classifiers when one class is extremely rare,

and thus is not suitable for statistical detection.

28 Efficient Kernel Methods for Statistical Detection

True classification by M

label 0 1

0 14,308 22

1 270 22

Table 3.1: Misclassification table of classifier M for the NCI data.

3.3.2 Hit Curve

A hit curve is constructed as follows: we first rank the items in a non-increasing order by

p̂ = (p̂1, . . . , p̂N), their estimated probabilities of being class 1. The larger a p̂i is, the earlier

the corresponding item is selected. A selected case is called a hit if it actually belongs to

class 1. A function h(n) gives the number of hits among the first n selected items. Plotting

h(n) versus n gives the hit curve. For classifiers producing a lot of tied predicted values,

interpolation is applied to draw the hit curve. Take KNN for example, if K = 4, there

will be only five distinct predicted values (i.e., 0/4, 1/4, 2/4, 3/4, 4/4). Ranking items

having the same predicted value in a different order will produce very different hit curves.

In order to honestly reflect the performance of a classifier, instead of plotting h(n) versus

n, we draw a straight line from (ni−1, h(ni−1)) to (ni−1 +ni, h(ni−1 +ni)) if ni ≥ N
10

, where

ni is the number of observations having the ith largest p̂ and N is the total number of

items.

Figure 3.5 shows some typical hit curves. In this illustration, there are 1000 candidates;

only 100 of them belong to class 1. The dash-dotted curve is an ideal curve; every item

selected is an actual hit until all potential hits are exhausted. The solid curve is that

of random selection. The dotted curve is that of some statistical detection method. Hit

curves are also known as gain charts in some data mining applications. Hit curves appear

to be somewhat similar to the receiver operating characteristic (ROC) curves which will

be described in Section 3.3.4. The relationship between hit curves and ROC curves will be

Chapter 3 : Statistical Detection Problems 29

discussed later in Section 3.3.5.

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100

110

Total Number Detected:n

A
c
tu

a
l
H

it
s
:

h
(n

)

Figure 3.5: Illustration of several typical hit curves. The dash-dotted curve is an ideal curve.

The solid curve is that of random selection. The dotted curve is that of a typical statistical

detection method.

Two natural numeric summaries of a given hit curve are h(N) (the number of hits

among the first N selected items) and H(N) (the area under the hit curve h(n) up to a

certain point N). The number of item selected N is often determined by one’s budget for

further investigation. For both measures, the larger the better.

Considering h(N) alone, however, can sometimes be misleading. Figure 3.6 shows

one of such situations. The dotted curve hd(n) and the solid curve hs(n) are the hit

curves of two hypothetical detection methods. If we set N = 500 (the vertical line), then

hs(N) > hd(N), indicating that the method corresponding to the solid curve is better, but

this is not necessarily true. The method corresponding to the dotted curve is more efficient

in that it makes much more hits early on. If the budget allows us to assay only 300 cases,

the method corresponding to the dotted curve becomes superior to the one corresponding

to the solid curve.

30 Efficient Kernel Methods for Statistical Detection

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100

110

Total Number Detected:n

A
c
tu

a
l
H

it
s
:

h
(n

)

Figure 3.6: Hit curves for two different detection methods. Here, hs(500) > hd(500) whereas

Hs(500) < Hd(500).

Generally, H(N), the area under the hit curve favors methods that make more hits

early on. In Figure 3.6, H(500) is larger for the dotted line since it makes more hits until

n = 400. The conclusions drawn from the number of hits h(N) or the area under the hit

curve H(N) will vary at different values of N . If we consider all the observations in the

test set, i.e., N = 1000 in Figure 3.6, then both methods have h(1000) = 100, the number

of class 1 cases. Therefore, h(N) can not be used to compare the overall performance of

different methods.

Recall those two different detection methods in Figure 3.6. The area under the solid

curve Hs(1000) is larger thanHd(1000), the area under the dotted curve. However this does

not necessarily mean that the method referring to the solid curve is better. Practitioners

would prefer the dotted curve if they can afford no more than 400 tests. Therefore, a

single-valued measure that even more favors early hits thanH(N) is desirable. The average

precision which will be introduced in the next section meets this need.

Chapter 3 : Statistical Detection Problems 31

3.3.3 Average Precision

The average precision (AP) is defined as

AP =
1

n1

N∑

n=1

y(n)

∑n
j=1 y(j)

n

=
1

n1

N∑

n=1

y(n)h(n)

n
, (3.8)

where n1 is the total number of class-1 observations and y(n) is the class label of the

detected item having the nth largest p̂. AP is a commonly used measure in information

retrieval (see Singhal, 2001). Precision is defined as the percent of retrieved items that

are actual hits, or h(n)/n; AP can be viewed as the average of the precisions over the

points where a retrieved item is a hit. The information retrieval problem can be regarded

as a statistical detection problem in some sense. The relevant documents are the class-1

observations which are relatively rare compared to the irrelevant documents. Searching for

relevant items in a large database is analogous to detecting the class-1 observations from

a huge data set.

The calculation given in (3.8) implies that the range of AP is (0, 1]. It is straightforward

to show that the AP for the ideal hit curve in Figure 3.5 (the dash-dotted curve) is 1 and

that the AP for random selection is π, the fraction of class-1 observations (See Zhu, Su

and Chipman, 2006). Table 3.2 illustrates how to calculate the APs of two ranking models

for a test set with six observations and three of them belonging to class 1. Model 1 is

a more effective ranking model than Model 2 since it gives a larger AP. As we can see,

AP is an overall performance measure that favors methods making more hits early on.

Although the solid curve in Figure 3.6 has larger area under the curve than the dotted

one, we would prefer the method corresponding to the dotted curve since it has a larger

AP (APd = 0.1998,APs = 0.1538).

To calculate AP with ties, instead of averaging over all possible permutations, we

consider 500 random permutations of the p̂’s and take the average of those 500 APs.

32 Efficient Kernel Methods for Statistical Detection

Model 1 Model 2

Ranking True Class Label Precision True Class Label Precision

l 1 1/1 1 1/1

2 1 2/2 0 1/2

3 0 2/3 0 1/3

4 1 3/4 1 2/4

5 0 3/5 1 3/5

6 0 3/6 0 3/6

AP1 ≈ 0.9167 AP2 = 0.7

Table 3.2: Illustration of AP calculation: AP1 = 1
3(1/1 + 2/2 + 3/4) ≈ 0.9167; AP2 = 1

3(1/1 +

2/4 + 3/5) = 0.7.

3.3.4 ROC Curve

The Receiver Operating Characteristic (ROC) curve is widely used to evaluate the per-

formance of different ranking systems (Cantor and Kattan, 2000). Suppose that the ob-

servations are ranked by their scores of being class 1 (s1, s2, · · · , sn) with 1 ≥ s1 ≥ s2 ≥
· · · ≥ sn ≥ 0. Let the random variable SD be the score of a detected item whose proba-

bility density function (pdf) and cumulative distribution function (CDF) are fD and FD.

We further assume that the corresponding pdfs and the CDFs of the class-0 and class-1

observations are f0, f1 and F0, F1, respectively.

Given a cut-off C, an observation is assigned to class 1 if its score SD is greater than

C; otherwise, it is assumed to be class 0. The ROC curve plots hit rate versus false alarm

rate evaluating at each potential cut-off Ci, where

Hit Rate = Pr(true positive) = Pr(SD > C|SD ∼ f1) = 1 − F1(C)

False Alarm Rate = Pr(false positive) = Pr(SD > C|SD ∼ f0) = 1 − F0(C).

Chapter 3 : Statistical Detection Problems 33

The area under the ROC curve (AUC) is one of the most popular measures to compare

the performance of different ranking models. A better ranking model has a larger value of

AUC.

Figure 3.7 presents several typical ROC curves. The curve passing the points (0, 0),

(0, 1) and (1, 1) represents a perfect model; the dashed curve and the solid curve represent

two ranking models; and the dotted line corresponds to the random selection. The AUC

of a perfect model is 1 and the AUC of a random ranking is 1/2, which implies that any

effective ranking model should have AUC ∈ (1/2, 1]. Figure 3.7 indicates that ranking

model 1 is superior to ranking model 2, because it has a larger value of AUC than model

2.

(1, 0)(0, 0)

(0, 1) (1, 1)

ranking model 2

False Alarm Rate

Hi
t R

ate

ranking model 1

perfect model

rank randomly

Figure 3.7: Illustration of several typical ROC curves.

34 Efficient Kernel Methods for Statistical Detection

3.3.5 Relation Between ROC and Hit Curve

A variation of hit curve is called Cumulative Accuracy Profile (CAP) curve, which is widely

used in finance community to evaluate different ranking systems. The hit curve used in my

thesis plots number of hits versus the number of detected items, whereas the CAP curve

plots the proportion of hits versus the proportion of detected items. Therefore, if all the

items rather than only the top n are used, hit curve and CAP curves are equivalent up

to normalization. Engelmann et al. (2003) explored the connection between ROC curve

and CAP curve. In this section, I will give a more clear presentation of the relationship

between ROC curve and CAP curve under the context of statistical detection.

Instead of plotting pairs {1 − F0(si), 1 − F1(si)}n
i=1 in a ROC curve, CAP plots pairs

{1 − FD(si), 1 − F1(si)}n
i=1 (see Figure 3.8). For CAP curves, the one connecting points

(0, 0), (π, 1) and (1, 1) corresponds to a perfect model, where π is the proportion of

class-1 observations; and the curve going through points (0, 0) and (1, 1) corresponds to

the random selection. Obviously, the area under the CAP curve of a perfect model is

[(1 − π) + 1]/2, and the area of the random selection is 1/2.

Let AUC ROC be the area under the ROC curve and AUC CAP be the area under the

CAP curve. Applying the trapezoidal rule, it is straightforward to show that

AUC ROC =
n∑

i=1

1

2
[(1 − F1(si)) + (1 − F1(si+1))][(1 − F0(si+1)) − (1 − F0(si))]

AUC CAP =

n∑

i=1

1

2
[(1 − F1(si)) + (1 − F1(si+1))][(1 − FD(si+1)) − (1 − FD(si))]

= (1 − π)AUC ROC + π
1

2
. (3.9)

The last step is due to the fact that

1 − FD(si) = Pr(SD > si)

= Pr(SD > si|SD ∼ f1)Pr(SD ∼ f1) + Pr(SD > si|SD ∼ f0)Pr(SD ∼ f0)

= π[1 − F1(si)] + (1 − π)[1 − F0(si)]. (3.10)

Chapter 3 : Statistical Detection Problems 35

Equation (3.9) implies that AUC CAP(ranking model) can be considered to be a weighted

average of AUC ROC(ranking model) and AUC ROC(random selection), the weights de-

pend on the proportion of class-1 observations π.

0F (s)0 iF (s)

CAP Curve ROC Curve

H
it

 R
at

e

P

Ra

a

P
ro

p
o
rt

io
n
 o

f
H

it
s

Proportion of Detected Items False Alarm Rate
i+1

(1,1)

(0,0) (0,0) (1,0)

(0,1)

(1,0)

(1,1)(0,1) π(,1)

F (s)i+1

iF (s)1

1

random model
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

ranking model
perfect model

random model

ranking model
perfect model

Figure 3.8: Left: A CAP curve where aR is the shaded area and aP is marked by the solid line

in bold; Right: An ROC curve and AUC ROC is marked by the solid line in bold.

Besides AUC CAP, performance of a ranking system can also be summarized by the

Accuracy Ratio (AR) which is defined as the ratio of aR to aP , where aR is the discrep-

ancy between AUC CAP(ranking model) and AUC CAP(random selection), and aP is the

discrepancy between AUC CAP(perfect model) and AUC CAP(random selection). Engel-

mann et al. (2003) showed that there is a linear relationship between AUC ROC and the

36 Efficient Kernel Methods for Statistical Detection

AR of the CAP curve:

AR =
aR

aP

=
AUC CAP(ranking model) − 1

2

AUC CAP(perfect model) − 1
2

=
(1 − π)AUC ROC + π 1

2
− 1

2
(1−π)+1

2
− 1

2

= 2AUC ROC − 1.

3.3.6 Comparison of AP and AUC ROC

Little research has been done on the properties of average precision (AP). So far, I have

never found any theoretical results on AP in literature. In order to have some insight of the

relationship between AP and the area under the ROC curve (AUC ROC), I conducted a

permutation study on a small data set with n1 = 3 ones and n0 = 50 zeros, which results in

53

3

 = 23, 426 distinct permutations of these zeros and ones. Practically, these different

permutations can be viewed as different ranking models, and hence AP and AUC ROC

can be calculated for each unique permutation.

Figure 3.9 compares AP and AUC ROC for each unique permutation and it shows

that there is no obvious linear or non-linear relationship between AP and AUC ROC. For

those 23,426 different permutations, one important finding is that there are 18,457 and 151

unique values in AP and AUC ROC respectively. This somewhat indicates that AP has

a higher ”resolution” than AUC ROC in distinguishing different ranking methods. Figure

3.9 also illustrates an important property of AP — it puts much more emphasis on early

detection. Only those ranking models whose first detected item is a hit yield large values

of AP. When it comes to statistical detection, AP might be a more appropriate measure

than AUC ROC, because we want to identify the class-1 observations as early as possible.

Chapter 3 : Statistical Detection Problems 37

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AUC_ROC

A
P

Figure 3.9: Average precision and area under the ROC curve of the permutation study. Stars

indicate those permutations starting with 1.

Compared to AUC ROC, one disadvantage of AP is that it is much more difficult to

interpret and make statistical inference on. Hanley and McNeil (1982) gave the meaning

of the AUC ROC in applications of disease diagnostic testing. They pointed out that the

AUC ROC represents the probability that a randomly chosen diseased subject is rated with

greater suspicion than a randomly chosen non-diseased subject. Moreover, they showed

this probability of correct ranking is the same quantity as the one that is estimated by

the well-known nonparametric Wilcoxon statistic. In their following-up paper, Hanley and

McNeil (1983) proposed a method of comparing AUC ROC given by different diagnostic

methods.

Interpretation and inference of the evaluation criterion, however, is not of our primary

interest; we decide to choose AP as the main performance metric in the whole thesis.

38 Efficient Kernel Methods for Statistical Detection

3.4 Conclusion

This chapter introduces the statistical detection problem which includes drug discovery as

an special application. Compared to a binary classification problem, a statistical detection

problem has two main characteristics. First, the two classes of a statistical detection

problem are extremely unbalanced; the majority is the background class and the class of

interest is extremely rare. Second, the objective of a statistical detection problem is to

rank the items in a descending order by their possibility of being the rare class, and hence

the most potential candidates can be picked as early as possible. This is very different from

classifying the items into either the rare class or the background class without considering

their order.

Methods that are commonly used in classification such as K-nearest neighbors, trees

and support vector machines can also be applied to the statistical detection problems.

Instead of using them as different classifiers, however, these methods are adopted as various

ranking methods in statistical detection. A brief introduction of these three methods

are given in this chapter. The reasons that I choose these three methods are two-fold.

Firstly, Wang (2005) concluded that K-nearest neighbors and trees are by far the best two

methods for the NCI AIDS data among all the methods she tried, i.e., logistic regression,

generalized additive model, multivariate adaptive regression spline, neural networks, K-

nearest neighbors and trees. Secondly, LAGO, the method which will be introduced in

Chapter 4, is closely related to both K-nearest neighbors and support vector machines;

therefore, these two methods provide us good benchmarks in evaluating the performance

of our proposed method.

Several possible evaluation metrics for statistical detection are discussed in this chapter.

Those metrics include misclassification rate; hit curve and its numerical summaries, e.g.,

number of hits, area under the hit curve and average precision; ROC curve and its numerical

summary, i.e., area under the ROC curve. Given the fact that average precision puts more

weights on the early hits and thus is more suitable for statistical detection, we choose

Chapter 3 : Statistical Detection Problems 39

average precision as the primary performance measure in this thesis.

Chapter 4

LAGO: A Fast Kernel Method for

Statistical Detection

Wang (2005, Chapter 2) compared the performance of some basic models on the NCI data

using hit curves. Those methods include logistic regression, generalized additive model

(GAM), neural network (NNet), trees, C4.5, and K-nearest neighbors (KNN). She con-

cluded that local methods such as KNN with a relatively small value of K and tree models

with many terminal nodes outperform other methods. In this chapter, I introduce a com-

putationally efficient method to handle statistical detection problems, LAGO, which stands

for ”locally adjusted GO estimator”. We apply LAGO to the NCI data and two simulated

data sets, the results show that LAGO is competitive with some powerful methods such

as KNN and support vector machines (SVM).

For notational convenience, in this chapter we assume that the covariate vectors (or

scalars for univariate cases) for the training data are denoted as xi (or xi) with observed

responses yi ∈ {0, 1}.

41

42 Efficient Kernel Methods for Statistical Detection

4.1 LAGO: Locally Adjusted GO Estimator

Recall that the objective of statistical detection is to rank the potential candidates by their

probability of being class 1. Given a data point z, its posterior probability of being class 1,

p(y = 1|z), is intuitively a good ranking function. By Bayes’ rule, this posterior probability

can be expressed as

p(y = 1|z) =
p(z|y = 1)p(y = 1)

p(z|y = 1)p(y = 1) + p(z|y = 0)p(y = 0)

=
af(z)

af(z) + 1
, (4.1)

where a = p(y=1)
p(y=0)

and

f(z) =
p(z|y = 1)

p(z|y = 0)

△
=
p1(z)

p0(z)
. (4.2)

Since a > 0, the posterior probability (4.1) is a monotonically increasing function in f .

This means that the ranking by f is equivalent to the ranking by the posterior probability.

Knowing f is sufficient for statistical detection. LAGO intends to estimate the density

ratio f .

A key feature of the statistical detection problems is that most observations are from

class 0 (C0) and only a few are from class 1 (C1). This important feature allows us to make

the following assumptions:

A1. For practical purposes, the density function p1 can be assumed to have bounded local

support, possibly over a number of disjoint regions, Sγ ⊂ R
d, γ = 1, 2, ...,Γ, in which

case the support of p1 can be written as

S =
Γ⋃

γ=1

Sγ ⊂ R
d.

A2. For each class-1 observation xi ∈ C1, there exists at least a certain number of class-0

observations, say m, in a local neighborhood of xi; moreover, the density function p0

can be assumed to be relatively flat compared to p1 in that neighborhood.

Chapter 4: : A Fast Kernel Method for Statistical Detection 43

Assumptions A1 and A2 imply that, in order to estimate the density ratio f , we can

simply estimate p1 and adjust it locally according to the density p0 nearby. This two-step

strategy would give us a significant computational advantage, considering that the class-1

observations are extremely rare. Sections 4.1.1 and 4.1.2 illustrate how to construct LAGO

in two steps. We first consider the univariate case where the predictor z ∈ R is a scalar

and then generalize this to multivariate case where z ∈ R
d for d > 1 in Section 4.1.4.

4.1.1 Step 1: Estimating p1

The first step of constructing LAGO is to estimate p1 by an adaptive bandwidth kernel

density estimate:

p̂1(z) =
1

n1

∑

yi=1

K(z; xi, ri), (4.3)

where n1 is the number of class-1 observations and K(z; xi, ri) denotes a kernel function

centered at xi with bandwidth ri. The kernel function K(z; xi, ri) is defined to satisfy the

following conditions:

• K(z; xi, ri) is symmetric around xi.

• The bandwidth of K(z; xi, ri) is ri.

• K(z; xi, ri) integrates to 1 within its support.

For each xi ∈ C1, we define bandwidth ri to be the average distance between xi and its

K-nearest neighbors from C0, i.e.,

ri =
1

K

∑

w∈N(K,xi)

|w − xi|,

where N(K, xi) refers to the set that contains the K-nearest class-0 neighbors of xi and K

is a tuning parameter that can be selected by cross-validation. This particular bandwidth

selection method is originally inspired by an ancient game now known as GO (see Figure

44 Efficient Kernel Methods for Statistical Detection

4.1). In this game, two players take turns placing white or black small stones on a 19× 19

square board and try to possess as many territories as possible. At any stage during the

game, a player should evaluate the strategic values of several possible moves according

to the relative strength of his or her position on the board. Ignoring all the rules of the

game, which are irrelevant for the key idea, the basic principles of the evaluation can be

summarized as follows: Each stone on the board exerts a certain amount of influence on

its immediate neighborhood; the amount of influence is inversely related to how close the

opponent’s stones surrounding it.

As for kernel density estimation, the scenario is similar: Each class-1 observation, xi,

exerts a certain amount of influence over its immediate neighborhood; the extent of this

influence is controlled by the bandwidth parameter. Following the basic evaluation rules

from the game of GO, we allow each xi ∈ C1 to have a different bandwidth ri depending

on the distance between xi and its neighboring observations from C0.

4.1.2 Step 2: Locally Adjusting p1

The next step is to adjust the density estimate p̂1 locally according to the density of class

0 nearby. We can treat (4.3) as a mixture and adjust each component (centered at xi)

accordingly. Based on (4.2), density p0 around every xi ∈ C1, denoted by p0(z; xi), should

be estimated and divided by the term K(z; xi, ri). For a detection problem, there are a lot

of class-0 observations within a neighborhood of each class-1 observation; therefore, it is

reasonable to assume that the density p0(z; xi) is relatively flat compared to the density

p1(z; xi) within a neighborhood of xi. This implies that we can simply estimate p0(z; xi)

within that neighborhood as a constant, say ci. As a result, the estimate of the density

ratio f can be written as

f̂(z) =
1

n1

∑

yi=1

K(z; xi, ri)

ci
, (4.4)

for appropriately estimated constants ci, i = 1, 2, . . . , n1. Theorem 1 shows the relationship

between ci and ri, which makes the estimation of ci unnecessary in practice. The detailed

Chapter 4: : A Fast Kernel Method for Statistical Detection 45

Figure 4.1: The ancient game of Go is a game in which each player tries to claim as many

territories as possible on the board. Image taken from http://go.arad.ro/Introducere.html.

proof of Theorem 1 is given in Appendix. The idea of the proof consists of calculating the

density function of an order statistic.

Theorem 1. Let x0 be a fixed observation from class 1. Suppose that w1, w2, . . . , wm are

iid observations from class 0 that are uniformly distributed around x0, say on the interval

[x0 − 1
2c0
, x0 + 1

2c0
]. If r0 is the average distance between x0 and its K nearest neighbors

from class 0 (K < m), then we have

E(r0) =
K + 1

4(m+ 1)c0
. (4.5)

Theorem 1 implies that the bandwidth ri is on average proportional to 1/ci, since the

46 Efficient Kernel Methods for Statistical Detection

constants K and m do not depend on xi. Given that ri has already been calculated in

step 1, it is not necessary to estimate ci separately for each xi. This provides us an extra

computational advantage. Replacing 1/ci in (4.4) with ri gives the LAGO estimate

f̂(z) =
1

n1

∑

yi=1

riK(z; xi, ri). (4.6)

We use the acronym LAGO to refer to this resulting estimator f̂ as the ”locally adjusted

GO estimator”.

4.1.3 Asymptotic Properties of LAGO

This section investigates the asymptotic properties of LAGO given in (4.6). For simplicity,

we only consider the case where K = 1, i.e., the bandwidth ri for the kernel function cen-

tered at xi ∈ C1 is defined to be the distance between xi and its nearest class-0 neighbor.

Assume that the class-1 observations x1, x2, . . . , xn1

iid∼ p1(·), and the class-0 observations

w1, w2, . . . , wn0

iid∼ p0(·) with F0(·) and F1(·) being the cdfs of class-0 and class-1 observa-

tions respectively. Let uij = |wj − xi| and hence ri = min{uij}, j = 1, . . . , n0. Then the

expectation of the LAGO estimate is given by

E[f̂(z)] = E[
1

n1

∑

yi=1

riK(z; xi, ri)]

=
1

n1

∑

yi=1

E[riK(z; xi, ri)]. (4.7)

The joint distribution of xi ∈ C1 and ri, ψ(xi, ri) = ψ(ri|xi)p1(xi), is needed to evaluate

the expectations in (4.7). The conditional cdf of ri given xi ∈ C1 is

Ψ(r|xi) = P (ri ≤ r|xi)

= 1 −
∏

wj∈C0

P (|wj − xi| ≥ r)

= 1 −
∏

wj∈C0

[1 − P (xi − r < wj < xi + r)]

= 1 − [1 − F0(xi + r) + F0(xi − r)]n0. (4.8)

Chapter 4: : A Fast Kernel Method for Statistical Detection 47

Taking the derivative of (4.8) with respect to r gives the conditional density

ψ(r|xi) = n0(1 − F0(xi + r) + F0(xi − r))n0−1[p0(xi + r) + p0(xi − r)]. (4.9)

Assume that a uniform kernel is used, that is,

K(z; xi, ri) =

1
2ri

if |z − xi| ≤ ri;

0 otherwise.
(4.10)

For simplicity in the notations and without ambiguity, I will omit the index i for the proof

hereafter. Combining equations (4.7), (4.9), and (4.10) gives

E[rK(z; x, r)]

=

∫ ∫

rK(z; x, r)ψ(r|x)p1(x)drdx

=

∫ ∫

|z−x|≤r

1

2
ψ(r|x)p1(x)drdx

=
1

2

∫ z

−∞

∫ ∞

z−x

ψ(r|x)p1(x)drdx+
1

2

∫ ∞

z

∫ ∞

x−z

ψ(r|x)p1(x)drdx. (4.11)

The integration region is the upper area bounded by the bold line in Figure 4.2.

Given the fact that

Ψ(∞|x) = 1;

Ψ(z − x|x) = 1 − [1 − F0(z) + F0(2x− z)]n0 .

The first integral in (4.11) becomes

∫ z

−∞

∫ ∞

z−x

ψ(r|x)p1(x)drdx

=

∫ z

−∞
[Ψ(r|x)|∞r=z−x]p1(x)dx

=

∫ z

−∞
[1 − F0(z) + F0(2x− z)]n0p1(x)dx

=

∫ z

−∞
[1 − F0(z) + F0(z) + p0(z)(2x− 2z) +

p
′

0(ξ)(2x− 2z)2

2!
]n0p1(x)dx, (4.12)

48 Efficient Kernel Methods for Statistical Detection

r=z-x

r=
x-

z

r

Z X

Figure 4.2: Region yields non-zero integrand for the integration in equation (4.11).

where ξ falls somewhere between 2x− z and z. The last step is due to the application of

mean value theorem to the term F0(2x− z). Under the assumption that p0(z) is roughly

a constant within the local neighborhood |z − x| ≤ r, p0(z) should be bounded and p
′

0(ξ)

should be relatively small. Let |z−x| ≤ r → 0, the term p
′

0(ξ)(2x−2z)2 should be a higher

order term of p0(z)(2x− 2z) in r, and hence can be ignored. Because of the fact that

lim
n→∞

(1 +
a

n
)n = ea,

the right hand side of equation (4.12) can be expressed as

∫ z

−∞
[1 − F0(z) + F0(z) + p0(z)(2x− 2z) +

p
′

0(ξ)(2x− 2z)2

2!
]n0p1(x)dx

≈
∫ z

−∞
[1 + 2p0(z)(x− z)]

1
2p0(z)(x−z)

2p0(z)(x−z)n0p1(x)dx

→ 1

e2n0p0(z)z

∫ z

−∞
e2n0p0(z)xp1(x)dx. (4.13)

Chapter 4: : A Fast Kernel Method for Statistical Detection 49

Using integration by parts, equation (4.13) becomes

1

e2n0p0(z)z

∫ z

−∞
e2n0p0(z)xp1(x)dx

=
1

e2n0p0(z)z

[
e2n0p0(z)x

2n0p0(z)
p1(x)|z−∞ −

∫ z

−∞

e2n0p0(z)x

2n0p0(z)
p
′

1(x)dx

]

=
1

e2n0p0(z)z

[
e2n0p0(z)z

2n0p0(z)
p1(z) −

e2n0p0(z)x

(2n0p0(z))2
p
′

1(x)|z−∞ +

∫ z

−∞

e2n0p0(z)x

(2n0p0(z))2
p
′′

1(x)dx

]

=
p1(z)

2n0p0(z)
− p

′

1(z)

(2n0p0(z))2
+

1

e2n0p0(z)z

∫ z

−∞

e2n0p0(z)x

(2n0p0(z))2
p
′′

1(x)dx. (4.14)

Similarly,
∫ ∞

z

∫ ∞

x−z

ψ(r|x)p1(x)drdx

→ p1(z)

2n0p0(z)
+

p
′

1(z)

(2n0p0(z))2
− 1

e2n0p0(z)z

∫ z

−∞

e2n0p0(z)x

(2n0p0(z))2
p
′′

1(x)dx. (4.15)

Taking the sum of (4.14) and (4.15) gives

E[riK(z; xi, ri)] →
p1(z)

2n0p0(z)
=

1

2n0
f(z).

�

Therefore, E(f̂(z)) → 1
2n0
f(z), where n0 is the number of class-0 observations in the

training data. This implies that if K = 1, uniform kernel is used, and p0 is roughly a

constant within a small neighborhood of |x− z| ≤ r, the LAGO estimate is asymptotically

unbiased up to a constant.

I conduct a univariate simulation to verify the result. Consider the following distribu-

tion:

x|C1 ∼

UNIF[−8.5,−7.5] with probability 1
4
,

UNIF[1.5, 2.5] with probability 1
4
,

UNIF[−10,−8.5) with probability 1
8
,

UNIF(−7.5,−6] with probability 1
8
,

UNIF(−6, 1.5) with probability 1
8
,

UNIF(2.5, 10] with probability 1
8
.

50 Efficient Kernel Methods for Statistical Detection

x|C0 ∼

UNIF[−10,−6] with probability 1
2
,

UNIF(−6, 10] with probability 1
2
.

That means the density of class 1 is

p1(x) =

1
4

when x ∈ [−8.5,−7.5] ∪ [1.5, 2.5],

1
12

when x ∈ [−10,−8.5) ∪ (−7.5,−6],

1
60

when x ∈ (−6, 1.5) ∪ (2.5, 10];

and the density of class 0 is

p0(x) =

1
8

when x ∈ [−10,−6],

1
32

when x ∈ (−6, 10].

And hence the density ratio f(x) = p1(x)
p0(x)

is given by

f(x) =

1/4
1/8

= 2 when x ∈ [−8.5,−7.5],

1/12
1/8

= 2
3

when x ∈ [−10,−8.5) ∪ (−7.5,−6],

1/4
1/32

= 8 when x ∈ [1.5, 2.5],

1/60
1/32

= 8
15

when x ∈ (−6, 1.5) ∪ (2.5, 10].

Let n0 and n1 be the number of class-0 and class-1 observations. The simulation procedure

is as follows:

1. Set the input of the test data to be 81 points over the interval [-10, 10], spaced equally

apart. That is −10,−9.75,−9.5, . . . , 9.5, 9.75, 10.

2. Simulate the training data in the following way: Generate 1
2
n0 data points uniformly

from interval [-10, -6] and another 1
2
n0 from (-6, 10]; generate 1

4
n1 = 60 data points

uniformly from [-8.5, -7.5] and another 60 from [1.5, 2.5]; generate 1
8
n1 = 30 obser-

vations uniformly from each of the four intervals: [-10, -8.5), (-7.5, -6], (-6, 1.5), and

(2.5, 10].

3. Fit LAGO on the training data with the uniform kernel and parameter K = 1.

Predict the LAGO scores for the test data generated in step 1.

Chapter 4: : A Fast Kernel Method for Statistical Detection 51

4. Repeat steps 2 and 3 10,000 times. For each test point z, compare 2n0f̂(z) with its

true density ratio f(z), where f̂(z) is the average of the LAGO score f̂(z) over the

10,000 experiments.

Figure 4.3 compares 2n0f̂(z) with its true density ratio f(z) for z = −10,−9.75, . . . , 9.75, 10.

Except for the boundary points z = −10,−8.5,−7.5, 1.5, 2.5, 10, the rescaled LAGO score

2n0f̂(z) is reasonably close to the true density ratio f(z). The downward boundary effect

is a common issue for the kernel density estimator.

−10 −5 0 5 10

0
2

4
6

8

X

D
en

si
ty

 r
at

io

Figure 4.3: A comparison of the average LAGO scores over 10,000 experiments with the the true

density ratios (the line) for each test point. The LAGO scores are multiplied by 2n0, the scaling

factor derived in the previous section. Here, n0 = 960, and n1 = 240.

52 Efficient Kernel Methods for Statistical Detection

4.1.4 Generalization to Multivariate Case

The LAGO estimate (4.6) can be easily generalized to multivariate cases where predictors

z ∈ R
d for d > 1 by applying the Naive Bayes principle. That is we model each dimension

independently and multiply the marginal models in each dimension together as the final

estimate. The Naive Bayes principle might be inappropriate if there is evidence that the

predictors are correlated. In those cases, one can transform the original data using a

method such as principle component analysis and then apply LAGO in the transformed

space. The algorithm is summarized as follows:

1. For each class-1 observation in the training set, xi ∈ C1, find its K-nearest class-0

neighbors N(K,xi) in R
d and compute the bandwidth vector ri = (ri1, ri2, . . . , rid)

T ,

where rij is the average distance between xi and its K nearest class-0 neighbors in

the jth dimension, that is rij = 1
K

∑

w∈N(K,xi)
|wj − xij |.

2. For every new observation z = (z1, z2, . . . , zd)
T , its LAGO score is given by

f̂(z) =
1

n1

∑

yi=1

{
d∏

j=1

rijK(zj ; xij , αrij)}. (4.16)

Notice that we have introduced an extra global tuning parameter α > 0 in (4.16). The

initial reason is that the performance measures are very insensitive to K. Introducing α not

only makes the overall tuning more effective but also improves the performance of LAGO.

Clearly, setting α = 1 is the same as not introducing this extra tuning parameter. By (4.6),

with the extra parameter α the LAGO score f̂(z) given in (4.16) should be multiplied by a

factor of αd; however, this factor is not included because all monotonic transformations of

f̂(z) are equivalent in terms of ranking. In general, increasing K and increasing α would

both increase the bandwidth rij. However, there is a fundamental difference between the

effects of α and of K on rij . The effect of K depends on the density of the data and hence

is not identical in every dimension. Whereas, the parameter α stretches (α > 1) or shrinks

(α < 1) the bandwidths identically in every dimension. Moreover, our experience indicates

Chapter 4: : A Fast Kernel Method for Statistical Detection 53

that the effect of α on the bandwidths are much stronger than that of K; stretching the

bandwidths by a factor of 2 might be equivalent to increasing K by a hundred. In practice,

it won’t hurt much if we fix K at a reasonable value and only tune α carefully.

The three kernel functions considered in this thesis are the uniform kernel, the triangular

kernel and the Gaussian kernel (see Figure 4.4). Our experience has indicated that if a

uniform kernel is used, a lot of observations receive the same LAGO score. These ties

make the ranking ineffective. Significant improvements can be obtained by choosing K to

be triangular or Gaussian.

Gaussian Triangular Uniform

Figure 4.4: The three kernel functions used for LAGO. Left: Gaussian, K(u) = 1√
2π

exp
(

−u2

2

)

.

Middle: Triangular, K(u) = 1−|u|
2 , |u| ≤ 1. Right: Uniform, K(u) = 1

2 , |u| ≤ 1.

4.1.5 An Illustrative Example

In this section, I illustrate how to construct the LAGO score for a univariate case by a toy

example (see Figure 4.5). Suppose x1 and x2 are two class-1 observations, whereas x3, x4,

and x5 are their class-0 neighbors. Assume that K = 2, for x1 ∈ C1, its 2 nearest neighbors

are x3 and x4, therefore r1 is given by the average distance from x1 to x3 and x1 to x4.

That is,

r1 =
|x3 − x1| + |x4 − x1|

2
.

54 Efficient Kernel Methods for Statistical Detection

Similarly,

r2 =
|x4 − x2| + |x5 − x2|

2
.

The LAGO score contributed by x1 is shown by the Gaussian kernel which centers at x1

and has bandwidth αr1. That is

r1φαr1(z − x1) = r1
1√

2παr1
exp{−(z − x1)

2

2α2r2
1

} ∝ exp{−(z − x1)
2

2α2r2
1

}.

Summing up the scores over all the class-1 observations, i.e., x1 and x2, yields the LAGO

score

f̂(z) = exp{−(z − x1)
2

2α2r2
1

} + exp{−(z − x2)
2

2α2r2
2

},

which is given by the dashed line in Figure 4.5.

x1 x2x3 x4 x5

αr1 αr2

r1φαr1
(z − x1) r2φαr2

(z − x2)

Figure 4.5: The LAGO score (dashed line) contributed by two class-1 observations given K = 2.

4.2 Connection to Existing Models

In this section, we show that LAGO can be viewed as a radial basis function (RBF) network

and discuss the connection between LAGO and SVM.

Chapter 4: : A Fast Kernel Method for Statistical Detection 55

4.2.1 RBF Networks

In the field of functional approximation, it is popular to approximate a function f(x) using

a number of basis functions, e.g.,

f(x) =
M∑

m=1

βmhm(x),

where hm(x) is the mth basis function with βm being its corresponding coefficient, and M

is the total number of basis functions.

Kernel functions are one type of basis function. Treating the kernel function Km as a

basis function hm leads to the radial basis function approximation

f(x) =

M∑

m=1

βmKm(x)

=
M∑

m=1

βmK(x; ξm,λm). (4.17)

Here ξm is the center of the mth kernel function and λm = (λm1, . . . , λmd)
T is a vector of

the corresponding radii in each dimension. A typical choice of K(·) may be the product

of d standard Gaussian density functions, where d is the dimension of x and ξm. The

parameters {λm, ξm, βm}, m = 1, . . . ,M can be chosen by a combination of least squares,

cross-validation and some unsupervised methods.

4.2.2 LAGO as an RBF Network

LAGO described in this chapter can be viewed as a highly specialized RBF network. In

particular, we choose all and only those class-1 observations in the training data xi ∈ C1

to be the centers ξm and use their corresponding bandwidth vector ri = (ri1, ri2, . . . , rid)
T

as the radius λm in (4.17). Moreover, the coefficients are specified implicitly as

βi =
1

n1

d∏

j=1

rij.

56 Efficient Kernel Methods for Statistical Detection

Since LAGO is a special RBF network, it is possible to re-parameterize LAGO in a

more general way. Recall the first step we construct LAGO score – estimating p1 by an

adaptive kernel density estimator. Figure 4.6 illustrates the effect of the density p0 on

the ranking function f . Suppose that the density of class 1, p1, has two components. If

density of class 0, p0, is flat (constant), the ranking by f is equivalent to the ranking by

p1, since all monotonic transformations of f are equivalent. However, if class 0 has density

function p
′

0 rather than a constant, it will have two main effects on the ranking function

f . Let f = p1

p0
and f

′

= p1

p
′

0

. By comparing f and f
′

in Figure 4.6, it is clear that for each

component of f we should stretch its bandwidth and lift its height if p
′

0 is relatively low

nearby; on the other hand, we should shrink its bandwidth and lower its height if p
′

0 is

relatively high nearby. We call the effect on the bandwidth the α-effect and the one on the

height the β-effect.

p1

p1

p0

p0’
C

D

A B
A’ B’

C’
D’

f

f

f ’

f’

α effect

β effect

Figure 4.6: Illustration of the ripple effects. Left: The density functions of p0 and p1. Right:

The density ratio f = p1

p0
.

Chapter 4: : A Fast Kernel Method for Statistical Detection 57

We can construct LAGO in the form of an RBF network, assuming that each component

is a kernel function belonging to a location-scale family, that is,

K(x; xi, ri) =
1

ri

K(
x− xi

ri

).

Now, we can explicitly parameterize the α-effect and the β-effect as follows

rβ
′

i

1

αri

K(
x− xi

αri

) ∝ rβ
′−1

i K(
x− xi

αri

) = rβ
i K(

x− xi

αri

),

where α and β are two tuning parameters to be chosen by empirical methods such as

cross-validation. Theorem 1 in Section 4.1.2 has argued that the parameter β should be

theoretically set to 0 (or β
′

= 1). We have run an empirical study on the NCI data to verify

the claim that β should be 0 by cross-validation. To save computation, we simply fix K = 5

and select α and β simultaneously using 5-fold cross-validation. Figure 4.7 presents the

contour plot of average precision based on a 9×9 grid with α = 0.1, 0.25, 0.5, 1, 1.5, 2, 3, 4, 5

and β = −1,−0.5,−0.1,−0.01, 0, 0.01, 0.1, 0.5, 1. It is obvious that the optimal value of β

chosen by cross-validation is around 0, which supports the theoretical result.

4.2.3 SVM as an RBF Network

Recall that we use the signed distance (3.5) as the ranking function for SVM in a statistical

detection problem. Since all the monotonic transformations of the signed distance are

equivalent in ranking, it suffices to use only the inner product term ŵTxi. As a result, the

ranking function becomes

f̂svm(x) =
∑

xi∈sv
α̂iyiK(x,xi), (4.18)

which forms an RBF network with all the support vectors as centers of the kernel functions

and α̂yi as the coefficients. Schölkopf et al. (1997) argued that SVMs can be regarded as

automatically constructed RBF networks in that the support vectors and α̂i are automat-

ically determined by the algorithm. Because both SVM and LAGO can be viewed as RBF

networks, SVM provides us a good benchmark of the performance of LAGO. In addition,

58 Efficient Kernel Methods for Statistical Detection

α

β

0 1 2 3 4 5

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

Contour of AP: Split1

α

β

0 1 2 3 4 5

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

Contour of AP: Split2

α

β

0 1 2 3 4 5

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

Contour of AP: Split3

α

β

0 1 2 3 4 5

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

Contour of AP: Split4

Figure 4.7: Contours of average precision on the four training sets of the NCI data for different

values of α, β, and fixed K = 5.

Chapter 4: : A Fast Kernel Method for Statistical Detection 59

it is also instructive to compare the centers SVM picked (i.e., the support vectors) with

those we chose in LAGO (all class-1 training observations).

4.3 Application to the NCI AIDS Data

In this section, we apply LAGO to the NCI AIDS data described in Section 2.3.1 and com-

pare its performance with KNN, SVM and ASVM. The reason why we chose SVM as one

of the benchmarks has been given in Section 4.2.3. KNN is chosen for two reasons. First,

nearest-neighbor method is applied to calculate the bandwidth in LAGO. Second, a previ-

ous study (Wang 2005, Chapter 4) based on the original NCI data (with some replicates)

concluded that KNN significantly outperforms all other methods at a 5% significance level

in terms of average precision. Those methods included trees, MARS, Neural Network,

GAM and logistic regression. The comparison was based on four experiments using pair-

wised t-test. In each experiment, the dataset was randomly divided into the training and

test sets with equal sizes in both the active and the inactive compounds. Models were fit

on the training sets and performance was assessed on the test sets.

We conduct a similar study on the non-replicated NCI data by evenly splitting the data

into training and test sets (see Table 4.1) four times.

Activity class Data set Training Test

0(Inactive) 28,659 14,329 14,330

1(Moderately active) 378 189 189

2(Conformed active) 205 102 103

Total 29,242 14,620 14,622

Table 4.1: Training/test split of the NCI data.

In each experiment, five-fold cross-validation over some pre-determined grid values is

60 Efficient Kernel Methods for Statistical Detection

used on the training set to choose the optimal tuning parameters which yield the largest

average precision. We randomly divided the training data into five folds in such a way that

each fold has roughly the same activity frequencies (see Table 4.2).

Inactive Moderately active Confirmed active

Fold 1 2866 38 20

Fold 2 2866 38 20

Fold 3 2866 38 20

Fold 4 2866 38 20

Fold 5 2865 37 22

Total 14329 189 102

Table 4.2: Randomly divide the training data into five folds.

The five-fold cross-validation procedure to choose the optimal parameters is as follows:

Loop through all possible combinations of the grid values of the parameters

1. Keep fold 1 aside for validation and train the model with the other four folds. Sup-

pose we get model M1. Apply M1 to fold 1 data to obtain a vector of estimated

probabilities p1.

2. Repeat step 1 for all the other folds. Now, we have p = (p1,p2,p3,p4,p5), the

estimated probability vector of being active for all the training observations.

3. Sort p from the largest to the smallest to get p
′

= (p(1), p(2), . . . , p(14620)) and sort

the class label of the training data accordingly to obtain y
′

= (y(1), y(2), . . . , y(14620)).

4. Calculate the average precision by equation (3.8).

Chapter 4: : A Fast Kernel Method for Statistical Detection 61

End loop

The optimal combination of parameters is the one that gives the largest cross-validated

average precision.

4.3.1 Results

We compare the performances of six models in average precision on four random train-

ing/test splits. These six methods are LAGO with a Gaussian kernel (LAGO-G), LAGO

with a triangular kernel (LAGO-T), LAGO with a uniform kernel (LAGO-U), KNN,

SVM and ASVM. The four training/test splits are referred to as ”split1, . . . , split4”. For

each split, all tuning parameters are chosen using five-fold cross-validation on the train-

ing set and performance measures are compared on the test set. For LAGO, there are

two tuning parameters – K (number of class-0 neighbors determining the bandwidth)

and the stretching parameter α. The grid values we considered are K ∈ {1, 2,k} and

α ∈ {0.1, 0.25, 0.5, 1, 1.5, 2, 3, 4, 5}, where vector k is given by

k = {3 × 5
i
6}19

i=0.

The reason for this choice of K values is that I want K to increase linearly in log-scale.

Note that the effect of K’s being increased from 2 to 3 is more influential than K’s being

increased from 22 to 23 for multivariate applications where the dimension of predictors

d > 1. Assuming that all the data are contained in a unit hypersphere, to capture a

fraction R of the observations, we need a hypersphere whose radius is proportional to

R1/d. For the NCI data the dimension of the predictors is d = 6, that is why I set the grid

of K values in the above form.

For KNN, there is only one tuning parameter, K, the number of nearest neighbors. The

grid values of K we considered for KNN are the same as those of LAGO. For SVM, there

are two tuning parameters: γ (the bandwidth parameter) and C (the penalty parameter);

as for ASVM, there are three tuning parameters: C, γ and w1 (weight parameter for class

62 Efficient Kernel Methods for Statistical Detection

1). The performance of SVM and ASVM is very sensitive to the choice of parameters;

therefore, it is important to choose the parameters carefully. Hsu, Chang and Liu (2007)

provided two main guidelines in tuning the parameters for SVM:

1. It is better to set the grids in exponential scale;

2. Have a coarse search in a wider range first and then shrink the range for a finer

search.

Following these two guidelines, I selected the grid values for γ, C, and w1 as follows. For

both SVM and ASVM, the grid values of γ are exp{2, 3, . . . , 9} = {7.39, 20.09, 54.60, 148.41,

403.43, 1096.63, 2980.96, 8103.08}. For SVM, the considered values of C are exp{−4.7,−3.6,

−2.5,−1.4,−0.3, 0.8, 1.9, 3.0} = {0.01, 0.03, 0.08, 0.25, 0.74, 2.23, 6.69, 20.09}. As for ASVM,

a narrow range of C is searched, i.e., C ∈ exp{−4.7,−3.62,−2.54,−1.46,−0.38, 0.7} =

{0.01, 0.03, 0.08, 0.23, 0.68, 2.01}; and w1 ∈ exp{−3,−2,−1, 0, 1, 2, 3} = {0.05, 0.14, 0.37, 1,

2.72, 7.39, 20.09}.
The parameters selected by cross-validation for all methods are given in Table 4.3. The

resulting average precisions are reported in Table 4.4.

Uniform Triangular Gaussian KNN SVM ASVM

K α K α K α K γ C γ C w1

split1 5 1 5 3 4 0.5 5 1096.63 2.23 148.41 0.68 2.72

split2 7 1.5 9 3 9 1 5 54.60 2.23 54.60 0.68 2.72

split3 5 1.5 7 3 7 1.5 5 54.60 0.74 54.60 0.23 2.72

split4 4 1.5 4 4 2 2 5 20.09 2.23 20.09 0.68 7.39

Table 4.3: Tuning parameters selected for different models using cross-validation

Chapter 4: : A Fast Kernel Method for Statistical Detection 63

Uniform Triangular Gaussian KNN SVM ASVM

split1 0.1776 0.2461 0.2292 0.2008 0.1926 0.2091

split2 0.1942 0.2406 0.2503 0.1864 0.2105 0.2055

split3 0.1881 0.2562 0.2554 0.1876 0.1688 0.2078

split4 0.1983 0.2756 0.2713 0.2373 0.2063 0.2600

Table 4.4: Test-set average precisions of different methods for the NCI data.

Figure 4.8 plots the average precisions, and Figure 4.9 shows the hit curves when

different methods are applied to the four different test sets. Since after the top 500 detected

items, the precisions of all the methods are no better than random selection and the hit

curves begin to level out, all the hit curves for the NCI data are plotted up to the first 500

selected compounds.

Index of Split

1 2 3 4

0.
18

0.
20

0.
22

0.
24

0.
26

Gaussian
Triangular
Uniform
KNN
SVM
ASVM

Figure 4.8: The average precisions of different methods evaluated on the test data.

64 Efficient Kernel Methods for Statistical Detection

0 100 200 300 400 500

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

Total Number Detected: n

A
ct

u
a

l H
its

:
h

(n
)

Triangular
Gaussian
Uniform
KNN
SVM
ASVM

Split 1

0 100 200 300 400 500

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

Total Number Detected: n
A

ct
u

a
l H

its
:
h

(n
)

Triangular
Gaussian
Uniform
KNN
SVM
ASVM

Split 2

0 100 200 300 400 500

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

Total Number Detected: n

A
ct

u
a

l H
its

:
h

(n
)

Triangular
Gaussian
Uniform
KNN
SVM
ASVM

Split 3

0 100 200 300 400 500

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

Total Number Detected: n

A
ct

u
a

l H
its

:
h

(n
)

Triangular
Gaussian
Uniform
KNN
SVM
ASVM

Split 4

Figure 4.9: Hit curves of different methods for the four random splits of the NCI data. Upper

left: The 1st split; Upper right: The 2nd split; Lower left: The 3rd split; Lower right: The 4th

split.

Since we measure performance four times with different training and test splits, it

is possible to compare those different methods using analysis of variance (ANOVA). Let

Chapter 4: : A Fast Kernel Method for Statistical Detection 65

µK , µS, µA, µU , µT and µG be the average performance (in terms of average precision) of

KNN, SVM, ASVM, LAGO-U, LAGO-T, and LAGO-G, respectively. We can further

compare the difference among methods by constructing a set of contrasts. The expressions

and estimates of the five non-orthogonal contrasts are shown in Table 4.5 and the ANOVA

results are given in Table 4.6. The main conclusion is (LAGO-T ∼ LAGO-G) ≻ ASVM ≻
(SVM ∼ LAGO-U ∼ KNN), where ”∼” means ”not significantly different from” and ”≻”

means ”significantly better than”. This conclusion holds at the 5% significance level.

Contrast Expression Estimate

Cntr1 µT − µG 0.0031

Cntr2 µG − µA 0.0340

Cntr3 µA − µS 0.0261

Cntr4 (µK + µU)/2 − µS 0.0017

Cntr5 µK − µU 0.0134

Table 4.5: Estimated contrasts for the NCI data.

Source SS(×10−4) df MS(×10−4) F0 P-Value

Method 162.061 5 32.412 19.021 < 0.0001

Cntr1 0.189 1 0.189 0.111 0.7439

Cntr2 23.137 1 23.137 13.578 0.0022

Cntr3 13.590 1 13.590 7.975 0.0128

Cntr4 0.081 1 0.081 0.048 0.8303

Cntr5 3.615 1 3.615 2.122 0.1659

Splits 41.353 3 13.784 8.089 0.0019

Error 25.560 15 1.704

Total 228.975 23

Table 4.6: ANOVA analysis of differences among methods for the NCI data.

66 Efficient Kernel Methods for Statistical Detection

4.3.2 Comparison to SVM

Although constructed in different ways, both LAGO and SVM can be viewed as RBF

networks; therefore, it is instructive to compare the structures of these two RBF networks.

Note that LAGO puts basis functions at and only at all of the class-1 observations in the

training set, whereas SVM assigns basis functions on all of the support points.

Table 4.7 gives the numbers of training observations from both classes that are cho-

sen as support vectors by SVM and ASVM for the four random splits of the NCI data.

Recall that we have 291 active compounds and 14,329 inactive in each training set. Both

SVM and ASVM includes almost all the class-1 observations (active compounds) as their

support vectors. In addition, SVM and ASVM also select a fairly large number of class-0

observations (inactive compounds) as support vectors. In this sense, LAGO can be viewed

as a sparse SVM without the need to search for support vectors. Instead of searching for

the support vectors by solving a quadratic programming, LAGO directly selects only the

class-1 observations as support vectors. This sparsity not only saves computational cost

but also improve the performance.

SVM ASVM

C0 C1 C0 C1

Split 1 13724 279 5818 280

Split 2 1280 278 2250 276

Split 3 2202 287 2663 288

Split 4 1037 287 2247 270

Total Possible 14329 291 14329 291

Table 4.7: Numbers of support vectors from classes C0 and C1.

Chapter 4: : A Fast Kernel Method for Statistical Detection 67

4.3.3 Computational Complexity

This section discusses the theoretical computational complexity and compares the empirical

computational times of KNN, LAGO-G, SVM using their own compiled R packages on the

same machine. The Gaussian kernel is used for SVM for a more fair comparison with

LAGO-G.

Given a certain value of the parameter K, there is no computational cost in fitting

a KNN. However, once cross-validation is used to choose K, the computational cost is

dominated by the calculation of the N by N pairwise distance matrix, where N is the

number of observations in the training set. The computational complexity is O(dN2),

where d is the dimension of the input, e.g., d = 6 for the NCI data.

As for LAGO-G, given a pair of K and α values, the major cost is calculating the

distance matrix whose size is n1 by n0, where n1 and n0 are respectively the numbers of

class-1 and class-0 observations in the training set. Therefore, the computational complex-

ity of fitting a LAGO-G is of order O(dn1n0). LAGO-G is faster and cheaper than KNN

in calculating and storing the distance matrix.

Given a configuration of the parameters γ and C, the major cost of SVM is in solving

a quadratic programming (QP) with linear inequality constraints. General QP solvers

require O(N3) computations in each iteration (Chin 1999, Chapter 3). In practice, the

number of iterations required for the solvers to converge varies considerably for different

data sets. Direct solution of the QP problem using general QP solvers might be infeasible

due to the demanding computation and memory requirements; more practical approaches

need to be found. The most popular approach is the decomposition method, which breaks

the original QP problem into a series of smaller sub-QP problems; within each sub-problem,

only a subset of the unknowns — the so-called working set, are updated. Two well-known

implementations of SVM are SVMlight (Joachims, 1998) and LIBSVM (Chang and Lin,

2007). Both of them apply the decomposition idea. In LIBSVM, the C++ source codes

of the built-in function svm in the R package {e1071} (Meyer, 2007), the authors adopt

68 Efficient Kernel Methods for Statistical Detection

the sequential minimal optimization (SMO) (Platt, 1999b) approach, which restricts the

size of the working set to be 2, the smallest possible value. With some clever strategies,

both Joachims (1998) and Chang and Lin (2007) claimed that SVM can be solved with

complexity # iterations × O(dNq), where q is the size of the working set. The number of

iterations really depends on the number of support vectors of the resulting SVM; the more

support vectors, the more iterations are required for the algorithms to converge.

Given a new data point, in order to calculate its score of being class 1, the computational

cost of KNN is in finding its K nearest neighbor, whose complexity is O(dN); the cost of

LAGO-G is in evaluating the kernel functions with complexity O(dn1); the cost of SVM is

also in evaluating the kernel functions, whose complexity is O(dnSV) with nSV being the

number of support vectors of the resulting SVM. In general, n1 < nSV < N for statistical

detection. This means LAGO is faster than KNN and SVM in prediction. Table 4.8

summarizes the computational complexities of KNN, LAGO-G, and SVM. Note that the

values in Table 4.8 correspond to the training time with fixed parameters, e.g., a single K

value in KNN. If these parameters are chosen via cross-validation or other methods, the

models need to be trained many times.

KNN LAGO-G SVM

Train None O(dn1n0) # iterations × O(dNq)

Predict O(dN) O(dn1) O(dnSV)

Table 4.8: The theoretical computational complexities of KNN, LAGO-G, SVM in training and

predicting. N : the total number of observations in the training set; n0: number of class-0 training

observations; n1: number of class-1 training observations; nSV : number of support vectors; q:

the size of the working set in the decomposition method.

Since KNN, LAGO and SVM have been implemented in compiled R packages, it is

interesting to compare the practical computation times of these three methods. An empir-

Chapter 4: : A Fast Kernel Method for Statistical Detection 69

ical study is conducted on the first split of the NCI data. The whole training set consists

of 14,620 compounds among which 291 are active. The empirical computational times of

KNN, LAGO-G and SVM are compared on a series of nested subsets of the full training

set. The subsets are chosen by taking stratified random samples from the training set,

which means that all the subsets have the same proportion of active compounds. The next

subset is half of the size of the previous one. The parameters of the models are fixed at

their corresponding optimal choices on the full training set by cross-validation (see Table

4.3).

Table 4.9 reports the sample size of the training set with number of active compounds

in bracket, the execution times of the three methods, and the number of support vectors

of the resulting support vector machine from the two classes. The computational times

reported in Table 4.9 include the time for model fitting and making prediction for a test

set of the same size as the training set. Results of KNN are obtained by using the function

knn in R library {class}.

Training size KNN LAGO-G SVM # of SVs

N (n1) K = 5 (K = 4, α = 0.5) (γ = 1096, C = 2.23) C0 C1

14620 (291) 4.874 3.254 284.270 13724 279

7309 (146) 1.220 0.786 66.638 7023 142

3656 (72) 0.326 0.158 10.277 3562 72

1828 (36) 0.080 0.042 1.638 1791 36

914 (18) 0.022 0.016 0.408 895 18

Order O(N2) O(N2) O(N2.6)

Table 4.9: The computational times (in second) of KNN, LAGO-G, SVM in model fitting and

testing together based on a series of nested subsets of the first split of the NCI data.

For the NCI data, both KNN and LAGO-G are significantly faster than SVM with the

70 Efficient Kernel Methods for Statistical Detection

Gaussian kernel, whereas LAGO-G is about 1.5 times as fast as KNN. By fitting a linear

regression on log(Time) versus logN , we get the empirical computational complexities of

order O(N2) for both KNN and LAGO-G. The empirical computational complexity for

SVM is roughly of order O(N2.6). Compared to SVM, LAGO is more efficient in the sense

that it does not require any iterative optimization whereas SVM does.

4.4 Application to Simulated Data

In this section, we apply LAGO to two simulated data sets. The first one is the Mysim data

that are generated from a mechanism described in Section 2.3.2; and the second one is the

Mysim-LAGO data that are generated from a mechanism similar to LAGO. Performance

of LAGO on these two simulated data sets is compared with KNN, SVM, and ASVM.

4.4.1 The Mysim Data

LAGO-G, LAGO-T, LAGO-U, KNN, SVM and ASVM are compared in terms of average

precision on 100 experiments. In each experiment, we generate a set of training data, a set

of validation data, and a set of test data from the same mechanism: generate 300 class-0

observations from [−3, 3] × [−1, 5]; generate 40 class-1 observations from region A, and

another 60 class-1 observations from region B (see Figure 2.2). For all the methods, tuning

parameters are chosen on the validation data and performance is compared on the test

sets. For LAGO, the two tuning parameters are K and α which take values from K ∈
{2, 3, 4, 5, 7, 9, 11, 15, 20, 26, 34, 44, 57, 75, 98, 128} and α ∈ {0.1, 0.25, 0.5, 1, 1.5, 2, 3, 4, 5}.
KNN has only one tuning parameter K which takes odd numbers from 3 to 65. For SVM

and ASVM, the grid values for the tuning parameters are the same as those given in Section

4.3.1.

Figure 4.10 presents boxplots of the 100 experimental average precisions for all the

methods compared. Table 4.10 shows the expressions of six non-orthogonal contrasts and

Chapter 4: : A Fast Kernel Method for Statistical Detection 71

their corresponding estimated values.

0.
75

0.
80

0.
85

0.
90

0.
95

LAGO−G LAGO−T LAGO−U KNN SVM ASVM

Figure 4.10: The test-set average precisions of different methods evaluated on 100 experiments

of the Mysim data.

Contrast Expression Estimate

Cntr1 (µG + µT)/2 − µU 0.0062

Cntr2 µG − µT 0.0005

Cntr3 µS − µA 0.0024

Cntr4 µU − µK 0.0096

Cntr5 (µG + µT)/2 − (µS + µA)/2 0.0030

Cntr6 (µG + µT + µS + µA)/4 − µK 0.0143

Table 4.10: Estimated contrasts for the Mysim data.

72 Efficient Kernel Methods for Statistical Detection

The ANOVA results of comparing differences among methods are given in Table 4.11.

The conclusion of the comparison is (ASVM ∼ SVM ∼ LAGO-T ∼ LAGO-G) ≻ LAGO-U ≻
KNN, where ”∼” means ”not significantly different from” and ”≻” means ”significantly

better than”. This conclusion holds at the 5% significance level.

Source SS (×10−3) df MS (×10−3) F0 P-Value

Methods 17.785 5 3.557 6.404 <0.0001

Cntr1 2.570 1 2.570 4.626 0.0339

Cntr2 0.012 1 0.012 0.021 0.8856

Cntr3 0.291 1 0.291 0.523 0.4712

Cntr4 4.566 1 4.566 8.220 0.0051

Cntr5 0.884 1 0.884 1.591 0.2101

Cntr6 16.309 1 16.309 29.361 <0.0001

Replicates 622.811 99 6.291 11.326 <0.0001

Error 274.953 495 0.555

Total 915.549 599

Table 4.11: ANOVA analysis of differences among methods for the Mysim data.

4.4.2 The Mysim-LAGO Data

In this simulation study, we generate data from the mechanism similar to LAGO by pre-

specifying the locations and the bandwidths of the kernel functions given in (4.16); we

refer to this simulated data as the Mysim-LAGO data. Predictors are generated using the

same mechanism described in Section 4.4.1 for the Mysim data: (x1, x2) ∈ [−3, 3]× [−1, 5].

Class labels, however, need to be generated from LAGO. Note that LAGO is an estimate

of the density ratio of class 1 and class 0, hence the LAGO score itself is not a probabilistic

estimate. However, we can easily change LAGO score f̂(·) to the probability scale using a

Chapter 4: : A Fast Kernel Method for Statistical Detection 73

logistic transformation exp(β0 +β1f̂(·))/(1+exp(β0 +β1f̂(·))), where β1 > 0 which ensures

this logistic transformation to be a monotonically increasing function in the LAGO score

f̂(·) and, hence, preserves the same ranking as f̂ . Given a data point x and its probability

of being class 1, px, it is very easy to determine x’s class label (either 1 or 0) by a Bernoulli

distribution with probability of success px.

Recall that LAGO is a special RBF network where we put kernel functions at and only

at the class-1 training points. In order to generate data from LAGO, we need to know the

locations and the bandwidths of the kernel functions. For simplicity, we put five kernels

within the square [−2,−1] × [3, 4] and another nine within the square [1, 2] × [0, 1] (see

Figure 4.11). All the kernel functions are assigned the same bandwidth r = 0.25. A logistic

link is used to transfer the LAGO score to probability. I use (β0, β1) = (−2.8, 45) and the

resulting probability surface is shown in Figure 4.11.

X1

X
2

−3 −2 −1 0 1 2 3

−
1

0
1

2
3

4
5

Figure 4.11: Probability surface of the Mysim-LAGO data. Dots represent the centers of the

fourteen kernel functions. The bandwidth of all the kernels is r = 0.25, and (β0, β1) = (−2.8, 45).

74 Efficient Kernel Methods for Statistical Detection

The performance of LAGO, KNN, SVM and ASVM is compared on the Mysim-LAGO

data. Like the simulation study in Section 4.4.1, comparison is conducted on average

precision on 100 experiments. In each experiment, we generate a set of training data, a

set of validation data, and a set of test data from the probability surface calculated by

LAGO with kernel functions at those 5 + 9 locations, bandwidth r = 0.25, and logistic

transformation coefficient (β0, β1) = (−2.8, 45). The sample sizes of the training, validation

and test data sets are all 400. For all the methods, tuning parameters are chosen on the

validation data and performance is compared on the test sets. The considered grid values

for the tuning parameters of different methods are the same as those in Section 4.4.1.

Figure 4.12 presents boxplots of the 100 experimental average precisions for all the

methods compared. Table 4.12 lists the expressions of five non-orthogonal contrasts and

their corresponding estimated values. Table 4.13 shows the ANOVA table of comparing

differences among methods. The conclusion of the comparison is (LAGO-T ∼ LAGO-G ∼
KNN) ≻ (LAGO-U ∼ ASVM ∼ SVM), where ”∼” means ”not significantly different from”

and ”≻” means ”significantly better than”. This conclusion holds at the 5% significance

level. LAGO and KNN are relatively more stable than SVM and ASVM; notice those

outliers of SVM and ASVM in Figure 4.12.

Contrast Expression Estimate

Cntr1 (µG + µT)/2 − µU 0.0342

Cntr2 µT − µG 0.0012

Cntr3 µA − µS 0.0116

Cntr4 µK − µU 0.0253

Cntr5 (µG + µT)/2 − (µA + µS)/2 0.0290

Cntr6 (µG + µT)/2 − µK 0.0089

Cntr7 (µA + µS)/2 − µU 0.0052

Table 4.12: Estimated contrasts for the Mysim-LAGO data.

Chapter 4: : A Fast Kernel Method for Statistical Detection 75

Source SS (×10−3) df MS (×10−3) F0 P-Value

Method 129.795 5 25.959 7.775 <0.0001

Cntr1 77.955 1 77.955 23.348 <0.0001

Cntr2 0.070 1 0.070 0.021 0.8851

Cntr3 6.734 1 6.734 2.017 0.1562

Cntr4 32.094 1 32.094 9.612 0.0020

Cntr5 84.353 1 84.353 25.264 <0.0001

Cntr6 5.233 1 5.233 1.567 0.2112

Cntr7 1.769 1 1.769 0.530 0.4670

Replicate 4015.815 99 40.564 12.149 <0.0001

Error 1652.726 495 3.339

Total 5798.336 599

Table 4.13: ANOVA analysis of differences among methods for the Mysim-LAGO data.

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

LAGO−G LAGO−T LAGO−U KNN SVM ASVM

Figure 4.12: The test-set average precisions of different methods evaluated on 100 Mysim-LAGO

data sets.

76 Efficient Kernel Methods for Statistical Detection

4.5 Conclusion

A computationally efficient statistical detection method called LAGO, which stands for

locally adjusted GO estimator, is proposed in this chapter. LAGO is constructed to ap-

proximate the density ratio f in two steps. In the first step, the density p1 is estimated

by a kernel density estimator where the bandwidth is calculated as the average distance

between each class-1 observation and its K nearest neighbors from class 0. This special

bandwidth selection is originally inspired by an ancient game which is now known as GO.

In the second step, instead of estimating p0 functionally, we adjust p1 piecewisely by a local

constant. It can be shown that the amount of adjustment is roughly inversely proportional

to the bandwidth calculated in the first step.

The relationship between LAGO and support vector machine (SVM) is also discussed

in this chapter. Principally, LAGO can be viewed as a special self-defined SVM where all

and only the class-1 observations are support vectors and the kernel parameter γ is set

to be proportional to the bandwidth parameter calculated in the first step of constructing

LAGO. This gives LAGO a significant computational advantage over SVM.

LAGO methods with three different kernel functions (Gaussian or LAGO-G, triangular

or LAGO-T, uniform or LAGO-U), together with KNN, SVM and ASVM, are applied to

the NCI data and the two simulated data sets. Results show that LAGO-G and LAGO-T

are the two and the only two methods that are consistently among the best models across

all the data sets.

It can be shown that the LAGO estimator is asymptotically unbiased up to a constant

under some ideal conditions. These conditions are:

1. The density of the class 0, p0, should be roughly a constant within a tiny neighborhood

of each class-1 observations.

2. For each class-1 observation, only the nearest neighboring observation from class 0 is

used to calculate the bandwidth, i.e., K = 1.

Chapter 4: : A Fast Kernel Method for Statistical Detection 77

3. The uniform kernel is used.

Due to the extremely unbalanced feature of statistical detection problems, it should be

safe to assume that within a local neighborhood the density of class 0, p0, is relatively flat in

comparison with p1, the density of class 1. In practice, condition (1) should be reasonably

easy to satisfy. Conditions (2) and (3) make the proof much easier; however, they are not

necessary conditions. Relaxing these conditions will not create any fundamental difficulty,

but will undoubtedly make explicit calculations such as (4.8) and (4.11) much more tedious.

If condition (1) is not satisfied, LAGO is a biased estimator of the density ratio f . This

bias, however, will not affect LAGO’s performance in statistical detection problems where

interest focuses on a correct relative ranking rather than an accurate prediction.

In the next chapter, I will discuss how to place LAGO into a Bayesian framework.

Chapter 5

Bayesian LAGO

5.1 Motivation

LAGO only provides a point estimate of a test point’s possibility of being class 1; however,

the uncertainty of this estimate is not quantified. Moreover, LAGO is not a well-calibrated

probabilistic estimate. In some applications, a correct ranking is not enough; what is

needed is an accurately calibrated prediction. Zadrozny and Elkan (2001a, b) gave ex-

amples of scenarios where estimation of p(y = 1|z) is important. In drug discovery, it

is also beneficial to know a compound’s probability of being active p(y = 1|z) given its

BCUT descriptors z. For example, suppose the cost of further investigating a promising

compound zi is t(zi), researchers can pick the top m compounds that are most likely to be

active for further investigation such that the total expected cost is still within the budget,

i.e.,
∑m

i=1 p(yi = 1|zi)t(zi) ≤ budget. Moreover, it is even more desirable if the variability

of p(y = 1|z) is also known. For instance, if two compounds, zj and zk, are both predicted

to be active with a high probability of 0.9 but the variability of zj is twice as much as zk,

then it is natural for a pharmaceutical company to spend its limited resources investigating

compound zk rather than zj .

In Section 4.1.3 we show that under certain circumstances LAGO is unbiased for the

79

80 Efficient Kernel Methods for Statistical Detection

density ratio f up to a constant and hence can be transformed to an unbiased estimate

for the posterior probability p(y = 1|z) by equation (4.1). However, those assumptions

are restrictive and thus in many situations the transformation suggested by (4.1) will

not provide a good estimation of p(y = 1|z). We would like to be able to estimate the

probability p(y = 1|z) in a broader range of circumstances and obtain the variability of

the probabilistic estimate. Bayesian methods provide a nice framework to fulfill this goal.

One intuitive way to obtain a probabilistic LAGO, pf̂ , is to pass the original LAGO

score through either a logistic transformation or a probit transformation, that is

Logit link: pf̂ = eβ0+β1f̂

1+eβ0+β1f̂

Probit link: pf̂ = Φ(β0 + β1f̂), (5.1)

where Φ(·) is the CDF of the standard normal distribution and β1 > 0 which ensures (5.1)

is a monotonically increasing function in the LAGO score f̂ . This can be viewed as a two-

stage approach: train LAGO and choose the optimal pair of parameters (K,α) in the first

stage; fit a logistic regression and obtain the regression coefficients (β0, β1) in the second

stage. This two-stage approach is popular in practice and widely discussed in literature

(see Section 5.2.1). The Bayesian approach, on the other hand, allows us to execute these

two steps simultaneously.

In this chapter, we propose a Bayesian framework for LAGO (BLAGO) that calculates

the posterior distribution over a grid of (K,α), integrating out β0 and β1 using the Laplace

approximation. Inference on any quantity of interest can be made under this Bayesian

framework and a more accurate probabilistic estimate can be achieved using the idea of

Bayesian Model Averaging (see Hoeting et al., 1999 for an overview). BLAGO not only

provides an estimation of a test point’s probability of being class 1 but also captures the

uncertainty of this estimation.

The rest of this chapter is organized as follows. Section 5.2 reviews the materials related

to BLAGO. The methodology and implementation of BLAGO are discussed in Section 5.3.

Chapter 5 : Bayesian LAGO 81

A frequentist approach that enables LAGO to produce probabilistic estimates is presented

in Section 5.4. BLAGO is applied to the NCI data in Section 5.5. Two aspects of the

performance of BLAGO are discussed:

1. Performance comparison with LAGO-G, SVM and ASVM in terms of average preci-

sion. The reason LAGO-G, SVM and ASVM are picked is that LAGO-G, LAGO-T,

ASVM outperform SVM, LAGO-U and KNN; the performances of LAGO-G and

LAGO-T are almost identical; and the performances of SVM, LAGO-U and KNN

are similar.

2. Comparison of BLAGO with LAGO in terms of deviance.

The application of BLAGO on two simulated data sets is shown in Sections 5.6 and 5.7.

In each case, two aspects of the performance of BLAGO are considered:

1. Performance comparison with LAGO-G, KNN, SVM and ASVM in terms of average

precision based on the results of 100 experiments. In each experiment, models are fit

on the training set and performance is compared on the test set. The sample sizes

of both the training and test set are 400.

2. Performance of BLAGO in estimating true probabilities and quantifying uncertainty

for 13 representative points.

5.2 Literature Review

Several ingredients are required to develop a Bayesian approach to a certain model, e.g.,

LAGO. First, the predictions of the model must be well-calibrated so that they correspond

to class probabilities. Second, the model must be specified in the Bayesian framework.

Finally, efficient approximations and computational methods are required to evaluate the

posterior probability distribution. In Sections 5.2.1 - 5.2.4, we discuss these issues and

review related work.

82 Efficient Kernel Methods for Statistical Detection

5.2.1 Transforming Ranking Scores to Probabilities

For classification problems, some classifiers produce scores that rank items well but are

not well-calibrated. Take SVM for example. The signed distance indicates the confidence

that SVM has in its prediction. The larger the score, the higher probability that the given

observation belongs to class 1. However, the signed distance itself is not a well-calibrated

probabilistic estimate. The situation is similar for the LAGO score. Even though the

LAGO score, whose range is (0, 1), is able to rank the observations well by their possibilities

of being class 1, it is not a well-calibrated estimate of the true probability.

Several papers have considered calibrating a score function to a probability. Let p(q|x)

be the probability that x belongs to class q. When q ∈ {1,−1}, Platt (1999a) proposed a

parametric approach to map the signed distance of SVM sd(x) into probability estimates

p̂(q|x) through a sigmoid (or logistic) function

p̂(q = 1|x) =
1

1 + eAsd(x)+B
,

where parameters A and B are estimated via maximum likelihood. This method works

well if the relationship between SVM scores and the probabilities p(q|x) appears to be

sigmoidal.

Zadrozny and Elkan (2002) suggested using binning, which is a non-parametric method,

if the mapping function is unknown. In binning, the training observations are sorted by

their scores and the sorted set is divided into b subsets of equal size, called bins. The lower

and upper boundary scores of each bin are computed. Given a data point x, its probability

of being class q is estimated by the proportion of class-q training points in the bin where

sd(x) lies. One disadvantage of binning is the difficulty in selecting the number of bins b.

Results can be very sensitive to this choice.

Besides binning, Zadrozny and Elkan (2002) proposed another non-parametric method

using isotonic regression. This method is motivated by the fact that if the classifier

ranks items correctly, the mapping from scores into probabilities should be isotonic (non-

Chapter 5 : Bayesian LAGO 83

decreasing). Isotonic regression is a non-parametric form of regression in which the map-

ping function is assumed to be chosen from the class of all isotonic functions. Zadrozny and

Elkan applied the pair-adjacent violators (PAV) algorithm to find the step-wise constant

isotonic regression such that the mean-squared error is minimized.

All the methods discussed above are two-stage approaches, in which sd(x) is treated as

a known covariate during estimation of the transformation.

5.2.2 Casting Statistical Methods in Bayesian Framework

Bayesian methods have been applied to statistical methods such as Generalized Linear

Models (e.g., Zeger and Karim, 1991; Albert and Chib, 1993; Mallick and Gelfand, 1994),

Neural Networks (Neal, 1996), tree models (Chipman et al., 1998, 2000, 2006), SVM

(Tipping, 2001), and KNN (Holmes and Adams, 2002). Since BLAGO is closely related to

the work of Holmes and Adams (2002), we will discuss their work in detail.

Holmes and Adams (2002) introduced a Bayesian framework for KNN (BKNN) to

capture model uncertainty. BKNN outperforms KNN significantly for applications where

un-equal misclassification weights are used for different classes. They adopted the pseudo-

likelihood (see Section 5.2.3 for more details) of the data given the parameters β and K

as follows,

p(Y|X, β,K) =

n∏

i=1

exp{(β/K)
∑

j∈N(xi,K) I(yj = yi)}
∑Q

q=1 exp{(β/K)
∑

j∈N(xi,K) I(yj = q)}
, (5.2)

where (Y,X) are the training data, N(xi, K) denotes the set of xi’s K nearest neighboring

observations, β > 0 is a parameter that controls the strength of association between the

neighboring yi, and Q is the total number of classes. The pseudo-likelihood in (5.2) is not

a full likelihood, because the likelihood component for response yi depends on the class

labels of the other responses yj with j ∈ N(xi, K). Take Q = 2 for example. Each piece

84 Efficient Kernel Methods for Statistical Detection

in (5.2) can be rewritten as

p(yi|xi, β,K) =
exp{(β/K)

∑

j∈N(xi,K) I(yj = yi)}
exp{(β/K)

∑

j∈N(xi,K) I(yj = yi)} + exp{(β/K)
∑

j∈N(xi,K) I(yj 6= yi)}

=
exp{(β/K)[2

∑

j∈N(xi,K) I(yj = yi) −K]}
1 + exp{(β/K)[2

∑

j∈N(xi,K) I(yj = yi) −K]}

=
exp{−β + 2βp̂k(yi)}

1 + exp{−β + 2βp̂k(yi)}
, (5.3)

which is equivalent to fitting a logistic regression on

p̂k(yi) =
1

K

∑

j∈N(xi,K)

I(yj = yi) (5.4)

with slope parameter (2β) and intercept (−β).

Treating parameters β andK as random variables with posterior distribution p(β,K|Y,X),

the marginal predictive distribution for a new data point (xn+1, yn+1) based on the training

data (X,Y) is given by

p(yn+1|xn+1,X,Y) =
∑

K

∫

p(yn+1|xn+1,X,Y, β,K)p(β,K|X,Y)dβ. (5.5)

Here the posterior distribution

p(β,K|X,Y) ∝ p(Y|X, β,K)p(β,K).

Except for the fact that β should be positive, little prior information is available for K and

β. Therefore, Holmes and Adams adopted the independent default prior densities,

p(β,K) = p(β)p(K); p(K) = UNIF[1, . . . , kmax], kmax = n; p(β) = cI(β > 0),

where c is a constant and the improper prior on β is uniform on R
+.

Holmes and Adams applied Markov chain Monte Carlo based on a random walk Metropolis-

Hastings algorithm to draw M samples from the posterior p(β,K|X,Y) and then (5.5) can

be approximated by

p(yn+1|xn+1,X,Y) ≈ 1

M

M∑

j=1

p(yn+1|xn+1,X,Y, β
(j), K(j)), (5.6)

Chapter 5 : Bayesian LAGO 85

where K(j) and β(j) are the jth sample in the converged chain.

In Section 5.7.2, BKNN is applied to the Mysim-LAGO data in estimating the posterior

probabilities p(yi = 1|xi) for several pre-chosen points xi. I adopt Homles and Adams

(2002)’s Matlab codes with the following settings:

• Priors: p(K) = UNIF[1, . . . , 250], and β ∼ N(10, 52). The prior of K is the default

given by the original algorithm. The prior of β is chosen to ensure that the range of

β is wide enough under the constraint that β > 0.

• A joint proposal from the current state (K, β) to a new one (K̂, β̂):

K̂ = K ± UNIF[0, 1, 2],

β̂ = β +N(0, 1).

The resulting acceptance rate is around 30%.

• The first 100,000 samples are discarded for burn-in and the later 100,000 samples are

used for inference.

5.2.3 Pseudo-likelihood

The idea of using pseudo-likelihood was first introduced by Besag (1974, 1975) to model

the spatial interaction of lattice systems. Suppose that a system consists of n sites, each

associated with a random variable li, i = 1, . . . , n. Then the joint probability distribution

of the variables can be expressed as a product of conditional distributions

n∏

i=1

P (li|l1, . . . , li−1, li+1, . . . , ln). (5.7)

If li are independent, (5.7) becomes the common full likelihood. However, this indepen-

dence assumption is not very realistic for modeling spatial relationships. Some dependence

structures can be proposed, and different dependence assumptions result in different kinds

86 Efficient Kernel Methods for Statistical Detection

of models. For example, the conditional distribution of li might depend only on those lj

where site j is in the neighborhood of site i. This assumption leads to Markov random

field models, which have been widely used in image processing (Besag, 1986) and model-

ing network tomography (Liang and Yu, 2003; Robins et al., 2007). In image processing,

it might not be possible to write down the full likelihood for all the pixels in a picture.

However, it is much easier to break down the whole picture to several local regions and

then construct conditional likelihood for the pixels involved in each region. Pixels in the

same region are expected to share some common characteristics such as color and intensity.

Under the assumption that dependence structures only exist within the local regions and

two pixels belongs to different regions are independent, taking the product of the condi-

tional likelihoods over the local regions gives the psuedo-likelihood. Similarly, in modeling

social networks, it is relatively hard to consider the complex global dependence structure

for all nodes. Breaking the whole network into sub-networks and focusing the dependence

structures only within the sub-networks makes the problem much easier to solve.

Besag (1975) illustrated how to construct a class of valid probability distributions asso-

ciated with the site variables l1, . . . , ln according to the Hammersley-Clifford theorem. The

theorem says that the joint probability distribution of l1, . . . , ln must be a product of func-

tions, one function corresponds to one clique. A clique is defined as any set of sites which

either consists of a single site or else in which every site is a neighbor of every other site

in the set. By only considering cliques containing no more than two sites and restricting

the conditional distribution to the exponential family, Besag (1975) proposed the so-called

auto-logistic model when li are binary variables. The conditional probabilities are given

by

P (li|l1, . . . , li−1, li+1, . . . , ln) =
exp{li(αi +

∑

j 6=i βi,jlj)}
1 + exp{αi +

∑

j 6=i βi,jlj}
, (5.8)

where βi,j ≡ βj,i and βi,j = 0 unless sites i and j are neighbors of each other. There might

be too many parameters in model (5.8), some parameters can or need to be set to zero,

equated or constrained.

Chapter 5 : Bayesian LAGO 87

For KNN, the membership probabilities for a given data point are determined by the

class labels of its K nearest neighboring observations. Note that, the pseudo-likelihood of

BKNN given in (5.3) is actually a reduced auto-logistic model by restricting αi = −β and

βi,j = 2β
K

, i.e., an auto-logistic model with a single free parameter β.

For BLAGO, a data point’s probability of being class 1 is conditional on the nearby

class-1 observations and their corresponding K nearest class-0 neighbors in the training

set. To model this dependence structure, we also adopt a similar form of pseudo-likelihood

used in BKNN by replacing p̂k(yi) in (5.3) with the LAGO estimate given in (4.16) and

introducing an extra free intercept parameter. This will be described later in Section 5.3.

5.2.4 Techniques for Approximate Bayesian Inference

The objective of Bayesian methods is to produce predictive probabilities for the test data

and conduct statistical inference on some quantities of interest. To achieve this objective,

evaluating the moments of a function with respect to the posterior distribution for model

parameter β is unavoidable. Suppose that the posterior distribution Q(β) = 1
c
L(β)π(β),

where π(β) is the prior distribution for β, L(β) is the likelihood function of the data given

β, and c =
∫

L(β)π(β)dβ is the normalizing constant. We are interested in the posterior

expectation of a quantity g(β), that is,

E[g(β)] =

∫

g(β)Q(β)dβ. (5.9)

In some problems, (5.9) can be evaluated analytically; however, numerical methods of

approximation are required in most applications. The most widely used approximation

methods include quadrature approximation, the Laplace approximation based on asymp-

totics, and (Markov chain) Monte Carlo integration.

Quadrature rules approximate the posterior expectation in (5.9) by

E[g(β)] ≈
M∑

j=1

ωjg(βj)Q(βj),

88 Efficient Kernel Methods for Statistical Detection

for some weights ωj and grid points βj . Depending on how the weights and the grid

points are specified, quadrature approximation has several variations, which include sim-

ple methods such as trapezium’s rule and Simpson’s rule and advanced methods such as

Gauss-quadrature rules (Jerri, 1999). The quadrature methods were originally designed

to compute one-dimensional integrals. For multivariate cases, one approach is to phrase

the multiple integral as repeated one-dimensional integrals by using Fubini’s theorem (e.g.,

Thomas and Finney, 1996). An outstanding problem of this approach is that the number

of function evaluations increases exponentially with the dimension of β. Two alterna-

tive methods can be used to overcome this so-called curse of dimensionality problem: the

Laplace approximation and Monte Carlo methods.

The Laplace approximation (e.g., De Bruijn, 1970) has been used by various authors

to derive approximate posterior moments, marginal densities (Tierney and Kadane, 1986;

Tierney et al., 1989), and Bayes factors (Kass and Raftery, 1995). In general, if r is a

smooth function of a d−dimensional vector β having a minimum at β̂ and b is another

smooth function of β, then, under suitable regularity conditions (Kass et al., 1990), the

well-known Laplace approximation to an integral is given by

In =

∫

b(β) exp{−nr(β)}dβ

= (
2π

n
)

d
2 (detΣ ˆβ

)
1
2 exp{−nr(β̂)}{b(β̂) +O(n−1)}, (5.10)

where Σ ˆβ
is the inverse of the Hessian matrix of r(·) evaluated at the minimum β̂.

Writing the normalizing constant c explicitly, the posterior expectation in (5.9) can be

expressed as the ratio of two integrals

E[g(β)] =

∫

g(β)Q(β)dβ

=

∫
g(β)L(β)π(β)dβ
∫

L(β)π(β)dβ
. (5.11)

Tierney and Kadane (1986) claimed that when function g is positive, by applying the

Laplace approximation to both the numerator and the denominator of (5.11), the error of

Chapter 5 : Bayesian LAGO 89

the approximate posterior mean will be reduced to O(n−2) instead of O(n−1). Later, they

extended their method to non-positive functions using moment generating functions (see

Tierney et al., 1989).

For Gauss-hermite quadrature, Liu and Pierce (1994) considered a systematic method

for transforming the variable of integration to ensure that the integrand is sampled in an

appropriate region. They claimed that the Laplace approximation is equivalent to the

order one Gauss-Hermite quadrature in their approach, the effectiveness of which depends

on whether the ratio of the integrand to some Gaussian density is a smooth function that

can be well approximated by a low-order polynomial. This principle of effectiveness sheds

some light on under what circumstance the Laplace approximation is accurate enough.

The advantage of the Laplace approximation is its simplicity in computation. The

main cost is to calculate the minimum β̂, which generally can be obtained by Newton-

type algorithms. Tierney and Kadane (1986) mentioned that the Laplace approximation

is twenty times faster in computational time than a 20-point Gauss-Hermite quadrature

in one application. The Laplace approximation might not always be accurate (see Kass et

al., 1990; Liu and Pierce, 1994). One assumption of applying the Laplace approximation

is that the function r(β) should be unimodal; it might not be straightforward to extend

to multimodal cases.

Monte Carlo methods can be applied in situations where the Laplace approximation is

either not valid or works poorly. Suppose β(1), . . . ,β(M) are independent samples from Q,

then expectation in (5.9) can be estimated by

E[g(β)] ≈ 1

M

M∑

t=1

g(β(t)). (5.12)

Different methods can be used to draw samples from Q such as importance sampling,

rejection-acceptance techniques, Markov chain Monte Carlo (MCMC) methods such as

Gibbs sampler (Geman and Geman, 1984; Gelfand and Smith, 1990) and the Metroplis-

Hastings sampling (Metropolis et al., 1953; Hastings, 1970) and so on.

90 Efficient Kernel Methods for Statistical Detection

5.3 Bayesian LAGO

In this section, we place LAGO into a Bayesian framework, under which uncertainty can

be quantified. Two main components of a Bayesian method are the likelihood function

and the prior distribution. We discuss these two issues in the following two sections.

5.3.1 Likelihood Function

As mentioned before, given the training data {yi,xi}n
i=1 and a certain pair of (K,α), the

LAGO scores f̂(xi) are not probabilities. We can map them to the probability scale by

fitting a generalized linear model with a logit link function as follows,

θi = p(yi = 1|xi) =
exp{β0 + β1f̂(xi)}

1 + exp{β0 + β1f̂(xi)}
, (5.13)

where β1 > 0 ensures (5.13) to be a monotonically increasing function in the LAGO scores

f̂(xi). Then, the pseudo-likelihood function can be written as the product of likelihoods

of n Bernoulli variables, which is given by

L(θ;Y) =
n∏

i=1

θyi

i [1 − θi]
1−yi . (5.14)

The corresponding log likelihood is

l(θ;Y) =

n∑

i=1

[yi log(
θi

1 − θi
) + log(1 − θi)]. (5.15)

Like (5.2), the expression given in (5.14) is not a proper likelihood function, because the

component θi depends on other data points through the LAGO score f̂(xi). Note that

θi and θj are not independent in that the basis functions in estimating f̂(xi) and f̂(xj)

are correlated because they share the same kernel functions. Ignoring this dependence

structure and using (5.14) as the proper likelihood function will lead to underestimate of

the model uncertainty. I will come back to this issue later in Section 5.7.2.

Chapter 5 : Bayesian LAGO 91

Given the fact that

θi =
ev

T
i β

1 + ev
T
i β

, 1 − θi =
1

1 + ev
T
i β

, log
θi

1 + θi
= vT

i β,

where vi = (1, f̂(xi))
T , the likelihood given in (5.15) can also be written in terms of β as

follows

l(β;Y) =

n∑

i=1

[yi(v
T
i β) − log(1 + ev

T
i β)]. (5.16)

5.3.2 Prior Distributions

The BLAGO model has four parameters: K and α for constructing the LAGO score;

(β0, β1) for the mapping. Following Holmes and Adams (2002), we assume the prior dis-

tribution of K is uniform on a discrete grid of values {2, · · · , Kmax}, the prior of α is also

uniform on a discrete grid (given below), and the prior of β = (β0, β1) follows a bivariate

distribution BVN(µ0,Σ0). We also assume prior independence of K,α and β.

In order to explore the parameter space extensively, Kmax should be set as large as possi-

ble. A larger value of Kmax, however, means a greater expense in computation. To balance

this trade-off, I choose Kmax according to my experience from fitting LAGO in Chapter 4.

Let Kmax = 20 for the NCI data and Kmax = 60 for the two simulated data sets. As for α,

I don’t want it to be too large to lose its capability of capturing the local structure of the

data. Although α could be any positive value, I specify a uniform prior on a grid, i.e., α ∼
UNIF{0.1, 0.25, 0.5, 1, 1.08, 1.16, 1.25, 1.34, 1.45, 1.56, 1.67, 1.8, 1.94, 2.09, 2.25, 2.42, 2.61, 2.81,

3.02, 3.25, 3.5, 3.77, 4.06, 5}. This grid has the same range as the one used for tuning LAGO

but has more values.

The scale of the LAGO score given in (4.16) changes dramatically when (K,α) vary,

which causes a huge fluctuation in the parameters (β0, β1) in (5.13). To reduce the de-

pendence between (K,α) and βs, we re-scale the LAGO score with mean 0 and standard

deviation 1 before fitting the logistic regression. Technical details are provided later in

Section 5.4. Moreover, the scale of the LAGO score is very different for various data

92 Efficient Kernel Methods for Statistical Detection

sets. Scaling makes the prior distribution of (β0, β1) universal without worrying about

the scales of the LAGO scores for different applications. Except for β1 > 0, we do not

have much information in β = (β0, β1). Therefore, a fairly diffuse prior with mean vector

µ0 = (−10, 20), and diagonal covariance matrix Σ0 = diag(100, 100) is chosen for β. For

β1, a variance of 100 is large enough to ensure its 95% lower confidence bound to be non-

negative. According to my experience, this prior is by far diffuse enough to cover almost

all possible (β0, β1) values given different grid values of (K,α).

5.3.3 Computational Details

With the likelihood function and the specification of the prior distributions for the param-

eters, now we are able to calculate the posterior distribution and make inference on model

parameters and predictions.

Instead of drawing posterior samples using the MCMC techniques, our approach evalu-

ates the posterior distribution over a grid of (K,α) pairs using the Laplace approximation.

That is, we do not explicitly draw β = (β0, β1), but integrate it out using the Laplace

approximation. Given a new data point (y, z), the quantity of interest is its probability of

being class 1, θ = Pr(y = 1|z), whose posterior distribution is as follows,

Pr(θ|train) =

M∑

j=1

Pr(θ|train, K(j), α(j))Pr(K(j), α(j)|train), (5.17)

where {K(j), α(j)}M
j=1 are all the (K,α) pairs considered, i.e., K × α = {2, 3, . . . , 20} ×

{0.1, 0.25, 0.5, 1, 1.08, 1.16, 1.25, 1.34, 1.45, 1.56, 1.67, 1.8, 1.94, 2.09, 2.25, 2.42, 2.61, 2.81, 3.02,

3.25, 3.5, 3.77, 4.06, 5} for the NCI data. Therefore, there are 19× 24 = 456 distinct (K,α)

pairs all together. For the simulated data, since only odd values ofK are used, 29×24 = 696

distinct (K,α) pairs are considered. Equation (5.17) is an average of the posterior distri-

butions under each (K,α) pair, weighted by its posterior probability. By Bayes rule, the

Chapter 5 : Bayesian LAGO 93

posterior probability of each (K,α) pair is expressed as

Pr(K(j), α(j)|train) =
Pr(train|K(j), α(j))Pr(K(j), α(j))

∑M
l=1 Pr(train|K(l), α(l))Pr(K(l), α(l))

. (5.18)

Since a uniform prior is assigned to each (K,α) pair , the terms Pr(K(j), α(j)) = Pr(K(l), α(l))

= 1/M , and thus cancelled. Therefore, calculating (5.18) only requires the calculation of

the conditional probability Pr(train|K(j), α(j)), which is given by

Pr(train|K(j), α(j)) =

∫

Pr(train|β, K(j), α(j))Pr(β|K(j), α(j))dβ

=

∫

L(β)π(β)dβ

=

∫

exp(L(β))dβ

=

∫

exp{−n(−1

n
L(β))}dβ, (5.19)

where π(β) is the prior distribution of β with log π(β) = ω(β), and L(β) = log(L(β)π(β)) =

l(β) + ω(β) is the log posterior of β. By letting

b(β) = 1, r(β) = −1

n
L(β),

and applying the Laplace approximation given in (5.10), integral (5.19) can approximated

by

∫

exp{−n(−1

n
L(β))}dβ

≈ (2π)d/2 exp{L(β∗|K(j), α(j))}|H(β∗|K(j), α(j))|−1/2

= (2π) exp{L(β∗
j)}|H(β∗

j)|−1/2, (5.20)

where L(β∗
j) is the log posterior of β evaluated at the posterior mode β∗

j and H(β∗
j) =

L′′

(β∗
j) is the Hessian matrix of the log posterior of β evaluated at β∗

j . The Laplace

approximation in (5.20) is the result of a second order Taylor expansion of L(β) around

the posterior mode β∗
j .

94 Efficient Kernel Methods for Statistical Detection

The posterior mode of β is the value β∗ that maximizes L(β), i.e., the solution to the

equation L′

(β) = 0. By Newton’s method, new β can be updated by

βi+1 = βi − [L′′

(βi)]
−1L′

(βi).

Given that π(β) ∼ BVN(µ0,Σ0), taking the derivative of L(β) with respect to β gives

L′

(β) = l
′

(β) + ω
′

(β)

=

n∑

i=1

[yivi −
ev

T
i β

1 + ev
T
i β

vi] − Σ−1
0 (β − µ0)

=
n∑

i=1

(yi − θi)vi − Σ−1
0 (β − µ0)

= VT (Y − θ) − Σ−1
0 (β − µ0), (5.21)

where V is a n× 2 matrix

V =

vT
1

vT
2

...

vT
n

, Y =

y1

y2

...

yn

, θ =

θ1

θ2
...

θn

.

The second derivative of L is given by

L′′

(β) = l
′′

(β) + ω
′′

(β)

= −
n∑

i=1

ev
T
i β

(1 + ev
T
i β)2

vT
i xi −Σ−1

0

= −
n∑

i=1

θi(1 − θi)v
T
i xi − Σ−1

0

= −V TDV − Σ−1
0 , (5.22)

where D is a n×n diagonal matrix with diagonal entries dii = θi(1− θi) for i = 1, 2, . . . , n.

The iterative algorithm terminates when the sum of absolute difference between βi+1

and βi is less than 10−6. The algorithm normally converges after several iterations; there-

fore, the computation for solving the posterior mode is fairly fast.

Chapter 5 : Bayesian LAGO 95

Given the posterior probabilities of Pr(K(j), α(j)|train), j = 1, . . . ,M , the posterior

mean of θ can be calculated by

E(θ|train) =

∫ ∫ ∫

θPr(K,α,β|train)dβdKdα

=

∫ ∫ ∫

θPr(β|K,α, train)Pr(K,α|train)dβdKdα

=
M∑

j=1

[∫

θPr(β|train, K(j), α(j))dβ

]

︸ ︷︷ ︸

β∼BVN(β
∗

j
,H−1(β

∗

j
))

Pr(K(j), α(j)|train)
︸ ︷︷ ︸

Laplace

. (5.23)

The posterior distribution Pr(K,α,β|train) can be broken down into two pieces, i.e.,

Pr(β|K,α, train) and Pr(K,α|train). The inner integration can be approximated using

Monte Carlo by drawing samples from the posterior distribution Pr(β|train, K(j), α(j))

which is BVN(β∗
j , H

−1(β∗
j)). The posterior mean is a weighted average weighted by the

posterior probabilities Pr(K(j), α(j)|train), which can be calculated by (5.18) using the

Laplace approximation. In order to estimate the inner integral in (5.23), 100 samples of

(β0, β1) are simulated from a bivariate normal distribution BVN(β∗
j , H

−1(β∗
j)). As a result,

there are 100 samples of θ values for each (K(j), α(j)) pair, denoted as θjl, l = 1, . . . , 100.

Finally, the inner integral can be estimated by the sample mean as follows:

θ̂j =

∫

θPr(β|train, K(j), α(j))dβ ≈ 1

100

100∑

l=1

θjl.

Then, the posterior mean of θ is given by

E(θ|train) =
M∑

j=1

θ̂jPr(K
(j), α(j)|train). (5.24)

To sum up, the detailed procedures of BLAGO are as follows:

1. Assign uniform prior over a grid of (K,α) pairs and BVN(µ0,Σ0) to β with µ0 =

(−10, 20),Σ0 = diag(100, 100).

2. For each (K(j), α(j)) pair, calculate its posterior probability using (5.18) and (5.20).

Meanwhile, store its corresponding posterior mode β∗
j as well as H(β∗

j), the Hessian

96 Efficient Kernel Methods for Statistical Detection

matrix evaluated at the posterior mode β∗
j . Compute and save the mean and standard

deviation of the LAGO score for the training data, and denote as m(j) and s(j)

respectively.

3. Given a test point (y, z), we are able to make inference on it’s probability of being

class 1 as follows:

• For each (K(j), α(j)) pair, generate 100 samples of (β0, β1) from BVN(β∗
j , H

−1(β∗
j)),

denoted as {β(jl)
0 , β

(jl)
1 }100

l=1.

• Given (K(j), α(j), β
(jl)
0 , β

(jl)
1), calculate z’s standardized LAGO score, gj =

fj−m(j)

s(j) ,

where fj is the LAGO score of z based on (K(j), α(j)). Then, z’s probability of

being class 1, θjl, is given by

θjl =
exp{β(jl)

0 + β
(jl)
1 gj}

1 + exp{β(jl)
0 + β

(jl)
1 gj}

,

for j = 1, . . . ,M, l = 1, . . . , 100.

• Calculate the posterior mean of θ by (5.24).

4. Repeat steps 2 and 3 for all {(K(j), α(j))}M
j=1. We have N = M × 100 posterior

samples of θ, i.e., θjl, for j = 1, . . . ,M, l = 1, . . . , 100. Note that the associated

weight for each θjl is 1
100
Pr(K(j), α(j)|train). A 95% posterior credibility interval of θ

can be constructed by finding the 2.5th and 97.5th percentiles of those N posterior

samples:

• By sorting θjl from the smallest to the largest, we get a vector (θ(1), . . . , θ(N))

and the corresponding weight vector (ω(1), . . . , ω(N)).

• Find the endpoints of the 95% credibility interval ql and qu, such that ql =

θ(m),
∑m

i=1 ω(i) = 0.025; qu = θ(n),
∑n

i=1 ω(i) = 0.975.

BLAGO has a huge computational advantage over the popular MCMC algorithms. BLAGO

evaluates the posterior probabilities over a grid of (K,α) values. The number of distinct

Chapter 5 : Bayesian LAGO 97

pairs is normally several hundred. The MCMC algorithm, however, normally requests at

least thousands or hundreds of thousands of iterations to reach the equilibrium distribu-

tion. Within each iteration, both methods need to calculate the LAGO scores. Given

the fact that MCMC requires much more iterations, BLAGO is much faster. Moreover,

BLAGO is based on a grid of independent (K,α) pairs and thus is very easy to cast in

parallel computing. It is hard to apply parallel computing to MCMC algorithms because

of the built-in dependence structure between the current state and the previous state.

5.4 A Frequentist Approach

Earlier in this chapter, we saw the need for a version of LAGO capable of producing proba-

bilistic predictions, instead of just a score. This enables comparison with other probabilistic

models. If the objective is only to obtain point estimates of predicted probabilities, rather

than interval estimates, a fully Bayesian approach may not be necessary. In this section,

we outline a maximum likelihood approach to LAGO that yields probabilistic predictions.

Suppose yi, i = 1, . . . , n is the class label of the ith test data point, and p̂i is its estimated

probability of being class 1, the deviance of p̂i, i = 1, . . . , n is defined as

−2

n∑

i=1

[yi log p̂i + (1 − yi) log(1 − p̂i)]. (5.25)

Like BLAGO, the frequentist approach also has four parameters: K and α for fitting

LAGO, β0 and β1 for the logistic transformation. The optimal model can be chosen by

cross-validation. The procedure is almost the same as the 5-fold cross-validation for fitting

LAGO, except that in each iteration the resulting LAGO scores are standardized and then

transformed to probabilities by fitting a logistic regression. Finally, deviance is calculated

based on the fitted probabilites, the best model is the combination of (K,α) that gives the

smallest deviance. The detailed procedure is described as follows:

98 Efficient Kernel Methods for Statistical Detection

Loop through all possible grid values of {(K(j), α(j))}M
j=1

1. Keep fold 1 aside for validation and train LAGO with the other four folds. Suppose

we get model M1. Apply M1 to fold 1 data to obtain a vector of LAGO scores f̂1.

2. Repeat step 1 for all the other folds. Now, we have f̂ = (f̂1, f̂2, f̂3, f̂4, f̂5), a vector of

the LAGO scores for all the training observations.

3. Denote the mean and standard deviation of vector f̂ as m(j) and s(j), and save them.

Re-scale f̂ to ĝ which has mean 0 and standard deviation 1.

4. Fit a logistic regression with ĝ as the covariate. Suppose the fitted coefficients are

β̂0, β̂1 respectively, then the estimated probabilities of being class-1 for all the training

observations are

p̂ =
exp{β̂0 + β̂1ĝ}

1 + exp{β̂0 + β̂1ĝ}
.

5. Calculate the deviance of p̂ by equation (5.25).

End loop

The optimal combination (K
′

, α
′

) is the one that yields the smallest cross-validated de-

viance. Let m
′

and s
′

be the mean and standard deviation of the LAGO scores of the

training data given the optimal (K
′

, α
′

) pair, and (β̂
′

0, β̂
′

1) be the corresponding fitted

coefficients of the logistic regression.

Given a test point z, we can calculate its LAGO score f̂(z) by (4.16) based on (K
′

, α
′

),

and its probability of being class 1 can be estimated by

p̂z =
exp{β̂ ′

0 + β̂
′

1ĝ(z)}
1 + exp{β̂ ′

0 + β̂
′

1ĝ(z)}
, (5.26)

where

ĝ(z) =
f̂(z) −m

′

s′

is the standardized LAGO score of z re-scaled by m
′

and s
′

.

Chapter 5 : Bayesian LAGO 99

A 95% confidence interval can be obtained by calculating (pl, pu), the 95% confidence

interval for β̂
′

0 + β̂
′

1ĝ(z), and then applying a logistic transformation. That is,

pl = β̂
′

0 + β̂
′

1ĝ(z) − 1.96

√

Var(β̂
′

0 + β̂
′

1ĝ(z)),

pu = β̂
′

0 + β̂
′

1ĝ(z) + 1.96

√

Var(β̂
′

0 + β̂
′

1ĝ(z)),

and a 95% confidence interval for pz is

(
epl

1 + epl
,

epu

1 + epu

)

. (5.27)

This approach to calculating a 95% confidence interval for pz is somewhat naive. By

fixing (K,α) at the optimal value given by cross-validation, we are ignoring the uncertainty

of the choice of (K,α) pair in the interval (5.27). Evidence will be shown in Section 5.8.1.

We refer to this frequentist approach as ”frequentist-LAGO”.

5.5 Application to the NCI Data

The first part of this section compares the performance of BLAGO with LAGO and other

methods in terms of average precision. The output of BLAGO is a probabilistic estimate

and LAGO can also produce a probabilistic estimate via frequentist-LAGO. As mentioned

in Section 3.3, average precision is a good performance metric in comparing different rank-

ing models; when it comes to comparing probabilistic estimates, cross entropy (or deviance)

might be a better choice. The second part of this section compares the performance of

BLAGO and LAGO in terms of deviance.

5.5.1 Performance Comparison in Average Precision

As shown in Chapter 4, LAGO using either the Gaussian (LAGO-G) or the triangular

(LAGO-T) kernel, and ASVM significantly outperform LAGO using the uniform (LAGO-

U) kernel, SVM and KNN. SVM has similar performance to KNN and LAGO-U. Therefore,

100 Efficient Kernel Methods for Statistical Detection

we only focus on the comparison of BLAGO with LAGO-G, SVM and ASVM. For all the

methods, models are fit on the training set and performance is compared on the test set in

terms of average precision. Table 5.1 and Figure 5.1 compare the test-set average precisions

of these four competing methods for the NCI data.

Methods LAGO-G SVM ASVM BLAGO

Split 1 0.2292 0.1926 0.2091 0.2511

Split 2 0.2503 0.2105 0.2055 0.2696

Split 3 0.2554 0.1688 0.2078 0.2511

Split 4 0.2713 0.2063 0.2600 0.2767

Table 5.1: The test-set average precisions on the four random splits of the NCI data using

different methods.

Index of Split

1 2 3 4

0.
18

0.
20

0.
22

0.
24

0.
26

0.
28

LAGO−G
SVM
ASVM
BLAGO

Figure 5.1: The test-set average precisions of different methods evaluated on the four random

splits of the NCI data.

Chapter 5 : Bayesian LAGO 101

Note that results for LAGO-G, SVM and ASVM are copied from Table 4.4 in Section

4.3.1. Figure 5.2 presents their corresponding hit curves on four different test sets (splits).

0 100 200 300 400 500

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

Total Number Detected: n

A
ct

u
a

l H
its

:
h

(n
)

Gaussian
SVM
ASVM
BLAGO

Split 1

0 100 200 300 400 500

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

Total Number Detected: n

A
ct

u
a

l H
its

:
h

(n
)

Gaussian
SVM
ASVM
BLAGO

Split 2

0 100 200 300 400 500

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

Total Number Detected: n

A
ct

u
a

l H
its

:
h

(n
)

Gaussian
SVM
ASVM
BLAGO

Split 3

0 100 200 300 400 500

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

Total Number Detected: n

A
ct

u
a

l H
its

:
h

(n
)

Gaussian
SVM
ASVM
BLAGO

Split 4

Figure 5.2: Hit curves of different methods for four random splits of the NCI data under criterion

of average precision. Upper left: The 1st split; Upper right: The 2nd split; Lower left: The 3rd

split; Lower right: The 4th split.

102 Efficient Kernel Methods for Statistical Detection

Based on the average precisions on four experiments, ANOVA can be conducted to for-

mally compare the difference among BLAGO, LAGO-G, SVM and ASVM. Let µG, µS, µA, µB

be the average performance (in terms of average precision) of LAGO-G, SVM, ASVM,

BLAGO respectively. The ANOVA results are given in Table 5.3, the expressions and

estimates of the three non-orthogonal contrasts are shown in Table 5.2.

Contrast Expression Estimate

Cntr1 µB − µG 0.0106

Cntr2 µA − µS 0.0261

Cntr3 (µG + µB)/2 − µA 0.0362

Table 5.2: Estimated contrasts for the NCI data.

Source SS(×10−4) df MS(×10−4) F0 P-Value

Method 112.846 3 37.615 20.574 0.0002

Cntr1 2.228 1 2.228 1.218 0.2983

Cntr2 13.590 1 13.590 7.433 0.0234

Cntr3 34.980 1 34.980 19.132 0.0018

Splits 29.122 3 9.707 5.309 0.0222

Error 16.455 9 1.828

Total 158.423 15

Table 5.3: ANOVA analysis of differences among methods for the NCI data.

The main conclusion is (LAGO-G ∼ BLAGO) ≻ ASVM ≻ SVM. Even though the

difference between BLAGO and LAGO-G is not significant, BLAGO does beat LAGO-G in

three out of those four random splits. Facilitated by Bayesian techniques, BLAGO provides

not only a probabilistic estimate but also a more effective ranking than LAGO. Without

Chapter 5 : Bayesian LAGO 103

the need of the time-consuming cross-validation, BLAGO is computationally twice as fast

as LAGO-G.

5.5.2 Performance Comparison in Deviance

In the previous section, we have shown that BLAGO and LAGO-G are not significantly

different in terms of average precision. In this section we compare the performances of

these two methods using deviance as the criterion.

Recall that the original LAGO score given in (4.16) is not a probability and thus can

not be applied to the deviance calculation (5.25) directly. To obtain the deviance for

LAGO, we adopt frequentist-LAGO given in Section 5.4. For both methods, models are

fit using the training data, and performances are compared on the test set. Figure 5.3

shows the log-posterior of (K,α) given by BLAGO, and Figure 5.4 plots the contour of the

cross-validated deviance given by frequentist-LAGO. The contour plots of cross-validated

deviance and log-posterior look similar, except that cross-validation selects slightly larger

K and α.

Table 5.4 presents the parameter estimates and the test-set deviance for frequentist-

LAGO and BLAGO. For frequentist-LAGO, 5-fold cross-validated deviance is used to

choose the parameters. For BLAGO, 95% posterior credibility intervals of the parameters

are given. The optimal K and α values of frequentist-LAGO generally lie within or close to

the boundary of the posterior intervals given by BLAGO. Notice that the posterior prob-

ability of BLAGO has almost all mass in small K values, i.e., K = 2, 3, 4, 5, 6. A pair-wise

t-test shows that there is no significant difference in test-set deviance between frequentist-

LAGO and BLAGO (p-value=0.19); however, BLAGO consistently gives smaller deviance

than LAGO across all the four random splits.

104 Efficient Kernel Methods for Statistical Detection

Alpha

K

0 1 2 3 4 5

5
1

0
1

5
2

0

Alpha

K

0 1 2 3 4 5

5
1

0
1

5
2

0

Alpha

K

0 1 2 3 4 5

5
1

0
1

5
2

0

Alpha

K

0 1 2 3 4 5

5
1

0
1

5
2

0

Figure 5.3: Contour plots of log-posterior of the (K,α) pairs for the NCI data. Upper left: The

1st split; Upper right: The 2nd split; Lower left: The 3rd split; Lower right: The 4th split.

Chapter 5 : Bayesian LAGO 105

Alpha

K

0 1 2 3 4 5

5
1

0
1

5
2

0

Alpha

K

0 1 2 3 4 5

5
1

0
1

5
2

0

Alpha

K

0 1 2 3 4 5

5
1

0
1

5
2

0

Alpha

K

0 1 2 3 4 5

5
1

0
1

5
2

0

Figure 5.4: Contour plots of deviance of (K,α) by cross-validation on the training sets of the

NCI data. Diamonds indicate the optimal choice of the parameters by cross-validation. Upper

left: The 1st split; Upper right: The 2nd split; Lower left: The 3rd split; Lower right: The 4th

split.

106 Efficient Kernel Methods for Statistical Detection

Frequentist-LAGO BLAGO

K α Deviance K α Deviance

Split1 4 2 2466.337 [2, 6] (1.45, 1.94) 2453.669

Split2 9 2 2497.138 [2, 3] (1.56, 2.25) 2414.047

Split3 9 2 2459.255 [3, 7] (1.80, 2.09) 2456.062

Split4 2 3 2419.649 [2, 3] (2.09, 2.81) 2379.117

Table 5.4: Tuning parameters selected for frequentist-LAGO using cross-validated deviance. The

95% posterior credibility intervals of K and α given by BLAGO.

5.6 Application to the Mysim Data

We apply BLAGO to the Mysim data, the simulated data described in Section 2.3.2.

Recall the generating mechanism for the Mysim data (see Figure 5.5): generate 300 class-0

observations uniformly over the whole square, generate 40 class-1 uniformly from mini-

square A and another 60 class-1 uniformly over mini-square B. Those 13 points in Figure

5.5 are chosen for evaluating BLAGO’s performance in making inference. Squares A and

B are two class-1 regions. Points #1 to 7 lie within the class-0 region; points #8 to 10 are

in region A, and points #11 to 13 are in region B. Darker dots (points #4 to 9, 11 and 12)

refer to those points that are on the boundary of class-1 regions and relatively difficult to

predict precisely.

Chapter 5 : Bayesian LAGO 107

8 4

116

9 5

127

3

-3 3

-1

5

10

2 13

X2

X1

1A

B

Figure 5.5: Data generating mechanism of the Mysim data and thirteen selected points for

coverage analysis.

5.6.1 Performance Comparison in Average Precision

In this simulation study, we apply BLAGO to the same 100 experimental data sets as

in Section 4.4.1. Since LAGO-T, LAGO-G, SVM and ASVM are the best methods for

the Mysim data, we focus on comparing BLAGO to LAGO-G, SVM and ASVM. In each

experiment, models are fit on the training set and performance is compared on the test set

in terms of average precision. Both the training and the test sets have 400 observations.

Figure 5.6 presents the boxplots of the 100 test-set average precisions for all the four

competing methods. Based on the results of the 100 experiments, ANOVA is conducted

108 Efficient Kernel Methods for Statistical Detection

to compare the difference among methods of LAGO-G, SVM, ASVM and BLAGO. The

ANOVA results shown in Table 5.5 indicate that there is no significant difference among

the methods.
0.

75
0.

80
0.

85
0.

90
0.

95

LAGO−G SVM ASVM BLAGO

Figure 5.6: The test-set average precisions of different methods evaluated on 100 simulated

Mysim data sets.

Source SS(×10−4) df MS(×10−4) F0 P-Value

Method 26.075 3 8.692 1.549 0.2019

Replicates 4433.773 99 44.786 7.982 < 0.0001

Error 1666.494 297 5.611

Total 6126.343 399

Table 5.5: ANOVA analysis of differences among methods for the Mysim data.

Chapter 5 : Bayesian LAGO 109

5.6.2 BLAGO Inference

In this section, we evaluate the performance of BLAGO in terms of coverage probability

based on those 13 representative points shown in Figure 5.5.

According to the data generating mechanism, it is straightforward to calculate a test

point’s true probability of being class 1, i.e., 24/29 if the test point is inside region A,

36/41 within region B, and 0 otherwise. The coverage probabilities can be estimated by

counting the number of times out of 100 that the 95% posterior credibility intervals contain

the true probabilities. Table 5.6 shows that the coverage rates are much lower than their

nominal value (95%). Representative points #1 to 7, whose true probabilities are zero,

have zero coverage. However, this is not surprising. Since a Gaussian kernel is used, all

the predictive probabilities are positive and hence the posterior credibility intervals do not

cover zero.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

0 0 0 0 0 0 0 28 29 80 65 56 4

Table 5.6: Coverage rate (in %) of the Mysim data over 100 experiments. Points #8 to 10 are

in region A and points #11 to 13 are in region B.

Boxplots of posterior means for predictions over 100 experiments are displayed in Figure

5.7, which indicates that BLAGO is doing a reasonable job. First, BLAGO preserves the

correct order of the true probabilities of those thirteen representative points. Second,

although the true probabilities of being class 1 are all zero, points #4, 5, 6, 7 have a much

larger predictive probability and variation than points #1, 2, and 3; this makes sense given

the fact that points #4, 5, 6, 7 are on the boundary of the class-1 regions. Third, being

the center of region B, point #13 has a much higher predictive probability and smaller

variability than boundary points #11 and 12, even though these three have the same true

values. The situation is similar for interior point 10 and boundary points #8 and 9 of

110 Efficient Kernel Methods for Statistical Detection

region A. It is claimed in Chapter 4 that in general LAGO is a biased estimate of the

density ratio f ; it seems that BLAGO carries on this bias in estimating the probability.

Note that the bias is relatively large for boundary points #4 to 9.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 5.7: Boxplots of the 100 experimental posterior means given by BLAGO for each repre-

sentative point. Filled dots represent the true probabilities.

It is also interesting to further investigate the performance of BLAGO in a single

experiment. Take experiment #70 for example. Figure 5.8 plots the predictions and their

95% posterior credibility intervals for those 13 selected points. Note that experiment #70

is by far NOT the best experiment but a very typical one. Like Figure 5.7, Figure 5.8

shows that BLAGO works well in that it yields a much more precise prediction and a

much narrower credibility interval for those points in interior regions where we are more

confident in our prediction.

Chapter 5 : Bayesian LAGO 111

Index

pr
ed

ic
tio

n

1 2 3 4 5 6 7 8 9 10 11 12 13

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Prediction
True

Figure 5.8: Predictions (filled dots) of the 13 representative points and their 95% posterior

credibility intervals. Diamonds are the true probabilities.

5.7 Application to the Mysim-LAGO Data

In this section, we apply BLAGO to the Mysim-LAGO data where we generate data from

the LAGO model by putting kernel functions with a certain bandwidth at 14 locations (see

Figure 4.11 in Section 4.4.2). Similar to the simulation study on the Mysim data in Section

5.6, thirteen representative points are selected for evaluating BLAGO’s performance in

making statistical inference. Figure 5.9 shows the probability surface of the Mysim-LAGO

data given those 14 kernel functions and (β0, β1) = (−2.8, 45); those 13 selected locations

are also shown in the same figure.

112 Efficient Kernel Methods for Statistical Detection

X1

X
2

−3 −2 −1 0 1 2 3

−
1

0
1

2
3

4
5

1

2

3

4

5

6

7

8

9
10

11

12
13

Figure 5.9: Probability surface of the Mysim-LAGO data given (β0, β1) = (−2.8, 45) and the

locations of 13 representative points.

5.7.1 Performance comparison in Average Precision

Section 4.4.2 concluded that LAGO-G, LAGO-T and KNN are among the best models for

the Mysim-LAGO data in terms of average precision. BLAGO is applied to the same 100

experimental data sets as in Section 4.4.2. We focus on comparing BLAGO to LAGO-

G, KNN, SVM, ASVM in terms of average precision using ANOVA. In each experiment,

models are fit on the training set and performance is compared on the test set. Both the

training and test set have 400 observations.

The boxplots of the 100 test-set average precisions for all the four compared methods

are presented in Figure 5.10. Five nonorthogonal contrasts are constructed to further

Chapter 5 : Bayesian LAGO 113

compare the discrepancy between methods. The ANOVA results are shown in Table 5.8;

the expressions and estimates of the contrasts are shown in Table 5.7. The main conclusion

is (LAGO-G ∼ BLAGO ∼ KNN) ≻ (ASVM ∼ SVM).

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

LAGO−G KNN SVM ASVM BLAGO

Figure 5.10: The test-set average precisions of different methods evaluated on 100 simulated

Mysim-LAGO data that are generated from LAGO.

Contrast Expression Estimate

Cntr1 (µG + µB + µK)/3 − (µS + µA)/2 0.0226

Cntr2 µA − µS 0.0116

Cntr3 µG − µB 0.0092

Cntr4 µK − µB 0.0010

Cntr5 µG − µK 0.0083

Table 5.7: Estimated contrasts for the Mysim-LAGO data.

114 Efficient Kernel Methods for Statistical Detection

Source SS(×10−2) df MS(×10−2) F0 P-Value

Method 73.275 5 18.319 4.964 0.0006

Cntr1 61.387 1 61.387 16.633 0.0001

Cntr2 6.734 1 6.734 1.825 0.1775

Cntr3 4.265 1 4.265 1.156 0.2830

Cntr4 0.047 1 0.047 0.013 0.9104

Cntr5 3.419 1 3.419 0.926 0.3364

Replicate 3604.306 99 36.407 9.865 < 0.0001

Error 1461.469 495 3.691

Total 5139.050 599

Table 5.8: ANOVA analysis of differences among methods for the Mysim-LAGO data.

5.7.2 BLAGO Inference

To explore BLAGO’s capability of making statistical inference, a more complete study is

conducted for the Mysim-LAGO data by comparing BLAGO with frequentist-LAGO and

Bayesian KNN (BKNN, see Section 5.2.2 for details) in coverage rate, bias, mean square

error, and average length of the confidence (or credibility) intervals over 100 experiments.

In each experiment, models are fit on the training data and predictions are made for the

13 pre-chosen points. We have tried two different sample sizes for the training set, i.e.,

n = 400 and 4000.

Boxplots of 100 predictions of the 13 interesting locations based on BLAGO, frequentist-

LAGO, BKNN are given in Figure 5.11. The boxplots indicates that increasing the sample

size dramatically reduces the biases and the variations of the predictions across those 100

experiments. More discussion on the bias and the variation will be given later this section.

Chapter 5 : Bayesian LAGO 115

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 5.11: Boxplots of predictions of 100 experiments for the 13 representative points of

the Mysim-LAGO data. Filled dots represent the true probabilities. Upper: BLAGO; Middle:

frequentist-LAGO; Lower: Bayesian KNN. Left: n = 400, right: n = 4000.

116 Efficient Kernel Methods for Statistical Detection

The number of times out of those 100 experiments that the posterior intervals cover the

true probabilities (Coverage) of BLAGO, frequentist-LAGO and BKNN for each of those

13 selected points are shown in Table 5.9. The bias, standard deviation (Std), mean square

error (MSE), and the average lengths of the intervals of the three methods are presented

in the same table as well.

Table 5.9 indicates that the coverage probability is far less than 0.95 no matter which

method and which sample size is used, especially for points 6 to 10 and 13. The reasons

for this low coverage rate are mainly twofold:

• The likelihood function given in equations (5.14) is not a full likelihood function but

a so-called pseudo-likelihood, which is in a similar form to the one widely used in

modeling social networks. Strauss and Ikeda (1990) proposed using the maximum

pseudo-likelihood estimate (MPLE) as an attractive alternative to the maximum

likelihood estimate for networks where the full likelihood function is intractable due

to the complex dependence structure of the networks. Not much is known about the

behavior of MPLE. Some researchers argue that inference based on pseudo-likelihood

might be problematic since it ignores at least part of the dependence structure of the

data. Both Wasserman and Robins (2005) and Snijders (2002) pointed out that

MPLE might be substantially biased and the standard deviations of the parameters

are generally underestimated. These arguments are partly supported by the findings

of BLAGO. Recall that LAGO estimator (4.16) is constructed by putting kernel

functions at and only at class-1 observations. This special way of building basis

functions totally ignores the randomness of the response variables yi. Without taking

into account this randomness, BLAGO, whose inference is made based on the pseudo-

likelihood function (5.14), inevitably underestimates the variability of the data. The

Bayesian KNN proposed by Holmes and Adams (2002) also uses the pseudo-likelihood

and hence suffers from this problem as well. Some evidence will be shown in Section

5.8.1.

Chapter 5 : Bayesian LAGO 117

n=400 n=4000

Coverage Bias Std MSE Length Coverage Bias Std MSE Length

84 0.00791 0.0365 0.00140 0.0642 75 0.00241 0.0101 0.00011 0.0166

85 0.00655 0.0277 0.00081 0.0624 64 0.00038 0.0095 0.00009 0.0159

85 0.00678 0.0315 0.00104 0.0614 65 0.00163 0.0109 0.00012 0.0160

71 0.03715 0.0620 0.00522 0.1125 56 0.00139 0.0130 0.00017 0.0184

75 0.04045 0.0640 0.00574 0.1140 52 0.00007 0.0133 0.00018 0.0180

57 0.09026 0.0986 0.01787 0.1946 42 0.02197 0.0237 0.00105 0.0396

BLAGO 56 0.08810 0.0965 0.01708 0.1862 51 0.01813 0.0189 0.00069 0.0389

23 -0.29755 0.2177 0.13591 0.2857 6 -0.28196 0.1259 0.09535 0.1207

24 -0.31050 0.2071 0.13931 0.2991 10 -0.27958 0.1332 0.09592 0.1257

36 -0.40884 0.2640 0.23686 0.4333 30 -0.14510 0.1486 0.04314 0.1637

41 -0.36391 0.2600 0.20003 0.4087 46 -0.05696 0.1162 0.01674 0.1372

39 -0.36475 0.2462 0.19366 0.4373 45 -0.04529 0.1141 0.01506 0.1361

10 -0.31563 0.2585 0.16645 0.4288 32 -0.01792 0.0206 0.00075 0.0351

81 0.00833 0.0444 0.00204 0.0568 69 0.00273 0.0109 0.00013 0.0155

75 0.00861 0.0382 0.00153 0.0552 63 -0.00004 0.0096 0.00009 0.0150

78 0.00551 0.0293 0.00089 0.0530 64 0.00145 0.0104 0.00011 0.0152

55 0.04096 0.0655 0.00597 0.0805 51 0.00083 0.0127 0.00016 0.0163

54 0.04435 0.0721 0.00717 0.0830 49 0.00008 0.0144 0.00021 0.0162

28 0.08688 0.0957 0.01671 0.1144 29 0.02087 0.0238 0.00100 0.0205

Freq 31 0.07795 0.0787 0.01227 0.1087 35 0.01804 0.0209 0.00076 0.0200

22 -0.29127 0.1984 0.12419 0.2301 6 -0.28016 0.1261 0.09440 0.0907

19 -0.30469 0.1958 0.13115 0.2212 8 -0.28193 0.1303 0.09645 0.0894

24 -0.39033 0.2663 0.22330 0.3206 27 -0.14013 0.1436 0.04027 0.1333

26 -0.35479 0.2496 0.18818 0.3371 37 -0.05853 0.1226 0.01846 0.1218

22 -0.35069 0.2385 0.17986 0.3478 41 -0.04629 0.1215 0.01690 0.1182

4 -0.25946 0.2320 0.12114 0.3505 10 -0.01583 0.0167 0.00053 0.0240

76 0.00435 0.0418 0.00177 0.0655 56 0.00131 0.0158 0.00025 0.0223

69 -0.00252 0.0274 0.00076 0.0616 49 -0.00017 0.0169 0.00029 0.0222

57 -0.00127 0.0291 0.00085 0.0606 53 -0.00105 0.0141 0.00020 0.0205

62 0.03699 0.0680 0.00599 0.1120 47 0.00454 0.0199 0.00042 0.0277

70 0.03217 0.0528 0.00383 0.1016 58 0.00295 0.0182 0.00034 0.0285

49 0.06471 0.0939 0.01300 0.1374 46 0.01640 0.0288 0.00110 0.0379

BKNN 41 0.07954 0.0929 0.01495 0.1509 51 0.01720 0.0321 0.00132 0.0397

20 -0.30465 0.1826 0.12616 0.2547 9 -0.24994 0.1208 0.07706 0.1231

17 -0.30926 0.1798 0.12799 0.2402 11 -0.25241 0.1139 0.07669 0.1270

22 -0.40152 0.2291 0.21369 0.4017 36 -0.06044 0.0712 0.00872 0.0912

9 -0.44599 0.1997 0.23879 0.2815 13 -0.20114 0.1251 0.05610 0.1356

14 -0.42418 0.2145 0.22593 0.2917 10 -0.19561 0.1234 0.05350 0.1412

0 -0.27607 0.2258 0.12720 0.4171 0 -0.03972 0.0046 0.00160 0.0151

Table 5.9: Coverage, bias, standard deviation, mean square error, average length of the intervals

for the 13 representative points calculated by BLAGO, frequentist-LAGO, and BKNN over 100

experiments. The sample sizes of the training data are n = 400 and n = 4000.

118 Efficient Kernel Methods for Statistical Detection

In practice, a 95% confidence interval of an estimator θ̂ is normally calculated as

[θ̂−2× std(θ̂), θ̂+2× std(θ̂)], where std(θ̂) is the standard deviation of θ̂. This prac-

tical principle suggests that the length of a 95% confidence interval should be roughly

4 × std(θ̂) if it honestly captures the variability. Therefore, 4 × std(θ̂) provides us

a good benchmark to investigate the intervals given by BLAGO, frequentist-LAGO

and BKNN are of proper length in capturing model uncertainty. Given that 100 inde-

pendent experiments have been run, each test point has 100 predicted probabilities

and 100 95% posterior credibility intervals. These 100 predicted probabilities can

provide an estimate of std(θ̂), which can be used in a comparison with the width of a

95% posterior credibility interval. Any case in which the average length of those 100

intervals is smaller than 4 × std(θ̂) gives evidence that the method underestimates

variability.

Figure 5.12 compares the average length of the 100 credibility/confidence intervals

with 4× std(θ̂), and it shows that the average length of intervals is generally smaller

than 4× std(θ̂) for all three approaches. This indicates that all these three methods

underestimate the variability of the models, and hence result in shorter intervals and

lower coverage rates than they should be.

Although both BLAGO and frequentist-LAGO underestimate the variability of their

own predictions, Table 5.9 indicates that the average lengths of the credibility in-

tervals of BLAGO are larger than the average lengths of the confidence intervals of

frequentist-LAGO. This is due to the fact that frequentist-LAGO does not take into

account the variability coming from the parameters K and α, while BLAGO does by

Bayesian model averaging.

• Pseudo-likelihood is not the only factor that affects the coverage rate. The bias of

the predictive probabilities obtained by BLAGO, frequentist-LAGO and BKNN are

shown in Figure 5.13, which implies that all of the three approaches generally over-

estimate those selected points belonging to the class-0 region, while underestimate

Chapter 5 : Bayesian LAGO 119

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

4*Std

Le
ng

th

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

4*Std

Le
ng

th

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

4*Std

Le
ng

th

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

4*Std

Le
ng

th

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

4*Std

Le
ng

th

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

4*Std

Le
ng

th

Figure 5.12: Comparison of the average length of the 100 credibility intervals and four times

the standard deviation of the 100 predicted probabilities given by BLAGO (upper), frequentist-

LAGO (middle) and BKNN (lower) under different sample sizes n = 400 (left) and n = 4000

(right). All comparisons use the Mysim-LAGO data.

120 Efficient Kernel Methods for Statistical Detection

those belonging to the class-1 region. Increasing sample size does reduce the bias;

however, the biases of points #8 and #9 are insensitive to the change of sample

size. When the sample size is large, the predicted probabilities given by BLAGO

and frequentist-LAGO are almost identical. BKNN works significantly worse than

BLAGO and frequentist-LAGO at locations #11 and #12.

Index

B
ia

s

1 2 3 4 5 6 7 8 9 10 11 12 13

−0
.4

−0
.3

−0
.2

−0
.1

0.
0

0.
1

BLAGO
Frequentist
BKNN

Index

B
ia

s

1 2 3 4 5 6 7 8 9 10 11 12 13

−0
.4

−0
.3

−0
.2

−0
.1

0.
0

0.
1

BLAGO
Frequentist
BKNN

Figure 5.13: Bias of the predicted probabilities obtained by BLAGO (solid line), frequentist-

LAGO (slashed line) and BKNN (dotted line) under sample size n = 400 (left) and n = 4000

(right). Based on the Mysim-LAGO data.

It is well known that kernel density estimator (KDE) is biased. LAGO is related to

KDE in that it estimates p1, the density of class 1, by an adaptive bandwidth KDE.

Bias might be introduced when estimating p1 and carried over to BLAGO. Some au-

thors point out that the ordinary bootstrap confidence bands for the nonparametric

regression and density estimation generally have under-coverage rate. In order to ob-

tain an asymptotically correct coverage rate, Härdle & Marron (1991) and Eubank &

Speckma (1993) propose two different bias-corrected confidence bands; Hall & Owen

(1993) and Chen (1996) suggest using empirical likelihood to construct confidence

Chapter 5 : Bayesian LAGO 121

bands in problems of nonparametric density estimation; Galindo et al. (2001) applied

the idea of estimating equations to construct bootstrap confidence intervals for four

generalized local polynomial nonparametric regression models. Bias is another main

reason causing the low coverage rate of BLAGO. We might be able to improve the

coverage rate considerably if we could find a way to correct the bias.

As a result, the biased prediction caused by LAGO and the underestimated standard

deviations caused by the pseudo-likelihood function altogether make the coverage rates of

the 95% credibility intervals lower than the nominal level. To have a better insight of to

what extent BLAGO underestimates the variability, I will compare the intervals given by

BLAGO, frequentist-LAGO and BKNN with the bootstrap confidence intervals in terms

of coverage rate and average length of intervals in Section 5.8.1.

We can also evaluate the performance of BLAGO using the results based on one ex-

periment, say experiment #70. Again, experiment #70 is not the one that yields the best

results; it is used only for illustration. Figure 5.14 plots the predictions and their 95%

posterior credibility intervals for those 13 selected points. As shown in Figure 5.14, the

bias of BLAGO is dramatically corrected by increasing the sample size from 400 to 4000,

except for points #8 and #9, which are two ”difficult” points on the boundary of the

class-1 region and surrounded by quite a few class-0 observations.

As mentioned before, the credibility intervals given by BLAGO (when n = 4000) seem

to be too narrow. However, they do provide some information about the data:

• The predictions are quite close to the true values except for points #8 and #9.

• Even though the credibility intervals are too narrow, they do tell us some uncertainty

of the prediction. The intervals are relatively narrower for points in a more pure

region, e.g., points #1 to 5, and points #11 and 13.

122 Efficient Kernel Methods for Statistical Detection

Index

pr
ed

ic
tio

n

1 2 3 4 5 6 7 8 9 10 11 12 13

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Prediction
True

Index

pr
ed

ic
tio

n

1 2 3 4 5 6 7 8 9 10 11 12 13

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Prediction
True

Figure 5.14: Predictions (filled dots) of the 13 representative points and their 95% posterior

credibility intervals. Diamonds are the true probabilities. Left: n = 400; right: n = 4000.

5.8 Discussion

This section discusses three special topics of BLAGO. The first topic is comparing the 95%

posterior (or confidence) intervals given by BLAGO and BKNN (or frequentist-LAGO)

with the bootstrap confidence intervals. As mentioned in Section 5.7.2, BLAGO tends to

underestimate the variation of the prediction, and hence yields a too narrow credibility

interval and a too low coverage rate. Bootstrap confidence intervals might be able to

account for all sources of variation of the prediction and provide us a benchmark of the

amount of variation BLAGO under-counts.

Since BLAGO results in a probabilistic estimate of a point’s probability of being class

1 and the uncertainty of this estimate as well, one intuitive question is whether accounting

for the uncertainty improves the ranking performance. This question will be addressed in

the second part of this section via comparing the average precisions calculated by using

Chapter 5 : Bayesian LAGO 123

the posterior mean and the 2.5th posterior percentile as the ranking score.

In order to cast LAGO into a Bayesian framework, MCMC methods were also at-

tempted. The last part of this section will discuss briefly the MCMC approaches we have

tried.

5.8.1 Bootstrap Confidence Interval

One important application of bootstrap techniques (Efron and Tibshirani, 1993) is to

construct confidence intervals.

Recall that the quantity of interest is θ, a data point’s probability of being class 1.

Considering that the end points of both the BLAGO credibility interval and the confidence

interval of frequentist-LAGO are obtained by finding the 2.5th and 97.5th percentiles,

we decide to adopt the percentile method to construct the bootstrap confidence interval

for θ. The detailed procedure to construct bootstrap confidence intervals for those 13

representative points of the Mysim-LAGO data set is as follows:

1. Generate one set of training data D and a set of validation data V using the same

mechanism given in Section 4.4.2.

2. Given the training data D, generate 500 bootstrap sampling with replacement from

D, denoted as D1, . . . ,D500.

3. For each bootstrap sample Db, fit LAGO over a grid of (K,α) pairs and pick the best

(K,α) combination, (K
′

, α
′

), which gives the smallest deviance evaluated on the val-

idation set. Obtain the coefficients of the logistic transformation (β
′

0, β
′

1) by fitting a

logistic regression on the standardized LAGO scores. Given (K
′

, α
′

, β
′

0, β
′

1), calculate

the probabilities of being class 1 for the 13 points, denote as θb = (θb1, . . . , θb13), b =

1, . . . , 500.

4. The end points of the 95% confidence interval for the jth point can be obtained by

124 Efficient Kernel Methods for Statistical Detection

finding the 2.5th and 97.5th percentiles of the prediction vector (θ1j , . . . , θ500j), j =

1, . . . , 13.

5. Repeat steps 1 to 4 one hundred times to calculate the coverage rate for every rep-

resentative point by computing the proportion of times that those 100 confidence

intervals cover the true probability. The average length of the 100 confidence inter-

vals can be calculated as well.

Table 5.10 reports the coverage rates and the average lengths of the intervals given

by the bootstrap method (Boot), frequentist-LAGO (Freq), BLAGO and BKNN. The

standard deviations for the selected points calculated by frequentist-LAGO, BLAGO and

BKNN across 100 trials are also given in Table 5.10.

Coverage Rate (%) Average Length Standard Deviation

Boot Freq BLAGO BKNN Boot Freq BLAGO BKNN Freq BLAGO BKNN

67 81 84 76 0.1154 0.0568 0.0642 0.0655 0.0444 0.0365 0.0418

65 75 85 69 0.1225 0.0552 0.0624 0.0616 0.0382 0.0277 0.0274

63 78 85 57 0.1100 0.0530 0.0614 0.0606 0.0293 0.0315 0.0291

100 55 71 62 0.2911 0.0805 0.1125 0.1120 0.0655 0.0620 0.0680

99 54 75 70 0.3003 0.0830 0.1140 0.1016 0.0721 0.0640 0.0528

94 28 57 49 0.4241 0.1144 0.1946 0.1374 0.0957 0.0986 0.0939

95 31 56 41 0.4133 0.1087 0.1862 0.1509 0.0787 0.0965 0.0929

74 22 23 20 0.7064 0.2301 0.2857 0.2547 0.1984 0.2177 0.1826

74 19 24 17 0.6937 0.2212 0.2991 0.2402 0.1958 0.2071 0.1798

74 24 36 22 0.8402 0.3206 0.4333 0.4017 0.2663 0.2640 0.2291

74 26 41 9 0.7864 0.3371 0.4087 0.2815 0.2496 0.2600 0.1997

78 22 39 14 0.8071 0.3478 0.4373 0.2917 0.2385 0.2462 0.2145

44 4 10 0 0.7829 0.3505 0.4288 0.4171 0.2320 0.2585 0.2258

Table 5.10: Coverage rate, average length of the intervals for each location calculated by the

bootstrap method, frequentist-LAGO, BLAGO and BKNN over 100 experiments.

Chapter 5 : Bayesian LAGO 125

Although the coverage rates given by the bootstrap method are not equal to 95%, they

are in general closer to the nominal value than the rates given by BLAGO, frequentist-

LAGO and BKNN. The inaccuracy of the coverage rate of the bootstrap intervals is due

to the bias of the prediction.

Figure 5.15 plots the average lengths of 100 intervals against 4 times the standard de-

viations of the corresponding predictions for all the 13 selected locations given by BLAGO

and bootstrap method. Two reference lines both of which go through the origin are also

displayed, one with slope 1 and the other with slope 1/2. It is easy to see that the aver-

age length of the bootstrap intervals is roughly four times the standard deviation of the

prediction, which indicates that bootstrap interval is relatively honest in representing the

uncertainty of the prediction. However, the bootstrap method is computationally expen-

sive. The computational cost of bootstrap is more than 500 times as much as that of

BLAGO. Applying the bootstrap method to a large data set might be infeasible.

One interesting finding is that the average length of the BLAGO credibility interval is

roughly twice as large as the corresponding standard deviation. If we continue to regard

four times the standard deviation as the ”gold standard”, then the Bayesian posterior

interval given by BLAGO is about half as long as it should be. This consistent shift

suggests that BLAGO is able to capture the uncertainty of the prediction to some extent

and we can still rely on it to assess the relative uncertainty of the prediction, although it

underestimates overall uncertainty.

126 Efficient Kernel Methods for Statistical Detection

0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

4*std

In
te

rv
al

 L
en

gt
h

BLAGO
Bootstrap

slope=1/2

slope=1

Figure 5.15: Average lengths of 100 intervals versus 4 times the standard deviations of the

corresponding predictions for the 13 representative locations given by BLAGO and bootstrap

method. Both the two reference lines go through the origin, one with slope 1 and the other with

slope 1/2.

5.8.2 Using Lower Confidence Bound for Ranking

To answer the intuitive question whether accounting for the uncertainty improves the rank-

ing performance of BLAGO, we calculate the average precision using the lower posterior

confidence bound (i.e., the 2.5th posterior percentile) as the ranking score, and compare

this average precision with the one calculated by using the posterior mean. The 2.5th pos-

terior percentile is more suitable for ranking than the 97.5th posterior percentile; because

the item has the largest 2.5th posterior percentile is the one that has the maximum lowest

probability of being class 1, and hence should be ranked the first. In other words, items

Chapter 5 : Bayesian LAGO 127

having larger lower confidence bounds should appear earlier in the ranking.

Table 5.11 shows the average precisions for the NCI data when the posterior mean and

the lower bound of the 95% posterior credibility interval are used to rank the compounds.

Figure 5.16 compares the values of the lower bounds and the predicted probabilities, i.e.,

the posterior means.

Posterior Mean Lower Bound

Split1 0.2512 0.2388

Split2 0.2696 0.2539

Split3 0.2509 0.2515

Split4 0.2767 0.2687

Table 5.11: Comparing the test-set average precisions of the NCI data when the posterior mean

and the 2.5th posterior percentile (lowerbound) are used as the ranking scores.

Both Table 5.11 and Figure 5.16 indicate that taking into account the variation of the

predicted value will not affect the ranking dramatically. There is no significant difference

in average precision between the posterior mean and the lower bound according to the

result of a pairwise t-test (p-value=0.36).

The ”banana” shapes in Figure 5.16 are not surprising; because as we know, the variance

of a Bernoulli variable is larger when the probability of success p is closer to 0.5.

128 Efficient Kernel Methods for Statistical Detection

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Prediction

Lo
w

er
bo

un
d

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Prediction

Lo
w

er
bo

un
d

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Prediction

Lo
w

er
bo

un
d

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Prediction

Lo
w

er
bo

un
d

Figure 5.16: Comparing the lower bounds of the credibility intervals (lowerbound, the y-axis)

and the posterior mean (prediction, the x-axis) for the four random splits of the NCI data. Upper

left: the 1st split; Upper right: the 2nd split; Lower left: the 3rd split; Lower right: the 4th split.

As for the Mysim data, Figure 5.17 compares the 100 average precisions when the

lower bound is used as the ranking score with those when posterior mean is adopted as

the ranking score. A pairwise t-test shows that there is no significant difference in average

precision between these two ranking scores (p-value=0.75).

Chapter 5 : Bayesian LAGO 129

0.80 0.85 0.90 0.95

0.
80

0.
85

0.
90

0.
95

Prediction

Lo
w

er
bo

un
d

Figure 5.17: The test-set average precisions of lower bound (lowerbound) and posterior mean

(prediction) based on 100 experiments of the Mysim data.

The comparison for the Mysim-LAGO data is presented in Figure 5.18. Pairwise t-tests

show that there is no significant difference between these two ranking scores in average

precision, with p-value being 0.33 for n = 400 and 0.93 for n = 4000. When the sample

size is large enough, the rankings are identical no matter the posterior mean or the lower

bound is used for ranking.

130 Efficient Kernel Methods for Statistical Detection

0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Prediction

Lo
w

er
bo

un
d

AP of Mysim−LAGO

0.38 0.40 0.42 0.44 0.46 0.48 0.50

0.
38

0.
40

0.
42

0.
44

0.
46

0.
48

0.
50

Prediction

Lo
w

er
bo

un
d

AP of Mysim−LAGO with n=4000

Figure 5.18: The test-set average precisions of the lower bound (lowerbound) and the posterior

mean (prediction) based on 100 experiments of the Mysim-LAGO data. Left: when sample size

n = 400; Right: when n = 4000.

5.8.3 MCMC Methods

Besides the Laplace approximation for computing the posterior mentioned in Section 5.3,

we also tried two MCMC algorithms with random walk proposals. These two MCMC

approaches were tried before adopting the more efficient Laplace approximation approach.

We document the two MCMC approaches here briefly.

In both MCMC approaches, we assume the prior distributions of K and α are indepen-

dent and non-informative. The first approach adopts the logit link function to compute

the likelihood function and Metropolis-Hastings algorithm to obtain the posterior distri-

butions. The second one applies the probit link to calculate the likelihood and hybrid of

Gibbs sampling and Metropolis to get the posterior distributions. In the first approach,

we do not draw β explicitly, but integrate it out using the Laplace approximation. In

Chapter 5 : Bayesian LAGO 131

the second approach, we borrow Albert and Chib’s (1993) approach for computing the

exact posterior distribution of β. The main idea is to introduce N independent continuous

latent variables Z1, . . . , ZN such that Zi ∼ N(tT
i β, I), and define yi = 1 if Zi > 0 and

yi = 0 if Zi ≤ 0, where ti = (1, gi)
T with gi being the standardized LAGO score for the ith

training point (xi, yi). Given the data Y = (y1, . . . , yN), the joint posterior distribution

f(K,α,β,Z|Y) is given by

f(K,α,β,Z|Y) ∝ f(Z|K,α,β)f(β)f(K)f(α)I(Y;Z), (5.28)

where I(Y;Z) is indictor function checking whether yi and Zi are consistent or not. Equa-

tion (5.28) is under the assumption that the priors of K,α and β are independent. Suppose

the prior of β is bivariate normal with mean µ0 and variance-covariance matrix Σ0, the

full conditonals are as follows:

f(Z|K,α,β,Y) ∝ f(Z|K,α,β)I(Y;Z) =
N∏

i=1

f(Zi|K,α,β, yi), (5.29)

where f(Zi|K,α,β, yi) ∼ N(tT
i β, 1) truncated on the left by 0 if yi = 1 or truncated on

the right by 0 if yi = 0 for i = 1, · · · , N ;

f(β|K,α,Z,Y) ∝ f(Z|K,α,β)f(β) ∼ MVN(β̃, Σ̃) (5.30)

where T = [tT
1 , · · · , tT

N]T , β̃ = (Σ−1
0 + T TT)−1(Σ−1

0 µ0 + T TZ(j)) and Σ̃ = (Σ−1
0 + T TT)−1;

f(K,α|β,Z,Y) ∝ f(Z|K,α,β)f(K)f(α) ∝
N∏

i=1

N(tT
i β, 1). (5.31)

We draw K and α by the Metropolis-Hastings algorithm, and draw Z and β by Gibbs

sampling.

The MCMC algorithms were abandoned eventually because of the following reasons:

• The parameters K, α and (β0, β1) are highly correlated, which makes the Markov

chain take many iterations to explore the parametric space and results in slow con-

vergence. Even though reparametrization might be able to reduce the correlation

132 Efficient Kernel Methods for Statistical Detection

among the parameters, there is no general guideline to determine a suitable trans-

formation, especially for mixture of integer and continuous variables. See Chapter 3

and 5 of Ganerman and Lopes’ book (Gamerman and Lopes, 2006) for more detail.

• To decide the number of iterations that ensures convergence is still a challenging

problem. Cowles and Carlin (1996) reviewed and compared thirteen state-of-the-art

convergence diagnostic methods. Some methods are designed for multiple chains

while others are designed for single chains; some methods are quantitative while oth-

ers are informal and graphical; some methods are only applicable to Gibbs algorithm

and some are suitable to any MCMC algorithm. Among those thirteen methods dis-

cussed, the most popular ones are Gelman’s diagnostics (Gelman and Rubin, 1992),

Geweke’s diagnostics (Geweke, 1992), and Raftery’s diagnostics (Raftery and Lewis,

1992). All of these three methods have already been implemented in the R library

called coda. I have applied these three diagnostics methods on the probit MCMC

approach with 50,000 iterations for the NCI data. Gelman’s test suggests that 50,000

iterations is enough; Geweke’s test, however, fails in some parallel chain; Raftery’s

test in general requires much more iterations than 50,000. Different diagnostics give

different conclusions, it is hard to claim that 50,000 iterations is adequate to ensure

the Markov chain to reach its equilibrium distribution so that inference based on the

posterior samples is valid.

• Last but not least, even though the computational cost of BLAGO using the Laplace

approximation is much cheaper than MCMC, its prediction performance is better

than or at least as good as MCMC algorithms.

Chapter 5 : Bayesian LAGO 133

5.9 Conclusion

We propose and implement a Bayesian approach for LAGO, referred to as BLAGO. In

our Bayesian approach, we evaluate the posterior distribution on a fine grid of (K,α) via

the Laplace approximation. A test point’s probability of being class 1 is estimated by

the posterior mean, and the uncertainty of this estimate is captured by a 95% credibility

interval.

We apply BLAGO to the NCI data and two simulated data sets. Results indicate that

BLAGO provides a ranking which is at least as effective as LAGO. One advantage gained

from BLAGO is a probabilistic estimate, which is essentially needed for decision-making

applications associated with costs. Despite the fact that BLAGO seems to underestimate

overall uncertainty, that the length of its credibility interval is still approximately propor-

tional to the corresponding standard deviation suggests that we can still rely on it to assess

the relative uncertainty of its prediction.

Computationally, BLAGO is much faster than if it were implemented via MCMC.

Furthermore, the Bayesian framework removes the need to select parameters K and α via

cross-validation, making it more computationally efficient than LAGO.

Chapter 6

Conclusions and Future Research

6.1 Summary of the Thesis

The basic objective of my thesis is to propose novel statistical methods to address sta-

tistical detection problems. The set up of the detection problem is the same as a binary

classification problem. The reasons that we would like to treat statistical detection as a

special problem are twofold. First, the frequencies of the two classes are extremely unbal-

anced. There are only a few observations belonging to the class of interest (class 1), say

1-2% or even less. Second, the objective of statistical detection is to assign a relative rank-

ing to the data according to their probability of being class 1 and, hence, find the class-1

items as early as possible. This is very different from the common classification problem,

which pursues the least classification error. We use the drug discovery problem as the main

application to illustrate our methods. Other applications of the detection problem include

direct marketing and fraud detection.

Chapter 2 describes the cycle of drug discovery and development, including its tasks

in each stage. How data mining techniques help speed up the screening to identify the

active compounds in the early stage of drug discovery is also discussed. Chapter 2 presents

the AIDS antiviral database from the National Cancer Institute, the main drug discovery

135

136 Efficient Kernel Methods for Statistical Detection

application used throughout this thesis.

The statistical detection problem is defined in Chapter 3. We briefly introduce sev-

eral popular and powerful statistical methods that can be applied to statistical detection.

These methods are KNN, trees, SVM and ASVM. Model assessment of statistical detec-

tion is discussed in great detail in this chapter. Due to the two main characteristics of

statistical detection, we argue that the conventional misclassification rate is no longer a

good standard; average precision which favors early detection is better.

LAGO, a computationally efficient adaptive statistical detection method is presented

in detail in Chapter 4. LAGO, standing for the locally adjusted ”GO” estimator, is used to

approximate the density ratio f = p1(·)
p0(·) in the form of basis functions. Each component is a

kernel function centered at a class-1 observation xi and with αri as the bandwidth, where ri

is the average distance from xi to its K nearest class-0 neighbors, and α is a global tuning

stretching parameter. For multivariate cases, each component is a product of univariate

kernel functions across all dimensions. Wang (2005) argued that KNN is one of the best

methods for the NCI data and because both LAGO and SVM can be viewed as radial

basis function networks, KNN and SVM provide very good benchmarks for performance

comparison. Applications to the NCI AIDS anti-viral database and two simulated data

sets illustrate that LAGO is competitive with KNN and SVM.

One main drawback of LAGO is that it is not a probabilistic estimate and it is difficult

to make inference on the prediction. Chapter 5 tailors LAGO to a Bayesian framework. We

take into account the model uncertainty by assigning prior distributions to the parameters.

An analytical method with the Laplace approximation is used to obtain the posterior

distributions. Bayesian LAGO results in proper probabilistic predictions that have support

on (0,1). Computationally, BLAGO is more efficient than MCMC algorithms and LAGO.

The following section proposes some promising extensions of Bayesian LAGO and

LAGO as some possible directions of future research.

Chapter 6 : Conclusions and Future Research 137

6.2 Future Research

6.2.1 Asymmetric LAGO

To rank the items, we only need their relative scores of being class 1. These scores do not

need to be well calibrated to their true probabilities; instead it may suffice if the scores

preserve the correct ranking. As for BLAGO, however, we do need a well-calibrated prob-

abilistic prediction to evaluate the likelihood function (5.14). Equation (5.13) implies that

a well-calibrated probabilistic prediction θi relies on a accurate LAGO score f̂(xi). For

example, we should correct the bias of LAGO score as much as we can before feeding it into

a logistic regression if this bias exists. This motivates us to study the bias of LAGO esti-

mate. And as a result, we come up with a more advanced LAGO method that can correct

the bias to some extent. We call this new LAGO method the asymmetric LAGO (ALAGO).

Bias of LAGO and Correction by ALAGO

Recall that LAGO given in (4.6) is constructed to estimate the density ratio (4.2) in two

steps. The first step is to estimate p1(·) by an adaptive kernel density estimate; and

the second step is to locally adjust p̂1 by a local constant. Now, let’s examine the bias

introduced by this adjustment. For simplicity, we only consider the univariate case with

α = 1. Estimating p1 by a adaptive kernel density estimate, the density ratio becomes

p1(z)

p0(z)

≈
1
n1

∑

yi=1 K(z; xi, ri)

p0(z)

=
1

n1

∑

yi=1

1

p0(z)
K(z; xi, ri)

=
1

n1

∑

yi=1

1

p0(xi) − p0(xi) + p0(z)
K(z; xi, ri)

=
1

n1

∑

yi=1

1

p0(xi)[1 − p0(xi)−p0(z)
p0(xi)

]
K(z; xi, ri). (6.1)

138 Efficient Kernel Methods for Statistical Detection

Applying the well-known series expansion

1

1 − x
= 1 + x+ x2 + · · ·

and the mean value theorem, equation (6.1) becomes

=
1

n1

∑

yi=1

1

p0(xi)
K(z; xi, ri)

[

1 +
p0(xi) − p0(z)

p0(xi)
+

[p0(xi) − p0(z)]
2

p2
0(xi)

+ · · ·
]

=
1

n1

∑

yi=1

1

p0(xi)
K(z; xi, ri)

[

1 +
(xi − z)p

′

0(ξ)

p0(xi)
+

[(xi − z)p
′

0(ξ)]
2

p2
0(xi)

+ · · ·
]

≈ 1

n1

∑

yi=1

1

p0(xi)
K(z; xi, ri) +

1

n1

∑

xi∈C1

(xi − z)p
′

0(ξ)

p2
0(xi)

K(z; xi, ri), (6.2)

where ξ is somewhere between xi and z.

Note that Theorem 1 given in Section 4.1.2 implies that the first term of (6.2) is the

LAGO score. If within a neighborhood of xi, the density p0 is roughly a constant, (6.2)

becomes LAGO score given in (4.6) and no bias exists up to a normalizing constant.

However, if the density p0 within a local region of xi is not constant, the LAGO score

might underestimate or overestimate the density ratio. For example, assume that p0 is

a monotonically increasing function within a neighborhood of xi, which means that the

distribution of class-1 observations is more dense on the right-hand side of xi than on its

left-hand side, i.e., p
′

0(xi) > 0. If z is on the left-hand side of all xi ∈ C1, we have xi−z > 0

and hence the second term of (6.2) is positive; on the other hand, if z is on the right-hand

side of all xi’s, we have xi − z < 0 and hence the second term of (6.2) is negative. This

means LAGO score tends to underestimate the density ratio for those points on the left-

hand side of the training class-1 observations; whereas LAGO score tends to overestimate

the density ratio for those data points that are on the right-hand side of the training class-1

observations. However, if the density of p0 is instead monotonically decreasing within a

neighborhood of xi, the bias in the estimated density ratio will be the other way around.

We might be able to somehow correct this bias by using different bandwidths on different

sides of xi.

Chapter 6 : Conclusions and Future Research 139

For ALAGO, we still use the idea of nearest neighbors to define the bandwidths of

the kernel functions. Given a class-1 observation xi ∈ C1, we calculate its left-hand-side

bandwidth ri,left by using only the left-hand-side class-0 neighbors Nl(Kl, xi) and its right-

hand-side bandwidth ri,right by using only the right-hand-side class-0 neighbors Nr(Kr, xi).

That is

ri,left =
1

Kl

∑

w∈Nl(Kl,xi)

|w − xi|

ri,right =
1

Kr

∑

w∈Nr(Kr ,xi)

|w − xi|,

where Kl and Kr indicate the number of elements in set Nl(Kl, xi) and Nr(Kr, xi) respec-

tively. Set the bandwidth to be a large number if there is no class-0 observation on that

side, e.g., let ri,left = a if Nl(Kl, xi) = ∅, where a = max{x} − min{x}. Given a test point

z, its LAGO score contributed by xi will depend on whether z is smaller or larger than xi.

If z < xi, replace ri with ri,left in equation (4.6); otherwise, replace ri with ri,right. Figure

6.1 compares the kernel functions of xi ∈ C1 for LAGO and ALAGO given K = 2 (for

LAGO) or Kl = Kr = 1 (for ALAGO). Those two points xi − 2 and xi + 1 are two class-0

neighbors of xi that are two units and one unit away from xi respectively. Obvious, the

bandwidth ri for LAGO is ri = |−2|+|1|
2

= 3
2
; while for ALAGO, ri,left = 2, ri,right = 1.

The approach of ALAGO is equivalent to modeling the density of p0 within a neigh-

borhood of xi with a step function rather than a local constant. Recall that if p
′

0(xi) > 0,

the density ratio of those points on the left-hand side of xi will be underestimated. This

downward bias can be corrected to some extent by using a larger bandwidth and hence the

LAGO score will be increased. Similarly, by using a smaller bandwidth for the data points

on the right-hand side of xi, we are able to reduce their LAGO scores and hence correct

the upward bias.

LAGO or ALAGO?

ALAGO is a more complex model than LAGO. In cases where the distribution of class-0

140 Efficient Kernel Methods for Statistical Detection

xi

ri

xi − 2 xi + 1 xi

ri,left ri,right

xi − 2 xi + 1

Figure 6.1: Left: Kernel function used in LAGO with K = 2. Right: Kernel function used in

ALAGO with Kl = Kr = 1. Those two points, xi − 2 and xi + 1 indicate the two nearest class-0

neighbors of xi.

observations is balanced around xi ∈ C1, ALAGO and LAGO should give similar results. In

order to determine whether the more complex ALAGO is necessary, a pair-wise t-test can

be conducted to compare the left-hand-side bandwidths and right-hand-side bandwidths.

If the left-hand-side and right-hand-side bandwidths are significantly different, we should

adopt ALAGO; otherwise, we should go directly for LAGO. This approach will be illus-

trated in the next section. For multivariate cases, a pair-wised t-test can be conducted in

each dimension and the significance level can be adjusted by Bonferroni correction (Mont-

gomery, 2000).

A Toy Example

A simulation was conducted to compare the performance of LAGO and ALAGO. Suppose

x|C1 ∼ N(−1, 0.222) and x|C0 ∼ N(1, 0.52). Clearly, p0 is not flat and thus bias might

exist as suggested above. A set of training data are generated as follows: generate 100

class-1 and 1000 class-0 observations. Validation data and test data are also generated in

Chapter 6 : Conclusions and Future Research 141

the same way. Fixing K = 6 for LAGO and Kl = Kr = 3 for ALAGO, choose the optimal

α that minimizes absolute error using the validation data. The absolute error is defined as

Errora =
1

n

n∑

i=1

|p̂i − pi|, (6.3)

where n is the total number of observations in the validation set; pi is the ith validated

point’s true probability of being class 1, which can be calculated by Bayes’ rule; and p̂i is

the corresponding predicted probability, which is obtained by passing the (A)LAGO score

through a logistic model given in (5.13), and (β0, β1) are the MLE of the fitted logistic re-

gression. Cross-validation on a grid of α ∈ {0.01, 0.1, 0.25, 0.5, 1, 1.5, 2, 3, 4, 5, 10} indicates

α = 1 for LAGO and α = 1.5 for ALAGO. The resulting MLE of the logistic regression is

(β̂0, β̂1) = (−6.95, 15.80) for LAGO and is (β̂0, β̂1) = (−8.10, 13.47) for ALAGO. We are

”cheating” in such a way that we used the true probability pi to choose the optimal α.

However, since the focus here is on comparing LAGO and ALAGO, we let both algorithms

”cheat” in the same way and pick their own optimal α values.

The original LAGO and ALAGO scores are compared to the true density ratio f = p1

p0

in Figure 6.2, which shows that even though the scales of (A)LAGO score and the true

density ratio f are very different, the ALAGO score is monotonically increasing in f and

hence preserves the right ranking of f ; however, LAGO wrongly ranks some observations

in the tail. Figure 6.3 compares the LAGO and ALAGO predictions of the test data after

the logistic transformation (5.13) to their true probabilities of being class 1. Notice that

the original LAGO method underestimates some class-1 observations’ probabilities of being

class 1 and ALAGO is able to significantly correct the bias.

The p-value of a pairwise t-test on comparing the left-hand-side bandwidths and right-

hand-side bandwidths is less than 10−15, which means the densities of class 0 on different

sides of xi ∈ C1 are significantly different.

142 Efficient Kernel Methods for Statistical Detection

0 10000 20000 30000 40000

0.
0

0.
2

0.
4

0.
6

0.
8

Density Ratio

LA
G

O
 S

co
re

0 10000 20000 30000 40000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Density Ratio

A
LA

G
O

 S
co

re
Figure 6.2: Left: LAGO score versus the true density ratio. Right: ALAGO score versus the

true density ratio

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True prob

LA
G

O
 p

re
di

ct
io

n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True prob

LA
G

O
 p

re
di

ct
io

n

Figure 6.3: Left: LAGO prediction versus the true probability. Right: ALAGO prediction versus

the true probability

Chapter 6 : Conclusions and Future Research 143

The performance of LAGO and ALAGO on the test set in terms of absolute error,

average precision and deviance are summarized in Table 6.1, which shows that ALAGO is

superior to LAGO in all three criteria.

Performance LAGO ALAGO Optimal

Average Precision 0.9896 0.9991 0.9991

Absolute Error 7.4174 1.4735 0

Deviance 34.6974 13.6768 13.3432

Table 6.1: Comparison of LAGO and ALAGO on a toy example. The optimal results are

obtained by Bayes’ rule.

6.2.2 BLAGO-II

In Chapter 5, we introduced the Bayesian LAGO which estimates a point’s probability of

being class 1 by

logit{pf̂(z)} = β0 + β1f̂(z)

= β0 +
β1

n1

∑

yi=1

riK(z; xi, ri), (6.4)

where f̂(z) is the LAGO score of z given parameters K and α. BLAGO given in (6.4)

can be viewed as a logistic regression on all kernel components riK(z; xi, ri), ∀xi ∈ C1

with equal coefficient β1

n1
. This model can be easily extended to a more flexible model by

assigning different weights to different kernel components as follows,

log
pf̂(z)

1 − pf̂(z)

= β0 +
1

n1

∑

xi∈C1

βiriK(z; xi, ri). (6.5)

We call this more complex model BLAGO-II. Our BLAGO approach can be easily extended

to fit BLAGO-II. Since the number of predictors of (6.5) equals to the number of class-

1 observations which is in general over a hundred; to avoid overfitting, regularization

techniques might be necessary.

144 Efficient Kernel Methods for Statistical Detection

Two well-known regularization methods in regression context are ridge regression (Hoerl

and Kennard, 1970) and the least absolute shrinkage and selection operator (LASSO)

(Tibshirani, 1996). The LASSO is a shrinkage and selection method for linear regression.

It minimizes the residual sum of squares subjected to the sum of the absolute value of

the coefficients bounded by a constant. One most attractive feature of the LASSO is

that it shrinks the coefficients of those weak predictors to zero and thus produces sparse

solutions. This shrinkage not only gives a more accurate prediction but also makes the

resulting model much easier to interpret. The computation of the LASSO solutions is a

quadratic programming problem with linear inequality constraints, which can be solved by

standard numerical analysis algorithm. However, a simple modification of the least angle

regression algorithm introduced by Efron et al. (2004) provides a more efficient approach

to compute the LASSO solutions.

Hastie et al. (2001, Chapter 3) pointed out that penalized methods such as ridge

regression and the LASSO can usually be cast in a Bayesian framework by thinking of

the penalty function as the log-prior, and the penalized loss function as the log-posterior.

Therefore, minimizing the penalized loss function amounts to finding the posterior mode.

They further shown that ridge regression can also be derived as the posterior mode (or

mean) by choosing the prior distribution to be normal; the LASSO can be derived as the

mode of a posterior distribution with double exponential as the prior distribution.

One of the most attractive ideas behind BLAGO-II is that we can allow the coefficients

βi to be either significant large or exactly zero via choosing suitable sparsity-promoting

priors. To be more specific, we could adopt the double-exponential prior which results in a

LASSO-type solution (see Krishnapuram et al., 2005); or we could apply the idea of using

a hyper-prior in the same way as Tipping (2001) did for the relevance vector machines.

In order to have a rough idea how BLAGO-II performs, we estimate the coefficients

of BLAGO-II (6.5) by fitting a neural network without hidden units and with decay > 0.

There are three tuning parameters in this logistic neural network (LNNet) model — K, the

Chapter 6 : Conclusions and Future Research 145

number of class-0 neighbors used to determine the radii ri’s; the global stretching factor

α; and the decay parameter of NNet. The optimal values of parameters can be chosen by

cross-validation. Note that this LNNet is actually a logistic regression with L2 penalty,

i.e., a ridge logistic regression (Le Cessie et al., 1992).

We applied LNNet to the NCI data. Table 6.2 reports the top 5 optimal values of the

three tuning parameters K,α, decay, and their corresponding cross-validated and test-set

average precisions (AP). Figure 6.4 shows the contour plots of cross-validated AP evaluated

at different values of K and α given the optimal value of decay. According to the APs on

the test sets of four random training/test splits of NCI data, BLAGO-II is very promising.

146 Efficient Kernel Methods for Statistical Detection

K α Decay CV AP Test AP

5 1.5 300.00 0.2463 0.2418

5 1 300.00 0.2462 0.2388

Split 1 5 1 266.67 0.2461 0.2385

5 1 200.00 0.2460 0.2377

5 1.5 266.67 0.2460 0.2409

20 1 300.00 0.2496 0.2630

20 1 266.67 0.2496 0.2632

Split 2 9 1 266.67 0.2493 0.2701

9 1 300.00 0.2493 0.2701

9 1 233.33 0.2493 0.2701

9 1.5 266.67 0.2407 0.2571

9 1.5 233.33 0.2406 0.2559

Split 3 9 1.5 300.00 0.2406 0.2573

9 1.5 200.00 0.2403 0.2563

7 1.5 266.67 0.2399 0.2514

1 5 300.00 0.1947 0.2628

1 5 266.67 0.1940 0.2630

Split 4 1 5 233.33 0.1931 0.2628

1 5 200.00 0.1921 0.2637

3 3 200.00 0.1916 0.2809

Table 6.2: Top 5 optimal choices of the three tuning parameters—K,α,decay; ”CV AP” refers

to the cross-validated average precision and ”Test AP” refers to the average precision on the test

set.

Chapter 6 : Conclusions and Future Research 147

0.04

0
.0

6

0.06

0
.0

8

0.08

0.08

0
.1

0
.1

0.1

0.1

0
.1

2

0
.1

2

0.12

0.12

0
.1

4

0
.1

4

0
.1

4

0.14

0.14

0.14

0
.1

6
0
.1

6
0
.1

6

0
.1

6

0.16

0.16

0.16

0
.1

8
0
.1

8

0.18

0
.1

8

0.18

0.18

0.18

0
.2

0
.2

0.2

0
.2

0.2

0.2

0.
2

0
.2

2

0
.2

2

0.22

0.22

0.22

0
.2

2

0
.2

2

0.24

0.24

α

lo
g

(K
)

Split1 decay=300

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

0
.0

6

0.06

0.08

0.08

0
.1

0
.1

0.1

0.1

0
.1

2

0
.1

2

0.12

0.12

0
.1

4

0
.1

4

0
.1

4

0.14

0.14

0
.1

6
0

.1
6

0
.1

6

0
.1

6

0.16

0.16

0
.1

8
0

.1
8

0
.1

8

0
.1

8

0.18

0.18

0
.2

0
.2

0.2

0
.2

0.2

0.2

0.2

0
.2

2
0

.2
2

0.22

0
.2

2

0.22

0.22

0.22

0.24

0.
24

0
.2

4

0.24

0
.2

4

0.24

0
.2

4

α

lo
g

(K
)

Split2 decay=300

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

0.06

0.06

0
.0

8

0.08

0.08

0.08

0
.1

0
.1

0.1

0.1

0
.1

2

0
.1

2

0
.1

2

0.12

0.12

0
.1

4
0

.1
4

0
.1

4

0
.1

4

0.14

0.14

0.14

0
.1

6
0

.1
6

0.16

0
.1

6

0.16

0.16

0.16

0
.1

8
0
.1

8
0.18

0
.1

8

0.18

0.18

0.18

0
.2

0
.2

0
.2

0.2

0.2

0.2

0.2

0
.20.

22

0
.2

2

0.22

0.22

0
.2

2

0.22

α

lo
g

(K
)

Split3 decay=266.6667

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6 0
.0

6

0.06

0
.0

8

0
.0

8

0.08

0.08

0
.1

0
.1

0.1

0.1

0.1

0
.1

2
0

.1
2

0
.1

2

0.12

0.12

0.12

0
.1

4
0
.1

4

0.14

0
.1

4

0.14

0.14

0.14

0.16

0
.1

6

0.1
6

0.16

0.16

0.16

0.18

0
.1

8 0.18

0.18

α

lo
g

(K
)

Split4 decay=300

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

Figure 6.4: Contour plots of test-set average precision for each random split of the NCI data

given the optimal value of decay.

6.2.3 Generalize to Multi-class

For statistical detection problems, we consider only the cases of binary response so far.

Even it might not be necessary, it is possible to generalize LAGO and BLAGO to multi-

class (J > 2) applications.

148 Efficient Kernel Methods for Statistical Detection

As we know, methods such as tree models, KNN, NNet take care of multi-class re-

sponse automatically; however, methods such as logistic regression and SVM are originally

designed for binary outcomes. Models addressing logistic regression with multi-class re-

sponse include proportional odds model, continuation-ratio model and adjacent-category

model, depending how the odd ratios are specified (Agresti, 1990).

How to effectively extend the binary SVM to multi-class SVM is still an on-going

research topic (e.g., Hsu and Lin, 2002). Currently, there are two types of approaches for

multi-class SVM. One is to construct and combine several individual binary SVMs; the

other one is to solve a multi-class SVM that contains several decision functions in a single

optimization step. The first approach includes methods of one-against-rest, one-against-

one, and Direct Acyclic Graph (DAG) SVM. The one-against-rest method constructs J

SVMs and hence resulting in J decision functions. The ith SVM is trained with all the

observations belonging to class i as the positive examples and observations in other classes

as negative examples. A new data x is assigned to the class that yields the largest value

among the decision functions. The one-against-one approach solves J(J − 1)/2 pair-wise

SVMs. There are different voting strategies to assign the class labels after the J(J −
1)/2 classifiers have been constructed. A popular voting method is Friedman’s Max Wins

method (Friedman, 1996) which takes the majority vote of a certain class as the final

output. As for DAGSVM (Platt et al., 2000), the training stage is the same as one-

against-one by solving J(J − 1)/2 binary SVMs; while in the testing phrase, it uses a

binary directed acyclic graph with J(J − 1)/2 internal nodes and J leaves. Each node is

a binary SVM of ith and jth classes. Given a test point x, starting from the root node,

x moves to either the left or the right depending on the value of the decision function at

each internal node, and finally reaches to a leaf node indicating its predicted class.

When it comes back to statistical detection, if there are more than one rare targets (like

the NCI data), we can simply combine all the observations from rare classes and convert the

response to be binary–either background (coded as 0) or target (coded as 1). Furthermore,

Chapter 6 : Conclusions and Future Research 149

multi-class classification methods can be applied to further distinguish the remaining rare

targets. After the rare targets are identified, classifying the rare targets should not be a

statistical detection problem any more, since the class frequencies of different rare targets

are generally balanced.

6.2.4 Categorical Predictors

Like KNN, LAGO is a method based on a distance metric. The performance of LAGO

depends on whether the distance metric honestly represents similarity between the ob-

servations. So far, LAGO only considers continuous predictors using Euclidean distance.

However, categorical variables are unavoidable when we apply LAGO to direct marketing

or fraud detection problems. How to define a meaningful distance between two categorical

variables is still a challenging problem and how to define the distance between a categor-

ical variable and a continuous variable is an even more challenging issue. Buttrey (1998)

proposed a method to handle categorical covariates for KNN. The main idea is to map

the set of categories onto the real line by maximizing the ratio of total sum of squares

to within-class sum of squares (aggregated over all classes) and then KNN proceeds with

Euclidean distance on the mapped data which are real numbers. Continuous variables can

be incorporated in such a way that the continuous variables are first categorized by using

a linear-spline-like representation and mapped to real line in the same way as categorical

variables. For LAGO with mixture of categorical and continuous predictors, we can first

map the predictors to real values using Buttrey’s approach and then apply LAGO on the

transformed data.

Appendix: Proof of Theorem 1

Here we give the proof of Theorem 1, which states:

Let x0 be a fixed observation from class 1. Suppose that w1, w2, . . . , wm are iid observations

from class 0 that are uniformly distributed around x0, say on the interval [x0− 1
2c0
, x0+ 1

2c0
].

If r0 is the average distance between x0 and its K nearest neighbors from class 0 (K < m),

then we have

E(r0) =
K + 1

4(m+ 1)c0
.

Proof:

Without loss of generality, we assume x0 = 0. Let uj = |wj| be the distance between wj

and x0, and p(z) be the density of uj, j = 1, 2, . . . , m. Given that the density p(w) = c0 is

a constant in a local neighborhood around 0, it is straightforward to show that p(u) = 2c0

and its corresponding cumulative distribution function F (u) = 2c0u. Therefore, the density

of the kth order statistics of u1, u2, . . . , um, fu(k)
, is given by

fu(k)
(u) =

m!

(k − 1)!(m− k)!
(2c0)(2c0u)

k−1(1 − 2c0u)
m−k. (6.6)

150

Appendix 151

By (6.6),

E(u(k)) =

∫ 1/2c0

0

ufu(k)
(u)du

=

∫ 1/2c0

0

m!

(k − 1)!(m− k)!
(2c0u)

k(1 − 2c0u)
m−kdu

y=2c0u
=

1

2c0

∫ 1

0

m!

(k − 1)!(m− k)!
yk(1 − y)m−kdy

=
1

2c0

∫ 1

0

(
k

m+ 1

)
(m+ 1)!

k!(m− k)!
yk(1 − y)m−kdy

=
k

2(m+ 1)c0
, (6.7)

where the last step is due to the fact that

∫ 1

0

(m+ 1)!

k!(m− k)!
yk(1 − y)m−kdy = 1

because the foregoing integrand is the density function of Beta(k + 1, m− k + 1).

Since

r0 =
1

K

K∑

k=1

u(k), (6.8)

equation (6.7) implies

E(r0) =
1

K

K∑

k=1

E(u(k))

=
1

K

K∑

k=1

k

2(m+ 1)c0

=
K + 1

4(m+ 1)c0
. (6.9)

�

Bibliography

[1] Agresti, A. (1990), Categorical Data Analysis, John Wiley & Sons, New York.

[2] Albert, J. H. and Chib, S. (1993), Bayesian Analysis of Binary and Polychotomous

Response Data, Journal of the American Statistical Association, 88, 669–679.

[3] Besag, J. (1974), Spatial Interaction and the Statistical Analysis of Lattice Systems

(with discussion), Journal of Royal Statistical Society: Series B, 36, 192–236.

[4] Besag, J. (1975), Statistical Analysis of Non-lattice Data, The Statistician, 24, 179–

195.

[5] Besag, J. (1986), On the Statistical Analysis of Dirty Pictures, Journal of Royal

Statistical Society: Series B, 48, 259–302.

[6] Bolton, R. J. and Hand, D. J. (2002), Statistical Fraud Detection: A Review, Statis-

tical Science, 17, 235–255.

[7] Breiman, L., Friedman, J. H., Olshen, R. A., and Stone C. J. (1984), Classification

and Regression Trees, Chapman & Hall, New York.

[8] Breiman, L. (1996), Bagging Predictors, Machine Learning, 24, 123–140.

[9] Burden, F. R. (1989), Molecular Identification Number for Substructure Searches,

Journal of Chemical Information and Computer Sciences, 29, 225–227.

152

Bibliography 153

[10] Buttrey, S. E. (1998), Nearest-neighbor Classification with Categorical Variables,

Computational Statistics and Data Analysis, 28, 157–169.

[11] Cantor, S. B. and Kattan, M. W. (2000), Determining the Area Under the ROC Curve

for a Binary Diagnostic Test, Medical Decision Making, 20, 468–470.

[12] Caruana, R. and Niculescu-Mizi, A. (2004), Data Mining in Metric Space: An Empir-

ical Analysis of Supervised Learning Performance Criteria, KDD 2004, 69–78.

[13] Chang, C. C. and Lin, C. J. (2007), LIBSVM: a library for support vector machines.

Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[14] Chen, S. X. (1996), Empirical Likelihood Confidence Intervals for Nonparametric Den-

sity Estimation, Biometrika, 83, 329–341.

[15] Chin, K. K. (1999), Support Vector Machines Applied to Speech Pattern Classification,

Master Thesis, Department of Engineering, University of Cambridge.

[16] Chipman, H., George, E. I. and McCulloch, R. E. (1998), Bayesian CART Model

Search (with discussion), Journal of the American Statistical Association, 93, 935–

960.

[17] Chipman, H., George, E. I. and McCulloch, R. E. (2000), Bayesian Treed Models,

Machine Learning, 48, 299–320.

[18] Chipman, H., George, E. I. and McCulloch, R. E. (2006), Bayesian Ensemble Learning,

NIPS 2006.

[19] Cortes, C. and Vapnik, V. (1995), Support Vector Networks, Machine Learning, 20,

273–294.

[20] Cover, T. and Hart, P. (1967), Nearest Neighbor Pattern Classification, IEEE Trans-

actions on Information Theory, IT-13, 21–27.

154 Efficient Kernel Methods for Statistical Detection

[21] Cowles, M. K. and Carlin, B. P. (1996), Markov Chain Monte Carlo Convergence

Diagnostics : A Comparative Review, Journal of the American Statistical Association,

91, 883–904.

[22] Cristianini, N. and Shawe-Taylor, J. (2000), An Introduction to Support Vector Ma-

chines and Other Kernel-based Learning Methods, Cambridge University Press.

[23] De Bruijn, N. G. (1970), Asymptotic Methods in Analysis, Ansterdam, The Nether-

lands: North-Holland.

[24] Efron, B. and Tibshirani, R. (1993), An Introduction to the Bootstrap, Chapman &

Hall, New York.

[25] Efron, B., Haste, T., Johnstone, I. and Tibshirani, R. (2004), Least Angle Regression,

The Annals of Statistics, 32, 407–499.

[26] Engelmann, B., Hayden, E. and Tasche, D. (2003), Testing Rating Accuracy, Risk

January 2003, 82–86.

[27] Eubank, R. L. and Speckman, P. L. (1993), Confidence Bands in Nonparametric

Regression, Journal of the American Statistical Association, 88, 1287–1301.

[28] Fix, E. and Hodges, J. L. (1951), Discriminatory Analysis–Nonparametric Discrimi-

nation: Consistency Properties, Report Number 4, Project Number 21-49-004, USAF

School of Aviation Medicine, Randolph Field, Texas.

[29] Friedman, J. (1996), Another Approach to Polychotomous Classification, Technical

Report, Dept. of Statistics, Stanford University, Stanford, CA.

[30] Galindo, C., Liang, H., Kauermann, G. and Carrol, R. J. (2001), Bootstrap Confidence

Intervals for Local Likelihood, Local Estimating Equations and Varying Coefficient

Models, Statistica Sinica, 11, 121–134.

Bibliography 155

[31] Gamerman, D. and Lopes, H. F. (2006), Markov Chain Monte Carlo–Stochastic Sim-

ulation for Bayesian Inference, Second Edition, Chapman & Hall.

[32] Gelfand, A. E. and Smith, A. F. M. (1990), Sampling-Based Approaches to Calculating

Marginal Densities, Journal of the American Statistical Association, 85, 398–409.

[33] Gelman, A. and Rubin, D. B. (1992), Inference From Iterative Simulation Using Mul-

tiple Sequences (with discussion), Statistical Science, 7, 457–511.

[34] Geman, S. and Geman, D. (1984), Stochastic Relaxation, Gibbs Distributions and the

Bayesian Restoration of Images, IEEE Transitions on Pattern Analysis and Machine

Intelligence, 6, 721–741.

[35] Geweke, J. (1992), Evaluating the Accuracy of Sampling-Based Approaches to the

Calculation of Posterior Moments, Bayesian Statistics 4, 169–194. Eds: Bernardo,

J. M., David, A. P. and Smith, A. F. M., Oxford University Press, Oxford, U.K.

[36] Hall, P. and Owen, A. (1993), Empirical Likelihood Confidence Bands in Density

Estimation, Journal of Computational and Graphic Statistics, 2, 273–289.

[37] Hanley, J. A. and McNeil, B. J. (1982), The Meaning and Use of the Area under a

Receiver Operating Characteristic (ROC) Curve, Radiology, 143, 29–36.

[38] Hanley, J. A. and McNeil, B. J. (1983), A Method of Comparing the Areas under

Receiver Operating Characteristic Curves Derived from the Same Cases, Radiology,

148, 839–843.

[39] Härdle, W. and Marron, J. S. (1991), Bootstrap Simultaneous Error Bars for Non-

parametric Regression, The Annals of Statistics, 19, 778–796.

[40] Hastie, T., Tibshirani, R. and Friedman, J. (2001), The Elements of Statistical Learn-

ing, Springer.

156 Efficient Kernel Methods for Statistical Detection

[41] Hastings, W. K. (1970), Monte Carlo Sampling Methods Using Markov Chains and

Their Applications, Biometrika, 57, 97–109.

[42] Hawkins, D. M. and Kass, G. V. (1982), Automatic Interaction Detection, Topic in

Applied Multivariate Analysis, 269–302. Ed: Hawkins, D. M., Cambridge University

Press, Cambridge, U.K.

[43] Hechenbichler, K. and Schliep, K. P. (2004), Weighted K-Nearest-Neighbor Techniques

and Ordinal Classification, Discussion Paper 399, SFB 386, Ludwig-Maximilians Uni-

versity Munich.

http://www.stat.uni-muenchen.de/sfb386/papers/dsp/paper399.ps

[44] Hoerl, A. E. and Kennard, R. (1970), Ridge regression: Biased Estimation for

Nonorthogonal Problems, Technometrics, 12, 55–67.

[45] Hoeting, J. A., Madigan, D., Raftery, A. D. and Volinsky, C. T. (1999), Bayesian

Model Averaging: A Tutorial (with discussion), Statistical Science, 14, 382–417.

[46] Holmes, C. C. and Adams, N. M. (2002), A Probabilistic Nearest Neighbour Method

for Statistical Pattern Recognition, Journal of Royal Statistical Society: Series B, 64,

295–306.

[47] Hsu, C. W and Lin, C. J. (2002), A Comparison of Methods for Multiclass Support

Vector Machines, IEEE Transactions on Neural Networks, 13, 415–425.

[48] Hsu, C. W., Chang, C. C. and Liu, C. J. (2007), A Practical Guide to Sup-

port Vector Classification, Department of Computer Science and Information En-

gineering, National Taiwan University. Available on the website of LIBSVM at

http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[49] Jerri, A. J. (1999), Introduction to Integral Equations with Applications, , 2nd Edition,

John Wiley & Sons, New York.

Bibliography 157

[50] Joachims, T. (1998), Making Large-scale SVM Learning Practical, Advances in Kernel

Methods — Support Vector Learning. Eds: Schölkopf, B., Burges, C. J. C., and Smola,

A. J., MIT Press, Cambridge, MA.

[51] Kass, R. E., Tierney, L., and Kadane, J. B. (1990), The Validity of Posterior Expan-

sions Based on Laplace’s Method, in Bayesian and Likelihood Methods in Statistics

and Econometrics, 473–488, Eds: Geisser, S., Hodges, J. S., Press, S. J. and Zellner,

A., New York: North-Holland.

[52] Kass, R. E. and Raftery, A. (1995), Bayes Factors, Journal of the American Statistical

Association, 90, 773–795.

[53] Krishnapuram, B., Carin, L., Figueiredo, M. and Hartemink, A. (2005), Sparse Multi-

nomial Logistic Regression: Fast Algorithms and Generalization Bounds, IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 27, 957–968.

[54] Lam, R. L. H. (2001), Design and Analysis of Large Chemical Databases for Drug

Discovery, Ph.D. Thesis, Department of Statistics and Actuarial Science, University

of Waterloo.

[55] Lam, R. L. H., Welch, W. J., and Young, S. S. (2002), Uniform coverage designs for

molecule selection, Technometrics, 44, 99–109.

[56] Le Cessie, S. and Van Houwelingen, J. C. (1992), Ridge Estimators in Logistic Re-

gression, Applied Statistics, 41, 191–201.

[57] Liang, G. and Yu, B. (2003), Maximum Pseudo Likelihood Estimation in Network

Tomography, IEEE Transactions on Signal Processing, 51, 2043–2053.

[58] Liu, Q. and Pierce, D. A. (1994), A Note on Gauss-Hermite Quadrature, Biometrika,

81, 624–629.

158 Efficient Kernel Methods for Statistical Detection

[59] Mallick, B. K. and Gelfand, A. E. (1994), Generalized Linear Models with Unknown

Link Functions, Biometrika, 81, 237–245.

[60] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E.

(1953), Equations of State Calculations by Fast Computing Machines, The Journal of

Chemical Physics, 21, 1087–1092.

[61] Mercer, J. (1909), Functions of Positive and Negative Type and Their Connection with

the Theory of Integral Equations, Philosophical Transactions of the Royal Society of

London. Series A, Containing Papers of a Mathematical or Physical Character, 209,

415–446

[62] Meyer, D. (2007), Support Vector Machines–The interface to libsvm in package e1071,

Technische Universität Wien, Austria.

[63] Montgomery, D. C. (2000), Design and Analysis of Experiments, 5th Edition, John

Wiley & Sons, New York.

[64] Morgan, J. N. and Sonquist, J. A. (1963), Problems in the Analysis of Survey data,

and a Proposal, Journal of the American Statistical Association, 58, 415–434.

[65] Neal, R. M. (1996), Bayesian Learning for Neural Networks, Springer-Verlag, New

York.

[66] Pearlman, R. S. and Smith, K. M. (1998), Novel Software Tools for Chemical Diversity,

Perspectives in Drug Discovery and Design, 9/10/11, 339–353.

[67] Platt, J. (1999a), Probabilistic Outputs for Support Vector Machines and Comparision

to Regularized Likelihood Methods, Advances in Large Margin Classifiers, 61–74, Eds:

Smola, A. J., Bartlett, P., Schölkopf, B., and Schuurmans, O., MIT Press, Cambridge,

MA.

Bibliography 159

[68] Platt, J. (1999b), Fast Training of Support Vector Machines Using Sequential Minimal

Optimization, Advances in Kernel Methods — Support Vector Learning, 185–208. Eds:

Schölkopf, B., Burges, C. J. C., and Smola, A. J., MIT Press, Cambridge, MA.

[69] Platt, J., Cristianini, N. and Shawe-Taylor, J. (2000), Large Margin DAG’s for Multi-

class Classification, Advances in Neural Information Processing Systems, 12, 547–553.

[70] Quinlan, J. R. (1993), C4.5: Programs for Machine Learning, Morgan Kaufmann

Publishers, San Mateo, California.

[71] Raftery, A. E. and Lewis, S. (1992), How Many Iterations in the Gibbs Sampler?,

Bayesian Statistics 4, 763–773. Eds: Bernardo, J. M., David, A. P. and Smith,

A. F. M., Oxford University Press, Oxford, U.K.

[72] Ripley, B. D. (1996), Pattern Recognition and Neural Networks, Cambridge University

Press.

[73] Robins, G., Pattison, P., Kalish, Y. and Lusher, D. (2007), An Introduction to Expo-

nential Random Graph (P ∗) Models for Social Networks, Social Networks, 29, 173–

191.

[74] Rusinko III, A. and Lipkus, A. H. (1993), unpublished results obtained at Chemical

Abstracts Service, Columbus OH.

[75] Schölkopf, B., Sung, K. K., Burges, C. J. C., Girosi, F., Niyogi, P., Poggio, T. and

Vapnik, V. (1997), Comparing Support Vector Machines with Gaussian Kernels to

Radial Basis Function Classifiers, IEEE Transactions on Signal Processing, 45, 2758–

2765.

[76] Singhal, A. (2001), Modern Information Retrieval: A Brief Overview, Bulletin of the

IEEE Computer Society Technical Committee on Data Engineering, 24, 35–43.

160 Efficient Kernel Methods for Statistical Detection

[77] Snijders, T. A. B. (2002), Markov Chain Monte Carlo Estimation of Exponential

Random Graph Model, Journal of Social Structure, 3(2).

[78] Stanton, D. T. (1999), Evaluation and Use of BCUT Descriptors in QSAR and QSPR

Studies, Journal of Chemical Information and Computer Sciences, 39, 11–20.

[79] Strauss, D. and Ikeda, M. (1990), Pseudolikelihood Estimation for Social Networks,

Journal of the American Statistical Association, 85, 204–212.

[80] Thomas, G. B. and Finney, R. L. (1996), Calculus and Analytic Geometry, 8th Edition,

Reading, MA: Addison-Wesley.

[81] Tibshirani, R. J. (1996), Regression Shrinkage and Selection via the LASSO, Journal

of Royal Statistical Society: Series B, 58, 267–288.

[82] Tierney, L. and Kadane, J. B. (1986), Accurate Approximations for Posterior Moments

and Marginal Densities, Journal of the American Statistical Association, 81, 82–86.

[83] Tierney, L., Kass, R. and Kadane, J. B. (1989), Fully Exponential Laplace Approxima-

tions to Expections and Variances of Nonpositive Functions, Journal of the American

Statistical Association, 84, 710–716.

[84] Tipping, M. E. (2001), Sparse Bayesian Learning and the Relevance Vector Machine,

Journal of Machine Learning Research, 1, 211–244.

[85] Vapnik, V. (1995), The Nature of Statistical Learning Theory, Springer.

[86] Veropoulos, K., Campbell, C. and Cristianini, N. (1999), Controlling the Sensitivity

of Support Vector Machines, in Proceedings of the International Joint Conference on

Artificial Intelligence.

Bibliography 161

[87] Wang, Y. (2005), Statistical Models for High Thoughput Screening Drug Discovery

Data, Ph.D. Thesis, Department of Statistics and Actuarial Science, University of

Waterloo.

[88] Wasserman, S. S. and Robins, G. L. (2005), An Introduction to Random Graphs,

Dependence Graphs, and p∗, in Models and Methods in Social Network Analysis, 148–

161. Eds: Carrrington, J. S. P. and Wasserman, S. S., Cambridge University Press,

Cambridge.

[89] Welch, W. J. (2002), Computational Exploration of Data: Course Notes Fall 2002,

Department of Statistics and Actuarial Science, University of Waterloo.

[90] Zadrozny, B. and Elkan, C. (2001a), Learning and Making Decisions When Costs and

Probabilities are Both Unknown, Proceedings of the Seventh International Conference

on Knowledge Discovery and Data Mining, 204–213, ACM Press.

[91] Zadrozny, B. and Elkan, C. (2001b), Obtaining Calibrated Probability Estimates From

Decision Trees and Naive Bayesian Classifiers, Proceedings of the Eighteenth Interna-

tional Conference on Machine Mining, 609–616, Morgan Kaufmann Publishers, San

Francisco, CA.

[92] Zadrozny, B. and Elkan, C. (2002), Transforming Classifier Scores into Accurate Mul-

ticlass Probability Estimates, Proceedings of the Eighth International Conference on

Knowledge Discovery and Data Mining, 694–699, ACM Press.

[93] Zeger, S. L. and Karim, M. R. (1991), Generalized Linear Models With Random

Effects; A Gibbs Sampling Approach, Journal of the American Statistical Association,

86, 79–86.

[94] Zhu, M., Su, W. and Chipman, H. A. (2006), LAGO: A Computationally Efficient

Approach for Statistical Detection, Technometrics, 48, 193–205.

