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Abstract 

During the past decade it has been obsemed that periodically applied overloads 

of yield stress magnitude can significantly reduce or elimïnate crack closure under 

uniaxial or mode 1 loading. In this thesis the results of a series of biaxial tension- 

torsion experiments that were performed to evaluate the eEects of overloads on the 

fatigue life of smooth tubes constructed of nomalized SAE 1045 steel are presented. 

Constant amplitude and periodic overload experiments were conducted under five 

different in-phase stress ratios, including uniaxial (Q = a,Ja,, = O), pure torsion 

( i i r  = cm), and three intermediate ratios (9 = i, 1, and 2). In addition, under 

torsional loading, two different out-of-phase overloads were evaluated. 

Periodically applied overloads of yield stress magnitude caused cracks to grow 

under crack face interference-Free conditions. S train-life curves were obtained by 

computationally removing the overload cycle damage from test results and calcdating 

equivalent fatigue lives. A factor of two reduction in the fatigue limit was found at 

al1 strain ratios when t hese results were compared to constant amplitude results. 

Another series of constant amplitude and periodic overload tests was conducted on 

notched axle shafis to evaluate the effects of overloads on a component. The effects of 

various kinds of bending overloads on torsional fatigue were found to be quite similar 

to those encountered in the Q=O tubular testing. 

Fnrther, under in-phase loading, it was found that shear cracks initiated and grew 

longitudinally for *=O, f, and 1, and for *=2 loading shear cracks initiated on 

the maximum shear strain pianes. These observations concerning the initiation plane 

were used to uni@ the constant amplitude data and to justi$ the use of the maximum 

shear criterion with the overload fatigue data. Parameter-life curves were developed 

using the equivalent Me data and several common multiaxial damage parameters. 

It was found that the simple maximum shear strain criterion together with uniaxial 

overload data gave safe but not unduiy conservative life predictions for al1 of these 

strain ratios. 

Crack face 

mode II crack 

interference-free crack growth curves were obtained for mode I and 

growth and observations of cracking were combined with two models 



which predict changes in crack growth behavior. The models used were based on 

crack area increment and strain energy release rate cnteria. Both of these models 

underpredict the shear crack length at which crack growth mode changes, but they 

do predict the general trends observed in the data in terms of changes in crack growth 

mode as a function of strain amplitude and load ratio. 

Several different crack growth predictions were made. These included baseLine 

predictions wherein the strain concentration profile is determined separateiy for each 

load ratio. Predictions were then made using the crack area increment and strain 

energy release rate criteria. The strain concentration profiles for shear and t ende  

crack growth were independently determined, and they were then used in the area 

and energy models to predict strain iife cunres for al1 of the stress ratios. The area 

and energy models gave good predictions of the experimental lives for al1 of the stress 

ratios, but the best predictions were provided by the basefine predictions. 
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Nomenclature 

A Area 

a Crack depth 

a, Shear crack depth 

at Tensile crack depth 

- & Crack growth rate 

Surface strain concentration decay factor D 

ûr Expression for third principal strain in Mohr's circle 

,O Angle the initiation plane makes with the specimen x-axis 

c Surface half crack length 

ct Surface half crack length for shear crack 

c, Surface half crack length for tensile crack 

c,l Half gage length surface crack 

C* Expression for diameter of Mohr's stress circle 

x Strain energy release rate ratio, GZIG: 

D Damage to component subjected to fatigue 

E Modulus of elasticity 

e Nominal strain 

E Local strain 

Normal strain component of largest Mohr's circle on xy plane 

Aeg Closure free effective strain range 

Ae* Strain range based damage parameter 

Aei Intrinisic strain range at which crack does not propagate 

E von Mises effective strain 



E Strain tensor - 

eW Tensorial shear strain 

F Geometry factor for crack/specimen. also force on specimen 

G Torsional modulus of elasticity 

Gc Strain energy release rate 

7 Engineering shear strain 

q Number of s m d  cycles between overloads 

I ,  Moment of inertia for notched shaEt in bending 

Js Polar moment of inertia for notched shaft in torsion 

K Stress intensity 

Kc Critical stress intensity 

AK, Effective B stress intensity range 

A K  (E) S train intensity range 

KL Stress concentration factor for notched sh& in bending 

K: Stress concentration factor for notched shaft in torsion 

k Crack ellipticity, 

X Biaxial strain ratio, E&, or E.&, 

A Biaxial stress ratio, o,,/om or rr,/a, 

Mb Bending moment 

Mt Torsional moment 

N Number of cycles applied 

ni Number of cycles applied at amplitude i 

Nf Number of cycles to failure 

Ni Number of cycles to failure at amplitude i 

v Poisson's ratio 
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Q, Metallurgical surface strain concentration factor 

q Strain concentration factor at the free surface less Z 
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S Nominal stress 

S, Crack opening stress 

a Local stress 

8, Cyclic yield stress 
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a Stress tensor - 
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T Local shear stress 
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11 Biaxial strain ratio, ex&, 
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Chapter 1 

Introduction 

Metal fatigue is a phenornenon that is caused by the repeated application of loads to - 

a component which eventually results in the cracking and failure of that component. 

Over the last 150 years, the study of fatigue has been dedicated towards eliminating 

these failures. Modelling fatigue processes is one of the pnmary tools used in both 

understanding fatigue and eliminating failures. Current philosophy in fatigue divides 

the crack growth process into three stages - crack nucleation and microstnicturally 

based growth, Long (or macroscopic) crack growth, and final or cataclysmic failure. 

There are two basic categories of fatigue prediction models. 

The first category is the continuum damage model. This approach modeis the 

crack nucleation process and determines the damage contributed from each load cycle; 

once the accumulated damage reaches a certain level, a fatigue crack is assumed to 

have nucleated and the component to have failed. The second category is the crack 

growth model where a smdl Baw is assumed to pre-exist in the material, and cycle by 

cycle the crack growth is calculated and accumulated. When the crack length reaches 

the failure length the number cycles accumulated is taken as the fatigue life. 

In the ground vehicle industry, uniaxial continuum damage models are used almost 

exclusively for the evaluation of the fatigue performance of chassis, suspension, body, 

and powertrain structures. A uniaxid model assumes that the component is subjected 

to loading which is predorninantly in a single direction. However, there may be 

multiple force inputs which act on the component and result in multiaxial fatigue. 

Uniaxial fatigue analysis is satisfactory in most cases, but it  is estimated that it 
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produces senously non-conservative life estimates in 5-1096 of the cases involving 

multiaxial loading [l] . 

Another problem with uniaxial continuum damage fatigue analysis is that vehi- 

cle structures are subjected to variable amplitude loading more often than constant 

amplitude loading. In a severe variable amplitude load history, large overload cycles 

can cause significant changes in fatigue crack closure Levels which, in turn, can cause 

substantial changes in the damsge done by subsequent Load cycles. Most models do 

not track these changes and thereby make predictions which can be in error by as 

much as a factor of 20 [2] when compared with observed component lifetimes. The 

constant amplitude, fully reversed laboratory tests, which are usually used as a basis 

for estimating component fatigue life, typically have higher levels of crack closure 

than the same stress-strain cycles experienced in service loadings. 

Crack closure is caused by a number of mechanisms that reduce the energy avail- 

able at the crack tip for cracking and result in slowed or arrested crack growth and 

longer component lifetimes. An understanding of the behavior of closure at high stress 

levels was delayed because compact tension specirnens, which are typically used in 

closure investigations, do not allow the use of loads that approach the net section 

yield stress. Stresses of this magnitude arise in many notched engineering compo- 

nents a t  high load levels. In fact, these high levels, often termed overload levels, 

can completely eliminate crack closure [3;. Once crack closure-free uniaxial crack 

growth and strain-life curves were developed, safe fatigue life predictions for severely 

loaded structures could be made. However, similar extensions of these concepts into 

multiaxial loading (called crack face interference) were not made until recently [4]. 

In this study, crack face interference-free multiaxial fatigue behavior was investi- 

gated, muhiaxial fatigue damage parameters were evaluated, and fatigue crack growth 

life predictions were made using the crack growth data. This chapter is devoted to 

the following reviews: 

observations of crack face interference under uniaxial and multiaxial fatigue. 

life prediction techniques including 
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1. damage prediction and damage parameters, 

2. uniaxial and multiaxial fatigue crack growth predictions, 

3. prediction of changes in crack growth direction, 

a observed cracking behavior in SAE 1045 steel, and 

the motivation for, and an outline of the research performed. 

1.1 Crack Face Interference 

A decade ago Schijve [5] stated that fatigue crack closure (crack face interference) was 

so pervasive that no fatigue crack problem could be solved without first considering 

it . 

The influence of mean stress on both fatigue damage and fatigue crack growth rates 

has been linked to changes in crack closure [3, 6, 71. Thus, mean stress corrections 

in damage paiameters are corrections for changes in closure with mean stress. This 

implies that, once closure has been eliminated, the crack growth rate for a given stress 

or strain range will not Vary with the mean stress level (as long as the mean stress 

level does not iead to fast fracture). 

1.1.1 Overloads and Uniaxial Crack Closure 

Several different mechanisrns causing crack closure have been defined, including plas- 

ticity induced closure 18, 91, roughness induced closure [IO], and debris induced closure 

[I l ,  12, 131. Al1 of these processes affect the the load a t  which the crack tip opens, 

S,. Plasticity induced closure is generated by the plastic wake of the crack tip which 

increases S, and causes the crack tip to be closed for a portion of the loading cy- 

cle, but only when the opening stress exceeds the minimum stress in the load cycle, 

S,n(Sw > S,,). Roughness induced closure has the same effect, but it is caused by 

faceted growth of a crack dong crystallographic planes in the near-threshold growth 

regime. A third mechanism is debris induced closure, which is produced either by 
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the accumulation of fretting debris [Il. 121 or corrosion products [13] between the 

fracture surfaces. 

In variable amplitude loading, overloads can be divided into two categories which 

have markedly different effects - those which are below approximately one-half of the 

cyclic yield stress (low level) and those which exceed this level (high level) . 

1.1.1.1 Low Level Overloads 

Observations made over the course of the past 40 years regarding the influence of 

low level overloads on crack growth indicate two general effects: tensile overloads 

retard crack growth and compressive overloads accelerate crack growth [9, 14, 151. 

A tensile overload increases the plastic zone size of a crack growing under constant 

amplitude loading and it sets up a compressive residual stress field. Crack growth 

rates are briefly accelerated due to a temporary reduction in Sv, but this acceleration 

is quickly repiaced by retardation when the crack tip penetrates the residual stress 

field. As the crack grows into the field, compressive stresses build up in its wake 

and increase S, above its steady state constant amplitude value for the lower level 

stresses which follow the overload. This increase in S, may either retard or arrest 

crack growth. If the crack grows through this field then S, returns to its steady- 

state value for the smaller constant amplitude cycles and crack growth rates again 

return to their previous level. On the other hand, compressive overloads reduce S, by 

cmshing asperities behind the crack tip and reducing the height of the plastic wake, 

thereby increasing crack growth rates. Again the decrease in S, is temporary and 

crack growth rates return to normal once new asperities are formed and the plastic 

wake is re-established. 

1.1.1.2 High Level Overloads 

Under high level overload conditions, the elastic constraint around the plastic zone 

is no longer effective because of the large increase in plastic zone size. Studies by 

DuQuesnay [3,16] demonstrated that high stress overloads, both compressive and ten- 

sile, accelerated short fatigue crack growth rates by reducing closure levels. DuQues- 

nay [3] ranked the various lrinds of uniaxial overloads of a given peak stress level in 

order of increasing severity (decreasing S,): 



Large compressive overloads which increased crack growth rates by flattening 

surface asperities. Crack opening stresses were thus lowered, and, depending 

on the load Ievel, there was a tensile residual stress in front of the crack which 

kept it open: 

Large tensile overloads on smooth specimens left the crack open and hence 

lowered the crack opening stress level; 

A tensile overload followed by a compressive overload employed both mecha- 

nisrns but the tensile plasticiw ahead of the crack was partly reversed by the 

compressive component of the cycle; 

A compressive overload followed by a tensile overload which decreased S, by 

the largest amount . 

DuQuesnay [17, 181 developed the following empiricd mode1 to describe steady 

state crack closure 

where a and 0 are material constants. Equation 1.1 was proposed after he measured 

crack opening levels on smooth specimens with strain gages placed across the crack 

mouth. The results were then confirmed with a small number of observations using 

replica techniques. This purely empirïcal equation describes crack closure behavior 

for a range of nominal cyclic stresses up to and slightly exceeding the cyclic yield 

stress. 

1.1.2 Crack Face Interference under Multiaxial Loading 

1.1.2.1 Static Loads in the Mode I Crack Plane 

Closure can also be affected by loads applied in various fashions across a growing 

mode 1 crack. Hopper and Miller [19] tested two cruciform specimens, one with a 

center driiled hole and spark machined starter cracks, and the other with a center 
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drilled hole and starter notches. A static load was applied on one axis while the 

other was cyclicly loaded. Strain ratios, A,, = 2, of -1, 0. and 1 were selected 

for testing. The results indicated clearly that the application of a compressive stress 

applied parallel to plane of the crack and along its length (hereafter referred to as a 

"P-stress") increased mode 1 crack growth rates while a tensile P-stress slowed mode 

1 crack growth. 

Hourlier and Pineau [20] studied tubes made of alloyed steels, miid steels, and 

titanium which were precracked under mode 1 tensile Ioading. When they applied 

static torsion and simultaneous cyclic tension they found that mode 1 fatigue crack 

growth rates were severely reduced. The reduction in AKef was attributed to frac- 

ture surface mismatch caused by shear displacements. This indicated that the static 

shear loads increased crack face interference levels and reduced AK, f f -  

1.1.2.2 Dynamic loads in the Mode 1 Crack Plane 

Brown and Miller [21], in a series of tests on cruciform specimens with a centrai starter 

slit, observed that a compressive P-stress increased crack growth rates. For the same 

tensile stress range across the crack they applied equal compressive stresses in the 

plane of the crack (shear loading, A = EL = -1), equal tensile stresses in the plane 
UY 

of the crack (equibiaxial, A = l), and no stresses in the plane of the crack (uniaxial, 

A = O) .  The results indicated that fuUy reversed tests in shear had faster growth rates 

than the uniaxial tests which, in tuni, had faster growth rates than the equibiaxial 

tests. However, at lower stresses, these tests showed no significant effect of A. In 

fact, the authors rnaintained that for normal stress amplitudes which are much less 

than the cyclic yield stress, the effect of stress biaxhlity was negligible. They further 

comment that previous researchers who found no effect of stress biaxiality had tested, 

in al1 probability, a t  loads too low to discern its effects. Youshi et al. [22], testing at 

larger stress amplitudes, found similar resultç for strain controlled tests and fùrther 

determined that the slowest growth rates occurred for X = 2 = 0.5 because plastic 

deformation a t  the crack tip was minimized in  thiç configuration - they maintained 

that plastic zone size strongly influences fatigue crack growth rates. Finally, Smith 



and Pascoe (231 confirmed the P-stress effect in their tests on a cruciform specimen. 

These studies indicate that mode I crack face interference is reduced by the application 

of compressive P-stresses when they are of the order of the cyclic yield stress, but 

substantially lower P-stresses GO not reduce interference significantly. 

1.1.2.3 Shear Crack Face Interference - Mode II/III 

Socie [24] performed a series of experiments which demonstrated that, for shear cracks 

growing in Inconel 718 tubes, both shear systems must have increased crack face 

interference to lengthen fatigue life. Compression applied across a single set of shear 

planes has little or no effect on He. On the other hand, tensiie Loads on either sheaï 

system have deleterious results. 

Tschegg [25] observed that, as crack lengths increased in AIS1 Cl018 steel, crack 

face interference under mode III loading consumed an increasing part of the crack 

driving force, especially at lower crack driving force levels. For a constant crack driv- 

ing energy level applied to a mode III crack, increased crack lengths led to dramatic 

increases in crack face interference which, in turn, substantially reduced the crack 

driving force seen by the materid a t  the crack tip. Tschegg performed these exper- 

iments on circumferentially notched cylindncal steel specimens. Wang and Miller 

[26, 271 documented the onset of crack face interference through a series of torsion 

fatigue experiments with varying mean torsion levels on a ferritic stainless steel. They 

found that short crack faces slipped freely until crack lengths of 150pm were reached, 

and that increasing both torsional mean levels and amplitudes increased short crack 

growth rates. They attributed the sudden increase in closure after 150pm of growth 

to a microstructurd barrier encountered there. 

One method ofreducing crack face interference under shear is to separate the crack 

faces via a static t ende  load. Static t ende  loads applied across mode III cracks can 

substantially increase growth rates [28, 29,301. Data hom Brown, et al. [28] is replot- 

ted in Figure 1.1 and demonstrates this effect dramatically. A static 2kN end load 

(40MPa nominal stress) was applied axially to circumferentially notched specimens 

of 316 stainless steel which were then cycled torsionally. A DC potential drop system 



Introduction 

AK,,, (MPa ml") 

10'- . 
. 

n 
Q, - 
O # 

h 
O 
1 

E 10': 
s 
v 

Z 

2 
73 

1o07 

1 O-1 

1 

Figure 1.1: Example of mode III crack subjected to axial loading, from [28]. 

was then used to track mode III crack growth into the specimen interior. As seen 

in Figure 1.1, the axial load increased crack growth rates by an order of magnitude. 

However, even without the static tensile load the highest torsional moment levels 

reach the same limiting crack growth curve established by the specimens with tensile 

loads. Tschegg [25] observed that the crack growth rates a t  the highest torsional 

moment levels were least afFected by the onset of crack face interference. 

Another method of reducing closure is by applying mode III overloads during mode 

III crack growth. Ritchie et al. [31] applied mode III overloads to circumferentially 
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notched cylindrical ASTM A439 steel specimens during a mode III crack growth 

test- Crack length was monitored with a DC potential drop system; it was found 

that mode III overloads accelerated mode III crack growth. In this case the behavior 

was attributed to a decrease idrubbing and abrasion between sliding crack surfaces," 

which presumably means that asperity heights were reduced by smearing and thereby 

led to reduced levels of crack face interference. In an in-phase biaxial study on IMI 834 

cruciform specimens, Trautmann et al. [32] combined high mean stress overloads with 

short blocks of small constant amplitude cycles. Two tests were conducted with an 

identical overload cycle and the same small cycle stress range, but each test had a 

difFerent s m d  cycle mean stress level. For the smallest small cycle stress range tested, 

the crack growth curves for the two mean stress levels were aImost identical and this 

implied similar small cycle crack growth rates - independent of mean stress. Hence, 

they appeared to have achieved crack face interference-fIee crack growth for these 

srnall constant amplitude cycles. Varvani-Farahani [4] removed crack face interference 

by applying large compressive (mode 1) overloads across shear cracks growing under 

various strain ratios (A = +1, -u, -0.625, and -1) and obtained accelerated crack 

growth rates. 

1.1.2.4 Summary of Crack Face Interference Reduction Techniques 

Most overloads with macroscopic plasticity (shear, compressive, and tensile) acceler- 

ate tensile mode cracks. Conversely, tensile overloads which result in only localized 

plasticity hinder crack growth. However, a static or cyclic tensile load applied par- 

allel to the plane of a mode 1 crack (P-stress) slowed mode 1 crack growth while a 

compressive load applied in the same fashion accelerated the mode 1 crack growth. 

Static shear loads dso slowed mode I crack growth. 

A mode II or III crack with a compressive load applied across the crack faces 

resulted in arrested or slowed growth, but unless compressive loads were applied 

across both shear planes overload fatigue life was unaffected. However, a tensile load 

applied across either shear plane system caused cracks on that plane to grow at  an 

increased rate. Finally, either compressive overloads applied across the crack or shear 

overloads applied in the crack plane cause shear cracks to grow at increased rates. 
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1.2 Life Prediction Techniques 

There are two methods by which estimates of component fatigue Life have been tra- 

ditionally made. The Brst is a damage (or initiation) based Me prediction which 

determines the number of load applications until a crack of a certain size is observed. 

The second method, crack propagation based iife prediction, computes the crack 

extension for a Baw of known size after each load application until the component 

cndergo es structural failure. 

1.2.1 Damage Summation and the Local Strain Approach 

As mentioned before, damage summation techniques estimate the number of cycles 

to reach a predetermined crack size 1331. Damage analysis usually employs strain- 

life curves to estimate the damage for any given cycle. The fractional damage is 

calculated for a given cycle by 

where Ni is the number of cycles to failure a t  strain amplitude i, and ni is the number 

of cycles the component spends at strain amplitude i. 

The Palmgren-Miner mle [34, 351 used to estimate fatigue life is expressed as 

This equation defines failure to be at the point where the damage fkom al1 of the 

damaging events sum to unity- This technique can be used with any damage param- 

eter. 

The local strain approach [36] assumes that the fatigue life of any given location 

on a component is governed by the strain history of the material at  that location. The 

fatigue life at this location is further assumed to be equivalent to a smooth laboratory 

specimen subjected to the sarne history. This technique allows designers to pick the 

local areas or "hot-spots" where the component is most likely to fail. 
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1.2.1.1 Uniaxial Damage Parameters 

Although the descriptions in the previous section used strain amplitude as a fatigue 

damage parameter, other parameters have been used to assess fatigue darnage. The 

following are common damage parameters which have been used to analyze component 

iife for multiaxial fat igue: 

Maximum normal strain amplitude 

This parameter stipulates that the maximum normal strain amplitude is the dominant . 

factor in fatigue damage accumulation. 

Maximum normal stress amplitude 

This parameter stipulates that the maximum principal stress amplitude is the dorni- 

nant factor in fatigue damage accumulation. 

Maximum shear strain amplitude 

This parameter stipulates that the maximum shear stress amplitude is the dominant 

factor in fatigue damage accumulation. 

Smith-Watson-Topper parameter This parameter [37] is a mean stress cor- 

rected damage parameter, and it takes the form 

where a,, refers to the maximum stress during the cycle. This parameter stipulates 

that the combination of the maximum normal stress and normal strain range describes 

- the damage accumulation. 



1.2.1.2 Critical Plane Analysis 

One way to extend continuum uniaxial damage techniques to multiaxial fatigue is 

via critical plane analysis. In cntical plane analysis, a damage parameter. whether 

uniaxial or multiaxial, is computed on a number of planes which have orientations that 

are distributed around the points of the compas, (e-g., every 10"). The plane which 

has the largest value of the parameter is presumed to be the one on which failure will 

occur. For a single damage event, this technique finds the largest value of a damage 

parameter and the plane upon which it occurs. For in-phase loading (loading in which 

the ratio of the orthogonal stresses or strains rernains constant) this plane remains 

constant; for constant amplitude Ioading the damage accumulation rate on that plane 

remains constant. 

1.2.1.3 Multiaxial Damage Parameters 

These are damage parameters in which more than a single axis loading is considered. 

Brown and Miller parameter Originally the the Brown and Miller parameter 

[38] was expressed as 

where f is an arbitrary function. However, this formula is usually expressed [39, 401 

as 

where the empirical factor K is usually taken as 1/2 for steels. The shear strain 

amplitude is the most important factor, and the next most important is the t ende  

strain amplitude normal to the plane of shear - it contributes half as much (for steel) 

to the totai damage accumulation. The second term represents the influence that 

the normal strain range can have on crack face interference. The Brown and Miller 

parameter is only defined on the maximum shear strain plane. 
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Fatemi-Socie-Kurath parameter  A parameter of this form was originally pro- 

posed by Findley [41]. Later, Fatemi et al. [29, 301 and Socie et al. [42] developed 

somewhat similar parameters which can be generalized into a single parameter [39. 401 

and are termed. for the purpose of this document, as the Fatemi-Socie-Kurath pa- 

rameter. This parameter takes the form of 

where 89 is the cyclic yield stress and KF is a factor usually taken somewhere between 

0.3 and 0.6. In this parameter, the shear strain amplitude is the primary source of 

damage, but the amplitude of the t ende  stress normal to the shear plane strongly 

duences  the damage that the shear strain amplitude can create - in other words 

the impact of normal stress on crack face interference. 

Chu's parameter Chu's parameter [43] is a multiaxial extension of the Smith- 

Watson-Topper parameter [37] and is represented by 

The second term in the equation is that of the Smith-Watson-Topper parameter and 

represents the t ende  damage contribution normal to the crack plane while the first 

term represents the damage contribution by shear. 

1.2.2 Fatigue Crack Propagation 

Successful efforts to mode1 stable crack propagation began in the 1950's when Paris 

[44] first introduced AK as a crack driving parameter and correlated it with crack 

growth rate data (da/dN) .  Typically K is used in the form 

where the factor F incorporates crack geometries, component geometries and loading 

mode, AS  is the applied positive stress range and a is the crack length. Elber [8, 91 

introduced the concept of crack closure to explain the variation in crack growth rate 
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with mean stress for a constant A K  value. Schijve [5] descnbed closure as the process 

whereby the uncracked material at  a crack tip is shielded fiom the fidl  range of 

remotely applied stress by plasticity at the crack tip, interference between the crack 

faces, and other effects. Elber [9] developed the concept of the crack tip opening 

stress (S,) which describes the first point upon increasing loading at which the crack 

is entirely open. Above S,, any increase in the applied load is seen irnmediately by 

the material at  the crack tip. Using this concept Elber [9] then proposed an effective 

stress intensity, 

When it became apparent that the small scale yielding assumption built into AK 

was fiequently violated, fatigue researchers began using a strain intensity factor [45] 

where 

Several researchers [46, 47,48, 491 have employed this technique in applications where 

plasticity was significant. 

1.2.2.1 Modelling Short Crack Growth 

Short cracks are those cracks, typically smaller than a single grain diameter in size. 

whose growth rates are much faster than that of a significantly longer crack with 

the same applied AK level. Srnall cracks are usually a few grain diameters in size 

but still have a faster growth rate than that of a long crack. A long crack is one 

which is several grain diameters in length and which is unaffected by local variations 

in microstructure. It has been generally observed that short crack growth occurs in 

favorably oriented grains which have a slip system (nearly) aligned with a maximum 

shear plane. S m d  crack behavior typically involves more than a single grain but, in a 

fashion sirnilar to short cracks, small cracks are strongly affected by their interaction 

with microstructural features. 
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Abdel-Raouf et al. [50] presented a short crack model that describes the strain 

concentration profile for a small edge crack in a favorably oriented grain intersecting 

the free surface. The strain concentration profile is expressed by 

where Ae is the strain range, Ae is the nominal section strain range, a is the crack 

length, and q is the strain concentration factor at the surface less 1 (Q:=O - 1), D 
is the grain size and a! is a constant dependent upon the "deformation character." 

They determined that a typical value of q for a polycrystal with randomly oriented 

grains would be approximately 5. This approach has been successfully applied in 

short crack/long crack growth simulations using strain intensity factors [51]. 

Socie [47, 521 found t hat srna11 crack growth rates for a given stress intensity range 

in modes 1, II, and III were a11 similar for Inconel 718 and aIuminum 7075-T6 for crack 

lengths up to Imm. He determined that the error would be small if, under tensile 

loading, shear cracks growing on maximum shear planes were presumed to be mode 

1 cracks growing on the maximum principal strain amplitude plane. Wang et al. 1533 

determined that, for a given stress intensity range, shear and tensile cracks grow in 

Waspalloy at roughly equivalent rates. Lastly, torsional fatigue data on an alloy steel 

from Wang, et al. [27] and uniaxial fatigue data on the same steel fkom Wang, et al. 

[54] have very similar growth rates. 

Given that several widely differing materials (an aluminum, a steel and two nickel 

based superalloys) exhibit neady equd tensile and shear growth rates, it is possible 

that many materials shaxe this behavior. Hence, in the region of stage 1 crack growth, 

the analysis of cracks growing under multiaxial loading may potentially be modelled 

with reasonable accuracy by a single pre-existing short crack model such as the Q, 

model. 
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1.2.2.2 Multiaxial Crack Growth Equations 

For multiaxial loading Socie et al. [47] suggested the following equations (modified 

in this thesis with Q,) for al1 of the cracking modes 

where c is the surface half crack length. The geometry factors FI, FII, and Frrr, 

derived from Irwin [55] and Kassir and Sih [56], are all dependent on crack aspect 

ratio, Poisson's ratio, nominal loading condition, and the location of the calculation 

along the crack Front- 

1.2.2.3 Crack Growth Directions 

Unlike uniaxial fatigue, cracks subjected to variable amplitude multiaxial loading are 

rarely confined to a single growth plane. Thus, predicting the direction and plane 

upon which a crack will grow is a sipficant aspect of modelling multiaxial crack 

growth. 

Crack growth rate criterion Hourlier and Pineau [20] were the first to demon- 

strate that, for a given AK,  cracking will occur in the mode in which the crack 

growth rates are the highest. Their experiments on titanium, aluminum, and steel 

d o y s  demonstrated that cracks grow in the fastest growth rate mode available to 

the material. Since that time, other researchers have duplicated their findings in 

AIS14340 steel [û?] and ferritic s t ades s  steels [28]. In fact, in both of these works, 

the researchen were able to dernonstrate macroscopic ciifferences in crack growth 

features which resulted fiom m e r e n t  growth modes, and they demonstrated that 

the crack growth rate followed a compound curve constmcted of the mode I and III 

growth curves. 



Introduction 17 

Strain energy release rate criterion Another set of researchers proposed that 

the direction of crack propagation will be that in which the strain energy release rate 

is greatest. Originally proposed by GriEth [58] to predict the onset of fracture, it 

was extended by Palaniswamy [59] and Nuismer [60] to predict both the crack growth 

direction and the likelihood of a crack branching off in another direction. 

1.2.2.4 Cracking Observations for Tests of S A E  1045 Steel 

For a stainless stee!, a superalloy, and a low carbon steel Socie [24] observed that 

cracks nucleate on shear planes regardless of material type, loading amplitude, and 

loading type (torsion vs. uniaxial). Fash [61] noted that crack nucleation always 

began on shear planes over a range of ratios of torsion to tension for SAE1045 steel. 

Perhaps the best review of cracking behavior observed in normalized SAE1045 

steel (the material used in this study) was provided by Socie [24] where he provided 

crack growth maps for Loading in tension and torsion, Figures 1.2a and 1.2b respec- 

tively. These maps chart the kind of crack growth that can be anticipated in 1045 

steel as a hinction of specimen fatigue Life (Nf) and life fraction (N/Nf). Socie groups 

behavior into three areas: shear crack growth (Region A), tensile crack growth (Re- 

gion B), and crack nucleation (Region C). The lowermost Iine denotes the Me to reach 

a crack of O.Imm. Hence, a specimen with a failure life of 30,000 cycles ta  failure 

undergohg tension loading would reach a crack length of O.lmm at NINf = 0.2 (or 

6000 cycles). At NINf x 0.7 (or 21,000 cycles) the crack growth would move onto 

tende  planes and continue in this way until faiiure. 

As the loading moves from tensile to torsion the dominance of shear cracking 

(Region A) moves from roughly 10,000 to 500,000 cycles to failure. As can be seen in 

Figure 1.2b a transition was observed in shear cracking behavior kom the multiple 

initiation of shear cracks a t  low lives (high strain amplitudes) and rapid M i n g  at 

failure to a single dominant crack which grows to failure at long lives (low strain 

amplitudes). These cracking observations will be compared with similar observations 

made in this investigation. 
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Figure 1.2: Cracking behavior observed nomalized SAE 1045 steel subjected 

to (a) tension and (b) torsion, taken from [24]. 
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1.3 Purpose and Objectives of This Study 

As demonstrated in the foregoing review, much knowledge has been gained concerning 

the nature of crack face interference. DuQuesnay [3] demonstrated that life tests 

which were conducted under closure-free conditions (Le. overload tests) gave the 

Iowest fatigue lives. and under multiaxial loading others [19, 21, 22, 231 have shown 

that mode 1 crack growth could be accelerated by compressive stresses applied in the 

crack plane. Further, researchers found that shear crack growth was accelerated by 

static tende loads appiied across the crack [28, 29, 301, compressive overloads [4] 

applied across the crack, or shear overloads [31] appiied in the plane of the crack. 

The main objective of this study was to obtain crack face interference-lree growth 

over a range of multiaxial loading conditions and to determine the usefulness of this 

data for predicting service load fatigue (chapter 3). The eümination of crack face inter- 

ference was achieved in several ways for several different loading conditions. Initially 

three sets of tests which involved constant amplitude torsional cycles were conducted 

on tubular specimens. In order to eliminate crack face interference, two test condi- 

tions had periodic axial overloads (with and without mean stress) and the third had 

torsional overloads. These test conditions were duplicated in notched axle-shaft spec- 

imens to investigate the effects of overloads in a component-like structure. Constant 

amplitude torsion tests were conducted for both specimen types to provide data for a 

compaxison with crack face interference-fkee tests. A number of other test conditions 

were investigated under in-phase loading. In these tests, the phase angle between the 

torsion and tension strains was held constant throughout the entire test. In other 

words, the ratio between axial and torsional strains is ngidly maintained. Five dif- 

ferent strain ratios were investigated ranging fiom torsion to tension loading, and, 

in each of these ratios, both periodic overload and constant amplitude fatigue curves 

were obtained. 

The results of the periodic overload tests were used to compare various damage 

criteria and to select those which were appropriate for biaxial loading. Observations 

of cracking under each kind of loading were used to select criteria. 



Another principal objective of this work was to model the cracking behavior ob- 

served in the periodic overload tests (chapter 4). Ln order to do this, two crack face 

interference-bee crack growth curves were developed for the principal cracking modes 

o b s e ~ e d  in the specimens - one each for tensile cracking and shear cracking. The 

crack growth rate and strain energy release rate c ~ t e r i a  were used to predict the 

length of initial shear cracks in the specimens. 

The second part of the crack growth modelling involved making crack growth- 

based life predict ions for crack face interference-free fatigue M e  tests. Initial pre- 

dictions were made using the models described in section 1.2.2, and, for each strain 

ratio, the value of 5 from equation 1.15 (section 1.2.2.1) was determined. A final 

set of predictions was made using the crack growth rate and strain energy release 

rate critena. In this case the value of $ was determined separately for shear crack 

growth (torsional loading) and tensile crack growth (tensile loading), and crack face 

interference-fiee fatigue life predictions were made for al1 of the strain ratios. 
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In this chapter, the materials, test equipment, and techniques used in this research 

are outlined. 

2.1 Material 

15 stee !I in the norrna The material Ùsed in this study was a n  SAE 1 0 ~  hzed condition. 

The steel was hot rolled into 63.5mm diameter bar and normalized to produce a Brinell 

hardness of 203BHN. The chernical composition of this steel is given in Table 2.1. 

SAE 1045 is one of the most common grades of steel used in the automotive industry 

because of its combination of good hardenability and low cost. A large number of 

components such a s  suspension parts, chassis parts, powertrain parts and bracketry 

are fabricated kom SAE 1045. It is, however, unusual to use this material in a state as 

soft as that employed in this study - the lowest hardness typically encountered in an 

application is 250BHN. Normalized steels are intended for fabrication and subsequent 

Table 2.1: Chemical composition of SAE 1045 steel. (Wt. %). 

Al Ti N b  Ta Ni C r  P b  Fe 
~0.005 <O-005 0.036 ~0.005 0.04 0.05 ~0.005 bal 
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heat treating to h a l  hardness. This particular lot of steel has been the focus of a 

large SAE multiaxial fatigue study [62], and the hardness was chosen to conform with 

the SAE study so that cornparisons with data from it c m  be made. Zt should be noted 

that curent production steels have fewer impurities and are more microstructurally 

homogenous than the steel used in this work. 

Figures 2.1,2.2, and 2.3 present the microstructure of the steel in the Longitudinal- 

Transverse (L-T), Longitudinal-Short (L-S), and Short-Transverse (S-T) orientations, 

resp ectively. It has a pearlitic/ ferritic microstructure and, because of the normal- 

iza.tion procedure, has equiaxed grains of roughly 25pm. A lower rnagnification of the 

L-T orientation, shown in Figure 2.4, shows the banding characteristic in this lot of 

material. Figure 2.5 shows MnS stringers which, in this steel, range in length from 

0.1 to 2mm. These features are aIigned with the r o l h g  direction. 

2.2 Uniaxial Properties 

2.2.1 Monotonie Tests 

The uniaxial hourglass specimens used in this research (Figure 2.6) were first turned 

in a lathe, low stress ground to final dimensions, and subsequently polished longitu- 

dinally to remove machining marks. This approach minimiges the residual stresses 

introduced into the specimen as a result of manufacturing [63]. 

Tende  tests were perfomed in stroke control on a 251rN MTS 810 se~ohydraulic 

test system with a 6.35m.m extemorneter. Five specimens were strained to failure. A 

Masscomp 5450 Unix workstation provided the input signal and acquired strain, load 

and stroke data via the program discussed in section 2.3.1 [64]. The values shown in 

Table 2.2: Normalized SAE 1045 monotonic material properties. 

Hardness 203BHN YieldStress, Upper 476MPa 
Engineering Strain at Failure, e f  0.432 YieldStress,Lower 397MPa 
Reduction in Area, %RA 48.2 Ultimate Stress 703MPa 
Strength Coefficient, K 1370MPa Young's Modulus, E 203GPa 
Strain HardeMg Exponent, n 0-261 
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Figure 2-1: 

c H 
Rolling Direction 50pm 

Microstructure of normalized SAE 1045 steel (400X), L-T orien- 
tation. 

Figure 2.2: Microstructure of normalized SAE 1045 steel (4OOX), G S  orien- 
tation- 
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Figure 2.3: Microstructure of nomalized SAE 1045 steel (400X), S-T orien- 
tation. 

u H 
Rolling Direction 200pm 

Figure 2.4: Microstructure of normalized SAE 1045 steel (1OOX) showing 
banding in the GT orientation. 
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* H 
Rolling Direction 200pm 

Figure 2.5: Stringers in nomalized SAE 1045 steel (l25X), GT orientation. 

Figure 2.6: Uniaxial Specimen. AU dimensions in mm. 
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Table 2.2 are the average of the results kom the five t e n d e  tests. Initial specimen 

diameter, reduction in area and strain at M u r e  measurements were made with the 

aid of a shadowgraph. 

2.2.2 Constant Amplitude Tests 

- The fully reversed (Re = - 

-1) tests presented in Figure 2.7 were 

conducted in strain control, and con- 

formed to ASTM E606 [63]. Specimen 

diameters were measured with a shad- 

owgraph. A 7.62mm gage length exten- 

someter was used, and its knife edges 

were set into epoxy dots on the specimen 

surface to avoid premature initiation of 

a crack. Spechens were prepared as dis- 

cussed in section 2.2.1. Figure 2.7: Uniaxial constant amplitude 

The same servohydraulic system used histoIy. (R, = = -1). 
émcrr 

in section 2.2.1 was also used for the uni- 

axial constant amplitude tests. The sys- 

tem load train, which included hydraulic grips, was aligned with an instrumented 

specimen. This procedure was performed in order to reduce premature initiation due 

to gripinduced bending. It was determined that the maximum specimen strain due 

to load frame misalignment was 20 microstrain in bending at zero applied load. Sub- 

sequent examination of the initiation sites of failed specimens indicated that the sites 

were randomly onented around the circumference and dong the gage length of the 

specimen using the load kame as reference. A consistent initiation location would 

have indicated that bending was present in the specimen; thus, it may be concluded 

that the uniaxial tests were not unduly iduenced by misaligned grips. 

Waveform control was provided by a pc-based programmable controller [65] which 

adaptively adjusted the output to ensure that the peak error was less than one percent. 
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Table 2.3: Normalized SAE 1045 cyclic material properties (per ASTM 
E6O6). 

Young's Modulus, E 203GPa 
Yield Stress, Proportional Limit 155MPa 
Yield Stress, 0.2% Offset 379MPa 
Cyclic S trength Coefficient , K' 1480MPa 
Cyclic Strain Hardeoing Exponent, n' 0.221 
Fatigue Strength Coefficient, df 1580MPa 
Fatigue Strength Exponent, b -0.136 
Fatigue Ductility Coefficient, E; 0.7325 
Fatigue Ductility Coefficient, c -0.566 

The maximum frequency used in these tests was 40Hz, and stress-strain data was 

collected in logarithrnic increments on an analog X-Y recorder. Failure was defined 

as a 5% load drop. 

Uniaxial cyclic properties for this material appear in Table 2.3. 

2.2.3 Periodic Overload Tests 

Overload tests were conducted in strain control. The histories used in the uniaxial 

overload tests consisted of a single compression-tension overload cycle followed by a 

series of malier cycles whose peak tende strains were the same as the peak tende 

strain of the overload cycle, see Figure 2.8. The amplitude of the overload cycle 

itself was selected to be 0.5% strain which corresponded roughly to 10,000 cycles to 

failure under conventional constant amplitude testing. A number of smaller constant 

amplitude cycles (7) followed the overload cycle, and the  smaller cycle amplitude was 

set, depending on the test, a t  a value between 0.2% strain and 0.06% strain. Finally, 

the number of smaller cycles, q, placed between the overload cycles was chosen such 

that the overload cycles constituted no more than approxbately 25% of the total 

damage. As discussed in [3], the effect of the overloads is to reduce as much as 

possible the crack closure level and thus yield a consemative strain life curve. In this 

document the term "small cycles" (SC) is used when referring to overload tests to 

indicate the smaller cycles in the overload history. 
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Figure 2.8: Uniaxial overload history. 

2.2.4 Uniaxial Crack Growth Tests 

These tests were performed in order to obtain a AKeff vs. daldn curve. This 

curve is a closure-fiee crack growth curve which requires the entire loading cycle be 

above the crack opening level. Overload cycles and high R-ratio tests were used to 

accomplish this task. A larger, 50kN servohydraulic system was necessary in order 

to test the specimen shown in Figure 2.9, and these tests were performed in load 

control with no extensometer. A Questar QM-100 long focal length microscope (set 

to 900x magnification) attached to a measurement stage was used to obtain crack 

growth measurements to within an accuracy of 2 p z .  

The specimens were precracked to a crack length of 2.5mm using a constant ampli- 

tude (&il) stress of 276MPa. Each crack length measurement was made twice to 

reduce measurement error. Stress intensity was calculated using the stress intensity 

function for long cracks and can be expressed by 

where ASr is the nominal section stress, a is the crack length, and W is the specimen 

width. The geometry factor, FcgI (+), for this specimen is detailed in Appendix B, 

section B.1.1. 
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Figure 2.9: Mode 1 crack growth specimen. Ali dimensions in mm. 

L 

Figure 2.10: High R-ratio crack growth history. 

Measurements made below l O M P a 6  were taken using a high R-ratio Ioading 

cycle, see Figure 2.10. Measurements at stress intensities above this level employed 

a periodic overload history as in Figure 2.8 because of the increasing crack opening 
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load. In these tests, the maximum nominal stress was set to 276MPa regardless of the 

load history employed, and the minimum of the overload cycle was -276MPa. Only 

in cases where the required stress intensity caused the peak stress t o  approach these 

values were they increased. Crack opening level was verified optically as in [51]. 

2.3 Mult iaxial Tests and Techniaues 

2.3.1 Bending-Torsion Tests 

The bending-torsion test frame pictured in Fig- 

ure 2.11 was developed by the Fatigue Design 

and Evaluation Cornmittee of SAE to study the 

effect of notches on multiaxial fatigue. The test 

specimen, in Figure 2.12, is clamped rigidly at  

one end and compressed into a yoke, by means 

of a collet, at the other. The yoke is then con- 

nected to two 25 kN actuators. With this frarne 

a maximum bending moment (at the notch) of 

6700Nm can be applied when the actuator loads 

are of the same sign, and a maximum torsional 

moment of 9000Nrn can be applied when the ac- 

tuator loads are of opposite sign. When a mixed 

loading is desired, the histories used to generate 

the desired torsion and bending responses are a 

linear combination, where the left actuator com- 

Figure 2.11: Bending torsion fix- 

ture with specimen. 

mand signal is given by bending-torsion and the right by bendingftorsion. 

The nature of this test frame couples bending and torsional loads, hence the 

maximum achievable moment in torque, for instance, is correspondingly decreased 

when a bending moment is applied, and vice-versa. The centerline to centerline 

distance between the actuators is 203mm, with the specimen center located halfway 

between the actuators. The distance fiom the yoke load application point to the 
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Figure 2.12: Bending-torsion specimen. AU dimensions in mm. 

specimen notch root is approximately 150mm - this distance was measured for each 

specimen and the bending loads adjusted accordingly. The advantage of this test 

geometry is that, in torsion, crack nucleation is confined to a srnail circumferential 

area near the notch, and, if bending is superimposed it is further reduced to a narrow 

strip on the top and bottom of the shaft. 

The adaptive control program used in the bending-torsion tests [64] was dinerent 

fkom that used in the uniaxial tests because of the need to synchronize the two input 

channels and to record feedback with the computer, but the accuracy of control 

was identical to the uniaxial program. These tests generally employed a maximum 

torsional test kequency of 8Hz (some high strain amplitude tests were slowed d o m  

to minimize section heating) and a maximum bending fiequency of 2Hz. Specimen 

failure was defhed as the first discernible compliance change - spically a 5% increase 

in compüance, and this resulted in an estimated failure crack length of one to three 

millimeters (as determined kom replicas taken at logarithmic increments throughout 

the life of each specimen). High and low values of load (command and feedback) and 

displacement were penodically logged to a datafile on the control computer for later 

use in compliance calculations. Specimen compliance a s  a function of cycles during 

the test was presented graphically, and the determination of cycles ta 'Yaiiure" was 

made from these plots. 

Surface replicas were taken of each shaft using dental impression material. These 

replicas were taken in logarithmic incrernents throughout the life of each specimen, 

Iabeled and stored. They were later used for crack measurements. 
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O n  some bending-torsion tests, srna11 strain rosettes (LWM EA-06-015~~-120~)  were 

laid in the notch to measure the material strain response. Each rosette was mounted 

with its 45' leg oriented parallel to the specirnen axis with the gage center 1.5mm 

removed from the notch root in the reduced section. 

2.3.1.1 Constant Amplitude Bending and Torsion Tests 

In a torsion test history the torsion history appears as in Figure 2.7 (in Nm rather 

than strain), and the bending history is a flat line a t  ONm. The converse is tme in 

constant amplitude bending histories. A i l  constant amplitude tests were subjected to -= 
R~ - Tm=, = -1 loading, where the T indicates torque. 

These histories are resultant histories - the actual actuator histories are a su- 

perposition of the bending and torsion components. As mentioned in the previous 

section, the actuators move in concert in a simple bending test, and move in exactly 

opposite directions for a simple torsion test. Although both actuators are rnoving in 

bo th  torsion and bending constant amplitude tests, the resultant bending moment 

on the shaft is zero in the torsion tests, and the resultant torsional moment is zero in 

the bending tests. A graphical example of how actuator and resultant histories are 

interrelated is given in section 2.3.1.3. 

2.3.1.2 Static Bending Moment Torsion Tests 

In these tests a static bending moment was maintained throughout the test while 

N l y  reversed (RT=-1) torsional cycles were applied. The magnitude of the static 

bending moment used was inversely proportional tu the magnitude of the torsionai 

moment for torsional moments above 1500Nm. Since the static bending moment 

combined with the torsional cycling caused bending ratchetting, the ratchetting had 

to be kept to a sustainable level throughout the tests; hence the reduction in the 

static load. Ratchetting is a resdt of cyclic creep, and under multiaxial loading if a 

cyclic stress is placed on one a x k  and a constant t ende  stress on the other, the axis 

with the constant stress will experience a cycle by cycle increase in inelastic strain. 

In the bending-torsion tests this was evidenced by a downward drift of the end of the 
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Figure 2.13: Ratchetting in a static bending moment test. 

specimen, and it impiies increasing bending strain throughout the test. An example 

of ratchetting can be found in Figure 2.13, where it is shown that through the course 

of the test the specimen end moves vertically due to ratchetting in bending. In this 

case there is no rotation and therefore no appreciable ratchetting in torsion. 

Below 1500Nm torsion the shaft did not ratchet, and the full static bending mo- 

ment of 2600Nm was used. See Figure 2.14. 

2.3.1.3 Bending OverIoad Torsion Tests 

Two different types of bending overload tests were used - a standard overload test in 

which the bending moment on the shaft is zero through the course of torsional cycling, 

and the peak hold test in which the bending moment is maintained at  2600Nm during 

torsional cycling. An example of the standard overload history is given in Figure 2.15. 

Figure 2.16 depicts a typical peak hold overload history with both actuator and 

resultant specimen histories. Ratchetting occurred in the peak hold tests, but the 

ratchetting strain was reversed by the periodic bending overload, and this allowed a 

full static moment of 2600Nm to be applied. 
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Figure 2.14: Static bending history used on bending-torsion rig. 

Figure 2.15: Bending torsion standard overload history. 
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Actuator Histories Resultant Histories 

Figure 2.16: Bending torsion peak hold history showing relationship between 
actuator histories and resultant moment histories. 



Materials and Procedures 

The number of small cycles between overloads (7)  in both the standard and peak 

hold overload tests is set using the same critenon as used in the uniaxial overload 

tests - that overloads constitute no more than 25% of the total damage. 

2.3.2 Axial-Torsion Tests 

The axial-torsiond tests were conducted 

with the load kame depicted in Figure 2.17. 

It is capable of exerting a S50kN axial force 

and a 2250Nm torque on test specimens. 

The load train was aIigned in a fashion sim- 

i h r  to that in section 2.2.2, with the result 

that the maximum bending induced by the 

grips was no greater than 25 microstrain. 

The hydraulic g i p s ,  developed a t  the 

University of Illinois [66], employ a stan- 

dard 41.275mm machining collet. Because 

of the torsional loading component, the grip 

ends on the specimens were sanded with #60 

ernery cloth in a cross-heiïcal pattern to im- 

prove fiiction between the collet and spec- 

imen. Further, the specimen was Yocked" 

into the grips by a one-time axial preload of 

44kN. This load represents a stress of 64% 

Figure 2.17: Axial-torsion load h e .  

of the cyclic yield stress on the tubular specimens used in this study. 

Strains were measured with an axial-torsion extensometer obtained from Epsilon 

Technology [ESO-0100-010-002 ST]. A typical experimental setup with this extensometer 

is pictured in Figure 2.18. This extensometer has the advantage of sensing directly the 

shear strain at the specimen surface rather than measuring specimen twist. However, 

due to the large sprung mass connecting the two sides of the gage it can only be used 

in torsional strain control at frequencies below 1Hz. Any fkequency higher than this 
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Figure 2.18: Typical specimen installation with axial-torsion extensometer. 

excited the 120Hz natural resonance of the gage. When the gage is not in the control 

loop its maximum torsional fiequency is 8Hz. The axial channel had a maximum 

useful control fiequency of 10Hz. 

Because of the need to nin a large nurnber of tests to 105 to 10' cycles, this 

instability problem forced a switch fiom strain control to rotation control. This 

change caused difficulties in rnaintaining the phase relationship between axial and 

torsional strain, and, as a result, the axial control was switched over to displacement. 

Since the LVDT installed in the load frame did not have the resolution aecessary to 

control the strain endpoints, a displacement gage (and an additional control charnel) 

was installed on the torsional reaction yoke, see Figure 2.19, and was calibrated to 

a displacement range of rt0.4mm. Once installed, this new gage solved dl strain 

phasing problems. 

Tests were then conducted in displacement/rotation control while axial/torsional 

strain was controlled parametrically by a computer. Strains were controlled to an 

accuracy of one percent by the adaptive pararnetric control program used in sec- 

tion 2.3.1 [64]. A complete set of feedback signals, including strain, stress, and dis- 

placernent/rotation, are shown in Figure 2.20 for a constant amplitude test. This 
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Figure 2.19: Displacement gage afked to axial-torsion load frame. 

figure shows that the phasing in the strain control is reasonably Iinear. The pertur- 

bation in the axial channel arises not from the control scheme, but from tefion debris 

in the hydrostatic bearings in the linear actuator; shortly after this test the actuator 

was rebuilt. This perturbation shows up most dramaticdy in the shear versus normal 

stress plot because of the plasticity it causes. 

A maximum test frequency of 40Hz was employed for some high cycle tests while 

slower frequencies were used in tests where specimen heating or phase control were 

issues - at fiequencies above lOHz the hydraulic lines to the grips were disconnected 

to avoid fatigue failure of the fittings. At hequencies above 8 Hz load control was used 

on both axes. Specimen failure was defined as the first discernible cornpliance change. 

This change was determined fkom graphs of both load and cornpliance plotted as a 

function of cycles during the test. These calculations resulted in an estimated failure 

crack length of one to three millimeters. High and low values of load, strain, and 
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Strain Stress Displacement 

Figure 2.20: Feedback plots from a constant amplitude test including strain, 
stress and displacement, @ = = - i:, $ = g = &y)= I - - 
0.003, = 0.001, test 34. AU plots are taken fiom the same 
time slice. 
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Figure 2.21: Axial-torsion specimen. All dimensions in mm. 

displacement were periodicdy logged to a datafile on the control cornputer for later 

use in determination of failure Me. 

2.3.2.1 Fatigue Life Tests 

A tension-torsion machine performed multimcial fatigue Iife tests on the tubular spec- 

Mens shom in Figure 2.21. Rough machining of the specimen consisted of lathe 

turning. on- the outer d a c e  and boring the inside. Finish mzhining consisted of 

low-str&grinding and sanding on the outer surface and honing the inner su.dace 

with successively finer stones. The final surface finish on both the inner and the 

outer diameters was &m. The outer surface was polished to l p m  for the pur- 

pose of observing cracking behavior. Occasionally, if scoring was obsewed on the 

inner diameter of the tube, oversized b d h g  pads coated with 30pm diamond pol- 

ishing compound were driven through the center of the tube using a lathe. This 
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pad removed the scoring, and it was foIIowed by pads coated with successively £ber 

compound until a 5pm finish was reached. 

Four strain ratios were explored in this test series - t[i = = 0, $, $, and 

5 3 -  These ratios were used because, at the overload strain level, they yield stress 

ratios I = CT,/~,  = 0, $, 1, and 2. These tests were conducted so that the stress 

ratio produced at the endpoint of the overload cycle matched the desired stress ratio. 

Experixnentd hystersis loops in both tension and torsion (taken at the tips) indicated 

a relation between the strain and stress ratios of q5 = $P. However, the stress ratio 

was not constant throughout an entire strain cycle. The actual stress ratios achieved 

at the overload loop tips in tests lie within 5% of the target ratio. 

Constant amplitude The history inputs used in Figure 2.20 are typicd of those 

used for tl, = f constant amplitude tests. Strain ratios of $ = % and 11. = $ have 

normal strain histories which are 2, 3, and 4 times the size, respectively, of that 

pictured in the figure. For = O the axial component is left in Ioad control at O Ioad 

for the duration of the test. 

Overload tests Examples of the histories used in the multiaxial overload tests are 

depicted in Figure 2.22. The stress/strain ratios used in these tests were the same 

as those used in the constant amplitude tube testing. In this case the stress ratio 

depicted in the figure is iP = 2 ($ = )) and there are 5000 s m d  cycles (q = 5000) 

for every applied overload. Both the strain amplitude of the overload cycle and q 

were chosen to restrict overload damage to 25% of the total damage as in the uniaxïai 

overIoad histories- 

However, one stress ratio, 5P = O, provided an opportunity to use an overload wtuch 

was n o m a  to the eventual crack plane. As a result, thk stress ratio had three different 

types of overload applied to the specimens - tonional overload, tension-compression 

overload with zero applied mean stress, and a tension-compression overload with the 

peak tensile strain held constant. Examples of each of these overloads are given in 

Figure 2.23. 
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Strain Stress Displacernent 

Figure 2.22: Feedback plots from a n  overload test including strain, stress 
4 ~ € 0 '  A€$ - and displacement, Q = 2, q$ = 3,  cP = 0.003, - 

Acea AeZa 0.00233, = 0.000533, = 0.0004, 7 = 5000, test 50. 
Ml plots are taken from the same tirne slice. 
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peak hold 

Figure 2.23: Q = O histories with different types of overloads. 
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Figure 2.24: Axial-torsion crack growth specimen. AU dimensions in mm. 

2.3.2.2 Tension-Torsion Crack Growth Tests 

Multiaxial fatigue life tests were performed on the tubdar specimens shown in Fig- 

ures 2.18 and 2.24. The only dserence between this specimen and the one depicted 

in Figure 2.21 is a small0.25rnrn hole drilled through the wall which acts as a crack 

starter. Preparation of these tubes was the same as that described in the previous 

section. 

The tubes were precracked under the stress ratio in which they were to be tested. 

Precracking was conducted under parametric strain control, and an overload history 

was used which had 17 = 100 small cycles of the amplitude of the constant amplitude 

fatigue limit. Once the crack had g r o m  out of the starter notch and stabilized into its 

normal growth direction, the crack was rnapped using the Questar crack meanirement 

system, and the sample was removed from the machine. Dental impression material 

was used to verify that the crack had stabilized both on the inside and outside surfaces 
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Figure 2.25: Example of precrack crack growth removal. All dimensions are 
in mm. 

and that the crack lengths were similar. If there was a portion of the crack in the 

notch locale which did not conform to the regdar growth pattern, that portion was 

removed via plunge electron discharge machining (EDM) using an electrode which 

was specifically designed for each specimen. The electrode was taken all the way 

through the wall of the tube to completely eliminate that section of crack, and the 

removal was verified via dental impressions taken from both surfaces. An exarnple 

of a crack grown under = O with torsional overloads is given in Figure 2.25. In 

umotched specimens subjected to this kind of loading, the crack tends to grow in 

mode IL dong the longitudinal axis of the specimen - hence the portion of the crack 

which grew out of the notch in mode 1/11 needed to be removed because of asymmetric 

Load transfer across the crack. In the figure the outline of the electrode is overlaid on 

the undesirable section of the crack. 

Unlike the uniaxial crack growth tests where high R-ratio histories were used to 

maintain crack closure free growth for stress intensities less than 10MPa6, it was 
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inappropriate to use this technique under mode II loading. High R-ratio shear loading 

histories do not necessarily eliminate crack face interference. Hence, t ension-t orsion 

experiments instead use only overload histories, such as described in section 2.3.2.1, 

to develop crack face interference-free growth. The number of small cycles between 

overloads, q, was set such that the damage from the overload cycles constituted no 

more than the 25% of the total damage in the specimen. 

2.4 Specimen Stress-Strain Analysis 

The purpose of this section is to document analytic techniques used on the various 

specimens employed during the course of this work. 

2.4.1 General Stress/Strain Analysis 

The coorduiate systems used in referencing both uniaxial and tension-torsion speo 

imen stresses and strains throughout this document are presented in Figure 2.26. 

Boundary conditions which both geometries share are 

which means that 

Since the uniaxial specimen has only a single force imposed along the x-axis, it haç a 

furt her boundary condition which is 

and results in 
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Figure 2.26: Stresslstrain coordinate 
b) 

system for a) uniaxial and tension- 
torsion specimens. 
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Hooke's Law for uniaxial loading yields the elastic strains, 

where v is (elastic) Poisson's ratio and E is Young's Modulus. The plastic strain may 

then be defined from the total strain, E,,, as 

The total y- and z- axis strains are 

where 

and the plastic Poisson ratio is 

The stress and strain ratios, ik and are defined as 

As mentioned in section 2.3-2.1, the relation 

can be used to describe roughly the relationship between the stress and strain ratios 

a t  the overload loop tips with roughly 5% error. 
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Figure 2.27: Mohr circle diagrams (drawn for XP = 2) showing stress and 
strain paths and the definitions of ~ d ,  a, and C*. 

The von Mises equations for equivalent stress and plastic strain, considering the 

above boundary conditions (equations 2.2-2.4), may be defined for these specimens 

The equations for elastic and total strain are 

Other t e m s ,  taken from [39, 401, should be introduced at this juncture; Fig- 

ure 2.27, which shows the Mohr's circles for stress and strain, is instructive in their 

definition. The following terms are only deflned for in-phase loading. The normal 

strain component of the largest circle, Q, is defined as 
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and 

where 

-2v' 
Q = -. (2.23) 

1 +uU 

The radius of Mohr's circle r (and the maximum shear strain, is defined as 

where 

A similar stress term is dso defined as 

The tensors for general in-phase loading (and which apply to all load ratios except 

pure torsion, @=O) are 

and the principal stresses become 
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2.4.2 Torsion experiments, i I=O 

Torsion requires special treatment because many of the equations from the previous 

section become undefined- 

The equivaleot von Mises equations for torsion become 

where EP, is defined by 

Under the special case of pure torsional loading (o, = O, o,, # O),  as represented 

by Figure 2.28, the stress/strain state for torsion is 

which when rotated to principal axes becomes 

One type of torsional experiment involved holding a static tension level while 

torsional cycles were applied. The Mohr circle diagrams for this situation are shown 

in Figure 2.29 where only the largest circles are shown for clarity. The application 

of torsion while holding a static tension has two results: the fhst is that the circle's 

diameter grows but remains centered at the same location, and the second is that the 

stress/strain state on the x-y plane changes from position A to position B (as marked 

on the figure). The tensors for this situation (at position B) are the same as those in 

equations 2.26 and 2.27. 
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Figure 2.28: Mohr's circles for in-phase torsional loading. 

OL + 
tors. 

Figure 2.29: SimplXed Mohr's circles for out-of-phase torsional loading. 
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2.4.3 The Stress-Strain Curve and Other Material Proper- 
t ies 

Traditionally a Ramberg-Osgood type of power law relationship is used to describe 

the relationship between plastic strain and stress, but in recent years analysts have 

begun to move to digitized properties [67] wherein material curves are a set of best 

fit points which describe the material characteristic. In part, this approach is taken 

because fatigue analysis programs take the equation and its paramet ers and develop 

interna1 look-up tables, and in part, because the basic equations in fatigue are over- 

described (more equations than unknowns). Hence it is usuaily the cyclic stress-strain 

curve which suffers a poor fit to benefit the strain-life diagram and the the Basquin- 

Coffin-Manson equation system. 

The analyses performed in this document employ these digitized curves, not only 

for the stress-strain curve, but for parameter-life and crack growth curves. 

2.4.4 Analysis of Bending-Torsion Shaft 

The coordinate system used in referencing the SAE d e  shaft [68] is given in Fig- 

ure 2.30. Stress analysis of this shaft is somewhat more problematical than that of 

either the uniaxial or tension-torsion specimens. 

Loading that does not plasticize the notch can be analyzed with stress concentra- 

tion factors and the analyses set forth in the previous section, but those situations 

where plasticity does occur in the notch require a treatment different than that used 

in t ension-torsion analysis. 

2.4.5 Elastic Analysis 

Given the geometry of the SAE shaft (see Figure 2.12) Peterson's Handbook [69] 

yields a bending stress concentration factor of 

and a torsion stress concentration factor for the notch of 
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Figure 2.30: Stress/strain coordinate system for bending-torsion specimens. 

These were the values employed in both the elastic and elastic-plastic analyses of the 

shaft. However, another source [61] has variously put the stress concentration factors 

at 1.61 and 1.39, respectively. 

Under elastic loading the maximum nominal section stress (S,, at the top surface 

of the shaft) is calculated by 
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where 

r, is the nominal section radius (20mm) and Mb is the applied moment, given by 

The forces in the z-direction from the left and right actuators (as viewed from the 

small shaft end and in Figure 2.11) are given by Fzi and &, respectively. and r b  is 

the distance along the x-axis between the notch root and the load application point 

(typically about 150mm). 

Under elastic notch conditions the local bending stress in the notch is 

Torsional loading is quite similar, and the nominal section stress at the shaft 

surface is 

where 

and 

where r, is the distance from the shaft centerline to the load application point on the 

yoke (203.2mm). 

The local torsional stress in the notch under elastic conditions then becomes 
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2.4.6 Elastic-Plastic Analysis 

Short of finite element modelling, the best way to predict notch behavior in the shaft 

is t hrough Neuber's equation. 

2.4.6.1 Uniaxial Neuber Analysis 

For an applied moment that produces plastic accommodation in the notch. using 

the above equations (2.39,2.43) it 

Neuber's equation [70, 71, 72, 731 

Neuber 's equation is expressed (in 

which becomes 

is possible to make an elastic calculation and use 

to calculate the notch stress and strain. Usualiy 

bending) as 

where K: and ~ , b  are the inelastic stress and strain concentrations 

expressed by 

(2.46) 

in the notch 

The individual components of the product of ozze,, can be determined by using 

the material stress-strain curve as shown in Figure 2.31. 

Unfortunately, this technique is insufficient for a notch loaded in a multiaxial 

fashion. 
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Figure 2.31: Illustration of uniaxial Neuber correction [70, 711. 

2.4.6.2 Multiaxial Neuber Correction 

Chu [74,75] has developed an incremental Neuber style correction for use in multiaxial 

cyclic loading situations. A brief introduction is given here. 

The basic tenet of this work is that if under uniaxial loading Glinka's elastic notch 

solution (731 can be expressed as 

1 ~ Z X ~ G =  = 1 KG, S,K,.. de, -  de,, - J 
where Kr,, and K,,, are the inelastic stress and strain concentration factors in the 

x-direction, and Kt,, is the elastic stress concentration in the x-direction. As in 
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equation 2.44, the product of the stress and strain concentration factors can be related 

to the elastic stress concentration factor by the following equation, 

However, under muitiaxial loading 

and equation 2.49 becomes 

Taking this new relation in differential form, 

for a surface element in the shaft notch, this energy equation becomes 

The definition of the stress-strain path used needs to be set, and although Chu 

defined three alternatives, the proportional strain path is used in this work: 

de, : de, : de, = de, : de, : de,. (2 -55) 

In order to implernent this incremental fom, a material constitutive model is 

necessary. Chu [76, 771 has extended the yield surface field concept developed by 

Mr6z [78] into an incremental isotropic-kinematic hardening model for use in cyclic 

loading. While a full treatment of the plasticity model is beyond the scope of this 

document, a cursory introduction is given in Appendi. A. 



Ma terials and Proced mes 

2.4.7 Damage Parameters and Critical Plane Analysis 

The parameters ~ d ,  a' and Cq used in section 2.4.1 (see equations 2.20. 2.22, and 2.25) 

in expressing the st ress-st rain st at es are also usehl in evaluating mult iaxial damage 

parameters. but it must be noted that the analyses presented in this section are only 

defined for in-phase load paths. AU of the damage parameters require evaluation of 

either an amplitude, a maximum or a minimimum of a quantity throughout a loading 

cycle, and these transforms are denoted by O,, () ,, , and orni, respectively. 

Specificaily, with respect to equations presented later, 

and the strain term in the definition of E& E ~ , ,  is &O taken as an amplitude. 

In critical plane analysis, a damage parameter is computed on a number of planes 

which have orientations that are distributed around the points of the compas, (Le., 

every 10"). The plane which has the largest value of the parameter is presumed to 

be the one on which failure will occur. This process fin& the maximum value of 

the parameter. For some parameters such as the Brown and Miller parameter [38], 

the plane given by a critical plane search is not necessarily that designated by the 

parameter's authors [67]. This leads to a sitnation where the basic strain-life curve is 

not predicted by the parameter-life curve derived from it. 

Again, the Brown and Miller parameter is used as an example. Programs initially 

take the strain-life curve as the input necessary for converting the calculated damage 

parameter back into a fatigue life. In order to do this, programs take the value of the 

parameter on the maximum shear plane and create a parameter-Life look-up table for 

later use. The strain levels from the strain-life cuve are then given to the program 

to predict. The program finds the maximum value of the parameter for each strain 

level, and this value happens to be about 10% higher than that calculated on the 

maximum shear plane. When the program returns to the look-up table it returns a 

life which c m  be in error by as much as an order of magnitude. Whether or not any 

given parameter is impacted by this problem is entirely dependent on the treatment 

given by the programmer. 
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As a resuit of this problern, the parameters presented here are designed to properly 

maximize the parameter life curves - so that a critical plane analysis wiU properly 

predict the original strain-life curves? regardless of parameter used. In the following 

sections. closed form solutions of bo th uniaxial and multiaxial parameters, taken 

from [39, 401, are presented. However, a closed form solution is only possible for these 

parameters when the loading is confined to a single Iinear path emanating from the 

origin. These solutions are invalid for cases such as neutral loading, but they can be 

used in place of a critical plane analysis to reduce most ordinary laboratory test data. 

2.4.7.1 Uniaxial Parameters - Normal Stress/Strain 

Normal strain amplitude as a damage parameter is one of the most common, and it 

is normally expressed [39, 40) as 

and when changed to reflect critical plane andysis it is 

where the terms in these equation are defined in section 2.4.7. 

Normal stress amplitude is given by 

which becomes 

2.4.7.2 Shear-S train Based Parameters 

Among the parameters included in this set are the Brown and Miller [38], Fatemi- 

Socie-Kurat h [3O, 421, and maximum shear strain amplitude paramet ers. 

For in-phase loading the Brown and Miller parameter can be expressed [39, 401 as 
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which becomes 

The Fatemi-Socie-Kurath parameter takes the form of 

which, in critical plane format, becomes 

where 

and the angle which the critical plane rnakes with the x-axis, Bi, is defined by 

Finally, maximum shear strain amplitude, 

2.4.7.3 Energy Based Parameters 

The last set of parameters are the Smith-Watson-Topper parameter [37], and Chu's 
parameter [43]. The Smith-Watson-Topper parameter [37] takes the form [39, 401 of 

and becomes 

after critical plane 

and it becomes 

analysis. Lastly, Chu's parameter is typically represented by 

PC = 2~mol(~zy)a f (on)rnor(~n)ot (2.71) 



Chapter 3 

The Role of Overloads in 
Mult iaxial Fat igue 

During the past decade it has been observed that periodically applied overloads of 

yield stress magnitude can significantly reduce or eliminate crack closure under uni- 

axial or mode I loading. In this chapter results are presented for a series of biaxial 

tension-torsion experiments t hat were performed to evduate the effects of overloads 

on the fatigue life of smooth tubes constructed of normalized SAE 1045 steel. Con- 

stant amplitude and periodic overload experiments were conducted under five different 

in-phase stress ratios, including uniaxial (I = = w) , pure torsion (I = O), 

and three intermediate ratios ( iE = 3, 1, and 2). In addition, under torsional loading, 

two different out-of-phase overloads were evaluated. 

Periodically applied overloads of yield stress magnitude caused cracks to grow 

under crack face interference fiee conditions. Straln-life Cumes were obtained by 

cornputationally removing the overload cycle damage from test results and calculating 

equivaient fatigue lives. A factor of two reduction in the fatigue E t  waç found at  

al1 strain ratios when these results were compared to constant amplitude results. 

Another series of constant amplitude and penodic overload tests was conducted on 

notched axle shafts to evaluate the effects of overloads on components. The effects of 

various kinds of bending overloads on torsional fatigue was found to be quite similar 

to that encountered in the @=O tubular testing. 

Further, it was found that, under in-phase loading, shear cracks initiated and grew 

longitudinally for @=O, $, and 1, and for q=2  loading shear cracks initiated on the 
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maximum shear planes. These observations concerning the initiation plane were used 

to uni& the constant amplitude data and to justifjr the use of the maximum shear 

criterion with the overload fatigue data. Parameter-life curves were developed using 

the equivalent life data and several comrnon muitiaxial damage parameters. It was 

found that the simple maximum shear strain criterion together with uniaxial overload 

data gave safe but not unduly consenative life predictions for al1 of these strain ratios. 

3.1 Uniaxial Behavior, 9=m 

Constant Amplitude Tests 

Constant amplitude tests were used in all of the stress ratios as a base 

parison with the overload fatigue data. 

The uniaxial constant amplitude fatigue curve for normalized SAE 

iime for com- 

1045 steel is 

s h o m  in Figure 3.1 where the circIe data points are specimens failed under R, = -1 

loading. The çurve is fairly typical of a medium carbon steel, and it has an endurance 

limit at a strain amplitude of 0.0017. 

3.1.2 Overloads and Equivalent Uniaxial Damage 

DuQuesnay [3] discovered that the application of a yield stress level overload reduces 

crack closure levels enough that subsequent cycles whose amplitudes are below the 

fatigue limit (small cycles) are able to advance a crack. This effect has been success- 

M y  used to describe the observation of increased srnail cycle damage in the presence 

of variable amplitude or randorn loading spectra (79, 801. Although DuQuesnay was 

primarily interested in crack growth approaches to these phenomena, he was able to 

use this knowledge to develop a technique which provided a strain-Me curve which 

could be used in continuum damage models [81]. In the paper he demonstrated a 

downward translation of the endurance limit to one-third of its original value. He 

suggested that this curve could be used for making life predictions for structures 

which experience variable amplitude loading. 

The effect of a reduction in crack closure stress on the fatigue strength can be 

seen by examining a few simple tests. A constant amplitude test a t  ~,=0.005 for this 
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1 Overioad Tests 1 

Reversalç to Failure (2NJ 

Figure 3.1: Constant amplitude R, = - 1 fatigue response of SAE 1045 steel. 

rnaterial will result in a specimen fatigue life of roughly 20,000 reversals to failure. If, 

in between each cycle of E,=O.OO~, are placed five hundred cycles (7)=500) of amplitude 

~,=0.001 - an amplitude which is roughly one-half of the fatigue limit - the result, 

plotted in Figure 3.1, is that the Life of the test now f& a t  2,824 large cycle reversals 

to faiiure. This result is far short of the 20,000 reversals required to cause failure in 

tests which consist of just the ~,=0.005 cycle. However, if the smaller cycle amplitude 

is reduced further to one-third of the fatigue limit (e=0.0006), and the number of 

smaller cycles between the larger cycles is increased to twenw thousand (17=20,000), 
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no effect of the smaller cycles is observed - the resulting specimen Life is once again 

20,000 large cycle reversais to failure. This return to the constant amplitude curve 

is an indication that small cycles below a certain strain amplitude will no longer 

contribute to the total specimen damage [3, 18, 821. Half of the constant amplitude 

data in this figure is fiom Chernenkoff [83], and the other half was produced during 

this research. 

The Palmgren-Miner relation indicates that, on the basis of the onginal strain-life 

curve, cycles below the endurance should have no effect, but clearly there is damage 

being performed by these srnader cycles kom the endurance lirnit d o m  to E ,  = 0.001. 

At = 0.0006 the s m d  cycles no longer contribute substantially to damage. As one 

wodd expect, this phenornenon is observable in tests with smaller cycles which have 

amplitudes both below and above the fatigue limit. In order to determine the damage 

done by the small cycles in the overload histories, we may subtract the damage done 

by the overload cycles fiom unity using the Palmgren-Miner rule given by equation 3.2. 

where ni is the nurnber of cycles at amplitude i, is the expected constant amplitude 

life at amplitude 2, "OZ" indicates overload cycle, "SC" indicates smaller cycle, and 7 

is the number of smaller cycles between overload cycles. If the Phgren-Miner rule 

is used to elirninate the fraction of damage due to the large cycles then the equivalent 

number of srnall cycles to fail the specimen should be 
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\ O Constant amplitude 

A Equivalent small cycles ( k 0 ' / 2  = 0.0045) 

Figure 3.2: Periodic overload and effective strain curves for normalized SAE 
1045 steel. 

O Constant amplitude 

A Equivalent small cycles ( k 0 ' / 2  = 0.0045) 
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where Nol is taken from the constant amplitude strain life curve. Using this equivalent 

small cycle life and plotting the overload tests on the basis of the amplitude of the 

small cycles gives the equivalent strain-life curve of Figure 3.2. 

Once the damage due to overloads has been removed and the small cycle life 

is normalized, the equivalent strain life curve in Figure 3.2 (plotted as triangles) is 

obtained. The fatigue limit is reduced from a strain amplitude of 0.0017 to 0.000715 

- a reduction to two-fifths of its original value. At lives below 200,000 reversals to  
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curve joins the constant amplitude cuve at this point because the overloads. which 

are set at a life of 20,000 reversais, are unable to maintain a fulIy open crack. In 

most other materials the transition point is closer to the selected overload life than 

an order of magnitude, but in soft SAE1045 steel it appears that this transition point 

is fairly typical [84, 811. If the overload strain amplitude is increased in proportion 

to the increase in the smaller cycles strain amplitude at lives below 200,000 then a 

strain-life curve can be obtained in which the entire dataset is fully open. However, 

at  these high strain amplitudes specimens may buckle during the overload cycle. A 

curve which approximates such behavior for a M y  open crack is also presented in 

Figure 3.2 and labelled as Ase8/2- This curve is developed as follows. 

DuQuesnay, et al. [81], have proposed an effective strain-life curve for use in 

fatigue damage calculations. The effective strain range, h e e 8 ,  which is the range 

of strain for which a fatigue crack is open during a cycle, is given by the difference 

between the maximum strain and the greater of the minimum strain or the crack 

opening strain. They relate effective strain range to fatigue life by the following 

equation, 

Ae, = Ae* + Aei (3-7) 

where 

and Aci is an intrinsic strain range below which strain cycles do no damage, &in to 

the crack growth threshold. AKth. The material constants A and b in equation 3.8 

behave in a sirnilar fashion to the constants in the Coffin-Manson equation. An 

estimate of the effective strain range at a total strain range of two percent is made 

by subtracting one-half of the absolute value of the minimum stress divided by the 

modulus of elasticity from the total strain range. This assumes that the minimum 

stress in the cycle is negative, and that the crack opening stress at this strain level 

falls halfway between the minimum stress in the cycle and zero [85]. This datum and 

the long life overload data for which the fatigue crack is expected to remain open 
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throughout the stress-strain cycle are used to obtain the A€* vs. Nf curve shown in 

Figure 3.2. A value of Aei which causes calculated Ae* values to faLl on a linear cuve 

when plotted versus Nf on log-log coordinates is obtained by trial and error - a first 

estimate of it obtained from the lower bound of the test results. The resdting linear 

AE* versus Nf curve provides a good fit to the long life data where the crack is f d y  

open [81, 851. At intermediate lives the effective strain falls below the data, since 

the crack opening stress is above the minimum stress and the effective strain range is 

less than the total strain range. At the shortest lives, the effective curve once again 

follows the constant amplitude data because the portion of the strain cycle which is 

closed constitutes only a s m d  fraction of the total strain range. 

3.1.3 Uniaxial Crack Closure 

DuQuesnay [3] determined that overloads which are of the order of the section yield 

stress reduce crack closure. Compressive overloads drastically reduce closure by 0at- 

tening asperities and eliminating the interaction between crack faces. Tension over- 

loads stretch the crack mouth open - separating the crack faces and eliminating 

closure. He was able to determine, with the aid of acetate replicas and with strain 

gages laid across the crack that overloads of sufficient amplitude and frequency can 

maintain a fully open crack throughout the life of a specimen. Later researchers 

[86, 511 were able to corroborate these observations Ma direct optical measurements. 

Varvani-Farahani, et al. [87] obtained similar results for stage I cracks using a confocal 

scanning laser microscope. 

En the uniaxial tests in this study two methods were used to determine whether 

the cracks were growing under fully open conditions. The first was direct observation 

of the opening of a long crack a t  its tip in the experiments on uniaxial crack growth 

described in section 4.1.1. Overload and small cycle amplitudes similar to those 

used in smooth bar tests were applied to the notched flat crack growth specimen 

geometry fmm Figure 2.9, and the result was observed using a microscope. Initially, 

the overloads used during these tests were of the same strain amplitude as the smooth 

bar tests, but it was found that at this amplitude K,, rapidly approached the KI, 
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value of the material. hence the overload amplitude was reduced to 60% of the original. 

The resulting crack was observed to be growing under f d y  open conditions - at  no 

time during the stress cycle was the crack seen to close at  the crack tip. 

A second method involved performing an overload test with an overload amplitude 
considerably larger than the one typicaUy used in uniaxial tests. The circied data 

point in Figure 3.2 represents the test which was subjected to an overload strain 

amplitude e=0.0065, a srnall cycle amplitude ea=0.00125, and q=250. With the 

exception of the overload amplitude, the adjacent point and the the circled datapoint 

share the same test conditions. In the presence of a larger overload it is expected that 

closure would be further reduced, if possible, and result in a substantially shorter 

fatigue life. A higher strain will further reduce crack opening stress, but if this is 

already below the minimum stress (S, 5 Sm) the effective strain range will not 

change. Since no significant Merence waç found in the equivalent lives of these two 

tests it  was concludeci that the former was already open throughout the test, and 

hence the e,=0.0045 overload amplitude produced fully open crack growth. 

3.1.4 Anisotropy in Uniaxial Fatigue 

Although the effects of anisotropy on the fatigue strength of steels is not typically 

strong [88, 891, a series of longitudinal and transverse tests were conducted at  a sin- 

gle laboratory during the SAE Fatigue Design and Evaluation Cornmittee (FD&E) 
Phase 1 multiaxial round robin program[68], and the results from these tests are pre- 

sented in Figure 3.3. The figure clearly shows a factor of three difference in fatigue 

lives between longitudinal and transverse specimens, indicating that there is an in- 

fluence of anisotropy in this particular materid. The data, taken from [62, 611, are 

comprised of specimens cut from Phase 1 normalized SAE1045 steel bar stock. The 

researchers believed that the anisotropy arose from the large inclusion content in this 

material. The material used in the current study also cornes from the SAE FD&E 
study - in this case the raw material is Phase II normalized SAE1045 steel bar. The 

principal difference is that the Phase TI material is a much cleaner steel with a much 

lower inclusion cootent. However, there is evidence, presented in section 3.2.1.4, which 

indicates that in the Phase II material there is a banding of pearlite and ferrite grains 
in the microstructure which leads to anisotropy under torsional loading. It is possible 

that this was also the cause of the anisotropy in the earlier study. 
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Figure 3.3: Longitudinal and transverse strain-life data for S A E  Phase 1 nor- 
malized SAE1045 steel [62, 611. 

3.1.5 Uniaxial Stress-Strain Behavior 

The uniaxial rnonotonic and cyclic stress-strain behavior of normalized SAE1045 steet 

is presented in Figure 3.4. The inset graph in Figure 3.4 shows a typical rnonotonic 

test together with the constant amplitude cyclic stress strain curve for strains up 

to 2.5%. The cuve fit to the constant amplitude data was slightly modified from 

the digitized cuve  provided in [67] which, in tuni, was fit fkom this data set plus 

that found in [62]. Also plotted in this graph are perïodic overload datapoints which 
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Figure 3.4: Stress-strain behavior of normalized SAE1045 steel. 

are taken from the stabilized small cycles. These points can be more clearly seen 

in the expanded graph taken £rom the "Region of Interest" marked in the inset. 

The periodic overload datapoints diverge eariy from the constant amplitude curve 

and proceed dong a different and lower path. Other researchers have observed a 

reduction in stress under variable amplitude loadulg when compared to the constant 

amplitude curve - Dowling [go] noted that this phenomena occurred in SAE4340 steel 
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a) Principal stress axes. b) Axial-Torsion axes. 

Figure 3.5: Load paths shown in (a) principal stress (with material yield 
surface) and (b) axial-torsion axes. Crosshatched regions indi- 
cates the stress ratios possible with bending-torsion and tension- 
torsion systems. 

when subjected to periodic overloads, and the effect that these overloads had was to 

eliminate the effects of strain aging for smaller cycles. The net result was that, for 

the same small cycle strain amplitude, lower stresses and larger amounts of plasticity 

were observed for a given strain amplitude. 

The periodic overload stress-strain curve is used in evaluating multiaxial damage 

and crack growth models. 

3.2 Tension-Torsion Tests 

Experiments were performed at the stress ratios shown in Figure 3.5a-b. Figure 3.5a 

shows the principal stress axes with a crosshatched region indicating the possible 

range of stress ratios which can be attained with tension-torsion and bending-torsion 
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systems. In this range five stress ratios (uniaxial, torsion, and three biaxid stress 

ratios) were selected ranging fiom O 2 A = 022/a11 2 -1. These coordinates have 

been rernapped in Figure 3.5b to a system that is more convenient for analyzing data 

obtained from the test equipment used in this investigation. In this coordinate system 

the ratios range from uniaxial to torsion, oo > Xl? = a,,/o,, > 0, respectively. 

The aim of the overload tests in this section was to find conditions under which 

a biaxially loaded fatigue crack would grow free of crack face interference. This 

maximizes the damage done by each small cycle and yields the shortest specimen 

fatigue lives. As with the uniaxial overload tests, an overload cycle was selected that 

would yield a life of roughly 10,000 cycles to failure. This overioad level is typical of 

notch strains during large cycles encountered in severe loading. 

3.2 -1 Torsional Behavior, 9=0 

Two kinds of periodic overload torsion tests were performed: those in which both 

overload and small cycles were in torsion (in-phase) and those in which the small 

cycles were applied in torsion but the overload cycle was applied in the tension axis 

(out-of-phase) . 

3.2.1.1 In-P hase Torsional Testing 

Fatigue life data sets for both constant amplitude and periodic overload torsion tests 

are presented in Figure 3.6. This and subsequent fatigue Me data sets - presented 

in tensorial shear strain. E,. Tensonal shear strain is denoted by E, while y, is 

used to indicate engineering shear strain (+y,, = 2 ~ ~ ) .  The periodic overload tests 

were conducted using the shear strain history shown in the figure. The torsional 

overload cycle, maintained at  (~%),=0.0035 in all tests, was applied first and then 

followed by torsional srnall cycles (@=O). Cdculations to determine the equivalent 

cycles to failure were made in the same way as for uniaxial loading ($=cx>), described 

in section 3.1.2. 

The introduction of overloads caused a reduction of the constant amplitude en- 

durance b i t  from (@,= 0.0016 to (€&),= 0.0007 at  107 cycles - a Little less than 

one-half of its original value. The superscript SC indicates small cycle and the super- 

script 01 indicates overload cycle. 
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Figure 3.6: Fatigue response of normalized SAE1045 under in-phase torsional 
loading, 4 = -=O (T,!J = *=O). Circled datapoint indicates 

==Y '%l 

special overload level (e$),=0.00425, (c,),=0.00125, and 7=50. 

In-phase @=O crack face interference Two tests were performed in order to 

determine whether the cracks faces under in-phase $=O loading were growing fiee of 

interference with each other. The first test is indicated in Figure 3.6 by a circle around 

the datapoint. This test has an overload strain 1eveI of (~%),=0.00425 (constant 

amplitude life of 4985 cycles to failure), (~;),=0.00125, and q=50. The rest of the 

overload datapoints were subjected to (e$),  =0.0035, including the point adjacent 

to the circled datapoint. This datapoint shared the same small cycle amplitude, 

(~,)~=0.00125, but had i)=20. The two tests have sllnilar Iives and it is presumed 
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that if the larger overload is more effective at  reducing crack face interference then 

the calculated life of the test would fall short of the test with (~$,),=0.0035, hence it 

is assumed that the (~$).=0.0035 overload cycle has reduced crack face interference 

as much as  possible in these tests. 

3.2 -1.2 Torsion Testing with Tension Overloads (Out-of-Phase) 

Zero tension mean stress In these tests the overload was first applied in strain 

control in the tension direction. The tension strain was then brought to a point where 

the tension stress was zero and held: see Figure 2.23. During the tension strain hold 

period small cycles were applied in torsion. In this case a Mly reversed axial (Q=m) 

overload cycle of (~g:),=0.0045 was applied. 

The results of these tests are presented in Figure 3.7 dong with constant amplitude 

data. The 10' cycle endurance limit for periodic overload cycles is reduced to a little 

less than one-half of the constant amplitude endurance limit. 

As with the in-phase tests an experiment was conducted to investigate the effec- 

tiveness of the (~~2),=0.0045 overload. In this case the overload test, rnarked with a 

circle in Figure 3.7, consisted of ( ~ ~ ~ ) , = 0 . 0 0 7 5  (constant amplitude life of 3100 cycles 

to failure), ( ~ ~ ) , = 0 . 0 0 1 5 ,  and 77=20. The result of this test conforms with the trend 

for the (&),=0.0045 overloads and indicates that the lower overload level reduces 

crack face interaction to the greatest degree possible in this type of test. 

Tension peak hold overload In this series of tests, a tension overload was first 

applied to the specimen, then the peak tension strain level was held static while small 

cycles were applied on the torsion axis, as illustrated in Figure 2.23. The application 

of torsion cycles led to stress relaxation in the tension axis as illustrated in Figure 3.8. 

~ v e n t u a l l ~  the tension stress reaches a steady-state value, and this value depends on 

the amount of plasticity in the torsional stress-strain loop. At one extreme is the test 

shown in the figure ( ( ~ ~ ) , = 0 . 0 0 5 ) ,  in which only 7% of the tension stress generated 

by the tension overload remained after the torsional "small" cycles were applied, and 

a t  the other, under (~:C,),=0.000625 (minimal plasticity), 75% of the tension stress 

remained after torsional cycling. 
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Figure 3.7: Periodic tension overload curve for tonional loading of normal- 
izsd SAE1045 steel. Circled datapoint indicates special overload 
levei (&J,=0.0075, (~&),=0.0015, and 77=20. 
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Figure 3.8: Relaxation of tension stress with application of repeated torsional 
cycling (~$),=0.005, (~$):),=0.005, and q = l O .  
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Figure 3.9: Tension peak-hold ovedoad torsion tests on normalized SAE1045 
steel. Circled datapoint indicates special overload level 
(r$).=0.0065, (~;).=0.00125, and ~=20. 

The fatigue results for this test series are presented in Figure 3.9. The 10' en- 

durance limit for periodic overload tests is reduced to fxo-fifths of the constant am- 

plitude endurance limit (from (~;).=0.0016 to (~$),=0.000625). At al1 lifetimes the 

peak strain hold tension overload cycle clearly reduces the fatigue resistance of this 

material- 

As in the previous sections, a single test was performed in order to determine 

the efficacy of the overload cycle used in these tests. This test was identical to the 

adjacent data point in al1 respects except for the overload strain amplitude, whch 

was (ef!J.=0.0065 (a constant amplitude Iife of 5000 cycles to failure). The standard 
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Peak-Hold 
Overload 1 Constant Amplitude 1 

Figure 3.10: The impact of various types of overloads on the torsional fatigue 
(a = %=O) of normalized SAE1045 steel. 

overload strain amplitude used in the tension peak hold tests was (e~~),=0.0045. 

Both tests share, within experimental error, the same Me. This indicates that the 

srnaller overload cycle is just as effective in reducing crack face interaction as the 

targer overload, and it indicates that, for this particular type of overload, the srnaller 

overioad has removed crack face interaction. 

3.2.1.3 8=0 Combined Results 

AU of the fatigue results from sections 3.2.1.1 and 3.2.1.2 are plotted in Figure 3.10. 

In the high life region all three datasets merge, suggesting that for smdl torsional 
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Figure 3.11: Torsional stress-strain responses before and after axial peak hold 
overloads (9 = -=O) in normalized SAE1045 steel. 

*=v 

amplitudes, al1 overloads eliminate crack face interference. At shorter Iives, data 

for the peak-hold overload tests show a lower fatigue resistance than data for the 

other two overloads, and it is believed that, at these higher torsional strain levels, 

the actual overload cycle is not represented by just the tension overload, but by the 

tension overload and the first torsional cycle. 

Figure 3.11 shows that the first torsion cycle differs substantially in appearance 

from subsequent torsion cycles in that it exhibits a rnuch larger amount of plasticity. 

During this first torsional cycle the axial stress was observed to relax significantly. 

This behavior may indicate a difference between the damage increment from that lone 

cycle and subsequent torsional cycles. However, at lower torsional straùi levels where 

torsional plasticity is reduced, the peak-hold data rejoin the other two datasets, and, 

at the same t h e ,  the difference between the first and subsequent cycles following an 

overload vanishes . 
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Figure 3.12: Typical s m d  crack growth under (Q = %=O) loading of nor- 

malized SAE1045 steel. Specimen sub jected to ( E ~ ) , = o . o o ~ ~ ,  
(€g),=0.003, 1)=10. 

3.2.1.4 Proposed Crack Face Interaction Mechanisms under ii'=O Loading 

In-phase torsional loading The development of cracks in both the constant am- 

plitude and in-phase torsional overload tests was similar. Small cracks less than 50pm 

in length nucleate on maximum shear planes (in the longitudinal (x-axis) and circum- 

ferential (y-axïs) directions). An example of the typical appearance of these cracks is 

given in Figure 3.12. 

However, the microstructure is strongly banded into alternathg regions of dense 

pearlite and dense ferrite grains, and cracks tend to grow in femte rich regions or 

dong ferrite-pearlite grain boundaries. As a result, the longitudinal cracks become 
1 dominant and grow to failure. This behavior was observed in in-phase !P = 0, 

and 1 tests. Examples of the iduence of microstructure on cracking for both long 
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and short cracks c m  be seen in Figures 3.13. The preference that cracks show for 

growt h in femte rich regions may aIso explain the fatigue behavior Merences between 

transverse and longitudinal uniaxial fatigue data observed in Figure 3.3. A crack in 

a transversely oriented specimen could grow dong the length of the femte bands as 

opposed to a longitudinally oriented specimen where a crack would have to cross both 

ferrite and pearlite regions. 

At longer crack lengths (0.5mm and greater) shear-crack crack faces have been 

observed to sIide back and forth across each other, and it is believed that this is 

also true of shorter crack lengths. Under this kind of motion (mode II and III crack 

growth) the energy available at the crack tip is reduced by the interaction of asperities 

as shown at the left side of Figure 3.14. 

In-phase overloads also follow this kind of motion, but because the translation 

of the crack faces is greater, the smearing of asperities is greater (as shown at the 

right side of Figure 3.14). Once smeared, the asperities do not impede the crack face 

motion to the extent they did before the overload cycle, and it is suggested that this 

allows more of the energy formerly expended in rubbing asperities across each other 

to reach the crack tip. Figure 3.15 shows an asperity smeared during a torsional 

p enodic overload experiment . 

Zero axial mean stress and peak-hold overload tests The development of 

early cracks in these tests is similar to that described in the previous section in that 

cracks form in both the x- and y- directions, but since the overload is applied in the 

tension (x) axis, those cracks growing on the x-plane (or in the y-direction) have less 

crack face interaction and eventuaily grow to fail the specimen. The appearance of 

these early cracks is identical to that in Figure 3.12. 

The motion of the crack faces during the application of torsional small cycles is 

also identical to that in Figure 3.14. However, the motion of the crack faces during 

the overload, shown in Figure 3.16, differs since the faces move together and apart. 

In this mode1 i t  is presumed that the action of the compressive overload in crushing 

asperities is identical to that in uniaxial loading described in [4]. The reduced height 
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Figure 3.13: : Preferential cracking through ferrite grains and al 
rite/pearlite grain boundaries for both long (top) 
crack lengths (bottom). Specimen subjected to (€1, 
(~~),=0.00125, and q=50 

the fer- 
shorter 

3.00425, 
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Before Overload 

Normal (positive) motion of crack faces 
under torsion loading shown by anows 

After Overload 

Normal (positive) motion of crack faces 
during overload cyde shown by mows 

Figure 3.14: Proposed crack face interference mechanism under in-phase I = 
*=O loading. 

Figure 
25pm 

Appearance of asperities subjected to an in-phi 
overload history. Note smearing of asperities 
cracking. ((&).=0.0035, (~$).=0.003, q=10) 
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Before Overload 
(at O shear strain) 

After Overload 
(at peak shear strain, or at O shear stress) 

a 

Normai (positive) motion of crack faces Normal (positive) motion of crack faces 
under torsion loading shown by arrows during overload cycle shown by arrows 

Figure 3.16: Proposed closure mechanism under Q = E=O loading with 
tension overloads. 

of the asperities allows easier translation of the crack faces during torsional loading 

and, it is presumed, that more of the crack driving energy reaches the crack tip. 

Figure 3.17 shows an asperity from a q = O  axial peak-hold overload test which has 

been crushed. 

In both zero mean stress and peak-hold overloads the t ende  portion of the over- 

load pulls apart the crack faces. However, in the peak-hold overload the peak separa- 

tion of the crack faces is maintained during torsional cycling, but in a zero mean stress 

overload test the stress separating the crack faces is reduced to zero. Observations 

show that the crack faces are still separated because of the mean strain imposed by 

the overload. Hence both of these overloads reduce crack face interference. 

3.2.2 In-Phase lP = $ Overload Tests 

In these tests the phasing between tension and torsion strain was strictly maintained. 

An example of the strain histories used in these tests is shown in Figure 3.18 dong 
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50pm 
Figure 3.17: Typical appearance of asperities under Q = %=O Ioading with 

tension peak-hold overloads. Note presence of crushed asper- 
ities and relative lack of lateral rub marks. Holes arise £kom 
stringers broken by torsionai cycling. Specimen sub jected to 
( ~ $ ) ~ = 0 . 0 0 6 5 ,  (~;),=0.00125, and q=50. 

with the fatigue results for this strain ratio. An overload cycle was applied in both 

axes so that the peak negative strain in the tension axis occurred at the same instant 

as the peak "negative" strain in the torsion &S. The overload cycle ends at the peak 

positive strain on both axes, and then the small cycles are applied. The application of 

the s m d  cycles follows the same ratio: the positive peaks and negative peaks occur 

at the same time in both axes, and the peak value of these cycles match that of the 

peak fiom the overload cycle. The ratio of the tension to the torsion strain (ph= h) 
'==Il 

is maintained at 5 throughout the strain histo~es.  The term !P refers to the stress 

ratio of the overload loop tips, 2, and is close to 1/2 d u h g  these strain controlled 

tests. 



Role of Overloads 

Y= 1 12 

(E: ),=O.OO 1 167 

(E: ),=0.001167, (E: ),=0.0@35 

1 O' 1 o2 1 o3 1 o4 1 os 1 o6 1 0' 1 o8 
Equivalent Cycles to Failure (N,) 

Figure 3-18: Periodic overload and constant amplitude fatigue responses of 
normalized S M  1045 for iE = ors = f (1/1 = 5 = f) .  Cir- 

uxv 
cled datapoint indicates special overload level (e$),=0.0045, 
( E ~ ~ ) , = o . o o I ~ ,  (~fy),=o.ooi, (~g),=0.00033, and r)=20. 

Data for fatigue tests at this strain ratio are shown in Figure 3.18 plotted as 

tensorial shear strain amplitude vs. equivalent cycles t O failure. The constant ampli- 

tude 10' endurance limit is (e~) ,=0.0014 while that of the periodic overload tests is 

(~~) ,=0 .00068 ,  which is a reduction over onehalf of the original fatigue limit. 

The circled datapoint in Figure 3.18 represents a test with an overload strain 

level which was larger than the standard ((~$),=0.0035, ( e~) (L=0 .00~2) .  With the 

exception of the large overload cycle ((E$),=o.oo~~, (~&)~=0.0015 - 6493 constant 

amplitude cycles to failure), this test is identical to the adjacent test: (~2),=0.001, 
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Figure 3.19: Typical s m d  crack growth under iE = "fs-l loading of nor- 
bzy - 2 

malized SAE1045 steel. 

(~g),=0.0003, and 7)=20. Since this point does not significantly depart from the 

general trend, it is presumed that the smaller overload cycle allows the smaller cycles 

to grow under N l y  effective conditions. 

3.2.2.1 Proposed Crack Face Interaction Mechanisms under @ = 4 Load- 
ing 

The early crack growth observed in this stress ratio is similar to that seen in sec- 

tion 3.2.1.4. The addition of tension loading to the torsional loading causes a sligbt 

rotation of the maximum shear planes (crack initiation direction), but longitudinal 

cracks still grow and eventudy become dominant. An example can be found in 

Figure 3.19, which shows cracks forming on both maJBmum shear and longitudinal 

planes. The preference for the longitudinal planes is again due to the banded mi- 

crostmctiire. As mentioned in section 3.2.1.4, cracks tend to grow through ferrite 
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Normal (positive) motion of crack faces Y Normal (positive) motion of crack faces 
under pl12 loading shown by arrows during overioad cycle shown by arrows 

Figure 3.20: Proposed closure mechanism under in-phase Q = ou = A load- 
azy 2 

ing. 

or along femte-pearlite grain boundaries, and so, at longer crack lengths, the cracks 

aligned with the x-axis are favored, and it is these cracks which, under constant am- 

plitude loading, grow to failure. When subjected to periodic overload histories, cracks 

initiate and grow along the x-ais, but, once crack lengths reach 1-2mm, they often 

move onto the maximum tende plane which is inclined 52" clockwise from x-&S. 

Since the early cracking is oriented (or nearly so) along the x- and y- axes, then 

the stresses applied to the crack are as indicated in Figure 3.20. The cracks aligned 

with either the x-axis or shear planes are loaded in shear, and y-axîs cracks have a 

combination of both tension and torsion applied to them. 

3.2.3 In-Phase Q=1 Overload Tests 

Akin to section 3.2.2, the phasing of the the tension to torsion strain is maintained 

rigidly in this ratio at $=$ (Q=l). Example strain histories are given in Figure 3.21 

along with the the fatigue response of normalized SAE 1045 under 9=1 loading. As 

shown in the figure the peaks in both histories occur at the same t h e ,  and the peak 

positive strain level in the overload is equal to the peak positive strain in the small 
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Figure 3.21: Periodic Overload and constant amplitude fatigue responses of 
- normalized SAE 1045 for @ = ,=1 ($ - = 

%l 
2). 3 Cir- 

cled datapoint indicates special overload level (&,=O. 004, 
( ~ ~ ) ~ = 0 . 0 0 2 6 7 ,  (~~),=0.0009. (e~),=0.0006 and 77=200. 

cycles. The only difference between the histories employed in this and the previous 

section is the value of @. 

The fatigue response of this material to +=f loading shows a reduction of the 

constant amplitude 10' endurance limit from (~&),=0.0011 to a periodic overload 

endurance limit of (e$),=0.00057 - a reduction of one-half. 
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3.2.3.1 Crack Face Interaction in ik=l Overload Tests 

A large overload cycle ((&):),=0.00267, (~$),=0.004) was used as a check to deter- 

mine whether the regular overload cycle ((~~~),=0.0023, (~$),=0.0035) had maxi- 

mized the damage done by the srnaIl cycles. In Figure 3.21 the circled datapoint and 

adjacent datapoint share, excepting the overload amplitude, the same test conditions 

- (~~).=0.0006, (~$).=0.0009, and 1)=200. Since there is no significant difference in 

the equivalent lives of the tests it is assumed that the smaller overload amplitude was 

sufficient to produce crack face interference free crack growth. 

3.2.3.2 Proposed Crack Face Interaction Mechanisms under Q=1 Loading 

The observations with regard to cracking are almost identical to those presented in 

section 3.2.2.1 on XI?=$ Ioading. Cracking does occur on maximum shear planes, but 

it also occurs (as can be seen in Figure 3.22) dong the x- and y- axes. Just as 

discussed in section 3.2.2.1 the longitudinal cracks become dominant as a result of 

anisotropy. Since this is the case, the crack mode1 which applies is that pictured in 

Figure 3.20 and described in section 3.2.2.1. The cracking in specimens under both 

constant amplitude and periodic overload @=l histories is the same. After a period 

of growth along the x-axis to  50pm-2mm the crack tends to rotate onto the principal 

stress plane (which forms an angle of roughly 32' with the y-axis) . 

3-2.4 In-Phase 

As in tests with stress 

@=2 Overload Tests 

ratios of $ and 1 the phasing of tension and torsion strains is 

rnaintained at al1 times. In this case the strain ratio (11) is t .  Strain histories are 

given in Figure 3.23 along with the fatigue curve for nomdized SAE1045 steel for 

9=2 loading. 

One result that can be seen fiom the figure is that the 107 endurance limit is 

reduced one-half (fiom (~&),=0.0008 to (~$),=0.0004) by the overloads. 

As a check on the assumption that small cycle damage was maximized by the 

chosen overload, a test with a high overload level was performed. The standard over- 

load level at this strain ratio is (&),=0.003, (r$),=0.00225. The higher overload 
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Figure 3.22: Typical small crack growth under (!P = z=1) Ioading of nor- 
rnalized SAE1045 steel. 



Rule of Overloads 

e 
\ 

E 

5 1 0-3 Periodic Ove rioad 

Constant Amplitude 

1 O' 1 02 1 o3 1 0' 1 os 1 o6 1 O' 1 o8 
Equivalent Cycles to Failure (Nd 

Figure 3.23: Periodic overload and constant amplitude fatigue responses of 
normalized SAE 1045 for !P = -=2 ($ = * = J). Cir- 

a, c=v 
cled datapoint indicates special overload level (E, ) ,  =O -004, 
(e&),=0.003 with (~&),=0.001, (~~),),=0.00075, and q=50. 
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level selected was (E&) ,=O -004, ( E $ )  ,=O.003. This higher overload test (circled dat- 

apoint in Figure 3.23) was subjected to (~g),=0.001, (~;),=0.00075, and ~ = 5 0  - 

identical to the point adjacent to it on the fatigue curve. Although there is a small 

difference in life between it and the adjacent point, the elevated overload amplitude 

data point does not depart significantly from the curve, and it can be concluded that 

the standard overload level for these tests was sufEcient to maxïmïze the small cycle 

3.2.4.1 Proposed Crack Face Interaction Mechanisms under 9=2 Loading 

Cracking under 9=2 loading follows a pattern similar to that for previously discussed 

load ratios in that cracks fonn on maximum shear planes, but in this case cracks do 

not form along the x- and y- axes- Figure 3.24 demonstrates that the cracking occurs 

on planes close to the maximum shear planes. Once cracks grow to about 50pm in 

length, crack growth usually shifts onto maximum tensile (cl=) planes. 

Figure 3.25 shows examples of these cracks oriented on the and 022 planes. 

Calculations were made of the relative stresses on each plane, and the stress arrows in 

the figure are scaled appropriately. During the positive portion of the overload cycle, 

a crack oriented along plane is favored because it has a larger tensile stress across 

it when it is open than the crack on a 0 2 2  plane, and during the negative portion 

of the stress cycle it also receives a larger compressive overload. As a result it is 

anticipated that the crack aligned with the cl, plane will be favored, and crack angle 

data taken from fracture surfaces support this assertion. Since no lateral motion of 

the crack faces occurs, it is suggested that the predominant mechanism of crack face 

interaction is identical to that seen under uniaxial loading. Asperities are crushed 

dunng the compressive portion of the loading across the crack and the crack is left 

open after unloading fiom the tensile peak. 

Note that the asperities shown in Figure 3.26 show that little or no Iateral motion 

(or rubbing) of the fracture surface occurs under this loading - indicating that the 

cracks are oriented close to the principal stress axis. Also note that asperities appear 

to be crushed rather than smeared, suggesting that mode 1 loading is dominant rather 

than either mode II or III loading. 
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Figure 3.24: S m d  cracks developed under in-phase q=d loading. Specimen 
subjected to (e3,=0.004 and (~$),=0.003. 
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Figure 3.25: Crack behavior under in-phase @ = -=2 loading. 
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Figure 
50pm 

Aspenties crushed during in-phase XP = %=2 loading. Speci- 
men subjected to (&),=0.003, (~$),=0.00225, (~g),=0.0053, 
( ~ g ) ~ = 0 - 0 0 4 ,  q=5000 
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Figure 3.27: Cyclic stress-strain response of normalized SAE1045 steel to 
biaxial loading. Monotonic constant amplitude and penodic 
overload trend lines are also plotted 

3.2.5 Tension-Torsion Cyclic Stress-Strain Response 

The cyclic stress strain response of all of the tension-torsion tests, constant amplitude 

and periodic overload alike, are presented in Figure 3.27. These points are presented 

on von Mises effective stress - effective strain (i? - Z) coordinates. 

Also plotted in this figure are the trend lines for the uniaxial constant amplitude 

and overload stress-strain data, represented by the solid and dashed curved respec- 

tively. The b i k a l  data, for both overload and constant amplitude tests, fds into 
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a fairly narrow band. The uniaxial constant amplitude trend tends to fa11 near the 

bottom edge of the multiaxial band, and the uniaxial overload trend line lies outside 

the band. It c m  be seen that, with the exception of the uniaxial overload data, a 

single curve can be reasonably drawn for both the overload and constant amplitude 

tests in any given in-phase stress ratio. By extension, unlike the uniaxial dataset, no 

real distinction c m  be made between the biaxial constant amplitude and overloâd 

stress-strain data. However, the uniaxial constant amplitude trend line provides an 

adequate prediction of biaxial stress-strain behavior. 

3.3 B ending- Torsion Experiment s 

The results of the bending-torsion experiments are somewhat more difficult to analyze 

than those of the axial-torsion experiments because neither the notch strains nor the 

notch stresses are measured experimentally. 

3.3.1 Constant Amplitude Bending and Torsion Tests 

A baseline set of torsion-only tests were perfomed using the SAE bending-torsion fix- 

ture and the notched axle shaft. This test series, marked by solid squares, and the load 

history used are depicted in Figure 3.28. Also, a single fully reversed bending-only 

test was conducted at  a moment level of 2600Nm (notch root strain of approximately 

0.6%) had a life of 8500 cycles. 

3.3.2 B ending O verload Tests -and Equivalent Mult iaxial Dam- 
age 

The aim of the bending overload tests, as in the uniaxial and axial-torsion overload 

tests, was to obtain, if possible, test conditions in which fatigue cracks grow hee of 

crack face interference. This condition is expected to yield the shortest fatigue lives 

and represent the greatest possible damage for a given strain range. 

Strains due to a fully reversed bending overload cycle of 2600Nm which caused 

limited notch root plasticity (a notch root strain of approximately 0.6%) are represen- 

tative of those at  notch roots during large cycles in s e ~ c e  load histories. This cycle 
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Figure 3.28: Constant amplitude and periodic overload bending-torsion fa- 
tigue curves for normalized SAE1045 

results in the notch root stresses and strains depicted in Figure 3.29. On one surface 

a tensile inelastic notch root strain, which stretches open the crack, is foLlowed by a 

compressive inelastic strain which flattens crack face asperities and leaves a negative 

residual strain. In the notch there is a tensile residual stress in the material ahead 

of the crack. On the opposite surface the material is first strained inelastically in 

compression, flattening the crack face asperities, and then in tension leaving a posi- 

tive residual strain which sepaxates the faces of the crack, but a compressive residual 

stress in the material ahead of the crack. In both cases the asperities have been 
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flattened during the compressive portion of the cycle so that there will be less crack 

face interference. The initial interference should be l e s  for surface B in which the 

residual strain is positive and the crack face separation is greater than for surface A 

in which the residual strain is negative. However, as the crack propagates, in location 

A i t  grows into a tensile residual stress field which will tend to separate the crack 

faces and reduce crack face interference. On the other hand, in location B the crack 

will grow into a compressive residual stress field which will force the newly formed 

crack faces together and increase crack face interference. It is expected that in both 

locations, because the asperities have been crushed, crack face interference will be 

reduced and crack growth rates will be increased leading to shorter lives than for 

constant amplitude torsion tests. 

After the bending overload cycle was applied, the bending moment was held con- 

stant a t  zero while q constant amplitude torsional cycles (RT=-1) were applied. The 

value of was varied as in the uniaxial tests so that the damage fkom the overloads 

represented no more than 25% of the total damage. The bending overload test data 

presented in Figure 3.28 were treated in the same fashion as the uniaxial overload 

datapoints in Figure 3.2 - with the assumption that the per cycle damage contribu- 

tion of a bending (mode 1) overload in a torsion test was the same as in the constant 

amplitude bending test at the overload moment level. 

At the 10' cycle fatigue Iimit this reduction is one-half and is estimated to be 

one-third at  2 x 108 cycles. In the overload tests cracking occurred a t  both surfaces 

A and B (described above) at  al1 stress levels above 1500Nm. However, the cracks 

always started first a t  surface A, and the cracks in this location propagated faster 

throughout the entire fatigue Me. This observation can be explained by the residual 

stress-strain state in the notch following an overload. Using strain rosette histories 

taken from shaft notches, the notch residual stress-strain state was predicted using a 

muttiaxial plasticity model [43]. An average initial residual longitudinal tensile stress 

of 340MPa was found - this is close to the 0.2% offset cyclic yield stress of 379MPa 

for this material. 

A multiaxial Neuber model [74, 751 coupled with a multixüal plasticity model 

[76, 77, 431 was used to estimate the notch strains, and through these simulations it  
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was detemined that the 1500Nm torsional moment level marked the onset of cyclic 

torsional plasticity in the notch. CycIic plasticim has a tendency to relax residual 

stresses; and the greater the degree of cyclic plasticity, the greater the degree of 

relaxation. The experimental notch strain data support thiç anaiysis - those tests 

with strain gage readings below 1500Nm do not exhibit any change in the bending 

strain level following the overload while a test above 1500Nrn shows a slow continuous 

reduction in the mean bending strain following the overload. It is apparent that below 

1500Nm torque no reduction in residual bending stresses was found, and, as a result, 

no cracking of surface B took place. Undoubtedly, the sustained residual b e n h g  

stresses a t  torsional levels below 1500Nm helped reduce crack face interaction on 

surface A and aided crack growth. However, above 1500Nm torque, the residual 

bending stresses at surface B are sufficiently reduced by torsional plasticiw to aliow 

torsional cracking of surface B to proceed, and this must also have the effect of 

increasing crack face interaction somewhat on surface A. 

3.3.3 Cyclic Torsion Tests with a Static Bending Moment 

A series of constant amplitude torsion tests was run in which a constant static bending 

moment was applied to the shaft. The magnitude of the static bending moment was 

chosen to  give a slow, controlled ratcheting of the shaft in bending. The static bending 

moment had to be continuously increased as the torsional moment level was decreased. 

The reason for inducing this ratcheting was that, at lower bending moment levels, 

the tensile stress at the notch root induced by the bending moment was relaxed by 

the cyclic torsion. It  is this tensile stress that holds the crack open and prevents 

crack face interference. However, during ratcheting this relaxation is offset by the 

increase in stress due to the slowly increasing notch root strain. Below a 1500Nm 

t orsional moment level the actuat ors lacked sufficient force capacity t O cause sust ained 

ratcheting, and, as a result, no failures were obtained because the tensile stress in the 

notch was insuffcient to  keep the crack open. 

Because the bending moment was static and therefore did not add to specirnen 

cumulative damage the raw test lives were used. The results of these experimentç 
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Figure 3 -30: Constant amplitude, bending overload, and static bending 
bending-torsion fatigue c w e s  for normalized SAE1045. 

are given in Figure 3.30 with the tests with sustained ratcheting as open triangles, 

and the tests in which sustained ratcheting could not be obtained marked as open 

inverted triangles. In the regime in which sustained ratcheting was obtained the static 

bending results lie close to those for bending overloads. At the highest stress levels 

they even appear to be slightly more severe than the overload tests. At levels below a 

torsional moment of 1500Nm no failures occurred - all tests were stopped as runouts 

at 10' cycles. 

In tests in which ratcheting occurred, the crack faces are pulled apart thus lowering 
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crack face interaction. In Figure 3.30 tests in which bending overloads were applied 

yield sunilar lives to those in which a static bending moment was imposed. This 

similarity suggests that the overloads and static bending loads both reduce crack face 

interference to the same extent. Crack surface evidence &O supports this assertion. 

Surface A, which has a static t ende  stress resulting £rom a static bending moment 

showed the only visible cracking. Cracks were not detectable in surface B which 

was subjected to static compressive stresses. This behavior is expected since, under 

compressive loading, the crack faces are pushed together and, presumably, crack face 

interference is increased. 

In static bending tests below 1500Nm, the test equipment had insficient force 

capacity to keep the crack open, and the tests below this level all ran out to 10' 

cycles. Above 2250Nm only small bending moments were necessary to maintain slow 

sustained ratcheting. If the test equipment had larger force capacities, it is believed 

that the static bending curve would continue to match the overload cuve  below 

1500Nm. 

3.3.4 Bending Peak Hold Periodic Overload Tests 

These tests, which share characteristics of both the overload and the static bending 

tests, are also similar to those reported for tension-torsion tests in section 3.2.1.2. In 

these tests the peak bending moment was held constant at 2600Nm while the torsional 

cycles were applied, and then, once the torsional cycles had been applied the torsional 

moment was held at O while the bending moment was moved from 2600Nm down to 

-2600Nm and back. The histories applied during these experiments are depicted in 

Figure 3.31 along with the fatigue results- In these tests, as in the static bending 

moment tests, the specimen exhibiteci bending rat cheting during torsional cycling. 

~owever, the ratcheting strain was for the most part recovered during the bending 

overtoad cycle. This meant that, for the portion of the history during which the 

bending moment is held constant and while the torsional moment is cycled, it was 

unnecessq to reduce the positive bending moment level. 

At intermediate to lower torsional moment levels, the peak hold test results co- 

incide with those of the bending overload tests. At higher torsional moment levels 
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Figure 3.31: Constant amplitude, bending overload, and static bending 
bending-torsion fatigue cunres for normalized SAE1045. Cir- 
cled datapoint is one in which the value of i )  was too large. 

the peak hold tests have lives which are clearly shorter than either overload, static 

bending, or constant amplitude tests. This reduction in fatigue life at  high torsional 

moment levels is similar to that found in section 3.2.1.2. 

The circled datapoint in the figure indicates a test (Tm=2000Nm, 7=5000) in 

which insufficient overloads were applied to keep the crack growing at the higher 

rate. In this case 7 )  should have been 100 in order to maintain the overload damage 

contribution at 25%, and at q=5000 the overload damage contribution was far too 
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low (0.5%) to maintain crack interference fkee crack growth. Hence the datapoint has 
a longer life than the trend of the peak hold tests would indicate. It is presumed 

that crack face interference was eliminated ùnmediateIy following the overload but 

retumed during the prolonged torsional cycling and thus led to a longer life. 

The same mechanisms which are operative in the bending overload and static 

bending moment tests are believed to be operative in reducing crack face interaction 

in these tests. In this case the negative portion of the bending moment cycle results 

in a large compressive stress in the surface A of the shaft and this, in tum, results in 

cmshed asperities. hirther, the positive portion of the bending moment cycle (held 

during the torsional cycles) pulls the crack faces apart thereby reducing crack face 

interaction. This is further borne out when specimen cracking is considered. 

Surface A, as in the overload and static bending tests, always contained the crack 

which grew to failure. No visible cracks were detected in Surface B in any of the test 

specimens. This indicates that, whiie the static bending component of the history 

presumably reduces crack face interference and thereby accelerates crack growth ori 

Surface A, it increases crack face interference and retards the growth of cracks on 

surface B. 

3.3.5 Combined Bending-Torsion and Tension-Torsion Re- 
sults 

As mentioned in section 3.3.2 a multiaxial Neuber model [74, 751 and a multiaxial 

plasticity model [76,77,43] were used to estimate shear strain amplitudes in the notch 

for a11 of the bending-torsion tests mentioned so far. The notch strain estimates are 

combined with the tension-torsion results for 1=0 in Figure 3.32, and the data falls 

into a single band. At strains below (eg)Y),=O.OO1 where elastic behavior dominates 

and the Neuber correction to the bending-torsion data is small al1 curves fall into 

a narrow band. Above this level the bending-torsion data tends to fall above the 

tension-torsion data. There may be two reasons for this. The first is that the Neuber 

conversion is known to overestimate the strains, and the second is that the shaft data 

above (e~),=0.001 may not be fully crack face interference free - causing the data to 

shift to higher strains and longer lives, respectively. Of particular interest is the peak- 

hold data which, in both shafts and tubes, falls a t  shorter lives and forms a unique 

band itseIf at high strains. The static bending data closely follows the overload data. 
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Figure 3.32: Combined bending-torsion and tension-torsion data. 

Static Bendinq 
Shaft (Bending-Torsion) 

1  1 1 1 1 1 1 1 ~  1 1 1 1 1 1 1 1 1  1 1 1 1 1 1 1 1 1  1  1 1 1 1 1 1 1 1  1  11z1.111 1 1 1 1  11.. 

3.4 Unification of Fatigue Life Results 
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The purpose of this section is to detennine the degree to  which various multiaxial 

damage parameters uni& the various test results. 

3.4.1 Constant Amplitude Tests 

Because the cracking found in the constant amplitude tube tests was dominated by 

the cracks aligned with the 2-axis and, presumably, these cracks are not greatly 

influenced by tension Loading then it follows that the life of these tests would be 
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Figure 3.33: Constant amplitude curves for tension-torsion and bending- 
torsion tests plotted on the basis of applied shear strain am- 
plit ude ((cg),). 

controlled by the applied shear strain, (E,),. However, in order to use the shaft 

data it had to be first converted from nominal elastic stress to local stress-strain as 

discussed in the previous section. Figure 3.33 shows all of the constant amplitude 

data kom tube and shaft tests plotted against the applied shear strain (E , ) .  The 

figure clearly demonstrates that, in d regions except those points at the endurance 

lîmit , applied shear strain as a fatigue parameter reduces data for @=O, f , and 1 into 

a single characteristic curve. The data for @=2 f d s  on a separate but parallel line 



Role of Overloads 110 

below that of the other data. 

At the fatigue limit the @=O and ik=f data, including both tension-torsion and 

bending-torsion data fall into a single nmow band. The bending-torsion data fdl  

in the gap between the ninout and regular fatigue data, and, while I=1 data ini- 

tially follows the trend of the other data, it then departs from the trend at  the Q=O 

endurance and proceeds dong an extension of the trend cunre to a lower level. 

Also shown in the figure is the initiation angle observed for each stress ratio. The 

individual tests which differed from the rest in the stress ratio are also noted on the 

figure. The reason behind the commonnli@ in response to applied shear strain of load 

ratios @=O, $, and 1 is the fact that, as discussed in section 3.2, crack initiation and 

early growth for these ratios takes place on planes aligned with the x- and y- axes, 

and those cracks on the x-axis are favored and become dominant. Even though, for 

@=If2 and 1, there is an applied axial load which would reduce crack face interference 

for cracks on the y-axis, the x-axis aligned cracks, which are not influenced by axial 

loading, grew to failure. It is suggested that the material anisotropy mentioned earlier 

is responsible for this effect. 

A single failure a t  Q=1 lies below the *=O/+ endurance limit, and this failure did 

not initiate on the x-axis; its initiation was inclined relative to y-axis. Although more 

data is necessary in this region, it is presumed that this change in initiation m e  is 

responsible for the endurance limit shift in the @=1 data. 

The iE=2 data lies below al1 of the rest of the data in this figure, and this is 

presumably because the initiation plane is no longer aligned with either the x- or 

y- axes but now lies aligned with the maximum shear planes - oriented about 20" 

clockwise from these axes. The influence of the strains applied on the tension m i s  

was minimal, as was seen in Figure 3.33, since there was essentially no difference in 

the fatigue response between I = 0 ,  112 and 1 loading - for the sarne applied torsional 

strain the life is the same regardless of load ratio. This behavior is corroborated by 

the initiation observations. Under 3P=2 loading the influence of tension loading is 

seen in the fatigue response of the material - for the same applied torsional strain 

amplitude the @=2 life is shorter than the other stress ratios. The difference between 
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ik=2 and the other load ratios exïsts because, in this material, tension Ioading now 

contributes significantly to crack initiation and growth. 

Since the bulk of the life in @=2 and uniaxial (w) loading is spent initiating and 

growing a crack along planes of maximum shear these data are plotted in Figure 3.34 

against the maximum shear amplitude, (E&, while the rest of the data is plotted 

against the applied torsional shear strain amplitude (resolved shear strain on along the 

x-axis), (É,),. This graph demonstrates that, once the initiation plane is considered, 

the fatigue response of the material subjected to various stress ratios is quite similar. 

Figure 3.35 presents al1 of the data of Figure 3.34 in terms of maximum shear 

amplitude, (eI2)=- The adjustment for 1 = 2  and ca is relatively minor - increases of 

3% and 10% respectively. As can be seen, the ditferences between Figures 3.34 and 

3.35 are not great, and the latter figure is easier to employ for the purposes of life 

assessrnent . 

3.4.2 Unification of Overload Data 

3.4.2.1 Evaluation of Damage Criteria 

The mean stress corrections found in most damage criteria are corrections for the 

presence of closure/crack face interference. In the case of uniaxial loading the value 

of a mean stress corrected parameter typically increases with increasing tensile mean 

stress. If the value of the parameter is larger this implies that the life is shorter and 

hence the fatigue crack must be propagating faster. When an increasing tensile mean 

stress is applied to a growing crack, the actual stress range which reaches the crack tip 

increases because the crack opening stress increases less rapidly than the maximum 

stress. In other words Sm, - S, increases because Sm, increases more than S,. 

The increased effective stress range causes the crack to grow faster. The converse is 

true for lowering the mean stress - the crack growth rate reduces as the dosure stress 

decreases more slowly than the maximum stress. 

If crack face interference has been eliminated from these tests then no mean stress 

correction is necessary, and the fatigue life of a specimen is governed by the amplitude 
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Figure 3.35: Maximum shear (€4 plot of constant amplitude tension-torsion 
and bending-torsion tests. 

of deformation. Hence, for al1 of the damage criteria small cycle amplitudes are used 

in evaluating the data. 

The formulae used to generate the graphs in the following sections may be found 

in section 2.4.7. 

Uniaxial parmeters - normal stress/strain The parameter He curve for 

the normal stress amplitude (equation 2.60) and the normal strain amplitude (equa- 

tion 2.58), are presented in Figures 3.36 and 3.37, respectively. In each of the figures 
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presented in this section a uniaxial trend line, which is derived from the effective 

strain-life curve (presented in section 3.1.2), are provided along with bands indicat- 

ing a factor of two and a factor of five in life on each side of the uniaxid effective 

trend line. The uniaxial data are used as a baseline for cornparison for the rest of the 

multiaxial data. 

Of all of the parameters presented here normal stress (P, = Agn) does the poorest 

job of condensing the test data. Half of the multiaxial data does not fall within the 

5x bands, and the condensation is especially poor at the fatigue limit. At the fatigue 
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Figure 3.37: Normal strain, plots for tension-torsion and bending- 
torsion overload tests. 

limit the uniaxial and bending-torsion data have over factor of two vertical separation. 

The normal strain parameter (P, = Acn) does a reasonable job with alI of the 

data. Most of the mdtiaxial data falls well within the factor of 5 bands, and the 

vertical spread in the data at the fatigue limit is less than a factor of two. 

Shear-strain based parameters Parameters included in this group are maximum 

shear strain amplitude (presented in section 3.4.2.2), Brown and Miller's parameter 

[38], and the Fatemi-Socie-Kurath parameter [30, 421. 
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Figure 3.38: Brown and Miller [38] parameter-life plot for tension-torsion and 
bending-torsion overload tests. 

Brown and Miller's parameter (equation 2-62), when applied to the experimental 

data, results in the plot in Figure 3.38. This parameter provides a good condensation 

of the overload data. Almost all of the tension-torsion and uniaxial data points fa11 

within the 2x bands, and the 5x bands contain al1 of the rest of the tension-torsion 

data and most of the bending-torsion data. At the fatigue lunit the vertical spread 

in the data is much better than that in previous parameters, roughly f 20%. 
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Figure 3.39: Fatemi-SocieKurath [30, 421 parameter-life plot for tension- 
torsion and bending-torsion overioad tests. 

The parameter-life plot for the Fatemi-Socie-Kurath parameter (equation 2.64), 

where KF is taken to be 0.3, is presented in Figure 3.39. Under this parameter the 

data f d l  in much the sarne fashion as in Brown and Miller's parameter, except that 

this parameter was better at un@ing the endurance limit data, the vertical spread 

for this parameter was about &5%. 

Energy based parameters The parameters which fa11 under this label are the 

Smith-Watson-Topper parameter [37] and Chu's parameter [43]. 
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Figure 3.40: Smith-Watson-Topper [37] parameter-Me plot for tension- 
torsion and bending-torsion overload tests. 

Presented in Figure 3.40 is a plot created using the Smith-Watson-Topper pa- 

rameter (equation 2-70). In this case, as mentioned in section 3.4.2.1, the maximum 

stress term was changed to a stress amplitude. The distribution of the data points 

is poor for this parameter. Onethird of the data lies outside of the 5x bands, and it 

also does a poor job of consolidating the fatigue limit data. The vertical spread in 

the data at the fatigue limit is almost a factor four, and each experimental dataset 

exhibits a different endurance b i t -  
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Figure 3.41: Parameter-life plot for Chu's [43] parameter for tension-torsion 
and bending-torsion overload tests. 

Chu's parameter (equation 2.72) gives a reasonably good correlation of the data, 

as can be seen in Figure 3.41. This parameter, when srnall cycle amplitudes are 

substituted for the maximum stress components is similar to that proposed by Glinka, 

et al. [NI. Again, most of the tension-torsion and uniaxial test data fa11 within the 

2x band, and the 5x band contains most of the the rest of data. About half of the 

bending-torsion data, however, f d s  outside the 5x bands, especiaIly the two data 

point a t  the fatigue limit. The vertical spread at the fatigue limit is I30%. 
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3.4-2.2 Initiation Plane Based Data Reduction 

In section 3.4.1 it was demonstrated that plotting constant amplitude fatigue lives 

against the resolved shear strain on the initiation plane provided a good consolidation 

of the data. PIotting the data based on maximum shear strain amplitude also provided 

a suitable data reduction. Since there were no large merences in observed initiation 

behavior between constant amplitude and overload datasets these same techniques 

were used to generate Figure 3.42. In addition, a maximum shear strain plot is 

presented in Figure 3.43 (equation 2.68). 

In viewing the graphs, it is apparent that the degree of success achieved with 

the constant amplitude data was not duplicated here. In both figures about one-half 

of the data f a k  within the 2x bands, and most of the data is contained by the 5x 

bands. In par t i cda  tests conducted under @=O fall outside of the 5x bands near the 

endurance limit. However, the maximum shear strain parameter does a reasonable 

job of reducing the endurance iirnit data, the vertical separation in the data is roughly 

k15%. 

For al1 of the parameters the bending-torsion data points do not fit the trend of the 

rest of the data well at low and intermediate lifetirnes, and this behavior is presumed 

to be either a result of inaccuracies inherent in employing a multiaxid Neuber analysis 

to generate local notch stress-strain data and/or a result of not having achieved fully 

crack face interference free crack growth in these tests. At Iower strain levels where 

the the Neuber correction is srnaII or nonexistent and where crack face interference 

is more easily removed by overloads, the bending-torsion data do follow the general 

overload trend. At the fatigue limit in many parameter plots the bending-torsion 

d.ata falls above that of other tests. 

The parameter-life diagram which demonstrates the least scatter is the Fatemi- 

Socie-Kurath parameter. However, the solution for this parameter is complex and the 

results from Brown and Miller's parameter, shear strain amplitude on the initiation 

plane, and maximum shear parameter provide very nearly as good of a consolidation of 

the data. As a result it is suggested that the maximum shear parameter be used since 

it is the simplest , and easily obtained uniaxial data may be used to make predictions 

with it. 
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Figure 3 -42: S hear strain plot of tension-torsion and bending-torsion over- 
load tests (based on initiation plane). 
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The application of periodic overloads reduces crack face interference and shortens 

fatigue life for all strain ratios. On average the reduction in the lo7 cycle endurance 

limit for overloads tests is close to one-half - regardless of the loading condition. 

Uniaxial overload tests yielded a 10' cycle endurance limit reduction to a little 

under one-half of the constant amplitude fatigue limit, and this further dropped to 

215 at 108 cycles. For those tests which were subjected to in-phase @=O loading 

1 O' 1 oz 1 o3 I o4 1 o5 I o6 1 o7 1 O* I o9 
Equivalent Cycles to FaiIure 



Role of Overloads 

Y=O, Bending-Torsion 
O Y=O 

Y=O, O mean axial 
Y=O, peak hold axial 

Figure 3.43: Maximum shear strain amplitude (eI2) c w e s  for tension-torsion 
and bending-torsion overload tests. 
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the endurance limit reduction was consistent between in-phase torsion overload and 

tension overload with zero mean tests at a reduction of a Little under half of the @=O 

constant amplitude endurance limit. A reduction to 318 of the constant amplitude 

endurance h i t  was obtained for the peak-hold tension overload tests. In the bending- 

torsion tests there was a similar reduction - a factor of one-half at 10' cycles was 

obtained for both overload and peak-hold tests, which further reduced to 318 at 10' 

cycles. Findy, in stress ratios of @=$, 1, and 2 periodic overload tests exhibited a 

107 cycle endurance limit which was one-half of constant amplitude endurance limit. 

0 Y=2 

v Y== (uniaxial) Y== (uniaxial) effective curve 
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Cracking behavior for the various stress ratios was also quite similar. Cracks 

formed on maximum shear planes and, with the exception of q = 2 ,  also along longi- 

tudinal and circumferential directions. Because of the longitudinal banding of pearlite 

and ferrite grains in the microstructure, the longitudinal cracks propagated prefer- 

entially through ferrite rich regions to becorne failure cracks. Under @=2 loading 

shear cracks înitiated and grew only on planes of maximum shear strain amplitude. 

Cracks subjected to I = 0  loading with tension overloads were aIso an exception in 

that, instead of longitudinal cracks, circumferential cracks grew to failure. 

However, once cracks had grown to roughly Imm in length growth tended to move 

ont0 planes of maximum tensile stress, for stress ratios @=1 and 2. However, some 

tensile growth was observed for all stress ratios a t  the lowest strain amplitudes. This 

behavior is similar to that described in [61]. Fash, however, attnbuted the tendency 

to initiate and gow in the longitudinal direction to the presence of stringers in his 

material- 

Although a sliding motion is the most common crack face motion in these tests, 

the crack face interaction rnechanisms which are believed to be in operation are fairly 

simple. Under in-phase @=O and @=il and 1 where longitudinal crack initiation is 

dominant, overloads remove asperities by simply pushing the asperities across one 

another until they are smeared and show less resistance to crack movement. Under 

*=O with axial overloads and 4=2 loading the overloads perform the same function 

by crushing the asperities in the same fashion as they are crushed under uniaxial 

loading. Fracture surfaces which had q e r i t i e s  with srnear marks consistent with 

such processes were obsewed in each case. 

The parameter which best reduces the constant amplitude and overload data from 

all of the tests for design purposed is the Fatemi-Socie-Kurath parameter. However, 

the maximum shear strain amplitude parameter is recommended because it provided 

nearly as good a data consolidation and has a simpler implementation. 

Finally, the constant amplitude stress strain curve, when viewed with both con- 

stant amplitude and overload biaxial s tresstrain data, provides a reasonable approx- 

imation to the response of the material to the various stress ratios. 



Chapter 4 

Crack Growth and Crack Growth 
Modelling 

The observations made in Chapter 3 regarding cracking behavior are extended in 

this chapter to include the observation of cracks at longer crack lengths. Crack face 

interference-free crack growth c w e s  are obtained for mode 1 and mode II crack 

growt h. 

The crack growth c w e s  and observations of cracking are then combined with two 

models which predict changes in crack growth behavior. The models used were based 

on crack area increment and strain energy release rate criteria. Both of these models 

underpredict the shear crack length at which crack growth mode changes, but they 

do predict the general trends observed in the data in terms of changes in crack growth 

mode as a function of strain amplitude and load ratio. 

Several different crack growth predictions were made. These included baseLine 

predictions wherein the strain concentration profile [50] (described in section 1.2.2.1), 

is detennined separately for each load ratio. Predictions were then made using the 

crack area increment and strain energy release rate criteria. First, the strain con- 

centration profiles for shear and tensile crack growth were independently determined. 

They were then placed into the area and energy models, and these models were used 

to predict strain life cuves for all of the stress ratios. The area and energy models 

gave good predictions of the experimental lïves for a l i  of the stress ratios, but the 

best predictions were provided by the baseline predictions. 
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4.1 CrackGrowthMeasurementsandCrackMode 
Observations 

In this section mode 1 and mode II crack growth measurements are presented as are 

observations made of specimen cracking behavior during strain-life experiments. 

4.1.1 Mode 1 Crack Growth Experiments 

Four single edge notched uniaxial crack growth specimens (see Figure 2.9) were used 

to produce the effective AK versus crack growth rate curve shown in Figure 4.1. 

The geometry factor used to calculate K for this specimen is that for a single edge 

cracked panel 1921 and is given in more detail in Appendix B, section B.l.l. The 

tests were conducted as discussed in section 2.2.4. In order to  ensure fully open crack 

growth, observations of the crack tip were made to determine if the crack was open 

throughout the loading cycle. A check was made for each data point. This technique 

has been used in the past [86, 511 to determine whether the crack was growing under 

fully open conditions. 

Data from four different specimens were used to constmct Figure 4.1. For each 

specimen shown in the figure, the scatter was about f 20% in crack growth rate. How- 

ever, growth rates varied between specimens by a factor of 2. More scatter (up to an 

order of magnitude) is found in the near-threshold region where the local microstruc- 

ture at the crack tip can influence the growth rate, and a lower scatter (a factor of 2) 

is encountered in the Paris-law region where larger crack growth increments reduce 

the influence of the local microstructure. 

AS-received 1045 steel is similar to the normalized 1045 steel used in this study 

and researchers have recently obtained both long [84] and short [4] crack growth data 

for this material. These results are combined with data for the present nomalized 

1045 steel in Figure 4.2. All of the data, including short crack data, faIl into a single 

band, and the trend line depicted in this figure was later used as the mode 1 crack 

growth curve during modeiling. 
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Figure 4.1: Effective crack growth curve for normalized 1045 steel. 

4.1.2 Mode II Crack Growth Experirnents 

Long crack experiments were performed on the tubular specimens and, since the long 

cracks were aiso through cracks, the crack growth data extracted fiom the experi- 

ments was for growth under mode II loading. This mode II long crack growth data 

was obtained from two notched tube specimens (Figure 2.24) and are presented in 
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@%O Normalized 1045 

V Short Crack [ I l ]  
0 Long Crack [12] 

Figure 4.2: Effective crack growth curve for normalized 1045 and for as- 
received 1045 for short [4] and long cracks [84]. 

Figure 4.3. The geometry factor used to derive the stress intensity values was taken 

from reference [93], and is presented in Appendix B, section B.2.1. The tests were 

conducted as described in section 2.3.2.2, 

Identifying crack face interference-free crack growth behavior was more compli- 
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Figure 4.3: Mode II effective crack growth curve for normalized 1045 steel. 
Effective crack growth data for small cracks in as-received 1045 
steel (from [4]). 
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and i), the number of small cycles between overload applications, that caused growth 

dunng the smaller cycles to take place under fully interference-free conditions was 

determined in the following manner. For a given overload level and 7, small cycle 

growth rates were recorded, and a second test was run with the same smal1 cycle size 

and 1). but with a much higher overload amplitude level. If the second small cycle 

crack growth rate was the same as the first, the fxrst overload level was presumed to 

have resuited in crack face interference-free crack growth for this small cycle ampli- 

tude. It is also assumed that other lower small cycle amplitudes would also be crack 

face interference-free for the fùst overload level and q. As the small cycle size de- 

creased, the number ~f small cycles between overloads (T)  was periodicdy increased. 

At each increase in 7 ,  an extra crack length measurement was made a t  q/2. If the 

crack growth extension was the same for the first and second halves of the small cycle 

block then the cycle was assumed to still be crack face interference-free for that i). 

Locating the crack tip in these tests was more difficult than in the mode I tests. 

Although a mode II crack is clearly visible typically to within 50pm of the tip (largely 

due to fretting debris), beyond this point the crack path and especially the crack tip 

become exceeduigly dScu l t  to  identify. In mode I tests the crack tip is obvious since 

the crack visibly opens al1 the way to the tip at  the peak tension level. The pnmary 

method of locating a mode II crack tip was through observation of the sliding crack 

faces along the crack path and the deformation field around the crack tip. In addition 

on the specimen surface there are dark areas of intense local defonnation into which 

the crack occasionally grows , making precise observations difEicult. Finally, many 

measurements were discarded when the crack bifurcated. In this case the crack was 

grown away from the bifurcation and crack growth measurements were started anew. 

These problems were exacerbated near the threshold (below about 4 M P a m  because 

the deformation field, and hence the crack tip, became less distinct. It is estimated 

that the growth rate scatter in the Paris region is roughly one order of magnitude 

and in the threshold region (below 4 M P a m ,  it is up to two orders of inagnitude. 

Presented together with the mode II data for normalized 1045 steel in Figure 4.3 is 

mode III small crack data from Varvani-Farahani [4] for as-received 1045 steel. These 

data and the normalized 1045 steel data fa11 into the same scatter band. The trend 
line drawn on Figure 4.3 is the curve used for predictions of mode II and mode III 
crack growth in following sections. 
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Figure 4.4: Definition of angles P and 4, and and examples of crack length 
projection onto principle stress plane. 

4.1.3 Crack Growth Mode Observations 

As previously described in section 3.2, the planes of both crack initiation and sub- 

sequent growth were observed and recorded. These observations are summarized in 

Table 4.1. The crack initiation planes for q=0, 1/2 and 1 were found to be aligned 

with the longitudinal (z-axis as defined previously in Figure 2.26), and the angles 

f l  and q5 presented in the table are defined in Figure 4.4. However, @=2 loading 

was an exception in that the initiation plane was close to the maximum shear plane. 

No observations were made for uniaxial loading, but observations of uniaxial crack 

growth from other work on 1045 steel [87] have been placed in the table. At longer 

crack lengths, cracks were frequently observed to grow on planes of m h u m  tensile 

strain. Both the angle the initiation plane makes with the x-axis, ,û, and the angle 

the initiation plane makes with the tende  cracking plane, 4, are given in the table. 

There was three different types of cracking behavior observed in the tests. The 

first type of cracking was temed shear dominated (SD) cracking, and specimens 

which exhibited this behavior had a crack which initiated and grew in shear until the 

crack spanned the entire gage length of the specimen. The second type of behavior 
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Table 4.1: Initiation and propagation angles (with respect to the x-axis) for 
normalized 1045 - 

obsemed was termed extended shear (ES) cracking in which a crack initiated and grew 

anywhere in shear to between a fiaction of millimeter and several millimeters in length, 

after which crack growth switched to maximum tende  planes. This distance the shear 

crack grows before the transition to tende  cracking is termed the initial shear crack 

length (ISCL). In several tests a crack initiated and grew a very short distance in 

shear before tensile cracking began; this behavior was termed shear initiated (SI) 

cracking. 

Table 4.2 presents ISCL observations made of Q=0 specimens. Also given in this 

table are predictions of ISCL, but these are discussed later. Specirnens subjected 

to intermediate and high torsional strain levels demonstrated SD behavior, and this 

is indicated in the table by an entry indicating the specimen gage length, c,r. Two 

specirnens were tested at a strain level of 0.000125, as indicated by the "2@" in the 

table. At strain levels below 0.00125, ES behavior was observed. An entry with a "-" 

indicates that no specimens were tested at this strain amplitude. SI behavior was not 

observed in tests conducted at this load ratio. 

Observations made for specimens subjected to @=1/2 loading can be found in 

Table 4.3, and these observations are similar to those for torsion. This table clearly 

shows the stochastic nature of the experimental cracking - there is no definite demar- 

cation between one type of behavior and another, hence in the descriptions of cracking 

behavior overlapping bands are employed. At larger strain amplitudes (roughly above 

O.OOl4), SD behavior dominated, and for strain amplitudes which ranged from 0.0018 

down to 0.0009 ES behavior was prevalent. At a strain amplitude of 0.0007 the ody 
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Table 4.2: Observed and predicted initial shear crack lengths (ISCL) for I = 0  
loading - 

kg)= O bserved c Predicted (area) 
(mm/=) ( ~ m )  ( ~ m )  
0-0007 450 80.4 
0.0008 - 153.0 
0.0009 240 Cs[ 
0-0011 - =gr 

0.0013 2@cgi Cg[ 

0.0014 C91 cd 
0.0018 Cg1 C91 

0-0020 Cs1 C9l 

0.0030 C d  Cgl 

2cgl = 30mm 

Predict ed (energy ) 
( p m )  
81-9 
106.4 
118.1 
180.4 

=gr 

Cg1 

Cg1 

Cg1 

Table 4.3: Observed and predicted initiai shear crack lengths (ISCL) for Q=f 
loading. 

Observed c Predicted (area) Predicted (energy ) 
(~4) 
68-4 
80.3 
82.0 - 
85.2 
94.6 
132.0 

Cg1 

Cg1 

Cg1 

instance of SI behavior was observed for this stress ratio (as indicated by ''<50pmn). 

The designatbn "<50pmn indicates that, although a shear crack was visible at the 

initiation site, the size of the crack was at or slightly less than the resolution of the 
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technique used to determine the crack size, 50pm. 

Table 4-4 contains the observations made for the ik=l load ratio- In this case, 

SI behavior was dominant for strain amplitudes up to 0.001. ES behavior existed 

between strain amplitudes of roughly 0.001 and 0.0025 and SD behavior was only 

observed at  strain amplitudes above 0.0018. 

Table 4.4: Observed and predicted initial shear crack lengths (ISCL) for Q=1 
loading. 

@,)O Observed c Predicted (area) Predicted (energy) 
(mm/mm) ( P l  (P-4 (m) 
0-0006 50 50* 50* 
0.00065 - 50.1 50-02 
0-0007 c50  53.5 51.5 
0.0009 2@<50 84.0 62.6 
0.0011 - Cd 71.5 
0.0012 100 C9t 74.6 
0.0018 cd Cd 112.2 
0-0025 2500 cil 163-9z 
0-003 z - 

cd 
2 9  = 30mm, ' c ,  = 50pm, fout-of-bounds prediction 

The last table, Table 4.5, contains the observations from specimens subjected to 

@=2 loading. SI behavior was dominant for strain amplitudes up to about 0.00075. 

At and above this level ES behavior was observed, and SD behavior wâs not observed 

at all. 

Two distinct trends are observable in the data presented in Tables 4.2-4.5. The 

first trend is that, as the strain amplitude is increased, the initial shear crack length 

increases and the behavior moves from SI to ES to SD. The second trend is that, as 

Q is increased fkom O to 2, the initial shear crack lengths (ISCL) generdy shortened 

and SI and ES behavior became more dominant. 

What is not documented in the tables is that, while they initially followed ES 
behavior, cracks in severd specimens at @=Il2 and 1 oscillated between shear and 

tensile cracking, while at Q=O and 2 cracks tended to stay in the same mode to 

failure. 
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Table 4.5: Observed and predicted initial shear crack lengths (ISCL) for @=2 
loading. 

O bserved c Predict ed (area) Predicted (energy) 
(P -4  (P-4 ( ~ 4  
c 5 0  5 0 * ~  50*~ 

0.00045 <50 50* 50* 
0.00049 - 50-2 50.1 
0.00056 €50 59.9 56.1 
0.00075 700,<50 78.1 64.3 
0.001 - Cg1 76 -4 
0.0011 100 C91 82.1 
0.0015 200 Cd 96.8 

2cgl = 30mm, *c, = 50pm, t n ~ n - ~ r o ~ a g a t h g  crack 

4.2 Predictions of Cracking Behavior 

Using two pre-existing criteria for selecting crack growth directions, two models were 

developed to predict the initial shear crack length. The crack angles listed in Table 4.1 

were used to define the allowable cracking planes in the models, and the models 

assume an initial shear crack and use a criterion to determine whether a crack is 

likely to continue growing in shear or to switch to growth on tensile planes. The 

ISCL is defined as the length at which the switch takes place. Predictions, given in 

the following two sections, are made for semi-elliptical cracks on the exterior surface 

of the tubes and for through cracks in tubes. The purpose of the former prediction 

is to model the ISCL, and the purpose of the latter is to model frequent switching 

obsemed at longer crack lengths between shear and tensile crack growth under 9=1/2 

*and 1 loading. 

4.2.1 Crack Area Incrernent Criterion 

This criterion is based on observations made by Hourlier and Pineau [20] and is 

further supported by work in reference [57]. Hourlier and Pineau stated that a crack 

will grow in the direction for which the crack growth rate is the greatest. 
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Figure 4.5: Definition of terms for a semi-elliptical crack. 

However, since the crack front in this mode1 is eUiptical and the increment in 

each direction is not the same, the criterion was changed £kom crack length increment 

per cycle to crack area increment per cycle. In other words, the criterion as used in 

this thesis is restated as follows; the crack will grow in the direction in which the 

increment in crack growth area is geatest. 

Using the terms defined in Figure 4.5, the crack area increment in a given direction 

may be obtained from the equation for the area of an ellipse (rat) and is given by 

For the purposes of presentation (and prograrnming) the ratio of the tensile to the 

shear area increment, c, is defined as 

where the subscript "t" refers to the tensile (or mode 1) growth increment and the 

subscript "s" denotes the shear crack increment. The ratio, E,  is evaluated over a 

series of shear crack lengths, and at  each increment the shear crack length is projected 

onto the t ende  crack plane and an equivalent surface crack length, Q, is calculated 

as in Figure 4.4. The new surface crack length is calculated by 
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Since the cracks grow straight into the surface, the value of crack depth, a. does 

not change when projected as shown in Figure 4.4. These crack lengths are used to 

calculate the stress intensities, which are in tum used to obtain the growth rates to 

calculate J .  

Using this criterion a value of < which is less than unity indicates that a crack will 

continue growing in shear while a value of E which exceeds unity indicates that the 

crack wil  switch into t e n d e  growth. 

The results of crack transition predictions made using this model c m  be found in 

Tables 4.2 through 4.5 labelled as "area." These results will be discwsed after the 

following model has been introduced. 

4.2.2 The Strain-Energy Release Rate Criterion 

Another theory which has been used to predict crack growth transitions is supported 

by several researchers [59, 60, 471. It proposes that a crack will grow in the direction 

of the maximum strain energy release rate. 

In general terms, the strain energy release rate rnay be expressed as 

Substituting a strain intensity factor 

gives 

[45, 461 in place of the stress intensity factor 

This may be expressed as  the energy released for a given crack increment, 6a, as 

where F is the crack geometry factor. Under mode I loading F can be taken as F; 

from Irwin's solution [55] for an elliptical edge crack. 

Previous multiaxïal studies [47, 52, 41 found that surface (edge) cracks in tubes 

are elliptical (although the ellipticity changes throughout the test from nearly zero to 
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nearly one). Thus, for a serni-elliptical crack with the line of shear directed along the 

major axis, the mode III incremental strain energy release rate cari be expressed as 

where E is the elastic modulus, G is the shear modulus, v is Poisson's ratio, and Fe are 

the elliptical crack geometry factors found in Appendix B. The mode II incrernental 

strain energy release rate is 

where k is the crack eccentricity, 9, and 0 is the crack parametric angle. Figure 4.5 

shows how these terms are defined for an elliptical crack. 

The strain energy release rate incrernent for a serni-elliptical crack sub jected to 

shear can be integrated across the entire crack fiont to yield the energy released per 

cycle for the whole crack, 

For a crack under mode 1 (or tende) loading, the energy released is 

The ratio of the energies, defined as 

can then be used to determine when the transition hom shear growth to normal 

growth occurs. Once x exceeds unity, the crack growth is assumed to switch korn the 

shear growth plane onto the maximum principal (normal) strain plane. 

Calculation of x is performed in the same fashion as c. The results of crack 

transition predictions made using this mode1 can be found in Tables 4.2 through 4.5. 
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4.2.3 Discussion of Crack Transition Predictions for a Semi- 
Elliptical Crack 

As can be seen from Table 4.2, the lP=0 experiments demonstrate extensive shear 

cracking (ES) behavior for strains up to and including (e~),=0.0009; above this level 

the experiments demonstrated shear dominated (SD) cracking behavior. The crack 

area increment (area) criterion places the change from ES to SD behavior just below 

(~;)~=0.0009, whereas the strain energy release (energy) criterion puts it just above 

( ~ ~ ) ~ = 0 . 0 0 1 1 -  While the energy criterion successfùlly predicted the ES-SD behavior 

change and the area criterion underpredicted it in this case, the stochastic nature of 

specimen cracking must be considered - no £km conclusions may be drawn fiom the 

small amount of data avairable for this or other strain ratios. 

The actual initial shear crack lengths (ISCL7s) observed for 9=0 are much longer 

than the predictions made with either criterion. Both criteria underpredicted the 

ISCL at (~2),=0.0007 by a factor of 5, and at (~&)~=0.0009 the ISCL was only 

predicted by the energy model, and it underpredicted the length by a factor of 2. 

Table 4.3 contains the observations and predictions for !P=1/2 loading. The ex- 

perimental data point a t  (~;)~=0.0007 demonstrated shear initiated (SI) behavior, 

but neither criterion predicted this behavior for Q=1/2 loading. In using the pre- 

diction models, the models SI behavior is defined when the crack switches to tensile 

growth before there is any significant surface crack growth over and above its initial 

value (c = c,). This predicted behavior, when it occurs (Tables 4.4 and 4.5), is indi- 

cated by an asterisk (*). The change in the experimental data between ES and SD 

behavior was set at  approximately 0.0014, and the predictions for this change were 

(~$)~=0.00092 and 0-00167 for the area and energy criteria, respectively. The area 

criterion tends to underpredict the ES-SD behavior change and the energy tends to 

overpredict it . 

In the range of strain amplitudes where the experirnental ES regime overlaps with 

those of the models, the ISCL's predicted by the modeis are, again, much less than the 

observed lengths - the differences range from a factor of 2 to an order of magnitude. 
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The results for I=1 are presented in Table 4.4. and the change between SI and 

ES behavior occurs for the experimental data at roughly (~~),=0.001.  Both models 

underpredict the the SI-ES behavior change and they both predict it at the same 

strain amplitude - (~q),=0.00065. In the experimental data the change between ES 

and SD behavior lies approximately the range of (~~),=0.0015 to 0.0025, and the 

area criterion sets the ES-SD behavior change at 0.0011 and the energy critenon sets 

it at 0.003. The ISCL's predicted by the energy criterion for this load ratio are again 

less than the observed lengths, but for (c3.=0.0012 the prediction is within 30% of 

the observed value. The area criterion predicted SD behavior for al1 of the specimens 

which exhibited ES behavior- 

Finally, the results for @=2 are presented in Table 4.5. Rom the experimental 

evidence the SIES behavior change can be set a t  (~$).=0.00075, while an ES-SD 

behavior change is not observed - ES behavior dominates. Both models predict the 

SI-ES behavior change to be a t  (e2),=0.000485 - this is roughly 2/3 of the  observed 

value. The area criterion sets the ES-SD behavior change at (~~),=0.001 while 

the energy criterion predicts no transition into SD behavior for the strain amplitudes 

listed in the table. The ISCL's predicted by both models are substantially shorter than 

the experimental ISCL, and the differences between the experimental and predicted 

ISCL's are sixnïlar to those found for the other load ratios. 

No predictions are given for uniaxial loading (1l' = m) since no experimental 

observations were made- 

The trend of the predictions follows the trend of the experimental observations. 

At low strain levels in the ES region the transition length is fairly short, and, as the 

strain amplitude increases, increased initial shear crack lengths (ISCL's) are predicted 

until shear cracks are predicted to continue until they span the entire gage length. 

However, both models substantially underpredict the real transition length. 

The area criterion underpredicts the strain amplitudes a t  which the change be- 

tween ES and SD behavior occurs and the energy criterion overpredicts this strain 

amplitude. However, both criteria underpredict the strain amplitude at which the 

change between SI and ES behavior occurs. 
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Crack Transition Predictions for Through Cracks 

The same techniques used in the preceding sections were applied to through cracks 

in tubes to see if similar predictions might be made for longer length cracks. In 

these models the through-crack geornetry factors, Fi from Appendix B, were used to 

cdculate x and S. In the models shear crack length, c, is incremented from 30pm to 

1 5 m ,  and x is calcdated a t  each increment. Through crack surface crack lengths of 

less than the tube waLl thickness are unlikely because the surface length is normally 

greater than 2.5mm (C 5 1) once the crack penetrates the inner diameter of the tube. 

The crack projection takes place as pictured in Figure 4.4, but with a through crack 

rather than a semi-elliptical one. In a fashion similar to that discussed in section 4.2, 

the equivalent crack length is projected onto the principal stress plane, and that 

crack length is used to calculate the energy released by cracking on that plane. The 

energy to continue cracking in a shear mode is dso caiculated The former is divided 

by the latter to yield x (and through a similar method E ) ,  and the results of these 

calculations are presented in Figures 4.6 and 4.7. 

In each figure stress ratios of O, 112, 1 and 2 are shown, and within each stress 

ratio either E or x calculations are provided for a high, an intermediate, and a fatigue 

limit strain. Also marked on each graph is the tube wall thickness designated by t 

(a rough indication of the minimum through-crack length), the region where tensile 

cracking is predicted (< > 1 or x > 1) and where continued shear growth is expected 

(c < 1 or x < 1). Al1 simulations were stopped when Km, exceeded Kc. 

The models predict that, regardless of strain amplitude, all shear cracks will even- 

tually switch to cracking on tensile planes, but this change was not always observed 

experimentally, especially for @=O loading. Figures 4.6a and 4.7a indicate that this 

will happen under 9=0 loading. An observation like this was made only during the 

mode II crack growth tests (@=O) it was observed that the maximum shear crack 

length was approximately 7mm before the crack switched permanently to tensile 

growth. The two specimens which switched to tensile growth in this load ratio did so 

before the elliptical fatigue crack had reached the inner wall of the tube and become a 

through crack. The rest of the specimens had cracks which grew in shear until failure. 
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Figure 4.6: Shear crack to tensile crack transition predictions for the area 
mode1 ( E )  for (a) @ = %=O, (b) @=$, (c)  !P=l and (d)Q=2. 
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Figure 4.7: Shea. crack to tensile crack transition predictions for the energy 
mode1 (x) for (a) a =  %=O, (b) !P=& (c) 8=1 and d)l=2. 

c=v 
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For the other stress ratio (Figures 4.6b-d) the results are similar to those reported 

for &=O. However, as the stress ratio increases to *=O, 1/2, 1, and eventually 

to 2, each higher load ratio exhibits higher minimum values of E. This trend in 6 
implies that tensile cracking becomes dominant as the load ratio increases, and this 

observation is supported by experimental observations - as the load ratio increased 

larger amounts of tensile crack growth were observed in the specimens. Over one- 

half of the @=1/2 specimens exhibited some tensile crack growth; all but one of the 

Q=1 specimens exhibited a significant amount of tensile cracking (most also exhibited 

significant sections of shear crack growth); and at Q=2 aU of the specimens had a 

significant arnount of tensile cracking with very little shear cracking observed. 

The trends predicted by the energy model (x) are similar to those of the area 

model (c). However, for a given load ratio the energy model predicts a change to 

tensile crack growth before the area model will predict it. This is evident for \k=2 

loading where the X-diagram (Figure 4.7d) indicates only tende growth while the 

<-diagram (Figure 4.6d) indicates that some shear growth will occur. However. the 

results of predictions for Q=O loading are the same for the two models. 

Another set of predictions were made using the same criteria to determine whether 

a tensile crack would change back into a shear crack, as observed in specimens sub- 

jected to Q=1/2 and 1 loading. Smooth tubular specimens subjected to these load 

ratios initially exhibited ES behavior, but subsequent cracking oscillated back and 

forth between tensile and shear planes. The model used for this prediction includes 

the same crack projection technique described in section 4.2.1 and Figure 4.4. The 

predictions are shown in Figures 4.8 and 4.9, where the ordinates are plotted as 1/c 

and 1 / ~ ,  respectively, so that, if a shear crack is favored, it appears above the abscissa. 

The results of predictions are almost the same for the area and energy models. 

Only for Q=O is there a predicted retum to shear crack growth, but in o d y  one 

specimen did the tensile crack return to shear cracking (after about 5mm of tensile 

cracking). The return to shear cracking after tensile cracking was commonly observed 

under 4=1/2 and 1, but neither model predicted it for these load ratios. The models 

were accurate in predicting no return to shear crack growth for P=2 loading. 
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Figure Tensile crack to shear crack transition prediction for 
at Ae,=0.0007 under 9 = %=O, ?, 1 and 2. 

a=, 

for tests 

Figure 4.9: Tensile crack to shear crack transition prediction for E for tests 
at Aeq=0.0007 under Q=d, $, 1 and 2. 
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4.3 Crack Growth Life Predictions 

Crack growth based life predictions were made to determine whether crack growth 

data and a strain based crack growth model would accurately predict fatigue lives 

for crack face interference-free crack growth. A series of baseline predictions for each 

stress ratio are first presented wherein the surface strain concentration profile for the 

crack [50] (described in section 1.2.2.1) is separately determined for that stress ratio. 

Subsequently, @=O and P=m fatigue life curves were used to determine the surface 

strain concentration profiles for shear and tende crack growth respectively. These 

surface strain profiles were used dong with the crack area increment and strain energy 

release rate criteria to create life prediction models, and predictions were made for 

all of the load ratios. 

Since the overload strain-life curves presented in Chapter 3 were presumed to be 

crack face interference-£ree (by virtue of the increased overload amplitude cornpanion 

experiments) no attempt to rnodel the interference process has been attempted. Hence 

in al1 of these models it is assumed that the applied strain is fuUy effective. In 

addition, since crack face interference-hee crack growth data has been generated by 

removing the propagation due to the overload cycle from the crack growth curves (see 

sections 4.1.1 and 4.1.2) and the overload damage from the fatigue life curves (see 

section 3.1.2), the overloads are not modelled in the crack growth predictions. 

4.3.1 Baseline Life Predictions 

In Chapter 3 it was observed that the maximum shear strain criterion coupled with the 

uniaxial fatigue data would provide safe but not unreasonably conservative estimates 

of fatigue life for all of the load ratios. For this method the maximum shear strain 

is taken as the crack growth driving parameter, and it is coupled with the mode 1 

fatigue data for the purpose of making iife predictions. 

The maximum shear strain criterion ((el*)-) was transformed into a crack driv- 

ing parameter 
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where a is the crack length, Fe is the crack geometry factor, G is the shear modulus. 

Aci2 is the maximum shear strain range, and Q, is the surface strain concentration 

factor [50]. 

The geometry factor used in the baseline life prediction is that of a semi-elliptical 

crack in a solid, Fe as given in Appendix B, section B.2.2. Because this geometry 

factor is strongly influenced by the ellipticity of the the crack (C), both crack growth 

into the specimen (a dimension and negative z-direction) and crack growth along 

the surface of the specimen (c dimension) must be modeLled. Since, when using the 

prediction it is assumed that the crack is loaded in a shear mode, the crack growth 

into the specimen (mode III) and along its surface (mode LI) are then modeLled by 

respectively. Once the crack grows through the  wall of the specimen the geometry 

factor is changed to that of a through crack in a tube, FL, as given in Appendix B, 

section B.2.1. In this case the crack driving equation becomes 

The transition from an elliptical crack of surface crack length c tangent to the inner 

diameter of the tube (in the a dimension) to a through crack of crack length c is 

assumed to be instantaneous. Under mode 1 loading, this assumption is reasonable 

since, at the point of intersection, the crack geometry factor has been estimated to be 

quite large [94, 951 and, as a result, the uncracked ligament is cracked in a relatively 

small number of cycles. Under shear loading (mode 111111) it is assumed that a similar 

process takes place. Finally, the error introduced by this assumption is in part offset 

by the lack of a back face correction in the analysis - a correction for the inner waU 

of the tube which raises stress intensim values for the crack and shortens the number 

of cycles predicted for the crack to reach the imer diameter of the specimen. The 

assumption of an instantaneous transition also helps to offset the lack of a back face 

correction by shortening the total predicted number cycles to failure. 
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The function Q,, proposed by Abdel-Raouf et al. [50], is given by 

As discussed in the introduction, this term estimates the strain concentration for a 

short crack in a favorably oriented grain. The value of q is usually taken as 5.3, and 

5 is usually calculated using the stress intensity threshold, AKfi ,  and the closure 

free fatigue limit strain range. Aeui7 arid the following equation 

The value of 5 is adjusted until the value of the peak of the curve produced by equa- 

tion 4.17 matches the experimentally observed Aeth. This calculation technique may 

be used in situations where the geometry factor is stable for the range of crack lengths 

where where Q, has an influence (approxïmately five grain diameters). However, the 

geometry factor selected for these models is highly sensitive to crack ellipticity (:). 

Both the crack growth simulations in this thesis and experimental observations else- 

where [4] have indicated that the surface crack length remains unchanged while the 

crack grows in depth thus changing ellipticity greatly kom nearly O to nearly 1 within 

the five grain diameters of depth. As a result, it was necessary to estimate % inde- 

pendently by iterating the entire model until the fatigue limit in the life predictions 

mat ched the experimental fatigue limit data. This iterating was performed separately 

for each stress ratio. 

The initial crack depth, a,, was set a t  the length of a slip band crack, 3pm. The 

initial surface crack length, based on specimen surface crack length observations, was 

set at 2c, = 100pm. One failure criterion for the model was defined as the point at 

which the current crack Iength reached the final crack length, c f ,  and this was set 

at the specimen gage length, 2 9  = 30mm, because most cracks reached this length 

before the specimen was removed. Anottier failure criteria was set at the point where 

Km, reached Kc- The critical stress intensity was taken to be 64MPafi  [96]. 

The crack growth data used in the baseline m o d e h g  were the mode I crack 

growth data, converted to shear using the formdae presented in section 2.4.1. The 
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Input Strain Amp. w 
Look-up Table 

1 Increment crack lengrh 1 

Incremcnt cycle count 
N=N+ I 

Output Life l - l  

Figure 4.10: Typical algorithm for crack growth Iife prediction. 

experimental crack growth data did not extend to K', and when growth rates exceeded 

experimental values the curve representing the crack growth data was extrapolated to 

K,. Predictions in which more than one-third of the cycles were spent in this region 

were discarded. This cutoff was applied to all predictions, whether they used mode 1 

or mode II growth cuves. 

A flow chart typical of a generic crack growth calculation algorithm is presented 

in Figure 4.10. A more specifk flowchart is introduced later for the energy (area) 

crack growth model. 

The results of baseline crack growth predictions for *=O, 1/2, 1, 2, and w are 
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Peak-Hold H l  Overloaci 

Predictions 
.- ...... Baseline 
-.-.-.-. Shear 
- - - - -  Area 

Energy 

Equivalent Cycles to Failure (NJ 

Figure 4.1 1: Crack growth predictions for = z=O tubular overload ex- 
periments. 

presented in Figures 4.11 through 4.15, respectively. The heavy dotted line in these 

figures represents the baseline prediction. in  general, the baseline predictions give 

good predictions of the overtoad data for al1 of the stress ratios. A detailed discussion 

of the predictions of this and subsequent models wi.U be presented later. 

4.3.2 Shear and Tensile Estimates (and Predictions) 

In order to use the crack area increment and strain energy release rate critena, it was 

necessary to estimate the value of the parameter (fiom Q,) for shear and tensile 
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Periodic Overfoad 

. . . . . S .  - Baseline Prediction 
- - - - -  Area Prediction 

Energy Prediction 

1 0' 1 o3 1 o4 1 O' 1 o6 1 O" 
Equivalent Cycles to Failure (Nd 

Figure 4.12: Crack growth prediction for 1l' = *-' tubdar overload exper- ur, - 2 
iments. 

crack growth. As in the previous section, the estimates of 5 for shear and tensile 

crack growth were determined by using the entire crack growth model and matching 

the predicted fatigue lirnit with that observed in the experimentd data for @=O and 

@=ou, respectively. 

The determination for shear was carried out with a model very similar to that 

discussed in the previous section. The only difference was that the mode II shear 

crack growth curve was employed rather than the modified mode I curve. The value 

for was estimated to be 105,000. The shear prediction is represented as the dash- 
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........ Baseline Prediction 
- - - - -  Area Prediction 

1 Periodic Overload 

104 1 a l - I g . D I  . B a a m a 8 a i  . I r ~ a v I ~ l  . a a - a a i  a k l a n I a a i  a 

1 o1 1 oz 1 o3 1 o4 1 o5 1 o6 1 o7 1 o8 
Equivalent Cycles to Failure (N,) 

Figure 4.13: Crack growth prediction for \k = -=1 tubuiar overload exper- 
''=Y 

iments. 

dot curve in Figure 4.11. This curve is partially obscured by the curve labelled "Area" 

because the "Area" curve inherited the same crack growth model and 5 value fiom 

the shear prediction model. 

The tensile growth prediction was carried out using the @=oo overload data and 

the mode 1 crack growth data. The crack growth model used an entirely difberent 

geometry factor - an elliptical crack in a circular cross section under tensile loading. 

While the model used the same general algorithm as used in the previous section, the 

stress intesity equation was replaced by 
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..-..... Base Prediction 
- - - -  - Area Prediction 
- Energy Prediction 

Periodic Overload 

Equivalent Cycles to Failure (Nd 

Figure 4.14: Crack growth prediction for 4 = -=2 tubular overload exper- 
'==If 

iments. 

where Acil is the maximum principal strain range, and Ffs is the geometry factor, 

presented in Appendix B, section B.1.2, for an elliptical crack in a circular cross 

section under tensile loading. This geometry factor was used because it best models 

the uniaxial specirnen geometry. Further, no modelling of the surface crack length 

was performed, as the mode1 made calculations for the a dimension only. Since the 

geometry factor was stable, the value-of % could be calculated by matching the peak 

of the curve determined from 
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Figure 4.15: Crack growth prediction for !P = = w uniaxial overload 
c r u  

experiments. 

with the observed threshold strain range from experiments. This value was calculated 

to be 45,000. 

Two failure criteria for this mode1 were used. These were the exceedence of the 

final crack length, a 2 af (af = 5.08mm), or the cntical stress intensity, Km, 2 Kr,- 
The results of these crack propagation calculations, labelled "tende prediction," 

are presented as the dash-dot line in Figure 4.15 along with both the mode 1 overload 

fatigue life data and the effective strain-life curve originally presented in section 3.1.2. 
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4.3.3 Crack Area Increment and Strain Energy Release Rate 
Growth Models 

In this portion of the m o d e h g  the shear and tensile 5 values calculated in the 

previous section were used to predict both fatigue life and crack growth mode changes 

observed for al1 of the stress ratios. 

The crack growth models are similar to the one used in predicting the baseline 

fatigue curves in section 4.3.1, but modified to allow the model to predict tensile 

growth. As reported in section 4.1.3, cracks in tests of tubular specimens initiated on 

shear planes and either continued to propagate in shear or switched to tensile crack 

growth. For biaxial loading ratios @=O, $, and 1 shear cracks initiated on longitudinal 

shear planes, and for 9 = 2  shear cracks initiated on the maximum shear strain plane. 

Hence, in modeIiing crack growth, all cracks are started in shear on the experi- 

mentally observed initiation plane. In addition, cracks are constrained to  grow to a 

depth of at Ieast one grain diameter (25pm) on this plane. This constraint is imposed 

based upon observations made by Vanmni-Farahani [4]. He observed that shear cracks 

started out with a shallow depth and a long surface crack length (very low :), and 

most of the specimen life was spent while these cracks deepened without appreciable 

surface propagation until C reached roughly one. He determined that this transition 

depth was of the order of a few grain diameters. 

Once a shear crack has grom to a depth of one grain diameter, the model was 

then allowed to choose between continued growth on a shear plane, or to  switch to 

growth on a principal stress plane. In each of the models one of two criteria are 

used to make this decision: these are the crack area increment criterion (discussed in 

section 4.2.1), or the strain energy release rate criterion (discussed in section 4.2.2). 

The techniques discussed in section 4.2.1 for projecting equivalent tensile crack 

lengths fiom the original shear crack are used in these models. The transition to a 

tensile crack is assumed to be instantaneous. The crack depth, a, is not modified when 

the switch to tensile crack growth is made, and once the crack depth reaches the tube 

wall thickness, 2.5mm, the crack growth geometry factor is switched to a through- 

crack of length 2c in a tube - these geometry factors are detailed in Appendix B, 
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section B.2.1. The crack growth mode (shear or tensile) that the crack is in when it 

reaches the wail is maintained until failure (2c=30mm). 

Figure 4.16 gives a flow chart which details the operation of the program. The 

fiAl program code for crack predictions under the energy cnterion is provided in 

Appendix C, and the predictions for both criteria are given in Figures 4.11 through 

Figures 4.15. Ln these figures the dashed line represents predictions made with the 

crack area increment criterion and the solid line indicates predictions made using the 

strain energy release rate criterion- 

4.3.4 Discussion of Predictions 

The predictions for @=O are presented in Figure 4.11, together with a,ll of the fully 

effective torsional data. Since the mode II crack growth data was produced using 

torsional overloads combined with torsional small cycles it was expected that it would 

give good predictions for the strain life curve for fatigue life tests subjected to the 

same loading (data marked by open squares). In fact, for strain amplitudes above 

the fatigue limit d l  of the predictions are conservative for this data. The baseline 

prediction which gives the best fit to this data lies at the leftmost edge of the test 

data. The rest of the predictions are even more conservative. The crack growth 

predictions fa11 doser to the out-of-phase torsional tests. There are two possible 

reasons for the consemat ive predictions for axial and torsional overload tests and for 

those tests having longer lives than the peak-hold overload tests. 

Firstly, although results from the high overload strain amplitude companion test 

discussed in section 3.2.1.1 indicated that the fatigue cracks in these experiments 

grew crack face interference-fiee, it is possible that fatigue cracks in the in-phase @=O 

fatigue life tests did not grow entirely free of crack face interference. The presence of 

interference would cause the experimental lives to shift to higher values. 

The discrepancy may also be due in part to the way in which the mode II crack 

growth data was prepared. When crack bifurcation took place, the crack growth rate 

slowed considerably when compared with the growth rate when the crack growth 

was dong a single line. Crack growth data obtained when bifurcation occurred were 
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Figure 4.16: Flow chart for strain energy release rate crack prediction pro- 
gram. 
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eliminated in order to obtain the most conservative crack growth cuve.  However, 

since bifurcation occurred fiequently throughout the torsional overload tests, it is 

probable that the crack growth data is unduly conservative. Differences in the amount 

of bifurcation may also explain the discrepancy at higher strain levels between the 

three different types of overloads. The axial peak-hold overload tests exhibited the 

least crack bifurcation (as well as promoting crack growth on the circumferential shear 

plane) and the shortest fatigue lives. 

The second possible source of error rnay corne from the assumption originally 

proposed in section 1.2.2.1, where it was postdated that the mode II shear crack 

growth data could be used for mode III crack growth modelling. If this assumption 

is incorrect, then an error may have been introduced in the crack growth predictions. 

However, in section 4-12 the mode II data generated in this research was compared 

with mode III short crack growth data from another source and the combined data 

formed a common band. Hence, if an error arises from this assumption i t  is believed 

to be small. 

The dashed and solid lines in Figure 4.11 represent the predictions made with 

models which used the area critenon and energy criterion for switching crack growth 

mode, respectively. At all strain amplitude levels the predictions of the area model 

match those of the "shear" prediction curve, which is indicated by the dash-dot line. 

Since these tests are dominated by shear crack growth and this criterion tends to 

predict shear crack growth, this behavior is not surprising. At the fatigue limit the 

energy criterion based crack growth model initially fdls dong the shear calibration 

curve, but above (~&).=0.0008 it fdls at  longer lives. it foliows this trend up to 

roughly (~;),=0.001 where i t  abruptly shifts back to the "shear" prediction curve. 

Although both the area and energy criteria predict a shift to tensile growth near the 

fatigue limit, the energy criterion continues to predict tensile mode cracking for strains 

up to (e~),=0.001. Since the shear growth cuve at  the shift point is a factor of two 

lower in life, a discontinuity &ses in the predicted curve. This kind of discontinuity 

will not arise in the area predictions because this criterion switches growth behavior 

where the tensile and shear growth curves cross. 
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Results of life predictions for Il?=; are given as curves in Figure 4.12 along with 

experimental overload data. As in @=O loading the best prediction is given by the 

baseLine (dotted) curve, and the predictions for the area (dashed curve) and en- 

ergy models (solid line) are again more conservative. For strain amplitudes up to 

(~$),=0.001 both models predict the same curve, but above this level the curves 

diverge with the area model providing the more conservative estimate. The energy 

curve rejoins the area curve at (~~),=0.0018. The energy rnodel provides a better 

prediction than the area model, but it shows the discontinuity discussed above. 

Figure 4.13 shows crack growth predictions for @=1. Once again, the baseline pre- 

diction (dotted Iine) provides the best fit to the overload data. The area (dashed line) 

and energy (solid line) criteria provide the same predictions up to strain amplitudes 

of (~3,=0.0012. Above this amplitude, the area model predicts somewhat shorter 

lives than the energy criterion. The same shift as before in the energy criterion curve 

in fact does occur, but it is above the strain level where the predictions are cut off. 

In terrns of a comparison with the experimental data, neither criterion c m  be said to 

be better - the experimental data is insufkient to make an assessrnent. 

The prediction for 4=2 are shown in Figure 4.14. In comparison with experimental 

data the energy model is slightly better than the area rnodel in predicting the life of 

the highest data point. Again, the best prediction of the experimental data is given 

by the baseline model - the prediction line runs through nearly every data point. 

However, the area and energy models are 7% unconservative in predicting the 

Q=2 fatigue limit strain - they predict Aeq=0.0043 at IO7 cycles t o  failure rather 

than the actual value of 0.0040. The reason that the area and energy models do not 

predict the fatigue limit is that the model predicts incorrectly the location of the 

crack length at which the maximum in the threshold stress for crack growth occurs. 

This is apparent in Figure 4.17, which plots threshold of the applied torsional strain 

range  AC,)^) for shear and tende  growth versus crack length. These two curves 

were calcuiated using two crack growth models - one for shear and the other for 

tensile crack growth. Both used the elliptical crack geometry factor ernployed in both 

the area and energy crack growth models. Various strain amplitude levels (and crack 



Crack Growth and Crack Growth Modelling 

lengths for the negatively sloped portions of the diagrams) were input into each model, 

the crack was grown. and the crack length at arrest was recorded. When plotted, a 

boundary between the region in which cracks will grow and not grow results. In the 

figure tests with a strain range below the peak of the lower of the tensile (dashed 

curve) or shear (solid curve) resistance curves will have fatigue cracks which arrest. 

The experimental fatigue limit is given in Figure 4.17 by a horizontal dashed line. 

A dashed line indicates tensile crack growth and a solid line indicates shear crack 

growth. Although it is known that cracks in the experiments started as shear cracks, 

exact data is lacking for these experiments regardhg the crack length at switch over 

into tensiie growth - it is, however, believed to be less than 50pm. The fatigue limit 

for both crack growth models is also drawn as a horizontal line in Figure 4.17, and in 

this case the crack growth models predict shear crack growth out to 32pm at which 

point they switch to tensile crack growth (as indicated by the dashed line) which 

continues to failure. 

A threshold diagram for Q=1 loading is shown in Figure 4.18. In this case the 

crack growth models correctly predicted the experimentaI threshold - in the models 

the crack grows in shear until it reaches approximately the peak of the tensile curve 

(30pm) and then switches to temile growth and grows to failure. 

The final set of predictions is given in Figure 4.15 for uniaxial loading (Q = oo). 

Along with the predictions is plotted the effective strain curve (thin dotted line) 

which was independently developed in section 3.1.2. The role of the predictions and 

the effective strain curves are sirnilar - they are both estimates of the M y  open 

strain-life curve. All of the predictions, including the basehe (heavy dotted line), 

calibration (dash-dot line), and the area and energy (solid line), fall into a narrow band 

of Less than a factor of two. The best prediction is again given by the baseline model. 

The area and energy models predict the same cuve for uniaxial loading. Unlike 

the behavior observed for @=O loading where the area and energy model predictions 

overlayed that of the "shear" model, the single curve for the area and energy models 

and the c w e  for the "tensile" model differ slightly for @ = oû because these two 

curves were predicted using two different geometry factors (as discussed earlier). 
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S pecimen Free Surface 

Type "A" Type "B" 

Figure 4.19: Crack initiation types from [38]. 

A small difference exîsts between the crack growth mode1 used for the uniaxial 

predictions and the models used for the other load ratios. Because the plane on 

which the shear crack propagates is substantially different for uniaxial loading, the 

projection algorithm for uniaxial loading was changed. The Merence is depicted 

in Figure 4.19 where the shear crack types are presented as d e h e d  by Brown and 

Miller [38]. The crack growth models for *=O through Q=2 assume type A shear 

crack growth because al1 of the tube tests exhibited this behavior. However, uniaxial 

cracks initiate as type B [87], and the tende  crack growth models were modified 

to reflect this difference. This diaerence a6ects only the crack projection technique, 

where, for type A cracks a shorter c-dimension is projected and for type B cracks 

a shortened a-dimension is projected. See section 4.1.3 for the discussion on crack 

projection. 
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Further observations from and analysis of the tube test data of Chapter 3 have been 

presented. It was noted that tubes initially cracked in shear for all of the load ratios 

and that often these shear cracks eventually made a transition to a tensile plane. 

For all stress ratios it was observed that a transition to tensile cracking occurred at 

fatigue b i t  strain amplitudes. As strain amplitudes increased, the length of the 

initial shear crack increased, and at the highest strain amplitudes the initial shear 

crack continued growing until it reached the specimen gage length. Superimposed on 

this trend was another in which, as the load ratio increased, tensile cracking occurred 

at shorter initial shear crack lengths. Three regions of behavior were identified; in 

the first region (SI) the initial shear crack growth region was srnail before the switch 

to tensile growth, in the second region (ES) there was extensive shear crack growth 

before a transition to tensile growth, and in the 1st region (SD) the shear crack grew 

to failure without changing to a tensile growth mode. 

A fully effective mode 1 crack growth curve and a crack face interference-fkee 

mode II curve were obtained for normalized 1045 steel, These curves were combined 

with a crack area increment and a strain energy release rate model to predict the 

length at which the transition from shear cracking to tensile cracking occurred - 

the initial shear crack length. Both models substantially underpredicted these shear 

crack iengths, although in a few cases the predictions came within 30% of the actual 

obsemed transition crack lengths. It was noted that the change in mode of cracking in 

these tubes was of a stochastic nature - there were fiequent examples of tubes which 

did not follow the general trend. The crack area increment and strain energy release 

rate models also provided estimates of the range of strain amplitudes for which shear 

and tensile crack growth should occur. The crack area increment model overpredicted 

the strain amplitudes at which the transition between ES and SD behavior occurred. 

In contrast , the strain energy release model underpredicted the strain amplitudes 

a t  which the transition occurred from ES to SD behavior. However, both models 

predicted the trends observed in the experimental data; these were (1) as the strain 
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amplitudes increased initial shear crack lengths increased, and (2) as the load ratio 

increased the initial shear crack lengths decreâsed. 

Predictions were made using the mode 1 and mode II crack growth curves devel- 

oped earlier. The first set of predictions, which were termed the baseline predictions, 

were the rnost successful in predicting the strain-life curves for ail load ratios. These 

predictions were created by taking the shear strain amplitude criterion of the previ- 

ous chapter and combining it with mode I closure fiee crack growth data. The shear 

strain amplitude cnterion was changed to a crack growth parameter and the mode I 

data converted to sheax crack growth data. These were successfully combined with 

a semi-elliptical shear crack geometry factor to make the predictions. For each load 

ratio the value of the parameter g, which determines the surface strain concentration 

profile and hence the fatigue limit strain amplitude, was separately determined. This 

was done for a given load ratio by iterating the prediction of the fatigue limit strain 

until it matched that observed experimentally for that load ratio. 

Another set of predictions were made which allowed the crack to change crack 

mode using one of two criteria. The crack growth (area) increment and strain energy 

release rate models discussed above were used to make fatigue life prediction. Each 

criterion was used in a separate prediction model to predict the fatigue life. The 

models were allowed to predict either shear crack or tensile crack growth, and in 

order to do this the values of parameter for the surface strain concentration profile 

(as discussed above) for shear crack growth and tensile crack growth were determined 

from tensile dominated (Q = oa) and for shear dominated (9=0) datasets. The shear 

and tensile 2 were then inserted into the crack growth models, and the models were 

used to make predictions for all of the load ratios. The predictions provided by both 

the area and energy models were safe but not overly conservative. For lower load 

ratios (@=O and 112) the energy model predicted a discontinuity in the strain life 

curve which arose from the transition from ES behavior to predicting SD behavior. 

With the exception of @=2 loading, the model adequately predicted the fatigue Iimits 

of d l  of the load ratios. 
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Summary and Conclusions 

The purpose of this investigation was to observe the effect of overloads in multiaxial 

fatigue. In-phase strain controlled constant amplitude and periodic overload tests 

were conducted on tubular specimens, and the tension-torsion strain ratio was selected 

such that the stress ratios a t  the overload Ioop tips were q=0, 112, 1, 2, and oo. In 

in-phase tests both the overloads and small cycles shared the same strain ratio. 

Periodic overloads reduced the 10' cycle endurance limit of normalized SAE 

1045 steel to one-half for all load ratios. Further tests conducted on a notched 

shaft under @=O loading exhibited similar resdts. Experiments in which cycling 

was continued out to 108 cycles (@=O and oo) exhibited a further endurance 

limit reduction to 215 of the constant amplitude value. A final set of experiments 

were performed in which axial periodic overloads were combined with torsional 

(@=O) srnall cycles and in these experiments the 10' cycle endurance limit was 

also reduced to one-half of the constant amplitude level. 

Cornpanion tests with overloads higher than those used in the test series were 

performed on one specimen at each stress ratio in order to determine whether 

the overload level used in the regular tests was large enough to produce crack- 

face interference free conditions. These tests indicated that the overloads used 

did produce a maximum fatigue life reduction, and it should foilow that for 

small cycle amplitudes below that employed in the companion test, the fatigue 

cracks would grow under crack face interference free conditions. Simple models, 
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supported by fiactographic evidence, were used to describe the nature of crack 

face interference and explain how it was reduced by overloads. 

Von Mises equivalent stresses and strains suitabIy consolidated the in-phase 

constant amplitude and periodic overload stress-strain data into a single curve. 

Uniaxial data and the von Mises equivalence equations can reasonably be used 

to mode1 stress-strain behavior for other load ratios. 

A series of multiaxial damage parameters were examined in order to determine 

which best correlated fatigue data for different strain ratios. In the case of the 

constant amplitude data it was f o n d  that plotting the resolved shear strain 

from the initiation plane against fatigue life provided a good data consolidation. 

Maximum shear strzin &O gave a good consolidation of the constant amplitude 

data. For the periodic overload fatigue data the Fatemi-SocieKurath style 

parameter gave the best consolidation. However, the maximum shear strain 

parameter also provided a good consolidation of the data and is simpler to 

implernent . 

The cracking behavior of tubes was obsenred and recorded for the various tests. 

The observed initiation planes were coincident with the maximum shear strain 

plane. However, in load ratios @=O, 112, and 1 it was noted that cracks also 

initiated along the longitudinal axis of the specimen and that for these ratios it 

was these longitudinal cracks which grew to failure. It was determined that this 

cracking direction was coïncident with the direction of the banding of pearlite 

and ferrite grains in the microstructure and it appeared that the ferrite bands 

provided channels in which cracking occurred more easily than in the adjacent 

pearlite rich bands. 

A tendency was observed for the initial shear crack to switch to growth on 

maximum tensile planes as the load ratio increased. This tendency decreased 

with increasing strain amplitude. The length of the initial shear crack dso was 

obsenred to change as the inverse of the s m e  variables. This length increased 

as the load ratio decreased or the strain amplitude increased. Tensile cracking 

was observed at  aU stress ratios. 
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Crack growth behavior in the periodic overload experiments was modelled us- 

ing mode I and mode II crack face interference free crack growth cuves. Two 

parameters, { and X, were used in the crack growth modelling. They are based 

on earlier investigations which, respectively, stated that the crack will grow in 

the direction in which: (1) the crack growth (area) incrernent is ma;icimized or 

(2) the strain energy release is greatest. The results of the modelling indicated 

that neither theory accurately predicted the crack length at  which the change 

to tensile crack growth occurred in the experiments. The first, or area theory, 

underpredicted this shear crack length and the second, or energy theory, over- 

predicted it. However, both of these models correctly predicted the cracking 

behavior trends discussed in the preceding paragraph - increased shear crack 

lengths was observed with increasing strain amplitudes and with decreasing load 

ratio. 

Several different crack growth He predictions were made for the periodic over- 

load experiments. The first of these used maximum shear strain amplitude as 

a crack driving parameter. The surface strain concentration profde was deter- 

mined separately for each stress ratio in these predictions, and they fell within 

50% of the experimental fatigue life. 

Two series of predictions employed the parameters E and X, and, since these 

models could choose between shear or tensile crack growth, a separate surface 

strain concentration profiles were deterrnined for shear and tensile crack growth. 

Both models gave conservative predictions of experimental fatigue life but were 

usually within a factor of two of the observed fatigue life. They conectly pre- 

dicted the change in the endurance limit as a function of load ratio. Finally, the 

energy cnterion predicted, for @=O and 1/2, a discontinuity in the strain-life 

curve which occurred at the transition in the mode1 between predicting tensile 

cracking to failure and predicting shear cracking to failure. This discontinuity 

arose from the Merence at that strain amplitude between the shear and tensile 

crack growth curves. The area critenon predicted no such discontinuity because 

the basis of area criterion is to select the intersection of the two growth rate 

curves. This leads to a continuous global growth rate function which produces 

a cont inuous Me prediction. 



Appendix A 

Chu's Modified Mr6z Plast icity 
Model 

This appendix is taken from reference (431. 

Although the method presented here is general enough to be applied to any three- 

dimensional problem, the equations are specifically derived for surface elements in 

which plane stress conditions prevail and where surface strains are given by strain 

gage measurements. As sketched in Figure A.1, for an element on the top surface of 

an axle shaft adopting the x-y-z coordinate system, the plane stress conditions are 

Given a time history of rosette strains, el (t) , e* (t) ,  et (t) , the history of surface 

strains can be derived by 

An isotropic-kinematic hardening model generalized from Mr6z's yield surface 

field concept [78, 76, 971 is adopted tu follow the strain history and calculate the 

corresponding stress history. The material model, utilizing two commonly adopted 



Chus Plasticity Model 

Figure A.1: Definition of strain gage coordinates. 

assumptions that (a) during an eiastic-plastic deformation the total strain increment 

is the sum of the elastic and the plastic hcrement and (b) the plastic strain incrernent 

obeys the normality nile, can be summarked here by the following set of equations 

describing the incremental stress - incremental strain relationship. 

with 

(A. 10) 
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In equations A.6 through A.10, L is used to denote the instantaneous modulus 

tensor, E is Young's modulus, v is Poisson's ratio, 6, is the Kronecker delta. Et@)  
is the instantaneous tangent rnodulus at  equivalent stress level a, and F, denotes 

the initial yield stress which is a materid constant. The center of the active yield 

surface in the deviatoric stress (s,) space is denoted by a,, which during a plastic 

loading process moves in a direction toward the center of the previously active yield 

surface at the last load reversal. Ln the above equations and hereafter. Roman scalar 

subscripts i through Z take values that range ffom x to z and Greek scalar subscripts 

a through 6 take values that range fiom x to  y. Repetition of these subscripts implies 

surnmation. 

The plane stress conditions mentioned earlier can be expressed by 

which can be used with equations A.6 through A.10 to give the incremental stress - 
strain relationship on the x-y plane 

The basic equivaient stress-strain equation of the material used in this analysis is 

a modified power-law type 

The function of tangent modulus used in equation A.10, E/Et (51, is then obtained 

as 

(A. 15) 

Here n' is the strain hardening exponent of the material. It is important to note that  

the material constants, n' and a,, should be determined fiom fitting the above stress 
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- strain relation to the cyclicdy stabiiized stress - strain data instead of the initial 

monotonie curve. The present initial yield stress, a,, corresponds more to a cyclic 

proportional Limit than the 0.2% o a e t  yield stress of the material. The modified 

power law, equation A.14, is used mainly to give a smooth curve with continuous 

dope change at the yield point, a = 5,. 
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Crack Growth Geometry Factors 

B. 1 Correction Factors for Uniaxial Specimens 

B. l . l  Single Edge Crack With Backface Correction 

This correction is taken frorn Brown and Srawley [92], and was used to calculate 

AK for data taken hom mode 1 crack growth specimens (Figure 2.9). The geometry 

factor, FcgI, is approximated by 

The geometry factor is a function of the ratio of crack length (a) to plate width, 

W, as shown in Figure B.1. 

B.1.2 Elliptical Surface Crack in a Solid Bar Under Tension 

This geornetry factor, used to mode1 mode 1 crack growth in smooth uniaxial speci- 

mens (see Figure 2.6), was taken from Raju and Newman [98]. Through inspection 

of the fracture surfaces of uniaxial specimens it was determined that the average el- 

lipticity (:) of the crack was roughIy 0.8 throughout most of the Me of the specimen. 

This 4 value falls within the stable range determined by Raju and Newman. The 

terms a, c and D are defined in Figure B.2. The geometry factor used in this research 

for the solid smooth specimens, FSsr, was approxirnated by 
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Figure B.l: Definitions of a and W in a single edge cracked plate. 

B.2 Integrated Mode 1, Mode II and Mode III Ge- 
ometry Factors 

B.2.1 Mode 1 and II Stress Intensity Solutions for a Through 
Crack in a Tube 

Lakshminarayana and Murthy [93] developed a solution for an arbitrarily oriented 

through-crack in a tube. Reduced for an axial-torsional specirnen and relative to the 

coordinate system in Figure 2.26, they become, 
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Figure B.2: Definitions of a, c and W for an elLipical crack in a rod under 
tension. 
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Figure B.3: Definitions of c, t, R, and 0 for an arbitrarily oriented through- 
crack in a tube. 

where 

Figure B.3 shows the definitions of the terms c, P ,  R, and t. 

B.2.2 Elliptical Surface Crack in a Tube 

Irwin [55] developed a stress intensity solution for an embedded elliptical crack in an 

elastic solid under tension from earlier work by Green and Sneddon [99]. Socie, et 

al. [47] suggested using this solution as an elliptical surface crack in a tube with a 

multiplier of 1.12 to account for the free surface. Irwin's solution then becomes 



Geometry Factors 

Figure B.4: Debitions of a,  c, t ,  O,  and ,û for an arbitrarily oriented eLpica1 
crack in a tube. 

where 

The terms a, cl and 0 are defined in Figure B.4. 

Kassir and Sih [56] extended Irwin's solution for an embedded elliptical crack to 

include shear loading. The specific solution for a shear appiied in the plane of the 

crack and in the direction of the major axis of the crack is 
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where 

Equations B.8 and B.14 are elliptical integrals of the second and first kinds. re- 

spectively. These integrals were approlémated by 
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Crack Propagation Program 

This program calculates crack growth and Me for lP=1 loading. 

real beta, betb, ka, kc, k, squarek 

real anglea, angleb, sigma, tau, ratio 

real pi,divvy,stress 

real delki (100) , dadni (100) 
real delkii (100) , dadnii (100) 
reai*8 daa, dac, ndaa, ndac, rate 

real qa, qt, bfa, bfc 

real bf,kic,kiic,Y 

real alpha, alpht, fa, fc, nfa, nfc 

real enera, eners 

real*8 alen,clen,clast,len,ncleo 

real straini,stressi,strainn,stressn 

real nstrain,nstress 

integer*4 cycles 

logical*4 once,once2,once3,oncek 

integer lasti,lastii 

logical sheargroa,thresha,threshc,pe~y 

common/logic/once,once2,once3,oncek,cycles,sheargrow, 
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& thresha, threshc 

common/grate/pi,diwy,delki,dadni,delkii,dadnii, 

& kic,alpha,alpht,nstress,lasti,lastii,nfa,nfc 

C Initialize variable 

once=.true- 

once2=. true . 

once3=. true . 
oncek= . true . 
sheargrow=.true. 

threshas-false. 

threshc=.false. 

penny=.false. 

pi=3.141592654 

cos58=cos(58.28*pi/l80.) 

alpht=45000. 

alpha=l05000. 

C read(5,*)alpht 

alen=3.Oe-6 

clen=50.0e-6 

clast=2.5e-3 

Y=203000-O 

G = Y / l .  29 

kic=64.0 

kiic=l.29*kic 

C input strain level 

read(5, *) atstrain 

C calculate elastic stress 

atstress=atstrain*G*2. O 
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C read in mode 1 and mode II crack growth data 

open(l0, FILE=t%xialgrovth. dat" , ~tatus=~OLD? 

open (20, FILE=" sheargrouth. dat " , status=" OLD" ) 
do 10 i=l,lOO 

read(l0, +, err=IOO)deUci(i) ,dadni(i) 

delki (il =logiO(delki (i) ) 

dadni (il =log10 (dadni (i) ) 

10 lasti=i 

100 close (10) 

do 20 j=1, IO0 

read(20,*,err=200)deBii(j),dadnii(j) 

delkii (j ) =log10 (delkii (j) ) 

dadnii (j ) =log10 (dadnii (j ) ) 

20 lastii=j 

200 close (20) 

C read in stress strain curve 

open(30, FILE=ll~rl~~. torl', status="0LDI4) 

235 read(30,*)strainn,stressn 

if (atstrain. g t  . strainn) then 
straini=strainn 

stressi=stressn 

goto 235 

endif 

close (30) 

C calculate actual stress 

rstress= (atstrain-straini) f (strainn-straini) * (stressn-stressi) + 

& stressi 

C calculate applied axial strain 
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anstrain=2.0*atstrain/3.0 

C calculate effective poisson ratio 

poisseff=0.5-0.2l*rstress/(G*atstrain) 

C calculate max shear strain 

sstrain=sqrt (atstrain**2+( (anstrain* (1 .+poisseff) ) **2) /4.0) 

center=(l.O-poisseff)*anstrain/2.0 

C calculate max normal strGn 

nstrain=center+sstrain 

C calculate max nomaï stress 

nstress=nstrain*Y*2.O 

C constant for Lakshmi 

diwy=8.0*0.01173*0.00254/sqrt(12*(l-poisseff**2)) 

C start crack calc with semi-elliptic shear crack 

125 psia = 1.0 

aoc=alen/clen 

qc=l.O + 5.3*exp(-alpht*clen) 

qa=i. 0 + 5.3*exp (-alpht*alen) 

C check to see if transition to penny crack 

if(aoc.gt.0.995.and-(.not.penny))then 

print *, "penny shaped crack atu 

write(6,23)cyclesyalen,ka,daa,clen,kcydac 

penny=. true . 

endif 

C check to see if transition back to elliptical crack 

if (aoc.lt .0.995.and.penny)then 

print * , "elliptical sha~ed crack at " 
write(6,23)cycles,aien,ka,daa, clen,kc,dac 

penny=.faïse. 

endif 
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if (penny) then 

C calculate geom fac's for penny crack 

fa=4. O* (1.0-poisseff /(pi* (2.0-poisseff ) ) *qa*atstress 

fc=1.12*4.0/(pi*(2.0-poisseff))*qc*atstress 

else 

C otherwise calc geom fac's for elliptical crack 

psic = sqrt(aoc1 

squarek= 1 . O-aoc+aoc 
k=sqrt (squarek) 

E=sqrt(1.0+1.464*(ao~**1~65)) 

F=sqrt((34.05337/(1-0+22.76638*aoc)**O.68~53)-1~43264) 

b=(squarek-poisseff)*E+poisseff*aoc*aoc*F 

C geom term for a direction 

fa=(l.O-poisseff)*squarek/~psia*b)*qa*atstress 

C geom term for c direction 

f c=l. LZ*aoc*squarek/ (psic*b) *qc*atstress 

endif 

C calc K in each direction 

ka=f a*sqrt (pi*alen) 

kc=f c*sqrt (pi*alen) 

C get crack growth rate in shear, a direction and check 

C for threshold condition 

cal1 getdadn(ka,delkii,dadnii,daa,lastii) 

if (daa. lt .1*0e-15) then 

thesha=. true . 

else 

thresha=.false- 

endif 
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C get crack grouth rate in shear, c direction and check 

C for threshold condition 

call getdadn(kc,delkii,dadnii,dac,lastii) 

if (dac . lt .l.Oe-15) then 
threshc= . true . 

else 

threshc=.false. 

endif 

C project crack onto tensile plane 

nclen=clen*cos58 

C calc kJs and growth rates for a possible tensile crack 

call checknormal(alen,nclen,ndaa,ndac) 

C calculate energy release 

eners=(fa**2)*(1.O+poisseff)*daa + (fc**2)*aoc*dac 

enera= (nf a**2) *ndaa + (nfc**2) *alen/clen*ndac 

C calculate chi 

ratener=enera/eners 

C check chi and crack depth 

if (ratener-gt. l.O.and.aoc.gt.0.5)then 

C growth in normal strain is indicated 

sheargrow=.false. 

goto 525 

endif 

C check to see if crack is completely in threshold 

if(thresha.and.threshc)then 
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C crack in threshold so output crack state and stop 

write(6,23)cycles,alen,ka,daa,clen,kc,dac 

pxint + , ndaa , ndac 
s top "stage 1 threshold" 

endif 

C crack to see in vhich direction growth is fastest 

rate=dmaxl (daa, dac) 

C increment crack lengths and cycle count 

if(rate.ge-LOe-9)then 

alen=alen+daa 

clen=clen+dac 

cycles=cycles+i 

C accelerate calculation because of threshold growth 

else if (rate. gt .l. 0e-10) then 

alen=alen+lO.dO*daa 

clen=clen+lO.dO*dac 

cycles=cycles+10 

else if (rate. gt . l .Oe-11) then 

alen=alen+lOO-dO*daa 

clen=clen+lOO.dO*dac 

cycles=cycles+l00 

C print *, "here le-il" 
once=.true. 

once2=. true . 
once3=. true . 
else if (rate. gt . l. Oe-12) then 
alen=alen+lOOO.dO*daa 

clen=clen+1000,dO*dac 

cycles=cycles+1000 

if (once) then 
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print * , "here le-12" 
once=-false. 

once2=.true. 

once3=. true . 
endif 

else if(rate.gt.l.Oe-13)then 

alen=alen+lOOOO.dO*daa 

clen=clen+i0000.dO+dac 

cycles=cycles+10000 

if (once2) then 

print + , "here le-1311 
onceZ=.false. 

once3=.true. 

once=.tTue. 

endif 

else if (rate. gt . l . Oe-14) then 

alen=alen+l00000.d0*daa 

clen=clen+100000.d0*dac 

cycles=cycles+100000 

if (once31 then 

print * , "here le-14" 
once3=.false. 

once2=.true. 

once=. true . 
endif 

else if (rate. ge . l .Oe-15) then 

alen=alen+l000000.d0*daa 

clen=clen+l000000.d0*dac 

cycles=cycles+100000O 

else if(rate.lt.l.0e-15)then 
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print *,cycles,alen,iO**ka,daa 

stop "definitely in thresholdH 

endif 

C check to see if through crack and high k, if not, repeat 

if(alen.lt.0.00254.and.ka.lt.kiic)goto 125 

if(alen.ge.0.00254)then 

C through shear crack - go to through crack grouth 

sheargro~. true . 
goto 220 

endif 

if (ka. ge .kiic) then 

C K exceeds rnax stop calc. 

vrite(6,23)cycles,alen,ka,daa~clen,kc,dac 

stop "specimen failed in shear stage 1" 

endif 

C switch to groving an elliptical crack on tensile plane 

525 print *,"suitch to max normal strain" 

print *,eners,enera,enera/eners,clen,aoc 

urite(6,23)cycles,alen,clen 

23 format(x,ilO,2~,6(e9.3,~)) 

sheargrow=.false. 

clen = clen*cos58 

C account for a/c greater than 1 

425 if (alen-gt . clen) then 
aoc=clen/alen 

psia = sqrt(aoc) 

psic = 1.0 
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psia = 1 .O 

psic = sqrt(aoc) 

len=alen 

endif 

squarek= 1.0-aoc*aoc 

k=sqrt (squarek) 

C calculate q 

qc=l.O + 5.3*exp(-alpha*clen) 

qa=i.O + 5.3*exp(-alpha*alen) 

C calculate elliptic integraïs 

E=sqrt(1.0+1.464*(aoc**i.65)) 

C calculate geometry factor in a direction 

f a=1. i2*ps ia/E 

C calculate K in a direction 

ka=qa*f a*nstress*sqrt (pi*len) 

C calculate geometry factor in a direction 

fc=1.12*psic/E 

C calculate K in c direction 

kc=qc+fc*nstress*sqrt(pi*len) 

C get growth rates for a and c directions 

cal1 getdadn(ka,delki,dadni,daa,lasti) 

cal1 getdadn(kc,delki,dadni,dac,lasti) 

C find the faster of the two growth rates 

rate=dmaxl (daa, dac) 

C increment crack lengths and cycle count 

if(rate.ge.l.Oe-9)then 

alen=alen+daa 

clen=clen+dac 

cycles=cycles+l 

C accelerate crack growth in threshold 
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else if (rate. gt -1- 0e-10) then 

alen=alen+IO-dO*daa 

clen=clen+lO.dO*dac 

cycles=cycles+l0 

else if (rate. gt . l.Oe-11) then 
alen=alen+lOO.dO*daa 

clen=clen+100.dO*dac 

cycles=cycles+l00 

C print *, "here le-11" 
once=.true. 

once2=.true. 

once3=.true. 

else if (rate. gt -1.0s-12) then 

alen=alen+lOOO.dO*daa 

clen=clen+1000.dO*dac 

cycles=cycles+l000 

if (once) then 

print * , "here le-12" 
once=. false - 
once2=. true . 

once3=. true . 

endif 

else if (rate. gt -1.0s-13) then 

alen=alen+lOOOO.dO*daa 

clen=clen+i0000.dO*dac 

cycles=cycles+l0000 

if (once21 then 

print +,"here le-13" 

once2=. f alse. 

once3=.true. 
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once=. true . 
endif 

else if(rate.gt.l.Oe-14)then 

aïen=alen+l00000.dO*daa 

clen=clen+100000~d0*dac 

cycles=cycles+100000 

if (once31 then 

print *, "here le-14" 
once3=.false. 

once2=. true . 
once=.true. 

endif 

else if (rate. ge . 1 . Oe-15) then 
alen=alen+lOOOOO.dO*daa 

clen=clen+100000.dO*dac 

cycles=cycles+100000 

else if(rate.lt.l.0e-15)then 

C crack in threshold so stop 

print *,cycles,alen,lO**ka,daa 

stop "definitely in threshold" 

endif 

C check to see if crack a through crack and if K exceeds critical 

if(alen.lt.0.00254.and.ka.lt.kic)goto 425 

C Now crack is a through tensile crack 

220 print *,"switcb to through crack" 

write(6,23)cycles,alen~ka,daa,clen,kc,dac 

C Grou through crack 

225 beta=clen*clen/diwy 

C calculate K based on whether shear or tensile crack 

if (sheargroa) then 
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kc= (1. +O.  39270*beta) *sqrt (pi*clen) *atstress 

cal1 getdadn(kc,delkii,dadnii,dac,lastii) 

else 

kc=(1.61804+1.07445+beta)*sqrt(pi*clen)*atstress 

cal1 getdadn(kc,delki,dadni,dac,lasti) 

endif 

C increment crack length and cycle count 

clen=clen+dac 

cycles=cycles+i 

C check for endpoint and for max k, depending on crack 

if(.not.sheargrow.and.clen.lt.0.015.and.kc.lt.kic)goto 225 

if(sheargrow.and.clen.lt.0.015.and.kc.lt.kiic)goto 225 

C crack exceeded cmax or kcritical 

write(6,23)cycles,alenaka,daa,clen,kc,dac 

end 

C subroutine to calculate crack growth rates 

subroutine getdadn(k,delk,dadn,daa,lastj) 

real k,ka 

real dadn(100) ,delk(100) 

real*8 daa 

integer j, lastj 

integer*4 cycles 

logical once,once2,once3,oncek 

common/logic/once,once2,once3,oncek,cycles,sheargrow, 

& thresha,threshc 

j=i 

C interpolate growth in log-log coordinates 

ka=log10 (k) 

if (ka.lt.delk(1))then 
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else 

do 300 while(ka.gt.delk(j)) 

j=j+l 

if (j .gt .lastj) then 

C check for exceedence of curve 

if (oncek) then 

print * , "K=" , 1O**kaSM out of range at ",cycles 
oncek=.false. 

endif 

j=last j 

goto 305 

endif 

300 continue 

305 daa=(ka-delk(j-l))/(delk(j)-delk(j-1) ) *  

& (dadu( j)-daddj-1) )+dadn(j-1) 

endif 

daa=lO.O**daa 

return 

end 

C routine to caïc tensile crack parameters for use in energy calc 

subroutine checknormal(alen,clen,daa,dac) 

real beta, betb, ka, kc, k, squarek 

real anglea, angleb, sigma, tau, ratio 

real pi,divvy,stress 

real deUsi (100) , dadni (100) 
real delkii(iOO),dadnii(lOO) 
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real*8 daa, dac, ndaa, ndac 

real qa, qt, bfa, bfc 

real bf,kic,Y 

real alpha, alpht,  nfa, nfc 

real*8 alen,clen,clast,len,nclen 

real straini,stressi,strainn,stressn 

real nstrain,nstress 

integer*4 cycles 

logical*4 once,once2,once3,oncek 

integer lasti , last ii 
logical sheargrow,thresha,threshc 

comon/logic/oncesonce2,once3,oncek,cycles,sheargrow, 

k thresha,threshc 

common/grate/pi,diwy,delki,dadni,delkii,dad.niî, 

â kic,alpha,alpht,nstress,lasti~lastii,nfa,nfc 

C account for a/c > 1 

425 if (alen. g t  . clen) then 
aoc=clen/alen 

psia = sqrt(aoc) 

psic = 1.0 

len=clen 

else 

aoc=alen/clen 

psia = 1 .O 

psic = sqrt(aoc) 

len=alen 

endif 

squarek= 1 . O-aoc*aoc 
k=sqrt (squarek) 



C calc Q 

qcfl.0 + 5.3*exp(-alpha*clen) 

qa=l . O + 5.3*exp (-alpha*alen) 

C calc elliptical integral 

E=sqrt(1.0+1.464*(aoc**l.65)) 

C calc geometry factor in c direction 

fa=L.l2*pçia/E*qa*nstress 

nfa=f a 

C calc K in a direction 

ka=f a*sqrt (pi*len) 

C calc geometry factor in c direction 

fc=1.12*psic/E*qc*nstress 

nfc=f c 

C calc K in a direction 

kc=f c*sqrt (pi*len) 

C calc crack growth rates in a and c directions 

cal1 getdadn(ka,delki,dadai,daa,lasti) 

cal1 getdadn(kc,delki,dadni,dac,lasti) 

return 

end 
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