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Abstract 
This thesis involves a rigorous treatment of the Palatini Variational Principle of grav- 

itational actions in an attempt to f d y  understand the r6le of the connection in 

such theories- After a brief geometrical review of a f i e  connections, we examine N- 

dimensional dilatonic theories via the Standard Palatini principle in order to highlight 

the potential differences arising in the dynamics of theories obtained by utilizing the 

Hilbert and Palathi formalisms. We then develop a more generalized N-dimensional, 

torsion-heel Einstein-Hilber t-type action which is shown to give rise to Einsteinian 

dynamics but can be made, for certain choices of the associated arbitrary parameters, 

to yield either weak constraints or no constraints on the connection, I'. The latter 

case is referred to as a Kmaximally symmetric" action. 

In the following Chapter this analysis is extended to the realm of a potentially non- 

vanishing torsion tensor, where it is seen that such actions do not, in general, lead to 

Einsteinian dynamics under a Palatini variation. Following another brief geometrical 

review, which highlights some elements of fibre bundle theory appropriate to our later 

analysis, we examine the secalled Palatini Tetrad formalism and show that i t  must be 

modified for a proper Palatini variation - i.e. to not assume anything a peoion about 

the relevant connection. We then analyze this modified approach &om a geometrical 

perspective and show that, for the torsion-kee case at least, a proper treatment of the 

Palatini Tetrad procedure is equivdent to the "maximally symmetric" case alluded 

to earlier. 

Furthermore, we recognize that the Palatini Tetrad approach should effectively 

be regarded as little more than a calculational technique resulting fiom analysis of 

the more generalized action S = J tr [R A t (P A /?)I + S,, where R, ,tl are local ver- 

sions of the cunmture 2-form and solder 1-form fiom the GL(N,  R) frill bundle of 



fkames respectively. O w  abovementioned modification of this approach not only 

renders treatment of this action geometrically consistent (i.e. by considering all of 

the terms in the action as pertaining to the same principal bunde), but also enables 

one to clearly see the manifest connection invariance of the fdl theory (given some 

connection independent matter action, S,) . Hence a rigorous Palatini analysis of 

Einstein-Hibert - like actions leads one to the rather unexpected conclusion that 

generalized Einsteinian actions of the type S = J tr [R A t (j? A P) ]  + S, are connec- 

tion invariant and naturally give rise to Einsteinian dynamics if S, is independent of 

the connection, w;  and otherarise only give rise to Einsteinian dynamics by an a pos- 

teriora' symmetry-breaking-type condition, T = 0 (for T the torsion tensor), identical 

to that of Einstein-Cartan theory. 
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Chapter 1 

Introduction 

Among the various schisms throughout the theoretical physics community, perhaps 

none is more contentious than that which separates researchers into the camps of 

metric-oriented or connection-oriented perspectives of gravity. 

Historically, of course, Einstein founded General Relativity as a dynamical theory 

of the metric tensor with the connection necessarily being that of the unique torsion- 

free metric-compatible Levi-Civita connection, {,',). This was more than a choice 

of mathematical convenience or simplicity as there are several important phys icdy  

motivated reasons to opt for this connection, many of which were integral to Einstein's 

deep physical intuitions about the nature of space-time. 

Nonetheless, from the earliest days since the advent of General Relativity, at- 

tempts have been made to generalize it, sometimes explicitly with regards to the 

connection. One of the fist such attempts made in this regard is the secaUed Pda- 

tini variation [14, 15, 361' where one subjects the generalized Einstein-Hilbat action, 

with I? no longer a priori regarded as any particular function of the metric, to a 

=An interesting irony is that much of what is now referred to as a 'Palatini VariationB was 
actually independently proposed by Einstein - see [15] 



variation brSH = 0 in addition to the usual bJER = 0- As is well known, one finds 

that in addition to the usual field equation resulting &om the metric variation, i.e. 

one obtains 

&om the connection constraint, which is nothing more (for I' torsion-fie) than the 

familiar condition of metric compatibility, whose solution, 

r;u = GCuh 

is the Levi-Civita Christoffel symbol. 

Thus, as far as the Einstein-Hilbert action was concerned, attempts to regard 

the (t orsion-free) connection as any potential generalization of the Chris toffel symbol 

were relatively short-lived. The question of why in fact, a Pdatini variation happened 

to lead to the relationship (1.4) was considered d d l y  peculiar [36, p.4541, but little 

more than that. 

The resurgence of interest in connection-based theories of gravity occurred due to 

two related latter-day phenomena: the growing awareness of structural similarities 

between the mathematical fkamework of General Relativity and that of Yang-Milk 

Gauge Theories 16, 12, 18, 351, and the development of the Ashtekar programme of 

Canonical Gravity [2, 3, 4, 51. 

As the role of the gauge principle achieved preeminence among particle physicists, 

it became clear that by using more abstract geometrical techniques one could regard 

all gauge theories as fundamentally dependent upon connection 1-forms which took 

values in the Lie Algebra of some gauge group 9, and analyze their dynamics ac- 

cording to a Hamiltonian formulation involving the connection 1-form and its canon- 



i c d y  conjugate momentum as the relevant configuration variables. Such a viewpoint 

has since been often referred to as Yconnection dynamics" [34], and its development 

led many to wonder how gravity, with its obvious geometrical structure involving a 

"ready-maden connection l-form, I?, could be similarly interpreted, 

Meanwhile, with the development of the ADM formalism [I], General Relativity 

could be put into a consistent Hamiltonian framework involving the dynamical evolu- 

tion of spacelike submanifolds C (with induced Riemannian metric qij), of spacetime 

M; and whose configuration variables involve fnnctions of the induced metric qij and 

the extrinsic curvature, Kim, of C with respect to M on the general configuration 

space Met(Z) ,  the space of all Riemmanian (3-) metrics on C. The r e l e ~ n t  Hamil- 

tonian can be written as a s u m  of two fundamental constraints, the diffeomorphisrn 

constraint, ~ ( 3 ) ~  and the Hamiltonian constraint, C ( N )  , each (densitized) complex 

fanctions of the shift vector, #, and lapse be t ion ,  N, respectively. Hence one has 

where one finds that the dowed states of the configuration space are those for which 

the constraints (and hence the Hamiltonian) vanish identically. 

The Poisson brackets of these constraints form the stxalled Dirac algebra, 

where 

and 



where 

We see that while the constraints are closed under Poisson brackets, owing to the last 

constraint they do not form a Lie Algebra. 

Of course it should be emphasized here that nowhere in this anaIysis is there a 

connection variable - the definition of the extrinsic curvatnre Kim above (on which 

the constraints implicitly depend) spe&cdy utilizes D., the coMliant derivative 

with respect to the Christoffd symbol, {, C, ) .  It is thus solely a metric-oriented 

perspective and one which in no way suggests, let alone necessitates, the treatment 

of I' as a dynamical Mliable. Many people, after Wheeler, have refared to this 

treatment of gravity as "geometrodynamics" . 

Shortly after the development of the ADM analysis, those interested in the issue of 

quantum gravity with a bias towards the canonical perspective attempted to quantize 

this classical geometrodynamical picture by applying to it the well-known concepts of 

the Dirac quantization procedure [13, 23, 251 in the hopes of leading to the Wheeler- 

DeWitt equation, 

H + = O  (1.11) 

for all choices of and N of some quantized Hamiltonian, H ,  and for y5 E R, with 

3C some physically rde-t HiIbert space2. 

This agenda encountered several insurmountable technical difEculties, one of which 

(though by no means the only one) being the fact that in attempting to quantize the 

Hamiltonian one must effectively quantize the constraints, since, as mentioned above, 

the Hamiltonian reduces to a sum of the two constraints. 

'This Hilbert space itself is rather diflicult to find, in f d .  The usual choice of L2(Q), the 
set of square integrable functions on the configuration space, Q, Ieads us to consider L " M ~ ( c ) ) ,  
which, owing to the infinite-dimensional nature of Met@) makes defining an inner product rather 
problematic. 



The issue of the constraints tums out to be a substantial stumbling block, ow- 

ing to the fact that elevating the two constraints to the operator level leads one to 

encounter operator ordering problems in the fundamental canonical variables p~ and 

qijy combined with the fact that the constraints are non-poIpomid in pij and qij. 

Attempts to circumvent these difEculties with the constraints Ied those with a 

connection dynamics perspective to suggest re-interpreting gravity as a theory where 

the metric becomes relegated to the status of a derived variable, with a frame field 

e and (Lorentz) connection w the sole primary dynamical variables - the so-called 

Pdatini Tetrad Formalism. If one recasts the Hamiltonian dynamics in this manner, 

one finds that the constraints do, indeed simplify and become polynomial, but are 

now no longer dosed under Poisson brackets and hence the route to quantization is 

as mysterious as ever. 

In the late 1980s, Ashtekar [2, 31 breathed new energy into the canonical quantum 

gravity programme by showing that one can modify the above Palatini Tetrad For- 

malism into one which extends the relevant geometrical spaces to their compledied 

counterparts, and, taking advantage of the uniqueness of N = 4, regarded the primary 

dynamical variables as a complex frame field and a self-dud (Lorentz) connection. 

Using this perspective, the constraints were closed and poIynomial, but one now 

needed to impose reality conditions to force the metric (defined via the now-complex 

Game field e) to be real-valued. 

Roughly simultaneous to this development, Witten [38] added a farther boost 

to the spirits of those in the canonical quantum gravity camp by showing that the 

Pdatini Tetrad treatment of 2+1 gravity was equivalent to Chern-Simons theory 

of the inhomogeneous Lie Group ISO(2,l) and thus could be explicitly canonically 

quantized. 



Meanwhile, of coarse, those who were interested in different routes to the holy 

grail of quantum gravity [25] were avidly pursuing other avenues - most notably that 

of superstrings [I91 and Euclidean quantum gravity [17], both of which regard the 

metric as the fundamental dynamical variable and have little interest in recasting 

General Relativity in a connection fii-amework3. Most researchers in classical General 

Relativity, meanwhile, have understandably never regarded General Relativity as 

anything other than a primarily metric theory and tend to dismiss any attempts to 

reformulate it in connection language as mere mathematical chicanery. 

We have thus reached the schism alluded to above, where strong views are preva- 

lent and theorists tend to find themselves perched rather quickly on one or the other 

side of the connection-metric divide. 

This thesis will begin, at least, in the connection camp and examine various dS"- 

ent gravit ationd theories &om a connection-oriented perspective, but the emphasis 

will lie with General Relativity. Climbing down &om the rarefied heights of quantum 

gravity outlined in this introduction, we shall only examine classical dynamics and 

that only from a Lagrangian perspective. We shall attempt to relate the Palatini 

variation of page one to the Palatini Tetrad formalism alluded to above, en route 

clarifying certain key assumptions the latter sub tlely makes. 

This work was motivated by a general desire to visualize General Relativity in 

a rigorously geometrical connection-based framework like Yang-M.  Theory4. More 

specifically, a key concern was to darify the mysterious origins of the Christoffel 

condition (1.4) in the standard Palatini treatment - a condition which seemed all 

the more mysterious owing to the fact that Ashtekar had already shown some time 

 here are, of course, those who have feet in both camps (or neither) - Witten is puhaps the 
most illustrious, but by no means only, example. 

4The gravitational action strictly analagous to Yang-Mills Theory is the Lovelock action[30], 
SL = J R A *R, which is completely well-defined geometrically, but yields non-Einateinian dynamics. 



ago that when one writes it in Eamiltonian form, 3fl Palatini theory collapses back 

to the standard geometrodynamical description of general relativity and hence "3+l 

Palatini theory does not (my emphasis) succeed in recasting general relativity as a 

connection dynarnical theoryn [MI. If such a statment is, indeed true, one would 

imagine that it should be possible to see its validity on the Lagrangian level alone - 
something which, according to (1.4) at least, appears not to be the case. 

The thesis is divided into three basic sections. Chapters 2 and 5 review and clarify 

some necessary geometrical concepts inv01ving the connection, while Chapters 3 and 

4 (together with the Appendices) rigorously examine various gravitational actions 

under the Standard Palatini formalism, en route developing an Extended Action, 

which, for the torsion-free case at least, gives rise to the dynamics of General Rela- 

tivity while leaving the connection completely undetermined. In Chapters 6 and 7 we 

turn to the Palatini Tetrad approach and develop an associated generalized prescrip- 

tion which again enables one to derive General Relativity (in uacuuo) while leaving 

the connection undetermined. Perhaps not surprisingly, this generalized prescription 

will be shown to be directly related to our Extended Action of Chapter 3 while simul- 

t aneously leading the way towards establishing a more consistent treatment of the 

relevant gravitational action S, = I tr [R A * ( P  A P ) ]  in terms of its basic constituent 

geometrical elements. Finally, we consider the explicit effect on the above analysis of 

adding a matter term to the action S,. 



Chapter 2 

Affine Connections 

2.1 Overview 

Throughout Chapters 3 and 4, in what we call the Standard Pdatini Variation, we 

deal exclusively with the usual a fhe  connection of Riemannian geometry. As we 

shall see in Chapter 5, this connection has a natural geometric generalization to 

other (gauge) theories which is most vividly illustrated via the framework of fibre 

bundles, but for the purposes of the next three chapters this is both unnecessary and 

potentially obfuscatory. 

Moreover, f i e  co~ect ions  are fundamentally different horn more generalized 

connections in that they admit two additional properties: metric-compatibility (or 

lack thereof) and torsion, both of which are undefined for more generalized connec- 

tions owing to the fact that they are unique to the nature of the tangent bundle, TM 

(or, more precisely, to the bundle of frames, B ( M )  and its related bundles). 

Both metric compatibility and torsion are independent atfxibutes of a general 

attine connection and thus serve to specify, at least to some extent: the nature of 

our connection. This chapter will briefly highlight and review the mathematical 

definitions and physical manifestations of each of these two attributes and their com- 



bination, while simultaneously specifying the relevant notation which wi l l  be used 

throughout much of the thesis. 

2.2 Definition of an Affine Connection 

Following mathematical convention [32, 101, we defme an a f h e  connection as v, 
a map fiom V e c ( M )  x V e c ( M )  to Vec(M),  where Vec (M)  represents the set of 

vector fields on the differentiable manifold, M; while the N3 functions, I', C, (z) , are 

technically referred to as 'connection coefficientsn. 

This definitional approach is somewhat at odds with the more generaked view 

&om fibre bundle theory, where l', ', represents a GL(N,  R)-valued connection I - fonn 

and represents the covariant derivative. In keeping with these ideas, we shall often 

use the word "connectionn to refer to the connection co&cients (1-form), r, rather 

than to its associated map (covariant derivative) V. This potential abuse of notation 

should not prove too confusing owing to the dear distinction in symbols used (i-e. I' 

vs. V) combined with its prevalence throughout relativistic physics. 

We thus have the following definition: 

An A f i n e  Connection is a map 

which satisfies the following conditions for f any smooth, red-valued function on the 

differentiable manifold M and X, Y,  Z E Vec(M): 



For (d,) any (local) basis of the tangent space TpM at some point p E M, we define 

the connection coefficients I' by: 

We write the indices of the connection (coefficients) r, ', in this somewhat unortho- 

dox manner so as to simplify comparison with more generalized connections in later 

chapters . 

Thus v,v for some vector field locally expanded as v = vuQ can be written in 

component form as: 

where 

X = &; I* = (vpv)* = a&*) + r, *, VP 

As usual, if some vector field, X, satisfies the condition 

it is said to be parallel transported along c(t), for c(t) the relevant integral curve of 

V; while if we have 

then c(t) is labelled a geodesic. 

Using (2.2) - (2.5) together with the definitions: 



and the Leibniz rule: 

we can extend the action of v to any generalized tensor T on M (this is another 

manifestation of the particular nature of the &e connection - in general one c m o t  

do this.) which will thus enable us to defme the concept of mehicity. 

Finally, we define two supplementary tensors, the torsion tensor, T, and the cur- 

vature tensor, R, as follows: 

T := Vec(M) x Vec(M) x Vece(M) + 92 

(X, Y, A) * (A, v x y  - V Y X  - [ X ,  YI) 

where A E Vec*(M), the set of 1-forms on M and 

and 

where we have used the usual notation, (A, X) to denote the element of 32 obtained 

by the 1-form, A, acting on the vector field, X, i.e. (A,X) = A(x). 

In holonomic coordinates (i.e. for (e,) = {&)) we find: 

'we shall henceforth use such coordinates as a default and all tensor components wiU be expressed 
in terms of these coordinates unless otherwise specified. 



The Ricci tensor, 

RBL := RoBuc 

and, in the presence of a metric, the RicJ scalar 

are defined in the usual way. We note that the curvature tensor, Ra8*, exhibits the 

symmetry: 

by definition. 

2.3 Metricity 

Given the presence of a Riemannian metric, gap, on M, one can mandate that the 

&e connection (extended to tensors as per (2.11) and (2.12)) is one which keeps 

the metric %ovariantly constantn - i.e. 

This condition, referred to as both "rnetricity" and "metric compatibility", assures 

that the inner product of any two vectors parallel transported dong any curve remains 

constant and is a necessary consequence of the equivalence principle, but is by no 

means mathematically preordained. It is worth noting that there have been those 

who have explicitly examined the dynamics arising &om theories of gravity where the 

rnetricity condition does not hold [21], but for our purposes it is enough to recognize 

it as a "mathematical degree of &eedomn of the ailhe connection. 



2.4 Torsion 

In general relativity, the torsion tensor, T, is also assumed to vanish, but of course 

mathematically this is also not generally the case. Owing to the fact that in holonomic 

components 

this (non) vanishing of the torsion term is also refixTed to as the (non) symmetry 

of the connectionl but it is important to remember that this direct link only holds 

when working in a T,M basis where the commutator of the basis vectors of Tp M, i-e. 

[&, ZB] ,  is identically zero. It should also be noted here that in Chapter 4 we also 

encounter the contracted form of the torsion tensor T, O, = -T, >, which we refer to 

as the torsion vector. 

A large amount of work has been done involving the torsion tensor, both mathe- 

matically and physically [20,22, 27,311 but again we emphasize that for our purposes 

it is enough to recognize that it is merely a characteristic of a general afbe  connection 

independent of me trici ty. 

One can get a basic geometrical picture of the torsion tensor by comparing the 

parallel transport of two infinitesimal vectors in TpM along each other's flow lines. 

Consider the following diagram2 : 



Figure 2.1: Torsion as Non-Closure of an hfhitisemal Parallelogram 

If we define X := 8% and Y := bx& with both t? and bA infinitesimal3, as 

elements of TpM and we parallel transport X along Y and compare it to the parallel 

hamport of Y along X, we find that the difference between the two resulting vectors, 

r 2 r l  := p ~ 2  - pl, can be expressed, to lowest order in e and 6, directly in terms of 

the torsion tensor. That is, 

So we can view the &shing/nonMnishing of the torsion tensor as a measure of 

the closure/nnn-closure of the infinitesimal parallelogram made up of infinitesimal 

tangent vectors at p and their respective parallel transports. 

31nfinitesimals are used here in order to utilize distances via the metric and hence write rzry  in 
terms of the coordinates at p via a Taylor series expansion. 



Levi-Civita Connections 

Of course, it is a well-established fact of Riemannian geometry that there is a unique 

&e connection which is both metric compatible and torsion-fie. This connection 

is known as the Levi-Civita connection and in coordinate components it becomes the 

Christoffel symbol, i.e. 

This unique afEne connection, solely dependent on the metric tensor, enables any 

other hitherto connection-dependent quantity to also be re-expressed merely in terms 

of the metric. Hence the curvature tensor can now be regarded solely as a fnnction 

of the metric and its first and second derivatives, while it now displays the added 

symmetry: 

in addition to (2.20). 

The Christoffel symbol is assumed in General Relativity and its presence is visible 

in many related ways ranging from the ability to view the geodesic equation as a 

resultant Euler-Lagrange equation obtained by exhemizing path length, to treating 

curvature as a manifestation of the geodesic deviation equation, to a mathematical 

consequence of the equivalence principle. Hence the physical ramifications of doing 

away with the assumption I?, ', = {, ',) are vast, indeed - yet that is hardy a 

reason to treat it as a mathematical necessity. In fact, quite the opposite is the case, 

for if we can determine under what class of mathematical scenarios this Levi-Civita 

constraint does or does not occur, we might well be closer to determining under what 

general mathematical circumstances one is irrevocably led to General Relativity. This 

knowledge should be just as valuable for those convinced of the validity of General 



Relativity as for those who remain nnconvinced of it. 



Chapter 3 

Standard Palat ini Formalism 
(Torsion-Free) 

3.1 Introduction 

Early attempts to put General Relativity in a Lagrangian framework led Einstein and 

Hilbert to independently discover the action 

as one which yields the dynamics of General Relativity from a variational principle. 

That is, if one begins with the assumption (henceforth cded  the "Hilbert assump 

tion3 ) 

together with the identification 

one obtains, by varying SEN with respect to gap (henceforth cded a Hilbert varia- 

tion), the Einstein field equations: 



We note here that, in order to make the Hilbert va&ationd principle well-defined, we 

must either specify a boundary term, Ss, to be added to the original action, (3.1), or 

a prion' mandate that first derivatives of g,p are fixed on this boundary. This extra 

boundary term is, however, non-dynamical, and hence may be incorporated into o m  

action by a suitable redefinition of SEE. 

Yet the Hilbert variational principle is not the only one open to us. As mentioned 

in Chapter 1, motivated by more general geometrical considerations, one can envision 

utilizing a variational principle where the connection is no longer a priori determined 

but is instead dented  to the status of an independent graviationd field variable. 

Refixred to here as the Standard Pdatini variation, this approach begins with the 

same action as previously, i.e. that of equation (3. I), with the proviso that the Ricd 

tensor is now soleIy a function of a now-independent aftine connection, only assumed 

to be torsion-free. That is, our gravitational action now becomes: 

SP [g, r] = / 8 x 6  [fl&(r) + 1 6 * L ]  (3-5) 

with 

raqS = rBqo (3-7) 

Variation of Sp with respect to the metric results in the more general constraint: 

Gp (I') = 8rTW,  (3.8) 

while variation with respect to the connection now gives the additional constraint ' : 
'? 

Srw-\ - sqvrx.: - g p J *  Y = 01 (3.9) 

IA fkature of the Palatini approach is that, unlike the Hilbert variation, there is now no need to 
indude a boundary term since the action no longer countains any derhatives of the metric and all 
of the field variabies are assumed to vanish on the boundzry. 



which is the familiar condition of metric compatibility, whose solution 

rpew = (3.10) 

is the Chris toffel symbol. 

The combination of the two constraints induced by the Pdatini variation, (3.8) 

and (3.10), once again leads to the (Einsteinian) dynamics deduced by the Hilbert 

d a t i o n ,  i.e. equation (3.4), 

GIYI(0) = 8?rT', 

Thus we see that in the case of the Einstein-Hilbert action, SBa, the Hilbert and 

Palatini variations lead to the same results, both for the specific form of the connection 

as well as the final dynamics. 

This equivalence of the two approaches, however, is by no means always the case 

in all theories of gravity. To illustrate this crucial point, we now turn our attention 

to a generalized N-dimensional dilaton gravitational action and examine how the two 

variational methods differ when applied to this action. 

3.2 Hilbert and Palatini Dynamics of a General- 
ized N-Dimensional Dilaton Action 

Daaton theories of gravity are playing an increasing role in the study of gravitational 

physics. The prototype of this class of theories is the Brans-Dicke theory [7], whose 

original motivation stemmed from a desire to develop a theory which incorporated 

Mach's principle by relating the gravitational constant G to the mean value of a 

scalar field which was coupled to the mass density of the universe (see, for exam- 

ple, [37]). More recently, this motivation has been largely supplanted by superstring 

theories [19], which generally predict that the low-energy effective Lagrangian gov- 

erning gravitational dynamics is that of a dilaton theory of gravity. 



From the usual Hilbert perspective, the generic expression for such gravitational 

actions is of the following form: 

where 9 is the dilaton field and 8 symbolically denotes the matter Eelds whose 

Lagrangian may or may not also have an explicit dependence on 8. The Hilbert 

assumption, I;, ', = {,',), is here manifested by the notation R = R(g)  for the Ricci 

scalar. 

Once again we note the appearance of a boundary term, Sg, owing to the fact 

that our Hilbert variation involves a curvature term of second order in metric deriva- 

tives. The inclusion of such boundary terms is necessary to correctly evaluate the 

thermodynamics of a system of matter fields coupled to dilaton gravity [ll], but, as 

previously mentioned, is not directly directly relevant in ascertaining the basic Hilbert 

dynamics and will thus be henceforth ignored. 

Regarding the issue of dilaton gravity &om a Palatini perspective, however, forces 

us to generalize our action further. If we begin our programme constrained solely by 

the assumptions that our generalized action is f ist  order in curvature terms, at most 

quadratic in derivatives of Q and with a matter action only dependent on the metric 

(and hence independent of both the (torsion-fkee) connection and the dilaton fidd), 

we find that our action is necessarily of the following form [9]: 

and is dearly a function of three independent gravitational variables: the connection, 

the metric and the dilaton field (we also tacitly assume the necessity of the cnrvature 

term, R ( r )  and hence demand that D # 0). 



Note that although vaq = aa4 because 6 is a scalar, since metricity is not 

assumed, v29 above is given explicitly by vP V, @ or gw V, a,,*. Clearly in an 

a priori metric theory, both the third and fourth terms above are identically zero, 

while the fifth merely adds a total divergence combined with a redefinition of the 

A(@) term. Hence (modulo the non-dynamical boundary term Sg) for the special 

case of I?, ', = G ',,I above, SDp reduces to an action of the form SDH, and thus can 

be seen to be its proper Palatini generalization. 

A Hilbert variation of SDp yields the following two dynamicd equations obtained 

by varying with respect to the metric and the dilaton field respectively: 

- [DM + (F - A)] (a,iP)(O,!P) 

where we have dropped the explicit 4 dependence in D ( @ ) ,  A(q) ,  etc ..., DA represents 

the covariant derivative with respect to the Christoffel symbol and 

Meanwhile, the corresponding Palatini variation of (3.12) gives 

F', say, represents 

the following con- 

nection constraint : 

We can derive two supplementary equations by tracing (3.15) with g, and by 

21 



contracting (3.15) over X and p (or v, since (3.15) is symmetric in p and v owing to 

the assumed torsion-kee nature of the connection). 

Contracting (3.15) over A and p yields: 

while tracing (3.15) gives 

Combining (3.16) and (3.17), together with the realization that 

allows us to substitute for V,$P above and eventually fmd the constraint 

Upon substitution of this derived constraint back into (3.15), we find that, for 

( N  # 212 

where 

and 

2Clearly the case of N = 2 merely adds s constraint between our variable8 D', 8, C, P and does 
not allow us to solve explicitly for the connection using this procedure. For details of how one 
handles this scenario, see Appendix A. 



By permuting (3.20) one can find an explicit form for the connection (again for N # 2) 

in terms of the metric and the dilaton. Combining (3.23) with the two equations 

obtained by varying (3.12) with respect to gad and Q leads to the following "Pdatini 

dynamicsn 

and 

D1R({)) + (F' - A + Q)'(&P)~ + 2 ( F  - A + Q)v2* = 0 (3.25) 

where 

Comparing (3.13) to (3.24) and (3.14) to (3.25) yields some interesting conclusions. 

We see that for Q = 0, the two dynamics are mathematically identical. Clearly for 

this will always be the case, and here the Palatini dynamics reduce to the identical 

form df that of the Hilbert dynamics. 

Moreoever, we see that for Q directly proportional to (F' - A), the dynamics are 

fundamentally equivalent physically and only result in a rescaling of some constant 

parameter. 

An example may serve to cladfy this point of the case of 0 a F' - A. 



Consider the above generalized dilaton action, (3.12), with the foUowing parame- 

where a, b, c, d, f, k are some constants. Under this parametrization, we find that X 

and Y become: 

and 

that is, mere constants themselves. Hence under this parametrization, (3.28), Q 

becomes: 

where q is the constant 

where here X and Y are of course given by (3.29) and (3.30) above. It is dear that 

since we have: 
kQ F f -  A =  ( k f  - a ) e  , 

we are in a domain where Q oc F' - A. 

A Hilbert variation of (3.12) complete with (3.28), leads to the following dynamics: 



and 

kd ek'~({)) + k(+'' + 2(7) ek'v* = 0 

where the constant 7 is defined as 

Meanwhile, a Standard Palatini variation of (3.12) together with (3.28) gives : 

and 

kd ek'~({)) + k(+)ek' (&I?)' + 2( j )  ek'D%P = O (3.38) 

where the constant 7 of (3.34) and (3.35) has merely been rescaled in the following 

manner 

7 + = 7 + q  (3.39) 

for q the constant given by (3.32) above. This rescaling is merely algebraic and has 

no physical manifestation3; thus one h d s  that the Hilbert and (Standard) Pdatini 

variations result in the same dynamics for this particular case. 

In general, however, we have a situation where neither X, Y # 0 nor 0 is propor- 

tional to ( P r - A ) .  In this general case, then, we see that a Palatini variation does not 

yield identical dynamics, either mathematically or physically, from those of a Hilbert 

variation. 

3~indstr6m [28,29] has shown this for a smaller class of actions where B = C = F = 0 and A(\E) 
is \Ea fora E Z  



3.3 Generalized N-Dim. Einst ein-Hilbert Action 

Convinced that a Pdatini variation is thus no longer generally equivalent to that of 

a Hilbert variation, we turn our attention back upon the ordinary Einstein- Hilbert 

action of equation ( 3.1) and ask ourselves why, then a Pdatini variation of this action 

gives in fact the Christoffd constraint 

Again it is to be emphasized here that this question is not posed in support of some 

hidden agenda to necessarily pursue alternative theories of gravity where I?, ', # 

{,/,) - although, as previously mentioned in the previous chapter, there has been 

considerable effort devoted to this end, both with regards to non-metric connections 

and connections with torsion (see, for example, [21, 271). 

Regardless of whatever physical preferences one might have for the Christoffel 

symbol as the connection of choice, the mathematical singling out of this particular 

(metric compatible) connection from the space of all torsion-free connections via a 

general variational principle must strike one as curious, to say the least [36], while 

the sometimes associated view that the Pdatini principle offers some sort of pseude 

teleological "proof" of the necessity of the connection "being" the Christoffel symbol, 

at least with regards to the Einstein- Kilbert action, is even more suspicious. 

A natural question thus suggests itself: Is it possible to somehow modify the 

Einstein-Eilbert action so that a Palatini variation does not isolate the Levi-Civita 

connection but still gives rise to Einsteinian dynamics? 

To this end, we move to N-dimensions and consider a generalized Einstein-Hilbert 

action which, for simplicity, includes al l  possible terms that are at most quadratic in 

derivatives and/or connection variables [8]. We also henceforth drop the explicit 



matter action term, L,, thus regarding all derived dynamics as in uacuuo, with the 

understanding that the relevant stress energy tensor can always be recovered via 

the identification as per equation (3.3) above. Throughout this chapter we are only 

concerned with torsion-fkee connections (generalizations to actions with torsion will 

occur in Chapter 4). 

The most general action in N dimensions that one can construct subject to the 

above constraints is 

where we have used the convenient definitions: 

and where the coefficients N, I, J, K and L are constants. 

0 ther scalar quantities exist, but they can either be rewritten as hear  combina- 

tions of the above terms up to total derivatives or they are higher order in derivatives 

and/or connection variables. Once again it should be noted that, just as in the 

usual Palatini analysis for the Einstein-Hilbert action, (3.1), since we assume (69,) 

and (bT,',) to vanish at the boundary, no additional boundary terms in (3.41) are 

required. 

Since the connection is assumed, a priori, to be arbitrary, we can express it for 

this torsion-free case as 

rpCu = {pCu) + Qpev (3.43) 

for Q P C ,  some (initially) completely undetermined tensor whose sole constraint is 

that it be symmetric in its first and third indices (i.e. the torsion-&ee condition.) 



Looked at in this light, we see that we have the following relationships: 

z* = Qp + Q,~' = Q," - vA, (3.45) 

where we see that V" and Z* are representative of the two independent quantities 

Q p p A  and QpAC The following analysis can thus be regarded as a determination of 

the constraints put on Q,', due to the variational principle. 

Variation of (3.41) with respect to the connection F A P ,  leads to the following 

constraint: 

where we have explicitly incorporated the (torsion-fie) symmetry of the connection 

(ie. symmetry in p and o). The solution of (3.46) determines the connection as a 

fnnction of the metric in a manner which generalizes (3.9). 

We thus seek to find the conditions under which (3.46) may be solved for I' in 

terms of the metric. Tracing (3.46) on the (p, u) indices yields 

henceforth written as 



whilst a p - X contraction of (3.46) gives 

henceforth writ ten as 

Equations (3.48) and (3.50) are two equations in the two unknown vector fields VA 

and ZA. We therefore examine the (2 x 2) ma& St, defmed by 

There are clearly three distinct possibilities with regards to this matrix - namely that 

it is either rank 2, rank 1 or trivial. W e  shall examine each case in tnm. 

The fist possibility leads to the necessary relationship: 

which constrains Q P C ,  above to be traceless over any two indices. 

If is rank 1, we are left with some relationship: 

for some constant r = r(H,I,J,K,L,N) and thus leads to the following constraint on 

QpAp and Q,pA: 

Q,"' = -(I+ r )  Q/", 

while for Q being trivial, we see that we have the necessary condition P = Q = 

R = S = 0 relating our coefficients H, I, J, K, L and the dimensionality, N, bat 

can derive no information about Q P L ,  (or, more specifically, its associated traced 



and contracted vectors). For arbitrary N, one finds that the unique set of valnes of 

H, I ,  J, K, L satisfying P = Q = R = S = 0 is the following: 

which we shall see again later in a related context (i-e. (3.72)). 

We now return to our variational method and consider explicity the results for S2 

rank 2. Insertion of (3.52) into (3.46) yields: 

It is straightforward to show that 

is the only solution to (3.56) provided that 

where the constraints (3.58), (3.59) shall be referred to as "indeterminacy constraintsn 

as their actualization prevents determination of an explicit form of the connection (i.e. 

QpC, )  and merely limits Q,', to a subset of possible values. We will see that such 

conditions recur throughout the analysis of the next two chapters. 

Consequently we see that metric compatibility arises within the Palatini formalism 

under quite general conditions unless 4H + 4 J = -1, in which case, for 2H - J # 1, 
it can be shown that I?, ', is of the form: 



Similarly if 2H - J = 1 and 4H + 4 J # -1, we see that r, ', is necessarily of the 

form: 

rrCY = { p C J  f gAC V* 9w (3.62) 

1 1 We further note that the condition that trivializes (3.56), i.e. J = -5, H = z7  is 

a simultaneous solution of both of the above special cases and thus leaves vxgW 

completely undetermined moddo the conditions given in (3.52). 

For i2 rank 1: the analysis is similar except that one finds that the right hand side 

of (3.56) is no longer zero, but instead some general fimction of the metric tensor and 

(or dternativeIy, one of ZA, QA Pp or Qp<). Again one finds that the indeterminacy 

constraints must be satisfied for one to get an explicit expression for ~ ~ 9 ~ 6  (otherwise 

we are merely reduced to some weak constraint, as mentioned above, on QpC, ) .  But 

now, even given that these constraints are satisfied, we no longer have 

which merely entails some other weak constraint on Q,',. Finally, we note that the 

trivial case, P = Q = R = S = 0, amounts to changing the right hand side of (3.56) 

to include both traced Q tensors (i.e. VA and ZA)? thereby eventually yielding 

additional (weak) constraint on QPC,,  Merent  from that arising from the rank 1 

case above. 



Thus we have found that Q,', can be weakly constrained or fully determined, 

depending on the rank of $2 and the indeterminacy conditions, (3.58), (3.59). If it is 

fully determined, then we see that it is forced to be identically zero and the connection 

consequently reduces to the Christoffd symbol. For the standard Einstein-Hilbert 

action, with H = I = J = K = L = 0, this is, indeed, the case. 

But is it possibIe for our analysis to leave Q, ', completely undetermined? We have 

seen that 0 trivial leaves Q P p A  and QCA, (i-e. VA and 4) completely undetermined, 

while the combination of the indeterminacy constriints, (3.58) and (3.59), i.e. 

necessitates that the left hand side of (3.56) vanish identically. Thus in this special 

case (3.56) becomes: 

We can see that in general, (3.67) again leads to some weak constraint relating K to 

Z*, but the special case of 

merely trivializes (3.67) 

Thus for the special case of H = i ,  J = - A *  I = 2 7 
K = 1; L = 0, (3.46) gives 

a simple triviality, tells us nothing about the connection, and is thus completely 

redundant. We expect that this redundancy is manifested by a general invariance 

of the connection To this end, consider the following general transformation of the 

connection: 

r p C y  * Ppey f Qpev  (3.69) 



for Q, ,, as before, an arbitrary tensor field with the sole restriction that it is sym- 

metric in its first and third indices. This type of transformation is sometimes called 

a deformation transformation [20]. Under the above t r d o r m a t i m  we find that the 

action (3 -41) is correspondingly transformed 

where 

For rpe ,  to be completely unconstrained, we must have 6s = 0 regardless of the 

choice of Q,',. As expected, we see that this can ody  happen if 

which was the same condition we found that led to our redundancy. 

Conversely, consider subsi tution of (3.69) for r, ' , into the general action (3.41), 

and then varying the (transformed) action with respect to QPe,. This yields a set of 

complicated aIgebraic equations for Q, ,. Insertion into (3.41) of their solution for 

Q,', in terms of I?,', and g, leads directly to a modified action of the form given 

in (3.41) whose specific values for X, I ,  J, K, L are given by (3.72) above.' 

In other words, (3.72) is clearly the unique set of values such that o m  action is 

invariant under the transformation (3.69) with QPL,  completely unconstrained other 

4See Appendix B for more explicit details 



than being symmetric in its first and third indices. Accordingly, the values (3.72) will 

henceforth be called the ''maximally symmetric" 

From this perspective one can say that the compatibility condition, (3.57), ob- 

tained by applying the Palatini variational principle to the Einstein-Hilbert action, is 

an example of a constraint induced by a broken symmetry. That is, the EH action is 

a special case of our general action (3.41) above, with the particular requirement that 

H = I = J = K = L = 0. That these values of H, I ,  J, K, L break the general sym- 

metry is obvious from the above analysis, and it is this breaking of this "co~ect ion  

symmetryn which singles out the Christoffd symbol. 

3.4 Extended Action Dynamics 

Momentarily putting aside our consideration of the "connection-dynamics" of our 

extended action 

0 = 

and calculating the ordinary "metric-dynamicsn , we find 

umaximaUy" symmetric to distinguish them from other partial 
one asaumes some particular tensorial structure of Q, ', derived 
constraints. 

(3.73) 

symmetries which occur when 
from one of the above weaker 



upon variation of (3 -41) with respect to the metric. Provided the constants H, I, J, K, L 

are chosen so that (3.44) and (3.45) are satisfied (i-e. our coefficients are chosen so 

that 4H + 4J # -1 and 2H - J # I), then all terms on the right hand side of (3.73) 

vanish except for the first one, which becomes the usual expression for the Einstein 

tensor in terms of the metric, 

Consider next the condition of maximal symmetry. Insertion of our maximally 

symmetric values, (3.72), into the above dynamical equation yields 

where 

P," := v s g p  

and 
I EL := - [PX, - P$ - P~:] = - I;~~], (3.76) 
2 

thus enabling us to put some quantities directly in terms of the Christoffel symbol. 

Hence the field equations in the case of maximal symmetry consist of (3.74) alone 

- there is no equation which determines the connection in terms of the metric. In 

this sense the maximally symmetric action is a theory of gravity determined in terms 

of metric dynamics alone, with the connection fireely specifiable. 

Since the connection may be fieely specified, one choice is to make it compatible 

with the metric, i .e. to demand that (3.57) hold. In this case all PqP = 0, and (3.74) 

reduces to 

Gw(CH = 0 (3.77) 



which are the field equations for general relativity. Alternatively, suppose we choose 

rp ', = 0. In this case (3.74) becomes 

where Pqw := a,gw. Further simplification of the right-hand side of (3.78) yields 

where G(,)(g)  is the Einstein tensor expressed as a functional of the metric, i.e. 

G )  = ( {  Hence (3.79) also yield the equations of general relativity. 

The above case of examining I', ', = 0 raises an interesting curiosity. Clearly, as the 

maximally symmetric case only restricts the connection to be torsion-fke, = 0 is 

an available option. But the fact that we are able to choose such a connection globally 

enables us to say something additional about the geometry of our manifold - namely 

that it is flat; or rather, that it can be made flat with no physical sacrifice. Hence for 

the maximally symmetric theory, one can always model the dynamics equivalently in 

flat space. 

The preceding situation is also a generalization of a result obtained by Gegenberg 

et. al. for (1 + I) gravity [16]. Consider the action (3.41) for N = 2 with each of 

H, I, J, K, L set to zero. In this case the determinant of coefficients in eqs. (3.48) and 

(3.50) vanishes, and the general solution to (3.46) is given by [16] 

where B, is an arbitrary vector field. The Einstein tensor is given by 



and so renders the (I + 1) dimensional field equations trivial, as in the usual Hilbert 

case. We see from the preceding analysis of (3.74) that an analogous situation holds in 

higher dimensions for the maximally symmetric action: although the field equations 

do not determine the connection in terms of the metric, one can choose the connection 

to be compatible with the metric by appropriately choosing Q P e ,  in (3.69) and recover 

the metric field equations of general relativity. 

More generally, the choice of connection is completely irrelevant to the theory in 

the maximally symmetric case. One has only equation (3.74), which determines the 

evolution of the metric and is equivalent to the Einstein Field Equations. 

Thus by beginning with a generalized Einstein-Hilbert action given by (Ul), we 

have obtained a result whereby, for d of the coefficients taking the specific "maxi- 

m d y  symmetric" values of (3.72), a Palatini variation of this action yields Einsteinian 

dynamics together with a completely nndetermined connection. Looked at from this 

perspective, the standard Einstein-Hilbert action is merely a particular case (i-e. that 

for which H = I = J = K = L = 0) of our generalized action, (3.41). 

3.5 Summary 

In attempting to better understand the origin of the Christoffel constraint, (3.10), 

arising horn the Standard Palatini variation of the Einstein-Hilbert action, (3.5) we 

first examined a generalized dilaton theory of gravity, (3.12), to see if, under a Palatini 

variation, it too will yield the Christoffel constraint and consequent identical dynam- 

ics to that of a Hilbert variation. We find in general that the ChistoEd constraint 

does not in general occur, nor are the two dynamics generally equivalent, although 

there are situations where the dynamics are equivalent without the connection nec- 

essarily satsifying the Christoffd constraint. We return to the Einstin-ECilbert action 



and succeed in finding a generalized version of this action which results in the final dy- 

namics of General Relativity while simultaneously leaving the connection completely 

indeterminate. We denote such an action as the "maximally symmetric" action and 

note that it is invariant nader a deformation trdormation, I', ', =$ I', ', + Q, ,, 

for Q,', some arbitrary tensor symmetric in its first and third indices. 

It is worth emphasizing here that, viewed &om the perspective of our generalized 

action with arbitrary H, I ,  J, K, L, a Palatini variation of this action invariably leads 

to the Christoffel constraint unless 8; I ,  J, K, L satisfy the particular values deter- 

mined by the indeterminacy constraints (3.58), (3.59). Meanwhile, complete fkedom 

for the connection only occurs when H, I, J, K, L satisfy the unique madmally s y m -  

metric values - which can be regarded as a particular point in El, I, J, K, L parameter 

space whose specific relevance lies in its relationship to deformation invariance of the 

connect ion. 



Chapter 4 

Palat ini Variation of Act ions with 
Torsion 

4.1 Overview 

We now consider further generalization of our actions where the connection is no 

longer necessarily torsion-free. There are two principal motivations for pursuing this 

particular avenue, the first of which being mathematid completeness. Since torsion 

is one of the two fimdamental "degrees of fkeedomn of our aftine connection (along 

with metric compatibility), it  seems unwise not to at least investigate modifying our 

methods based upon its potential presence. 

Secondly, one is spurred on to consider the question of torsion due to the nature 

of the so-called Palatini Tetrad formalism, which we shall see explicitly in Chapter 6. 

In this treatment, one proceeds in the opposite way to the technique of the previous 

chapter by implicity assuming a metric compatible connection and going on to derive 

the no-torsion constraint &om a variational principle. This suggests that a variational 

approach which assumes neither metric compatibility nor zero torsion - i-e. a "truen 

Palatini variation, if you will - would be worth examining. 



4.2 Einstein-Hilbert Action with Torsion 

We begin then, by re turning to our standard N-dimensional Eins tein-Eilbert action, 

where we generally no longer have a symmetric &fine connection and thus define the 

torsion tensor by 

T~ cu := rpev - ruefi (4-2) 

Owing to the generally non-symmetric nature of the connection, we now note that 

total derivative terms of the form 

for some vector X A ,  can no longer be ignored, but rather instead result in a net 

contribution (modulo the Gaussian term) of: 

Variation of (4.1) with respect to I' results in 

Tracing and contracting (4.5) yields the constraints: 

and 

Substitution of (4.6) and (4.7) into (4.5) eventually yields the following explicit ex- 

pression for the connection: 



The metric variation is, of course, unchanged, giving as before: 

G(W) (r) = 0 (4-9) 

Combining (4.9) with (4.8) we get a final expression for the dynamics of the Einstein- 

Hilbert action for non-zero torsion: 

A few points are worth emphasizing here. First, the Palatini variation (here mani- 

fested explicitly by equation (4.8)) now gives a connection where the torsion terms 

explicitly contribute to the symmetric part of the connection, via the term 

(&) [ 6 : ( ~ #  0,) + 6E(Tp P,)]. That is, a Palatini variation of this action does not 

allow one to express a torsion-laden connection in the usual way as: 

where f (T)ebl represents the antisymmetric part of the connection. 

In addition, we have seen in equations (4.6) and (4.7) that a T # 0 Palatini varia- 

tion of the Einstein-Hilbert action allows us to explicitly express both non-metricity 

factors VA and ZA in terms of the Torsion vector, T ' ,  and thus each in terms of the 

other (i-e. = - (F) ZA). 

4.3 Extended Einstein-Hilbert Action with Tor- 
sion 

We now regard our Extended Action of the previous chapter and apply to it a Palatini 

variation whilst dropping the no-torsion requirement. 



We thus begin again with the action: 

In an analogous fashion to (3.43), we can now assume a connection of the form: 

for S, ',, All respectively symmetric and anti-symmetric tensors in p and v. 

Therefore we now have the relationships: 

2" = S,"' + s," + A,"' (4.14) 

and 

VA = Atd - S', (4.15) 

Hence unlike the torsion-free case, VA and ZA now reflect three independent quantities: 

SO 5, SOXu , A*/ ,  but now we supplement (4.14) and (4.15) by: 

Tho = 2AApp (4.16) 

. Therefore Su 1, SuAu, AA/ can be represented by K, ZA and TAP '. 

A Palatini variation thus yields, for T # 0: 

Owing to the fact that we are now dealing with a generally non-symmetric connection, 

tracing and contracting (4.17) yields three independent equations: 

( 2 - N ) T ? + [ ( N - 1 ) - ~ I + ~ J + ( N + ~ ) K ] v *  

+ [ ( N - ~ ) - ~ H - ~ J - K + ~ ( N + ~ ) L ] Z '  = 0 (4.18) 
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and 

where P, Q are the same combination of fnnctions of K, I, J, K, L as (3.47) of the 

previous chapter. We note that (4.18) can be combined with (4.19) to give: 

W e  see dearly here that now the non-degeneracy of a, PS - QR # 0 no longer implies 

that VA = Zx = 0, but rather one has to examine the determinant of the 3 x 3 matrix 

A, defined by: 

where 

and where, as previously mentioned, we have the relationships 

Now, in contrast to our earlier case of a, we have four possibilities to consider for A: 

rank 3, rank 2, rank 1 and trivial. 



A quick inspection of A yields that it is necessarily non-trivial for N # 2, and 

hence there is no analogous "maximalIy symmetric" N-dimensional set of d u e s  for 

H, I ,  J, K, L when the torsion tensor is generally non-zero. Meanwhile, for the cases of 

A of rank 2 and 1, we can see that, analogously to the torsion-f?ee case, the redundancy 

manifested by the non-invertibility of A will generate various weak constraints on S, =, 

and A,', in terms of their various contracted and traced quantities. Meanwhile, if A 

is invertible (rank 3), we find the usual restriction: 

To get an idea of the structure of the resdts, we carry out a general calculation 

for A of rank 2 (i-e. the same rank as one finds from the Einstein-Hilbert action). 

In this case we can express both VA and 4 in terms of the torsion vector, TA ", (i-e. 

reexpress S, @, and SuAu in terms of A,:). 

We proceed, then, and simplify (4.17) to give something of the form: 

where 

and xrP@ is some complicated function of the metric, torsion vector T, and torsion 

tensor (see Appendix C) Of course, in the rank 3 case, x,p is solely a function of 

the metric tensor and the torsion tensor, while in the rank 2 case, x,p becomes a 

function of VA (or ZA) as well. 



At this point we break up the analysis into two distinct sections, depending on 

whether or not C (Le. J) is non-zero. 

If C (i-e. J) # 0, then, permuting (4.30) yields an undetermined connection iE 

(AC - B')(C' - AB + AC - BZ) = (BC - A')(C~ - AS + BC - A') (4.34) 

which is the T # 0 generalization of the T = 0 indeterminacy constraints (3.58) and 

(3.59) of Chapter 3. 

Just as we found in the torsion-fiee case, with constraints (3.61) and (3.63) follow- 

ing &om actualization of the torsion-free indeterminacy constraints, (3.58), (3.59), we 

note that actualization of our more generalized indeterminacy constraint will simi- 

larly lead to various constraints among S, ' ,, A, ' , and S, ", , SflP and A, ", in terms 

of H, I, J, K, L and N, the details of which will in turn depend on the particular rank 

of a. 
Meanwhile, if equation (4.34) does not hold, we can therefore solve explicitly for 

the connection, as before. We find, after much manipulation1, that our comection is 

of the form: 

where F, d, 2, f ,  S are all in turn complicated functions of H, I ,  J, K, L. 

Meanwhile, for J = 0 the analysis simplifies somewhat. Here the indeterminacy 

constraint becomes simply H # f $ (i-e. r,', is explicitly soluble udess If = f i), 
where in this case rPCw takes the expIicit form: 

'See Appendix C 



where 

and ii, 6, P are (still) more complicated functions of H, I, J, K, L as shown in Appendix 

Owing to the complicated natnre of ii, 6,  ..., f, etc., it is difEcult to get an intn- 

itive feel for the final results of the connection in terms of our original H, I ,  J, K, L 

parameters, but the general structure is readily apparent. As in the case for the 

Einstein-Hilbert action, we once again find that, given that the indeterminacy con- 

straint is satisfied, we end up with a connection of the form: 

where the [f (g, T)]:,) term is a combination of metric, torsion tensor and torsion 

vector terms together with various complicated functions of H, I, I,, K, L such that 

the entire term is symmetric in its p and Y indices. 

4.3.1 Final Dynamics 

The procedure for calculating the final dynamics of our potentially torsion-laden 

system is faLly straightforward: we substitute the derived explicit form for the con- 

nection, i-e. (4.35) or (4.36), into the action (4.12) and vary the resultant expression 

with respect to the metric tensor. in reality, however, we find that such a programme 

becomes highly complicated not only because of the complicated nature of the various 

parameters &..P in (4.35) and (4.36), but more significantly because these expres- 

sions themselves implicitly or explicitly involve the metric tensor and one must be 

extremely c a d  to keep all the metric terms separate so as to successfully vary with 

respect to them when the time comes. 



At the end of an admittedly very Long day, however, one comes to a final dynamical 

expression of the following form: 

where Sa0 and WyAao are some 

sors and their various associated 

4.4 Extra Torsion 

complicated tensors comprised solely of torsion ten- 

contractions (See Appendix D) . 

Terms t o  the Action 

Finally, we note that dropping the T = 0 requirement f?om our original assumptions 

which eventually led to the extended action, SERB of Chapter 2 now allows us to 

include more terms to such an action consistent with the previous constraints of 

being only up to second order in derivatives and/or field variables. 

That is, we now find a possible six additional independent terms involving the 

torsion tensor. We examine the dynamics of this system? where for simplicity we 

regard it independently &om our previous SPHB action. We consider the combined 

dynamics in the next section. 

The relevant action for this section, then, is of the form 

We see that the d, e, f terms arise solely from the various scalar contractions of 

the torsion tensor, T, C, combined with the metric tensor, while the a, b, c terms occur 

through potential torsion-non-metricity contributions. 



Vadation of ST with respect to the connection leads to the following expression: 

W e  again trace and contract (4.41) to obtain relations for VA and Z* in terrns of T/A, 

thereby finding the three relationships: 

[ ( N - 1 ) ( 2 d - 1 )  + ( N + l ) c + ( l + b + 2 e + a + 4 f ) ] ~ , P *  

+ [(N - 1) (1 + b) + 2a] V" + [(N - 1) (1 + c) + a] 2" = 0 (4.42) 

If we define 



and proceed as in the previous section, we again consider the relevant possibilities of 

A - i.e. rank 3, rank 2, rank 1 and trivial. 

The ,8 term ensures that A cannot be trivial; whereas, as before, the case of A of 

rank 1 amounts to a weak constraint, dowing one to express one of VA, ZA, T, ", in 

terms of the other 2; A of rank 2 amounts to a stronger constraint, allowing two of 

VA, ZA, T, *, to be writ ten in terms of the remaining one, and the non-degeneracy of 

A ensures that: 

VA = ZA = T, "A = 0 (4.49) 

We see that for the special case of a = b = c = d = e = f = 0 as seen in Section 

4.2 above, the matrix A clearly is of rank 2 and (4.42)-(4.44) reduce to the previously 

found relations hips 

and 

Once again we push forth the analysis for the case of rank 2, thereby enabling us 

to eventually express the connection explicitiy solely in terms of the torsion tensor 

and the torsion vector. 

Thus we say that (4.42)-(4.44) reduce to expressions of the form: 

where O and T are functions of a, b, c, d, e, f and the dimensionality N. 

This transforms the general expression for the connection variation (4.41) to: 



where we define 

and 

As before, for the rank 1 case, the left hand side of (4.54) is unaltered, while the 

right hand side generalizes to include terms of the extra degree of freedom (i-e. VA 

or Zx; or S, ", or S,,"). Of course in the rank 3 case the right hand side of (4.54) is 

solely a function of the torsion tensor and the metric tensor. Equation (4.54) is thus 

the pure torsion term analogy to (4.30). 

Once again, we find that analysis of (4.54) gives rise to an indeterminacy condition, 

this time dependent solely on a, as one might expect. 

First we consider the case of a = 0: 

For a = 0 we find that manipulation of equation (4.54) eventually yields an explicit 

form of the connection as follows: 

For o # 0, however, life is somewhat trickier. We define 



and 

and note that we have an indeterminacy condition at a = $, a = -1. For a # $ or 

a # - 1, we eventually find that our connection has the following form 

which we can rewrite as: 

where Y, > is defined by 

for &4,  2, r i ,  2,4 some complicated functions of a, b, c, d, e,  f ,  explicitly found by the 

recursive utilization of (4.52), (4.53), (4.55)-(4.57), (4.59), (4.60) and (4.6 1). 

Of course, if a = i, - 1 we cannot solve explicitly for the connection and we instead 

are reduced to finding some constraint relating SpEu, ApC,  and (since A is assumed 

to be singly degenerate here) A, say. 

In general, though, for o # i, -I one can say that in the singly degenerate (or non- 

degenerate) case, we can express our connection, I?, explicitly in tersm of a, 8, c, d, e, f, 

the metric tensor, g, and the torsion tensor, T, ',. Substition of this connection, 

(4.61) or (4.58) into the action (4.40), and varying with with respect to the metric, 

ga@, eventually allows us to obtain a ha1 dynarnical result of the form 

W) = 0 (4.64) 

where sa# and ~ y A a B  are again complicated tensors solely comprised of T, C, and 

its contractions, but different &om Sa8 and W",XQB7 previously defined for the SBHB 



dynamics of Section(4.3) above and solved for explicitly (if recursively) in Appendix 

D. Of course as mentioned above, if A is doubly degenerate, an explicit solution of 

I' in terms of the torsion tensor and torsion vector is no longer possible, as B above 

wiu now explicitly depend on VA or ZA (i-e. S, ", or SUAu). 

4.5 Summary 

We now briefly summarize this chapter's results while simultaneously sketching out 

an argument for the form of the results of a Palatini variation of the generalized 

torsion-laden action which arises &om the combined effects of Section 4.3 and 4.4, i.e. 

the generalized action 

+ J(v,ga/3)(vPg~@) + KV + LZ2 

+a(vPgw)T,  + bT' ",VA + cT, :ZA 

+dTwuTCP, + eTA,TAw + f TAC,~'cpj 
Variation with respect to I', leads to three independent relations between T?, VA 

and Z* (or, likewise, thee  independent relations between S, ",, SeAu and A,"*): 

which can be represented by the matrix: 



where 

C can either be trivial, rank 1, rank 2 or rank 3, leading one to derive various con- 

straints between V*, ZA and T, @* depending on the rank of C. 

Substitution of the relevant rank of C into the connection variation equation gives 

the following general scenario: 

where 

and &j is some complicated function of g,, T, ', and either none, one, two or all 

three of VA, ZA, T, ", (or, alternatively, S, 5, SUAw , A, "*) depending on whether C is 

rank 3, rank 2, rank 1 or trivial, respectively. 

For C # 0 we find that (4.71) yields an undetermined connection iff: 

whiIe for (? = 0, we have the following indeterminacy condition: 

If (4.76) or (4.75) do not apply, we can solve for the connection explicitly in terms 

of the metric, torsion tensor and remaining variables unconstrained by the above 

degeneracy of C, otherwise we are left merely with weak constraints on relations 

between S, ',, A,', and S, S,," and ACuA. 



Furthermore, the indeterminacy constraints do not apply, and if C is rank 3 or 

rank 2 then we can express our connection explicitly in terms of only the metric 

tensor, torsion tensor and its contraction (i.e. the torsion vector). We see that in 

that case we find an explicit solution for the connection of the general form: 

where q,f, 5, E, .ii represent various complicated functions of H, I, J: K, L, a, b, c, d, e, f 

obtained in the usual recursive manner. 

Finally, substitution of (4.77) into (4.65) followed by varying with respect to the 

remaining dynamical variable, g p ~ ,  yields a final dynamical expression of the form: 

where S, and wyApS are again some complicated tensors comprised solely of torsion 

tensors and their various associated contractions (i.e. independent of the metric) 2. 

We note that the final dynamics arising &om this combined action modify the 

Einsteinian dynamics only by factors of T2, that is, by factors second order in the 

torsion tensor. 

Among those researchers concerned with the effects of torsion, there have been 

some who have sought a more dynamical role for the torsion tensor by examining a 

dynamicd scenario containing c o d a n t  derivatives of the torsion tensor in addition 

to the Einstein tensor - i-e. by induding terms of the form vP(T,  @,), say, on the 

left hand side of (4.78). It is clear &om the above analysis that this does not occur 

in our case, where we have excluded any terms from the original action which are 

'For the sake of simplicity, we have maintained our assumption that C is non-degenerate or singly 
degenerate here. Otherwise s and w would also be functions of Vx and/or Zx. 



greater than second order in the connection. However, if one removes this constraint 

and considers higher order connection terms, it begins to look like such 'dynamical 

torsionn terms can arise &om a Palatini analysis. It t u r n s  out that it is impossible 

to construct scalar quantities fiom VA, T, ',, g d  and T, O, to only third order in I'. 

In order to pursue this line of inqniry, then, we are forced to go to fourth order in r. 
We thus find that a Pdatini variation of the term 

say, leads to the following cons h i n t  : 

Although a rigorous analysis of such higher order t a m s  has not, in fact, been done, 

the above constraint is highly suggestive of an eventual expression for the connection 

involving covariant derivatives of the torsion tensor and hence the eventnal appearance 

of such terms in the final dynamical expression. For those whose interests lie in 

developing such a theory, it is conceivable that a fourth order generalized Palatini 

action might well be worth considering fittther. 



Chapter 5 

Geometrical Divertimento 

5.1 Fibre Bundle Review 

At this point we pause in our analysis of the Palatini procedure to briefly review' and 

clarify some methods of abstract geometry which will prove necessary to our cause in 

later chapters - specifically key elements of fibre bundle theory. 

Fibre bundles have become fairly popular with physicists over the last several 

decades largely because of their utility in visualizing gauge theories. We begin with 

principal fibre bundles. Briefly put, a principal fibre bundle allows one to simultane- 

ously view the physical space, M, referred to as the base space, and the bundle space 

E, where the bundle space generally reflects the symmetry group of the theory by 

associating with each point x E M a fibre in E diffeomorphic to some Lie Group G, 

refined to as the gauge group or structure group. 

More technicdy, for E some topological space which is equipped with some free 

right 8-action (where ufreen here necessitates that aIl fibres are diffeomorphic to one 

another), a some smooth map from E to some other topological space M, we see 

that E can be grouped as sets of fibres, n-'(z), over each z E M, where each fibre 

somehow represents the gauge &eedom of our theory with any point on the fibre 

lThis brief review r e k s  heavily upon [26] 
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Figure 5.1: Principal Fibre Bundle 

over x, p, being related to another, q, via the action of the gauge group P - i.e. 

v p , q  E r - ' ( x ) 3 g  E Q 3 p = q g .  

Meanwhile a cross-section, a, a smooth map cr : M -+ E which associates with 

each x E M some unique p E a-'(2) in the fibre over x amounts to, in this picture, 

a gauge choice. 

Furthermore, we note that the secalled 'Vertical Vector Fieldsn on E, V ( E ) ,  

which arise &om the action of on E are directed Wong the fibren2 and faithfully 

*Owing to the above one-dimensional pictorid representation of the fibres, it becomes diEcult 
to visualize more than one such direction for this vector field. A better model is one of an onion, 



reflect the Lie Algebra, L(G), of by the isomorphism: 

where xL represents the vector field on E induced by acting on every element of p 

by the oneparameter subgroup of P which corresponds to the Lie Algebra element 

L. We note that vertical vector fields on E can be defined by the relation: 

We can then define a connection on a principal bundIe as a smooth assignment of 

a subspace ( H p E )  V p  E E such that 

where HpE is compatible with the action of on E, i.e. 

This above definition can be shown to be eqnivalent to defining an L(B)- valued 

1-form, A, where we have 

where z corresponds to the isomorphism defined above by equation (5.1) 

Armed with a connection we can thus compare points in neighbouring fibres by the 

notion of parallel transport. Since rr,(V,E) G 0, once we have defined a connection 

on our bundle, we not that we have an isomorphism given by 

where each layer (shell) represents a fibre and where one can imagine many different such (vertical) 
vector fields. 



which enables us to uniquely write the %orizontal liftn of any vector field (or thus 

any curve) in the base space M - where by "horizontal liRn we simply mean a unique 

vector field which is necessarily strictly horizontal (i-e- T? E II,E Vp over which T is 

defined). W e  find that for any carve cr : [a, b] + M in M there is a unique horizontal 

lift at of a in E for each "starting point" - i-e. V p E R-'(cr(a)). We then regard the 

parallel transport dong a as the map between the two fibres a-'(a(a)) and a-'(a(b) 

defined by: 



We note that the exterior covariant derivative, D, of any k-form, [, on E is defined 

by 

DE [XI, Xz, -.-,&+I] := 4 [ h a ( & ) ,  hm(Xa), ---, hm(Xk)I (5 -8 )  

For G := D w the exterior covariant derivative of the connection 1-form, w, we have, 

for any pair of vector fields X, Y on E, the Cartan Structure Equation: 

and the Bianchi identity: 

It should be emphasized that these quantities are written here in their most general 

principal bundle form. In order to obtain the usual connection 1-forms and curvature 

2-forms which take arguments in the base space M, we must pull back the respective 

principal bundle quantities using some local cross-section. Hence we define: 

and 

w : = u f A  

and thus can express (5.9) and (5.10) in their more familiar local form 

and 

DR=O 

For reasons which we shall shortly see, we find that covariant derivatives are only 

defined for associated vector bundles, which necessitates a short digression in this 

direction. 



Figure 5.2: Parallel Transport in Principal Fibre Brindles 



We begin with (E :  n, M), a principal bundle and V some generalized vector space 

which has a left G-action. Then we define the associated vector bundle (Ev, ?rv, M) 

where Ev is composed of the set of equivalence classes of points [p,  v ]  with the equiv- 

alence class defined by: 

It is important to realize that this associated vector bundle has a fibre which is 

diEeomorphic to the vector space, V. Now we can extend our previous relations for 

parallel transport to these associated vector bundles by defining the horizontal lift of 

a in the associated vector bundle (Ev, ~ v ,  M) passing through the point [p ,  v] in the 

fibre ?r~'(a(a)) as: 

&a) := [a+(b),v] 

with the associated parallel transport defined accordingly (c-f. (5.7)). 

Finally, then, we can define a covariant derivative in the following way. 

Given some associated vector bundle (Ev,zv, M) with some smooth cross-section, 

?/, : M -+ Ev, and a some curve in M such that a(O) = zo, then the covadant 

derivative of + at xo with respect to the vector [a] is: 

1 v[a]?1, := &, h($(a(t))) - $(zo)I (5.18) 

and we can see why covariant derivates are only defined on vector bundles, as it is 

only on a vector bundle that the above difference of the two points on the fibre, 

TG' (xo), is well-defined. 

h local holonomic coordinates the above defmition becomes the f d a r  



where the index p in the covariant derivative ref'ers to 4 as usual and the last term 

reflects matrix multiplication between the (N x N) matrix-valned element of the Lie 

Algebra, w,(x), and the (N-dim) vector $(z). 

Of course all of this analysis is purely kinematical - that is, the dynamics for any 

theoryy regardless of whatever relevant bundles one is using, must be specified by 

some other means, usually an action principle. W e  will discuss this point fnsther in 

Chapter 7. For now it is enough to be aware of the fact that the principal bundles of 

relevance will be B (M) and its reduced bundle, SO(3,l) (M) , while the vector bundles 

of relevance will be their respective associated bundles on RN, i.e. ( B ( M ) R ~ ,  QN, M) 

and (SO(3,l) ( M ) R ~  r * ~ ,  M), both of which are isomorphic to the tangent bundle, 

TM (see Section 5.3). 



5.2 Bundle of Frames 

The key principal fibre bundle in General Relativity is the Bundle of E!rames, B(M) .  

It consists of a bundle space, E, containing all the possible ordered sets of basis 

vectors (b l ,b2 , . . - ,bN)  of TzM for all the points z E M. Clearly this is a principal 

bundle with structure group GL(N,  R) and the bundle space, E, can be easily shown 

to be a differential manifold of dimension N + iV? 
As alluded to above, the tangent bundle, TM, can be regarded ao an associated 

vector bundle to B ( M )  in the following way. Fkom B ( M ) ,  we first form the associated 

vector bundle ( B  (M) a~ , T ~ N  , M )  with associated covariant derivative v. But one 

can then associate this vector bundle, in turn, with the tangent bnudle, T M ,  by the 

prescription: 

for b, some particular frame at z E M. 

Recall that in Chapter 2 we went to the trouble of specifying something called 

an "affine connection", which started out being a map &om the space of Vec(M)  x 

Vec(M)  to Vec (M)  and became further generalized to a map involving vector fields 

and arbitrary rank tensors, which thereby enabled us to defme torsion tensors and 

discuss issues of metric-compatibility. How does this relate to our more general fibre 

bundle picture? 

There are many ways to visualize this, but the important fact to remember is 

that B (M) has cross-sections, $(z), which are themselves directly related to dements 

of T,M. If one moves to the associated tangent bundle, TM, this fact remains 

unchanged and we are now in the unique situation where for 



Figure 5.3: Pardel Transport in Associated Vector Bandles 



we can effectively regard v as a map horn V e c ( M )  x V e c ( M )  (i-e. [a],+(z)) to 

Vec(M)  (i-e. $'(z)). It is this unique attribute of these particular bundles (i-e. the 

explicit relationship between the argument of the coMdant derivative, [a], and the 

sections of the relevant bundle itself, $(z)) which enables us to define torsion tensors 

and generalize v to acting on arbitrary tensors in M @om whence the concept of 

metricity arises). 

There is, however, another way to look at this unique peculiarity of B ( M )  which 

directly leads to the concept of torsion and is vital to formulating gravitational the- 

ories in an action framework- 

We define a solder f o m  as a 3iN-valued 1-form, 8, on B ( M )  by 

where the BN-valued set of components of n,v, i.e. ( ? r , ~ ) ~  are necessarily with respect 

to the local &ame (bl, b2, ..., b N )  defined at p E B ( M )  

That is, the solder form takes any vector v E T p ( B ( M ) )  and gives its components 

with respect to the particular basis at p E ~-'(z). Since we know that ir,v = 0 

defines any vertical vector v, at p we see that the solder form only gives non-trivial 

results for horizontal vectors, v E H,(B(M)). Projecting down to the base space, 

M, given some cross-section, a, it is clear that the local representation of 8 in M ,  

0'6 := p, is merely given by: 

for {PA) the set of cevectors associated with the particular fiame chosen by the cross- 

section o. Hence the solder form 0 or P is intimately related to the cross-sections of 

B ( M ) ,  o, which serve to select particular kames over some z E M and are hence ofien 

referred to as frame fields. I n  a holonomic coordinate system, the standard fkme to 



which all others are compared is the frame (al, &, --., aN) and hence the frame field, 

e o can be written as the GL(N,  R) function ec with the understanding that 

where we see the equivalence between our frame field and the usual N-beins or tetrads 

explicitly. Since in this coordinate sys tern the solder form acting on any v = v V ,  E M 

merely gives vne;, it is often said that in these coordinates the fkme field is the solder 

form, where the technical difference between the frame field as a cross-section and 

the N-bein as a GL(N, R) function is glossed over. 

As before, we see that the solder form is unique to the fiame bundle and its 

related bundles as, for a general principal bundle, the definition above (i-e. (5.22)) is 

nonsensical owing to the fact that in general T,V produces a vector with basis vectors 

(and potentially dimension) completely unrelated to p E ~-'(z). 

This existence of 8 enables ns to define further geometrical entities on B ( M )  and 

M, namely the exterior cowxiant derivative of 8, the 2-form 

known as the torsion tw*form,- and its associated local representative, 

the torsion 2-form on M. 

In this way we can find the analogous principal bundle equations to the structure 

equation and the Bianchi identity, i.e. 



and 

D T = G / \ 9  

and their more familiar local representations: 

T = d p + w A j 3  

and 

respectively. 



5.3 Metrics and The Bundle SO(N - 1,1)(M) 

It is significant to note that, until now, we have not mentioned the presence of a mehic 

at all. We have merely demonstrated that, for a principal b d e  with connection 

A and some local cross-section, a, we can establish t(9)-&ed forms on M, R and 

w ,  obeying (5.13) and (5.14); while if there also exists some solder form, 6,  on the 

principal bundle, we can additionally obtain additional !RN-&ed forms on M, T 

and p, such that (5.30) and (5.31) hold. 

We now turn our attention to the issue of a metric, i-e. some symmetric, non- 

degenerate (0,2) tensor defined on M. If we define a metric, g, in terms of the local 

cross-sections of B ( M ) ,  i.e. the fiame field, e, so that it is necessarily orthogonal, 

for rlr~ the Minkowski metric 

Since gag has degrees of freedom, while the N-bein, e i  has N2 degrees of 

fieedorn, one would expect that there are many different N-beins which csn be com- 

bined via (5.32) above to give the same metric, gap- This redundancy is manifested 

by the Lorentz group, i.e. the group SO(N - 1,1) of dimension (where, of 

N ( N - l )  = N2 - course, N m  
2 ), by the fact that the metric g d  defined above by 

(5.32) remains invariant under a general SO(N - 1,1) - i.e. Lorentz, transformation. 

In bundle language, it is said that, SO(N - 1,l) (M) , the principal bundle over 

M with structure group SO(N - 1,l) instead of the "fiLUn GL(N, R) of B ( M ) ,  is a 

reduction of B ( M ) ,  where this reduction process is intimately tied to the existence of 



Figure 5.4: BundIe of Frames with Solder Forms 



a metric on 

From om perspective, however, this is unimportant. It is enough to recognize that 

SO(N - 1 , 1 ) ( M )  is a sort of "limitedn bundle of frames, and hence similarly also 

contains a solder form, 6, and can give rise to its own a f h e  connection, on T M, 

complete with torsion tensor and potential metricity. In fact, we shall explicitly see 

in the next Chapter that the fact that SO(N - 1,1)(M) is intimately related to the 

existence of a Lorentzian metric on M h manifested by the fact that e(g) O, which 

was one of the principal motivations for working with it in the fist  place. 

31n general, for Lorentzian metrics, there may exist topological obstructions which can limit this 
%ductionn process - such obstructions lead the way towards the concept of "metric kinksw 



Chapter 6 

Palat ini Tetrad Formalism 

6.1 Overview 

There is a certain amount of ambiguity in the literature concerning the notion of 

a Pdatini variation. This results from the fact that, while some regard a Palatini 

variation as what we have called the "Standard Paktini Formalismn in Chapter 3 and 

4 - that is, the variation of some action S(I',g) with respect to an independent I' as 

well as g - there are others who refer to a Palatini variation as the variation of some 

frame-space action with respect to the relevant &me-field variable, e (through which 

a metric is defined) and generalized connection w. This latter approach, which we 

will call the "F'alatini Tetrad Formalism", has steadily increased in popularity owing 

to its direct relevance for those interested in a connection dynamics perspective of 

gravity. 

In the Palatini Tetrad approach, one no longer works directly with an affine con- 

nection (or connection coefficient, I') derived &om B ( M ) ,  bat rather with the afore- 

mentioned SO(N - 1,l) connection associated with the bundle SO(N - 1,l) ( M ) ;  

Nevertheless, as previously mentioned in the last chapter, just as TM can be 

regarded as an associated vector bundle of the Wn GL(N, R) b d e  of frames, 



B(M), with the help of the kame field, el TM can also be eventually viewed as an 

associated vector bundle of the reduced bundle SO(N - 1,1)(M), and hence one can 

consistently talk of a covariant derivative, induced on the tangent bundle TM due 

to w of SO(N-  1,1)(M) in addition to the usual covariant derivative, V, associated 

with the %dln connection r on B ( M ) .  Both and V, owing to their applicability 

to TM, are &e connections as defined in Chapter 2. 

In what follows we limit outselves for simplicity to the case N = 4, but we note 

that the forthcoming analysis extends to arbitrary dimension. 

6.2 3fl Palatini Tetrad Formalism 

The following is a brief synopsis of the 3+1 Pdatini Tetrad approach [33]. As alluded 

to above, here one begins with an action solely dependent on a S0(3,1)(M) connec- 

tion and a frame field e?, through which one defines a metric. Variation of this action 

with respect to the two dynamical variables, w and e, eventually results in Einstein's 

equations. 

We begin, then, with the following action: 

where Cartan's equation defines: 

and we use the convention 

IJ ,- KJ fL@ - 7  %;K 

for r f J  defined as the (raised) Minkowski (4 x 4) metric, 

r ] ~ j  := diag{ - l ,1 ,1 ,1)  
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We follow the standard procedure of defining the metric gag in terms of the fkame 

fields, e such that it is necessarily orthonormal, that is: 

where ei, often called the coeame field, is defined such that 

and 

e L e ~  = 6: 

We see that the coframe field represents the (4 x 4 here) matrix inverse of the frame 

field, which is always well defined because we know horn Chapter 5 that e? E GL(4, R) 

and hence has a unique inverse. 

Hence (6.5) enables us to express f i  in terms of det(ei) (or, more rigorously, 

the invariant volume eIement G d x '  A dx2 A dx3 A dx4 in terms of the coframe field). 

Furthermore, we note that, since w,IK takes values in the Lie Algebra of the 

group SO(3, I), we necessarily have the relationship 

that is, w is anti-symmetric in its Lie Algebra indices. Using the convention of (6.3) 

above, this becomes: 

w,IJ  = -w, JI  
(6.9) 

1 

Owing to the difference between the Lie Algebra indices, (I, J, K...) and TM in- 

dices (a&.-.), the induced connection + on TM owing to the principal bundle 

S 0 ( 3 , 1 ) ( M )  must be defined in a slightly roundabout manner which invokes the 

frame field, e, rigorously a cross section of B ( M ) .  Hence in order to firmly establish the 



covariant derivative on T M, owing to the reduced principal bundle S0(3,1) ( M ) ,  

we need to first find local cross-sections of the fill principal bundle, B ( M ) .  The 

fact that the treatment to defining is not self-contained within S0(3,1) (M) is an 

important subtlety which will be pivotal to our future analysis (see Appendix E and 

Chapter 7) 

The natural vector bundle associated with SO@, 1) (M) is (56(3,1) (M) R ~ ,  R ~ N  , M )  , 

with basis vectors where I now corresponds directly to the Lie Algebra index. Each 

element of each fibre of the vector bundle (SO(3, l ) ( M ) n ~ ,  TRM, M )  can be identified 

with a corresponding point on the related fibre of TM and hence we have an iso- 

morphism between (SU(3,l)  ( M ) n ~ ,  TRN, M) and TM provided by the came field, 

e. This isomorphism is illustrated by the accompanying figure (Figure 6.1). 



If w induces the covariant derivative relationship e b  := c for b = bf&, c = cJ& 

on some fibre of (SO(3,l) ( M ) R ~ ,  T N ,  M), we find that, given the isomorphism: 

consistency requirements1 mandate that the connection functions f' on TM must be 

written in terms of w in the following way. 

or 

w, ", = &(e:) e: + e: e; pa 5 (6.12) 

W e  note that (6.2) and (6.11) together give a general relationship linking the curvature 

- X tensors (2-forms) RaO IK and Rag c. 

Having thus derived an &e connection, e, based upon our SO(3, l )  connection, u, 

we can then apply it to various tensors on M. If we examine the application of to 

gag as defined by (6.5) above, we find that: 

Invocation of (6.11) and (6.8) leads to the expression 

for all choices of p - i.e. under this prescription, is necessarily a metric connection. 

As mentioned earlier, this is not an entirely surprising development as it was the 

original motivation firom moving away fiom B ( M )  to its reduction S O ( M )  to begin 

'See Appendix E 



Figure 6.1: S0(3 ,1 ) (M)  - Induced Covariant Derivative on T M  



with - that is, to cast General Relativity in a geometrical framework while somehow 

containing the metricity assumption vital to its dynamics. Yet &om our pexspective 

it is somewhat question-begging as once more the geometry of the problem has been 

set up so that one is not huly varying with respect to all possible connections, but 

merely a subset of them. This issue shall be addressed in the next section. 

Let us now return to the dynamics induced by (6.1). Variation with respect to e 

and w leads to the following constraints: 

and 

&,SPT = O + Dm [e - e p  dl] = O 

We find that, for N = 4, (6.17) can be reduced to2 

Utilizing (6.11), one can easily see that (6.18) can be rewritten as 

In short, by geometrical definition we had an f i e  connection which was metric- 

compatible (6.15), whereas we see by the variational princip1e applied to the action 

SPT, f' is also torsion-kee. Hence it must be the case that 

One must be rather carefid here, though. It is worth noting that our "torsion-freen 

condition, (6.19) depends implicitly on our expression of f in terms of w,  i.e. (6.11), 

2for N # 4 one correspondingly adjusts one's action to enable a similar manipulation to occur- 



which in turn implicitly depends on the fact that f is, in fact, metric-compatible. We 

shall have more to say about this potential question-begging in the next section. 

For now, however, we note that we have achieved, through whatever means, the 

condusion that our connection is once again the Christoffd symbol. EKpressing (6.16) 

in tenns of R ~ / ,  via (6.13), together with the fact that (6.20) above necessarily 

implies 

- X R$, = &A({}) = -R+ 

enables us to finally express (6.16) in the final form3 

i.e. the Einstein Field Equations. 

6.3 Generalized 3+1 Palat ini Tetrad Formalism 

As mentioned in the previous section, the usual 3+1 Palatini Tetrad Formalism is 

devised so that one implicitly assumes the metricity of the relevant af%e connection 

(6.15), while the no-torsion constraint arising fkom the variational principle of the 

action Sm is itself dependent on the assumed form of the &he connection (6.11) 

and hence implicitly upon its metricity. 

In an effort to once again take the spirit of the Palatini variation seriously -i.e. 

attempting to isolate the potential c o ~ e c t i o n  dependence of the dynamics by varying 

the relevant action in the space of dl possible f i e  connections - we fmd ourselves 

once again modifying the procedure. 

31t is worth noting here that, unlike in the Standard Palatini Formalism of Chapter 3-4, the 
Einstein Field Equations can only be derived by using the above antisymmetry condition of the 
m a t u r e  tensor when I: = {). Otherwise, d i k e  in the Standard Formalism, one doesn't find the 
result G,,(I') = 0 



In the Standard Palatini Formalism of Chapters 3-4, we found that two pivotal 

assumptions were made to the usual Einstein-Hilbert action which limited the ability 

to be as general as possible in one's connection and thus proved to go against the 

spirit of a "truen PaIatini variation. 

i) any potential explicitly non-metric terms were a' priol-i not included in the 

action 

ii) any potential torsion effects (both with the curvature term and any potential 

addition explicitly non-zero torsion terms) were also a priors' neglected from the action 

In the PaIatini Tetrad formalism, rneanwh.de, one begins with a particular reduced 

bundle, SO(3,l)  ( M ) ,  of B ( M )  which is specifically engineered to give a resulting 

&e c o ~ e c t i o n  which is necessarily metric- preserving. In what follows, we shall 

counterbalance this result by redefining our relationship beheen w and f to include 

potential non-metricity and see how this affects the relevant dynamics induced by 

varying the action SPT. 

We thus r e t m  to (6.11) and now define: 

where K, TA is any arbitrary tensor on M. CIearIy, we can then define as the f i e  

connection on TM related to the connection, p. 
Under (6.23), we find the following alterations to (6.15), and (6.13): 

and the associated 

= KAW + KAUp (6.25) 

while we can d a t e  the "newn curvature tensor, GAe, to the S0(3,1)(M) curvature, 



with 

. Furthermore, we note that in general for any tensor K, 

If we turn our attention now to the equations derived fiom varying SPT with 

respect to e and w, we see that both (6.16) and (6.17) are prima facie unchanged 

under (6.23), i.e. we still have 

&SPT = 0 * DP [ e - e p  4'1 = 0 + (N =4)0[, $ = 0 

But now, rather than yield the no-torsion condition (6. lg), 



Permuting (6 -24) gives: 

Combining (6.31) and (6.32) finally give: 

which is the generalized Palatini Tetrad analogue to (6.20). Substitution of (6.33) 

into (6.30) gives: 

J X 
% e~ %B 5 = & %))I (6 -34) 

whereas substitution of (6.34) into (6.16) once again gives the requisite Einsteinian 

dynamics, (6.22), 

~ P ( C H  = 0 

This is a somewhat unexpected development - om generalized Pdatini Tetrad for- 

malism, obtained by using the prescription (6.23) for our af5ne connection in terms 

of the S0(3,1)(M) connection w, I J  instead of the usual (6.11) leads to the same 

(Einsteinian) dynamics as before, (6.22), but now gives a fundamentalIy indetenni- 

nate result for the connection, f'! The only thing we can say explicitly about our new 

connection is that it is related to the Christoffel symbol via: f,', - K, ', = {,',), 

which, since K, ', is arbitrary, does not tell us really anything at aU about p. Hence 

our generalized prescription, together with the action SpT (6.1). leads to a truly 

co~ect ion  independent expression of General Relativistic (metric) dynamics, if not 

General Relativity proper. 

This is strongly reminiscent of our Extended Action results of Chapter 3, except 

that now we are not necessarily mandating that be torsion-free and hence K, ', 
(QPC,, in our previous notation), be symmetric in any indices. Nonetheless, both our 



Extended Action of Chapter 3 and the above Generalized Palatini Tetrad Formalism 

amount to connection independent means of generating General Relativistic dynam- 

ics, and hence we would expect them to be somehow related. This relationship shall 

be explicitly demonstrated in the next chapter. 



Chapter 7 

Analysis 

7.1 Geometrical Picture of Generalized 3+1 Pala- 
tini Tetrad Formalism 

In the last chapter we recognized that generalizing the usual prescription linking the 

S 0 ( 3 , 1 ) ( M )  connection to its a fhe  connection 

- - 
rpCy = rpcv + K,,~, (7-3) 

for an arbitrary tensor Ka 7A, enabled us to replace the a priori metricity relationship 

with 

while the constraint 



obtained &om the action 

by varying with respect to w changes from reducing to 

under (7.3). Thus this relation combined with (7.5) gives 

which winds up transforming the second constraint obtained from SPT with respect 

into nothing less than the vacuum Einstein Field Equations, 

So our new prescription (7.3) gives us the same dynamics as before (7.12), but now, 

instead of the old connection constraint 

we have effectively an indeterminacy relation given by (7.10) above. 

All of these results have been generated in the previous chapter, but what we now 

need is some comprehensive geometrical framework by which we can understand the 

meaning of the diffkrence between the two prescriptions (7.3) and (7.1). Accordingly, 

we now examine the following diagram, which may be viewed as an extension of the 

previous one of Section 6.2, where we now extend matters to explicitly include B ( M ) .  



This diagram enables us to visualize several things. In the first place we see that 

the generalized prescription, (7.3), pp ', = f, C ,  + K, ',, is manifested in tenns of 

c o d a n t  derivatives acting on elements of TM as: 

From the diagram, we see that the tensor K, yq vv represents a fibrepreserving trans- 

formation from v € ?r&(z) to some other dement z € ~ ~ h ( z ) .  If we have 

where the above matrix notation is an abbreviation for 

we thus have 
- 
V a v = w + z  

Now if we regard as the general &e connection arising fiom the general (-con- 

strained) B ( M )  GL (4, R)-valued connection 1-form r, ', with e the &fine connection 

arising from S0(3,1) as before, we see that the arbitrary tensor, K, ',, links the two 

by "undoingn the uniqueness invoked by moving from B ( M )  to the reduced bundle 

S 0 ( 3 , 1 ) ( M ) .  In other words, the resultant a f i e  connection, e, with associated 

connection coefficient, f', can once more be viewed as a general unconstrained atline 

connection where metric compatibility and torsion are completely undetermined. 

This is a helpful picture, but an obvious question suggests itself: If the object 

of our generalized formalism was to return to a completely general h e  connection 



Figure 7.1: B ( M )  vs S 0 ( 3 , 1 ) ( M )  Covariant Derivatives on TM 



derived fiom the f d  bundle of kames B ( M ) ,  why didn't we simply do that to begin 

with? In other words, what is the purpose in moving over to S 0 ( 3 , 1 ) ( M )  and back 

to TM before then "undoing" matters? 

The answer to this question lies in the matter of cdculational ease. A full un- 

derstanding of this will be readily apparent in the section dealing with actions later 

on in this chapter, but for now it is enough to point out that we can see &om this 

diagram that the fiame field, e plays a dual role in our generalized picture. The 

6ame function, e:, is a local cross section of the principal bundle B ( M )  and gives, 

for every x E M a corresponding dement of GL(4, R). As such it "belongs" to B ( M )  

(the relevant analogous section of S0(3,1)(M) would be, of course, an element of the 

group SO(3,l) and would reflect a Lorentz transformation rather than a general c e  

ordinate transformation) and not to S 6 ( 3 , 1 ) ( M ) .  Yet, as we have seen in Appendix 

E, this same fkame field is used to "push over" the covariant derivative, Dl &om 

(S0(3,1) (M)* , qp, M) over to T M. Therefore, although the frame field is neces- 

sarily associated with B ( M ) ,  we also use it in conjunction with the connection on the 

reduced bundle S 0 ( 3 , 1 ) ( M )  and our generalized prescription (7.3) to simulate a full 

a f b e  connection. And so our original choice of opting to study the connections on 

our reduced bundle, S8(3,1)(M) appears to be motivated more by cdculational ease 

- like a clever choice of coordinates - than by anything geometrically intrinsic to the 

problem at hand. But the preceding analysis also indicates that the often expressed 

idea that we are really limiting ourselves here to the reduced bundle S 0 ( 3 , 1 ) ( M ) ,  

is not an entirely honest one, for we indirectly use cross-sections of the fuN bundle 

of frames, B ( M )  to suitably define our a f b e  connection, e, associated with w of 

w 3 7  wo 



Figure 7.2: Comparison of Palatini Tetrad and Standard Palatini 

7.2 Relating Palat ini-Tetrad to Standard Palat ini 

In light of this new generalized prescription (7.3) we are finally able to relate "the two 

Palatinis" as promised earlier. Consider the following schematic diagram: where we 

have written both the Palatini-Tetrad and Standard Palatini formalisms explicitly. 

We begin our treatment with the Palatini-Tetrad action in the top right hand 

corner. This starting point is not arbitrary, as we later find that, as alluded to 

earlier, the action SpT together with the generalized prescription (7.3) is merely a 

rewritten form of a more general action. 

We have already discovered that if we vary the action SpT with respect to the 

relevant dynamical variables e and w and utilize the generalized prescription (7.3) 



(i.e. follow the flow of the thick arrows), we end up with the Einstein Field Equations 

in WLCCUO, 

We now examine what occurs should we proceed in the other direction (i-e. that of 

the thinner arrows) by first transforming the Palatini Tetrad action SpT via (7.3) and 

then varying with respect to the "new" relevant dynarnical quantities. 

From Chapter 5 we know that 

under (7.3). Therefore we see that the action Sm smoothly transforms to 

where we have dropped the tildes. We note in general, for T, \ # 0, we have: 

+T, ', (K, - K, @P) - (Vc + Zc) KX Ac 

If we break up our arbitrary tensor K, ', into symmetric and anti-symmetric parts, 

and substitute (7.22) into (7.21) we find, upon varying with respect to the antisym- 

metric tensor A, ' ,: 



Contraction (p - r, say) of (7.23) gives: 

I 1 
-(N-~)[s,~-(v+z")+T/] 2 + A , , - - ~ T ~ ~ = o  (7.24) 

but &om 

we find 

V ' + Z V  = 2 A,OY +Sew 

Combining (7.24) with (7.26) leads to the relation 

which in turn leads to the following simplified version of (7.23) 

where 
-. 

Finally we note that (7.28) leads to 

u,, = u-, 

which, together with 

by definition, gives: 

that is, 



We have aLeady seen that the constraint (7.33) in combination with the (non)metricity 

relationship, 

vx Srw = - ( K X ~  + K*YCI) (7.34) 

gives rise to the expression 

Insertion of (7.35) into our action STM clearly reduces it to one of no connection 

dependence, i.e. (7.35) transforms STM to: 

If we now turn our attention to the case of a necessarily torsion-& connection, we 

see that we have the relationship (~f~(7.35))  

which is nothing more than the frill indeterminacy relationship for our torsion-free 

connection (3.32), whereas &om Appendix A we know that under a general deforma- 

tion transformation 

rPCu + rpCy-spCy (7.38) 

our action is equivalent to our Umaximally symmetricn action of Chapter 3. Hence 

in general, for T = 0, our corresponding action STM is om maximalty symmetric 

action, and not the Einstein-Hilbert action. STM only becomes equivalent to the 

Einstein-Hilbert action if both T = 0 and S = 0, in which case, by the analysis above, 

we know that 

' p C u  Lev) (7.39) 



So looked at in this light, we can finally answer our question of why the ChristoEd 

relation, 

q'L" = C p C v )  (7-40) 

mysteriously pops out of the Einstein-HiIbert action ~ d e r  a Palatini variation. Since 

in writing down this action we had e priori set both the torsion tensor and the trans- 

formation tensor, S, to zero, we had determined ahead of time what the connection 

mnst be. That is, horn a Palatini perspective, there is no real "connection varia- 

tion" going on at all; I?,', = {,',} is a necessary consequence of writing down the 

Einstein-Hilbert in the first place. 

7.3 Gravitational Actions 

In relating the Standard PaIatini to the Palatini Tetrad formalism we specified that 

one must "start3 the andysis with the SpT action, 

as opposed to 

This is because the generalized Einsteinian gravitational action [35, 181 is 

where R is the local curvature 2-form from B ( M )  and ,B is the lo& solder form 

from B ( M )  (5.22). In keeping with our more general geometrical approach along 

the lines of Yang-M.  theory, we would like to define an action for any physical 

theory as that consisting of some scalar invariant composed of various quantities of 



the relevant principal bundle associated with the theory (together with, for those 

theories dependent on the existence of a metric, the hodge dual, *). 

For Yang-Mills theory, as we have mentioned, the relevant action is 

for F the (local) curvature 2-form of some general principal bundle, and the relemt 

dynamics obtained by varying with respect to the connection l-form, w - the only 

explicit variable one has to work with here - is: 

With theories involving B ( M ) ,  on the other hand, such as those pertaining to 

gravity, one now finds oneself with an extra mathematical entity, ,O with which one 

can build such an action. If we choose the particular action (7.43), one is left to assess 

the relevant dynamics by varying (7.43) with respect to two variables - w and ,B. The 

actual variation is somewhat tricky and one is forced, owing to the presence of ,O in 

the action, to pick some convenient coordinate &ame in which to calculate it. We 

can simplify this calculation by choosing coordinates where the metric is defined to 

be orthonormal via the GL(N, R) fkames as per (5.32) and by using, for calculational 

ease, the connection from the reduced bundle S 6 ( N  - 1,1)(M), provided that we 

correct for this unwarranted specification of w at some later time in the calculation - 

i.e. by using our ugeneralized prescriptionn of Section 6.3. 

If this generalization is not done - i-e. if one merely states that the relevant con- 

nection for our action is the S B ( N  - 1,l) connection - then one still gets the relevant 

fmal Einsteinian dynamics together with some definite restriction on the connection 

(the Christoffel constraint, again), just as one finds for the Standard Palatini a p  

proach to the Einstein-Hilbert action. And, just as one found for the latter case, this 



constraint is completely fictitious and arises from the fact that we have arbitrarily 

chosen some inappropriate subclass of our connection to start with. Since we know, 

with the benefit of hindsight, that our final dynamics resulting &om (7.43) are con- 

nection independent anyway, it is hardly surprising that some e priori fixing of the 

connection does not manifest itself dynamically at the end of the day. But it certainly 

makes us discount any "informationn we might find about the connection itself by 

such a procedure. 

7.4 Matter actions 

Virtually all of the previous analysis has been applied to Lagrangians without inde- 

pendent matter fields, and it is worth considering what would happen to our notions 

of a connection-independent action if we were to add an additional matter action 

term to the Lagrangian. 

The usual prescription for such terms is to defme the stress-energy tensor, T~~ 

according to (3.3), that is (for N = 4): 

where Lm represents the matter Lagrangian. 

From either the Palatini Tetrad perspective or the Standard Palathi perspective, 

related via Section 7.2, addition of such matter terms change none of the preceding 

analysis if the matter action is assumed to be independent of the generalized connec- 

tion. The only thing afTected in both cases is that, as one might expect, the consequenk 

h a 1  dynamics is affected and thus moves from the vacuum Einstein relation, 



to the consequent fall matter dynamics, 

We have added matter, but, owing to the o prion' condition that such matter is 

independent of the generalized connection of the &ame bundle, B ( M ) ,  we naturally 

find that our connection invariance is preserved. 

On the other hand, if we now allow our matter action to be dependent 

connection, we naturally find that the connection invariance of the action: 

no longer occurs, and we effectively move to the r e a h  of Einstein-Cattan 

on the 

(7.49) 

theory, 

where one must recover Einsteinian dynamics by breaking the symmetry of the con- 

nection and imposing extraneous conditions upon the connection (such as the "no 

torsionn condition). 

Looked at horn this perspective, we can regard the Einstein Field Equations as 

the necessary final dynamics of a 

SGR = 

subclass of theories generated by the action: 

for S, independent of w ,  which can be extended, by a sort of symmetry-breaking, to 

the more general class 

for general S,, by imposing the additional external constraint, T = 0, where the 

torsion tensor is defined in terms of the solder form as per Chapter 5. 



Chapter 8 

Conclusions and Discussion 

Largely motivated by the desire to understand the origins o f  the Christoffel constraint, 

from a (Standard) Palatini variation of the basic Eins tein-Hilbert action, 

we began our investigation of the fundamental nature of connection dependence of the 

dynamics of General Relativity as formulated through an action principle. By utilizing 

dilaton theories of gravity (Section 3.2), we fist noted that not all gravitational 

actions necessarily gave the Christoffel constraint, before proceeding to generalize the 

Einstein-Hilbert action into the s+called Extended Action, which yielded, as a special 

case, the "maximally symmetricn action 

which was found to necessarily arise fkom a deformation transformation, 



on any general Extended Action. 

Under a Palatini variation, this YmaximaIly symmetricn action gave (vacuum) 

Einsteinian dynamics but didn't give the aforementioned Christoffel constraint and 

instead left the connection indeterminate. We then examined the possibility of extend- 

ing such actions into a domain where the torsion tensor did not necessarily vanish 

and examined the consequent non-Einsteinian dynamics together with the general 

form of the connection, I',',, before returning to the Einstein-Hilbert action in a 

somewhat more geometrical guise via the Palatini Tetrad formalism. We found that 

the conventional 3 + 1 Palatini Tetrad approach contained some hidden assumptions 

which explicitly break the inherent connection invariance of the theory as manifested 

by the action, . 

where the (local) curvature 2-form, R, and the solder form, P,  are those corresponding 

to the full G L ( N ,  R) bundle of frames, B ( M ) .  

The above action, (8.5), when analysed properly, was shown to be equivalent to 

the action 

with 

which in turn was shown to be equivalent to the maximally symmetric action above 

for the special case of T = 0. 

Finally, we saw that, although (vacuum) Einsteinian dynamics necessarily arose 

from (8.5) above, we could generalize our action further to include matter terms, 

thereby producing: 



where the extra matter term, S, plays the role of a (connection) symmetry breaker, 

thereby enabling us to regard (8.8) as the connection invariant action which neces- 

sarily gives rise to full Einsteinian dynamics, 

if S, is independent of w, and otherwise can be made to yield (8.9) if one supplements 

(8 -8) with the external constraint, 

T=O 

for the torsion tensor defined in the usual way via the solder form (5.27). 

It is worth noting here that (8.9) does not generally lead to covariant conservation 

of stress-energy, T,, for arbitrary connection, I', as the usual form of the Bianchi 

identity, 

v'GW = 0 (8.11) 

implicity assumes the Christoffd constraint, (8.1) in its derivation from the more 

general kinematical identity, (5.13), 

of Chapter 5. The fact that most physical stress energy tensors do satisfy the covariant 

conservation 

Z W p , = O  (8.13) 

for D the covariant derivative associated with the ChristoKd symbol, clearly reduces 

the left hand side of (5.13) above to the usual (Christoffd assuming) Bianchi identity, 

but in no way negates the validity of the generalized connection invariance derived 

above. 



The significance of this generalized connection invariance of (8.5) is not entirely 

clear. It is evident that, &om a pragmatic perspective, this invariance enables one 

to work with principal bundles where the structure group is a sub-group of the W" 

GL(N,  R) of the bundle of frames, B ( M ) ,  rather than GL(N,  R) itself- an attribute 

which was exploited in the Palatini Tetrad Formalism and in Ashtekar's use of a 

c o m p l d e d  space. If alI one demands fkom an action principle is that, at the end 

of the day, the required dynamics are produced, then (modulo such issues as reality 

conditions and the like) any particular connection &om m y  generalized subgroup 

will likely do the job1, and one might as well pick, a priori, a convenient space - 

i.e. a convenient connection. Ashtekar's compledfied space was chosen, of course, 

because of its ability to simplify the associated Hamiltonian constraints and hence lead 

one further along the path towards quantization. But by arbitrarily selecting some 

other connection of some reduced bundle of B ( M ) ,  one breaks the general connection 

invariance of the theory as manifested by (8.5). Does this matter? The answer to 

that question likely depends on the meaning of the connection invariance in the first 

place. 

One would ideally like to see this invariance manifested in some way as some sort of 

aeonserved quantity" or deep structural geometrical feature which separates General 

Relativity from other theories, or at least places it in some (potentially non-unique) 

distinguishing sub-class of connection invariant theories. One is tempted to conclude 

that the invariance is somehow intimately related to the difF"rnorphism invariance 

of General Relativity, for example, but it is not immediately clear how one could 

formulate that link. Moreover, it is possible to imagine other gravitational theories 

that could satisfy diffeomorphism invariance which do not follow from a variation 

'Barring potential topologicd obstructions. 



of (8.5). With regards to the Wn action, (8.8), it is also unclear what it means, 

geometrically, to ascribe some sort of "symmetry brenkingn property to matter actions 

that are connection dependent. 

We have seen how the connection invaxiance is possible in (8.5) owing to the 

existence of the solder form, 0, as another dynamical variable of the theory. Can 

one somehow generalize the notion of a solder form to include other spaces which are 

potentially we1ated to B ( M )  in order to construct a more general class of actions 

which would be connection-invariant? 

Lastly, while the above arguments concerning the physical preference of the Christof- 

fel connection due to stress-energy conservation might well serve as some sort of phys- 

ical motivation for classical General Relativity (i.e. (5.13) and (8.1)), it is conceivable 

that it might well be important to consider the full connection invariance of the theory 

when considering the quantum regime. 

A more careful examination of at least one of these issues would likely shed a 

great deal more light on the property of generalized connection invariance and its 

physical and mathematical ramifications. The investigation of such questions thereby 

represents a possible firture avenue of research. 



Appendix A 

N = 2 Palatini Dynamics From a 
Generalized Dilaton Action 

W e  can see horn the form of equation (3.19) that for N = 2 the approach given 

above will break down: we will no longer be able to find an explicit expression for 

0 x 6  ( fi ), and hence eventually v#' in terms of functions of the dilaton field and 

its derivative. Instead, for N = 2, we are merely left with an added constraint: 

Note that if (A.l) does not hold then fkom (3.19) the dilaton must be constant 

* = Po. The field equations (3 .E) ,  (3.24) then reduce to 

where Do = D(Qo) is constant. This situation was previously investigated in [16]. 

Although it appears to yield non-trivial dynamics, this does not occur because eq. 

(A.2) is invariant under the transforma tion 



where AA is an arbitrary vector field. &om this it may be shown [I61 that the general 

solution to (A.2) is 

where A, is undetermined. insertion of this into the right hand side of (A.3) yields 

G(,)(I') = 0. Hence the theory is either inconsistent (if Tw # 0) or trivial (if 

Tw = 0)- 

For rE not constant we can understand the constraint (A.1) in the following way. 

For N = 2 the associated action (3.12) is invariant under the transformation (A.3) 

provided the constraint (A.1) is valid. Since AA is arbitrary, we can choose it in such 

a way as to achieve explicit dynamical equations for N = 2. Since under ( A 4  

we chose 

where the hat notation has been dropped and B(B) has been e b h a t e d  using (A.1). 

If one combines (A.9) with the equations obtained by varying (3.12) with respect to 

g , ~  and @, one finds: 



and 

{F" - A' + 2Yr(F - C )  + Y [ ( 3 N  - 6)A + (2 - 3N)Fr] 

+ y 2 [ 7 ~ '  + 6(F - C )  - 3N(F - C + ~ ' ) ] } ( a @ ) ~  

+DfR({ ) )  + 2 [F + Y ( F  - C + D') - A] (P*) = O, (A.11) 

That is, 

DrR({))  + + A ( P  *) = 0, 

with the obvious definitions for fi and A in accordance with (A.l l)  above. 



Appendix B 

Variation of a (Torsion-Free) 
Extended Action Under a 
Deformation Transformat ion 

The foIlowkg is a proof of the claim made towards the end of Section 3.3 - namely that 

for any general action of the form (3.41) to be invariant under a deformation trans- 

formation, one finds that a necessary constraint is that the action must be maximally 

symmetric - i.e. H, I, J, K, L must satisfy the particular values of (3.72) 

If one begins with our usual generalized action, with H,I,J,K,L arbitrary, that is: 

and apply to it the variation: 

rpCV + f P e y  = rpEy  + Q~~~ (B-2) 

for Q P e ,  any arbitrary tensor symmetric in f ist  and third indices, we find that S 

consequently transforms to: 

L 

SBRB * SBHB = SEKE + &St 
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where 

If we subject this new action, to a variation with respect to QPe,, we clearly 

have: 

&p.r(3EHB) = &pcr(6S), 

since JQp e (S) = 0. NOW, from above we see that JQp e (&ae) = 0 = JQp c (6s) can 

be expressed as: 

Clearly for arbitrary SQAaB, we have the constraint: 

Taking the g d  trace of B.6 yields: 

AQe, + B [Qke + 2 x 1  + Clr, = o 
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While contracting over, say, X and a yields: 

where 

A = [ ( N - 2 )  - ~ H + Z I - ~ J - K ( N + ~ ) + ~ L ( N + ~ ) ]  

We note the following relationships: 

and 

F + D = E  

Meanwhile, together (B -7) and (B .8) imply the following: 

[BD -AE]QCd + [BF -CE]K = O  

Therefore, (B.15),(B.16) and (B.17) in turn imply: 

and 

Q; = - (K + ZA) 

(B-9) 

(B.10) 

(B. 11) 

(B .12) 

(B .l3) 

(B -14) 

(B. 15) 

(B. 17) 

(B .l8) 

(B. 19) 



Inserting (B.18) and (B.19) into (B.6), yields, after a bit of symmetrization and 

manipulation: 

where PpV* = v L l g U P  and PwA = - V, g , ~ .  Inserting (B.18),(B.19) and (B.20) into 

(B.4) gives: 

in other words, our maximdy symmetric values. 

Therefore, the unique extended action undected by a deformation transforma- 

tion, (B.3), is that for which H, I ,  J, K, L take on the particular maximally symmetric 

values. 

Moreover, we find that any general action of the form (B-I), subjected to a de- 

formation transformation, (B.2), is necessarily equivalent to a maximally symmetric 

action (see Section 7.2). 



Appendix C 

Explicit Calculation of The 
Connection for SEHE With Torsion 
For A of Rank 2 

We recall that a Palatini variation of SsKB with torsion leads to (4.17), i.e: 

while tracing and contracting the above yields the following (3 x 3) matrix for 3 

relations involving vA, Z* and T f :  

If A is singly degenerate, then we can express both V' and 2" in terms of Tf. That 

is, for some 6, f, we have: 



Meanwhile we can rearrange (C.1) so as to present it in the following simplified form: 

where 

where 

If C # 0, permuting (C.5) gives 

where 

(C. 10) 

(C.11) 

(C. 14) 

(C.15) 



and 

Equation (C.14) is explicitly soluble so long as we don't have D2 = E2, which is 

exactly the constraint of (4.34) We therefore define the parameter to represent the 

determinacy of these equations, i.e. we define 

(C. 18) 

and note that it is undefined when the connection is indeterminate according to (4.34). 

Therefore, for P well-defined, permuting (C.14) yields 

which can be eventually written as 

where 



with 

A final permutation of (C.20) thus yields our explicit form for the connection - i.e 

For C = 0 (i-e. J = 0), on the other hand, (C.5) simpliiies considerably, giving 

Permuting this result gives 

and thus we see that our indeterminacy condition is here 

For If # &!, the same procedure for the above case for J # O leads eventually to the 

following explicit form for the connection: 

where 



Of course if the indeterminacy constraints do hold then F,  ii and become an- 

defined - that is, we can not explicitly solve for P in terms of the remaining vari- 

ables and our analysis reduces, as mentioned in Chapter 4, to a weak constraint 

on S, ',, A,',, S, "*, SPAP and A,',, reflecting some partial invariance of I? under 

I'l. ', =+ rpLY + K, eu, fa some limited (i-e. constrained) choice of K, ',. 
We can check the above analysis for the Einstein-Hilbert action of Section 4.2, 

which we know to be singly degenerate. 

Here, since H = 1 = J = K = L = 0, we work in the domain of C (i-e. J )  = 0. 

Thus we have a connection of the form (C-30), where we h d ,  for this case (c-f. (4.6), 

(4.7): 

Therefore we find that rp ', has the explicit form: 

as expected from (4.8) above. 



Appendix D 

Explicit Calculation of the Final 
Dynamics for SEHE (A of Rank 2) 

It was thought to be appropriate to explicitly caIculate the terms in the final dynamics 

for at least one of the three cases (i-e. (4.39),(4.64),(4.78))treated in Chapter 4, if 

only to show that it could be done in a reasonable amount of time. In this Appendix, 

we choose the case of the singly degenerate Extended Action (with Torsion) with 

J # 0, where we assume the indeterminacy condition (4.34) does not hold and hence 

the connection (and consequent dynamics) can be solved exactly in terms of gap, Tp Lv 

and T, "*. Clearly the methods delineated in this Appendix can be extended to (4.64) 

and (4.78). 

Starting, then, with the action 

and a connection of the general form 

r;v = {,3 + Y, :, 



or, more explicitly, 

with 

where we have broken up Y, ', up explicitly into the non-metric term X, ', and the 

various metric factors represented by the X and 7 terms. 

For our general case of A singly degenerate, J # 0, we found &om Appendix C 

above: 

A : =  P ( d - a - f )  (D-5) 

where P, 2, E,  f, I are defined as per Appendix C above, and for A non-degenerate, 

we have the simplification 7 = X = 0. 

We note that in general, for (D.2), the following relationships hold: 

where Va represents the covariant derivative with respect to the Christoffd symbol. 



where 

W e  can thus now express (D.1) in terms of T, ',, T, @", g,~ and Rw({)) by utilizing 

equations (D.8)-(D.12) above. We therefore fmd that our action S E H ~  takes the form: 

(r02 + KGT + LT Z) T, ",T, P,] 

Now we are almost ready to vary our transformed action with respect to the metric, 

gad to obtain our final dynamics. The difEculty here is, however, that Y, \ as defmed 

in (D.2) and (D.3) above contains explicit factors of ga6. Separating out the relevant 

factors of gap horn the above expression eventually yields the following expression for 

&HE: 

where 



while 

s, := c, + N  [T'>T, P,] - ( l + 2 H + 3 J ) D p  

-(2H + J ) N p  + ( J  - 2  H )  Qw + JT, qTa ', 

where 

Therefore, assured that we have finally separated metric &om non-metric terms in 

the action, we can finally vary (D. 16) with respect to ga@, thereby producing our h a 1  

dynamicd relationship : 

1 



Appendix E 

Moving from 



We fist recognize that the equivalence class [s, a] of points of (SO(3, I) ( M ) R ~ ,  ,?TRN, M) 

is only dehed for the group SO(3,l). That  is, for the point [s, a], one has 

We now that the associated bundle (SO(3,l) ( M ) n ~ ,  qp, M) has dimensionality 2N 

just as does TM, where each fibre of each has dimensionality N. We would like to 

link up the two so as to "push forward" the covariant derivative defined on the former 

by the connection in its principal bundle w. Thus suppose we decide to describe each 

vector v E TM in some given fibre over x E M by its usual components with respect 

to the holonomic coordinates - i.e. 

If we were dealing with the associated bundle of B ( M ) ,  i.e. (B(M)*N, XSN, M) , 
where each point in each fibre represents the equivalence class [b, a] defined in terms 

of the group GL(N,  R) this would be straightforward and we could use the "built- 

in" isomorphism (5.20) since whatever frame, b, I happened to choose for my point 

[b, a], I can always use the equivalence ckss to rewrite this in terms of my holonomic 

coordinates using the tetrads. On the other hand, for the bnndle associated with 

SQ(3, I), I might find myself choosing some S0(3,1) kame s which can not be related 

to {&) via some S0(3,1) transformation - and hence my relationship depends on 

which frame I choose to begin with for s (or, conversely, how I decide to represent my 

element of TM, v). h order to circnmvent this, i-e. to make our isomorphism between 

(SO(3, l ) ( M ) R ~ ,  qp, M) and TM well-defined, we must necessarily introduce the 

Game field, e to remove this fiame-dependence and thereby enable any [s ,a ]  to be 

associated with any coordinate system I choose for TM (we will always choose, as 

mentioned previously, the holonomic coordinate system, where the frame is {ax)). 



Raving d d e d  (hopefully) this subtle point, we move on to establishing our 

consistency relationship of Section 6.2. 

The aim is to write the connection coefFicients, w, IJ on (S0(3,1) (M),N,  T,N, M )  

in terms of those, l?& on TM using the isomorphism e alluded to above. 
A 

Let us assume that our covariant derivative, V, on the associated bundle gives, 

for some x E M, 

where 

b [4 bl 

c - [s, 4, 

and therefore 

C' = br,, + warJ d 

and that e gives the isomorphism 

e ( q )  = e: (E-7) 

If v , z E T M are associated with b * [s, b] ,  c e ; ~  [s, c] respectively, we thus have: 

v A  = b'e: (E-8) 

and 

with the associated TM-covariant derivative: 



Therefore (E.6), ( E 4 ,  (E. 9 )  and (E. 11) combine to give: 

J Y  I J Y Fay* = "A e1 w, . + aa(ex)eJ, 

i-e. (6.11). 
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