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Abstract

This thesis involves a rigorous treatment of the Palatini Variational Principle of grav-
itational actions in an attempt to fully understand the réle of the comnection in
such theories. After a brief geometrical review of affine connections, we examine N-
dimensional dilatonic theories via the Standard Palatini principle in order to highlight
the potential differences arising in the dynamics of theories obtained by utilizing the
Hilbert and Palatini formalisms. We then develop a more generalized N-dimensional,
torsion-free, Einstein-Hilbert-type action which is shown to give rise to Einsteinian
dynamics but can be made, for certain choices of the associated arbitrary parameters,
to yield either weak constraints or no constraints on the connection, I'. The latter
case is referred to as a “maximally symmetric” action.

In the following Chapter this analysis is extended to the realm of a potentially non-
vanishing torsion tensor, where it is seen that such actions do not, in general, lead to
Einsteinian dynamics under a Palatini variation. Following another brief geometrical
review, which highlights some elements of fibre bundle theory appropriate to our later
analysis, we examine the so-called Palatini Tetrad formalism and show that it must be
modified for a proper Palatini variation - i.e. to not assume anything a prior: about
the relevant connection. We then analyze this modified approach from a geometrical
perspective and show that, for the torsion-free case at least, a proper treatment of the
Palatini Tetrad procedure is equivalent to the “maximally symmetric” case alluded
to earlier.

Furthermore, we recognize that the Palatini Tetrad approach should effectively
be regarded as little more than a calculational technique resulting from analysis of
the more generalized action S = [tr[RA x(8 A B)] + Sm, where R, are local ver-
sions of the curvature 2-form and solder l-form from the GL(N, R) full bundle of
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frames respectively. Our above-mentioned modification of this approach not only
renders treatment of this action geometrically consistent (i.e. by considering all of
the terms in the action as pertaining to the same principal bundle), but also enables
one to clearly see the manifest connection invariance of the full theory (given some
connection independent matter action, Sp,). Hence a rigorous Palatini analysis of
Einstein-Hilbert - like actions leads one to the rather unexpected conclusion that
generalized Einsteinian actions of the type S = ftr[RA (8 A 8)] + Siu are connec-
tion invariant and naturally give rise to Einsteinian dynamics if S,, is independent of
the connection, w; and otherwise only give rise to Einsteinian dynamics by an e pos-
teriori symmetry-breaking-type condition, T' = 0 (for T' the torsion tensor), identical
to that of Einstein-Cartan theory.
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Glossary of Terms and Symbols

v - Affine Connection
[, - Connection Coefficients
T, <, - Torsion Tensor
T,~,=rl,,—T, ¢, (in holonomic coordinates)
R.g'. - Riemannian Curvature Tensor

R

wp e =Lgtca —Totep+T0*, [ —Tg*, L,", (in holonomic coordinates)
Rge := R,4°, - Ricci Tensor

R := gP*Rg, - Ricci Scalar

{,°.} == 39" [Guns + Gunsmu — Gyux] - Christoffel Symbol

D, - Covariant Derivative with ', ¢, = {,¢,}

Dz = D'\'DA
Z* = Vpg'\p
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L(G) - Lie Algebra of G

D - Exterior Covariant Derivative

A - Principal Bundle Connection 1-form

G - Principal Bundle Curvature 2-form

o - Local Cross-Section of Principal Bundle
0*A := w - Local Connection 1-form

0*G := R - Local Curvature 2-form

B(M) - Bundle of Frames

8 - Solder 1-form on B(M)

0*8 := B - Local Solder Form



Chapter 1

Introduction

Among the various schisms throughout the theoretical physics community, perhaps
none is more contentious than that which separates researchers into the camps of
metric-oriented or connection-oriented perspectives of gravity.

Historically, of course, Einstein founded General Relativity as a dynamical theory
of the metric tensor with the connection necessarily being that of the unique torsion-
free metric-compatible Levi-Civita connection, {,¢,}. This was more than a choice
of mathematical convenience or simplicity as there are several important physically
motivated reasons to opt for this connection, many of which were integral to Einstein’s
deep physical intuitions about the nature of space-time.

Nonetheless, from the earliest days since the advent of General Relativity, at-
tempts have been made to generalize it, sometimes explicitly with regards to the
connection. One of the first such attempts made in this regard is the so-called Pala-

tini variation [14, 15, 36]' where one subjects the generalized Einstein-Hilbert action,

Ser = [ d*z [V=g (R(T) + 167L,,)] (L1)

with I' no longer a priori regarded as any particular function of the metric, to a

1An interesting irony is that much of what is now referred to as a “Palatini Variation” was
actually independently proposed by Einstein - see [15]
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variation drSgy = 0 in addition to the usual §,Sgy = 0. As is well known, one finds

that in addition to the usual field equation resulting from the metric variation, i.e.
Gu(T) =8nT,,, (1.2)

one obtains
MG — gL' ﬂp —gl)", =0 (1.3)
from the connection constraint, which is nothing more (for I' torsion-free) than the

familiar condition of metric compatibility, whose solution,
Ppeu = {peu}3 (1'4)

is the Levi-Civita Christoffel symbol.

Thus, as far as the Einstein-Hilbert action was concerned, attempts to regard
the (torsion-free) connection as any potential generalization of the Christoffel symbol
were relatively short-lived. The question of why in fact, a Palatini variation happened
to lead to the relationship (1.4) was considered mildly peculiar [36, p.454], but little
more than that.

The resurgence of interest in connection-based theories of gravity occurred due to
two related latter-day phenomena: the growing awareness of structural similarities
between the mathematical framework of General Relativity and that of Yang-Mills
Gauge Theories {6, 12, 18, 35], and the development of the Ashtekar programme of
Canonical Gravity (2, 3, 4, 5].

As the role of the gauge principle achieved preeminence among particle physicists,
it became clear that by using more abstract geometrical techniques one could regard
all gauge theories as fundamentally dependent upon connection 1-forms which took
values in the Lie Algebra of some gauge group G, and analyze their dynamics ac-

cording to a Hamiltonian formulation involving the connection 1-form and its canon-
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ically conjugate momentum as the relevant configuration variables. Such a viewpoint
has since been often referred to as “connection dynamics” [34], and its development
led many to wonder how gravity, with its obvious geometrical structure involving a
“ready-made” connection l-form, I’, could be similarly interpreted.

Meanwhile, with the development of the ADM formalism [1], General Relativity
could be put into a consistent Hamiltonian framework involving the dynamical evolu-
tion of spacelike submanifolds ¥ (with induced Riemannian metric g;;), of space-time
M; and whose configuration variables involve functions of the induced metric ¢;; and
the extrinsic curvature, Kj,., of ¥ with respect to M on the general configuration
space Met(Z), the space of all Riemmanian (3-) metrics on ¥. The relevant Hamil-
tonian can be written as a sum of two fundamental constraints, the diffeomorphism
constraint, C(N), and the Hamiltonian constraint, C(N), each (densitized) complex
functions of the shift vector, N , and lapse function, N, respectively. Hence one has

H = C(N)+C(N) (1.5)

where one finds that the allowed states of the configuration space are those for which
the constraints (and hence the Hamiltonian) vanish identically.
The Poisson brackets of these constraints form the so-called Dirac algebra,

{C(N),C(M)} =C([N, M]) (1.6)
where
[N, M]:= LgM, (1.7)
{C(N,C(N)}=LzN (1.8)
and
{c(V),Cc(M)} = C(R) (L9)
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where

K* :=q9(N3;M — M3;N) (1.10)
We see that while the constraints are closed under Poisson brackets, owing to the last
constraint they do not form a Lie Algebra.

Of course it should be emphasized here that nowhere in this analysis is there a
connection variable - the definition of the extrinsic curvature K}, above (on which
the constraints implicitly depend) specifically utilizes D,, the covariant derivative
with respect to the Christoffel symbol, {,¢,}. It is thus solely a metric-oriented
perspective and one which in no way suggests, let alone necessitates, the treatment
of I' as a dynamical variable. Many people, after Wheeler, have referred to this
treatment of gravity as “geometrodynamics”.

Shortly after the development of the ADM analysis, those interested in the issue of
quantum gravity with a bias towards the canonical perspective attempted to quantize
this classical geometrodynamical picture by applying to it the well-known concepts of
the Dirac quantization procedure [13, 23, 25] in the hopes of leading to the Wheeler-
DeWitt equation,

Hp=0 (1.11)
for all choices of N and N of some quantized Hamiltonian, H, and for ¥ € #, with
‘H some physically relevant Hilbert space®.

This agenda encountered several insurmountable technical difficulties, one of which
(though by no means the only one) being the fact that in attempting to quantize the
Hamiltonian one must effectively quantize the constraints, since, as mentioned above,

the Hamiltonian reduces to a sum of the two constraints.

2This Hilbert space itself is rather difficult to find, in fact. The usual choice of L%(Q), the
set of square integrable functions on the configuration space, Q, leads us to consider L%(Met(Z)),
which, owing to the infinite-dimensional nature of Met(Z) makes defining an inner product rather

problematic.




The issue of the constraints turns out to be a substantial stumbling block, ow-
ing to the fact that elevating the two constraints to the operator level leads one to
encounter operator ordering problems in the fundamental canonical variables p;; and
g:j, combined with the fact that the constraints are non-polynomial in p;; and g;;.

Attempts to circumvent these difficulties with the constraints led those with a
connection dynamics perspective to suggest re-interpreting gravity as a theory where
the metric becomes relegated to the status of a derived variable, with a frame field
e and (Lorentz) connection w the sole primary dynamical variables - the so-called
Palatini Tetrad Formalism. If one recasts the Hamiltonian dynamics in this manner,
one finds that the constraints do, indeed simplify and become polynomial, but are
now no longer closed under Poisson brackets and hence the route to quantization is
as mysterious as ever.

In the late 1980s, Ashtekar [2, 3] breathed new energy into the canonical quantum
gravity programme by showing that one can modify the above Palatini Tetrad For-
malism into one which extends the relevant geometrical spaces to their complexified
counterparts, and, taking advantage of the uniqueness of N = 4, regarded the primary
dynamical variables as a complex frame field and a self-dual (Lorentz) connection.
Using this perspective, the constraints were closed and polynomial, but one now
needed to impose reality conditions to force the metric (defined via the now-complex
frame field e) to be real-valued.

Roughly simultaneous to this development, Witten [38] added a further boost
to the spirits of those in the canonical quantum gravity camp by showing that the
Palatini Tetrad treatment of 2+1 gravity was equivalent to Chern-Simons theory
of the inhomogeneous Lie Group ISO(2,1) and thus could be explicitly canonically

quantized.



Meanwhile, of course, those who were interested in different routes to the holy
grail of quantum gravity [25] were avidly pursuing other avenues - most notably that
of superstrings {19] and Euclidean quantum gravity [17], both of which regard the
metric as the fundamental dynamical variable and have little interest in recasting
General Relativity in a connection framework®. Most researchers in classical General
Relativity, meanwhile, have understandably never regarded General Relativity as
anything other than a primarily metric theory and tend to dismiss any attempts to
reformulate it in connection language as mere mathematical chicanery.

We have thus reached the schism alluded to above, where strong views are preva-
lent and theorists tend to find themselves perched rather quickly on one or the other
side of the connection-metric divide.

This thesis will begin, at least, in the connection camp and examine various differ-
ent gravitational theories from a connection-oriented perspective, but the emphasis
will lie with General Relativity. Climbing down from the rarefied heights of quantum
gravity outlined in this introduction, we shall only examine classical dynamics and
that only from a Lagrangian perspective. We shall attempt to relate the Palatini
variation of page one to the Palatini Tetrad formalism alluded to above, en route
clarifying certain key assumptions the latter subtlely makes.

This work was motivated by a general desire to visualize General Relativity in
a rigorously geometrical connection-based framework like Yang-Mills Theory*. More
specifically, a key concern was to clarify the mysterious origins of the Christoffel
condition (1.4) in the standard Palatini treatment - a condition which seemed all
the more mysterious owing to the fact that Ashtekar had already shown some time

3There are, of course, those who have feet in both camps (or neither) - Witten is perhaps the
most illustrious, but by no means only, example.

*The gravitational action strictly analagous to Yang-Mills Theory is the Lovelock action[30],
St = f RAxR, which is completely well-defined geometrically, but yields non-Einsteinian dynamics.



ago that when one writes it in Hamiltonian form, 3+1 Palatini theory collapses back
to the standard geometrodynamical description of general relativity and hence “3+1
Palatini theory does not (my emphasis) succeed in recasting general relativity as a
connection dynamical theory” [34]. If such a statment is, indeed true, one would
imagine that it should be possible to see its validity on the Lagrangian level alone -
something which, according to (1.4) at least, appears not to be the case.

The thesis is divided into three basic sections. Chapters 2 and § review and clarify
some necessary geometrical concepts involving the connection, while Chapters 3 and
4 (together with the Appendices) rigorously examine various gravitational actions
under the Standard Palatini formalism, en route developing an Extended Action,
which, for the torsion-free case at least, gives rise to the dynamics of General Rela-
tivity while leaving the connection completely undetermined. In Chapters 6 and 7 we
turn to the Palatini Tetrad approach and develop an associated generalized prescrip-
tion which again enables one to derive General Relativity (in vacuuo) while leaving
the connection undetermined. Perhaps not surprisingly, this generalized prescription
will be shown to be directly related to our Extended Action of Chapter 3 while simul-
taneously leading the way towards establishing a more consistent treatment of the
relevant gravitational action S; = [tr [R A (8 A B)] in terms of its basic constituent
geometrical elements. Finally, we consider the explicit effect on the above analysis of

adding a matter term to the action S,,.



Chapter 2

Affine Connections

2.1 Overview

Throughout Chapters 3 and 4, in what we call the Standard Palatini Variation, we
deal exclusively with the usual affine connection of Riemannian geometry. As we
shall see in Chapter 5, this connection has a natural geometric generalization to
other (gauge) theories which is most vividly illustrated via the framework of fibre
bundles, but for the purposes of the next three chapters this is both unnecessary and
potentially obfuscatory.

Moreover, affine connections are fundamentally different from more generalized
connections in that they admit two additional properties: metric-compatibility (or
lack thereof) and torsion, both of which are undefined for more generalized connec-
tions owing to the fact that they are unique to the nature of the tangent bundle, T'M
(or, more precisely, to the bundle of frames, B(M) and its related bundles).

Both metric compatibility and torsion are independent attributes of a general
affine connection and thus serve to specify, at least to some extent, the nature of
our connection. This chapter will briefly highlight and review the mathematical
definitions and physical manifestations of each of these two attributes and their com-



bination, while simultaneously specifying the relevant notation which will be used

throughout much of the thesis.

2.2 Definition of an Affine Connection

Following mathematical convention [32, 10], we define an affine connection as V7,
a map from Vec(M) x Vec(M) to Vec(M), where Vec(M) represents the set of
vector fields on the differentiable manifold, A; while the N* functions, ', ¢ (z), are
technically referred to as “connection coefficients”.

This definitional approach is somewhat at odds with the more generalized view
from fibre bundle theory, where I',, ¢, represents a GL(N, R)-valued connection I-form
and <7 represents the covariant derivative. In keeping with these ideas, we shall often
use the word “connection” to refer to the connection coefficients (1-form), I, rather
than to its associated map (covariant derivative) 57. This potential abuse of notation
should not prove too confusing owing to the clear distinction in symbols used (i.e. T
vs. V) combined with its prevalence throughout relativistic physics.

We thus have the following definition:

An Affine Connection is a map

V = Vec(M) x Vec(M) = Vec(M)
(X,Y) = vxY (2.1)

which satisfies the following conditions for f any smooth, real-valued function on the
differentiable manifold M and X,Y, Z € Vec(M):

Vx(Y +Z)=vxY +VxZ (2.2)

V(x+y)Z = VXZ + VYZ (2.3)



VixY =fvxY (2.4)

vx(fY)=X(fiY +fvxY (2.5)

For {é,} any (local) basis of the tangent space T,M at some point p € M, we define
the connection coefficients I' by:

Veafp = Vabp : =T, 7 gy (2.6)

We write the indices of the connection (coefficients) I' ¢, in this somewhat unortho-

dox manner so as to simplify comparison with more generalized connections in later

chapters.

Thus 7,v for some vector field locally expanded as v = v7é, can be written in

component form as:

Vat =z € T,(M) (2.7)

where

z=2" &y 2 = (Vav)* = Oa(v?) + T 5 vP (2.8)

As usual, if some vector field, X, satisfies the condition
vvX =0 (2.9)

it is said to be parallel transported along c(t), for ¢(t) the relevant integral curve of

V'; while if we have
vvV =0 (2.10)

then c(t) is labelled a geodesic.
Using (2.2) - (2.5) together with the definitions:

Vxf=X(fy=Lxf (2.11)
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and the Leibniz rule:
vx(Ti®Tz) == (VxTh) ®T: + L ® (VxTz) (2.12)

we can extend the action of <7 to any gemneralized tensor 7 on M (this is another
manifestation of the particular nature of the affine connection - in general one cannot
do this.) which will thus enable us to define the concept of metricity.

Finally, we define two supplementary tensors, the torsion tensor, T, and the cur-

vature tensor, R, as follows:
T = Vec(M) xVec(M) x Vec'(M) - R
(X,Y,A) = (A, vxY —vrX - [X,Y]) (2.13)
where A € Vec*(M), the set of 1-forms on M and
(X,Y] & LxY; (2.14)
and
R = Vec(M) x Vec(M) x Vec(M) x Vec' (M) = R
(X,Y,2,A) > (A, 9x V¥ Z —Vr Vx Z — VixnZ), (2.15)

where we have used the usual notation, {4, X) to denote the element of R obtained
by the 1-form, A, acting on the vector field, X, i.e. (4,X) = A(X).
In holonomic coordinates (i.e. for {e.} = {525}) ! we find:

T,c, =T,%, —T,°, (2.16)
and
Rctﬁ‘\e = I‘ﬁ Ae,a - Fa Ae,ﬂ + (Fa ’\n)(rﬁ ﬂe) - (FB *n)(ra ne) (217)

1We shall henceforth use such coordinates as a default and all tensor components will be expressed
in terms of these coordinates unless otherwise specified.
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The Ricct tensor,
Rﬁe = Rﬂﬁ d’g (2-18)

and, in the presence of a metric, the Ricd scalar
R :=¢%Rg. (2.19)

are defined in the usual way. We note that the curvature tensor, R,z*, exhibits the

symmetry:
Raﬁ ‘\c = —‘Rﬁa '\e (2'20)

by definition.

2.3 Metricity

Given the presence of a Riemannian metric, g,g, on M, one can mandate that the

affine connection (extended to temsors as per (2.11) and (2.12)) is one which keeps

the metric “covariantly constant” - i.e.
Vx(9) =06 Oguw — " 90 — 3", up =0 (2.21)

This condition, referred to as both “metricity” and “metric compatibility”, assures
that the inner product of any two vectors parallel transported along any curve remains
constant and is a necessary consequence of the equivalence principle, but is by no
means mathematically pre-ordained. It is worth noting that there have been those
who have explicitly examined the dynamics arising from theories of gravity where the
metricity condition does not hold [21], but for our purposes it is enough to recognize

it as a “mathematical degree of freedom” of the affine connection.
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2.4 Torsion

In general relativity, the torsion tensor, T, is also assumed to vanish, but of course
mathematically this is also not generally the case. Owing to the fact that in holonomic
components

T ¢ =T, —T,° (2.22)

v op
this (non) vanishing of the torsion term is also referred to as the (non) symmetry
of the connection, but it is important to remember that this direct link only holds
when working in a T, M basis where the commutator of the basis vectors of T, M, i.e.
[éa, €], is identically zero. It should also be noted here that in Chapter 4 we also
encounter the contracted form of the torsion tensor T, 7, = —T, %,, which we refer to
as the torsion vector.

A large amount of work has been done involving the torsion tensor, both mathe-
matically and physically [20, 22, 27, 31] but again we emphasize that for our purposes
it is enough to recognize that it is merely a characteristic of a general affine connection
independent of metricity.

One can get a basic geometrical picture of the torsion tensor by comparing the

parallel transport of two infinitesimal vectors in T,M along each other’s flow lines.

Counsider the following diagram?:

2from [32], p.218
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Figure 2.1: Torsion as Non-Closure of an Infinitisemal Parallelogram

If we define X := €0y and Y := §*0, with both ¢ and §* infinitesimal®, as
elements of T, M and we parallel transport X along Y and compare it to the parallel
transport of Y along X, we find that the difference between the two resulting vectors,
ToT) := pry — pri, can be expressed, to lowest order in € and 4§, directly in terms of

the torsion tensor. That is,
TaTy (=P — Py = (Ty '\v)é-“ ¢’ (2‘23)

So we can view the vanishing/nonvanishing of the torsion tensor as a measure of
the closure/non-closure of the infinitesimal parallelogram made up of infinitesimal

tangent vectors at p and their respective parallel transports.

3Infinitesimals are used here in order to utilize distances via the metric and hence write ra7r; in
terms of the coordinates at p via a Taylor series expansion.
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2.5 Levi-Civita Connections

Of course, it is a well-established fact of Riemannian geometry that there is a unique
affine connection which is both metric compatible and torsion-free. This connection

is known as the Levi-Civita connection and in coordinate components it becomes the

Christoffel symbol, i.e.
(3 [ 1 ~E
Pu v = {p. u} = Eg [g;u:,u + Gueu — gg.w,x] (2.24)

This unique affine connection, solely dependent on the metric tensor, enables any
other hitherto connection-dependent quantity to also be re-expressed merely in terms
of the metric. Hence the curvature tensor can now be regarded solely as a function
of the metric and its first and second derivatives, while it now displays the added
symimetry:
R.g*e=—R,p (2.25)
in addition to (2.20).
The Christoffel symbol is assumed in General Relativity and its presence is visible
in many related ways ranging from the ability to view the geodesic equation as a
resultant Euler-Lagrange equation obtained by extremizing path length, to treating
curvature as a manifestation of the geodesic deviation equation, to a mathematical
consequence of the equivalence principle. Hence the physical ramifications of doing
away with the assumption ' ¢, = {,¢, } are vast, indeed - yet that is hardly a
reason to treat it as a mathematical necessity. In fact, qﬁite the opposite is the case,
for if we can determine under what class of mathematical scenarios this Levi-Civita
constraint does or does not occur, we might well be closer to determining under what
general mathematical circumstances one is irrevocably led to General Relativity. This

knowledge should be just as valuable for those convinced of the validity of General
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Relativity as for those who remain unconvinced of it.
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Chapter 3

Standard Palatini Formalism
(Torsion-Free)

3.1 Introduction

Early attempts to put General Relativity in a Lagrangian framework led Einstein and

Hilbert to independently discover the action
Spm = / &'z [/=g (R(T) + 167L.0)| (3.1)

as one which yields the dynamics of General Relativity from a variational principle.
That is, if one begins with the assumption (henceforth called the “Hilbert assump-

tion”)
L5 ={.%} (3-2)
together with the identification
J d4 - m
=570 = 25U ;g” 9Ln] (3.3)
aB

one obtains, by varying Sgg with respect to g, (henceforth called a Hilbert varia-

tion), the Einstein field equations:

Gu({}) = 87T (3.4)
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We note here that, in order to make the Hilbert variational principle well-defined, we
must either specify a boundary term, Sg, to be added to the original action, (3.1), or
a priort mandate that first derivatives of g,g are fixed on this boundary. This extra
boundary term is, however, non-dynamical, and hence may be incorporated into our
action by a suitable redefinition of Sgz.

Yet the Hilbert variational principle is not the only one open to us. As mentioned
in Chapter 1, motivated by more general geometrical considerations, one can envision
utilizing a variational principle where the connection is no longer a priori determined
but is instead elevated to the status of an independent graviational field variable.
Referred to here as the Standard Palatini variation, this approach begins with the
same action as previously, i.e. that of equation (3.1), with the proviso that the Ricci
tensor is now solely a function of a now-independent affine connection, only assumed

to be torsion-free. That is, our gravitational action now becomes:

Selg.T) = [ d*2v/=g (0" B (T) + 167L] (3.5)
with
Ry = 8,(T,",) = 0,(T, %) + (L. )(T,") — (T, 4)(T2%) (3.6)
and
I‘a"ﬁ =Ty 7 (3.1

Variation of Sp with respect to the metric results in the more general constraint:
G (T)=8rT,,, (3.8)
while variation with respect to the connection now gives the additional constraint ! :

Guur — grwr,\ 'T“ - gliﬂrla\ nv = 0) (3-9)

1A feature of the Palatini approach is that, unlike the Hilbert variation, there is now no need to
include a boundary term since the action no longer countains any derivatives of the metric and all
of the field variables are assumed to vanish on the boundary.
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which is the familiar condition of metric compatibility, whose solution
r,c,={.,.} (3.10)

is the Christoffel symbol.

The combination of the two constraints induced by the Palatini variation, (3.8)
and (3.10), once again leads to the (Einsteinian) dynamics deduced by the Hilbert
variation, i.e. equation (3.4),

Gu({}) = 87T,
Thus we see that in the case of the Einstein-Hilbert action, Sgg, the Hilbert and
Palatini variations lead to the same results, both for the specific form of the connection
as well as the final dynamics.

This equivalence of the two approaches, however, is by no means always the case
in all theories of gravity. To illustrate this crucial point, we now turn our attention
to a generalized N-dimensional dilaton gravitational action and examine how the two

variational methods differ when applied to this action.

3.2 Hilbert and Palatini Dynamics of a General-
1zed N-Dimensional Dilaton Action

Dilaton theories of gravity are playing an increasing role in the study of gravitational
physics. The prototype of this class of theories is the Brans-Dicke theory [7], whose
original motivation stemmed from a desire to develop a theory which incorporated
Mach’s principle by relating the gravitational constant G to the mean value of a
scalar field which was coupled to the mass density of the universe (see, for exam-
ple, [37]). More recently, this motivation has been largely supplanted by superstring
theories [19], which generally predict that the low-energy effective Lagrangian gov-
erning gravitationa.l dynamics is that of a dilaton theory of gravity.
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From the usual Hilbert perspective, the generic expression for such gravitational

actions is of the following form:
Spx = / &2/~ [D(T)R(g) + A(T)(9T) + 167Lm(E, B)| + S5 (3.11)

where ¥ is the dilaton field and & symbolically denotes the matter fields whose
Lagrangian may or may not also have an explicit dependence on ¥. The Hilbert
assumption, [',¢, = {,°,}, is here manifested by the notation R = R(g) for the Ricci
scalar.

Once again we note the appearance of a boundary term, Sp, owing to the fact
that our Hilbert variation involves a curvature term of second order in metric deriva-
tives. The inclusion of such boundary terms is necessary to correctly evaluate the
thermodynamics of a system of matter fields coupled to dilaton gravity (11}, but, as
previously mentioned, is not directly directly relevant in ascertaining the basic Hilbert
dynamics and will thus be henceforth ignored.

Regarding the issue of dilaton gravity from a Palatini perspective, however, forces
us to generalize our action further. If we begin our programme constrained solely by
the assumptions that our generalized action is first order in curvature terms, at most
quadratic in derivatives of ¥ and with a matter action only dependent on the metric
(and hence independent of both the (torsion-free) connection and the dilaton field),

we find that our action is necessarily of the following form [9]:

Sor = [ &=y g[D(B)R(T) + A(B)(TE)? + B(T)(V*¥)gas(To5")
+C(T)(V. ) (Vug™) + F(¥) V* ¥ +167L,] (3.12)
and is clearly a function of three independent gravitational variables: the connection,

the metric and the dilaton field (we also tacitly assume the necessity of the curvature

term, R(T') and hence demand that D # 0).
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Note that although 7,¥ = 8,¥ because ¥ is a scalar, since metricity is not
assumed, 72¥ above is given explicitly by v* v, ¥ or ¢* V. 8,¥%. Clearly in an
a priori metric theory, both the third and fourth terms above are identically zero,
while the fifth merely adds a total divergence combined with a redefinition of the
A(¥®) term. Hence (modulo the non-dynamical boundary term Sg) for the special
case of ' ¢, = {,¢,} above, Spp reduces to an action of the form Spz, and thus can
be seen to be its proper Palatini generalization.

A Hilbert variation of Spp yields the following two dynamical equations obtained
by varying with respect to the metric and the dilaton field respectively:

6,50p = 0= 87T, = DGu({})+[D"+ L(F - 4)] gu(00)?
—[D" + (F' — A)] (3,%)(3.9)
—D' [Du(8,%) — guD*¥| (3.13)

and
deSpp = 0= D'R({}) + (F' — A)(0%)* + 2(F' — A)D*T =0 (3.14)

where we have dropped the explicit ¥ dependence in D(¥), A(¥), etc..., D represents
the covariant derivative with respect to the Christoffel symbol and F”, say, represents

oF
¥ "

Meanwhile, the corresponding Palatini variation of (3.12) gives the following con-

nection constraint:

-1

7= Ve [Dv/=g9"] + % Vo [Dv=g (819" + 89")]

1
+(B + 50) [04(8”F) + &2 (8*¥)] + (C — F)(8.¥)g" = 0 (3.15)
We can derive two supplementary equations by tracing (3.15) with g,, and by
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contracting (3.15) over A and u (or v, since (3.15) is symmetric in g and v owing to
the assumed torsion-free nature of the connection).

Contracting (3.15) over A and g yields:

‘/V_Lg [Dv=3¢"] = (2°®) [if—N] [(N +1)B+ (—1\-’;—3) C - F] (3.16)

while tracing (3.15) gives

(1= N)-L [Dv=3] + D [ga(V08%) = guuw V29*] = 2B + (N + 1)C — NF] (5, ¥)

v—g
(3.17)
Combining (3.16) and (3.17), together with the realization that
V- 1
Va _gg = 59 U g~ (3.18)

allows us to substitute for \7,g** above and eventually find the constraint

(2 — N)D(N —1) (Vy.f_;_g) = (OT)[N(N —1)D' +4B + (4 — N* + N)C
+(N —2)(N +1)F] (3.19)

Upon substitution of this derived constraint back into (3.15), we find that, for
(N #2)?

Vag” = X(020)g" + Y [§3(8"¥) + 85(8"¥)] (3.20)
where
5. 2la-MD 1—) (25 j 2(;\(1—— 3I)vc)' + (2 - N)F] (3.21)
and
v ] 62

2Clearly the case of N = 2 merely adds a constraint between our variables D/, B, C, F and does
not allow us to solve explicitly for the connection using this procedure. For details of how one
handles this scenario, see Appendix A.
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By permuting (3.20) one can find an explicit form for the connection (again for N # 2)
€ € 1 1 (3 €
Loty =tk + (Y(2) = 5X(8) (0¥)gu + 5 X(T) [55(0.9) +65(3,8)]  (3.23)

in terms of the metric and the dilaton. Combining (3.23) with the two equations

obtained by varying (3.12) with respect to g,g and ¥ leads to the following “Palatini

dynamics”
81T = DGu({}) + [D" + L(F' — A+ Q)] 9,(09) (3.24)
—[D"+ (F' — A+ Q)] (8.2)(8. %)
=D [’D‘,(a,,‘I') - gWDle;]
and
DR{}D+(F —A+Q) (00 +2(F' — A+ Q)D*T =0 (3.25)
where
Q:= %(1 — N)D [(52_—2) X?—-2Y? — (N — 2)XY] (3.26)

Comparing (3.13) to (3.24) and (3.14) to (3.25) yields some interesting conclusions.

-

We see that for @ = 0, the two dynamics are mathematically identical. Clearly for
X=Y=0=>D+2B+C=0 (3.27)

this will always be the case, and here the Palatini dynamics reduce to the identical
form of that of the Hilbert dynamics.

Moreoever, we see that for @ directly proportional to (F'— A), the dynamics are
fundamentally equivalent physically and only result in a rescaling of some constant
parameter.

An example may serve to clarify this point of the case of Q «x F' — A.
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Consider the above generalized dilaton action, (3.12), with the following parame-
ters:

A =ae*¥; B=0bcF¥; C =ce®¥; D = de*¥; F = feF¥ (3.28)

where a,b,c,d, f,k are some constants. Under this parametrization, we find that X

and Y become:

_2[(1 = N)kd — 26+ (N —3)c+ (2 = N)f]

X= AN —2)(1 = N) (3:29)
and
_(2(6+¢c)—F
Sk =y (3:30)
that is, mere constants themselves. Hence under this parametrization, (3.28), Q
becomes:
Q=g (3.31)
where ¢ is the constant
-2
= %(1 —N)d [(N2 ) X?_2Y? — (N — 2)XY] (3.32)

where here X and Y are of course given by (3.29) and (3.30) above. It is clear that
since we have:

F' — A = (kf — a)e*¥, (3.33)

we are in a domain where Q < F' — A.

A Hilbert variation of (3.12) complete with (3.28), leads to the following dynamics:

8T = 4 Gu({}) + [+ 3] * 9u(09)?
~ [*d+ ()] &* (3.2)(2.%)
—kd e** [D,(8,¥) — D*¥| (3.34)
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and
kd ¥ R({}) + k(7)e*¥ (0®)* + 2(y) ¥ D*T =0 (3.35)

where the constant v is defined as
vy:=kf—a (3.36)
Meanwhile, a Standard Palatini variation of (3.12) together with (3.28) gives:

8T = dM*Gu({]) + [Fd+5(3)] ¥ g0
— [Kd+ (%)] € (8.7)(8. )
~kd ¥ [D,(8,%) — D*¥| (3.37)

and
kd ¥ R({}) + k(¥)e® (89)% + 2(7) ¥ D?T =0 (3.38)
where the constant v of (3.34) and (3.35) has merely been rescaled in the following
manner
y=d=v+q (3.39)
for g the constant given by (3.32) above. This rescaling is merely algebraic and has
no physical manifestation®; thus one finds that the Hilbert and (Standard) Palatini
variations result in the same dynamics for this particular case.
In general, however, we have a situation where neither X,Y # 0 nor Q is propor-
tional to (F'— A). In this general case, then, we see that a Palatini variation does not

yield identical dynamics, either mathematically or physically, from those of a Hilbert

variation.

3Lindstrém [28, 29] has shown this for a smaller class of actions where B = C' = F =0 and A(¥)
is % foraeT
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3.3 Generalized N-Dim. Einstein-Hilbert Action

Convinced that a Palatini variation is thus no longer generally equivalent to that of
a Hilbert variation, we turn our attention back upon the ordinary Einstein- Hilbert
action of equation ( 3.1) and ask ourselves why, then a Palatini variation of this action

gives in fact the Christoffel constraint
L ={.%} (3.40)

Again it is to be emphasized here that this question is not posed in support of some
hidden agenda to necessarily pursue alternative theories of gravity where I', ¢, #
{.¢.} - although, as previously mentioned in the previous chapter, there has been
considerable effort devoted to this end, both with regards to non-metric connections
and connections with torsion (see, for example, [21, 27]).

Regardless of whatever physical preferences one might have for the Christoffel
symbol as the connection of choice, the mathematical singling out of this particular
(metric compatible) connection from the space of all torsion-free connections via a
general variational principle must strike one as curious, to say the least [36], while
the sometimes associated view that the Palatini principle offers some sort of pseudo-
teleological “proof” of the necessity of the connection “being” the Christoffel symbol,
at least with regards to the Einstein- Hilbert action, is even more suspicious.

A natural question thus suggests itself: Is it possible to somehow modify the
Einstein-Hilbert action so that a Palatini variation does not isolate the Levi-Civita
connection but still gives rise to Einsteinian dynamics?

To this end, we move to N-dimensions and consider a generalized Einstein-Hilbert
action which, for simplicity, includes all possible terms that are at most quadratic in

derivatives and/or connection variables [8]. We also henceforth drop the explicit
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matter action term, L,,, thus regarding all derived dynamics as in vecuuo, with the
understanding that the relevant stress energy temsor can always be recovered via
the identification as per equation (3.3) above. Throughout this chapter we are only
concerned with torsion-free connections (generalizations to actions with torsion will
occur in Chapter 4).

The most general action in N dimensions that one can construct subject to the

above constraints is

Serz = [ d oy =glR+ H(Vus™)(V"g0s) + IV
+I(V9u)(V*g™) + KV -Z+LZ-2),  (3.41)

where we have used the convenient definitions:

VoV —9
Vo= ﬁ Z* == Tng™ (3.42)

and where the coefficients H, I,J,K and L are constants.

Other scalar quantities exist, but they can either be rewritten as linear combina-
tions of the above terms up to total derivatives or they are higher order in derivatives
and/or connection variables. Once again it should be noted that, just as in the
usual Palatini analysis for the Einstein-Hilbert action, (3.1), since we assume (dg,.)
and (4T,°,) to vanish at the boundary, no additional boundary terms in (3.41) are
required.

Since the connection is assumed, @ priori, to be arbitrary, we can express it for
this torsion-free case as

T ={%}+Q.° (3.43)

w
for Q,°, some (initially) completely undetermined tensor whose sole constraint is

that it be symmetric in its first and third indices (i.e. the torsion-free condition.)
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Looked at in this light, we see that we have the following relationships:
V:\ = —che (3’44)

Z'\ = Qpp‘\ + QpAp = Qp’\P - VA? (3‘45)

where we see that V* and Z* are representative of the two independent quantities
Q,** and Q. The following analysis can thus be regarded as a determination of
the constraints put on @, ¢, due to the variational principle.

Variation of (3.41) with respect to the connection I'y?, leads to the following

constraint:

L

= (v [v=as] - 5 v [v=ae] & - 5 v [v=as] %)

+H (V97" + V797) 9o — (VP 9rr)9"" — (V7 9rr)9”]

+I VP8, + VoS + T [2Va g — (97797 + 9°°9%) Ve Garl
+K [% (2785 + 2°87) — -;-(V"si +VP8) — %g"‘] —L[Z°8{+ 278 +22x9°°] = 0
(3.46)

where we have explicitly incorporated the (torsion-free) symmetry of the connection
(i-e. symmetry in p and o). The solution of (3.46) determines the connection as a
function of the metric in a manner which generalizes (3.9).

We thus seek to find the conditions under which (3.46) may be solved for I’ in
terms of the metric. Tracing (3.46) on the (p, o) indices yields

[(N=3)+2] —4] ~ (N + 1)K]Vs + 4H + 2J + K —2L(N +1) = 1] Z, =0,
(3.47)

henceforth written as

PVi+QZ,=0 (3.48)

28



whilst a p — A contraction of (3.46) gives

(N—-1)+8H —2(N+ 1) +4J + (N +3)K]| Vi
+[(N—-1)—-4H —6J —(N+1)K +2(N+3)L]Z, = 0. (3-49)
henceforth written as
RW\+S5Z,=0 (3.50)

Equations (3.48) and (3.50) are two equations in the two unknown vector fields V)
and Z,. We therefore examine the (2 x 2} matrix {2, defined by

| P @Q
Q.—I - (3.51)

There are clearly three distinct possibilities with regards to this matrix - namely that
it is either rank 2, rank 1 or trivial. We shall examine each case in turn.

The first possibility leads to the necessary relationship:
W=2,=0 (3.52)

which constrains @, ¢, above to be traceless over any two indices.

If Q is rank 1, we are left with some relationship:
Zy=rV, (3-53)

for some constant r = r(H,I,J,K,L,N) and thus leads to the following constraint on
Q p"" and @ p"":

Q¥ = -(1+7)Q,”, (3.54)
while for Q being trivial, we see that we have the necessary condition P = Q =
R = S = 0 relating our coefficients H,I,J, K,L and the dimensionality, N, but

can derive no information about @,°¢, (or, more specifically, its associated traced
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and contracted vectors). For arbitrary N, one finds that the unique set of values of
H,I,J K, L satisfying P=Q = R = § =0 is the following:

H=%;J=-%;I=K=1;L=O (3.55)

which we shall see again later in a related context (i.e. (3.72)).

We now return to our variational method and consider explicity the results for 2

rank 2. Insertion of (3.52) into (3.46) yields:
Vag” [1+2J]+ (2H + J) [g2, (V97" + V7¢77)] =0 (3.56)
It is straightforward to show that
Lo ={ }eQ., =0 (3.57)
is the only solution to (3.56) provided that

4H +4J # —1 (3.58)

or

2H — J #1, (3.59)

where the constraints (3.58), (3.59) shall be referred to as “indeterminacy constraints”
as their actualization prevents determination of an explicit form of the connection (i.e.
@,°.) and merely limits Q,°, to a subset of possible values. We will see that such
conditions recur throughout the analysis of the next two chapters.

Consequently we see that metric compatibility arises within the Palatini formalism
under quite gereral conditions unless 4H + 4J = —1, in which case, for 2H — J # 1,

it can be shown that I, ¢, is of the form:

ev_1
Py.eu = {[.s u} - Eg’\ v)‘ gI-W (3'60)
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1.e.
wiv = —% (@ + @] (3.61)

Similarly if 2H — J = 1 and 4H + 4J # —1, we see that [,  is necessarily of the

form:

L ={ }+9“Vigu (3.62)

ie.

=@ + @) (3.63)
We further note that the condition that trivializes (3.56), ie. J = —1, H = %, is
a simultaneous solution of both of the above special cases and thus leaves 7.1g%”
completely undetermined modulo the conditions given in (3.52).

For 2 rank 1, the analysis is similar except that one finds that the right hand side
of (3.56) is no longer zero, but instead some general function of the metric tensor and
Vi (or alternatively, one of Z),@Q,”, or @,,°). Again one finds that the indeterminacy
constraints must be satisfied for one to get an explicit expression for 71gag (otherwise
we are merely reduced to some weak constraint, as mentioned above, on Q,°,). But

now, even given that these constraints are satisfied, we no longer have
Vidag =0=>Q,°, =0 (3.64)

but instead

Vagap = Eaﬂ)\(gaﬁ1 Q.\ Pp, H’ Iy J7 Ka L)) (3‘65)

which merely entails some other weak constraint on @, ¢,. Finally, we note that the
trivial case, P = Q = R = S = 0, amounts to changing the right hand side of (3.56)
to include both traced @ temsors (i.e. Vi and Z,), thereby eventually yielding an
additional (weak) constraint on Q,°,, different from that arising from the rank 1

B v

case above.
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Thus we have found that @,°, can be weakly constrained or fully determined,
depending on the rank of {2 and the indeterminacy conditions, (3.58), (3.59). If it is
fully determined, then we see that it is forced to be identically zero and the connection
consequently reduces to the Christoffel symbol. For the standard Einstein-Hilbert
action, with H = [ = J = K = L =, this is, indeed, the case.

But is it possible for our analysis to leave @, ©,, completely undetermined? We have
seen that Q trivial leaves Q,”, and Q¢,, (i.e. Vi and Z,) completely undetermined,

while the combination of the indeterminacy constraints, (3.58) and (3.59), i.e.

J= _%; H= (3.66)

gy

necessitates that the left hand side of (3.56) vanish identically. Thus in this special
case (3.56) becomes:
0 =42 [(r— -21-1{) Ve 4 (%K—L—%) zv] +peo+g[(1—K)Vi+2L7]
(3.67)
We can see that in general, (3.67) again leads to some weak constraint relating V) to
Z,, but the special case of
L=0,I=K=1 . (3.68)
merely trivializes (3.67)
Thus for the special case of H = L,J = —};/ = K = 1;L = 0, (3.46) gives
a simple triviality, tells us nothing about the connection, and is thus completely

redundant. We expect that this redundancy is manifested by a general invariance

of the connection To this end, consider the following general transformation of the

connection:

L, =0 +Q.° (3.69)
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[ )
(-8

.. as before, an arbitrary tensor field with the sole restriction that it is sym-

for
metric in its first and third indices. This type of transformation is sometimes called
a deformation transformation [20]. Under the above transformation we find that the

action (3.41) is correspondingly transformed
Sers = Sene = Sgme + 45, (3.70)
where

55 = [1+27)(V"0™)Que + 2H + JN(7°0") Qe + Qi)
{1 +2H + 37]1Q* Qap — 2H + J]Q* Qepr
+[I - K+ L]Q,*Q7,, + [1 — K +2L]@Q%,Q,”
+LQ,7Q) + 1 - 20 + KIVhQ ™ + [K —1]AQ,™
+2L2*Q, 7 + [L +2L — K]Z2*Q",, (3.71)

For [',¢, to be completely unconstrained, we must have §S = 0 regardless of the

choice of @,°,. As expected, we see that this can only happen if
1 1
H=Z;J=—-§;I=K=1;L=O, (3.72)

which was the same condition we found that led to our redundancy.

Conversely, consider subsitution of (3.69) for ', ¢, into the general action (3.41),
and then varying the (transformed) action with respect to @,°,. This yields a set of
complicated algebraic equations for Q,¢,. Insertion into (3.41) of their solution for
Q,°, in terms of I' ¢, and g,. leads directly to a modified action of the form given
in (3.41) whose specific values for H, I, J, K, L are given by (3.72) above.*

In other words, (3.72) is clearly the unique set of values such that our action is

invariant under the transformation (3.69) with @, ¢, completely unconstrained other

4See Appendix B for more explicit details
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than being symmetric in its first and third indices. Accordingly, the values (3.72) will
henceforth be called the “maximally symmetric” values.®

From this perspective one can say that the compatibility condition, (3.57), ob-
tained by applying the Palatini variational principle to the Einstein-Hilbert action, is
an example of a constraint induced by a broken symmetry. That is, the EH action is
a special case of our general action (3.41) above, with the particular requirement that
H =1=J=K =L =0. That these values of H,I,J, K, L break the general sym-
metry is obvious from the above analysis, and it is this breaking of this “connection

symmetry” which singles out the Christoffel symbol.

3.4 Extended Action Dynamics

Momentarily putting aside our consideration of the “connection-dynamics” of our

extended action and calculating the ordinary “metric-dynamics”, we find

0 = Gu(D) + (I~ KWLV — 2K [TV + VoVl

—2(vr+ W) g™ [H Ve Guw + %J(V,,g.,E + vug,,e)]

—LVuZ, + V.2, + 7,V + 7V + Z2,.2,]

+H (V09 )(V18a8) + 202 (V> gau)(Vr550) ]

57 (9" (7%Gm) + (700 ) (V)]

+9ud =5 H(T00%)(708) + 5TV — 2 (Vea8)(770")

—%Lz2 + . (IV‘ + -;-Kze)}
(3.73)

% “maximally” symmetric to distinguish them from other partial symmetries which occur when
one assumes some particular tensorial structure of @, ¢, derived from one of the above weaker

constraints.
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upon variation of (3.41) with respect to the metric. Provided the constants H,I,J, K, L
are chosen so that (3.44) and (3.45) are satisfied (i.e. our coefficients are chosen so
that 4H +4J # —1 and 2H — J # 1), then all terms on the right hand side of (3.73)
vanish except for the first one, which becomes the usual expression for the Einstein

tensor in terms of the metric.
Consider next the condition of maximal symmetry. Insertion of our maximally
symmetric values, (3.72), into the above dynamical equation yields
1 1
0 = G(MU)(F) + Z [V“PW" + vqu”] + [VA — E(PA’:’)] (E:\w)

+1 2P (Bian) — (BA)(Parn) — 2PR)(P)]

450 [2BV(P%) = 2APan)(P*) + (Pre) (P*™) +4 72 (P = P)]
(3.74)
where
P* == ng™ (3.75)
and
B, = L [Ph - B2 - B = [ - T, (3.76)

thus enabling us to put some quantities directly in terms of the Christoffel symbol.
Hence the field equations in the case of maximal symmetry consist of (3.74) alone
— there is no equation which determines the connection in terms of the metric. In
this sense the maximally symmetric action is a theory of gravity determined in terms
of metric dynamics alone, with the connection freely specifiable.
Since the connection may be freely specified, one choice is to make it compatible
with the metric, i.e. to demand that (3.57) hold. In this case all P,* = 0, and (3.74)

reduces to

Gw({}) =0 (3.77)
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which are the field equations for general relativity. Alternatively, suppose we choose

[,¢, = 0. In this case (3.74) becomes
= Gy + 2 [vuB. "+ 7.B, Lp alg e
0 = (#U)( )+Z[Vl5 vn + Vo ;.m]+[v=_§ en {u u}
1 n N R . . -
+7 (2P (Brgu) — (BA")(Bora) — 2(B%,) (BY)] (3.78)

1 N - N N - A N -
g (2B} (PY) = 2(Pan)(PX) + (Pane) (P*™) + 4 7 (B — P7,)]

where P,# := 8,g*. Further simplification of the right-hand side of (3.78) yields
Givo)(g) =0 (3.79)

where G(,0)(g) is the Einstein tensor expressed as a functional of the metric, i.e.
G(vo)(9) = Go)({}). Hence (3.79) also yield the equations of general relativity.
The above case of examining ', ¢, = 0 raises an interesting curiosity. Clearly, as the
maximally symmetric case only restricts the connection to be torsion-free, ', ¢, = 0 is
an available option. But the fact that we are able to choose such a connection globally
enables us to say something additional about the geometry of our manifold - namely
that it is flat; or rather, that it can be made flat with no physical sacrifice. Hence for
the maximally symmetric theory, one can always model the dynamics equivalently in
flat space.

The preceding situation is also a generalization of a result obtained by Gegenberg
et. al. for (1 + 1) gravity [16]. Consider the action (3.41) for N = 2 with each of
H,I,J, K, L set to zero. In this case the determinant of coefficients in eqs. (3.48) and

(3.50) vanishes, and the general solution to (3.46) is given by [16]
T, ={.}+ (6B, + 8B, — .0 B") (3.80)

173

where B, is an arbitrary vector field. The Einstein tensor is given by
Gon(G) = Geq({}) =0 (3.81)
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and so renders the (1 + 1) dimensional field equations trivial, as in the usual Hilbert
case. We see from the preceding analysis of (3.74) that an analogous situation holds in
higher dimensions for the maximally symmetric action: although the field equations
do not determine the connection in terms of the metric, one can choose the connection
to be compatible with the metric by appropriately choosing @, ¢, in (3.69) and recover
the metric field equations of general relativity.

More generally, the choice of connection is completely irrelevant to the theory in
the maximally symmetric case. One has only equation (3.74), which determines the
evolution of the metric and is equivalent to the Einstein Field Equations.

Thus by beginning with a generalized Einstein-Hilbert action given by (3.41), we
have obtained a result whereby, for all of the coefficients taking the specific “maxi-
mally symmetric” values of (3.72), a Palatini variation of this action yields Einsteinian
dynamics together with a completely undetermined connection. Looked at from this
perspective, the standard Einstein-Hilbert action is merely a particular case (i.e. that

for which H = [ = J = K = L =0) of our generalized action, (3.41).

3.5 Summary

In attempting to better understand the origin of the Christoffel constraint, (3.10),
arising from the Standard Palatini variation of the Einstein-Hilbert action, (3.5) we
first examined a generalized dilaton theory of gravity, (3.12), to see if, under a Palatini
variation, it too will yield the Christoffel constraint and consequent identical dynam-
ics to that of a Hilbert variation. We find in general that the Christoffel constraint
does not in general occur, nor are the two dynamics generally equivalent, although
there are situations where the dynamics are equivalent without the connection nec-

essarily satsifying the Christoffel constraint. We return to the Einstin-Hilbert action
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and succeed in finding a generalized version of this action which results in the final dy-
namics of General Relativity while simultaneously leaving the connection completely
indeterminate. We denote such an action as the “maximally symmetric” action and
note that it is invariant under a deformation transformation, [',¢, = I,°, +Q,°,,
for Q, ¢, some arbitrary tensor symmetric in its first and third indices.

It is worth emphasizing here that, viewed from the perspective of our generalized
action with arbitrary H, I, J, K, L, a Palatini variation of this action invariably leads
to the Christoffel constraint unless H,I,J, K, L satisfy the particular values deter-
mined by the indeterminacy constraints (3.58), (3.59). Meanwhile, complete freedom
for the connection only occurs when H, I, J, K, L satisfy the unique maximally sym-
metric values - which can be regarded as a particular point in H, I, J, K, L parameter

space whose specific relevance lies in its relationship to deformation invariance of the

connection.
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Chapter 4

Palatini Variation of Actions with
Torsion

4.1 Overview

We now consider further generalization of our actions where the connection is no
longer necessarily torsion-free. There are two principal motivations for pursuing this
particular avenue, the first of which being mathematical completeness. Since torsion
is one of the two fundamental “degrees of freedom” of our affine connection (along
with metric compatibility), it seems unwise not to at least investigate modifying our
methods based upon its potential presence.

Secondly, one is spurred on to consider the question of torsion due to the nature
of the so-called Palatini Tetrad formalism, which we shall see explicitly in Chapter 6.
In this treatment, one proceeds in the opposite way to the technique of the previous
chapter by implicity assuming a metric compatible connection and going on to derive
the no-torsion constraint from a variational principle. This suggests that a variational
approach which assumes nezther metric compatibility nor zero torsion - i.e. a “true”

Palatini variation, if you will - would be worth examining.
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4.2 Einstein-Hilbert Action with Torsion

We begin then, by returning to our standard N-dimensional Einstein-Hilbert action,

Spr = / & z,/—gR(T) _ (4.1)
where we generally no longer have a symmetric affine connection and thus define the

torsion tensor by

L, :=r, —-TIL,°, (4.2)

I
Owing to the generally non-symmetric nature of the connection, we now note that

total derivative terms of the form
[d¥= v (v=3x*) (43)

for some vector X*, can no longer be ignored, but rather instead result in a net

contribution (modulo the Gaussian term) of:
[ #2v=gx*(T, ") (4.4)
Variation of (4.1) with respect to I' results in
" -\ + 9 [, =W+ K[V + 2" -T,7] =0 (4.5)
Tracing and contracting (4.5) yields the constraints:

e () o ws

and

2
z*:( )T"" .
1-N/° (4.7)

Substitution of (4.6) and (4.7) into (4.5) eventually yields the following explicit ex-
pression for the connection:

Lo =Lt (sregs) B@ D+ BT ] 430 @8)
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The metric variation is, of course, unchanged, giving as before:
Gu)(T) =0 (4.9)

Combining (4.9) with (4.8) we get a final expression for the dynamics of the Einstein-

Hilbert action for non-zero torsion:

GIW({}) = [ﬁl_—l)] (Ta a.qu = %ngppeTp pe)

1 1
+Z [ 73 ’\ﬂTA ’7” - EguVTe ):;T,\m] (4'10)

A few points are worth emphasizing here. First, the Palatini variation (here mani-
fested explicitly by equation (4.8)) now gives a connection where the torsion terms
explicitly contribute to the symmetric part of the connection, via the term

(2—(1{7,—)) [JZ(T, o)+ 8(T, "”)]. That is, a Palatini variation of this action does not
allow one to express a torsion-laden connection in the usual way as:

Ppeu = {ucv} + f(T)c[pu] (4‘11)

where f(T')7,,; represents the antisymmetric part of the connection.

In addition, we have seen in equations (4.6) and (4.7) that a T' 5 0 Palatini varia-
tion of the Einstein-Hilbert action allows us to explicitly express both non-metricity
factors V) and Z, in terms of the Torsion vector, T,?*, and thus each in terms of the

other (ie. Vi = — (¥) Zy).
4.3 Extended Einstein-Hilbert Action with Tor-
sion

We now regard our Extended Action of the previous chapter and apply to it a Palatini

variation whilst dropping the no-torsion requirement.
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We thus begin again with the action:

Sens = [ d¥zy=GIRT) + H(V,00s)(V°9"®) + IV? +
+J(Vo9a8)(V*9*°) + KV - Z + LZ7] (4.12)

In an analogous fashion to (3.43), we can now assume a connection of the form:
Lo ={..}+S.°.+A,°, (4.13)

for §,¢,, A, respectively symmetric and anti-symmetric tensors in p and v.

B v

Therefore we now have the relationships:
Z*=8*+85*4+47 (4.14)
and
Vi =A%, — 5%, (4.15)
Hence unlike the torsion-free case, V3 and Z, now reflect three independent quantities:

S, 725,27, Ay,”, but now we supplement (4.14) and (4.15) by:
T,,” = 24,7 (4.16)

. Therefore S, °,5,,7, A,,” can be represented by Vi, Z and T),°.
A Palatini variation thus yields, for T # 0:

T,* —7xg™ + ¢ [T, =] + & [V¥ + 2¥ - T,"]
+4H[g" V* gao| — 21(8X V*) +2J[g" 9™ Ve gor — Vag*]
+K[Vag™ + 68 VY — & 24|+ 2L[6* 2° + Zxg™] = 0  (4.17)

Owing to the fact that we are now dealing with a generally non-symmetric connection,
tracing and contracting (4.17) yields three independent equations:

(2—-N)TAA+[(N—1)=-2 +4J + (N +1)K]V*
+[(N=1)—4H -2J-K+2(N+1)L]2* = 0 (4.18)
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[BH —2NI +2K|V*+[4L —4J — NK]Z* =0 (4.19)

and

(N=2T*+PV*+Q2*=0 (4.20)
where P,Q are the same combination of functions of H,I,J, K, L as (3.47) of the
previous chapter. We note that (4.18) can be combined with (4.19) to give:

(2—N)T*+RV*+ 52> =0 (4.21)

We see clearly here that now the non-degeneracy of 2, PS — QR # 0 no longer implies

that V), = Z, = 0, but rather one has to examine the determinant of the 3 x 3 matrix

A, defined by:

(2—-N) & .
A:= 0 4 o (4.22)
(2-N) P Q
where
k:=(N-1)-2I+4J+(N+ 1)K (4.23)
Li=(N—1)—4H —2J — K +2(N + 1)L (4.24)
¥ :=8H —2NI +2K (4.25)
e:=4L—4J - NK (4.26)
and where, as previously mentioned, we have the relationships
k+9=R (4.27)
t+o=S (4.28)

Now, in contrast to our earlier case of §2, we have four possibilities to consider for A:

rank 3, rank 2, rank 1 and trivial.
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A quick inspection of A yields that it is necessarily non-trivial for N # 2, and
hence there is no analogous “maximally symmetric” N-dimensional set of values for
H,I,J, K, L when the torsion tensor is generally non-zero. Meanwhile, for the cases of
A of rank 2 and 1, we can see that, analogously to the torsion-free case, the redundancy
manifested by the non-invertibility of A will generate various weak constraintson S, °,
and A,°, in terms of their various contracted and traced quantities. Meanwhile, if A

is invertible (rank 3), we find the usual restriction:

TA=V*=2*=0 (4.29)

To get an idea of the structure of the results, we carry out a general calculation
for A of rank 2 (i.e. the same rank as one finds from the Einstein-Hilbert action).
In this case we can express both V) and Z, in terms of the torsion vector, T 7, (i.e.
re-express 5,7, and S,,7 in terms of A, 7).

We proceed, then, and simplify (4.17) to give something of the form:

AVegap+ B Vagpe +C Vg Jea = Xeap (4.30)
where
A:=1+2J (4.31)
B=4H (4.32)
C=2J . (4.33)

and Xeqpg is some complicated function of the metric, torsion vector T, °, and torsion
tensor (see Appendix C) Of course, in the rank 3 case, X..g is solely a function of
the metric tensor and the torsion tensor, while in the rank 2 case, X.og becomes a

function of V) (or Z)) as well.



At this point we break up the analysis into two distinct sections, depending on

whether or not C (i.e. J) is non-zero.

If C (i.e. J) #0, then, permuting (4.30) yields an undetermined connection iff:
(AC — B*)(C®* — AB+ AC — B?) = (BC — A*)(C* - AB+ BC — A®) (4.34)

which is the T # 0 generalization of the T' = 0 indeterminacy constraints (3.58) and
(3.59) of Chapter 3.

Just as we found in the torsion-free case, with constraints (3.61) and (3.63) follow-
ing from actualization of the torsion-free indeterminacy constraints, (3.58), (3.59), we
note that actualization of our more generalized indeterminacy constraint will simi-
larly lead to various constraints among S, °,,4,°, and §,7,,5,,° and 4,7, in terms
of H,I,J,K, L and N, the details of which will in turn depend on the particular rank
of Q.

Meanwhile, if equation (4.34) does not hold, we can therefore solve explicitly for

the connection, as before. We find, after much manipulation?, that our connection is

of the form:

L = {3 +Flowd—e—-HTF-d(6T,%+8T,7,)]
+[Fs— 3] [Te+ 1] + 5T, (4.35)
where F,d, &, f, 5 are all in turn complicated functions of H, I, J, K, L.
Meanwhile, for J = 0 the analysis simplifies somewhat. Here the indeterminacy
constraint becomes simply H # +3 (i.e. T, ¢, is explicitly soluble unless H = +1),

where in this case I, ©, takes the explicit form:

T,% = €[gwT(B—2a(1+4H) +&(4H —1)) + (4H:—b) (65 T, 7, + 6 T, %,)]
{ueu} + (f - %) [Ty: + Tu;] + %Tp 1v (4’36)

1See Appendix C

45



where

&= [2(1 n 4H;(1 - 43)] (4.37)
and &, b, & are (still) more complicated functions of H, I, J, K, L as shown in Appendix
C.

Owing to the complicated nature of a, b, ..., f, F etc., it is difficult to get an intu-
itive feel for the final results of the connection in terms of our original H,I,J, K, L
parameters, but the general structure is readily apparent. As in the case for the
Einstein-Hilbert action, we once again find that, given that the indeterminacy con-

straint is satisfied, we end up with a connection of the form:

Pueu = {“eu} + [f(g, T)]e(w) + %T[pe v] (4'38)

where the [f(g,T)][%,,) term is a combination of metric, torsion tensor and torsion
vector terms together with various complicated functions of H, I, J, K, L such that

the entire term is symmetric in its ¢ and v indices.

4.3.1 Final Dynamics

The procedure for calculating the final dynamics of our potentially torsion-laden
system is fairly straightforward: we substitute the derived explicit form for the con-
nection, i.e. (4.35) or (4.36), into the action (4.12) and vary the resultant expression
with respect to the metric tensor. In reality, however, we find that such a programme
becomes highly complicated not only because of the complicated nature of the various
parameters a...F in (4.35) and (4.36), but more significantly because these expres-
sions themselves implicitly or explicitly involve the metric tensor and one must be
extremely careful to keep all the metric terms separate so as to successfully vary with

respect to them when the time comes.
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At the end of an admittedly very long day, however, one comes to a final dynamical

expression of the following form:

L3 4 € 1
Gouo({}) + St + Wy + Wiy e = Wi s e — 59 (S +W) =0 (439)

p e(pv) ppv) e

where S.g and W7, ; are some complicated tensors comprised solely of torsion ten-

sors and their various associated contractions (See Appendix D).

4.4 Extra Torsion Terms to the Action

Finally, we note that dropping the T = 0 requirement from our original assumptions
which eventually led to the extended action, Sggg of Chapter 2 now allows us to
include more terms to such an action consistent with the previous constraints of
being only up to second order in derivatives and/or field variables.

That is, we now find a possible six additional independent terms involving the
torsion tensor. We examine the dynamics of this system, where for simplicity we
regard it independently from our previous Sgxg action. We consider the combined
dynamics in the next section.

The relevant action for this section, then, is of the form

Sr = / & 2/=g[R(T) + a(7*¢™)Tue + bT, 7\ Z* + T, AV
+dT.7 T + eTaey T + FTaco T (4.40)

We see that the d, e, f terms arise solely from the various scalar contractions of

the torsion tensor, T, ¢, combined with the metric tensor, while the g, b, ¢ terms occur

through potential torsion-non-metricity contributions.
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Variation of Sr with respect to the connection leads to the following expression:

G [(L+B)V” + (1 + 02" + (c+2d — YT,| — 87 [bV* + cZ* + (b + 2d) T, ]

+¢* [(L+)T, % —V]+(1+2) T +(a+4f) T " +(a+2e) T¥, = 0

— Ve 8% + a[gpe (VHg™ — V"g™)]
(4.41)

We again trace and contract (4.41) to obtain relations for V* and Z* in terms of T,
thereby finding the three relationships:

[(N —~1)(2d —1) + (N + L)e+ (1 + b + 2¢ + a + 4f)] T,»

+[(N=1)(1 +b)+2a]V*+ [(N —1)(1 +¢) +a] Z*

= 0 (442
[2d(1 — N) + 2c — Nb— (2e + 4f + 2a)] T,**
+B(l—=N)—2aV*+[c(1-N)—a]Z* = 0 (4.43)
(N—=2)+c(N+2)+(a=-b)]T*+(3-N)V*+2*=0 (4.44)
which may be rewritten as:
(T +aVr*+B2 =0 (4.45)
(TA+aV*+824 =0 (4.46)
(TP +aV*+p2" =0 (4.47)
If we define
¢ B
A= & B (4.48)
¢ ap



and proceed as in the previous section, we again consider the relevant possibilities of
A - ie. rank 3, rank 2, rank 1 and trivial.

The A term ensures that A cannot be trivial; whereas, as before, the case of A of
rank 1 amounts to a weak constraint, allowing one to express one of V3, Z,,T, %, in
terms of the other 2; A of rank 2 amounts to a stronger constraint, allowing two of

?, to be written in terms of the remaining one, and the non-degeneracy of

Vi, 25T,

[- 4
A ensures that:

W“W=2.=T,%=0 (4.49)

We see that for the special case of a =b=¢=d =e = f = 0 as seen in Section
4.2 above, the matrix A clearly is of rank 2 and (4.42)-(4.44) reduce to the previously
found relationships (4.6), (4.7):

VA= [%] T (4.50)

and

7 = [1 = N] T o> (4.51)

Once again we push forth the analysis for the case of rank 2, thereby enabling us

to eventually express the connection explicitly solely in terms of the torsion tensor

and the torsion vector.

Thus we say that (4.42)-(4.44) reduce to expressions of the form:
V=01 (4.52)

Z* =TT (4.53)

where © and T are functions of g, b, ¢, d, ¢, f and the dimensionality N.

This transforms the general expression for the connection variation (4.41) to:
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Vg™ +algn (V9 ~ V™)) = 8 AT - & B(T*) +¢* C(T,°)
1+ 2e)T + (a+ 4F)T=* + (a + 2¢) T

(4.54)
where we define
A=(1+4+b80+(1+c)T+(c+2d—-1) (4.55)
B :=b0 + cT + (b+ 2d) (4.56)
and
C:=(1+¢)—-0 (4.57)

As before, for the rank 1 case, the left hand side of (4.54) is unaltered, while the
right hand side generalizes to include terms of the extra degree of freedom (i.e. V)
or Zy;or S, %, or S,,7). Of course in the rank 3 case the right hand side of (4.54) is
solely a function of the torsion tensor and the metric tensor. Equation (4.54) is thus
the pure torsion term analogy to (4.30).

Once again, we find that analysis of (4.54) gives rise to an indeterminacy condition,
this time dependent solely on a, as one might expect.

First we consider the case of ¢ = 0:

For a = ( we find that manipulation of equation (4.54) eventually yields an explicit

form of the connection as follows:
€ 3 1 1 (3 o € 1 €
L= {5} + 5(A+ B = C)awT + 5C (5T, %, + &T, %+ 5T,5  (458)
For a # 0, however, life is somewhat trickier. We define

‘ (4.59)
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and

1 l1—a
Eafe i= aBe + Pea & ] 4.6
& [(1—2a)(l+a)][( a )(§‘3+ 8+ Ppe (4.60)
and note that we have an indeterminacy condition at a = %,a = —1. Fora # % or

a # —1, we eventually find that our connection has the following form
1 & Lo — —
I‘“e” = {“cy} + 59)‘ [(':'MH’ + TAuu) - (‘:‘uuo\ + TWA) - (':'In\u + Tw\u)] 3 (4-61)

which we can rewrite as:

chu = {uev} + Yu eu (4'62)

where Y, ©, is defined by
Y, <, =p8.T, %, +qo:T, *, + fgu T~ + 8T, + 1%, +aT,*, (4.63)

for p,§,+,3,t,4 some complicated functions of a,bd,c,d, e, f, explicitly found by the
recursive utilization of (4.52),(4.53),(4.55)-(4.57),(4.59), (4.60) and (4.61).

Of course, if a = 7, —1 we cannot solve explicitly for the connection and we instead
are reduced to finding some constraint relating §,<,, A,¢, and (since A is assumed
to be singly degenerate here) A, 7,, say.

In general, though, for @ # 1, —1 one can say that in the singly degenerate (or non-
degenerate) case, we can express our connection, I', explicitly in tersm of a, b, ¢,d, e, f,
the metric tensor, g,, and the torsion tensor, T, ©,. Substition of this connection,

(4.61) or (4.58) into the action (4.40), and varying with with respect to the metric,
Jap, eventually allows us to obtain a final dynamical result of the form

S AP € A 3 A1 pe 1 S A

where $,5 and W7 are again complicated tensors solely comprised of T, ¢, and
8 niap s v

its contractions, but different from S,g and W*7, g, previously defined for the Sggg
B niapf P
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dynamics of Section(4.3) above and solved for explicitly (if recursively) in Appendix
D. Of course as mentioned above, if A is doubly degenerate, an explicit solution of
[ in terms of the torsion tensor and torsion vector is no longer possible, as = above

will now explicitly depend on V) or Z, (i.e. S, %, or S,,%).

4.5 Summary

We now briefly summarize this chapter’s results while simultaneously sketching out
an argument for the form of the results of a Palatini variation of the generalized

torsion-laden action which arises from the combined effects of Section 4.3 and 4.4, i.e.

the generalized action

Se = [ @2v/=g [R(T) + H(V,908)(7°9®) + IV? (465)
+J(Vo9ap)(V29?P) + KV + Z + LZ?
+a(V*9%)Tyer + BT, V> + T, 4 2>
+dT,,° T, + eTrep T + fTae, T2

Variation with respect to T, leads to three independent relations between T,°*,V*

and Z* (or, likewise, three independent relations between S, 7,,S,,” and 4,7,):

TTA+eVi+y2* =0 (4.66)
FTA+eV +5324 =0 (4.67)
FTA+eV 4452 =0 (4.68)

which can be represented by the matrix:

Y=

i Ll [l
My M) M

2 A 2

' (4.69)



where

Z=A+A (4.70)
¥ can either be trivial, rank 1, rank 2 or rank 3, leading one to derive various con-

straints between V4, Z\ and T, °, depending on the rank of I.

Substitution of the relevant rank of ¥ into the connection variation equation gives

the following general scenario:

AVegap+ B Va goe + C V6 Gea = Xeap (4.71)
where
A:=1+2J (4.72)
B:=4H —a (4.73)
C:=2J+a (4.74)

and X.os s some complicated function of g,.,T, ¢, and either none, one, two or all
three of Vi, 2, T, °, (or, alternatively, S, %y, 5,17, 4,7,) depending on whether ¥ is
rank 3, rank 2, rank 1 or trivial, respectively.

For € # 0 we find that (4.71) yields an undetermined connection iff:

(AC — B*)(C* - AB+ AC - B*) = (BC — A2)(C* - AB + BC — A?)  (4.T5)
while for € = 0, we have the following indeterminacy condition:
A? = B? (4.76)

If (4.76) or (4.75) do not apply, we can solve for the connection explicitly in terms
of the metric, torsion tensor and remaining variables unconstrained by the above
degeneracy of X, otherwise we are left merely with weak constraints on relations

between S ¢ A“EU and So, Jl\, Sa)‘d a.nd Aa.a-'\.

B v

53



Furthermore, the indeterminacy constraints do not apply, and if ¥ is rank 3 or
rank 2 then we can express our connection explicitly in terms of only the metric
tensor, torsion tensor and its contraction (i.e. the torsion vector). We see that in
that case we find an explicit solution for the connection of the general form:

€ € = e -4 = Ce = = e F e 1

F,u v — {p u}+p Jp(Ta u)+q su(Tp p“) +7 g#"(Tppe)-{-s T yu+t T up+§ Tp ev (4'77)
where @, 7, 3,¢, 4 represent various complicated functions of H,I,J, K, L,a,b,¢c,d, e, f
obtained in the usual recursive manner.

Finally, substitution of (4.77) into (4.65) followed by varying with respect to the
remaining dynamical variable, g,g, yields a final dynamical expression of the form:

~ AP € ry e A e 1 d e
Gra({}) + Sty + Wil + Wity « = Wiy pe = 39w(S + W) =0 (4.78)

where S, and W”T, rap aT€ again some complicated tensors comprised solely of torsion
tensors and their various associated contractions (i.e. independent of the metric)?.

We note that the final dynamics arising from this combined action modify the
Einsteinian dynamics only by factors of T2, that is, by factors second order in the
torsion tensor.

Among those researchers concerned with the effects of torsion, there have been
some who have sought a more dynamical role for the torsion tensor by examining a
dynamical scenario containing covariant derivatives of the torsion tensor in addition
to the Einstein tensor - i.e. by including terms of the form 7.(T, %), say, on the
left hand side of (4.78). It is clear from the above analysis that this does not occur

in our case, where we have excluded any terms from the original action which are

2For the sake of simplicity, we have maintained our assumption that T is non-degenerate or singly
degenerate here. Otherwise S and W would also be functions of Va and/or Z,.
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greater than second order in the connection. However, if one removes this constraint
and considers higher order connection terms, it begins to look like such “dynamical
torsion” terms can arise from a Palatini analysis. It turns out that it is impossible
to construct scalar quantities from 7,7}, ©,, gag and T, %, to only third order in I'.
In order to pursue this line of inquiry, then, we are forced to go to fourth order in I'.

We thus find that a Palatini variation of the term
Sun = [ do/=g(v.T, g9 (T, %) (L. 5), (4.79)

say, leads to the following constraint:

“)(T. %) [¢7°9"PT, %, — (V= + 2°)g" — 7*g"*]
49" 7o (T N T, &) + 97" (T, HToT. 7)
+8( Vo Ty “)(T, %)g7°g"" —(p=>v) = 0 (4.80)

(T,

[= 4

Although a rigorous analysis of such higher order terms has not, in fact, been done,
the above constraint is highly suggestive of an eventual expression for the connection
involving covariant derivatives of the torsion tensor and hence the eventual appearance
of such terms in the final dynamical expression. For those whose interests lie in
developing such a theory, it is conceivable that a fourth order generalized Palatini

action might well be worth considering further.
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Chapter 5

Geometrical Divertimento

5.1 Fibre Bundle Review

At this point we pause in oﬁr analysis of the Palatini procedure to briefly review! and
clarify some methods of abstract geometry which will prove necessary to our cause in
later chapters - specifically key elements of fibre bundle theory.

Fibre bundles have become fairly popular with physicists over the last several
decades largely because of their utility in visualizing gauge theories. We begin with
principal fibre bundles. Briefly put, a principal fibre bundle allows one to simultane-
ously view the physical space, M, referred to as the base space, and the bundle space
E, where the bundle space generally reflects the symmetry group of the theory by
associating with each point z € M a fibre in E diffeomorphic to some Lie Group G,
referred to as the gauge group or structure group.

More technically, for £ some topological space which is equipped with some free
right G-action (where “free” here necessitates that all fibres are diffeomorphic to one
another), © some smooth map from F to some other topological space M, we see
that E can be grouped as sets of fibres, #~!(z), over each z € M, where each fibre

somehow represents the gauge freedom of our theory with any point on the fibre

1This brief review relies heavily upon [26]
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Figure 5.1: Principal Fibre Bundle

n'(f)

—

over z, p, being related to another, ¢, via the action of the gauge group G - i.e.
Vp,g € 7" (z)Ig € G > p=qg

Meanwhile a cross-section, o, a smooth map o : M — E which associates with
each £ € M some unique p € 7w~ !(z) in the fibre over z amounts to, in this picture,
a gauge choice.

Furthermore, we note that the so-called “Vertical Vector Fields” on E, V(E),
which arise from the action of G on F are directed “along the fibre”? and faithfully

20Qwing to the above one-dimensional pictorial representation of the fibres, it becomes difficult
to visualize more than one such direction for this vector field. A better model is one of an onion,
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reflect the Lie Algebra, £(G), of G by the isomorphism:
: : L(G) > V(E)

L — XE, (5.1)

where X’ represents the vector field on E induced by acting on every element of p
by the one-parameter subgroup of G which corresponds to the Lie Algebra element
L. We note that vertical vector fields on E can be defined by the relation:

VE ={r € T,LE>~x, =0} (5.2)

We can then define a connection on a principal bundle as a smooth assignment of

a subspace (H,E) Vp € E such that
T,E=V,E® H,F (5.3)
where H,E is compatible with the action of G on F, i.e.
dg«(HpE) = (HpgB)Y Vg€ G,p € E. (5.4)

This above definition can be shown to be equivalent to defining an L£(G)- valued

1-form, A, where we have
Ap(r) =" (ver(r))Vr € TLE (5.5)

where ¢ corresponds to the isomorphism defined above by equation (5.1)
Armed with a connection we can thus compare points in neighbouring fibres by the
notion of parallel transport. Since m.(V,E) = 0, once we have defined a connection

on our bundle, we not that we have an isomorphism given by

Ty : HoE = Ty M, (5.6)

where each layer (shell) represents a fibre and where one can imagine many different such (vertical)
vector fields.
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which enables us to uniquely write the “horizontal lift” of any vector field (or thus
any curve) in the base space M - where by “horizontal lift” we simply mean a unique
vector field which is necessarily strictly horizontal (i.e. 77 € H,E Vp over which 1 is
defined). We find that for any curve a : [@,b] —+ M in M there is a unique horizontal
lift o' of @ in E for each “starting point” -i.e. Vp € n~!(a(a)). We then regard the
parallel transport along « as the map between the two fibres 7'(a(a)) and =~ 1(a(b)
defined by:

pu = m '(a(a)) = 7 (a(b))

p—a'(8) (5.7)
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We note that the exterior covariant derivative, D, of any k-form, &, on E is defined

by
D¢ [X1, Xz, ooy Xieg1] := d€ [hor(Xy), hor(X3), ..., hor(Xi)] (5.8)

For G := D w the exterior covariant derivative of the connection 1-form, w, we have,

for any pair of vector fields X, Y on E, the Cartan Structure Equation:
G(X,Y) = dA(X,Y) + [A(X), A(Y)] (5.9)
and the Bianchi identity:
DG=0 (5.10)

It should be emphasized that these quantities are written here in their most general
principal bundle form. In order to obtain the usual connection 1-forms and curvature
2-forms which take arguments in the base space M, we must pull back the respective

principal bundle quantities using some local cross-section. Hence we define:
R:=0"G (5.11)

and
w:=o0"A (5.12)

and thus can express (5.9) and (5.10) in their more familiar local form

R=dw+wAw (5.13)
and
DR =0 (5.14)

For reasons which we shall shortly see, we find that covariant derivatives are only

defined for associated vector bundles, which necessitates a short digression in this

direction.
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Figure 5.2: Parallel Transport in Principal Fibre Bundles




We begin with (E,n, M), a principal G bundle and V some generalized vector space
which has a left G-action. Then we define the associated vector bundle (Ey, 7y, M)
where Ey is composed of the set of equivalence classes of points [p, v] with the equiv-
alence class defined by:

1

(pv)=(p,0)ifdge G 2p=pg;T=g v (5.15)

and 7wy is defined by
wv([p,v]) := =(p) (5.16)
It is important to realize that this associated vector bundle has a fibre which is

diffeomorphic to the vector space, V. Now we can extend our previous relations for
parallel transport to these associated vector bundles by defining the horizontal lift of
a in the associated vector bundle (Ey,ny, M) passing through the point [p,v] in the
fibre ny'(a(a)) as:

alr(b) = [a'(), 7] (5.17)
with the associated parallel transport defined accordingly (c.f. (5.7)).

Finally, then, we can define a covariant derivative in the following way.

Given some associated vector bundle (Ey,wy, M) with some smooth cross-section,
¥ : M - Ey, and a some curve in M such that «(0) = zo, then the covariant

derivative of 9 at zo with respect to the vector [a] is:
.1

Viert = lim = [pu((a(2))) — $(o)] (5.18)
and we can see why covariant derivates are only defined on wvector bundles, as it is
only on a vector bundle that the above difference of the two points on the fibre,
77t (z0), is well-defined.
In local holonomic coordinates the above definition becomes the familiar

(Vut)(z) = 0u¥p(z) + wu(z)¥(z) (5.19)
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where the index g in the covariant derivative refers to 9, as usual and the last term
reflects matrix multiplication between the (N x N) matrix-valued element of the Lie
Algebra, w,(z), and the (N-dim) vector ¥(z).

Of course all of this analysis is purely kinematical - that is, the dynemics for any
theory, regardless of whatever relevant bundles one is using, must be specified by
some other means, usually an action principle. We will discuss this point further in
Chapter 7. For now it is enough to be aware of the fact that the principal bundles of
relevance will be B(M) and its reduced bundle, SO(3, 1)(M), while the vector bundles
of relevance will be their respective associated bundles on RY i.e. (B(M)gw~, gy, M)
and (SO(3,1)(M)g~,wen, M), both of which are isomorphic to the tangent bundle,
T M (see Section 5.3).

63



5.2 Bundle of Frames

The key principal fibre bundle in General Relativity is the Bundle of Frames, B(M).
It consists of a bundle space, E, containing all the possible ordered sets of basis
vectors (by, b, ...,bn) of T, M for all the points z € M. Clearly this is a principal
bundle with structure group GL(N, R) and the bundle space, F, can be easily shown
to be a differential manifold of dimension N + NZ.

As alluded to above, the tangent bundle, T'M, can be regarded as an associated
vector bundle to B(M) in the following way. From B(M), we first form the associated
vector bundle (B(M)g~,mg~, M) with associated covariant derivative 7. But one
can then associate this vector bundle, in turn, with the tangent buudle, T M, by the

prescription:
(6,x] = bire T.M (5.20)

for b, some particular frame at z € M.

Recall that in Chapter 2 we went to the trouble of specifying something called
an “affine connection”, which started out being a map from the space of Vec(M) x
Vec(M) to Vec(M) and became further generalized to a map involving vector fields
and arbitrary rank tensors, which thereby enabled us to define torsion temsors and
discuss issues of metric-compatibility. How does this relate to our more general fibre
bundle picture?

There are many ways to visualize this, but the important fact to remember is
that B(M) has cross-sections, ¥(z), which are themselves directly related to elements
of T.M. If one moves to the associated tangent bundle, T'M, this fact remains

unchanged and we are now in the unique situation where for

Vi(#(z)) = ¥'(z), (5.21)
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Figure 5.3: Parallel Transport in Associated Vector Bundles
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we can effectively regard 7 as a map from Vec(M) x Vec(M) (ie. [af,¥(z)) to
Vec(M) (i.e. ¥'(z)). It is this unique attribute of these particular bundles (i.e. the
explicit relationship between the argument of the covariant derivative, [a], and the
sections of the relevant bundle itself, ¥(z)) which enables us to define torsion tensors
and generalize ¥ to acting on arbitrary tensors in M (from whence the concept of
metricity arises).

There is, however, another way to look at this unique peculiarity of B(M) which
directly leads to the concept of torsion and is vital to formulating gravitational the-

ories in an action framework.

We define a solder form as a R¥-valued 1-form, 8, on B(M) by
(8,v)p := (mv)*V p € B(M) (5.22)

where the R¥-valued set of components of 7,v, i.e. (m.v)* are necessarily with respect
to the local frame (by, b2, ..., by) defined at p € B(M)

That is, the solder form takes any vector v € Tp(B(M)) and gives its components
with respect to the particular basis at p € =n~!(z). Since we know that m.v = 0
defines any vertical vector v, at p we see that the solder form only gives non-trivial
results for horizontal vectors, v € H,(B(M)). Projecting down to the base space,
M, given some cross-section, o, it is clear that the local representation of 4 in M,

o*8 := 3, is merely given by:
B(v) = [*(v), B*(v), --.. B (v)] (5.23)

for {8} the set of co-vectors associated with the particular frame chosen by the cross-
section . Hence the solder form 8 or B is intimately related to the cross-sections of
B(M), o, which serve to select particular frames over some £ € M and are hence often

referred to as frame fields. In a holonomic coordinate system, the standard frame to
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which all others are compared is the frame (8, 8, --., dn) and hence the frame field,
e = o can be written as the GL(N, R) function e# with the understanding that

8(2) = (bl, bz, ceey bN) (5.24)

and

br=¢e} 0, (5.25)
where we see the equivalence between our frame field and the usual N-beins or tetrads
explicitly. Since in this coordinate system the solder form acting on any v = v"9, € M
merely gives v"¢)), it is often said that in these coordinates the frame field is the solder
form, where the technical difference between the frame field as a cross-section and
the N-bein as a GL(N, R) function is glossed over.

As before, we see that the solder form is unique to the frame bundle and its
related bundles as, for a general principal bundle, the definition above (i.e. (5.22)) is
nonsensical owing to the fact that in general 7,v produces a vector with basis vectors
(and potentially dimension) completely unrelated to p € #~1(z).

This existence of § enables us to define further geometrical entities on B(M) and

M, namely the exterior covariant derivative of 8, the 2-form

T :=Dg4, (5.26)
known as the torsion two-form, and its associated local representative,

T :=0"T, (5.27)

the torsion 2-form on M.
In this way we can find the analogous principal bundle equations to the structure

equation and the Bianchi identity, i.e.
T=d0+ANS (5.28)
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and
DT =GA# (5.29)

and their more familiar local representations:

T=d8+wApB (5.30)

and
dT+wAw=RAw (5.31)

respectively.
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5.3 Metrics and The Bundle SO(N — 1,1)(M)

It is significant to note that, until now, we have not mentioned the presence of a metric
at all. We have merely demonstrated that, for a principal bundle with connection
A and some local cross-section, o, we can establish £(G)-valued forms on M, R and
w, obeying (5.13) and (5.14); while if there also exists some solder form, §, on the
principal bundle, we can additionally obtain additional R¥-valued forms on M, T
and 3, such that (5.30) and (5.31) hold.

We now turn our attention to the issue of a metric, i.e. some symmetric, non-
degenerate (0,2) tensor defined on M. If we define a metric, g, in terms of the local
cross-sections of B(M), i.e. the frame field, e, so that it is necessarily orthogonal,

then we have:

Jag = €r €3 117 (5.32)
for nry the Minkowski metric
nrr = diag{—-l, l., 1, ceey 1} (533)

Since g.p has -1!!%2 degrees of freedom, while the N-bein, el has N? degrees of
freedom, one would expect that there are many different N-beins which can be com-
bined via (5.32) above to give the same metric, gog- This redundancy is manifested
by the Lorentz group, i.e. the group SO(N — 1,1) of dimension Mzil (where, of
course, M—Ig—'ﬂ = N2 — W), by the fact that the metric g,g defined above by
(5.32) remains invariant under a general SO(N — 1,1) - i.e. Lorentz, transformation.

In bundle language, it is said that, SO(N — 1,1)(M), the principal bundle over
M with structure group SO(N — 1,1) instead of the “full” GL(N, R) of B(M), is a

reduction of B(M), where this reduction process is intimately tied to the existence of
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Figure 5.4: Bundle of Frames with Solder Forms
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a metric on M3

From our perspective, however, this is unimportant. It is enough to recognize that
SO(N - 1,1)(M) is a sort of “limited” bundle of frames, and hence similarly also
contains a solder form, &, and can give rise to its own affine connection, @ on TM,
complete with torsion temsor and potential metricity. In fact, we shall explicitly see
in the next Chapter that the fact that SO(N — 1,1)(M) is intimately related to the
existence of a Lorentzian metric on M is manifested by the fact that (g) = 0, which

was one of the principal motivations for working with it in the first place.

3In general, for Lorentzian metrics, there may exist topological obstructions which can limit this
“reduction” process - such obstructions lead the way towards the concept of “metric kinks”
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Chapter 6

Palatini Tetrad Formalism

6.1 Overview

There is a certain amount of ambiguity in the literature concerning the notion of
a Palatini variation. This results from the fact that, while some regard a Palatini
variation as what we have called the “Standard Palatini Formalism” in Chapter 3 and
4 - that is, the variation of some action S(T', g) with respect to an independent I' as
well as g - there are others who refer to a Palatini variation as the variation of some
frame-space action with respect to the relevant frame-field variable, e (through which
a metric is defined) and generalized connection w. This latter approach, which we
will call the “Palatini Tetrad Formalism”, has steadily increased in popularity owing
to its direct relevance for those interested in a connection dynamics perspective of
gravity.

In the Palatini Tetrad approach, one no longer works directly with an affine con-
nection (or connection coefficient, I') derived from B(M), but rather with the afore-
mentioned SO(N — 1,1) connection associated with the bundle SO(N —1,1)(M);

Nevertheless, as previously mentioned in the last chapter, just as TM can be

regarded as an associated vector bundle of the “full” GL(N, R) bundle of frames,
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B(M), with the help of the frame field, e, TM can also be eventually viewed as an
associated vector bundle of the reduced bundle SO(N —1,1)(M), and hence one can
consistently talk of a covariant derivative, v induced on the tangent bundle TM due
to w of SO(N —1,1)(M) in addition to the usual covariant derivative, 7, associated
with the “full” connection I on B(M). Both v and V7, owing to their applicability

to T M, are affine connections as defined in Chapter 2.
In what follows we limit ourselves for simplicity to the case N = 4, but we note

that the forthcoming analysis extends to arbitrary dimension.

6.2 341 Palatini Tetrad Formalism

The following is a brief synopsis of the 3+1 Palatini Tetrad approach [33]. As alluded
to above, here one begins with an action solely dependent on a SO(3,1)(M) connec-
tion and a frame field e§, through which one defines a metric. Variation of this action

with respect to the two dynamical variables, w and e, eventually results in Einstein’s

equations.

We begin, then, with the following action:
Spr = f dz e ef & R 1 (w) (6.1)
where Cartan’s equation defines:
Raﬁfx = 26[a'wﬁlrx +w, IL wg I’K —wg IJ w, ‘IK (6.2)

and we use the convention
7 I
R =n""R. 4k (6.3)

for n?7 defined as the (raised) Minkowski (4 x 4) metric,
n1s = diag{—1,1,1,1} (6.4)
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We follow the standard procedure of defining the metric g,s in terms of the frame

fields, e such that it is necessarily orthonormal, that is:
9ap = € eqTLs (6.5)
where e, often called the coframe field, is defined such that

elef = o8 (6.6)

and
eles = 84 (6.7)
We see that the coframe field represents the (4 x 4 here) matrix inverse of the frame
field, which is always well defined because we know from Chapter 5 that ef € GL(4, R)
and hence has a unique inverse.
Hence (6.5) enables us to express \/—g in terms of det(el) (or, more rigorously,
the invariant volume element /—gdz! A dz? A dz>® Adz* in terms of the coframe field).
Furthermore, we note that, since w,! ;- takes values in the Lie Algebra of the

group SO(3,1), we necessarily have the relationship

w, g =—w,g' ’ (6.8)

that is, w is anti-symmetric in its Lie Algebra indices. Using the convention of (6.3)
above, this becomes:

w T = g T (6.9)
Owing to the difference between the Lie Algebra indices, ([, J, K...) and Ti\'f[ in-
dices (a,B7...), the induced connection v on TM owing to the principal bundle
SO(3,1)(M) must be defined in a slightly roundabout manner which invokes the
frame field, e, rigorously a cross section of B(M). Hencein order to firmly establish the
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covariant derivative on T M, </ owing to the reduced principal bundle S O(3,1)(M),
we need to first find local cross-sections of the full principal bundle, B(M). The
fact that the treatment to defining <7 is not self-contained within SO(3,1)(M) is an
important subtlety which will be pivotal to our future analysis (see Appendix E and
Chapter T7)

The natural vector bundle associated with SO(3,1)(M) is (SO(3, L)(M)g~, wgn, M),
with basis vectors {; where I now corresponds directly to the Lie Algebra index. Each
element of each fibre of the vector bundle (SO(3, 1)(M)g~, mg~y, M) can be identified
with a corresponding point on the related fibre of TM and hence we have an iso-
morphism between (SO(3,1)(M)g~,mgv, M) and TM provided by the frame field,
e. This isomorphism is illustrated by the accompanying figure (Figure 6.1).
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If w induces the covariant derivative relationship /b := ¢ for b = b’¢r,c = &5

on some fibre of (SO(3,1)(M)g~, en, M), we find that, given the isomorphism:
(&) = €10, (6.10)

consistency requirements' mandate that the connection functions [ on TM must be

written in terms of w in the following way.

-

Lo7y = ef ef wa 'y + Baled)e} (6.11)

or
w5 = 0a(e]) X + K 5 1,7, (6.12)
We note that (6.2) and (6.11) together give a general relationship linking the curvature

tensors (2-forms) R,; 'x and Raﬁ'\ .

R

af [K = e‘g e? R ﬁA e (6.13)

L,

Having thus derived an affine connection, ¥/, based upon our § 0(3,1) connection, w,
we can then apply it to various tensors on M. If we examine the application of @ to

Jap as defined by (6.5) above, we find that:

-~

6pgaﬂ = gaﬁ.ﬁ - f‘p Kagﬂli - Fp fﬁg&‘l’ (6- 14)
Invocation of (6.11) and (6.8) leads to the expression
Vo Gap =0 (6.15)

for all choices of p - i.e. under this prescription, v/ is necessarily a metric connection.
As mentioned earlier, this is not an entirely surprising development as it was the

original motivation from moving away from B(M) to its reduction SO(M) to begin

1See Appendix E
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Figure 6.1: SO(3,1)(M) - Induced Covariant Derivative on TM
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with - that is, to cast General Relativity in a geometrical framework while somehow
containing the metricity assumption vital to its dynamics. Yet from our perspective
it is somewhat question-begging as once more the geometry of the problem has been
set up so that one is not truly varying with respect to all possible connections, but
merely a subset of them. This issue shall be addressed in the next section.

Let us now return to the dynamics induced by (6.1). Variation with respect to e

and w leads to the following constraints:
1
§.Spr =0 = [e}‘( -5 ek e‘}] R &7 =0 (6.16)
and
SuSpr =0=> Da[e-ef €] =0 (6.17)
We find that, for N = 4, (6.17) can be reduced to®

Do gy =0 (6.18)

Utilizing (6.11), one can easily see that (6.18) can be rewritten as

~

T ¢ =0, -, =0 (6.19)

173

In short, by geometrical definition we had an affine connection which was metric-
compatible (6.15), whereas we see by the variational principle applied to the action

Spr, I is also torsion-free. Hence it must be the case that
L =1{.%} (6-20)

One must be rather careful here, though. It is worth noting that our “torsion-free”

condition, (6.19) depends implicitly on our expression of I' in terms of w, i.e. (6.11),

2for N # 4 one correspondingly adjusts one’s action to enable a similar manipulation to occur.
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which in turn implicitly depends on the fact that I is, in fact, metric-compatible. We
shall have more to say about this potential question-begging in the next section.
For now, however, we note that we have achieved, through whatever means, the
conclusion that our connection is once again the Christoffel symbol. Expressing (6.16)
in terms of fiaﬁ*‘ via (6.13), together with the fact that (6.20) above necessarily
implies
R =R.p.({}H= (6.21)

enables us to finally express (6.16) in the final form®
Gap({}) =0 (6.22)

i.e. the Einstein Field Equations.

6.3 Generalized 3+1 Palatini Tetrad Formalism

As mentioned in the previous section, the usual 341 Palatini Tetrad Formalism is
devised so that one implicitly assumes the metricity of the relevant affine connection
(6.15), while the no-torsion constraint arising from the variational principle of the
action Spr is itself dependent on the assumed form of the affine connection (6.11)
and hence implicitly upon its metricity.

In an effort to once again take the spirit of the Palatini variation seriously -i.e.
attempting to isolate the potential connection dependence of the dynamics by varying

the relevant action in the space of all possible affine connections - we find ourselves

once again modifying the procedure.

31t is worth noting here that, unlike in the Standard Palatini Formalism of Chapter 3-4, the
Einstein Field Equations can only be derived by using the above antisymmetry condition of the
curvature tensor when ' = {}. Otherwise, unlike in the Standard Formalism, one doesn’t find the
result G, (T) =0
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In the Standard Palatini Formalism of Chapters 3-4, we found that two pivotal
assumptions were made to the usual Einstein-Hilbert action which limited the ability
to be as general as possible in one’s connection and thus proved to go against the
spirit of a “true” Palatini variation.

i) any potential explicitly non-metric terms were ¢ priori not included in the
action

il) any potential torsion effects (both with the curvature term and any potential
addition explicitly non-zero torsion terms) were also a priori neglected from the action

In the Palatini Tetrad formalism, meanwhile, one begins with a particular reduced
bundle, SO(3,1)(M), of B(M) which is specifically engineered to give a resulting
affine connection which is necessarily metric- preserving. In what follows, we shall
counterbalance this result by redefining our relationship between w and I’ to include
potential non-metricity and see how this affects the relevant dynamics induced by
varying the action Spr.

We thus return to (6.11) and now define:

L7, = e{ e] w, I; + aa(e:{)e} +K,7, (6.23)

where K 7, is any arbitrary tensor on M. Clearly, we can then define < as the affine

connection on T'M related to the connection, I'.

Under (6.23), we find the following alterations to (6.15), and (6.13):
Vg = — (K + Kwys) (6.24)

and the associated

Vag® = K™ + K\ (6.25)

while we can relate the “new” curvature tensor, R g*,, to the SO(3,1)(M) curvature,

80



Raﬂ IJ, by

Raﬁ‘\e = CCJ C‘} Raﬁr.f-*-@a Kﬁ Ae"éﬂ Ka Xe'*'i:‘a 173 Kﬂ Ae—Kﬁ Pe Ka Ap_{__Kape Kﬁ Ap
(6.26)

We note we can express this as:
el €7 Rag's = Rop's — [f(K)]ag™. (6.27)
with
[f(K)]aﬂAe = 6& K;S Ae - 6,6 Ka ‘\c + Ta nﬁ Kn Ae - Kﬂ pc Ka Ap + Ka pe KB Ap (628)
. Furthermore, we note that in general for any tensor K,
Raﬁxe(r - K) = Raﬂ’\e(r‘) - [f(K)]aﬁ'\e (6'29)
Therefore (6.26) can be rewritten as:
6;’ 8? RaﬁIJ' = Raﬁl\e(f‘ - K) (630)

If we turn our attention now to the equations derived from varying Spr with
respect to e and w, we see that both (6.16) and (6.17) are prima facie unchanged

under (6.23), i.e. we still have

N =

5.5p7 =0 = [e;; e1eh — = e3 e, e*j] R I =

and

JanzO¢Da[e-e[Iae§]] =0= (N =4)Dp eg =0

But now, rather than yield the no-torsion condition (6.19),

T, *, (6.31)

1
Dia e =0= Ky =3
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Permuting (6.24) gives:
VG — VoGur — Vaudor = 20ue K% 3+ 200 K1,° 3+ 202 K © )+ 2K (6.32)
Combining (6.31) and (6.32) finally give:
L,.-K,°, ={ .} (6.33)

which is the generalized Palatini Tetrad analogue to (6.20). Substitution of (6.33)

into (6.30) gives:
e;’ 8? Raﬁ IJ = chﬁ Ae({})’ (6'34)

whereas substitution of (6.34) into (6.16) once again gives the requisite Einsteinian

dynamics, (6.22),
Gu({})=0

This is a somewhat unexpected development - our generalized Palatini Tetrad for-
malism, obtained by using the prescription (6.23) for our affine connection in terms
of the SO(3,1)(M) connection w,; instead of the usual (6.11) leads to the same
(Einsteinian) dynamics as before, (6.22), but now gives a fundamentally indetermi-
nate result for the connection, I'! The only thing we can say explicitly about our new
connection is that it is related to the Christoffel symbol via: f“‘,, -K,°, ={.°.}
which, since K, ¢, is arbitrary, does not tell us really anything at all about ['. Hence
our generalized prescription, together with the action Spr (6.1), leads to a truly
connection independent expression of General Relativistic (metric) dynamics, if not
General Relativity proper.

This is strongly reminiscent of our Extended Action results of Chapter 3, except
that now we are not necessarily mandating that T be torsion-free and hence K,<,

(@, ¢, in our previous notation), be symmetric in any indices. Nonetheless, both our
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Extended Action of Chapter 3 and the above Generalized Palatini Tetrad Formalism
amount to connection independent means of generating General Relativistic dynam-
ics, and hence we would expect them to be somehow related. This relationship shall
be explicitly demonstrated in the next chapter.
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Chapter 7

Analysis

7.1 Geometrical Picture of Generalized 3+1 Pala-
tini Tetrad Formalism

In the last chapter we recognized that generalizing the usual prescription linking the
S0O(3,1)(M) connection to its affine connection

L7y i=el efwals+8a(e]) €7 (7.1)

to
L7 :=ef el w,;+8.(e]) €3+ K, 7y, (7.2)

ie.
L, =T +K," (7.3)

for an arbitrary tensor K ”,, enabled us to replace the a prior: metricity relationship

T Guw =0 (7.4)
with
Va Guw = — (Kapw + Kouns) 5 (7.5)
while the constraint
Dpeg =0 (7.6)
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obtained from the action
Spr = /d‘z eed & R G (w) (7.0

by varying with respect to w changes from reducing to

7,5, =0 (7.8)
under (7.1) to
€ 1 €
K[y. vl = 5 Tp v (7‘9)

under (7.3). Thus this relation combined with (7.5) gives
T..—K,°,={. .} (7.10)
which winds up transforming the second constraint obtained from Spr with respect
to e, ie.
[ej‘( el - % €3 el eﬁ] R =0 (7.1)
into nothing less than the vacuum Einstein Field Equations,

Gw({}) =0 (7.12)

So our new prescription (7.3) gives us the same dynamics as before (7.12), but now,

instead of the old connection constraint
fncu = {.u eu]’ (7‘13)

we have effectively an indeterminacy relation given by (7.10) above.

All of these results have been generated in the previous chapter, but what we now
need is some comprehensive geometrical framework by which we can understand the
meaning of the difference between the two prescriptions (7.3) and (7.1). Accordingly,
we now examine the following diagram, which may be viewed as an extension of the

previous one of Section 6.2, where we now extend matters to explicitly include B(M).
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This diagram enables us to visualize several things. In the first place we see that
the generalized prescription, (7.3), [.‘“‘,, =TI .%v + K, °,, is manifested in terms of

covariant derivatives acting on elements of TM as:
(6-& ‘0)7 = (6a U)1 + Ka 7!1 v” (7‘14)

From the diagram, we see that the tensor K, 7, v" represents a fibre-preserving trans-

formation from v € m5j.(z) to some other element z € n7,(z). If we have
{70‘ v=w (7.15)

and

[Ka][v] = = (7.16)

where the above matrix notation is an abbreviation for
K, i v =27, (7.17)

we thus have

Vv=w+z (7.18)

Now if we regard </ as the general affine connection arising from the general (uncon-
strained) B(M) G L(4, R)-valued connection 1-form I, ¢, with < the affine connection
arising from SO(3,1) as before, we see that the arbitrary tensor, K, ¢, links the two
by “undoing” the uniqueness invoked by moving from B(M) to the reduced bundle
SO(3,1)(M). In other words, the resultant affine connection, v, with associated
connection coefficient, ', can once more be viewed as a general unconstrained affine
connection where metric compatibility and torsion are completely undetermined.
This is a helpful picture, but an obvious question suggests itself: If the object

of our generalized formalism was to return to a completely general affine connection
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~

Figure 7.1: B(M) vs SO(3,1)(M) Covariant Derivatives on TM

@\, ’ed & “)("),{ ﬁ
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J \_ Y,
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derived from the full bundle of frames B{M), why didn’t we simply do that to begin
with? In other words, what is the purpose in moving over to SO(3,1)(M) and back
to T M before then “undoing”™ matters?

The answer to this question lies in the matter of calculational ease. A full un-
derstanding of this will be readily apparent in the section dealing with actions later
on in this chapter, but for now it is enough to point out that we can see from this
diagram that the frame field, e plays a dual role in our generalized picture. The
frame function, e, is a local cross section of the principal bundle B(M) and gives,
for every z € M a corresponding element of GL(4, R). As such it “belongs” to B(M)
(the relevant analogous section of SO(3, 1)(M) would be, of course, an element of the
group SO(3,1) and would reflect a Lorentz transformation rather than a general co-
ordinate transformation) and not to SO(3,1)(M). Yet, as we have seen in Appendix
E, this same frame field is used to “push over” the covariant derivative, D, from
(SO(3,1)(M)g~, gy, M) over to TM. Therefore, although the frame field is neces-
sarily associated with B(M), we also use it in conjunction with the connection on the
reduced bundle SO(3,1)(M) and our generalized prescription (7.3) to simulate a full
affine connection. And so our original choice of opting to study the connections on
our reduced bundle, SO(3,1)(M) appears to be motivated more by calculational ease
- like a clever choice of coordinates - than by anything geometrically intrinsic to the
problem at hand. But the preceeding analysis also indicates that the often expressed
idea that we are really limiting ourselves here to the reduced bundle SO(3,1)(M),
is not an entirely honest one, for we indirectly use cross-sections of the full bundle
of frames, B(M) to suitably define our affine connection, %/, associated with w of
SO(3,1)(M).
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Figure 7.2: Comparison of Palatini Tetrad and Standard Palatini
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7.2 Relating Palatini-Tetrad to Standard Palatini

In light of this new generalized prescription (7.3) we are finally able to relate “the two
Palatinis” as promised earlier. Consider the following schematic diagram: where we
have written both the Palatini-Tetrad and Standard Palatini formalisms explicitly.

We begin our treatment with the Palatini-Tetrad action in the top right hand
corner. This starting point is not arbitrary, as we later find that, as alluded to
earlier, the action Spr together with the generalized prescription (7.3) is merely a
rewritten form of a more general action.

We have already discovered that if we vary the action Spr with respect to the
relevant dynamical variables e and w and utilize the generalized prescription (7.3)
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(i.e. follow the flow of the thick arrows), we end up with the Einstein Field Equations

in vaccuo,

Guw({}) =0 (7.19)

We now examine what occurs should we proceed in the other direction (i.e. that of
the thinner arrows) by first transforming the Palatini Tetrad action Spr via (7.3) and
then varying with respect to the “new” relevant dynamical quantities.

From Chapter 5 we know that

el €} Ry 1 = Rog (T — K) (7.20)
under (7.3). Therefore we see that the action Spr smoothly transforms to
STszd“z V=3 R( — K)
where we have dropped the tildes. We note in general, for T, ¢, # 0, we have:
[z V=g R - K) = [ d"2y=5 [R(D) + K, %, K, ~ K, K,™
3 (Ko ot K ) g+ 7ag”]
+T, % (K, — K, °0) = (V< + Z) K,

+T, 7 K,
(7.21)

If we break up our arbitrary tensor K, ¢, into symmetric and anti-symmetric parts,

K5, =55, +A°, (7.22)

“ (7

and substitute (7.22) into (7.21) we find, upon varying with respect to the antisym-

metric tensor A4,°,:
O[S - (V)T A ST () =0 (1))
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Contraction (i — €, say) of (7.23) gives:
1 o ov 1 ov
;N—1Wg — (VY +2°) + T, + 4, - 5T =0
but from
Vag® = KM + K\

we find
VV+2V=2A""+85,"7

Combining (7.24) with (7.26) leads to the relation

AT =T

o 9 P
which in turn leads to the following simplified version of (7.23)

U™ —U" =0

where

Uaﬁ_=AaB__lTaB
e ° (4 2 €

Finally we note that (7.28) leads to
Ueaﬁ = Ueﬁa;

which, together with
Umﬁ = _Uﬁae

by definition, gives:

1
[feaﬂ =0 =>Ap€y = _2-Tp ﬁu,

that is,
2 K'[pE v] - T“ e,,
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We have already seen that the constraint (7.33) in combination with the (non)metricity
relationship,
Va Jur = — (Kapw + Kaup) (7.34)

gives rise to the expression

r eu = {ugv} + Ku eu (735)

73

Insertion of (7.35) into our action Stas clearly reduces it to one of no connection

dependence, i.e. (7.35) transforms STas to:
Srar = / &z /=g R({}) (7.36)

If we now turn our attention to the case of a necessarily torsion-free connection, we

see that we have the relationship (c.f.(7.35))
L., ={.".}+5.° (7.37)

which is nothing more than the full indeterminacy relationship for our torsion-free
connection (3.32), whereas from Appendix A we know that under a general deforma-

tion transformation
r,« =r.,, -5, (7.38)

v [
our action is equivalent to our “maximally symmetric” action of Chapter 3. Hence
in general, for T = 0, our corresponding action STas %8 our maximally symmetric
action, and not the Einstein-Hilbert action. Sras only becomes equivalent to the
Einstein-Hilbert action if both T' = 0 and S = 0, in which case, by the analysis above,
we know that

L. = {“eu} (7.39)
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So looked at in this light, we can finally answer our question of why the Christoffel
relation,

I‘”e” = {ueu} (740)

mysteriously pops out of the Einstein-Hilbert action under a Palatini variation. Since
in writing down this action we had a prior: set both the torsion tensor and the trans-
formation tensor, S, to zero, we had determined ahead of time what the connection
must be. That is, from a Palatini perspective, there is no real “connection varia-
tion” going omn at all; I',*, = {,°,} is a necessary consequence of writing down the

Einstein-Hilbert in the first place.

7.3 Gravitational Actions

In relating the Standard Palatini to the Palatini Tetrad formalism we specified that

one must “start” the analysis with the Spr action,
Spr = / &'z e eF & RL (7.41)

as opposed to

Srar = f d*z /=g R(T — K) (7.42)

This is because the generalized Einsteinian gravitational action [35, 18] is
Sg = / tr[RA*(BAB)] (7.43)

where R is the local curvature 2-form from B(M) and @ is the local solder form
from B(M) (5.22). In keeping with our more general geometrical approach along
the lines of Yang-Mills theory, we would like to define an action for any physical

theory as that consisting of some scalar invariant composed of various quantities of
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the relevant principal bundle associated with the theory (together with, for those
theories dependent on the existence of a metric, the hodge dual, *).

For Yang-Mills theory, as we have mentioned, the relevant action is
Sm=/tr(F A  F) (7.44)

for F the (local) curvature 2-form of some general principal bundle, and the relevant
dynamics obtained by varying with respect to the connection 1-form, w - the only

explicit variable one has to work with here - is:
Dx F=0 (7.45)

With theories involving B(M), on the other hand, such as those pertaining to
gravity, one now finds oneself with an extra mathematical entity, § with which one
can build such an action. If we choose the particular action (7.43), one is left to assess
the relevant dynamics by varying (7.43) with respect to two variables - w and 3. The
actual variation is somewhat tricky and one is forced, owing to the presence of 8 in
the action, to pick some convenient coordinate frame in which to calculate it. We
can simplify this calculation by choosing coordinates where the metric is defined to
be orthonormal via the GL(N, R) frames as per (5.32) and by using, for calculational
ease, the connection from the reduced bundle SO(N — 1,1)(M), provided that we
correct for this unwarranted specification of w at some later time in the calculation -
i.e. by using our “generalized prescription” of Section 6.3.

If this generalization is not done - i.e. if one merely states that the relevant con-
nection for our action is the SO(N —1,1) connection - then one still gets the relevant
final Einsteinian dynamics together with some definite restriction on the connection
(the Christoffel constraint, again), just as one finds for the Standard Palatini ap-
proach to the Einstein-Hilbert action. And, just as one found for the latter case, this
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constraint is completely fictitious and arises from the fact that we have arbitrarily
chosen some inappropriate subclass of our connection to start with. Since we know,
with the benefit of hindsight, that our final dynamics resulting from (7.43) are con-
nection independent anyway, it is hardly surprising that some e priori fixing of the
connection does not manifest itself dynamically at the end of the day. But it certainly

makes us discount any “information” we might find about the connection itself by

such a procedure.

7.4 Matter actions

Virtually all of the previous analysis has been applied to Lagrangians without inde-
pendent matter fields, and it is worth considering what would happen to our notions
of a connection-independent action if we were to add an additional matter action
term to the Lagrangian.

The usual prescription for such terms is to define the stress-energy temsor, T7%°

according to (3.3), that is (for N = 4):

§ ([ diz\/—gLlm)
o ] (7.46)

V=g T :=2 [

where L, represents the matter Lagrangian.
From either the Palatini Tetrad perspective or the Standard Palatini perspective,
related via Section 7.2, addition of such matter terms change none of the preceeding
analysis i#f the matter action is assumed to be independent of the generalized connec-

tion. The only thing affected in both cases is that, as one might expect, the consequent

final dynamics is affected and thus moves from the vacuum Einstein relation,

G ({}) =0 (1.47)
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to the consequent full matter dynamics,
Gu({}) =8r T, (7.48)

We have added matter, but, owing to the a priort condition that such matter is
independent of the generalized connection of the frame bundle, B{M), we naturally
find that our connection invariance is preserved.

On the other hand, if we now allow our matter action to be dependent on the

connection, we naturally find that the connection invariance of the action:
Seot = / tr[RA%(B A B)] + Sm (7.49)

no longer occurs, and we effectively move to the realm of Einstein-Cartan theory,
where one must recover Einsteinian dynamics by breaking the symmetry of the con-
nection and imposing extraneous conditions upon the connection (such as the “no
torsion” condition).

Looked at from this perspective, we can regard the Einstein Field Equations as

the necessary final dynamics of a sub-class of theories generated by the action:
Ser = / tr[RAx(B A B)]+ Sm (7.50)

for S, tndependent of w, which can be extended, by a sort of symmetry-breaking, to

the more general class
Stos = / tr [RA*(8 A B)] + Sm (7.51)

for general S,,, by imposing the additional external constraint, T = 0, where the

torsion tensor is defined in terms of the solder form as per Chapter 5.
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Chapter 8

Conclusions and Discussion

Largely motivated by the desire to understand the origins of the Christoffel constraint,
L =451 (8.1)

from a (Standard) Palatini variation of the basic Einstein-Hilbert action,
Sex = [ d¥z [v=g R(T)], (8.2)

we began our investigation of the fundamental nature of connection dependence of the
dynamics of General Relativity as formulated through an action principle. By utilizing
dilaton theories of gravity (Section 3.2), we first noted that not ell gravitational
actions necessarily gave the Christoffel constraint, before proceeding to generalize the
Einstein-Hilbert action into the so-called Extended Action, which yielded, as a special
case, the “maximally symmetric” action

Sus = [ d¥aV/=gIR(T) + 1(7.5%)(V go8) + V2

1
(Ve (V*5*) + V- 2, (83)
which was found to necessarily arise from a deformation transformation,
r,c,=rC,, = +Q,°, (8.4)
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on any general Extended Action.

Under a Palatini variation, this “maximally symmetric” action gave (vacuum)
Einsteinian dynamics but didn’t give the aforementioned Christoffel constraint and
instead left the connection indeterminate. We then examined the possibility of extend-
ing such actions into a domain where the torsion tensor did not necessarily vanish
and examined the comsequent non-Einsteinian dynamics together with the general
form of the connection, I',€,, before returning to the Einstein-Hilbert action in a
somewhat more geometrical guise via the Palatini Tetrad formalism. We found that
the conventional 3 + 1 Palatini Tetrad approach contained some hidden assumptions
which explicitly break the inherent connection invariance of the theory as manifested
by the action,

Se= [tr[RA<(BAB), (8.5)
where the (local) curvature 2-form, R, and the solder form, 3, are those corresponding

to the full GL(N, R) bundle of frames, B(M).
The above action, (8.5), when analysed properly, was shown to be equivalent to

the action
Srac = / &'z /=g R(T — K) (8.6)
with
Vag* = K" + K\ (8.7)
which in turn was shown to be equivalent to the maximally symmetric action above
for the special case of T = 0.
Finally, we saw that, although (vacuum) Einsteinian dynamics necessarily arose
from (8.5) above, we could generalize our action further to include matter terms,

thereby producing:
Seot = j tr[RA+(BAB)] + Sm (8.8)
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where the extra matter term, S,, plays the role of a (connection) symmetry breaker,
thereby enabling us to regard (8.8) as the connection invartent action which neces-

sarily gives rise to full Einsteinian dynamics,
Guw({}) =87 T (8.9)

if S, is independent of w, and otherwise can be made to yield (8.9) if one supplements

(8.8) with the external constraint,
T =0 (8.10)

for the torsion tensor defined in the usual way via the solder form (5.27).
It is worth noting here that (8.9) does not generally lead to covariant conservation

of stress-energy, T}, for arbitrary connection, I', as the usual form of the Bianchi
identity,
VG =0 (8.11)

implicity assumes the Christoffel constraint, (8.1) in its derivation from the more

general kinematical identity, (5.13),
R=dw+twAw (8.12)

of Chapter 5. The fact that most physical stress energy tensors do satisfy the covariant

conservation

DT, =0 (8.13)

for D the covariant derivative associated with the Christoffel symbol, clearly reduces
the left hand side of (5.13) above to the usual (Christoffel assuming) Bianchi identity,

D“Gu({}) =0 (8.14)

but in no way negates the validity of the generalized connection invariance derived

above.
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The significance of this generalized connection invariance of (8.5) is not entirely
clear. It is evident that, from a pragmatic perspective, this invariance enables one
to work with principal bundles where the structure group is a sub-group of the “full”
GL(N, R) of the bundle of frames, B(M), rather than GL(N, R) itself - an attribute
which was exploited in the Palatini Tetrad Formalism and in Ashtekar’s use of a
complexified space. If all one demands from an action principle is that, at the end
of the day, the required dynamics are produced, then (modulo such issues as reality
conditions and the like) any particular connection from any generalized sub-group
will likely do the job!, and one might as well pick, a priori, a convenient space -
i.e. a convenient connection. Ashtekar’s complexified space was chosen, of course,
because of its ability to simplify the associated Hamiltonian constraints and hence lead
one further along the path towards quantization. But by arbitrarily selecting some
other connection of some reduced bundle of B(M), one breaks the general connection
invariance of the theory as manifested by (8.5). Does this matter? The answer to
that question likely depends on the meaning of the connection invariance in the first
place.

One would ideally like to see this invariance manifested in some way as some sort of
“conserved quantity” or deep structural geometrical feature which separates General
Relativity from other theories, or at least places it in some (potentially non-unique)
distinguishing sub-class of connection invariant theories. One is tempted to conclude
that the invariance is somehow intimately related to the diffeomorphism invariance
of General Relativity, for example, but it is not immediately clear how one could
formulate that link. Moreover, it is possible to imagine other gravitational theories

that could satisfy diffeomorphism invariance which do not follow from a variation

!Barring potential topological obstructions.
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of (8.5). With regards to the “full” action, (8.8), it is also unclear what it means,
geometrically, to ascribe some sort of “symmetry breaking” property to matter actions
that are connection dependent.

We have seen how the connection invariance is possible in (8.5) owing to the
existence of the solder form, 3, as another dynamical variable of the theory. Can
one somehow generalize the notion of a solder form to include other spaces which are
potentially unrelated to B(M) in order to construct a more general class of actions
which would be connection-invariant?

Lastly, while the above arguments concerning the physical preference of the Christof-
fel connection due to stress-energy conservation might well serve as some sort of phys-
ical motivation for classical General Relativity (i.e. (5.13) and (8.1)), it is conceivable
that it might well be important to consider the full connection invariance of the theory
when considering the quantum regime.

A more careful examination of at least one of these issues would likely shed a
great deal more light on the property of generalized connection invariance and its
physical and mathematical ramifications. The investigation of such questions thereby

represents a possible future avenue of research.
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Appendix A

N = 2 Palatini Dynamics From a
Generalized Dilaton Action

We can see from the form of equation (3.19) that for N = 2 the approach given

above will break down: we will no longer be able to find an explicit expression for
(1“‘/—%—?) , and hence eventually 7,g*” in terms of functions of the dilaton field and

its derivative. Instead, for N = 2, we are merely left with an added constraint:
D' +2B+C =0. (A.1)

Note that if (A.1) does not hold then from (3.19) the dilaton must be constant
¥ = ¥,. The field equations (3.15), (3.24) then reduce to

7=V [Dov=30] = 0 (4.2)
and
87T = DoGpw)(T) (A.3)

where Dy = D(¥,) is constant. This situation was previously investigated in [16].
Although it appears to yleld non-trivial dynamics, this does not occur because eq.

(A.2) is invariant under the transformation

L5, =0, =T, +8 4, +38 A — guAS, (A.4)

® v [
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where A, is an arbitrary vector field. From this it may be shown [16] that the general

solution to (A.2) is
Lo, ={, .} +8& Au+ 6] A, — g A° (A.5)

where A, is undetermined. Insertion of this into the right hand side of (A.3) yields
G(uw)(T') = 0. Hence the theory is either incomsistent (if T,., # 0) or trivial (if
T = 0).

For ¥ not constant we can understand the constraint (A.l) in the following way.
For N = 2 the associated action (3.12) is invariant under the transformation (A.3)
provided the constraint (A.l) is valid. Since A, is arbitrary, we can choose it in such
a way as to achieve explicit dynamical equations for N = 2. Since under (A.4)

V\*/‘:/-;_g = v\*/‘é? —24,. (A.6)
we chose
eed(28
so that
V39" = Y[(0*0)5 + (3" B)5 — (9aT)g™] (4.8)
and
L =G5 = 57 [0.0)5 + (0,2)5; — 30, (0°D)] (4.9)

where the hat notation has been dropped and B(¥) has been eliminated using (A.1).

If one combines (A.9) with the equations obtained by varying (3.12) with respect to

gap and ¥, one finds:

81T, = [%D(Y’ +Y?% + %D'Y(ti - 3N)-;—A - B -Y(C+ ZB)] (6%)%g,. (A.10)
+[A—-C'—D(Y' +Y?) — D'Y](8,%){(8,%) — D'[D,(8, %) — (D*T)g,],
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and

{F'— A" +2Y'(F-C)+Y[(3N —6)A + (2 —3N)F']
+Y?*[7D’ +6(F —C) —3N(F — C + D')|}(0%)?
+D'R({}) +2[F'+Y(F - C+D')— A|[(D*®) =0, (A.1l1)
That is,
D'R({}) + [1(9¥)* + A(D*¥) = 0, (A.12)

with the obvious definitions for IT and A in accordance with (A.11) above.
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Appendix B

Variation of a (Torsion-Free)
Extended Action Under a
Deformation Transformation

The following is a proof of the claim made towards the end of Section 3.3 - namely that
for any general action of the form (3.41) to be invariant under a deformation trans-
formation, one finds that a necessary constraint is that the action must be maximally
symmetric - i.e. H,I,J, K, L must satisfy the particular values of (3.72)

If one begins with our usual generalized action, with H,LJ,K,L arbitrary, that is:

Sers = [ & ov/=glR+ H(v.4")(T"9ep) + IV
+J (Vg ) (V*9™)+ KV - Z + LZ - Z], (B.1)

and apply to it the variation:
L,c, =T, =T, +Q,°, (B.2)

for Q,°, any arbitrary tensor symmetric in first and third indices, we find that S

B v

consequently transforms to:
Sexs = Sene = Seue + 65, (B-3)
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where

6§ = [1+2J|(V°9")Que + [2H + J|(V*9"*) Qe + Qerrs)
—[1+2H +3J]Q* Qau — 2H + J]Q¥ Qe
+HI - K+ L]Q,*Q°,, + [1 — K +2L]Q*, Q.7
+LQ,; @5, +[1 — 21 + KIVAQ 7 + [K — 1]VaQ,™
+2L02*Q, 7 +[1+2L — K|Z2*Q",, (B.4)

(.3

If we subject this new action, Sggz, to a variation with respect to Q¢ ,, we clearly

have:
8q,,(SemE) = 8q,<,(85),
since g, «,(S) = 0. Now, from above we see that dq, <, (SggE) = 0 = dq, <, (55) can
be expressed as:
0 = [day/=g(6Qu o)1 +27) 72 9™ + CH + N)gra[v0 + 770"
~[1+2H + 3J)(Q%4 + @%%) — 2(2H + ))@*, ®
[ - K + L] [(Q.#)85 + (Q.)8]
+1— & +22] (5 [(Q)85 + (@)58] + @ug™)
+9% 2L (Q.f + Z)\) + (K — 1) V3]
+% (-2 + E)VP + (1+ 2L — K)2°] 65
+§ [(1—2I+ K)V*+ (1 +2L —- K)2°] 6 (B.5)
Clearly for arbitrary 6Q*,, we have the constraint:
[ ]=0 (B.6)
Taking the g.g trace of B.6 yields:
AQ L+ B[+ 2] +CVh=0 (B.7)
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While contracting over, say, A and a yields:
DU+ E[Q\ + 2]+ FVa=0

where

A=[(N—-2)—4H +2I —6J — K(N +2) +2L(N +1)]
B=[l—4H—2] — K +(1+ N)I]
C =[(3=N)—2[+4J + (L + N)K]
D =[~6H + (N +1)] —5J — (N +2)K + (N +3)]
E= [%(N—l) —9H —3J— %(N+1)K+(N+3)L]
F= [%(N—1)+4H—(N+1)I+2J+ -;—(N+3)K]
We note the following relationships:

BD — AE =CE - BF

and
F+D=FE

Meanwhile, together (B.7) and (B.8) imply the following:
[BD — AE|Q°,, + [BF —CE]VA =0
Therefore, (B.15),(B.16) and (B.17) in turn imply:
QLa=W

and

Q. =-(Va+2,)
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(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)



Inserting (B.18) and (B.19) into (B.6), yields, after a bit of symmetrization and

manipulation:
1
Qarg = 5 [Prap — Papr — Ppral (B-20)
where P,"? = /,g"” and Pux = — Y, gur- Inserting (B.18),(B.19) and (B.20) into
(B.4) gives:

55 = ~Spust [ #ov/=G [R+ {(Vag™)(V0m) — 3(Ve0)(T"9™) + VI +V - 7],
(B.21)
in other words, our maximally symmetric values.

Therefore, the unique extended action unaffected by a deformation transforma-
tion, (B.3), is that for which H, I, J, K, L take on the particular maximally symmetric
values.

Moreover, we find that any general action of the form (B.1), subjected to a de-
formation transformation, (B.2), is necessarily equivalent to a maximally symmetric

action (see Section 7.2).
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Appendix C

| Explicit Calculation of The
Connection for Sgpyr With Torsion
For A of Rank 2

We recall that a Palatini variation of Sgzg with torsion leads to (4.17), i.e:

T\ — VA" + " [T, =W + & V" + 2¥ - T,%]
+4H[g"™ T grs] — 21(8X V*) + 2J[g*7 9™ Ve gor — Vg™
FK[VAg™ + 84 VY = 8 2%+ 2L[82 2* + Zpg™] = 0 (C.1)

while tracing and contracting the above yields the following (3 x 3) matrix for 3
relations involving V*, Z* and T,#*:

(2-N) & .
0 d o
(2-N) P @Q

A= (C.2)

If A is singly degenerate, then we can express both V* and Z* in terms of Tp"". That

is, for some ©, T, we have:
L A
vV =01 (C.3)

2 =TT (C.4)
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Meanwhile we can rearrange (C.1) so as to present it in the following simplified form:

AVegap + B Va gse + C V5 Gea = Xeas (C.5)
where
A:=1+2J (C.6)
B =4H (C.7)
C=2J (C.8)
and

Xeap = gﬁe[z-[V; + KZO:] = Jea [(1 + K)VB + (1 + 2L)Zﬁ - To, oﬂ]

Using (C.3) and (C.4) we can re-express (C.9) in the following manner:

Xeap = 89T, %5 + bgapT, % + E9es Ty % — Teas (C.10)
where
d=[1-(1+K)0 - (1+2L)T] (C.11)
b:=[(1-K)®-2LT —1] (C.12)
&:=[210 + KT] (C.13)

If C # 0, permuting (C.5) gives
D Va gBe +E VB Gea = Haﬁe (014)

where

A+ B
Haﬁe = XBea T Xeaf — (L'T—)) Xafe (C'ls)
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and
_ (C?* — AB + BC — A?)

D : c

(C.16)

_ (C*— AB+ AC — B?)
= C

Equation (C.14) is explicitly soluble so long as we don’t have D? = EZ?, which is

E: (C.17)

exactly the constraint of (4.34) We therefore define the parameter F to represent the

determinacy of these equations, i.e. we define

~ E
F:=2 (m) (C.].S)
and note that it is undefined when the connection is indeterminate according to (4.34).
Therefore, for F well-defined, permuting (C.14) yields

D

VBgea = F []Iaﬂe - Enﬁae:l (C.lg)

which can be eventually written as

VBGea = F {2Jg€aT¢r st (e+ f ) [gﬁeTp ‘a + 9a6T) ‘\e] + 3[Taes + Tﬁae] (C.20)

where
d:=a(l— -—) +b(1 — I—)—{) +&(X — ~) (C.21)
&= a(1— —) +B(X — —) &1 - %—) (C.22)
F=ax - 25 450~ 2) +a1 - 2) (C.23)
;e p(_18:_x_) (C.24)
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with

A+ B
=—— -2
T -
A final permutation of (C.20) thus yields our explicit form for the connection - i.e
Lo = L+ Floud-a- AT -d (5T, % +8 1, 7,)]
= 1 e e 1 e C
+[F(5-3)| [me+ 1 + 575 (C.26)

For C =0 (i.e. J =0), on the other hand, (C.5) simplifies considerably, giving
VYV ages + 4H Ve 9Ba = XaeB (C.27)
Permuting this result gives
Veap[l — 16H?] = Xeap — 4HXaep (C.28)
and thus we see that our indeterminacy condition is here
1
H# ﬂ:z (C-29)

For H # +3, the same procedure for the above case for J # 0 leads eventually to the

following explicit form for the connection:

I‘peu = {p.eu} + (E - %) [Tu: + Tu:] + %Tu ev
+€ [gu T, (b — (1 +4H) + G(4H — 1)) + (4HE ~B) (55 T, %, + 6% T, %) |
(C.30)

where

1
= [2(1 F4H)(1 - 43)] (C.31)
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Of course if the indeterminacy constraints do hold then F',5 and & become un-
defined - that is, we can not explicitly solve for I in terms of the remaining vari-
ables and our analysis reduces, as mentioned in Chapter 4, to a weak constraint
on S,°,,A,%,,5,°,5,.° and A, <, reflecting some partial invariance of ' under

r,, =T, +K,¢,, for some limited (i.e. constrained) choice of K, °,.

u
We can check the above analysis for the Einstein-Hilbert action of Section 4.2,
which we know to be singly degenerate.
Here, since H = = J = K = L = (, we work in the domain of C (i.e. J) =0.
Thus we have a connection of the form (C.30), where we find, for this case (c.f. (4.6),

(4.7): 5 v
=(7=7) (C-52)
= (-1—_‘_2-1—\[-) (C.33)
and
a=5=[N£1] (C.34)
i=0 (C.35)
£= (C.36)

Therefore we find that ', ¢, has the explicit form:
re< =4{,° lTe 1 T 2 +6T ° C.37
pu—{p u}+§ yv+m (p. o'u+v pu) ( - )

as expected from (4.8) above.
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Appendix D

Explicit Calculation of the Final
Dynamics for Spgr (A of Rank 2)

It was thought to be appropriate to explicitly calculate the terms in the final dynamics
for at least one of the three cases (i.e. (4.39),(4.64),(4.78))treated in Chapter 4, if
only to show that it could be done in a reasonable amount of time. In this Appendix,
we choose the case of the singly degenerate Extended Action (with Torsion) with
J # 0, where we assume the indeterminacy condition (4.34) does not hold and hence
the connection (and consequent dynamics) can be solved exactly in terms of gag, T, ©,
and T, ?,. Clearly the methods delineated in this Appendix can be extended to (4.64)
and (4.78).

Starting, then, with the action

Sere = [ oV/=GR(D) + H(V,9:0)(v79°) + IV* +
+J(V0948)(V*9°P) + KV.Z + LZ?] (D.1)

and a connection of the general form

Lo =45+ Y5 (D-2)
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or, more explicitly,

Fp.eu = {u Eu} + Xu eu + ’\gﬂl/nga Up + 7g1'¢ [g"ﬂTy p‘r + gﬂPTu pf] (D'3)
with
[ € o 1 [
X, =n[0:T, 7, +8:T,%] + 5T, (D.4)

where we have broken up Y, ¢, up explicitly into the non-metric term X, ¢, and the
various metric factors represented by the A and v terms.

For our general case of A singly degenerate, J # 0, we found from Appendix C

above:
Ai=F(d-é&— f) (D.5)
=B % (D.6)
n:=—Fd (D.7)

where F, J, & f,3 are defined as per Appendix C above, and for A non-degenerate,
we have the simplification n = A = 0.

We note that in general, for (D.2), the following relationships hold:
R =Ru({}) + DY, § ~DuY, L+ Y, Y, 0 - Y, 5. 5 (D-8)

where D, represents the covariant derivative with respect to the Christoffel symbol.

(V920)(7°9%) = =20 [V, % (Y, S + T, %) + 9seg™Y, %Y, 5] (D.9)
(Ve )(V*9%) = =" [Yo %, (3Y, % + T. %) + g°gs,Y, 2Y. 4] (D.10)
V.=0©T,°, (D.11)

Zc=Tg*T, " (D.12)
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where
&= [f,(1+N) +A—%—7] (D.13)
T:= [(N +3)n+ % +(N+ DA+ 7] (D.14)

We can thus now express (D.1) in terms of T, ¢, T, %,, gap and R, ({}) by utilizing
equations (D.8)-(D.12) above. We therefore find that our action Sggg takes the form:

Sems = [ 2v/=99" [Ru({) +Y, 5Y, 4 - (1+2H +3))Y, %Y, 2 (D.15)

(J-2H)Y, 4T, — (2H + J)ga.g**Y, .Y, &,

atuy p
+J (Tu aeTa eu - ggpgaﬁy; apTc ﬂ;‘)

(18* + KT + LT?) T, °,T, %)
Now we are almost ready to vary our transformed action with respect to the metric,
gap to obtain our final dynamics. The difficulty here is, however, that Y, <, as defined
in (D.2) and (D.3) above contains explicit factors of g.g. Separating out the relevant
factors of g,g from the above expression eventually yields the following expression for

Sere:
Seas = [ @2v/=39" [Rul{}) + S + 9™ GoaW sy (D.16)
where
e = (I —2H)T, T, % +JT, %X, %,
—(2H + J)M %, — (14 2H +37) [H% 0 + ] (D7)
Hon =7 [X,%T, 5 + T, 58X, %] (D.18)
v =7 [T, 5T, %) (D.19)
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2 =X, 0 X, 5+ 207 T, AT, % (D.20)

nAuv * v on
while
Sw = Cw+R[T,%T,%] —(1+2H +3J)D,
~(2H + J)Now + (J — 2H)Qu + JT, T, , (D.21)
where
3
o frvs Y am] mor, o
3 _ _ _
R = [2 (r] [V + 5]+ 7) + NA+ 10 + KOT + L‘I‘"’] (D.23)
D‘,y = Xy pa'Xp o'u + (’\[A - 27])Td dqu pp + 2’\Xu EeTp pu
+27Xy der eu - 72Tp aeTu ecr (D'24)
Nuw = 2T,%X,° +2v[T,% (X,% +X,°,)]
+MNX+49)T, °,T, %, + 29*T,. ", T, ", (D.25)
Qu =X, ceTu ‘s + AT, <7uT.o ot 7Tp euTe % (D'26)

Therefore, assured that we have finally separated metric from non-metric terms in
the action, we can finally vary (D.16) with respect to g,g, thereby producing our final
dynamical relationship:

e « e 1
G#V({}) + 'S'(W) + pr e(pv) + pr(pv] e pt,(yufpe - EgI-W(S + W) =0 (D'27)
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Appendix E

Moving @ from

Sof{s, N (n) \
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We first recognize that the equivalence class [s, a] of points of (SO(3, 1)( M )g~ , wgn, M)

is only defined for the group SO(3,1). That is, for the point (s, a], one has

(s,a) = (sg,97a) Vg € SO(3,1) (E.1)

We now that the associated bundle (S5O(3, 1)(M)g~, gy, M) has dimensionality 2NV
Just as does T'M, where each fibre of each has dimensionality N. We would like to

link up the two so as to “push forward” the covariant derivative defined on the former

by the connection in its principal bundle w. Thus suppose we decide to describe each

vector v € TM in some given fibre over z € M by its usual components with respect

to the holonomic coordinates - i.e.

v =00 (E.2)

If we were dealing with the associated bundle of B(M), i.e. (B(M)gw~,ngn, M),

where each point in each fibre represents the equivalence class [b, a] defined in terms

of the group GL(N, R) this would be straightforward and we could use the “built-

in” isomorphism (5.20) since whatever frame, b, I happened to choose for my point

[6,a], I can always use the equivalence class to rewrite this in terms of my holonomic

coordinates using the tetrads. On the other hand, for the bundle associated with

S50(3,1), I might find myself choosing some SO(3, 1) frame s which can not be related

to {Ox\} via some SO(3,1) transformation - and hence my relationship depends on

which frame I choose to begin with for s (or, conversely, how I decide to represent my

element of T M, v). In order to circumvent this, i.e. to make our isomorphism between

(SO@3,1)(M)gn, mgn, M) and TM well-defined, we must necessarily introduce the

frame field, e to remove this frame-dependence and thereby enable any [s,a] to be

associated with any coordinate system I choose for TM (we will always choose, as

mentioned previously, the holonomic coordinate system, where the frame is {8x}).
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Having clarified (hopefully) this subtle point, we move on to establishing our .
consistency relationship of Section 6.2.

The aim is to write the connection coefficients, w, ! ; on (SO(3, 1)(M) g~ , Tga, M)
in terms of those, ' 75 on T M using the isomorphism e alluded to above.

Let us assume that our covariant derivative, ‘{}, on the associated bundle gives,

for some z € M,

Vab=c (E.3)
where
b& [s,b] (E.4)
ce [s,d, (E.5)
and therefore
d=b, w5 (E.6)
and that e gives the isomorphism
e(sr) = e O (E.7)

If v,z € TM are associated with b < (s, b],c & [s, c] respectively, we thus have:

v* = bley (E.8)

and
2 = cle}\ (E.9)

with the associated T M-covariant derivative:

Va¥ =2 (E.10)
Le.
2T =07, + | (E.11)
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Therefore (E.6),(E.8),(E.9) and (E.11) combine to give:

-~

I‘a-YA = Ci 6-}' Wy IJ + 60(8.{)6}1 (E'lz)

ie. (6.11).
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