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Abstract

Electrostatically actuated parallel-plate MEMS tunable capacitors are desired elements for

different applications including sensing, actuating and communications and RF (radio fre-

quency) engineering for their superior characteristics such as quick response, high Q-factor

and small size. However, due to the nature of their coupled electrostatic-structural physics,

they suffer from low tuning range of 50% and have nonlinear capacitance-voltage (C-V ) re-

sponses which are very sensitive to the voltage change near pull-in voltage. Numerous studies

in the literature introduce new designs with high tunability ranging from 100% to over 1500%,

but improvement of the nonlinearity and high sensitivity of the capacitor response have not

received enough attention.

In this thesis, novel highly tunable capacitors with high linearity are proposed to reduce

sensitivity to the voltage changes near pull-in. The characteristic equations of a perfectly linear

capacitor are first derived for two- and three-plate capacitors to obtain insight for developing

linear capacitance-voltage responses. The devices proposed in this research may be classified

into three categories: designs with nonlinear structural rigidities, geometric modifications and

flexible moving electrodes.

The concept of nonlinear supporting beams is exploited to develop parallel-plate capacitors

with partially linear C-V curves. Novel electrodes with triangular, trapezoidal, butterfly, zigzag

and fishbone shapes and structural/geometric nonlinearities are used to increase the linearity

and tuning ratio of the response. To investigate the capacitors’ behavior, an analytical approx-

imate model is developed which can drastically decrease the computation time. The model is

ideal for early design and optimization stages. Using this model, design variables are optimized

for maximum linearity of the C-V responses. The results of the proposed modeling approach

are verified by ANSYS
R°
FEM simulations and/or experimental data. When the fabrication

process has dimensional limitations, design modifications and geometric enhancements are im-

plemented to improve the linearity of the C-V response. The design techniques proposed in

this thesis can provide tunabilities ranging from 80% to over 350% with highly linear regions in

resulting C-V curves. Due to the low sensitivity of the capacitance to voltage changes in new

designs, the entire tuning range is usable.

Furthermore, the effect of fabrication uncertainties on parallel-plate capacitors performance
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is studied and a sensitivity analysis is performed to find the design variables with maximum

impact on the C-V curves. An optimization method is then introduced to immunize the de-

sign against fabrication uncertainties and to maximize the production yield for MEMS tunable

capacitors. The method approximates the feasible region and the probability distribution func-

tions of the design variables to directly maximize the yield. Numerical examples with two

different sets of design variables demonstrate significant increase in the yield. The presented

optimization method can be advantageously utilized in design stage to improve the yield without

increasing the fabrication cost or complexity.
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Chapter 1

Introduction

1.1 Overview

MEMS-based capacitive elements have a wide range of applications from medical research to

communication engineering. They are also used as sensors to measure different parameters, such

as chemical properties [4], displacement and force [5, 6, 7]. Among capacitive devices, tunable

capacitors are the most commonly used ones in RF integrated circuits like tunable filter and

oscillators. These elements have superior characteristics such as simple and small structure,

quick response and low energy consumption. However, they suffer from low tunability up to

50% due to structural instability at pull-in and also have sensitive capacitance-voltage (C-V )

responses near their pull-in.

Although extensive research works have been dedicated to the improvement of tuning ratio

[8, 9, 10], due to the nature of such capacitors, they exhibit high sensitivities and the “quality”

of their responses has not received enough attention. Therefore, the enhancement of the C-

V responses in different ways, including linearization of the curves or reduction of the high

sensitivity of the responses near pull-in, is a valuable task in development of tunable capacitors.

1.2 Motivation

This research is motivated by the fact that the designs introduced in the literature provide high

tuning ratio, but their responses are very sensitive to the voltage changes near pull-in which in
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turn divides the C-V response into tuning and switching regions. Therefore, a major portion

of the tunability, obtained in switching part, is lost. On the other hand, the applicability

of linearly tunable capacitors, as efficient elements different circuits have not yet been well

established. The existing designs have limited tunabilities with no systematic approach to

improve the linearity or the tuning ratio of the response. The lack of analytical/numerical

models in general limits the capabilities of MEMS tunable capacitors with high tunabilities and

Q-factors already presented in the literature.

In addition to improvement of the quality of the capacitors response, analysis of fabrica-

tion uncertainties and their effects on the final product is of great importance and should be

performed when a MEMS device is designed. For example, Chen et al. [11] reported different

tunabilities ranging from 45% to 70% for five identical two-gap capacitors fabricated on the

same chip. The discrepancy reported in this research highlights the importance of analysis of

fabrication inaccuracies in development of tunable capacitors. A thorough understanding of

dimensional inaccuracies and their effects on the performance of a tunable capacitor helps a

designer to develop new devices with expected characteristics in mass production. The toler-

ances of different different steps in MEMS fabrication processes are relatively wide leading to a

higher number of inacceptable devices in mass production. Tightening these tolerance ranges is

not always possible due to technological challenges and this may severely affect the production

yield. Although the analysis of fabrication inaccuracies and their effect on final output is a

vital task and should be performed at the design stage, it has not been established for MEMS

tunable capacitors. However, various such approaches have been developed in fabrication of

ICs [12, 13, 14] which are similar to MEMS processes.

1.3 Objectives

The objectives of this research are categorized into three main topics:

Modelling of Electrostatically Actuated MEMS-based Elements: An approximate

analytical model is developed to solve the governing coupled electrostatic-structural equations.

The model takes into account the structural and geometric nonlinearities, including large defor-

mations and mechanical contact, and numerically obtains the characteristic curves for different
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structures. As a very time efficient formulation, the approximate model is ideal for investigation

of the behavior of new electrostatically actuated elements and also for optimization purposes.

Development of Linearly Tunable Capacitors: Novel structures with different features

including asymmetric geometries, flexible electrodes, geometric nonlinearity and dimensional

optimization are utilized to enhance the capacitance-voltage response for different applications.

The focus of this thesis is to increase response linearity and improve tunability of MEMS

capacitors. The techniques presented in this thesis provide a powerful design tool to develop

capacitors for applications. The new capacitors are developed, simulated and optimized for

maximum linearity and tunability. The fabrication limitations are also taken into account to

develop realistic designs. The capacitors are simulated by ANSYS
R°
software for verification

and whenever possible, the designs are modified to be fabricated with standard processes. The

fabricated samples are tested to validate the results of analytical and FEM simulations and to

evaluate the linearity of the measured C-V responses.

Analysis of Fabrication Uncertainties and Yield Maximization: Large dimensional

tolerance ranges and limited fabrication processes drastically affect the performance of a MEMS

device in mass production. To address these fabrication challenges, the effects of dimensional

tolerances on the performance of parallel-plate capacitors are studied. The parameters which

highly alter the C-V curve are extracted by performing a sensitivity analysis. A probabilistic

design optimization method for tunable capacitors under existing fabrication uncertainties is

introduced. The method maximizes the production yield in design stage without increasing

the fabrication cost and complexity. The proposed method also finds the tolerance ranges

corresponding to 100% yield which can be used for possible process modifications.

1.4 Thesis Organization

This thesis is divided into seven chapters. The present chapter is designed to outline the

overview, motivations and objectives of this research. Chapter 2 presents a review of MEMS

tunable capacitors introduced in the literature, the basic equations of a conventional parallel-

plate tunable capacitor and the definitions used throughout the thesis.
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A systematic structure-based design methodology is introduced through Chapters 3 to 5 to

develop linearly tunable capacitors. In Chapter 3, an ideally linear capacitor is studied and

based on its characteristics, a linearly tunable parallel-plate capacitor with geometric nonlin-

earity is developed. The capacitor is modeled by an approximate analytical formulation. The

new design is then simulated using ANSYS
R°
-based FEM to verify the results of the analytical

model. Capacitors fabricated with PolyMUMPs are tested and the measured C-V responses

validate that weak geometric nonlinearity enhances the performance of a parallel-plate capaci-

tor.

Chapter 4 presents analytical models which simulate the behavior of asymmetric designs

such as capacitors with trapezoidal and triangular electrodes. The geometric and structural

asymmetries are used to modify conventional two-gap and three-plate tunable capacitors and to

achieve high tunability and linearity. The results of numerical simulations display highly linear

C-V responses with high tunabilities for capacitors designed for PolyMUMPs. The sensitivity

of the response to the voltage change is reasonably low and therefore, the entire tuning range

is usable.

In Chapter 5, structural nonlinearity and geometric modifications presented in Chapter 3

and 4 are combined to develop linear capacitors with flexible electrodes. The capacitors are

divided into segmented-plate designs (with lumped flexibility) and flexible-plate structures (with

continuous flexibility). A set of rigid or flexible steps placed between two electrodes generate

structural nonlinearity and delay (or eliminate) the pull-in and provide a combination of high

linearity and tunability. Geometric modifications leading to novel structures are also used to

further enhance the linearity of the responses.

The fabrication uncertainties and their effects on the C-V curve are studied in Chapter 6.

A sensitivity analysis is performed to find the design parameters which produce the highest

deviations in the response. A probabilistic design optimization method for tunable capacitors

is then introduced which maximizes the yield for a fabrication process with given tolerance

ranges. The method can be implemented to variables with any distribution functions. Nu-

merical simulations of a parallel-plate capacitor with two different sets of design parameters

demonstrate the capabilities of the proposed method in improving the production yield prior

to fabrication stage.
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In Chapter 7, a summary of contributions achieved in this thesis is presented and some

suggestions for future work are provided.
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Chapter 2

Background and Literature Review

2.1 Definitions

2.1.1 Tuning Ratio, Tunability and Linear Tunability

Tuning ratio for a capacitor is the ratio of its maximum capacitance to its minimum capacitance,

Cmax
Cmin

. This parameter can also be expressed in percentage as:

Tunability =
Cmax − Cmin

Cmin
× 100 (2.1)

which is called tunability. The defined tunability may reach values higher than 100% as will be

discussed later. In this thesis both tuning ratio and tunability are used to define the working

range of a tunable capacitor. As it will be seen, for a conventional parallel-plate capacitor,

tuning ratio and tunability are 1.5 and 50%, respectively.

For linear capacitors presented in this thesis the linear tunability is defined as the tunability

in linear region as:

Linear Tunability =
µ
Cmax − Cmin

Cmin

¶
in linear region

× 100 (2.2)

2.1.2 Ideally Linear Capacitor

An ideally linear capacitor is assumed to have a mathematically (perfect) linear C-V response.

Development of such capacitor may not be physically possible, however, its characteristics will
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be used in this thesis to design capacitors with similar behavior and to improve the linearity

and tunability of the device.

2.1.3 Linearity Factor

Developing a tunable capacitor with a perfect linear C-V response is very challenging, if not

impossible. Thus the linear capacitors already presented in the literature or the ones proposed

in this research exhibit different levels of linearization. To quantify the quality of linearization

for a given C-V response, a linearity factor, LF , representing the coefficient of linear correlation

between capacitance and voltage [15], is defined as:

LF =
n
P
CiVi −

P
Ci
P
Virh

n
P
C2i − (

P
Ci)

2
i h
n
P
V 2i − (

P
Vi)

2
i (2.3)

where each Ci is obtained at the corresponding applied voltage Vi and n is the number of voltage

samples. The linearity factor is positive for ascending responses and negative for descending

ones. Its magnitude varies between zero and one and |LF | approaches one as the curve ap-

proaches a line,. The advantage of the defined LF is that it does not depend on the number

of samples and changes only if there is a change in the shape of the response. For example, for

a conventional parallel-plate tunable capacitor (Figure 2-2) the linearity factor is 0.865 and if

the curve is stretched to the left- or right-hand-side, LF will remain constant.

2.1.4 Production Yield

production yield (or simply yield) is an index to quantify the quality of a production line, and

is defined as the ratio of the number of devices which meet the product requirements to the

total production.

Yield =
number of accepted devices

number of total devices produced
(2.4)

Yield is often expressed in percent and the maximum yield for an ideal process is 100%.
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Table 2.1: Material properties of polysilicon used in analytical and FEM simulations
Parameter Value

Young’s modulus 160 GPa
Poisson ratio 0.22

2.1.5 Material Properties

The capacitors presented in this thesis are designed for a polysilicon-base process such as Poly-

MUMPs. The mechanical properties of polysilicon used in analytical and FEM simulations in

this thesis are presented in Table 2.1, and are extracted from PolyMUMPs Design Handbook

[16]. Wherever applicable, the dimensional limitation are also based on design rules presented

in [16].

2.2 MEMS Tunable Capacitors

Microelectromechanical systems (MEMS) have two main characteristics: they are made in

micro scale and they combine electrical and mechanical properties to enhance or modify the

performance of a device [17]. In the past decades, MEMS technology has rapidly grown and is

expected to continue to do so in response to the market demand for such integrated circuits.

MEMS devices are used in a wide range of applications from medical research [18, 19] to

aerospace technology [20, 21, 22] and communication systems [9, 23, 24].

Electrostatically actuated capacitive elements are among the most common elements used

in MEMS technology. A capacitive element consists of two conductive electrodes which can

store electrical energy when a DC voltage is applied. If the distance between two electrodes

or their effective area changes, the capacitance of the device changes accordingly. Capacitive

elements are used as sensors to measure a wide range of chemical [25]and physical properties

[4, 26, 27]. For example, they are utilized as pressure sensors [7, 28] or displacement sensors

[5, 6, 29].

In addition to capacitive sensors and actuators, CMOS (Complementary Metal-Oxide-

Semiconductor) compatible tunable capacitors with applications in communications and radio

frequency (RF) engineering are well-known elements integrated in tunable filters and resonators

[8, 9, 10]. A vast amount of research works have been dedicated to the performance enhancement
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of such elements including increasing the maximum tunability and Q-factor [30, 31, 32].

Different actuation mechanisms, for instance, piezoelectric [33, 34, 35] or thermal [36, 37, 38]

actuations are available for tunable capacitors, but the electrostatic actuation is the most

common and convenient method due to its inherent speed and low power consumption [39,

40, 41]. Tunable capacitors are categorized based on their geometries into multi-finger [42,

43, 44] and parallel-plate [45, 46, 47], as displayed in Figures 2-1-a, 2-1-b and 2-1-c. In the

first category, the capacitor consists of two electrodes with parallel fingers, where each pair of

fingers forms a small capacitor. The gap between the fingers is constant and the actuation of

the electrodes causes a relative displacement of two sets of fingers and changes the effective

area of the small capacitors which consequently changes the total capacitance. These tunable

capacitors, in general, have complex geometries and fabrication processes, higher maximum

tunabilities and lower Q-factors comparing to parallel-plate capacitors. In a parallel-plate

capacitor, the electrode surface area is constant and the capacitance changes as the distance

between them varies:

C =
²r²0A

d
(2.5)

A is the area of the electrodes, d is the gap between them and ²0 and ²r are the permittivity of

free space and the dielectric, respectively. For MEMS capacitors without dielectric layer ²r = 1.

An electrostatically actuated parallel-plate capacitor is constructed based on two electrodes

moving relative to each other as the electrical potential is generated between them. The moving

electrode is suspended by supporting beams (see Figure 2-1-c), and the electrostatic force, Fe,

produced by electrical potential, V , is obtained from:

Fe =
²0AV

2

2d2
(2.6)

When a DC voltage is applied, the beams deform to balance the electrostatic force and

therefore, the distance between electrodes changes. The equation of static equilibrium, in this

case, is written as:
²0AV

2

2d2
− keq(d0 − d) = 0 (2.7)

where keq is the equivalent stiffness coefficient of all beams modeled as parallel springs and d0
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(b)

(a)

(c)

(b)

(a)

(c)

Figure 2-1: Finger-type capacitors with (a) inplane displacement and (b) out of plane dis-
plcamenets; (c) A parallel-plate tunable capacitor.
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Figure 2-2: The capacitance-voltage (C-V ) response of a MEMS parallel-plate tunable capaci-
tor.

is the initial gap between two electrodes. Equation (2.7) is numerically solved for d at each bias

voltage V and then the capacitance-voltage (C-V ) curve is obtained from (2.5), as presented

in Figure 2-2. A conventional parallel-plate capacitor has limited tunability of 50% at the

pull-in voltage, where the electrostatic force overcomes the beams resistive force leading to the

structural instability [48]. At this moment, the moving electrode collapses on the fixed one. For

parallel-plate capacitors, pull-in occurs at d = 2
3d0 and the corresponding voltage is obtained

from:

Vpull−in =

s
8keqd30
27²0A

(2.8)

2.3 Highly Tunable Capacitors

Due to limited tuning ratio of conventional parallel-plate capacitors with electrostatic actuation,

many research works have been focused on developing devices with higher tunabilities. One of

the most common techniques is to adopt different gaps for the actuation and sense, as illustrated

in Figure 2-3 [49, 50]. In this design, the distance between the sense electrodes is less than that

of the actuation electrodes; therefore, at the pull-in voltage, the sense gap decreases to less
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Figure 2-3: A two-gap capacitor; dsen and dact are the initial sense and actuation gaps, re-
spectviely.

than 2/3 of its initial value leading to higher tunability. If the initial sense gap is chosen to be

1/3 of initial actuation gap, then the capacitor can provide infinite tuning ratio. Rijks et al.

[1, 51] developed designs with tuning ranges of 700% to over 1700%. The C-V curves for these

devices have three different regions as shown in Figure 2-4. In the first part before the pull-in

voltage, capacitance increases because the air gap reduces gradually. At the pull-in, there is a

jump in the capacitance, where the upper sense electrode collapses on the insulator layer. After

this point, the capacitance increases linearly due to the deformations at the contact surface.

Similar designs provide tunability as high as 500%, where the ratio of the actuation gap and

sense gap are different [52]. The main drawback for these designs is the high sensitivity of

their C-V curves to the voltage changes, especially at the pull-in voltage. At this point, the

device behaves like a capacitive switch and loses its fine tunability. Larger sense gaps lead to

less sensitive responses and lower tunabilities [11]. Similar concept (i.e., separation of actuation

and sense electrodes) has been used in three-plate capacitors [45], where a higher tunability

with a less sensitive C-V curve is achieved.

There are also other techniques to improve the maximum tunability. Bakri-Kassam and

Mansour [46] proposed a 2-DOF varactor, where two electrodes can move relative to one another.

In this design, the mobility of the second electrode changes the governing equations of the

system. The capacitor has a 117% tunability before the pull-in voltage, and then, at pull-in

voltage, a jump in the capacitance occurs. At the pull-in voltage, the electrode covered by a

nitride layer touches the other one in a small area. After this point, further deformation of

flexible electrode increases the capacitance in a linear fashion. The final tunability is as high as

12



Figure 2-4: The C-V response of a Two-gap highly tunable capacitor [1].

280%. In this design, the instability (pull-in) happens at a tunability higher than 50% with no

mathematical modeling or explanations. Additional tunability obtained after the pull-in is the

result of the deformations of the contact surfaces, leading to a linear response in this region.

Some research works addressed the enhancement of structural stiffness to increase the tun-

ability. Gray et al. [48] proposed a capacitor with two-layer supporting beams. The top layer

is constructed with stressed hard gold, whereas the bottom layer is made of stress-free soft

gold. Residual stress in the beam’s layers causes stress gradients in the thickness and length

of the cantilever beam. These gradients produce a pre-deformation in the beam that, in turn,

increases the pull-in voltage. The profile of the top layer determines the maximum tunability.

The experimental results demonstrated 30 to 45% improvement in the tunability. Bakri-Kassam

and Mansour [47] also introduced a design with two sets of beams: attached beams and carrier

beams. The attached beams hold the top plate up to the pull-in voltage, and then the moving

electrode collapses on the the carrier beams which provide an additional resisting force until

the second collapse occurs and additional beams improve the tunability to 410%. Adding an

array of carrier beams under the supporting beams improves the tunability and generates a

linear region at higher voltages before pull-in [2] (see Figure 2-5).

Due to the nature of parallel-plate structures, many of design techniques used by different
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Figure 2-5: The C-V response of a capacitor with enhanced structural stiffness and partial
linear respinse [2].

researchers to improve the tunability result in highly sensitive C-V responses, where a major

portion of the tuning range is obtained. For this reason, it is important to develop low-sensitive

response capacitors, where the entire tunability is usable.

2.4 Linear Capacitors

The C-V response of existing highly tunable capacitors, as discussed before, are either very

sensitive to the voltage changes close to pull-in or have two distinct tuning and switching

regions and consequently a major portion of their tunabilities are lost. Theoretically, the ideal

response for a capacitor is a linear one, where due to constant variability of capacitance to the

voltage change, the entire tuning range can be utilized. Moreover, the linear C-V response

eliminates a separate circuitry, needed for conventional nonlinear devices, to relate the input

and output. Another important advantage of linear systems is their reaction to uncertainties.

Nonlinear systems, for instance conventional tunable capacitors, are usually very sensitive to

deviations of design parameters from their nominal values, which notably alter the output (as

will be discussed later in Chapter 6). In a linear device, the output and input deviations are

linearly related which simplifies the operations.

Comparing to the numerous innovative highly tunable designs found in the literature, there
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Figure 2-6: A comb-drive linearly tunable capacitor using linear actuators [3].

are limited research works dedicated to the enhancement of the C-V response by decreasing

the sensitivity or linearization of the response. Seok et al. [24] and Dai et al. [44] reported

finger-type designs with linear responses and low tunabilities. Tsai et al. [3] developed a comb-

drive capacitor with highly linear response and tunability of 118%, as shown in Figure 2-6.

In this design, linear actuators move the electrodes and since the capacitance and electrodes

displacements are proportional, a linear C-V response is obtained. One of the limited parallel-

plate-based designs with linear response is a curled-plate pull-in free capacitor introduced by

Bakri-Kassem et al. [53]. This device utilizes the curvature of the electrodes and has relatively

linear response with 115% tunability and since two electrodes are in contact even before the

actuation voltage is applied, the pull-in is eliminated.

In this thesis, analytical models and different design techniques are presented which can

be used to develop capacitors with high tunabilities and linear C-V responses. A systematic

design approach including development of the main idea, modeling, simulation, optimization

and verification of the results is exploited to enhance the capacitors performance.
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2.5 MEMS Fabrication Uncertainties

One of the major obstructions in development of new MEMS devices is the fabrication uncer-

tainties which are quite noticeable in different processes such as deposition and etching and

may produce large deviations in design variables. Therefore, thicknesses, feature sizes and me-

chanical properties (i.e., Young’s modulus and residual stress) of MEMS structures may face

considerable variation from one device to another and create a large discrepancy in the de-

vice performance. Fabrication uncertainties for IC’s and CMOS-based circuits have been well

studied and different approaches for yield optimization have been reported in the literature

[54, 55, 56]. Despite the similarities between CMOS and MEMS processes, there are limited

investigations on MEMS process variations. The focus of some researches is the analysis of

uncertainties [57, 58, 59]. Mawardi and Pitchumani [60] and Wittwer et al. [61] studied the

effect of material and dimensional variations in fabrication of force gauges to develop an optimal

design. There are also design optimizations which reduce the sensitivity of design parameters

to dimensional deviations to achieve a higher performance. For example, Han and Kwak [62]

proposed an optimization method which improves the yield for a vibratory microgyroscope,

by considering the fabrication uncertainties. Fan et al. [63] used a multi-objective genetic

algorithm to minimize the deviations of resonance frequency in a resonator, where the design

variables are the lengths and widths of different elements of the resonator. In this optimization

problem, the dimensions are modified such that their sensitivities to fabrication uncertainties

decrease. As a result, the differences between initial and optimized dimensions may become

very large. Moreover, this method cannot include the thickness of the device into consideration,

because the nominal thickness of the structural layer is usually fixed.

Due to technological limitations, tightening the tolerance range of feature sizes or layer

thicknesses to increase the yield is not always possible and it may drastically increase the fab-

rication cost. Ponnambalam et al. [64, 65, 66] introduced a probabilistic design optimization

for electrical elements which increases the yield for a given set of tolerance ranges and distribu-

tion functions of corresponding design parameters. The method searches for the nominal design

variables which produce the highest yield for the fabrication process. Since the tolerance ranges

before and after optimization are the same, then the process complexity and the device topology

do not change. Therefore, it is a useful technique for yield maximization of MEMS devices such
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as tunable capacitors and resonators. This optimization method is used in this research to max-

imize the yield for a tunable capacitor with different level of fabrication inaccuracies. The effect

of process uncertainties are also studied and the design parameters which produce the highest

inaccuracies are found to be used for yield maximization and possible process modifications.
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Chapter 3

Application of Nonlinear Springs in

Development of Linearly Tunable

Capacitors

3.1 Introduction

Conventional parallel-plate MEMS capacitors are modeled as two rigid plates, one fixed to the

substrate and the other one suspended by supporting beams. The beams are modeled as springs

with constant stiffness coefficients which reflect their bending rigidities. Such a capacitor has

two main characteristics: maximum tunability of 50%, and nonlinear C-V response which is

very sensitive to the voltage changes near pull-in.

In this chapter, a new design for parallel-plate capacitors is introduced. An ideally linear

capacitor is studied and its force-displacement (F -d) curve is used to develop supporting beams

with nonlinear stiffness. An analytical model is employed to study the effect of geometric

nonlinearity on the device response. The numerical analysis shows that nonlinear structural

stiffness can increase the tunability to 150% and partially linearize the C-V curve if the beams

are thin and the initial air gap is relatively large. The FEM simulations and experimental

results verify the performance enhancement in new designs and demonstrate the applicability

of the proposed model developed for numerical simulations.
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Figure 3-1: The C-V curve of a conventional parallel-plate capacitor.

3.2 Linear Capacitors with Nonlinear Spring

In a MEMS parallel-plate capacitor, the capacitance is a function of electrodes area and the

gap in between:

C =
ε0A

d
(3.1)

As it was explained before, the actuation voltage changes the capacitance leading to a nonlinear

capacitance-voltage curve as shown in Figure 3-1. The dimensional parameters are: A =

400× 400 μm2 and d0 = 4.0 μm.

For an ideally linear capacitor, the capacitance-voltage relation is obtained from:

C = C0

∙
1 + (a− 1) V

Vmax

¸
(3.2)

where a is the assumed tuning ratio, CmaxC0
, and Vmax is the maximum applied voltage cor-

responding to Cmax. Substituting C from (3.1) into (3.2), the air gap for the ideally linear

capacitor is expressed in terms of actuation voltage as:

d =
Vmax

[Vmax + (a− 1)V ]
d0 (3.3)
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Figure 3-2: The force-deformation curves of an ideally nonlinear beam (dashed line) and a
linear spring (solid line).

It should be noted that the displacement-voltage expression (3.3) can only exist if the

stiffness coefficients of supporting beams vary in a nonlinear manner. By eliminating the voltage

in the equation of static equilibrium (2.7) and substituting the electrodes displacement from

(3.3), the nonlinear stiffness coefficient of the ideal supporting beams is obtained as:

keq(d) = ²0AV
2
max

µ
d0 − d

2(a− 1)2d4

¶
(3.4)

Figure 3-2 compares the force-deformation characteristics of an ideally nonlinear stiffness

coefficient to that of a linear beam used to obtain C-V response of Figure 3-1. The tunability

for both cases is 50% and Vmax = Vpull−in = 5.16 V . As depicted in this figure, the ideal spring

provides small resistive force at low voltages and as the bias voltage increases, the stiffness

coefficient increases to balance larger electrostatic force and to maintain the capacitance growth.

The closest mechanical element to an ideally nonlinear spring is a bar element which can bear

only axial (tensile) force, as shown in Figure 3-3. In static equilibrium, the vertical component

20



Figure 3-3: A tension spring and the components of force acting on the moving electrode.

of the spring force, Fz, balances the electrostatic force, where

Fz =
EAS
LS0

⎛⎝1− LS0q
(d0 − d)2 + L2S0

⎞⎠ (d− d0) (3.5)

and AS and LS0 are the cross-sectional area and initial length of the beam, respectively. The

equivalent stiffness coefficient of a truss beam, kT , is then obtained from:

kT =
EAS
LS0

⎛⎝1− LS0q
(d0 − d)2 + L2S0

⎞⎠ (3.6)

If the beam dimensions are optimized, the nonlinear stiffness coefficient obtained from the

tensile force becomes very similar to that of an ideally nonlinear spring. Figure 3-4 represents

the stiffness coefficient of a beam with dimensions: LS0 = 100 μm, w = 3 μm and t = 1 μm.

For displacements below 1.2 μm, the two stiffness coefficients are very close, however, at higher

deformations the ideal nonlinear stiffness coefficient grows faster than that of a pure tension

spring.

An ideal truss element bears no lateral force or bending moment and is pivoted at both ends

(to the anchor and the plate). In practice, it is difficult (if not impossible) to fabricate a pure

tension spring with pivoted ends. Therefore, a design modification is considered to simplify

the fabrication. In the modified design, the beam is assumed to have fixed-fixed boundary

conditions with vertical displacement at one end, as shown in Figure 3-5. This is possible if the
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Figure 3-4: Stiffness coefficients of a tension spring (solid line) and the ideal nonlinear spring
(dotted line).

capacitor’s geometry is symmetric and therefore, the end of beams connected to the moving

electrode move vertically. Constraining the axial displacement of the beam at the moving end

produces a horizontal force and bending moment in the beam. The governing equations of the

beam shown in Figure 3-5 for axial and lateral deformations are nonlinear and coupled [67]. To

simplify the analytical simulation of a parallel-plate capacitor equipped with such supporting

beams, an uncoupled model for stiffness coefficients of the beams is considered. In this model,

it is assumed that the axial and bending deformations are uncoupled, and the stiffness of the

beam is simply obtained by adding the tensile and bending stiffness coefficients, kT and kB,

respectively:

k = kB + kT =
12EI

L3S0
+
EAS
LS0

⎛⎝1− LS0q
(d0 − d)2 + L2S0

⎞⎠ (3.7)

If the thickness of the beam decreases, then kB reduces with higher rate than kT . To investigate

the effect of beam thickness on the behavior of a capacitor, the air gap-voltage (d-V ) and

capacitance-voltage curves for a capacitor with three different beam models are compared to

those of an ideally linear capacitor (see Figures 3-6-a and 3-6-b). The beam length, width and
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Figure 3-5: The applied forces and deformations of a coupled tensile-bending beam.

thickness are 100 μm, 3 μm and 1 μm, respectively. The initial gap is d0 = 4 μm and the plate

dimensions are A = 400 × 400 μm2. As shown in Figure 3-6-a, the d-V curve of a capacitor

with tension beams is similar to that of the linear capacitor (3.3) at low voltages and adding

bending stiffness to this beam (the uncoupled model) does not improve the linearity of the C-V

response. Moreover, using the uncoupled model, one can see that for small displacements the

bending rigidity is dominant and as displacement increases, the geometric nonlinearity generates

axial deformations leading to a nonlinear stiffness coefficient. Therefore, to design a beam with

structural nonlinearity, the bending stiffness should decrease to achieve higher linearity in the

C-V curve. A parallel-plate capacitor with the same dimensions (A = 400×400 μm2 and d0 = 4

μm) and different beams is simulated for the demonstration of this observation. The beams

are modeled as nonlinear springs with uncoupled bending and tensile stiffness coefficients. The

resulting C-V curves for three supporting beams with the same length and width and different

thicknesses are presented in Figure 3-7. This figure displays that the geometric nonlinearity

increases the maximum tunability of the capacitor because when the voltage increases, the

structural stiffness increases accordingly, which, in turn, delays the pull-in. The tunability

for capacitors with Beam I, Beam II and Beam III (in Figure 3-7) are 120%, 132% and 143%,

respectively. Furthermore, decreasing the thickness of the beam drastically reduces the bending

rigidity and therefore a C-V curve with higher linearity is achieved.

To compare the linearity of C-V curves presented in Figure 3-7 to that of a conventional
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Figure 3-6: The characteristic curves of capacitors with different beam models: (a) Air gap-
voltage (b) Capacitance-voltage.
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Figure 3-7: The C-V responses for a capacitor with three different beams. Beam I: LS0 = 100
μm, w = 3 μm, t = 1 μm; Beam II: LS0 = 100 μm, w = 3 μm, t = 0.75 μm; Beam III:
LS0 = 100 μm, w = 3 μm, t = 0.5 μm.

parallel-plate capacitor, a 50% tuning range in linear regions of each response is considered.

For the capacitor with Beam I, the tunability for the voltage interval 2.5 V< V < 7.3 V is 50%

and the linearity factor, LF , for this part of the curve is 0.975. Similarly, for the capacitor with

Beam II and the voltage interval 1.5 V< V < 5.6 V, the tunability is 50% and LF is 0.986.

As expected, the best result is obtained for the capacitor with Beam III which has the lowest

thickness. In this case, for voltage interval 0.7 V< V < 4.0 V with 50% tunability, the linearity

factor reaches 0.994, displaying a significant improvement.

In addition to the beam thickness, the nonlinear tensile stiffness coefficient, kT in (3.7),

depends also on the initial air gap. Larger air gap causes larger axial deformation in the beam,

resulting in higher stiffness at higher voltages. Figure 3-8 portrays this fact where a capacitor

with large air gap d0 = 7 μm, beam dimensions: l = 100 μm, w = 3 μm and t = 0.5 μm (Beam

III) and the plates size A = 400×400 μm2 is simulated. The tunability in linear region, named

linear tunability is C(V=10)−C(V=2)C(V=2) ×100 = 30% with LF = 0.9997 and total tunability reaches

147%. As illustrated in this figure, if the beams dimensions and air gap are optimized, a highly

linear C-V response with reasonably high tunability is achieved (in Figure 3-8 the C-V curve
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Figure 3-8: A highly linear capacitor with large air gap and thin supporting beams.

and its linear interpolation are hardly separable in the linear region (2.0 V < V < 11.2 V). On

the other hand, large initial air gaps result in smaller capacitances and require higher actuation

voltages, therefore, for practical reasons they may not be always preferred.

3.3 FEM Analysis

The applicability of the analytical uncoupled model and the effect of nonlinear structural rigidi-

ties on the linearization of the C-V response are verified by an ANSYS R°-based FEM analysis,

as presented in Figures 3-9-a and 3-9-b. ESSOLV macro, a solver for coupled electrostatic and

structural fields, was used for simulation which iteratively solves the electrostatic and structural

physics to converge to a static equilibrium. In this macro, two electrostatic and structural mod-

els are developed at the same time and are meshed in separate physics with different element

types. The electrostatic model includes the air around the electrodes and their surfaces, and the

electrodes construct the structural model. The electrostatic solver calculates the nodal forces

acting on the surface of the electrodes and structural solver calculates nodal displacements of

the electrodes. The nodal forces and displacements are iteratively transferred between electro-
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static and structural solvers, and iteration continues up to the point that the errors in both

solvers reduce to less than defined values. The electrostatic boundary conditions (electrical

potential) are defined on the surface of the electrodes and structural boundary conditions are

defined in structural model.

The capacitor used for this simulation has dimensions similar to those of Figure 3-7 (A =

400 × 400 μm2 and d0 = 4 μm) and the plates thickness 2 μm. The beams dimensions are:

l = 100 μm, w = 3 μm and t = 0.5 μm (Beam III). The structural and electrostatic physics

are meshed with SOLID186 and SOLID122 elements, respectively, and the nonlinear geometry

mode is activated. Material properties are the same as those presented in Table 2.1.

The ANSYS simulation results are compared to those of uncoupled beam model in Figure 3-

9-c. The maximum tunability for analytical and FEM models are 143% and 125%, respectively.

The pull-in voltages, Vpull−in, obtained by uncoupled beam and ANSYS
R°
models are 5.19 V

and 5.03 V, respectively, displaying a good agreement between two models. Similar simulation

(with the same element types) were also conducted for a capacitor equipped with linear beams

(i.e., the nonlinear geometry was set to zero) and the maximum tunability of 49.9% was obtained

for the ANSYS
R°
model.

Considering ANSYS
R°
simulations as the reference, the error of uncoupled model is quite

negligible. The average error for voltage interval 0.0 V < V < 4.75 V is 1.13%. The maximum

capacitance for FEM and analytical models are 0.796 pF and 0.859 pF, respectively, exhibiting

7.9% error. Similar analyses for capacitors with different plate and beam sizes display that the

uncoupled model is quite reliable and produces negligible error for capacitors with thin and long

beams and small plate sizes. For a capacitor with stiffer beams (l = 100 μm, w = 5 μm and

t = 0.5 μm), the moving electrode underwent deformations leading to a lower tunability and

pull-in voltage (see Figure 3-10-a). As shown in Figure 3-10-b, at low voltages the analytical

model in this case produces accurate results, but at higher voltages the moving electrode exhibits

notable deformations which reduces the tunability and pull-in voltage leading to larger error.
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Figure 3-9: FEM simulation of a parallel-plate capacitor with large gap and thin beams. (a)

The ANSYS
R°
model; (b) Deformation of a supporting beam; (c) C-V response for analytical

and ANSYS
R°
models.
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Figure 3-10: (a) ANSYS
R°
simulation of a capacitor with stiffer beams. (b) The C-V responses

obtained from ANSYS
R°
and analytical models.
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3.4 Fabrication and Experiments

As elucidated in this chapter, to develop a capacitor with highly linear response, the fabrication

process should be able to provide large initial air gap and thin structural layer for the supporting

beams. In this thesis, PolyMUMPs [16] is considered as the fabrication process and capacitors

with different sizes are fabricated and tested to validate the effect of structural nonlinearity

on the capacitor performance. It should be mentioned that PolyMUMPs is not an optimum

process for linear capacitors because of its thick structural layers and thin sacrificial layers.

Nevertheless, capacitors fabricated with this process exhibit “weak geometric nonlinearity”

which increases the tunability and verifies the proposed idea that structural nonlinearity can

enhance the performance of a parallel-plate tunable capacitor.

The device fabricated by PolyMUMPs is shown in Figure 3-11-a. The plates have dimensions

of A = 400× 400 μm2 with 2 μm initial gap. The thickness of moving plate and beams is 2 μm

and the beams length and width are 100 and 3 μm, respectively.

Due to intrinsic properties of PolyMUMPs, the silicon substrate and thin dielectric (silicon

nitride) layer produce large parasitic capacitances [68]. Different models have been developed

to take the parasitic effects into account (for example, see [47] and [69]). In this thesis, a simple

model is used to calculate the parasitic terms as presented in Figures 3-11-b and 3-11-c. In the

model, CP , CFM , CMS , CAS and CFS represent parasitic capacitances of measurement probes,

fixed plate-moving plate, moving plate-substrate, anchors-substrate and fixed plate-substrate,

respectively, and C0 is the capacitance between two electrodes. The parasitic capacitances

and C0 are extracted from C-matrix obtained by CoventorWareTM simulations and the results

are summarized in Table 3.1. The total parasitic capacitance measured at A-B terminals is

calculated as Cpar = 5.477 pF. This value must be subtracted from the capacitance measured by

LCR meter to obtain C0. The initial capacitance obtained by CoventorWareTM , C0 = 0.7078

pF, is comparable to 0.7083 pF obtained from analytical model.

The capacitance-voltage response for the device shown in Figure 3-11-a was measured by

Agilent E4890A Precision LCR meter. For more accurate measurement, sample averaging mode

in LCR meter was activated and each reading is the result of averaging of 16 to 32 samples

calculated by the LCR meter. The resulting tunability (∆C = C−C0) curve is compared to the

analytical and ANSYS
R°
models in Figure 3-12. The error between calculated and measured
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Figure 3-11: A parallel-plate MEMS capacitor fabricated by PolyMUMPs. (a) The image
created by WYKO NT1100 Optical Profiler; (b) Cross-view of the device with parasitic capac-
itances; (c) The equivalent circuit.
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Table 3.1: The parasitic capacitances obtained from CoventorWare simulation
Capacitance Value (pF )

C0 0.708
CP 1.166
CFM 0.027
CMS 4.743
CAS 1.031
CFS 16.605

initial capacitance (after subtracting the parasitic capacitance) is 4%. The measured tunability

is 67% which is comparable to 63% theoretical value obtained from uncoupled beam model.

The test was repeated four times in a row after each pull-in and the results were identical for

both capacitance and pull-in voltage. Similar results were also obtained for a capacitor with

smaller plate size, A = 300 × 300 μm2, initial gap d0 = 2.75 μm and the same supporting

beams, where the maximum measured and calculated tunabilities, ∆Cmax, are 0.299 pF and

0.212 pF, respectively. The resulting C-V curves for this capacitor are presented in Figure 3-13.

This figure illustrates an intensified difference between simulations and experimental data.

The pull-in voltages obtained from analytical model, ANSYS
R°
simulations, experiments

and that of a conventional model
³
Vpull−in =

p
(8keqd30)/(27²0A)

´
are 5.32 V, 4.07 V, 1.85 V

and 5.15 V, respectively, for the capacitor of Figure 3-12, and 11.19 V, 8.16 V, 2.086 V and 10.05

V, respectively, for that of Figure 3-13. Comparing the theoretical pull-in voltage with values

obtained from analytical model supports the idea of small structural stiffening in the beams

since analytical model predicts the pull-in voltage slightly larger than that of a conventional

device with linear springs. The difference between experimental and simulation results can

be attributed to different sources. For example, the fabrication uncertainties and over-etching

which decrease the thickness of the beams can be two factors in reducing the actual pull-in and

increasing tunability obtained from measurements. It is also possible that the residual stress in

the moving electrode creates a curvature which may reduce the average gap between the plates

and decrease the pull-in.

To investigate the effect of fabrication uncertainties on discrepancy between simulations and

experimental results, a capacitor model with smaller initial air gap and beam thickness (d0 = 1.5

μm and t = 1.4 μm and the plate size is A = 300 × 300 μm2) is studied. The analytical and
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Figure 3-12: The measured ∆C-V response of a MEMS parallel-plate capacitor with nonlinear

beams compared to the results of analytical and ANSYS
R°
simulations.
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Figure 3-13: The ∆C-V responses for a 300× 300 μm2 capacitor and intial gap d0 = 2.75 μm,
obtained from experiment and simulations.
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Figure 3-14: The ∆C-V responses for a capacitor with deviations from nominal design values,

obtained by ANSYS
R°
and analytical models, compared to the experimental results.

ANSYS
R°
models result in closer pull-in voltage and maximum capacitance to measurement

data as displayed in Figure 3-14. One should note that if actual initial air gap is less than

the nominal value (2.75 μm), the initial capacitance and maximum tunability changes. The

tunabilities obtained from ANSYS
R°
and analytical models are 53.5% and 57.5%, respectively.

If the actual initial air gap decreases, then the effect of weak structural nonlinearity may not

affect the capacitance or may have negligible effect. Therefore, as explained before, to obtain

a highly linear and tunable capacitor, the fabrication process should be modified to build thin

beams with large initial air gaps.

It is important to note that the analytical uncoupled beam model introduced in this chapter

provides an efficient tool that can be used in early design stages for development and optimiza-

tion of electrostatically actuated devices. The computation time for C-V responses obtained

by analytical uncoupled beam models is only few seconds (depending on the number of voltage

samples), while the convergence time at each voltage sample and for a relatively course mesh

ANSYS
R°
model varies from 10 minutes at low voltages to over two hours at voltages near pull-

in. For example, at V = 5.03 V (the last point on C-V curve in Figure 3-9-c), the convergence

takes over two hours.
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3.5 Summary and Conclusion

The characteristic force-displacement curve of an ideally linear capacitor was analyzed. Based

on this curve, supporting beams with similar nonlinear stiffness coefficients were developed

to be integrated in a parallel-plate tunable capacitor. The beam’s nonlinear stiffness coeffi-

cient incorporates bending and axial rigidities. Analytical and FEM analyses of capacitors

with relatively large gap, d0 ≥ 4.0 μm, and thin beams, t ≤ 1.0 μm, verify that nonlinear

supporting beams increase the tunability and linearity of C-V curves. For devices fabricated

by PolyMUMPs, with relatively thick beams and small air gap, weak geometric nonlinearity

increases the tunability. When the fabrication process is flexible, it is possible to optimize

the capacitor’s design parameters to maximize the linearity factor of the C-V response or the

maximum tunability. Different examples presented in this chapter also demonstrate that the

analytical uncoupled beam model produces negligible error for small deformations. This model

can be advantageously exploited in early design stage to save computational time and cost in

development of electrostatically actuated elements.
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Chapter 4

Development of Highly Tunable and

Linear Capacitors with Asymmetric

Geometries

4.1 Introduction

Conventional MEMS capacitor designs have rectangular-shape plates and symmetric geometries

which maintain the parallelness of the electrodes. If the device structural symmetry is altered or

electrode shapes other than rectangle are used, the plates lose the parallelness and consequently

the capacitance-voltage response changes. Such techniques are exploited in this chapter to

enhance the capacitors performance. First, a non-parallel-plate capacitor with asymmetry

in one direction is studied and the effect of different design parameters on C-V response is

investigated. Then, two conventional designs, two-gap and three-plate capacitors, are modified

using the non-parallel-plate structures and geometric nonlinearity. Finally, a novel triangular-

plate capacitor model, based on structural and geometric asymmetry, is developed to provide

a combination of high tunability and linearity in the C-V response.
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4.2 Non-Parallel-Plate Capacitors

In a parallel-plate capacitor if the electrode geometry is asymmetric or supporting beams are

not the same, then after applying a DC voltage the two electrodes lose their parallelness, as

shown in Figure 4-1-a. In this case, the resultant electrostatic force deviates from the center

of plates, causing an uneven deflection in the beams. The electrostatic force and the moment

about z axis for a capacitor with uneven springs, k1 6= k2, are obtained by integration over the

area of the electrodes (see Figure 4-1-b):

F =

Z
A

²0V
2dA

2d(x)2
=
²0V

2A

2d1d2
(4.1)

X0F =

Z
xdF =

²0V
2A

2

∙
l

(d2 − d1)2
ln

µ
d2
d1

¶
− l

d2(d2 − d1)

¸
(4.2)

The nodal positions of the moving plate, d1 and d2, are obtained from the equations of

static equilibrium (each side is considered as a node):

²0V
2A

2d1d2
− k1(d0 − d1)− k2(d0 − d2) = 0 (4.3)

²0V
2A

2
[

l

(d2 − d1)2
ln(
d2
d1
)− l

d2(d2 − d1)
]− k2(d0 − d2)l = 0 (4.4)

Nonlinear equations (4.3) and (4.4) are numerically solved for d1 and d2. The capacitance is

then obtained from:

C =

Z
dC =

²0A

(d2 − d1)
ln(
d2
d1
) (4.5)

These equations are solved for a capacitor with plate size A = 350 × 350 μm2, air gap

d0 = 2.75 μm, and different stiffness ratios r = k2/k1. The results of numerical simulations are

shown in Figure 4-2. As depicted in this figure, increasing the stiffness ratio, r, increases the

pull-in voltage and decreases the maximum tunability. If the shape of electrodes changes to a

trapezoid, then the relations for electrostatic force and moment and capacitance is derived by

direct integration as:

F =
²0V

2

2
(
α

β
ln

µ
d2
d1

¶
+
L1l

d1d2
− αl

βd2
) (4.6)
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Figure 4-1: The geometry and forces acting on a non-parallel-plate tunable capacitor.
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Figure 4-2: The C-V responses of an asymmetric capacitor with different stiffness ratios, r = k2
k1
.

X0F =
²0V

2

2d2β
3 [d2 ln(

d2
d1
)(βL1 − 2αL1) + αβl(d1 + d2)− β2L1l] (4.7)

C = ²0[
α

β
l + ln(

d2
d1
)(
L1
β
+

α

β
d1)] (4.8)

where

α =
L2 − L1

l
(4.9)

β =
d2 − d1
l

(4.10)

and L1 and L2 are the width of the electrode at nodes 1 and 2, respectively, as displayed in

Figure 4-3.

A design parameter, a = L2/L1, is defined to study the effect of geometric asymmetry on the

capacitance-voltage response, and different C-V responses are plotted for different values of a in

Figure 4-4. As shown in this figure, the maximum tunability increases as a increases, however,

for a = 100 where the electrode approaches a triangular shape, the maximum tunability is still

less than that of a conventional design. Figures 4-2 and 4-4 illustrate that asymmetric designs

do not generate high tunability or linearity; however, as will be discussed later, these geometric

modifications are useful tools in developing highly tunable or highly linear capacitors.
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Figure 4-3: A trapezoidal electrode.
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Figure 4-4: The C-V responses of asymmetric capacitors with trapeziodal electrodes and uneven
beams.
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4.3 Highly Tunable Two-Gap Capacitors

Two-gap parallel-plate tunable capacitors with separate actuation and sense gaps (see Figure

4-5) have been well-established in the literature [11, 49, 50]. As shown in Figure 4-5, the fixed

plate in such capacitors is separated into actuation and sense electrodes where a one-piece

moving plate is used for both actuation and sense. Since the pull-in occurs at two-third of

initial actuation gap, for dsen < dact the capacitor exhibits tuning ratio higher than 1.5 [51, 52].

It is potentially possible to reach infinite tunability if dsen = dact/3. In a two-gap capacitor,

the capacitance is obtained from:

C =
²0Asen
dsen

(4.11)

where Asen is the area of the sense electrodes. When the bias voltage is applied to the actuation

electrodes, the gap between them, dact, is obtained by solving the following equation of static

equilibrium:
²0AactV

2

2d2act
− keq (d0 − dact) = 0 (4.12)

where keq represents the stiffness coefficients of all supporting beams, Aact is the area of actua-

tion electrodes, V is the bias voltage and d0 is the initial actuation gap. The numerical solutions

of (4.12) for a conventional parallel-plate and a two-gap capacitor, designed for PolyMUMPs,

are shown in Figure 4-6. The electrodes dimensions are: Asen = 300×400 μm2, Aact = 200×400

μm2 and initial sense and actuation air gap are 2.0 μm and 2.75 μm, respectively. For the con-

ventional parallel-plate capacitor initial actuation and sense gaps are the same, d0 = 2 μm. As

presented in this figure, the two-gap capacitor provides higher tunability of 91%.

Two-gap capacitors are highly sensitive to the voltage change near pull-in where a notable

portion of the tunability is produced. In the next two sections, two design modifications are

introduced that can enhance the performance of the two-gap capacitors by increasing the tun-

ability and decreasing the sensitivity of the response to the voltage change.

4.3.1 Capacitors with Structural Nonlinearity

It was shown in Chapter 3 that if the beam’s force-deformation relation changes to a stiffening

regime, then electrostatic and structural forces both grow and larger stable displacement is

achievable. This modification improves the tunability of the device by delaying the pull-in
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Figure 4-5: A two-gap parallel-plate capacitor with separate actuation and sense electrodes
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Figure 4-6: C-V curves for conventional and two-gap parallel-plate tunable capacitors.
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Figure 4-7: C-V curves for two-gap parallel-plate tunable capacitors with linear and nonlinear
springs.

effect. Using the uncoupled nonlinear beam model, the C-V response of two-gap capacitors with

and without structural nonlinearity are compared in Figure 4-7. The electrodes dimensions for

both capacitors are the same as the ones shown in Figure 4-6 with the ratio of sense gap to

actuation gap: dsen
dact

= 2.0
2.75 = 0.727. The modified capacitor displays 281% tunability which is

over three times higher than that of a conventional two-gap capacitor.

It is possible to obtain the same tunability for a conventional capacitor by changing the

gap ratio, for example, if dsendact
= 2.0

4.425 = 0.452, then for a capacitor with linear springs the

tunability reaches up to 281%. However, the shape of the response is different from that of the

modified design, because in a capacitor with nonlinear beams when actuation voltage increases,

the structural resistive force also increases, and therefore, the electrode’s displacement changes

with a slower rate. To compare the responses of a conventional two-gap capacitor and a modified

one with nonlinear stiffness, two normalized curves are presented in Figure 4-8. As depicted

in this figure, for a conventional capacitor, the rate of capacitance change is very low up to

the point where voltage reaches about 0.9Vpull−in, and then there is a sudden increase in the

capacitance for the last part of the curve. In the modified device, the capacitance increases with

higher rate at low voltages, but close to pull-in, it has lower sensitivity to the voltage change

43



0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

Normalized voltage (V/V
max

)

C
ap

ac
ita

nc
e 

(p
F)

 

 

  Nonlinear spring

  Linear spring

Figure 4-8: A comparison between C-(V/Vmax) responses of conventional and modified highly
tunable two-gap capacitors.

comparing to the response of a conventional capacitor. This is the main advantage of nonlinear

structural stiffness over conventional linear beams and can increase the “usable tunability” of

the capacitor. Furthermore, when fabrication process is limited and dsen
dact

cannot be reduced to

any desired value, the nonlinear springs can advantageously provide higher tuning ratio.

4.3.2 Capacitors with Asymmetric Geometries

As the second modification, the geometric symmetry of the capacitor is altered. For a trapezoidal-

shape capacitor with uneven beams the actuation voltage causes uneven deformations in beams

and alters the parallelness of the two plates (see Figure 4-9). The capacitance in this case is

obtained from:

C = ²0[
α

β
Lsen + ln(

d3
d2
)(
L1
β
+

α

β
d2)] (4.13)

where α = (L2 − L1)/Lsen, β = (d3 − d2)/Lsen and L1 and L2 are the width of the sense

electrode corresponding to end positions d2 and d3, respectively, as shown in Figures 4-9-a and

4-9-b.

By integrating electrostatic force and moments over the length of actuation electrodes, the
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following expressions for resultant electrostatic forces and moments are obtained:

Fi =
²0AiV

2

2di+1di
, i = 1, 3 (4.14)

xiFi =
²0AiV

2Lact
4(di+1 − di)2

∙
ln(
d2
d1
)− (1− di

di+1
)

¸
, i = 1, 3 (4.15)

Equations (4.14) and (4.15) are used in the static equilibrium to calculate d2 and d3 for any

input voltage and the capacitance is calculated from (4.13). To study the effect of asymmetry,

two design parameters, a = L2/L1 and r = LS2/LS1, are defined, where LS1 and LS2 are

the length of supporting beams corresponding to k1 and k2, respectively. If these parameters

change, then the tunability and the shape of C-V response change accordingly. Figure 4-10

compares the C-V curves of different capacitors designed for PolyMUMPs with actuation and

sense gaps of 2.75 μm and 2.0 μm, respectively. Cap I and Cap II are the conventional parallel-

plate and two-gap capacitors, with tunability of 50% and 91%, respectively. As presented in

this figure, the modified designs, Cap III with nonlinear springs and Cap IV with nonlinear

springs and asymmetric geometry, can provide much higher tunabilities. One can see that in

Cap IV with design parameters a = 15 and r = 2, the tunability is improved to 344% comparing

to 281% of Cap III.

The pull-in voltages for modified designs, shown in Figure 4-10, are higher than conventional

ones, therefore, to quantify the improvement of sensitivity a criterion for maximum allowable

slope for the normalized response, C-(V/Vmax), is considered as: ∆C/∆(V/Vmax) 6 2.0 pF, i.e.,

for a 0.01 increment in normalized actuation voltage, the capacitance increases by less than 0.02

pF. Using this criterion the maximum low sensitive tunability for Cap I, Cap II, Cap III and

Cap IV are obtained as 29%, 44%, 77% and 80%, respectively. Similar values for absolute slope

criterion, ∆C/∆V 6 1.0, are 33%, 51%, 115% and 164%, respectively. The analysis of response

sensitivity and numerical simulations demonstrate the improvement of capacitor’s performance

for modified two-gap designs as the tunability notably increases and the response sensitivity to

voltage change decreases.
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Figure 4-9: A modified asymmetric two-gap tunabel capacitor: (a) The electrode shape; (b)
Displacements under electrostatic actuation; (c) Forces acting on the moving electrode.
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Figure 4-10: C-V curves for different designs: Cap I, Cap II, Cap III and Cap IV represent con-
ventional parallel-plate capacitor, conventional two-gap capacitor, modified two-gap capacitor
with nonlinear springs and modifed asymmetric capacitor with nonlniear springs, respectively.

4.4 Three-Plate Linear Capacitors

4.4.1 Analysis and Design optimization

The design introduced in Chapter 3 uses the characteristic force-displacement curve of an ideally

linear capacitor to develop nonlinear elements and linearize the capacitance-voltage response.

In this section, a similar approach is followed considering air gap-voltage (d-V ) curve of an

ideally linear device, expressed by:

d =
d1

1 + 1−a
a

³
V−V1
V2−V1

´ (4.16)

where V1 ≤ V ≤ V2, d1 and d2 are the initial and final gaps at V1 and V2, respectively, a = C1
C2

is the tuning ratio, C1 and C2 are the capacitance at V1 and V2, respectively, and C1 > C2. In

this model, the C-V response is descending and can be generated by a three-plate model shown

in Figure 4-11. In this capacitor, the bias voltage is applied to the actuation electrodes and

the sense electrodes are used to measure the capacitance [45]. When the voltage is applied, the

middle plate moves toward the bottom fixed plate and the distance between two sense plates,
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Figure 4-11: A simplified model of a three-plate tunable capacitor.

dsen, increases. In a three-plate capacitor, the pull-in occurs at 2/3 of the initial actuation gap,

dact, and therefore, for dsen < dact the capacitor provides tunability higher than 50%. Figure

4-12 compares the behavior of an ideally linear capacitor to that of a three-plate capacitor. The

capacitor’s dimensions are: A = 350×350 μm2, dsen = 0.75 μm and dact = 2 μm. For the ideal

capacitor the parameters used in (4.16) are: V1 = 0 and V2 = Vpull−in = 1.88 V, C1 = 1.446 pF,

and C2 = 0.770 pF. C1 and C2 are chosen to be the initial and final capacitances of the three-

plate capacitor, respectively. The tuning ratio for both capacitors is a = 1.88. The linearity

factor of the C-V curve is LF = −0.959 (negative sign implies that the curve is descending)

which is higher than that of a conventional parallel-plate capacitor.

As shown in Figure 4-12, at low voltages the change in the gap for three-plate capacitor is

slower than that of ideally linear one and close to the pull-in, the rate of displacement change

in three-plate capacitor exceeds that of the ideal one. Numerical simulations reveal that when

the ratio of the two gaps, dsen/dact, decreases, three-plate and ideally linear capacitors exhibit

similar behavior at the middle of the gap-voltage (d-V ). For a capacitor with A = 350 × 350

μm2, dsen = 0.3 μm and dact = 2.45 μm and for voltage interval V1 = 0.8 V and V2 = 2.4 V, the

C-V and d-V curves are compared to those of ideally linear capacitor in Figure 4-13. Since the

d-V curves for the real and ideal devices are very similar, the linearity is considerably improved

and reaches LF = −0.9995.
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Figure 4-12: A comparison between an ideally linear capacitor and a three-plate tunable ca-
pacitor designed for PolyMUMPs: (a) C-V response; (b) d-V curve.
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Figure 4-13: A highly linear three-plate tunable capacitor; (a) C-V response; (b) d-V curve.
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Figure 4-13 also demonstrates major improvement in tunability. As already explained, when

the sense gap to actuation gap ratio, dsen/dact, decreases, the tunability increases. For the C-V

curve shown in this figure, for the voltage interval 0.8 V < V < 2.4 V, the tunability is 143%

(this tunability is called linear tunability), where the total tunability for 0 < V < Vpull−in is

275%. When fabrication process is flexible and capable of depositing and etching sacrificial

layers with arbitrary thicknesses, then dsen/dact can be optimized to obtain the best linear

response. For example, a capacitor with the same plates dimensions and actuation and sense

gaps dact = 2.5 μm and dsen = 0.25 μm, respectively, provides LF = −0.99997 with 146%

linear tunability for the voltage interval 0.9 V< V < 2.4 V. The total tunability is 346% and

the actual and ideal C-V and d-V responses are hardly separable in linear region. When highly

precise linear C-V response is not required, then the upper and lower voltage limits may vary

for the best combination of linearity and tunability. For example, the voltage limits 0.6 V

< V < 2.6 V provides LF = −0.9997 and linear tunability 262%.

In general, an optimization problem which includes the fabrication limitations (minimum

possible gaps) and design preferences (maximum tunability and linearity and minimum pull-in

voltage) can obtain the best design parameters. If fabrication limitations restrict the minimum

thickness for deposition and etching, one can get similar results by increasing the actuation gap

(and the pull-in voltage). Figure 4-14 represents a capacitor with similar behavior and different

gap, where dact = 5 μm, dsen = 0.5 μm. The maximum and linear tunabilities for this design

are 332% and 168%, respectively, with LF = 0.99997 in the linear region.

4.4.2 Design Modifications

A tunable capacitor may be integrated in a circuit where different elements are fabricated on

the same chip and it is not possible to customize the process for each element. Therefore, it

is important to modify the design for a standard processes with fabrication limitations such as

fixed thickness for sacrificial layers. To demonstrate the capability of the design modifications,

in what follows PolyMUMPs is considered as a standard process.

The C-V response of a three-plate capacitor designed for PolyMUMPs was already presented

in Figure 4-12-a, where the thickness of sacrificial layers Oxide1 and Oxide2 are 2 μm and 0.75

μm, respectively, and the response is nonlinear. To obtain a higher linearity, the symmetry of
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Figure 4-14: The C-V response of a highly linear three-plate MEMS capacitor (dotted line)
and its interpolation in linear region (solid line).

the capacitor is altered using both uneven springs and trapezoidal plate shape. The supporting

beams are also designed to exhibit nonlinear stiffness coefficients. This modifications stretch the

C-V curve to the right-hand-side of the voltage axis. The capacitance, in this case, is obtained

from:

C = ²0[
α

βsen
l + ln(

dsen2
dsen1

)(
L1
βsen

+
α

βsen
dsen1)] (4.17)

where l is the length of electrodes, α = (L2−L1)/l, βsen = (d2−d1)/l, L1 and L2 are the width

of the sense electrode corresponding to dsen1 and dsen2, the distance between sense electrodes

at their two ends, respectively (see Figure 4-15). The electrostatic force and moment acting on

the moving electrode are obtained from expressions similar to (4.6) and (4.7), respectively.

The results of these modifications are presented in Figure 4-16. The total tunability for

the new design is 82% which is slightly less than conventional design (88%). For the voltage

interval 1.5 V< V < 3.2 V, the linear tunability is 52% and the C-V curve exhibits high

linearity, LF = −0.999. If this response is substituted by its linear interpolation, the maximum

error in linear region is less than 1%.
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Figure 4-15: The displacements of an asymmetric three-plate capacitor.
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Figure 4-16: C-V responses of a conventional three-plate tunable capacitor (dashed line) and
an optimized asymmetric design with nonlinear springs (solid line).
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4.5 Triangular-Plate capacitor

4.5.1 Governing Equations

The modified non-parallel-plate designs introduced in this chapter (two-gap and three-plate

capacitors) have a symmetric axis and an asymmetric one. Therefore, the moving electrode

has two independent nodal displacements. In a triangular-plate capacitor with three uneven

supporting beams, the moving plate has three independent nodal displacements, as shown in

Figure 4-17-a. The moving plate is assumed to be rigid and suspended by three beams connected

to its three nodes (nodes 1, 2 and 3). Using the model presented in Figures 4-17-a, 4-17-b and

4-17-c, the governing equations of the capacitor is obtained as follows.

The displacement of the moving plate after applying a bias voltage is expressed in terms of

its nodal positions d1, d2 and d3. When a voltage is applied, the beams deform to balance the

electrostatic force. If the three side lengths l1, l2 and l3 or the stiffness coefficients k1, k2 and k3

are not the same, the two electrodes lose their parallelness. The equations of static equilibrium,

in this case, are written as:

F − k1(d0 − d1)− k2(d0 − d2)− k3(d0 − d3) = 0 (4.18)

X1F − k1(d0 − d1)l3 sin θ2 = 0 (4.19)

X3F − k3(d0 − d3)l2 sin θ2 = 0 (4.20)

where d0 is the initial gap between two electrodes. The electrostatic force, F , in (4.18) is

obtained from :

F =

Z l3 sin θ2

0

²0V
2l1(x)

2d1(x)d2(x)
dx (4.21)

d1(x) and d2(x) are expressed in terms of nodal positions as follow (see Figure 4-17-b):

d1(x) = d2 +
d1 − d2
l3 sin θ2

x (4.22)

d2(x) = d3 +
d1 − d3
l3 sin θ2

x (4.23)
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Figure 4-17: (a) A simplified model of a triangular-plate capacitor; (b) The differential element
and its end positions; (c) The top view of the electrode.
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and as shown in Figure 4-17-c, the length of differential element is obtained from:

l1(x) = l1

µ
1− x

l3 sin θ2

¶
(4.24)

Therefore:

F = ²0V
2A
d1 ln

³
d3
d2

´
+ d2 ln

³
d1
d3

´
+ d3 ln

³
d3
d1

´
(d1 − d2)(d2 − d3)(d3 − d1)

(4.25)

where A is the area of the plate. The electrostatic moments X1F and X3F are obtained from:

X1F =

Z l3 sin θ2

0

²0V
2l1(x)

2d1(x)d2(x)
xdx (4.26)

X3F =

Z l2 sin θ1

0

²0V
2l3(x)

2d01(x)d
0
2(x)

xdx (4.27)

where d01(x) and d
0
1(x) are obtained form expressions similar to (4.22) and (4.23).

Equations (4.18) to (4.20) are highly nonlinear and should be numerically solved at each

voltage to obtain the nodal positions d1, d2 and d3. Once the nodal positions are known, the

capacitance is calculated from:

C =

Z
A

²0dA

d(x)
=

Z l3 sin θ2

0

²0l1(x)x

d2(x)− d1(x)
ln

µ
d2(x)

d1(x)

¶
dx (4.28)

As an example, consider an equilateral triangular-plate capacitor with l1 = l2 = l3 = 400

μm and the initial gap d0 = 2.75 μm, designed for PolyMUMPs. All supporting beams are

assumed to have the same length, width and thickness of L = 120 μm, w = 5 μm and t = 1.5

μm, respectively. The stiffness coefficient of each beam reflects its bending rigidity. The

corresponding C-V response is presented in Figure 4-18 and since all side lengths and beams

stiffness are the same, the three nodal displacements are equal and electrodes remain parallel.

Therefore, the tunability of the capacitor is limited to 50%.

By changing the stiffness of three supporting beams one can obtain a higher tunability. For

example, if the beams lengths for a capacitor of Figure 4-18 changes to l1 = 100 μm, l2 = 130

μm and l3 = 200 μm, the tunability increases to 64% with a nonlinear and sensitive curve.
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Figure 4-18: The C-V response of a symmetric triangular-plate tunable capacitor.

4.5.2 Linear Triangular-Plate Capacitors

It was shown that asymmetric triangular-plate capacitors slightly increase the tunability but

do not improve the sensitivity or linearity of the C-V response. To improve the linearity of the

response, a new design displayed in Figures 4-19-a and 4-19-b is introduced, where a flexible step

(a lateral beam named middle beam) with initial height of hi is added under node i, i = 1, 2, 3.

When the bias voltage increases, the nodes touch the corresponding middle beams and their

stiffness are added to the system. The equations of static equilibrium for this capacitor are

the same as (4.18) to (4.20). The nodal stiffness coefficient before and after contact is ki and

(ki + k
0
i), respectively, where k

0
i is the stiffness of the ith middle beam.

To investigate the effect of middle beams on linearity of the C-V response, a capacitor

designed for PolyMUMPs is considered. The initial air gap is d0 = 2.75 μm and the heights of

three flexible steps are the same: h = [2.0, 2.0, 2.0] μm. The length and width of all supporting

and middle beams are 120 μm and 5 μm, respectively, where their thicknesses are 1.5 μm, and

2.0 μm, respectively. The electrodes are equilateral triangles, l1 = l2 = l3 = 400 μm. The

resulting C-V response for this capacitor is presented in Figure 4-20, where due to geometric

symmetry, the plates remain parallel and all nodes contact the middle beams at the same

time. The figure depicts that when the nodes touch the middle beams, the total stiffness of the
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Figure 4-19: (a) A modified triangular-plate capacitor; (b) The simplified model of the middle
nodal beam.
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Figure 4-20: The C-V response of a modified triangular-plate capacitor with even supporting
and middle beams.

system suddenly increases. This reduces the rate of nodal displacements and consequently, a

discontinuity in the C-V curve is created. Adding stiffness of the system increases the resistive

force and delays the pull-in and the maximum tunability (for this design) increases to 81% with

LF = 0.9176.

If the supporting beams are not the same, the stiffness coefficients of three middle beams,

k01, k
0
2 and k

0
3, will be added to the system at different voltages. Hence, the overall structural

stiffness of the capacitor gradually increases. This results in a smoother and more linear C-V

response and reduces the sensitivity of the curve. To maximize the linearity of the response the

following optimization problem is defined:

max LF (k1, k2, k3, k
0
1, k

0
2, k

0
3) (4.29)

subject to :

k3 < k2

k2 < k1

klow 6 ki 6 kup

k0low 6 k0i 6 k0up
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Table 4.1: The results of design optimization for a triangular-plate capacitor
Design L1 L2 L3 L01 L02 L03 LF Lin. Tun. Max. Tun.
Cap I 120 120 120 120 120 120 0.9176 - 81%
Cap II 110 120 210 100 50 200 0.9936 78% 152%
Cap III 110 130 290 150 70 160 0.9932 104% 142%
Cap IV 100 120 290 140 70 150 0.9944 102% 136%

Li and L0i are the lengths of supporting and middle beams, respectively.
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Figure 4-21: C-V responses for triangular-plate capcitors with different design parameters.

where kup and klow and k0up and k
0
low are the upper and lower limits for supporting and middle

beams, respectively. The first two constraints in (4.29) guarantee that the three nodes touch

the middle beams at different voltages and increase the maximum tunability. For simplicity, the

width of all beams is set to w = 5 μm, and only their lengths change. It should be mentioned

that due to high level of nonlinearity of the governing equations, different initial guesses for the

lengths of beams may result in different final values, and several trials may be needed to obtain

the optimum set of supporting and middle beams. Table 4.1 and Figure 4-21 show the results

of numerical simulations for different sets of beam lengths, where Cap II provides 150% and

Cap III and Cap IV generate 100% linear tunabilities.

In order to illustrate the level of linearity of the new design, the C-V response of Cap
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IV and its linear interpolation with upper and lower bounds are plotted in Figure 4-22-a.

The linear region is in voltage interval 0.2 V< V < (Vpull−in − 0.2) V. The upper and lower

bounds specify a ±4% margin, meaning that if the real C-V curve is substituted by its linear

interpolation, the maximum possible error is 4%. The nodal positions are plotted in Figure

4-22-b and as explained before, the high linearity is obtained because the three nodes touch the

middle beams at three different voltages. Figures 4-22-a and 4-22-b verify that the separation

of contact points in the new design considerably enhances the response of a parallel-plate-based

capacitor by linearizing the curve, increasing the tunability and reducing the sensitivity of the

curve to the voltage changes.

4.6 Summary and Conclusion

It was demonstrated that geometric and structural modifications presented in this chapter can

notably improve the tunability and linearity of a parallel-plate tunable capacitor. Altering

the parallelness of the electrodes decreases the sensitivity of the C-V response to the voltage

change and adding structural nonlinearity increases the resulting resistive force and therefore,

improves the linearity and tunability. Using these techniques, conventional two-gap and three-

plate capacitors were modified for higher tunability and linearity.

The novel triangular-plate design, presented in this chapter, also verifies that a combination

of geometric and structural modifications can drastically enhance the capacitor’s performance.

These modifications may also be implemented to rectangular-shape electrodes to achieve high

linearity and tunability.
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Figure 4-22: (a) The C-V response of a triangular-plate capacitor (dashed line), its linear
region (solid line), the linear interpolation (dash-dotted line) and upper and lower bounds
(dotted lines); (b) The nodal displacement of the same capacitor.
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Chapter 5

Linearly Tunable Capacitors with

Flexible Electrodes

5.1 Introduction

In a conventional parallel-plate tunable capacitor, the moving electrode is assumed to be rigid.

The accuracy of such an assumption depends on the size of the plate and stiffness of the sup-

porting beams and may produce error for a thin moving electrode and stiff beams as discussed

in Chapter 3. Therefore, taking the flexibility of the plate into account can increase the ac-

curacy of a model. Moreover, if the displacement of a flexible moving electrode is controlled,

capacitance-voltage responses with different shapes can be obtained. This provides a strong de-

sign tool for the development of highly tunable and linear capacitors. In this chapter, different

design techniques such as segmentation of moving electrodes and geometric modifications with

nonlinear structural stiffness are used to develop linear capacitors with high tunabilities.

5.2 Analysis of Moving Plates Flexibility

To study the flexibility of the moving electrode of a parallel-plate tunable capacitor, an analyt-

ical approximate lumped model is developed. The moving plate is divided into rigid segments

and each segment is connected to the neighboring segments by torsional springs as shown in

Figure 5-1. In this model, the moving plate consists of n nodes, and n− 1 segments connected

63



together with n torsional springs, kti (the stiffness coefficient of first and last torsional springs

are zero, kt1 = ktn = 0). At each node there is a linear spring, ki, as shown in Figure 5-1-b,

where the first and the last linear springs represent the supporting beams and the others along

with the torsional springs simulate the plate rigidity. The distance of node i from fixed plate is

di. The equations of static equilibrium for this model are obtained using the energy method.

The potential energy due to deformations of torsional and linear springs is expressed in terms

of segments displacements as:

U =
nX
i=1

∙
kti
2
(θi−1 − θi)

2 +
ki
2
(d0 − di)2

¸
(5.1)

where d0 is the initial air gap between the two electrodes and θi is the slope of each segment.

Nodal displacements, di, are much smaller than segments length, di − di+1 ¿ li and hence, θi

can be approximated as (θi in Figure 5-1-b are exaggerated):

θi =
di − di+1

li
(5.2)

The potential energy is then written as:

U =
nX
i=1

"
kti
2

µ
di−1 − di
li−1

− (di − di+1)
li

¶2
+
ki
2
(d0 − di)2

#
(5.3)

The work done by external electrostatic force, W , is expressed in terms of nodal displacements

as follows:

W =
n−1X
i=1

µ
d0 − di +

(di+1 − di)
li

xi

¶
Fi (5.4)

where xi is the distance of resultant electrostatic force, Fi, from ith node. Fi and xi are nonlinear

functions of nodal displacements of the ith segment and are obtained from the equations of non-

parallel electrodes (Chapter 4):

Fi =
²0V

2Ai
2didi+1

(5.5)

xi = lididi+1

∙
1

(dı̄+1 − di)2
ln

µ
di+1
di

¶
−
µ
1− di

di+1

¶¸
(5.6)
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Figure 5-1: (a) The lumped model for a parallel-plate capacitor with flexible movign plate;
(b) Deformation of the ith segment and corresponsing nodal springs and dispalcements (nodal
linear springs are not shown in (a)).
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The equations of static equilibrium are obtained from:

∂(U −W )
∂di

= 0 , i = 1, ..., n (5.7)

Rearranging (5.7) in terms of nodal displacements results in a set of n nonlinear equations for

n nodal displacements, di, as follows:µ
kti−1
li−1li−2

¶
di−2 −

∙
kti
li−1

µ
1

li−1
+
1

li

¶
+
kti−1
li−1

µ
1

li−2
+

1

li−1

¶¸
di−1

+

"
kti

µ
1

li−1
+
1

li

¶2
+
kti−1
l2i−1

+
kti+1
l2i

#
di

−
∙
kti
li

µ
1

li−1
+
1

li

¶
+
kti+1
li

µ
1

li
+

1

li+1

¶¸
di+1 +

µ
kti+1
lili+1

¶
di+2 + ki (d0 − di)

= Fi

µ
xi
li
− 1
¶
− Fi−1

µ
xi−1
li−1

¶
, i = 1, ..., n (5.8)

Equations (5.8) can also be expressed in the following matrix form:

[K]{d}− d0{k}− {F (d)} = 0 (5.9)

where [K] represents the stiffness matrix including torsional and linear stiffness terms, {k}

represents the vector of nodal linear springs and {F (d)} represents the vector of external elec-

trostatic forces. Equation (5.9) is numerically solved for {d} at any given voltage, V . The total

capacitance is obtained from the summation of capacitances of n− 1 segments:

C =
n−1X
i=1

²0Ai
di+1 − di

ln

µ
di+1
di

¶
(5.10)

For a capacitor modeled by three segments of equal length (l1 = l2 = l3 = l and kt1 = kt2 = kt),

the stiffness matrix, [K], and the vector of electrostatic nonlinear force, {F}, are (see Figure

5-2):
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Figure 5-2: Three-segmented model of a flexible plate tunable capacitor.

[K] =

⎡⎢⎢⎢⎢⎢⎢⎣
kt
l2
+ k1 −2kt

l2
kt
l2

0

−2kt
l2

5kt
l2
+ k2 −4kt

l2
kt
l2

kt
l2

−4kt
l2

5kt
l2
+ k3 −2kt

l2

0 kt
l2

−2kt
l2

kt
l2
+ k4

⎤⎥⎥⎥⎥⎥⎥⎦ (5.11)

{F} =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

F1 − F1x1
l

F2 − F2x2
l + F1x1

l

F3 − F3x3
l + F2x2

l

F3x3
l

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(5.12)

As an example, a parallel-plate capacitor with flexible moving electrode and following spec-

ifications is considered: A = 400× 400 μm2, d0 = 3 μm, l = 133.3 μm, kt = 7000 μN .μm/rad,

k1 = k4 = 2.56 N/m and for simplicity k2 = k3 = 0. The C-V response for this capacitor is

compared to that of a similar capacitor with rigid plate in Figure 5-3. For the conventional

capacitor, torsional rigidities are set to very large numbers (theoretically kti = ∞ for a rigid

plate).

Figure 5-3 illustrates that in a flexible-plate capacitor, the applied voltage deforms the plate

producing an uneven gap between two electrodes at different points. This causes earlier pull-in

and decreases the overall capacitance at pull-in voltage leading to a lower tunability (39% for

this example). If the torsional rigidities increase, the curve will be stretched to the right showing
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Figure 5-3: C-V responses for parallel-plate MEMS capacitors with flexible and rigid plates.

higher tunability. The C-V curve of the rigid-plate (conventional) capacitor is an asymptote

for the family of curves as kt→∞.

5.3 Segmented-Plate Capacitors with Rigid Steps

5.3.1 Analytical Model and Design Optimization

Flexibility of the moving plate decreases the pull-in voltage and tunability, and it does not affect

the linearity of the C-V response. However, the linearity of the C-V curve of a segmented-

plate capacitor can be improved if the nodal displacements are constrained. Figure 5-4 shows

the schematic representation of a capacitor with a three-segmented moving plate and rigid

steps located under middle nodes, where the nodes are restricted to move vertically up to the

corresponding steps. The segments are assumed to be rigid and each two adjacent segments

are connected by torsional springs. The supporting beams have nonlinear stiffness due to axial

deformations which are, in this case, higher than those of a parallel-plate capacitor (Chapter

3), because when the electrode displacement increases, the moving end of the beam has both

vertical and horizontal displacements, as shown in Figure 5-5. The stiffness coefficient of each
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Figure 5-4: A three-segmented-plate tunable capacitor with rigid nodal steps.

Figure 5-5: Horizontal and vertical displacements of the supporting beams in a segmented-plate
capacitor.

supporting beam (uncoupled model), k, and connecting beam, kt, are obtained from:

k = kB + kT =
12EI

L3S0
+
EAS
LS0

Ã
1− LS0p

dy2 + (LS0 + dx)2

!
(5.13)

kt =
Ewtt

3

12(1− ν2)lt
(5.14)

where lt and wt, shown in Figure 5-6, are the length and width of the connecting beams,

respectively.

To study the capacitor’s response to the actuation voltage, the steps are modeled as linear

springs with stiffness coefficients equal to zero and infinity (10,000 μN/μm in this thesis) before

and after contact between node and step, respectively. Therefore, the equations of static equi-

librium for this model are the same as (5.9). This equation is solved numerically to calculate

nodal displacements and capacitance at each voltage. When the heights of steps change, the
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Figure 5-6: The segments and connecting beams with torsional stiffness.

shape of C-V curve, its linearity and maximum tunability also change. By solving an optimiza-

tion problem, the best set of step heights, providing the highest linearity, is obtained. For the

three-segmented-plate capacitor shown in Figure 5-4, the optimization problem is defined as:

max LF (h1, h2) (5.15)

subject to :

h1 ≤ d0

h2 ≤ d1

where the step heights, h1 and h2, are the optimization variables and the constraints in (5.15)

guarantee that higher linearity and tunability is achieved. The result of optimization for a

silicon-based capacitor with elastic modulus E = 165 GPa is presented in Figure 5-7. The

electrode size is A = 200 × 400 μm2, the initial gap is d0 = 3 μm, the thickness of moving

electrode is 2 μm. One can also add the stiffness coefficients to the optimization variables of

(5.15), but this increases the number of iterations and several initial guesses may be required.

In this thesis, the stiffness coefficients are separately optimized to avoid the complexity in the

main optimization problem. The length and width of supporting beams are 100 μm and 5 μm,

respectively, and a set of two identical connecting beams, lt = 30 μm and wt = 10 μm, are used
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Figure 5-7: C-V responses for the three-segmented-plate capacitor before and after optimization
compared to a conventional design.

to connect each two segments.

Due to the high level of nonlinearity of the governing equations (5.9) and (5.10), different

initial guesses for hi in the optimization problem may result in different final values. In Figure

5-7, the initial and optimized values for step heights are h0 = [2.4, 2.1] μm and h = [2.46, 1.65]

μm, respectively. The maximum tunabilities before and after optimization are 50% and 60%,

respectively. The linearity factor, LF , has increased from 0.965 before optimization to 0.992

after optimization.

In order to investigate the effect of the number of segments on improving the linearity or

tunability of a C-V curve, a symmetric six-segmented-plate capacitor with three independent

step heights, h1, h2 and h3, is modeled (see Figure 5-8-a). To maintain the high tunability of

the final response, some constraints similar to those of (5.15), h0 > h1, h1 > h2 and h2 > h3,

are added to specify the order of step heights. For a six-segmented-plate capacitor with plate

size A = 200 × 400 μm2, the initial air gap d0 = 3 μm and the plate thickness t = 2 μm, the

results of design optimization are displayed in Figure 5-8-b. The supporting and connecting

beams dimensions are LS = 100 μm, w = 5 μm, lt = 40 μm and wt = 15 μm and there are two

connecting beams between each two segments.
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Figure 5-8: A symmetric six-segmented-plate capacitor: (a) The 1
2 model; (b) The optimized

C-V response (rigid line), its linear interpolation (dash-dotted line) and upper and lower bounds
(dotted lines).

The linearity factor for the optimized design is found to be 0.994 and the upper and lower

bounds which completely enclose the curve exhibit ±3% deviation from the linear interpolation

presented in Figure 5-8-b. In this design, the tunability is also slightly improved from 50% to

53%. As shown in these examples, using segmentation technique and dimensional optimization

leads to linear C-V curves while the tunability remains as high as that of a conventional parallel-

plate capacitor.
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5.3.2 Finite Element Analysis

The applicability of the segmentation technique and the results of the analytical model are ver-

ified by performing a finite element analysis (FEA). The symmetric six-segmented-plate capaci-

tor presented in the last section is modeled and the step heights h0 = [1.97, 2.47, 2.66, 2.47, 1.97]

μm obtained from the analytical optimization are considered as the initial input for FEA. The

beams length and width are 100 μm and 5 μm, respectively. The capacitance at each volt-

age is obtained using ANSYS
R°
structural-electrostatic solver, ESSOLV, and SOILD186 and

SOLID122 elements are used to model structural and electrostatic fields, respectively. The

nonlinear geometry mode is activated which enables the model to include large deformations.

Young’s modulus and Poisson ratio are the same as those listed in Table 2.1.

The optimum step heights h = [1.75, 2.47, 2.66, 2.47, 1.75] μm are obtained after three iter-

ations and the results of simulations are presented in Figure 5-9 and 5-10. The linearity factor

for the optimized dimensions is LF = 0.994 with maximum tunability of 58% (see Figure 5-10).

It should be mentioned that there are some differences between ANSYS
R°
simulation results

and those of the analytical (lumped) model, as illustrated in Figure 5-11. For example, the

capacitance values extracted from FEM model are slightly higher than those of analytical

calculations. This discrepancy may be associated, in part, with the fringing effect included in

ANSYS
R°
simulation. The difference between initial capacitance of two models is 0.0294 pF or

12.5%. The fringing effect for a conventional parallel-plate capacitor has been investigated using

similar ANSYS
R°
simulations. This can be done by changing the size of air box that models the

electrostatic field and surrounds the capacitor. The results display 2 to 9 percent increase in

initial capacitance (for different sizes of air box) comparing to the analytical value obtained from

C = ²0A/d. Considering the fact that each segment has four open edges producing extra fringing

capacitance not included in the lumped model, and adding parasitic capacitances of connecting

beams (i.e., torsional springs), 12.5% difference between ANSYS
R°
and analytical model is

consistent with the results of a conventional parallel-plate capacitor. If 0.0294 pF is added to

the values obtained by analytical model to approximate the fringing effect, then this model

will produce reasonably small error. Furthermore, the segments flexibility in ANSYS
R°
model

(see Figure 5-9-a) slightly increases the total capacitance, whereas the segments in the lumped

model are assumed to be rigid. Even though these error sources may affect the precision of the
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Figure 5-9: ANSYS
R°
simulation for a six-segmented-plate capacitor; (a) The deformed moving

segments; (b) Deformations of segments edges.
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Figure 5-10: C-V responses for two iterations and optimized design.
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Figure 5-11: A comparison between the results of ANSYS
R°
simulations and those of the

analytical model for a set of step heights: h = [1.75, 2.47, 2.66, 2.47, 1.75] μm (FEM optimized
values).
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analytical formulation, it is very time-efficient and fairly accurate for preliminary optimization

stage. As presented in this section, the results of analytical optimization can be chosen as the

input for FEM design, thus the computation time reduces drastically. The analytical simulation

is over a thousand times faster than FEA. For example, the time required to obtain the C-V

response presented in Figure 5-8-b for more than 1000 voltage samples is only few seconds, while

using the same computer processor, ANSYS
R°
simulations requires several hours to obtain the

C-V response of Figure 5-10 with only 31 voltage samples.

5.3.3 The effect of fabrication uncertainties on capacitor performance

Conventional parallel-plate capacitors are highly sensitive to the deviation of the initial air gap

and the thickness of supporting beams from the nominal values and as a result, small changes in

these parameters cause large variations in C-V curves (this will be comprehensively discussed

later in Chapter 6). In a segmented-plate capacitor, the linearity of the C-V response and the

maximum tunability depend on the heights of the steps and therefore, it is important to study

the effect of fabrication uncertainties on the capacitor performance. If the grey-tone mask is

properly designed and calibrated, the main sources of deviations are over/underexposure during

the photolithography, over/underetching or inaccuracies in thickness of different layers. In all

these cases, the fabrication uncertainties have similar impact on all step heights, meaning that

all steps are either longer or shorter than their nominal values and thus, the design parameters

are correlated.

To examine the effect of fabrication tolerances on the segmented-plate capacitors responses,

the six-segmented-plate capacitor of Figure 5-8 is studied. For simplicity of the analysis and in

order to concentrate on the steps, it is assumed that the initial air gap and beams are accurate

and take their nominal values. Two possible scenarios, Model I and Model II, are proposed to

take the fabrication inaccuracies into account. In Model I, it is assumed that the deviations

of step heights are proportional to the nominal values. This model is suitable to investigate

the effect of inaccuracies in photolithography and RIE on the C-V response. The results of

numerical simulations for cases of ±5% and ±10% deviations in step heights are presented in

Figure 5-12-a. As portrayed in this figure, smaller step heights improve the maximum tunability,

but reduce the curve linearity. In Model II, a constant value is added to all steps. This happens
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if the thicknesses of photoresist or dielectric layers deviate from their nominal values. The same

capacitor with two different level of inaccuracies is simulated and the results are presented in

Figure 5-12-b. The dimensional deviations for steps heights are considered to be ±0.15 μm and

±0.30 μm. As shown in this figure, similar behavior is observed for the second model. The

tunability for capacitors with different level of inaccuracy (for both models) varies from 37% for

largest set of steps to 74% for the shortest ones. The linearity factor also varies between 0.989

and 0.994 exhibiting small changes for different cases. As demonstrated by these numerical

examples, the linearity of segmented-plate capacitors exhibit low sensitivity to the deviation of

step heights from their nominal values.

5.4 Segmented-Plate Capacitors with Flexible Steps

5.4.1 Two-Segmented-Plate Capacitors

The use of segmentation technique and nonlinear springs improve the linearity of a MEMS

tunable capacitor, but require a customized fabrication process. To be able to utilize this

technique in a standard process, a new design with simpler geometry (using only two segments)

and a modified “flexible” step is developed as shown in Figure 5-13. The middle spring has

an initial distance, h, from the fixed plate, and after the middle node touches the step, it will

continue to move downward with a slower rate providing smoother C-V response and higher

tunability. The equation of static equilibrium in matrix form for this device is written as:⎡⎢⎢⎢⎢⎣
kt
l21
+ k1 −ktl1

³
1
l1
+ 1
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⎫⎪⎪⎪⎬⎪⎪⎪⎭ (5.16)

where k2 = 0 for d2 ≥ h. All three springs have nonlinear stiffness coefficients. For a capacitor

with dimensions: Atotal = 400 × 400 μm2, d0 = 2.75 μm, h = 2 μm and l1 = l2 (see Figure
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Figure 5-12: The effect of fabrication inaccuracies on C-V response of a six-segmented-plate
capacitor: (a) Model I, (b) Model II.
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Figure 5-13: A modified two-segmented-plate capacitor with a flexible step.

5-13), the C-V response is shown in Figure 5-14. The total tunability of the capacitor is 99%,

where the low sensitive part (solid line) has 47% tunability with linearity factor of LF = 0.970.

The dash-dot line represents the linear interpolation of the low sensitive region.

Although the linearity of C-V response for this design is less than three- or six-segmented-

plate capacitors introduced before, it can be used as a highly tunable, low sensitive capacitor.

It is also possible to optimize design parameters including the length of segments, the stiffness

coefficients of the springs or the height of middle spring, h, to achieve higher linearity within

the low sensitive region of the curve. The optimization problem is then defined as follows:

max LF (a, r, d) (5.17)

subject to :

a ≤ 1

r ≥ 1

d ≤ d0

where a is the ratio of the segments length, a = l2/l1, and r is the ratio of supporting beams

length, r = LS3/LS1. Figure 5-15-a presents the response of a capacitor with optimized design

parameters: a = 0.6, r = 1.3 and h = 2.1 μm. The LF for this capacitor in linear-like low

sensitive region (solid line) is 0.987 with 51% tunability, where the total tunability is increased

to 108%. The design exhibits higher tunability and the linear part has a tunability as high as

a conventional parallel-plate capacitor. If h is assumed to be fixed (as is the case in standard

79



0 1 2 3 4 5 6

0.5

0.6

0.7

0.8

0.9

1

1.1

Voltage (V)

C
ap

ac
ita

nc
e 

(p
F)

 

 

Linear-like region

Maximum tunability

Figure 5-14: The C-V curve for a two-segmented-plate capacitor with flexible middle step. The
dotted and solid lines respresnt the maximum and linear-like tunability, respectively.

processes like PolyMUMPs), then k2 can be replaced in the optimization problem as the new

design parameter. Solving the problem for the new set of design variables results in a higher

linear tunability, where for the low sensitive region LF = 0.990 and the tunability is 57%. The

total tunability for this design is 108% and the C-V curve is displayed in Figure 5-15-b.

5.4.2 Butterfly-Shape Linear Capacitors

Design Development

The idea of placing a flexible step under central node in two-segmented-plate capacitors im-

proved the maximum tunability, because it allows larger segments displacements. However, the

low sensitive part of response is not highly linear yet. As shown in aforementioned sections,

when the number of steps increases, the C-V response is broken into smaller curves leading

to higher linearity. Therefore, if similar steps are added under the first and last nodes of a

two-segmented plate capacitor, then higher tunability and linearity are expected. Furthermore,

one can optimize the geometry of the capacitor to further improve the linearity of the response

by changing the shape of the electrodes from rectangular to trapezoidal, where the width of
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Figure 5-15: C-V curves for optimized two-segmented-plate capacitors with different optimiza-
tion scenarios. (a) The height of the middle step is a design variable; (b) Middle spring’s
stiffness is a design variable (Dashed, solid and dotted lines represent the linear interpolations,
linear region and the end part of the curves, respectively).
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Figure 5-16: SEM image of a butterfly-shape MEMS tunable capacitor fabricated with Poly-
MUMPs.

segments at sides are larger than center. The capacitor then looks like a butterfly as depicted

in Figure 5-16. For this capacitor, the equations of static equilibrium is the same as (5.16),

where the electrostatic forces and moments acting on the segments are obtained from (4.6) and

(4.7) as:

Fi =
ε0V

2

2

∙
α

βi
ln

µ
di+1
di

¶
+

Lili
didi+1

− αli
βidi+1

¸
, i = 1, 2 (5.18)

xiFi =
ε0V

2

2di+1β
3
i

∙
di+1 ln

µ
di+1
di

¶
(βiLi − 2αLi) + αβili (di + di+1)− β2iLili

¸
, i = 1, 2

(5.19)

Here, βi = (di+1 − di) /li, α = (Ls − Lc) /li, L1 = L3 = Ls, L2 = Lc and Ls and Lc are the

width of the segments at sides and center of the electrodes, respectively, as shown in Figure

5-16. The device has dimensions: d0 = 2.75 μm, h = 2 μm, Ls = 575 μm, Lc = 25 μm

and l1 = l2 = 200 μm. The C-V response for this butterfly-shape capacitor is presented in

Figure 5-17. The total tunability is 97%, where the linear tunability (i.e., the tunability of

linear-like region specified by solid line in the figure) is 70% and the linearity factor, LF , is

0.994 displaying a reasonable improvement comparing to segmented-plate capacitors.
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Figure 5-17: C-V curve for a butterfly-shape MEMS capacitor. Dash-dotted line represents the
linear interpolation of linear-like low sensitive region.

Fabrication and Test

A butterfly-shape capacitor fabricated with PolyMUMPs is presented in Figure 5-16. The fixed

electrode, flexible steps and segments are made by Poly0, Poly1 and Poly2 layers, respectively.

The electrodes dimensions are: Ls = 575 μm, Lc = 25 μm and l1 = l2 = 200 μm.

The intrinsic parasitic capacitances are extracted from the model shown in Figure 5-18. The

terms CP , CMB, CFB, CMS , CAS and CFS represent parasitic capacitances of measurement

probes, moving plate-beams, fixed plate-beams, moving plate-substrate, anchors-substrate and

fixed plate-substrate, respectively, and C0 is the capacitance between two electrodes. Each

parasitic term is extracted from C-matrix obtained from ANSYS
R°
and CoventorWareTM and

the results are summarized in Table 5.1. The overall simulated parasitic capacitance is calcu-

lated as: Cpar = 9.902 pF which must be subtracted from the measured values to obtain the

capacitance between two electrodes at each voltage.

As presented in Table 5.1, the effect of silicon nitride (insulator) layer in parasitic capaci-

tances CAS and CFS is quite noticeable and hence, the total parasitic capacitance is sensitive to
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Figure 5-18: (a) The parasitic capacitances for a butterfly-shape capacitor fabricated with
PolyMUMPs; (b) The equivalent circuit.

Table 5.1: The parasitic capacitances extracted from FEA simulations
Capacitance Value (pF )

CP 1.820
CMB 0.047
CFB 0.034
CMS 0.366
CAS 11.314
CFS 25.514
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Figure 5-19: C-V response for a butterfly-shape capacitor measured by the LCR meter; Points
I, II and III, represent the contact between segments and lateral beams at node, 2,1 and 3
respectively.

the thickness of this layer. The capacitance-voltage response was measured by Agilent E4890A

Precision LCR meter. For the capacitor shown in Figure 5-16, the C-V response is presented in

Figure 5-19. The total tunability is 99% which is comparable to 97% of the analytical model.

The measured initial capacitance after subtracting the parasitic values is 0.577 pF , where

the initial capacitance obtained from analytical equation is 0.386 pF . The 3D image of the

capacitor before applying actuation voltage created by WYKO NT1100 Optical Profiler is used

to investigate the difference between analytical and measured values (see Figures 5-20-a and

5-20-b). The theoretical thickness of Poly0 and Poly2 are 0.5 μm and 1.5 μm, respectively, and

the gap between Poly0 and Poly2 layers is 2.75 μm. The actual gap between two electrodes

was observed to vary from 2.8 μm at the edges to 1.9 μm close to the central node assuming

that the layers thicknesses are the same as designed values. As one can see in Figure 5-19,

the gap between electrodes for most of the electrodes area is less than 2 μm which increases

the initial capacitance. Using the average actual initial gap d0 = 2.0 μm the theoretical initial

capacitance is obtained as C0 = 0.531 pF which is comparable to the measured value, 0.577

pF , and exhibits small difference of 9% which, as explained before, can be attributed to the

neglected fringing effect. The difference between the actual and theoretical initial gaps may be
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associated with residual stresses that bend the segments and decrease the gap.

Design Optimization for a highly Linear C-V Response

A closer look at the C-V response in Figure 5-19, suggests that node 1 and 3 do not touch the

corresponding steps at the same time due to fabrication tolerances which alters the symmetry

of the capacitor (see distinct Point II and Point III in Figure 5-19, which must be the same

for a perfectly symmetric structure). This characteristic can be advantageously exploited to

increase the number of discontinuities in C-V response and to improve its linearity. If the two

segments and corresponding supporting beams have different dimensions, then after applying

the bias voltage, the nodal positions d1 and d3 will not be the same. Consequently, the flexible

steps at nodes 1 and 3 are not added to the structural stiffness at the same time and as a result,

the resulting curve will have three discontinuities. An asymmetric design can be achieved by

setting l1 6= l2 and k1 6= k3. In this case, the electrostatic and resistive forces for two segments

are different causing uneven nodal deformations d1 and d3. To maximize the linearity, an

optimization problem with parameters: a = l2/l1, r = k3/k1, kt and k2 is solved as follows:

max LF (a, r, kt, k2) (5.20)

subject to :

a ≤ 1

r ≤ 1

k2 ≤ k0

kt ≤ kt0

where k0 and kt0 are the upper limits of optimization parameters k2 and kt, respectively. The

optimized parameters are: a = 0.8, r = 0.8, k2 = 12.16 μN/μm and kt = 3200 μN.μm/rad.

The characteristic d-V and C-V responses of the new optimized design are shown in Figure

5-21. As displayed in this figure, the asymmetric geometry causes different nodal displacements

at two sides which results in a highly linear C-V response. The total tunability (dotted curve

in Figure 5-21-b) is 89% where the linear region exhibits high linearity of LF = 0.998 and

tunability of 68%.
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(a)

(b)

(a)

(b)

Figure 5-20: (a) 3D image of the butterfly-shape capacitor created by WYKO NT1100 Optical
Profiler; (b) Profile of the moving electrode in two perpendicular directions.
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Figure 5-21: Characteristic curves of an optimized butterfly-shape capacitor: (a) Nodal
displacment-voltage response; (b) Capacitance-voltage response.
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Figure 5-22: (a) A segmented-plate capacitor; (b) its equivalent model and (c) a teeth-equipped
capacitor.

5.5 Linearly Tunable Capacitors with Flexible Plates

5.5.1 Linear Capacitors with Bent Plates

The rigid steps used in segmented-plate capacitors restrict the displacement of the moving elec-

trodes and linearize the C-V responses. Increasing the number of steps improves the linearity of

the curve and on the other hand, it creates more complexity in the fabrication process. Using

the effect of residual stress on the moving plate, a new design with conceptual similarity to

segmented-plate capacitors and a simpler fabrication process is developed.

As portrayed in Figure 5-22, the gap between each step and the electrode for segmented

design (a) and its equivalent design (b) is the same and therefore, the two designs are expected

to have similar C-V responses. Since fabrication of design (b) has the same challenges of the

segmented-plate one, a capacitor with similar (and not exactly the same) behavior is introduced

which can be fabricated with PolyMUMPs. The curvature of the moving plate is created by

residual stress in Poly2 layer, where the steps are built using DIMPLE layer. The image

created by optical profiler (Figure 5-23) shows that the moving plate has two different radii
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of curvature in two directions. Therefore, adding an array of teeth in two directions, instead

of steps, increases the linearity of the response because the initial distances between the teeth

and fixed electrode vary in two directions (see Figure 5-23-a). Therefore, when the bias voltage

increases each tooth touches the fixed plate at a different voltage. This modification is the key

advantage of the modified design over a segmented-plate capacitor.

The ∆C-V responses of four similar teeth-equipped capacitors are compared with ANSYS

simulations in Figure 5-24. The ANSYS model was built based on the surface profile of the

capacitor shown in Figure 5-23 and the results of simulation are presented in Figure 5-25. The

deformations of the The parasitic capacitances are calculated and subtracted from measured

values, Cpar = 8.652 pF, and an average initial gap of 1.8 μm for all samples is considered in

the calculation of parasitic term CMS (moving plate-substrate). The tunability of four samples

vary from 55% to 68% as shown in Figure 5-24 and the curves exhibit high linearity ranging

from 0.9904 to 0.9967.

It is worth mentioning that fabricated capacitors may have different radii of curvature since

the residual stress in the plate varies from one chip to another. Even though the simple structure

and fabrication process is a major advantage of teeth-equipped capacitors over segmented-

plate ones, however, developing a process with accurate residual stress and electrode curvature

is a challenging task. It is possible to deposit a highly stressed layer (e.g., Metal layer in

PolyMUMPs) on top of the moving electrode to increase the stress gradient and the curvature

of the plates. The shape of the Metal layer on top of the moving electrode and the positions of

the teeth can then be optimized to produce a desired curvature and to provide high linearity.

This requires a complex FEM modeling to include the residual stress and contact in a multi-

layer-electrode electrostatic-structural coupled filed.

5.5.2 Capacitors with Fixed-Edge Flexible Electrodes

The assumption of rigid moving plates and beams with constant stiffness coefficients in con-

ventional parallel-plate capacitors produces negligible error for soft beams and small plate sizes

and displacements. If the size of moving electrode increases or its boundary conditions (B.C.)

are changed to fixed-edge, the distributed electrostatic force causes deformations in the plate

[67] as depicted in Figure 5-26. The coupled electrostatic-structural governing equations,in this
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(a)
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(a)

(b)

Figure 5-23: (a) The image of a teeth-equiped capacitor and different radii of curvature in two
directions. The teeth are shown by black spots. (b) The curvature of the electrode in two
directions.
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Figure 5-24: The measured tunability reponses (∆C-V ) of four identical teeth-equipped ca-
pacitors with curved moving plate compared with the ANSYS model.

case, do not have closed-form solutions and should be solved numerically.

Figure 5-27 displays the C-V response of a capacitor with rectangular moving electrode fixed

at its two ends. The dimensions of fixed and moving plates are 630× 200 μm2 and 830× 200

μm2, respectively, with 2.75 μm initial air gap. The capacitance at each bias voltage is obtained

using ANSYS
R°
ESSOLV macro and element types for structural and electrostatic fields are

SOLID186 and SOLID 122, respectively. A 1
4 model (with symmetric boundary conditions) is

used to reduce the simulation time. Young’s modulus and Poisson ratio are: E = 160 GPa

and ν = 0.22, respectively (obtained from Table 2.1). Since the governing equations of this

capacitor are different from those of a conventional rigid-plate model, the maximum tunability

increases to 65%. As shown in Figure 5-27, the curve is highly nonlinear and very sensitive to

voltage changes near pull-in. For instance, 12% of the total tunability is obtained by only 0.061

V change in actuation voltage.

To examine the convergence rate of ESSOLV, a convergence test was performed and initial

capacitance of the C-V response was obtained from a model with different element sizes. In

this analysis, the size of elements is fixed along the electrode width and changes lengthwise by

92



(b)

(a)

Figure 5-25: ANSYS simulations of a teeth-equipped capacitor with curved electrode. (a) The
moving electrode deformations; (b) Contact between teeth and fixed electrode.
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Figure 5-26: A parallel-plate tunable capacitor with flexible moving electrode and fixed-fixed
boundary conditions.
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Figure 5-27: The C-V response of a capacitor with flexible rectangular plate obtained from

ANSYS
R°
FEM modeling.
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Figure 5-28: The result of convergence test for a rectangular-plate capacitor with different
element sizes.

increasing the number of element divisions. The results are presented in Figure 5-28. As shown

in this figure, the initial capacitance reduces with the size of element. The maximum error

observed in thsis study is less than 1%.

A circular-plate capacitor with fixed B.C. (Figure 5-29-a) was then modeled and the higher

structural stiffness of this design (compared to rectangular electrode) increases the actuation

voltage and the maximum tunability reduces to 28% as displayed in Figure 5-29-b. The radius

of both fixed and moving electrodes is 300 μm and the initial gap is 2.75 μm. This example

demonstrates the fact that higher structural stiffness in a capacitor increases the actuation

voltage but does not necessarily improve tunability.

Linearly Tunable Capacitors

Flexibility of the moving electrode may change the tunability of a capacitor; nevertheless, the C-

V curve remains nonlinear and highly sensitive to the voltage change near the pull-in. In order

to reduce the sensitivity and to linearize the response, a novel design is developed. PolyMUMPs,

with its dimensional constraints, is considered as the fabrication process to demonstrate the

capabilities of the proposed design approach.
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Figure 5-29: (a) Deformation of a circular moving electrode with fixed B.C. before pull-in; (b)
The corresponding C-V response.
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Figure 5-30: CoventorWareTM simulation of three gaps which can be fabricated with Poly-
MUMPs.

Table 5.2: Tunability and linearity for flexible-plate capacitors with different design parameters
Design L1 L2 L3 L4 t h1 h2 h3 LF Tunability
Design I 100 100 100 100 5 0 0 0 0.863 65%
Design II 110 90 100 150 5 2.0 0.75 1.5 0.975 134%
Design III 100 100 100 100 5 2.0 0.75 1.5 0.992 130%

In the new design, different steps are placed between two electrodes to control the defor-

mations of the moving one. Based on PolyMUMPs, steps with three different gaps of 0.75 μm,

1.25 μm and 2.0 μm can be fabricated (see Figure 5-30), where the fixed and moving electrodes

are made of Poly0 and Poly2, respectively, resulting in an initial gap of d0 = 2.75 μm.

An ANSYS
R°
model is created using three different step heights, 2.0 μm, 1.5 μm and 0.75

μm, corresponding to the three possible gaps between two plates. Depending on the number

of steps, their heights and locations, C-V responses with different shapes and tunabilities are

obtained. Figures 5-31-a, 5-31-b and 5-31-c display the results of FEM simulations for a ca-

pacitor with symmetric rectangular design and five steps (three independent step heights, i.e.,

steps one and five and also two and four have the same heights). Li and hi are design variables

and three sets of variables, presented in Table 5.2, are examined.

As explained before, Design I confirms that the flexibility of the moving plate alone does

not improve LF . The new Design II and III capacitors exhibit notably improved linearity, and

since the rigid steps allow larger displacements of the moving plate, the total tunability is also

increased without intensifying the sensitivity of the capacitance to the voltage change.

To further improve the linearity, the same technique is applied to a circular-plate capacitor.

The higher structural stiffness of a circular plate with fixed-edge boundary conditions prevents
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Figure 5-31: The results of ANSYS
R°
simulations for a flexible-plate capacitor: (a) The sim-

plified model; (b) Deformations of the plate after contact with steps; (c) The C-V response for
three designs.
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Figure 5-32: The C-V response (solid line) and its linear interpolation inlinear region (dotted
line) for an optimized circular-plate capacitor.

rapid increment in the plate displacements and increases the linearity and also the actuation

voltage. Similar steps are added to a circular-plate capacitor and the dimensions are optimized

to improve the linearity of the response. The steps in this design are circular stripes with

different radii. The C-V response of the resulting linear circular-plate capacitor is presented in

Figure 5-32. As displayed in this figure, for a voltage range 15 V < V < 35 V, the capacitor

exhibits high linearity of LF = 0.999 with 36% tunability, where the maximum tunability

reaches 69% at pull-in.

Design Modification

The rigid steps added to the capacitor’s structure prevent the pull-in each time the moving

electrode is about to collapse on the fixed one. This is observed in Figure 5-31-c, where the C-

V curves of Design II and Design III are broken into four sub-regions. For a capacitor equipped

with more steps, the C-V curve will be divided into more sub-regions leading to higher linearity

and tunability. Each region is the result of a local pull-in for the part of plate with higher rate

of displacement. To prevent the local jumps in the curve and obtain a smoother response, the

geometry of the plates is modified to a (symmetric) zigzag shape as depicted in Figure 5-33.

The plate shown in Figure 5-33 is connected to the anchor at edge E, and as the bias voltage
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Figure 5-33: The top view of a zigzag-shape electrode and the design variables (the contact
surfaces are shown by darker stripes).

increases, stripes A, B, D and C, respectively, touch the corresponding steps. Due to the zigzag

shape of the plate, once actuation voltage is applied, the two electrodes lose their parallelness in

lateral (x) direction. It means that first points B and D touch the steps and then, the rest of the

stripes gradually contact the corresponding steps. This is the key idea to eliminate the jumps in

the C-V curve and to improve the linearity of the response as illustrated in Figures 5-34-a and

5-34-b. For a capacitor with zigzag-shape electrodes, the resulting C-V response depends on

the design variables, Li, wi and hi, which can be optimized for maximum linearity or tunability.

Figure 5-35 shows the C-V curve of a capacitor with a set of optimum design parameters. For

this device, LF = 0.997 and the maximum tunability reaches 125% at V = 33.5 V displaying

remarkable improvement over a conventional parallel-plate capacitor.

5.5.3 Fishbone-Shape Linear Capacitors

Zigzag-plate capacitors provide high tunabilities and highly linear C-V curves. To further

benefit the flexibility of the electrode in lateral direction, a further modification is applied to

design, by increasing the number of triangular areas and decreasing their width. The electrode

in this case looks like a fishbone as portrayed in Figure 5-36 and the length and width of each

step is the same as the corresponding beam. When a DC voltage is applied, the longitudinal

beam deforms due to the electrostatic force and each lateral beam also deflects. Since the lateral

beams have different lengths, they touch the corresponding steps at different voltages which
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Figure 5-34: (a) Lateral deformations (in x direction) of a zigzag-shape electrode at B and D;

(b) The result of ANSYS
R°
simulations.
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Figure 5-35: The C-V response for the optimized zigzag-shape flexible-plate capacitor obtained
from ANSYS simulations.

improves the linearity. Due to variable flexibility of each beam, there is no need to use different

step heights. Therefore, this design is suitable for fabrication processes with two conductive

layers and an isolator (dielectric) layer on top of the fixed electrode, which is its main advantage

over zigzag-shape capacitors.

To examine the behavior of a fishbone-shape tunable capacitor, a 1
4 model of a symmetric

design with three lateral beams is studied. Capacitors with different lateral beam lengths and

locations are simulated with ANSYS
R°
and the results of simulations are presented in Figures

5-37 and 5-38. As shown in Figure 5-38, the capacitors display high linearity in two separate

regions. In contrary to conventional parallel-plate designs, due to structural stiffening of the

longitudinal beam at larger deformations, the rate of capacitance increment decreases at higher

voltages and the pull-in does not occur. The maximum tunability of the capacitor exceeds

200%, and for the linear region (voltage interval 2 V < V < 9 V) up to 150% tunability and

0.992 < LF < 0.998 are obtained. A closer look at the C-V responses (Figure 5-38) reveals that

in different designs the beams touch the contact surfaces at different voltages. Therefore, if the

number of beams is increased or the symmetry of the capacitor is altered, then a higher linearity

may be achieved. In both cases, the ANSYS
R°
model should include more contact pairs which

drastically increases the number of structural iterations and the computation time. To study

the effect of asymmetric design, an approximation is applied to the model. If the C-V curves of
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Figure 5-36: A fishbone-shape capacitor with symmetric electrodes. The moving electrode is
connected to anchor at its two ends, and under each lateral beam there is a step to prevent
contact between two electrodes.

Figure 5-37: Beams deformations at V = 7.0 V for a symmetric fishbone-shape design.
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Figure 5-38: The C-V curves for fishbone-shape capacitors with three lateral beams of different
dimensions, obtained from ANSYS simulations.

four 14 models, presented in Figure 5-38, are added, the resulting C-V response in linear region

becomes very smooth as shown in Figure 5-39. Since the actual design is asymmetric and the

capacitance values used in this C-V curve are obtained from models with symmetric boundary

conditions, the results may incorporate some error. However, the error can be minimized if the

electrode areas of all 14 section are the same which reduces the difference between components

of electrostatic force in each section. The C-V curve displayed in Figure 5-39 has a linearity

factor LF = 0.998 with 145% tunability and if the curve is replaced by its linear interpolation,

C = 0.1407V + 0.3436, the average error is less than 2%.

5.6 Summary

The lumped and continuous structural flexibilities of the moving plates in parallel-plate-based

tunable capacitors were studied. The capacitor performance is improved by adding steps to the

device structure. The segmented-plate capacitors with fixed and flexible steps and geometric

modifications exhibit high linearity up to LF = 0.998 and total tunability over 100%. Similar

design technique in capacitors with flexible plates lead to higher linear tunability up to 150%

with LF = 0.998. The geometric optimization and controllable structural flexibility (such as
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Figure 5-39: The approximate C-V response of an asymmetric fishbone-shape capacitor with
high tunability and linearity.

zigzag-plate or fishbone capacitors) are key ideas to enhance the performance of the device

and to eliminate the pull-in. All capacitors presented in this chapter (except optimized three-

segmented and six segmented-plate designs) can be fabricated by a two- or three-conductive-

layer process such as PolyMUMPs which demonstrates the potential of this methodology to the

development of highly linear and tunable capacitors.

105



Chapter 6

Development of a MEMS

Probabilistic Design Methodology

Immune to Process Uncertainties

6.1 Introduction

MEMS fabrication processes display physical, chemical and operational uncertainties which

affect the properties of the fabricated devices. Regardless of the sources of uncertainties, the

results usually appear as deviations of the actual parameters from the nominal values within

their tolerance ranges. Consequently, various uncertainties are taken into account by adding

appropriate tolerances to the nominal values. In MEMS processes, dimensional tolerance are

relatively large and may lead to a wide output (performance) range in fabricated devices, where

many of the final products may fail to meet desired specifications. Tightening the tolerances

usually is not an option, as it creates technical or cost challenges. Therefore, it is very important

to develop a design methodology that take into account the process tolerances and make the

fabricated devices immune to process uncertainties. This will immune the design to any

fabrication inaccuracies and consequently improve production yield of MEMS devices. For

development of this methodology, the production yield is considered as an index in this thesis

and higher yield corresponds to higher process immune design. In general, the analysis of
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fabrication uncertainties and their effects on the device performance is a vital task before

finalizing the design. If the performance is severely affected by fabrication inaccuracies, it is

essential to optimize the design to minimize these effects to maximize the yield.

In this chapter, the fabrication uncertainties are briefly reviewed and their effects on perfor-

mance of MEMS parallel-plate tunable capacitors are addressed. Then, a probabilistic design

optimization method is introduced that improves the yield for a given fabrication process and

is ”immunized” to the large tolerance ranges. for improving the yield. The optimization can be

conducted in two steps: finding the nominal design variables which maximizes the yield (design

optimization), or finding a tolerance range which provides 100% yield (process optimization).

6.2 MEMS Fabrication Uncertainties

One of the main obstacles in commercialization of MEMS devices is the fabrication uncertain-

ties which are quite noticeable in different processes such as deposition and etching. These

uncertainties may produce tolerances higher than ±10% of the nominal values. Therefore,

thicknesses, feature sizes and mechanical properties (Young modulus and residual stress) of

MEMS structures may face large deviations from one device to another and generate a notable

discrepancy in the device performance. Moreover, tightening the tolerances to obtain more

accurate dimensions is not always possible, since it imposes higher costs to micro-fabrication

processes. As a result, the analysis of fabrication uncertainties and their effects on the device

output are very important and should be performed at the design stage.

Inaccuracy exists in all steps of a MEMS fabrication process such as mask alignment, deposi-

tion, photolithography, etching, drying and even packaging. To study fabrication uncertainties,

PolyMUMPs is considered as a pilot process. The deposition tolerances in this process are

listed in Table 6.1 [16].

As presented in this table, the thickness tolerances are quite large and will greatly affect the

device performance. In addition to layer thicknesses, the mask alignment, photolithography and

etching also produce dimensional variations in feature sizes, where comparing to the thickness

variation, the feature size “normalized” tolerances are usually negligible if the dimensions are

larger than 10 μm. For example, in PolyMUMPs the feature size deviation, created by mask
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Table 6.1: Deviations of thickness of different layers (tolerance) in PolyMUMPs
Layer Thickness (μm) Normalized

minimum nominal maximum tolerance
Nitride 0.53 0.6 0.67 ±12%
Poly0 0.47 0.5 0.53 ±6%
Oxide1 1.75 2.0 2.25 ±13%
Poly1 1.85 2.0 2.15 ±8%
Oxide2 0.67 0.75 0.83 ±11%
Poly2 1.4 1.5 1.6 ±7%
Metal 0.46 0.52 0.58 ±12%

alignment, photolithography and etching is found to be less than ±0.5 μm. Figure 6-1 shows

the result of misalignment in a two-segmented-plate capacitor fabricated with PolyMUMPs.

The designed gap between central beam and two segments, g, is 3 μm, where the actual gaps

after fabrication are g1 = 2.45 μm and g2 = 3.75 μm or 18.3% and 25% error, respectively. As

one may notice g1 + g2 > 2g, because the beam and plates are overetched which increases the

distance between them.

The dimensional deviations are not constant for a process and changes from one device to

another. Therefore, design parameters varying within tolerance ranges can be considered as

random variables. The device performance then becomes a random variable and if the tolerances

are not within certain ranges, the final output may fail to meet the defined criteria. This raises

the question that how to modify the process or design to increase the yield. Tighter tolerances

lead to higher yields, but they involve extra cost or technical challenges. This question will

be answered later in this chapter by introducing a yield optimization method which directly

maximizes the yield.

6.3 The Effects of Fabrication Uncertainties on Parallel-Plate

Capacitors

The capacitance-voltage response for a parallel-plate tunable capacitor is a nonlinear function of

electrode and beams dimensions and the applied voltage. It also depends on Young’s modulus

which changes the structural rigidity. Moreover, residual stress may change the response by

pre-bending the moving plate and beams and changing the initial air gap as demonstrated in
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(a) (b)(a) (b)

Figure 6-1: The fabrication error due to misalignment of masks; (a) 3D model produced by
CoventorWare, b) the SEM image of the fabricated device. g = 3 μm, g1 = 2.45 μm, g2 = 3.75
μm.

the previous chapters. In mass production of a tunable capacitor, the value of each parameter

randomly deviates from the designed value within its tolerance range. Because the C-V curve

has a nonlinear relation with design parameters, small deviations in dimensions of the structure

causes large difference between designed and actual responses. If the beams dimensions are not

equal at two sides of the capacitor due to fabrication uncertainties, the electrodes lose their

parallelness. Recall the governing equations of a non-parallel-plate capacitor,

C =
²0A

(d2 − d1)
ln(
d2
d1
) (6.1)

²0V
2A

2d1d2
− k1(d0 − d1)− k2(d0 − d2) = 0 (6.2)

²0V
2A

2
[

l

(d2 − d1)2
ln(
d2
d1
)− l

d2(d2 − d1)
]− k2(d0 − d2)l = 0 (6.3)

one can see that as the plates and beams dimensions change, the capacitance at each actuation

voltage changes accordingly. Therefore, random deviations of the dimensions cause a random C-
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Figure 6-2: The nominal C-V curve and its upper and lower limits obtained from maxi-
mum/minimum dimensional deviations of PolyMUMPs.

V response for each device, where the dimensional uncertainties change both initial capacitance,

C0, and pull-in voltage, Vpull−in. To illustrate this fact, a parallel-plate tunable capacitor

designed for PolyMUMPs is considered. The fixed and moving plates are made by Poly0 and

Poly2 layers, respectively, and the initial air gap is d0 = 2.75 μm. The plates’ dimensions are,

A = 350 × 350 μm2 and the thickness, width and length of beams are t = 1.5 μm, w = 8 μm

and L = 150 μm, respectively. Figure 6-2 shows the capacitor’s nominal C-V response and its

upper and lower bounds, where all parameters take their maximum or minimum values from

Table 6.1.

As shown in this figure, the deviations are very large. For example, the nominal pull-

in voltage is 5.3 V, while its upper and lower bounds are 3.94 V and 7.19 V, respectively,

exhibiting −26% to 35% error. Maximum initial capacitance, C0, is 30% higher than the

minimum value which means one should expect at least 30% variations in product’s output.

Chen et al. [11] reported a similar discrepancy for C-V response of a two-gap capacitor. The

measured tunability varies from 44.7% to 69.8% displaying 36% variation in the maximum
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tunability, where the C-V responses were measured for five identical capacitors fabricated on

the same chip. These examples explain why the analysis of fabrication uncertainties at the

design stage is very important. In the analysis, two main issues should be addressed: For

a multi-parameter device like a tunable capacitor, which design variables create the highest

deviations in the device output, and how the design parameters can be optimized to obtain the

highest possible yield.

6.4 Sensitivity Analysis for Parallel-Plate Capacitors

The analysis of uncertainty may involve different level of complexity. It is possible to include

all design parameters such as plates’ and beams’ dimensions, air gap and even elastic modulus

and residual stresses, but this will complicate the analysis and interpretation of the results.

To simplify the problem and reduce the number of variables without sacrificing the accuracy,

a sensitivity analysis is performed. Using the relative sensitivity, the parameters with major

impact on the C-V response are found.

The relative sensitivity of a performance characteristic function y to the change of an element

x is defined as [70]:

Syx =
∂y

∂x

x

y
(6.4)

For a tunable capacitor the performance function y in (6.4) is the capacitance, C, where

the element x can be stiffness coefficient, initial capacitance or any dimension. For a multi-

parameter function, Y , the change in Y due to small deviations in all variables is obtained

from:

dY =
nX
i=1

∂Y

∂xi
dxi (6.5)

Using (6.4), the multi-parameter sensitivity measure is then defined as:

dY

Y
=

nX
i=1

SYxi
dxi
xi
≈

nX
i=1

SYxiδi (6.6)

Here, δi is the relative tolerance, δi = ∆xi/xi, and xi and ∆xi are the nominal design values

and corresponding tolerances, respectively. Equation (6.6) explains that the deviation of a

multi-parameter function from its nominal value depends on the fabrication tolerance of each
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design variable and the relative sensitivity of the performance function to the change of that

variable.

For simplicity of the analysis, the parameters are divided into two groups: the parameters

which affect the stiffness coefficient of beams, k, and those which change the initial capacitance,

C0. This separation has a physical meaning because initial capacitance defines the starting point

of the C-V curve and k determines the pull-in voltage. Using (6.6) this can be expressed as:

¯̄̄̄
∆C

C

¯̄̄̄
≈
¯̄̄̄
SCC0
∆C0
C0

¯̄̄̄
+

¯̄̄̄
SCkeq

∆keq
keq

¯̄̄̄
(6.7)

where SCC0 and S
C
keq
depend on the capacitor’s governing equations and do not change by fabri-

cation tolerances. The initial capacitance is a function of initial air gap and plates’ dimensions

and k is a function of Young modulus and beams’ dimensions:

keq = 4×
12EI

L3S
= 4

Ewt3

L3S
(6.8)

where w, t, LS andE are width, thickness, length and elastic modulus of the beams, respectively,

and keq is the equivalent stiffness coefficient of four supporting beams. The change of initial

capacitance in terms of normalized tolerances of initial gap, d0, and surface area, A, is written

as: ¯̄̄̄
∆C0
C0

¯̄̄̄
≈
¯̄̄
SC0d0 δd0

¯̄̄
+
¯̄̄
SC0A δA

¯̄̄
(6.9)

where δd0 and δA are normalized tolerances of the initial gap and surface area, respectively.

The plates’ feature tolerances (length and width of plates) depend on photolithography and

etching and for PolyMUMPs it is estimated to be less than ±0.50 μm. Using Table 6.1, for

initial capacitance: d0 = 2.75 μm, A = 350 × 350 μm2, and the normalized tolerances are

δd0 = 0.12 and δA = 0.003 and relative sensitivities, S
C0
d0
and SC0A , are -1 and 1, respectively:

SC0d0 =
∂C0
∂d0

d0
C0

= −²0A
d20

d0
²0A
d0

= −1 (6.10)

SC0A =
∂C0
∂A

A

C0
=
²0
d0

A
²0A
d0

= 1 (6.11)

From (6.9), the total relative deviation of initial capacitance is obtained as
¯̄̄
∆C0
C0

¯̄̄
= 12.3%,
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Figure 6-3: C-V curves for different sets of uncertain variables; Solid line: All tolerances;
Dashed line: Two main tolerances obtained by sensitivity analysis; Dash-dotted line: Nominal
design values.

12% of which is generated by the thickness of sacrificial layers, d0. Similarly, the deviation of

stiffness coefficient in terms of fabrication uncertainties is obtained from:

¯̄̄̄
∆keq
keq

¯̄̄̄
≈
¯̄̄
S
keq
t δt

¯̄̄
+
¯̄̄
S
keq
w δw

¯̄̄
+
¯̄̄
S
keq
LS

δLS

¯̄̄
(6.12)

For supporting beams: t = 1.5 μm, w = 8 μm and LS = 150 μm, the normalized toler-

ances δt, δw and δLS are 0.07, 0.038 and 0.003, and the relative sensitivities are obtained from

equations similar to (6.10) and (6.11) as 3, 1 and −3, respectively. The approximated relative

deviation obtained from (6.12) is
¯̄̄
∆keq
keq

¯̄̄
= 25.36%, 21% of which is generated by Poly2 thickness

variations. This means that the variables with the most impact on C-V deviations are expected

to be the thicknesses of Poly2 and sacrificial layers (Oxide1 plus Oxide2). Figure 6-3 presents

C-V curves with different level of uncertainty. As shown in the figure, the error of considering

the tolerances of d0 and t and neglecting the other tolerances is quite negligible which verifies

the result of sensitivity analysis. It should be mentioned that if the design parameters change,

the normalized tolerance will change which affect the results of sensitivity analysis. For exam-
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ple, if the width of beam decreases to w = 3 μm, then the corresponding normalize tolerance

δw increases to 0.167 and has higher impact on deviation of capacitance from its nominal value.

6.5 Yield Optimization

The quality of a manufacturing process is interpreted by different parameters such as production

yield. A Higher yield indicates more acceptable products and less losses. Increasing the yield can

decrease the production costs, rendering a product more competitive in the market. Therefore,

yield optimization is a decisive step in the development of a new device. In this section, a

method for yield optimization is introduced which involves three steps: approximation of the

constraint region (defined by the performance functions and bounds on the design parameters),

approximation of joint cumulative distribution functions of the random design variables to

calculate the yield and the yield maximization that combines the above two steps [71, 72].

6.5.1 Polyhedral Approximation of the Constraint Region

Let <n be the space of design variables x. The feasible region, F , containing the acceptable

output is defined over <n as:

F = {x ∈ <n | hi(x) > 0, i = 1, 2, ...,m} (6.13)

Here, the real-valued functions hi(x) : <n −→ < are measures of the system performance and

act as the mathematical constraints for F and index i represents the ith constraint. The vector

x represents a sample of the random variable X with arbitrary joint probability distribution

function in the space of design variables. Because the analytic form of hi(x)may not be available

(for example, the capacitance is an implicit function of design variables), the method constructs

a polyhedral approximation of the feasible region by taking first-order approximation of each

hi(x) at the expansion point x∗:

hi(x) ≈ hi(x∗) + gi(x∗)T (x− x∗) (6.14)
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where gi(x∗) is the gradient vector of h (if the explicit gradient function cannot be derived then,

the gradient vector, gi(x∗), should be calculated numerically). The point x∗ is on the surface

hi(x) = 0 and has the minimal distance from the center of the initial tolerance box, xc. The

shortest distance to the constraint is found by solving the minimization problem:

min β = [(x− xc)T (x− xc)] 12 (6.15)

subject to : hi(x) = 0

An iterative formula, developed by Madsen et al. [73], is employed to solve this optimization

problem, where the Lagrangian of β in (6.15) with a fixed-point method, is given by:

xk+1 = xc − g
k
i [(g

k
i )
T (xc − xk) + hki ]
(gki )

T gki
(6.16)

The superscripts k and k+1 refer to the index of iteration. This formula attempts to solve

hi(x) = 0 indirectly. Convergence of (6.16) depends on continuity and convexity of hi(x) and

the solution may not be unique. For each constraint, the method finds a linear approximation in

the form of (6.14). Such approximations, together with upper and lower bounds on the design

variables form a polyhedral feasible region. The polytope P , an approximation for F , is defined

by:

P = {x | Ax > C, xminj 6 xj 6 xmaxj } (6.17)

The ith row of A is gTi , where all the partial derivatives are evaluated at x
∗, found by

(6.16), and Ci = (g∗i )
Tx∗i . The lower and upper bounds of xj are denoted by x

min
j and xmaxj ,

respectively, where index j represents the jth design variable.

6.5.2 Modeling Arbitrary Distributions

If the random variables are independent and have uniform distributions, then the yield opti-

mization problem reduces to the worst-case design and is solved by searching for the maximum

volume box contained in the feasible region. On the other hand, there are cases in which the

probability density function (PDF) is not symmetric. For example, the distribution of width

deviation from nominal values for 75 stripes (supporting beams and transmission lines) with 3,
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5, 10 and 20 μm width is shown in Figure 6-4. The stripes were fabricated by PolyMUMPs on

a 5 × 5 mm2 chip and etched for five minutes. As explained before, the feature tolerance for

PolyMUMPs is less than ±0.50 μm. If the effect of etching is added, then the actual dimen-

sions will be smaller after etching and whole distribution will be shifted to the left-hand-side of

nominal value and the results are considered as non-symmetrical distributions.

If a PDF is non-symmetrical, the maximum volume box does not necessarily correspond

to maximum yield and thus the yield should be maximized directly by the following step. For

each component the Kumaraswamy’s distribution [74], a double-bounded probability density

function (DB-PDF) appropriate for physically bounded variables, with the following form is

defined :

f(z) = abza−1(1− za)b−1 (6.18)

where z is a normalized variable defined as:

z =
x− xmin
xmax − xmin , xmin ≤ x ≤ xmax (6.19)

Depending on the choice of parameters a and b, DB-PDF takes various shapes. It can

be used to approximate uniform, triangular, tail and many other single modal distributions.

Another advantage of DB-PDF is that its integral, needed for yield evaluation, is available in

closed form:

F (z) = 1− (1− za)b (6.20)

The DB-PDFs for some of the commonly used distribution functions (produced by different

values of a and b) are presented in Figure 6-5.

6.5.3 Yield Maximization

Given a convex and bounded polytope P defined by (6.17), the yield maximization is performed

in the space of design variables. This means that no extra evaluations of performance functions

are needed once P is constructed. Because the original constrained region, F , could be non-

convex, several iterations may be required, each with a different starting point and different

polyhedral approximation.
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Figure 6-4: The distribution of width deviation for stripes with different width and a numerical
interpolation; (a) SEM image of the chip; (b) Probability distribution function (PDF).
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Figure 6-5: Double-bounded probability density functions for different values of a and b.

As previously mentioned, uniform distributions lead to the worst-case design which can be

handled by searching for the maximum volume of the rectangular n-dimensional cube (box)

contained in the feasible region. For a non-symmetrical PDF, this maximum volume does not

correspond to maximum yield and the yield function must be maximized directly. The problem

then reduces to the search for a box, contained in the polytope P , over which the yield is

maximized and is defined by:

R(xl, xu) = {x ∈ <n | xl 6 x 6 xu} (6.21)

R(xl, xu) is the box, and xl and xu are lower and upper bounds of the box, respectively. The

containment requirement, R ⊆ P , is equivalent to:

A+xu −A−xl 6 C (6.22)

Recall that Ai is the transpose of the gradient vector, gi, obtained from the linearization of

the performance constraint, hi, and a given x. A+ and A− are the upper and lower bounds of
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Figure 6-6: The optimzation parameters in the space of design variables; the large rectangle
represents the tolerance box, and small rectangle represents the optimzed box correcponding
to Yield = 1.0.

the performance constraint, and C refers to the constant term in the linearization. A reference

point, xr, xr > xmin, defines the location of the larger tolerance box shown in Figure 6-6. The

left bottom corner is xr, the top right corner is xr+∆ and the range ∆ is given for the jth width

by ∆j = xmaxj − xminj . The variables xl and xu define the bottom left corner and the top right

corner of the smaller box, respectively, and specify the location and size of the optimal box

that corresponds to the maximum yield. The optimization variables are xr, xl, and xu, and the

yield function is given by:

Yield(xr, xl, xu) =
nY
j=1

Pr{xlj 6 xj 6 xuj }

=
nY
j=1

"
F

µ
xuj − xrj
∆j

¶
− F

Ã
xlj − xrj
∆j

!#
(6.23)

The yield model (6.23), estimates the yield for the given values of xr, xl, and xu. The

estimated yield may have errors, depending on the shape of the feasible region, but the design

is usually quite good, as discussed later in numerical examples. The objective of the yield
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optimization problem is to move the tolerance box such that the yield is maximized:

max Yield(xr, xl, xu) (6.24)

subject to :

A+xu −A−xl 6 C

xr > xmin

xl > xr

xu − xl 6 ∆

xr +∆ 6 xmax

The problem can be extended in many ways. For example, the ratios of the tolerances of

some of the components can be fixed, or (6.24) can be used in an inner optimization, while the

outer optimization can include cost functions considering the tolerance, ∆, as the optimization

variable.

6.5.4 Numerical Simulations and Results

To illustrate the capability of the proposed method, a parallel-plate tunable capacitor with two

different sets of design variables is studied. For the first case, it is assumed that the initial gap is

accurate enough and the fabrication uncertainties only deviate the stiffness of the beams. If the

tolerances of deposition, mask alignment, photolithography and etching are taken into account,

then the beams may have different dimensions, i.e., the summation of the stiffness coefficient of

beams at two sides of the device are different leading to a non-parallel-plate configuration. The

capacitance is then obtained from (6.1). Figure 6-7 displays the C-V curves of a capacitor with

dimensions: A = 350×350 μm2 and d0 = 2.75 μm (solid line). The nominal stiffness coefficients

at two sides, k1 and k2, are the same, k1 = k2 = 1.6 N/m (corresponding to LS = 150 μm,

w = 10 μm and t = 1.5 μm).

The upper and lower limits of the capacitance at voltage V = 3.5 V, Cup and Clow, re-

spectively, are considered as design criteria for performance functions, Cup = 0.49 pF and

Clow = 0.44 pF. An upper bound for design variables k1 and k2 ,kmax = 3.0 N/m, is considered
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Figure 6-7: The C-V response for a capacitor with different stiffness coefficients. Dotted line,
dash-dotted line and solid line represent upper bound, lower bound and nominal curve, respec-
tively.

to enclose the feasible region. The tolerance box for stiffness coefficients is: ∆ = [1.1, 1.1]

N/m, corresponding to ±35% deviation from nominal values. The performance functions of the

problem are:

²0A

d2 − d1
ln(
d2
d1
) 6 Cup (6.25)

²0A

d2 − d1
ln(
d2
d1
) > Clow

k1 6 kmax

k2 6 kmax

where d1 and d2 are the distance between two electrodes corresponding to k1 and k2, respectively,

and the first two expressions in (6.25) are implicit functions of k1 and k2. The feasible area

in the space of design variables and its linear approximation are shown in Figure 6-8. The

dotted curves are the performance functions, hi(x) = 0. The dashed-dotted lines represent

linear approximation and depend on the center point xc in (6.15). Dashed lines represent extra

lower bounds to reduce the error of linearization. The dark grey area, enclosed by solid lines,
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Figure 6-8: The feasible area corresponding to the performance functions, hi > 0 (light grey
area) and its linear approximation (dark grey area).

represents the approximated feasible region.

The results of yield optimization for different tolerance boxes and double-bounded proba-

bility density functions, DB-PDFs, are presented in Table 6.2 and Figure 6-9. The method also

finds the tolerance box which corresponds to the yield equal to 1.0 (small rectangle in Figure

6-9-a and 6-9-b). That means if the process can be modified in such a way that it provides the

optimum tolerances, then the final products will be 100% within the designed range. As shown

in Table 6.2, the result of optimizations displays significant increase in yield for nonsymmetrical

distributions from 31% to over 90%. The improvement for symmetrical (normal) distribution is

also satisfactory. One can also see that the error between approximated yield and the reference

Monte-Carlo (M-C) simulations is negligible.

As the second example, the tolerances of all dimensions are taken into account and the

results of sensitivity analysis are used to find the most effective design variables. Using these

results, the initial air gap, d0, and beams’ thickness, t, the main sources of inaccuracy in

capacitance, are the new design variables in the yield optimization problem. Consequently, the
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Figure 6-9: The result of yield optimization: (a) Skewed joint distribution functions (a = [2, 1.5],
b = [2.5, 3.5]); (b) Normal joint distribution functions (a = [1, 1], b = [1, 1]); large and small
rectangles represent existing and optimized tolerance boxes.
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Table 6.2: Yield optimization for different DB-PDF and tolerance boxes
Parameters Tol. Box Yield Remarks
a b ( δ ) Initial M-C Final M-C Estimated (distribution)

[2,1.5] [2.5,3.5] [1.1,1.1] 0.31 0.92 0.93 Skewed
[1,1] [1,1] [1.1,1.1] 0.54 0.74 0.75 Uniform
[1,1] [1,1] [0.8,0.8] 0.59 0.89 0.89 Uniform

a and b are the parameters used in (6.18).

performance functions, hi(x), should be re-defined in terms of the new variables:

²0A

d
6 Cup (6.26)

²0A

d
> Clow

t 6 tmax

d0 6 d0max

where d is an implicit function of d0 and t. For the capacitor introduced in Figure 6-2, the

upper and lower limit of the capacitance at V = 3.5 V are the new design criteria for perfor-

mance functions: Cup = 0.53 pF and Clow = 0.37 pF. The nominal capacitance at the same

voltage is: Cnom = 0.43 pF. The results of yield optimization are presented in Table 6.3 and

Figure 6-10. The numerical results of this problem display superior improvements in the yield,

where for skewed joint distribution function the initial and optimized yield are 34% and 100%,

respectively, and the error between estimated yield and Monte-Carlo simulation is only 1%.

It is worth to mention that the CPU time for yield calculated from (6.23) is much lower

than M-C simulations due to the fact that M-C requires large number of random samples to

provide high accuracy. This will increase the M-C computation time specifically for design

optimizations where several iterations and a large number of function evaluation are needed to

find the optimum design variables. For example, the elapsed time for M-C simulations with

100 random simulations and that proposed method (6.23) are 12.53 sec and 9.1 × 10−5 sec,

respectively. In general, Monte-Carlo is an accurate simulation method to evaluate the results

of random design parameters and includes more comprehensive details in modeling, but it is

extremely time consuming for design optimization.

Comparing the results of two different problems (the device is the same, but the design
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Figure 6-10: Yield optimization for: (a) skewed, (b) normal, and (c) uniform joint distribution
functions.
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Table 6.3: The results of yield optimization for design variable obtained from sensitivity analysis
Parameters Tol. Box Yield Remarks
a b ( δ ) Initial M-C Final M-C Estimated (distribution)

[2,1.5] [2.5,3.5] [0.4,0.7] 0.34 0.99 1.00 Skewed
[1.6,1.6] [1.8,1.8] [0.4,0.7] 0.58 1.00 1.00 Normal
[1,1] [1,1] [0.4,0.7] 0.55 0.88 0.89 Uniform

a and b are the parameters used in (6.18).

parameters and performance functions are different) verifies that the proposed method can

be advantageously used to improve the yield in the design stage without changing the design

structure of increasing the process accuracy.

6.6 Summary

In this chapter, the uncertainties in MEMS fabrication processes and their effects on the per-

formance of fabricated devices were addressed. It was also shown that process uncertainties

can severely alter the output of a tunable capacitor from the designed values. A sensitiv-

ity analysis was then performed to find the design parameters with the most impact on the

capacitor performance. After analyzing the fabrication uncertainties, a method for yield op-

timization of MEMS tunable capacitors was introduced. The optimization results in a set of

optimum design variables and tolerance box, where the optimum tolerance ranges may be used

for process modification to obtain 100% yield. As shown by numerical examples, the proposed

method can drastically improve the yield in design stage without extra technological challenges

for both symmetrical and nonsymmetrical distributions. This method is not limited to tunable

capacitors and can be extended to other MEMS devices.
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Chapter 7

Concluding Remarks

7.1 Thesis Contributions

In this thesis, analytical approximate models and novel parallel-plate-based MEMS tunable

capacitors were developed. Also the fabrication challenges were addressed. The contributions

of this research are categorized into the following topics:

1. Development of analytical models for electrostatically actuated parallel-plate-

based devices: The analytical models developed in Chapters 3, 4 and 5 solve the coupled

structural-electrostatic governing equations of a capacitive device with electrostatic actuation.

The models include the flexibility of the electrodes and structural and geometric nonlineari-

ties such as large deformations and mechanical contact. A comparison between the results of

the proposed models and FEM analyses reveal that the error associated with approximations

included in the analytical formulations are quite negligible for small deformations, where the

computation time is over a thousand times less than that of FEM simulations. The models

can be used in preliminary design stage to study the behavior of parallel-plate-based capaci-

tors, sensors or actuators. They can also be used for optimization purposes since the response

calculation for a device with a set of design variables takes only few seconds.

2. Development of linearly tunable capacitors: Different techniques were introduced

for the design of parallel-plate-based MEMS tunable capacitors with linear capacitance-voltage
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responses. The proposed designs were modeled, simulated, fabricated and tested. Using the

geometric nonlinearity discussed in Chapter 3, a parallel-plate capacitor with maximum tun-

ability up to 147% and highly linear regions with 30-50% tunabilities was introduced. The

linearity factor, LF , for these designs varies from 0.975 to 0.9997. Geometric modifications

and design optimizations proposed in Chapter 4 resulted in extremely linear three-plate capac-

itors with over 350% tunability, more than 250% of which is linear with LF = −0.9997. A

triangular-plate capacitor equipped with middle beams was also designed and simulated which

provided over 100% linear tunability with LF = 0.9944.

In Chapter 5, the flexibility of the moving electrodes was employed to design different

capacitors with novel shapes and high tunability and linearity. The maximum tunability for

these devices varied from 50% for segmented-plate capacitors to over 200% for fishbone-shape

capacitors, where their linearity factor reached 0.999. Flexible-plate capacitors with rigid steps,

and modified electrode shapes such as zigzag-shape were also introduced. The electrodes can

be made of metal layers and a dielectric layer on top of the fixed plate prevents short circuit

after pull-in or when the two electrodes touch one another. Therefore, the design technique

developed in this thesis is a powerful tool to develop capacitors with high Q-factor for RF

purposes. The technique can be used to systematically design capacitors with a smooth C-V

response and without pull-in.

The optimizations and modifications applied to different designs such as trapezoidal shape

for two-gap capacitors, butterfly shape for two segmented-plate and zigzag shape for flexible-

plate designs are also implemented for the first time in this thesis. The results are quite

satisfactory and standard fabrication processes can be used for their fabrication. Using the

analytical models developed in this thesis and the optimization approaches discussed, one can

design tunable capacitors based on pre-defined characteristics. The analytical models along

with modification techniques and design optimization generate an efficient and powerful design

package for MEMS capacitive elements and electrostatically actuated sensors and actuators.

Table 7.1 displays the summary of performances of eleven novel capacitors presented in this

thesis.
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Table 7.1: The summary of performances of new designs introduced in Capters 3 , 4 and 5
Capacitor Description Max. tunability Linear Tunability Linearity factor, |LF |
Nonlinear-spring 120%− 147% 30%− 50% 0.986− 0.9997
Modified two-gap 344% − −

Optimized three-plate 346% 52%− 262% 0.999− 0.99997
Triangular-plate 152% 78%− 104% 0.9932− 0.9944

Six-segmented-plate 58% 58% 0.994
Two-segmented-plate 108% 57% 0.990
Butterfly-shape 89%− 97% 68%− 70% 0.994− 0.998
Teeth-equipped 55%− 68% 55%− 68% 0.9904− 0.9967
Flexible-plate 60%− 130% 36%− 130% 0.992− 0.999
Zigzag-shape 125% 125% 0.997
Fishbone-shape 200% 145%− 150% 0.992− 0.998

3. Analysis of fabrication uncertainties and yield optimization: The effects of fabri-

cation inaccuracies on the outcome of parallel-plate capacitors were addressed and a sensitivity

analysis was performed to finds the most dominant parameters. The existing yield optimization

method developed by Ponnambalam et al. was re-formulated for parallel-plate capacitors and

the production yield was maximized in the design stage, without changing the topology of the

device. Since the method can be implemented to cases with implicit performance functions,

it can be utilized for different designs such as triangular-plate or segmented-plate capacitors,

presented in this thesis, or be extended to other MEMS devices.

7.2 Thesis publications

The novel Linear designs and yield optimization method presented in this thesis resulted in 16

publications including 5 refereed journal papers, 8 refereed conference papers and 3 conference

papers accepted for draft submission. The list of papers are as follow:

7.2.1 Journal Papers

1. Shavezipur, M., Khajepour, A., and Hashemi, S. M., “The application of structural

nonlinearity in development of linearly tunable MEMS capacitors”, J. of Micromech. and

Microeng., 18 (3), 2008, (In press).

2. Shavezipur, M., Khajepour, A., and Hashemi, S. M., 2007, “Development of Novel
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Segmented-Plate Linearly Tunable MEMS Capacitors”, J. of Micromech. and Microeng.,

18 (3), 2008, (In press).

3. Shavezipur, M., Khajepour, A., and Hashemi, S. M., 2008, “A Novel Linearly Tun-

able Butterfly-Shape MEMS Capacitor”, Microelectronics J., (In press).Type the first

equation.

4. Shavezipur, M., Ponnambalam, K., Khajepour, A., and Hashemi, S. M., 2007, “Fabri-

cation Uncertainties and yield optimization in MEMS Tunable Capacitors” Sensors and

Actuators A: Physical, June 2007, (Accepted).

5. Shavezipur, M., Ponnambalam, K., Hashemi, S. M., and Khajepour, A., 2008, “A

Probabilistic Design Optimization for MEMS Tunable Capacitors” Microelectronics J.

(Accepted).

7.2.2 Conference Papers

1. Shavezipur, M., Khajepour, A., and Hashemi, S. M., 2007, “Design and Optimization of

a New Highly Linear Tunable MEMS Capacitor”, Proc. of IMECE-2007, IMECE-42556,

pp. 1-7.

2. Shavezipur, M., Khajepour, A., and Hashemi, S. M., 2007, “A low sensitive, highly

tunable butterfly-type MEMS capacitor”, Proc. of IMECE-2007, IMECE-42556, pp. 1-6.

3. Shavezipur, M., Hashemi, S. M. and Khajepour, A., 2007, “Novel highly tunable

MEMS capacitors with flexible structure and linear C-V response”, Proc. of IDETC-

2007, DETC2007-35908, pp. 1-6.

4. Shavezipur, M., Khajepour, A., and Hashemi, S. M., 2007, “Design Optimization of

a Novel Two-Segmented-Plate MEMS Tunable Capacitor for Linear Capacitance-Voltage

Response”, Proc. of 21st Canadian Congress of Applied Mechanics, Toronto, ON, June

3-7, 2007, pp. 1-2.

5. Shavezipur, M., Ponnambalam, K., Khajepour, A., and Hashemi, S. M., 2006, “Sensi-

tivity Analysis in Yield Optimization of MEMS Tunable Capacitors”, Proc. of IMECE-

2006, IMECE-14752, pp. 1-8.
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6. Shavezipur, M., Khajepour, A., and Hashemi, S. M., 2006, “Design and Modeling of

Novel Linearly Tunable Capacitors”, Proc. of IMECE-2006, IMECE-14765, pp. 1-8.

7. Shavezipur, M., Hashemi, S. M. and Khajepour, A., “Novel Linearly Tunable MEMS

Capacitors with Flexible Moving Electrodes”, ASME International Design Engineering

Technical Conferences, DETC2008-49272. (Accepted)

8. Shavezipur, M., Hashemi, S. M. and Khajepour, A., “A Novel Linear MEMS Capaci-

tor with Triangular Electrodes and Nonlinear Structural Stiffness”, ASME International

Design Engineering Technical Conferences, DETC2008-49270. (Accepted)

9. Shavezipur, M., Khajepour, A., Hashemi, S. M., and Nieva, P., 2008, “A Linearly Tun-

able MEMS Capacitor with Segmented Electrode and Enhanced Structural Stiffness”,

ASME International Mechanical Engineering Congress and Exposition, IMECE2008-68081

(Abstract accepted).

10. Shavezipur, M., Khajepour, A., Hashemi, S. M., and Nieva, P., 2008, “Development of a

Linearly Tunable Modified Butterfly-Shape MEMS Capacitor”, ASME International Me-

chanical Engineering Congress and Exposition, IMECE2008-68090 (Abstract accepted).

11. Shavezipur, M., Hashemi, S. M., Khajepour, A., and Nieva, P., 2008, “A Novel Fishbone-

Shape MEMS Tunable Capacitor with Linear Capacitance-Voltage Response”, ASME

International Mechanical Engineering Congress and Exposition, IMECE2008-68092 (Ab-

stract accepted).

7.3 Future Work

Some of the extensions of the presented research work are presented as follow:

• Extending the analytical model to flexible structures with initial curvature as a general

case for electrostatically actuator devices with flexible structures.

• Combination of different design techniques to achieve high linearity and tunability, such

as using rigid and flexible steps and teeth under the electrode at the same time.
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• Development of linear capacitors using a dielectric layer with variable thickness and mod-

ified electrode shape for higher tunability and linearity.

• Development of an RF compatible process for fabrication of capacitors proposed in this

thesis, using a metal-base fabrication process.

• Linearization of capacitive sensors and electrostatically actuated actuators using the same

design techniques used in this thesis.

• Analysis of the effects of fabrication uncertainties on performance of sensors and actuators

and maximizing yield.
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