
An Interface-based Modular

Approach for Designing

Distributed Event-based Systems

by

Jun Wang

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2008

c© Jun Wang 2008

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

A Distributed Event-based System (DEBS) exhibits its desired behavior through its

functional components collaborating with each other via event exchanging. Due to

loose-coupling and flexibility, DEBS applications have become increasingly popular.

Indeed, such systems are expected to appear in various application domains such

as large-scale Internet applications and ubiquitous computing.

Notwithstanding their popularity, current DEBS applications are still often de-

veloped in an informal process and are not modularized. On the individual event

level, current DEBS developers can define what events a component can accept

and publish, and, by registering event handlers, what action an event can trigger.

Currently, developers lack structuring mechanisms for representing event interac-

tions and dependencies in a modular way. While current research has made fruitful

contributions to various aspects in the DEBS paradigm, such as, event delivery,

event detection and composition, event visibility, its emphasis is on the individual

event level.

In this thesis, we advocate that by designing a new DEBS metamodel with ex-

tended behavioral interfaces and high-level structure mechanisms, we can (1) define

an interface-based modular approach to model and design DEBS applications, (2)

implement a prototype framework on a P2P network that provides built-in support

to our proposed interface-based DEBS development, and (3) provide case studies

illustrating the interface-based development process and the applicability of our

proposed approach.

iii

Acknowledgements

I would like to thank my supervisor, Prof. Paulo Alencar, who has provided me

with invaluable support in producing this work. I would also like to thank Prof.

Donald Cowan and Prof. Daniel Berry for reading my thesis and for providing

helpful comments.

I would like to thank Rolando Maldonado Blanco for his advice and help.

iv

Dedication

To my parents and my wife.

v

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Current Problems . 2

1.3 Proposed Approach . 4

1.4 Contributions . 5

1.5 Thesis Outline . 6

2 Background and Related Work 7

2.1 Software Component Models . 7

2.1.1 Structure Models . 7

2.1.2 Behavior Models . 8

2.2 Event Models . 9

2.3 Software System Meta-modeling . 10

2.4 Peer-to-Peer Systems . 10

2.5 Event-based System Engineering . 11

3 A Metamodel for DEBS 12

3.1 Metamodel Overview . 12

3.2 Generic Event Model . 15

3.2.1 Examples . 17

3.3 Behavior-enhanced Interface Model 20

3.4 Interface Composition Mechanisms 22

vi

3.4.1 Extend . 23

3.4.2 Encapsulate . 24

3.5 Notation . 26

4 Framework Implementation 31

4.1 Framework Overview . 31

4.2 Framework Core Service . 32

4.2.1 Interface Addressing and Event Delivery Semantics 33

4.2.2 Event Schemas and Events 40

4.2.3 Component Interface Definition 44

4.2.4 Component Interface Behavior Definition 46

4.2.5 Interface Implementation Definition 47

4.2.6 Interface Implementation Instance 49

4.3 Framework Built-in Component Interfaces 50

4.3.1 ComponentGenericInterface 50

4.3.2 ReactiveComponentInterface 53

4.3.3 SchemaServiceInterface . 53

4.3.4 InterfaceServiceInterface . 55

5 Case Studies 59

5.1 Proposed Development Process . 59

5.2 Temperature Sensor System . 60

5.2.1 Event Schemas . 60

5.2.2 Component Interfaces . 60

5.2.3 Component Interface Implementation 62

5.2.4 Component Interface Deployment 63

5.3 e-Promotion System . 63

5.3.1 System Design Overview . 65

5.3.2 Event Schemas . 67

vii

5.3.3 PromotionBroadcaster . 68

5.3.4 PromotionReceiver . 70

5.3.5 PersonalGPS . 72

5.4 Experience Summary . 74

6 Conclusions and Future Work 75

6.1 Conclusions . 75

6.2 Future Work . 76

A Framework Event Schemas for Built-in Interfaces 82

A.1 ComponentGenericInterface . 82

A.2 ReactiveComponentInterface . 82

A.3 SchemaServiceInterface . 83

A.4 InterfaceServiceInterface . 85

B Temperature Sensor System 88

B.1 Event Schemas . 88

B.2 Interfaces . 89

C e-Promotion System 94

C.1 Event Schemas . 94

C.2 Interfaces . 96

viii

List of Tables

4.1 Combinations of Supported Event Deliveries 39

ix

List of Figures

1.1 Approach Overview . 4

3.1 DEBS Event Schema Diagram . 13

3.2 DEBS Component Interface Diagram 14

3.3 DEBS Runtime Diagram . 14

3.4 SensorData Event Schema Example 18

3.5 SensorData Event Example . 19

3.6 A Typical Example of Non-conservative Behavior Extension 24

3.7 Notation – Event Schema and Event 26

3.8 Notation – Reactive Component Interface 27

3.9 Notation – Interface Extension . 28

3.10 Notation – Interface Encapsulation 29

3.11 Notation – Interface Implementation Instance 30

3.12 Notation – Interface Implementation Instance Diagram 30

4.1 High Level Overview of Framework Architecture 32

4.2 Framework Core . 33

4.3 Meta Event Schemas . 37

4.4 Framework: Schema and Event Model 40

4.5 Framework Built-in Interfaces and Event Schemas 51

4.6 Component Generic Interface and Reactive Component Interface . . 52

4.7 Built-in Interface: Event Schema Service 54

4.8 Built-in Interface: Interface Service 57

x

5.1 Sensor System Event Schemas . 61

5.2 Sensor System Component Interfaces 61

5.3 Sensor System Interface SCXML Implementation Diagram 64

5.4 Sensor System Interface Instance Diagram 64

5.5 e-Promotion System Overview . 65

5.6 e-Promotion System Interfaces Overview 66

5.7 e-Promotion System Instance Diagram 66

5.8 e-Promotion System Event Schemas Diagram 67

5.9 e-Promotion System: PromotionBroadcaster Interface 69

5.10 e-Promotion System: PromotionReceiver Interface 71

5.11 e-Promotion System: PersonalGPS Interface 73

xi

Chapter 1

Introduction

1.1 Motivation

In component-based software engineering (CBSE), an application system is decom-

posed into functional or logical components with well-defined interfaces used for

communication across the components. These components usually take the form of

a collection of objects, and provide a higher level of design abstractions than objects

[37, 24, 12, 13, 1]. The components can be bound together to provide services to

form a higher-level component.

A component can be treated as a black box and abstracted using component

interfaces. The Interface Definition Language (IDL) is a specification language used

to describe a software component’s interface in a language-neutral way, enabling

communication between software components without a shared language. Current

IDL is often used to describe Remote Procedure Call (RPC). For example, an

interface definition written in OMG IDL defines the interface and fully specifies

each operation’s parameters [11].

Together with their externally visible properties and composition relations, com-

ponents constitute the software architecture which can be formally captured in Ar-

chitecture Description Language (ADL) [20]. Based on software modules and com-

munication designs, systems can be classified into different architecture styles such

as client-server, peer-to-peer, event-based implicit-invocation [20]. Event-based

implicit-invocation is one of the architecture styles that exhibits high cohesion and

loose coupling [10].

A Distributed Event-based System (DEBS) is an event-based implicit-invocation

system comprised of distributed functional components interacting with each other

1

via events. An event represents a happenings of interest in the system or the

executing environment.

In DEBS, a functional component can act as a publisher, subscriber, or both.

Events are published by publisher components and are dispatched by an event

delivery mechanism to these subscriber components that are interested in the oc-

currence of these events. Upon receiving an event, subscriber components react to

the arrival event by invoking certain actions. These subscriber components can, in

turn, act as publishers to publish other events to the system.

By interacting via events, publishers do not directly know subscribers, but sub-

scribers’ functionality is implicitly invoked by publishers via events. Due to its low

coupling between functional components, DEBS is suitable for the development of

applications in systems with a large number of functional components. Such sys-

tems are expected in ubiquitous computing environments [40], and large-scale web

applications [26].

The implicit invocation of functionality via events, as well as the autonomy,

heterogeneity, and potentially large number of components, make the development

and maintenance of applications in DEBS difficult. In particular, because a DEBS

exhibits its desired system behavior through the individual behavior of its functional

components, it is crucial to have such component behavior modeled precisely at

design time and regulated at runtime.

1.2 Current Problems

Despite increasing popularity, current DEBS development is not modular and is still

an informal process poorly supported by current software engineering methodologies

[7, 28].

Many current systems (including frameworks, middleware, etc.) are able to

produce and consume events; however, events in such systems are not treated as

first-class citizens, and are implemented in a diverse way in terms of structure

and representation. In CORBA, events can be defined as part of IDL as any

data structure, but, before events can be used, these IDLs must be compiled to

generate helper classes as part of the method invocation [12, 19]. EJB relies on

Java Message Service (JMS) to provide event support. Events in EJB are modeled

as JMS messages and can be asynchronously handled by Message Driven Bean

(MDB) using either a JMS Queue or a Topic. EJB events are represented using

2

one of JMS’ predefined message types [24, 22]. Other systems, such as Hermes [29],

allow an event type to be defined as an XML Schema, but they require a one-to-one

(or one-to-many) mapping between an event type and an entity (or many entities)

in the underlying programming language. In JINI, although events are defined

as a generic event Java class, they are transported as serialized Java objects via

Java RMI which only works on a Java platform [23, 31]. In these systems, the

consumer component needs to find a way to understand received events and such

event processing is left to the application programmer. We believe such ad-hoc

event processing can be improved if the DEBS event can be supported as a first-

class construct.

The traditional signature-based component interface definition focuses on the

contract of one method in request and response semantics [11]. Such an interface

definition can help define a single action associated with an individual event. How-

ever, it lacks the power to describe the components’ behavior precisely in DEBS

in terms of event receiving, processing and publishing. Implicit invocation causes

functional components to lose control of their event processing flow; components

announce events, but do not know who will respond, what the response will be, or

when it will come. In designing a DEBS application, it is not enough to just define

that interface B will do action a1, a2 and a3 when it receives events e1, e2 and

e3, respectively. To precisely define interface B ’s behavior, we must also specify

at what state, from whom and in what order this interface B should receive these

events. Therefore, the temporal order among event instances is critical and must

be precisely captured in a component interface at design time and must be honored

at runtime. To make the current interface model suitable for DEBS, it needs to be

enhanced by taking into account behavior in terms of event receiving, processing

and publishing. Interface composition mechanisms are also needed to define how

these behavior-enhanced interfaces can be composed hierarchically.

Current DEBS development only has limited framework support. A framework

is a reusable, semi-complete application containing dynamic and static compo-

nents that can be customized to produce user-specific applications. A framework is

usually designed for a particular application domain such as user interfaces, P2P,

telecommunications, etc [6]. A framework is expected to be reused in applica-

tion development to reduce the cost and improve the quality of software. Though

there are many successful frameworks, such as, Java’s RMI, Spring Framework,

implementations of OMG’s CORBA, Microsoft’s MFC and DCOM, Sun’s JXTA

[35, 34, 12, 21, 36], these frameworks are not designed for DEBS domain and only

provide limited event support on the individual-event level. Therefore, we believe

3

meta-model

structure runtime

Generic
DEBS

models

framework

implements

1

2

behavioral interface

interface composition

DEBS App 3

3a. designed as instance of

3b. implemented on top of
3c. instantiated on top of

1

*1

*

*

*

BaseInterfaceE1, E2

E1[G1]/A1(Eb)
S1

S2 E2/A2(Ea)
S3

Ea, Eb

En/A3
Ex/A4

ExtendingInterfaceE3

E1[G1]/A1(Eb)
S1

S2 E2/A2(Ea)
S3

Ec

En/A3
Ex/A4

E3/A5

E3/A6(Ec)

EncapsulatingInterfaceE1, E2

E1/A1
S1 S2

E2/A2(Ea)
S4

Ea, Eb

EncapsulatedInterfaceAEA1

EA1/A1(EAa)
S1 S2

E1/A3(Eb)

S3
E2/A5

E1/A3(Eb)

EAa

structure runtime

behavioral interface

interface composition

Figure 1.1: Approach Overview

the DEBS development can be better supported if we have a supporting framework

that has built-in DEBS development support in a modular way.

Overall, on the individual event level, current DEBS developers can define what

events a component can accept and publish, and, by registering event handlers,

what action an event can trigger. Currently, developers lack structuring mech-

anisms for representing event interactions and dependencies in a modular way.

While current research has made fruitful contributions to various aspects in the

DEBS paradigm, such as, event delivery [25, 29, 16, 4], event detection and compo-

sition [2, 4, 30], event visibility [29], its emphasis is on the individual event level. As

observed in [26], few hierarchical structuring mechanisms exist for the development

of applications on DEBS.

1.3 Proposed Approach

To alleviate the aforementioned problems, we propose an interface-based modular

approach to enhance modularity in the DEBS development. As shown in Figure

1.1, the proposed approach consists of a DEBS metamodel, a supporting framework

and an interface-based development process.

4

1. The metamodel defines a language for modeling DEBS with a focus on behavior-

enhanced interface, interface composition mechanisms and first-class event

and event schema constructs.

2. The supporting framework is designed for DEBS domain and provides built-in

support to our proposed interface-based DEBS development process.

3. The development process defines three steps involved in developing DEBS

applications with behavior-enhanced interfaces:

(a) decomposing a DEBS application by using interfaces, compositions and

event schemas.

(b) implementing interfaces by providing event actions and guard condition

tests.

(c) instantiating a DEBS application by assembling the required interface

implementation and deploying to the supporting framework.

1.4 Contributions

In this thesis, we advocate that by designing a new DEBS metamodel with extended

behavioral interfaces and high-level structure mechanisms, we can (1) define an

interface-based modular approach to model and design DEBS applications, (2)

implement a prototype framework on a P2P network that provides built-in support

to our proposed interface-based DEBS development, and (3) provide case studies

illustrating the interface-based development process and the applicability of our

proposed approach.

With the behavior-enhanced interface, our approach enables developers to model

component behavior precisely on the interface level in terms of event receiving,

processing and publishing, thereby improving modularity in DEBS development.

To accomplish this goal, we have provided the following contributions:

1. A new metamodel for DEBS that focuses on behavior-enhanced interface, in-

terface composition mechanisms and first-class event and event schema con-

structs.

2. A supporting prototype framework on top of a P2P network that supports

developers to build their DEBS applications based on the proposed interface-

based DEBS design.

5

3. A representation of the interface-based DEBS development process via case

studies and illustration of the applicability of our proposed approach.

1.5 Thesis Outline

Chapter 1 describes the introduction and briefly explains our work. Chapter 2

reviews the background and related work. Chapter 3 provides a detailed explanation

of our proposed DEBS metamodel. Chapter 4 focuses on the explanation of our

supporting prototype framework implementation. Chapter 5 covers the case studies

and shares our experience. Finally, Chapter 6 concludes the thesis and articulates

the directions of future work.

6

Chapter 2

Background and Related Work

2.1 Software Component Models

2.1.1 Structure Models

Sun Microsystems’ Enterprise JavaBeans (EJB) [24] is a server-side component ar-

chitecture for the Java Platform, Enterprise Edition (formerly known as J2EE).

Based on the JavaBeans framework, EJB allows programmers to concentrate on

particular business problems without worrying about transactions, threading and

process control, security and other non-functional properties. The EJB container

hosts components and offers lifecycle operations as well as additional services such

as transactions. Before version 3.0, an EJB component consists of a class that im-

plements an EJB interface (Entity Bean, Session Bean and Message Bean) and two

other Java classes that implement Remote Interface and Home Interface, respec-

tively. In the EJB 3.0, entity beans are superseded by the Java Persistence API,

and all Enterprise JavaBeans are Plain Old Java Objects (POJO), with proper

annotations.

OMG’s CORBA Component Model (CCM) [13] has been adopted by OMG

to extend and subsume the CORBA distributed object model [12]. In CCM, a

CORBA component is introduced as a new CORBA meta type. In particular, a

CORBA component is defined as a series of attributes and several implemented

(or provided) interfaces called “facets”. A CORBA component communicates with

each other via “receptacles”, receive events via “event sinks” interface and send

out events via “event sources” interface.

Microsoft designed COM as a collocated component programming model to en-

7

able interprocess communication and dynamic object creation. Later, DCOM ex-

tends COM to support communication between distributed components by provid-

ing a runtime that is used to marshal and unmarshal requests and replies. DCOM

has been deprecated in favor of Microsoft .NET, which provides a large body of pre-

coded solutions to common software development requirements and manages the

execution of programs written specifically for the framework. In Microsoft .NET,

almost any class file is a component and is controlled by containers [1].

2.1.2 Behavior Models

UML 2 state machine diagrams, formerly referred to as state diagrams, statechart

diagrams, or state-transition diagrams, depict the dynamic behavior of an entity

based on its response to events, showing how the entity reacts to various events

depending on the current state [15]. In this thesis, we use statechart diagrams to

model the behavior of component interfaces in terms of event receiving, handling

and publishing.

Cicalese et al. [3] points out that the current IDLs do not formally specify the

behavior of the software component’s operations and proposes a Java extension that

enhances Java remote method invocation interfaces with Eiffel-style preconditions,

postconditions, and invariants. However, this improvement focuses on only one

operation and does not cover the temporal aspect of event processing control.

Interface automata formally models the temporal aspects of software component

interfaces. Alfaro et al. [5] employs an automata-based language in an optimistic

approach to capture assumptions about the order in which the components are

called and the order in which the components call external methods. They also

propose an approach to check the compatibility of two component interfaces. The

interface automata approach differs from our proposed statechart approach in the

following ways: (1) Interface automata interacts through the synchronization of

input and output events, and, internally, actions of concurrent automata are inter-

leaved asynchronously, whereas in our proposed statecharts, the interaction between

interfaces and internal substatecharts is done asynchronously; (2) In interface au-

tomata, messages are not queued, and the arrival of a message while on a state

not prepared to handle the message would indicate an incompatibility between the

environment and the automaton, whereas in statecharts, the message would be

queued until the statechart is at a state ready to handle the message.

State Chart eXtensible Markup Language (SCXML) [39] is a Public Working

8

Draft under review by the World Wide Web Consortium (W3C). SCXML provides

a generic state-machine based execution environment based on CCXML and Harel

State Tables. In this thesis, we use SCXML to describe the interface behavior.

2.2 Event Models

In CORBA [12], events can be typed or untyped and are defined in a component’s

IDL. Untyped events are attributes of the CORBA datatype any that can be cast

to any datatype. On the other hand, typed event data is represented as and passed

by means of typed parameters as defined in its IDL, which can be defined in any

desired manner. In CORBA, an extra step is needed to compile IDLs to generate

the stub and skeleton code to manipulate the event.

In EJB, event handling is done by using JMS [22]. A message in JMS is modeled

as a fixed structure consisting of a header, several properties and a body. A message

is created by a message producer and sent to message consumers via message queue

which provides temporal independence between message producers and message

consumers. Message processing is done by invoking registered message handlers.

In Microsoft’s COM, DCOM, and .NET, events are treated, defined and created

as normal objects and event processing is done via registered event handlers [1].

In Sun Microsystems’ JINI architecture, events are the mechanisms used for

asynchronous communication [23]. JINI models events as a generic RemoteEvent

classes consisting of four fields: a remote reference of the source of the event, an

event identifier, a sequence number, a serialized “handback” object as the payload.

Event handling is bound to the Java platform and is done by invoking classes

that implement RemoteEventListener via Java RMI. Our proposed event model also

provides generic modeling of schemas and their events, but, unlike JINI, our model

supports arbitrary structures in an event schema and is programming language

neutral.

In Hermes [29], an event type is defined as an XML Schema and an event is

represented as an XML document. XML Schema parsing is done using an Apache

Xerces Parser. Event attribute accessing is done via XPath language. An event

type is statically bound to a Java class which extends XMLDynamicBinder abstract

class. An object of this class represents an event instance and can marshal and

unmarshal its value via the toXML and fromXML method and can also export its

XMLSchema via toXMLSchema. However, Hermes does not support event schema

9

to be created dynamically. As pointed out in Hermes’ paper, this limit is caused

because a fromXMLSchema method cannot be provided in Java as the language

does not support construction of new classes at runtime.

In SARI [32], an event type library and its metamodel is provided. SARI’s

work is similar to ours in that we both provide an event metamodel. In SARI,

attribute multiplicity is not specified, whereas in our metamodel, each attribute

has a build-in lower bound and an upper bound. SARI supports event typing such

as “inheritance” and “exheritence”, whereas ours is part of a bigger generic DEBS

metamodel and focuses more on the event structure.

2.3 Software System Meta-modeling

A model is an abstraction of phenomena in the real world. A metamodel is an

explicit model of the constructs and rules needed to build specific models within a

domain of interest [14] and, thus, is a higher level abstraction highlighting properties

of those models. A model is an instance of and always conforms to its metamodel.

OMG’s Meta-Object Facility (MOF) [14] is an extensible model-driven integra-

tion framework for defining, manipulating and integrating metadata and data in

a platform-independent manner. MOF-based standards are in use for integrating

tools, applications and data. A number of technologies standardized by OMG, in-

cluding UML, MOF, CWM, SPEM, XMI, and various UML profiles, use MOF and

MOF-derived technologies for metadata-driven interchange and metadata manipu-

lation.

Zachariadis et al. [41, 42] proposes a lightweight local component metamodel

called SATIN to address adaptability issues related to a mobile system. This pa-

per is a good example of how to practice meta-modeling: it covers designing the

metamodel on MOF, designing metamodel notation, implementing the metamodel

as middleware, and implementing case study applications.

2.4 Peer-to-Peer Systems

Clay Shirkey (The Accelerator Group) gives an intuitive definition of P2P as [27]:

Peer-to-peer is a class of applications that take advantage of resources

storage, cycles, content, human presence available at the edges of the

10

Internet. Because accessing these decentralized resources means oper-

ating in an environment of unstable connectivity and unpredictable IP

addresses, peer-to-peer nodes must operate outside the DNS and have

significant or total autonomy of central servers.

JXTA, introduced by Sun Microsystems, Inc., is a set of open, generalized peer-

to-peer protocols that allow any connected device (cell phone to PDA, PC to server)

on the network to communicate and collaborate. JXTA defines a three-layer P2P

software architecture (platform, services and applications) as consisting of a set

of XML-based protocols and a number of abstractions and concepts such as peer

groups, pipes, and advertisements. Peers are organized in peer groups; a peer

group can assemble several modules; resources are shared via advertisements; and

application level communications are usually done via pipes [36, 18]. Our provided

implementation is built on top of JXTA.

2.5 Event-based System Engineering

With respect to structuring DEBS, we are only aware of Fiege’s proposal to use

event visibility as a structuring abstraction. Fiege [8, 9] proposes the use of scope

to model event visibility based on publish and subscribe semantics; the visibility of

an event determines the range of the delivery of the event and, in turn, determines

the range of components that can produce and react to the event. Effectively, this

approach improves the event delivery mechanism but does not cover the method-

ologies for the identification and modeling of the structural and other properties of

the DEBS.

11

Chapter 3

A Metamodel for DEBS

3.1 Metamodel Overview

Focusing on first-class event constructs, enhanced behavioral component interfaces,

and interface composition mechanisms, our proposed metamodel models the es-

sential elements in a generic DEBS with respect to static structure and runtime

semantics.

The static structure of the metamodel is depicted in Figure 3.1 and Figure 3.2.

An event schema defines the data structure to which all its events must conform.

A component interface defines its input and output event schemas and the behav-

ior specified as a finite state machine. Two composition mechanisms, extend and

encapsulate, can be used to construct new interfaces from existing ones in a mod-

ular way. An extending interface will have its own features and those features as

defined in its extended interfaces, whereas an encapsulating interface can hide and

coordinate all its encapsulated interfaces. A component interface can have multiple

implementations.

Runtime semantics are illustrated in Figure 3.3. A reactive component instance

manages the life cycle of its hosted component interface implementation instances,

each of which represents an instantiated component interface. According to its

interface definition, a component interface implementation instance can receive,

process and publish events. An event is dispatched via an event bus and is delivered

to those component interface implementation instances that are interested in that

dispatched event.

In the following sections, we first explain the generic event model. Then, we

present the behavior-enhanced interface model, followed by two interface composi-

12

ComplexValue

Event

TypedMultiplicityAttribute

-name : String
-low erBound : Integer
-upperBound : Integer

PrimitiveType

-typeEnum : PrimitiveTypeKind

PrimitiveValue

ValuedAttribute

<<enumeration>>

PrimitiveTypeKind

Datetime

Boolean

Integer
String

Float

DataValue

EnumerationType

ValuedAttribute

ComplexType

DataType

-name : String

DataValue

EventSchema

-name : String

value of

*

1

-type
-type

1

instance of

-schema

1

*

-value

*

-refType

1

-elementType

1

-attribute*

-literal*

-type 1

-value1

-attribute *

Figure 3.1: DEBS Event Schema Diagram

13

ReactiveComponentInterface

-name : String

ComponentInterfaceImplementationInstance

-instanceID : String

ComponentInterfaceImplementation

-implID : String

EventSchema

-name : String

ReactiveComponent

StateMachine

Reception

EventBus

extend

-extended

1

-extending

*

encapsulate

-encapsulated
*

-encapsulating
*

-external

1

-internal

1

-supported

*

-host

*

-sender

0..1

consume

-input

*

*

-event

1

produce

-output

*

*

-behavior

1

*

implements

-interface 1

*

-impl1

*

Figure 3.2: DEBS Component Interface Diagram

ComponentInterfaceImplementationInstance

EventInstance

ReactiveComponentInstance

EventBus dispatched via

-eventBus

1

host
1..*

1..*

receive

*

*

send

*

*

Figure 3.3: DEBS Runtime Diagram

14

tion mechanisms. Finally, we introduce diagrammatic notation, which can be used

during DEBS development.

3.2 Generic Event Model

In our metamodel, EventSchema and Event are modeled as first-class citizens (Figure

3.1).

EventSchema Similar to a Java class defining the type of its Java object in-

stances, an EventSchema defines the data structure of its event instances used within

a DEBS. Each EventSchema has a unique name distinguishing one schema from an-

other. An EventSchema must associate with exactly one ComplexType as its type.

At runtime, an EventSchema can be dynamically defined and removed in a DEBS,

and all EventSchemas must be first defined and registered in a DEBS before their

event instances can be used.

ComplexType A ComplexType represents a user-defined data type which can

have other nested data types. A ComplexType is identifiable by its name (inherited

from DataType), and its nested data types are specified through its associations

with multiple TypedMultiplicityAttribute.

TypedMultiplicityAttribute A TypedMultiplicityAttribute models an attribute

in an event schema. Each attribute has a name unique in its defined event schema.

The lowerBound and the upperBound specify the number of times the values of

this attribute may occur in an event instance. The lowerBound is greater than or

equal to zero and must be less than or equal to the upperBound. The TypedMulti-

plicityAttribute is optional if its lowerBound is zero, otherwise, it is mandatory. A

ComplexType associated with no TypedMultiplicityAttribute is an empty type and

used only to define an empty EventSchema which does not possess any attributes.

DataType A DataType is the ancestor of all possible attribute types. It is ab-

stract and has a type name which identifies it from others. The semantics of

DataType are defined by its subtypes: PrimitiveType, EnumerationType and Com-

plexType.

15

PrimitiveType A subtype of DataType, PrimitiveType specifies the primitive

types that can be used to define an attribute type. The available primitive types

are defined in PrimitiveTypeKind.

PrimitiveTypeKind A PrimitiveTypeKind enumerates the available primitive

types that can be used to define an attribute type. The available primitive types

are Boolean, String, Integer, Datetime, Float.

EnumerationType An EnumerationType is a subtype of DataType. Each Enu-

merationType has a unique name and must associate with one PrimitiveType as its

element type of predefined values specified via its associated multiple DataValue.

Event As the essential communication block in a DEBS, an event represents a

runtime instance of its event schema. Every event must be associated with exactly

one event schema specifying the data structure of the event. An event has one

ComplexValue which represents the values in an event. Events should only be con-

structed from their event schema to guarantee correctness. An event is published

by a ComponentInterfaceImplementationinstance and delivered via an EventBus to

one or more ComponentInterfaceImplementationinstances that are interested in this

event.

Also, in a DEBS, at time t, an event instance is said to be valid if and only if:

(1) its associated schema exists in the DEBS at time t ; (2) each attribute value in

valued-attributes is a valid instance conforming to its attribute type as defined in its

associated event schema. Therefore, if an event schema is dropped from a DEBS

at time t, then at t+1, all its event instances will be considered as invalid.

An event schema defines the static data structure but not the associated event

processing semantics of its event instances. The semantics of when to send and

receive an event and how to react to an event is defined in an interface’s behavior

(details are explained in Section 3.3).

ValuedAttribute A ValuedAttribute models an attribute value at runtime. A Val-

uedAttribute has a reference to its defining TypedMultiplicityAttribute which specifies

the type and multiplicity of the multiple DataValues associated with this ValuedAt-

tribute. If the attribute type is a primitive type, the data value of this attribute

must be a primitive value that conforms to the type. If the attribute type is an enu-

meration type, the value must be one of those pre-defined values. If the attribute

16

type is a complex type, the data value must be a complex value with all nested

data values in accordance with their associated types. Such value-type matching

is performed recursively until a primitive value is matched with its primitive type.

Also, the number of DataValues must be inclusively bound by the lowerBound and

upperBound as specified in its associated TypedMultiplicityAttribute. Therefore, a

ValuedAttribute is valid if and only if it has the correct number of compatible values

as specified in its associated TypedMultiplicityAttribute.

DataValue A DataValue represents an abstract data value of its associated data

type. The actual value is specified by its subtypes, PrimitveValue and ComplexValue.

PrimitiveValue A PrimitiveValue models a primitive value of an associated prim-

itive type. Depending on a particular metamodel implementation, a primitive

value can be coded as a string representation which can later be interpreted, or

directly mapped to a native representation in its underlying programming lan-

guage. For example, in Java, a value of a Datatime can be represented as an object

of java.util.Time.

ComplexValue A ComplexValue extends a DataValue and represents a value of

a ComplexType. A ComplexValue always associates itself with one ComplexType

and contains a collection of ValuedAttributes, each of which represents a particu-

lar attribute value in the ComplexValue. A ComplexValue is valid if and only if

(1) the data type associated with the ComplexValue is a type of ComplexType, (2)

for every mandatory TypedMultiplicityAttribute in the associated ComplexType, the

ComplexValue contains a valid ValuedAttribute that refers to the TypedMultiplicity-

Attribute, and (3) for every optional TypedMultiplicityAttribute, it is valid to have

no ValuedAttributes referring to this TypedMultiplicityAttribute (but if the optional

TypedMultiplicityAttribute does have a ValuedAttribute referring to it, the ValuedAt-

tribute must be valid).

3.2.1 Examples

Based on the metamodel above, an event schema and its event instances can be

created dynamically. For instance, in our case study 5.2, we describe a temperature

sensor system consisting of multiple sensors and one information center. Each

sensor has its predefined GPS position and, from time to time, will report its

17

GPSPosition

longitude : Float [1..1]
latitude : Float[1..1]

<<complex>>

SensorData

temperature : Float [1..5]

<<schema>>

1..1

+location

1..1

File: D:\myworkspace\thesis\design\debs\debs.mdl 12:08:23 AM Wednesday, February 20

(a) SensorData Event Schema

 : TypedMultiplicityAttribute

name = latitude
lowerBound = 1
upperBound = 1

 : TypedMultiplicityAttribute

name = longitude
lowerBound = 1
upperBound = 1

 : TypedMultiplicityAttribute

name = temperature
lowerBound = 1
upperBound = 5

 : TypedMultiplicityAttribute

name = location
lowerBound = 1
upperBound = 1

 : ComplexType

name = GPSPosition

 : PrimitiveType

typeEnum = Float

 : EventSchema

name = SensorData

 : ComplexType

name = SensorData

(b) SensorData Schema as Metamodel Instances

Figure 3.4: SensorData Event Schema Example

collected temperature data via events to an information center. An event must

carry the sensor’s GPS position and can carry one to five temperature data. Based

on our event schema model, we can define a SensorData event schema with its

specification represented diagrammatically in Figure 3.4(a).

Such an event schema has a temperature attribute of float type and has an

attribute location which is typed as a complex type called GPSPosition. Any value

of the SensorData can have one to five temperature values and must have one

GPSPosition value. The GPSPosition complex type has two attributes: longitude

and latitude, both of which are of type float. Any value of a GPSPosition must have

one longitude value and one latitude value. Figure 3.4(b) illustrates how such event

schema specification can be dynamically modeled as instances of the metamodel

elements described above.

18

:SensorData

temperature = [30.2, 31.4]

<<event>>
:GPSPosition

longitude = 101.3
latitude = 96.1

<<value>>

location

(a) SensorData Event

 : ComplexType

name = GPSPosition

 : PrimitiveType

typeEnum = Float

 : ComplexType

name = SensorData

 : EventSchema

name = SensorData

 : ValuedAttribute

 : ValuedAttribute

 : ValuedAttribute

 : ValuedAttribute

 : PrimitiveValue

 : ComplexValue

 : PrimitiveValue

 : PrimitiveValue

 : ComplexValue

 : PrimitiveValue

 : Event

latitude

101.3

location

96.1

30.2

temperature

longitude

31.4

(b) SensorData Event Instance as Metamodel Instances

Figure 3.5: SensorData Event Example

19

From the event schema, events can be created and values can be assigned dy-

namically. Such events can also be modeled as instances of metamodel elements.

For instance, Figure 3.5(a) depicts a SensorData event instance which has two tem-

perature values, 30.2 and 31.4. The SensorData event also has one location value

with longitude at 101.3 and latitude at 96.1, and Figure 3.5(b) illustrates the mod-

eling of this event as instances of the metamodel elements described above. Due

to space constraints, we use four labels to denote the actual four links between

four ValuedAttribute instances and their corresponding TypedMultiplicityAttribute

instances.

3.3 Behavior-enhanced Interface Model

Reactive component interfaces and interface composition mechanisms are the core

part of our proposed metamodel toward DEBS modularization. As a first-class

building block, a reactive component interface modularizes the discrete event ma-

nipulation by defining (1) what events it can receive and publish, (2) if necessary,

from whom it should receive such events, (3) when it can receive and publish events,

and (4) how to process an event. The composition mechanisms define how reac-

tive component interfaces can be composed together (e.g., extends, encapsulates)

to build more complicated interfaces. The metamodel elements of the behavior-

enhanced interface model are outlined in Figure 3.2.

ReactiveComponentInterface The ReactiveComponentInterface represents the

building blocks in a DEBS and regulates event processing through its behavior

specification. Each ReactiveComponentInterface possesses a unique interface name

within its defining DEBS. The ReactiveComponentInterface specifies that it will re-

ceive incoming events where event schema and sender ReactiveComponentInterface

match those defined in its associated Reception. Also, the ReactiveComponentInter-

face specifies all the event schemas that this interface will send out through the

produce association with EventSchema. The ReactiveComponentInterface can encap-

sulate other ReactiveComponentInterfaces and may extend other interfaces. These

two associations (i.e., encapsulte and extend) represent the interface composition

mechanisms, whose semantics are discussed in detail in Section 3.4.

Reception Each Reception is associated with one event schema and optionally

one sender ReactiveComponentInterface. If an event schema is not associated with

20

a sender interface, the defining interface will receive all events of this event schema

sent from all interfaces.

StateMachine In general, an interface behavior specifies an interface protocol

specification and answers the question of “when and how to react to what events”.

Each state, together with its associated triggering events, defines the when and

what : certain events can only be received when this interface is at a particular state.

The transitions associated with each state, together with its guard conditions and

actions, specifies the how : a received event will be processed according to associated

actions and will cause the interface to transit to its next state as defined in transition

if the associated guard conditions are satisfied.

In our metamodel, the behavior of an interface is defined using a Finite State

Machine. We reuse UML’s state machine metamodel with customized semantics,

so the StateMachine metamodel is omitted here and readers are referred to UML

2.0 specifications for detailed information [15].

The following semantic changes are made to overcome some drawbacks of the

UML state machine as observed by Simons in [33]:

• The UML state machine allows transitions to go directly to a state inside

a composite state from outside. Such boundary crossing transitions violate

encapsulation and, therefore, are not allowed in our metamodel.

• When an event triggers multiple transitions of a state and its composing state,

the UML state machine gives priority to the inner-most transitions, and such

choice again infringes the encapsulation. Therefore, in our metamodel, we

follow the semantics defined in the Harel state machine [17] to let the outer-

most transitions have precedence over the inner ones.

In addition, the semantic variation point of handling unexpected events in the

UML state machine is also specified in our metamodel: if an interface in any state

receives an unexpected event (i.e., an event not expected to receive at this state),

the interface state machine will be forced to transit to a special error state indicating

this error occurrence. However, what to do after getting into this error state (e.g.,

backtrack to the previous state before the error occurred, after the error is fixed,

or totally lock up the interface) is implementation specific and not specified in the

metamodel.

21

ComponentInterfaceImplementation A ReactiveComponentInterface can have

multiple implementations (e.g., for different platforms, programming languages). A

ComponentInterfaceImplementation has a unique implementation ID and possesses

a reference to a ReactiveComponentInterface which it implements.

ComponentInterfaceImplementationInstance The ComponentInterfaceImple-

mentationInstance is the instantiated instance of its corresponding ComponentIn-

terfaceImplementation. At runtime, a ComponentInterfaceImplementation can have

multiple instances. In particular, a ComponentInterfaceImplementationInstance is

constructed every time a ComponentInterfaceImplementation is loaded into a DEBS.

Every ComponentInterfaceImplementationInstance has an instanceID uniquely identi-

fying itself, and every ComponentInterfaceImplementationInstance is associated with

two EventBuses: external and internal. A ComponentInterfaceImplementationIn-

stance perceives and reacts to the environment where it resides by receiving and

publishing events to its external event bus, whereas its internal event bus represents a

private environment shared only by an encapsulating instance and its encapsulated

instances (details are explained in Section 4.2.6).

ReactiveComponent A ReactiveComponent can support more than one Reac-

tiveComponentInterface. By support, we mean that at runtime, for each supported

ReactiveComponentInterface, the ReactiveComponent will have one of its Compo-

nentInterfaceImplementations loaded. The ReactiveComponent in our metamodel is

not treated as a monolithic implementation of all its supported interfaces. Instead,

it represents a container at runtime where interface implementation instances can

be loaded and run. More detailed discussion of this ReactiveComponent implemen-

tation is covered in Section 4.3.2.

3.4 Interface Composition Mechanisms

Component interfaces represent the primitive building block in a DEBS, whereas

the interface composition mechanisms define how such building blocks can be glued

together to construct new building blocks in a modular way. In this metamodel,

we propose two essential composition mechanisms: extend and encapsulate.

22

3.4.1 Extend

Similar to inheritance in OO-programming, extend is a vertical composition mech-

anism which defines how the features (i.e., input and output event schemas, be-

haviors) of the extending component interface can be extended with features of

the extended component interfaces. The extend mechanism provides a means to

build a DEBS incrementally in a modular way. For example, we can first define a

generic component interface which handles common issues required in a particular

system (e.g., start and stop, bookkeeping), and then we can incrementally build

other application-specific component interfaces on top of this generic component

interface.

An interface can directly and indirectly extend more than one other interface and

can be both directly and indirectly extended by more than one interface. However,

along the path of the extension, no loop is allowed (i.e., an interface cannot directly

or indirectly extend itself).

Semantically, if an interface i extends another interface j, i will have its own

features plus all the features defined in j, including features from indirectly extended

interfaces. By features, we mean input and output events, and behavior state

machine. Specifically, let i extend j and iext be the imaginary resulting interface,

then i will conceptually have identical characteristics to iext which is described

below:

1. iext can receive input events which are the union of i’s own input events and

all input events defined in all interfaces that i extends.

2. iext can send output events which are the union of i’s own output events and

all output events defined in all interfaces that i extends.

3. the behavior of iext will be the behavior as described by the state machine

resulting from a conservative combination of i’s state machine and the state

machine of all interfaces that i extends.

By conservative combination, we mean that if i extends j, j’s behavior must

remain intact and the delta changes introduced by i on top of j (e.g., new event

schemes, new transition relations) should not conflict with the existing definition

of j, and the resulting state machine after the interface extending process must be

deterministic.

For instance, Figure 3.6(a) shows part of an interface behavior which is extended

in a non-conservative extension as shown in Figure 3.6(b). The behavior extension

23

s1 s2e1

(a) Original Behavior

s2s1

s3

e1

e1

(b) Extended Behavior with Non-deterministic
Transitions

Figure 3.6: A Typical Example of Non-conservative Behavior Extension

introduces non-deterministic transitions to state s1 when e1 is received. While

outside the scope of this thesis, one possible way to deal with this problem could

be to enhance IDE to provide help during the behavior extension process at design

time. For now, we assume this extension process is done by developers manually

and, therefore, expect a framework implementation to be able to detect and report

such non-conservative behavior extension at runtime.

In terms of the interface compatibility, i’s implementation is downward com-

patible with all the interfaces that i extends. Specifically, for any interface k that i

extends, wherever k’s implementation is expected, i’s implementation can be used

instead.

3.4.2 Encapsulate

As the name implies, this encapsulate mechanism is inspired by information hiding

in OO-programming. It is a horizontal composition mechanism between an encap-

sulating interface and its encapsulated interfaces, and describes how a new complex

interface can be derived from encapsulating other smaller interfaces. Similar to facet

in the OO design pattern, this encapsulation rule is useful in cases where a new

interface can be derived by composing other existing interfaces without exposing

the composed interfaces to the outside world.

An interface can directly encapsulate more than one other interface and can be

directly encapsulated by more than one other interface. However, along the path

of the encapsulation, an interface cannot directly or indirectly encapsulate itself.

24

Semantically speaking, the encapsulating interface acts as facade, coordinator

and proxy for all its encapsulated interfaces. At runtime, an interface implementa-

tion instance has a pair of event buses: external and internal. The external event

bus is the outside world for the interface and the internal event bus is its private

world shared by its encapsulated interfaces. It is always true that the internal

event bus of an encapsulating interface instance is the external event bus of its

encapsulated interface instances.

In this way, an encapsulating interface works as a facade which communicates

with the outside world by receiving events from and publishing events to its as-

sociated external event bus. Upon arrival of an external event, an encapsulating

interface will act as coordinator with its behavior as defined in the behavior state

machine definition: it can process the event directly, or it can forward the event

(possibly after pre-processing and transformation) to its encapsulated interfaces

via its internal event bus. An encapsulating interface can publish any events to its

internal event bus as long as the corresponding event schemas are defined in the

input event schemas of its encapsulated interfaces.

Upon assembly, an encapsulated interface implementation instance will be as-

signed an external event bus from its encapsulating interface. Then, all encapsu-

lated interfaces will collaborate with other colleague-interfaces by exchanging events

via their external event bus, and usually, such collaboration is under the control of

the encapsulating interface via its internal event bus. Similar to handling external

events, the encapsulating interface can handle events sent from its encapsulated

interfaces: it can process the event directly, or it can, like a proxy, forward events

(possibly after pre-processing and transformation) to the outside world via its ex-

ternal event bus. An encapsulating interface can receive any event from its internal

event bus as long as the corresponding event schemas are defined in its encapsulated

interfaces output event schemas.

An encapsulating interface only hides and coordinates its directly-encapsulated

children interfaces, each of which can, in turn, hide and coordinate its own en-

capsulated interfaces. Interface encapsulating differs from normal state machine

composition in that state machine composition results in a bigger, monolithic state

machine from other state machines (usually, the result state machine is run as

a single instance in the program space), whereas interface encapsulating provides

a modular approach to the composition of existing interfaces. Thus, the imple-

mentation instances of encapsulated interfaces can share the program space with

their encapsulating interface, or they can have their own totally different executing

environment.

25

GPSPosition

longitude : Float [1..1]
latitude : Float[1..1]

<<complex>>

SensorData

temperature : Float [1..5]

<<schema>>

1..1

+location

1..1

File: D:\myworkspace\thesis\design\debs\debs.mdl 12:08:23 AM Wednesday, February 20

(a) Event Schema Notation

:SensorData

temperature = [30.2, 31.4]

<<event>>
:GPSPosition

longitude = 101.3
latitude = 96.1

<<value>>

location

(b) Event Notation

Figure 3.7: Notation – Event Schema and Event

3.5 Notation

Along with the metamodel, we propose a diagrammatic notation to represent the

event schema, event, component interface, component interface instance and the

extend and encapsulate composition mechanisms. The notation can be regarded

as an adaptation of the well-known UML notation and can be used to help model

DEBS applications with proposed behavior-enhanced interfaces.

EventSchema Figure 3.7(a) shows an event schema called SensorData. The Sen-

sorData event schema has a temperature attribute of float type and has an attribute

location which is typed as a complex type called GPSPosition. Any value of Sen-

sorData can have one to five temperature values and must have one GPSPosition

value. The GPSPosition complex type has two attributes: longitude and latitude,

both of which are of type float. Any value of GPSPosition must have one longitude

value and one latitude value.

Event Figure 3.7(b) depicts a SensorData event instance which has two temper-

ature values, 30.2 and 31.4, and one location value with a longitude of 101.3 and a

latitude of 96.1.

ReactiveComponentInterface Figure 3.8 depicts a reactive component inter-

face called ReactiveComponentInterface. The input event schemas of this interface

are E1 and E2 shown in the upper-left corner. The output event schemas of this

interface are Ea and Eb shown in the upper-right corner. The behavior of this event

26

ReactiveComponentInterfaceE1, E2

E1 [G1] / A1(Eb)
S1

S2 E2 / A2(Ea)
S3

Ea, Eb

En/A3
Ex/A4

Error
EE

En/Ae

Figure 3.8: Notation – Reactive Component Interface

interface is shown as a statechart in the middle. The initial state of this interface is

S1. When the interface receives an event of E1 at state S1, if the transition guard

G1 is satisfied, it will perform action A1 (this action will send out an event of Eb)

and transit to state S2. Upon entering S2, the entry action A3 will be executed.

When the interface receives E2 at state S2, it will perform action A2 (this action

will send out an event of Ea) and transit to state S3. When this interface transits

out from S2, exit action A4 will be invoked. Once entering S3, it will transit to a

final state automatically.

Also shown in Figure 3.8 is a special error state called Error. As we mentioned

before, all unexpected events will cause this interface to transit to this Error state.

The action Ae is invoked every time when the Error state is entered. From this Error

state, only an event EE will cause the interface to transit back to state S3.

Extend The interface extension is represented as the same notation used for

representing class extension in UML. For instance, Figure 3.9 shows the case where

an interface, ExtendingInterface, extends another interface, BaseInterface, with the

following delta changes:

1. E3 is added to its input event schemas and Ec is added to its output event

schemas.

27

BaseInterfaceE1, E2

E1[G1]/A1(Eb)
S1

S2 E2/A2(Ea)
S3

Ea, Eb

En/A3
Ex/A4

ExtendingInterfaceE3

E1[G1]/A1(Eb)
S1

S2 E2/A2(Ea)
S3

Ec

En/A3
Ex/A4

Error

En/Ae
EE

Error

En/Ae
EE

Figure 3.9: Notation – Interface Extension

28

BaseInterfaceE1, E2

E1[G1]/A1(Eb)
S1

S2 E2/A2(Ea)
S3

Ea, Eb

En/A3
Ex/A4

ExtendingInterfaceE3

E1[G1]/A1(Eb)
S1

S2 E2/A2(Ea)
S3

Ec

En/A3
Ex/A4

E3/A5

E3/A6(Ec)

EncapsulatingInterfaceE1, E2

E1/A1
S1 S2

E2/A2(Ea)
S4

Ea, Eb

EncapsulatedInterfaceAEA1

EA1/A1(EAa)
S1 S2

E1/A3(Eb)

S3
E2/A5

E1/A3(Eb)

EAa

Error

En/Ae
EE Error

En/Ae
EE

Error

En/Ae

EE

Error

En/Ae
EE

Figure 3.10: Notation – Interface Encapsulation

2. At state S1, when E3 is received, action A5 will be executed and the state

will remain in S1.

3. At state S2, when E3 is received, action A6 will be executed (this action will

send out an event of Ec) and the state will remain in S2.

Encapsulate The interface encapsulation is denoted as a circle attached to the

bottom of the box representing an encapsulating interface. An encapsulated inter-

face is connected by a line that connects the circle attached to the encapsulating

interface and the box representing this encapsulated interface. As shown in Figure

3.10, an interface, EncapsulatingInterface, encapsulates two other interfaces, Ex-

tendingInterface and EncapsulatedInterfaceA. The ExtendingInterface in turn extends

a BaseInterface. As described above, the EncapsulatingInterface will hide and coor-

dinate the ExtendingInterface and EncapsulatedInterfaceA according to its behavior

definition.

29

:ReactiveComponentInterface

Figure 3.11: Notation – Interface Implementation Instance

one:EncapsulatingInterface

x1:ExtendingInterface z1:EncapsulatedInterfaceA x2:ExtendingInterface z2:EncapsulatedInterfaceA

two:EncapsulatingInterface

Figure 3.12: Notation – Interface Implementation Instance Diagram

ComponentInterfaceImplementationInstance Figure 3.11 shows the nota-

tion of an interface implementation instance. Each box represents an interface im-

plementation instance at runtime. The line above the box represents the external

event bus, whereas the one below represents the internal one. An instance diagram

for Figure 3.10 is shown in Figure 3.12 which illustrates the interface implementa-

tion instance diagram of two encapsulating interface implementation instances. All

six interface instances could co-exist in the same host machine, or could reside in

six physically different hosts.

30

Chapter 4

Framework Implementation

4.1 Framework Overview

The previous chapter introduces a DEBS metamodel with generic event and en-

hanced behavioral component interfaces. In this chapter, we introduce a prototype

framework implementation – Generic Event-based fraMework (GEM), based on

the JXTA network. After being deployed in participating hosts, GEM forms an

overlay network for DEBS over JXTA. GEM is designed for DEBS domain and pro-

vides built-in support to our proposed interface-based DEBS development process.

Specifically, GEM provides: (1) generic event management, (2) behavior-extended

interface definition and composition, (3) runtime interface behavior enforcement.

Also, XML is extensively used in our framework to define event schema, interface

and interface behavior, interface implementation definition, and to marshal event

instances.

The high-level overview of the framework architecture is depicted in Figure 4.1.

Based on the underlying JXTA network, GEM’s Framework Core Service provides

core framework services such as component interface addressing and event deliv-

ering to all higher-level components, including the system core component and

application components. The framework core service is implemented as a JXTA

service and can be loaded into a JXTA peer group.

On top of the Framework Core Service, we have one core component and multiple

application components. Currently, the core component hosts two built-in service

interfaces (SchemaServiceInterface and InterfaceServiceInterface) that are loaded dur-

ing framework bootstrap. The SchemaServiceInterface provides the framework event

schema service, and the InterfaceServiceInterface provides the component interface

31

P2P (JXTA)

Framework Core Service

Core Comp App Comp App Comp

Schema
Service

Interface
Service

AppInterface1

AppInterface2

AppInterface1

...

...

event

P2P (JXTA)

Framework Core Service

Core Comp App Comp App Comp

Schema
Service

Interface
Service

AppInterface1

AppInterface2

AppInterface1

...

...

Figure 4.1: High Level Overview of Framework Architecture

service (details are described in Section 4.3.3 and 4.3.4). We can request the frame-

work to create multiple application components which can assemble application

specific component interfaces.

The steps to bootstrap GEM is outlined below. First, the JXTA network is

launched and then the Framework Core Service is loaded into the peer group. Once

loaded, the Framework Core Service will take over the rest of GEM bootstrap. It

loads in built-in event schemas, built-in service interfaces and their default imple-

mentation, and assembles SchemaServiceInterface and InterfaceServiceInterface into

a framework core component. The bootstrap completes when the framework core

component starts and then the framework is instantiated and ready to go.

In the following section, we first introduce the framework core service and then

explain the framework built-in event schemas and built-in interfaces with their

default implementation.

4.2 Framework Core Service

The part of the framework implementation relating to the interfaces, interface im-

plementation and components is shown in Figure 4.2. The FrameworkCoreService

is implemented as a JXTA service and can be loaded into a hosting JXTA peer

group. The framework core service is the only part that interacts with the un-

derlying JXTA network and provides the essential framework services to the other

parts of the framework. The main services provided by the framework core service

includes, but is not limited to, event schema loading, interface loading, interface

implementation loading, event handling (e.g., dispatching, receiving and forwarding

to its target interfaces) and component handling (e.g., start and stop components).

32

GEMFramework

startFramework() : void
stopFramework() : void

FrameworkCoreService

loadEventSchema(fromFile : File) : EventSchema
resoveInterfaceImpl(ComponentInterface) : AbstractComponentInterfaceImpl
startAppComponent(appComponent : ApplicationComponent) : void

1

scxml::SCXML

StateMachine

1

Event

EventSchema

1

0..n

1

0..n

IncomingEventReceiver

handleEvent(EventParcel parcel) : void
isAcceptible(EventParcel parcel, EventSchema schema) : boolean

<<interface>>

EventBus

GEMAddress

ComponentInterface

parent : ComponentInterface
encapsulatedInterfaces : Map

+input +output

ComponentInterfaceStateMachineImpl

AbstractComponentInterfaceImpl

1

1

1

1

0..n

1

0..n

ComponentInterfaceImplAdvertisement

11

ReactiveComponent

CoreComponent ApplicationComponent

OutgoingEventDispatcher

sendEvent(...) : void
sendResponse(...) : void
sendRequest(...) : void
externalPublish(e : Event) : void
IinternalPublish(e : Event) : void

<<interface>>

Jxta::Service

EventParcel

1

1

1

+external
1

+internal
1

AbstractComponentInterfaceSCXMLImpl

scxml::SCXMLExecutor

11

File: D:\myworkspace\thesis\design\debs\debs.mdl 3:15:43 PM Friday, February 01, 2008 Class Diagram: DEBS Framework Implementation /

Figure 4.2: Framework Core

4.2.1 Interface Addressing and Event Delivery Semantics

When requested to dispatch an event, the FrameworkCoreService relies on JXTA’s

pipe service for the actual event delivery. GEM employs a novel interface addressing

system which allows an event’s target interface (or interfaces) to be addressed as:

(1) Instance Specific, (2) Implementation Specific, (3) Interface Specific, and (4)

Definition Specific. In addition, the framework also allows an event to be delivered

as: (1) a normal event, (2) a request, or (3) a response.

Effectively, GEM serves as a generic event-based framework with flexible ways

to deliver events. In fact, the pure DEBS event delivery semantics are achieved

by always sending normal events addressed as definition specific. With its flexible

event delivery semantics, GEM allows developers the flexibility to explore their

DEBS design in different styles, either as a pure DEBS, or as an event/RPC-hybrid

system. The two built-in service interfaces in our framework are implemented in

an event/RPC-hybrid style, whereas the two case studies are all implemented in a

pure DEBS style.

In the following subsections, we will introduce the interface addressing system

and then the event delivery mode.

33

Interface Addressing System

In our framework, every interface implementation instance can be uniquely identi-

fied using an interface address – GEMAddress. A GEMAddress consists of an interface

name, an interface implementation ID and an interface implementation instance ID.

The interface name is the unique name of an interface in the framework; the inter-

face implementation ID uniquely identifies a particular interface implementation,

and the interface implementation instance ID is assigned to an implementation in-

stance when it is loaded into the framework. In URL format, a GEMAddress can be

represented as gem://interface-name/interface-impl-id/interface-impl-instance-id. For

example, four cases are shown below:

1. gem://gem.core.EventSchemaServiceInterface/scxml/6bcc0ae8-0d23-495c-8cad-

dec7ad857cbd represents a unique interface implementation instance. The in-

terface instance is an instance of the sxcml implementation of the interface

gem.core.EventSchemaServiceInterface. The interface instance is assigned with

a UUID 6bcc0ae8-0d23-495c-8cad-dec7ad857cbd when it is loaded into the

framework.

2. gem://gem.core.EventSchemaServiceInterface/scxml/* represents all scxml im-

plementation instances of interface gem.core.EventSchemaServiceInterface.

3. gem://gem.core.EventSchemaServiceInterface/*/* represents implementation in-

stances of interface gem.core.EventSchemaServiceInterface without concerning

itself with a particular implementation.

4. gem://*/*/* represents all interface implementation instances in a DEBS.

Based on the interface addressing system mentioned above, the framework can

deliver an event to its target interface (or interfaces) in four different ways: (1)

Instance Specific, (2) Implementation Specific, (3) Interface Specific, and (4) Defi-

nition Specific.

Instance Specific An event with a target interface address having a format of

case 1 can be uniquely delivered to an individual interface implementation instance.

The framework provides this semantic to support directly addressed interactions

among interface instances. The instance specific interface addressing assumes that

the sender interface knowns its target interface instance, and wants its event to be

seen and reacted to by its specified target interface instance. It does not want to be

34

bothered by unexpected responses from other unknown interface instances. Usually,

this is used together with other combinations. For example, in our framework

implementation, once an interface is loaded into the framework, its hosting reactive

component interface will use this method to deliver a Start event to its hosted

interface instances to notify them of the start of their life cycle. Similarly, the Stop

event is also sent in this way to its hosted interfaces when the hosting component

wants to end their life cycle.

Implementation Specific An event with a target interface address having a

format of case 2 can be delivered to all interface implementation instances of a

specific interface implementation. The implementation specific interface address-

ing semantic is helpful in cases where the sender interface wants to constrain the

event to those interfaces which are implemented in a particular way (e.g., must

be implemented by a software company with a good reputation). In our frame-

work, if an interface wants to find a particular event schema and also knows there

are instances of scxml implementation available, it can send a schema request to

those SchemaServiceInterface instances implemented in scxml under the address of

gem://gem.core.EventSchemaServiceInterface/scxml/*.

Interface Specific An event with a target interface address having a format of

case 3 can be delivered to all interface implementation instances of a specific in-

terface. The interface specific interface addressing semantic is similar to case 2

with no specific preference over a particular implementation. For instance, if an

interface wants to find a particular event schema and does not care which potential

implementation answers this question, it can send a schema request to SchemaSer-

viceInterface under the address of gem://gem.core.EventSchemaServiceInterface/*/*.

Definition Specific An event with a target interface address having a format of

case 4 (i.e., gem://*/*/*) can be delivered to all interface implementation instances

which are interested in this event. The definition specific interface addressing is the

standard event delivery semantic in a pure DEBS. In this way, an interface knows

nothing about the target interfaces. A sender interface simply tells the framework

the event bus to which it wants this event published, and the framework is in charge

of forwarding this event to all those interface instances which are currently listening

to that event bus and are interested in the event.

Finally, we want to emphasize some conditions that all target interface instances

35

must satisfy before they can actually receive an event e of event schema E sent by

sender interface I. Specifically, the target interface instances must:

1. Be addressed in one of the four ways mentioned above.

2. Be listening to the event bus to which the event e is delivered.

3. Be interested in the event e (i.e., have event schema E defined as one of its

input event schemas. If an expected sender interface J is also defined, J must

match the actual sender interface I by name).

Event Delivery Mode: Normal Event, Request or Response

The framework provides three fundamental function calls, sendEvent, sendRequest

and sendResponse, to allow an event to be dispatched as a normal event, request or

response.

The first one (i.e., sending as normal events) is the standard way of delivering

events in a pure DEBS. For the convenience of DEBS development, we also pro-

vide externalPublish(Event) and internalPublish(Event) to allow interfaces to easily

publish events to their external or internal event bus, respectively. However, we

expect that, in many cases, RPC-oriented semantics are also very helpful, so our

framework also has built-in request-response RPC support (i.e., sendRequest and

sendResponse) for system function implementation, experiments and for convenient

system development.

Through the use of Event, Request and Response meta-events (Figure 4.3), these

event delivery modes are implemented in the FrameworkCoreService and can be

used to develop event-based applications either as a pure DEBS or as a hybrid.

In particular, if all interfaces constrain their event sending only to externalPub-

lish(Event) or internalPublish(Event), we will have a pure DEBS. Otherwise, we have

an event/RPC-hybrid system.

As normal event In this way, event sending is performed asynchronously. The

semantic of sending an event as a normal event is that the sender interface instance

continues its work and does not expect any response from other interfaces. The

FrameworkCoreService provides a method sendEvent(ID busID, GEMAddress from,

GEMAddress to, Event event) to send an event instance to its target interface or

interfaces via event bus busID.

36

Event

timestamp : Datetime [1..1]
busId : String [1..1]
to : GEMAddress[1..1]
from : GEMAddress[1..1]
event : Event [1..1]

<<schema>>
Request

timestamp : Datetime[1..1]
requestId : Integer [1..1]
busId : String [1..1]
to : GEMAddress [1..1]
from : GEMAddress [1..1]
request : Event[1..1]

<<schema>>
Response

timestamp : Datetime[1..1]
requestId : Integer[1..1]
busId : String[1..1]
to : GEMAddress[1..1]
from : GEMAddress[1..1]
response : Event[1..1]

<<schema>>

File: D:\myworkspace\thesis\design\debs\debs.mdl 4:24:21 PM Tuesday, February 05, 2008 Class Diagram

Figure 4.3: Meta Event Schemas

Listing 4.1: Event Schema Definition – gem.service.core.event

<?xml vers ion=” 1 .0 ” encod ing=”UTF−8”?>

<!DOCTYPE EventSchema>

<EventSchema>

<ComplexType Name=”gem . s e r v i c e . co r e . e ven t ”>

<At t r Name=” timestamp” Type=”DATETIME” Format=”yyyy−MM−
dd ’T’ HH:mm:ss . SSSZ” />

<At t r Name=” bus Id ” Type=” S t r i n g ”/>

<At t r Name=” to ” Type=”GEMAddress”/>

<At t r Name=” from” Type=”GEMAddress”/>

<At t r Name=” even t ” Type=”Event ”/>

</ComplexType>

<EventSchemaName>gem . s e r v i c e . co r e . even t</EventSchemaName>

</EventSchema>

Every event dispatched as a normal event is packed as a payload in an event

instance of a special gem.service.core.event event schema. The definition is shown

in code List 4.1. An event of gem.service.core.event consists of one timestamp to

indicate the time the event was sent, one busID to indicate the event bus to which

this event instance was sent (the busID is also the event bus from which the event

instance is received), one to and one from GEMAddress to address the sender and

receiver component interface, one event instance which is the actual event instance

that was sent out as a payload. Indeed, the event payload is generic and reflective.

Any event instance can be carried as a payload in a gem.service.core.event event.

As request In this way, sending is performed synchronously. The semantic of

sending an event as a request is that the sender interface does expect response

events. The sender interface will be blocked until a response event comes back or

37

times out. If the event is addressed to a group of interfaces, the first response will

wake up the blocked sender interface instance and the rest of the responses will be

discarded. In the event no response comes back, the sender will be awakened by a

time out and an exception will be thrown to indicate the failure. The method Event

sendRequest(ID busID, GEMAddress from, GEMAddress to, Event event) can be used

to send a request event addressed to its target interface or interfaces.

Listing 4.2: Event Schema Definition – gem.service.core.request

<?xml vers ion=” 1 .0 ” encod ing=”UTF−8”?>

<!DOCTYPE EventSchema>

<EventSchema>

<ComplexType Name=”gem . s e r v i c e . co r e . r e q u e s t ”>

<At t r Name=” timestamp” Type=”DATETIME” Format=”yyyy−MM−
dd ’T’ HH:mm:ss . SSSZ” />

<At t r Name=” r e q u e s t I d ” Type=” I n t e g e r ”/>

<At t r Name=” bus Id ” Type=” S t r i n g ”/>

<At t r Name=” to ” Type=”GEMAddress”/>

<At t r Name=” from” Type=”GEMAddress”/>

<At t r Name=” r e qu e s t ” Type=”Event ”/>

</ComplexType>

<EventSchemaName>gem . s e r v i c e . co r e . r e q u e s t</EventSchemaName>

</EventSchema>

Similar to sending a normal event, every event sent out as a request is packed

as a payload in an event instance of a special gem.service.core.request event schema.

The definition is shown in List 4.2. An event of gem.service.core.request consists of

one timestamp to indicate the time the event was sent, one requestId to uniquely

identify a request with respect to its sender interface, one busID to indicate the

event bus to which the event instance is sent (the busID is also the event bus from

which the event instance is received), one to and one from GEMAddress to represent

the sender and receiver component interface, one request of event instance which

is the actual event instance that was sent out as a payload. Indeed, the request

payload is generic and reflective. Any event instance can be carried as a payload

in a gem.service.core.request event.

As response Once a request event is received, the receiver interface instance re-

turns a response event to its sender. The method sendResponse(ID busID, GEMAd-

38

as event as request as response

Instance Specific Yes Yes Yes

Implementation Specific Yes Yes No

Interface Specific Yes Yes No

Definition Specific Yes Yes No

Table 4.1: Combinations of Supported Event Deliveries

dress from, GEMAddress to, Event event, long origReqID) allows a response event to

be sent back to its original sender interface with specified origReqID.

Listing 4.3: Event Schema Definition – gem.service.core.response

<?xml vers ion=” 1 .0 ” encod ing=”UTF−8”?>

<!DOCTYPE EventSchema>

<EventSchema>

<ComplexType Name=”gem . s e r v i c e . co r e . r e s pon s e ”>

<At t r Name=” r e q u e s t I d ” Type=” I n t e g e r ”/>

<At t r Name=” bus Id ” Type=” S t r i n g ”/>

<At t r Name=” timestamp” Type=”DATETIME” Format=”yyyy−MM−
dd ’T’ HH:mm:ss . SSSZ” />

<At t r Name=” to ” Type=”GEMAddress”/>

<At t r Name=” from” Type=”GEMAddress”/>

<At t r Name=” r e s pon s e ” Type=”Event ”/>

</ComplexType>

<EventSchemaName>gem . s e r v i c e . co r e . r e s pon s e</EventSchemaName>

</EventSchema>

Like a normal event or request, every event sent out as a response is packed as

a payload in an event instance of a special gem.service.core.response event schema.

The definition is shown in code List 4.3. An event of gem.service.core.response

consists of one timestamp to indicate the time the event was sent, one requestId

that matches the corresponding request ID to which this event is a response, one

busID to indicate the event bus to which this event instance was sent (the busID is

also the event bus from which this event instance is received), one to and one from

GEMAddress to represent the sender and receiver component interface, one response

of the event instance which is the actual event instance sent out as a payload. The

response payload is generic and reflective: any event instance can be carried as a

payload in a gem.service.core.response event.

39

BooleanType

DatetimeType

EventType

FloatType

GEMAddressType

InterfaceType

IntegerType

SchemaType

StringType

InterfaceImplAdvType

PrimitiveTypeFactory

PrimitiveTypeEnum

EventSchemaException

Type Value

1 *1 *

PrimitiveType
EnumerationType

literals : Set1 *

+elemType

1 *

ComplexValue

values : Map

Event

addNode(name : String) : ComplexValue
addLeaf(name : String, leaveValue : Object) : Object
getXXXValue(attrName : String) : XXX

11

EventSchema

getDocument(type : MimeMediaType) : Document
validate(Event event) : void
<<construct>> EventSchema(Element root)
<<construct>> EventSchema()
createEventInstance(root : Element) : Event
createEventInstance() : Event

0..n1 0..n1

ComplexType

11

Cardinality

TypedMultiplicityAttribute

name : String
type : Type

**

11

File: D:\myworkspace\thesis\design\debs\debs.mdl 11:28:09 PM Sunday, February 17, 2008 Class Diagram: DEBS Framework Implementation

Figure 4.4: Framework: Schema and Event Model

The twelve possible event delivery combinations are summarized in Table 4.1.

As shown in the table, the framework allows an event to be delivered as a normal

event or request in all four interface addressing styles. A response can only be

sent to a particular interface instance. Again, recall that if we always send normal

events in the definition specific interface addressing format, we will get a pure

DEBS; otherwise, we will have an event/RPC-hybrid system.

4.2.2 Event Schemas and Events

In GEM, everything is event related, such as schema creation, event instance cre-

ation, event deliver and event process. It is highly desirable in such a system, that

different event schemas be created, published and removed dynamically, and their

event instances be created and validated accordingly. Also, events should be de-

livered in a neutral, platform independent way. Therefore, the design goals of this

part of the framework are flexibility and heterogeneity. The part of the framework

which implements the generic schema and event metamodel is depicted in Figure

4.4.

Each Eventschema has exactly one associated ComplexType. A ComplexType has

40

multiple TypedMultiplicityAttribute, each of which defines the name and type of a

particular attribute and associates with one Cardinality to describe the number of

times an attribute can occur in an Event instance.

The Type of an attribute can be either ComplexType, PrimitiveType or Enumer-

ationType. The current framework supports ten most-often-used primitive types.

The first five are normal primitive types: BooleanType, IntegerType, DatetimeType,

FloatType and StringType. The other five are complex types: InterfaceType, Event-

Type, SchemaType, GEMAddressType and InterfaceImplAdvType. They are the most-

often-used five complex types in our proposed framework and, thus, are promoted

to be the primitive type.

Every EnumerationType is associated with exactly one PrimitiveType representing

its element type. Also, the EnumerationType holds a set of literal values of all valid

values in this type. All actual values have the same type as defined in association

elemType.

Listing 4.4: Event Schema Sample - SchemaRegister

<?xml vers ion=” 1 .0 ” encod ing=”UTF−8”?>

<!DOCTYPE EventSchema>

<EventSchema>

<ComplexType Name=”gem . s e r v i c e . e ven t . SchemaReg i s te r ”>

<At t r Name=”schema” Type=”Schema” minOccur=”1” maxOccur=”∗
”/>

</ComplexType>

<EventSchemaName>gem . s e r v i c e . e ven t . SchemaReg i s te r</

EventSchemaName>

</EventSchema>

The built-in event schema service interface in our framework defines an input

event schema called SchemaRegister. Every SchemaRegister event can contain mul-

tiple event schema definitions and can be sent to an event schema service interface

to register these event schemas in the framework. The SchemaRegister event schema

can be defined in XML as shown in Listing 4.4.

Listing 4.5: Event Schema Sample - SensorData

<?xml vers ion=” 1 .0 ” encod ing=”UTF−8”?>

<!DOCTYPE EventSchema>

<EventSchema>

<ComplexType Name=”GPSPos i t ion ”>

41

<At t r Name=” l o n g i t u d e ” Type=”FLOAT”/>

<At t r Name=” l a t i t u d e ” Type=”FLOAT”/>

</ComplexType>

<ComplexType Name=”gemdemo . s e n s o r . SensorData ”>

<At t r Name=” l o c a t i o n ” Type=”GPSPos i t ion ”/>

<At t r Name=” tempe ra tu r e ” Type=”FLOAT” minOccur=”1” maxOccur=

”5”/>

</ComplexType>

<EventSchemaName>gemdemo . s e n s o r . SensorData</EventSchemaName>

</EventSchema>

Listing 4.5 shows a more complex example of an event schema definition. The ex-

ample shown in Listing 4.5 is the XML definition of the gemdemo.sensor.SensorData

event schema as defined in Diagram 3.4(a) in the event schema section of the DEBS

metamodel reported in Section 3.2.1. From its definition, we know that every Sen-

sorData event has exactly one location and one to five temperature data. Each

location, in turn, must have exactly one longitude and one latitude value.

Once an event schema is defined in XML, it can be loaded into GEM, thereby

creating event schemas. As shown in Figure 4.4, every Event has exactly one asso-

ciated EventSchema and one ComplexValue which has a map representing all pairs

of attribute names and their values in Event. An attribute can itself be a Complex-

Value if its attribute type is of ComplexType. In this way, the event value forms a

hierarchical structure.

In GEM, event instances can only be created from their associated event schemas

to ensure the validity of all event instances. The event method Object addLeaf(String

name, Object leaveValue) adds a leaf value (i.e., an attribute whose type is of Prim-

itiveType or EnumerationType specified by name). For example, assume we have

loaded the SchemeRegister event schema and two other event schemas (Start and

Stop). The code snippet below 4.6 shows how to create a SchemaRegister event

from its event schema and how to populate the event with event schemas Start and

Stop. The populated SchemeRegister event can later be dispatched to the event

schema service to register these two event schemas.

Listing 4.6: Creating SchemaRegister Event Instance

EventSchema s t a r t , s top ;

// . . . l o a d i n g s t a r t , s top even t schema

Event schemaReg i s te rSchemaEvent = schemaRegisterSchema .

42

c r e a t eE v e n t I n s t a n c e () ;

// s e t a l e a f a t t r i b u t e v a l u e

schemaReg i s te rSchemaEvent . addLeaf (” schema” , s t a r t) ;

schemaReg i s te rSchemaEvent . addLeaf (” schema” , s top) ;

// v a l i d i t y check

schemaReg i s te rSchemaEvent . v a l i d a t e () ;

Another event method ComplexValue addNode(String name) is used to add a node

attribute (i.e., an attribute whose type is of ComplexType); this method returns a

ComplexValue which can then be used to populate the leave attributes or to add

other node attributes recursively. An example of how to populate a SensorData

(4.5) is illustrated in Listing 4.7.

Listing 4.7: Creating SensorData Event Instance

Event senso rDataEvent = sensorDataSchema . c r e a t e E v e n t I n s t a n c e () ;

// add 3 tempe ra tu r e data (we can have 1 to 5 tempe ra tu r e)

s enso rDataEvent . addLeaf (” t empe ra tu r e ” , new F l o a t (3 7 . 0)) ;

s enso rDataEvent . addLeaf (” t empe ra tu r e ” , new F l o a t (3 5 . 0)) ;

s enso rDataEvent . addLeaf (” t empe ra tu r e ” , new F l o a t (3 6 . 5)) ;

// add a node a t t r i b u t e ” l o c a t i o n ”

ComplexValue l o c a t i o nVa l u e = senso rDataEvent . addNode (” l o c a t i o n ”)

;

// popu l a t e ” l o c a t i o n ” by add ing i t s l e a v i n g v a l u e s

l o c a t i o nVa l u e . addLeaf (” l o n g i t u d e ” , new Double (3 4 . 4)) ;

l o c a t i o nVa l u e . addLeaf (” l a t i t u d e ” , new Double (8 9 . 3)) ;

// v a l i d i t y check

s enso rDataEvent . v a l i d a t e () ;

During the value assignment, type checking and upper bound cardinality is

enforced by the framework. Once populated, the lower bound of attributes in an

event can be checked by invoking method void validate() defined in Event. The

method validate() will recursively go through each attribute and check whether

values assigned to an attribute match its type and whether an attribute occurrence

satisfies its attribute’s cardinality. In case of error, an EventSchemaException which

specifies the error reasons will be thrown out.

43

Once populated, events can be dispatched to their target interfaces. As men-

tioned earlier, GEM transports all events in XML form. Events are first mar-

shaled at the sender side from objects into XML, and are then unmarshaled back

from XML into objects at the receiver side. Listing 4.8 illustrates a marshaled

SchemaRegister event which was populated as shown in 4.6.

Listing 4.8: Event Sample - A SchemaRegister Event

<?xml vers ion=” 1 .0 ” encod ing=”UTF−8”?>

<!DOCTYPE Event>

<Event Schema=”gem . s e r v i c e . even t . SchemaReg i s te r ”>

<schema>

<EventSchema>

<EventSchemaName>gem . i n t e r f a c e . commmand . g e n e r i c . s t a r t</

EventSchemaName>

</EventSchema>

</schema>

<schema>

<EventSchema>

<EventSchemaName>gem . i n t e r f a c e . commmand . g e n e r i c . s top</

EventSchemaName>

</EventSchema>

</schema>

</Event>

4.2.3 Component Interface Definition

Recall that in our metamodel, every component can extend another interface and

can encapsulate other interfaces. The interface behavior is described in a statechart

variant. GEM imposes the following constraints on a component interface. In

particular, an interface can: (1) extend at most one other interface, (2) encapsulate

more than one other interface, (3) associate with exactly one behavior StateMachine

defined in SCXML.

A component interface is treated and shared as a resource. A component inter-

face can be defined and published as a ComponentInterfaceAdvertisement in XML

form. For example, the corresponding interface definition of the Sensor interface

5.2 is shown in Listing 4.9.

The Sensor interface extends gem.core.GenericComponentInterface and will re-

ceive input gemdemo.sensor.IntervalChg events from any interface and will publish

44

gemdemo.sensor.SensorData events to its external event bus. The interface behavior

definition is between the behavior tags and will be discussed later in Section 4.2.4.

Listing 4.9: Sensor Interface Definition

<?xml vers ion=” 1 .0 ” encod ing=”UTF−8”?>

<!DOCTYPE Componen t I n t e r f a c eAdve r t i s emen t>

<Componen t I n t e r f a c eAdve r t i s emen t xm l n s : j x t a=” h t t p : // j x t a . org ”>

<I n t e r f aceName> gemdemo . s e n s o r . Senso r </ In te r f aceName>

<Extend> gem . co r e . Gene r i cComponen t I n t e r f a c e </Extend>

<InputEventSchema>

<SchemaName> gemdemo . s e n s o r . I n t e r v a l C h g </SchemaName>

<Sende r In t e r f aceName>anyone</ Sende r In t e r f aceName>

</ InputEventSchema>

<OutputEventSchema>

<SchemaName>gemdemo . s e n s o r . SensorData</SchemaName>

</OutputEventSchema>

<Behav io r>

<scxml xmlns=” h t t p : //www.w3 . org /2005/07/ scxml ” xmlns:gem=”

h t t p : //gem/CORE” i n i t i a l s t a t e=” loaded ” vers ion=” 1 .0 ”>

<s t a t e i d=” e r r o r ” f i n a l=” t r u e ”>

<onen t r y>

<gem:do a c t i o n=” e r r o r ”/>

</ onen t r y>

< t r a n s i t i o n even t=”gem . i n t e r f a c e . commmand . g e n e r i c . s top ”>

<t a r g e t nex t=” stopped ”/>

</ t r a n s i t i o n>

</ s t a t e>

<s t a t e i d=” loaded ”>

<onen t r y>

<gem:do a c t i o n=” load ”/>

</ onen t r y>

< t r a n s i t i o n even t=”gem . i n t e r f a c e . commmand . g e n e r i c . s t a r t ”

>

<t a r g e t nex t=” s t a r t e d ”/>

<gem:do a c t i o n=” s t a r t ”/>

</ t r a n s i t i o n>

</ s t a t e>

45

<s t a t e i d=” s t a r t e d ”>

< t r a n s i t i o n even t=” i n t e r n a l : : t i m e r ”>

<t a r g e t nex t=” s t a r t e d ”/>

<gem:do a c t i o n=” repo r tDa ta ” outputEventName=”gemdemo .

s e n s o r . SensorData ”/>

</ t r a n s i t i o n>

< t r a n s i t i o n even t=”gemdemo . s e n s o r . I n t e r v a l C h g ”>

<t a r g e t nex t=” s t a r t e d ”/>

<gem:do a c t i o n=” c h a n g e I n t e r v a l ”/>

</ t r a n s i t i o n>

< t r a n s i t i o n even t=”gem . i n t e r f a c e . commmand . g e n e r i c . s top ”>

<t a r g e t nex t=” stopped ”/>

</ t r a n s i t i o n>

</ s t a t e>

<s t a t e f i n a l=” t r u e ” i d=” stopped ”>

<onen t r y>

<gem:do a c t i o n=” s top ”/>

</ onen t r y>

</ s t a t e>

</ scxml>

</ Behav io r>

</ Componen t I n t e r f a c eAdve r t i s emen t>

4.2.4 Component Interface Behavior Definition

The behavior of a component interface is described using SCXML with customized

semantics. SCXML stands for State Chart eXtensible Markup Language and is

a W3C standard providing a generic state-machine based execution environment

based on CCXML (Call Control XML) and Harel State Tables. SCXML syntax is

self-explanatory and, therefore, omitted here. Readers are referred to the SCXML

website [39] for specification details.

The default event handling semantic in SCXML is to silently discard an event if

it is not expected at the current state. In our framework, this semantic is modified

so that any unexpected event will cause the interface behavior state machine to

transit to a special error state indicating the detection of an invalid event sequence

during the interface event exchanging. The error state is reserved in every interface

46

behavior statechart, and upon entering this state, the interface implementation

instance can only be stopped with a Stop event.

Recall the Sensor interface behavior as defined in Figure 5.2. The Sensor inter-

face extends the ComponentGenericInterface, and its behavior is described as follows:

after being loaded into the framework, a component interface implementation is in

loaded state. Its life cycle starts when it receives a Start event, transiting to state

started. Once started, the interface will report temperature data every time an

internal timer goes off. Also, at this state, the Sensor interface can change tem-

perature collecting intervals when it receives an IntervalChg event. A Stop event

will then bring the state machine to the final state stopped. At any state, once

unexpected events occur, the interface will transit to the error state from which it

can only be stopped.

The corresponding SCXML definition of the above Sensor interface behavior is

embedded between the behavior tags as shown in Listing 4.9. The current frame-

work represents every interface behavior as a complete SCXML, no matter if it is

extending or not. It would be ideal if when an interface behavior extends another

one, the behavior extension could be represented as delta behavior changes in terms

of states, transitions, and action changes. However, such optimization is outside

the scope of this thesis and is left for future work. Finally, when an interface XML

definition is created, it can be loaded into the framework and published to interface

services.

4.2.5 Interface Implementation Definition

A component interface can have multiple types of implementation (e.g., for differ-

ent programming languages such as Java, C++, or for different hardware platforms

such as Unix, PC, cellphone). An implementation is represented as ComponentInter-

faceImplAdvertisement, which is an adaptation of JXTA’s ModuleImplAdvertisement.

Listing 4.10 shows a particular SCXML implementation of a built-in interface

called gem.core.GenericComponentInterface. The definition says that this particular

interface implementation requires JDK 1.4.1, JXTA V2.0 and Commons SCXML

V0.6. The gem.GenericComponentInterfaceSCXMLImpl is the Java class realizing

this implementation and can be found at http://gem/core/gem.jar.

Listing 4.10: SCXML Implementation of GenericComponentInterface

<?xml vers ion=” 1 .0 ” encod ing=”UTF−8”?>

<!DOCTYPE j x ta :MIA>

47

<j x ta :MIA type=” Component In te r face Imp lAdv ” xm l n s : j x t a=” h t t p : //

j x t a . org ”>

<i n t e r f aceName>

gem . co r e . Gene r i cComponen t I n t e r f a c e

</ in t e r f aceName>

<ImplName>scxml</ImplName>

<Behav io r>Commons SCXML V0 . 6</ Behav io r>

<Comp>

<Efmt> JDK1 . 4 . 1 </Efmt>

<Bind> V2 . 0 Ref Impl </Bind>

</Comp>

<Code> gem . Gener icComponent Inter faceSCXMLImpl </Code>

<PURI> h t t p : //gem/ co r e /gem . j a r </PURI>

</ jx ta :MIA>

An interface implementation advertisement is automatically generated by the

framework and should not be tempered with. An interface implementation provider

can create the above implementation advertisement by invoking method Com-

ponentInterfaceImplAdvertisement buildInterfaceImplAdv(ComponentInterface compo-

nentInterface, String code, String uri) in FrameworkCoreServer. Once created, the

implementation advertisement can be used to populate an InterfaceImplAdvRegister

event, which can be sent to InterfaceServiceInterface to register this implementa-

tion. Designers can then invoke the AbstractComponentInterfaceImpl resolveInter-

faceImpl(ComponentInterface anInterface) method in FrameworkCoreService to search

and load a compatible implementation for the specified component interface. These

steps are shown in the code snippet identified in Listing 4.11 below.

Listing 4.11: Building Publishing and Loading Component Interface Implementa-

tion

// b u i l d i n t e r f a c e imp l ementa t i on ad v e r t i s emen t

Componen t I n t e r f a c e Imp lAdve r t i s emen t g e n e r i c I n t e r f a c e Imp lA d v =

bu i l d I n t e r f a c e Imp lA d v (gene r i cComp In t e r f a c e ,

Gener icComponent Inter faceSCXMLImpl . c l a s s . getName () , ” h t tp

: // gem/ co r e /gem . j a r ”) ;

// b u i l d an I n t e r f a c e Imp lA d vR e g i s t e r even t to p u b l i s h t h i s

i n t e r f a c e imp l ementa t i on ad v e r t i s emen t

EventSchema i n t e r f a c e Imp lR e g i s t e r S c h ema = c o r e S e r v i c e .

findEventSchemaByName (”gem . s e r v i c e . i n t e r f a c e .

I n t e r f a c e Imp lA d vR e g i s t e r ”) ;

48

Event i n t e r f a c e Imp lR eg i s t e r S c h emaEv en t =

i n t e r f a c e Imp lR e g i s t e r S c h ema . c r e a t eE v e n t I n s t a n c e () ;

i n t e r f a c e Imp lR eg i s t e r S c h emaEv en t . addLeaf (” i n t e r f a c e Imp lAd v ” ,

g e n e r i c I n t e r f a c e Imp lA d v) ;

// send r e g i s t e r even t to r e g i s t e r t h i s i n t e r f a c e imp l ementa t i on

c o r e S e r v i c e . sendEvent (demoComponent . ge tAss ignedEventBus ID () ,

myGEMAddress , FrameworkCoreServ i ce .

c o l l e a g u e I n t e r f a c e S e r v i c e A d d r e s s ,

i n t e r f a c e Imp lR eg i s t e r S c h emaEv en t) ;

// l a t e r , imp l ementa t i on i s r e s o l v e d and loaded i n t o the

framework

Gener icComponent Inter faceSCXMLImpl

aGener icComponent Inter faceSCXMLImpl =

r e s o l v e I n t e r f a c e I m p l (g en e r i cComp I n t e r f a c e) ;

. . . .

4.2.6 Interface Implementation Instance

An interface implementation instance represents a loaded interface implementation

in GEM. An implementation instance will have an associated state machine exe-

cuting engine populated using its interface behavior definition. The instance will

have an assigned external EventBus and, if encapsulating others, it can request an

internal EventBus as well. Also, the instance will get a UUID to uniquely identify

itself. After set-up is complete, the interface instance is ready to react to incoming

events from the external and internal buses, and this interface instance can be ad-

dressed using any one of the four interface addressing formats as mentioned earlier

in Section 4.2.1.

GEM currently supports an interface to be easily implemented as an scxml

implementation. Specifically, developers implement an interface by implementing

the event actions and guard condition tests associated with transitions as defined

in the interface definition. For each event action xyz, developers should implement

a method void doActionXyz(Event e), where e is the trigger event of the transition.

For each guard condition test pqr, developers should implement a method boolean

49

testPqr(Event e), where e is the trigger event of the transition. These implemented

actions and tests will be used by a state machine executing engine at runtime.

GEM integrates Apache Commons SCXML as the default built-in state machine

executing engine [38]. Every time an interface implementation is loaded into the

framework, its interface behavior definition is used to populate a state machine

executing engine, which is then associated with the implementation instance. GEM

will make sure that the implementation instance will receive only those events

it wants and will only send events as specified. Once an event is received, the

implementation instance can then ask its associated executing engine to handle the

event. The engine will, in turn, rely on its associated implementation instance to

provide the actual guard condition tests and event handling actions.

4.3 Framework Built-in Component Interfaces

This section explains the rest of the framework, which is recursively designed fol-

lowing our proposed interface-based development process in an event/RPC-hybrid

style. In particular, the rest of the framework is decomposed into four built-in

component interfaces as shown in Figure 4.5(a). The event schemas used by these

four interfaces are shown in Figure 4.5(b). In this section, we will employ notation

introduced in section 3.5 wherever space-constraint is not a problem.

4.3.1 ComponentGenericInterface

Similar to the Object class in the JAVA programming language, this interface re-

sides at the very top of the interface-tree. It defines the basic behavior all interfaces

in the framework must preserve during their life cycle, and it is the ancestor of all

other component interfaces.

As shown in Figure 4.6, this ComponentGenericInterface defines the common

interface behaviors as follows:

1. An interface has a special error state. At any state, when it receives an

unexpected event, the interface will transit to its error state and will execute

error action. Once at error state, the interface can only accept a Stop event,

which stops the interface life cycle. At error state, all events except for Stop

will be treated as unexpected events and will, again, cause the interface to

transit back to its error state.

50

ComponentGenericInterface

<<in>>Start
<<in>>Stop

SchemServiceInterface

<<in>>SchemaRegister
<<in>>SchemaSearch
<<in>>SchemaRemove
<<out>>SchemaSearchReturn

InterfaceServiceInterface

<<in>>InterfaceRegister
<<in>>InterfaceImplRegister
<<in>>InterfaceSerach
<<in>>InterfaceImplSerach
<<in>>InterfaceRemove
<<in>>InterfaceImplRemove
<<out>>InterfaceSearchReturn
<<out>>InterfaceImplSearchReturn

ReactiveComponentInterface

<<in>>Assemble
<<out>>AssembleReturn

(a) Component Interfaces

Start

<<schema>>

Stop

<<schema>>

Assemble

interface : String [1..1]
eventBusID : String [0..1]

<<schema>>

AssembleReturn

interface : String [1.. 1]
address : GEMAddress [1..1]

<<schema>>

SchemaSearch

schemaName : String [1..1]

<<schema>>

SchemaRegister

schema : Schema [1.. *]

<<schema>>
SchemaSearchReturn

schemaName : String [1..1]
schema : Schema [1..*]

<<schema>>

InterfaceRegister

interface : Interface [1..*]

<<schema>>

InterfaceImplRegister

interfaceImplAdv : InterfaceImplAdv [1..*]

<<schema>>

InterfaceSearch

interfaceName : String[1..1]

<<schema>>
InterfaceSearchReturn

interfaceName : String [1..1]
interface : Interface [1..*]

<<schema>>

SchemaRemove

schemaName : String[1..*]

<<schema>>

InterfaceRemove

interfaceName : String [1..*]

<<schema>>

InterfaceImplSearch

interfaceName : String[1..1]
implName : String[0..1]

<<schema>>

InterfaceImplSearchReturn

interfaceName : String[1..1]
implName : String[0..1]
interfaceImplAdv : InterfaceImplAdv[1..*]

<<schema>>

InterfaceImplRemove

interfaceName : String[1..*]
implName : String[1..*]

<<schema>>

File: D:\myworkspace\thesis\design\debs\debs.mdl 6:41:15 PM Wednesday, February 06, 2008 Class Diagram: DEBS Framework

(b) Interface Event Schemas

Figure 4.5: Framework Built-in Interfaces and Event Schemas

51

ComponentGenericInterfaceStart,
Stop

Start/start
started

Stop stopped

En/stop

ReactiveComponentInterfaceAssemble

stopped

En/stop

Re active Co m po ne ntInte rfa ce SCXMLIm pl

+ doActionStart(Event start)
+ doActionStop(Event stop)
+ doActionAssemblingInterface(Event assemble)

Ab s t ra c t Co m p o n e n t In t e rfa c e S CXMLIm p l

Core Com pone nt

< < singlet on> > ApplicationCom pone nt

AssembleReturn

error

En/error
Stop

error

En/error
Stop

loaded

En/load

loaded

En/load

Co m po ne ntGe ne ricInte rfa ce SCXMLIm pl

+ doActionStart(Event start)
+ doActionStop(Event stop)
+ doActionError(Event error)
+ doActionLoad(Event none)

Start/start
started

Stop

Figure 4.6: Component Generic Interface and Reactive Component Interface

2. An interface’s life cycle starts once it is loaded into the framework (at loaded

state). An interface can run action load to perform initialization. Once loaded,

and after it receives a Start event, it executes action start and then becomes

stated. It is expected that this stated state is expanded by sub-interfaces to

reflect application specific behaviors.

3. At started, when it receives a Stop event, the interface stops running and

transits to state stopped.

4. The stopped state is a final state and formally represents the end of the life

cycle. When it enters this state, the interface will call action stop to perform

finalization tasks before it quits.

The ComponentGenericInterface has a default SCXML implementation – Com-

ponentGenericInterfaceSCXMLImpl. The method doActionLoad, doActionStart, doAc-

tionStop and doActionError defines the actual semantics of the corresponding action

load, start, stop and error in ComponentGenericInterface. The ComponentGenericIn-

terfaceSCXMLImpl is expected to be extended by other interface SCXML imple-

mentations to achieve behavioral extension.

52

4.3.2 ReactiveComponentInterface

In our framework, a reactive component is treated as a generic container which can

assemble other component interfaces and manage their life cycles. The Reactive-

ComponentInterface defines the behavior of such a reactive component. In addition

to Start and Stop, this interface can also react to an Assemble event and will send

out an AssembleReturn event. It extends ComponentGenericInterface behaviors with

the following delta changes as shown in Figure 4.6:

• At loaded, when an Assemble event is received, which contains an interface

name to be assembled and an optional event bus ID, this ReactiveCompo-

nentInterface will invoke action AssemblingInterface to load the interface im-

plementation into the framework. The life cycle of the loaded interface will

be managed by this ReactiveComponentInterface. Once an implementation of

the specified interface is loaded, this interface will send out an AssembleReturn

event to return the GEMAddress of the newly assembled interface instance.

• At loaded, when notified to start, the start action in ReactiveComponentInter-

face will notify all its assembled interface instances to start.

• Similarly, at started, when notified to stop, the stop action in ReactiveCompo-

nentInterface will notify all its assembled interface instances to stop.

For the ReactiveComponentInterface interface, GEM provides an SCXML imple-

mentation named ReactiveComponentInterfaceSCXMLImpl, from which both Core-

Component and ApplicationComponent are derived. On each framework host, there

is only one CoreComponent and there can be multiple ApplicationComponents as

needed. By default, a CoreComponent assembles two core interfaces, SchemaServi-

ceInterface and InterfaceServiceInterface, both of which will be discussed later.

4.3.3 SchemaServiceInterface

This built-in interface models GEM’s event schema registry and provides event

schema services via events. In particular, other interfaces can send events to this

interface to request services such as registering or unregistering event schemas,

searching existing event schemas. In GEM, an event schema must be registered

before its events can be created and used. After an event schema has been removed,

all its ongoing events will be treated as illegal and not understandable until this

event schema is registered again.

53

SchemaServiceInterface
SchemaRegister
SchemaSearch
SchemaRemove

Start/start
started

Stop stopped

En/stop

SchemaSearchReturn

Sche maSe rvice Inte rfa ce SCXMLIm pl

+ doActionRegisterSchema(Event schemaRegister)
+ doActionSearchSchema(Event schemaSearch)
+ doActionRemoveSchema(Event schemaRemove)

error

En/error
Stop

loaded

En/load

ComponentGenericInterface

Start,
Stop

Start/start
started

Stop stopped

En/stop

error

En/error
Stop

loaded

En/load

Co m po ne ntGe ne ricInte rfa ce SCXMLIm pl

+ doActionStart(Event start)
+ doActionStop(Event stop)
+ doActionError(Event error)
+ doActionLoad(Event none)

Figure 4.7: Built-in Interface: Event Schema Service

54

The SchemaServiceInterface is pre-loaded in the core component during frame-

work bootstrapping. Though an event can be directly addressed to an individ-

ual SchemaServiceInterface instance, by default, an event is sent as a group to all

instances of all types of implementation of this interface using interface specific

addressing 4.2.1 (i.e., gem://gem.core.EventSchemaServiceInterface/*/*). A single

SchemaRegister event, for example, will cause its embedded event schemas to be

registered in all available SchemaServiceInterface implementation instances. Simi-

larly, a single SchemaSearch event will be answered by all available SchemaServi-

ceInterface implementation instances. The requester will usually receive the answer

from the nearest SchemaServiceInterface instance with the answer. The remaining

answers are silently discarded.

The SchemaServiceInterface extends ComponentGenericInterface with delta changes

as shown in Figure 4.7. In addition to Start and Stop, this interface will re-

ceive SchemaRegister, SchemaSearch and SchemaRemove events, and will publish

SchemaSearchReturn events. The event schemas are defined in Figure 4.5(b). The

started state is extended with the following additional transitions:

1. A SchemaRegister event contains multiple event schemas to be registered.

When a SchemaServiceInterface receives the event, it will call action register-

Schema to register the event schemas embedded in the event.

2. A SchemaSearch event contains an event schema name to be searched. When

a SchemaServiceInterface receives the event, it will call action searchSchema to

perform the search and will return its search result in a SchemaSearchReturn

event to the sender interface. The interface instance will not answer the search

if it cannot find the specified event schema.

3. A SchemaRemove event contains multiple event schema names to be removed

from the registry. When a SchemaServiceInterface receives the event, it will

call action removeSchema to remove the event schemas from its registry

4.3.4 InterfaceServiceInterface

This built-in interface models GEM’s registry for component interfaces and their

implementations. It provides services to other interfaces via event exchanging. In

particular, other interfaces can send events to this interface to request services such

as registering or unregistering interface, search interface, registering or unregistering

interface implementation, and search interface implementation.

55

In GEM, to use an interface, its associated event schemas, interface definition

and implementation must be registered. If a required event schema is unexpectedly

removed from the framework, the interface will not be able to receive or send corre-

sponding events and, therefore, may not be able to function properly. The current

framework does not check the dependency between event schemas and interfaces

during event schema removal. This feature is left for future work.

The InterfaceServiceInterface is pre-loaded in the core component during frame-

work bootstrapping. Similar to SchemaServiceInterface, an interface usually sends

an event to all InterfaceServiceInterface instances using interface specific addressing

4.2.1. In this way, a single InterfaceRegister event will cause embedded interfaces to

be registered in all available InterfaceServiceInterface implementation instances.

The InterfaceServiceInterface extends ComponentGenericInterface, and the delta

changes are shown in Figure 4.8. In addition to Start and Stop, this interface

introduces six more input event schemas and two more output event schemas. These

event schemas are defined in Figure 4.5(b). The started state is extended with the

following additional transitions:

1. An InterfaceRegister event contains at least one interface definition to be reg-

istered. When an InterfaceServiceInterface receives the event, it will call action

registerInterface to register embedded interfaces in its registry.

2. An InterfaceImplRegister event contains at least one interface implementa-

tion definition to be registered. When an InterfaceServiceInterface receives

the event, it will call action registerInterface to register embedded interface

implementation definitions in its registry. The interface implementation reg-

istration fails if its implemented interface definition is not found.

3. An InterfaceRemove event contains at least one interface name to be removed.

When an InterfaceServiceInterface receives the event, it will call action re-

moveInterface to remove the specified interfaces from its registry.

4. An InterfaceImplRemove event contains at least one pair of interfaces and its

implementation names to be removed. When an InterfaceServiceInterface re-

ceives the event, it will call action removeImplInterface to remove from its

registry the specified interface implementation if the interface name and im-

plementation name match the ones specified in the event.

5. An InterfaceSearch event contains one interface name to be searched. When an

InterfaceServiceInterface receives the event, it will call action searchInterface to

56

InterfaceServiceInterface
InterfaceRegister,
InterfaceImplRegister,
InterfaceSearch,
InterfaceImplSearch
InterfaceRemove
InterfaceImplRemove

Start/start
started

Stop stopped

InterfaceSearchReturn,
InterfaceImplSearchReturn

Inte rface Se rvice Inte rfa ce SCXMLIm pl

+ doActionRegisterInterface(Event interfaceRegister)
+ doActionRegisterInterfaceImpl(Event interfaceImplRegister)
+ doActionSearchInterface(Event interfaceSearch)
+ doActionSearchInterfaceImpl(Event interfaceImplSearch)
+ doActionRemoveInterface(Event interfaceRemove)
+ doActionRemoveInterfaceImpl(Event interfaceImplRemove)

error

Stop

loaded

En/error

En/load En/stop

ComponentGenericInterface
Start,
Stop

Start/start
started

Stop stopped

En/stop

error

En/error
Stop

loaded

En/load

Co m po ne ntGe ne ricInte rfa ce SCXMLIm pl

+ doActionStart(Event start)
+ doActionStop(Event stop)
+ doActionError(Event error)
+ doActionLoad(Event none)

Figure 4.8: Built-in Interface: Interface Service

57

search the specified interface in its registry. If the specified interface is found,

this InterfaceServiceInterface interface will send out an InterfaceSearchReturn

event to the original sender interface.

6. An InterfaceImplSearch event contains one interface name and one optional

implementation name to be searched. When an InterfaceServiceInterface re-

ceives the event, it will call action searchImplInterface to search the specified

interface implementation in its registry. If the implementation name is not

specified in the event, all types of implementation for the given interface

are returned; otherwise, only those implementation definitions whose name

matches the specified name are returned. The InterfaceServiceInterface will

send out an InterfaceImplSearchReturn event to the original sender interface if

the specified implementations are found.

The framework provides a default SCXML implementation InterfaceServiceIn-

terfaceSCXMLImpl which implements the required actions: doActionRegisterInter-

face, doActionRegisterInterfaceImpl, doActionRemoveInterface, doActionRemoveInter-

faceImpl, doActionSearchInterface and doActionSearchInterfaceImpl.

58

Chapter 5

Case Studies

In this chapter, we illustrate our proposed interface-based DEBS development pro-

cess via two case studies – Temperature Sensor System and e-Promotion System.

By constraining our interface implementation to only use externalPublish(Event)

for event publishing (i.e., an event is always published as a normal event and can

be received by all interfaces that are interested in it), we have specifically designed

these two applications in a pure DEBS style.

5.1 Proposed Development Process

With the proposed DEBS metamodel and its supporting framework implementa-

tion, we can now build DEBS applications with behavior-enhanced interfaces. The

metamodel enables us to model DEBS applications as its instances; the frame-

work implementation provides an environment where DEBS applications can be

designed, implemented and deployed. In particular, a DEBS application can be

developed in the following steps:

1. decomposing a DEBS application by using interfaces, compositions and event

schemas.

2. implementing interfaces by providing event actions and guard condition tests.

3. instantiating a DEBS application by assembling the required interface imple-

mentation and deploying to the supporting framework.

59

5.2 Temperature Sensor System

The Temperature Sensor System is a simple DEBS system collecting temperature

data from its sensors. In this system, there is one information center and multiple

temperature sensors. Each sensor reports temperature data to the information

center at certain intervals. The information center collects the temperature data

from sensors and can also command sensors to change the interval between their

two data reports.

In the rest of this section, we first discuss the event schemas design of the system.

Then, we explain the component interfaces of the system in detail. The complete

schema definitions and component interface definitions can be found in Listing B.1

and Listing B.2.

5.2.1 Event Schemas

The Temperature Sensor System is simple and only needs two event schemas: Sen-

sorData and IntervalChange. The event schema design is shown in Figure 5.1.

SensorData This event schema represents the temperature data report published

by a Sensor interface. It has a temperature attribute of float type and has an

attribute location which is typed as a complex type called GPSPosition. Any value of

SensorData can have one to five temperature values and must have one GPSPosition

value. The GPSPosition complex type has two attributes, longitude and latitude,

both of which are of type float. Any value of GPSPosition must have one longitude

value and one latitude value.

IntervalChange This event schema represents an interval change published by

an information center. An IntervalChange event has one interval of Integer type indi-

cating the new time interval between two data reports expected by the information

center interface. In particular, an event with interval set to 1000 means an expected

interval of 1000ms.

5.2.2 Component Interfaces

We decompose the Sensor system into two interfaces, Sensor and InforCenter. The

design of these two interfaces is shown in Figure 5.2.

60

IntervalChg

interval : Integer [1..1]

<<schema>>

GPSPosition

longitude : Float[1..1]
latitude : Float[1..1]

<<complex>>

SensorData

temperature : Float [1..1]

<<schema>>

1..1

+location

1..1

File: D:\myworkspace\thesis\design\debs\debs.mdl 5:26:46 PM Monday, February

Figure 5.1: Sensor System Event Schemas

Sensor

Start/start
started

Stop stopped

En/stop

SensorData

error

En/error

Stop

loaded

En/loaded

ComponentGenericInterfaceStart,
Stop

Start/start
started

Stop stopped

En/stop

error

En/error
Stop

loaded

En/loaded

internal::timer/reportData (SensorData)
IntervalChg: changeInterval

IntervalChg InforCenter

Start/start
started

Stop stopped

En/stop

SensorData

error

En/error

Stop

loaded

En/loaded

internal::timer/toggleInterval (IntervalChg)
SensorData/collectData

IntervalChg

Figure 5.2: Sensor System Component Interfaces

61

Sensor This interface models the temperature sensor which will publish its tem-

perature data report from time to time. The Sensor interface extends Component-

GenericInterface by adding the following transitions to started state:

1. At started state, when the internal timer goes off, the Sensor interface will

invoke reportData action to publish its temperature report via a SensorData

event which can pack at most five temperature data.

2. At started state, the sensor will change its report interval by invoking action

changeInterval when it receives an event of IntervalChg which carries the new

interval.

InforCenter This interface models the information center which will collect the

temperature report and will toggle the report interval from time to time. The

InforCenter interface also extends the built-in ComponentGenericInterface and will

receive SensorData and publish IntervalChange events. The delta changes are shown

as below:

1. At started state, when the internal timer goes off, the InforCenter will call

toggleInterval action to publish a new temperature report interval via an In-

tervalChg event.

2. At started state, when a SensorData event has been received, the InforCenter

will record this report by invoking collectData action.

5.2.3 Component Interface Implementation

We chose to implement the above component interfaces in SCXML implementation

which specifies that each action xyz in a component interface will have its cor-

responding action function doActionXyz(Event e) in its SCXML implementation.

The function name is the action name with the first letter capitalized and preceded

with doAction and the event e is the trigger event that causes the action xyz to be

invoked.

We use SensorSCXMLImpl and InforCenterSCXMLImpl to implement Sensor in-

terface and InforCenter interface, respectively. Both interface implementations spe-

cialize the built-in ComponentGenericInterfaceSCXMLImpl which provides a default

internal timer and the default logic of being loaded, stopped, and error handling,

62

which can be overridden by its subclasses, if necessary. In our simple system, Sen-

sorSCXMLImpl and InforCenterSCXMLImpl use only externalPublish(Event) to pub-

lish events, and do not override the default actions. The interface implementation

design is shown in Figure 5.3.

SensorSCXMLImpl The action reportData in Sensor interface is implemented

via the function doActionReportData(Event timer) in SensorSCXMLImpl where timer

is the internal timer event. The action changeInterval in Sensor interface is im-

plemented via the function doActionChangeInterval(Event intervalChg) in the Sen-

sorSCXMLImpl where intervalChg is the IntervalChg event received by Sensor inter-

face.

InforCenterSCXMLImpl The action collectData in InforCenter interface is im-

plemented via the function doActionCollectData(Event sensorData) in InforCenter-

SCXMLImpl where sensorData is the SensorData event received by InforCenter inter-

face. The action toggleInterval in InforCenter interface is implemented via the func-

tion doActionToggleInterval(Event timer) in InforCenterSCXMLImpl where the timer

is the internal timer event. Also, the doActionToggleInterval(Event timer) publishes

an IntervalChg event as defined in InforCenter interface.

5.2.4 Component Interface Deployment

Figure 5.4 shows an instance of the Temperature Sensor System which consists

of one InforCenter interface implementation instance and multiple Sensor interface

implementation instances communicating via their external event bus. We do not

specify the hosting reactive component of these interface implementation instances.

We assume the case where each interface implementation instance is deployed to

its own ApplicationComponent which is remotely located to each other.

5.3 e-Promotion System

The e-Promotion System is a location-aware DEBS application developed with

our proposed behavior-enhanced interfaces. As depicted in Figure 5.5, this system

consists of a shopping mall and its shoppers:

• the shopping mall can count the shoppers currently in the mall

63

Com ponentGenericInterfaceSCXMLIm pl

+ doActionStart(Event start)
+ doActionStop(Event stop)
+ doActionError(Event error)
+ doActionLoaded(Event none)

SensorSCXMLIm pl

+ doActionReportData(Event timer)

Sensor

Start/start
started

Stop stopped

En/stop

SensorData

error

En/error

Stop

loaded

En/loaded

ComponentGenericInterfaceStart,
Stop

Start/start
started

Stop stopped

En/stop

error

En/error
Stop

loaded

En/loaded

internal::timer/reportData (SensorData)
IntervalChg: changeInterval

IntervalChg

InforCenter

Start/start
started

Stop stopped

En/stop

SensorData

error

En/error

Stop

loaded

En/loaded

internal::timer/toggleInterval (IntervalChg)
SensorData/collectData

+ doActionChangeInterval(Event intervalChg)

InforCenterSCXMLIm pl

+ doActionCollectData(Event sensorData)
+ doActionToggleInterval(Event timer)

IntervalChg

Figure 5.3: Sensor System Interface SCXML Implementation Diagram

s1:Sensor ic:InforCenters2:Sensor ...

Figure 5.4: Sensor System Interface Instance Diagram

64

customer
not in mall

customer
in mall

promotion

mall range

Figure 5.5: e-Promotion System Overview

• the shopping mall can send its promotion information to customers currently

in the mall

• shoppers will get promotion information when they are in the mall

• shoppers will not get promotion information when they are not in the mall

5.3.1 System Design Overview

Figure 5.6 illustrates the interface-based DEBS design of the e-Promotion System,

which is decomposed into three reactive component interfaces: PromotionBroad-

caster, PromotionReceiver and PersonalGPS, where

• PromotionBroadcaster interface represents a promotion broadcaster and can

be installed in a shopping mall

• PromotionReceiver interface represents a promotion receiver and can be de-

ployed in a shopper’s mobile device (e.g., cellphone, blackberry)

65

ComponentGenericInterface

<<in>>Start
<<in>>Stop

<<in>>ShopperEntered
<<in>>ShopperLeft
<<in>>MallLocationQuery
<<out>>MallLocation
<<out>>Promotion

PersonalGPS

<<out>> GPSPosition

PromotionBroadcaster PromotionReceiver

<<in>>MallLocation
<<in>>Promotion
<<out>>ShopperLeft
<<out>>ShopperEntered
<<out>>MallLocationQuery

Figure 5.6: e-Promotion System Interfaces Overview

Tom:PromotionReceiver

:PersonalGPS

mall:PromotionBroadcasterJoy:PromotionReceiver

:PersonalGPS

...

Figure 5.7: e-Promotion System Instance Diagram

• PersonalGPS interface represents the device that provides the current GPS

position. The GPS device can be the same as the shopper’s mobile device or

it can be a third-party mobile device.

The instance diagram Figure 5.7 shows an example of an e-Promotion System.

In this diagram, instances of PromotionReceiver (possessed by shoppers) and the

instance of PromotionBroadcaster (owned by a mall) communicate via their external

event bus. Each PromotionReceiver obtains its current location from its encapsu-

lated PeronslGPS instance (represents a GPS device).

In the rest of this section, we discuss the event schema design of the system,

then explain the component interfaces of the system in detail. The complete schema

definitions and component interface definitions can be found in Listing C.1 and

Listing C.2.

66

GPSPosition

longitude : Float [1..1]
latitude : Float [1..1]

<<schema>>

MallLocation

mallName : String [1..1]
mallInterfaceAddr : GEMAddress [1..1]

<<schema>>

1..1
+mallGPSPosition
1..1

MallLocationQuery

mallName : String [1..1]

<<schema>>

Promotion

prodName : String [1..1]
description : String [1..1]

<<schema>>

ShopperEntered

<<schema>>

ShopperLeft

<<schema>>

File: D:\myworkspace\thesis\design\debs\debs.mdl 9:25:57 PM Thursday,

Figure 5.8: e-Promotion System Event Schemas Diagram

5.3.2 Event Schemas

As shown in Figure 5.8, the e-Promotion system uses six event schemas: GPSPosi-

tion, MallLocationQuery, MallLocation, Promotion, ShopperEntered and Shopper-

Left.

GPSPosition This event schema defines the structure of a GPS position with

two attributes, longitude and latitude. Both attributes are of float type and must

occur exactly once in every GPSPosition event.

MallLocationQuery This event schema defines the mall location query event

published from PromotionReceiver interface. It defines only one attribute: mallName

the name of the mall whose GPS position a receiver interface is looking for. Every

event instance of this schema must have exactly one mallName.

MallLocation This event schema defines the type of the mall location event

published from the PromotionBroadcaster interface. It defines three attributes:

1. mallName is a String and is the name of the mall whose GPS location is

represented in this event

2. mallInterfaceAddr is of type GEMAddress and is the PromotionBroadcaster in-

terface address associated with the mall specified by mallName

67

3. mallGPSPosition is the GPS position of the mall specified in mallName. The

mallGPSPosition attribute is a complex type gemdemo.promotion.GPSPosition

as defined above.

All attribute must appear exact once in every event instance of this type.

Promotion This event schema defines the type of a promotion event published

from the PromotionBroadcaster interface. It defines two attributes: prodName and

description. Both attributes are of String type and both must appear exact once in

every event instance of this type.

ShopperEntered A ShopperEntered event represents that a shopper has entered

the mall and is published by a PromotionReceiver interface. The ShopperEntered

schema has no attributes.

ShopperLeft A ShopperLeft event represents that a shopper has left the mall

and is published by a PromotionReceiver interface. The ShopperLeft schema has no

attributes.

5.3.3 PromotionBroadcaster

The PromotionBroadcaster interface models a promotion broadcaster in a shopping

mall. The PromotionBroadcaster extends the ComponentGenericInterface, and will

receive ShopperEntered, ShopperLeft and MallLocationQuery events and will publish

MallLocation and Promotion events.

Figure 5.9 depicts the detailed interface definition. The delta interface behavior

of PromotionBroadcaster is described as below:

1. At started, when the PromotionBroadcaster receives a MallLocationQuery event,

it will call action answerLocation which will publish its predefined location via

a MallLocation event.

2. At started, when the PromotionBroadcaster receives a ShopperEntered event,

it will call action increaseCount to increase the count of shoppers in the mall.

3. At started, when the PromotionBroadcaster receives a ShopperLeft event, it

will call action decreaseCount to decrease the count of shoppers in the mall.

68

ShopperEntered,
ShopperLeft,
MallLocationQuery

PromotionBroadcasterSCXMLIm pl

+ doActionAnswerLocation(Event locationQuery)
+ doActionSendNextPromotion(Event timer)
+ doActionIncreaseCount(Event ShopperEntered)
+ doActionDecreaseCount(Event ShopperLeft)

MallLocation,
Promotion

Start/start
started

Stop stopped

En/stop

ShopperEntered/increaseCount
ShopperLeft/decreaseCount error

En/error
Stop

MallLocationQuery/answerLoation(MallLocation)
internal::timer/sendNextPromotion(Promotion)

loaded

En/loaded

ComponentGenericInterface

Start,
Stop

Start/start
started

Stop stopped

En/stop

Co m po ne ntGe ne ricInte rfa ce SCXMLIm pl

+ doActionStart(Event start)
+ doActionStop(Event stop)

error

En/error
Stop

+ doActionError(Event error)

loaded

En/load

+ doActionLoad(Event none)

Figure 5.9: e-Promotion System: PromotionBroadcaster Interface

69

4. At started, when an internal timer goes off, the PromotionBroadcaster will

call action sendNextPromotion which will publish a Promotion event provided

there are shoppers in the mall.

The PromotionBroadcaster interface is implemented by PromotionBroadcaster-

SCXMLImpl, an SCXML implementation that extends ComponentGenericInterfaceSCXM-

LImpl. The PromotionBroadcasterSCXMLImpl implements four required actions:

doActionAnswerLocation, doActionSendNextPromotion, doActionIncreaseCount and doAc-

tionDecreaseCount.

5.3.4 PromotionReceiver

The PromotionReceiver interface represents a promotion receiver which can be de-

ployed in a shopper’s mobile device (e.g., cellphone, blackberry). As shown in

Figure 5.6, this interface extends ComponentGenericInterface. Also, the Promotion-

Receiver interface encapsulates a PersonalGPS interface from which it can obtain a

GPSPosition event representing its current location.

Figure 5.10 illustrates the interface definition details. The PromotionReceiver

interface will receive MallLocation and Promotion events and will publish MallLoca-

tionQuery, ShopperEntered and ShopperLeft events. The PromotionReceiver expands

the started state into a composite one with the following delta behavior changes:

1. At state started, a PromotionReceiver automatically enters mallLocating state.

Each time it enters this state, it will call action locateMall to publish a Mal-

lLocationQuery. If it receives a GPSPosition (published by its encapsulated

PersonalGPS interface) or a Promotion event, it will transit back to this state.

When it receives a MallLocation event, it will save this mall location by in-

voking action saveMallLocation and then transits to state mallLocated.

2. At state mallLocated, when it receives a GPSPosition event, if the condition

test !inRange returns true (i.e., this receiver is not in the mall), the receiver will

transit to state outside. If it receives a GPSPosition event and the condition

test inRange returns true (i.e., a customer enters the mall from outside), the

receiver will first execute action enterMall and then transit to state inside. The

action enterMall publishes a ShopperEntered event. It will stay in this state if

it receives MallLocation or Promotion events.

3. At state inside, if a receiver receives a Promotion event, it will call showPromo-

tion to display this promotion information. If it recieves MallLocation events,

70

MallLocation,
Promotion

PromotionReceiverSCXMLIm pl

+ doActionEnterMall(Event gpsPosition)
+ doActionLeaveMall(Event gpsPosition)

MallLocationQuery,
ShopperEntered,
ShopperLeft

Start/
start

started

Stopstopped

En/stop

error

En/error

Stop

loaded

En/loaded

mallLocating

En/locateMall(MallLocationQuery)

GPSPosition
Promotion

mallLocated

MallLocation/
saveMallLocation

inside

outside

GPSPos
itio

n [
inR

an
ge

] /

en
ter

Mall
 (S

ho
pp

erE
nte

red
)

GPSPosition [!inRange]

MallLocation
Promotion
GPSPosition [!inRange]

MallLocation
GPSPosition [inRange]
Promotion/showPromotion

GPSPosition
[!inRange] /
leaveMall
(ShopperLeft)

GPSPosition
[inRange] /
enterMall
(ShopperEntered)

+ boolean testInRange(Event gpsPosition)

+ doActionLocateMall(Event start)
+ doActionSaveMallLocation(Event mallLocation)
+ doActionShowPromotion(Event promotion)

ComponentGenericInterface

Start,
Stop

Start/start
started

Stop stopped

En/stop

error

En/error
Stop

loaded

En/load

Co m po ne ntGe ne ricInte rfa ce SCXMLIm pl

+ doActionStart(Event start)
+ doActionStop(Event stop)
+ doActionError(Event error)
+ doActionLoad(Event none)

MallLocation
Promotion

Figure 5.10: e-Promotion System: PromotionReceiver Interface

71

it will stay in this state. If the receiver gets a GPSPosition and the condition

test inRange returns true (i.e., the shopper is still in the mall), it stays in

inside. If it receives a GPSPosition event and it detects that it is not in the

mall (i.e., !inRange returns true), it knows that the shopper has left the mall.

It will first invoke leaveMall and then transit to state outside. The action

leaveMall will publish a ShopperLeft event.

4. At state outside, if the receiver receives a GPSPosition event and this receiver

is still outside the mall, it will do nothing and just remain in outside. If it

receives MallLocation or Promotion events, if will also stay in this state. If the

receiver receives a GPSPosition event and the condition test inRange is true

(i.e., this receiver moves from outside to inside the mall), the receiver will

first call enterMall and then transit to state inside. The action enterMall will

publish a ShopperEntered event.

The PromotionReceiver interface is implemented by PromotionReceiverSCXM-

LImpl, an SCXML implementation that extends ComponentGenericInterfaceSCXM-

LImpl. The PromotionReceiverSCXMLImpl implements five actions and one condition

test: doActionEnterMall, doActionLeaveMall, doActionLocateMall, doActionSaveMall-

Location, doActionShowPromotion and testInRange.

5.3.5 PersonalGPS

In this e-Promotion system, the device that provides the current GPS position is

abstracted as a PersonalGPS interface, no matter whether the device is in the same

mobile device or in a separate one. The PersonalGPS interface is particularly de-

signed to be like a service for its colleague interfaces: every second, it publishes a

GPSPosition event to its external event bus so that all other interfaces which are

also attached to this event bus can receive this location information if they want.

The PersonalGPS interface extends ComponentGenericInterface and will send out

GPSPosition events. The behavior of this interface is very simple: once started,

when it receives an internal::timer event, it will execute action reportLocation which

will populate a GPSPosition event with the current location and publish the event.

The PersonalGPS interface is designed to be encapsulated by the PromotionRe-

ceiver interface. Recall in Section 3.4.2, we mention that an encapsulating interface

instance sets up a private environment that is shared only by itself and its encap-

sulated interface instances. In this particular case, the PromotionReceiver interface

72

PersonalGPS

Start/start
started

Stop stopped

En/stop

GPSPosition

error

En/error

Stop

loaded

En/loaded

ComponentGenericInterfaceStart,
Stop

Start/start
started

Stop stopped

En/stop

Com ponentGenericInterfaceSCXMLIm pl

+ doActionStart(Event start)
+ doActionStop(Event stop)error

En/error
Stop

+ doActionError(Event error)
loaded

En/loaded

+ doActionLoaded(Event none)

PersonalGPSSCXMLIm pl

+ doActionReportLocation(Event timer)

internal::timer/reportLocation
(GPSPosition)

MallLocation,
Promotion

MallLocationQuery

Start/
start

started

Stopstopped

En/stop

error

En/error

Stop

loaded

En/loaded

BroadcasterLocating

En/locateBroadcasters(MallLocationQuery)

GPSPosition

MallLocated

MallLocation/
saveMallLocation

inside

outside

GPSPos
itio

n [
inR

an
ge

] /

en
ter

Mall
 (re

gis
ter

)

GPSPosition [!inRange]

GPSPosition [!inRange]

GPSPosition [inRange]
Promotion/showPromotion

GPSPosition
[!inRange] /
leaveMall (unregister)

GPSPosition
[inRange] /
enterMall (register)

Figure 5.11: e-Promotion System: PersonalGPS Interface

73

will hide the PersonalGPS interface by assigning its internal event bus to the Person-

alGPS’s external event bus. Therefore, all GPSLocation events from an encapsulated

PersonalGPS interface instance will only be published in a private environment and

will only be received by its encapsulating PromotionReceiver interface instance.

The PersonalGPS interface is implemented by PersonalGPSSCXMLImpl, an SCXML

implementation that extends ComponentGenericInterfaceSCXMLImpl. The method

doActionReportLocation implements the action reportLocation in interface, which

will publish a GPSPosition event as defined.

5.4 Experience Summary

We see a promising result of modularization using behavior-enhanced interfaces.

As illustrated in the interfaces design, event handling is not less-organized action

anymore. Indeed, event receiving, processing and publishing are now precisely

modeled in an interface. In addition, we found this behavior-enhanced interface

also serves as a very good documentation mechanism and unambiguously conveys

the desired interface behaviors.

The DEBS design is simplified with the help of GEM. With GEM, all we have to

do is to define event schemas, define interfaces, implement interface and deploy. In

fact, for the first two, we only need to construct XML files. There is a little coding

in interface implementation which requires us to implement the actions and guard

condition tests as defined in the interface behavior. The coding involved in the

deployment is very predictable. We just need to launch the framework, deploy the

interface implementation and then we can tell the framework to run the application.

GEM handles the rest of the work such as event dispatching and interface behavior

enforcement.

74

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Current DEBS development is not modular and is still an informal process poorly

supported by current software engineering methodologies [7, 28]. In this thesis, we

advocate that by designing a new DEBS metamodel with extended behavioral in-

terfaces and high-level structure mechanisms, we can (1) define an interface-based

modular approach to model and design DEBS applications, (2) implement a proto-

type framework on a P2P network that provides built-in support to our proposed

interface-based DEBS development, and (3) provide case studies illustrating the

interface-based development process and the applicability of our proposed approach.

We design a new DEBS metamodel with emphases on (1) event and event

schema as first-class constructs, (2) behavior-enhanced interface modeled as input

event schemas, output event schemas and a finite state machine specifying interface

behavior in terms of event receiving, processing and publishing, and (3) interface

composition mechanisms which define how complex interfaces can be composed

from simple interfaces hierarchically.

We provide GEM, a prototype framework on top of the JXTA network that sup-

ports developers to build their DEBS applications based on the proposed interface-

based DEBS design. GEM is designed for DEBS domain and provides built-in

support to interface-based DEBS development. Also, with flexible event delivery

mechanisms, GEM becomes generic and flexible and it allows a DEBS application

to be designed either as a pure DEBS or as an event/RPC-hybrid system.

Finally, we illustrate our proposed interface-based development process via two

case studies. Our first-hand experience gained from these case studies shows a

75

promising result of applying our proposed interface-based approach in designing

DEBS applications. Overall, the DEBS design is better modularized with behavior-

enhanced interfaces, and the design implementation can be facilitated with GEM,

which also guards the system behavior at runtime.

6.2 Future Work

Fine-Grained Event Access Control The current proposed generic DEBS

metamodel focuses on essential elements required in a DEBS in terms of its static

structure and runtime behavior description without concerning the event access

control. In fact, by associating events with component interfaces, this metamodel

effectively provides an implicit, simple event access control mechanism, i.e., whether

an interface can publish or consume an event is statically specified in its definition.

However, in real application systems, we believe it desirable to have a more fine-

grained event access control mechanism. A generic property-based access control

would specify that the ability of an interface accessing an event depends not only on

its static interface definition, but also on a particular property either possessed by

the interface statically or by its implementation instance at runtime. For instance,

we can specify a runtime property such that an event E can only be accessed by

interfaces whose runtime instances are located at node N (or in city C), or must

possess role R.

Delta Behavior While extending another interface, the input and output events

of an extending interface can be defined incrementally in its interface definition,

however, its behavior description is described as a complete SCXML. It would

be desirable to design an approach to model the interface behavior changes as

statechart delta changes.

Session-aware State Machine Engine The current framework integrates an

open source Java SCXML engine (Commons SCXML project from Apache) with

customized semantics to implement interface behaviors. The current state machine

engine does not have session support. For example, given state machines M1 and

M2 (both have multiple states), one M1 state machine instance cannot interact with

multiple M2 state machine instances concurrently. Though we can design in such a

way that a M1 state machine instance is created every time a M2 state machine is

connected, such an approach is prohibitively expensive. It is desirable to enhance

76

the state machine engine to have built-in session support by using mechanisms such

as context switching.

77

References

[1] Tim Anderson. Components for .NET. http://www.dnjonline.com/

articles/dotnet/apr02_dotnetcomponents.asp, 2002. 1, 8, 9

[2] A. Buchmann, C. Bornhövd, M. Cilia, L. Fiege, F. Gärtner, C. Liebig,

M. Meixner, and G. Mühl. Dream: Distributed reliable event-based appli-

cation management. In M. Levene and A. Poulovassilis, editors, Web dynam-

ics: Adapting To Change In Content, Size, Topology And Use, pages 319–352.

Springer-Verlag, Germany, 2004. 4

[3] Cynthia Della Torre Cicalese and Shmuel Rotenstreich. Behavioral Specifica-

tion of Distributed Software Component Interfaces. Computer, 32(7):46–53,

1999. 8

[4] M. Cilia, C. Bornhövd, and A. P. Buchmann. CREAM: An Infrastructure

for Distributed, Heterogeneous Event-based Applications. In On The Move

to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE, pages

482–502. Springer Berlin, 2003. 4

[5] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In Proceed-

ings of the 8th European Software Engineering Conference held jointly with 9th

ACM SIGSOFT International Symposium on Foundations of Software Engi-

neering 2001 (ESEC/FSE 2001), pages 109–120, Vienna, Austria, September

2001. 8

[6] Mohamed E. Fayad, Douglas C. Schmidt, and Ralph E. Johnson. Implementing

Application Frameworks: Object-Oriented Frameworks at Work. John Wiley

& Sons, Inc., New York, NY, USA, 1999. 3

[7] Pascal Fenkam, Mehdi Jazayeri, and Gerald Reif. On Methodologies for Con-

structing Correct Event-based Applications. 3rd International Workshop on

Distributed Event-Based Systems (DEBS’04), pages 38–43, May 2004. 2, 75

78

http://www.dnjonline.com/articles/dotnet/apr02_dotnetcomponents.asp
http://www.dnjonline.com/articles/dotnet/apr02_dotnetcomponents.asp

[8] Ludger Fiege. Visibility in Event-Based Systems. PhD thesis, Department of

Computer Science, Darmstadt University of Technology, Darmstadt, Germany,

April 2005. 11

[9] Ludger Fiege, Mira Mezini, Gero Mühl, and Alejandro P. Buchmann. Engi-

neering Event-Based Systems with Scopes. In ECOOP ’02: Proceedings of the

16th European Conference on Object-Oriented Programming, pages 309–333.

Springer-Verlag, London, UK, 2002. 11

[10] David Garlan and Mary Shaw. An Introduction to Software Architecture.

Technical Report CMU-CS-94-166, Carnegie Mellon University, January 1994.

1

[11] Object Management Goup. CORBA 3.0 - OMG IDL Syntax and Semantics

chapter. http://www.omg.org/cgi-bin/doc?formal/02-06-39, 2002. 1, 3

[12] Object Management Goup. Common Object Request Broker Architecture

(CORBA/IIOP). http://www.omg.org/cgi-bin/doc?formal/04-03-01,

2004. 1, 2, 3, 7, 9

[13] Object Management Goup. CORBA Component Model, v4.0. http://www.

omg.org/cgi-bin/doc?formal/06-04-01, 2006. 1, 7

[14] Object Management Goup. Meta Object Facility Core Specification version

2.0. http://www.omg.org/technology/documents/formal/MOF_Core.htm,

2006. 10

[15] Object Management Goup. UML 2.1.1 Superstructure Specification. http:

//www.omg.org/technology/documents/formal/uml.htm, 2007. 8, 21

[16] Michael Guppenberger and Burkhard Freitag. Intelligent Creation of Notifica-

tion Events in Information Systems: Concept, Implementation and Evaluation.

In CIKM ’05: Proceedings of the 14th ACM international conference on Infor-

mation and knowledge management, pages 52–59. ACM, New York, NY, USA,

October 2005. 4

[17] David Harel and Amnon Naamad. The STATEMATE Semantics of Stat-

echarts. ACM Transactions on Software Engineering and Methodology

(TOSEM), 5(4):293–333, 1996. 21

[18] JXTA(TM) Community. JXTA JavaTM Standard Edition v2.5: Programmers

Guide. https://jxta.dev.java.net/, September 2007. 11

79

http://www.omg.org/cgi-bin/doc?formal/02-06-39
http://www.omg.org/cgi-bin/doc?formal/04-03-01
http://www.omg.org/cgi-bin/doc?formal/06-04-01
http://www.omg.org/cgi-bin/doc?formal/06-04-01
http://www.omg.org/technology/documents/formal/MOF_Core.htm
http://www.omg.org/technology/documents/formal/uml.htm
http://www.omg.org/technology/documents/formal/uml.htm
https://jxta.dev.java.net/

[19] Chaoying Ma and Jean Bacon. COBEA: A CORBA-based Event Architecture.

In Proceedings of the 4th USENIX Conference on Object-Oriented Technologies

and Systems (COOTS), pages 9–9, Santa Fe, New Mexico, April 1998. 2

[20] Nenad Medvidovic and Richard N. Taylor. A Classification and Comparison

Framework for Software Architecture Description Languages. IEEE Transac-

tions on Software Engineering, 26(1):70–93, 2000. 1

[21] Microsoft Corporation. COM: Component Object Model Technologies. http:

//www.microsoft.com/com/default.mspx, 2007. 3

[22] Sun Microsystems. Java(TM) Message Service Specification Final Release 1.1.

http://java.sun.com/products/jms/docs.html, 2002. 3, 9

[23] Sun Microsystems. Jini Specification, Version 2.0. http://java.sun.com/

products/jini/, June 2003. 3, 9

[24] Sun Microsystems. Enterprise JavaBeans 3.0 Final Release. http://java.

sun.com/products/ejb/docs.html, 2007. 1, 3, 7

[25] Gero Mühl. Large-Scale Content-Based Publish/Subscribe Systems. PhD thesis,

Darmstadt University of Technology, 2002. 4

[26] Gero Mühl, Ludger Fiege, and Peter R. Pietzuch. Distributed Event-Based

Systems. Springer Berlin Heidelberg, 2006. 2, 4

[27] Andy Oram, editor. Peer-to-Peer: Harnessing the Power of Disruptive Tech-

nologies. O’Reilly & Associates, New York, USA, February 2001. 10

[28] Peter Pietzuch, Gero Mühl, and Ludger Fiege. Distributed Event-Based Sys-

tems: An Emerging Community. IEEE Distributed Systems Online, 8(2):2–2,

February 2007. 2, 75

[29] Peter R. Pietzuch and Jean Bacon. Hermes: A Distributed Event-Based Mid-

dleware Architecture. In ICDCSW ’02: Proceedings of the 22nd International

Conference on Distributed Computing Systems, pages 611–618. Washington,

DC, USA, 2002. 3, 4, 9

[30] Peter R. Pietzuch, Brian Shand, and Jean Bacon. A Framework for Event Com-

position in Distributed Systems. In Middleware 2003: ACM/IFIP/USENIX

International Middleware Conference, pages 64–84. Springer, Rio de Janeiro,

Brazil, June 2003. 4

80

http://www.microsoft.com/com/default.mspx
http://www.microsoft.com/com/default.mspx
http://java.sun.com/products/jms/docs.html
http://java.sun.com/products/jini/
http://java.sun.com/products/jini/
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb/docs.html

[31] Simon Roberts and Jon Byous. Distributed Events in Jini Technology. http:

//java.sun.com/developer/technicalArticles/jini/JiniEvents/, 1999.

3

[32] Szabolcs Rozsnyai, Josef Schiefer, and Alexander Schatten. Concepts and

Models for Typing Events for Event-based Systems. In DEBS ’07: Proceed-

ings of the 2007 inaugural international conference on Distributed event-based

systems, pages 62–70. ACM, New York, NY, USA, 2007. 10

[33] Anthony J.H. Simons. On the Compositional Properties of UML Statechart

Diagrams. In Proceedings of the Third Workshop on Rigorous Object-Oriented

Methods (ROOM2002). The British Computer Society (BCS), York, UK, Jan-

uary 2000. 21

[34] SpringSource. Spring framework. http://www.springframework.org/, 2007.

3

[35] Sun Microsystems. Java Remote Method Invocation (RMI). http://java.

sun.com/javase/technologies/core/basic/rmi/index.jsp, 2007. 3

[36] Sun Microsystems Inc. JXTA v2.0 Protocols Specification. https://

jxta-spec.dev.java.net/JXTAProtocols.pdf, 2007. 3, 11

[37] Clemens Szyperski. Component Software: Beyond Object-Oriented Program-

ming. Addison-Wesley Publishing Co., New York, NY, USA, 1998. 1

[38] The Apache Software Foundation. Commons SCXML - An Open-source Java

SCXML Engine. http://commons.apache.org/scxml/, 2007. 50

[39] World Wide Web Consortium (W3C). State Chart XML (SCXML): State

Machine Notation for Control Abstraction, W3C Working Draft. http://

www.w3.org/TR/scxml/, February 2007. 8, 46

[40] Mark Weiser. Some Computer Science Issues in Ubiquitous Computing. Com-

munications of the ACM, 36(7):75–84, 1993. 2

[41] Stefanos Zachariadis. Adapting Mobile Systems Using Logical Mobility Primi-

tives. PhD thesis, University of London, May 2005. 10

[42] Stefanos Zachariadis and Cecilia Mascolo. The SATIN Component System-A

Metamodel for Engineering Adaptable Mobile Systems. IEEE Transactions on

Software Engineering, 32(11):910–927, 2006. 10

81

http://java.sun.com/developer/technicalArticles/jini/JiniEvents/
http://java.sun.com/developer/technicalArticles/jini/JiniEvents/
http://www.springframework.org/
http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp
http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp
https://jxta-spec.dev.java.net/JXTAProtocols.pdf
https://jxta-spec.dev.java.net/JXTAProtocols.pdf
http://commons.apache.org/scxml/
http://www.w3.org/TR/scxml/
http://www.w3.org/TR/scxml/

Appendix A

Framework Event Schemas for

Built-in Interfaces

A.1 ComponentGenericInterface

Listing A.1: ComponentGenericInterface Event Schemas

<?xml vers ion=” 1 .0 ” encod ing=”UTF−8”?>

<!DOCTYPE EventSchema>

<EventSchema>

<EventSchemaName>gem . i n t e r f a c e . commmand . g e n e r i c . S t a r t</

EventSchemaName>

</EventSchema>

<?xml vers ion=” 1 .0 ” encod ing=”UTF−8”?>

<!DOCTYPE EventSchema>

<EventSchema>

<EventSchemaName>gem . i n t e r f a c e . commmand . g e n e r i c . Stop</

EventSchemaName>

</EventSchema>

A.2 ReactiveComponentInterface

Listing A.2: ReactiveComponentInterface Event Schemas

<?xml vers ion=” 1 .0 ” encod ing=”UTF−8”?>

82

<!DOCTYPE EventSchema>

<EventSchema>

<ComplexType Name=”gem . e n c ap s u l a t e . Assemble ”>

<At t r Name=” i n t e r f a c e ” Type=” S t r i n g ”/>

<At t r Name=” eventBusID ” Type=” S t r i n g ” minOccur=”0”

maxOccur=”1”/>

</ComplexType>

<EventSchemaName>gem . e n c ap s u l a t e . Assemble</EventSchemaName>

</EventSchema>

<?xml vers ion=” 1 .0 ” encod ing=”UTF−8”?>

<!DOCTYPE EventSchema>

<EventSchema>

<ComplexType Name=”gem . e n c ap s u l a t e . AssembleReturn ”>

<At t r Name=” i n t e r f a c e ” Type=” S t r i n g ”/>

<At t r Name=” add r e s s ” Type=”GEMAddress”/>

</ComplexType>

<EventSchemaName>gem . e n c ap s u l a t e . AssembleReturn</

EventSchemaName>

</EventSchema>

A.3 SchemaServiceInterface

Listing A.3: SchemaServiceInterface Event Schemas

<?xml vers ion=” 1 .0 ” encod ing=”UTF−8”?>

<!DOCTYPE EventSchema>

<EventSchema>

<ComplexType Name=”gem . s e r v i c e . e ven t . SchemaReg i s te r ”>

<At t r Name=”schema” Type=”Schema” minOccur=”1” maxOccur=”∗
”/>

</ComplexType>

<EventSchemaName>gem . s e r v i c e . e ven t . SchemaReg i s te r</

EventSchemaName>

</EventSchema>

83

<?xml vers ion=” 1 .0 ” encod ing=”UTF−8”?>

<!DOCTYPE EventSchema>

<EventSchema>

<ComplexType Name=”gem . s e r v i c e . e ven t . SchemaRemove”>

<At t r Name=”schemaName” Type=” S t r i n g ” minOccur=”1”

maxOccur=”∗”/>

</ComplexType>

<EventSchemaName>gem . s e r v i c e . e ven t . SchemaRemove</

EventSchemaName>

</EventSchema>

<?xml vers ion=” 1 .0 ” encod ing=”UTF−8”?>

<!DOCTYPE EventSchema>

<EventSchema>

<ComplexType Name=”gem . s e r v i c e . e ven t . SchemaSearch”>

<At t r Name=”schemaName” Type=” S t r i n g ”/>

</ComplexType>

<EventSchemaName>gem . s e r v i c e . e ven t . SchemaSearch</

EventSchemaName>

</EventSchema>

<?xml vers ion=” 1 .0 ” encod ing=”UTF−8”?>

<!DOCTYPE EventSchema>

<EventSchema>

<ComplexType Name=”gem . s e r v i c e . e ven t . SchemaSearchReturn ”>

<At t r Name=”schemaName” Type=” S t r i n g ” minOccur=”1”

maxOccur=”∗”/>

<At t r Name=”schema” Type=”Schema” minOccur=”1” maxOccur=”∗
”/>

</ComplexType>

<EventSchemaName>gem . s e r v i c e . e ven t . SchemaSearchReturn</

EventSchemaName>

84

</EventSchema>

A.4 InterfaceServiceInterface

Listing A.4: InterfaceServiceInterface Event Schemas

<?xml vers ion=” 1 .0 ” encod ing=”UTF−8”?>

<!DOCTYPE EventSchema>

<EventSchema>

<ComplexType Name=”gem . s e r v i c e . i n t e r f a c e . I n t e r f a c e R e g i s t e r ”>

<At t r Name=” i n t e r f a c e ” Type=” I n t e r f a c e ” minOccur=”0”

maxOccur=”∗”/>

</ComplexType>

<EventSchemaName>gem . s e r v i c e . i n t e r f a c e . I n t e r f a c e R e g i s t e r</

EventSchemaName>

</EventSchema>

<?xml vers ion=” 1 .0 ” encod ing=”UTF−8”?>

<!DOCTYPE EventSchema>

<EventSchema>

<ComplexType Name=”gem . s e r v i c e . i n t e r f a c e . I n t e r f a c e I m p l R e g i s t e r

”>

<At t r Name=” i n t e r f a c e Imp lAd v ” Type=” I n t e r f a c e Imp lAd v ”

minOccur=”1” maxOccur=”∗”/>

</ComplexType>

<EventSchemaName>gem . s e r v i c e . i n t e r f a c e . I n t e r f a c e I m p l R e g i s t e r</

EventSchemaName>

</EventSchema>

<?xml vers ion=” 1 .0 ” encod ing=”UTF−8”?>

<!DOCTYPE EventSchema>

<EventSchema>

<ComplexType Name=”gem . s e r v i c e . i n t e r f a c e . I n t e r f a c e S e a r c h ”>

<At t r Name=” in te r f aceName ” Type=” S t r i n g ”/>

</ComplexType>

85

<EventSchemaName>gem . s e r v i c e . i n t e r f a c e . I n t e r f a c e S e a r c h</

EventSchemaName>

</EventSchema>

<?xml vers ion=” 1 .0 ” encod ing=”UTF−8”?>

<!DOCTYPE EventSchema>

<EventSchema>

<ComplexType Name=”gem . s e r v i c e . i n t e r f a c e . I n t e r f a c e Imp l S e a r c h ”>

<At t r Name=” in te r f aceName ” Type=” S t r i n g ”/>

<At t r Name=”implName” Type=” S t r i n g ” minOccur=”0” maxOccur=”1

”/>

</ComplexType>

<EventSchemaName>gem . s e r v i c e . i n t e r f a c e . I n t e r f a c e Imp l S e a r c h</

EventSchemaName>

</EventSchema>

<?xml vers ion=” 1 .0 ” encod ing=”UTF−8”?>

<!DOCTYPE EventSchema>

<EventSchema>

<ComplexType Name=”gem . s e r v i c e . i n t e r f a c e . I n t e r f a c e S e a r c hR e t u r n

”>

<At t r Name=” in te r f aceName ” Type=” S t r i n g ”/>

<At t r Name=” i n t e r f a c e ” Type=” I n t e r f a c e ” minOccur=”1”

maxOccur=”∗”/>

</ComplexType>

<EventSchemaName>gem . s e r v i c e . i n t e r f a c e . I n t e r f a c e S e a r c hR e t u r n</

EventSchemaName>

</EventSchema>

<?xml vers ion=” 1 .0 ” encod ing=”UTF−8”?>

<!DOCTYPE EventSchema>

<EventSchema>

<ComplexType Name=”gem . s e r v i c e . i n t e r f a c e .

I n t e r f a c e Imp l S e a r c hR e t u r n ”>

<At t r Name=” in te r f aceName ” Type=” S t r i n g ”/>

86

<At t r Name=”implName” Type=” S t r i n g ” minOccur=”0” maxOccur=”1

”/>

<At t r Name=” i n t e r f a c e Imp lAd v ” Type=” I n t e r f a c e Imp lAd v ”

minOccur=”1” maxOccur=”∗”/>

</ComplexType>

<EventSchemaName>gem . s e r v i c e . i n t e r f a c e .

I n t e r f a c e Imp l S e a r c hR e t u r n</EventSchemaName>

</EventSchema>

<?xml vers ion=” 1 .0 ” encod ing=”UTF−8”?>

<!DOCTYPE EventSchema>

<EventSchema>

<ComplexType Name=”gem . s e r v i c e . i n t e r f a c e . I n t e r f a ceRemove ”>

<At t r Name=” in te r f aceName ” Type=” S t r i n g ” minOccur=”1”

maxOccur=”∗”/>

</ComplexType>

<EventSchemaName>gem . s e r v i c e . i n t e r f a c e . I n t e r f a c eRemove</

EventSchemaName>

</EventSchema>

<?xml vers ion=” 1 .0 ” encod ing=”UTF−8”?>

<!DOCTYPE EventSchema>

<EventSchema>

<ComplexType Name=”gem . s e r v i c e . i n t e r f a c e . I n t e r f a c e Imp lRemove ”>

<At t r Name=” in te r f aceName ” Type=” S t r i n g ” minOccur=”1”

maxOccur=”∗”/>

<At t r Name=” in t e r f a c e Imp lName ” Type=” S t r i n g ” minOccur=”1”

maxOccur=”∗”/>

</ComplexType>

<EventSchemaName>gem . s e r v i c e . i n t e r f a c e . I n t e r f a c e Imp lRemove</

EventSchemaName>

</EventSchema>

87

Appendix B

Temperature Sensor System

B.1 Event Schemas

Listing B.1: Temperature Sensor System Event Schemas

<?xml vers ion=” 1 .0 ” encod ing=”UTF−8”?>

<!DOCTYPE EventSchema>

<EventSchema>

<ComplexType Name=”GPSPos i t ion ”>

<At t r Name=” l o n g i t u d e ” Type=”FLOAT”/>

<At t r Name=” l a t i t u d e ” Type=”FLOAT”/>

</ComplexType>

<ComplexType Name=”gemdemo . s e n s o r . SensorData ”>

<At t r Name=” l o c a t i o n ” Type=”GPSPos i t ion ”/>

<At t r Name=” tempe ra tu r e ” Type=”FLOAT” minOccur=”1” maxOccur=

”5”/>

</ComplexType>

<EventSchemaName>gemdemo . s e n s o r . SensorData</EventSchemaName>

</EventSchema>

<?xml vers ion=” 1 .0 ” encod ing=”UTF−8”?>

<!DOCTYPE EventSchema>

<EventSchema>

<ComplexType Name=”gemdemo . s e n s o r . I n t e r v a l Ch g ”>

<At t r Name=” i n t e r v a l ” Type=”INTEGER”/>

</ComplexType>

88

<EventSchemaName>gemdemo . s e n s o r . I n t e r v a l C h g</EventSchemaName>

</EventSchema>

B.2 Interfaces

Listing B.2: Sensor Interface

<?xml vers ion=” 1 .0 ” encod ing=”UTF−8”?>

<!DOCTYPE Componen t I n t e r f a c eAdve r t i s emen t>

<Componen t I n t e r f a c eAdve r t i s emen t xm l n s : j x t a=” h t t p : // j x t a . org ”>

<I n t e r f aceName>

gemdemo . s e n s o r . Senso r

</ In te r f aceName>

<Extend>

gem . co r e . Gene r i cComponen t I n t e r f a c e

</Extend>

<InputEventSchema>

<SchemaName>

gemdemo . s e n s o r . I n t e r v a l C h g

</SchemaName>

<Sende r In t e r f aceName>

anyone

</ Sende r In t e r f aceName>

</ InputEventSchema>

<OutputEventSchema>

<SchemaName>

gemdemo . s e n s o r . SensorData

</SchemaName>

<Imp l ementa t i onRo l e>

anyone

</ Imp l ementa t i onRo l e>

<TTL>

10000

</TTL>

</OutputEventSchema>

<Behav io r>

89

<scxml xmlns=” h t t p : //www.w3 . org /2005/07/ scxml ” xmlns:gem=”

h t t p : //gem/CORE” i n i t i a l s t a t e=” loaded ” vers ion=” 1 .0 ”>

<s t a t e i d=” e r r o r ” f i n a l=” t r u e ”>

<onen t r y>

<gem:do a c t i o n=” e r r o r ”/>

</ onen t r y>

< t r a n s i t i o n even t=”gem . i n t e r f a c e . commmand . g e n e r i c . Stop”>

<t a r g e t nex t=” stopped ”/>

</ t r a n s i t i o n>

</ s t a t e>

<s t a t e i d=” loaded ”>

<onen t r y>

<gem:do a c t i o n=” load ”/>

</ onen t r y>

< t r a n s i t i o n even t=”gem . i n t e r f a c e . commmand . g e n e r i c . S t a r t ”

>

<t a r g e t nex t=” s t a r t e d ”/>

<gem:do a c t i o n=” s t a r t ”/>

</ t r a n s i t i o n>

</ s t a t e>

<s t a t e i d=” s t a r t e d ”>

< t r a n s i t i o n even t=” i n t e r n a l : : t i m e r ”>

<t a r g e t nex t=” s t a r t e d ”/>

<gem:do a c t i o n=” repo r tDa ta ” outputEventName=”gemdemo .

s e n s o r . SensorData ”/>

</ t r a n s i t i o n>

< t r a n s i t i o n even t=”gemdemo . s e n s o r . I n t e r v a l C h g ”>

<t a r g e t nex t=” s t a r t e d ”/>

<gem:do a c t i o n=” c h a n g e I n t e r v a l ”/>

</ t r a n s i t i o n>

< t r a n s i t i o n even t=”gem . i n t e r f a c e . commmand . g e n e r i c . Stop”>

<t a r g e t nex t=” stopped ”/>

</ t r a n s i t i o n>

</ s t a t e>

<s t a t e f i n a l=” t r u e ” i d=” stopped ”>

<onen t r y>

<gem:do a c t i o n=” s top ”/>

90

</ onen t r y>

</ s t a t e>

</ scxml>

</ Behav io r>

</ Componen t I n t e r f a c eAdve r t i s emen t>

Listing B.3: InforCenter Interface

<?xml vers ion=” 1 .0 ” encod ing=”UTF−8”?>

<!DOCTYPE Componen t I n t e r f a c eAdve r t i s emen t>

<Componen t I n t e r f a c eAdve r t i s emen t xm l n s : j x t a=” h t t p : // j x t a . org ”>

<I n t e r f aceName>

gemdemo . s e n s o r . I n f o r C e n t e r

</ In te r f aceName>

<Extend>

gem . co r e . Gene r i cComponen t I n t e r f a c e

</Extend>

<InputEventSchema>

<SchemaName>

gemdemo . s e n s o r . SensorData

</SchemaName>

<Sende r In t e r f aceName>

anyone

</ Sende r In t e r f aceName>

</ InputEventSchema>

<OutputEventSchema>

<SchemaName>

gemdemo . s e n s o r . I n t e r v a l C h g

</SchemaName>

<Imp l ementa t i onRo l e>

anyone

</ Imp l ementa t i onRo l e>

<TTL>

10000

</TTL>

</OutputEventSchema>

<Behav io r>

91

<scxml xmlns=” h t t p : //www.w3 . org /2005/07/ scxml ” xmlns:gem=”

h t t p : //gem/CORE” i n i t i a l s t a t e=” loaded ” vers ion=” 1 .0 ”>

<s t a t e i d=” e r r o r ” f i n a l=” t r u e ”>

<onen t r y>

<gem:do a c t i o n=” e r r o r ”/>

</ onen t r y>

< t r a n s i t i o n even t=”gem . i n t e r f a c e . commmand . g e n e r i c . Stop”>

<t a r g e t nex t=” stopped ”/>

</ t r a n s i t i o n>

</ s t a t e>

<s t a t e i d=” loaded ”>

<onen t r y>

<gem:do a c t i o n=” load ”/>

</ onen t r y>

< t r a n s i t i o n even t=”gem . i n t e r f a c e . commmand . g e n e r i c . S t a r t ”

>

<t a r g e t nex t=” s t a r t e d ”/>

<gem:do a c t i o n=” s t a r t ”/>

</ t r a n s i t i o n>

</ s t a t e>

<s t a t e i d=” s t a r t e d ”>

< t r a n s i t i o n even t=” i n t e r n a l : : t i m e r ”>

<t a r g e t nex t=” s t a r t e d ”/>

<gem:do a c t i o n=” t o g g l e I n t e r v a l ” outputEventName=”

gemdemo . s e n s o r . I n t e r v a l C h g ”/>

</ t r a n s i t i o n>

< t r a n s i t i o n even t=”gemdemo . s e n s o r . SensorData ”>

<t a r g e t nex t=” s t a r t e d ”/>

<gem:do a c t i o n=” c o l l e c tD a t a ”/>

</ t r a n s i t i o n>

< t r a n s i t i o n even t=”gem . i n t e r f a c e . commmand . g e n e r i c . Stop”>

<t a r g e t nex t=” stopped ”/>

</ t r a n s i t i o n>

</ s t a t e>

<s t a t e f i n a l=” t r u e ” i d=” stopped ”>

<onen t r y>

<gem:do a c t i o n=” s top ”/>

92

</ onen t r y>

</ s t a t e>

</ scxml>

</ Behav io r>

</ Componen t I n t e r f a c eAdve r t i s emen t>

93

Appendix C

e-Promotion System

C.1 Event Schemas

Listing C.1: e-Promotion System Event Schemas

<?xml vers ion=” 1 .0 ” encod ing=”UTF−8”?>

<!DOCTYPE EventSchema>

<EventSchema>

<ComplexType Name=”gemdemo . promot ion . GPSPos i t ion ”>

<At t r Name=” l o n g i t u d e ” Type=”FLOAT”/>

<At t r Name=” l a t i t u d e ” Type=”FLOAT”/>

</ComplexType>

<EventSchemaName>gemdemo . promot ion . GPSPos i t ion</

EventSchemaName>

</EventSchema>

<?xml vers ion=” 1 .0 ” encod ing=”UTF−8”?>

<!DOCTYPE EventSchema>

<EventSchema>

<ComplexType Name=”gemdemo . promot ion . GPSPos i t ion ”>

<At t r Name=” l o n g i t u d e ” Type=”FLOAT”/>

<At t r Name=” l a t i t u d e ” Type=”FLOAT”/>

</ComplexType>

<ComplexType Name=”gemdemo . promot ion . Ma l l Lo ca t i on ”>

<At t r Name=”mallName” Type=” S t r i n g ”/>

<At t r Name=” ma l l I n t e r f a c eAdd r ” Type=”GEMAddress”/>

94

<At t r Name=” ma l lGPSPos i t i on ” Type=”gemdemo . promot ion .

GPSPos i t ion ”/>

</ComplexType>

<EventSchemaName>gemdemo . promot ion . Ma l l Lo ca t i on</

EventSchemaName>

</EventSchema>

<?xml vers ion=” 1 .0 ” encod ing=”UTF−8”?>

<!DOCTYPE EventSchema>

<EventSchema>

<ComplexType Name=”gemdemo . promot ion . Ma l lLoca t i onQue ry ”>

<At t r Name=”mallName” Type=” S t r i n g ”/>

</ComplexType>

<EventSchemaName>gemdemo . promot ion . Ma l lLoca t i onQue ry</

EventSchemaName>

</EventSchema>

<?xml vers ion=” 1 .0 ” encod ing=”UTF−8”?>

<!DOCTYPE EventSchema>

<EventSchema>

<ComplexType Name=”gemdemo . promot ion . Promotion ”>

<At t r Name=”prodName” Type=” S t r i n g ”/>

<At t r Name=” d e s c r i p t i o n ” Type=” S t r i n g ”/>

</ComplexType>

<EventSchemaName>gemdemo . promot ion . Promotion</EventSchemaName>

</EventSchema>

<?xml vers ion=” 1 .0 ” encod ing=”UTF−8”?>

<!DOCTYPE EventSchema>

<EventSchema>

<EventSchemaName>gemdemo . promot ion . ShopperEnte red</

EventSchemaName>

</EventSchema>

<?xml vers ion=” 1 .0 ” encod ing=”UTF−8”?>

95

<!DOCTYPE EventSchema>

<EventSchema>

<EventSchemaName>gemdemo . promot ion . Shoppe rLe f t</

EventSchemaName>

</EventSchema>

C.2 Interfaces

Listing C.2: e-Promotion PersonalGPS Interface

<?xml vers ion=” 1 .0 ” encod ing=”UTF−8”?>

<!DOCTYPE Componen t I n t e r f a c eAdve r t i s emen t>

<Componen t I n t e r f a c eAdve r t i s emen t xm l n s : j x t a=” h t t p : // j x t a . org ”>

<I n t e r f aceName>

PersonalGPS

</ In te r f aceName>

<Extend>

gem . co r e . Gene r i cComponen t I n t e r f a c e

</Extend>

<OutputEventSchema>

<SchemaName>

gemdemo . promot ion . GPSPos i t ion

</SchemaName>

<Imp l ementa t i onRo l e>

anyone

</ Imp l ementa t i onRo l e>

<TTL>

10000

</TTL>

</OutputEventSchema>

<Behav io r>

<scxml xmlns=” h t t p : //www.w3 . org /2005/07/ scxml ” xmlns:gem=”

h t t p : //gem/CORE” i n i t i a l s t a t e=” loaded ” vers ion=” 1 .0 ”>

<s t a t e i d=” e r r o r ” f i n a l=” t r u e ”>

<onen t r y>

<gem:do a c t i o n=” e r r o r ”/>

</ onen t r y>

< t r a n s i t i o n even t=”gem . i n t e r f a c e . commmand . g e n e r i c . Stop”>

<t a r g e t nex t=” stopped ”/>

96

</ t r a n s i t i o n>

</ s t a t e>

<s t a t e i d=” loaded ”>

<onen t r y>

<gem:do a c t i o n=” load ”/>

</ onen t r y>

< t r a n s i t i o n even t=”gem . i n t e r f a c e . commmand . g e n e r i c . S t a r t ”

>

<t a r g e t nex t=” s t a r t e d ”/>

<gem:do a c t i o n=” s t a r t ”/>

</ t r a n s i t i o n>

</ s t a t e>

<s t a t e i d=” s t a r t e d ”>

< t r a n s i t i o n even t=” i n t e r n a l : : t i m e r ”>

<t a r g e t nex t=” s t a r t e d ”/>

<gem:do a c t i o n=” r e p o r t L o c a t i o n ” outputEventName=”

gemdemo . promot ion . GPSPos i t ion ”/>

</ t r a n s i t i o n>

< t r a n s i t i o n even t=”gem . i n t e r f a c e . commmand . g e n e r i c . Stop”>

<t a r g e t nex t=” stopped ”/>

</ t r a n s i t i o n>

</ s t a t e>

<s t a t e f i n a l=” t r u e ” i d=” stopped ”>

<onen t r y>

<gem:do a c t i o n=” s top ”/>

</ onen t r y>

</ s t a t e>

</ scxml>

</ Behav io r>

</ Componen t I n t e r f a c eAdve r t i s emen t>

Listing C.3: e-Promotion PromotionReceiver Interface

<?xml vers ion=” 1 .0 ” encod ing=”UTF−8”?>

<!DOCTYPE Componen t I n t e r f a c eAdve r t i s emen t>

<Componen t I n t e r f a c eAdve r t i s emen t xm l n s : j x t a=” h t t p : // j x t a . org ”>

<I n t e r f aceName>

97

Promot i onRece i v e r

</ In te r f aceName>

<Extend>

gem . co r e . Gene r i cComponen t I n t e r f a c e

</Extend>

<Encap su l a t e>

PersonalGPS

</ Encap su l a t e>

<InputEventSchema>

<SchemaName>

gemdemo . promot ion . Ma l l Lo ca t i on

</SchemaName>

<Sende r In t e r f aceName>

anyone

</ Sende r In t e r f aceName>

</ InputEventSchema>

<InputEventSchema>

<SchemaName>

gemdemo . promot ion . Promotion

</SchemaName>

<Sende r In t e r f aceName>

anyone

</ Sende r In t e r f aceName>

</ InputEventSchema>

<OutputEventSchema>

<SchemaName>

gemdemo . promot ion . Ma l lLoca t i onQue ry

</SchemaName>

<Imp l ementa t i onRo l e>

anyone

</ Imp l ementa t i onRo l e>

<TTL>

10000

</TTL>

</OutputEventSchema>

<OutputEventSchema>

98

<SchemaName>

gemdemo . promot ion . ShopperEnte red

</SchemaName>

<Imp l ementa t i onRo l e>

anyone

</ Imp l ementa t i onRo l e>

<TTL>

10000

</TTL>

</OutputEventSchema>

<OutputEventSchema>

<SchemaName>

gemdemo . promot ion . Shoppe rLe f t

</SchemaName>

<Imp l ementa t i onRo l e>

anyone

</ Imp l ementa t i onRo l e>

<TTL>

10000

</TTL>

</OutputEventSchema>

<Behav io r>

<scxml xmlns=” h t t p : //www.w3 . org /2005/07/ scxml ” xmlns:gem=”

h t t p : //gem/CORE” i n i t i a l s t a t e=” loaded ” vers ion=” 1 .0 ”>

<s t a t e i d=” e r r o r ” f i n a l=” t r u e ”>

<onen t r y>

<gem:do a c t i o n=” e r r o r ”/>

</ onen t r y>

< t r a n s i t i o n even t=”gem . i n t e r f a c e . commmand . g e n e r i c . Stop”>

<t a r g e t nex t=” stopped ”/>

</ t r a n s i t i o n>

</ s t a t e>

<s t a t e i d=” loaded ”>

<onen t r y>

<gem:do a c t i o n=” load ”/>

</ onen t r y>

99

< t r a n s i t i o n even t=”gem . i n t e r f a c e . commmand . g e n e r i c . S t a r t ”

>

<t a r g e t nex t=” s t a r t e d ”/>

<gem:do a c t i o n=” s t a r t ”/>

</ t r a n s i t i o n>

</ s t a t e>

<s t a t e i d=” s t a r t e d ”>

< i n i t i a l>

< t r a n s i t i o n>

<t a r g e t nex t=” ma l l L o c a t i n g ”/>

</ t r a n s i t i o n>

</ i n i t i a l>

<s t a t e i d=” ma l l L o c a t i n g ”>

<onen t r y>

<gem:do a c t i o n=” l o c a t eMa l l ” outputEventName=”gemdemo

. promot ion . Ma l lLoca t i onQue ry ”/>

</ onen t r y>

< t r a n s i t i o n even t=”gemdemo . promot ion . Ma l l Lo ca t i on ”>

<t a r g e t nex t=” ma l l Loca t ed ”/>

<gem:do a c t i o n=” sa v eMa l l L o c a t i o n ”/>

</ t r a n s i t i o n>

< t r a n s i t i o n even t=”gemdemo . promot ion . GPSPos i t ion ”>

<t a r g e t nex t=” ma l l L o c a t i n g ”/>

</ t r a n s i t i o n>

< t r a n s i t i o n even t=”gemdemo . promot ion . Promotion ”>

<t a r g e t nex t=” ma l l L o c a t i n g ”/>

</ t r a n s i t i o n>

</ s t a t e>

<s t a t e i d=” ma l l Loca t ed ”>

< t r a n s i t i o n even t=”gemdemo . promot ion . GPSPos i t ion ”>

<t a r g e t nex t=” i n s i d e ” cond=”gem:inRange ”/>

<gem:do a c t i o n=” en t e rMa l l ” outputEventName=”gemdemo .

promot ion . ShopperEnte red ”/>

</ t r a n s i t i o n>

< t r a n s i t i o n even t=”gemdemo . promot ion . GPSPos i t ion ”>

<t a r g e t nex t=” ou t s i d e ” cond=”gem: ! inRange ”/>

</ t r a n s i t i o n>

100

< t r a n s i t i o n even t=”gemdemo . promot ion . Ma l l Lo ca t i on ”>

<t a r g e t nex t=” ma l l Loca t ed ”/>

</ t r a n s i t i o n>

< t r a n s i t i o n even t=”gemdemo . promot ion . Promotion ”>

<t a r g e t nex t=” ma l l Loca t ed ”/>

</ t r a n s i t i o n>

</ s t a t e>

<s t a t e i d=” ou t s i d e ”>

< t r a n s i t i o n even t=”gemdemo . promot ion . GPSPos i t ion ”>

<t a r g e t nex t=” i n s i d e ” cond=”gem:inRange ”/>

<gem:do a c t i o n=” en t e rMa l l ” outputEventName=”gemdemo .

promot ion . ShopperEnte red ”/>

</ t r a n s i t i o n>

< t r a n s i t i o n even t=”gemdemo . promot ion . GPSPos i t ion ”>

<t a r g e t nex t=” ou t s i d e ” cond=”gem: ! inRange ”/>

</ t r a n s i t i o n>

< t r a n s i t i o n even t=”gemdemo . promot ion . Promotion ”>

<t a r g e t nex t=” ou t s i d e ”/>

</ t r a n s i t i o n>

< t r a n s i t i o n even t=”gemdemo . promot ion . Ma l l Lo ca t i on ”>

<t a r g e t nex t=” ou t s i d e ”/>

</ t r a n s i t i o n>

</ s t a t e>

<s t a t e i d=” i n s i d e ”>

< t r a n s i t i o n even t=”gemdemo . promot ion . Ma l l Lo ca t i on ”>

<t a r g e t nex t=” i n s i d e ”/>

</ t r a n s i t i o n>

< t r a n s i t i o n even t=”gemdemo . promot ion . GPSPos i t ion ”>

<t a r g e t nex t=” i n s i d e ” cond=”gem:inRange ”/>

</ t r a n s i t i o n>

< t r a n s i t i o n even t=”gemdemo . promot ion . Promotion ”>

<t a r g e t nex t=” i n s i d e ”/>

<gem:do a c t i o n=” showPromotion”/>

</ t r a n s i t i o n>

< t r a n s i t i o n even t=”gemdemo . promot ion . GPSPos i t ion ”>

<t a r g e t nex t=” ou t s i d e ” cond=”gem: ! inRange ”/>

<gem:do a c t i o n=” l e a v eMa l l ” outputEventName=”gemdemo .

promot ion . Shoppe rLe f t ”/>

101

</ t r a n s i t i o n>

</ s t a t e>

< t r a n s i t i o n even t=”gem . i n t e r f a c e . commmand . g e n e r i c . Stop”>

<t a r g e t nex t=” stopped ”/>

</ t r a n s i t i o n>

</ s t a t e>

<s t a t e f i n a l=” t r u e ” i d=” stopped ”>

<onen t r y>

<gem:do a c t i o n=” s top ”/>

</ onen t r y>

</ s t a t e>

</ scxml>

</ Behav io r>

</ Componen t I n t e r f a c eAdve r t i s emen t>

Listing C.4: e-Promotion PromotionBroadcaster Interface

<?xml vers ion=” 1 .0 ” encod ing=”UTF−8”?>

<!DOCTYPE Componen t I n t e r f a c eAdve r t i s emen t>

<Componen t I n t e r f a c eAdve r t i s emen t xm l n s : j x t a=” h t t p : // j x t a . org ”>

<I n t e r f aceName>

Promot ionBroadcas t e r

</ In te r f aceName>

<Extend>

gem . co r e . Gene r i cComponen t I n t e r f a c e

</Extend>

<InputEventSchema>

<SchemaName>

gemdemo . promot ion . Ma l lLoca t i onQue ry

</SchemaName>

<Sende r In t e r f aceName>

anyone

</ Sende r In t e r f aceName>

</ InputEventSchema>

<InputEventSchema>

<SchemaName>

gemdemo . promot ion . ShopperEnte red

102

</SchemaName>

<Sende r In t e r f aceName>

anyone

</ Sende r In t e r f aceName>

</ InputEventSchema>

<InputEventSchema>

<SchemaName>

gemdemo . promot ion . Shoppe rLe f t

</SchemaName>

<Sende r In t e r f aceName>

anyone

</ Sende r In t e r f aceName>

</ InputEventSchema>

<OutputEventSchema>

<SchemaName>

gemdemo . promot ion . Ma l l Lo ca t i on

</SchemaName>

<Imp l ementa t i onRo l e>

anyone

</ Imp l ementa t i onRo l e>

<TTL>

10000

</TTL>

</OutputEventSchema>

<OutputEventSchema>

<SchemaName>

gemdemo . promot ion . Promotion

</SchemaName>

<Imp l ementa t i onRo l e>

anyone

</ Imp l ementa t i onRo l e>

<TTL>

10000

</TTL>

</OutputEventSchema>

<Behav io r>

<scxml xmlns=” h t t p : //www.w3 . org /2005/07/ scxml ” xmlns:gem=”

h t t p : //gem/CORE” i n i t i a l s t a t e=” loaded ” vers ion=” 1 .0 ”>

103

<s t a t e i d=” e r r o r ” f i n a l=” t r u e ”>

<onen t r y>

<gem:do a c t i o n=” e r r o r ”/>

</ onen t r y>

< t r a n s i t i o n even t=”gem . i n t e r f a c e . commmand . g e n e r i c . Stop”>

<t a r g e t nex t=” stopped ”/>

</ t r a n s i t i o n>

</ s t a t e>

<s t a t e i d=” loaded ”>

<onen t r y>

<gem:do a c t i o n=” load ”/>

</ onen t r y>

< t r a n s i t i o n even t=”gem . i n t e r f a c e . commmand . g e n e r i c . S t a r t ”

>

<t a r g e t nex t=” s t a r t e d ”/>

<gem:do a c t i o n=” s t a r t ”/>

</ t r a n s i t i o n>

</ s t a t e>

<s t a t e i d=” s t a r t e d ”>

< t r a n s i t i o n even t=”gem . i n t e r f a c e . commmand . g e n e r i c . Stop”>

<t a r g e t nex t=” stopped ”/>

</ t r a n s i t i o n>

< t r a n s i t i o n even t=”gemdemo . promot ion . ShopperEnte red ”>

<t a r g e t nex t=” s t a r t e d ”/>

<gem:do a c t i o n=” i n c r e a s eCoun t ”/>

</ t r a n s i t i o n>

< t r a n s i t i o n even t=”gemdemo . promot ion . Shoppe rLe f t ”>

<t a r g e t nex t=” s t a r t e d ”/>

<gem:do a c t i o n=” dec rea seCount ”/>

</ t r a n s i t i o n>

< t r a n s i t i o n even t=”gemdemo . promot ion . Ma l lLoca t i onQue ry ”>

<t a r g e t nex t=” s t a r t e d ”/>

<gem:do a c t i o n=” answe rLoca t i on ” outputEventName=”

gemdemo . promot ion . Ma l l Lo ca t i on ”/>

</ t r a n s i t i o n>

104

< t r a n s i t i o n even t=” i n t e r n a l : : t i m e r ”>

<t a r g e t nex t=” s t a r t e d ”/>

<gem:do a c t i o n=” sendNextPromot ion ” outputEventName=”

gemdemo . promot ion . Promotion ”/>

</ t r a n s i t i o n>

</ s t a t e>

<s t a t e f i n a l=” t r u e ” i d=” stopped ”>

<onen t r y>

<gem:do a c t i o n=” s top ”/>

</ onen t r y>

</ s t a t e>

</ scxml>

</ Behav io r>

</ Componen t I n t e r f a c eAdve r t i s emen t>

105

	Introduction
	Motivation
	Current Problems
	Proposed Approach
	Contributions
	Thesis Outline

	Background and Related Work
	Software Component Models
	Structure Models
	Behavior Models

	Event Models
	Software System Meta-modeling
	Peer-to-Peer Systems
	Event-based System Engineering

	A Metamodel for DEBS
	Metamodel Overview
	Generic Event Model
	Examples

	Behavior-enhanced Interface Model
	Interface Composition Mechanisms
	Extend
	Encapsulate

	Notation

	Framework Implementation
	Framework Overview
	Framework Core Service
	Interface Addressing and Event Delivery Semantics
	Event Schemas and Events
	Component Interface Definition
	Component Interface Behavior Definition
	Interface Implementation Definition
	Interface Implementation Instance

	Framework Built-in Component Interfaces
	ComponentGenericInterface
	ReactiveComponentInterface
	SchemaServiceInterface
	InterfaceServiceInterface

	Case Studies
	Proposed Development Process
	Temperature Sensor System
	Event Schemas
	Component Interfaces
	Component Interface Implementation
	Component Interface Deployment

	e-Promotion System
	System Design Overview
	Event Schemas
	PromotionBroadcaster
	PromotionReceiver
	PersonalGPS

	Experience Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	Framework Event Schemas for Built-in Interfaces
	ComponentGenericInterface
	ReactiveComponentInterface
	SchemaServiceInterface
	InterfaceServiceInterface

	Temperature Sensor System
	Event Schemas
	Interfaces

	e-Promotion System
	Event Schemas
	Interfaces

