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Abstract

In the first two Chapters I outline the theory and background of separation of vari-
ables as an ansatz for solving fundamental partial differential equations (pdes) in
Mathematical Physics. Two fundamental approaches will be highlighted, and more
modern approaches discussed. In Chapter 3 I calculate the general trace-free con-
formal Killing tensor defined in Euclidean space - from the sum of symmetric tensor
products of conformal Killing vectors. In Chapter 4 I determine the subcases with
rotational symmetry and recover known examples pertaining to classical rotational
coordinates. In Chapter 5 I obtain the induced action of the conformal group on
the space of trace-free conformal Killing tensors. In Chapter 6 I use the invariants
of trace-free conformal Killing tensors under the action of the conformal group to
characterize, up to equivalence, the symmetric R-separable webs in E3 that permit
conformal separation of variables of the fundamental pdes in Mathematical Physics.
In Chapter 7 the asymmetric R-separable metrics are obtained via a study of the
separability conditions for the conformally invariant Laplace equation.
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NOTATIONS AND CONVENTIONS
—————————–

R : Set of real numbers

M : Riemannian manifold

[ , ] : Lie-Schouten bracket

( , ) : Symmetrization of the indices

[ , ] : Anti-symmetrization of the indices

∂i : Partial derivative w.r.t xi (also denoted by ,i)

∇i : Covariant differentiation operator (also denoted by ;i)

⊙ : Symmetric tensor product

g : contravariant metric tensor

g : determinant of the metric tensor

Γijk : Christoffel symbol

Γi : Contracted Christoffel symbol

Rijkl : Riemann curvature tensor

Xi;jk −Xi;kj = XlR
l
ijk : Ricci identity

Rij = gklRkijl : Ricci tensor

Rs = gijRij : Curvature scalar, usually in the literature denoted as R

Rijk : Cotton tensor

δij : Kroenicker delta

Kij : Valence two Killing tensor

ρ : Eigenvalue of a Killing tensor

hia : i’th component of the eigenvector corresponding to the eigenvalue ρa
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p : Valence of Killing tensor

CK̂p(M) : Linear space of valence p trace-free conformal Killing tensors

k : Some symmetric tensor of type (p − 1, 0) or Killing vector, depending on
context.

S : Determinant of a Stäckel matrix

Q : Conformal factor in Stäckel matrix

R : Modulation factor of R-separability

log : Natural logarithm function, base e

Sij : Stäckel operator

H : Hamiltonian of Classical System

∆ : Laplace-Beltrami operator

W : Solution of the Hamilton-Jacobi equation

E : Energy of a Classical System

V : Potential of a Classical System

E3 : Euclidean space

xi, ui, qi : i’th coordinate, depending on context

pi : i’th component of the generalized momenta

I : Invariant function

C(M) : Conformal Group

φt : One parameter group of transformations

f∗ : The push forward map of the diffeomorphism f : M → N

L : Lie derivative operator

G : Connected Lie group of transformations
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v : Infinitesimal generator of Lie group action

k : Jacobi Elliptic parameter

2 : End of Proof symbol
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Chapter 1

Introduction

The method of separation of variables is a classical tool to split a partial differen-
tial equation into systems of ordinary differential equations, or decouple systems of
partial differential equations (pdes) into classes of ordinary differential equations
each depending on one variable only. This is a standard approach to solve impor-
tant boundary value problems in mathematical physics. There are many known
examples of coordinate systems admitting separation of variables for the Laplace
equation. These include Cartesian, polar, spherical and cylindrical coordinates the
choice of which depends on the type of initial conditions specified. Less known
examples (applied especially in electromagnetic theory) include elliptic-hyperbolic,
ellipsoidal, paraboloidal and conical coordinates to tackle boundary problems that
might otherwise be solved only numerically by those unaware of the separation of
variables properties such coordinates admit.

Clearly an exhaustive search for other coordinate systems possessing this prop-
erty would facilitate calculations in many fields where analytic solutions of partial
differential equations are desired over numerical ones, despite the very complicated
boundary value conditions that may arise. The standard theory of separation of
variables has been broadened to include a weaker R-separation of variables method
where the product solution ansatz contains a non-constant factor (denoted by R,
also called the modulation factor) depending on the coordinates. This relaxation
of strict separability permits a broader class of coordinate systems where equations
can be separated in this way.

The most familiar coordinate system admitting this property are toroidal coor-
dinates. Less familiar are the Jacobi-elliptic coordinates that arise from the solu-
tion of confocal quartics (defined in [39]) and contain degree four surfaces. Other
examples with rotational symmetry are bi-cyclide coordinates, flat-ring cyclide co-
ordinates and disk-cyclide coordinates. Two examples are known to exist with no
coordinate symmetries whatsoever - but have yet to be named.

This thesis focuses on R-separation of variables of the Laplace equation in Eu-
clidean space. The seventeen separable and R-separable coordinates in Euclidean
space were first determined by Bôcher, Eisenhart, Weinacht and Blaschke ([5], [20],
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[49], [4]). Much later they were classified using group theoretic methods by Boyer,
Kalnins and Miller [6]. We provide an exhaustive classification of the extra set of
R-separable coordinates based on differential invariants of valence-two conformal
Killing tensors under the action of the conformal group, which is an extension of
the ordinary isometry group. The approach is an extension of that employed by
Horwood, McLenaghan and Smirnov [25] who give an invariant classification of
the eleven simply separable coordinate systems (also known as coordinate webs)
for the Hamilton Jacobi and Helmholtz equation in E3 in terms of the invariants
and reduced invariants (with respect to the isometry group) of valence-two Killing
tensors.

Associated to R-separable coordinates are certain valence-two conformal Killing
tensors. Associated to each conformal Killing tensor is a trace-free representa-
tion, this subset has finite dimension and is the geometric object characterizing
R-separation of variables. In this thesis these will be calculated for all known rota-
tional R-separable coordinates and given in standard form (expressed in Cartesian
coordinates) which will facilitate future researchers who wish to study boundary
value problems with a potential.

In the study of boundary value problems for Schrödinger’s equation in E3, one
would like to know whether the problem may be solved by separation of variables.
The potential function is usually given in terms of Cartesian coordinates. The
existence of a potential restricts the number of possible coordinate systems with
respect to which the equation separates or R-separates. This determination may
be made in terms of the general valence-two Killing or conformal Killing tensors
admitted by E3. In this thesis we shall restrict ourselves to analysis of rotationally
symmetric coordinate systems.

1.1 Definitions of Separation of Variables

The linear partial differential equations (pdes) considered in this thesis for sepa-
ration of variables theory are the time-independent Schrödinger (S) equation and
the Helmholtz/Laplace (H/L) equation, defined on an n dimensional Riemannian
manifold (M, g). These are often considered for separability in a class of coordinate
systems to facilitate the solution of various boundary value problems.

All of the above pdes are special cases of the pde

∆ϕ+ Cϕ = 0, (1.1.1)

where ∆ is the Laplace-Beltrami operator defined by

∆ϕ = gij∇i∇jϕ =
1√
g

∂

∂xi

(√
ggij∂ϕ

∂xj

)
, (1.1.2)
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where ∇i is the covariant derivative with respect to the Levi-Civita connection of
the metric tensor g, g is the determinant of the metric tensor and C is an in-
finitely differentiable function defined on M . For C 6= const, Eq. (1.1.1) yields
the time-independent Schrödinger equation. For C = const 6= 0, Eq. (1.1.1) re-
duces to the Helmholtz equation. For C = 0, Eq. (1.1.1) reduces to the Laplace
equation. Note that for the time-independent Schrödinger equation, it is customary
to write C = V −E, where V denotes the potential and E the energy of the system.

Separation of variables theory for Eq. (1.1.1) is closely related to that of the
Hamilton-Jacobi (HJ) equation for a natural Hamiltonian defined on (M, g). Such
an equation may be written as

gij∂iW∂jW + V = E, (1.1.3)

where ∂i denotes ∂
∂xi and V denotes the potential and E the energy of the system.

In this thesis ui or qi or xi will be understood to represent the ith coordinate, this
is because certain symbols for the coordinate are more prevalent in certain proofs
and definitions in the literature than others.

The fundamental definition of R-separation of variables for the equation (1.1.1),
given by Moon & Spencer [38] and Morse & Feshbach [39], is as follows:

Definition 1.1.1 If the ansatz for trial solutions

ϕ =
U1(u1, a) · U2(u2, a) · · · · · Un(un, a)

R(u1, · · · , un) a ∈ R2n−1

for some analytic R 6= const permits the separation of

∆ϕ+ Cϕ = 0

into n ordinary differential equations, then the equation is said to be conformally
or R-separable. The function R is called the modulation factor.

Remark 1.1.2 A completeness condition on the parameters a exists to ensure non-
degeneracy of the solutions and is given in Chapter 2. If in the above definition
R = const, then the equation is said to be simply separable. One can describe R-
separability as a relaxation of the ad-hoc simple separability to permit solutions of
partial differential equations in a broader class of coordinate systems - thus motivat-
ing the research into classifying which coordinates admit this property. Furthermore
if R is a product of functions of a single variable - that is ∂ijlog(R) = 0 for i 6= j,
we have the case of trivial R-separation [28]. Since coordinates are trivially
R-separable iff they are separable, we regard trivial R-separation as equivalent to
ordinary separation [31].

The fundamental definition of separation of variables for the equation (1.1.3) for
fixed values of the energy is as follows:

3



Definition 1.1.3 If the ansatz for trial solutions

W = U1(u1, a) + U2(u2, a) + · · · + Un(un, a) a ∈ Rn

permits the separation of
gij∂iW∂jW + V = E

for fixed values of the energy E into n ordinary differential equations, then the
equation is said to be conformally separable.

Note that the HJ equation for free ranges of the energy admits simple (sum) sepa-
ration of variables, where the parameter a depends on one more arbitrary constant
- that is a ∈ Rn+1. The completeness condition on a, to ensure non-degeneracy of
the solutions, is well known [23].

There is indeed a strong connection between the conditions of separability for the
equations (1.1.1) and (1.1.3). Necessary conditions for separation of the HJ equa-
tion are identical with those required for separation of the H/L/S equation, despite
the fact that the HJ equation admits sum separability whereas the H/L/S equation
admits product separability of the variables.

The theory of separation of variables goes back well over 200 years. In 1905 a
significant theorem by Levi-Civita was formulated [26]:

Theorem 1.1.4 The HJ equation equation, which can be re-written as

H(q1, . . . , qn,
∂W

∂q1
, . . . ,

∂W

∂qn
) = E,

where H is the Hamiltonian operator and W (q1, . . . , qn) is the solution of the equa-
tion for coordinates qi, admits (simple) sum separation in a coordinate system if
and only if the following equation holds true:

∂H

∂pj

∂H

∂pi

∂2H

∂qi∂qj
− ∂H

∂pj

∂H

∂qi
∂2H

∂qj∂pi
− ∂H

∂qj
∂H

∂pi

∂2H

∂pj∂qi

+
∂H

∂qj
∂H

∂qi
∂2H

∂pj∂pi
= 0, i 6= j (1.1.4)

where pi ≡ ∂W
∂qi represents the generalized momentum.

Since the classical Levi-Civita criterion is almost always stated without a clear proof
in the literature, an outline of a proof is provided in Appendix A. The Levi-Civita
criterion can be generalized to encompass the case of fixed energy, as derived in [3].
It can also be formulated to encompass R-separation of the L and S equation, as in
[29]. However direct reference to it can be circumvented by considering conformal
transformations to metrics admitting simple sum separability of the HJ equation;
this result will be described in Section 2.1.
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In this thesis we restrict ourselves to orthogonal separability. In fact in spaces
of constant curvature separability of the HJ equation is necessarily orthogonal, a
proof in the literature is given in [26]. Orthogonal separability was once assumed
to be a strict condition for separation of the Helmholtz equation in any space, until
Kalnins and Miller proved this to be false by a counter-example, as well as B. Carter
studying the HJ and S equation on the (non-orthogonal) Kerr metric [10], [9]. In
this thesis only orthogonal separability will be considered. It should be noted that
the general Laplace equation reduces for flat space (and Cartesian coordinates) to
the well-known classical Laplace equation:

∆ϕ =
n∑

i=1

∂2ϕ

∂(ui)2
= 0 (1.1.5)

Clearly different orthogonal metrics determine the different forms that ∆ϕ takes.
R-separation is a weaker condition but the advantage is clearly that a larger class
of coordinate systems admit this property. Research is being undertaken to charac-
terize these extra coordinate systems based on a classification scheme - this thesis
comprises such research for E3. In Euclidean space there are in fact eleven in-
equivalent orthogonal coordinate systems affording simple separability [25], and
an additional six admitting R-separability which will be addressed in the coming
chapters. Future research is required for higher dimensional flat spaces pertinent
to complicated boundary value problems in mechanics and electromagnetism.

1.2 The theory of Stäckel matrices

Powerful tools exist to determine whether or not a coordinate system admits simple
separation of variables. One method was formulated by P. Stäckel in 1896 [45]:

Definition 1.2.1 Associated with each separable metric is a non-singular Stäckel

matrix, which is an n × n array where the ith row is a function of the coordi-
nate qi only and the first row of its inverse yields the diagonal components of the
contravariant metric tensor.

Proving the existence of a Stäckel matrix is non-algorithmical. However this matrix
determines everything we need to know about separated equations [37]. Explicitly
it is, for the general case of n-dimensions:

[S] =




φ11(q
1) φ12(q

1) . . . φ1n(q
1)

φ21(q
2) φ22(q

2) . . . φ2n(q
2)

...
...

...
...

φn1(q
n) φn2(q

n) . . . φnn(q
n)




(1.2.1)
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Moon and Spencer, in their papers [36], [37], formulated necessary and sufficient
conditions - connecting the metric tensor expressed in the separable coordinates
with the associated Stäckel matrix - for separation of the Helmholtz equation:

gii =
S

Mi1

(1.2.2)

g
1
2

S
= f1(q

1) · f2(q
2) · . . . · fn(qn), (1.2.3)

where Mi1 is the associated co-factor of the Stäckel matrix, and S is its deter-
minant. The first of the above conditions on the metric tensor is necessary and
sufficient for (sum) separation of the HJ equation in Classical Mechanics, whereas
both conditions are required for product separation of the Helmholtz as well as
the Schrödinger equation. A metric satisfying the first condition is also denoted
to be in Stäckel form[31]. The second condition is also known as the Robertson
condition - named after the mathematician who discussed it in a 1927 paper [44].
Remarkably there is a geometric relation with the associated Ricci tensor of the
metric (in separable coordinates) for the Robertson condition: Rij = 0, i 6= j [20],
which was discovered by Eisenhart in 1934.

For the case of the Helmholtz equation reducing to the (special case) Laplace
equation, the following conditions are special cases of the previous:

gii
gjj

=
Mj1

Mi1

(1.2.4)

g
1
2

gii
= f1(q

1) · f2(q
2) · . . . · fn(qn) ·Mi1 (1.2.5)

The above equations become more complicated for the case of R-separation of
variables, where for R 6= const simple separation of variables is no longer possible.
An additional non-constant function Q(q1, q2, . . . , qn) must be introduced such that,
for R-separation of both the Helmholtz and Laplace equation,

gii =
SQ

Mi1

(1.2.6)

g
1
2

S
= f1(q

1) · f2(q
2) · . . . · fn(qn) ·R2Q (1.2.7)

α1 ≡ −Q
R

3∑

i=1

1

fi(qi)gii

∂

∂qi

(
fi(q

i)
∂R

∂qi

)
= const (1.2.8)
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A useful formula resulting from the above relates the determinant of the Stäckel
matrix S to the function Q [37]:

S =
giiMi1

Q
(1.2.9)

This may be seen as a definition for Q. Clearly the search for the ‘right’ function
Q(q1, q2, . . . , qn) that satisfies all of the above conditions is also a non-algorithmical
endeavor. The function Q is sometimes referred to as the conformal factor. An
orthogonal metric (with associated Riemann tensor not neccesarily vanishing) ad-
mitting separation of variables for the HJ equation with fixed energy is always
conformal to an orthogonal metric admitting simple separability of the HJ equa-
tion (with free ranges of the energy). This is not necessarily the case for the H/L/S
equation. In exceptional circumstances when this is true, a simple relationship
exists between R and Q - a connection that becomes apparent when later the con-
formally invariant Laplace equation is considered. We digress here to prove this
relationship, which is a relationship between metrics admitting R-separation of
variables for the H/L/S equation, and those satisfying Rij = 0, i 6= j.

Theorem 1.2.2 In orthogonal metrics admitting R-separation of variables for the
H/L/S equation that are conformal to orthogonal metrics admitting simple separa-
bility of the H/L/S equation, the modulation factor R satisfies

R = Q
n−2

4 (1.2.10)

Proof: Let g
′

ij be the metric satisfying simple separability, and gij be the metric
admitting R-separability. Thus we have from this starting assumption:

√
g′

S
= f1(q

1) · f2(q
2) · . . . · fn(qn) (1.2.11)

√
g

S
= f1(q

1) · f2(q
2) · . . . · fn(qn) ·R2Q (1.2.12)

Now by definition gii = g
′

iiQ which implies, in general for n-dimensions, g = g
′

Qn

or g
′

= g/Qn. Therefore if

√
g
′

S
= f1(q

1) · f2(q
2) · . . . · fn(qn) this implies

√
g

Qn/2S
=

f1(q
1) · f2(q

2) · . . . · fn(qn). So
√
g

S
= f1(q

1) · f2(q
2) · . . . · fn(qn) · Qn/2, which im-

plies Qn/2 = R2Q. Hence Q
n−2

2 = R2 and after taking square roots we obtain the
required formula. 2

In the special case of 3-dimensions, this reduces to R = Q1/4. Examples are
numerous in [38]. With 6-sphere coordinates R = (u2 + v2 + w2)−1/2 whereas
Q = (u2 + v2 + w2)−2. The same pattern holds true for inverse oblate coordinates,
inverse prolate coordinates and tangent sphere coordinates. Toroidal and bispher-
ical coordinates satisfy this relationship too however they are unique in that they
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are conformal to non-flat (albeit Ricci diagonal) metrics. The above relation does
not hold for the cyclide coordinates, which are conformal to coordinates that do
not admit simple separability of the H/L/S equation - indeed these coordinates do
not admit an orthogonal Ricci tensor.

Non-trivial R-separation for the Helmholtz equation does not occur in flat spaces
or spaces of constant curvature - only the Laplace equation R-separates. Also, any
R-separable solution of the Laplace equation on a conformally flat space corresponds
to a regular separable solution of the Helmholtz equation on a space of constant
curvature [43]. An example of a metric admitting R-separation of the Helmholtz
equation on a conformally flat space is given by [31]:

ds2 = (x+ y + z)[(x− y)(x− z)dx2 + (y − z)(y − x)dy2

+ (z − x)(z − y)dz2]

R = (x+ y + z)−
1
4 (1.2.13)

Another example is

ds2 = −dx2 + dy2 + (y − x)−1dz2

R = (x− y)
1
4 (1.2.14)

Having introduced Stäckel matrices it must be pointed out that each coordinate
system admitting separation of variables does not admit a unique Stäckel matrix:
they are not in 1:1 correspondence. Two such matrices are understood to be equiv-
alent if their ratios S

Mi1
are the same - indeed if they generate the same metric

tensor. This allows for a flexibility of operations on the columns except for one
(usually the first or the last in the literature). Operations on the rows are generally
not permitted. The allowed actions on the columns are [37]

1. Interchanging of the ith and the jth column, where we understand
i, j = 2, 3, · · · , n.

2. Multiplication of the jth column by a non-zero constant c ∈ R.

3. Addition of each element in the ith column by the corresponding element in
the jth column multiplied by a common non-zero factor c ∈ R.

We conclude this section with a brief discussion of the equivalence between separa-
bility of the HJ equation and the existence of a Stäckel matrix, which was achieved
by Paul Stäckel in 1893. We start by constructing this non-singular n × n matrix
which we denote as ϕki , the index k labeling the column and the index i labeling
the row. We define each row of the Stäckel matrix, of course, to only depend on the
corresponding coordinate qi, thus ∂

∂qjϕ
k
i = 0 if i 6= j. This means then ϕki = ϕki (q

i).

For notational simplicity we denote S−1 = ϕik, taking care not to confuse this with
the transpose operation.
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Theorem 1.2.3 The HJ equation of a conservative Hamiltonian (no time-dependence)
is separable in the qi iff:

1) (g11, g22, . . . , gnn) is a row of the inverse Stäckel matrix.

2) The potential V = g11U1(q
1)+ g22U2(q

2)+ . . .+ gnnUn(q
n) for some arbitrary set

of functions Ui(q
i).

Proof: A known result is that separability of the Hamiltonian implies separability
of 1

2
giip2

i , the so called geodesic part. This means that since pi = ∂W
∂qi = φ̃i(q

i, αk)

that (pi)2 = φi(q
i, αk), which is a function of qi only. The squared variable is still

only dependent on qi. So now we use the fact that, without loss of generality, we
may set the total energy E of the Hamiltonian to equal αn, one of the arbitrary
constants [23]. Thus we have 1

2
giiφi(q

i, αk) = E = αn.

How the components of the Stäckel matrix are constructed, based on the above,
is given in Appendix C.

1.3 Tensorial formulation of separation of vari-

ables theory

A first principles approach to separation and conformal separation of variables for
the HJ, H and L equation in terms of the separable coordinates was described in
Section 1.2. In this section we shall discuss a coordinate invariant approach based
on the theory of valence-two symmetric Killing tensors and valence-two symmetric
conformal Killing tensors as discovered by Eisenhart [20], [21] during research in
the 1930’s. Following [20] we make the definition,

Definition 1.3.1 A valence-two symmetric tensor Kij is a Killing tensor if it
satisfies:

Kij;l +Kjl;i +Kli;j = 0, (1.3.1)

where ; denotes the covariant derivative.

Note that in Eisenhart’s 1934 paper Kij is denoted as aij. From the definition one
can see that Killing tensors are unique up to a scalar c times the metric tensor.
In the literature Killing tensors are often denoted as simple Killing tensors to dis-
tinguish them clearly from conformal Killing tensors. If the Killing tensor has real
pointwise simple eigenvalues and normal eigenvectors, then there exists a system
of orthogonal coordinates such that [20]:

Kij = ρigij (no sum), (1.3.2)
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where the eigenvalues ρi satisfy the following system of equations (also known as
the Eisenhart equations):

∂ρi
∂xi

= 0 (1.3.3)

∂ρi
∂xj

= (ρi − ρj)
∂log(gii)

∂xj
, i 6= j (1.3.4)

The integrability conditions for the above equations (also called the Eisenhart in-
tegrability conditions) are

∂2 log(gii)

∂xi∂xj
+
∂log(gii)

∂xj
∂log(gjj)

∂xi
= 0, i 6= j (1.3.5)

and

∂2 log(gii)

∂xj∂xk
− ∂log(gii)

∂xj
∂log(gii)

∂xk
+
∂log(gii)

∂xj
∂log(gjj)

∂xk

+
∂log(gii)

∂xk
∂log(gkk)

∂xj
= 0, i, j, k all distinct (1.3.6)

Whether or not a particular metric admits separation of variables depends on
whether or not the above two conditions are satisfied. Indeed it is proven in [2]
and [3] that the HJ equation for null geodesics is separable in orthogonal coordi-
nates on an n-dimensional Riemannian space if and only if there exist n Killing
tensors (Ki) = (K1, K2, . . . , Kn) such that they are pointwise linearly independent
and with common eigenvectors. As already mentioned the metrics admitting sepa-
rability of the HJ equation for fixed values of the energy are conformally related to
metrics allowing separability of the HJ equation for free ranges of the energy via
the conformal transformation equation

g̃ii = e2σgii (1.3.7)

for a well behaved function of the coordinates σ. Indeed σ is related to the afore-
mentioned Q factor in determining a Stäckel matrix for proving R-separability of
the Laplace equation.

A coordinate invariant characterization of R-separability of the H/L/S equation
requires the following definition:

Definition 1.3.2 A valence-two symmetric tensor Kij is a conformal Killing

tensor if it satisfies

Kij;l +Kjl;i +Kli;j = kigjl + kjgli + klgij, (1.3.8)

where ki is some vector field.
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The property of being a conformal Killing tensor is preserved under addition of a
smooth function f times the metric, a fact that will come into play in the sequel.
Indeed, two conformal Killing tensors K and L are said to be equivalent, or in the
same equivalence class, if Kij = Lij + fgij, for some scalar function f . Not all
conformal Killing tensors, with pointwise real and distinct eigenvalues and normal
eigenvectors, in an equivalence class are simple Killing tensors with respect to some
conformally related metric. However, there exists at least one such representative
element in each equivalence class [3]. This will be proved in the next section. With
respect to orthogonal coordinates, the diagonal components of the conformal Killing
tensor obey the following relations:

Kij = ρigij,
∂ρi
∂xi

= ki (no sum), (1.3.9)

∂ρi
∂xj

= (ρi − ρj)
∂log(gii)

∂xj
+
∂ρj
∂xj

(1.3.10)

Eisenhart proved a fundamental theorem linking Killing tensors with Stäckel ma-
trices [20]:

Theorem 1.3.3 A necessary and sufficient condition for the existence of a Stäckel
matrix in some coordinate system - making it a separable coordinate system [30],
is that there exists a valence-two Killing tensor with real distinct eigenvalues and
normal eigenvectors.

Remark 1.3.4 The existence of such a Killing tensor implies that there exists a
system of coordinates such that the contravariant components of the diagonalized
Killing tensor are elements in a row of the inverse Stäckel matrix, defined for the
same coordinates. These coordinates for which this property holds are often called
separable coordinates. This is equivalent to the existence of n Killing tensors, in
involution and pairwise commutation, associated with each separable metric - one
member always being the metric tensor itself [3].

The above property is fundamental to this thesis, since we used the connection
between Stäckel matrices and Killing tensors to compute Killing tensors for known
coordinate systems admitting separation of variables for the Laplace equation [27],
[30]. In Appendix B is our own extension of the proof in Eisenhart’s 1934 paper,
noting that many steps were skipped or left to the reader to verify.

1.4 Example of R-separation of the Laplace equa-

tion for toroidal coordinates

A common boundary value problem in electromagnetic theory requiringR-separation
of variables are toroidal coordinates in E3, especially for problems with toroidal
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boundary conditions such as the 3-Torus. In these coordinates, where x1 = η,
x2 = θ and x3 = ψ, the metric tensor components are

g11 = g22 =
a2

(cosh(η) − cos(θ))2

g33 =
a2 sinh(η)2

(cosh(η) − cos(θ))2
(1.4.1)

The denominator in the metric proves an impossible difficulty in the search for a
Stäckel matrix associated with simple separation for toroidal coordinates. It can
be shown by first principles methods that simple separation of toroidal coordinates
is impossible - hence by extension no Stäckel matrix exists. However, if we propose
R-separation, and let

Q =
a2

(cosh(η) − cos(θ))2

then we obtain
M11

S
=
M21

S
= 1

and
M31

S
=

1

sinh(η)2

The determinant S of the Stäckel matrix is then simply unity and the matrix itself
takes on the simple form:




1 −1 −1/ sinh(η)2

0 1 0

0 0 1




(1.4.2)

The condition

α1 ≡ −Q
R

3∑

i=1

1

fi(qi)gii

∂

∂qi

(
fi(q

i)
∂R

∂qi

)
= const (1.4.3)

is satisfied since
R2 = (cosh(η) − cos(θ))−1

(recall the relationship between R and Q in the sections prior). For the solutions
(f1, f2, f3) in the condition

g
1
2

S
= f1(q

1) · f2(q
2) · . . . · fn(qn) ·R2Q

we finally obtain α1 = 1/4. Therefore requirements for R-separation of the Laplace
equation are satisfied.
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1.5 Symmetry operator approach to separation

of variables theory

In the classic papers by Boyer, Kalnins and Miller [6], [7], a connection with the
existence of separable coordinates of the H/L equation and commuting pairs of
second order symmetry operators is elucidated. The separated solutions for or-
thogonal coordinate systems are characterized as common eigenfunctions of pairs
of commuting symmetry operators. These operators are linear and differential. A
first order symmetry operator is of the form

L =
∑

aj(x)∂j + b(x), (1.5.1)

where aj and b are analytic functions of the coordinates in some domain D on
the manifold such that Lψ is a solution of the Helmholtz equation in D for any
analytic solution ψ of the Helmholtz equation in D. The set of all such symmetry
operators forms a Lie algebra under the operations of scalar multiplication and
commutator bracket [L1, L2] = L1L2−L2L1. Second order symmetry operators are
constructed from products of first order symmetry operators. This is also known as
an enveloping algebra of the space. Each separable system is associated with a two-
dimensional subspace of commuting operators with S1, S2 a non-unique basis for the
subspace. The Euclidean group of isometries acts on the set of all two-dimensional
subspaces of commuting operators and decomposes this set into orbits of equivalent
subspaces. Separable coordinates associated with equivalent subspaces are regarded
as equivalent, as one can obtain any such system from any other by a Euclidean
isometric transformation.

To study R-separable coordinates, the Euclidean group of isometries is extended
to encompass the full conformal group of E3, as well as the discrete inversion and
space reflection. R-separable coordinates are regarded as equivalent to separable
coordinates if one can obtain the other and vice versa by a group transformation
belonging to the above set. An R-separable coordinate is deemed ‘additional’ if this
cannot be done. By this measure there are six additional R-separable coordinates
found by [7] along with the eleven simply separable ones that E3 admits with respect
to the full conformal group as well as the discrete inversion and reflection. It should
be noted that the extended group of transformations does not make equivalent any
of the eleven simply separable coordinates classified with respect to the Euclidean
isometry group.

In their analysis Boyer, Kalnins and Miller used the isomorphism between the
conformal group and the isometry group defined on Minkowski space of dimension
(n + 2) where the group action becomes linear [6]. This approach was anticipated
by Bôcher who constructed R-separable coordinates for the n-dimensional Laplace
equation by a method in going up two dimensions and considering functions on
the (n + 2) cone. Modern conformal geometers have recently denoted this as the
ambient space. This is beyond the scope of this thesis however, as we restrict
ourselves directly to Euclidean space.
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In the paper of [7], the above formalism is applied to the Helmholtz equation
defined on complex Riemannian manifolds. A discussion of this formalism is beyond
the scope of this thesis. Results from this article will however be correlated with the
additional R-separable coordinates found in the course of my research by means of
the invariance of conformal Killing tensors. Indeed the coefficients Aij of the second
order part of the symmetry operators S characterizing each type of R-separable
rotationally symmetric coordinates, with respect to Cartesian coordinates, listed in
Table 2 of [6] when written as

S = ∂iA
ij∂j

correspond to the components of conformal Killing tensors equivalent to those that
will be calculated in this thesis for bi-cyclide, flat-ring cyclide, disk cyclide and
toroidal coordinates. It should be added that the simple Killing tensors found for
the eleven simply separable orthogonal coordinates in Euclidean space [25] corre-
spond to the coefficients Aij of the second order part of the symmetry operators S
listed in Table 1 of [6].

Referring to the previous example for toroidal coordinates, the two second order
symmetry operators associated with that coordinate system are:

S1 = (x2∂1 − x1∂2)
2

S2 =
1

4
(∂3 + x3 + ((x3)2 − (x1)2 − (x2)2)∂3

+ 2x3x1∂1 + 2x3x2∂2)
2 (1.5.2)

1.6 Outline of the thesis

The remainder of the thesis will be organized as follows. In Chapter 2 is an illus-
tration of the modern tools used in the proof of the connection between Stäckel
formalism and conformal Killing tensors, as well as the very important link be-
tween conditions for sum separation of variables of the HJ equation and product
separation of variables of the H/L and Schrödinger equations. Killing vectors and
conformal Killing vectors are also introduced, as well as the definition of isometries
and group transformations. In Chapter 3, we confirm using symmetric products
of conformal Killing vectors that the number of arbitrary constants for the most
general trace-free conformal Killing tensor defined in E3 is thirty five, as is stated
in the literature [18, 46, 47]. All independent relations are listed. Initially there are
twenty constants too many; this requires one to impose fourteen conditions that
result from the trace-free assumption. There are an additional six conditions that
arise from relationships among the basis elements themselves. In Chapter 4, the ro-
tationally invariant subset of all conformal Killing tensors is given, using the known
coordinate systems in [38] admitting conformal separation of variables. The gen-
eral rotationally symmetric Killing tensor is deduced from the most general Killing
tensor by two equivalent means. These two approaches in consideration of the nor-
mality (integrability) of the eigenvectors (the TSN conditions) of the coordinate
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surfaces [48] are presented and make the study of the rotational webs considerably
simpler. After this the characteristic Killing tensors of all the known R-separable
coordinates are given. Their representations, in terms of symmetric tensor products
of conformal Killing vectors, are also discussed and in difficult cases derived first
(especially for fourth degree surfaces defined in terms of Jacobi elliptic functions).

In Chapter 5 the group transformations preserving the rotationally invariant
subset of all conformal Killing tensors are given. The conformal group, as well
as discrete operations not continuously connected with the identity, are discussed
along with their effect on the transformed conformal Killing tensor components. In
Chapter 6, we present a proof based on the set of defined group transformations that
the R-separable webs known thus far are either related to simple separable webs or
are otherwise inequivalent. The classical theory of invariants [34] is a useful tool in
this question and applied to characterize all the rotationally symmetric coordinates
tabulated in [38]. Although the main contents in Chapter 6 have been published in
the Journal of Mathematical Physics [13], the formalism presented here differs from
the formalism of the paper in that we gave an alternate characterization conceived
in 2006. For historical reasons, we chose to present this ‘first principles’ approach
which is admittedly not as compact as the formalism of invariants and covariants
of bi-quartic polynomials which is given in the paper. A simple proof will be shown
that the only additional R-separable coordinates admitting symmetries are the
rotational ones, leaving the asymmetrical cases to be considered next. In Chapter
7 the general Laplace equation is modified to include the property of invariance
of solutions under conformal transformations. This is also called the conformally
invariant Laplace equation and an ansatz for a Stäckel matrix associated with it is
used to derive metrics of asymmetric coordinates expressed in canonical Cartesian
coordinates. These coordinates are discussed in light of the results of [5] and [7].
Finally, we draw conclusions in Chapter 8 and discuss directions for future research.
Some classical proofs not easily found in the literature are given in the Appendices
for the interested reader.

The reader will no doubt realize that the classification of the coordinate webs
and the algorithm for determining characteristic conformal Killing tensors for all
coordinates considered is highly computational. Nevertheless, all computations are
purely algebraic in nature, and this allowed all tasks to be performed in Maple 9.
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Chapter 2

Theory of separation of variables

2.1 Link between Stäckel formalism and confor-

mal Killing tensors

A beautiful geometric result is that all separable webs are defined by valence-two
symmetric Killing tensors, with pointwise simple eigenvalues and normal eigenvec-
tors. Such Killing tensors are said to be characteristic. The separable webs are the
families of (n−1)-dimensional hypersurfaces orthogonal to each eigenvector field of
the Killing tensor. This geometrical property is why characterizing all Killing ten-
sors in a certain dimension is fundamental to this research. The goal is to express
the Killing and conformal Killing tensors in canonical Cartesian coordinates, not
in terms of canonical separable coordinates. This is because in physical problems
involving potentials, where the method of separation of variables is used, the poten-
tial is usually expressed in Cartesian coordinates. To this end the Jacobian of the
tensor transformation law must be calculated for every coordinate system studied,
and with the known (contravariant) Killing tensor diagonalized in the separable
coordinates, the following equation applied:

K = JTDJ, (2.1.1)

where J is the Jacobian calculated from the coordinate transformation from Carte-
sian to separable coordinates and D is the diagonalized Killing tensor. The tensorial
expression can be written as

Kij =
∂xi

∂uk
∂xj

∂ul
Dkl, (2.1.2)
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where xi are the canonical Cartesian coordinates and ui are the canonical separable
coordinates. In component form the Killing tensor K is:




∂x1

∂u1
∂x1

∂u2 . . . ∂x1

∂un

∂x2

∂u1
∂x2

∂u2 . . . ∂x2

∂un

...
...

...
...

∂xn

∂u1
∂xn

∂u2 . . . ∂xn

∂un







ρ1g11 0 . . . 0

0 ρ2g22 . . . 0

...
...

...
...

0 0 . . . ρngnn







∂x1

∂u1
∂x1

∂u2 . . . ∂x1

∂un

∂x2

∂u1
∂x2

∂u2 . . . ∂x2

∂un

...
...

...
...

∂xn

∂u1
∂xn

∂u2 . . . ∂xn

∂un




T

(2.1.3)

where xi are Cartesian coordinates in terms of the separable coordinates ui. Clearly
to calculate the Jacobian explicitly the coordinate transformation law must be
known. After the above equation is applied, the result is initially expressed in sep-
arable coordinates (albeit with the matrix form’s basis being the standard canonical
basis) - the last step is to calculate or guess the result in Cartesian coordinates.
To assist the reader in parallel calculations, for every separable coordinate system
studied in this thesis, the coordinate transformation law and the associated Stäckel
matrix will be provided. Although the Killing tensors can be computed by solving
the Eisenhart equations, we chose the route of first calculating the diagonalized
Killing tensors through Stäckel theory and then using the (proven) link given by
Eisenhart. The recipe for finding conformal Killing tensors is precisely the same
save for the different Jacobian arising from the conformal transformation law asso-
ciated with simple separability - recall they share the same Stäckel matrix modulo
the functions R and Q.

Recent research by S. Benenti, C. Chanu and G. Rastelli has yielded additional
interpretations of conditions for metrics to admit separation of variables of the
H/L as well as the HJ equation. In [15] they showed that R-separation of the H/L
equation is equivalent to additive R-separation of the HJ equation for fixed value
of the energy (instead of a free range parameter of the energy). Furthermore they
show that R-separation of variables corresponds to separability of the HJ equation
for fixed values of the energy, whereas simply separable coordinates correspond
to (simple) separability of the HJ equation for free ranges of the energy. This
gives a physical insight into what happens when simple separability is relaxed. A
fundamental concept they introduced to prove the above results is the so called
Stäckel operator :

Definition 2.1.1 A Stäckel operator is a linear second order differential operator
defined on any real function f(Q) → R such that:

Sij(f) = ∂2
ijf − ∂j ln(gii)∂if − ∂i ln(gjj)∂jf (2.1.4)

Stäckel operators satisfy the following properties [2], [3]:

Sij(c) = 0
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Sij(A+B) = Sij(A) + Sij(B)

Sij(cA) = cSij(A)

Sij(AB) = ASij(B) +BSij(A) + ∂iA∂jB + ∂jA∂iB

Sij(A
−1) = 2A−3∂iA∂jA− A−2Sij(A) (2.1.5)

Stäckel operators S̃ij corresponding to a conformal orthogonal metric g̃ii = e−2σgii

satisfy the above as well as:

S̃ij(A) = Sij(A) + e−2σ · (∂ie2σ∂jA+ ∂iA∂je
2σ)

S̃ij(g̃
kk) = e−2σSij(g

kk) − gkke−4σSij(e
2σ)

= e−2σgkk
(

1

gkk
Sij(g

kk) − e−2σSij(e
2σ)

)
(2.1.6)

Proposition 2.1.2 An orthogonal coordinate system admitting simple separability
of the HJ equation satisfies

Sij(g
hh) = 0 (2.1.7)

Proof: Consider a natural Hamiltonian in orthogonal coordinates of the form:

H(q, p) =
1

2
giip2

i + V (q) ≡ G+ V (2.1.8)

It can be shown, by some algebra, that the Levi-Civita separability criterion on H
is equivalent to the equation:

Lij(H) = giigjjpipj

(
1

2
Sij(g

kk)p2
k + Sij(V )

)
= 0 (n.s) (2.1.9)

and this is satisfied if and only if 1
2
Sij(g

kk)p2
k+Sij(V ) = 0. Indeed gkk is denoted as

a Stäckel metric iff Sij(g
kk) = 0, and a potential is simply separable in these coor-

dinates iff Sij(V ) = 0. This completes the proof [3] that an orthogonal coordinate
system admitting simple separability of the HJ equation satisfies Eq. (2.1.7). 2

In the formalism of [28] and [33], T is a Stäckel multiplier if Sij(T ) = 0.
Given a metric ds2 in Stäckel form, the function T (x, y, z) is a Stäckel multiplier if
dŝ2 = Tds2 is also in Stäckel form. A Stäckel transform is one that is a conformal
transformation preserving the Stäckel form of the separable system.

Remark 2.1.3 In the previous formula about S̃ij, if we in particular choose e2σ to
be any one of (g11, . . . , gnn), then one recovers a theorem of [7]: if gii is a Stäckel

metric, then all of
(
gii

g11
, . . . , g

ii

gnn

)
are Stäckel metrics. Remarkably the equation

Sij(g
kk) = 0 is also equivalent to equations:

∂2
ij|gkk| − ∂i ln |gkk|∂j ln |gkk| + ∂i ln |gkk|∂j ln |gii|

+ ∂j ln |gkk|∂i ln |gjj| = 0 (2.1.10)

If in the above one makes the substitution gii = eiH
2
i , ei = ±1, one then recovers

the famous Eisenhart’s equations. Thus we see the power of the Stäckel operators.
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Theorem 2.1.4 The HJ equation for fixed value of the energy, namely 1
2
giip2

i +
(V − E) = 0 where pi ≡ ∂iW is separable in orthogonal coordinates, for E ∈ R, if
and only if

Sij(g
hh)

ghh
− Sij(g

kk)

gkk
= 0 (2.1.11)

and

Sij(V ) =
(V − E)

ghh
Sij(g

hh) (2.1.12)

for all indices h, k and i 6= j [3].

Remark 2.1.5 This condition is conformally invariant, and will be exploited fully
in Chapter 7. This is shown in [3] to be equivalent to the existence of a function e2σ

such that the conformal metric g̃ii = e−2σgii is a Stäckel metric, that is S̃ij(g̃
kk) = 0.

Conformally separable coordinates are orthogonal coordinates q = qi for which
Eq. (2.1.11) or Eq. (2.1.12) holds. Indeed the conformally separable coordinates
are useful because they are the only ones in which a natural Hamiltonian with fixed
value of the energy can be solved by additive separation of variables.

An important property is that coordinates qi are conformally separable if and
only if there exists a Stäckel matrix, with elements of the inverse denoted by ϕi(n),
such that

∃ e2σ | e−2σgii = ϕi(n) ⇔
gii

ϕi(n)

=
gjj

ϕj(n)

(2.1.13)

for all indices i and j.

The Eq. (2.1.11) and Eq. (2.1.12) of Theorem 2.1.4 for fixed value of the energy
are useful in the proofs of the following two theorems:

Theorem 2.1.6 The HJ equation

1

2
giip2

i = E, (2.1.14)

with E 6= 0 fixed, is separable in orthogonal coordinates qi iff gii is a Stäckel metric,
that is iff it is separable in the ordinary sense for all values of E.

Proof: Since V = 0, Eq. (2.1.12) yields Sij(g
kk) = 0. For the other direction, if

the equation is separable in the ordinary sense then Sij(g
kk) = 0 and thus both Eq.

(2.1.11) and Eq. (2.1.12) are trivially satisfied. 2
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Theorem 2.1.7 The HJ equation of the null geodesics

giip2
i = 0 (2.1.15)

is separable in the orthogonal coordinates qi iff these coordinates are conformally
separable.

Proof: For V = E = 0, the Eq. (2.1.12) is trivially satisfied, hence only Eq.
(2.1.11) characterizes the equation. 2

Theorem 2.1.8 The HJ equation

1

2
giip2

i + V − E = 0 (V − E) 6= 0, (2.1.16)

is separable if and only if the conformal metric

g̃ii =
1

E − V
gii (2.1.17)

is a Stäckel metric, or equivalently, if and only if for all indices h, k and i 6= j,

1

gkk
Sij(g

kk) =
1

V − E
Sij(V ). (2.1.18)

Thus the coordinates are conformally separable, but the conformal factor e2σ must
be equal to the function V − E.

Proof: Eq. (2.1.12) is equivalent to 1
gkkSij(g

kk) = 1
V−ESij(V ). Note this is just an

instance of the Stäckel transform [8]. 2

Proposition 2.1.9 The HJ equation is separable for two distinct values of the
energy E if and only if it is separable in the ordinary sense. Alternatively - if a
natural Hamiltonian H = G+ V is not simply separable, then there exists at most
one value of the energy E such that H = E is separable.

Consider one very important case of the HJ equation with fixed value of the energy,

1

2
giip2

i + (V − E) = 0, (V − E) 6= 0. (2.1.19)

This is separable if and only if g̃ii = 1
(E−V )

gii is a Stäckel metric, or equivalently
Sij(g

kk)

gkk = 1
(E−V )

Sij(V ). Coordinates are conformally separable, with conformal

factor e2σ equal to (E − V ) since with e2σ = (E − V ),

S̃ij(g̃
kk) =

1

(E − V )
Sij(g

kk) − gkk

(E − V )2
Sij(E − V ) (2.1.20)

hence S̃ij(g̃
kk) = 0. The metric g̃ii = (E − V )−1gii is called the Jacobi metric of

the Hamiltonian H = G+ V with fixed value of the energy E.
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Proposition 2.1.10 If a conformal Jacobi metric is a Stäckel metric for two dis-
tinct values E1 6= E2 of the energy, then it is a Stäckel metric for all energy E.

Proof: Indeed

1

(V − E1)
Sij(V ) =

1

(V − E2)
Sij(V ) ⇒ Sij(V ) = 0 ⇒ Sij(g

kk) = 0. 2 (2.1.21)

Conditions for separability of the HJ equation for fixed energy correspond to those
for separation of the Schrödinger equation for fixed value of the energy. If one wishes
to impose conditions on an arbitrary metric tensor, such that R-separation of the
H/L equation is satisfied, one needs to consider the final ‘compatibility’ condition
[14]:

Sij(χ)g11 = Sij(g
11)χ = 0

Sij(χ)g22 = Sij(g
22)χ = 0

...

Sij(χ)gnn = Sij(g
nn)χ = 0

i 6= j (2.1.22)

where

χ ≡ ghh

4

(
2∂hΓh − Γ2

h +
1

2
Rhh

)
(2.1.23)

Rhh are the diagonal components of the Ricci tensor associated with the orthogonal
metric gij. Furthermore,

Γh ≡ gihΓ
i,Γi ≡ ghhΓihh, (2.1.24)

where Γihh is the standard Christoffel symbol of the metric.

Remark 2.1.11 For the special case of three dimensions this yields nine pdes that
the metric coefficients must satisfy - this is considered and with these tools the gen-
eral metric of a totally asymmetric coordinate web is integrated in the last chapter.
The Γh symbols are useful in other respects as it can be shown that Rij = 3

2
∂jΓi.

Hence the Robertson condition, namely Rij = 0 for i 6= j, is equivalent to ∂iΓj = 0.
The Γh symbols also share an explicit relationship with the metric tensor that con-
formally separable coordinates satisfy:

∂iΓj = ∂jΓi ⇔
Sij(g

jj)

gjj
=
Sij(g

ii)

gii
(2.1.25)

The material introduced in this section thus far is sufficient to prove two propo-
sitions, one for the modulation factor R and the other for the conformal factor
Q:
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Proposition 2.1.12 The modulation factor R satisfies the relation

∂i log(R) =
1

2
· ∂i

(
log

(
gii√
g

))
+ qi(xi), (2.1.26)

where qi(xi) is some arbitrary function of the ith coordinate only, denoted here as
xi.

Proof: From Stäckel theory:

√
g

ϕ
= R2Q

n∏

i=1

fi(x
i),

where fi are functions of the coordinate xi only and R, Q are in general functions
of all variables. It is sometimes customary to denote by ϕ the determinant of the
non-singular Stäckel matrix, and g is the determinant of the non-singular metric
tensor. The above expression can be inverted to give an equivalent expression:

ϕ√
g

=

∏n
i=1 Ψi(x

i)

R2Q

Here trivially Ψi(x
i) ≡ fi(x

i)−1. Substituting the known expression for the deter-
minant ϕ, we arrive at:

giiMi1

Q
√
g

=

∏n
i=1 Ψi(x

i)

R2Q

Canceling out the common factor Q and taking the logarithm of both sides yields:

log

(
gii√
g

)
+ log(Mi1) =

n∑

i=1

log(Ψi(x
i)) − 2 log(R)

Performing the derivative of both sides with respect to xi and using the fact that
the cofactor Mi1 is independent of xi we arrive at:

∂i log

(
gii√
g

)
= −2∂i log(R) + ∂i log(f−1

i (xi))

Re-arranging and division by two yields:

∂i log(R) = −1

2
∂i log(fi(x

i)) − 1

2
∂i log

(
gii√
g

)

A simple exercise with Christoffel symbols, assuming orthogonal metrics, will yield
Γi = ∂i

(
log

(
gii√
g

))
. We arrive then at the desired formula of separability conditions

pertaining to an R-separability test:

∂i log(R) =
1

2
Γi + qi(xi) 2
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The qi(xi) are arbitrary functions to be determined. At first glance this appears
contrary to the above formalism by a factor of minus unity, however in the literature
formulae for R are sometimes the reciprocal of the modulation factor defined in [38].
Thus the equation is satisfied from the above derivation and furthermore the form
of the arbitrary function qi(xi) is uniquely determined, up to the factor Q used
in the Stäckel matrix definition, by the existence of the separable functions fi(x

i).
Specifically the equation amounts to:

qi(xi) = −1

2
∂i log(fi(x

i))

Proposition 2.1.13 The reciprocal of the conformal Q factor in Stäckel theory
can be expanded in the following way:

1

Q
= g11f1(u

1) + g22f2(u
2) + g33f3(u

3) + · · · + gnnfn(u
n), (2.1.27)

where each fi is a function of the ith coordinate only, denoted here as ui.

Proof: The conformal Q function is defined in [38] to satisfy

gii =
SQ

Mi1

⇒ gii =
Mi1

SQ
⇒ 1

Q
= gii

S

Mi1

, (2.1.28)

where Mi1 denotes the determinant of the matrix co-factor. The determinant S
appearing in Eq.(2.1.28) can be expanded in terms of the elements of the first
column of the Stäckel matrix, which we know from Stäckel theory to be functions
of the corresponding ith variable only. Explicitly:

gii
S

Mi1

= gii
f1(u

1)M11 + f2(u
2)M21 + f3(u

3)M31 + · · · + fn(u
n)Mn1

Mi1

(2.1.29)

As we know from [38], the ratio of minors yields the inverse ratio of the correspond-
ing covariant metric terms. This was used for studying separability of the Laplace
equation; now we use the fact that the ratio of the minors yields the ratio of the
corresponding contravariant metric terms. Explicitly:

gii =
Mi1

SQ
⇒ gii

gjj
=
Mi1

Mj1

⇒ 1

Q
= gii

S

Mi1

= g11f1(u
1) + g22f2(u

2) + g33f3(u
3) + · · · + gnnfn(u

n) (2.1.30)

as is required to show. 2
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The Schrödinger equation can also be handled by the formalism introduced in this
section. By [14], there is a one to one correspondence between the solutions of

− h̄
2

2
∆ψ + (V − E)ψ = 0, (2.1.31)

of the form ψ = R
∏
i φi(q

i) and the additively separated solutions u = lnφ of

gijuiuj + giiuii − Γ̂iui +
2

h̄2E − U = 0, (2.1.32)

where ui = ∂iu, uii = ∂2
i u and U is the modified potential

U = −
(

∆R

R
− 2

h̄2V
)
, (2.1.33)

and

Γ̂i = gij(Γj − 2∂j lnR). (2.1.34)

The following proposition is proven in [14]:

Theorem 2.1.14 Equation (2.1.32) is separable in orthogonal coordinates qi if and
only if for all i 6= j

∂jΓ̂
i − Γ̂i∂j ln(gii) = 0,

Sij(g
hh)

ghh
− Sij(g

kk)

gkk
= 0, ∀h, k,

Sij(U)ghh − Sij(g
hh)

(
U − 2

h̄2E
)

= 0, ∀h. (2.1.35)

Note that the potential V is arbitrary: in Chapter 7 a very specific choice for V is
made to ensure conformal invariance, however the above conditions will still hold.

2.2 Invariant theory of conformal Killing tensors

In this section the theory of conformal Killing tensors defined on a Riemannian man-
ifold (M,g) is described. We begin this section with a definition of the conformal
group acting on this space. This group of transformations and the corresponding
Lie algebra of infinitesimal transformations are fundamental for the classification
scheme that will be constructed.

Definition 2.2.1 A diffeomorphism φ : M →M with the property that φ∗g = fg,
where φ∗ is the push forward of φ and f some positive function, is said to be
conformal.
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The set of all such transformations forms a Lie group of maximal dimension
1
2
(n + 1)(n + 2), provided n ≥ 3, called the conformal group of transformations

of (M,g) which we’ll denote by C(M). If φ is a homothetic transformation, then
f is a positive number not equal to unity. If φ is an isometry, then f = 1.

Proposition 2.2.2 Let V be an infinitesimal generator of the one-parameter group
of conformal transformations φt. Then

LV g = hg, (2.2.1)

where h is some function.

If φt denotes a one-parameter group of homothetic transformations then the func-
tion h is a non-zero constant. If φt denotes a one-parameter group of isometries
then the function h is zero.

We now proceed to give the general definition of a conformal Killing tensor on
(M,g).

Definition 2.2.3 A conformal Killing tensor of valence p defined on (M,g) is a
symmetric (p, 0) tensor K which satisfies the conformal Killing tensor equation

[g,K] = 2k ⊙ g, (2.2.2)

where [ , ] denotes the Schouten bracket, k is some symmetric tensor of type (p−1, 0)
and ⊙ denotes the symmetric tensor product.

The tensor k can be determined by contracting Eq.(2.2.2) with the covariant metric.
Let K and L be symmetric tensors of types (p, 0) and (q, 0) respectively. The
Schouten bracket of K and L denoted by [K,L] is a tensor of type (p + q − 1, 0)
and is defined in terms of local coordinates xi, i = 1, . . . , n, by

[K,L]i1...ip+q−1 = −qK(i1...ip , k L
ip+1...ip+q−1)k

+ pKk(i1...ip−1Lip...ip+q−1), k (2.2.3)

It can be shown that [K,L] has the following properties:

[K,L] = −[L,K]

[K,L+M ] = [K,L] + [K,M ]

[K,L⊙M ] = [K,L] ⊙M + L⊙ [K,M ]

[K, [L,M ]] + [M, [K,L]] + [L, [M,K]] = 0
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Special cases:

If, in the definition of the Schouten bracket p = q = 1, then [K,L] is the standard
Lie bracket of the vector fields K and L. For the case p = 1, q arbitrary:

[K,L]i1...iq = (LKL)i1...iq

which is the Lie derivative of L with respect to K. When p = 1, K is said to be a
conformal Killing vector (CKV) and Eq. (2.2.2) reads

LKg = fg, (2.2.4)

where L denotes the Lie derivative operator. With respect to a local system of
coordinates xi Eq. (2.2.2) may be written as

∇(i1Ki2...ip+1) = k(i1...ip−1gipip+1), (2.2.5)

where ∇ denotes the covariant derivative with respect to the Levi-Civita connection
of g. If k = 0 in Eq.(2.2.2), then K is said to be a Killing tensor.

It follows from the properties of the Schouten bracket that the set CKp(M) of
all conformal Killing tensors of type (p, 0) forms a generally infinite dimensional
vector space. However, it’s important to note that

K′ = K + l ⊙ g, (2.2.6)

where l is any symmetric tensor of type (p−2, 0), also defines a CKT. This property
may be used to define the following equivalence relation on CKp(M):

K′ ∼ (K) ⇔ K′ = K + l ⊙ g, (2.2.7)

Let CK̂p(M) denote the set of equivalence classes of CKp(M). One may equip
CK̂p(M) with the structure of a vector space over the reals. Let K̂1 and K̂2 ∈
CK̂p(M). Let K1 and K2 be representative elements of K̂1 and K̂2 respectively.
Then K̂1 +K̂2 is defined to be the equivalence class represented by K1 +K2. Let K

be representative of K̂ and a ∈ R. Then aK̂ is defined to be the equivalence class
represented by aK. It is easy to check that these operations are well defined. Let
TCKp(M) denote the vector space of trace-free conformal Killing tensors of type
(p, 0). It is easily verified that TCKp(M) is canonically isomorphic to CK̂p(M).
A necessary and sufficient condition for an element of CK̂p(M) to be represented
by a Killing tensor is that there exists a type (p− 2, 0) tensor l such that

[l,g] = 2k. (2.2.8)

For p = 2 the above equation may be written as

dl = −k. (2.2.9)

The integrability condition for this equation is

dk = 0. (2.2.10)
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By solving Eq.(2.2.2) for k one may write the integrability condition in component
form as

Kk[i;
k
j] = 0. (2.2.11)

This is a necessary and sufficient condition for K̂ to be represented by a Killing
tensor.

We now study the behavior of the conformal Killing tensor K under a conformal
transformation, which is again

g̃ = e−2σg. (2.2.12)

By an easy calculation we find that

[g̃,K] = 2k̃ ⊙ g̃, (2.2.13)

where

k̃ = (k − [σ,K]). (2.2.14)

This result shows that K is also a conformal Killing tensor for the conformally
related metric g̃. Therefore we can prove the following:

Proposition 2.2.4 A necessary and sufficient condition that K is a Killing tensor
with respect to the conformal metric, that is

[g̃,K] = 0 (2.2.15)

is that there exists a function σ such that

k = [σ,K]. (2.2.16)

Note this proposition holds true for Killing tensors of any valence p. For the special
case p = 2 we prove immediately Proposition 7.1 in [3]. For the remainder of this
section and chapter we assume p = 2.

Definition 2.2.5 A conformal Killing tensor K is of self-gradient type if there
exists a continuous function U such that in the definition [K,g] = 2k ⊙ g, k =
[K, U ].

Indeed by Prop. (2.2.4) self-gradient conformal Killing tensors are simple Killing
tensors with respect to the conformally related metric g̃ = e−Ug.

To determine the transformation equations of the eigenvectors and eigenvalues of
the Killing tensor under a conformal transformation (2.2.12), we present some gen-
eral results that hold true for symmetric tensors and then successively add mathe-
matical conditions to those corresponding to the conformal Killing tensor equation.
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Proposition 2.2.6 A symmetric tensor satisfying K̃ij = Kij under a conformal
transformation has the same eigenvectors with respect to the conformally related
metric and the corresponding eigenvalues satisfy ρ̃i = e2σρi.

Proof: Note that implicit in Eq. (2.2.13) is that

K̃ij = Kij,

however this identity could well be satisfied by other symmetric tensors of valence-
two, or type (2, 0), under a conformal transformation. Lowering an index to gener-
ate a type (1, 1) tensor we arrive at

K̃i
j = K̃ikg̃kj = e2σKikgkj.

Therefore
K̃i

j = e2σKi
j.

Now we consider the eigenvalue problem for Ki
j:

Ki
jX

j = ρX i

(e2σKi
j)X

j = e2σρX i

K̃i
jX

j = ρ̃X i (2.2.17)

The conclusion is that Xj is an eigenvector of Ki
j corresponding to the eigenvalue ρ

if and only if Xj is an eigenvector of K̃i
j corresponding to the eigenvalue ρ̃ = e2σρ.

2

This property was arrived at by Eisenhart but with more mathematical assump-
tions. A proof outlining his method but with more steps is given in Appendix E.
Now we assume that the symmetric tensor not only satisfies K̃ij = Kij, but also
has pointwise real and distinct eigenvalues.

Proposition 2.2.7 A symmetric tensor Kij, with pointwise real and distinct eigen-
values satisfies

Kab = ρagab,

where the components are with respect to a basis of normalized eigenvectors.

Proof: Since the eigenvalues of Kab are real and distinct (point-wise Kab can
be described then as Hermitian), it admits n orthogonal eigenvectors hia, where i
are the component indices and a is the label for the eigenvector. Thus

Kijh
j
a = ρagijh

j
a, (2.2.18)

where hja is the eigenvector corresponding to the eigenvalue ρa. Since the eigenval-
ues are real and distinct, the eigenvectors are orthogonal with respect to the metric
gij. Namely

gijh
i
ah

j
b = 0, a 6= b (2.2.19)
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The eigenvectors can be normalized, such that

gijh
i
ah

j
a = ea, (2.2.20)

where e2a = 1. For Riemannian geometry the e’s are always plus unity. Thus we
can write

gab = gijh
i
ah

j
b = eaδab (2.2.21)

where there is no sum on the a. Note that the term hia may be interpreted as a
change of basis transformation from the natural basis ∂

∂xi to the basis of eigenvectors
Ea = hia

∂
∂xi . Now contract (2.2.18) with hi b to obtain

Kijh
i
bh
j
a = ρagijh

i
bh
j
a

Kba = ρagba

⇒ Kab = ρagab 2 (2.2.22)

Now we extend to the case of symmetric tensor fields with normal eigenvectors:

Proposition 2.2.8 Let Kij be a symmetric tensor field with pointwise real and
distinct eigenvalues and normal eigenvectors. Then there exists a coordinate system
ui such that

gij = 0, i 6= j

Kij = ρigij (2.2.23)

Proof: We assume that Kij is a symmetric tensor field with pointwise real distinct
eigenvalues and normal (integrable) eigenvectors. Then Kij defines n mutually
orthogonal eigenvector fields hia. These can be written as

Ea = hia
∂

∂xi
(2.2.24)

with respect to a general coordinate system on M . The Ea define a basis of the
tangent space of M at each point. Let Ea denote the dual basis of 1-forms. We
can write

Ea = haidx
i, (2.2.25)

where hai is the inverse of hia. Since each eigenvector field is assumed normal
(integrable), there exist functions fa and ua such that

Ea = fadu
a, (2.2.26)

where there is no sum assumed on the a, which ranges from 1 to n. The ua define
a coordinate system on M . Write (2.2.26) as

Ea = faδ
a
i du

i, (2.2.27)
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where again no sum on the a is assumed. Comparison with (2.2.25) yields

hai = faδ
a
i (2.2.28)

Now we compute the inverse of hai:

hia = f−1
a δia (2.2.29)

This implies that

Ea = hia
∂

∂ui

= f−1
a

∂

∂ua
(2.2.30)

We now need to prove the identity eif
2
i δij = gij. To do so we write the metric in

terms of the coordinates ui. Starting from (2.2.21), which is again

gab = eaδab (2.2.31)

contract this with haih
b
j to obtain

gabh
a
ih
b
j = eaδabfaδ

a
i fbδ

b
j

⇒ gij = eiδijfifj

gij = eif
2
i δij (2.2.32)

Thus the metric has the form

ds2 = gijdu
iduj

= eif
2
i δijdu

iduj

= eif
2
i (du

i)2 (2.2.33)

We then write (2.2.22) in terms of the coordinate ui by contracting (2.2.22) with
haih

b
j using (2.2.28)

Kabh
a
ih
b
j = ρagabh

a
ih
b
j

Kij = ρagabfaδ
a
i fbδ

b
j

Kij = ρieif
2
i δij

⇒ Kij = ρigij (2.2.34)

Thus we have shown that for symmetric tensors with pointwise real and distinct
eigenvalues, and normal (integrable) eigenvectors, there exists a coordinate system
such that simultaneously Kij = 0 and gij = 0 for i 6= j. 2

Definition 2.2.9 A conformal Killing tensor with pointwise real and distinct eigen-
values and normal eigenvector fields is called a characteristic conformal Killing
tensor.
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We now impose the conformal Killing tensor equation (2.2.5) for p = 2, which reads:

Kij;l +Kjl;i +Kli;j = kigjl + kjgli + klgij (2.2.35)

The derivations outlined are therefore not valid for non characteristic Killing ten-
sors. However, such tensors are not useful in the characterization of separable coor-
dinates as will be explained later. In the remainder of this thesis non-characteristic
Killing tensors will not be considered.

Proposition 2.2.10 The eigenvalues ρi of a characteristic conformal Killing ten-
sor Kij when expressed in terms of coordinates for which the conditions of Prop.
2.2.8 hold, satisfy the differential equations:

∂ρi
∂xi

= ki

∂ρi
∂xj

= (ρi − ρj)
∂log(gii)

∂xj
+
∂ρj
∂xj

(2.2.36)

Proof: The first equation follows from setting i = j = l in the definition of the
conformal Killing tensor equation which yields

∂Kii

∂xi
− ∂log(gii)

∂xi
Kii = kigii (2.2.37)

Then substitute Kii = ρigii to get the required result. Note that in the simple
Killing tensor case, where ki = 0, we obtain the Eisenhart result that the ith

eigenvalue is independent of the ith coordinate. An alternative proof of this is given
in Appendix E for the interested reader. The second equation follows from setting
j 6= i, l = j in the definition and arriving at

∂Kjj

∂xi
− 2

∂log(gjj)

∂xi
Kjj +

1

gii

∂gjj
∂xi

Kii = kigjj (2.2.38)

Substituting Kii = ρigii and Kjj = ρjgjj in the above yields the second formula. 2

Proposition 2.2.11 (i) A CKT K which is diagonalized in orthogonal coordinates
is equivalent to a CKT K′ of self-gradient type. (ii) For any given orthogonal co-
ordinate system there exists a function U such that any CKT K which is diagonal-
ized in these coordinates is equivalent to a CKT K′ of self-gradient type such that
[g,K′] = 2[K′, U ] ⊙ g, that is to a simple Killing tensor of the conformal metric
g̃ = e−Ug. (iii) The n functions Uk = log(gkk) satisfy (ii).

Proof: If gij = 0 and Kij = 0 for i 6= j, then Kii = ρigii. Furthermore, by the
proof of Prop. 2.2.10 the CKT equation [g,K] = 2k⊙g is equivalent to kj = ∂

∂xj ρj
and the formula

∂ρi
∂xj

= (ρi − ρj)
∂log(gii)

∂xj
+
∂ρj
∂xj

.
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Let us consider the equivalent tensor K′ = K−ρng that has eigenvalues ρ̃i = ρi−ρn.
By using the above, one can easily show that

∂ρ̃i
∂xj

= (ρ̃i − ρ̃j)
∂log(gii)

∂xj
+ ρ̃j

∂log(gnn)

∂xj
.

This shows that K′ is a CKT with k̃j = ρ̃j
∂log(gnn)

∂xj , thus of self-gradient type with
U = log(gnn) and a simple Killing tensor for the conformal metric e−Ug. 2

The connection with conformal Killing tensors and the existence of R-separation of
variables will now be described.

As discussed before it is well known that Killing tensors are deeply related with
additive separation of variables for the HJ equation for the geodesics or a natural
Hamiltonian in orthogonal coordinates ([7], [1])

H =
1

2
giipipi + V = E, E ∈ R,

which reads
1

2
gii
(
∂W

∂xi

)2

+ V = E.

They are also connected to multiplicative separation of the Schrödinger equation
[7], [2]

∆ψ + (E − V )ψ = 0, E ∈ R,

where ∆ is the Laplace-Beltrami operator. We have [25]

Theorem 2.2.12 The Hamiltonian H = (1
2
giipipi+V ) is orthogonally separable if

and only if there exists a valence-two characteristic Killing tensor K (the properties
of which have been elucidated earlier) such that

d(KdV ) = 0.

Note that d(KdV ) = 0 is equivalent to the formula Sij(V ) = 0 in Prop. 2.1.7 and
the metric components ghh in the above theorem must satisfy Sij(g

hh) = 0.

Finally, for the multiplicative separation of the Schrödinger equation the so-
called Robertson condition must also hold: the Ricci tensor is diagonalized in the
separable coordinates ([20]) (geometrically, this means that K and the Ricci tensor
share the same eigenvectors [2]). The condition that the eigenvalues are real is
automatically satisfied for positive definite metrics; recently, KTs with complex
conjugate eigenvalues have also been used to separate variables for a natural HJ
equation [17].

Similar results also hold for conformal Killing tensors.
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Remark 2.2.13 Any CKT equivalent to a characteristic one is characteristic,
which is a consequence of the eigenvectors remaining invariant within an equiv-
alence class. Hence, it is always possible to choose a representative characteristic
CKT which is trace-free. Furthermore any CKT K which is characteristic with re-
spect to the metric g is also characteristic with respect to any conformally related
metric g̃ = e−2σg. This is a consequence of Prop. 2.2.6: clearly real and pointwise
distinct eigenvalues remain real and pointwise distinct after any conformal trans-
formation. The invariance of the eigenvectors themselves guarantees invariance of
their normality.

The following important result holds:

Theorem 2.2.14 There exists an orthogonal coordinate system in which additive
separation for the null geodesic HJ equation,

gii(∂iW )2 = 0

occurs, if and only if there exists a characteristic CKT K on M . By construction
the coordinate hypersurfaces will be orthogonal to the eigenvectors of K.

Proof: According to the intrinsic characterization of the orthogonal separation of a
geodesic Hamiltonian [25], a metric g̃ defined on M is orthogonally separable if and
only if it admits a simple characteristic Killing tensor, note this is a special case of
Thm. 2.2.12. This simple Killing tensor is a conformal Killing tensor with respect
to any conformally related metric g also defined on M , by Eq. (2.2.13). That this
conformal Killing tensor is also characteristic has been explained in Remark 2.2.13,
which summarizes Prop. 2.2.7 to Prop. 2.2.11, therefore the theorem is proved. 2

Definition 2.2.15 We call a conformally separable web the set of hypersur-
faces orthogonal to the eigenvectors of a characteristic CKT. Any coordinates as-
sociated with a conformally separable web are called conformally separable co-

ordinates.

Remark 2.2.16 Note the connection here with conformally separable coordinates
defined in the previous section if Eq. (2.1.11) or Eq. (2.1.12) holds.

Theorem 2.2.17 There exists an orthogonal coordinate system in which additive
separation for the HJ equation with fixed value of the energy E,

gii(∂iW )2 + V − E = 0,

occurs, if and only if there exists a characteristic CKT K on M satisfying the
compatibility condition

[g,K] =
1

E − V
[K, V ] ⊙ g. (2.2.39)
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Note this is equivalent to the formula 1
gkkSij(g

kk) = 1
V−ESij(V ) in Thm. 2.1.8.

Remark 2.2.18 In the compatibility condition (2.2.39) for the potential V , the
characteristic CKT K is in general not trace-free and the formula does not hold for
all the CKT equivalent to K. Indeed, if we consider the equivalent characteristic
CKT K̂ = K + fg the compatibility condition becomes

[g, K̂] =
1

E − V
([K, V ] + [f,g]) ⊙ g. (2.2.40)

In spite of the fact that the null geodesic equation is trivial for a positive definite
metric, the conformally separable coordinates are useful because they are the only
ones in which a natural Hamiltonian with fixed value of the energy can be solved
by additive separation of variables. Moreover, they are the only ones in which
R-separation of the Laplace equation can occur. This is a subject for the next
section. Having discussed the uses of a single CKT, an important characterization
is associated with n CKTs, which is Theorem 7.2 in [3]:

Theorem 2.2.19 The n characteristic conformal Killing tensors
(Ki) = (K1, K2, . . . , Kn) associated with an orthogonal metric gij are (i) point-wise
linearly independent, (ii) with common eigenvectors, (iii) mutually commutative
and (iv) in involution.

Proof: Since the rows of the inverse Stäckel matrix are linearly independent (this
follows trivially from the definition that the determinant is non-zero), by construc-
tion the n Killing tensors produced (one of them being the metric tensor itself)
are point-wise linearly independent, being in the same (normal) eigenbasis of the
separable coordinates by Eisenhart theory. They are all then simultaneously diago-
nalized. So are the n conformal Killing tensors conformally related to them, as well
as the n equivalent conformal Killing tensors. Then by definition these conformal
Killing tensors in any orthogonal coordinate system share common eigenvectors and
by sharing eigenvectors they commute. That they are in involution is proven in [3].
2

2.3 Relation of CKT’s to existence of R-separable

webs

Recall Definition 1.1.1 [14]:

Definition 2.3.1 We say that multiplicative R-separation of the Laplace equation
∆ψ = 0 or Schrödinger equation − h̄2

2
∆ψ + (V − E)ψ = 0 occurs in a coordinate
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system (qi) if there exists a solution ψ of the form

ψ = R(q1, . . . , qn)
∏

i

φi(q
i, ca) (ca) ∈ R2n−1; (2.3.1)

satisfying the completeness condition

rank

[
∂

∂ca

(
φ′
i

φ

)
∂

∂ca

(
φ′′
i

φ

)]
= 2n− 1, a = 1, . . . , 2n− 1, i = 1, . . . , n.

From ([14]) we have

Theorem 2.3.2 Necessary and sufficient conditions for R-separation of Schrödinger’s
equation

− h̄
2

2
∆ψ + (V − E)ψ = 0 (2.3.2)

in a given coordinate system qi are:

i: the coordinates are orthogonal;
ii: the coordinates are conformally separable;
iii: the function

2

h̄2 (E − V ) +
gii

4

(
2∂iΓi − Γ2

i

)
(2.3.3)

is a pseudo-Stäckel factor, in that it can be written in the form f = giiφi(q
i) where

gii is a conformal Stäckel metric. Furthermore in this case the modulation factor
R is any solution of

2∂i lnR = Γi − ξi(q
i) (i = 1, . . . , n), (2.3.4)

where ξi(q
i) is a function of one variable.

For the proof, see ([14]). Furthermore we also have ([7], [14])

Theorem 2.3.3 On a flat manifold, R-separation of the Laplace equation occurs
in a coordinate system (qi) if and only if the coordinates (qi) are orthogonal confor-
mally separable coordinates. The function R is (up to separated factors) a solution
of the first order system

∂i lnR =
1

2
Γi,

Remark 2.3.4 If the manifold is not flat the conformal separability is a necessary
(but no longer sufficient) condition: to guarantee R-separation we also need that
the function ∆R

R
be of the form giifi(q

i) for suitable functions of a single variable
fi.
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Definition 2.3.5 We call an R-separable web a conformally separable web if R-
separation for the Laplace equation occurs in any associated coordinate system.

Remark 2.3.6 In E3, every conformally separable web is an R-separable web for
the Laplace equation. This means that R-separable webs are defined by any charac-
teristic CKT. R-separable coordinates of E3 have been extensively studied by many
authors (see Bôcher[5], Moon and Spencer [38], Boyer et al.[6]). The webs consist
of families of confocal cyclides.

In later chapters of this thesis we restrict ourselves to the webs and associated
characteristic CKTs admitting a rotational symmetry. To make the notion of web-
symmetry precise, we start with the definition of invariance of conformal Killing
tensors under one parameter groups of conformal transformations [13].

Definition 2.3.7 Let K denote a characteristic conformal Killing tensor on (M,g).
Let φt denote a one parameter group of conformal transformations. The
R-separable webs defined by K are said to be φt-symmetric iff

φt∗K = fK, (2.3.5)

where f is some function.

The infinitesimal version of the above definition is given by the following proposition
[13]:

Proposition 2.3.8 Let V be an infinitesimal generator of the one parameter group
of conformal transformations φt. Then φt is a web-symmetry of the R-separable web
defined by a conformal Killing tensor K if and only if

LVK = hK, (2.3.6)

where h is some function.

If φt denotes a one-parameter group of homothetic transformations then the func-
tions f and h are non-zero constants. If φt denotes a one-parameter group of
isometries then the functions f and h are zero.

2.4 Conformal Killing tensors in spaces of zero

curvature

We now assume that the Riemann curvature tensor Rijkl of g vanishes. In this case

it has been shown by Eastwood [19] that CK̂p(M) is finite dimensional and that
its dimension d is given by

d =
(n+ p− 3)!(n+ p− 2)!(n+ 2p− 2)(n+ 2p− 1)(n+ 2p)

p!(p+ 1)!(n− 2)!n!
(2.4.1)
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for n ≥ 3, p ≥ 1. Thus the general element of CK̂p(M) is represented by d arbitrary
parameters a1, . . . , ad, with respect to an appropriate basis.

Each element h of the conformal group C(M) induces, by a push forward map,
a non-singular linear transformation ζ(h) of CK̂p(M). It is implicit in the work of
[19] that the map

ζ : C(M) → GL(CK̂p(M)) (2.4.2)

defines a representation of C(M). Once the form of the general element K̂ of
CK̂p(M) is available with respect to some convenient coordinate system on M , the
explicit form of the transformation ζ(h)K̂ (written more succinctly as h ·K̂) may be
written in terms of the parameters a1, . . . , ad. We shall be particularly concerned
with the smooth real-valued functions on CK̂p(M) that are invariant under the
group C(M). The precise definition of such C(M)-invariant functions of CK̂p(M)
is as follows.

Definition 2.4.1 Let (M,g) be a Riemannian manifold with zero curvature. Let
p ≥ 1 be fixed. A smooth function F : CK̂p(M) → R is said to be an C(M)-
invariant of CK̂p(M) iff it satisfies the condition

F (h · K̂) = F (K̂), (2.4.3)

for all K̂ ∈ CK̂p(M) and for all h ∈ C(M).

The above can also be formulated for pseudo-Riemannian manifolds with zero cur-
vature, however they are beyond the scope of this thesis. The main problem of
invariant theory is to describe the whole space of invariants of a vector space under
the action of the group. To achieve this one has to determine the set of fundamen-
tal invariants with the property that any other invariant is an analytic function of
the fundamental invariants (see [41]). The fundamental theorem of invariants for
a regular Lie group action [41] determines the number of fundamental invariants
needed to define the whole of the space of C(M)-invariants.

Theorem 2.4.2 Let G be a Lie group acting regularly on an n-dimensional mani-
fold M with s-dimensional orbits. Then, in a neighborhood N of each point x ∈M ,
there exist (n− s) functionally independent G-invariants
∆1, . . . ,∆n−s. Any other G-invariant I defined near x can be locally uniquely ex-
pressed as an analytic function of the fundamental invariants namely
I = F (∆1, . . . ,∆n−s).

One of the standard methods for determining the invariants of CK̂p(M) is to
use the fact that the invariants of a function under an entire Lie group is equivalent
to the invariants of the function under the infinitesimal transformation of the group
given by the corresponding Lie algebra. The precise result is as follows [40]:

37



Proposition 2.4.3 Let G be a connected Lie group of transformations acting reg-
ularly on a manifold M . A smooth real valued function F : M → R is G-invariant
iff

v(F ) = 0, (2.4.4)

for all x ∈M and for every infinitesimal generator v of G.

In our application G is the representation ζ defined by Eq.(2.4.2) where the
condition (2.4.4) reads

Ui(F ) = 0, i = 1, . . . , r, (2.4.5)

where the Ui are vector fields which form a basis of the Lie algebra of the repre-
sentation and r = dim C(M) = 1

2
(n+ 1)(n+ 2). This Lie algebra is isomorphic

to the Lie algebra of C(M). Such a basis may be computed directly as the basis
of the tangent space to ζ(C(M) at the identity if an explicit form of the represen-
tation is available. According to Theorem 2.4.2 the general solution of the system
of first-order pdes (2.4.5) is an analytic function F of a set of fundamental C(M)-
invariants. The number of fundamental invariants is d − s, where d is given by
Eq. (2.4.1) and s is the dimension of the orbits of ζ(C(M)) acting regularly on the
space CK̂p(M).
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Chapter 3

Construction of the general CKT

in E3

3.1 Killing vector formalism

Now we wish to calculate the general thirty-five dimensional trace-free conformal
Killing tensor Euclidean space admits, and express it in terms of Cartesian coor-
dinates. To this end we now specialize the general theory of the previous chapter
to the vector space CK̂2(M) of conformal Killing tensors of type (2, 0) defined in
Euclidean space E3.

It is well known [42] that in E3, any conformal Killing tensor is expressible
modulo a multiple of the metric as a sum of symmetrized products of conformal
Killing vectors. A canonical basis of the Lie algebra of conformal Killing vectors in
E3 with respect to a system of Cartesian coordinates xi may be written as

Xi =
∂

∂xi

Ri = ǫijkx
jXk

D = xiXi

Ii = (2xixk − δikx
jxj)Xk (3.1.1)

for i = 1, 2, 3, and where ǫijk is the Levi-Civita tensor. We also note the commuta-
tion relations

[Xi,Xj] = 0

[Xi,Rj] = −ǫijkXk

[Ri,Rj] = −ǫijkRk

[Xi,D] = Xi

[Ri,D] = 0

[Ii, Ij] = 0
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[Xi, Ij] = 2(δijD − ǫijkRk)

[Ri, Ij] = −ǫijkIk
[D, Ii] = Ii (3.1.2)

We now determine the form of the general element of TCK2(M). By Eq.(2.4.1)
d = 35. It is clear that a sum of symmetrized products of conformal Killing vectors
is a conformal Killing tensor. It will be shown that all trace-free conformal Killing
tensors may be obtained in this way. One begins by writing

K = AijXi ⊙ Xj +BijXi ⊙ Rj + CijRi ⊙ Rj +DiXi ⊙ D + EijXi ⊙ Ij

+ FiRi ⊙ D +GijRi ⊙ Ij +HD ⊙ D + LiD ⊙ Ii +MijIi ⊙ Ij (3.1.3)

The coefficients in Eq.(3.1.3) obey the following symmetry relations

Aij = Aji, Cij = Cji, Mij = Mji (3.1.4)

Thus the apparent dimension of TCK2(M) is fifty five, which exceeds the required
dimension by twenty. Indeed there exist the following six relations among the basis
set of symmetric tensor products of Killing vectors:

Xi ⊙ Ri = 0

Ri ⊙ Ii = 0

D ⊙ D = Xi ⊙ Ii + Ri ⊙ Ri

2Ri ⊙ D + ǫiklXk ⊙ Il = 0 (3.1.5)

Consequently, the general element of TCK2(M) may be written as

K = AijXi ⊙ Xj +BijXi ⊙ Rj + CijRi ⊙ Rj +DiXi ⊙ D

+ EijXi ⊙ Ij +GijRi ⊙ Ij + LiD ⊙ Ii +MijIi ⊙ Ij (3.1.6)

where the coefficients Bij and Gij may be chosen to satisfy

Bii = 0

Gii = 0 (3.1.7)

This follows from the fact that in the expression for the Killing tensor K, one can
add the terms kaXi ⊙ Ri and kbRi ⊙ Ii since we know these are essentially zero
for any arbitrary ka, kb ∈ R. Since by definition the Kronecker delta δij vanishes
for i 6= j, the above expressions can be modified to kaδijXi ⊙ Rj and kbδijRi ⊙ Ij.
These will still vanish and hence can be added to the expression for the Killing
tensor K in terms of the basis of symmetric tensor products of Killing vectors.
Collecting coefficients in front of Xi ⊙ Rj and Ri ⊙ Ij, we define B̃ij = Bij + kaδij
and G̃ij = Gij + kbδij. Setting i = j and enacting a summation, we arrive at
B̃ii = Bii+3ka and G̃ii = Gii+3kb. As ka and kb are arbitrary, we have the freedom
to set them such that B̃ii = 0 and G̃ii = 0, hence ka = −1

3
Bii and kb = −1

3
Gii.
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Finally, the tilde sign is dropped and the trace-free result is proven for the Bij and
Gij coefficients.

In terms of the natural basis, Xi ⊙Xj, the components of K are given by

Kij = Aij + (B(i|kǫkl|j) +D(iδj)l)x
l

+ (Cmnǫmk(iǫ|nl|j) + 2E(i|k|δj)l − E(ij)δlk)x
lxk

+ (2Gmnǫmk(iδj)l −Gm(iǫj)mkδln + 2Lkδinδjl − L(iδj)nδlk)x
lxkxn

+ (4Mklδjn − 4Mk(iδj)nδli +Mijδknδli)x
lxkxnxi (3.1.8)

Next we impose the trace-free condition namely

Kii = 0. (3.1.9)

This procedure yields the following additional fourteen relations among the coeffi-
cients of K:

M11 = −M22 −M33

A11 = −A22 − A33

E12 = C12 − E21

E13 = C13 − E31

E23 = C23 − E32

E11 = C11 + 1/2(C22 + C33)

E22 = C22 + 1/2(C11 + C33)

E33 = C33 + 1/2(C11 + C22)

L1 = G32 −G23

L2 = G13 −G31

L3 = G21 −G12

D1 = B32 −B23

D2 = B13 −B31

D3 = B21 −B12 (3.1.10)

The above formulae may be written compactly as follows:

Aii = 0, Di = Bjkǫkji

E(ij) −
1

3
Ekkδij =

1

2
(Cij −

1

3
Ckkδij)

Li = Glmǫmli, Mii = 0

Ekk = 2Ckk (3.1.11)

We chose, among the Aii, Bii, Gii and Mii, the coefficients with index (1,1) to be
written in terms of the other two, for example: A11 = −A22 − A33. There are now
twenty required relations among the coefficients. Implementing them, one obtains
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the conformal Killing tensor in E3 which we present first in compact form, and then
in fully expanded form in components. We use the above conditions to remove the
Di, Li, and (temporarily) Cij. Note that the matrix coefficients Aij, Mij, Bij and
Gij must be trace-free.

3.2 Compact and expanded form of the general

CKT

In terms of the natural basis the components of K are given by:

Kij = Aij + (B(i|kǫkl|j) +Babǫba(iδj)l)x
l

+ ((2E(mn) − 1/2Eaaδmn)ǫmk(iǫ|nl|j) + 2E(i|k|δj)l − E(ij)δlk)x
lxk

+ (2Gmnǫmk(iδj)l −Gm(iǫj)mkδln + 2Gabǫbakδinδjl −Gabǫba(iδj)nδlk)x
lxkxn

+ (4Mklδjn − 4Mk(iδj)nδli +Mijδknδli)x
lxkxnxi (3.2.1)

Moreover, any CKT of E3 is equivalent to

K ∼ AijXi ⊙ Xj +BijXi ⊙ Rj + EijXi ⊙ Ij +GijRi ⊙ Ij +MijIi ⊙ Ij,

where Aij, Mij, Bij and Gij must be trace-free matrices. The CKT coefficients Kij,
found by collecting all polynomials with common factor Xi ⊙Xj, may be written
as follows:

X1 ⊙X1:

K11 = −A22 −A33 −4M12xy
3 +(−G32 +3G23)z

2x+(−2M22 −2M33)z
2y2 +(2C13 −

2E31)zx− 2C23yz+8M23zyx
2 +(6M22 +2M33)x

2y2 +B12z−B13y+(B32 −B23)x+
(−M22−M33)x

4+(G32−G23)x
3+4M13zx

3+4M12yx
3+(C11+1/2C22+1/2C33)x

2+
(3G21 − 2G12)zx

2 +(6M33 +2M22)z
2x2 +(−3G31 +2G13)x

2y+(−3G32 +G23)xy
2 −

4M13zxy
2 + (2C12 − 2E21)xy+ (2G22 − 2G33)zxy− 4M12z

2xy− 4M13z
3x−G21z

3 +
(−M22−M33)z

4+G31y
3+(−M22−M33)y

4+(−C11−1/2C22+1/2C33)y
2−G21zy

2+
G31z

2y + (−C11 + 1/2C22 − 1/2C33)z
2

X2 ⊙X2:

K22 = A22 + 4M12xy
3 + (2C23 − 2E32)zy + 2E21xy + (C22 + 1/2C11 + 1/2C33)y

2 +
4M23zy

3 + (G13 − G31)y
3 + (−C22 + 1/2C33 − 1/2C11)x

2 − 4M23zyx
2 + (4M33 −

2M22)z
2y2 + (−3G12 + 2G21)zy

2 − 4M12yx
3 + 2M22z

2x2 + 8M13zxy
2 − 4M12z

2xy +
G12zx

2 −B21z +B23x−G32z
2x+ (B13 −B31)y− 2C13xz + (−6M22 − 4M33)x

2y2 +
(−G13+3G31)x

2y+(3G32−2G23)xy
2+(4G33+2G22)zxy+M22x

4−G32x
3+M22z

4+
G12z

3 +M22y
4 + (−3G13 +G31)z

2y − 4M23z
3y + (−C22 + 1/2C11 − 1/2C33)z

2
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X3 ⊙X3:

K33 = 2E32zy+A33 + (1/2C22 −C33 − 1/2C11)x
2 − 4M23zy

3 − 4M23zyx
2 +G23x

3 +
2E31xz+(−3G21+G12)zx

2+(−G21+3G12)zy
2−4M13zx

3−4M13zxy
2+8M12z

2xy+
(1/2C11−C33−1/2C22)y

2 +4M13z
3x+(−6M33−4M22)z

2x2−2C12xy+4M23z
3y−

B32x+B31y+ (B21 −B12)z + (−4G22 − 2G33)zxy+ 2M33x
2y2 −G13x

2y+M33x
4 +

(−3G23 + 2G32)z
2x+ (4M22 − 2M33)z

2y2 + (3G13 − 2G31)z
2y +G23xy

2 +M33z
4 +

(G21 −G12)z
3 + (C33 + 1/2C11 + 1/2C22)z

2 +M33y
4 −G13y

3

X1 ⊙X2:

K12 = (−G32 + 1/2G23)y
3 − 2M23z

3x + (−1/2G13 + G31)x
3 + (2C13 − E31)zy +

3/2G23yz
2+(B22+1/2B33)z+(−E21+1/2C12)y

2+(−4M22−2M33)yx
3−2M13z

3y+
(E21 − 1/2C12)x

2 − 2M13zy
3 + 6M12y

2x2 − 3/2G13xz
2 + (3G32 − 3/2G23)yx

2 −
2M23zx

3 + (1/2B32 −B23)y− 3/2G33zy
2 + 3/2G33zx

2 + (2C23 −E32)zx+ (−G22 −
1/2G33)z

3+A12−3/2C12z
2+6M33xyz

2+6M13zyx
2+(4M22+2M33)xy

3+(3/2G13−
3G31)xy

2 +6M23zxy
2 +(−3G12 +3G21)zxy−M12x

4 +(3/2C11 +3/2C22)xy+(B13−
1/2B31)x−M12y

4 +M12z
4

X1 ⊙X3:

K13 = (−1/2C13 + E31)x
2 + (−2M22 − 4M33)zx

3 + (−G21 + 1/2G12)x
3 + (3G21 −

3/2G12)z
2x+(2C12−E21)zy+3/2G12xy

2+(1/2G22+G33)y
3+(3/2C11+3/2C33)zx−

2M23xy
3−3/2G32zy

2+(1/2B21−B12)x+6M22xzy
2−3/2C13y

2+A13+3/2G22yz
2−

2M23yx
3+(3/2G32−3G23)zx

2−3/2G22yx
2+6M13z

2x2−M13x
4+6M12zyx

2+(E32+
C23)xy + (3G13 − 3G31)zxy + 6M23z

2xy + (2M22 + 4M33)z
3x −M13z

4 + M13y
4 −

2M12zy
3 − 2M12z

3y + (B32 − 1/2B23)z + (1/2C13 − E31)z
2 + (G23 − 1/2G32)z

3 +
(−1/2B22 −B33)y

X2 ⊙X3:

K23 = −3/2C23x
2 + (3/2G22 + 3/2G33)z

2x + 3/2G31zx
2 − 3/2G21yx

2 + (1/2B33 −
1/2B22)x−2M13yx

3−2M12zx
3−2M13xy

3+(1/2G22−1/2G33)x
3+(G12−1/2G21)y

3−
2M12z

3x+6M23z
2y2+(3G13−3/2G31)zy

2+(−1/2C23+E32)y
2+(−2M33+2M22)zy

3+
(1/2B13−B31)z+(−2M22+2M33)z

3y+(3/2G21−3G12)z
2y+(3/2C22+3/2C33)zy+

(B21−1/2B12)y+(−G13 +1/2G31)z
3 +(−E32 +1/2C23)z

2 +(−6M33−6M22)zyx
2 +

(−3/2G22 − 3/2G33)xy
2 + 6M12zxy

2 + (E31 + C13)xy + M23x
4 + (E21 + C12)zx +

(3G32 − 3G23)zxy + 6M13z
2xy −M23z

4 −M23y
4 + A23

Knowing the form of the general conformal Killing tensor allows one to consider
lower dimensional sub-sets. These are often representative of symmetries of coor-
dinate webs which will be studied in the next chapters.
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Chapter 4

The set of rotationally symmetric

characteristic CKTs in E3

4.1 Definitions and constructions of rotationally

symmetric webs

Now we begin the task of finding characteristic conformal Killing tensors corre-
sponding to each of the three dimensional known rotational R-separable webs given
in [38]. Later we address the question as to whether they describe inequivalent coor-
dinate webs or not. Because we restrict ourselves to the R-separable webs admitting
a rotational symmetry, to describe them we must find the most general rotational
conformal Killing tensor sub-set of the conformal Killing tensor calculated in the
previous chapter. Rotational coordinate webs means that one foliation of the web
consists of half planes with common intersection forming the z-axis. This we label
the rotational axis. Without loss of generality we can restrict ourselves to the webs
having the z-axis as their rotational axis. Up to an isometry, a characteristic con-
formal Killing tensor of such a web admits the Killing vector R3 as an eigenvector.

The continuous operation to characterize a conformal tensor T representing a
symmetric web is given by the solutions of

LkT = hT, (4.1.1)

where h is any real scalar and L is the Lie derivative operator with respect to the
conformal Killing vector k which generates a group action under which the web is
invariant. Note the above is Prop. 2.3.8, where k is the infinitesimal generator of
the one parameter group action. This is a property of all conformal Killing vectors.
We use from now on the Lie derivative formula for contravariant rank two tensors
T which is:

(LkT )ij = kl∂lT
ij − T lj∂lk

i − T il∂lk
j (4.1.2)
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The condition (4.1.1) is not sufficient on its own because it does not imply normality
of the eigenvectors of T ij. Hence the solution set is not the set of rotationally
symmetric characteristic conformal Killing tensors. Thus not only must one set the
rotational Lie derivative of the general conformal Killing tensor to zero, namely
Eq. (4.1.1) for Killing vector k = R3, but in addition impose the three Tonolo-
Schouten-Nijenhuis (TSN) conditions which are both necessary and sufficient for
a given symmetric (Killing) tensor field to have integrable eigenvectors. These
conditions read

N
l
[jkgi]l = 0

N
l
[jkKi]l = 0

N
l
[jkKi]mK

m
l = 0, (4.1.3)

where N
i
jk are the components of the Nijenhuis tensor of K

ij given by

N
i
jk = Ki

lK
l
[j,k] +K l

[jK
i
k],l. (4.1.4)

Lie differentiation leaves nine independent coefficients of the conformal Killing ten-
sor solution and the tensor (not characteristic yet) is:

K11 = −1

2
A33 + 6G22xyz −M33x

2y2 +G12z
3 −B21z +G12zy

2 − 2E21xy

− 1

2
M33x

4 + 5M33z
2x2 − 1

2
M33z

4 − 1

2
M33y

4 − 5G12zx
2 −M33z

2y2

+ (−1/2C22 − 1/2C33)z
2 + (3/2C22 + 1/2C33)x

2

+ (−3/2C22 + 1/2C33)y
2

K22 = −1

2
A33 − 6G22xyz −M33x

2y2 +G12z
3 −B21z − 5G12zy

2

+ 2E21xy −
1

2
M33x

4 −M33z
2x2 − 1

2
M33z

4 − 1

2
M33y

4

+ G12zx
2 + 5M22z

2y2 + (−3/2C22 + 1/2C33)x
2 + (3/2C22 + 1/2C33)y

2

+ (−1/2C22 − 1/2C33)z
2

K33 = −C33y
2 + A33 + 2M33x

2y2 − 2G12z
3 + 2B21z − C33x

2 + 4G12zy
2

+ M33x
4 − 4M33z

2x2 +M33z
4 +M33y

4 + 4G12zx
2 − 4M33z

2y2

+ (C22 + C33)z
2

K12 = 3C22xy − 3G22zx
2 − 6G12xyz + 3G22y

2z + 6M33xyz
2

+ E21x
2 − E21y

2

K13 = (3/2C33 + 3/2C22)zx− 9/2G12z
2x+ 3M33z

3x− E21zy

+ 3/2G12xy
2 − 3M33xzy

2 + 3/2G22yz
2 − 3/2G22yx

2 − 3M33zx
3

+ 3/2B21x+ 3/2G12x
3 − 3/2G22y

3 + 3/2B22y

K23 = 3M33z
3y − 9/2G12z

2y − 3/2G22z
2x− 3M33zy

3 + 3/2G22xy
2

+ 3/2B21y − 3/2B22x+ E21xz + 3/2G12yx
2 + (3/2C33 + 3/2C22)zy

− 3M33zyx
2 + 3/2G22x

3 + 3/2G12y
3 (4.1.5)
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The imposition of the TSN conditions implies that the coefficients E21, B22 and
G22 must vanish. The resulting six-dimensional rotational characteristic Killing
tensor thus takes the form:

K11 = −1/2M33x
4 −M33x

2y2 + (3/2C22 + 1/2C33)x
2 − 5G12zx

2 + 5M33x
2z2

− 1/2M33y
4 + (1/2C33 − 3/2C22)y

2 +G12zy
2 −M33y

2z2 − 1/2A33 −B21z

+ (−1/2C22 − 1/2C33)z
2 − 1/2M33z

4 +G12z
3

K22 = −1/2M33x
4 −M33x

2y2 + (1/2C33 − 3/2C22)x
2 +G12zx

2 −M33x
2z2

− 1/2M33y
4 + (3/2C22 + 1/2C33)y

2 − 5G12zy
2 + 5M33y

2z2 − 1/2A33 −B21z

+ (−1/2C22 − 1/2C33)z
2 − 1/2M33z

4 +G12z
3

K33 = M33x
4 + 2M33x

2y2 − C33x
2 + 4G12zx

2 − 4M33x
2z2 +M33y

4 − C33y
2 + 4G12zy

2

− 4M33y
2z2 + 2B21z + (C33 + C22)z

2 − 2G12z
3 +M33z

4 + A33

K12 = 3C22yx− 6G12xyz + 6M33xyz
2

K13 = 3/2G12x
3 − 3M33zx

3 + 3/2G12xy
2 − 3M33xzy

2 + 3/2B21x+ 3M33z
3x

+ (3/2C22 + 3/2C33)zx− 9/2G12xz
2

K23 = 3/2G12yx
2 − 3M33zyx

2 + 3/2G12y
3 − 3M33zy

3 + 3/2B21y + 3M33z
3y

+ (3/2C22 + 3/2C33)zy − 9/2G12yz
2 (4.1.6)

A more compact way of expressing the above, in terms of symmetric tensor products
of CKVs expressed as linear combinations of the chosen six parameters, is:

K = − A33

2
X1 ⊙ X1 −

A33

2
X2 ⊙ X2 + A33X3 ⊙ X3

− B21X1 ⊙ R2 +B21X2 ⊙ R1 + C22R1 ⊙ R1

+ C22R2 ⊙ R2 + C33R3 ⊙ R3 + 2B21X3 ⊙ D

+ (3/2C22 + C33/2)X1 ⊙ I1 + (3/2C22 + C33/2)X2 ⊙ I2

+ (C33 + C22)X3 ⊙ I3 +G12R1 ⊙ I2 −G12R2 ⊙ I1

− 2G12D ⊙ I3 −
M33

2
I1 ⊙ I1 −

M33

2
I2 ⊙ I2 +M33I3 ⊙ I3 (4.1.7)

There is an elegant alternate approach which is computationally easier than the
method outlined above.

Remark 4.1.1 The linear space of all possible CKTs which are characteristic CKTs
of rotational webs in Euclidean space is the subspace of the general thirty five pa-
rameter CKT defined by the discrete linear operation:

(K ·R3) ×R3 = 0 (4.1.8)

The result by definition forces the third rotational Killing vector to be an eigen-
vector of the modified Killing tensor. Indeed the normality of the eigenvectors is
ensured by the fact that R3 is normal and that the second linearly independent
eigenvector is tangent to the half-planes and can be considered planar. Clearly the
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pair are surface forming and hence normal. In any case we checked that the three
conditions making up the Tonolo-Schouten-Nijenhuis test for integrability of the
eigenvectors are satisfied. Note that Eq. (4.1.8) works only for 3-dimensional Eu-
clidean space and not on higher dimensional manifolds. Thus the discrete method
cannot be taken as a universal approach to find subsets of conformal Killing tensors
indicative of symmetries of the corresponding coordinate webs.
It was shown that each discrete operation analogous to Eq.(4.1.8), but along all
canonical conformal Killing vectors, results in Killing tensor subspaces of dimen-
sion six instead of thirty five that describes the most general CKT. Application
of the condition Eq.(4.1.8) confirms that rotational webs are six dimensional webs
characterized by the following conditions on the Killing tensor coefficients:

A22 = −A33

2
B12 = −B21

C11 = C22

G12 = −G21

M22 = −M33

2
A12 = A13 = A23 = 0

B13 = B31 = B23 = B32 = 0

B22 = B33 = 0

C12 = C13 = C23 = 0

E12 = E21 = E13 = E31 = E23 = E32 = 0

G13 = G31 = G23 = G32 = 0

G22 = G33 = 0

(4.1.9)

All other parameters vanish except for those that are linear combinations of the six
free independent parameters (A33, B21, C22, C33, G12 and M33) as required by the
trace-free condition explained in the previous section. The same general rotational
conformal Killing tensor then results after applying the above criterion. This proves
that the Lie derivative and discrete method of finding rotationally symmetric webs
are equivalent for Euclidean space. We have verified that (4.1.8) and (4.1.1) with
TSN conditions are equivalent for all canonical conformal Killing vectors modulo
cases of Killing tensors with constant components.

4.2 Characteristic Killing tensors for rotational

R-separable coordinates

In this subsection we discuss the derivation of characteristic Killing tensors for
R-separable webs. As explained in the Introduction this method relies on the
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observation of Eisenhart that the associated Stäckel matrix contains in its inverse
information about the characteristic Killing tensors unique to the coordinate system
[20]. Namely, the three rows of the inverse Stäckel matrix are the contravariant
components of the linearly independent Killing tensors expressed in the eigenbasis
that generates the coordinate web. One row is the usual contravariant metric tensor.
This is a fundamental property of all Stäckel matrices and in [38] the first row of the
inverse is defined to represent the diagonalized contravariant metric tensor. The
second and third rows are the diagonalized Killing tensors; one will be common to
all rotational systems but the other unique only to the coordinate web.

One is interested in Killing tensors expressed in Cartesian coordinates, thus the
coordinate transformation law is needed to calculate the Jacobian matrix. Recall
from Chapter 2 that when the Jacobian is left-multiplied by the diagonalized Killing
tensor and the transpose of the Jacobian, that this yields the tensor expressed in
Cartesian coordinates albeit with variables belonging to the original R-separable
coordinate definition. So far the technique is algorithmic especially when the as-
sociated Stäckel matrix and coordinate transformation are already known (in this
thesis we provide them for each coordinate case). The difficult step is guessing the
Killing tensor in canonical Cartesian variables. Although an algorithm is outlined
in [25], it becomes very unwieldy for the cyclidic coordinates where solving for one
separable coordinate in terms of the Cartesian coordinates involves solving quartic
equations. This, as well as writing the tensor as a symmetrized product of Confor-
mal Killing vectors (CKVs), will be discussed in each case. Of particular difficulty
were the Jacobi-elliptic coordinate systems that comprised the last four coordinate
systems in Ch.4 of [38].

For 6-sphere and tangent sphere coordinates the form of the characteristic tensor
can be determined by inspection. 6-sphere coordinates are the only example in
Ch.4 of [38] that are not rotational so we briefly digress from the main theme of
this chapter to discuss them. The coordinate transformation law from Cartesian
coordinates to canonical R-separable coordinates is given by

x =
u

u2 + v2 + w2

y =
v

u2 + v2 + w2

z =
w

u2 + v2 + w2
(4.2.1)

The resulting covariant metric coefficients in the separable coordinates are

g11 = g22 = g33 =
1

(u2 + v2 + w2)2
(4.2.2)

The associated Stäckel matrix is:



0 −1 −1

0 1 0

1 0 1




(4.2.3)
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with conformal Q-factor (u2 + v2 +w2)−2 and modulation R-factor the fourth root
of Q. Using this information and the Eisenhart theory the corresponding conformal
Killing tensors are:




4x2z2 4xyz2 2xz(−x2 − y2 + z2)

4xyz2 4y2z2 2yz(−x2 − y2 + z2)

2xz(−x2 − y2 + z2) 2yz(−x2 − y2 + z2) (−x2 − y2 + z2)2




(4.2.4)




4x2y2 −2(x2 − y2 + z2)xy 4xy2z

−2(x2 − y2 + z2)xy (x2 − y2 + z2)2 −2(x2 − y2 + z2)yz

4xy2z −2(x2 − y2 + z2)yz 4z2y2




(4.2.5)

They are not however trace-free. In order to determine the coefficients used in sym-
metric tensor products of CKVs by comparing the above fourth degree expressions
with the general formula for the thirty five parameter conformal Killing tensor -
the trace must be removed. This is accomplished by addition of the identity matrix
multiplied by one third of the negative of the trace. For the above two tensors the
coefficients of symmetric tensor products of CKVs are: M22 = −1

3
,M33 = 2

3
and

M22 = 2
3
,M33 = −1

3
, respectively. All other coefficients are zero. With tangent

sphere coordinates the coordinate transformation law from Cartesian coordinates
to canonical R-separable coordinates is given by

x =
µcosψ

µ2 + ν2

y =
µsinψ

µ2 + ν2

z =
ν

µ2 + ν2
(4.2.6)

The resulting covariant metric coefficients in the separable coordinates are

g11 = g22 =
1

(µ2 + ν2)2

g33 =
µ2

(µ2 + ν2)2
(4.2.7)

The associated Stäckel matrix is:



1 −1 −1/µ2

0 1 0

0 0 1




(4.2.8)
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with conformal Q-factor (µ2 + ν2)−2 and modulation R-factor the fourth root of Q.
From this the two conformal Killing tensors obtained are:




4x2z2 4xyz2 2xz(−x2 − y2 + z2)

4xyz2 4y2z2 2yz(−x2 − y2 + z2)

2xz(−x2 − y2 + z2) 2yz(−x2 − y2 + z2) (−x2 − y2 + z2)2




(4.2.9)




y2 −xy 0
−xy x2 0

0 0 0


 (4.2.10)

The second tensor is common to all coordinate webs invariant under rotations. Its
trace-free representation is




2y2

3
− x2

3
−xy 0

−xy 2x2

3
− y2

3
0

0 0 −y2

3
− x2

3


 (4.2.11)

The basis in terms of symmetrized products of CKVs is easy to find from the general
trace-free rotational CKT expressed in terms of six arbitrary constants, since this
tensor is of second degree:

C22 = −1

3
, C33 =

1

3
, A33 = B21 = G12 = M33 = 0. (4.2.12)

Although largely neglected in this chapter, this tensor will be fundamental in discus-
sions of group operations leaving rotational webs and algebraic quantities invariant.
It is required for classifying inequivalent coordinates in the next section. The first
characteristic tensor’s trace-free representation is purely degree four with basis:

M33 =
2

3a2
, A33 = B21 = C22 = C33 = G12 = 0. (4.2.13)

For cardioid coordinates the coordinate transformation law is:

x =
µνcosψ

(µ2 + ν2)2

y =
µνsinψ

(µ2 + ν2)2

z =
µ2 − ν2

2(µ2 + ν2)2
(4.2.14)

The resulting covariant metric coefficients in the separable coordinates are

g11 = g22 =
1

(µ2 + ν2)3

g33 =
µ2ν2

(µ2 + ν2)4
(4.2.15)
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The associated Stäckel matrix is:



µ2 −1 −1/µ2

ν2 1 −1/ν2

0 0 1




(4.2.16)

with conformal Q-factor (µ2 + ν2)−4, and modulation R factor the fourth root of
Q. The characteristic conformal Killing tensor, in canonical Cartesian coordinates,
could not be guessed but a formula relating the variables µ, ν and ψ to Cartesian
variables x, y and z is given in [38] and can be inserted into the expression. After
rearrangement one obtains the conformal Killing tensor written in components:




−8z(x2 − y2 − z2) −16xyz 4x(x2 + y2 − 3z2)

−16xyz 8z(x2 − y2 + z2) 4y(x2 + y2 − 3z2)

4x(x2 + y2 − 3z2) 4y(x2 + y2 − 3z2) 16z(x2 + y2)




(4.2.17)

This is the only coordinate system yielding a purely degree three characteristic
tensor. The basis of symmetrized tensor products of CKVs is G12 = 8

3
. A word of

caution is required here. Although there is only one independent basis, this does
not mean that G12 is the only coefficient involved in the formula for symmetric
tensor products of CKVs. Recall the trace-free condition on the CKT also requires
that Li = Glmαmli where Li was defined as the tensor coefficient of the dilatation
vector multiplied with the ith inversion vector. In the case of cardioid coordinates
L3 = −16

3
, L1 = L2 = 0.

The remaining rotational webs have the additional feature of a parameter ‘a’
which appears in the definition of the coordinates. This will be present in the
Jacobian and in the final characteristic conformal Killing tensor. An interesting
fact is that A33 will always have ‘units’ a2 and M33 units 1

a2 . It will be clari-
fied later that this parameter naturally arises from the dilatation member of the
conformal group acting on the coordinate web. C22 and C33, the second degree
terms, never depend on this parameter. The algebra of the characteristic tensors
(representing coordinates at least in canonical centered form) will show that for
all non-cardioid coordinates only four independent coefficients come into play and
these are A33, C22, C33 and M33 with B21 = G12 = 0. This will be expanded on in
Chapter 5 and 6.

For toroidal coordinates the coordinate transformation law is:

x =
a sinh(η) cosψ

cosh(η) − cos θ

y =
a sinh(η) sinψ

cosh(η) − cos θ

z =
a sin θ

cosh(η) − cos θ
(4.2.18)
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The resulting covariant metric coefficients in the separable coordinates are

g11 = g22 =
a2

(cosh(η) − cos θ)2

g33 =
a2 sinh2(η)

(cosh(η) − cos θ)2
(4.2.19)

The associated Stäckel matrix is:



1 −1 −1/ sinh(η)2

0 1 0

0 0 1




(4.2.20)

with conformal Q factor a2(cosh(η) − cos θ)−2 and modulation R-factor the fourth
root of Q. The characteristic conformal Killing tensor in canonical Cartesian co-
ordinates is found by solving quadratic equations relating (η, θ, ψ), given in [38],
with the Cartesian variables (x, y, z). One obtains




z2x2

a2
xyz2

a2 − (x2+y2−z2−a2)zx
2a2

xyz2

a2
z2y2

a2 − (x2+y2−z2−a2)zy
2a2

− (x2+y2−z2−a2)zx
2a2 − (x2+y2−z2−a2)zy

2a2
(x2+y2−z2−a2)2

4a2




(4.2.21)

The independent coefficients of symmetric tensor products of CKVs are

A33 =
a2

6
, C22 = 0, C33 =

1

3
, M33 =

1

6a2
(4.2.22)

Writing the complete expression in terms of symmetrized tensor products of CKVs
again requires the algebra derived in the previous section based on the conditions
that resulted from the trace-free assumption.

Bispherical coordinates are handled in a similar way to toroidal coordinates.
Their coordinate transformation to Cartesian coordinates are:

x =
a sin θ cosψ

cosh(η) − cos θ

y =
a sin θ sinψ

cosh(η) − cos θ

z =
a sinh(η)

cosh(η) − cos θ
(4.2.23)

The resulting covariant metric coefficients in the separable coordinates are

g11 = g22 =
a2

(cosh(η) − cos θ)2

g33 =
a2 sin2 θ

(cosh(η) − cos θ)2
(4.2.24)
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The associated Stäckel matrix is:


1 −1 0

0 1 −1/ sin θ2

0 0 1




(4.2.25)

with conformal Q factor a2(cosh(η) − cos θ)−2 and modulation R-factor the fourth
root of Q. The characteristic conformal Killing tensor in Cartesian coordinates is
expressed in components and is given by:

K11 =
1

4a2
(x4 − 2z2x2 + 2x2a2 + 2x2y2 + z4 − 2z2a2 + y4 + 2y2a2 + a4 + 2z2y2)

K22 =
1

4a2
(x4 + 2x2y2 + 2x2a2 + 2z2x2 + z4 − 2z2a2 + y4 + 2y2a2 + a4 − 2z2y2)

K33 =
(x2 + y2)z2

a2

K12 = −xyz
2

a2

K13 =
(x2 + y2 − z2 + a2)zx

2a2

K23 =
(x2 + y2 − z2 + a2)zy

2a2
(4.2.26)

The independent coefficients of symmetric tensor products of CKVs are

A33 = −a
2

6
, C22 = 0, C33 =

1

3
, M33 = − 1

6a2
(4.2.27)

These conditions are the same as those for toroidal coordinates except for a sign
change in A33 and M33; this subtlety will be revisited in the next section when
considering inequivalence of coordinates.

Inverse oblate spheroidal coordinates and inverse prolate spheroidal coordinates
are handled in a similar manner: coordinate relations in [38] can be solved in
terms of Cartesian variables by use of the quadratic formula. For inverse oblate
coordinates the coordinate transformation law is:

x =
a cosh(η) sin θ cosψ

cosh2(η) − cos2 θ

y =
a cosh(η) sin θ sinψ

cosh2(η) − cos2 θ

z =
a sinh(η) cos θ

cosh2(η) − cos2 θ
(4.2.28)

The resulting covariant metric coefficients in the separable coordinates are

g11 = g22 =
a2(cosh2(η) − sin2 θ)

(cosh2(η) − cos2 θ)2

g33 =
a2 cosh2(η) sin2 θ

(cosh2(η) − cos2 θ)2
(4.2.29)
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The associated Stäckel matrix is:



a2 cosh2(η) −1 1/ cosh2(η)

−a2 sin2 θ 1 −1/ sin2 θ

0 0 1




(4.2.30)

with conformal Q factor (cosh2(η) − cos2 θ)−2 and modulation R-factor the fourth
root of Q. The characteristic conformal Killing tensor for inverse oblate coordinates
is given in components, written in canonical Cartesian coordinates, by:

K11 =
(x4 − 2z2x2 + 2x2y2 + y4 + z4 + z2a2 + y2a2 + 2z2y2)

a2

K22 =
(x4 + 2z2x2 + x2a2 + 2x2y2 + z2a2 + y4 + z4 − 2z2y2)

a2

K33 =
(x2 + y2)(4z2 + a2)

a2

K12 = −(4z2 + a2)xy

a2

K13 = −zx(a
2 − 2x2 − 2y2 + 2z2)

a2

K23 = −zy(a
2 − 2x2 − 2y2 + 2z2)

a2
(4.2.31)

The independent coefficients of symmetric tensor products of CKVs are

A33 = 0, C22 = −1

3
, C33 = −1

3
, M33 = − 2

3a2
(4.2.32)

For inverse prolate coordinates the coordinate transformation law is:

x =
a sinh(η) sin θ cosψ

cosh2(η) − sin2 θ

y =
a sinh(η) sin θ sinψ

cosh2(η) − sin2 θ

z =
a cosh(η) cos θ

cosh2(η) − sin2 θ
(4.2.33)

The resulting covariant metric coefficients in the separable coordinates are

g11 = g22 =
a2(sinh2(η) + sin2 θ)

(cosh2(η) − sin2 θ)2

g33 =
a2 sinh2(η) sin2 θ

(cosh2(η) − sin2 θ)2
(4.2.34)
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The associated Stäckel matrix is:



a2 sinh2 η −1 −1/ sinh2 η

a2 sin2 θ 1 −1/ sin2 θ

0 0 1




(4.2.35)

with conformal Q factor (cosh2(η) − sin2 θ)−2 and modulation R-factor the fourth
root ofQ. The characteristic conformal Killing tensor for inverse prolate coordinates
is given in components by:

K11 =
(−x4 + 2z2x2 − 2x2y2 + z2a2 + y2a2 − z4 − y4 − 2z2y2)

a2

K22 =
(−x4 + x2a2 − 2x2y2 − 2z2x2 + z2a2 − y4 − z4 + 2z2y2)

a2

K33 =
(−4z2 + a2)(x2 + y2)

a2

K12 = −xy(−4z2 + a2)

a2

K13 = −zx(a
2 + 2x2 + 2y2 − 2z2)

a2

K23 = −zy(a
2 + 2x2 + 2y2 − 2z2)

a2
(4.2.36)

The independent coefficients of symmetric tensor products of CKVs are

A33 = 0, C22 = −1

3
, C33 = −1

3
, M33 =

2

3a2
(4.2.37)

4.3 Jacobi elliptic coordinates

The case of the Jacobi elliptic functions involved in the last four rotational coor-
dinate systems given in [38] are much more difficult to decipher their associated
CKTs. Solving for µ, ν and ψ directly in terms of x, y and z in [38] using informa-
tion in [38] implies solving quartic equations. Closed form solutions may exist in
theory but are unwieldy. We had the idea of using numerical methods to ‘measure’
what the unknowns (A33, B21, C22, C33, G12,M33) must be by numerically evaluating
the components of the characteristic Killing tensor and inverting the ‘coefficient’
matrix defined in terms of the six unknown parameters.

If the six parameter set were factored out into a column vector, the resulting
six by six ‘coefficient’ matrix inverted and multiplied with the column vector (nu-
merically estimated) of Killing tensor components
(A33, B21, C22, C33, G12,M33) would be approximated. The hope was that the nu-
merical output would be very close to repeating decimal expansions hinting at
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simple fractions. The fractions chosen would comprise an intelligent guess for the
unknowns and their use in the general formula for symmetric tensor products of
CKVs would yield the Killing tensor automatically in Cartesian coordinates. The
idea is sound except that the determinant of the coefficient matrix is 0! In fact, the
rank is only three. Even the guess B21 = G12 = 0 (which turned out to be correct)
would leave us with one unknown too many. Moreover, it can be proved that the
singular condition implies any formula of symmetric tensor products of CKVs is
unique up to a very general 3-parameter non-constant algebraic expression.

The only way around this difficulty was to proceed numerically: either to guess
the CKT coefficients (some are now functions of the Jacobi-elliptic parameter k)
and judge by numerical estimates if the hypothesis was reasonable or restrict the
domain to extreme values such as µ = ν = ψ = 0. The coefficients are constant
independently of where in the manifold the numerical evaluations are done. How-
ever, extreme cases vastly simplify the six by six matrix and step by step allowed
one to numerically gauge certain unknowns one at a time. For bi-cyclide, flat ring
cyclide and disk cyclide coordinates the above procedure was painstakingly applied
to the limiting cases k = 1 and k = 0. For such limiting values the coordinates take
on a simpler form, albeit the actual coordinate system in question is only defined
for k belonging to the open set (0, 1). The coordinate parameter k′ also belongs to
the open set (0, 1) with the relationship k′2 = 1 − k2. For interior values of k, we
successfully conjectured - and then tested by the least squares method - that the
coefficients involved in the symmetric tensor products of CKVs behave quadrati-
cally in k with the prior calculated ‘endpoints’. So in these last four coordinate
systems calculating the characteristic Killing tensor did not precede calculating its
representation in terms of symmetrized tensor products of CKVs! A result was that
the characteristic Killing tensor derived is automatically trace-free.

Bi-cyclide coordinates have the coordinate transformation law:

x =
a

Λ
cn(µ)dn(µ)sn(ν)cn(ν) cosψ

y =
a

Λ
cn(µ)dn(µ)sn(ν)cn(ν) sinψ

z =
a

Λ
sn(µ)dn(ν)

Λ ≡ 1 − dn2(µ)sn2(ν) (4.3.1)

The resulting covariant metric coefficients in the separable coordinates are

g11 = g22 =
a2(1 − sn2(µ)dn2(ν))(dn2(ν) − k2sn2(µ))

Λ2

g33 =
a2cn2(µ)dn2(µ)sn2(ν)cn2(ν)

Λ2
(4.3.2)
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The associated Stäckel matrix is:



−k2sn2(µ) −1 − k′4sn2(µ)

cn2(µ)dn2(µ)

dn2(ν) 1 − dn2(ν)
sn2(ν)cn2(ν)

0 0 1




(4.3.3)

with conformal Q factor a2

Λ2 (1 − sn2(µ)dn2(ν)), and modulation R-factor equal to
Λ−1/2. For the characteristic conformal Killing tensor of bi-cyclide coordinates the
k = 0 limit has the following parameters: A33 = −2a2

3
, C22 = 0, C33 = 2

3
,M33 = 0.

The k = 1 limit has the parameters: A33 = −2a2

3
, C22 = 0, C33 = 4

3
,M33 = − 2

3a2 .
Only the A33 term is constant; conjecturing a quadratic dependence on the others
to fit the ‘endpoints’, the coefficients of the Killing tensor for bi-cyclide coordinates
are

A33 = −2a2

3
, C22 = 0, C33 =

2

3
(1 + k2), M33 = −2k2

3a2
(4.3.4)

The conformal Killing tensor in components that results is:

K11 =
1

3a2
· (a2x2 + a2x2k2 + a2y2 + a2y2k2 − a2z2 − a2z2k2 + a4

+ k2x4 + 2k2x2y2 − 10k2x2z2 + k2y4 + 2k2y2z2 + k2z4)

K22 =
1

3a2
· (a2x2 + a2x2k2 + a2y2 + a2y2k2 − a2z2 − a2z2k2 + a4

+ 2k2x2y2 + k2x4 + 2k2x2z2 + k2y4 − 10k2y2z2 + k2z4)

K33 = − 2

3a2
· (a2x2 + a2x2k2 + a2y2 + a2y2k2 − a2z2 − a2z2k2 + a4

− 4k2x2z2 − 4k2y2z2 + k2x4 + 2k2x2y2 + k2y4 + k2z4)

K12 = −4xyk2z2

a2

K13 = −xz(−a
2 − a2k2 − 2k2x2 − 2k2y2 + 2k2z2)

a2

K23 = −yz(−a
2 − a2k2 − 2k2x2 − 2k2y2 + 2k2z2)

a2

(4.3.5)

Using Maple one verifies that this is indeed the trace-free characteristic Killing
tensor for bi-cyclide coordinates.

Flat-ring cyclide coordinates have the coordinate transformation law:

x =
a

Λ
sn(µ)dn(ν) cosψ

y =
a

Λ
sn(µ)dn(ν) sinψ

z =
a

Λ
cn(µ)dn(µ)sn(ν)cn(ν)

Λ ≡ 1 − dn2(µ)sn2(ν) (4.3.6)
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The resulting covariant metric coefficients in the separable coordinates are

g11 = g22 =
a2(1 − sn2(µ)dn2(ν))(dn2(ν) − k2sn2(µ))

Λ2

g33 =
a2sn2(µ)dn2(ν)

Λ2
(4.3.7)

The associated Stäckel matrix is:



−k2sn2(µ) −1 −(k2sn2(µ) + 1/sn2(µ))

dn2(ν) 1 (dn2(ν) + k2/dn2(ν))

0 0 1




(4.3.8)

with conformal Q-factor a2

Λ2 (1 − sn2(µ)dn2(ν)) and modulation R-factor equal to
Λ−1/2.

For the characteristic conformal Killing tensor of flat-ring cyclide coordinates
the k = 0 limit has the parameters: A33 = 2a2

3
, C22 = 1

3
, C33 = 1

3
,M33 = 0. The

k = 1 limit has the parameters: A33 = 2a2

3
, C22 = 2

3
, C33 = 2

3
,M33 = 2

3a2 . Only the
A33 term is constant, again conjecturing a quadratic dependence on the others to fit
the ‘endpoints’, the coefficients of the Killing tensor for flat-ring cyclide coordinates
are

A33 =
2a2

3
, C22 =

1

3
(1 + k2), C33 =

1

3
(1 + k2), M33 =

2k2

3a2
(4.3.9)

This also turned out to be correct. The conformal Killing tensor in components
that results is:

K11 = − 1

3a2
· (a2y2 + a2z2 − 2a2x2 + a2k2y2 + a2k2z2 − 2a2k2x2 + a4

+ k2x4 + 2k2x2y2 − 10k2x2z2 + k2y4 + 2k2y2z2 + k2z4)

K22 = − 1

3a2
· (a2x2 + a2z2 − 2a2y2 + a2k2x2 + a2k2z2 − 2a2k2y2 + a4

+ 2k2x2y2 + k2x4 + 2k2x2z2 + k2y4 − 10k2y2z2 + k2z4)

K33 =
1

3a2
· (−a2x2 − a2y2 + 2a2z2 − a2k2x2 − a2k2y2 + 2a2k2z2 + 2a4

− 8k2x2z2 − 8k2y2z2 + 2k2x4 + 4k2x2y2 + 2k2y4 + 2k2z4)

K12 =
xy(a2 + a2k2 + 4k2z2)

a2

K13 =
xz(a2 + a2k2 − 2k2x2 − 2k2y2 + 2k2z2)

a2

K23 =
yz(a2 + a2k2 − 2k2x2 − 2k2y2 + 2k2z2)

a2
(4.3.10)
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Disk cyclide coordinates have the following coordinate transformation law:

x =
a

Λ
cn(µ)cn(ν) cosψ

y =
a

Λ
cn(µ)cn(ν) sinψ

z =
a

Λ
sn(µ)dn(µ)sn(ν)dn(ν)

Λ ≡ 1 − dn2(µ)sn2(ν) (4.3.11)

The resulting covariant metric coefficients in the separable coordinates are

g11 = g22 =
a2(sn2(ν) + sn2(µ)cn2(ν))(dn2(ν) − k2sn2(µ))

Λ2

g33 =
a2cn2(µ)cn2(ν)

Λ2
(4.3.12)

The associated Stäckel matrix is:



−k2sn2(µ) −1 (k2cn2(µ) − k′2/cn2(µ))

dn2(ν) 1 (k′2cn2(ν) − k2/cn2(ν))

0 0 1




(4.3.13)

with conformal Q-factor a2

Λ2 (sn
2(ν) + sn2(µ)cn2(ν)) and modulation R-factor equal

to Λ−1/2.

For the characteristic conformal Killing tensor of disk cyclide coordinates the
k = 0 limit has the parameters: A33 = 2a2

3
, C22 = 1

3
, C33 = 1

3
,M33 = 0. The

k = 1 limit has the parameters: A33 = 0, C22 = −1
3
, C33 = −1

3
,M33 = − 2

3a2 .
This time no coefficient is constant with respect to the k coordinate parameter but
the quadratic dependence still holds; the coefficients of the Killing tensor for disk
cyclide coordinates are

A33 = −a
2

6
(−4 + 4k2), C22 =

1

3
(1 − 2k2), C33 =

1

3
(1 − 2k2)

M33 = −2k2

3a2
(4.3.14)

The conformal Killing tensor in components is:

K11 =
1

3a2
· (2x2a2 − 4x2a2k2 − y2a2 + 2y2a2k2 − z2a2 + 2z2a2k2 − a4

+ a4k2 + k2x4 + 2k2x2y2 − 10k2x2z2 + k2y4 + 2k2y2z2 + k2z4)

K22 =
1

3a2
· (−x2a2 + 2x2a2k2 + 2y2a2 − 4y2a2k2 − z2a2 + 2z2a2k2

− a4 + a4k2 + 2k2x2y2 + k2x4 + 2k2x2z2 + k2y4 − 10k2y2z2 + k2z4)

K33 = − 1

3a2
· (x2a2 − 2x2a2k2 + y2a2 − 2y2a2k2 − 2z2a2 + 4z2a2k2 − 2a4
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+ 2a4k2 − 8k2x2z2 − 8k2y2z2 + 2k2x4 + 4k2x2y2 + 2k2y4 + 2k2z4)

K12 = −xy(−a
2 + 2a2k2 + 4k2z2)

a2

K13 = −xz(−a
2 + 2a2k2 − 2k2x2 − 2k2y2 + 2k2z2)

a2

K23 = −yz(−a
2 + 2a2k2 − 2k2x2 − 2k2y2 + 2k2z2)

a2

(4.3.15)

Cap-cyclide coordinates have the following coordinate transformation law:

x =
Λ

aΥ
sn(µ)dn(ν) cosψ

y =
Λ

aΥ
sn(µ)dn(ν) sinψ

z =
k1/2Π

2aΥ
Λ ≡ 1 − dn2(µ)sn2(ν)

Υ ≡ sn2(µ)dn2(ν) + [
Λ√
k

+ cn(µ)dn(µ)sn(ν)cn(ν)]2

Π ≡ Λ2

k
− (sn2(µ)dn2(ν) + cn2(µ)dn2(µ)sn2(ν)cn2(ν)) (4.3.16)

The resulting covariant metric coefficients in the separable coordinates are

g11 = g22 =
Λ2(1 − sn2(µ)dn2(ν))(dn2(ν) − k2sn2(µ))

a2Υ2

g33 =
Λ2sn2(µ)dn2(ν)

a2Υ2
(4.3.17)

The associated Stäckel matrix is:



−k2sn2(µ) −1 −(k2sn2(µ) + 1/sn2(µ))

dn2(ν) 1 (dn2(ν) + k2/dn2(ν))

0 0 1




(4.3.18)

with conformal Q-factor Λ2

a2Υ2 (1−sn2(µ)dn2(ν)) and modulation R-factor Λ1/2Υ−1/2.

The case of the characteristic conformal Killing tensor of cap-cyclide coordinates
presented the biggest challenge to find the CKT coefficients. For one, the k = 0
limit was impossible to deal with numerically as the coordinates suffer a singularity
at that limiting case and consequently analyzing the six by six matrix of coeffi-
cients numerically meant dealing with ill conditioned systems. After many failed
attempts, we realized the only way to proceed was to make numerical estimations
for several values of k close to the known k = 1 limit. After seeing that the best
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quadratic fit through the data points failed to be an accurate estimate for other
measured points, the best cubic fit was conjectured and that turned out to give
the answer. Furthermore some coefficients were defined in terms of others and the
overall dependence fails to be a polynomial function in k. One coefficient even
undergoes a singularity for the k = 0 limit! The coefficients are:

A33 =
a2(k + 2k2 + k3)

24
, C22 =

2k

3
, C33 = −1

3
· (1 − 4k + k2)

M33 = 2
(1 + k)2

3a2k
(4.3.19)

The corresponding characteristic conformal Killing tensor in components is:

K11 = − 1

48ka2
· (k2 + 8x2a2k − 8z2a2k + 8x2a2k3 + 48z2a2k2 − 8z2a2k3

+ 16a4x4 + 16a4x4k2 + 32a4x4k + 16a4z4 + k4 + 2k3 − 160a4x2z2

− 160a4x2z2k2 − 320a4x2z2k + 16a4z4k2 + 32a4z4k + 16y2a2k2 + 8y2a2k3

+ 16a4y4 + 16a4y4k2 + 32a4y4k − 80x2a2k2 + 8y2a2k + 32a4x2y2 + 32a4x2y2k2

+ 64a4x2y2k + 32a4y2z2 + 32a4y2z2k2 + 64a4y2z2k)

K22 = − 1

48ka2
· (k2 + 8x2a2k − 8z2a2k + 8x2a2k3 + 48z2a2k2 − 8z2a2k3 + 16a4x4

+ 16a4x4k2 + 32a4x4k + 16a4z4 + k4 + 2k3 + 32a4x2z2

+ 32a4x2z2k2 + 64a4x2z2k + 16a4z4k2 + 32a4z4k − 80y2a2k2 + 8y2a2k3

+ 16a4y4 + 16a4y4k2 + 32a4y4k + 16x2a2k2 + 8y2a2k + 32a4x2y2 + 32a4x2y2k2

+ 64a4x2y2k − 160a4y2z2 − 160a4y2z2k2 − 320a4y2z2k)

K33 =
1

24ka2
· (k2 + 8x2a2k − 8z2a2k + 8x2a2k3 + 48z2a2k2 − 8z2a2k3

+ 16a4x4 + 16a4x4k2 + 32a4x4k + 16a4z4 + k4 + 2k3 − 64a4x2z2

− 64a4x2z2k2 − 128a4x2z2k + 16a4z4k2 + 32a4z4k − 32y2a2k2 + 8y2a2k3

+ 16a4y4 + 16a4y4k2 + 32a4y4k − 32x2a2k2 + 8y2a2k + 32a4x2y2 + 32a4x2y2k2

+ 64a4x2y2k − 64a4y2z2 − 64a4y2z2k2 − 128a4y2z2k)

K12 =
2xy(k2 + 4z2a2k + 2a2z2 + 2z2a2k2)

k

K13 = − 1

2k
· (xz(−6k2 + k + k3 + 8x2a2k + 4x2a2 + 4x2a2k2 + 8y2a2k

+ 4y2a2 + 4y2a2k2 − 8z2a2k − 4a2z2 − 4z2a2k2))

K23 = − 1

2k
· (yz(−6k2 + k + k3 + 8x2a2k + 4x2a2 + 4x2a2k2 + 8y2a2k

+ 4y2a2 + 4y2a2k2 − 8z2a2k − 4a2z2 − 4z2a2k2))

(4.3.20)

The algebra was too formidable to verify this for the general case except for the
off-diagonal components. We verified the cases ψ = 0 and ψ = π

2
knowing that any

angle ψ can be redefined by an appropriate rotation in the x− y plane to yield the
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simpler values tested above. This concludes the calculation of the characteristic
conformal Killing tensors associated with the R-separable coordinates in Ch. 4 of
[38].
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Chapter 5

Group actions preserving

rotationally symmetric canonical

CKTs

In this chapter we give explicitly the conformal transformations of Euclidean space
that leave invariant the linear space of trace-free rotationally symmetric conformal
Killing tensors. We also give additional transformations defined directly on this
space that are needed in the classification scheme. Invariants of these transfor-
mations will be used to classify the rotationally symmetric R-separable coordinate
webs of the Laplace equation in Chapter 6.

5.1 Continuous group actions

The conformal transformations on E3 induce linear transformations on the space of
trace-free conformal Killing tensors. We now give conformal transformations that
leave invariant the six dimensional space of trace-free conformal Killing tensors
that are invariant under rotations about the z-axis. We also give two additional
transformations defined directly on this space that also leave it invariant.

We first consider the translations. Translations in the xy plane are ruled out
since they will break the rotational symmetry about the z-axis. So are rotations
about the y and x axis or any combination thereof. However, a translation in the
z-direction, of the form:

x̃ = x

ỹ = y

z̃ = z + α, α ∈ R (5.1.1)

is an allowed group action leaving the symmetry of the web invariant. The other
is the rotation of the coordinates in the xy plane; however, as the web itself is
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rotationally symmetric this action leaves invariant all the coefficients of the tensor
and is thus trivial. Clearly rotations in the xz and yz planes are forbidden. A
dilatation of the space described by the equations:

x̃ = eαx

ỹ = eαy α > 0

z̃ = eαz (5.1.2)

also does not change the geometry of the coordinate surfaces. Here we draw at-
tention to two group transformations on the space of Killing tensors which do not
arise from the action of C(M). The first one is the dilatation of the Killing tensor
itself:

K̃ = αK, α > 0 (5.1.3)

The second arises by the addition of a scalar multiple of R3 ⊙ R3 to the Killing
tensor. Thus

K̃ = K + αR3 ⊙ R3, α ∈ R (5.1.4)

is another allowed functionally independent transformation from the first set. The
last two transformations are not motivated by geometric considerations, but rather
by the allowed operations on Stäckel matrices which were used to find the char-
acteristic Killing tensor studied. Indeed, the last two group actions result directly
from the allowed steps 2) and 3) on Stäckel matrices as explained on p. 593 of
[36]. That Stäckel matrices are unique up to some defined operations translates
to a characteristic Killing tensor being unique up to a multiple of itself and the
addition of a scalar multiple of R3 ⊙R3. Note that R3 ⊙R3 is not a characteristic
Killing tensor since two eigenvalues are zero and hence not all distinct.

5.2 Discrete group transformations

The last transformation belonging to the conformal group to be considered is in-
version about the unit sphere. It is a discrete transformation defined by:

x→ x̃ =
x

x2 + y2 + z2

y → ỹ =
y

x2 + y2 + z2

z → z̃ =
z

x2 + y2 + z2

(5.2.1)

This transformation preserves the rotational web, inducing the following simulta-
neous interchanges on the CKT coefficients:

M̃33 = A33, Ã33 = M33, B̃21 = −G12, G̃12 = −B21 (5.2.2)
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The second order terms C22 and C33 are left unchanged. Studying this effect of the
discrete inversion on the 6-tuple of rotational CKT coefficients reveals that some
tuples (and hence CKTs) are mapped into one another - proving that their associ-
ated coordinate webs are equivalent under that operation. In particular this proves
that 6-sphere coordinates result from the inverse of Cartesian coordinates, tangent
sphere coordinates are the inverse of circular cylindrical coordinates, inverse prolate
spheroidal coordinates are the inverse of prolate spheroidal coordinates and inverse
oblate spheroidal coordinates are the inverse of oblate spheroidal coordinates. The
discrete inversion also puts cardioid coordinates in the same coordinate class as
paraboloidal coordinates since the coefficients after inversion differ only by a factor
of 4. As we have just discussed Killing tensors differing by a common non-zero
factor are deemed equivalent as they admit the same eigenvectors. Therefore from
the standpoint of group operations one might say that 6-sphere, tangent sphere, in-
verse oblate spheroidal, inverse prolate spheroidal and cardioid coordinates are not
inequivalent from the set of simple separable metrics. However, these R-separable
coordinates are distinguished from the rest in that their A33 coefficient is 0.

For A33 6= 0, a discrete inversion cannot map an R-separable web into a simply
separable web, since after the interchange M33 6= 0 and this fourth order term is
non-zero only for conformally separable metrics! Furthermore, the claim in [38]
that cap-cyclide coordinates are the (discrete) inverse of bi-cyclide coordinates is
refuted by noting that interchanging A33 and M33 does not map the one set of
coefficients into the other. Neither does inversion in the unit sphere map the one
set of coordinate definitions to the other, as may be verified by Maple. Thus we
had to study the five independent group actions permitted by the geometry of
the rotational webs. They can be used in various combination to classify the R-
separable rotational webs, as well as the simple separable rotational cases already
categorized in [25].

The restriction on the group parameter α for the dilatation cases can be lifted
if one allow the discrete ‘-1 switch’ of the Killing tensor and of the space, in the
form:

K̃ = −K, (x̃, ỹ, z̃) = (−x,−y,−z) (5.2.3)

Although these discrete operations preserve the rotational web, the entire group
orbits will not all be continuously connected with the identity, since the singular
case α = 0 must always be avoided. The negative dilatation of the space has the
following effect on the Killing tensor coefficients:

Ã33 = A33, B̃21 = −B21, C̃22 = C22, C̃33 = C33

G̃12 = −G12, M̃33 = M33 (5.2.4)

namely the first and third order terms are mapped to their negative inverses while
the zeroth, second and fourth order terms are left unchanged. For the cases satisfy-
ing (B21, G12) = 0, the negative dilatation of the space plays no further role. Note
that the group operation

K̃ = K + αg, α ∈ R (5.2.5)
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is not allowed, where g is the contravariant metric tensor. Conformal Killing tensors
are of course only unique up to a functional multiple of the metric tensor. However
by setting the trace to vanish we have already fixed this free parameter. The above
group operation that was used in simple separable cases to distinguish between
inequivalent coordinates [25] is now not available.

Having defined the discrete inversion we next look at a continuous group action
that involves it. The definition is given on p.128 of [40] which defines the group as
a composition of three maps:

Discrete inversion, an infinitesimal translation along a preferred direction followed
by the discrete inversion.

Remark 5.2.1 Clearly this group action is connected with the identity. One should
point out that this infinitesimal group transformation is not independent of the
preceding ones as it is constructed by an explicit composition of a discrete inversion
and an infinitesimal translation. Unlike the discrete inversion however this group
action is continuous and described by a parameter making it more convenient in
some cases of study than the discrete inversion.

After some algebra one can show that the group action on the coordinates, along
z, amounts to:

x→ x̃ =
x

1 + 2zα + α2(x2 + y2 + z2)

y → ỹ =
y

1 + 2zα + α2(x2 + y2 + z2)

z → z̃ =
z + α(x2 + y2 + z2)

1 + 2zα + α2(x2 + y2 + z2)

(5.2.6)

Formulae for group inversion along the directions x and y are similar.

These group actions neatly coincide with the inversional conformal Killing vec-
tors: indeed differentiations of the transformed variables at α = 0 yield the in-
finitesimal inversions given in (3.1.1). As predicted these transformations along x
and y do not preserve the rotational web which is defined about the z axis. How-
ever, the group inversion along z preserves this rotational symmetry. This is a quasi
extension of the existing four continuous group operations that leave the rotational
web considered invariant.
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5.3 Effect of continuous group actions on the Killing

tensor coefficients and calculation of invari-

ants

We begin this sub-section by giving a definition for an invariant of a CKT under a
continuous group action.

Definition 5.3.1 An invariant of the rotationally symmetric CKT K is an analytic
function F of the parameters defining K which satisfies

F (Ã33, B̃21, C̃22, C̃33, G̃12, M̃33) = F (A33, B21, C22, C33, G12,M33) (5.3.1)

for all values of the parameters, where the tilded parameters are related to the un-
tilded parameters by the transformation laws induced by an arbitrary group action.

Note that the above is a very special case of (2.4.3). We first consider an infinites-
imal translation in the z direction, which induces the following transformations:

Ã33 = A33 − 2B21α+ (C22 + C33)α
2 + 2G12α

3 +M33α
4

B̃21 = B21 − (C22 + C33)α− 3G12α
2 − 2M33α

3

C̃22 = C22 + 2G12α+ 2M33α
2

C̃33 = C33 + 4G12α+ 4M33α
2

G̃12 = G12 + 2M33α

M̃33 = M33 (5.3.2)

The derivatives of the new coefficients with respect to the transformation parameter
α, evaluated at α = 0, are given by

∂Ã33

∂α
= −2B21

∂B̃21

∂α
= −(C22 + C33)

∂C̃22

∂α
= 2G12

∂C̃33

∂α
= 4G12

∂G̃12

∂α
= 2M33

∂M̃33

∂α
= 0

(5.3.3)
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The derivative of Eq. (5.3.1) with respect to α, with the use of the chain rule yields

∂F

∂Ã33

∂Ã33

∂α
+

∂F

∂B̃21

∂B̃21

∂α
+

∂F

∂C̃22

∂C̃22

∂α
+

∂F

∂C̃33

∂C̃33

∂α
+

∂F

∂G̃12

∂G̃12

∂α

+
∂F

∂M̃33

∂M̃33

∂α
= 0 (5.3.4)

Evaluation at the identity (α = 0) with the use of Eq. (5.3.3) gives, after dropping
the tildes, our first determining pde namely

0 = −2
∂F

∂A33

B21 −
∂F

∂B21

(C22 + C33) + 2
∂F

∂C22

G12

+ 4
∂F

∂C33

G12 + 2
∂F

∂G12

M33 (5.3.5)

Remark 5.3.2 We note here that for all R-separable coordinates in [38], M33 = 0
and G12 6= 0 solely for cardioid coordinates. All other rotational coordinates satisfy
M33 6= 0, G12 = 0 and B21 = 0. This observation segregates cardioid coordinates
from all the others.

Using the tensor transformation law, it can be shown that transformed coefficients
resulting from a dilatation satisfy:

Ã33 = e2αA33

B̃21 = eαB21

C̃22 = C22

C̃33 = C33

G̃12 = e−αG12

M̃33 = e−2αM33

(5.3.6)

The derivatives of the tilded parameters at α = 0 are given by

∂Ã33

∂α
= 2A33

∂B̃21

∂α
= B21

∂C̃22

∂α
= 0

∂C̃33

∂α
= 0

∂G̃12

∂α
= −G12

∂M̃33

∂α
= −2M33

(5.3.7)
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The resulting determining pde associated to the dilatation is found to be

2
∂F

∂A33

A33 +
∂F

∂B21

B21 −
∂F

∂G12

G12 − 2
∂F

∂M33

M33 = 0 (5.3.8)

The third group transformation to be considered is the scalar multiple of the Killing
tensor itself, namely K̃ = αK for α 6= 0. The transformation of the coefficients and
the resulting derivatives with respect to the parameter are too trivial to tabulate. A
subtle point is that evaluation at the identity element of the group transformation
amounts to evaluation at α = 1, not α = 0 as in all the other examples. This
subtlety is easily overlooked since the derivative of the coefficients are the unprimed
coefficients themselves and have no dependence on α. The resulting determining
pde follows easily:

0 =
∂F

∂A33

A33 +
∂F

∂B21

B21 +
∂F

∂C22

C22 +
∂F

∂C33

C33

+
∂F

∂G12

G12 +
∂F

∂M33

M33 (5.3.9)

The fourth group transformation considered is the addition to the Killing tensor of
a scalar multiple of the second rotational Killing tensor common to all rotational
coordinates. Recall that this transformation has the form K̃ = K + αR3 ⊙ R3.
However, it should be pointed out that this is an abuse of notation, since the sym-
metric tensor product indicated is only true for the non trace-free representation.
Explicitly the tensor has two non-zero parameters with respect to our basis set C22

and C33: C22 = −1
3

and C33 = 1
3
. The resulting transformation of the coefficients

is as follows:

Ã33 = A33

B̃21 = B21

C̃22 = C22 −
1

3
α

C̃33 = C33 +
1

3
α

G̃12 = G12

M̃33 = M33

(5.3.10)

All derivatives of the coefficients with respect to the transformation parameter α
are zero except for ∂C22

∂α
= −1

3
and ∂C33

∂α
= 1

3
. Again the last result is from evaluation

at the identity element of the group transformation. We thus arrive at the fourth
determining pde which is:

∂F

∂C22

− ∂F

∂C33

= 0 (5.3.11)
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We next look at the consequences of the continuous inversion. One can show the
following transformation of the Killing tensor coefficients:

Ã33 → A33

B̃21 → B21 − 2αA33

C̃22 → C22 − 2αB21 + 2α2A33

C̃33 → C33 − 4αB21 + 4α2A33

G̃12 → G12 + (C22 + C33)α− 3B21α
2 + 2A33α

3

M̃33 → M33 + 2G12α+ (C22 + C33)α
2 − 2B21α

3 + A33α
4

(5.3.12)

One sees immediately that the term A33 is invariant; clearly the discrete inversion
cannot be ‘reached’ by the continuous group inversion. This is perhaps analogous
to the fact that dilatation of the Killing tensor itself cannot attain multiplication
of the Killing tensor by -1.

The continuous inversion along z admits a well defined pde which is:

0 = −2
∂F

∂B21

A33 − 2
∂F

∂C22

B21 − 4
∂F

∂C33

B21

+
∂F

∂G12

(C22 + C33) + 2
∂F

∂M33

G12 (5.3.13)

Now that the pdes resulting from all the infinitesimal group actions considered have
been written down, it is instructive to tabulate the vectors of the generators of the
solution to verify that they are indeed linearly independent. In terms of the basis

(
∂

∂A33

,
∂

∂B21

,
∂

∂C22

,
∂

∂C33

,
∂

∂G12

,
∂

∂M33

), (5.3.14)

the vector generators of the five determining pdes are:

V1 = [−2B21,−(C22 + C33), 2G12, 4G12, 2M33, 0]

V2 = [2A33, B21, 0, 0,−G12,−2M33]

V3 = [A33, B21, C22, C33, G12,M33]

V4 = [0, 0, 1,−1, 0, 0]

V5 = [0, 2A33, 2B21, 4B21,−(C22 + C33),−2G12]

(5.3.15)

The corresponding Lie algebra is:
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[ , ] V1 V2 V3 V4 V5

V1 0 V1 0 0 2V2

V2 −V1 0 0 0 V5

V3 0 0 0 −V4 0
V4 0 0 V4 0 0
V5 −2V2 −V5 0 0 0

Table 5.1: Lie Commutator Table

The set of vectors (V1, . . . , V5) is generically linearly independent. However,
there are special cases when it is not. In particular there are coordinates such that
the associated dimension of the space spanned by the Vis reduces to two. This closed
commutator table proves that the system of pdes is completely integrable. Actual
integration of the above system to find group invariants is exceedingly difficult,
especially after also imposing the discrete inversion not admitting a pde. It is best
to first start with canonical examples of characteristic Killing tensors which satisfy
B21 = G12 = 0 for non-cardioid cases in [38]. The study of canonically centered
coordinates admitting a restricted set of group transformations will be the topic of
the next chapter.

The system of pdes was eventually integrated first by finding two functionally
independent invariants with respect to the entire group modulo the dilatation of
the conformal Killing tensor. The method of undetermined polynomial coefficients,
utilized especially in [25], was used since Maple 9 was unable to perform the inte-
gration of Eq. (5.3.15). Thus the derived I1 and I2 are polynomial functions of the
coefficients:

I1 = −72M33A33(C22 + C33) + 108M33B
2
21 + 2(C22 + C33)

3 + 108A33G
2
12

+ 36B21G12(C22 + C33)

I2 = (C22 + C33)
2 + 12A33M33 + 12B21G12 (5.3.16)

To construct the single functionally independent invariant with respect to the entire
group action is now trivial. The square of I1 is divided by the cube of I2 to get the
polynomial degrees (of the coefficients) to match (at 6). The resulting quantity is
then invariant under dilatation of the conformal Killing tensor itself. This explicit
form of the invariant is

I = (−72M33A33(C22 + C33) + 108M33B
2
21 + 2(C22 + C33)

3 + 108A33G
2
12

+ 36B21G12(C22 + C33))
2/((C22 + C33)

2 + 12A33M33 + 12B21G12)
3

(5.3.17)

It is easy to see that the above is also invariant with respect to discrete inversion
given the invariance of every term in the sum with respect to that discrete ac-
tion. This solution will be discussed in the next chapter after first considering the
reduced invariant on canonically centered coordinate webs which avoids the con-
tinuous translation and inversion group action. Unfortunately, it seems that I is a
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poor choice to discriminate between coordinate webs as it lumps together simple
and conformally separable cases whereas the reduced invariant was defined only for
‘purely’ conformal coordinate webs. This will be elucidated in the next chapter.
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Chapter 6

Classification of the symmetric

R-separable webs

6.1 Classification of rotationally symmetric

R-separable coordinates

With the results and methods presented in the previous chapters - we now proceed
with the main goal of this thesis which is to classify the rotationally symmetric
webs and partition them into equivalence classes under the Lie group of conformal
transformations derived in the previous chapter. The question of the exhaustive-
ness of rotationally symmetric R-separable coordinates will finally be answered.
The lack of other types of symmetric coordinates admitting R-separation of the
Laplace equation will be discussed at the end of this chapter.

We begin this chapter by giving a definition of equivalence of characteristic CKTs
under the action of the conformal group.

Definition 6.1.1 Two characteristic CKTs are said to be equivalent if and only
if there exists an element of the transformation group on the space of such tensors
which maps one of the tensors into the other. The R-separable webs defined by
equivalent tensors are said to be equivalent.

For the classification of the rotationally symmetric R-separable webs the following
transformations need to be considered:

Translation along the z-axis
Continuous inversion along the z-axis
Dilatation of the space
Discrete inversion
Dilatation of the Killing tensor

73



Addition to the Killing tensor of a scalar multiple of the rotational Killing ten-
sor R3 ⊙ R3

The effect of these operations on the coefficients of the reduced Killing tensor has
already been described in the previous section. Thus we have available degrees of
freedom for the change of coefficients, as well as an adjustment of the parameter
k that appears in the definition of the four Jacobi-elliptic coordinate systems. It
is these last four coordinates in Ch. 4 of [38] that contain this arbitrary param-
eter which is defined on the open set (0, 1). Indeed k appears in the coefficients
for symmetric tensor products of CKVs and its variation within the allowed range
must be taken into account. Recall that for elliptic-hyperbolic coordinates in E3,
the parameter used to describe the coordinate surface was defined to be the inter
focal distance [25] whose range gives a related family of coordinates. Quantities
invariant under group transformations leaving the web unchanged are called ‘invari-
ants’. However, usually the invariants are themselves functions of the parameters
appearing in the coordinate definitions. In some of the cases presented in this sec-
tion the invariants will differ for different values of k. If adjusting k in addition
to the degrees of freedom afforded by all possible group transformations does not
yield an equality of two sets of invariants, then it is reasonable to conclude that the
two coordinate systems considered are inequivalent. Note we specifically omit the
other coordinate parameter ‘a’ appearing in most definitions in [38] because this is
none other than the dilatation of the space which has already been considered.

The coordinates 6-Sphere, tangent sphere and cardioid coordinate systems are
defined without any such parameters. All algebraic invariants will be constant but
as mentioned before the discrete inversion puts these in the same equivalence class
as simple separable coordinates in E3.

6.2 Classification of canonically centered rotation-

ally symmetric webs

We call attention to a curious paradox. Consider for the subset of canonically
centered webs satisfying B21 = 0 and G12 = 0, the three allowed functionally
independent group actions acting on the coefficients. These are the dilatation of
the Killing tensor, dilatation of the space and addition to the Killing tensor of a
scalar multiple of the rotational Killing tensor R3⊙R3. Recall that the translation
and continuous inversion along the z-axis changes the values of B21 and G12 which is
unacceptable since both are zero and must remain so for canonically centered webs.
Since there are only four independent unknowns in the coefficients A33, C22, C33 and
M33 and three determining pdes, we obtain one functionally independent (reduced)
invariant:

(
C22 + C33√
A33M33

)
(6.2.1)
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Note that the product A33M33 negates dependence on the coordinate parameter a:
the invariant is thus constant for entire families of coordinates. It is easy to see
that the invariant is constant with respect to dilatation of the space and dilatation
of the Killing tensor itself. Furthermore the product A33M33 is invariant under the
discrete inversion since A33 andM33 are simply interchanged by this transformation.
We now use this single invariant to partition the known canonical R-separable webs
into disjoint equivalence classes.

Proposition 6.2.1 Inequality of invariants is a sufficient but not a necessary con-
dition for inequivalence of any two R-separable coordinate systems. Contraposi-
tively, equality of invariants to prove equivalence of webs is simply a necessary but
not sufficient condition.

Proof: This follows by analyzing two systems of coordinates. Recall that the
list of CKT coefficients identifying toroidal coordinates is:

A33 =
a2

6
, C22 = 0, C33 =

1

3
, M33 =

1

6a2
(6.2.2)

The list of CKT coefficients identifying bispherical coordinates is:

A33 =
−a2

6
, C22 = 0, C33 =

1

3
, M33 =

−1

6a2
(6.2.3)

Substituting these values into Eq.(6.2.1) gives the surprising result of +2 for both
toroidal and bispherical coordinates. Is this proof that, with respect to the three
group operations, toroidal and bispherical coordinates are equivalent? A simple
argument shows that they cannot be. Recall from the previous section that dilata-
tion of the space amounts to multiplying M33 by a positive quantity reciprocal to
that which multiplies A33 with the variables C22 and C33 being left unchanged. Di-
latation of the Killing tensor multiplies all coefficients, including M33, equally by a
greater-than-zero scalar. Addition of a scalar of the second rotational Killing tensor
leaves both M33 and A33 alone. Finally, it is noted that M33 depends on the inverse
square of the coordinate parameter a. Thus varying a amounts to multiplication
of M33 by a positive scalar. It follows that no group transformation or coordinate
adjustment can change the sign of M33 and A33 with respect to the other Cii co-
efficients. Yet to transform the characteristic tensor for toroidal coordinates into
the one for bispherical coordinates requires precisely this forbidden operation! This
reasoning is the ultimate ‘acid test’ for determining whether toroidal coordinates
are indeed inequivalent to bispherical coordinates. Nonetheless their invariants are
precisely the same. What resolves this paradox? Note the factor (A33M33) in the de-
nominator completely eliminates information as to whether both A33 and M33 were
positive or negative. It is easy to see knowing the transformation of the coefficients
that the invariant listed is indeed constant under the three group transformations
that generated it. This completes the proof by example for the pair toroidal and
bispherical coordinates. 2
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The same proof could also be obtained by analyzing bi-cyclide and flat ring cy-
clide coordinates. The CKT coefficients for bi-cyclide coordinates are given by:

A33 = −2a2

3
, C22 = 0, C33 =

2

3
(1 + k2), M33 = −2k2

3a2
(6.2.4)

The corresponding coefficients for flat-ring cyclide coordinates are:

A33 =
2a2

3
, C22 =

1

3
(1 + k2), C33 =

1

3
(1 + k2), M33 =

2k2

3a2
(6.2.5)

Substitution of these coefficients into the single invariant yields (1+k2)
k

∈ (+2,∞)
for both bi-cyclide and flat ring cyclide coordinates. Note again how their values
for M33 differ in sign. This criterion proves their inequivalence despite equality of
their single invariant. On a reassuring note, for k defined on the open set (0, 1) the

invariant (1+k2)
k

always differs from +2 which is the invariant identifying toroidal and
bispherical coordinates, proving positively that these four are an inequivalent set.
Of course Eq.(6.2.1) fails to discriminate between webs satisfying A33 = 0, namely
tangent sphere, inverse oblate spheroidal and inverse prolate spheroidal coordinates.
Inspection of the coefficients for the above (listed in the previous section) yields
M33 = − 2

3a2 for inverse oblate spheroidal coordinates and M33 = 2
3a2 for inverse

prolate spheroidal coordinates, while their Cii variables are the same - thus setting
them apart immediately. Recall from the last chapter that it is not necessary to
consider the A33 = 0 cases alongside the canonical conditions B21 = G12 = 0 as the
discrete inversion transformation places tangent sphere, inverse oblate spheroidal
and inverse prolate spheroidal coordinates into the same equivalence class as simple
separable webs already classified in [25]. Furthermore any canonical Killing tensor
identified by M33 = 0 will admit a characteristic Killing tensor of degree two which
is already a subset of the simple separable cases. Cardioid coordinates, with only
G12 6= 0, is placed in the class of parabolic coordinates by the discrete inversion,
that is the degree three tensor is mapped to a degree one tensor and so is not an
additional R-separable coordinate system.

Remark 6.2.2 The proof of Prop 6.2.1 relied on continuous group operations only.
It is true that no continuous group operation so far considered, connected with the
identity, can map a Killing tensor to its additive inverse. However, if the three group
operations can change the tensor coefficients to bring them to the exact negative of
another characteristic Killing tensor, then the Killing tensor pairs are equivalent.
The previous arguments must be modified somewhat to take this feature, the result
of the inclusion of a discrete -1 switch, into account.

For the coordinate pairs toroidal, bispherical, bi-cyclide and flat ring cyclide,
A33,M33 differ only by sign. Dilatation of the space, dilatation of the Killing tensor
itself and addition of a scalar multiple of the second rotational tensor R3 ⊙ R3 as
well as variation of the parameters a and k amount only to multiplication of A33

76



and M33 by positive non-zero scalars. If the tensors are to be made equivalent,
then A33 and M33 must be left alone. Once that is known, C22 and C33 must
be simultaneously brought to their additive inverses. This is easily seen to be
impossible, as one increases at the negative rate of the other under the above group
action.

With toroidal and bispherical coordinates, C22 = 0, C33 6= 0. This relation in
size is ‘out of phase’ with the transformation of the variables under addition of a
scalar multiple of R3 ⊙ R3 which implies C̃22 = C22 + α

3
and C̃33 = C33 − α

3
. It is

impossible to simultaneously bring both variables to their additive inverses - thus
proving that bispherical and toroidal coordinates are inequivalent even with the
discrete -1 switch added to the list of coefficient transformations.

With bi-cyclide and flat ring cyclide coordinates the A33 and M33 must be sim-
ilarly left alone, but the C22 coefficient is 0 for bi-cyclide coordinates and non-zero
for flat ring cyclides. Adjusting C22 accordingly will not make the C33 pair additive
inverses. This reasoning completes the discussion on possible equivalence between
bi-cyclide and flat-ring cyclide coordinates even with the -1 switch degree of free-
dom on the coefficients.

Disk cyclide coordinates are described by the CKT coefficients:

A33 = −a
2

6
(−4 + 4k2), C22 =

1

3
(1 − 2k2), C33 =

1

3
(1 − 2k2)

M33 = −2k2

3a2
(6.2.6)

These are the only ones with the property A33M33 < 0. This makes Eq.(6.2.1)
complex however its negative square value partitions it from the square value of
other invariants discussed thus far. Another argument for their inequivalence to all
other coordinate systems is this: A33 and M33 will always differ in sign as group
transformations and adjustment of parameters amount to multiplications by non-
zero constants. No operation exists to make their signs equal or their values vanish
- so setting them apart from all coordinates considered. It should be noted that
this reasoning trivially explains why cardioid coordinates are distinguished from
the rest. It is the only coordinate system admitting M33 = 0 while every other
member has M33 6= 0.

For cap-cyclide coordinates the invariant
(
C22+C33√
A33M33

)
is equal to (−2+12k−2k2)

(1+k)2
. With

k ∈ (0, 1) the range of the invariant is the open interval (-2,2). This distinguishes
cap-cyclide coordinates from toroidal and bispherical which is fixed at +2, and from
bi-cyclide and flat ring cyclide coordinates whose range is (+2,∞).

Studying the square of Eq.(6.2.1) now becomes useful. Recall that any contin-
uous function of an invariant is an invariant. Firstly the square is invariant to the
discrete ‘minus 1 switch’ that complements the dilatation of the Killing tensor itself.
Secondly it is then possible to consider disk cyclide coordinates where A33M33 < 0.
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Disk cyclide coordinates will, from variation of k, admit an invariant in the range
(−∞, 0]. Cap-cyclide will have its invariant in the finite interval [0, 4). Toroidal
and bispherical have their invariants fixed at +4, and finally bi-cyclide and flat-ring
cyclides have their invariants in the infinite interval (4,+∞).

Remark 6.2.3 For invariants with no intersection in their ranges, even after vary-
ing a and k, it is sufficient to prove that the corresponding webs are inequivalent
under dilations, discrete inversion and addition of R3⊙R3, since we have considered
simultaneously the independent group actions on the subset of pertinent coefficients.
Note that the singular infinities are excluded as they correspond either to k = 0 or
k = 1 which are not defined for the Jacobi-elliptic coordinates.

Remark 6.2.4 The reader might well ask whether disk cyclide coordinates are only
one of a pair of inequivalent coordinate systems since the product A33M33 < 0
destroys information as to which coefficient is less than zero and which is greater
than zero. Suppose one had M33 < 0 and A33 > 0 instead?

Recall that dilatation of the space or variation of the coordinate parameter a mul-
tiplies M33 with the reciprocal of the positive quantity which multiplies A33. Thus
the set of coefficients can be continuously mapped to the case: A33 < 0 and M33 > 0
for dilatation parameter a2 = A33

M33
. In fact since B21 = G12 = 0 the discrete in-

version can also be used to perform the same interchange and thus the question of
which coefficient is less than or greater than zero is meaningless. Recall once again
the discrete inversion and dilatation of the space does not affect the degree two
Cii parameters. Note that the above argument does not lump together the cases
where both A33 and M33 are either greater than or less than zero for fixed values
of C22 and C33. Note further that the seemingly distinct cases M33 < 0, A33 > 0,
(C22 +C33) > 0 and M33 > 0, A33 < 0, (C22 +C33) < 0 are related by the -1 switch
and hence not representative of inequivalent webs. Thus the range of the invariant
(−∞, 0) is indicative of only one equivalence class of coordinates.

A similar argument (so far!) proves that cap-cyclide coordinates does not appear
to have a ‘twin’ inequivalent coordinate system either, as the reader could again
point out that the case A33 > 0, M33 > 0 represents another inequivalent case as
per the situation for the coordinate pairs toroidal, bispherical and bi-cyclide, flat
ring cyclide coordinates. However the variation of the parameter k for cap-cyclide
coordinates can force (C22 + C33) to vanish and at that point the -1 switch can be
applied to reverse the signs of A33 and M33 simultaneously without affecting the
numerator of Eq.(6.2.1) since it is 0. Note this subtlety could not hold for invariants
not spanning the null element as the -1 switch would reverse all the four signs of
the CKT coefficients simultaneously and not two in isolation. The invariant ranges
from cap-cyclide and disk-cyclide coordinates seem to intersect at the null element.
However, as mentioned before no group action can make A33 and M33 switch from
being equal in sign to opposite. This is yet another example of where equality of
invariants is only a necessary condition for equivalence of coordinates.
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6.3 The question of non-canonically centered ro-

tationally symmetric R-separable coordinates

We have, with respect to the invariant in Eq.(6.2.1), a total of six additional in-
equivalent R-separable webs to the known set of eleven simple separable webs in E3.
The entire real line of the invariant in Eq.(6.2.1) is exhausted as well as ambiguities
that resulted from the product factor. We must now address the question as to
whether this represents the totality of distinct R-separable webs especially since we
have restricted ourselves to the canonically centered cases B21 = G12 = 0. What
if one was given a 6-tuple of random numbers representing the values for the six
CKT coefficients where the previous condition no longer holds? This spells trouble
since an addition of two coefficients even with the inclusion of the translation group
operation implies that an additional invariant has to be considered. This immedi-
ately means there is ‘more room’ for inequivalent coordinates which will be hard
to classify not knowing a priori (i.e from solving the Eisenhart equations) similar
formulae for the coordinate parameter k.

An alternative is to consider the translation and continuous inversion group
actions as a set in its own right used simply to bring the two coefficients B21 and
G12, one or both assumed non-zero, to vanish irrespective of the effect on the other
terms.

Definition 6.3.1 Any 6-tuple of numbers representing the CKT coefficients are
equivalent to some 4-tuple of numbers representing coordinates in canonical centered
form if any pair (B21, G12) belonging to the original 6-tuple can be mapped to (0,0)
by a composition of continuous inversion and translation group actions.

If the above holds uniquely then the previous section provides proof that the coor-
dinates in [38] represent an exhaustive list of all rotationally symmetric R-separable
coordinates in E3, up to equivalence. The issue of uniqueness is a subtle one and
the consequence for non-uniqueness will be addressed later on.

We have proceeded with this calculation and deduced that for the above to hold,
the following pair of equations resulting from the composition of an inversion with
a translation must have a real solution for the unknown transformation parameters
(a, b) respectively with given arbitrary B21 and G12:

0 = B21 − 2aA33 − 3(C22 + C33)ab
2 − (C22 + C33)b− 2(C22 + C33)b

3a2

+ 4B21a
3b3 − 6A33ba

2 − 2M33b
3 − 2A33a

4b3 + 9B21a
2b2 + 6B21ba

− 4G12ab
3 − 3G12b

2 − 6A33a
3b2

0 = G12 + 2(C22 + C33)a
2b+ 2A33a

3 + 2A33a
4b+ 2M33b− 4B21a

3b

− 3B21a
2 + (C22 + C33)a+ 4G12ab (6.3.1)

Solving for the group parameter variables (a, b) results however in solutions given in
terms of roots of a degree six polynomial expression divided by a quartic polynomial.
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By classical algebra solutions are guaranteed but over the complex field Z. We
performed stochastic numerical tests to state with a degree of certainty that the
roots of the sextic polynomial always contain at least one real pair. The presence
of the quartic polynomial in the denominator poses a potential problem, since one
must take into account the possibility of a pathological case where the numerator
and the denominator share real roots leaving only complex roots for the remainder.
Even one such case would signify a new R-separable web. However, its Lebesgue
measure is zero in the abstract space of the coefficients, and beyond the reach
of random numerical tests. The special case where only the pair B21, G12 is not
trivial was verified to yield real solutions for (a, b) provided the product G12B21 is
non-zero. Recall that this subcase either represents a simply separable web or can
be mapped to one by a discrete inversion, as is the case for cardioid coordinates.
Due to this special case yielding a real solution and the numerous numerical tests
performed to verify the existence of real solutions to the degree six polynomial, we
present

Proposition 6.3.2 Eq.(6.3.1) contains at least one pair of real roots.

Proof: Using resultant theory of polynomials one can prove the proposition for the
special case of C22, C33, B21, G12 arbitrary andA33 = M33 = 0. This is made possible
since Maple 9 and 10 both give two classes of solutions to (a, b) in solving for B21

and G12 = (0,0). Where one class yields only complex or undefined solutions, the
other does. This may be proved with the help of resultant theory of polynomials. By
extension one can prove the conjecture for A33 = 0 or M33 = 0, since infinitesimal
inversion or translation can bring the other term to zero since the equation involved
is of degree three in the parameter guaranteeing a real solution. For A33,M33 both
non-zero however a pure inversion or translation cannot guarantee solving for either
of them (the equations involved are of degree four in the parameters). However, a
composition of inversion and translation yields the transformation equation for A33

being degree four but bivariate:

Ã33 = A33 + (−2B21 + 4A33a)b+ (C22 + C33 − 6B21a+ 6A33a
2)b2

+ (2C33a+ 2C22a− 6B21a
2 + 4A33a

3 + 2G12)b
3

+ (2G12a− 2B21a
3 + A33a

4 + C33a
2 +M33 + C22a

2)b4 (6.3.2)

Stochastic tests using fifty million random cases have verified that for any 6-tuple
of coefficients it is very likely that Ã33 can be made zero in the general case. No
pathological case of Lebesgue measure zero exists and so Prop. 6.3.2 appears true
for arbitrary values of (A33, B21, C22, C33, G12,M33). 2

The transformation equations for the other rotational CKT coefficients under com-
position of inversion and translation parameters (a, b) respectively are given here
for completeness, where for compactness C ≡ C22 + C33:

C̃ = C + 6A33a
2 − 6B21a

+ (−18B21a
2 + 12A33a

3 + 6Ca+ 6G12)b

+ (6Ca2 + 6M33 + 6A33a
4 − 12B21a

3 + 12G12a)b
2 (6.3.3)
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and lastly,

M̃33 = M33 + 2G12a+ Ca2 − 2B21a
3 + A33a

4 (6.3.4)

Should any reader wish to convert a random 6-tuple of rotational CKT coefficients
to canonically centered form, namely (B21, G12) = (0, 0) by inversion parameter a
and translation parameter b, the other coefficients can then be calculated using the
information presented above.

6.4 Canonically centered rotational coordinates

related by balanced combination of inversion

and translation

With the previously discussed ‘projection’ from 6-tuple to 4-tuple space of Killing
tensor coefficients, one must be aware of the non-uniqueness of real roots to Eq.(6.3.1).
This suggests the possibility of applying the continuous inversion and translation
group action on a priori canonically centered webs to yield other canonically cen-
tered webs. Namely it is a question of the existence of real solutions to Eq.(6.3.1)
when B21 and G12 are zero a priori while the other four coefficients are arbitrary.
Of course the trivial solution (a,b) = (0,0) representing the identity transformation
is always present but ignored. Solving for Eq.(6.3.1) yields for inversion parameter
a:

a = 4

√
M33

A33

(6.4.1)

The translation parameter b in terms of the inversion parameter a is given by:

b =
−a
2

((C22 + C33) + 2A33a
2)

(2M33 + (C22 + C33)a2)
. (6.4.2)

One sees that all coordinates could be affected by the above transformations save
for disk-cyclide which is the only one where the product A33M33 < 0 and so only the
trivial case a = b = 0 is possible which amounts to the identity transformation. For
all other canonically centered rotationally symmetric coordinates one must verify
whether the transformed values for A33, C22, C33 and M33 correspond to the same
equivalence class or not by studying the square of the invariant given by Eq.(6.2.1).
In so doing we take into account all the members of the conformal group used to
classify coordinates. The transformation for A33 from canonical form to canonical
form is given in Eq.(6.3.2) by setting both B21 and G12 to zero. We list here the
transformation of the other coefficients as a result of the above process, in terms of
the solved values for inversion parameter a and translation parameter b:

M̃33 = M33 + (C22 + C33)a
2 + A33a

4
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C̃22 = C22 + 2A33a
2 + (4A33a

3 + 2C33a+ 2C22a)b

+ (2C33a
2 + 2C22a

2 + 2A33a
4 + 2M33)b

2

C̃33 = C33 + 4A33a
2 + (4C22a+ 4C33a+ 8A33a

3)b

+ (4M33 + 4A33a
4 + 4C33a

2 + 4C22a
2)b2 (6.4.3)

Applying this to toroidal coordinates one finds that M33 is multiplied by 4 while
A33 is divided by 4, which is merely the effect of a dilation of the space! Toroidal
coordinates are therefore not affected by this procedure. Bispherical coordinates
are another matter: the inversion parameter b in Eq.(6.4.2) has an indeterminate
form 0

0
; if one labels this indeterminate fraction as c one obtains - after applying

canonical form to canonical form mapping:

Ã33 =
−k2

6
+
k2c

3
− k2c2

6
C̃22 = −1

3
C̃33 = −1

3
M̃33 = 0 (6.4.4)

Note that all cases with respect to the indeterminate constant c are simple separa-
ble cases, but if M33 = 0 the only way to invert the procedure back to bispherical
coordinates is to choose the constant c such that A33 = 0. If A33 6= 0 and M33 = 0
the canonical form to canonical form mapping will never map that simple sep-
arable coordinate web to an R-separable coordinate web. Therefore c ≡ 1 and
we prove that bispherical coordinates are indeed conformally related to spheroidal
coordinates, as is claimed in the literature, such as [6]. Recall that spheroidal
coordinate webs are invariant to the discrete inversion - this is the case when
A33 = M33 = B21 = G12 = 0.

Bi-cyclide coordinates are mapped to bi-cyclide coordinates given that the trans-
formed coefficients satisfy the same invariant (with respect to the three other group
transformations) as the original ones do as a function of k. However, one can show
that flat ring cyclide coordinates and cap-cyclide coordinates are interchanged (by
studying the range of the invariants after transformation) and vice-versa as a re-
sult of the above process. Hence one loses either flat-ring cyclide or cap-cyclide
coordinates as an additional R-separable coordinate system. We prove finally that
cap-cyclides are related by inversion to other cyclides although not in the manner
implied by [38].

The number of additional rotationally symmetric R-separable coordinates seems
to agree, after consideration of canonical form to canonical form mapping, with the
results of Miller et al. In p. 70 and 71 of [6] toroidal and three additional cyclide
coordinates are listed as exhausting the possibilities for rotationally symmetric R-
separable webs.

One should add that canonical form to canonical form mapping does not reduce
the set of inequivalent simply separable rotational coordinates classified previously
[25], despite that additional transformation group actions could very well do this.
Indeed, the property of simple separable webs, namely M33 = 0, implies that the
inversion parameter a vanishes and b is either 0 or undefined - meaning the coeffi-
cients are left invariant. The case of paraboloidal coordinates, with A33 = M33 = 0
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but B21 6= 0, cannot be mapped to any other simple separable rotational coordinate
system using the algebraic knowledge that no inversion and/or translation can map
B21 and G12 simultaneously to zero, as mentioned previously.

6.5 Classification scheme of non-canonically cen-

tered R-separable coordinates in E3

Now that we have provided an existential proof of the maximal number of inequiv-
alent rotational coordinates, we discuss here a classification of arbitrary 6-tuples of
conformal Killing tensor coefficients without a priori mapping to canonical centered
form which has been dealt with in the previous sections.

Given a 6-tuple of CKT coefficients, the first step in the classification scheme is

to compute the full invariant I =
I21
I32

. A simple calculation reveals that I ∈ (−∞, 0]

and I ∈ (4,+∞) for disk cyclide coordinates. I ∈ [0, 4) for the inequivalent twin
bi-cyclide and flat-ring cyclide coordinates, and finally I = +4 for the remaining
rotationally symmetric coordinates except for the pairs cardioid-paraboloidal and
tangent sphere-circular cylindrical coordinates where its value is indeterminate. As
it stands, the full group invariant lumps together toroidal, bispherical-spheroidal,
prolate-inverse prolate spheroidal and oblate-inverse oblate spheroidal coordinates
when its value is computed to be +4.

For the case I1 = 0, it is possible to distinguish between disk-cyclide and the
pairs bi-cyclide/flat-ring cyclide coordinates by the observation that in the case for
disk-cyclide coordinates I2 < 0 and in the other case I2 > 0. Note that although on
its own I2 is not invariant to dilation of the Killing tensor, it is by virtue of being
a quadratic invariant to the discrete -1 switch and so the sign cannot be altered
by positive dilation of the Killing tensor alone! Thus one is able to discriminate
disk-cyclide coordinates from all the rest. Another classification scheme is needed
to discriminate between the other case which share the same value for the full group
invariant.

A first idea was to use the assumption of undetermined polynomial coefficients
to a fixed degree in the CKT coefficients, as in [25], to compute the invariants to
continuous inversion, translation and addition of R3 ⊙ R3. This was motivated by
studying how such invariants behave under dilation of the space and thereby see
if different cases could be discriminated. The result is the vanishing of the purely
linear and purely quartic ansatz, and the quadratic and cubic ansatz being a linear
combination of the already found I2 and I1 respectively! Under the polynomial
ansatz, one arrives at the interesting (but not useful) fact that an invariant to
inversion and translation is simultaneously an invariant with respect to dilation of
the space.

This approach reveals a deeper pattern. Computing also by undetermined poly-
nomial coefficients the invariant with respect to infinitesimal translation and dila-
tion of the space yields an invariant to infinitesimal inversion. Similarly an invariant
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with respect to infinitesimal inversion and dilation of the space is invariant with
respect to infinitesimal translation. Thus the hope of ignoring one group action
when finding invariants, and using that group action to split degenerate pairs of
cases fails when the answer is again the total invariant.

Thus one is left with having to consider ignoring two group actions and finding
invariants with respect to the remainder. The logical choice was to ignore trans-
lation and infinitesimal inversion but consider ratios such as B21G12

A33M33
, B21G12

(C22+C33)2
and

A33M33

(C22+C33)2
and see how the transformed coefficients affect the values of these ratios

when arbitrarily applying inversion and translation to known canonically centered
cases. The first such ratio, denoted by I3, seemed to bear fruit in discriminating
some cases.

A simple calculation reveals that for paraboloidal/cardioid coordinates I3 is in-
determinate and for tangent sphere/circular cylindrical coordinates I3 = −4 (the
ratio is constant and defined for non-zero inversion/translation; thus it has a lim-
iting value for the null group actions). If I3 lies in the span of

−4(ba2 + a+ b)2

(a2 + 1)(1 + 2ab+ b2a2 + b2)
(6.5.1)

for non-zero inversion parameter a and/or translation parameter b (where the span
explicitly lies in the open interval (−4, 0)), the coordinates are either toroidal,
oblate/inverse oblate spheroidal or prolate/inverse prolate spheroidal. If I3 lies in
the (disjoint from all previous) span of

−4(ba2 + a− b)2

(a2 − 1)(1 + 2ab+ b2a2 − b2)
(6.5.2)

for non-zero inversion parameter a and/or translation parameter b (where the span
explicitly lies in the open intervals (−∞,−4) and (0,∞)), the coordinates are either
bispherical/spheroidal, oblate/inverse oblate spheroidal or prolate/inverse prolate
spheroidal. In the case of bispherical and toroidal coordinates, I3 = 0 corresponds
uniquely to the case a = b = 0.

The invariance of the rank of the group action can also be utilized to discrimi-
nate between entangled coordinate pairs. A closer inspection of the transformation
equations of the coefficients of the CKT reveals that C22, C33 always appear in
the sum (C22 + C33) which is invariant to the group action of addition of R3 ⊙R3.
This motivates one to consider ignoring that group action on a reduced number of
coefficients, namely defining C ≡ (C22 +C33) and studying only four group actions
on the reduced set (A33, B21, C,G12,M33). A simple calculation reveals that the
modified pde array of this reduced group action set becomes:

V1 = [−2B21,−C, 6G12, 2M33, 0]

V2 = [0, 2A33, 6B21,−C,−2G12]
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V3 = [A33, B21, C,G12,M33]

V4 = [2A33, B21, 0,−G12,−2M33]

(6.5.3)

This is advantageous because now not all canonically centered coordinates will
obey the maximal rank condition (as they did with the full group action on six
coefficients). In particular, the rank of the pde set for the oblate/inverse oblate
spheroidal, prolate/inverse prolate spheroidal coordinates is maximal at +4. How-
ever the rank for toroidal and bispherical/spheroidal coordinates is not maximal –
at +3. This value is also shared for paraboloidal/cardioid coordinates. Finally for
tangent sphere/circular cylindrical coordinates the rank is even further reduced at
+2. Thus one is able with the invariance of rank under the group action, which
was explicitly checked in our case, to discriminate between the pairs inverse oblate
spheroidal, inverse prolate spheroidal and toroidal, bispherical coordinates.

Unfortunately for the pairs oblate/prolate spheroidal and bi-cyclide/flat-ring
cyclide coordinates, one must use the mapping to canonical centered form, and
then use the reduced invariant to classify the transformed coefficients
(Ã33, C̃22, C̃33, M̃33) - it will be an either/or scenario. We have tried plotting quan-
tities such as B̃21G̃12 and Ã33M̃33 to distinguish a pair of coordinates by the sign
of the graph which is invariant. Unfortunately one member of each pair does not
admit a graph of the above, as a function of inversion parameter a and translation
parameter b, with a unique sign. The other member however admits a negative
graph for all a, b. Hence for some 6-tuples, the above plots might ascertain which
member of the coordinate pair the tuple is associated with by evaluation of the listed
products and observation that that product is positive. When this criterion fails,
one must then map to canonically centered form to complete the discrimination.

For a complete classification without transformation to canonically centered
form, recent research was completed using the invariance of the roots of binary
quartics and the equivalence of the discussed group actions on the coefficients with
the general linear transformation on binary quartics studied extensively in the lit-
erature, for example in [41]. For details, see the material placed in Appendix F
which is based on [13].
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The results of the classification given in this chapter of the rotationally sym-
metric webs listed by Moon and Spencer are summarized in the following table:

Coordinate web Equivalent to Transformation

Cap cyclide Flat-ring cyclide cont. inversion + trans.

Inverse Prolate Spheroidal Prolate Spheroidal discrete inversion

Inverse Oblate Spheroidal Oblate Spheroidal discrete inversion

Bispherical Spheroidal cont. inversion + trans.

Cardiod Paraboloidal discrete inversion

Tangent sphere Circular cylindrical discrete inversion

Toroidal - -

Bi-cyclide - -

Flat-ring cyclide - -

Table 6.1: Equivalence classes of R-separable webs

6.6 Classifying the remaining symmetric

R-separable coordinates in E3

Proposition 6.6.1 Aside from rotational cases just discussed, there are no addi-
tional symmetric R-separable coordinates in E3.

Proof: We have applied Eq.(4.1.8) on the general conformal Killing tensor us-
ing, instead of the rotational Killing vector R3, the translational, dilatation and
inversion Killing vector. The result after some algebra analogous to Eq.(4.1.9) is a
degree two, six coefficient subset of the general Killing tensor for webs admitting a
translational symmetry along x. This result holds whether the discrete or contin-
uous method is carried out to characterize translational symmetry. In components
the resulting tensor is:

K11 = −A22 − A33 + 1/2B21z − 1/2B31y + C33(y
2 + z2)

K22 = A22 −B21z − 1/2B31y + C33(y
2 − 2z2)

K33 = A33 + 1/2B21z +B31y + C33(z
2 − 2y2)

K12 = 0
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K13 = 0

K23 = A23 − 3/4B31z + 3/4B21y + 3C33zy

(6.6.1)

For dilatational webs, where the Lie derivative of the general conformal Killing
tensor is set equal to a real scalar of the Killing tensor before imposing the TSN
integrability conditions, we found five integer cases where the result is non-trivial.
Each case corresponds to a single degree expression for the Killing tensor subset.
The degree two case, after imposing the TSN criterion – is in exact agreement with
the discrete operation, Eq.(4.1.8), using the dilational Killing vector. The other
cases however, either correspond directly to simple separable webs or can be mapped
into one by the discrete inversion, namely all degree four terms to degree zero and
all degree three terms to degree one. Immediately one can conclude there are no
additional conformal coordinates admitting a translational or dilational symmetry,
irrespective of whether one characterizes the symmetries using the standard Lie
derivative method or the discrete formula! Note this is in agreement with [6] where
the only non-rotationally symmetric R-separable coordinates are asymmetric cases
not studied in this chapter. Recall that on p. 234 and 235 of [37] a first principles
proof was given that R-separability of the Helmholtz and Laplace equations is never
possible for a cylindrical coordinate system. Thus we are in agreement with known
results in the literature for null cases of translational conformal coordinates.

Repeating the above procedure using the vector generator of the continuous
inversion, for both the discrete and Lie derivative method (set equal to zero for
all components) coupled with the TSN impositions, yields a degree four, six coef-
ficient subset of the general Killing tensor with no presence of zero or first order
terms. It was checked that the discrete inversion maps this web to that generated
by Eq.(4.1.8) using the translational Killing vector, and vice versa. Setting the Lie
derivative, with respect to the inversional conformal Killing vector, of the general
conformal Killing tensor equal to a non-zero scalar of the Killing tensor yields the
trivial result even before applying the TSN conditions. This is analogous to the
dilational Lie derivative set equal to an arbitrary multiple of the conformal Killing
tensor for values not equal the five integer cases found. Our conclusion is that the
only additional conformal coordinates are either rotationally symmetric or asym-
metric admitting no symmetries. 2

The difficult task of characterizing asymmetric webs remains to be studied. This
adds more emphasis on the need to generate the class of R-separable webs by first
principles from the method of Eisenhart.
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Chapter 7

Asymmetric R-separable webs in

E3

In this chapter we study the remaining case of R-separable webs in E3 that admit
no symmetry. This case is not considered in [38]. However, it has been studied
in [6] and [7]. We adopt a different starting point than these papers by studying
the conformally invariant (CI) Laplace equation rather that the ordinary Laplace
equation which is not conformally invariant. It will be seen that there is a close
relation of the conformal invariance property of the equation and R-separability
which is also a conformally invariant property. Our approach which has been de-
scribed in [11], [12] is based on the theory of R-separability explained in Chapter
2.

7.1 The conformally invariant Laplace equation

The subject of this chapter is the study of R-separation of variables for the confor-
mally invariant (CI) Laplace equation on an n-dimensional Riemannian manifold
(M,g), which is:

Hϕ := ∆ϕ+ Cϕ = 0, (7.1.1)

where we make a very specific choice of the constant C:

C =
n− 2

4(n− 1)
Rs (7.1.2)

where Rs is the Ricci scalar and n is the dimension of the space. As mentioned
before, the closely related problem is additive separation of variables for the HJ
equation with null geodesics, which like the classical Laplace equation can also be
extended to the pseudo-Riemannian case namely

gij∂iW∂jW = 0. (7.1.3)
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The crucial property of both (7.1.1) and (7.1.3) is invariance under conformal trans-
formation of the metric. From this it follows that if ϕ is any solution of Hϕ = 0,
then ϕ̃ = e

2−n
2 ϕ is a solution of H̃ϕ̃ = 0 on any conformally related manifold.

Consequently, R-separability of the CI-Laplace equation is a conformally invariant
property, which is not shared by the classical Laplace equation introduced at the
start of this thesis:

∆ϕ = 0, (7.1.4)

which is the equation most often studied in this regard [5, 7, 15].

We digress here to give a proof of the conformal invariance property of the
Laplace-Beltrami operator.

7.2 Proof of conformal invariance

Consider a pseudo-Riemannian manifold (M,g) with corresponding Levi-Civita
connection Γ. The covariant derivative ∇ may be written in local coordinates {xi}
as follows:

∇iA
j = ∂iA

j + ΓjikA
k (7.2.1)

for a contravariant vector field Aj, where Γjik denotes the Christoffel symbols of the
second kind. Contracting Eq. (7.2.1) over i and j we obtain the divergence of Aj

namely:

∇iA
i = ∂iA

i + ΓiikA
k (7.2.2)

By a standard result, [22] we have equivalently:

Γiik = 2∂klog
√
g (7.2.3)

Thus (7.2.2) takes the form

∇iA
i = ∂iA

i + Ai∂ilog
√
g

= ∂iA
i +

1√
g
Ai∂i

√
g

∇iA
i =

1√
g
(
√
g∂iA

i + Ai∂i
√
g)

∇iA
i =

1√
g
∂i(

√
gAi) (7.2.4)

Let φ be a function defined on M. The Laplace-Beltrami operator on M was defined
as the divergence of the vector field gij∂jφ. In local coordinates we thus have:

∆φ =
1√
g
∂i(

√
ggij∂jφ) (7.2.5)
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Given conformal transformations of the pseudo-Riemannian metric it follows that
the determinant of gij transforms as:

g̃ = e2nσg, (7.2.6)

where n = dim(M). Thus

√
g̃ = enσ

√
g (7.2.7)

Suppose that φ transforms as

φ̃ = emσφ, (7.2.8)

where m ∈ R. We are now in a position to compute the transformation law for the
Laplace-Beltrami operator ∆ acting on φ.

∆̃φ̃ =
1√
g
∂i(
√
g̃g̃ij∂jφ̃)

=
e−nσ√
g
∂i(e

(n−2)σ√ggij∂j(emσφ))

=
e−nσ√
g
∂i(e

(n−2)σ√ggij(emσ(∂jφ+mφ∂jσ)))

=
e−nσ√
g
∂i(e

(m+n−2)σ√g(gij∂jφ+mφgij∂jσ)))

=
e−nσ√
g

[(m+ n− 2)e(m+n−2)σ∂iσ
√
g(gij∂jφ+mφgij∂jσ) + e(m+n−2)σ∂i(

√
ggij∂jφ

+ m
√
gφgij∂jσ)]

∆̃φ̃ =
e(m−2)σ

√
g

[(m+ n− 2)
√
ggij∂iσ∂jφ+m(m+ n− 2)

√
gφgij∂iσ∂jσ + ∂i(

√
ggij∂jφ)

+ m
√
ggij∂iφ∂jσ +mφ∂i(

√
ggij∂jσ)]

∆̃φ̃ = e(m−2)σ[(m+ n− 2)gij∂iσ∂jφ+m(m+ n− 2)φgij∂iσ∂jσ +
1√
g
∂i(

√
ggij∂jφ)

+ mgij∂iφ∂jσ +mφ
1√
g
∂i(

√
ggij∂jσ)]

∆̃φ̃ = e(m−2)σ[∆φ+mφ(∆σ + (m+ n− 2)gij∂iσ∂jσ)

+ (m+ n− 2)gij∂iσ∂jφ+mgij∂iφ∂jσ] (7.2.9)

The next step results from the fact that:

gij∂iφ∂jσ = gij∂iσ∂jφ,

which follows from the symmetry of gij in the indices i and j. The final formula is:

∆̃φ̃ = e(m−2)σ[∆φ+ (2m+ n− 2)gij∂iσ∂jφ+mφ(∆σ + (m+ n− 2)gij∂iσ∂jσ)]
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The second last term on the RHS may be removed by choosing

m =
1

2
(2 − n) (7.2.10)

With this choice Eq. (7.2.9) reduces to

∆̃φ̃ = e−
1
2
(2+n)σ[∆φ+

1

2
(2 − n)φ(∆σ +

1

2
(n− 2)gij∂iσ∂jσ)] (7.2.11)

Now we consider the quantity R̃φ̃, recalling that the Ricci scalar R transforms
under conformal transformation as [22]:

R̃ = e−2σ[R + 2(n− 1)∆σ + (n− 1)(n− 2)gijσiσj]

and remembering that φ was defined to transform as: φ̃ = emσφ. This yields:

R̃φ̃ = e(m−2)σφ[R + 2(n− 1)∆σ + (n− 1)(n− 2)gijσiσj] (7.2.12)

Adding (7.2.11) and k times (7.2.12) we obtain the new operator

∆̃φ̃+ kR̃φ̃ = e(m−2)σ[∆φ+
1

2
(2 − n)φ(∆σ +

1

2
(n− 2)gijσiσj)

+ kφ(R + 2(n− 1)∆σ + (n− 1)(n− 2)gijσiσj)]

= e(m−2)σ[∆φ+ kRφ+ φ((1 − n

2
+ 2k(n− 1))∆σ

+ (−1

4
(n− 2)2 + k(n− 1)(n− 2))gijσiσj)] (7.2.13)

To remove the term containing ∆σ we must choose

k =
1

4

(n− 2)

(n− 1)
(7.2.14)

Fortuitously this choice of k also removes the term containing gijσiσj!

We conclude that the operator (7.2.13) with k given by Eq. (7.2.14) has the
transformation law:

∆̃φ̃+
1

4

(n− 2)

(n− 1)
φ̃R̃ = e−

1
2
(n+2)σ(∆φ+

1

4

(n− 2)

(n− 1)
Rφ) (7.2.15)

where φ and φ̃ are related by:

φ̃ = emσφ = e
1
2
(2−n)σφ (7.2.16)

The operator is thus invariant under a conformal transformation, as desired. We
now state some special cases for lower dimensions:
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n = 3 ∆φ+
1

8
Rφ , φ̃ = e−

σ
2 φ (7.2.17)

n = 4 ∆φ+
1

6
Rφ , φ̃ = e−σφ (7.2.18)

n = 5 ∆φ+
3

16
Rφ , φ̃ = e−

3
2
σφ (7.2.19)

This concludes the proof of conformal invariance of the operator (7.1.1) with C given
by (7.1.2). For the rest of this chapter the advantages of studying R-separability
for the CI-Laplace equation continuing the work begun in [32] are illustrated. For
the flat case (in which the CI-Laplacian reduces to the classical one) we recover
the results given by Bôcher [5] and Boyer et al. [7]. Furthermore, these results are
applied to provide CI-Laplace R-separable coordinates on other conformally flat
manifolds.

7.3 The CI-Laplace equation and R-separation

The study of R-separation of the CI-Laplace equation, instead of the classical equa-
tion, is more general [32]. Indeed, the existence of a complete R-separated solution
of the CI-Laplace equation is a conformally invariant property that holds on the
whole class of conformally related metrics. This follows directly from the form of
the solution ansatz and the conformal invariance of Eq. (7.1.1).

The techniques giving differential conditions for the R-separation of a single pde
[15] were outlined in Chapter 2 and are repeated here:

Theorem 7.3.1 Equation (7.1.1) admits R-separation in the coordinates (qi) if
and only if

1. the coordinates are orthogonal: gij = 0, i 6= j;

2. the coordinates are conformally separable;

3. the contravariant components (gii) satisfy the differential condition

Sij(g
hh)

ghh
=
Sij(g

kk)

gkk
, (∀ h, k, ∀ i 6= j, i, j n.s.) (7.3.1)

where Sij are the second order Stäckel operators,
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4. the function R is (up to separated factors) a solution of

∂i lnR =
1

2
Γi, (7.3.2)

where Γi = ghkΓhki;

Remark 7.3.2 Recall from Chapter 2 that orthogonal coordinates satisfying con-
dition (7.3.1) are called conformally separable (see [3]), while orthogonal coordinates
satisfying Sij(g

hh) = 0 are said to be simply separable. The additive separation of
variables for the null geodesic HJ equation in orthogonal coordinates,

gii(∂iW )2 = 0, (7.3.3)

and for the geodesic HJ equation

1

2
gii(∂iW )2 = E, (E ∈ R), (7.3.4)

occurs if and only if the coordinates are conformally separable and simply separable,
respectively. This fact shows an important link between Eq. (7.1.1) and Eq. (7.1.3).

Also in the Riemannian case, even if the null geodesics are trivial, the study of
conformal separation can be applied effectively to the CI-Laplace equation. Indeed,
as for the Laplace equation ∆ψ = 0, we have that

Corollary 7.3.3 A necessary condition for R-separation of the CI-Laplace equa-
tion (7.1.1) in a given coordinate system is that the null geodesic equation (7.1.3)
is additively separable in the same coordinates.

Remark 7.3.4 Two conditions equivalent to (7.3.1) are

• g is conformal to a metric which is separable for the geodesic HJ equation
(7.3.4) in the same coordinates;

• there exists a Stäckel matrix S such that [35]

gii

gjj
=
Min

Mjn

, (7.3.5)

where Min is the minor of S obtained by eliminating the i-th row and the
n-th column. We remark that the elements of the last column of the Stäckel
matrix are not involved in (7.3.5).
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7.4 The three-dimensional case

Definition 7.4.1 A coordinate qi is said to be conformally ignorable if it ap-
pears in the conformal factor of the metric only, that is if

∂i(g
hh/gkk) = 0,

for all h, k. We call a coordinate system general if it does not contain any confor-
mally ignorable coordinates.

Up to a coordinate transformation of the form q̃i(qi), a coordinate qi is confor-
mally ignorable if and only if ∂i is a conformal Killing vector, that is an infinites-
imal conformal symmetry. In this chapter only general coordinate systems are
considered, leaving as a further research project the analysis of the cases involving
conformal symmetries.

The form of the general conformally separable coordinates in a three dimensional
manifold is given in the following proposition (see [7])

Proposition 7.4.2 In general conformally separable coordinates (qi), the form of
the (contravariant) metric on a three dimensional manifold is given by

gii = Qhi(q
i)(qi+2 − qi+1), i = 1, . . . , 3 (mod 3), (7.4.1)

where Q is the conformal factor, and hi three arbitrary functions of a single variable.

Proof: Following [7], without loss of generality, we may choose S to be a 3× 3
Stäckel matrix with third column set equal to unity.

S =



φ1 ψ1 1
φ2 ψ2 1
φ3 ψ3 1


 (7.4.2)

Then, we have

g11 = Q(ψ3φ2 − ψ2φ3), g22 = Q(ψ1φ3 − ψ3φ1), g33 = Q(ψ2φ1 − ψ1φ2). (7.4.3)

In the general case, we can assume that none of the ψi and φi is identically null.
Thus

g11 = Qφ2φ3

(
ψ3

φ3

− ψ2

φ2

)
, g22 = Qφ1φ3

(
ψ1

φ1

− ψ3

φ3

)
, g33 = Qφ1φ2

(
ψ2

φ2

− ψ1

φ1

)
.

(7.4.4)
By transforming each coordinate q̃i = q̃i(qi) and the conformal factor such that

g̃ii → φig
ii, Q̃→ Qφ1φ2φ3,
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we obtain g̃ii = Q̃(Fi+2 − Fi+1) with Fi(q
i) = ψi

φi
. If none of the Fi is a constant,

then we can use them as coordinates; thus we obtain

g11 = Q̃h1(q
1)(q3 − q2), g22 = Q̃h2(q

2)(q1 − q3), g33 = Q̃h3(q
3)(q2 − q1),

where the hi are the reciprocal of φi, and the tilde symbol can be dropped for the
conformal factor. 2

Remark 7.4.3 If one of the elements of the Stäckel matrix is zero or one of the
functions Fi is a constant then, up to a coordinate transformation q̃i(qi), one of the
coordinates is conformally ignorable.

By Proposition 7.4.2 and Theorem 7.3.1 we obtain

Theorem 7.4.4 The form of the metric in general R-separable coordinates for the
CI-Laplace equation is

gii = QP (qi) · (qi+2 − qi+1), i = 1, . . . , 3 (mod 3), (7.4.5)

where P is an arbitrary fifth-degree polynomial.

Proof: Computing the modified potential χ for the general conformal separable
metric (7.4.1) and imposing the compatibility condition

Sij(χ)g11 = Sij(g
11)χ = 0

Sij(χ)g22 = Sij(g
22)χ = 0

Sij(χ)g33 = Sij(g
33)χ = 0

i 6= j, (7.4.6)

where

χ ≡ ghh(2∂hΓh − Γ2
h +

1

2
Rhh) (7.4.7)

we obtain three additional independent differential conditions (out of the nine equa-
tions) on the functions hi that form a linear second order ODE system in three
unknowns. Performing the calculation in Maple, where for convenience we denote
q1 = u, q2 = v, q3 = w and h1 = U(u), h2 = V (v), h3 = W (w) - we write the
covariant metric components as the Tensor Package requires the metric tensor to
be written with both indices down. The conformal freedom in the metric ansatz
allows us now to drop the conformal factor Q and write:

g11 =
1

U(u)(v − w)
, g22 =

1

V (v)(w − u)
, g33 =

1

W (w)(u− v)
(7.4.8)
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The reduced Christoffel symbols that follow are,
where we write (U, V, W ) instead of (U(u), V (v), W (w)):

Γ1 =
−Uu
2U

+
(v − 2u+ w)

2(v − u)(u− w)

Γ2 =
−Vv
2V

+
(2v − u− w)

2(v − u)(v − w)

Γ3 =
−Ww

2W
+

(2w − u− v)

2(u− w)(v − w)
(7.4.9)

The diagonal Ricci tensor components Rhh and Ricci scalar R needed for a future
calculation are easily attained using the Tensor Package and are omitted here.
Finally the differential equations that follow are

eq1 = −(v − w)Uu,u
4(v − u)

+
(u− w)Vv,v
4(v − u)

+
(v − w)(v − 4u+ 3w)Uu

2(v − u)2(u− w)

− (u− w)(4v − 3w − u)Vv
2(v − u)2(v − w)

+
(v − u)2W

2(u− w)2(v − w)2

− (v − w)(v2 − 5uv + 3vw + 10u2 − 15wu+ 6w2)U

2(v − u)3(u− w)2

+
(u− w)(u2 − 5uv + 3wu+ 10v2 − 15vw + 6w2)V

2(v − u)3(v − w)2

(7.4.10)

eq2 =
(v − w)Uu,u
4(u− w)

− (v − u)Ww,w

4(u− w)
− (v − w)(3v + w − 4u)Uu

2(v − u)(u− w)2

− (v − u)(3v − 4w + u)Ww

2(u− w)2(v − w)
− (u− w)2V

2(v − u)2(v − w)2

+
(v − w)(6v2 + 3vw − 15uv + w2 − 5wu+ 10u2)U

2(v − u)2(u− w)3

− (v − u)(6v2 − 15vw + 3uv + 10w2 − 5wu+ u2)W

2(u− w)3(v − w)2

(7.4.11)

eq3 = −(u− w)Vv,v
4(v − w)

− (v − u)Ww,w

4(v − w)
+

(u− w)(4v − 3u− w)Vv
2(v − u)(v − w)2

− (v − u)(v − 4w + 3u)Ww

2(v − w)2(u− w)
+

(v − w)2U

2(v − u)2(u− w)2

− (u− w)(6u2 + 3uw − 15uv + w2 − 5vw + 10v2)V

2(v − u)2(v − w)3

− (v − u)(6u2 − 15uw + 3uv + 10w2 − 5vw + v2)W

2(v − w)3(u− w)2
(7.4.12)

Maple successfully integrated the above yielding

U(u) = c1 + c2u+ c3u
2 + c4u

3 + c5u
4 + c6u

5
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V (v) = c1 + c2v + c3v
2 + c4v

3 + c5v
4 + c6v

5

W (w) = c1 + c2w + c3w
2 + c4w

3 + c5w
4 + c6w

5 (7.4.13)

Going back to the older notation, we see that the hi = P (qi), where P is an arbi-
trary fifth-degree polynomial. 2

Note that the compatibility condition has an intriguing geometrical interpretation.

Theorem 7.4.5 On a three dimensional manifold, R-separation of the CI-Laplace
equation occurs in general conformal separable coordinates if and only if the metric
is conformally flat.

Proof: The conformal flatness conditions for a 3-dimensional Riemannian man-
ifold are (see for example [22])

Rijk = Rij;k −Rik;j +
1

4
(gikRs;j − gijRs;k) = 0, (7.4.14)

where ; denotes the covariant derivative and Rij the covariant Ricci tensor. By
imposing these conditions on the general conformally separable metric (7.4.1), we
arrive at nine linear second order ODEs in the hi. Three of them are trivially zero,
while another three are equivalent to the remaining three which are equal to those
allowing R-separation. Thus, the conformal flatness condition is equivalent to the
compatibility condition for R-separation. 2

Remark 7.4.6 If one or more conformally ignorable coordinates appears, then
being conformally flat is a sufficient but no longer a necessary condition for R-
separation. Hence, in particular, equations (7.1.1) and (7.1.3) separate in the same
orthogonal coordinates for all conformally flat 3-manifolds.

We can apply these results to the study of R-separation for the classical Laplace
equation. Indeed if a three dimensional manifold satisfies Rs = 0, then R-separation
of the Laplace equation ∆ψ = 0 occurs in general coordinates if and only if the
manifold is conformally flat. This is because since Rs = 0, the CI-Laplace equation
and Laplace equation coincide. Furthermore on a conformally flat three dimen-
sional manifold, R-separation of the Laplace equation ∆ψ = 0 occurs in general
conformally separable coordinates if and only if the Ricci scalar Rs satisfies the
compatibility condition

Sij(g
hh)Rs = Sij(Rs)g

hh.

This follows since the manifold is conformally flat, the CI-Laplace equation admits
R-separation of variables in general conformally separable coordinates.
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7.5 Applications and examples

A fundamental example is the flat case, where the Laplace equation and the CI-
Laplace equation become the same. This has been studied by several authors (see
[5, 39, 35, 7]).

Example 7.5.1 In order to determine the expression of general R-separable co-
ordinates on E3 we need to compute the conformal factor Q such that the metric
(7.4.5) is flat and the coordinate transformations from a Cartesian coordinate sys-
tem. Let us denote the R-separable coordinates (q1, q2, q3) by (u, v, w) and by
e1 < e2 < e3 < e4 < e5 the five zeros of the polynomial P (we restrict ourselves
to the special case where all zeros ei are real and distinct, as we use tools from
classical Riemannian geometry and not those pertaining to complex manifolds).

We now discuss the special case of

gii = QP (qi) · (qi+2 − qi+1), i = 1, . . . , 3 (mod 3)

when P (qi) can be factored into five real and distinct factors which we denote as
in the literature by ei. An explicit formula for the (covariant) conformal factor Q̃
is given on Eq.(4.31) of [7], as well as coordinate transformations from Cartesian
to R-separable ones. The conformal factor Q̃ is written 1/λ2 where:

λ =

√√√√ (q1 − e1) · (q2 − e1) · (q3 − e1)

(e1 − e2) · (e1 − e3) · (e1 − e4) · (e1 − e5)

+

√√√√ −(q1 − e5) · (q2 − e5) · (q3 − e5)

(e5 − e1) · (e5 − e2) · (e5 − e3) · (e5 − e4)
(7.5.1)

This is an adaptation from the pentaspherical coordinate representation given by
the formula for ds2 in Euclidean space on p. 89 of [5], where the (covariant)
metric coefficients gii = Q̃ · P−1(qi) · (qi+1 − qi) · (qi+2 − qi+1) appear explicitly -
with polynomial P (qi) described on p. 87. To reconcile with our contravariant
formalism for Q, we note the relation Q = Q̃−1/(qi+1 − qi).

By using pentaspherical coordinates we can derive the following relations linking
Cartesian coordinates to the R-separable ones given in [7]:

λ · x =

√√√√ (q1 − e2) · (q2 − e2) · (q3 − e2)

(e2 − e1) · (e2 − e3) · (e2 − e4) · (e2 − e5)

λ · y =

√√√√ (q1 − e3) · (q2 − e3) · (q3 − e3)

(e3 − e1) · (e3 − e2) · (e3 − e4) · (e3 − e5)

λ · z =

√√√√ (q1 − e4) · (q2 − e4) · (q3 − e4)

(e4 − e1) · (e4 − e2) · (e4 − e3) · (e4 − e5)
, (7.5.2)
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where the following (not unique) relations on the (assumed real and distinct) set
of roots is assumed:

e1 < e2, e2 < e3, e3 < e4, e4 < e5

e1 < u < e2, e2 < v < e3, e3 < w < e4 (7.5.3)

As expected the metric gii resulting from the coordinate transforms of Eq.(7.5.2) is
orthogonal and flat, and conformal to the metric g̃ii = P (qi) · (qi+2 − qi+1) but with
conformal factor Q̃ = 1/(4λ2) instead of the given 1/(λ2) in [5] on p. 89. This is
clearly a trivial error as a spatial dilatation of two units would ensure consistency
of the formulae and of course not affect the flatness condition.

Therefore there is agreement, assuming the polynomial P (qi) has been factored
into five real and distinct factors, between this derived form of the metric and
results given in the literature.

The proof of the above metric coefficients resulting from the coordinate trans-
formation equations given by Kalnins and Miller could not be verified by ‘brute
force’ in Maple 9. This is due to the irrational factors appearing in the algebra
which Maple handles poorly. We digress here to provide a simplification of the
algebra involved, should the reader wish to reproduce the above results. Let us
denote by (qi) = (u, v, w), (i = 1, . . . , 3) and (eh) = (e1, ...e5), (h = 1, . . . , 5). We
start from the assumption e1 < u < e2 < v < e3 < w < e4 < e5 and

Lh =
(u− eh)(v − eh)(w − eh)∏

k 6=h(eh − ek)
=

∏3
i=1(q

i − eh)∏
k 6=h(eh − ek)

We have L1 > 0, L2 > 0, L3 > 0, L4 > 0 but L5 < 0. Then we let (xi) = (x, y, z)
be Cartesian coordinates, so that the transformation rules by Kalnins and Miller
are in compact form:

xi =

√
Li+1√

L1 +
√
−L5

,

where the λ factor is λ =
√
L1 +

√
−L5. Let us compute the derivatives of Lh and√

Lh:
∂

∂qi
Lh =

∏
j 6=i(qj − eh)∏
k 6=h(eh − ek)

=
Lh

(qi − eh)

∂

∂qi

√
Lh =

1

2
√
Lh

∂

∂qi
Lh =

1

2
√
Lh

Lh
(qi − eh)

=

√
Lh

2(qi − eh)
, h = 1, . . . , 4

and
∂

∂qi

√
−L5 = − 1

2
√
−L5

∂

∂qi
L5 = − 1

2
√
−L5

L5

(qi − e5)
=

√
−L5

2(qi − e5)

Moreover

∂

∂qi
xj =

∂i
√
Lj+1(

√
L1 +

√
−L5) −

√
Lj+1(∂i

√
L1 + ∂i

√
−L5)

(
√
L1 +

√
−L5)2

=
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=

√
Lj+1

(qi−ej+1)
(
√
L1 +

√
−L5) −

√
Lj+1(

√
L1

(qi−e1)
+

√
−L5

(qi−e5)

2(
√
L1 +

√
−L5)2

=

√
Lj+1

2(
√
L1 +

√
−L5)2

(√
L1

(ej+1 − e1)

(qi − ej+1)(qi − e1)
+
√
−L5

(ej+1 − e5)

(qi − ej+1)(qi − e5)

)

Hence
(
∂

∂qi
xj
)2

=
Lj+1(q

i − ej+1)
−2

4(
√
L1 +

√
−L5)4

·
(
L1

(ej+1 − e1)
2

(qi − e1)2
− L5

(ej+1 − e5)
2

(qi − e5)2
+ 2

√
−L1L5

(ej+1 − e1)(ej+1 − e5)

(qi − e1)(qi − e5)

)
(7.5.4)

Note that gii(
√
L1 +

√
−L5)

4 contains only the irrational term
√
−L1L5 and it is

a first order polynomial in it (with coefficients that are rational functions of qi

and eh). Thus Maple is able to simplify it (always as a first order polynomial in√
−L1L5). Finally by comparing the expansion of

(
√
L1 +

√
−L5)

2 = L1 − L5 + 2
√
−L1L5

as a polynomial in
√
−L1L5, we recover the answer.

Remark 7.5.2 The conformal metric

g̃ii =
(qi − qi+1)(qi − qi+2)

P (qi)

is the general three-dimensional conformally flat metric allowing multiplicative sep-
aration of the Helmholtz equation computed by Eisenhart [21].

The formulae for the flat case can be adapted to a general conformally flat
manifold (M,gM). Since M is conformally flat, there exists a coordinate system
(X i) such that

gM = Q−1
ME

∑

i

dX i ⊗ dX i,

where QME is the conformal factor transforming gM into the flat Euclidean metric
gE. Then, if we formally replace (x1, x2, x3) by (X1, X2, X3) in the transformations
(7.5.2) we obtain the coordinate transformations from (X i) to the R-separable
coordinates (qi). Indeed, by inserting these relations in the metric gM , we have

gM = Q−1
ME

∑

i

dX i ⊙ dX i = Q−1
MEQ

−1
E

∑

i

[P (qi) · (qi+2 − qi+1)dqi ⊙ dqi].

Hence, QM = QMEQE is the conformal factor that transforms the general confor-
mally flat metric (7.4.5) into a metric on the specific conformally flat manifold M .
Then, in order to compute the conformal factor and the coordinate transformation,
we only need to know the coordinates X i on M corresponding to the Cartesian
coordinates on E3.

In the following example we develop explicitly the case of S3
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Example 7.5.3 Let (X1, X2, X3) be stereographic coordinates on S3, considered
as a sub manifold of E4. They are related to the Cartesian coordinates (x1, . . . , x4)
of E4 by the following equations

xa = 2r2Xa

r2+
∑3

i=1
(Xi)2

, a = 1, . . . , 3

x4 = r − 2r3

r2+
∑3

i=1
(Xi)2

,

where r is the radius of the sphere. The components of the metric of S3 in the
coordinates (X i) are (see also [22])

gii =
4r4

(r2 +
∑3
i=1(X

i)2)2
.

Hence, the function QSE = (r2 +
∑3
i=1(X

i)2)2/4r4 is the conformal factor relating
S3 to E3. Then,

QS =
λ2[(r2 +

∑3
i=1(X

i(q1, q2, q3))2)2]

r4
∏
h(qh − qh+1)

is the conformal factor which makes (7.4.5) the metric of S3. The coordinates
(q1, q2, q3), related to the stereographic coordinates (X1, X2, X3) by

λ ·X1 =
√

(q1−e2)·(q2−e2)·(q3−e2)
(e2−e1)·(e2−e3)·(e2−e4)·(e2−e5)

,

λ ·X2 =
√

(q1−e3)·(q2−e3)·(q3−e3)
(e3−e1)·(e3−e2)·(e3−e4)·(e3−e5)

,

λ ·X3 =
√

(q1−e4)·(q2−e4)·(q3−e4)
(e4−e1)·(e4−e2)·(e4−e3)·(e4−e5)

,

with λ given by Eq. (7.5.1), are coordinates on S3.
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Chapter 8

Conclusion

We have shown in this thesis that the known R-separable coordinate webs with
symmetry form an exhaustive set of additional coordinates admitting R-separation
of variables for the Laplace equation in Euclidean space. The conformal Killing
tensors derived for each case expressed in canonical Cartesian coordinates can now
be used by future researchers who wish to include a potential in boundary value
problems that involve the use of Killing tensors written in canonical Cartesian coor-
dinates. Using geometrical methods very different from the literature we have also
independently derived the form of the asymmetric metric tensor for R-separable co-
ordinates of the conformally invariant Laplace equation in Euclidean space admit-
ting no symmetry. The associated Killing tensors for them have yet to be computed.

The canonical rotational R-separable webs known thus far form an exhaustive self
contained set based on the study of the square of Eq.(6.2.1). The seemingly infinite
room for more inequivalent coordinates was ‘filled up’ by the infinite ranges of the
invariants resulting from variation of the coordinate parameter k appearing in the
definitions for Jacobi-elliptic coordinate systems. Without a priori knowledge of
these specific examples it would be hard to partition the invariant defined over R

into a finite number of partitions of R representing disjoint equivalence classes.

This provides a clear motive to solve for the R-separable coordinates in E3

directly using the method of Eisenhart [20] along the lines of his classic 1935 paper
on conformal separation in Euclidean space. Clearly more work is needed in this
area. We have been able to discriminate between coordinates known a priori, as
well as put others into same equivalence classes or with simple separable cases
previously studied in [25]. All this was achieved without systematically solving
for all cases of the Eisenhart conditions in conformal Euclidean space which could
comprise a future research project of searching for the remaining two asymmetric
R-separable webs in Euclidean space.

The last chapter of this thesis gives a derivation of the general asymmetric met-
rics in E3, and associated coordinate transforms to Cartesian coordinates. However,
they have not been classified under the full conformal group like the known sym-
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metric and conformally symmetric webs have been. Such an invariant classification
using the approach employed in Chapter 6 would be a difficult task; all the invari-
ants of the general characteristic conformal Killing tensor components under the
entire conformal group would have to be computed. The TSN conditions would have
to be solved on the entire thirty five parameter CKT, not just on nine-dimensional
subsets that followed Lie differentiations. A direction for further research lies in
the cases of metrics with one or more conformal symmetries; these can be found
in principle by using the techniques discussed prior. The main obstacle at present
in this calculation are the coupled non-linear pdes resulting from solving for the
conformal factor representing transformation to flat space. Work has been done in
this direction in [7] but using the formalism of complex Riemannian space which is
beyond the scope of this thesis.
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Appendix A

Proof of Levi-Civita’s criterion for

separability

For the proof in one direction, we assume sum separability of the solution W to
the HJ equation. Assume a conservative system, namely that the Hamiltonian
is time independent and equal to a constant which is the system’s total energy.
Equivalently we assume the Hamiltonian does not explicitly depend on time: H =
H(qi, pi). Hence

dE

dqi
=
dH

dqi
= 0 ⇒ ∂H

∂qj
∂qj

∂qi
+
∂H

∂pj
∂pj

∂qi
+
∂H

∂t

∂t

∂qi
= 0 (A.0.1)

As the coordinate system is linearly independent, it is clear that ∂qj

∂qi = δj,i and the

sum ∂H
∂qj

∂qj

∂qi reduces to one term only: ∂H
∂qi . In general, ∂t

∂qi 6= 0 however we have

assumed ∂H
∂t

= 0. Finally ∂pj

∂qi = 0 for i 6= j by our assumption of separability. This

is so because from HJ theory pj = ∂W
∂qj and since ∂W

∂qj is a function of qj only, due to

our starting assumption that W ≡ ∑n
i=1W

i(qi, c1, c2, . . . , cn),
∂2W
∂qi∂qj = 0, i 6= j.

Thus we obtain

∂H

∂qi
+

∂H

∂pi
∂pi

∂qi
= 0

⇒ ∂pi

∂qi
= −

∂H
∂qi

∂H
∂pi

=
∂2W

∂(qi)2
,
∂

∂qj
(
∂pi

∂qi
) = 0. (A.0.2)

It is clear that if pi is a function of qi only, then ∂pi

∂qi is a function of qi only, hence

the second statement in the above formula for i 6= j. Let us denote S ≡ ∂pi

∂qi . We
have then

dS

dqj
=

∂S

∂ql
∂ql

∂qj
+
∂S

∂pl
∂pl

∂qj
+
∂S

∂t

∂t

∂qj

⇒ dS

dqj
=

∂S

∂qj
+
∂S

∂pj
∂pj

∂qj
= 0, (A.0.3)
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where we have ∂S
∂t

= 0 since W has no explicit dependence on time t. Performing
the calculations we obtain:

∂S

∂qj
=

−∂H
∂pi

∂2H
∂qj∂qi + ∂H

∂qi
∂2H
∂qj∂pi

(∂H
∂pi )2

∂S

∂pj
=

−∂H
∂pi

∂2H
∂pj∂qi + ∂H

∂qi
∂2H
∂pj∂pi

(∂H
∂pi )2

∂pj

∂qj
= −

∂H
∂qj

∂H
∂pj

(A.0.4)

The last line follows from Hamilton’s canonical equations. Clearly in the identity
∂S
∂qj = 0 one can multiply away the (∂H

∂pi )
2 term, and furthermore multiply both sides

of the equation by − ∂H
∂pj obtaining the classical Levi-Civita criterion, as required to

show. 2

Next we must show the sufficiency of the Levi-Civita conditions. Let us define

Ri = −
∂H

∂qi

∂H

∂pi

, or in more common notation: Ri = − ∂iH
∂piH

as H = H(ph, qh). We

recognize Ri as a general function of ph and qh. If we assume the Levi Civita
conditions hold true, we obtain ∂jRi + Rj

∂
∂pjRi = 0, i 6= j. We seek a possible

existence of a continuous, well defined solution to the following ansatz of a first
order system: ∂iPh = δi,hRh ⇒ ∂iPh = 0, i 6= j and ∂iPh = Rh, i = h.

Consider the more generic first order system of the form

∂

∂xi
yh(x1, . . . , xn) = F h

i (x1, . . . , xn, y1, . . . , yn) (A.0.5)

A continuous solution yh must satisfy

d

dxi
(
∂yh

∂xj
) =

d

dxj
(
∂yh

∂xi
) (A.0.6)

note that total derivatives are needed because F h
i is defined to depend also on

y1, . . . , yn - this will be useful since Ri actually depends on both sets qh and ph, not
on one set alone! But since complete integrability conditions refers to the demand
that ∂2yh

∂xi∂xj = ∂2yh

∂xj∂xi , we require that

d

dxi
(
∂yh

∂xj
) =

∂

∂xi
(
∂yh

∂xj
) (A.0.7)

namely that x1, . . . , xn form an independent set. We thus assume that no xi can
be functionally dependent on xj, j 6= i. Proceeding from Eq. (A.0.6) we have

d

dxi
(F h

j (x1, . . . , xn, y1, . . . , yn)) =
d

dxj
(F h

i (x1, . . . , xn, y1, . . . , yn)) (A.0.8)
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Expanding the total derivatives, we obtain

∂

∂xi
F h
j +

∑

a

∂F h
j

∂ya
∂ya

∂xi
=

∂

∂xj
F h
i +

∑

a

∂F h
i

∂ya
∂ya

∂xj
(A.0.9)

or in more simple Einstein summation notation (where a repeated index above and
below implies summation unless stated otherwise) we derive, as a test for complete
integrability:

∂

∂xi
F h
j +

∂F h
j

∂ya
F a
i =

∂F h
i

∂xj
+
∂F h

i

∂ya
F a
j (A.0.10)

We want the L.H.S = R.H.S for F h
j = δj,hRh and F h

i = δi,hRh, and ya = pa on
account that we seek a solution to ∂iPh = δi,hRh. Also F a

i = δi,aRa and F a
j = δj,aRa.

Expanding, we obtain:

∂iδj,hRh +
∂

∂pa
(δj,hRh)δi,aRa = ∂jδi,hRh +

∂

∂pa
(δi,hRh)δj,aRa (A.0.11)

The sums collapse down to one term each:

∂iδj,hRh +Ri
∂

∂pi
(δj,hRh) = ∂jδi,hRh +Rj

∂

∂pj
(δi,hRh) (A.0.12)

There are distinct cases of indices to consider on both sides of the equation. For the
case i 6= h, clearly the δi,h term in the R.H.S are 0, hence ∂j(0)+Rj

∂
∂pj (0) = 0. For

the case i = h, j 6= i we have, on the R.H.S, ∂jRi +Rj
∂
∂pjRi = 0 by the Levi-Civita

assumption. For the case i = h = j this is the only chance of R.H.S not vanishing;
it takes on the form ∂iRi +Ri

∂
∂piRi which is not necessarily zero.

For the L.H.S, case j 6= h yields 0 as clearly the δj,h terms all vanish. Hence
∂i(0)+Ri

∂
∂pi (0) = 0. For case j = h, i 6= j we have, on the L.H.S, ∂iRj+Ri

∂
∂piRj = 0

also by the Levi-Civita assumption. Case j = h, i = j is the only chance for the
L.H.S not to vanish; it takes on the form ∂iRi + Ri

∂
∂piRi which is not necessarily

zero.

Thus for all possible n functions yh, h = (1, 2, . . . , n) and all possible partial
derivatives denoted by ∂

∂xi and ∂
∂xj , the complete integrability conditions are satis-

fied.

Hence ∃ n functions Qi(q
i) such that Pi = Qi(q

i) are solutions of ∂iPh = δi,hRh.
As ∂jPi = 0, j 6= i, it is clear that each Pi is a function of qi alone, hence we write
Pi = Qi(q

i).

The next step is to verify that H(q1, . . . , qn, Q1(q
1), . . . , Qn(q

n)) is equal to a
constant, namely the total energy, which must be a constant for a conservative
system. Then we need dH

dqj = 0 for every j ∈ (1, 2, . . . , n).

dH

dqj
=

∂H

∂qj
+
∂H

∂Pl

∂Ql(q
l)

∂qj
=
∂H

∂qj
+
∂H

∂Pj

∂Qj(q
j)

∂qj

=
∂H

∂qj
+
∂H

∂Pj
Rj =

∂H

∂qj
+
∂H

∂Pj
(−

∂H
∂qj

∂H
∂pj

) = 0. (A.0.13)
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As the only independent variables of H involve (q1, q2, . . . , qn), and since we prove
that dH

dqj = 0 ∀ j, we can clearly write

H(q1, . . . , qn, Q1(q
1), . . . , Qn(q

n)) = E (A.0.14)

But we know that

H(q1, . . . , qn,
∂W

∂q1
, . . . ,

∂W

∂qn
) = E (A.0.15)

Taking

∂W

∂q1
= Q1(q

1) = P1

∂W

∂q2
= Q2(q

2) = P2

...
∂W

∂qn
= Qn(q

n) = Pn (A.0.16)

we have constructed a separated solution to the HJ equation of the form:

W =
∫
Q1(q

1)dq1 +
∫
Q2(q

2)dq2 + . . .+
∫
Qn(q

n)dqn − Et (A.0.17)

satisfying ∂W
∂qi = Pi, where Pi is a function of qi only.

The solution W is unique up to an arbitrary constant, which is fixed by the
system’s total energy. Thus, specifying E, we found a unique solution to the HJ
equation that is separable, assuming the L-C criterion holds as well as conservation
of energy and independence of the variables (q1, q2, . . . , qn). This completes the
proof of sufficiency of the Levi-Civita conditions. 2
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Appendix B

Proof of the connection between

Stäckel matrices and Killing

tensors in Eisenhart’s formalism

The proof I present here starts with the fact, proven in Eisenhart’s 1934 paper,
that the matrix elements ϕi1 defined in Eq. (2.1) are known to be functions of xi

at most. By definition in [20], ραi ≡ ψiα

ψi1 is independent of xi. The quantity denoted

by ϕiα is the co-factor (determinant of the minor) of ϕij. For two dimensions let
the arbitrary matrix ϕij be denoted by:



f1(x

1) a

f2(x
2) b


 (B.0.1)

At this stage a and b are any arbitrary functions over all variables x1 and
x2. However, from Eisenhart’s definitions, ρ2

1 is independent of x1; thus in two

dimensions ρ2
1 is a function of x2 at most. Now ρ2

1 = ϕ12

ϕ11 = −f2(x2)
b

⇒ b = −f2(x2)
ρ21

;

the last equality being a function of x2 only.

Similarly ρ2
2 = ϕ22

ϕ21 = f1(x1)
−a ⇒ a = −f1(x1)

ρ22
; the last equality being a function

of xi only. This easy analysis completes the proof for two dimensions that the n2

ϕij functions defined by (Hi)
2 = ϕ

ϕi1 , ρ
α
i = ϕiα

ϕi1 form a Stäckel matrix whenever the
total determinant ϕ 6= 0. Recall that in a Stäckel matrix the functions inside the
ith row must be functions of xi only.

In three dimensions let the general ‘Stäckel’ matrix be denoted by:



f1(x
1) a b

f2(x
2) c d

f3(x
3) e f




(B.0.2)
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Knowing that the expressions ρ2
1 and ρ3

1 are independent of x1, we arrive in

particular at d·f3(x3)−f2(x2)·f
c·f−d·e not depending on x1. Hence:

(c · f − d · e)[f3(x
3)
∂d

∂x1
− f2(x

2) · ∂f
∂x1

]

−[d · f3(x
3) − f · f2(x

2)][
∂c

∂x1
· f + c · ∂f

∂x1
− ∂d

∂x1
· e− d · ∂e

∂x1
] = 0 (B.0.3)

Since g11 is finite and non-zero, clearly (c · f − d · e) 6= 0 and one can divide by
the quantity, obtaining:

f3(x
3)
∂d

∂x1
− f2(x

2)
∂f

∂x1
− f3(x

3)d(
(cf − de)

′

(cf − de)
) + ff2(x

2)(
(cf − de)

′

(cf − de)
) = 0 (B.0.4)

This can be re-arranged to yield the more familiar looking form:

f3(x
3)[

∂d

∂x1
− d(

(cf − de)
′

(cf − de)
)] − f2(x

2)[
∂f

∂x1
− f(

(cf − de)
′

(cf − de)
)] = 0 (B.0.5)

This expression must be satisfied for any arbitrary functional form of f3(x
3)

and f2(x
2), so it is clear that the expressions in parenthesis must identically vanish.

Say the second one is evaluated for some fixed function f and a fixed value for x1,
denoted for now by x0:

[
∂f

∂x1
|x0 − f |x0

∂

∂x1
log(cf − de)|x0 ] = 0 (B.0.6)

This must hold true no matter what functional form c, d and e may take. In
particular hold fixed any two of the (c, d, e) triplet and vary the third. For concep-
tual simplicity, denote log(cf − de) instead by z(c, d, e, f), where z is a continuous
function of the arbitrary functions c, d, e and f . f is already fixed, now fix say the
functions d and e.

Thus ∂
∂x1 z(c(x

1, x2, x3), d0, e0, f0) = 0 implies the possible variations in the ar-
bitrary functions c cannot involve the independent variable x1, for then each dif-
ferentiation with respect to x1, evaluated at the particular value x0, would yield
a different numerical answer which we hold as impossible. The variation is thus
limited to x2 and x3, hence c = c(x2, x3) alone and the argument is unchanged for e
and d; simply fix the other two and perform the above steps. Note all of the above
steps necessitated the arbitrary function f being fixed; otherwise the reader may
well ask if the possibility exists for the two separate terms in parenthesis to negate
each other - but that is overrided by the fixing of f at one particular function it
can take.
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To prove f = f(x2, x3) we now only consider the previous argument applied to
the first expression in parenthesis in equation (B.0.5):

[
∂d

∂x1
|x0 − d|x0

∂

∂x1
log(cf − de)|x0 ] = 0 (B.0.7)

Fix d, c and e to ascertain that variations in f cannot involve the variable x1.
Note there is no need to consider the quantity ρ3

1 for the same conclusions will
follow identically.

Now that the general method has been presented, the reader may well inquire
about special cases where the method may break down. For instance, what if the
factor (cf − de) = 0 leading to log(0)? This case is impossible since Eisenhart

already built into the matrices the definition gii = ϕi1

ϕ
and we know that the metric

components can neither vanish nor be infinite, thus (cf − de) 6= 0.

What if (cf−de) < 0? Then the minus sign can be absorbed, to yield say [ ∂f
∂x1 +

f [−(cf−de)′

(cf−de) ] but the final argument remains unchanged. Now consider the chain rule

application. ∂
∂x1 z(c(x

1, x2, x3), d0, e0, f0) = z
′

(c(x1, x2, x3), d0, e0, f0) · ∂c(x
1,x2,x3)
∂x1 by

the usual chain rule of the composition of two continuous functions, of which log(z)
is one of them. The first derivative in the above product cannot be zero as that
would imply (cf−de) = ∞, leading to a contradiction considering the non-singular
element of the metric component g11.

Thus we finally prove c, d, e and f - all belonging to the second and third row
- cannot be functions of x1. By manipulating the second row, we get by similar
argumentation (i.e (af − be) 6= 0) that a, b, e and f cannot be functions of x2. This
proves immediately that e, f are functions of x3 at most; similar steps prove the
analogous statements for (a, b) and (c, d). Thus each row of the matrix defined by
Eisenhart’s paper is a function of one variable only, as required to show.

Note also that by fixing functions, one must choose a form for them and values
of x0 such that the determinant ϕ of the matrix defined never vanishes. This
technically limits the independence of the n2 arbitrary functions somewhat, but
innumerable functions exist within this constraint for which all the above facts hold,
and must hold for the ‘special cases’ considered, hence validating the conclusion.
For example, set f3(x

3) = x3 and f2(x
2) = x2, and functions to be fixed like ex

1
,

e(x
2)

2

and e(x
3)

2

ensuring that the determinant can never vanish for non-trivial values
of the independent variables.

If all of the c, d, e and f are independent of x1, then clearly ∂
∂x1 (cf − de) = 0

and individually ∂
∂x1 c,

∂
∂x1d,

∂
∂x1 e and ∂

∂x1f = 0 thus the coefficients of f3(x
3) and

f2(x
2) reduce to zero, as needed.

Note that metrics and Stäckel matrices very well exist where one of f1(x
1),

f2(x
2) and f3(x

3) vanish, hence negating the necessity of all the coefficients in the
above parenthesis vanishing. These are special cases only however; the formulae
must work for all of the f1(x

1), f2(x
2), f3(x

3) and all possible metrics (of which
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the specific components g11, g22 and g33 can be functions of all the coordinates)
thus to encompass all cases satisfied simultaneously the coefficient functions must
all vanish. This completes the proof, in two and three dimensions, of the Stäckel
form of the matrices defined by Eisenhart – namely that the first row of the inverse
form the components of the contravariant metric, and the remaining rows form the
diagonal components of the remaining contravariant Killing tensors characteristic
to the metric. 2
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Appendix C

Construction of the Stäckel matrix

associated with coordinates

separating the HJ equation

We start with the formalism of the components of the Stäckel matrix introduced
in Chapter 1, whereby ϕki = 1

2
∂φi

∂αk
. This satisfies ∂

∂qjϕ
k
i = 0 if i 6= j, since φi only

depends on qi.

Note that since φi = (pi)
2, we obtain ∂φi

∂αk
= 2pi

∂pi

∂αk
. We know that all the

pi 6= 0 since if one were it could not have been a canonical variable [23]. Criti-
cally det( ∂pi

∂αk
) 6= 0, since we have assumed a complete solution of the HJ equation

necessitating that det( ∂2W
∂qi∂αk ) 6= 0 ⇒ det( ∂pi

∂αk
) 6= 0.

Specifically det( ∂φi

∂αk
) = kdet( ∂pi

∂αk
)
∏n
i pi 6= 0 as

∏n
i pi 6= 0. Each pi acts on the

ith row of the non-singular matrix ∂pi

∂αk
hence the presence of the

∏n
i pi formula.

We will construct S−1 by defining, without loss of generality, (g11, g22, . . . , gnn)
to be the last row. Hence ∂

∂αk
(1

2
giiφi(q

i, αk)) = ∂αn

∂αk
= δnk , which equals 1

2
gii ∂φi

∂αk
=

∑
i g

iiϕki = δnk . This proves that (g11, g22, . . . , gnn) was the last row of the inverse
Stäckel matrix.

Now, if the potential V is separable we want to prove condition 2). Note this condi-
tion follows trivially if V = 0; simply declare U1(q

1) = U2(q
2) = . . . = Un(q

n) = 0.
Now that V = −1

2
giip2

i + E, construct Ui = −1
2
φi + Eϕni . ϕ

n
i is simply a column,

n, of the Stäckel matrix S.

We have
∑
giiUi = −1

2

∑
giiφi +

∑
giiEϕni = −1

2
giip2

i + E, as gii is the nth row
of S−1, clearly E

∑
giiϕni = E. Thus since V = −1

2
giip2

i + E, it follows that
V = g11U1(q

1) + g22U2(q
2) + . . .+ gnnUn(q

n), as required to show. 2
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Now for the other direction, assume we are given a Stäckel matrix such that
(g11, g22, . . . , gnn) is the nth row of its inverse. Let ϕki (q

i) be defined, with gii = ϕin.
We then express V =

∑
giiUi(q

i). Thus we write (where the Einstein summation
rule is assumed to apply over i):

1

2
giip2

i + giiUi(q
i) = E

1

2
gii[p2

i + 2Ui(q
i)] = E

1

2
ϕin[p

2
i + 2Ui(q

i)] = E (C.0.1)

Next let ϕik[p
2
i + 2Ui(q

i)] = 2αk, k = 1, . . . , n hence we have αn = E, and each
αk ∈ R. Now

ϕkjϕ
i
k(p

2
i + 2Ui(q

i)) = 2ϕkjαk

δij(p
2
i + 2Ui(q

i)) = 2αkϕ
k
j (q

j)

⇒ p2
j + 2Uj(q

j) = 2αkϕ
k
j (q

j)

p2
j = 2αkϕ

k
j (q

j) − 2Uj(q
j) (C.0.2)

The last line clearly shows that pj is a function of qj only, showing that W (qi, αk)
is indeed sum separable as required to show. 2
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Appendix D

An equivalent property of the

Schouten bracket

Let K and L be symmetric tensors of types (p, 0) and (q, 0) respectively. The
Schouten bracket of K and L denoted by [K,L] is a tensor of type (p + q − 1, 0).
An equivalent property of [K,L] = 0, also known as an involution of K and L, is
that their contraction into quadratic polynomials in the momenta commute in the
standard classical Poisson bracket:

{K,L} =
n∑

i=1

(
∂K

∂pi

∂L

∂qi
− ∂K

∂qi
∂L

∂pi
) (D.0.1)

whereby PKh
= Kij

h pipj for h 6= n and PKn = gijpipj satisfies, for (h, j) = 1, . . . , n:

{
PKh

, PKj

}
= 0 (D.0.2)

The above is the equivalent formulation of the standard Lie-Schouten bracket.
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Appendix E

Proof of the eigenvalue equations

for characteristic conformal

Killing tensors by construction

from simple Killing tensors

Consider again the basic eigenvalue equation from Eisenhart theory:

Kii = giiρi, (E.0.1)

where Kii is understood to be the diagonal components of the Killing tensor al-
ready diagonalized in the normal eigenbasis of its eigenvectors. The proof of this is
instructive, however it relies on more mathematical assumptions than in the text
and is hence presented here instead. Ordinarily the eigenvector fields of tensors are
not normal - namely that these eigenvector fields admit a family of hypersurfaces
orthogonal to them. In such cases the vector fields are deemed non-integrable or
non-surface-forming. Eisenhart assumed that the Killing tensor eigenvectors are
normal and hence the hypersurfaces can be taken as parametric. Furthermore he
assumed the symmetric Killing tensor to have real simple eigenvalues, namely n dis-
tinct eigenvalues admitting n orthogonal eigenvectors xi that are surface-forming:

ds2 = e1g11(dx
1)2 + e2g22(dx

2)2 + . . .+ engnn(dx
n)2 (E.0.2)

where for Riemannian manifolds all the e’s are unity, and for non-Riemannian
manifolds the e’s may take on plus/minus unity. That the fundamental form above
can be expressed in terms of the eigenvectors xi depends crucially on the normality
assumption as well as the fact that there are n orthogonal eigenvectors the Killing
tensor admits. We perform a coordinate transformation to the coordinates defined
by the normal eigenvectors such that Kij = 0, i 6= j and g̃ij = 0, i 6= j. The tilde
can be dropped and the Killing tensor equation for i = j = l reduces to

∂log(
√
Kii)

∂xi
=
∂log(

√
gii)

∂xi
(E.0.3)
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This can be easily integrated to

log(
√
Kii) = log(

√
gii) + a(x1, x2, . . . , xi−1, xi+1, . . . , xn) (E.0.4)

After performing exponentials the form Kii = giiρi is arrived at, where

∂ρi
∂xi

= 0. (E.0.5)

This eigenvalue property of the diagonal components of the Killing tensor is actually
true in general for tensors, without the assumption of the specific Killing tensor
equation.

Knowing that gii = g̃iie
−2σ, we can rewrite the previous equation as:

Kii = g̃iie
2σρi

Kii = g̃iiρ̃i, (E.0.6)

where ρ̃i ≡ e2σρi. Thus we arrive at two fundamental properties [3] of conformal
Killing tensors:

Proposition E.0.4 The eigenvectors of K are the same with respect to both met-
rics g̃ and g. Furthermore if ρ̃i are the eigenvalues with respect to (contravariant)
g̃, then the eigenvalues with respect to g are ρ = e2σρ̃i.

Note that eigenvalues of two equivalent conformal Killing tensors differ only by the
scalar function f ; going from one equivalent tensor to another means simply adding
or subtracting f from all its eigenvalues, namely:

ρ̃i = ρi ± f (E.0.7)

These transformations still leave invariant the form Kii = g̃iiρ̃i, as well as its eigen-
vectors, for all conformal Killing tensors in an equivalence class.

Remark E.0.5 In words a special conformal Killing tensor, within its equivalence
class, is in terms of some specially conformally related metric a simple Killing
tensor, and to calculate the eigenvalues of this conformal Killing tensor, the tools
for simple Killing tensors apply provided the conformal factor is a priori known.
This was especially important for this thesis, since the connection between Stäckel
matrices and the eigenvalues of the ordinary Killing tensors in terms of the separable
coordinates are employed at length.

Knowing how the eigenvalues transform allows us to deduce the differential
relationship they satisfy for conformal Killing tensors. The second identity for
eigenvalues from [20] is

∂

∂xj
log(

(ρi − ρj)

gii
) = 0, i 6= j, (E.0.8)
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which is a result for simple Killing tensors. The proof comes from the Killing tensor
equation (on the diagonalized Killing tensor in terms of the normal eigenbasis) for
the case j 6= i, l = j:

∂Kii

∂xj
− 2Kii

∂log(gii)

∂xj
+Kjj

1

gjj

∂gii
∂xj

= 0. (E.0.9)

Considering both transformation rules on the eigenvalues, we see immediately
that the same form in Eq. (E.0.8) is preserved for transformed metric coefficients
and eigenvalues with the only change being that ρi can depend on xi due to the
general form of the conformal factor e2σ. Note trivially that the equivalence function
f cancels in the numerator of Eq. (E.0.8). Thus we are able to prove an important
proposition in [3]:

Proposition E.0.6 The eigenvalues ρi of a conformal Killing tensor satisfy the
set of coupled linear partial differential equations:

∂ρi
∂xj

= (ρi − ρj)
∂log(gii)

∂xj
+
∂ρj
∂xj

(E.0.10)

Proof:

0 =
∂

∂xj
log(

(ρi − ρj)

gii
)

=
gii

(ρi − ρj)
((
∂ρi
∂xj

− ∂ρj
∂xj

)
1

gii
− (

(ρi − ρj)

g2
ii

∂gii
∂xj

)) (E.0.11)

multiplying through by gii and discarding the (ρi− ρj)
−1 common factor yields the

required result. 2

A crucial subtlety in the above reasoning is that our proof is restricted to confor-
mal Killing tensors with normal eigenvectors and real simple eigenvalues, allowing
them to be diagonalized in orthogonal coordinates. Indeed this is the hypothesis of
Proposition 7.2 in [3], which among other statements reads:

Proposition E.0.7 A CKT K which is diagonalized in orthogonal coordinates
(that is gij = 0 and Kij = 0 for i 6= j) is equivalent to a CKT K′ that is a
simple Killing tensor with respect to a conformally related metric.

Our proof of the properties of the eigenvalues of a conformal Killing tensor is essen-
tially the reverse direction of Proposition 7.2 in [3], as we first started from a simple
diagonalized Killing tensor and then enacted a conformal transformation bringing
us to a representative of an equivalence class of characteristic conformal Killing ten-
sors. The proof is therefore not valid for non characteristic Killing tensors, however
they are not useful for characterizing separable coordinates anyhow.
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Appendix F

Alternate classification scheme

using the invariants and covariants

of biquartic polynomials

Here is material from [13], firstly please note the change in dictionary of the co-
efficients of the rotational Killing tensor which is outlined below. This rotational
characteristic conformal Killing tensor is equivalent to

M33I3⊙I3 +L3D⊙I3 +HD⊙D+C33R3⊙R3 +D3D⊙X3 +A33X3⊙X3. (F.0.1)

Let RCK2(E3) be the subspace CK2(E3) of CKTs of the form (F.0.1). The free
parameters describing a general element K ∈ RCK2(E3) are

(M33, L3, H,C33, D3, A33) (F.0.2)

and all the other forty nine coefficients of the general linear combination of sym-
metric products of CKVs (3.1.3) are null. Given any CKT in Cartesian coordinates
satisfying LR3K = 0, and the TSN-conditions, the value of the parameters (F.0.2)
are determined as follows:

• M33 is 1/4 of the coefficient of xyz2 in K12;

• L3 is 1/2 of the coefficient of xyz in K12;

• H is the coefficient of xz in K13;

• H − C33 is the coefficient of xy in K12;

• D3 is twice the coefficient of x in K13;

• A33 is the constant term of K33 −K22.

Since we are considering components (or functions of the components) which are
not affected by the addition of a multiple of the metric fg, the six parameters are
well defined, irrespective of whether one starts from a CKT in TCK(E3) or not.
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Remark F.0.8 Since E3 has dimension three, there is an equivalent way to char-
acterize rotational R-separable webs. Any rotational web contains a family of
hypersurfaces made of half-planes issued from the rotation axis (the z-axis in our
case). These planes are orthogonal to the Killing vector R3. Hence R3 must be an
eigenvector of the CKT defining the web. Moreover, this condition is also sufficient
to ensure that the eigenvectors of K are normal. Indeed, one of them is the normal
vector R3 and the other two are contained in the two-dimensional planes orthogonal
to R3 and hence they are normal. By imposing the condition

(K · R3) × R3 = 0,

we find again the six dimensional linear subspace described by (F.0.1).

Finally, in order to prove that the general rotational CKT (F.0.1) is charac-
teristic, we check that the eigenvalues are simple almost everywhere. Since R3 is
orthogonal to I3, D, X3, we have

K · R3 = C33(x
2 + y2)R3.

Hence, R3 = E1 is an eigenvector corresponding to the eigenvalue λ1 = C33(x
2+y2).

The other two eigenvectors E2 and E3 are orthogonal to E1; they and their corre-
sponding eigenvalues do not depend on C33. Moreover, the associated eigenvalues
are of the form

λ2,3 =
A±

√
B

2
,

where

A = r4M33 + zr2L3 + r2H + zD3 + A33, (r2 = x2 + y2 + z2) (F.0.3)

B = (x2 + y2)

[
r2L3 + 2zH +

4z2 − r2

r2
D3 +

4z(2z2 − r2)

r4
A33

]2

+ (F.0.4)

[
r4M33+zr

2L3 + (2z2 − r2)H+
z(4z2 − 3r2)

r2
D3+

r4 − 8z2(r2 − z2)

r4
A33

]2

.

Any change of the parameter C33 does not affect the web; indeed, E2 and E3 do not
involve C33 (see also Sect. F.2). Thus, it is always possible to choose C33 such that
λ1 is different from λ2 and λ3 at any point outside of the z-axis. On the contrary
for x = y = 0 we have

λ1 = 0, λ2 =
1

2
(q(z) + |q(z)|), λ3 =

1

2
(q(z) − |q(z)|),

with
q(z) = M33z

4 + L3z
3 +Hz2 +D3z + A33. (F.0.5)

Thus, (at least) one of λ2, λ3 identically vanishes and all points of the z-axis are
singular points of all rotational webs. The singular points that are not on the
rotation axis are those satisfying λ2 = λ3, that is where B = 0.

119



Remark F.0.9 The roots of (F.0.5) are points on the z-axis where the three eigen-
values coincide and K is proportional to the metric tensor. The number of the roots
z0 of q in PR1 (so that the point at infinity is also considered) and their multiplicity
characterize the web from a geometric point of view.

Remark F.0.10 The knowledge of the eigenvalues of the characteristic tensor in
a rotational web allows one to write the equations of the (not planar) hypersurfaces
(see [16]) The hypersurfaces S2 orthogonal to E2 satisfy the equation

λ1 − λ3

x2 + y2
= h, h ∈ R,

while the hypersurfaces S3 orthogonal to E3 satisfy the equation

λ1 − λ2

x2 + y2
= h, h ∈ R.

It follows that the hypersurfaces have the form

2(h− C33)(x
2 + y2) + A = ±

√
B,

that is they are both described by the equation

[2(h− C33)(x
2 + y2) + A]2 −B = 0, (F.0.6)

but for different ranges of the value of h: we have surfaces of S2 for h < h0 and
surfaces of S3 for h > h0, respectively, where

h0 = C33 −
A

2(x2 + y2)
= C33 −

r4M33 + zr2L3 + r2H + zD3 + A33

x2 + y2
.

For h = h0 we do not obtain a surface of the web because this value of the parameter
h would imply B = 0, that is λ2 = λ3. Expanding the equations (F.0.6) we arrive
at

[4(H − C33 + h)M33 − L2
3]r

4 + [8M33D3 − 4(C33 − h)L3]r
2z +

[2L3D3 − 4(C33 − h)H]r2 + 16M33A33z
2 + 4(C33 − h)2(x2 + y2) + (F.0.7)

[8L3A33 − 4(C33 − h)D3]z −D2
3 + 4(H − C33 + h)A33 = 0,

which represents two families of confocal cyclides, one for h > h0 and one for h < h0.

F.1 Characteristic CKTs of the known R-separable

rotational coordinate systems

Table 1 contains the parameters of a characteristic CKT corresponding to each
of the rotational R-separable coordinates listed in Moon and Spencer’s book [38].
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Coordinates M33 L3 H C33 D3 A33

Bi-cyclide −k2

a2 0 1 + k2 1 + k2 0 −a2

Flat-ring
cyclide

k2

a2 0 1 + k2 0 0 a2

Disk cyclide −k2

a2 0 1 − 2k2 0 0 a2(1−k2)

Cap cyclide a2(1+k)2

k
0 4k−(k−1)2

2
−(k−1)2

2
0 k(k+1)2

16a2

Toroidal 1
4a2 0 1

2
1
2

0 a2

4

Bispherical − 1
4a2 0 1

2
1
2

0 −a2

4

Inverse
prolate
spheroidal

1
a2 0 -1 0 0 0

Inverse
oblate
spheroidal

− 1
a2 0 -1 0 0 0

Tangent
spheres

1 0 0 0 0 0

Cardioid 0 1 0 0 0 0

Prolate
spheroidal

0 0 -1 0 0 a2

Oblate
spheroidal

0 0 1 0 0 a2

Spherical 0 0 1 -1 0 0
Parabolical 0 0 0 0 1 0
Cylindrical 0 0 0 -1 0 1

Table F.1: Characteristic CKT of rotationally symmetric R-separable webs

We briefly describe how they are determined (for further details, such as plots,
transformation laws to Cartesian coordinates, components of the metric tensor
in these coordinates, separated equations etc., see [38] or [5]). The CKTs are
constructed from the Stäckel matrices that are associated with each system of
coordinates in [38].

Recall that a Stäckel matrix is a regular matrix of functions Sij depending on
the single variable qi corresponding to the row index i of the element. One row
(the first in the examples in [38]) of the inverse of the Stäckel matrix contains
the components of the contravariant metric tensor in the R-separable coordinates,
while the other two rows are made of the components of two CKTs with common
eigenvectors orthogonal to the web hypersurfaces. Moreover, there is always a real
linear combination of these two tensors which provides a characteristic tensor of
the web (see [3]).

For each row of the inverse of the Stäckel matrix we construct the conformal
Killing tensors in the R-separable coordinates, then the parameters (F.0.2) are
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determined by transforming the tensor to Cartesian coordinates and comparing
with the Cartesian components of the general rotationally symmetric CKT (F.0.1).
For all the coordinate systems considered in [38] the tensor corresponding to the
third row of the inverse Stäckel matrix is R3 ⊙ R3. In most of the examples, the
other tensor is a characteristic tensor of the web so its parameters appear unchanged
in the Table 1. On the contrary, the tensors arising from the Stäckel matrices given
in [38] for Spherical, Tangent spheres and Cylindrical coordinates have C33 = 0, so
they are not characteristic CKTs. In order to get a characteristic CKT associated
with these webs we add a suitable multiple of the tensor R3 ⊙ R3: that is, we
change the value of C33 in Table 1.

The first four coordinate systems have transformation laws to Cartesian coor-
dinates involving Jacobi elliptic functions. The parameter a is a scaling parameter,
while the parameter k ∈ (0, 1) is the parameter of the Jacobi elliptic functions.

F.2 Group action preserving rotationally

symmetric CKTs

F.2.1 The group and its one-parameter subgroups

In order to classify the different types of R-separable webs admitting a rotational
symmetry, we consider transformations acting on CK2(E3) which preserve the space
RCK2(E3) of the rotationally symmetric CKTs previously discussed in chapter five.
For this purpose, we use a group G that is generated by five one-parameter transfor-
mations and a discrete transformation. Three of the one-parameter transformations
are induced on RCK2(E3) by conformal transformations of E3 mapping the z-axis
into itself. The other two are transformations of the CKT that do not change the
corresponding web.

The five continuous transformations to be taken into account are

1. The change of the tensor under a continuous inversion along the z-axis pa-
rameterized by a0:

φ0 : (x, y, z) →
(

x

1 + 2a0z + a2
0r

2
,

y

1 + 2a0z + a2
0r

2
,

z + a0r
2

1 + 2a0z + a2
0r

2

)
,

where r2 = x2 + y2 + z2.

2. The change of the tensor under a translation along the z-axis parameterized
by a1:

φ1 : (x, y, z) → (x, y, z + a1).

3. The change of the tensor under a dilation of the space with singular point at
the origin parameterized by a2:

φ2 : (x, y, z) → (a2x, a2y, a2z), (a2 6= 0).
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4. The multiplication of the tensor by a non-zero scalar a3:

K → a3K, (a3 6= 0).

5. The addition to the tensor of a multiple of R3 ⊙ R3:

K → K + a4R3 ⊙ R3.

Moreover, the discrete transformation considered is the one induced by the inversion
I with respect to the unit sphere with center at the origin

I : (x, y, z) →
(

x

x2 + y2 + z2
,

y

x2 + y2 + z2
,

z

x2 + y2 + z2

)
. (F.2.8)

Note that I−1 = I and that for the continuous inversion φ0 we have φ0 = I−1◦φ1◦I,
where φ1 is the translation along the z-axis.

Remark F.2.1 The addition of the metric g and the transformation induced by
the rotation around the z-axis are not relevant, since they do not modify the pa-
rameters (F.0.2) defining the tensor.

F.2.2 Group action, invariants and canonical forms

Let G be the group generated by the above described transformations. Since the
discrete inversion is included, G is not connected. Moreover, two of the continuous
one-parameter transformations are defined only for values of the parameter in R−
{0}, so that the connected component of G containing the identity is characterized
by a2 > 0 and a3 > 0. Two other discrete transformations are implicitly included
in G: the change of sign of the tensor (for a3 = −1) and the transformation induced
by the symmetry around the origin in E3 (for a2 = −1).

The effect of the inversion around the unit sphere on the coefficients (F.0.2) of
K ∈ RCK2(E3) is given by

M̃33 = A33,

L̃3 = D3,

H̃ = H,

C̃33 = C33,

D̃3 = L3,

Ã33 = M33.

(F.2.9)

The equations of the action generated by the five continuous transformations acting
on (F.0.2) are

M̃33 = a3
P (a0)
a2
2
,

L̃3 = a3
−4a1P (a0)−a2P (1)(a0)

a2
2

,
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H̃ = a3
6a2

1P (a0)+3a1a2P (1)(a0)+a2
2P

(2)(a0)

a2
2

,

C̃33 = a4 + a3C33 + a3
6a2

1P (a0)+3a1a2P (1)(a0)+a2
2(P (2)(a0)−H)

3a2
2

,

D̃3 = a3
−4a3

1P (a0)−3a2
1a2P (1)(a0)−2a1a2

2P
(2)(a0)−a3

2P
(3)(a0)

a2
2

,

Ã33 = a3
a4
1P (a0)+a3

1a2P (1)(a0)+...+a1a3
2P

(3)(a0)+a4
2P

(4)(a0)

a2
2

,

where
P (a0) = A33a

4
0 −D3a

3
0 +Ha2

0 − L3a0 +M33, (F.2.10)

and

P (n) =
1

n!

d nP

(da0)n
.

Since C33 and a4 are involved only with C̃33, and C33 is unchanged by the discrete
inversion (F.2.9), we can disregard C33 (which can be made equal to any fixed
constant by choosing a particular value for a4). Then we consider the reduced
action on the vector subspace of RCK2(E3) defined by the five parameters

(M33, L3, H,D3, A33) (F.2.11)

of the subgroup G′ of G defined by a4 = 0:

M̃33 = a3
P (a0)
a2
2
, (F.2.12)

L̃3 = a3
−4a1P (a0)−a2P (1)(a0)

a2
2

, (F.2.13)

H̃ = a3
6a2

1P (a0)+3a1a2P (1)(a0)+a2
2P

(2)(a0)

a2
2

, (F.2.14)

D̃3 =a3
−4a3

1P (a0)−3a2
1a2P (1)(a0)−2a1a2

2P
(2)(a0)−a3

2P
(3)(a0)

a2
2

, (F.2.15)

Ã33 =a3
a4
1P (a0)+a3

1a2P (1)(a0)+...+a1a3
2P

(3)(a0)+a4
2P

(4)(a0)

a2
2

. (F.2.16)

It appears that the building blocks of the action equation is the polynomial (F.2.10)
and its derivatives.

Remark F.2.2 If we denote the parameters (F.2.11) by αi (i = 0, . . . , 4), setting
α4 = M33, α

3 = L3, α
2 = H, α1 = D3, α

0 = A33), then their transformation laws
under the action can be written in a compact formal way as

α̃4−i =
a3

a2
2

i∑

h=0

(−1)i
(

4−h
i

)
P (h)(a0)a

i−h
1 ah2 , i = 0, . . . , 4.

Theorem F.2.3 Let G1 be the subgroup of G′ defined by a3 > 0. Then, the action
of G1 on (F.2.11) given by (F.2.12 − −F.2.16) and (F.2.9) is equivalent to the
classical action of GL(2,R) on real binary quartics.
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Proof: Consider the following binary quartic constructed from the five coefficients
(F.2.11) of the CKT:

Q(X,Y ) = M33X
4 + L3X

3Y +HX2Y 2 +D3XY
3 + A33Y

4. (F.2.17)

By inserting the linear transformation of the variables (X,Y )

X = αX̄ + βȲ , Y = γX̄ + δȲ ,

with (αδ−βγ) 6= 0, in (F.2.17), we obtain a new quartic Q̄(X̄, Ȳ ) whose coefficients
M̄33, . . . , Ā33 depend on the GL(2,R) matrix

M =

[
α β
γ δ

]

and on the coefficients of Q (M33, . . . , A33). Since we assume a3 > 0, by setting

α = 4
√
a3a2

2, β = −a1
4
√
a3a2

2, γ = −a0
4
√
a3a2

2, δ = (a1a0 + a2)
4
√
a3a2

2,

we obtain equations (F.2.12 − −F.2.16). The regularity of M follows from (αδ −
βγ) =

√
a3a2|a2| 6= 0, since a2a3 6= 0. Furthermore, setting α = γ = 0, and

β = δ = 1, we recover (F.2.9). Conversely, we prove that for any transformation of
the quartic we can associate a transformation of G1. We distinguish two cases: for
α 6= 0, by setting

a0 = −γα−1, a1 = −βα−1, a2 = (αδ − βγ)α−1, a3 = (αδ − βγ)2,

into (F.2.12 − −F.2.16) we obtain the action of M on the quartic form. The fact
that a2a3 6= 0 follows from the regularity of the matrix M . If α = 0, we apply first
the discrete inversion (F.2.9) on the parameters of the CKT, that is we multiply M

by

[
0 1
1 0

]
on the left. In this way we obtain a new matrix M1 with α1 = γ 6= 0

since M is regular, and thus revert to the previous case. 2

As an immediate consequence of the theorem we are able to determine the
invariant of the action and the list of canonical forms which are given in the following
propositions.

Proposition F.2.4 The only independent differential invariant of the action of G
on RCK2(E3) is

F =
I3

J2
,

where the functions
I = 12A33M33 − 3L3D3 +H2,

J = 72A33M33H − 27A33L
2
3 − 27D2

3M33 + 9D3L3H − 2H3,

are relative invariants of the action of G and independent differential invariants for
the action of the subgroup of G defined by a3 = 1.
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Proof: The functions I and J are the fundamental invariants (of weight 4 and 6
respectively) of the binary quartic form (F.2.17) [24],[41]. 2

Proposition F.2.5 Each CKT of RCK2(E3) is equivalent under the action of G
to one of the following representatives:

I. I3 ⊙ I3 + µD ⊙ D + X3 ⊙ X3, µ ∈ R, (F.2.18)

II. I3 ⊙ I3 + µD ⊙ D − X3 ⊙ X3, µ ∈ R, (F.2.19)

III. I3 ⊙ I3 + νD ⊙ D, ν = ±1, (F.2.20)

IV. D ⊙ I3, (F.2.21)

V. I3 ⊙ I3. (F.2.22)

Proof: Starting from the list of canonical forms of real binary quartics (given
for instance in [24]), we combine those differing only by sign. We remark that for
µ = 2 the canonical form I. is equivalent to D ⊙ D. 2

Remark F.2.6 The action of G over RCK2(E3) has infinitely many orbits. How-
ever, the tensors in (F.2.18) and (F.2.19) are not pairwise inequivalent for all values
of µ: for µ 6= ±2 there exists a finite number of µ′ such that the corresponding
tensors are pairwise equivalent (see [24]).

F.3 Invariant classification of the R-separable ro-

tationally symmetric webs

The polynomial P defined in (F.2.10) as the building block of the action equations
(F.2.12–F.2.16) is deeply related to the polynomial q (F.0.5). Indeed, we have
P (X) = X4q(−1/X). Moreover q is the inhomogeneous polynomial corresponding
to the quartic binary form Q (F.2.17).

The roots of q are the points on the z-axis where all the eigenvalues of K coincide
(see Remark F.0.9). The conformal transformations φ0, φ1, φ2 and I described in
Sect. F.2.1 map the z-axis to itself with a one to one correspondence (if we include
also the point at infinity). Thus two distinct points cannot be made coincident or
removed. This provides the geometric interpretation of the fact that the invariants
of Q are invariants of the CKT defining the web. The meaning of q in terms of
invariant theory is made more precise in the following proposition.

Proposition F.3.1 The polynomial q(z) = M33z
4 + L3z

3 + Hz2 + D3z + A33 is
a relative covariant of the induced extended action on CK̂2(E3) × E3 restricted on
the invariant subset S0 = {x = y = 0}.
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Proof: The equations of the extended action are (F.2.12–F.2.16) together with

x̃ = a2x
(a0z+1)2+a2

0(x2+y2)
,

ỹ = a2y
(a0z+1)2+a2

0(x2+y2)
,

z̃ = a2
z+a2

0(x
2+y2+z2)

(a0z+1)2+a2
0(x2+y2)

+ a1.

The subset S0 = {x = y = 0} is an invariant subset of the extended action.
Moreover, on S0 the transformation law for z reduces to the linear fractional trans-
formation

z̃ =
(a2 + a1a0)z + a1

a0z + 1
(a2 6= 0), (F.3.23)

which is the general linear transformation on RP1 (see [41]). Let q̃(z̃) be the
polynomial we obtain by inserting (F.2.12–F.2.16) and (F.3.23) in (F.0.5). We
obtain

(a0z + 1)4q̃(z̃) = a3a
2
2q(z), (F.3.24)

that is (up to a3) a covariant of weight two of the action. For the discrete inversion

(mapping z into z̃ = 1/z), we immediately see that it maps q(z) to q̃(z̃) = q(z)
z4

2

Equation (F.3.24) shows that the number and multiplicity of the real roots of
q(z) (that is the number and multiplicity of the real linear factors of Q) are invariant
with respect to the group action. Hence they can be used to define and classify the
different types of webs.

Definition F.3.2 We say that two rotationally symmetric R-separable webs are of
the same type if the polynomials associated with the corresponding characteristic
CKT have the same number and multiplicity of real roots.

Thus we have reduced the classification of rotational R-separable webs to the
classical classification of real binary quartics (see [41], [24]).

We have nine types of webs, listed in Table 2.

The remaining coordinates systems of Table 1 are equivalent to one of the co-
ordinates listed above (correcting a typographical error in [38], where Cap cyclide
coordinates are said to be equivalent to Bi-cyclide coordinates), as it is described
in Table 3.

Remark F.3.3 The number of the types of rotationally R-separable coordinate
systems agree with the results of [6], where the subject is examined from the point
of view of symmetry operators. The coefficients Aij of the second order part of the
symmetry operators S characterizing each type of R-separable rotationally sym-
metric coordinates, with respect to Cartesian coordinates, listed in Table 2. of
Boyer, et al. [6] when written as

S = Aij∂i∂j +Bi∂i

correspond to the components of CKTs equivalent to those listed in Table 1 for
Bi-cyclide, Flat-ring cyclide, Disk cyclide and Toroidal coordinates, respectively.
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Associated web roots of q canonical form of K

Bi-cyclide 4 distinct real roots I. for µ < −2

Flat-ring cyclide
4 distinct complex
conjugate roots

I. for µ > −2, µ 6= 2

Disk cyclide
4 distinct roots,
2 real, 2 complex
conjugate

II.

Inverse prolate
spheroidal

1 double real root,
2 distinct real roots

III. for ν = −1

Inverse oblate
spheroidal

1 double real root,
2 distinct complex
conjugate roots

III. for ν = 1

Toroidal 2 double complex
conjugate roots

I. for µ = 2

Bispherical 2 double real roots I. for µ = −2

Cardioid
1 triple (real) root
1 simple real root

IV.

Tangent
sphere

1 quartuple (real) root V.

Table F.2: the nine types of inequivalent rotational R-separable webs

Finally, we provide algebraic conditions on the parameters (F.2.11) in order to
determine the type of the corresponding web. In order to obtain these conditions,
we solve the equivalent problem of determining the number and multiplicity of
the linear factors of the corresponding binary quartic form Q which can be done
by applying the classical algorithm (see for example [24]) based on the sign and
vanishing of relative invariants and covariants of Q.

Together with I and J , the following invariant and covariants are used in the
classification scheme: the discriminant of the form (a relative invariant which van-
ishes if and only if the quartic has a multiple root)

∆ = I3 − 27J2,

the Hessian of the form (a covariant which vanishes if and only if the quartic has a
quadruple root)

H(X,Y ) = (∂2
XXQ) · (∂2

Y YQ) − (∂2
XYQ)2;

the covariants
L(X,Y ) = IH(X,Y ) − 6JQ(X,Y ),

and
M(X,Y ) = 12H2(X,Y ) − IQ2(X,Y ).

We summarize the classification in Table 4.
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Web equivalent to transformation

Cap cyclide Flat-ring cyclide cont. inversion + trans.

Prolate Spheroidal Inverse Prolate Spheroidal discrete inversion

Oblate Spheroidal Inverse Oblate Spheroidal discrete inversion

Spherical Bispherical cont. inversion + trans.

Parabolical Cardioid discrete inversion

Circular Cylindrical Tangent sphere discrete inversion

Table F.3: Pairwise conformally equivalent webs

Web Algebraic condition

Disk cyclide ∆ < 0

Bi-cyclide ∆ > 0 and H(X,Y ) < 0, and M(X,Y ) > 0

Flat-ring cyclide ∆ > 0 and (H(X,Y ) > 0 or M(X,Y ) > 0)

Inverse prolate spheroidal ∆ = 0 and L(X,Y ) < 0

Inverse oblate spheroidal ∆ = 0 and L(X,Y ) > 0

Toroidal L(X,Y ) = 0 and H(X,Y ) > 0

Bispherical L(X,Y ) = 0 and H(X,Y ) < 0

Cardioid I = J = 0 and H(X,Y ) 6= 0

Tangent sphere H(X,Y ) = 0

Table F.4: Invariant classification of the webs
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