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Abstract

Reuse is not a new concept in software engineering. Ideas, abstractions, and

processes have been reused by programmers since the very early days of software

development. In the beginning, since storage media was very expensive, software

reuse was basically to serve computers and their mechanical resources, as it sub-

stantially conserved memory. When the limitations on physical resources started

to diminish, software engineers began to invent reuse approaches to save human

resources as well. In addition, as the size and complexity of software systems con-

stantly grow, organized and systematic reuse becomes essential in order to develop

those systems in timely and cost-effective fashion. That is one main reason why new

technologies and approaches for building software systems, such as object-oriented

and component-based development, emerged in the last two or three decades.

The focus of this thesis is on software components as building blocks of today’s

software systems. We consider components as software black boxes whose speci-

fication and external behavior are known. We assume that this information can

somehow be extracted for each deployed software component. The first and basic

assumption then would be the availability of a searchable repository of software

components and their external behavioral specifications. Web services are a good

example of such components.

The most important advantage of software components is that they can be

reused repeatedly in building different software systems. Reuse presents challenging

problems, one of which is studied in this thesis. This problem, the composition

problem, simply is creating a composite component from a collection of available

components that, by interacting with each other, provide a requested functionality.

When there are a large number of components available to be reused, finding a

solution to the composition problem manually would require a considerable time

and human effort. This could make the search practically impossible or unwieldy.

However, performing the search automatically would save a significant amount of

development time, cost and human effort. Solving this problem would be a huge

step forward in the component-based software development.

In this thesis, we concentrate on a subproblem of the composition problem,

composition planning or synthesis, which is defined as finding a collection of useful

components from the repository and the necessary communications among them

to satisfy a requested functionality. For scalability purposes, we study automatic

solutions to composition planning and propose two approaches in this regard. In

one, we take advantage of graphs to model the repository, which is the collection
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of available components along with their behavioral specification. Graph search

algorithms and a few composition-specific algorithms are used to find solutions

for given component requests. In the other approach, we extend a logical reason-

ing algorithm and come up with algorithms for solving the composition planning

problem. In both approaches we provide algorithms for finding the possibility of a

composition, as well as finding the composition itself.

We propose different types of composition and show how applying each would

impact the behavior of a composite component. We provide the necessary formalism

for capturing these types of composition through two different models: interface au-

tomata and composition algebra. Interface automata is an automaton-based model

for representing the behavior of software components. The other model in this

regard is composition algebra, which is an algebraic model based on CSP (Com-

municating Sequential Processes), CCS (Calculus of Communicating Systems), and

interface automata. These formal models are used to validate the results returned

by the composition approaches.

We also compare the two composition approaches and show why each of them

is suitable for specific types of the problem according to the repository attributes.

We then evaluate the performance of the reasoning-based approach and provide

some experimental results. In these experiments, we study how different attributes

of the repository components could impact the performance of the reasoning-based

approach in solving the composition planning problem.
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Chapter 1

Introduction

In software engineering, reuse is not a new concept. Ideas, abstractions, and

processes have been reused by programmers since the very early days of software

development. But in those early days the approaches to reuse were ad-hoc, meaning

that there was no systematic way of reusing software [87]. Moreover, the invention

of subroutines for reuse was mostly because every byte of memory was precious

at the time, and subroutines could substantially conserve memory. In fact, the

earlier versions of software reuse were basically to serve the computers and their

mechanical resources [28].

When the limitations on physical resources started to diminish, software engi-

neers began to invent reuse approaches to save human resources as well. In addition,

as the size and complexity of software systems constantly grow, in order to develop

them in a timely and cost-effective fashion existing organized and systematic meth-

ods of reuse are vital. Nowadays, considering the widely increasing expectations

from software systems, reusing ideas, abstractions and pieces of programs would

not be sufficient, and reuse in larger scales is necessary. That is why new tech-

nologies and approaches for software development emerged in the last two or three

decades. From this point of view, the object-oriented paradigm was the beginning

of a new era in software development, which then led to component-based software

development (CBSD). Clements describes CBSD as follows [28]:

CBSD is changing the way large software systems are developed. CBSD

embodies the “buy, don’t build” philosophy [21]. In the same way that

early subroutines liberated the programmer from thinking about details,

CBSD shifts the emphasis from programming software to composing

software systems. Implementation has given way to integration as the
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focus. At its foundation is the assumption that there is sufficient com-

monality in many large software systems to justify developing reusable

components to exploit and satisfy that commonality.

CBSD can be simply defined as development of systems that use components. A

software component then can be defined as a non-trivial, nearly independent, and

replaceable part of a system that, by interacting with other components, fulfills

a clear function in the context of a well-defined architecture [52, 65]. A software

component can be deployed independently and is subject to composition by a third

party [31].

Components provide their functionalities through their interfaces, which are

separate from their implementation. Interfaces are actually connectors that connect

components together. Inputs and outputs in the form of data are transferred from

and to components through these connectors. Moreover, users also use interfaces

to interact with components. This means an interface is how a consumer of a

component views that component [74].

The focus of this thesis is on software components as building blocks of today’s

software systems. We consider components as software black boxes whose speci-

fication and external behavior are known. Their specification could contain their

physical location and the instructions on how to invoke them. The information

on their external behavior may include their supported interfaces and operations,

where for each, the inputs, outputs, preconditions, effects and nonfunctional at-

tributes are specified. We assume that this information can somehow be extracted

for each deployed software component. Web services, described in Section 2.1, are

a good example of such components.

One assumption in this thesis is that there are available components to be

reused. Therefore, we do not worry about how to build components eligible for

reuse. In fact, this activity belongs to another process called domain engineering.

“Domain engineering is about finding commonalities among systems to identify

components that can be applied to many systems, and to identify program families

that are positioned to take fullest advantage of those components”1 [87]. This thesis

does not further discuss the domain engineering process.

1Quotation by Paul Clements.
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1.1 The Composition Problem

As mentioned earlier in this chapter, the most important advantage of software com-

ponents is that they can be reused repeatedly in building different software systems.

Reuse in this sense introduces challenging problems. Since we assume that there

are developed and available domain-engineered software components to be reused,

the first and basic assumption would be the availability of a searchable collection

of software components along with their external behavioral specifications, called

the repository.

When we need a specific software component, we first check for the existence

of a repository component with the same or similar functionality. Therefore, the

first problem, the matching problem, is finding a matching component from the

repository for a given component request. Different versions of the matching prob-

lem have been addressed in the literature under various titles such as component

matching [64, 82], specification matching of software components [58, 113], signa-

ture matching of software components [111, 112], and more recently, (web) service

discovery [13, 63, 92] and (web) service matching [39, 70, 109].

The composition aspect of component-based development leads us to the sec-

ond and more interesting problem, which is called the composition problem. The

composition problem could be considered as the extended version of the matching

problem. In component matching, a request for a desired component is given and

we are interested in finding a single component from the repository to match the

request. It is quite possible for the matching problem to have no solution, especially

when the request is too specific, e.g., it comes with several syntactic or semantic

constraints.

Example 1.1 Consider the repository component WeatherForecast, which re-

ceives the name of a Canadian city (city CAN) and returns its current temper-

ature in Celsius (temperature C), and assume that there is no other component

related to weather forecast in the repository. If a request is submitted against

this repository for a component that receives a Canadian city (city CAN) and re-

turns its current temperature in Fahrenheit (temperature F), there would be no

match for it in the repository, as WeatherForecast does not return an output in

Fahrenheit. However, if the repository contains a temperature conversion compo-

nent TemperatureConvertor to convert a temperature in Celsius to its equivalent

Fahrenheit value, we could find a combination of repository components to answer

the given request successfully. �
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Compared to finding a single match, it is much more likely that a combination of

repository components would satisfy the given request. The composition problem

expands the matching problem by also checking the combinations of repository

components. More specifically, the composition problem is defined as follows:

Problem 1.1 Given a repository of available software components and their behav-

ioral specifications, and the specification of a component to be built, is it possible to

build the request as a composition of some repository components? If so, how could

the request lead to a working software component? �

We simply observe that the solutions to a composition problem would be a superset

of the solutions to a matching problem. This confirms the fact that the composition

problem is more difficult to solve.

Obviously, when there are a large number of components in the repository,

manually finding a solution to the composition problem would require considerable

time and human effort, which could make this search practically impossible or

unwieldy. However, if this search could be performed automatically, by saving

significant amount of development time, cost, and human effort, it would be a

huge step forward in component-based software development. In this thesis, we

concentrate on finding an automatic solution to the composition problem.

Regarding the applications of solving this problem, in a small scale, we could

think of software developers that build numerous software components. For their

future developments they look forward to reusing their earlier products as often as

possible. In a larger scale, web services would be the best examples of software

components that fit into the composition problem, as they are currently the center

of attention in research activities on the World Wide Web.

Automatic web service composition is one of the key challenges of service-

oriented computing today. In general, service composition can be defined as creat-

ing a composite service obtained by combining available component services. It is

highly effective mainly in situations where the client request cannot be satisfied by

available services, except by combining some of them [67].

As mentioned earlier in this chapter, the repository contains information on

the external behavior of available software components. The external behavior

is the main attribute based on which the composition of two software compo-

nents is determined. For instance, in Example 1.1 when composing two compo-

nents WeatherForecast and TemperatureConvertor, since the output type of

4



WeatherForecast matches the input type of TemperatureConvertor, the com-

position of the two components is possible and satisfies the request. In similar cases

where the output of one component is consumed by another component, another

criterion that affects the composability of two components is that the effects of the

former must not violate the preconditions of the latter. Moreover, nonfunctional

requirements must be satisfied. For instance, in Example 1.1 if the response times

of two components WeatherForecast and TemperatureConvertor are 125 and

35 milliseconds respectively, and the request specifies the maximum response time

of 150 milliseconds, the given composition would be rejected, because it leads to

the response time of 160 milliseconds which is higher than what is asked in the

request.

There are two main aspects to the composition of software components in finding

a solution to the composition problem [15, 67]:

• Composition planning (or synthesis) refers to studying how to generate a

composition plan based on repository components to provide the desired be-

havior. The composition plan can be obtained either automatically, semi-

automatically or manually, where in the first two cases finding the plan is

mostly done using appropriate composition algorithms.

• Orchestration refers to appropriate control and data flow coordination among

the involved components in executing the composition plan in the real world.

Since invoking a component could trigger a very complex process involving many

other components, it becomes necessary to have a formalism to reason about the

temporal aspects of a composition [2], i.e., the order of execution of the involved

components. Therefore, to solve the composition problem we need to formally

define

• all the possible types of composition in combining repository components,

such as sequential and conditional composition, and

• the specification of the component resulting from composing two repository

components using each of these composition types.

This formalism is normally based on different types of modeling languages and tools

for representing behavior. A few examples of such formalisms would be process

algebras [8], statecharts [46] and Petri nets [85, 86].
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1.2 Main Contributions of the Thesis

In this thesis we provide two different automatic approaches to solving the compo-

sition planning (synthesis) in a specific version of the composition problem. More

precisely, we assume that the repository contains only stateless components.

Definition 1.1 A software component is stateless if and only if in every one of

its execution scenarios it receives all its necessary inputs before returning any of its

produced outputs, and also, if it receives/returns all its inputs/outputs without any

specific order (e.g., at the same time). �

The concept of execution scenario is defined below.

Definition 1.2 Each time a component is completely executed it performs a specific

behavior in terms of the inputs it receives, the outputs it returns, and the execution

order of those inputs and outputs. Each such behaviors is called an execution path

or an execution scenario (simply, a scenario) of that component. �

In general, we assume that the request also describes a stateless component. We do

not consider preconditions, effects and nonfunctional properties of software compo-

nents. In other words, we try to find compositions that signature-wise satisfy the

request.

To solve the composition planning problem for stateless components, we provide

two different formal models for their behavioral representation. These two models

are described in Chapter 4. We propose extensions to interface automata which was

proposed by de Alfaro and Henzinger [34]. These extensions basically include new

types of composition. The composition algebra is a process algebraic model that

we tailored specifically for solving the composition problem. As well as formalizing

the behavior of components and their compositions, these two formalisms are used

to validate the solutions returned by our composition approaches.

In one of the composition approaches, we take advantage of graphs to model

the repository. Graph search algorithms, along with a few composition-specific

algorithms, are then used to find solutions for given component requests. In the

other approach, we extend a logical reasoning algorithm for Horn clauses to produce

algorithms for solving the composition planning problem. In both approaches we

provide algorithms for finding the possibility of a composition, as well as finding

the composition itself.
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We also compare the two composition approaches and show why each of them

is suitable for specific types of the problem according to the repository attributes.

We then evaluate the performance of the reasoning-based approach and provide

some experimental results. In these experiments, we study how different attributes

of the repository components could impact the performance of the reasoning-based

approach in composition planning.

1.3 Structure of the Thesis

In Chapter 2 we provide some background information on web service composition,

which is the potential target for the automatic component composition. We also

discuss the role of semantic matching in component composition. Then we propose

a general architecture for solving the generic composition problem.

In Chapter 3 we review the literature on component and web service compo-

sition. We do this review separately for different subproblems of the composition

problem which are introduced in Chapter 2.

In Chapter 4 we explain two representation models for the behavior of software

components. In Section 4.1 we review interface automata and extend it to capture

more composition types. In Section 4.2 we introduce composition algebra and,

through some axioms, show how different types of composition are modeled in this

algebra. We also explain why composition algebra, compared to interface automata,

is in general a better model for behavioral representation.

In Chapter 5 we describe our graph-based solution to the composition planning

problem. We start the chapter by solving a simple version of this problem. Then

we improve the solution to solve the generic version for stateless components.

In Chapter 6 a reasoning-based approach for component composition is ex-

plained, which is based on the forward chaining reasoning approach for Horn clauses.

We first study a simple version of the problem and then extend the solution to solve

the generic case.

Chapter 7 contains a comparison of the two approaches based on different para-

meters of the composition planning. It is followed by a performance evaluation of

the reasoning approach, which studies the running time of the proposed approach

against the involved parameters. We also briefly discuss how other available tools

would perform in solving the composition problem, compared to the composition

approaches of Chapters 5 and 6. At the end of this chapter we briefly explain how

7



the proposed composition planning approaches can be applied to web services. To

do so we study the structure of WSDL documents.

We conclude the thesis in Chapter 8 by a summary of the contributions, and

suggestions on the research directions that could follow this work.
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Chapter 2

Background

In the previous chapter we discussed the need for behavioral specification of com-

ponents as one basic requirement of the composition problem. We also mentioned

that web services are a good example of software components for the composition

problem we study in this thesis. The reason is that there are specification languages

for web services that provide this behavioral information. Since we study a specific

composition problem in which we only need to know the inputs and outputs of

involved components, WSDL specifications [106] would be adequate as they use el-

ements such as types and operations to specify the behavior of web services. Other

web service specification languages might be used for extracting the behavior, such

as BPEL4WS [54] and OWL-S [32], which also specify the internal behavior using

some control constructs.

In this chapter, in Section 2.1 we first provide some background information

about web services and their composition. In Section 2.2 we study the importance

of semantics and semantic matching in solving the composition problem. Finally, in

Section 2.3 we propose a high-level architecture of a generic component composition

engine. This composition engine provides the necessary features in solving the

composition problem (Problem 1.1).

2.1 Web Services Composition

The World Wide Web Consortium (W3C) defines a web service as a software system

designed to support interoperable machine-to-machine interaction over a network,

and comes with an interface described in a machine-processable format. Other

systems interact with the web service in a manner prescribed by its description

9



using messages that are typically conveyed using HTTP in conjunction with other

web-related standards [104]. In simpler terms, a web service, or simply service, is a

web application which has the potential of being reused by both human and other

web applications using different internet protocols.

The communications between services are supported by a structure called Service-

Oriented Architecture (SOA). SOA is a paradigm for organizing and utilizing dis-

tributed capabilities that may be under the control of different ownership domains.

In SOA, services are the mechanism by which requirements and capabilities are

brought together. In the world of distributed computing, people and organizations

create services to solve a solution for their own problems. But it is reasonable to

think of one service developer’s requirements being met by services offered by some-

one else. This is not necessarily a one-to-one correlation, as a given requirement

may require combining numerous services [80].

SOA defines three basic roles and three basic operations for a web service.

As depicted in Figure 2.1, these three roles are the service provider, the service

requester, and the service registry. The objects involved in this architecture are

the service and the service description, while the operations performed on these

objects are publish, find, and bind. A service provider creates a web service and its

description and then publishes the service in a service registry. Once a web service

is published, a service requester may find the service by searching the registry,

which provides the service requester with a service description and a URL pointing

to the service itself. The service requester may then use this information to bind

to the service and invoke it [43].

Compared to software components that are developed according to earlier tech-

nologies, web services are more loosely coupled and more abstract. Therefore,

their composition is more practical since their low-level technical details, such as

the operating system, communication protocol and programming language, can be

ignored [89].

The development of composite web services is currently a manual task in most

cases, which is time-consuming and requires considerable effort on low-level pro-

gramming. Obviously, this approach does not scale well as the number of published

web services increases [12]. That is why finding approaches for automatic composi-

tion of web services is now one of the main research topics in the SOA community.
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Figure 2.1: The basic service-oriented architecture including service actors, objects

and operations [43].

2.2 The Role of Semantics

As the world of web services grows and the number of published web services

increases, the languages and terms used for their specification also expand. These

languages and terms adopted by different web service developers are not always

compatible with each other. Different terms in these languages may be used to

address the same concept; and similar terms may be used to address very different

notions. That is how the babelization problem [19] appears. For example, a web

service may use publication author to indicate an author, while there may be

other web services that use author, document creator or doc author for the

same concept.

In general, meanings of the terms used by different web services may be the

same, similar or different. Problems occur in one of the following cases [19]:

• When different terms (e.g., publication author and author ) are used to

address the same concept: In this case a rule can be used to explicitly specify

that two (or more) terms are equivalent.

• When the same terms (e.g., weight in kilograms and weight in pounds) ad-

dress inconsistent meanings: In this case XML namespaces [101] are used to

distinguish the two terms (e.g., metric:weight and imperial:weight ). To

make each data type in web service specification documents uniquely iden-
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tify a single concept, their names are preceded by an XML namespace. A

namespace actually represents a single vocabulary, in which each concept is

clearly understood. Therefore, each pair of namespace and type name rep-

resents a unique concept. A well-known example of XML namespaces is the

Dublin Core Metadata Initiative R©1.

• When different terms (e.g., vehicle and car ) address related meanings: In

this case the question is how different terms may be related to each other

(car is a subtype of vehicle ).

Another problem with adopting different languages and terms by different web ser-

vices is that data is developed and administered by each web service separately and

independent of other services. This problem, which is a result of the babelization

problem, makes it hard for web services to address other web services data. The

basic reason is that the format and semantics of data in two web services do not

necessarily match.

In order to provide necessary means to solve the above problems, documents

should use common vocabularies, unambiguous names and common data model to

express information, all in machine processable formats. These requirements are

the same requirements that lead to the semantic web [93]. The semantic web can

be considered as an improved version of the current web in which meaning is much

more important and is machine processable. It is a more useful web which can be

used not only by human users but also by machines. By making it easier to find,

share and combine information all over the web, the semantic web is a big step

towards automating web applications [19].

In the semantic web, ontologies [102] are used to express common vocabularies,

URIs [18] are used to specify unambiguous names, and the RDF language [103] is

used as the common data model (meta-data) to express information. Ontologies,

as machine processable vocabularies, are used to describe concepts and their re-

lationships. For example, the definition of the terms car and vehicle and the

relationship “car is a subtype of vehicle ” can be part of an ontology. There are

several ontologies and ontology development tools that have been developed. As an

example of each, cs-dept-ontology 2 is a computer science department ontology

developed at the University of Maryland, and ezOWL [27] is a visual semantic web

ontology editor [19]. A URI (Uniform Resource Identifier) is a compact string of

1http://purl.org/dc/elements/1.1/
2http://www.cs.umd.edu/projects/plus/SHOE/onts/cs.html
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characters for identifying an abstract or physical resource. It provides a simple

and extensible means for identifying a resource. For example, URL (Uniform Re-

source Locator) is a subset of URI that is used to represent resources based on their

network locations [18].

2.3 Architecture of a Component Composition

Engine

In Figure 2.2 we propose a generic architecture for component composition engines,

which is used to solve the composition problem given in Chapter 1. There are four

main components in this architecture:

• Component specification extractor : Every time a new component is created

and introduced to the component composition engine, the component spec-

ification extractor extracts its behavioral information, and sends it to the

repository for storage. Here the assumption is that each component comes

with a specification document, or its specification is given to the system man-

ually, e.g., by the component developer.

• Ontology matching engine and repository : The repository contains the be-

havioral specification of all available components. The way this information

is stored in the repository, which could partly depend on the composition

approach, should speed up the future searches as much as possible. An on-

tology matching engine might be attached to this repository to improve the

capabilities of the composition approach by carrying out a semantic matching

among different involved vocabularies or ontologies.

• Component composition planner : The composition planner is responsible for

the first side of the component composition, i.e., finding the composition plan.

Given a request submitted by the client the composition planner looks into the

repository and, using specific search algorithms, tries to find components that

could participate in a composition to satisfy the request. It then generates

a plan that describes the temporal order of execution of those components

along with necessary interactions among them that leads to a composition

fulfilling the given request. This planner might be equipped with a quality of

service controller, which would be responsible for selecting the optimal plan

whenever there are multiple plans satisfying the request.
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Figure 2.2: Typical architecture of an automatic component composition engine.

• Component composition execution engine: The execution engine is responsi-

ble for the second side of the component composition, i.e., orchestration. It

receives the composition plan and, using the specification of involved com-

ponents, executes the composite component by making participating compo-

nents interact in an appropriate way. The orchestration could be managed by

a third party in a centralized fashion, or by the involved components them-

selves.

In this thesis we focus on studying two approaches for implementing the component

composition planner, without any quality of service controller. The research on

implementing a quality of service controller will be left for future work.
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Chapter 3

Related Work

Reusing software components and their (automatic) composition has received a

great deal of attention, especially since the emergence of web services. Web services

gather all the necessary requirements for the automated reuse and composition,

and therefore, researchers in this area have become involved in studying how this

automation is possible in both theory and practice.

The research on the subproblems of automatic service composition, as intro-

duced in the generic architecture of Figure 2.2, has been going on in the past few

years. However, there is no accepted solution yet for any of those subproblems.

In this chapter, we briefly review some of the related research studies on these

subproblems. These works mostly address web service composition, instead of the

general component composition. In Section 3.1 some of the formal models pro-

posed to capture behavioral compositions of components are presented. Section 3.2

describes some of the techniques offered for web service discovery and matching.

Some of the suggested approaches to automatic component composition, including

finding the composition plan and the orchestration, are discussed in Section 3.3.

The efforts on techniques for semantic matching and ontology matching are partly

covered in Section 3.4. Finally, Section 3.5 cites a few approaches to quality of

service control in component composition. Although in some works it is argued

that integrated approaches to the composition problem are better than separating

the issues [66], we believe otherwise; and the reason is the complexity of the whole

problem and the fact that its subproblems are self-contained and can be solved

independently.
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3.1 Behavior Representation

Berardi et al. [16] propose a formal model based on Situation Calculus [73] and Basic

Action Theory [91] for service composition. They represent the sequences of possible

invocations to a service by execution trees, and show how a composite service can

be calculated based on its constituent component services. One of their interesting

results is a theorem that states that checking the existence of a service composition

can be done in EXPTIME. We come to this result later in the thesis when studying

the worst-case running time complexity of our composition algorithms. Berardi

et al., in another work [17], present a formal technique for automatic composition

synthesis when the behavior of available services is nondeterministic, and partially

controllable by the orchestrator. They prove that their technique is sound, complete

and terminating.

Hamadi and Benatallah [45] present a Petri net-based algebra to formally model

different types of web services compositions. In this work, each web service is

modeled as a Petri net. The authors explain how compositions of web services can

also be captured by Petri nets. Sequence, choice, unordered sequence and parallel

with communication are some of the composition types studied in the article.

Narayanan and McIlraith [79] define the semantics for a subset of OWL-S (for-

merly known as DAML-S) [32] in terms of Situation Calculus [73] predicates. This

semantics is then used to encode web service descriptions in a Petri net formalism

and to provide procedures for web service simulation, verification and composition.

All these procedures are abstractly explained in the paper without any specific algo-

rithm. For example, regarding the automated composition of web services, which is

addressed in the title of their work, only a short description is given which considers

only the pipeline execution of component services.

Kazhamiakin et al. [59] describe an approach for the verification of web ser-

vice compositions defined by sets of BPEL4WS [54] processes. They develop a

technique to associate with a web service composition an adequate communication

model, which is the simplest model sufficient to capture all the behaviors of the

composition. Their composition model is based on the parametric definition of the

communication infrastructure which results from changing the number of queues,

and allowing more asynchrony.

Bultan et al. [22] introduce a framework for modeling and specifying the global

behavior of service compositions. Under this framework, individual services com-

municate through asynchronous messages and each service maintains a queue for
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incoming messages. A global watcher keeps track of messages as they occur. They

propose and study a central notion of a conversation, which is a sequence of mes-

sages observed by the watcher. They consider the case where services are repre-

sented by finite state machines. They also propose conversation specifications as a

formalism to define the conversations allowed by a service composition.

3.2 Component and Web Service Matching

Agarwal et al. [2, 3] represent a matching technique based on π-calculus [78] and

description logic [7] for finding web services that (partially) match a given request.

Temporal constraints, simulation relations, semantic constraints, and security con-

straints are among those covered by their matchmaking algorithm.

Shen and Su [94] represent a matching approach for finding components of a

composite stateful web service from a repository of stateless services. The behavior

of a stateful web service is modeled by an automaton, in which each state represents

an activity that is performed by the composite service. Edges and their labels

represent data flow and the preconditions and effects of activities. Although the

authors claim their approach to be a composition approach, it actually seems to be

a web service matching one.

Medjahed et al. [75] define an ontology-based framework for automatically find-

ing partial matches for a composite web service. For this purpose, they introduce

a composability model for comparing syntactic and semantic features of web ser-

vices to find out if selected web services can actually interact with each other.

They also propose a technique to generate composite service descriptions, which

takes as input a high-level description of the desired composite service. Then using

a matchmaking algorithm, they find repository services matching different opera-

tions of the composite service given in the description. Although the authors call

their approach an automatic web service composition approach, it is simply a col-

lection of matchmaking attempts for a web service with different operations. They

perform an experimental evaluation of their approach as well.

Grigori et al. [44] propose a solution for service matching based on behavioral

specification. They first argue about the need to retrieve services based on their

workflow model. By using a graph representation formalism for services, they

propose an approximate matching algorithm. Starting from the classical graph

edit distance, they suggest two new graph edit operations to take into account

the difference of granularity levels that could appear in two models. The authors
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exemplified the approach for behavior matching of workflow protocols expressed

using WSCL [10] and developed a prototype that is available as a web service.

Paolucci et al. [83] present an algorithm for semantic matching of web service.

They compare the requested service against the repository components and decide

if a component matches the request using four different matching levels: exact,

plug-in (when the repository service is more general), subsume (when the target

service is more general), and fail.

Dong et al. [37] propose a web service search engine, called Woogle, which

supports similarity search for services in addition to simple keyword searches. Dif-

ferent types of search are supported by Woogle, such as searching for operations

with similar functionality, with similar inputs/outputs, or composable with another

operation. The key ingredient of their search engine is a clustering algorithm that

groups names of operation parameters into semantically meaningful concepts, which

are used for similarity searches.

3.3 Component and Service Composition

One of the advantages of service composition is to distribute the workload of servers.

The overall behavior, in this case, would be performed by multiple services residing

at different physical locations [67]. In this section, we review some of the approaches

to component and web service composition, in both composition planning and

orchestration areas. A more detailed study of web service composition approaches

can be found in the corresponding survey articles [38, 53, 76, 90, 98].

3.3.1 Composition Planning

Current proposed solutions for composition planning usually take advantage of

graph search algorithms or logic-based planning. In this part, we first present some

of the graph-based approaches, and then address some of the logic-based ones.

Graph-Based Approaches

The composition planning approaches that use graphs usually model input/output

data types of available service and/or services themselves, as graph nodes. This

way the composition planning problem is converted to finding graph paths from the
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input data types in the request to its output types. In the generic case, the graph

paths that are found have to be somehow combined so that a unique composition

plan can be produced as the solution.

Zhang et al. [115] represent a graph-based approach to web services composition.

In their approach each graph node represents a web service and edges represent

the possibility of data passing between two services; i.e., when the output of one

service is semantically similar to the input of another service. Weights are assigned

to graph edges based on the semantic similarity of outputs and inputs at both ends,

as well as some quality metrics, such as execution time. Then, the Bellman-Ford

algorithm [30] is used to find a shortest weighted graph paths from the inputs to

the outputs specified in the requested service. The authors claim an O(N3) running

time, where N is the number of services involved. Since they would need to use a

modified version of the Bellman-Ford algorithm which involves more computation,

it is not clear why the running time complexity would remain intact. Also, the case

where more than one instance of the same data type are involved is not discussed,

which clearly adds to the complexity of the problem. Their proposed composition

algorithm returns only the first solution found, and does not look for other possible

solutions in case, for some reason, the first solution is not a good candidate.

Aydoğan and Zırtıloğlu [6] propose a graph-based approach for finding compo-

sition plans. In their graph, nodes represent both data types and services, while

edges represent dependencies, from output nodes to service nodes, and from service

nodes to input nodes. They claim that, for finding the composition plan, it suffices

to find paths from request outputs to its inputs. They assign weights to service

nodes based on their quality values (reliability, accessibility, . . . ), and when there

are multiple choices, their approach picks the service with highest weight value.

Their proposed solution is quite abstract and does not carefully discuss some as-

pects of the problem. Specifically, it fails to find the best quality solution because

it picks the best quality service locally, instead of picking the one which leads to the

overall maximum quality. In finding paths they do not explain, in enough details,

the effect of multiple input/output data types, and multiple instances of the same

data type. They do not discuss the complexity of their algorithm as well.

Shin and Lee [95] present a graph-based approach to finding composite informa-

tion web services to satisfy a given request by considering the functional signature

of the web services along with their functional semantics. They base their approach

on one of our earlier works [48] and extend it to find more precise compositions.

We discuss their approach in more details in Section 5.3.
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Fujii and Suda [41] represent a semantic-based dynamic service composition

system which integrates the semantic information and the functional information

of a component into a single semantic graph representation, and generates the

execution path of the requested service and checks the semantics of the path against

the user request.

Logic-Based Approaches

In logic-based approaches, some form of AI planning is applied in order to find the

composition plan. These approaches should convert the problem into a planning

problem, solve the planning problem, and then convert the result into a solution

for the original composition planning problem.

Peer [84] introduces an AI planning technique for web service composition based

on PDDL [42], which is a language for expressing planning problems. In this work,

a mapping between WSDL specification and PDDL constructs are created through

some semantic annotations which results in descriptions of service behaviors in

PDDL. Each service request then is converted to an AI planning problem which is

handed to the appropriate planner. In this approach it is not explained how the

semantic markup is automatically created for each service.

Rao et al. [89] present a Linear Logic-based attempt to web services composi-

tion. They convert the functional and non-functional specification of available web

services and the requested service into Linear Logic axioms and take advantage of

theorem provers to prove the requested service axiom using the axioms of avail-

able services. As a result, a proof tree is created which can show which repository

services have to be used. However, the authors do not explain in this paper how

this proof tree can be converted into a composition plan. Also, since the logical

axioms must be used by automatic theorem provers, the necessary translations into

a format acceptable by the provers is not discussed in their work.

Oh et al. [81] represent a forward-chaining approach for finding whether a repos-

itory is able to satisfy a web service request. The main matching idea is that when

the request inputs is a superset of a candidate service inputs and the request outputs

is a subset of the candidate service outputs, the candidate service matches the re-

quest. This way, a chain of candidate services might be found to match the request

when there is no single service to do so. Then, using a simple search algorithm the

feasibility of the composition can be determined. The presented approach is rather

simplistic because a randomized data structure is used which might provide false
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positives. Also, there is no discussion on how to find the composition plan in case

the algorithm returns successfully. Although the authors do not explicitly discuss

the complexity of their algorithm, it seems to have an exponential time worst-case

complexity.

Laukkanen and Helin [68] propose an approach for finding semantically similar

web services to a specific one. This similarity search includes searching for a web ser-

vice or a set of web services with similar inputs, outputs, preconditions and effects.

Also, part of their research is dedicated to making relationships between different

ontologies in order to increase the chance of finding a solution. BPEL4WS [54]

is used for describing the functionality of the desired service. Then, repository

services that semantically match the identified functionality are found, according

to four different matching levels: exact match, plug-in (the repository service is

more general), subsumption (the target service is more general), and fail. Finally,

a workflow is created and executed which provides the required functionality. One

disadvantage of their approach is that since functionality is captured by logical

expressions, the cardinality of inputs/outputs cannot be captured.

Tang et al. [97] introduce an automatic web service composition method based

on logical inference of Horn clauses in Petri net models. Available services and

the request are translated into a set of Horn clauses, and then modeled using Petri

nets. The T-invariant method of Petri nets is used to determine the existence

of composite web services fulfilling the request. The authors consider a subset of

available components, i.e., components that receive/return only one instance of

each involved data type. This assumption is too restrictive, and the authors do not

explicitly discuss the complexity of their approach. However, we show in a similar

approach in Chapter 6 that this simplified version of the composition problem can

be solved in linear time in the number of available components.

Kona et al. [61] formally define a web service discovery and composition ap-

proach based on constraint logic programming. It is simply based on the fact that

for two services to be sequentially composed, the outputs and effects of the first

must match the inputs and preconditions of the second. They propose an algorithm

which simply checks if the outputs and effects of the requested service are reachable

from its inputs and preconditions using the repository components. Their approach

seems to return only a ‘yes’ or ‘no’ answer based on the possibility of a composition,

and there is no specific procedure to find the appropriate composition plan.

Among other logic-based approaches, Aiello et al. [5] represent a request lan-

guage for specifying requested services, and an approach for composing web services
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based on planning under uncertainty and constraint satisfaction techniques. Tra-

verso and Pistore [99] propose a planning technique for the automated composition

of web services which deals with nondeterminism, partial observability and com-

plex goals. A system is partially observable if its internal status and variables are

hidden from other systems. Limthanmaphon and Zhang [69] provide a model for

web service composition based on case-base reasoning techniques.

As an example of a composition planning approach that does not use graphs

and logic as the above approaches, Berardi et al. [15] present an automaton-based

framework for describing the expected behavior of web services in terms of their

possible executions (execution trees). They use this setting to analyze the com-

plexity of finding a composition plan for a given request. They also propose an

approach for finding composition plans, although they do not provide any concrete

algorithm. They show that their approach runs in exponential time with respect

to the size of the given automaton.

3.3.2 Composition Orchestration

Benatallah et al. [12, 14] propose a declarative language for composite web ser-

vices and a dynamic peer-to-peer paradigm for their execution. In their frame-

work, which is called SELF-SERV, web services are composed and the resulting

composite services are executed in a decentralized way. They take advantage of a

declarative language, to specify the statechart model of the composite service, ser-

vice communities, as containers of alternative services with similar behavior, and

also a peer-to-peer execution model. In this execution model the responsibility

of coordinating the execution of a composite service is distributed across several

peer software components called coordinators. These coordinators are, in fact, at-

tached to each component service, and are in charge of initiating, controlling, and

monitoring their associated services, and collaborating with their peers.

Maamar et al. [71] introduce an approach for composite service execution based

on three main concepts, i.e., software agents, contexts and conversations. A soft-

ware agent is a program that acts on behalf of the user, and does conceptually

similar to what a coordinator does in [12, 14]. Context is the information relevant

to the interactions between the user and the environment. Conversations are the

messages passed among the participants to achieve a specific purpose. The authors

define different types of agents and contexts.

Yildiz and Godart [108] present a methodology that derives cooperating distrib-
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uted processes of a centralized specification with respect to their information flow

policies. This methodology is used to provide a systematic approach to manage the

information flow between composed services.

Casati and Shan [25] propose eFlow as a platform for specifying, enacting, and

monitoring composite services. In eFlow composite services are modeled as busi-

ness processes enacted by a service process engine. Their platform supports service

process specification and management including a simple service composition lan-

guage, events and exception handling, ACID service level transactions, and security

management.

Korhonen et al. [62] present a way to automatically compose web service work-

flows. The web services workflows are described using a transactional workflow

ontology which can be used to describe both component web service workflows and

composite web service workflows. They have also implemented a workflow engine

that runs the workflow instances.

3.4 Ontology Matching

There are different approaches to ontology and schema matching, such as schema

and instance-based, element and structure-based, linguistic-based, constraint-based,

and cardinality-based. Rahm and Bernstein [88] survey these approaches by de-

scribing different domains in which schema matching might be required, along with

discussing the Match operator which is used to compare two schemas. They also

cover and compare some of the schema matching works in the literature on this

topic.

In another work, Madhavan et al. [72] combine some of the above matching

techniques to find a new match algorithm. Specifically, they take advantage of

linguistic-based, element-based and structure-based matching in order to provide a

powerful algorithm.

Tamani and Evripidou [96] present an approach to facilitate web service dis-

covery. They add some XML meta-data to web service requests and offers that

exposes additional information about the service, such as the identity of web ser-

vice provider/requester, the purpose of the offer/request and the inputs/outputs

involved. Then, a matching process is followed using XPath queries to compare the

request against the available offers.

Yeh et al. [107] propose an approach for finding semantic mismatches between
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two different representations of the same ontology. Since ontologies are normally

expressive enough and representations are usually large and built by different peo-

ple, multiple encodings of the same knowledge do not necessarily match. Therefore,

syntactic and semantic matching become essential to make relations between the

two. Since a good matching approach would find mismatches that provide valu-

able information on comparing two representations, the authors make an effort to

address mismatches as well.

3.5 Quality of Service Control

Zeng et al. [114] propose a quality-driven approach to optimally and dynamically

select component web services in executing a composite service. They introduce a

multi-dimensional web service quality model to indicate nonfunctional properties

of web services, such as execution price and execution duration. Then, based on

this model, they propose a global planning method, formulated as an optimization

problem with a linear programming approach, to find the best execution plan for

a composite web service. The strength of their approach is that the quality of the

composition as a whole is being optimized, instead of optimizing the quality of each

component service.

Canfora et al. [23] propose a genetic algorithm-based approach for quality of

service aware service composition, which determines a set of concrete services to

be bound to abstract services in an orchestration to meet a set of constraints and

to optimize a fitness criterion on quality of service attributes. Compared with

linear integer programming, genetic algorithms allow dealing with quality of service

attributes having nonlinear aggregation functions.

Aggarwal et al. [4] present an approach for achieving constraint driven web

service composition by adding an abstract process designer, a constraint analyzer,

an optimizer and a binder module. They extend the workflow quality of service

model in [24] to allow global optimization and composition of web processes.

Yu and Lin [110] study the web service quality of service constraint issue using

a quality of service broker which is responsible for coordinating individual service

components to meet the requested quality constraint. The service selection problem

is modeled as a multiple choice knapsack problem and its solution and performance

is studied using different algorithms.

There are also other publications that try to consider quality of service, very

abstractly, in finding composition plans [6, 89].
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Chapter 4

Behavior Formalization

In this chapter we explain two representation models for the behavior of software

components. One of these models is interface automata [34] which is a way of

describing involved methods/actions in a component along with their temporal

order. The next model is composition algebra [49] which is an alternative way

of representing the similar information about each component. Using appropriate

concurrency rules, these two formalisms are capable of representing the behavior of

compositions of software components as well.

4.1 Interface Automata

Interface automata take advantage of the ordering implied by states and transitions

of the automaton model to capture the temporal order of methods and actions in

a software component. This model can be used in design and documentation, as

well as in validation and model checking [34]. As one of its powerful features,

it formally defines the interface automaton resulting from the synchronization of

two interface automata. For a component to be represented with an interface

automaton, the methods that it provides to the environment and the inputs it

receives are modeled as its input actions, while the methods that it invokes (from

other interface automata) and the outputs it returns are modeled as its output

actions. An example of interface automata is given in Section 4.1.1.

25



4.1.1 Formalism

In this section we represent the formal definition of interface automata and the

corresponding concepts related to the scope of this thesis. The materials of this

section are mainly taken from de Alfaro and Henzinger [34].

Definition 4.1 An interface automaton P is formally defined by the sextuplet

(VP , V init
P ,AI

P ,AO
P ,AH

P , TP ), where

• VP is a set of states,

• V init
P ⊆ VP is a set of initial states (V init

P 6= ∅),

• AI
P ,AO

P ,AH
P are mutually disjoint sets of input, output and internal actions

(AP = AI
P ∪ AO

P ∪ AH
P ),

• TP ⊆ VP ×AP × VP is a set of steps. �

A step (v, a, v′), in which a ∈ AI
P , is called an input step. Alternatively, it is called

an output or an internal step if it belongs to AO
P or AH

P , respectively. An action

a is said to be enabled at a state v ∈ VP if there is a step (v, a, v′) ∈ TP . Input,

output and internal actions enabled at a state v ∈ VP are shown by AI
P (v), AO

P (v)

and AH
P (v), respectively. The set of all actions enabled at v is shown by AP (v),

and AP (v) = AI
P (v) ∪ AO

P (v) ∪ AH
P (v). The set AI

P\AI
P (v) contains illegal inputs

at v. The size of an interface automaton P is defined by |P | = |VP |+ |TP |.

Example 4.1 Figure 4.1 depicts the interface automaton of a message transmis-

sion component. This component, called Comp, has a msg method for sending mes-

sages which returns either ok or fail as a result. This component performs this

functionality through a method send to a communication channel with ack and

nack outputs for successful and unsuccessful transmissions, respectively. For this

component, we have

• VComp = {0, 1, 2, 3, 4}

• V init
Comp = {0}

• AI
Comp = {msg, ack, nack}

• AO
Comp = {send, ok, fail}
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send!

ack?
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ok!

fail!

msg?

nack?

Figure 4.1: Interface automaton of the Comp component in Example 4.1.

• AH
Comp = ∅

• TComp = {(0, msg, 1), (1, send, 2), (2, ack, 3), (2, nack, 4), (3, ok, 0), (4, fail, 0)}

The size of this interface automaton is 11. �

Note that input, output and internal actions in interface automata are affixed with

?, ! and ; symbols, respectively. Interface automata is equipped with a formalism

for calculating the composition of two interface automata, especially when they are

synchronized on some action. The corresponding operator in interface automata is

the composition operator shown by || . Before formally defining this operator, we

define the concepts of composability and illegal states.

Definition 4.2 Two interface automata P and Q are composable, if and only

if AH
P ∩ AQ = ∅, AH

Q ∩ AP = ∅ (internal actions of one interface automaton

cannot be among the actions of the other automaton), AI
P ∩ AI

Q = ∅ (their in-

put actions are disjoint), and AO
P ∩ AO

Q = ∅ (their output actions are disjoint).

We let shared(P, Q) = AP ∩ AQ. If P and Q are composable, shared(P, Q) =

(AO
P ∩ AI

Q) ∪ (AI
P ∩ AO

Q). �

Definition 4.3 The illegal states of P ||Q is defined by

Illegal(P,Q) =

(v, u) ∈ VP × VQ

∣∣∣∣∣∣∣ ∃a ∈ shared(P,Q) �

 a ∈ AO
P (v) ∧ a 6∈ AI

Q(u)
∨

a ∈ AO
Q(u) ∧ a 6∈ AI

P (v)


,
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a? b!

b

b? a!

a b

Q

Figure 4.2: Two interface automata P and Q for which Illegal(P, Q) 6= ∅.

where P ||Q indicates the composition of interface automata P and Q. �

Example 4.2 Figure 4.2 depicts two interface automata P and Q. According to

Definition 4.3, Illegal(P, Q) 6= ∅. For example state (0, 0) is an illegal state, at

which one automaton can only receive a, and the other can only receive b, while

both a and b belong to the shared actions of P and Q. In case we need to remove all

the illegal states, we would have to rename at least one of the shared actions in one

automaton. For example, if we rename the output action b in P to b′, then there

would be no illegal states left. �

Now, we can formally define the composition of two interface automata.

Definition 4.4 The composition P ||Q of two composable interface automata P

and Q, where Illegal(P, Q) = ∅, is the interface automaton defined by

• VP ||Q = VP × VQ

• V init
P ||Q = V init

P × V init
Q

• AI
P ||Q = (AI

P ∪ AI
Q)\shared(P, Q)

• AO
P ||Q = (AO

P ∪ AO
Q)\shared(P, Q)

• AH
P ||Q = AH

P ∪ AH
Q ∪ shared(P, Q)

•
TP ||Q = {((v, u), a, (v′, u)) | (v, a, v′) ∈ TP ∧ a 6∈ shared(P, Q) ∧ u ∈ VQ}

∪ {((v, u), a, (v, u′)) | (u, a, u′) ∈ TQ ∧ a 6∈ shared(P, Q) ∧ v ∈ VP}
∪ {((v, u), a, (v′, u′)) | (v, a, v′) ∈ TP ∧ (u, a, u′) ∈ TQ ∧ a ∈ shared(P,Q)}
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nack?
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fail;
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msg!

ok?

fail?

msg!

msg; send!

msg;

5 4

3

Figure 4.3: An example of the interface automata composition. (a) Interface au-

tomaton of the component User in Example 4.3. (b) Interface automaton of the

composition User||Comp.

The states that remain unreachable from V init
P ||Q are removed from VP ||Q after the

above calculations. The special case Illegal(P, Q) = ∅ suffices our needs in this

thesis. Discussion on the composition operation in general is beyond the scope of

this thesis. �

Example 4.3 Consider another component, called User, that uses the component

Comp of Example 4.1. This component could be a human user or another component

that sends messages through Comp and receives ok or fail responses. We assume

that User sends its message over and over again until it receives an ok response.

The interface automaton of this component is shown in Figure 4.3-(a). To check

the composability of components Comp and User, we follow Definition 4.2,

• AH
Comp ∩ AUser = ∅

• AH
User ∩ AComp = ∅

• AI
Comp ∩ AI

User = ∅

• AO
Comp ∩ AO

User = ∅,

which confirms that they are composable. Consequently, shared(Comp, User) =

{msg, ok, fail}, and Illegal(Comp, User) = ∅. To find the composition of these

two interface automata we can follow Definition 4.4, which leads us to the interface

automaton of Figure 4.3-(b). �
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ok;

msg;

(c)

Figure 4.4: Examples of the new representation for interface automata. (a) Comp.

(b) User. (c) User||Comp.

The composition operator in interface automata is both commutative and associa-

tive.

4.1.2 Application

Interface automata capture the behavior of components in a general loop, at each

execution of which the component is executed once. We can see this in Figures 4.1

and 4.3, where the state 0 is both the initial and the final state. We make a change

in this representation by separating the initial and final states. The final states

then would be the states from which no step is initiated. The final states of an

interface automaton P are shown as V fin
P .

This little change would not affect Definition 4.4, and the same formalism works

for calculating the composition in this new form of interface automata. The new

representations of components Comp, User and User||Comp are shown in Figure 4.4.

Note that, by definition, an interface automaton could have multiple initial states

and final states. However, we prove the following lemma to use a generic type of

interface automata for our future discussions.

Lemma 4.1 For every interface automaton with multiple initial and final states

there is a normalized interface automaton with a single initial state and a single

final state which represents the exact same behavior.

Proof. Consider the interface automaton P with m initial states and n final states,

i.e., V init
P = {i1, i2, · · · , im} and V fin

P = {f1, f2, · · · , fn}. The normalized equivalent
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interface automaton N would have a single initial state i and a single final state f ,

with the following attributes:

• VN = (VP ∪ {i, f})\(V init
P ∪ V fin

P )

• V init
N = {i}

• V fin
N = {f}

• AI
N = AI

P

• AO
N = AO

P

• AH
N = AH

P

• TN = TP , except that

– each (ik, a, v) ∈ TP , in which 1 6 k 6 m, a ∈ AP and v ∈ VP\V init
P , is

replaced by (i, a, v),

– each (v, a, fk) ∈ TP , in which 1 6 k 6 n, a ∈ AP and v ∈ VP\V fin
P , is

replaced by (v, a, f).1

Two interface automata P and N would represent the same behavior, because every

execution path in one is an execution path in the other.2 �

Example 4.4 Interface automata of components User and User||Comp in Fig-

ure 4.4 are normalized. However, the interface automaton of component Comp is

not. If states 5 and 6 of this automaton are merged into a single state, the automa-

ton becomes normalized. �
1In case there is a loop on an initial state or a final state in P , the conversion is somewhat

different, but can still be simply done. The following is an example of such a case, where the
interface automaton in part (b) is the normalized form of the one in part (a).

d!
c?

d!

a?

b!

(a) (b)

b!

b!

c?

d!

a?

a?

c?

2An execution path in an interface automaton P is an alternating sequence v0, a1, v1, · · · , ak, vk,
in which v0 ∈ V init

P , vk ∈ V fin
P , and (vj−1, aj , vj) ∈ TP (16j 6k).
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The composition operator in interface automata is only one of several ways two

components can be composed. In fact, the composition operator indicates how two

components can be synchronized on some shared action between them. There are

other ways two components can be combined into a more complex or composite

component.

• Sequential execution: One component is executed right after the other one

finishes its execution.

• Conditional execution: Only one of the two components is executed each

time. The choice between the two can be made either deterministically or

nondeterministically.

• Parallel execution: Two components are executed without any specific order

with respect to each other, and there is no synchronization between them.

Based on the above alternative ways of combining two components, we define the

concept of composition to refer to all the four types of combining two components,

and change the name of interface automata composition operator to the synchro-

nization operator and show it by the � symbol. We use sequence (·), choice (⊕)

and parallel ( || ) operators for the above sequential, conditional and parallel execu-

tion, respectively. These three composition alternatives can also be modeled using

interface automata. We discuss these four operators in the rest of this section.

Sequence

To represent the sequential execution of two interface automata P and Q, shown

as P · Q, it suffices to merge the final state of P and the initial state of Q. This

way, when the execution of P is finished, Q starts its execution. Figure 4.5-(b)

shows how to obtain the sequential execution of two interface automata P and Q

of Figure 4.5-(a). Formally speaking, the interface automaton of P · Q is defined

based on the normalized interface automata of P and Q as follows. We assume

that V fin
P = {fP} and V init

Q = {iQ}.

• VP ·Q = (VP ∪ VQ)\{iQ}

• V init
P ·Q = V init

P

• V fin
P ·Q = V fin

Q
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Figure 4.5: How sequence and choice operations are modeled in interface automata.

(a) Two normalized interface automata P and Q. (b) Interface automata represen-

tation for P ·Q. (c) Interface automata representation for P ⊕Q.

• AI
P ·Q = AI

P ∪ AI
Q

• AO
P ·Q = AO

P ∪ AO
Q

• AH
P ·Q = AH

P ∪ AH
Q

• TP ·Q = TP ∪ TQ, except that each (iQ, a, v) ∈ TQ, in which a ∈ AQ and

v ∈ VQ\{iQ}, is replaced by (fP , a, v).

Clearly, the interface automaton of P ·Q will be normalized as well. Moreover, we

can easily that the sequence operator in interface automata is associative, but not

commutative. In other words, P ·Q 6= Q · P and (P ·Q) ·R = P · (Q ·R).

Choice

The interface automaton of the conditional execution of two interface automata P

and Q, shown as P ⊕ Q, only combines the initial states of the two. This means

that at the initial state the execution could start with P or with Q, and once the

execution is started, it would stay on the same automaton and would never jump to

the other. Figure 4.5-(c) shows how the interface automaton of P ⊕Q would look.

The interface automaton of P ⊕Q is formally defined as follows. Again we assume

that interface automata of P and Q are normalized, V init
P = {iP}, V fin

P = {fP},
V init

Q = {iQ} and V fin
Q = {fQ}.
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• VP⊕Q = (VP ∪ VQ)\{iQ, fQ}

• V init
P⊕Q = V init

P

• V fin
P⊕Q = V fin

P

• AI
P⊕Q = AI

P ∪ AI
Q

• AO
P⊕Q = AO

P ∪ AO
Q

• AH
P⊕Q = AH

P ∪ AH
Q

• TP⊕Q = TP ∪ TQ, except that

– each (iQ, a, v) ∈ TQ, in which a ∈ AQ and v ∈ VQ\{iQ}, is replaced by

(iP , a, v),

– each (v, a, fQ) ∈ TQ, in which a ∈ AQ and v ∈ VQ\{fQ}, is replaced by

(v, a, fP ).

Consequently, the resulting interface automaton will be normalized as well. Also,

this definition of the choice operator in interface automata implies that it is both

commutative and associative. Therefore, P ⊕ Q = Q ⊕ P and (P ⊕ Q) ⊕ R =

P ⊕ (Q⊕R).

Parallel

Finding the interface automaton of the parallel execution of two interface automata

P and Q is more complex. The thing to do is walk through the automaton of each

component at the same time having the option to choose the next action from each

of the two. It is like running the two component at the same time in an unordered

fashion. Figure 4.6 shows how the parallel execution of two simple components is

modeled in interface automata. This interface automaton is obtained by applying

a formalism rather similar to Definition 4.4. Specifically,

• VP || Q = VP × VQ

• V init
P || Q = V init

P × V init
Q

• V fin
P || Q = V fin

P × V fin
Q

• AI
P || Q = AI

P ∪ AI
Q
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Figure 4.6: An example of a parallel execution in an interface automaton. (a)

Simple interface automaton for components P and Q. (b) The interface automaton

of P || Q.

• AO
P || Q = AO

P ∪ AO
Q

• AH
P || Q = AH

P ∪ AH
Q

•
TP || Q = {((v, u), a, (v′, u)) | (v, a, v′) ∈ TP ∧ u ∈ VQ}

∪ {((v, u), a, (v, u′)) | (u, a, u′) ∈ TQ ∧ v ∈ VP}

According to this formalism, if interface automata of P and Q is normalized, so

will be the interface automaton of P || Q. Moreover, since the parallel execution

is a special case of the original interface automata composition, in which there

is no shared action between the two automata, the parallel operator inherits its

commutativity and associativity. In other words, P ||Q = Q || P and (P ||Q) ||R =

P || (Q || R).

Synchronization

We discussed this operator, as the composition operator, in Section 4.1.1. We men-

tioned that it works based on the notion of shared actions between two components,

i.e., actions that are inputs in one and outputs in the other. We call this type of

shared actions complementary actions.

Definition 4.5 Complementary actions of two components P and Q, defined as

complementary(P, Q), are defined as the set of actions which are inputs in one and
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outputs in the other. Considering their interface automata, complementary actions

of P and Q would be (AO
P ∩ AI

Q) ∪ (AO
Q ∩ AI

P ). �

The interface automata synchronization based on complementary actions is both

commutative and associative [34].

Here, we add an alternative to shared actions, i.e., shared inputs [33]. We claim

that two components can be synchronized on their shared inputs as well, because

when they are expecting an input of the same type, one instance of that data type

could be given to both, and there is no need to prepare two instances, i.e., one

instance for each component.

Definition 4.6 Shared inputs of two components P and Q, sharedinputs(P, Q),

are the set of input actions common to the two of them. Considering their interface

automata, the set of shared actions of P and Q would be (AI
P ∩ AI

Q). �

As a result, shared actions of two components P and Q, shared(P, Q), would be

the union of their complementary actions and shared inputs. Formally speak-

ing, shared(P, Q) = complementary(P, Q) ∪ sharedinputs(P, Q). Based on this

new definition, the synchronization of two interface automata P and Q, when

Illegal(P, Q) = ∅, is defined as follows.

• VP�Q = VP × VQ

• V init
P�Q = V init

P × V init
Q

• AI
P�Q = (AI

P ∪ AI
Q)\complementary(P, Q)

• AO
P�Q = (AO

P ∪ AO
Q)\complementary(P, Q)

• AH
P�Q = AH

P ∪ AH
Q ∪ complementary(P, Q)

•
TP�Q = {((v, u), a, (v′, u)) | (v, a, v′) ∈ TP ∧ a 6∈ shared(P, Q) ∧ u ∈ VQ}

∪ {((v, u), a, (v, u′)) | (u, a, u′) ∈ TQ ∧ a 6∈ shared(P, Q) ∧ v ∈ VP}
∪ {((v, u), a, (v′, u′)) | (v, a, v′) ∈ TP ∧ (u, a, u′) ∈ TQ ∧ a ∈ shared(P,Q)}

The interface automata synchronization based on shared inputs has been discussed

by de Alfaro et al. [33], and addressed as a commutative and associative operator.

Now that we are familiar with the interface automata operators, we define the

concepts of equality and equivalence for interface automata.
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Figure 4.7: Examples of equal (P and Q) and equivalent (P and R) interface

automata.

Definition 4.7 Two interface automata P and Q are equal (P = Q), if and only

if there are one-to-one correspondences between elements of VP and VQ, V init
P and

V init
Q , TP and TQ, and moreover AI

P = AI
Q, AO

P = AO
Q, and AH

P = AH
Q . They are

equivalent (P ≡ Q), if and only if they represent the same externally visible behav-

ior. We define ∂-trace equivalence [100] as the equivalence relation for interface

automata. �

For ∂-trace equivalence, two processes are equivalent if each execution path in one

has a similar execution path in the other. Note that all internal actions in an

interface automaton are invisible to the outside viewer, and would be equivalent to

the silent action τ .

Example 4.5 Figure 4.7 depicts three interface automata P , Q, and R. According

to Definition 4.7, P = Q and P ≡ R. �

The modified version of interface automata we studied in this section can be used

to represent the behavior of components and their compositions. We see examples

of its direct application in Chapter 5.
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Figure 4.8: Unordered execution of actions can be seen as moving from the point

(0, 0, · · · , 0) to the point (1, 1, · · · , 1) in the n-dimensional space. Figures (a) and

(b) represent the cases where two and three actions are involved, respectively.

4.2 Composition Algebra

To formally represent stateless components, using interface automata is not the

best choice. The simple reason is that when the number of actions grows it is not

easy enough to represent and understand an interface automaton. For example,

consider a stateless component which receives 5 inputs in parallel and returns only

one output. An interface automaton would need 32 states just to represent the

unordered execution of the inputs of this component. The following lemma formally

describes this observation.

Lemma 4.2 In order to represent the unordered execution of n actions in an in-

terface automaton 2n states and n× 2n−1 steps are required.

Proof. Assume that the interface automaton P represents the unordered exe-

cution of n actions a1, a2, . . . , an. This unordered execution could be seen as

moving from the point (0, 0, · · · , 0) to the point (1, 1, · · · , 1) in the n-dimensional

space (see Figure 4.8), where each dimension corresponds to one of the actions

involved. Therefore, each move in the k-th dimension would represent executing

action ak. We can see that for such an unordered execution, there is a one-to-one

correspondence between the relative interface automaton nodes and all the points

{(x1, x2, · · · , xn) | xi ∈ {0, 1} (1 6 i 6 n)} in this n-dimensional space, where
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the points (0, 0, · · · , 0) and (1, 1, · · · , 1) correspond to the initial and final states of

the automaton, respectively. For instance, arriving at point (0, 1, 0, · · · , 0, 1) indi-

cates that actions a2 and an have been executed and all other actions are yet to be

executed. This is enough to show that the number of required nodes in P is 2n.

Similarly, we notice that there is also a one-to-one correspondence between the

steps of P and the edges in this n-dimensional space. Each point (x1, x2, · · · , xn),

xi ∈ {0, 1}, is connected to n other point through n edges, and therefore, the total

number of edges in the n-dimensional space, and hence in the interface automaton

P , would be n×2n

2
= n × 2n−1. Note that the denominator 2 is used because each

edge is shared between two nodes. �

Due to the complexities that come with representing behaviors in interface au-

tomata, we use an algebraic model as an alternative and easier representation for the

same information. This model, which is called composition algebra, gives an alge-

braic representation to interface automata operators and axioms. At the same time,

it can be compared to well-known process algebras, such as CSP (Communicating

Sequential Processes) [51] and CCS (Calculus of Communicating Systems) [77].

4.2.1 Formalism

Similar to the well-known process algebras [51, 77] proposed for behavior modeling,

the composition algebra also captures inputs, outputs, and the temporal order

of actions in a process in all its possible executions, according to its underlying

interface automata representation.

We assume that a process consists of one or more actions (input or output) or

simpler processes which are executed as parts of a specific workflow. In composi-

tion algebra process names start with an uppercase and action names start with

a lowercase letter. Each single action could also be seen as a process with only

one action. Each action is considered to be atomic and indivisible, and therefore,

would be located at the lowest levels of this hierarchy as a leaf node. In order to

distinguish between input and output actions, outputs in composition algebra are

identified with a macron.

Example 4.6 Assume a component CANAreaCodes which receives a city and a

province name in Canada and returns the corresponding area code. Then city,

province and areaCode would be three actions of this process. The first two actions

are input actions and the last one is an output. �
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Composition algebra captures from each process only actions visible to the out-

side world. For example, the above CANAreaCodes component, after receiving the

two inputs, probably contacts its underlying database to find the appropriate area

code. However, this database connection cannot be seen by the users and, therefore,

is not of our interest. One could say that the composition algebra models only the

external behavior of processes. Based on this observation, we use the silent action

τ [77] to represent one or more back to back internal actions invisible to the outside

world. In fact, to the outside viewer there is no difference between occurring no

action and occurring one or more consecutive internal actions, because the differ-

ence cannot be observed. Therefore, we can represent them all by the silent action.

Unlike interface automata, composition algebra treats all the internal actions the

same way by assigning them the unique label τ .

The concept of equivalence in composition algebra refers to behavioral equiva-

lence. Two processes are equivalent in composition algebra if the external behaviors

represented by their underlying interface automata is the same. As mentioned ear-

lier, we use the concept of ∂-trace equivalence [100] for this purpose. We designate

the equivalence of two processes P and Q by P ≡ Q. We use the familiar symbol =

to indicate that two algebraic expressions are exactly the same. Therefore, P = Q

implies P ≡ Q, while the reverse is not necessarily true.

Now that we are familiar with actions and processes as the building blocks of

the composition algebra and also the idea behind process equivalence, we introduce

the algebraic operators. These operators are semantically the same as those of

interface automata. As we mentioned earlier, since each action can be seen as a

process, these operators also apply to actions. Below, the composition algebraic

operators are introduced along with a simple comparison to their counterparts in

CSP and CCS.

Sequence

The sequence operator, represented by ·, is used to show that a process is executed

right after another process is terminated. In other words, P ·Q specifies a process

in which the process P is first executed and after its execution, the process Q is

executed. The same description is true for actions. For example, P = a · b means

that during the process P , an input of type a is received and, after that, an output

of type b is returned. In fact, it is the composition algebraic representation of

the interface automaton P in Figure 4.2. This sequence operator is more general
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compared to the sequence operators of CSP and CCS, which only allow a process

to follow an atomic action.

Choice

The choice or conditional operator, represented by ⊕, is used to represent different

paths of execution when the control flow is determined based on a specific condition

or decision, or even nondeterministically. Therefore, P ⊕ Q represents a process

that behaves like either P or Q (not both) during each execution. This operator can

be used on actions too. As an example, the process P = (a⊕ b) · c receives an input

of type a or b (not both) and returns an output of type c. As another example, the

process msg·send·((ack·ok)⊕(nack·fail)) is the composition algebraic representation

of the interface automaton of Figure 4.4-(a). The similar choice operator exists in

CCS, while CSP is equipped with three different choice operators.

Parallel

In composition algebra, parallel or unordered execution of two processes, repre-

sented by || , means that there is no synchronization point between them during

their execution. So one would expect that each process performs its workflow

independently. Although there is a conceptual difference between the unordered

execution and the parallel execution, we believe that the importance of the parallel

execution is to be experienced in practice, and on the paper it is quite similar to

the execution of two processes without any specific order. Therefore, we simulate

the parallel execution of two processes by interleaving their workflows. It is like

assuming that processes, as collections of atomic actions, are executed by a single

processor. For example, the process (a · b) || (c · d) is an alternative representation

for the interface automaton of Figure 4.6-(b).

The parallel operator is not a primary operator in our process algebra as it can

be simulated using a combination of sequence and choice operators. This is how the

parallel operator is also defined in the main process algebraic references [9, 51, 77].

In general, the simulated form of a process containing some parallel operators can

be calculated using the following equations [9, 51]:

• P || τ ≡ τ || P ≡ P (4.1)

• P || (Q⊕R) ≡ (P || Q)⊕ (P || R), (4.2)

(Q⊕R) || P ≡ (Q || P )⊕ (R || P ) (4.3)
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• (a · P ) || (b ·Q) ≡ (a · (P || (b ·Q)))⊕ (b · ((a · P ) || Q)) (4.4)

There is a composition operator in CCS and a parallel operator in CSP which partly

behave like the above parallel operator. CSP also contains an interleaving operator

with a similar semantics.

Synchronization

As the last type of composition operators, represented by �, the synchronization

operator specifies a situation in which two processes synchronize their execution

because they have specific similarities between one or more of their actions. There

are two types of synchronization:

• Input-output consumption: When the output of one process is used by an-

other process as an input a handshake between the two processes happens,

which makes them synchronized on those input-output actions. We refer to

these input and output actions as complementary actions. As a result, the two

complementary actions become invisible to the outside world. That is why we

represent their synchronization by the silent action (τ). For instance, for two

processes P = a · b and Q = b · c, we would have P �Q ≡ a · τ · c ≡ a · c. We

described in Section 4.1.1 how to find the result of synchronizing two interface

automata based on their complementary actions. We follow those formulas

in calculating the result of such a synchronization in the composition algebra

as well.

There might be more than one pair of complementary actions in a synchro-

nization. In this situation, the important requirement is that complementary

actions must occur in the same order in both processes, if there is any specific

temporal order involved. For example, P = a · b · c and Q = c · b · d cannot be

synchronized because of the different order of actions b and c in them.3

• Shared inputs: When two processes expect the same input action, they can be

synchronized on that action. This synchronization type has been addressed by

others [33, 51]. The reason this synchronization is valid is that if two processes

P and Q need an input a, only a single instance of a can be provided and fed

to both processes. The input action a in this example is a synchronizer, but

3In fact, this synchronization is not possible because their underlying interface automata com-
position comes with some illegal states. According to Definition 4.4, the synchronization of P and
Q is undefined whenever Illegal(P,Q) 6= ∅.
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it is different from the previous case. Here, the result of synchronizing two

same input actions is one input action of the same type; while in the previous

case the result is the silent action. As an example, if P = a · b and Q = a · c,
then P �Q ≡ a · (b || c). We explained in Section 4.1.2 how the result of such

a synchronization can be calculated.

In the case where there is no synchronizer action in the two processes, this operator

acts as a parallel operator, because when there is no synchronization between two

running processes, they may be executed in any possible order.

The composition operator in CCS and the parallel operator in CSP merge the

semantics of both above parallel and synchronization operators in one operator. The

composition operator in CCS does the synchronization only when complementary

actions exist. On the other hand, in CSP the parallel operator synchronizes two

processes only when there is a pair of complementary actions involved. Therefore,

we could claim that the synchronization operator in composition algebra is more

general.

We assume that complementary actions and shared inputs have the same name.

Therefore, we use a renaming expression for the case the two synchronizing actions,

i.e., complementary actions or shared inputs, have different names. The renaming

expression P [a′/a, b′/b, · · · ] means that action names a, b, . . . in component P are

substituted by action names a′, b′, . . . , respectively. CCS and CSP are equipped

with a similar expression too.

In some situations, we might need to hide some of the actions in an algebraic

expression. We can use the hiding operation of CSP and CCS for this purpose.

The expression P\S, in which S is a set of action names, specifies a process P in

which all its actions which are in S are removed from its expression.

Regarding the binding power of the above operators, the synchronization oper-

ator is the strongest; then sequence, parallel and choice in that order. For example,

P || Q�R⊕ S · T ≡ (P || (Q�R))⊕ (S · T ). Finally, we assume that there is no

direct or indirect recursion allowed in process expressions. This restriction avoids

processes to be defined based on themselves.

We can easily see that each interface automaton can be converted to an equiv-

alent composition algebraic expression; and vice versa. Note that sequence and

choice are the basic operators in both models. By decomposing an interface au-

tomaton into its separate execution scenarios, we can simply find a corresponding

composition algebraic expression for each scenario. Then by conditionally compos-

ing those scenarios we would find an equivalent algebraic expression for the original
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interface automaton. The same can be done in the opposite direction to find an

equivalent interface automaton for a given composition algebraic expression.

4.2.2 Algebraic Rules

There are several rules related to the operators of composition algebra, which can be

concluded from the interface automata operators introduced earlier in this chapter.

• Closure: The composition of two components using any of the above operators

is also a component.

• Commutativity: According to their definition, choice, parallel and synchro-

nization operators are commutative [34, 51, 77]; i.e.,

– P ·Q 6≡ Q · P (P 6≡ Q ∧ P 6≡ τ ∧Q 6≡ τ) (4.5)

– P ⊕Q ≡ Q⊕ P (4.6)

– P || Q ≡ Q || P (4.7)

– P �Q ≡ Q� P (4.8)

• Associativity: All algebraic operators except the synchronization are associa-

tive [34, 51, 77]; i.e.,

– P · (Q ·R) ≡ (P ·Q) ·R ≡ P ·Q ·R (4.9)

– P ⊕ (Q⊕R) ≡ (P ⊕Q)⊕R ≡ P ⊕Q⊕R (4.10)

– P || (Q || R) ≡ (P || Q) || R ≡ P || Q || R (4.11)

– P � (Q�R) 6≡ (P �Q)�R (∃P, Q,R) (4.12)

Regarding the associativity for the synchronization operator, when there is

no shared input involved, the synchronization operator is associative [34].

Similarly, when there is no pair of complementary actions involved, the syn-

chronization is again associative [51]. The non-associativity arises when both

shared inputs and complementary actions exist in a process. For example,

we could easily see that the two processes (a � a) � a and a � (a � a) are

not equivalent; as the first one has no external behavior (τ), while the second

one is equivalent to a. Therefore, excluding this case, we could consider the

synchronization operator to be associative as well.

• Identity: The silent process is the identity element for sequence, parallel and

synchronization operators; i.e.,
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– P · τ ≡ τ · P ≡ P (4.13)

– P ⊕ τ ≡ τ ⊕ P 6≡ P (P 6≡ τ) (4.14)

– P || τ ≡ τ || P ≡ P (4.1)

– P � τ ≡ τ � P ≡ P (4.15)

The expression P ⊕ τ refers to a process that, in each execution, either acts

like P or does not have any externally visible behavior. Apparently, it is not

equivalent to the process P [9].

• Inverse: Each process has a single inverse process under the synchronization

operator. The actions and their order in both processes are the same, except

that each input in one is an output in the other; and vice versa. The silent

process is its own inverse. The inverse process is identified by a macron; and

– P � P ≡ P � P ≡ τ (4.16)

• Distributivity: Not every operator is distributive over the other ones. Ac-

cording to the notion of ∂-trace equivalence only the followings hold [9]

– P · (Q⊕R) ≡ (P ·Q)⊕ (P ·R), (4.17)

(Q⊕R) · P ≡ (Q · P )⊕ (R · P ) (4.18)

– P || (Q⊕R) ≡ (P || Q)⊕ (P || R), (4.2)

(Q⊕R) || P ≡ (Q || P )⊕ (R || P ) (4.3)

– P � (Q⊕R) ≡ (P �Q)⊕ (P �R), (4.19)

(Q⊕R)� P ≡ (Q� P )⊕ (R� P ) (4.20)

• Synchronization: Consider two processes P = P1 · x · P2 and Q = Q1 · y ·Q2,

in which x and y are the first synchronizing actions appearing in the two

processes. If x and y are complementary actions (x = y) then

– P �Q ≡ (P1 || Q1) · (P2 �Q2). (4.21)

Similarly, if x and y are shared inputs (x = y, and they are both input actions)

then

– P �Q ≡ (P1 || Q1) · x · (P2 �Q2). (4.22)

Processes P1 and Q1 are executed in parallel because we assumed that x and

y are the first synchronizing actions in P and Q. The same equations are

used to calculate P2�Q2 if there is some synchronizing actions in P2 and Q2;

otherwise P2 and Q2 are executed in parallel too.
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The reason the above equivalences hold is quite simple. If two processes can

be synchronized, they would have some synchronizing actions. For every one

of these actions, the parts before the action in two processes and also the

parts after are executed without any specific relative order; i.e., in parallel.

Some Results

Based on the definition of the composition algebraic operations and rules, we can

conclude a number of corollaries:

• P ·Q ≡ P ·R =⇒ Q ≡ R (4.23)

• P ⊕ P ≡ P (4.24)

• P ⊕Q ≡ P ⊕R =⇒ Q ≡ R (4.25)

• P || Q ≡ P || R =⇒ Q ≡ R (4.26)

• P �Q ≡ τ =⇒ Q ≡ P (4.27)

• P = P (4.28)

4.3 Summary

In this section we reviewed the interface automata as a behavioral model for software

components. Then we extended this model so that it captures more composition

types. We also discussed why interface automata are not the best choice for rep-

resenting the behavior, especially when the behavior of components become more

complex. This why we introduced composition algebra, as a n algebraic model

for the behavior of components and their composition. This algebra is completely

based on interface automata and follows the same axioms and rules in compos-

ing the behaviors of components. It could be considered as an alternative way of

representing interface automata. In the next chapters we explain how this alge-

bra helps in validating the results returned by our automatic composition planning

approaches.
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Chapter 5

A Graph-Based Approach to

Component Composition

In this chapter we explain how graphs can be used to address and solve the com-

position planning problem. We use a graph structure called dependency graph to

model the repository of available components. Then we use graph search algorithms

to find solutions for a given component request. We start this chapter by a simple

version of the composition planning problem and provide a solution for it. For this

simple version, we use interface automata to model the behavior of components

and their composition. We discuss the shortcomings of the given solution, refine

the problem, and improve the solution to resolve those shortcomings. We use com-

position algebra in this second part for representing the behavior of components

and their composition.

5.1 The Simple Composition Planning Problem

The following is the composition planning problem that is studied in the first part

of this chapter:

Problem 5.1

Given:

• a repository R of components that, in each execution scenario1, receive

only one input and then return only one output.

1Definition 1.2 describes the concept of an execution scenario.
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• a request G which is a component defined by the execution scenarios it

provides.

Goal:

• Yes/No, based on whether there is a composition of some repository com-

ponents that behaves like G.

• an appropriate composition, if the above answer is Yes. �

Before discussing the solution to the simple version of the composition planning

problem, we need to formalize the behavior of components. This formalization,

which helps us understand the behavior exposed by compositions of repository com-

ponents, is provided using interface automata. We saw in Chapter 4 how interface

automata capture the behavior of software components, and also how they repre-

sent different types of behavioral composition. In this section we use this feature

of interface automata to formally illustrate and validate component compositions

that are found using the composition approach presented later in the section.

5.1.1 Required Formalization

To solve this version of the problem, each repository component C is defined by

three attributes:

• Inputs (IC): the set of inputs received by C.

• Outputs (OC): the set of outputs returned by C.

• Dependencies (κC): dependencies that hold between the inputs in IC and

the outputs in OC (input-output dependencies), or refer to temporal order of

inputs and outputs in each execution of C (temporal dependencies).

The first two attributes are quite straightforward. Any input that the component

can receive will be part of its input set, and any output that it can produce will

be part of its output set. The two types of dependencies are formally defined as

follows.

Definition 5.1 If a component receives the set of inputs I and returns the set of

outputs O in one of its execution scenarios, we say that, by default, all the outputs in

O are dependent on all the inputs in I. This is called an input-output dependency

and is shown by I → O. If the default case does not apply to a specific component,

the corresponding input-output dependencies must be given explicitly. �
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In other words, each component acts as a function which takes some inputs and

returns some outputs based on those given inputs. The symbol κ is taken from [35],

where it is referred to as “the I/O dependency relation” representing the similar

concept.

A component might have different execution scenarios, but in each such scenario

the component uses the given inputs to generate the corresponding outputs. There-

fore, there is a dependency relation between the consumed inputs and the produced

outputs in each scenario. As mentioned above, each input-output dependency is of

the form I → O, in which I is the set of inputs and O is the set of outputs. The

set κC then includes subsets κ1
C , κ2

C , . . . , κn
C , where n is the number of execution

scenarios in C, and κi
C represents the set of dependencies for the i-th execution

scenario.

Example 5.1 Component TemperatureConvertor converts Celsius and Fahren-

heit temperature values (temperature C and temperature F, respectively) into

each other. The triplet (ITemperatureConvertor, OTemperatureConvertor, κTemperatureConvertor)

describes this component, and

• ITemperatureConvertor = {temperature C, temperature F},

• OTemperatureConvertor = {temperature F, temperature C},

• κTemperatureConvertor = {κ1
TemperatureConvertor, κ

2
TemperatureConvertor}, where

– κ1
TemperatureConvertor = {temperature C→ temperature F}2,

– κ2
TemperatureConvertor = {temperature F→ temperature C}.

This component has two different execution scenarios. In one, it receives a Celsius

temperature and returns a Fahrenheit temperature, and in the other it does the

opposite. �

Definition 5.2 A component may receive/produce its inputs/outputs in a prede-

fined order. If these temporal orders are not captured by the input-output depen-

dencies, they must be provided explicitly. In this case, they are called temporal

dependencies and are shown similar to input-output dependencies. Often, a tem-

poral dependency holds among some inputs or some outputs to imply the temporal

order based on which inputs are given to the component or outputs are returned by

the component. �

2Although, by definition, each side of a dependency is a set, the brackets are removed when
no ambiguity arises.
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The three attributes of the components can be used to obtain their corresponding

interface automaton. If C is the interface automaton of the component C, then

AI
C = IC and AO

C = OC . Moreover, the internal automaton of C can be found

through κC . Note that the assumption we make here is that every input/output

of the component C would appear in κC , and further, each dependency in κC

appears explicitly in C. In order to satisfy the latter assumption, we allow temporal

dependencies to be added to the dependency set κC . The following example clarifies

this assumption.

Example 5.2 Component WeatherForecast provides the weather information for

Canadian cities. It provides two basic functionalities. In one, it receives a city name

and returns the current temperature for that city. In the other, it receives a city

name and a date and returns the average temperature of that city on the given date.

Then, we would have the following attributes for this component:

• IWeatherForecast = {city CAN, date},

• OWeatherForecast = {temperature C},

• κWeatherForecast = {κ1
WeatherForecast, κ

2
WeatherForecast}, where

– κ1
WeatherForecast = {city CAN→ temperature C},

– κ2
WeatherForecast = {{city CAN, date} → temperature C}.

The first dependency set is straightforward. In the second set we see that the out-

put temperature C is explicitly dependent on two inputs city CAN and date. To

represent this dependency in an interface automaton, the only way is to assume

that the two inputs can be given in any order. That is why the corresponding

interface automaton for this component is the one given in Figure 5.1-(a). How-

ever, if the WeatherForecast component took the input city CAN before the input

date, κ2
WeatherForecast would have been somewhat different, i.e., κ2

WeatherForecast =

{{city CAN, date} → temperature C, city CAN → date}, where the first depen-

dency is an input-output dependency and the second one is a temporal dependency.

In this case, the interface automaton of Figure 5.1-(b) would have represented the

underlying behavior. �
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Figure 5.1: Two interface automata of the component WeatherForecast. (a) There

is no temporal dependency between the two inputs in the second scenario. (b) In

the second scenario, one of the inputs is supposed to be provided before the other

one.

5.1.2 Dependency Graph

Along with the information stored for each component, and in order to design a

mechanism by which we can find a solution for the composition planning problem,

we store the repository as a graph defined below.

Definition 5.3 Dependency graph DG = (V, E) contains information about the

existing components in the repository. The set V of nodes represents input/output

data types appearing in at least one IC or OC. There is a directed edge from the node

vx to the node vy in the graph (vx, vy ∈ V ), if and only if there is a dependency

vx → vy in at least one dependency set of at least one κC. There is also a set

attached to each edge in E that contains all components in the repository which

have the corresponding dependency in one of their dependency sets.

Based on the assumption we made in Problem 5.1, the following restrictions would

hold on this dependency graph:

• Each dependency set κj
C would contain only one dependency of the form

i → o, in which i is the only input and o is the only output of the component

C in its j-th scenario.
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Figure 5.2: A simple dependency graph in which all components receive one input

and return one output in each of their scenarios.

• There would be no temporal dependency in the dependency sets. This can

also be concluded from the above restriction.

Example 5.3 A very simple dependency graph, taken from [47], that follows our

simplifying assumption of this section is shown in Figure 5.2. Here is the specifi-

cation of the components captured by this dependency graph:

• BookInfo

– IBookInfo = {iSBN}

– OBookInfo = {bookName, personName, publisher}

– κBookInfo = {κ1
BookInfo, κ

2
BookInfo, κ

3
BookInfo}

∗ κ1
BookInfo = {iSBN→ bookName}

∗ κ2
BookInfo = {iSBN→ personName}
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∗ κ3
BookInfo = {iSBN→ publisher}

• CityInfo

– ICityInfo = {city}

– OCityInfo = {uRL, country, tourismInfo, weatherInfo}

– κCityInfo = {κ1
CityInfo, κ

2
CityInfo, κ

3
CityInfo, κ

4
CityInfo}

∗ κ1
CityInfo = {city→ uRL}

∗ κ2
CityInfo = {city→ country}

∗ κ3
CityInfo = {city→ tourismInfo}

∗ κ4
CityInfo = {city→ weatherInfo}

• CountryInfo

– ICountryInfo = {country}

– OCountryInfo = {uRL, city, tourismInfo}

– κCountryInfo = {κ1
CountryInfo, κ

2
CountryInfo, κ

3
CountryInfo}

∗ κ1
CountryInfo = {country→ uRL}

∗ κ2
CountryInfo = {country→ city}

∗ κ3
CountryInfo = {country→ tourismInfo}

• HotelInfo

– IHotelInfo = {hotel}

– OHotelInfo = {uRL}

– κHotelInfo = {κ1
HotelInfo}

∗ κ1
HotelInfo = {hotel→ uRL}

• PeopleInfo

– IPeopleInfo = {personName}

– OPeopleInfo = {uRL, zipCode}

– κPeopleInfo = {κ1
PeopleInfo, κ

2
PeopleInfo}

∗ κ1
PeopleInfo = {personName→ uRL}

∗ κ2
PeopleInfo = {personName→ zipCode}

• PublisherInfo
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– IPublisherInfo = {publisher}

– OPublisherInfo = {uRL}

– κPublisherInfo = {κ1
PublisherInfo}

∗ κ1
PublisherInfo = {publisher→ uRL}

• RankingInfo

– IRankingInfo = {iSBN, hotel}

– ORankingInfo = {ranking}

– κRankingInfo = {κ1
RankingInfo, κ

2
RankingInfo}

∗ κ1
RankingInfo = {iSBN→ ranking}

∗ κ2
RankingInfo = {hotel→ ranking} �

We notice that edges in the dependency graph represent dependencies that are

enforced by repository components. That is why this graph is called the dependency

graph.

Note that a component with multiple scenarios can be simply seen as multiple

components each with one single scenario. Therefore, without loss of generality,

hereafter in this section we assume that each component has only one execution

scenario. As a result, we do not need to keep different dependency sets κi
C for each

component C and can put all its dependencies in one single dependency set κC .

Example 5.4 The component RankingInfo of Example 5.3 has two execution sce-

narios. We can break this component into two components BookRankingInfo and

HotelRankingInfo each with only one scenario. Their specification then would be

much simpler as below:

• BookRankingInfo

– IBookRankingInfo = {iSBN}

– OBookRankingInfo = {ranking}

– κBookRankingInfo = {iSBN→ ranking}

• HotelRankingInfo

– IHotelRankingInfo = {hotel}

– OHotelRankingInfo = {ranking}
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– κHotelRankingInfo = {hotel→ ranking}

We can similarly break down other multi-scenario components as follows

• BookInfo into BookName, BookAuthor and BookPublisher,

• CityInfo into four components CityWebsite, CountryOfCity, CityTourism

and CityWeatherInfo,

• CountryInfo into CountryWebsite, CountryCapital and CountryTourism,

• PeopleInfo into PeopleWebsite and PeopleAddress,

• WeatherInfo into ZipCodeWeather and CityWeatherInfo2.

The updated dependency graph according to the above separation of functionality is

shown in Figure 5.3. �

To simplify representing repository components and their behavior, and also for

readability purposes from now on we assume that each repository component has

only one execution scenario.

Considering the dependency graph of Figure 5.3 we notice that two components

CityWeatherInfo and CityWeatherInfo2 provide the same input-output pairing.

So in case we need to use a component that receives an input of type city and

returns an output of type weatherInfo, either of these components can be used. In

order to enrich the dependency graph to provide better performance we introduce

the concept of component community as follows.

Definition 5.4 A group of components that provide the same functionality is called

a component community. �

Therefore, instead of putting component names on the edge labels of the depen-

dency graph, we could categorize the repository components into component com-

munities and use component community names on the edge labels. This way,

whenever we need to find a component with a specific behavior it suffices to find

the corresponding component community and pick one component from that com-

munity.
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Figure 5.3: The simplified version of the dependency graph of Figure 5.2, in which

each component has only one scenario.

Example 5.5 If the component community CityWeatherInfoCommunity contains

two components CityWeatherInfo and CityWeatherInfo2, the dependency graph

would have the label CityWeatherInfoCommunity on its city → weatherInfo

edge, instead of {CityWeatherInfo, CityWeatherInfo2}. If we need to use a com-

ponent to receive an input of type city and return an output of type weatherInfo,

we find the component community CityWeatherInfoCommunity in the correspond-

ing dependency graph edge label, and then look into this community and pick one

of its components. �

The concept of component community is taken from [12], where it is referred to

as service community. Using component communities is particularly important for

quality of service purposes; e.g., when we are interested to find the cheapest or the

fastest composite component that satisfies a given request. Since the discussion

about the quality of service is not in the scope of this thesis, without loss of gen-

erality, we assume that each repository component provides a unique functionality,
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and hence, there is no need to use component communities.

So far, we provided the necessary formalism for solving the simple version of the

composition planning problem. In the rest of this section we take advantage of graph

search algorithms to provide a solution to the problem. We do the composition

planning in two main steps:

1. We first find those components from the repository that should participate in

the composition.

2. Then we find the composition plan based on the components found in the

previous step.

We explain how each of these two tasks are performed in the next two subsections.

5.1.3 Finding Potential Components

We mentioned earlier that the dependency graph represents dependencies imposed

by repository components through its edges. In other words, if there is an edge in

the graph from node vi to vj, there is a repository component which receives vi as

its only input and returns vj as its only output. Our goal here is to check whether

this collection of dependencies satisfy the dependencies requested in κG.

We assume that the goal component is represented similar to repository com-

ponents, i.e., G = (IG, OG, κG), where every input/output in IG/OG appears in at

least one dependency in κG. In case this does not hold for the given component

request, we could use the default assumption that every output is dependent on

all the inputs and add necessary dependencies to κG. There might be different

execution scenarios in G, i.e., κG = {κ1
G, κ2

G, · · · }, where each κi
G (1 6 i 6 |κG|)

contains at least one dependency. The problem, in terms of the dependency graph,

is as follows:

Problem 5.2 Given a dependency graph DG = (V, E) that models the repository

of components C1, C2, · · · , CN and a goal G = (IG, OG, κG), is there a group of

repository components that satisfies all the dependencies in κG?

One optimal way to find if a dependency in κG is satisfied by the dependency

graph is running the BFS (Breadth First Search) algorithm [30] on the nodes ap-

pearing on its left-hand side. Given a graph node v the BFS algorithm returns the
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set of nodes reachable from v. For a dependency i → o, we can run this algorithm

on node i and stop the algorithm once we notice that o is reachable from i. If o

is not reachable from i the algorithm terminates and returns a set not including o

meaning that there is no path in the graph from i to o, or in other words, the given

dependency cannot be satisfied by the repository components.

Since the BFS algorithm keeps track of the visited nodes, the path from i

to o and also the components appearing on the edge labels of this path could

be extracted, if such a path exists. This can be done using the Print-Path

algorithm [30], which returns the corresponding path after the BFS search has

been successful.3 If there is a graph path for every given dependency in κG, the

problem has a solution.

Example 5.6 The repository of Figure 5.3 and the following goal G are given.

• IG = {iSBN, country, city}

• OG = {uRL, personName, ranking, tourismInfo, weatherInfo}

• κG = {κ1
G, κ2

G, κ3
G}, where

– κ1
G = {iSBN→ uRL},

– κ2
G = {iSBN→ {personName, ranking}},

– κ3
G = {country → tourismInfo, city → weatherInfo}. Here, there

are two inputs and outputs involved; however, tourismInfo depends only

on country, while weatherInfo depends only on city.

In order to check if there are repository components satisfying this request, we use

the BFS and Print-Path algorithms on the inputs in IG to see if there is any

dependency graph path to the appropriate nodes according to the dependencies in

κG. The following is the result of applying these two algorithms on this example:

• iSBN: According to the dependencies in κG we need to check if nodes uRL,

personName and ranking are reachable from iSBN. By applying the BFS

algorithm, we find out that personName and ranking are reachable in one

step (using the components BookAuthor and BookRankingInfo, respectively)

and uRL is reachable in two steps (using the components BookPublisher and

PublisherInfo, or the components BookAuthor and PeopleWebsite).

3BFS and Print-Path algorithms do not consider any label on the graph edges. A very small
change in the Print-Path algorithm and also the data structure they use would allow us to have
the edge labels in the result as well.
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Dependency Path

iSBN→ uRL iSBN
BookPublisher−−−−−−−−→ publisher

PublisherInfo−−−−−−−−→ uRL,

iSBN
BookAuthor−−−−−−→ personName

PeopleWebsite−−−−−−−−→ uRL

iSBN→ personName iSBN
BookAuthor−−−−−−→ personName

iSBN→ ranking iSBN
BookRankingInfo−−−−−−−−−→ ranking

country→ tourismInfo country
CountryTourism−−−−−−−−−→ tourismInfo

city→ weatherInfo city
CityWeatherInfo−−−−−−−−−→ weatherInfo

Table 5.1: Dependency graph paths for the dependencies of Example 5.6.

• country: The node tourismInfo is reachable from country in one step

(using the component CountryTourism).

• city: The node weatherInfo is reachable from city in only one step (us-

ing the component CityWeatherInfo). Note that we assumed earlier that

each functionality is provided by a unique component. We have ignored the

component CityWeatherInfo2 based on this assumption.

The results are summarized in Table 5.1. Since all the dependencies are satisfied

by the repository components, we conclude that there exists a solution for the given

request G. �

Now that we have the components that should participate in the composition, we

need to find out the appropriate composition plan for the requested behavior. We

discuss this matter in the next part.

5.1.4 Finding the Composition Plan

After finding out appropriate graph paths for every single dependency in κG, we

need to find a composition plan which is in fact a plan on how to execute the selected

components so that the desired behavior is achieved. In general, two components

can be composed in one of the following four ways:

• They can be synchronized according to the synchronization operation ex-

plained in Section 4.

• They can be executed sequentially.
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• They can be executed conditionally.

• They can be executed in parallel.

We can find out how two involved components must be composed by considering

the paths returned in the last step and also the goal triplet (IG, OG, κG). We build

the requested service by incremental composition of the involved components in the

returned paths.

We first process sets of dependencies in κG one by one. For a particular set κi
G,

if there is only one dependency in it and the path returned for it is of length one,

it means that there is a component in the repository that satisfies this dependency

and no composition is required. Otherwise, when the path length is greater than

one, we need to synchronize the components appearing on the edge labels to satisfy

the dependency. This simply is because each component on this path creates an

output that must be fed to the next component on the path as its input. This

makes all the intermediate nodes in the path become internalized.

If there are more than one dependency in the set, it means that there are more

than one input-output pairs that are of interest. For each of these dependencies

we do the above compositions, if required, and then the resulting compositions

are executed sequentially or in parallel in such a way that the execution does not

violate any dependency in the set. The only exception is when there are some

dependencies in the set having the same input on their left-hand side. For this type

of dependencies the two or more outputs must appear right after that common

input, and therefore, the parallel execution is the only way the request can be

satisfied. This is achieved using the shared input synchronization.

After processing the dependencies in each dependency set κi
G, the resulting

compositions for sets κi
G are composed conditionally to represent different scenarios

of execution. Since all composition operators are binary operations, the whole setup

can be shown using a binary expression tree.

Example 5.7 Let us continue Example 5.6 by finding the appropriate composition.

We assume that components G1, G2 and G3 satisfy dependency sets κ1
G, κ2

G, and

κ3
G, respectively. Then, based on the discussion above, the proper composition for

the goal G would be (G1⊕G2)⊕G3 or G1⊕(G2⊕G3).
4 Now we find the composition

plan for the components G1, G2 and G3 separately. We use the results presented in

Table 5.1 for this purpose.

4Note that the conditional operator is both commutative and associative.
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• Since the path returned for κ1
G is of length 2, we need to perform a synchro-

nization. There are two options that both satisfy this dependency:

– BookPublisher� PublisherInfo

– BookAuthor� PeopleWebsite

There is no preference between these two solutions. At this point the user

could become involved to make the decision based on the functional semantics

of the request and that of the given possible solutions. But in general, the

solution would be G1 ≡ (BookPublisher�PublisherInfo)⊕(BookAuthor�
PeopleWebsite).

• Since both paths returned for κ2
G are of length 1, there is a component in

the repository that satisfies each. These components are BookAuthor and

BookRankingInfo. However, since there are multiple outputs on the right-

hand side of the dependency, based on our earlier discussion we need to syn-

chronize these two components on their shared input to satisfy the explicit

dependency of both outputs to the single input. Therefore, the solution for

this dependency set would be G2 ≡ BookAuthor� BookRankingInfo.

• For the dependency set κ3
G, the situation is somewhat similar to κ2

G with the

exception that there is no common left-hand side input in the two depen-

dencies. Therefore, the sequential or parallel execution of the components

CountryTourism and CityWeatherInfo would be the solution. Since there

is no restriction on their execution order, each of them may be executed ahead

of the other. This suggests their parallel execution, which leads to the solution

G3 ≡ CountryTourism || CityWeatherInfo.

A binary expression tree for the composite component G is shown in Figure 5.4. The

composition results can be represented using the interface automata compositions

explained in Section 4.1.2. For example, the corresponding interface automaton for

the above composite component G is the one shown in Figure 5.5. This interface

automaton can be used to validate the result found by the composition algorithm

against the given request. �

5.1.5 Complexity

We used the BFS and Print-Path algorithms [30] to find appropriate dependency

graph paths and repository components corresponding to the given request. For
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Figure 5.4: The binary expression tree representation of the plan for a component

satisfying the request G in Example 5.7.

every distinct dependency in every dependency set κi
G we need to run the BFS

algorithm to make sure that all the right-hand side nodes are reachable from the left-

hand side node. Assuming that all the dependencies of the form i → {o1, o2, · · · }
are written in the separate form i → o1, i → o2, . . . , the complexity of running the

BFS algorithm on the set κG would be O(||κG|| · (|V | + |E|)), in which ||κG|| is the

number of all these simple form dependencies, i.e., ||κG|| =
|κG|∑
i=1

|κi
G|.

Moreover, the complexity of the Print-Path algorithm is linear in the number

of nodes in the returned path, i.e., O(|E|). Then the complexity of running the

Print-Path algorithm on all the dependencies in κG would be O(||κG|| · |E|).

In order to find the composition plan for the given request, we need to study

all the returned paths one by one. The complexity of this process on each path

would be O(|E|), and again, we would have the overall O(||κG|| · |E|) complexity for

finding the composition plan.

By comparing the three complexity measures for different parts of the solution

we conclude that the complexity of the composition approach for the simple version

of the composition planning problem is O(||κG|| · (|V |+ |E|)), i.e., linear in the size

of the graph for each dependency.
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Figure 5.5: Interface automata representation of the composite component G. The

top, middle and bottom branches correspond to κ1
G, κ2

G and κ3
G, respectively.

5.2 The Generic Composition Planning Problem

In the rest of this chapter, which is based on [48], we focus on a more generic form

of the composition planning problem. We still assume that there is a repository

of available components and there is a target component that we would like to

build. However, the main difference from the simplified version of the problem is

that repository components and also the request may receive/return any number

of inputs/outputs, as long as they are stateless.

Example 5.8 We saw earlier in this chapter (Figure 5.1) two different versions of

the WeatherForecast component. Based on the above definition of stateless com-

ponents, the interface automaton on the left (Figure 5.1-(a)) represents a stateless

component, while the component whose interface automaton is the one on the right

(Figure 5.1-(b)) is not stateless. We see that in part (b) the component must re-

ceive the input city CAN before the input date which violates the requirement for

statelessness. �
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Figure 5.6: Interface automaton of a stateless component with three inputs and

two outputs.

According to Definition 1.1, every execution path in the interface automaton

of a stateless component must start with an unordered execution of its inputs and

then finish with an unordered execution of its outputs. For example, the interface

automaton of a single-scenario component with three inputs and two outputs should

look like the one represented in Figure 5.6.

In terms of the composition algebra, each scenario of a stateless component C is

of the form C = I ·O, in which I = (i1 || i2 || · · · || im) and O = (o1 || o2 || · · · || on),

where m and n are the number of inputs and outputs in that scenario, respectively.

The statelessness plays an important role in the generic version of the problem,

which is defined as following.

Problem 5.3 A repository of stateless components and a request for a target state-

less component are given, where all components are described by their inputs and

outputs in each execution scenario. We would like to know if the target component

can be built from some of the repository components. In case the answer is YES,

the appropriate composition plan is also required.

In the next subsection we provide the necessary background for solving the

generic composition planning problem. This background includes the formalism by

which the behavior of components is represented, and also the improved version

of the dependency graph which is used as a model of the repository to facilitate

solving the problem.
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5.2.1 Required Formalization

We use the composition algebra to describe stateless components. Although inter-

face automata would be another option for doing this, we choose the composition

algebra because, as discussed in Section 4.2, it is more understandable in general.

Again, without loss of generality, we assume that each repository component

has a single execution scenario. Therefore, each repository component can be suf-

ficiently identified by its input and output types. Note that it is possible for a

component to receive/return two or more instances of a specific type. Hence, we

need to use multisets5, or bags, to represent these input and output types.

Example 5.9 The stateless component CANCityDistance receives two Canadian

city names and returns their distance in kilometers. Therefore, we would have

• ICANCityDistance = {city CAN2}

• OCANCityDistance = {distance Km}

Note that the superscript 2 in city CAN2 indicates that two inputs of type city CAN

are involved in this component. In composition algebra, this behavior would be

represented as CANCityDistance = (city CAN || city CAN) · distance Km. �

The target component, however, could have different execution scenarios. There-

fore, it is described as the triplet G = (IG, OG, κG), where κG = {κ1
G, κ2

G, · · · }.

We further assume that in each repository and goal component every output is,

by default, dependent on all the inputs because otherwise the functionality can be

decomposed.

Example 5.10 Consider a goal component G that receives inputs country and

zipCode, and returns outputs capital and address. If we intend G to return the

capital of a given country, and the address associated with a zip code, we would

have to decompose it into two components; one receiving country and returning

capital, and the other receiving zipCode and returning address. �

5A multiset is a set in which the cardinality of elements matters.
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5.2.2 Improved Dependency Graph

If we look closely at the dependency graph of Section 5.1.2 and consider the generic

version of the problem, we notice that the graph cannot fully capture the informa-

tion about repository components. In particular, the first version of the dependency

graph has the following shortcomings:

• It fails to properly model components with two or more inputs/outputs. For

example, the component WeatherForecast of Figure 5.1-(a) in its second sce-

nario receives an input of type city CAN and another input of type date and

returns an output of type temperature C. The most the earlier dependency

graph can do is to add edges city CAN
{WeatherForecast}−−−−−−−−−−→ temperature C and

date
{WeatherForecast}−−−−−−−−−−→ temperature C. However, for this component, these

two edges could be interpreted as two different scenarios, where in one the

(current) temperature of a given city, and in the other, the temperature (of

a default location) in a given date is returned.

• It fails to represent the cardinality of inputs/outputs when more than one

input/output of a specific type are involved. For instance, the component

CANCityDistance receives two inputs of type city CAN and returns an out-

put of type distance Km. For this component, the earlier dependency graph

would add the edge city CAN
{CANCityDistance}−−−−−−−−−−→ distance Km, which would be

interpreted as a functionality, in which some distance value for a Canadian

city is returned.

Therefore, we need to improve the dependency graph so that it can capture the

above attributes properly. In the new version, nodes and edges represent similar

information, i.e., input/output types and input-output dependencies, respectively.

However, we make some changes in the format of edge labels in order to overcome

the above shortcomings:

• To represent multiple input/output data types involved in each execution sce-

nario, we add the scenario name to the edge labels. This scenario name is

normally the name of the corresponding component operation. For example,

if we assume that the second execution scenario of the WeatherForecast

component corresponds to its ForecastForDate operation, then the edge la-

bel {(WeatherForecast, ForecastForDate)} would appear on city CAN →
temperature C and date → temperature C edges. In the special case that
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each repository component has only one scenario, this improvement could be

ignored. In the rest of this thesis, without loss of generality, we assume that

this special case applies to the component repository unless otherwise is ex-

plicitly mentioned. Therefore, we skip the operation names on the edge labels

assuming that each repository component comes with only one scenario.

• To represent the cardinality of inputs and outputs, we add a pair of num-

bers to the labels to show the cardinality of data types at both ends of the

edge that are involved in the corresponding scenario. For example, the up-

dated label for the edge city CAN → distance Km according to the com-

ponent CANCityDistance would be {(CANCityDistance, 2, 1)}, indicat-

ing that two instances of type city CAN are given and one instance of type

distance Km is returned.

So far, each edge in the dependency graph exists because of some repository

component that relates the two data types at the two ends of that edge. Other

than this dependency relation, there are relations that could relate two or more

data types to each other.

Example 5.11 The relation between the data types capital and city likely would

not be captured by any component in the repository. Nonetheless, we know that there

is a relationship between the two concepts, i.e., capital is a subtype of city. �

Example 5.12 The address CAN data type is a composite data type which includes

component data types streetAddr, city CAN, province CAN, zipCode CAN. Each

repository component that receives/returns Canadian address information, would

probably work either with the composite form or the component form, but not both.

Therefore, the relationship between the two forms would not be captured by the

dependency edges. �

In order to represent different types of relationships between data types, we cate-

gorize graph edges into three groups:

• Dependency edges: These edges are represented by arrows of the form A and

are the normal dependency graph edges we have seen so far. They connect

nodes corresponding to the inputs of components to the nodes corresponding

to their outputs. As mentioned earlier, dependency edge labels are sets of

triplets of the form (C, cardi, cardo), where C is the component name, and

cardi and cardo are the number of involved inputs and outputs of the specific

data type, respectively. Dependency edges are unidirectional.
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• Generalization-Specialization (GenSpec) edges: These edges, represented by

arrows of the form _, are used to relate supertypes and subtypes to each

other. For example, to show that capital is a subtype of city (Exam-

ple 5.11) the edge capital _ city is added to the graph. These edges do

not have any labels, as they do not represent any component and only indi-

cate that an instance of the subtype can be considered as an instance of the

supertype. When considering a graph path which includes some edge u _ v

we can ignore this edge by combining the nodes u and v. GenSpec edges are

unidirectional.

• Composition-Decomposition (CD) edges: These edges are shown by arrows

of the form � and relate composite types and their component types to

each other. The diamond end of the edge points to the composite type,

while the arrow end points to the component type. CD edges are bidirec-

tional. A single number appears on these edges that identifies the number

of component type instances used in the composite type. For example, for

the composite type address CAN of Example 5.12, edges address CAN
1

�

streetAddr, address CAN
1

� city CAN, address CAN
1

� province CAN,

and address CAN
1

� zipCode CAN are added to the graph. The conversion

between the two formats can be done using auxiliary components. These aux-

iliary components either decompose the composite types into its component

types, or do the opposite. This information, which includes the pair of com-

poser and decomposer components, is attached to the composite type node in

the graph. When considering a graph path which includes some edge u
k

� v

each involved instance of type u would create k instances of type v. Alter-

natively, for a graph path which includes some edge v
k

� u, k instances of

type v are required, though not necessarily sufficient, to produce an instance

of type u.

Example 5.13 Figure 5.7 shows an example of the improved dependency graph

for the following component repository. We emphasize here that we are studying

stateless components, and also following the assumption that each component has a

single execution scenario.

• PhoneNoLocation

– IPhoneNoLocation = {phoneNo CAN}

– OPhoneNoLocation = {address CAN}
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Figure 5.7: An example of the improved dependency graph.

• GeographicLocation

– IGeographicLocation = {city CAN, province CAN}

– OGeographicLocation = {latitude, longitude}

• CANCityDistance

– ICANDistance = {city CAN2, province CAN2}

– OCANDistance = {distance Km}

• ZipCodeDistance

– IZipCodeDistance = {zipCode2}

– OZipCodeDistance = {distance Km}

• Km2MileConvertor

– IKm2MileConvertor = {distance Km}

– OKm2MileConvertor = {distance Mile}

• CountryCapital

– ICountryCapital = {country}

– OCountryCapital = {capital}
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• CANAddressComp (an auxiliary composer)

– ICANAddressComp = {streetAddr, city CAN, province CAN, zipCode CAN}

– OCANAddressComp = {address CAN}

• CANAddressDecomp (an auxiliary decomposer)

– ICANAddressDecomp = {address CAN}

– OCANAddressDecomp={streetAddr, city CAN, province CAN, zipCode CAN}

There are also three supertype-subtype relations among the present repository data

types, i.e., capital ⊆ city, city CAN ⊆ city and zipCode CAN ⊆ zipCode. �

Note that

• Attached to each composite data type node there is a pair (C, D) where C is

the set of auxiliary composers and D is the set of auxiliary decomposers for

that data type.

• For two semantically equivalent data types t1 and t2, the graph would contain

both edges t1 _ t2 and t1 ^ t2.

Observation 5.1 CD edges can be simulated by dependency edges. Figure 5.8

represents this simulation. Each CD edge is simulated by two dependency edges

with opposite directions, where one edge identifies composer components and the

other identifies decomposer ones. �

We have already seen, in Section 5.1.3, how dependency edges help in solving

the problem. We explain the advantage of having CD and GenSpec edges in the

dependency graph through the following examples.

Example 5.14 Consider the dependency graph of Figure 5.7 and the goal G as

• IG = {zipCode CAN2}

• OG = {distance Km}

• κG = {κ1
G}, where κ1

G = {zipCode CAN2 → distance Km}
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Figure 5.8: CD edges can be simulated by dependency edges.

It is obvious that Canadian zip codes are zip codes in general. Therefore, they

can be fed to the component ZipCodeDistance as inputs to produce the required

output distance Km. In fact, this plan works because the path zipCode CAN _
zipCode A distance Km exists in the graph. �

Example 5.15 The goal G is described as

• IG = {phoneNo CAN}

• OG = {zipCode CAN}

• κG = {κ1
G}, where κ1

G = {phoneNo CAN→ zipCode CAN}

Again, we can easily see that a Canadian phone number can be converted to a

Canadian address using the component PhoneNoLocation. Then the correspond-

ing Canadian zip code can be found by decomposing this address using the com-

ponent CANAddressDecomp. The graph path phoneNo CAN A address CAN �

zipCode CAN gives us the chance to find this plan. �

The discussion above leads us to the following observation:

Observation 5.2 For every scenario of the goal component, if there is no path

in the dependency graph from each input to each output, the composition planning

problem has no solution. �
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After the discussion on the requirements for solving the generic version of the

problem (Problem 5.3), in the rest of this section we explain how those requirements,

i.e., the composition algebra and the dependency graph, are actually used for this

purpose. Similar to the solution to the simple version, we solve the generic version

in two steps.

1. Finding proper repository components that could participate as part of the

composition plan.

2. Finding the composition plan.

5.2.3 Finding Potential Components

Assuming that the target component has a single scenario, based on the above

observation, the first condition to be checked is whether there is a graph path from

each input in IG to each output in OG. If there is no path for any pair (i, o), where

i ∈ IG and o ∈ OG, the ‘NO’ answer will be returned. This condition is captured

by the following lemma.

Lemma 5.1 Consider an execution scenario κi
G of the goal G with inputs I i

G and

outputs Oi
G. In order for the composition planning problem to have a solution for

this scenario, for every i ∈ I i
G and every o ∈ Oi

G, there must be a graph path from

i to o, their corresponding dependency graph nodes.

Proof. For any such pair (i, o), if either i or o does not have a corresponding node

in the graph, there would not be any repository component that receives/returns

them, meaning that there would be no solution. If they do have corresponding

graph nodes, but there is no path from the node i to the node o, o would be

unreachable from i. This means that there would not be any sequence of repository

components that produces o from i. �

Example 5.16 The following goal G is given against the repository of Figure 5.7:

• IG = {phoneNo CAN2}

• OG = {distance Mile}

• κG = {κ1
G}, where κ1

G = {phoneNo CAN2 → distance Mile}
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Based on the above lemma, since there exists a path from the node phoneNo CAN to

the node distance Mile, the goal G could have a solution. In fact, there are three

such graph paths:

• phoneNo CAN A address CAN� city CAN A distance Km A distance Mile

• phoneNo CAN A address CAN� province CAN A distance Km

A distance Mile

• phoneNo CAN A address CAN� zipCode CAN _ zipCode A distance Km

A distance Mile �

But this constraint is not enough in finding potential components. In other words,

there might be graph paths satisfying the given dependency set, while there is no

possible composition plan.

Example 5.17 Although there is a graph path from the given input to the given

output for both of the following requests, no composition plan exists for them ac-

cording to the graph of Figure 5.7.

• G1

– IG1 = {city CAN}

– OG1 = {longitude}

– κG1 = {{city CAN→ longitude}}

The only component that comes into play here is GeographicLocation. How-

ever, it needs an input of type province CAN as well to create a longitude

value.

• G2

– IG2 = {zipCode}

– OG2 = {distance Km}

– κG2 = {{zipCode→ distance Km}}

Here, the component ZipCodeDistance could be useful. However, it fails

because it needs two instances of zipCode. �
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We convert the problem of finding potential components to the problem of finding

appropriate graph paths. Once these paths are found, their edge labels would

identify the potential components. We explain the approach for a single-scenario

target component. It is trivial that for a multi-scenario request, we need to find

a solution for each scenario and then, compose them all conditionally to find a

solution for the whole request. Therefore, the problem is narrowed down to the

following:

Problem 5.4 How the improved dependency graph can be used to find potential

components for the following single-scenario goal G?

• IG = {ik1
1 , ik2

2 , · · · , ikm
m }

• OG = {ol1
1 , ol2

2 , · · · , oln
n }

• κG = {κ1
G}, where κ1

G = {IG → OG} �

According to Lemma 5.1, the first thing to do is to check for a graph path from

each graph node whose label is in IG to each graph node whose label is in OG. If

there is no graph node for some element in IG or OG, or if there is no path for some

input-output pair from IG and OG, the goal G cannot be satisfied by the given

repository.

Now, let us assume that all the necessary graph paths mentioned in Lemma 5.1

exist for G. Now some investigation needs to be performed on their edge labels in

order to find out if they are eligible.

Definition 5.5 For a dependency d in the dependency set κ1
G, like IG → OG in

Problem 5.4, each dependency part pj
d = ikx

x → o
ly
y (1 6 x 6 m, 1 6 y 6 n) is called

a partial dependency for d. The set of all partial dependencies of d is shown as

P(d). �

Definition 5.6 Assume that we have already found a graph path for the partial

dependency pj
d = ikx

x → o
ly
y (1 6 x 6 m, 1 6 y 6 n). This path, which could contain

all the three types of edges, in general looks like ix → v1 → v2 → · · · → vn−1 → oy,

where →∈ {A, _,�,�}. For each dependency edge in this path, only one of the

triplets from the edge label must be selected. Such a path, which has only one triplet

on its dependency edges, is called a path instance. This path instance is called an

eligible path instance for the partial dependency pj
d, if and only if kx and ly satisfy

the cardinality constraints on the dependency and CD edges.
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The satisfiability of cardinality constraints can be verified through the following

process: We remove all the GenSpec edges by combining the nodes at both ends,

and simulate each CD edge by a dependency edge. Note that, in general, each CD

edge is simulated by two dependency edges; but here, we keep only the one that is

in the same direction as the path instance. Therefore, the path instance after these

changes would look like ix
(C1,x1,y1)

−−−−A u1

(C2,x2,y2)

−−−−A u2 · · ·um−1

(Cm,xm,ym)

−−−−A oy which, again,

corresponds to the partial dependency pj
d = ikx

x → o
ly
y . This path instance is eligible,

if and only if the following set of equations has integer solutions for n1, n2, . . . ,

nm:6

kx = n1 × x1

n1 × y1 = n2 × x2

. . .

nm−1 × ym−1 = nm × xm

nm × ym = ly

GCD(kx, n1, n2, · · · , nm−1, nm, ly) = 1

The last condition requires the greatest common divisor of the numbers kx, n1, n2,

. . . , nm−1, nm and ly to be 1. If the greatest common divisor of these numbers is

greater than 1, say g (g > 1), then the partial dependency i
kx
g

x → o
ly
g

y would also

have an eligible path instance with all the above numbers divided by g. This means

that each instance of oy would be dependent on only kx

g
instances of ix, not all the

kx instances.

Each partial dependency might have more than one eligible path instance. The

set of all eligible path instances of a partial dependency p is called its eligible path

instance set and is shown by E(p). �

Example 5.18 Consider the single-scenario goal G of Example 5.16 again. The

dependency set κ1
G has only one dependency d = phoneNo CAN2 → distance Mile

with only one partial dependency pd = phoneNo CAN2 → distance Mile. Since

it has a single input type and a single output type, we need to find only one set of

eligible path instances, i.e., from the node phoneNo CAN to the node distance Mile.

We saw that there are three different graph paths for this partial dependency. Each

of these three paths shown in Example 5.16 has a single path instance because every

dependency edge has a single triplet in its label. So there are three path instances

that need to be checked for eligibility:

6Note that if we accept more outputs than originally requested, we would have to solve a set
of inequalities instead, which potentially could result in multiple solutions.
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1. phoneNo CAN
(PhoneNoLocation,1,1)

−−−−−−−−−−−−−−−A address CAN
1

� city CAN

(CANDistance,2,1)

−−−−−−−−−−−−−−−A distance Km
(Km2MileConvertor,1,1)

−−−−−−−−−−−−−−−A distance Mile

2. phoneNo CAN
(PhoneNoLocation,1,1)

−−−−−−−−−−−−−−−A address CAN
1

� province CAN

(CANDistance,2,1)

−−−−−−−−−−−−−−−A distance Km
(Km2MileConvertor,1,1)

−−−−−−−−−−−−−−−A distance Mile

3. phoneNo CAN
(PhoneNoLocation,1,1)

−−−−−−−−−−−−−−−A address CAN
1

� zipCode CAN _ zipCode

(ZipCodeDistance,2,1)

−−−−−−−−−−−−−−−A distance Km
(Km2MileConvertor,1,1)

−−−−−−−−−−−−−−−A distance Mile

The partial dependency pd involves two instances of phoneNo CAN and one instance

of distance Mile. In order to check the eligibility of the first path against this

partial dependency, we start with the two instances of phoneNo CAN. Following the

path instance, we get two instances of address CAN (by applying PhoneNoLocation

on each available phoneNo CAN), then two instances of city CAN, then one instance

of distance Km (note that CANDistance converts two instances of city CAN into

one instance of distance Km), and finally, one instance of distance Mile, which

satisfies the one distance Mile instance requested by pd. Therefore, the first path

above is an eligible path for the partial dependency pd. Note that, in terms of the

set of equations in Definition 5.6, we would have n1 = 2, n2 = 2, n3 = 1 and n4 = 1

as a valid solution.

Since the other two path instances have the same cardinality constraints, they are

also eligible. As a result, the partial dependency pd has three eligible path instances

(|E(pd)| = 3) according to the dependency graph of Figure 5.7. �

Example 5.19 Consider the partial dependency p = zipCode4 → distance Km2

and the dependency graph of Figure 5.7. The corresponding path instance for p

would be zipCode
(ZipCodeDistance,2,1)

−−−−−−−−−−−−−−−A distance Km. Although the set of equations

in Definition 5.6 would return n1 = 2, since GCD(4, 2, 2) = 2 6= 1 the answer is

rejected and no eligible path instance would be returned for p. Note that n1 = 2

means that the component ZipCodeDistance would be used twice to convert four

instances of zipCode to two instances of distance Km, but each of these two in-

stances would be dependent on only two of the four zipCode instances, not all of

them. �

Although by defining the concept of eligible path instances we took one step forward

in finding appropriate graph paths, and hence finding potential components, this

eligibility alone is not enough.
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Example 5.20 Consider the request G1 in Example 5.17 one more time. This

request has one dependency d and one partial dependency pd, where d = pd =

city CAN → longitude. This partial dependency has a single eligible path in-

stance, i.e., E(pd) = {city CAN
(GeographicLocation,1,1)

−−−−−−−−−−−−−−−A longitude}. Nonetheless, the

request has no answer since the component GeographicLocation needs an input

of type province CAN as well. �

The next step is taken by the following definition:

Definition 5.7 Consider the general request G defined in Problem 5.4. A con-

sistent eligible path instance set (or simply consistent set) cs for a dependency

d ∈ κ1
G is a set for which its size is at least the number of partial dependencies in

d. For each partial dependency p in P(d), this set has at least one eligible path

instance from E(p). These two properties are formally represented as |cs| > |P(d)|
and ∀p ∈ P(d) � |cs ∩ E(p)| > 1. In fact, the > case in these two formulas might

occur only because of the following two restrictions on the consistent eligible path

instance set cs:

• If cs contains an eligible path instance e which contains some edge vi

(C,x,z)

−−−−A

vj, every other graph edge vk

(C,y,z)

−−−−A vj (k 6= i) must also belong to some

eligible path instance in cs.

• If cs contains an eligible path instance e which contains some edge vi

x

� vj,

every other graph edge vk

y

� vj (k 6= i) must also belong to some eligible path

instance in cs.

These properties guarantee that all the components appearing on the eligible path

instance edges in cs could be actually used by making sure that all their required

inputs are available. The set of all possible consistent sets for the dependency d is

shown as CS(d). �

We show through some examples how these restrictions help in finding appropriate

path instances and, as a result, potential components for the given request.

Example 5.21 The dependency graph of Figure 5.7 and the following goal G are

given.

• IG = {city CAN, province CAN}
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• OG = {latitude}

• κG = {κ1
G}, κ1

G = {d = {city CAN, province CAN} → latitude}

Then we would have

• P(d) = {p1
d = city CAN→ latitude, p2

d = province CAN→ latitude}

• E(p1
d) = {city CAN

(GeographicLocation,1,1)

−−−−−−−−−−−−−−−A latitude}

• E(p2
d) = {province CAN

(GeographicLocation,1,1)

−−−−−−−−−−−−−−−A latitude}

Since each partial dependency has only one eligible path instance, and each con-

sistent set cs for d must have at least one eligible path instance for each partial

dependency, we put them both in cs. Therefore, the only possible solution would be

cs = {e1 = city CAN
(GeographicLocation,1,1)

−−−−−−−−−−−−−−−A latitude,

e2 = province CAN
(GeographicLocation,1,1)

−−−−−−−−−−−−−−−A latitude}

We also need to check the constraints given in the above definition,

• since e1 = city CAN
(GeographicLocation,1,1)

−−−−−−−−−−−−−−−A latitude is in cs, and there is

another graph edge province CAN A latitude which has the same triplet

in its label, the edge province CAN
(GeographicLocation,1,1)

−−−−−−−−−−−−−−−A latitude must also

belong to some eligible path instance in cs. We see that this edge already

belongs to e2 ∈ cs.

• since e2 = province CAN
(GeographicLocation,1,1)

−−−−−−−−−−−−−−−A latitude is in cs, and there

is another graph edge city CAN A latitude which has the same triplet in

its label, the edge city CAN
(GeographicLocation,1,1)

−−−−−−−−−−−−−−−A latitude must also belong

to some eligible path instance in cs. We see that this edge already belongs to

e1 ∈ cs.

Therefore, the above consistent set cs is a consistent eligible path instance set for

the given dependency and the given request (since there is only one dependency in

the request). Note that although these path instances indicate the “one city CAN to

one latitude” and “one province CAN to one latitude” conversions separately,

together they do not indicate the “one city CAN and one province CAN to two

78



latitude” conversion. The reason is the common component which appears on

the edges city CAN A latitude and province CAN A latitude, indicating that

only one latitude would be created given one city CAN and one province CAN.

If these components were different, the former indication would have been valid. �

Example 5.22 Consider the following goal G against the same dependency graph:

• IG = {city CAN2}

• OG = {distance Km}

• κG = {κ1
G}, κ1

G = {d = city CAN2 → distance Km}

As a result,

• P(d) = {pd = city CAN2 → distance Km}

• E(pd) = {city CAN
(CANDistance,2,1)

−−−−−−−−−−−−−−−A distance Km}

Potentially, cs = {e1 = city CAN
(CANDistance,2,1)

−−−−−−−−−−−−−−−A distance Km} is a consistent

set for d. However, since there is another graph edge province CANA distance Km

with the same triplet in its label, and this edge does not belong to any path instance

in cs, the potential solution would be rejected. Since there is no other alternative

for cs we conclude that this goal cannot be satisfied against the given graph. �

Example 5.23 For the request given in Example 5.16, we would have

• d = phoneNo CAN2 → distance Mile

• P(d) = {pd = phoneNo CAN2 → distance Mile}

• E(pd) = {e1, e2, e3}, where e1, e2 and e3 were listed in Example 5.18, respec-

tively.

Therefore, three possible consistent eligible path instance sets exist for d:

• cs1 = {e1}: In this case, because of the edge city CAN
(CANDistance,2,1)

−−−−−−−−−−−−−−−A
distance Km, the edge province CAN

(CANDistance,2,1)

−−−−−−−−−−−−−−−A distance Km must

also belong to some path instance in cs1. Therefore, e2 would be added to the

set, i.e., cs1 = {e1, e2}.
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Algorithm 5.1: Converge(e1, e2): Returns the node at which path instances

e1 and e2 converge.
input : Two path instances e1 and e2

output : A graph node at which e1 and e2 converge; nil if they do not converge.
begin1

if e1 =nil or e2 =nil then return nil2

if the last node in e1 and e2 is the same (node x) then3

y =nil4

if labels of the last edge of e1 and e2 are the same then5

y =Converge(e1.RemoveLast(), e2.RemoveLast())6

//RemoveLast() removes the last node and edge from a path instance
end7

if y =nil then return x else return y8

else9

return nil10

end11

end12

• cs2 = {e2}: Similar to the previous one, this time we need to add e1 to the

set. Therefore, cs2 = {e1, e2}.

• cs3 = {e3}: This set conforms to Definition 5.7.

Therefore, there are two possible consistent sets for the given request, i.e., CS(d) =

{{e1, e2}, {e3}}. �

Definition 5.8 Two path instances e1 and e2 are said to converge at node v, if

and only if the node v is the first node that both e1 and e2 visit, and from which

both path instances are the same. This means that from the node v, and not any

previous node, the edge types and their labels are the same in both e1 and e2. �

Example 5.24 Consider path instances 1-3 in Example 5.18. Paths 1 and 2 con-

verge at node distance Km. Also, paths 2 and 3 converge at node distance Km,

and so do paths 1 and 3. �

Algorithm 5.1 describes, in a recursive manner, how it can be determined if two

path instances converge at some graph node.

Lemma 5.2 If two eligible path instances e1 and e2 belonging to the consistent

eligible path instance set cs converge at node v, either
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Figure 5.9: Possible ways two eligible path instances can converge in the consistent

eligible path instance set cs.

• they reach the node v by a CD edge of type �, or

• e1 reaches v by an edge
(C1,x1,y1)

−−−−A and e2 reaches v by an edge
(C2,x2,y2)

−−−−A where

C1 = C2 and y1 = y2.

Proof. Figure 5.9 shows these two cases. The important thing is that the car-

dinality of data type v must be preserved when the path instances converge. In

the top picture, for each instance of v, x instances of u1 and y instances of u2 are

necessary. These x and y instances produce one instance of v, not two. In the

bottom picture, the component C converts x1 instances of u1 and x2 instances of

u2 into y instances of v. If the components on these two edges were different, i.e.,

(C1, x1, y1) and (C2, x2, y2), y1 + y2 instances of v would have been created and the

cardinality for the rest of the path would have changed inconsistently. Therefore,

the same component name must appear on each edge and the number of created

v instances must also be the same. We could easily see that the cardinality would

not be preserved with other types of graph edges. �

The following lemma is the direct result of Lemma 5.2.

Lemma 5.3 If two edges u1

(C1,x1,y1)

−−−−A v and u2

(C2,x2,y2)

−−−−A v (C1 6= C2 or y1 6= y2)

belong to two eligible path instances converging at v in an eligible path instance set,

that set would not be consistent. �

Consider a dependency d ∈ κ1
G with P(d) = {p1, p2, · · · , p|P|}, where each par-

tial dependency pk (1 6 k 6 |P|) has an eligible path instance set Ek = E(pk) =
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{ek
1, e

k
2, · · · , ek

|Ek|}. Based on the above discussion, from each Ek (16k6 |P|) at least

one ek
l (16 l 6 |Ek|) must be in each consistent set cs for d. The best way to find

all possible consistent eligible path instance sets CS(d), according to Lemmas 5.2

and 5.3, is shown in Algorithm 5.2. Note that, to simplify the discussions, we use

Observation 5.1 to unify CD and dependency edges.

To explain the algorithm, note that CS is supposed to hold every possible con-

sistent eligible path instance set of the dependency d ∈ κ1
G. The algorithm finds

the result, through the main loop (lines 3-23), by considering every possible path

instance set and then checking its consistency. At each execution of this loop, the

algorithm first considers a new possible path instance set cs (line 6). If this set is

already part of a consistent set in CS, the algorithm continues with the next possi-

ble path instance set (line 7). Otherwise, the consistency of every edge u
(C,x,y)

−−−−A v

from each path instance ei in cs is checked (lines 9-15); i.e., the algorithm looks

for all the related graph edges w
(C,z,y)

−−−−A v and makes sure they all belong to some

eligible path instance ej ∈ Ej that converges with ei at v (Lemma 5.2). It adds all

such path instances to cs (line 10). If there is one such edge which is not part of any

eligible path instance in cs, the set is tagged as being inconsistent (lines 11-14) and

the algorithm continues with the next eligible path instance set (through line 16).

After all necessary eligible path instances are added to cs, the algorithm looks for

any two eligible path instances ei and ej in cs converging at node v with edges

u1

(C1,x1,y1)

−−−−A v and u2

(C2,x2,y2)

−−−−A v (line 19). As this indicates an inconsistency in the

selected eligible path instances (Lemma 5.3), the algorithm marks the set as being

inconsistent (lines 20). If both these consistency checks turn out to be successful,

the set cs is added to CS as a consistent eligible path instance set (line 22). At

the end, when all possible path instance sets are processed, the set CS is returned

(line 24).

The reason behind the path instance set expansion in line 10 is that if the edge

u
(C,x,y)

−−−−A v is in cs and there is an edge w
(C,z,y)

−−−−A v not in cs, the component

C cannot be used, because it would need to trigger all such edges at the same

time. If one of these edges is missing in cs, none of them would be triggered by C.

This expansion does not violate the eligibility of any of the path instances involved

since the eligibility is determined for each path independently. However, we need

to make sure that these path instances as a collection do not violate the required

consistency in terms of the cardinality of data type instances involved.

For any two eligible path instances e1 and e2, the inconsistency of cardinalities

could happen only at their common nodes. Here we study all possible cases:

82



Algorithm 5.2: FindCS(d): Returns all the consistent eligible path instance

sets for d ∈ κ1
G.

input : dependency graph DG, dependency d ∈ κ1
G with

P = P(d) = {p1, p2, · · · , p|P|}, where for each pk,
Ek = E(pk) = {ek

1, e
k
2, · · · , ek

|Ek|} (16k6 |P|)
output : all the possible assignments for CS(d) in CS
begin1

CS = ∅ // CS is the set of all consistent eligible path instance sets for d2

foreach (e1, e2, · · · , e|P|) ∈ (E1 × E2 × · · · × E|P|) do3

cs = ∅ // cs is the current path instance set being investigated4

bConsistent = true5

foreach eligible path instance ei in (e1, e2, · · · , e|P|) do cs = cs ∪ {ei}6

if there is a consistent set cs′ ∈ CS where cs ⊆ cs′ then continue7

foreach eligible path instance ei ∈ cs do8

foreach edge u
(C,x,y)
−−−−A v in ei do9

foreach edge w
(C,z,y)
−−−−A v in DG belonging to the eligible path10

instance ej ∈ Ej where ej 6∈ cs and v = Converge(ei, ej) do
cs = cs ∪ {ej}

if there is an edge w
(C,z,y)
−−−−A v in DG not belonging to any path11

instance ej ∈ cs where v = Converge(ei, ej) then
bConsistent = false12

break13

end14

end15

if bConsistent = false then break16

end17

if bConsistent = false then continue18

if there there are two edges u1

(C1,x1,y1)
−−−−A v and u2

(C2,x2,y2)
−−−−A v (C1 6= C2 or19

y1 6= y2) in two eligible path instances ei and ej in cs where
v = Converge(ei, ej) then

bConsistent = false20

end21

if bConsistent then CS = CS ∪ {cs}22

end23

return CS24

end25
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Figure 5.10: Possible shared nodes between two eligible path instances where the

shared node is neither the start node in both nor the end node in both.

• e1 and e2 start at the same node u, i.e., u
(C1,x1,y1)

−−−−A v1 in e1 and u
(C2,x2,y2)

−−−−A v2 in

e2: Since e1 and e2 are eligible path instances, x1 = x2 = x instances of u are

in IG. Because inputs can be shared between two components (a single data

type instances can be fed to two components), C1 and C2 share x instances

of u and no inconsistency happens.

• e1 and e2 converge at the same node, i.e., u
(C1,x1,y1)

−−−−A w in e1 and v
(C2,x2,y2)

−−−−A w

in e2: Similar to the case above, y1 = y2 = y instances of w is in OG. However,

if C1 6= C2, each component would create y instances of w, and at the end,

2y instances of w would be created, which is a violation of the cardinality

constraint. However, if C1 = C2, this inconsistency would not happen as only

y instances of w would be created.

• e1 and e2 share a node, but none of the above cases applies, i.e., one of the

cases shown in Figure 5.10 applies: In all these cases, the shared node does

not violate any cardinality constraint. In Figure 5.10-(a), where it is an end

node (output) in one path instance and a start node (input) in the other, the

cardinality of inputs and outputs do not affect each other. In Figure 5.10-(b)-

(d), it is an intermediate node in at least one of the path instances, in which

case its cardinality does not affect the cardinality of inputs and outputs.

Therefore, only when both path instances converge at a shared node, an incon-

sistency would happen if the labels of their last edges do not indicate the same
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component. This part of the consistency checking is performed in lines 19-21 of

Algorithm 5.2.

Lemma 5.4 Algorithm 5.2 works correctly. In other words, if there is a consistent

eligible path instance set for d ∈ κ1
G, it would belong to the set CS after the execution

of the algorithm. Also, all the sets returned by the algorithm in CS are consistent.

Proof. Let us consider that the dependency d ∈ κ1
G is given, against the de-

pendency graph DG, with P = P(d) = {p1, p2, · · · , p|P|}, where for each partial

dependency pk, Ek = E(pk) = {ek
1, e

k
2, · · · , ek

|Ek|} (16k6 |P|).

We first prove that if there is a consistent eligible path instance set cs, then

cs ∈ CS. Based on the definition, cs must have at least one eligible path instance

from each Ek, i.e., ∀k : 16k6 |P| � cs ∩ Ek 6= ∅. Therefore, the size of cs is at least

|P|. Two cases are possible:

1. |cs| = |P|: In this case cs = {e1, e2, · · · , e|P|}, where ek ∈ Ek (1 6 k 6 |P|).

Based on the consistency requirements, for each edge u
(C,x,y)

−−−−A v in some

ek, there is no dependency graph edge w
(C,z,y)

−−−−A v which does not belong

to some path instance in cs. Also, there are no two edges u1

(C1,x1,y1)

−−−−A v and

u2

(C2,x2,y2)

−−−−A v in any pair of path instances in cs where C1 6= C2 or y1 6= y2.

We can see that, by running Algorithm 5.2, at some point the above path

instance set cs would be considered, and since both consistency requirements

hold for this set, no other path instances would be added to cs. Hence, cs

would be marked as a consistent eligible path instance set.

2. |cs| > |P|: We pick one eligible path instance ek belonging to both cs and Ek

(for each 16k6 |P|) and put them in the set es. The algorithm must consider

this path instance set at some point (since it has only one path instance from

each Ek). Since |cs| > |P|, there is a set Ej (1 6 j 6 |P|) from which more

than one path instance, say two, are in cs. Since these two path instances

correspond to the same partial dependency, they must start and end at the

same nodes. Therefore, they converge at some node along their path (the last

node on their path at the latest). Hence, according to Lemma 5.2, the edges

right before the converge node must indicate the same component. This is

what the algorithm does in line 10.

Therefore, each consistent eligible path instance set would be captured by the

algorithm.
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Now, let us assume the set CS returned by the algorithm. In order to show that

each set in CS is consistent, assume that there is a set s ∈ CS which is inconsistent.

Two cases are possible:

1. There is a path instance in s which is not eligible: This is a contradiction

since all the path instances added to s by the algorithm are from eligible path

instance sets.

2. Some cardinality constraint is not met: The only reason for this inconsistency

would be s including two edges u1

(C1,x1,y1)

−−−−A v and u2

(C2,x2,y2)

−−−−A v, where C1 6= C2

or y1 6= y2, in some path instances ei and ej. Either ei and ej have been added

to s at line 6 of the algorithm, or one of them (say ej) has been added at

line 10 while the other (ei) had already been in s. In the former case, s would

have been rejected at lines 19-21; and in the latter case, ej could not have

been added at line 10 because it violated the condition. So the cardinality

constraints cannot violated.

Therefore, each set in CS returned by the algorithm is consistent. �

For each consistent eligible path instance set cs in CS(d), the set of potential

components C(d) includes every component that appears in some edge label of

some path instance in cs.

Example 5.25 Example 5.23 briefly captures the functionality of Algorithm 5.2.

It returns CS(d = phoneNo CAN2 → distance Mile) = {cs1, cs2}, where cs1 =

{e1, e2} and cs2 = {e3}, where e1, e2 and e3 were listed in Example 5.18, respec-

tively. By considering these path instances, we conclude that

• C1(d) = {PhoneNoLocation, CANDistance, Km2MileConvertor}

• C2(d) = {PhoneNoLocation, CANAddressDecomp, ZipCodeDistance, Km2MileConvertor}

where Ci(d) is the set of potential components for dependency d according to the

consistent eligible path instance set csi. �

In the next section we find out how many times we need to use each potential

component and how we need to execute them such that the overall exposed behavior

satisfies the given request.
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5.2.4 Finding the Composition Plan

Considering the request G given as

• IG = {ik1
1 , ik2

2 , · · · , ikm
m }

• OG = {ol1
1 , ol2

2 , · · · , oln
n }

• κG = {κ1
G}, where κ1

G = {d = IG → OG}

the following are what we achieved in the previous section:

• P(d), the set of partial dependencies for the dependency d ∈ κ1
G,

• E(p), the set of eligible path instances for every partial dependency p ∈ P(d),

• CS(d) = {cs1, cs2, · · · }, the set of all consistent eligible path instance sets for

d ∈ κ1
G,

• C(d) = {C1(d), C2(d), · · · }, the set of all potential component sets for depen-

dency d ∈ κ1
G according to the consistent eligible path instance sets in CS(d).

The only question that remains is how the components we found in the sets C(d)

should be executed so that the composition provides the desired behavior. The

answer to this question would be a composition plan in terms of the components

involved, their order of execution, and possible dataflow among them.

We saw the definition of convergence in the last section. Here, we define the

concept of divergence in a similar way.

Definition 5.9 Two path instances e1 and e2 diverge at node v, if and only if the

node v is the last node that both e1 and e2 visit, and until which both path instances

are the same. This means that until reaching the node v, and not any succeeding

node, the edge types and their labels are the same in both e1 and e2. �

For example, paths 1 and 2 in Example 5.18 diverge at node address CAN, and so

do pairs 1 and 3, and also 2 and 3. Similar to Algorithm 5.1, Algorithm 5.3 finds

a node at which two path instances diverge.

Note that there is no similar lemma for divergence as Lemma 5.2 for convergence.

Different components might appear on outgoing edges from the diverging node v,

because it is assumed that each instance of a data type can be used by different
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Algorithm 5.3: Diverge(e1, e2): Returns the node at which path instances

e1 and e2 diverge.
input : Two path instances e1 and e2

output : A graph node at which e1 and e2 diverge; nil if they do not diverge.
begin1

if e1 =nil or e2 =nil then return nil2

if the first node in e1 and e2 is the same (node x) then3

y =nil4

if labels of the first edge of e1 and e2 are the same then5

y =Diverge(e1.RemoveFirst(), e2.RemoveFirst())6

//RemoveFirst() removes the first node and edge from a path instance
end7

if y =nil then return x else return y8

else9

return nil10

end11

end12

components as an input. So if there are two different components on the outgoing

edges from v in two eligible path instances where each component needs only one

v instance, producing only one instance would suffice and the two components can

share that instance as their input.

In order to find the composition plan for a dependency d ∈ κ1
G, we first consider

one of its consistent eligible path instance sets cs. Then for each eligible path

instance e ∈ cs we find out how many times each component in this path instance

should be used to realize the corresponding partial dependency. In fact, we have

already found these numbers in the last section when we were checking the eligibility

of path instances using the numeric equations of Definition 5.6. In that definition,

numbers n1, n2, . . . , nm respectively indicate how many times components C1, C2,

. . . , Cm should be used.

Now consider a consistent eligible path instance set cs including only one path

instance e, which would look like i
(C1,x1,y1)

−−−−A u1

(C2,x2,y2)

−−−−A u2 · · ·um−1

(Cm,xm,ym)

−−−−A o.

Moreover, assume we have found that components C1, C2, . . . , Cm should be used

n1, n2, . . . , nm times, respectively. The composition plan, in composition algebra,

that satisfies cs would be

(

n1 times︷ ︸︸ ︷
C1 || · · · || C1)� (

n2 times︷ ︸︸ ︷
C2 || · · · || C2)� · · · � (

nm times︷ ︸︸ ︷
Cm || · · · || Cm)
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Figure 5.11: How data type instances are used or created by components in a

consistent eligible path instance set of size 1.

Note that the path instance e would correspond to the partial dependency in1×x1 →
onm×ym . Figure 5.11 shows how this composition plan works. At step 1, all the

inputs (n1 × x1 instances of i) are used by n1 instances of the component C1 pro-

ducing n1 × y1 instances of u1. The partial composition for this step is shown

as cp1 =

n1 times︷ ︸︸ ︷
C1 || · · · || C1. Similarly, n1 × y1 instances of u1 would be converted to

n2×y2 instances of u2 using the parallel execution of n2 instances of the component

C2, i.e., cp2 =

n2 times︷ ︸︸ ︷
C2 || · · · || C2. Since the outputs of cp1 is used by cp2 as inputs,

cp1 and cp2 are being synchronized based on those intermediate instances of u1.

Therefore, the partial composition plan until the creation of u2 instances would be

cp1 � cp2. Continuing this scenario we would see that the above composition plan

is the satisfying plan for cs.

In case the consistent set cs contains more than one path instances, and all

those path instances neither converge nor diverge at any graph node, the above

plan would work. It suffices to find the plan for each path instance as above,

and then compose the results using the parallel composition. Since path instances

are independent, no synchronization would be needed and their parallel execution

would be sufficient.

The situations in which two eligible path instances converge or diverge at some

graph node is shown in Figure 5.12. We assume that there is no other path instance

in cs that converges or diverges with any of these two path instances.

In part (a) two path instances e1 and e2 converge at node w1. According to

Lemma 5.2 the incoming edges of w1 must have the same component in their labels

(component C1). Note that the number of instances of w1, w2, . . . , o in both e1 and

e2 must be the same. This means that the number of times the components C1,

89



i1

i2

u1 uk−1 uk

v1 vl−1 vl

w1 w2 o

(C1
1 , x1

1, y
1
1) (C1

k , x1
k, y1

k)

(C2
1 , x2

1, y
2
1) (C2

l , x2
l , y

2
l )

(C1, x
′
1
, y1)

(C1 , x1 , y1) (C2, x2, y2)

i

o1

o2

wj−1 wj

u1

v1

u2

v2

uk

vl

(Cj , xj , yj)
(C

1
1
, x

1
1
, y

1
1
)

(C 2
1 , x2

1 , y 2
1 )

(C1
2 , x1

2, y
1
2)

(C2
2 , x2

2, y
2
2)

(C1
k+1, x

1
k+1, y

1
k+1)

(C2
l+1, x

2
l+1, y

2
l+1)

(a)

(b)

e1

e2

e1

e2

Figure 5.12: (a) Two eligible path instances converging at node w1. (b) Two eligible

path instances diverging at node wj.

C2, . . . are needed would be the same according to both path instances. Assuming

these numbers are n1, n2, . . . , to satisfy both e1 and e2 together we also need the

same number of these components, and there is no need to double n1, n2, . . . , nm

for that purpose.

The partial composition plans for the parts from i1 to uk, from i2 to vl, and

from w1 to o can be obtained according to the above discussion. Let us assume

these partial plans are cp1, cp2 and cp3, respectively. It is obvious that cp1 and

cp2 can run in parallel. However, both cp1 and cp2 must be executed before cp3.

According to e1 and e2, cp1 produces n1 × x1 instances of uk, while cp2 produces

n1×x′1 instances of vl. These uk and vl instances then are consumed by n1 parallel

execution of C1 to produce n1×y1 instances of w1, which, afterwards, are consumed

by cp3. This means that the composition plan for these two path instances would

be ((cp1 || cp2)� (

n1 times︷ ︸︸ ︷
C1 || · · · || C1))� cp3.

The composition plan for part (b) can be similarly found. The only difference is

that since each input instance can be consumed by multiple components, outgoing

edges of wj could have different components in their labels. If the partial composi-

tion plans for the parts from i to wj, from u1 to o1, and from v1 to o2 respectively

are cp0, cp1 and cp2, the composition plan for the two diverging path instances of

Figure 5.12-(b) would be (cp0�((

n1
1 times︷ ︸︸ ︷

C1
1 || · · · || C1

1)�(

n2
1 times︷ ︸︸ ︷

C2
1 || · · · || C2

1)))�(cp1 || cp2).

In the special case where C1
1 = C2

1 , we would have x1
1 = x2

1 and n1
1 = n2

1; and the
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composition plan would be (cp0 � (

n1
1 times︷ ︸︸ ︷

C1
1 || · · · || C1

1))� (cp1 || cp2).

There is an alternative way to find the composition plan for part (b) which is due

to the fact that the restrictions are more relaxed on diverging path instances, and

also the above mentioned difference (each input instance can be used by multiple

components). In this alternative way, if the composition plan for two diverging path

instances e1 and e2 (Figure 5.12-(b)) is cp(e1) and cp(e2), the composition plan for

both of them would be cp(e1) || cp(e2). This way, the initial n1 × x1 instances of i

are twice used by n1 instances of C1 for each path instance e1 and e2. This would

continue until 2× nj × yj instances of wj are created. Then half of these instances

is used by n1
1 instances of C1

1 while the other half is used by n2
1 instances of C2

1 .

Therefore, the consistency would not be violated in this alternative solution. In

the special case where C1
1 = C2

1 , n1
1 × y1

1 instances of u1 and v1 are created for the

path instance e1, and the same number of them are created for the path instance

e2. Since for path instance e1, created v1 instances are not useful, they would be

ignored. Similarly, n1
1 × y1

1 instances of u1 are ignored for the path instance e2.

Although the alternative solution is not optimal, as the numbers of required

instances of the components on the shared part of the path instances are doubled,

it is easier to achieve.

This way, the composition plan for every type of consistent eligible path instance

set could be found. The set of all possible composition plans for a given dependency

d is shown as CP(d), in which there is one composition plan for each consistent

eligible path instance set in CS(d).

Example 5.26 Let us continue Example 5.23 to find the corresponding composition

plans for d = phoneNo CAN2 → distance Mile. In that example, we found two

possible consistent eligible path instance sets, i.e., cs1 = {e1, e2} and cs2 = {e3},
where e1, e2 and e3 were given in Example 5.18.

The corresponding eligible path instances are shown in Figure 5.13. Note that

in this figure CD edges have been simulated by dependency edges (Observation 5.1)

and the pair of nodes at the two ends of each GenSpec edge have been combined.

After solving the numeric equations of Definition 5.6, the followings are the

results in terms of the potential components and the number of times they should

be used for each eligible path instance:

• Path instance e1: n1
1 = 2 instances of PhoneNoLocation, n1

2 = 2 instances of
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Figure 5.13: The corresponding path instances for the request of Example 5.26. (a)

Path instances for cs1. (b) The path instance for cs2.

CANAddressDecomp, n1
3 = 1 instance of CANDistance and n1

4 = 1 instance of

Km2MileConvertor.

• Path instance e2: n2
1 = 2 instances of PhoneNoLocation, n2

2 = 2 instances of

CANAddressDecomp, n2
3 = 1 instance of CANDistance and n2

4 = 1 instance of

Km2MileConvertor.

• Path instance e3: n3
1 = 2 instances of PhoneNoLocation, n3

2 = 2 instances

of CANAddressDecomp, n3
3 = 1 instance of ZipCodeDistance and n4

4 = 1

instance of Km2MileConvertor.

The case for cs1 is a mixture of converging and diverging path instances. Follow-

ing the above instructions, to satisfy both e1 and e2, the composition plan would

be (((PhoneNoLocation || PhoneNoLocation) � (CANAddressDecomp || CANAddressDecomp)) �

CANDistance) � Km2MileConvertor. Composition algebraic axioms prove that this ex-

pression is equivalent to (((PhoneNoLocation� CANAddressDecomp) || (PhoneNoLocation�

CANAddressDecomp))� CANDistance)� Km2MileConvertor. The case for cs2 is quite sim-

ple to resolve. According to the corresponding instructions for a consistent set

of size 1, the composition plan would be (((PhoneNoLocation || PhoneNoLocation) �

(CANAddressDecomp || CANAddressDecomp))�ZipCodeDistance)�Km2MileConvertor. So there

are two possible composition plans for the given request. Of course, in both plans we

would need to ignore unwanted outputs from the CANAdressDecomp component. We

can use the hiding operator in the resulting algebraic expressions for this purpose.
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Algorithm 5.4: CompPlan(d): Returns all the composition plans for depen-

dency d.

input : dependency d = {ik1
1 , ik2

2 , · · · , ikm
m } → {ol1

1 , ol2
2 , · · · , oln

n }
output : CP = CP(d), the set of all composition plans to satisfy d

begin1

CS = FindCS(d)2

foreach cs ∈ CS do3

foreach output data type oi in d do4

si = the set of all path instances in cs that end at oi5

end6

cp = (FindComp(o1, s1) || FindComp(o2, s2) || · · · || FindComp(on, sn))7

// cp is the composition plan for the current consistent set
CP = CP ∪ {cp}8

end9

return CP10

end11

To validate the compositions found for both cs1 and cs2 we use the composi-

tion algebraic axioms. For cs1, PhoneNoLocation � CANAddressDecomp ≡ phoneNo CAN ·

(city CAN || province CAN || zipCode CAN || streetAddr). Since only two of the outputs

are required, R1 ≡ (PhoneNoLocation � CANAddressDecomp)\{zipCode CAN, streetAddr} ≡

phoneNo CAN · (city CAN || province CAN). As a consequence, (R1 || R1) � CANDistance ≡

(phoneNo CAN || phoneNo CAN) ·distance Km. This result, if synchronized with the compo-

nent Km2MileConvertor, proves that the proposed solution performs as requested; i.e.,

it receives two instances of phoneNo CAN and returns one instance of distance Mile.

Composition algebraic rules can be similarly used to prove that the plan found for

cs2 is also valid. �

Algorithms 5.4 and 5.5 show, in a more formal way, how the composition plan

of a given dependency can be determined. Algorithm 5.4 simply states that the

composition plan for d is the parallel execution of all the composition plans for each

output in d. The reason behind this is that we can safely assume that each output

in d is produced independently. Therefore, the dependency d can be decomposed

into n dependencies d1 = {ik1
1 , ik2

2 , · · · , ikm
m } → ol1

1 , d2 = {ik1
1 , ik2

2 , · · · , ikm
m } → ol2

2 ,

. . . , dn = {ik1
1 , ik2

2 , · · · , ikm
m } → oln

n . In fact, two sets {d} and {d1, d2, · · · , dn} are

considered behaviorally equivalent. This algorithm also finds parts of the consistent

eligible path instance set which correspond to each of the decomposed dependencies.

These parts are put into sets s1, s2, . . . , sn accordingly.
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Algorithm 5.5: FindComp(o, s): Returns the composition plan for a single

output type o according to the set of path instances s.
input : an output type o and a set of path instances s

output : the composition plan to produce o according to s

begin1

C =LastComp(e), where e ∈ s //LastComp(e) is the component on the last2

edge of e

n =LastNo(e), where e ∈ s //LastNo(e) is the number of times C should be3

used
PrevNodes = {u| u → o is in some ei ∈ s, where |ei| > 1}4

if PrevNodes = ∅ then return (

n times︷ ︸︸ ︷
C || · · · || C)5

foreach i such that 16 i6 |PrevNodes| do6

si = {ei.RemoveLast()| ei ∈ s and |ei| > 1 and ui → o in ei}7

pi = FindComp(ui, si)8

end9

if |PrevNodes| = 1 then return (p1)� (

n times︷ ︸︸ ︷
C || · · · || C)10

else return (p1 || p2 || · · · || p|PrevNodes|)� (

n times︷ ︸︸ ︷
C || · · · || C)11

end12

The main processing in finding the composition plan is performed by Algo-

rithm 5.5, in which it is shown how the composition plan is found for a decomposed

dependency (like d1, d2, . . . , dn above) according to its related subset of the con-

sistent eligible path instance set. It is assumed that for each related path instance

(in s) the result of the equations in Definition 5.6 is known and accessible. The

algorithm starts from the output node o in this decomposed dependency and goes

all the way back towards the involved inputs through the path instances in s. Note

that every pair of path instances in s must converge at one of their shared nodes.

Since this node would be o at the latest, we conclude that all the path instances in

s point to the same component C in their last edge (line 2). The number of times

(n) this component should be used according to each path instance in s, which

was already determined, must be the same as well (line 3). Then, the nodes which

appear right before o in path instances of length more than one in s are put in the

set PrevNodes (line 4). This set being empty means that all path instances in s are

of length one and, therefore, n times running C in parallel would be the desired

composition plan (line 5). If PrevNodes 6= ∅, for each node ui in the set PrevN-

odes the corresponding composition plan pi is found recursively (lines 6-9). Based
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on the discussion we had before (about Figure 5.12) the appropriate composition

plan would be the parallel execution of all the pi’s synchronized with the parallel

execution of n instances of C (lines 10-14).

5.2.5 Complexity

To find the overall complexity of the proposed solution for the generic composition

planning problem, we study the complexity of Algorithms 5.2, 5.5 and 5.4 sepa-

rately. Basically, we need to find the complexity of these algorithms in finding ap-

propriate composition plans for a dependency of the form d = {ik1
1 , ik2

2 , · · · , ikm
m } →

on against the dependency graph DG = (V, E). More complex dependencies can

be decomposed into simpler dependencies like d whose corresponding composition

plans can be found in parallel.

Complexity of Algorithm 5.2

Before discussing the complexity of this algorithm we need to study

• the complexity of finding eligible path instances E(p) for a partial dependency

p ∈ P(d), and

• the complexity of Algorithm 5.1. i.e., Converge(e1, e2).

The partial dependency p would look like i
kj

j → on (1 6 j 6 m). To find its

eligible path instances, the first thing to do is finding all the graph paths from the

node ij to the node o. This part is proved to be an NP-Complete problem [36]. To

find this, we can start by finding all paths of length 1, then all paths of length 2,

. . . , and finally, all paths of length |V | − 1. We exclude all possible graph loops in

this search. Therefore, the worst-case complexity would be 1 +

|V |−1∑
i=2

i∏
j=2

(|V | − j) =

O((|V | − 2)!), as the maximum number of paths between two graph nodes.

For each path that is found from ij to o all the possible path instances should

be analyzed using the equations of Definition 5.6. The number of path instances

of a given graph path is highly dependent on its length and the number of triplets

in its edge labels. The number of triplets in the label of the edge u A v is equal

to the number of repository components that have u in their inputs, and v in their

outputs. If the repository is rich enough, this number can be ignored against the
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number of repository components (N). However, in the worst case this number

would be N . Therefore, each graph path would have O(N |V |−1) path instances in

the worst case.

As mentioned above, in the worst case, the number of graph paths for each

partial dependency p is O((|V | − 2)!). Therefore, the number of path instances for

p would be O((|V |−2)!×N |V |−1).7 According to Definition 5.6, it takes O(|V |−1)

to find if a path instance is eligible. Therefore, the worst-case complexity of finding

eligible path instances for p, E(p), would be O((|V | − 1)! × N |V |−1). Also, |E(p)|
could be as big as O((|V | − 2)!×N |V |−1), meaning that all possible path instances

found for a partial dependency could be eligible.

We can see that, in order to find the eligible path instances for all partial

dependencies, the running time complexity would be O(|V |!×N |V |−1).8 However,

if we consider the disk space needed for finding eligible path instances, we would

have a linear complexity, i.e., O(N + |V | + |E|), because they are examined one

by one. In none of the intermediate steps we would need a space more than this.

For example, for finding graph paths between two nodes, only O(|V | − 1) space

would suffice, because we find paths one after the other. Also, for considering each

path instance, again O(|V | − 1) space would be enough. To store the eligible path

instances, in the worst case we would have to store O((|V | − 2)!×N |V |−1) of them,

requiring O((|V | − 1)!×N |V |−1) space.

As a result, finding eligible path instances for a partial dependency takes ex-

ponential time in the worst case, due to existing an exponential number of graph

paths between two nodes.

The complexity of finding out if two path instances e1 and e2 converge at some

graph node, Converge(e1, e2), is O(min(|e1|, |e2|)), in which |e1| and |e2| are the

lengths of e1 and e2, respectively. Therefore, we can say that its complexity is

O(|E|).

Now, let us consider Algorithm 5.2. According to the above discussion, there are

O((|V | − 2)!×N |V |−1) eligible path instances for each partial dependency. Since d

has m = O(|V |) partial dependencies, the main loop (lines 3-23) would be executed

7Note that the dependency graph might contain loops and there might be an infinite number of
paths between a pair of nodes. This would be considered a trade-off between the performance and
the correctness, as improving one might complicate the other. We believe that some heuristics
could be used to find out if the loops are going to be helpful in finding eligible path instances.
The discussion on these heuristics is beyond the scope of this thesis.

8Note that m = O(|V |)
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O((|V | − 2)!|V | ×N |V |2) times. The worst-case complexity of different parts of the

algorithm in each execution of the main loop is given below:

• lines 4,5: O(1)

• line 6: O(|V |)

• line 7: O(|V | × (|V | − 2)!|V | ×N |V |2), since each execution of the loop could

lead to a new consistent set which means |CS| = O((|V | − 2)!|V | ×N |V |2).

• Loop at lines 8-17: O(|V |)

– Loop at lines 9-15: O(|V | − 1)

∗ line 10: O(N2 × |V ||E|), where O(N |V |) is for considering each

possible edge instance ending at v, O(N) is for checking if the current

edge instance belongs to any eligible path instance (assuming that

the eligible path instances are stored efficiently for this search), and

O(|E|) is for checking the convergence.

∗ lines 11-14: O(N2 × |V ||E|), similar to the previous one.

– line 16: O(1)

• line 18: O(1)

• lines 19-21: O(|V |3|E|), where O(|V |) is for checking each node, O(|V |2) is

for checking each pair of involved path instances, and O(E) is for checking

the convergence.

• line 22: O(1)

Then, the overall running time complexity of the algorithm in the worst cast, as-

suming |E| = O(|V |2), would be O(N |V |(N(|V | − 2)!)2|V |). Note that, regarding

the space complexity, during the execution of the algorithm, only O(|V |2) space is

required for storing the current set of eligible path instances.

Complexity of Algorithm 5.5

Note that in this algorithm |s| = O(V ). Assuming that m is the size of longest path

instance in s, and the worst-cast complexity of the algorithm is f(m), its different

parts would have the following worst-case complexities:
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• lines 2-3: O(1)

• line 4: O(|V ||E|), where O(|V |) is for each different eligible path instance in

s, and O(|E|) is for checking all its edges.

• line 5: O(1)

• Loop at lines 6-9: for each node is PrevNodes, it finds the corresponding

path instances according to s to call the algorithm recursively on each of

them. Clearly,

|PrevNodes|∑
j=1

|sj| = O(|V |). In the worst case, the loop is executed

O(|V |) times, with

– line 7: O(1)

– line 8: f(m− 1)

• lines 10-11: O(1)

Therefore, assuming that |E| = O(|V |2), the worst-cast running time complexity

would be f(|V |) = |V |3 + |V |f(|V | − 1), which results in O(|V ||V |) complexity

(note that m = O(|V |). Regarding the space complexity, we can easily see that by

efficiently storing the path instances, the space required can be calculated by the

recursive equation f(|V |) = |V |+ f(|V | − 1), showing that an O(|V |2) space would

be enough. In the recursive formula, f(|V |) represents the execution time when the

maximum path instance size in s is |V |.

Complexity of Algorithm 5.4

This algorithm runs Algorithm 5.2 and then calls Algorithm 5.5 once for each dif-

ferent output type in d and each consistent eligible path instance set. The running

time of the first part is O(N |V ||V |(N(|V |− 2)!)2|V |),9 and that of the second part is

O(|CS| × |V ||V ||V |) = O((|V | − 2)!|V | ×N |V |2|V ||V |+1) in the worst case. Then, the

overall running time complexity of the graph-based approach, in the worst case,

is estimated to be O(N |V ||V |(N(|V | − 2)!)2|V |). This worst-case complexity corre-

sponds to finding all possible consistent sets, and therefore, all possible composition

plans. It is quite easy to see that the worst-case complexity for finding the first

9Note that in finding the complexity of Algorithm 5.2 we assumed that there is only one output
in the request. Therefore, a coefficient |V | has to be considered for the worst-case running time
complexity when dependencies in general are being studied.
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possible composition plan would be the same. The reason is that in the worst case

all possible eligible path instance sets have to be examined.

This algorithm would need O(|V |2) in terms of the space required, where O(|V |2)
is for both storing a consistent set and the space needed for the calls to the previous

algorithm. Here, we ignore the space required for storing the resulting composition

plans. In general, because storing all the possible eligible path instances for each

partial dependency needs O(|V |!×N |V |−1) space in the worst case, the worst-case

space complexity of the graph-based approach would also be exponential.

5.3 Discussion

The dependency graph represented in this chapter has already been used by other

researchers for web services composition. Specifically, Shin and Lee extend the

dependency graph of this chapter to capture functional semantics of the repository

components [95]. They make a little change in the structure of the dependency

graph by creating graph nodes for repository components as well and claim that

their model performs better for solving the composition plan. However, what they

claim seems to be unrealistic, because even in their model the cardinality constraints

must be met and consistent eligible path instance sets have to be found (similar to

what we discussed in Section 5.2.3), and they do not emphasize these two aspects in

their composition algorithm, which is too abstract. Therefore, the complexity of the

problem does not change by introducing graph nodes for repository components.

But this example shows the potential of graph models such as the dependency graph

in finding appropriate approaches for component or web service composition.
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Chapter 6

A Reasoning-Based Approach to

Component Composition

In Chapter 5 we proposed a solution to the generic composition planning problem

that was based on a dependency graph. We discussed why the proposed approach

was exponential, in the worst case, in the size of this graph. This approach was

presented using algorithms to find appropriate components for solving the prob-

lem, as well as finding valid composition plans. In this chapter, which is based on a

second publication [50], we present another approach to solve the composition plan-

ning problem, based on a reasoning technique in first order logic called the forward

chaining approach. We start the chapter by reviewing the necessary background,

and then we present the solution.

6.1 Background on Logical Reasoning

In simple terms, logical reasoning is defined as the formal manipulation of symbols

representing a collection of believed propositions to produce representations of new

ones. These symbols are used to represent knowledge and also to infer it through

some known rules. The collection of believed propositions is called the knowledge

base. The type of logical reasoning we apply in composition planning is logical

inference, in which the final result is considered to be a conclusion of the initial

propositions. For example, if the knowledge base contains two propositions “patient

x is allergic to medication m” and “anyone allergic to medication m is also allergic

to medication m′”, using logical inference we can conclude that “patient x is allergic

to medication m′”.
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In the reasoning problem we study in this chapter, there is a knowledge base

S containing the known propositions and a goal proposition G. What we expect

as a result is whether G can be inferred from the propositions in S, written as

S � G. It is trivial that to prove S � G is equivalent to prove that S ∪ {¬G}
is unsatisfiable. In other words, if it turns out that S ∪ {¬G} is satisfiable, we

conclude that S 6� G; and if S ∪ {¬G} is unsatisfiable, then S � G. It is assumed

that there are no contradicting propositions in S, which means S 6� FALSE. If

S∪{¬G} is unsatisfiable, or S entails G (S � G), sometimes we might also wish to

know how G is derived from S, i.e., which propositions from S and in what order

are applied to result in G.

The reasoning algorithm and its complexity depend on the expressivity of the

underlying logic. Specifically, the way the knowledge is represented is a deter-

mining factor in how we reason about it. We would expect to reason simpler in

propositional logic rather than in first-order predicate logic. Unfortunately, the

logical reasoning even for propositional logic, as a non-parametric and simpler form

of logic, is NP-Hard in the worst case. However, there is a less expressive form of

logic, Horn clauses, that comes with less reasoning complexity [20].

A Horn clause is a Disjunctive Normal Form clause in first order logic with at

most one positive literal. For example, the clause ¬child ∨ ¬male ∨ boy is a Horn

clause with two negative and one positive literals. Since Horn clauses have no more

than one positive literal they can be converted into a unique implication clause

involving only positive literals, as the above clause is equivalent to child∧male →
boy. Therefore, every implication in propositional logic clause with a conjunction of

positive literals in its left-hand side and at most one positive literal in its right-hand

side is a Horn clause [20].

In order to reason about Horn clauses we need to see how we can infer a new

clause from two Horn clauses. As the main inference rule, a1 ∧ · · · ∧ am → b1 and

b1 ∧ · · · ∧ bn → c1 imply a1 ∧ · · · ∧ am ∧ b2 ∧ · · · ∧ bn → c1. This inference rule

is used to solve the reasoning problem for Horn clauses. To do so, we start with

a knowledge base S and, by resolving Horn clauses from S and the intermediate

clauses created through the reasoning process, we try to prove a goal clause G. If

this is successful, we say that G can be derived from S, and show it by S ` G.

A restricted but sufficient form of resolution is the SLD resolution. An SLD

resolution starts with resolving two clauses from the knowledge base S and in every

intermediate step the result of the last step is resolved with another clause from S.

Therefore, two intermediate results cannot be resolved in an SLD resolution. The
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Algorithm 6.1: The SLD forward chaining procedure [20].

input : a finite list of literals q1, · · · , qn

output : YES or NO according to whether a knowledge base S entails all qi’s
begin1

if every goal qi is marked as solved then return YES2

check if there is a clause p1 ∧ · · · ∧ pm → p in S, such that all the literals3

p1, · · · , pm are marked as solved, while p is not marked as solved
if there is such a clause then4

mark p as solved and go to line 25

else6

return NO7

end8

end9

derivation continues until G is proved to be either true or false.

There are two main SLD techniques for reasoning about propositional Horn

clauses: backward chaining and forward chaining. The backward chaining proce-

dure, which starts from the goal and goes all the way back to reach the clauses from

the knowledge base, has two drawbacks; it might go into an infinite loop, or it might

take exponential time to terminate. The forward chaining approach, on the other

hand, is much more reliable and efficient as it always terminates and also performs

the reasoning in linear time in the number of clauses. Algorithm 6.1 represents the

forward chaining procedure. We use this procedure in the next section to provide

a solution for the composition planning problem [20].

6.2 Composition Planning: Initial Proposition

We described in Chapter 4 how actions in composition algebra are modeled by non-

parametric names. Since we focus on stateless components in this thesis, we can

assume that in the composition algebra the underlying process of all these compo-

nents is of the general form P ≡ (i1 || · · · || im) · (o1 || · · · || on), which correctly

captures the intended behavior, i.e., receiving some inputs without any specific or-

der, and then returning some outputs in a similar way. To solve the composition

planning problem using the reasoning techniques, in this section we discuss our

initial solution for the composition using the forward chaining procedure.

The algebraic representation of the behavior of stateless components has an
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Algorithm 6.2: The modified version of the forward chaining algorithm [49].

input : a repository S and a goal G : IG → OG with OG = {oG
1 , · · · , oG

nG
}

output : YES or NO according to whether S ∪ IG entails all the literals in OG

begin1

mark all the literals in IG as true2

if every literal in OG is marked as true then return YES3

check if there is a clause in S such that all of its left-hand-side literals are4

marked as true, and there is at least one literal in its right-hand-side which is
not marked as true
if there is such a clause then5

add it to the list of clauses used so far, and mark all the unmarked literals6

on its right-hand-side as true and go to line 3
else7

return NO8

end9

end10

alternative representation in propositional logic, as it can be modeled by the impli-

cation P : i1∧· · ·∧im → o1∧· · ·∧on. For example, the web service CityStateByZip

is specified in composition algebra by the algebraic expression CityStateByZip =

zipCode · (city || state). Alternatively, it can be described in propositional logic

using the implication CityStateByZip : zipCode → city ∧ state. As a result,

the composition planning problem can be expressed as follows.

Problem 6.1 There is a repository S which contains a set of available components

of the form C : I → O, where I = i1 ∧ · · · ∧ im and O = o1 ∧ · · · ∧ on. There is also

a target component G : IG → OG, with IG = iG1 ∧ · · ·∧ iGmG
and OG = oG

1 ∧ · · ·∧ oG
nG

.

The question is whether S � G. If so, the corresponding derivation (composition

plan) is also required. �

We can provided a procedure based on Algorithm 6.1 to solve the above prob-

lem [49]. To do so, we make a little change in the above problem so that we can

apply the forward chaining algorithm. The idea is to add iG1 , . . . , iGmG
as known

facts to the repository S, and try to prove that oG
1 , . . . , oG

nG
hold. Algorithm 6.2

represents the proposed procedure. This algorithm runs in linear time in the size

of the repository as well, as it is quite similar to the forward chaining algorithm in

terms of the steps taken. The composition plan can be obtained based on the order

of using knowledge base clauses in the algorithm.
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Example 6.1 Let us assume a repository of available components containing:

• C1 = address · zipCode

• C2 = (name || birthDate) · localMap

• C3 = (address || zipCode) · localMap

• C4 = (name || birthDate) · (zipCode || birthPlace)

• C5 = (sIN || name) · address

• C6 = (sIN || birthDate || birthPlace) · phoneNo

• C7 = (sIN || birthDate || zipCode) · phoneNo

Given the target component G = (sIN || name || birthDate)·(localMap || phoneNo),
we are interested to know whether G can be built by composing some of these com-

ponents.

We convert the component specifications into the propositional logic format and

apply Algorithm 6.2 in order to find a solution. Therefore, the knowledge base S

would contain clauses C1, . . . , and C7, where

• C1 : address→ zipCode

• C2 : name ∧ birthDate→ localMap

• C3 : address ∧ zipCode→ localMap

• C4 : name ∧ birthDate→ zipCode ∧ birthPlace

• C5 : sIN ∧ name→ address

• C6 : sIN ∧ birthDate ∧ birthPlace→ phoneNo

• C7 : sIN ∧ birthDate ∧ zipCode→ phoneNo

The request would be reformatted to G : sIN ∧ name ∧ birthDate → localMap ∧
phoneNo. To find a solution, we start by marking sIN, name and birthDate as

true. If there are different choices from S to use in line 4 of the algorithm, we can

randomly pick one. Following the algorithm, we see that picking C2, C4 and C6 in

the same order is one solution1. To validate, we find the result of (C2 � C4) � C6

in composition algebra:
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C2 � C4 ≡ ((name || birthDate) · localMap)

� ((name || birthDate) · (zipCode || birthPlace))

≡ (name || birthDate) · (localMap || zipCode || birthPlace)

(C2 � C4)� C6 ≡ (name || birthDate) · (localMap || zipCode || birthPlace)

� (sIN || birthDate || birthPlace) · phoneNo

≡ (sIN || name || birthDate) · (localMap || zipCode) · phoneNo

((C2 � C4)� C6)\{zipCode} ≡ 1(sIN || name || birthDate) · localMap · phoneNo

We realize that the result is slightly different from the specification of G; because

the outputs are not generated in parallel in the proposed composition. We explain

this small difference as follows.

• Normally, the parallel operator in such requests means that the relative order

of inputs and outputs is not important; and as long as inputs are taken and

then outputs are produced based on them, the result is acceptable. This way,

we can accept the composition (C2�C4)�C6 as an approximate solution2 to

the request (sIN || name || birthDate) · (localMap || phoneNo).

• If the above result is not acceptable, and we need to produce the exact parallel

expression, we may assume that the published composite component would

take care of this ordering. In other words, it works as a wrapper around all

1We assume that unwanted generated outputs can be ignored.
2Formally speaking, two algebraic expressions e1 ≡ I1 ·O1 and e2 ≡ I2 ·O2, in which

– I1 and I2 contain only input actions, and moreover, contain the same number of
input actions of each type,

– O1 and O2 contain only output actions, and moreover, contain the same number
of output actions of each type,

are approximately equivalent, shown as e1
∼= e2, if one or both of the followings hold:

– For some expression I0, either I1 ≡ I2 ⊕ I0 (I0 6≡ I2) or I2 ≡ I1 ⊕ I0 (I0 6≡ I1).

– For some expression O0, either O1 ≡ O2 ⊕ O0 (O0 6≡ O2) or O2 ≡ O1 ⊕ O0

(O0 6≡ O1).

For example, e1 = a · (b || c) is approximately equivalent to e2 = a · b · c, because

– e1 ≡ I1 ·O1, where I1 = a and O1 = b || c,

– e2 ≡ I2 ·O2, where I2 = a and O2 = b · c,
– I1 and I2 contain the same input actions, and O1 and O2 contain the same output

actions,

– I1 ≡ I2 and O1 ≡ O2 ⊕ c · b.
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the constituent components and waits to receive both localMap and phoneNo

before returning them to the user.

In case we needed to achieve a composition that is exactly equivalent to the request

G and we found a solution leading to a non-equivalent expression, like the above

example, we would have had to backtrack to the last choice we made and continue

the algorithm with another alternative. Although this apparently would add to the

complexity of the procedure, we do not go into its details in this thesis assuming

that the approximate results are also acceptable. �

Although Algorithm 6.2 takes linear time in the number of knowledge base

clauses to find a solution, it does not work properly in all stateless cases. In partic-

ular, it fails to correctly capture the cardinality of involved data type instances. In

other words, since there is no cardinality involved in propositional logic expressions,

e.g., a∧a ≡ a, this algorithm would not be able to deal appropriately with multiple

instances of the same literal.

Example 6.2 Let us add to the repository of the previous example a new compo-

nent C8 = (zipCode || zipCode) · distance, which has an input with cardinality

2. This expression cannot be appropriately converted into a propositional logic for-

mula, because following the above mapping we obtain C8 : zipCode ∧ zipCode →
distance ≡ zipCode → distance, which specifies a different behavior, i.e.,

zipCode · distance. �

Therefore, this logical representation for the behavior of components and the cor-

responding algorithm do not answer the composition planning problem in general.

We show in the next section how they can be improved to capture the cardinality

of literals as well.

6.3 Composition Planning: Generic Approach

The initial proposed composition procedure is promising, and therefore, we try to

apply the same ideas to capture cardinalities. In the initial approach every com-

ponent behavior could be seen as C : I → O, in which I and O are sets containing

the corresponding inputs and outputs identified by their data type names; i.e.,

I = {i1, · · · , im} and O = {o1, · · · , on}. Since sets are unable to represent dupli-

cate members and cardinalities, in the new procedure we assume that inputs and
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outputs are multisets of type names. To distinguish duplicate type names that

might appear in these multisets, we use unique identifiers and we call them data

instances or instances, where type(m) is the data type of the instance identified by

m.

In order to solve the generic version of the stateless composition planning prob-

lem there are some extra constraints that must be taken into account.

1. Each component might be used more than once in a composition. In Algo-

rithms 6.1 and 6.2 each clause is used at most once, because when its right

hand side is marked as true, there is no need to use that clause again. Since

cardinality of a data type can be more than one, a component might be

needed more than once. Therefore, in the new procedure, when a component

is selected to participate in a composition it should not be removed from the

list of available components.

2. When some inputs are used by a component, they (exact same instances)

cannot be used by the same component again. This is because after those

inputs are used by the component the expected result is generated, and there

is no point in running the component on them again, as it will produce the

same result. Algorithms 6.1 and 6.2 automatically comply with this rule as

they do not use the same clause more than once. To apply this constraint, we

attach to each instance m, that is being processed, a set usedBy of identifiers

of the form Ci indicating that the component C has been applied on m in

step i of the reasoning algorithm.

3. For every single piece of functionality, all the given input instances must

be used to produce each given output instance, unless otherwise is speci-

fied by the user. For example, for the request (sIN || name || birthDate) ·
(localMap || phoneNo), in producing the outputs localMap and phoneNo all

the three inputs must be involved. To comply with this constraint, which is

not considered in Algorithm 6.2, in generating outputs through the composi-

tion algorithm we need to determine whether all the inputs have been used.

Therefore, we attach to each instance m a set uses containing instances from

IG that have been used so far to generate m. If uses(m) = IG for some in-

stance m, we conclude that all the inputs in IG have participated in producing

m.

4. In order to find the composition plan in case the algorithm returns a ‘YES’,

we keep a set createdBy for every instance m, which indicates the component
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that has produced m. This way we can find the appropriate components from

the repository that are used in each step.

Algorithm 6.3 represents the improved reasoning-based procedure for composition

planning. It returns a ‘YES/NO’ response based on whether the given request can

be built by the repository components or not.

In this algorithm, the set M is the pool of instances that are already produced

as the algorithm execution progresses (line 2). To every instance m that is added

to M we assign

• type(m) as its data type,

• usedBy(m) as a set containing components that have used this instance so

far,

• uses(m) as a set of instances from IG that have been used, directly or indi-

rectly, in producing m,

• from(m) as a set containing instances from M used directly to produce m,

• createdBy(m) as the repository component that produced m,

• createdAtStep(m) as a number which shows at which step m is created, and

• level(m) as a number which will be explained later.

In the beginning an instance is added to M for every data type in IG (lines 3-12).

We also use a step counter to record the components used in each step (line 13).

In line 14 a test is performed to see if we have achieved a valid composition for the

request G. A valid composition would produce an instance of the same type for

every data type in OG (to satisfy the cardinality constraint), where in producing

each of them the whole IG is used. If the test fails, we need to continue with a

new component to produce more instances (line 15). We do so by finding some

instances in M that can be used by a component C, and have not been used by

that component before. If there is such a component (line 16), Cn (component C at

step n) is added to the set usedBy of each of those instances (line 17), and for each

output o of C a new instance m′ is added to M with the appropriate type, usedBy,

uses, from, createdBy, createdAtStep and level values (lines 18-28). In particular,

• type(m′) would be o;
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Algorithm 6.3: The improved procedure for composition planning feasibil-

ity.
input : a repository S of components of the form C : IC → OC where IC and OC are

multisets of data types; and similarly, a request G : IG → OG.
output : YES/NO according to whether there is a valid composition from S for G.
begin1

define M as the set of instances, and set M = ∅2

foreach data type i in IG do3

create a new instance m in M4

set type(m) = i5

set usedBy(m) = ∅6

set uses(m) = ∅7

set from(m) = ∅8

set createdBy(m) = ∅9

set createdAtStep(m) = 010

set level(m) = 011

end12

use a step counter n, and set n = 113

if there is a set K ⊆ M , such that TYPE(K) = OG and for every instance m ∈ K,14

uses(m) = IG then return YES //TYPE (K) = {type(m)|m ∈ K}
check if there is a component C : IC → OC in S and a set L ⊆ M , such that15

TYPE(L) = IC and Ck /∈
⋂

m∈L usedBy(m) for all step k

if there is such a component then16

foreach m ∈ L do usedBy(m) = usedBy(m) ∪ {Cn}17

foreach o in OC do18

create a new instance m′ in M19

set type(m′) = o20

set usedBy(m′) = ∅21

set uses(m′) = (IC ∩ IG) ∪ (
⋃

m∈L uses(m))22

set from(m′) = L23

set createdBy(m′) = C24

set createdAtStep(m′) = n25

set level(m′) = 1 + Maxm∈L(level(m))26

if level(m′) > |S| then return NO27

end28

n = n + 129

go to line 1430

else31

return NO32

end33

end34

• usedBy(m′) would be empty;
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• uses(m′) would contain all the instances from IG that are in IC too, plus all

the instances from IG that have participated in producing instances in L;

• from(m′) would obviously contain the instances in L;

• createdBy(m′) would be the component C;

• createdAtStep(m′) would be n.

Moreover, the step counter increases (line 29) and the algorithm continues to check

if the goal is already satisfied (line 30). If there is no new component from the

repository to use instances in M , the algorithm terminates with a negative result

(lines 31-32).

We can consider the execution of the algorithm as building a multi-level graph,

in which nodes at each level represent instances from M and edges represent com-

ponents from the repository that created those instances. In this structure, there

is an edge with label Cn from an instance i at level li to an instance j at level lj

(lj > li), if and only if there is a component C : IC → OC used in step n of the

algorithm, such that type(i) ∈ IC and type(j) ∈ OC and for each other data type t

in IC there is an instance k at some level l (l < lj) with type(k) = t. Moreover, at

least one instance of one of the data types in IC must have appeared at level lj − 1.

In other words, if the maximum level of instances in from(m) is l, m would sit at

level l + 1. Let min(nl) and max(nl) denote the minimum and maximum of the

set {n| there is an edge i
Cn

−→ j such that lj = l}. In order to create the levels of

this graph in a breadth-first order, we assume that li < lj ⇔ min(nlj) > max(nli).

This assumption guarantees that all the possible instances at each level are created

before creating instances at the next level. To start creating instances, we put

instances corresponding to the initial inputs in IG at level 0. Then intermediate

instances generated by the algorithm sit at the next levels. The level attribute

attached to instances in Algorithm 6.3 is used for this purpose:

• at line 11, level(m) is set to 0 for each instance corresponding to an input in

IG,

• at line 26, level(m′) is set to one plus the maximum level of all instances in

L, according to the discussion above.

• at line 27, the current graph level is checked to terminate the algorithm if

necessary. Lemma 6.1 explains this.
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Figure 6.1: The case where the solution is found in a level after level N .

Lemma 6.1 If there is a solution for a given composition planning problem, Algo-

rithm 6.3 is able to find it; and if there is none, it terminates.

Proof. According to the above breadth-first method in applying the components

from the repository S and creating new instances, it is guaranteed that the algo-

rithm will find a solution, if there is any, because all the instances leading to a valid

composition would be at some level of this graph and finally would be reached by

the algorithm.

To show that the algorithm terminates if there is no solution, we prove that if

there are solutions for the given request, the first one must be found by level N

of the multi-level graph, where N is the number of components. Suppose that the

first solution for a given request is found at level k (k > N), as mk in Figure 6.1.

Since, for each intermediate instance m in level j, at least one member of from(m)

resides in level j − 1, we can conclude that there is at least one path of length k

from level 0 leading to mk (the bold path in Figure 6.1). Therefore, at least one

repository component C has been involved (at least) twice in creating mk resulting

in instances at levels j1 and j2. This means that the part of this path between

levels j1 and j2 can be collapsed, because the part of the path from level j2 to level

k could have started at level j1 (note that data types created by C have been the

same in both times) cutting the path length to k − (j2 − j1). This would continue

until there is no repository component involved more than once in the path, in

which case the path size would be less than or equal to N . �

As mentioned before, Algorithm 6.3 returns only a ‘YES/NO’ answer, and does
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Algorithm 6.4: FindComposition(K) returns the corresponding composi-

tion plan after Algorithm 6.3 returns a ‘YES’.
input : a set K, returned by Algorithm 6.3, of instances that correspond to the outputs

of the given request
output : the root of an expression tree structure which indicates the appropriate

composition
begin1

find the largest set of instances N ⊆ K created by different components or at different2

steps
if |N | = 1 then return FindComposition(m) //N = {m}3

pick the first instance m in N and set N = n− {m}4

leftNode=FindComposition(m)5

rightNode=FindComposition(N)6

if leftNode=nil and rightNode=nil then return nil7

else if leftNode=nil then return rightNode8

else if rightNode=nil then return leftNode9

else10

rootNode.leftChild=leftNode11

leftNode.parent=rootNode12

rootNode.rightChild=rightNode13

rightNode.parent=rootNode14

rootNode.expression=(leftNode.expression) || (rightNode.expression)15

return rootNode16

end17

end18

not return the actual composition in case the answer is a ‘YES’. In order to find

the composition, we take advantage of the information stored along with instances

in M and also the set K that was found right before the algorithm terminated

(line 11). We can start by instances in K and go back step by step to the inputs and

components that created them until we reach the original inputs, i.e., the instances

corresponding to IG. The above multi-level graph could be used to find the actual

composition through its paths from level 0 to the desired outputs. Algorithms 6.4

and 6.5 show how this can be done.

Algorithm 6.4 finds a valid composition plan for a set of instances K correspond-

ing to the outputs in IG. The composition plan is given in terms of an expression

tree which indicates the involved components to achieve the desired behavior.

The general procedure is to create output instances in parallel, due to the as-

sumption we made earlier that outputs are considered independent of each other.

Since some of the instances in K might be created by the same component at the
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Algorithm 6.5: FindComposition(m) returns the corresponding composition

for a single instance.
input : a single instance m which corresponds to one of the outputs of the given request
output : the root of an expression tree indicating the appropriate composition for that

instance
begin1

if m.level=0 then return nil //m ∈ IG2

leftNode=FindComposition(from(m))3

if leftNode=nil then4

rootNode.leftChild=rootNode.rightChild=nil5

rootNode.expression=createdBy(m)6

return rootNode7

end8

rootNode.leftChild=leftNode9

leftNode.parent=rootNode10

rightNode.expression=createdBy(m)11

rightNode.leftChild=rightNode.rightChild=nil12

rootNode.rightChild=rightNode13

rightNode.parent=rootNode14

rootNode.expression=(leftNode.expression)� (rightNode.expression)15

return rootNode16

end17

same step, the algorithm finds all such sets of instances at line 2. It chooses the

largest possible set N in such a way that not any two instances in N are created

by the same component at the same step. If N contains only one instance m, then

the composition that leads to m is the result (line 3). Otherwise, one instance m

is removed from N and the appropriate compositions for m and also the reduced

N are found recursively in leftNode and rightNode, respectively (lines 4-6). Special

cases where one or both of these results return null are handled in lines 7-9. In

general, the results found for m and the reduced N need to be executed in parallel

(line 15). So, a rootNode is created to show this parallel execution, where its left

and right children are leftNode and rightNode, respectively (lines 11-14). Then, this

rootNode is returned as the composition plan for K.

As opposed to Algorithm 6.4, which finds the appropriate composition plan for

a set of instances, Algorithm 6.5 finds the composition plan for a single instance.

In fact, Algorithm 6.4 is narrowed down to multiple executions of Algorithm 6.5.

Algorithm 6.5 receives an instance m and finds the composition plan for m by

returning the root of the corresponding execution tree. It first checks the level of

instance m, and returns null if it is at level 0 of the multi-level graph (line 2). If
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an instance is at level 0, it is one of the input instances corresponding to IG and,

therefore, it requires no composition. At the next step, we need to find a valid

composition plan for the instances in from(m) and put it in leftNode. If the result

is null, it means that m has been directly created from the input instances, and

no intermediate instances are involved. In this case, a single node is created which

indicates that createdBy(m) is the composition plan for m (lines 4-8). It is obvious

that the instances in from(m) are used by component createdBy(m) to create m. So,

if leftNode is not null, its corresponding composition plan has to be synchronized

with createdBy(m). For this purpose, a rootNode is created which has leftNode as

its left child and createdBy(m) as its right child, and represents the synchronization

of the two (lines 9-15). This rootNode is then returned as the composition plan for

m (line 16). We go through a brief example to clarify this graph structure and the

whole approach in more details.

Example 6.3 Consider the following components forming the repository:

• C1 : name→ email

• C2 : name→ phone

• C3 : phone→ zipCode

• C4 : zipCode2 → distance

• C5 : phone→ address

• C6 : zipCode→ city

• C7 : address→ zipCode

• C8 : name→ cell

The superscript 2 in C4 indicates that this component takes two instances of zipCode

as inputs. We explain the algorithm using the multi-level graph in Figure 6.2. In

this graph, the set usedBy for each instance is the set of its outgoing edge labels.

The set uses for each data instance is the multiset of the data types of all the in-

stance at the top level of this graph which have a path to that specific instance. The

set from for each instance is the set of its parents in the graph. Values for creat-

edBy and createdAtStep are shown as the incoming edge label of the instance. And

finally, the level of an instances would be the length of the longest path from some
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Figure 6.2: The result of Algorithm 6.3 for Example 6.3.

node at level 0 to that instance. The section of the graph which is inside the dotted

area represents the data instances leading to the ‘YES’ response in this example.

Given G : name2 → distance, Algorithm 6.3 starts by adding m1 and m2 of

type name to M . Each of these instances produces one instance of email, phone

and cell at level 1 in the next six steps (m3 to m8 by components C1, C2 and

C8). Since there is no solution yet, in the next four steps, each of the two phone

instances that are currently in M (m4 and m7) produces one instance of zipCode

and address (m9 to m12 by components C3 and C5) at level 2. Again, there is no

distance instance in M up to this point. Continuing the algorithm, each zipCode

instance produces one city instance (m13 and m15 by component C6) at level 3, and

each address instance creates one zipCode instance (m14 and m16 by component

C7), also at level 3. Then, two initial zipCode instances (m9 and m11) produce one

distance instance (m17 by component C4) at level 3. Since in producing m17 both

name instances in IG have been used, the algorithm returns a ‘YES’.

Now we follow Algorithms 6.4 and 6.5 to find the appropriate composition plan

for G. Algorithm 6.3 returns ‘YES’ by finding the set K = {m17}. This set is fed

to the FindComposition method in Algorithm 6.4. Since it has only one instance in

it line 3 would be executed, i.e., FindComposition(m17). For m17 we have

• type(m17) =distance
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Figure 6.3: Stepwise generation of the composition plan for Example 6.3 using

Algorithms 6.4 and 6.5.

• usedBy(m17) = ∅

• uses(m17) = {m1, m2}

• from(m17) = {m9, m11}

• createdBy(m17) = C4

• createdAtStep(m17) = 15

• level(m17) = 3

Algorithm 6.5 then makes a recursive call FindComposition({m9, m11}) to find the

appropriate composition for from(m17). The result of this recursive call then would

be synchronized with C4 to form the desired composition plan (Figure 6.3-(a)). In

the recursive call, Algorithm 6.4 calculates N to be {m9, m11}. Then it picks m9

from N , reduces N to {m11}, and makes the recursive calls FindComposition(m9)

and FindComposition({m11}), the latter of which would lead to the recursive call

FindComposition(m11). The results of FindComposition for m9 and m11 would be

composed in parallel to form the solution for FindCompositon({m9, m11}) (Fig-

ure 6.3-(b)). Considering the multi-level graph of Figure 6.2, the composition

plan for m9 and m11 would be the same. So we discuss the procedure for m9
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and do the same for m11 as we continue. Algorithm 6.5 suggests that the plan

for creating m9 would be synchronizing FindComposition({m4}), which is equal to

FindComposition(m4), and C3 (Figure 6.3-(c)). To find the composition plan for

m4, Algorithm 6.5 first finds the plan for from(m4) = {m1}, which turns out to

be null because m1 sits at level 0. Therefore, the result for FindComposition(m4)

would be a single node with label C2 (Figure 6.3-(d)). As a result, the appropriate

composition for the request G would be ((C2 �C3) || (C2 �C3))�C4. This compo-

sition plan can be validated using the composition algebraic rules.

C2 � C3 ≡ (name · phone)� (phone · zipCode)
≡ name · zipCode

(C2 � C3) || (C2 � C3) ≡ (name · zipCode) || (name · zipCode)
≡ (name · name · zipCode · zipCode)
⊕ (name · zipCode · name · zipCode)

((C2 � C3) || (C2 � C3))� C4 ≡ ((name · name · zipCode · zipCode)
⊕ (name · zipCode · name · zipCode))
� ((zipCode || zipCode) · distance)
≡ (name || name) · distance

The above calculations confirm that the result found by Algorithms 6.3, 6.4 and 6.5

is valid and the returned composition plan provides the requested behavior. �

6.3.1 Complexity

In this section, we study the worst-case complexity of finding a single valid com-

position plan for a request G : IG → OG against a repository S of components

C : IC → OC . We start this discussion with Algorithm 6.3 to find the complexity

of finding an appropriate set K of instances corresponding to OG (line 14 of the

algorithm).

We assume that there are N components in the repository S, and repository

components and the goal have |V | input/output data types in the worst case,

where |V | is the number of all available data types. The following is a discussion

concerning the worst-case running time of different parts of the algorithm.

• line 2: O(1)

• lines 3-12: O(|V |)
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• line 13: O(1)

• line 14: O(1), the outputs to be generated can be kept in a set, where each

time an instance corresponding to IG is created, it is removed from that set.

• line 15: O(N |V |), the algorithm can keep track of the created instances at

each step, then check repository components one by one to see which one can

be used (i.e., for which one all the inputs instances are already created).

• line 16: O(1)

• line 17: O(|V |)

• lines 18-28: O(|V |)

• lines 29-33: O(1)

Because of the “go to” statement at line 30, the algorithm runs lines 14-29 in a

loop which continues until a valid set K is found (line 14) or no more component

from the repository can be used (line 15). Considering the multi-level graph that

is the result of the algorithm, at each execution of the loop, some nodes and edges

are added to the graph. As mentioned before, the graph would find a solution up

to level N if there is any. So, in the worst case, the graph has to be expanded to

level N . This could be the case, when there is no solution for the given request.

In an unsuccessful attempt where the algorithm returns a ‘NO’, each component

can be used at any step while not creating the required output instances. Therefore,

if we start by |V | instances at level 0, in the worst case, we would apply N repository

components

• for the total of N |V | times and create N |V |2 instances at level 1,

• for the total of N2|V |2 times and create N2|V |3 instances at level 2,

• . . . ,

• for the total of NN |V |N times and create NN |V |N+1 instances at level N .

Consequently, the loop would be executed
N∑

k=1

(N |V |)k = O((N |V |)N) times in the

worst case.

We see that in the worst case we would have an exponential time complexity.

However, for two reasons we believe that the complexity of the proposed algorithm

would be much less in practice.
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• The worst case happens only if at each level all instances are used by every

possible repository component and those components create the most possible

output instances (O(|V |)) as a result. This is, to our belief, far from practice.

In a rich enough repository, we expect only few components use inputs like

weatherInfo, personName, phoneNo, . . . . Also, most components in such a

repository would return only a few instances as their output.

• We could use some heuristics in order to prune the multi-level graph when

we believe that adding some new nodes and edges would not likely lead to a

solution. For example, assume that there are two components Ck : a → b3

and Cl : b → a2 in the repository, and there is one instance of a in IG. If

we further assume that there is no other repository component that returns

outputs of type a or b, by applying Algorithm 6.3, aside from instances of

other data types, 9331 instances of type a and 4665 instances of type b would

be created up to level 10 of the multi-level graph. This would happen if there

is no solution for the given request, or the solution is expected to be found

somewhere after level 10 of the graph. As heuristics that can be embedded

into Algorithm 6.3, some suggestions would be

– When there are a large enough number of instances of a specific type

and none of them has been used by any repository component, we skip

using components that produce instances of only this specific type. This

could prune a large portion of the multi-level graph and improve the

performance of the algorithm.

– Now consider the following definition:

Definition 6.1 A path of length one exists from a data type t1 to a data

type t2 if and only if there is a repository component C where t1 ∈ IC

and t2 ∈ OC. In general, a path exists from a data type t1 to a data

type t2 if either a path of length one exists from t1 to t2, or there is a

sequence of data types u1, u2, . . . , uk−1 where there is a path of length

one from t1 to u1, from u1 to u2, . . . , from uk−1 to t2. �

It is trivial that the existence of a path from each input date type to

each output data type is a necessary, but not sufficient, condition for the

existence of a composition plan. So, we can look for such paths at the

beginning of the algorithm, and if we noticed that there is no path from

one of the inputs to one of the outputs we would return a ‘NO’ right

away without proceeding to the rest of the algorithm. This would be
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quite helpful when there is no solution for the given request, as it saves

a large amount of computation.

In terms of the space required for the execution of this algorithm, based on the above

discussion, in the worst case,
N∑

k=0

|V |(N |V |)k = O(|V |(N |V |)N) space is required.

This is dominant compared to the space required for finding the composition plan

and, therefore, could be considered as the overall worst-case space complexity for

the reasoning-based approach.

Now, let us move on to Algorithms 6.4 and 6.5. These two algorithms make

recursive calls to each other. The worst case happens when the set K is found at

level N , and for each involved instance m, |from(m)| = O(|V |) all the way up to

level 0. This way, if the complexity of Algorithm 6.4 for a set K found in level

N is f(N), and the complexity of Algorithm 6.5 for each instance at level N is

g(N), we would have f(N) = O(|V |)g(N) and g(N) = f(N − 1). Considering that

g(0) = O(1), the result would be f(N) = O(|V |N+1), which means their running

time is exponential in the worst case. Again, this worst case is quite unlikely

to happen given the constraints above, and a faster running time is expected in

practice.

Therefore, the overall worst-case running time complexity of the reasoning-based

approach would be O((N |V |)N + |V |N+1), which is equal to O(|V |N(NN + |V |)).

In the next chapter, we evaluate these algorithms by running them against

some realistic test data, and study their running time with respect to the involved

parameters.

6.3.2 Optimizing the Composition Plan

In Algorithm 6.4 we assumed that outputs in OG could be produced independently

of each other. This could lead to a composition plan which is not optimized.

Example 6.4 Consider the component repository S containing the following com-

ponents

• Books : iSBN→ author ∧ publisher

• Authors : author→ nationality

• Publishers : publisher→ websiteURL
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Figure 6.4: How a non-optimized composition plan might be returned by Algo-

rithms 6.4 and 6.5. (a) The resulting multi-level graph for Example 6.4. (b) The

resulting composition plan.

and the request G : iSBN → nationality ∧ websiteURL. Using Algorithm 6.3,

the multi-level graph of Figure 6.4-(a) would be created. The algorithm returns

a ‘YES’ with K = {m4, m5}. We then use Algorithms 6.4 and 6.5 to find the

corresponding composition plan. Following these algorithms, the composition plan

shown in Figure 6.4-(b) is returned. This plan in composition algebra would be

(Books � Authors) || (Books � Publishers). In this composition plan, since

the output publisher of Books in the left subtree, and the output author of

Books in the right subtree are ignored, the more detailed representation would be

((Books\{publisher}) � Authors) || ((Books\{author}) � Publishers). Based

on this plan, we need to use the component Books twice and each of the components

Authors and Publishers once in order to provide the requested behavior. But

clearly we can solve the problem by using each of the components Books, Authors

and Publishers only once; i.e., Books�(Authors || Publishers). We see that in

this alternative solution, we do not need to ignore any output from the Books com-

ponent. The difference between the two solution is, in fact, the difference between

two equivalent composition algebraic expressions (Books � Authors) || (Books �
Publishers) and Books� (Authors || Publishers). �

Since Algorithms 6.4 and 6.5 return the extended non-optimized version of the

composition plan, we can process the returned composition plan in another round

to optimize it. The optimization is in fact converting the extended composition

algebraic expression into its compact version.

At the moment, we consider only the optimization concerning the distributivity

of the synchronization operator over the parallel operator. Other types of optimiza-
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Algorithm 6.6: Optimize(rootNode) optimizes an expression tree, if possible.
input : the root of the expression tree, rootNode, to be optimized
output : true, if the tree rooted at rootNode is optimized; no, otherwise
begin1

if rootNode is a leaf then return false2

result=false3

if Optimize(rootNode.leftChild) or Optimize(rootNode.rightChild) then4

if rootNode used to represent a parallel expression then5

rootNode.expression = leftChild.expression || rightChild.expression6

if rootNode used to represent a synchronization then7

rootNode.expression = leftChild.expression� rightChild.expression8

result=true9

end10

if rootNode represents a parallel expression and11

both rootNode.leftChild and rootNode.rightChild represent a synchronization and12

rootNode has two grandchildren LGChild1 and RGChild1 of its left and right child13

where
LGChild1.expression=RGChild1.expression then14

//these conditions might lead to the specific optimization
LGChild2=Sibling(LGChild1)15

RGChild2=Sibling(RGChild1)16

remove rootNode.leftChild17

rootNode.leftChild=LGChild118

LGChild1.parent=rootNode19

rootNode.rightChild.leftChild=LGChild220

LGChild2.parent=rootNode.rightChild21

rootNode.rightChild.rightChild=RGChild222

RGChild2.parent=rootNode.rightChild23

rootNode.rightChild.expression = (LGChild2.expression) || (RGChild2.expression)24

delete subtree RGChild125

rootNode.expression =26

(rootNode.leftChild.expression)� (rootNode.rightChild.expression)
result=true27

end28

return result29

end30

tions might be performed in a similar manner. Algorithm 6.6 represents how this

optimization is actually done. This algorithm converts an expression tree like the

one in Figure 6.6-(a) to an optimized tree like the one in Figure 6.6-(b).

The way the algorithm works is quite simple. It basically makes recursive calls

on the children of rootNode to optimize them as well, and then changes the positions

of four subtrees (grandchildren of rootNode) in case an optimization at the current
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Figure 6.5: The Optimize algorithm converts the tree in part (a) to the tree in part

(b).

level is possible. It starts by checking if rootNode is a leaf node. If so it returns false

meaning that no optimization is possible (line 2). It then uses a temporary variable

result which indicates if any optimization has been performed so that the algorithm

returns an appropriate output (line 3). In lines 4-10 it recursively optimizes the left

and right subtrees of rootNode, updates its expression accordingly, and sets result

to true. In lines 11-28 it examines rootNode and its children and grandchildren to

see if any optimization is possible at this level. For this optimization to happen,

• rootNode must represent a parallel execution of its left and right subtrees,

• both left and right children of rootNode must represent a synchronization of

their left and right children (they must not be leaf nodes), and

• two grandchildren of rootNode, e.g., LGChild1 and RGChild1, that are not

siblings must represent the same expression.

These conditions, if held, represent an expression in which the synchronization

operator has been distributed over the parallel operator. This expression is then

converted to the compact version. The algorithm first finds its two other grand-

children LGChild2 and RGChild2 (lines 15-16). It then substitutes its left child

with one of the common grandchildren (lines 17-19). Then, it rebuilds its right

subtree as the parallel execution of its other two grandchildren (lines 20-24). It

finally removes one of the common grand children (line 25), updates the expression

represented by rootNode (line 26), and sets result to true indicating that the tree

has been optimized (line 27). Figure 6.5 illustrates this conversion.
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Figure 6.6: How the expression tree would look for set K = {m1, m2, · · · , mc},
where c = O(|V |).

We use the following lemma to explain the complexity of the optimization

process represented in Algorithm 6.6.

Lemma 6.2 The height of the expression tree created by Algorithms 6.4 and 6.5 is

O(N |V |) in the worst case.

Proof. The worst case happens when the set K is found at level N of the multi-

level graph, where each instance has a from set of size c = O(|V |) all the way up

to level 0. By running Algorithms 6.4 and 6.5, the structure of the tree at the

beginning would look like the one in Figure 6.6. At this point the height of the tree

would be c − 1, and since there are N − 1 more graph levels with the similar tree

structure, the height of the tree in the worst case would be (c−1)+(N−1)(c−1) =

N(c− 1) = O(N |V |). �

It is quite trivial that with a little change in Algorithm 6.4, the height O(N log |V |)
could be achieved.

If we consider f(h) as the order of complexity of Algorithm 6.6 for an expression

tree of height h, we can easily see that f(h) = 2f(h − 1). Since f(1) = O(1), we

conclude that f(h) = O(2h). In the worst case, we would have O(2N |V |) time

complexity, which again indicates an exponential running time.
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6.4 Discussion

In this chapter we proposed a forward chaining procedure for finding compositions

from a component repository that satisfy a given request. We mentioned how this

procedure analyzes temporary instances created by repository components accord-

ing to a multi-level graph until it reaches a point at which all the necessary instances

are created (successful search), or it realizes that a solution cannot ever be found

(unsuccessful search). Since this search is performed in a breadth-first manner, the

first solution is guaranteed to be the shortest-path solution, meaning that fewest

number of components would be required to build that solution.

In Examples 6.1 and 6.3 we explained how the solution returned by the cor-

responding algorithms can be validated using the composition algebraic rules by

checking if they provide the exact same behavior as the one given in the request.

We showed in Example 6.1 that it is possible that these algorithms find solutions

with a behavior that is close to, but not exactly the same as, the request. Although

in most cases this closeness might be sufficient for the user, in case a 100% match is

sought the solutions should be verified before being reported. This would suggest

the presence of an automatic behavior verifier according to the rules of composition

algebra as explained in Section 4.2. This behavior verifier would receive the be-

haviors of repository components and the specification of a composite component

in terms of its constituent components and calculates the external behavior of the

composite component in terms of its inputs, outputs, and their temporal order.

Development of such an automatic behavior verifier will be left as a future work.
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Chapter 7

Evaluation

In this chapter we provide a simple comparison between the composition approaches

of Chapters 5 and 6. We also explain how we can achieve a better performance by

taking advantage of positive features of both of them. Then we provide some ex-

perimental results we obtained by implementing the reasoning-based approach and

running it on some sample repositories. In these experiments, we try to understand

the run time performance of the composition approach against repositories with

different numbers of components and data types. Then we discuss the applicability

of two available reasoning tools in solving the composition problem. Finally, we

explain how to adapt the proposed approaches to web services composition.

7.1 Graph-Based vs. Reasoning-Based Approach

Although the two approaches presented in Chapters 5 and 6 are inherently different,

we can compare them by considering their corresponding worst-case running time

and space complexities. Table 7.1 represents this information.

Running Time Complexity Space Complexity

Graph-Based O(N |V ||V |(N(|V | − 2)!)2|V |) O((|V | − 1)!×N |V |−1)

Reasoning-Based O(|V |N(NN + |V |)) O(|V |(N |V |)N)

Table 7.1: Worst-case running time and space complexities of the graph-based

and reasoning-based approaches, where N and |V | are the number of repository

components and data types, respectively.
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We can see that both running time and space complexities in the graph-based

approach are exponential in terms of the number of involved data types, while in

the reasoning-based approach they are exponential in terms of the number of repos-

itory components. Since these two factors in the reasoning-based and graph-based

approaches are highly dependent on the height of the multi-level graph and the size

of the dependency graph, respectively, we would expect that their average complex-

ity measures have the same exponents as well. Therefore, a reasonable suggestion

would be to use the graph-based approach when the component composition is

being performed on a repository of components which are of similar semantic do-

mains. In this case, the number of data types would normally be small compared

to the number of repository components. On the other hand, in the general case,

it would be beneficial to use the reasoning-based approach for component compo-

sition, because in that case we would expect the number of involved data types to

be larger compared to the number of repository components.

Moreover, in Section 6.3.1 we proposed some heuristics for improving the per-

formance of the reasoning-based composition approach. One of these heuristics is

based on the notion of reachability of data types (Definition 6.1). It states that

for a given request, all the output data types must be reachable from the input

data types through some repository components. We can easily see traces of the

graph-based approach in this heuristic, as the graph-based solution is based on the

concept of reachability in the dependency graph. Because of this fact, we can take

advantage of other techniques used in the graph-based approach to improve the

performance of the reasoning-based approach. For example, other than checking

the reachability of the outputs in the given request from its inputs, we can use

Algorithm 5.1 to make sure that the paths found would be valid candidates before

starting the reasoning-based approach and getting involved with the complexity of

creating data type instances. These two algorithms are capable of rejecting the

given query much sooner compared to the reasoning-based procedure. Note that

their complexity would be O(|V |2) and negligible compared to the average complex-

ity of the reasoning-based approach. Therefore, a better solution would be taking

advantage of the dependency graph properties in the reasoning-based approach.

7.2 Implementation

In Chapters 5 and 6 we studied the worst-case running time complexity of the

graph-based and the reasoning-based composition approaches. We explained in
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those chapters why those calculated worst-case complexities are believed to be

quite far from the real world. In order to study the performance of the composi-

tion approaches in more realistic situations, we implemented the reasoning-based

approach which, according to the results of the previous section, is more general

compared to the graph-based approach.

The basic reasoning-based approach was implemented for these experiments and

only one heuristic was considered to improve the run time performance. Specifically,

a large enough limit was set for the total number of instances created from each

data type to avoid the situations such as exponential increase in the number of

instances, like the example given in Section 6.3.1.

The implementation was performed on MicrosoftR© Windows XP Professional

Edition platform (Service Pack 2) using MicrosoftR© Visual C++, which is part of

the MicrosoftR© Visual Studio .NET 2003 package. MySQL Server 4.1, by MySQLR©

AB, was used as the database engine to play the role of the component repository.

The code written for performing the evaluations is around 15000 lines. A desktop

computer with an IntelR© Pentium 4 (3200 MHz) CPU and 1 gigabytes of internal

memory was used for running the experiments.

In this section, we present some of the experiments we ran along with their run

time results. In each case we provide a justification as well. In these experiments

we try to figure out the complexity of the implemented approach with respect to

each of the parameters involved. We provide experimental results for the simple

case where each repository component has a single input and a single output, and

the generic case.

By taking a random sample of the existing web services from the web site

http://www.webservicelist.com/ we tried to come up with the distribution of

the four involved parameters relative to the component repository. These four

parameters are the number of input data types and the number of output data

types in each component, and the cardinality of each data type when it appears

as an input, and when it appears as an output. The result for the total of 104

web service operations, according to the Chi-Square Goodness of Fit test1, is the

following:

1In the goodness of fit test, the null hypothesis H0 is tested, and if the test turns out to be
successful, it would mean that the null hypothesis cannot be rejected on the given data. In the
Chi-Square version of this test, there are two parameters involved: one is the degrees of freedom
(df ) which is equal to the number of possible and independent outcomes, and the other is the
probability of rejecting the null hypothesis when the null hypothesis is true (α). For example,
χ2

5,0.05 indicates a Chi-Square test with 5 degrees of freedom and α = 0.05 [11].
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• Number of input data types per operation (NI): Geometric distribution, mean

= 3.04 (χ2
4,0.05).

• Number of output data types per operation (NO): Geometric distribution,

mean = 1.34 (χ2
2,0.05).

• Cardinality of a data type as an input (CI): Geometric distribution, mean =

1.06 (χ2
4,0.05).

• Cardinality of a data type as an output (CO): Geometric distribution, mean

= 1.04 (χ2
2,0.05).

The related charts are shown in Figures 7.1. Using this information we created

several component repositories and ran large numbers of tests against them in

order to obtain good average run times. For each repository we built we knew

how many components and data types would be involved. For each component in

such a repository in the generic tests (Experiments 4-6), we used the above random

distributions to, first, figure out how many inputs and outputs it would have, and,

second, what the cardinality of each of those inputs and outputs would be.

7.2.1 Experiments

In the rest of this section we present the results of various experiments with the

reasoning-based approach. In all these experiments the goal has been finding the

first composition that satisfies the request. Other than the above four parame-

ters, the number of components in the repository (NC) and the number of distinct

data types in the repository (NT ) are also inputs. In all these experiments we

assumed that all data types have equal chances of appearing in inputs/outputs of

repository components. The requests generated in all the experiments have the

same properties, e.g., the distribution of number of input/output data types, as

the corresponding repository.

Experiment 1: Simple Repository (I)

The first experiment was run on a set of simple repositories containing components

with a single input and a single output. The number of components in the repos-

itories was fixed at 1000, while the number of data types changed from 1000 to

3990. Figure 7.2 contains the results of this experiment as a line chart. In this

chart, the light line represents the average run time when the composition planner
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Figure 7.1: Number of web service operations with respect to the number of in-

put/output data types (top) and number of input/output data types against their

cardinality (bottom) in the sample of 104 operations.

did not return successfully, i.e., when a composition plan could not be found. The

dark line, on the other hand, represents the average time for successful searches,
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Figure 7.2: Average run times for Experiment 1: NC = 1000, NT = 1000 · · 3990

(steps of 10), NI = 1, CI = 1, NO = 1, CO = 1. For each specific number of

data types, as many as 10000 random requests were generated and solved using the

composition approach.

i.e., when a composition plan was returned.

Regarding the unsuccessful tries, we notice that the run time is slightly decreas-

ing as the number of data types increases. To justify this, we realize that data

types play the role of connectors among different repository components. When a

data type t is an output in one component and an input in another, we say that t

connects these two components. If the connectivity among repository components

is low there would be fewer instances in each level of the multi-level graph of Sec-

tion 6.3. When we increase the number of data types this connectivity decreases

and, therefore, if a request is destined to be unsuccessful, fewer instances would be

created in the multi-level graph until reaching a dead-end. A dead-end is a point at

which no more repository component can be applied. All this means less run time.

We see more fluctuations in the average run times for successful tries. The reason

is simply that the tests were performed for small number of successful results (at

most 20) because the chance of finding a solution diminishes as the number of data

types grows. In fact, this is why the diagram is not continuous, as we removed the
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Figure 7.3: Average run times for Experiment 2: NC = 10000, NT = 100 · · 1000

(steps of 100), NI = 1, CI = 1, NO = 1, CO = 1. For each specific number of data

types, 100 random successful requests were considered.

points where no result could be found (even after trying 10000 random queries).

For the same reason, the run times seem to be decreasing as we go towards more

data types.

We conclude that as the number of data types with respect to the number of

components grows, the chance of finding a satisfying composition and the run time

of the reasoning-based composition approach both decrease.

Experiment 2: Simple Repository (II)

In this example, we again consider the repository of components with a single input

and a single output. This time the number of repository components was 10000,

while the number of data types changed from 100 to 1000. Figure 7.3 shows the

results of this experiment. Since the number of data types with respect to the

number of components is small, the chance of finding a composition for a given

request is much higher compared to the previous experiment. That is why in

this experiment we study only the run time for successful searches. In fact, none
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of the 100 random tests for each number of data types returned unsuccessfully,

which means (at least) in the case of the simple repository of single input/output

components, if the number of components are much higher than the number of data

types, normally we would be able to find a composition for the given request. The

chart shows that the average run time can be estimated to be linearly dependent

on the number of repository data types.

Experiment 3: Simple Repository (III)

Again, we considered the simple repository as the previous two experiments. How-

ever, this time we tried to keep the number of data types fixed at 100 and change

the number of repository components from 100 to 2000. Similar to the previous

experiment, we noticed that the average run time is smoothly increasing as we in-

crease the number of components. We believe that the fact that this increase in

the average run time does not occur at a higher rate is significantly related to the

notion of average graph expansion.

Definition 7.1 Algorithm 6.3 processes a given request by creating a multi-level

graph. It keeps expanding this graph until either it finds a solution or it reaches a

point that from that point forward no solution can ever be found. In each case the

last level number of the graph is called the graph expansion for the given request

against the given repository. For example, the corresponding graph expansion in

Figure 6.2 would be 3. By submitting multiple requests against the same repository,

we can obtain an average value for this graph expansion, which is called the aver-

age graph expansion for that repository. Average successful graph expansion and

average unsuccessful graph expansion are the similar terms used only for successful

and unsuccessful searches, respectively. �

In this experiment, we notice that the average successful graph expansion decreases

as we increase the number of components. This means that every time we increase

the number of components, although more instances would be created at each

graph level, the graph is expanded less before finding a solution. In other words,

decreasing graph expansion would be the reason we do not see a higher slope in

Figure 7.4. Figure 7.5 shows the maximum and average successful graph expansions

for the repository of this experiment. The maximum successful graph expansion

is the maximum of all graph expansions for successful requests. We see in this

diagram that, for example, when the number of components passes ten times the
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Figure 7.4: Average run times for Experiment 3: NC = 100 · · 2000 (steps of 100),

NT = 100, NI = 1, CI = 1, NO = 1, CO = 1. For each specific number of data

types, 100 random requests leading to a composition were considered.

number of data types, the average successful graph expansion is around 2 and the

successful graph expansion would never go beyond 3.

The success rates, i.e., the chance of finding a composition for a given request,

for this experiment are shown in Table 7.2. The result indicates that in a simple

# Components 100 200 300 400 500 600 - 2000

Success Rate 0.057 0.676 0.939 0.965 0.979 1.000

Table 7.2: Success rates for Experiment 3.

repository of single input/output components, if the number of components is three

times or more than the number of data types there is a high chance of finding a

solution for all given requests. Also, if the number of components is six times or

more than the number of data types, we should expect to find a solution for all

requests.

134



0

2

4

6

8

10

12

14

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Number of Components

Su
cc

es
sf

ul
 G

ra
ph

 E
xp

an
si

on

Average

Maximum

Figure 7.5: Maximum and average successful graph expansions for Experiment 3.

Experiment 4: Generic Repository (I)

After studying the simple case repository we now move to experiments involving

a more general repository. We use the repository parameters based on the results

of the random sampling discussed earlier in this chapter. In this experiment, we

picked parameter values, i.e., number and cardinality of inputs and outputs in each

component, the same as those results. The geometric distributions with means 3.04,

1.06, 1.34 and 1.04 were picked for the number of input data types, cardinality of

each input data type, number of output data types, and cardinality of each output

data type, respectively. We fixed the number of data types at 1000 and varied

the number of repository components from 100 to 1000. Figure 7.6 illustrates

the average run time for unsuccessful searches. In this experiment the number of

components compared to the number of data types is small and, therefore, the

success rates have been very low. As a result, there were few successful searches,

and we did not include their average run time in this chart. We can easily see that

the average run time increases somewhat linearly when we increase the number of

components.
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Figure 7.6: Average run times for Experiment 4: NC = 100 · · 1000 (steps

of 100), NT = 1000, NI = Geometric(3.04), CI = Geometric(1.06), NO =

Geometric(1.34), CO = Geometric(1.04). For each specific number of data types,

100 random requests leading to a composition were considered.

Experiment 5: Generic Repository (II)

In this experiment we used the same distribution parameters as in Experiment 4,

except that this time we fixed the number of components at 1000 and changed the

number of data types from 100 to 1000. The average run times for successful and

unsuccessful searches are shown in Figure 7.7. Note that the chart in this figure

is logarithmic on the values of the average run time. Although the diagrams for

successful and unsuccessful searches in this chart are rather unusual, they can be

simply explained. The justification, which is somewhat similar to the one presented

in Experiment 1, is based on Table 7.3, which includes the success rates for different

numbers of data types, and also Figure 7.8. Table 7.3 shows that as we increase the

number of data types, the chance of finding a composition significantly decreases.

Also, by increasing this number the probability that two repository components

are connected goes lower as well, which means repository components become less

connected. Now, when we start with 1000 components and 100 data types, since

the number of components is much bigger than the number of data types, we expect
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Figure 7.7: Average run times for Experiment 5: NC = 1000, NT = 100·· 1000 (steps

of 100), NI = Geometric(3.04), CI = Geometric(1.06), NO = Geometric(1.34),

CO = Geometric(1.04). For each specific number of data types, 100 random re-

quests leading to a composition were considered.

# Data Types 100 200 300 400 500 600 - 700 800 - 1000

Success Rate 0.709 0.429 0.262 0.047 0.002 0.001 0.000

Table 7.3: Success rates for Experiment 5.

the repository to be well connected. Note that, we assume repository components

form the nodes and shared data types between components create the edges and

connections between components. As we start increasing the number of data types,

we break the connections between some components, but up to some point, we

expect the whole repository to be still one connected set. This point, according

to Figure 7.7, is when there are 400 data types in the repository. That is why

we see a big difference in average run times between the experiments for 400 and

500 data types. The average graph expansions in Figure 7.8 confirm this theory

by showing that the average graph expansion for both successful and unsuccessful

searches reaches to its maximum when there are approximately 400 data types in

the repository.
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Figure 7.8: Maximum and average graph expansions for Experiment 5.

By comparing the charts in Figures 7.7 and 7.8 we notice some facts that seem

to be unusual. We try to explain and analyze a few of them in this part.
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• Although the average unsuccessful graph expansion for 100 data types is less

than this average for 500 data types, the average run time for unsuccessful

searches is significantly bigger for 100 data types. This is because when

the repository is well connected, dead-ends rarely occur during the graph

expansion. Therefore, we expect the performance improvement heuristics

to help in these situations by, for example, limiting the number of instances

created from each type. This takes much longer compared to the case in which

graph expansion comes to a dead-end due to low connectivity of repository

components. This exactly is the case for the two experiments for 100 and

500 data types. For 100 data types, almost all unsuccessful searches were

terminated by those heuristics. However, for 500 data types, this happened

for only a few of them. Note that for 100 data types, the graph levels are

quite more crowded than those for 500 data types. It is obvious that the

heuristics that are used in the approach directly affect the average run time

for unsuccessful searches.

• The average successful graph expansion for 100 data types is less than this

average for 500 data types, and yet the average run time for successful searches

is considerably larger for 100 data types. The reason behind this is only the

connectivity of repository components for the two cases. For 100 data types,

the connectivity is stronger and therefore, many more instances are created

in the first levels. However, for 500 data types, due to lower connectivity,

we expect to see fewer instances in those first levels. Since fewer created

instances means shorter run time, the experiment with 500 data types finds

compositions at a faster rate.

Since the multi-level graph is an example of random graphs studied by Erdös and

Rényi [40], their properties would also confirm the changes we see in this experi-

ment.

Experiment 6: Generic Repository (III)

This experiment is similar to Experiment 4, except that the number of data types is

fixed at 100 and the number of components changes from 100 to 2000. Because we

expect higher success rates, we can study the performance for successful searches

as well. Figure 7.9 contains the average run time for successful and unsuccessful

searches. Each case was run until 25000 random requests or 100 successful searches

were submitted. Note that the chart in this figure is also logarithmic on the values
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Figure 7.9: Average run times for Experiment 6: NC = 100 · · 2000 (steps of 100),

NT = 100, NI = Geometric(3.04), CI = Geometric(1.06), NO = Geometric(1.34),

CO = Geometric(1.04). For each specific number of data types, 100 random re-

quests leading to a composition were considered.

of the average run time. The average and maximum graph expansions for suc-

cessful and unsuccessful searches are shown in Figure 7.10. To study the result of

this experiment in more detail the success rates and the average number of created

instances in successful and unsuccessful searches is shown in Figure 7.11. By com-

paring the charts related to this experiment we observe that since the number of

instances created for the cases with 100 and 200 components is considerably small,

the average run times are quite low compared to the other cases. For these two

cases the success rate is quite low as well. Although the number of components is

not less than the number of data types in these two cases, it is not large enough to

cause most repository components to become involved. If we consider the number

of instances created in each level of the multi-level graph, we see that the number of

instances at each level hardly passes 3 and 10 for 100 and 200 components, respec-

tively. When there are few instances in a level not many repository components

can be applied on those instances and, therefore, the chance of finding a compo-

sition would be low as there is a high possibility of reaching a dead-end in such a
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Figure 7.10: Maximum and average graph expansions for Experiment 6.

situation.

When the number of components increases, the difference between the average

run time for successful and unsuccessful searches highly increases as well. This can
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Figure 7.11: Success rates and average number of instances in Experiment 6.

be justified by the fact that increasing the number of components lowers the chance

of reaching a dead-end and ending with an unsuccessful search, as more instances are

created in each level of the multi-level graph. Therefore, the basic way to determine
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that a search is unsuccessful would be the performance heuristics mentioned before.

At the moment, according to the implemented performance heuristic, this means

more created instances and, consequently, more processing time. The chart in

Figure 7.9 highlights the need for even more performance heuristics to improve the

run time performance for unsuccessful searches.

Regarding the successful searches, we observe that the run time is smoothly

increasing when the number of components goes up. However, this increase is much

less compared to the case for unsuccessful searches. This smooth increase can be

justified using the corresponding average successful graph expansion in Figure 7.10.

As mentioned before, when we increase the number of components, more instances

would be created in each level which adds to the run time. On the other hand,

since the average successful graph expansion goes lower, we would expect less run

time. These two factors partly neutralize each other and cause the changes at a

lower rate.

Comparing the charts for the average run time and the average number of

created instances, we notice that they are quite similar. This simply means that,

as we expect, there is a direct relation between the number of instances created

and the run time of the approach.

Summary of Results

According to the experiments we reported in this section, we observe that the case

for the simple repository of Experiments 1-3 is rather different from the generic

case. In the experiments involving the simple repository we obtained diagrams

with much more linearity involved for the average run times with respect to the

number of components or data types. However, in Experiments 4-6 we had to use

logarithmic scales in some cases to represent the results.

We saw in this section how the run time performance of our reasoning-based

approach can be justified by studying the underlying multi-level graph, the success

rates, the average graph expansions, and the number of instances created during

the search. Using these justification techniques we can also predict the behavior of

the approach for repositories with different attributes.

According to the reported experiments we realize that although our reasoning-

based approach performs well in most circumstances, there is still room for improve-

ments. For instance, in Experiment 6 we noticed that in unsuccessful searches we

face huge increases in the run time when we increase the number of components.
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This suggests that we need to improve and apply even more performance heuristics

so that an unsuccessful search can be guessed well in advance. This task is left as

a future work in performance improvement of the approach. As mentioned in Sec-

tion 7.1 applying some of the techniques from the graph-based approach is expected

to substantially improve the composition approach from this point of view.

7.3 Discussion of Other Possible Approaches

In Chapter 6 we proposed a reasoning-based approach in automatic composition

planning. Although this approach is motivated by a reasoning algorithm for Horn

clauses, it does not explicitly take advantage of existing logical reasoning program-

ming languages and tools. Prolog [29] is one such programming language that

comes with different implementations. Prolog is, in fact, based on the principles of

the Horn clause logic. Although its main application is in the Artificial Intelligence

area, it is being used in other areas as well, such as compiler construction, computer

algebra and database systems. For a complete review of the Prolog programming

constructs the reader is referred to [60].

To answer queries, Prolog looks into its current knowledge base to find the solu-

tion. Its knowledge base contains a set of facts and rules processed in a sequential

order.

Example 7.1 Consider the following set of facts as the knowledge base of a Prolog

engine:

animal(tiger).

animal(elephant).

animal(dove).

If the query ?- animal(X). is submitted to this engine, the followings would be the

result:

X = tiger ;

X = elephant ;

X = dove

Since Prolog processes the above knowledge base from the top to the bottom, it is

not possible to submit the above query and get the results in a different order. �

Another property of Prolog is that it uses the backtracking strategy in searching

the knowledge base to solve a given query. Backtracking is especially used when

Prolog tries to use knowledge base rules to answer given queries.
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Example 7.2 Consider that the following knowledge base, which is the extended

version of the one in the previous example, is given to a Prolog engine:

animal(tiger).

animal(elephant).

animal(dove).

flies(balloon).

flies(dove).

bird(X) :- animal(X), flies(X).

Upon receiving the query ?- bird(X)., Prolog starts to find all the objects that it

can prove to be birds. It first tries to satisfy the first condition, i.e., animal(X).

By considering the knowledge base from the top to the bottom, it first finds that

X = tiger satisfies animal(X). It keeps a pointer to this knowledge base location

and tries to satisfy the next condition, i.e., flies(X) with X = tiger, which fails.

Now, it goes back to that pointer (which was stored for the first condition), and con-

tinues from that point (this part is called backtracking). The next guess would be

X = elephant, which similarly fails. After another backtracking, X = dove would

be guessed, which, this time, due to the fact flies(dove) is proved to be correct.

Therefore, X = dove is returned. If more solutions are requested, another back-

tracking takes place, but since there is no more object that satisfies animal(X), the

search fails. �

The backtracking strategy is similar to a search in the depth-first order. For a rule

of the form r :- r1, r2, ..., rn, Prolog first tries to satisfies r1 and if it does,

it keeps a pointer at the corresponding location in its knowledge base corresponding

to r1. Then it does the same for r2 using the possible variable assignments it finds

by satisfying r1. This process would continue until either it could satisfy rn as

well (successful return), or for some i (i6n), it cannot satisfy ri (unsuccessful

return). Upon an unsuccessful search Prolog goes back to the last pointer it has

kept in the knowledge base and tries to satisfy the corresponding clause from that

point forward. This would also happen if the search has been successful and more

solutions are required.

Based on how Prolog searches its knowledge base to find solutions for a given

query, we make a simple comparison between the composition approaches of Chap-

ters 5 and 6 and a composition approach that would use Prolog.

Example 7.3 Consider the following simplistic knowledge base for a composition

planning engine based on Prolog. Note that the rules in this knowledge base are
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not complete for solving the composition planning as proposed by composition algo-

rithms of Chapters 5 and 6. However, since the composition planning using Prolog

must take advantage of recursion, one such recursive rule is given in this sample

knowledge base.

1: component(c1, [(a1,1)], [(a2,1)]).

2: component(c2, [(a2,1)], [(a3,1)]).

3: component(c3, [(a3,1)], [(a4,1)]).

...

n: component(cn, [(an,1)], [(b,1)]).

n+1: component(d, [(a2,1)], [(b,1)]).

n+2: composition(IL, OL, C) :- component(C, IL, OL).

n+3: composition(IL, OL, C) :- component(C1, IL, TL),

composition(C2, TL, OL),

C=(C1*C2).

The numbers appearing before the knowledge base clauses are there to simplify ad-

dressing them in this example. Also, the * symbol in the last rule refers to syn-

chronization and is a substitute for the � symbol. Clause 1, for instance, indicates

that component c1 receives one instance of data type a1 as its input, and returns

one instance of data type a2 as its output. Clauses n+2 and n+3 define two possible

ways of finding a solution for the problem. In clause n+2, component C is defined to

be the solution for a request with inputs IL and outputs OL, if C receives and returns

the exact same parameters. However, in clause n+3, a synchronization is returned,

in which component C1 receives IL and returns TL, while there is a composition C2

that receives TL and returns OL (the recursive part).

Now, suppose that the query ?- composition([(a1,1)], [(b,1)], C) is sub-

mitted against this knowledge base and only the first solution found by Prolog would

suffice. Upon receiving this query, Prolog tries to apply the clause n+2, which would

be unsuccessful. Then it uses the clause n+3, which breaks down the request to

component(c1, [(a1,1)], [(a2,1)]), composition(C2, [(a2,1)], [(b,1)]),

and C=(c1*C2). It keeps a pointer to clause 1 at this step, and continues to satisfy

the new query composition(C2, [(a2,1)], [(b,1)]). This process goes on in a

similar way until the solution C=(c1*(c2*(...*(cn-1*cn)))) is returned as the

overall result. However, we can easily see that C=(c1*d) is also a solution, which

is much simpler. �

In the above example, Prolog fails to find the shortest path solution, because of the

two properties mentioned earlier; i.e., it processes the knowledge base sequentially,
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and it uses backtracking. Similarly, in case more than one solution is required,

Prolog cannot guarantee to return the shortest path ones. This is a huge disadvan-

tage comparing to our composition approaches that guarantee to return shortest

path solutions2. The graph-based approach of Chapter 5 does so by using the BFS

search in finding appropriate graph paths. Also, the reasoning-based approach of

Chapter 6 creates instances according to a multi-level graph in a BFS manner,

which guarantees to find shortest path solutions.

Aside from the reasoning-based languages and tools, specification languages

might also be useful in solving the composition planning problem. One of these

languages is Alloy, which is a lightweight language for modeling software systems.

It draws many of its ideas from Z [1]: in particular, representing all data struc-

tures with sets and relations, and representing behavior and properties with simple

formulas. Although Alloy was designed to be flexible and expressive, unlike Z, it

is amenable to fully automatic simulation and checking. A simple first order logic

constraint solver based on reduction to SAT can check properties of Alloy models.

Alloy has been applied to problems from very different domains, from checking the

conventions of Microsoft COM to debugging the design of a name server [56, 57].

Detailed information about Alloy can be found in [55].

To study if Alloy is a good candidate in modeling the composition planning

problem, we tried to perform an initial evaluation by implementing the forward

chaining algorithm for Horn clauses. The corresponding specification is as follows:

open util/ordering[State] as steps

sig Literal {}

sig Clause {

left: set Literal,

right: Literal

}

sig State {

true: set Literal,

usable: set Clause,

2The only way we can make a Prolog engine process the knowledge base in a breadth-first
order is to do some form of meta-programming in order to simulate the breadth-first processing.
Because of the complexities involved in developing such a simulation program, we do not discuss
it in this thesis.
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uses: lone Clause

}

fact initialState {

let s0=steps/first {

s0.true = req.left

s0.usable = {c: Clause | #c.left >0 && #c.right>0} - req

no s0.uses

}

}

pred NoChange [s: State, s’: State] {

s’.true = s.true

s’.usable = s.usable

s’.uses = s.uses

}

pred Use [s: State, s’: State] {

some c: Clause | {

c in s.usable

c.left in s.true

c.right not in s.true

s’.true = s.true + c.right

s’.usable = s.usable - c

s’.uses = c

}

}

fact stateTransition {

all s: State-last |

let s’=steps/next[s] |

( NoChange[s,s’] || Use[s,s’] )

}

// example: c1: a->b, c2: b->c, c3: c->d. Is req: a->d true?

one sig a, b, c, d extends Literal {}

one sig c1, c2, c3, req extends Clause {}

fact { left = c1->a + c2->b + c3->c + req->a }

fact { right = c1->b + c2->c + c3->d + req->d }

run { req.right in steps/last.true } for 1 but 4 State
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This specification implements the forward chaining approach by introducing the

concept of states. Literal and Clause represent literals and Horn clauses in the

knowledge base, while State captures any step in Algorithm 6.1. The request req

is also a Horn clause that the algorithm tries to prove/disprove. Each state contains

a set of literals marked as true (true), a set of clauses that have not been used yet

(usable), and a single clause uses that have been used before the current state is

reached. In the initial state, all the literals in the left-hand side of req form the

set true, all the clauses with some literal in their both left and right-hand sides

form the set usable, and there would be no clause in uses as no clause from the

knowledge base has been used yet.

In order to move from one state s to another state s’, there should be some

knowledge base clause c in s.usable where the left-hand side literals of c are

already marked as true (c.left in s.true), while its right-hand side literal is not

(c.right not in s.true). As a result of this transition from s to s’, c.right

would be added to the literals marked as true (s’.true = s.true + c.right), c

would be removed from the clauses that can be used (s’.usable = s.usable - c),

and c would be marked as the clause used in this transition (s’.uses = c). This

transition is specified in the predicate Use.

There is another predicate NoChange in this specification indicating that there

might be transitions in which no change is made in the attributes of the states. This

NoChange predicate is necessary in case Alloy analyzer is considering more state

instances than the actual required number. The fact stateTransition formulates

a move from one state to its next according to this explanation.

To start the analysis we need to specify the knowledge base, i.e., literals and

clauses, plus the requested Horn clause. This is done in the last section of the

above Alloy specification through some sig and fact expressions. The last line,

i.e., run { req.right in steps/last.true } for 1 but 4 State, asks Alloy

to start analyzing the model. More precisely, it asks Alloy to do the analysis

by creating one instance of the top level data types introduced by sig, except

for State which would have four instances. If the analysis is successful and given

facts and predicates are proved to be consistent, it means that the algorithm has a

solution based on the given constraints.

In the above example clauses a→ b, b→ c and c→ d form the knowledge base,

and the request is the clause a→ d. The result returned by Alloy Analyzer is shown

in Figure 7.12. The attributes of the four states in this figure are shown in Table 7.4.

149



req

c

c3

b

c2

a

c1

State3

d

State0State2

steps/Ord

State1

true

uses

left

usable

left

true

usable

left

true

usable left

truetrue

usable

First

right

usable

right

Last

right

usableright uses

true

uses

true

Next [State0]

truetrue

Next [State1]

true

Next [State2]

Figure 7.12: The solution returned by Alloy Analyzer for the given Alloy specifica-

tion.

true usable uses

State0 {a} {c1,c2,c3}

State1 {a,b} {c2,c3} c1

State2 {a,b,c} {c3} c2

State3 {a,b,c,d} {} c3

Table 7.4: Different states found by Alloy Analyzer for the given Alloy specification.

Running this model with three states would not return a solution. This shows that

at least four states are required to find a solution. Since the number of clauses used

from the knowledge base is the number of states minus one, we conclude that using

three knowledge base clauses we can satisfy the request.

We can make minor changes to the above Alloy code to make it a model of

Algorithm 6.2, in which we ignored the cardinality of input/output data types.

That way, by running the model on a specific repository, we can find a sequence

of components that could build the requested one. However, this sequence is not

always the best solution.

Example 7.4 Consider the repository of components C1 : a → b, C2 : a → c,

C3 : {b, c} → d and the request a → d. Running the above Alloy code on this

example would return the sequence C1, C2, C3 as a possible solution. It does not

return any solution implying the composition (C1 || C2) � C3, which is the best

answer. �
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To achieve the best solution many improvements must be made in the above model,

which obviously adds to its complexity. If we try to model the generic algorithm,

Algorithm 6.3, by involving the cardinalities, this complexity is expected to in-

crease substantially, especially if we consider Alloy’s inventor’s claim regarding the

difficultly of modeling integer arithmetic using Alloy [26]. Moreover, since there

is no built-in notion of states in Alloy and its specifications cannot be automati-

cally checked against properties containing temporal operators [26], we would need

to simulate these temporality the way we did in the above Alloy example. This

could be considered as another drawback in implementing the generic composition

algorithm using Alloy.

Moreover, in order to avoid false negatives, i.e., getting a negative result for a

given request where a solution does exist, we need to have an estimate about the

number of states required by Alloy in processing the model. For example, if we use

the command run { req.right in steps/last.true } for 1 but 4 State in

the above model, Alloy Analyzer would find only one solution with four states.

Using run { req.right in steps/last.true } for 1 but 3 State would not

lead to any solution though, giving the impression that the model is unsatisfi-

able. Using run { req.right in steps/last.true } for 1 but 5 State, on

the other hand, would lead to four solutions each with five states. For this really

small and easy example we know that the solution with four states is the best one.

However, when the knowledge base is much larger, it becomes impossible to esti-

mate the number of states needed by the analyzer in order to avoid false negatives

and, also, non-optimal solutions, which use many more states than actually needed.

If the estimate is too low, the analyzer fails to find a solution. On the other hand,

if the estimate is too high, the analyzer finds a solution that is far from the best

one. Moreover, if the scope and the number of instances in a model becomes large,

Alloy Analyzer would become quite inefficient in processing the model.

Finally, when there are multiple solutions for a given model, the order of so-

lutions returned by Alloy depends on the implementation of its underlying SAT

solver, and is outside the control of Alloy. Therefore, there is no guarantee that the

first solution returned is the best solution, or in terms of the composition planning

problem, the one corresponding to the shortest path (which uses least number of

components).
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7.4 Towards A Practical Solution

In Chapters 1 and 2 we discussed web services and their composition as the potential

target for the automatic component composition we study in this thesis. That

is why in the previous section we picked a number of web services to create a

realistic component repository, based on their statistical information, in studying

the average-case performance of the proposed composition planning approach. The

parameters we focused on were the number of inputs/outputs in each web service,

and the cardinality of each data type appearing as an input/output.

In this section we study, in more details, how our composition planning ap-

proach can be practically used for web services. To do so, we analyze the structure

of WSDL documents, as standard and approved specifications for the functionality

of web services, and how to use them. Then, we explain how we can extract neces-

sary information from these WSDL specifications in order to create the component

repository and implement the planning approach. In this section, discussions and

examples on WSDL are taken from [105].

7.4.1 WSDL

A WSDL 2.0 document contains the following generic structure:

<description>

<documentation>

<!-- additional documentation -->

</documentation>

<types>

<!-- definition of types -->

</types>

<interface>

<!-- definition of an interface -->

<interface>

<binding>

<!-- definition of a binding -->

</binding>

<service>
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<!-- definition of the web service -->

</service>

</description>

As we see in this structure, the specification of a web service is put inside a root

description element. Different namespaces used throughout this specification are

defined as the parameters of this element. The following is an example of the

description element.

<description

xmlns="http://www.w3.org/ns/wsdl"

targetNamespace= "http://greath.example.com/2004/wsdl/resSvc"

xmlns:tns= "http://greath.example.com/2004/wsdl/resSvc"

. . . >

. . .

</description>

In simple terms, we define different vocabularies that are used inside the current

WSDL document in this description element. In this specification, xmlns is the

XML namespace for WSDL 2.0. Therefore, every other namespace is specified

by a xmlns: prefix, which indicates that the given URI is a namespace. The

targetNamespace attribute defines the default namespace for the current WSDL

document. This means that all the newly introduced terms in the specification

would fall in the target namespace. Note that it is not a namespace declaration,

as there is no xmlns: prefix attached to it. The target namespace is the default

namespace for the given WSDL specification. The next item specified by xmlns:tns,

which is an actual namespace declaration also referring to the target namespace,

is used in case we want to use the prefix tns: to emphasize that its following term

is from the target namespace. We return to the notion of target namespaces with

some more examples later in this section.

Since each web service would communicate with the outside world by sending

and receiving messages, the type of these messages must be defined properly in the

WSDL document. Their definitions would reside inside the types element, which is

a child of the root description element. Here is an example of the types element,

which corresponds to a web service for checking the availability of some hotel.

<description

xmlns="http://www.w3.org/ns/wsdl"
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targetNamespace= "http://greath.example.com/2004/wsdl/resSvc"

xmlns:tns= "http://greath.example.com/2004/wsdl/resSvc"

xmlns:ghns = "http://greath.example.com/2004/schemas/resSvc"

. . . >

. . .

<types>

<xs:schema

xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://greath.example.com/2004/schemas/resSvc"

xmlns="http://greath.example.com/2004/schemas/resSvc">

<xs:element name="checkAvailability" type="tCheckAvailability"/>

<xs:complexType name="tCheckAvailability">

<xs:sequence>

<xs:element name="checkInDate" type="xs:date"/>

<xs:element name="checkOutDate" type="xs:date"/>

<xs:element name="roomType" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:element name="checkAvailabilityResponse" type="xs:double"/>

<xs:element name="invalidDataError" type="xs:string"/>

</xs:schema>

</types>

. . .

</description>

A new target namespace, http://greath.example.com/2004/schemas/resSvc, is be-

ing used in this message type definition. In this specification, message types

checkAvailability, checkAvailabilityResponse, and invalidDataError are de-

fined as XML elements (xs:element). The checkAvailability element is of type

tCheckAvailability. Note that since there is no namespace attached to this type,

it is considered to be from the above target namespace. Later, tCheckAvailability

is defined as a complex type containing three simpler types in order (because of

xs:sequence ordering info): a checkInDate of type xs:date, a checkOutDate of type

xs:date, and a roomType of type xs:string. The checkAvailabilityResponse and

invalidDataError elements, which are again from the target namespace, are of type

XML Schema double and string, respectively.
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Since XML Schema data types, such as string, date and double, are too general

for the purpose of automated composition planning, we can attach the given element

names to make them represent more specific concepts. Ignoring the element names

in the above specification would result in roomType and invalidDataError being

semantically similar terms, as they are both of type XML Schema string. However,

since they are two different terms from the target namespace, they should not be

considered semantically similar. As a result, in order to disallow false positives in

the search for valid composition plans we would consider name-type pairs instead

of only types.

The order of elements in a complex type could be of three kinds: sequence,

all, or choice. The sequence indicator explained above is similar to the way

programming languages define the signature of their functions. The all ordering

indicates that the child elements may appear in the complex type in any order as

long as they all appear in it. The choice indicator specifies that one or the other

child can occur.

Similarly, attributes minoccurs or maxoccurs might be attached to elements of

a complex data type to indicate the cardinality of the corresponding data type

element in input or output messages. As an example, the element definition

<xs:element minoccurs="1" maxoccur="1" name="checkInDate" type="xs:date"/>

indicates that only one checkInDate element would appear in the complex type.

The default value for both minoccurs and maxoccurs is 1.

The next part of a WSDL description defines interfaces as a set of operations

each representing a simple interaction between the service and its client. Along

with each operation the types of messages it can receive and return, and also the

expected order of those messages, called the message exchange pattern, are defined.

An example of this message exchange pattern is in-out, which indicates that if the

client sends a message to the service, the service will respond with either the reply

to the sent message or a fault message. Here is an example:

<description

xmlns="http://www.w3.org/ns/wsdl"

targetNamespace= "http://greath.example.com/2004/wsdl/resSvc"

xmlns:tns= "http://greath.example.com/2004/wsdl/resSvc"

xmlns:ghns = "http://greath.example.com/2004/schemas/resSvc"

. . .

xmlns:wsdlx="http://www.w3.org/ns/wsdl-extensions">

. . .
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<types>

. . .

</types>

<interface name = "reservationInterface" >

<fault name = "invalidDataFault"

element = "ghns:invalidDataError"/>

<operation name="opCheckAvailability"

pattern="http://www.w3.org/ns/wsdl/in-out"

wsdlx:safe = "true">

<input messageLabel="In"

element="ghns:checkAvailability" />

<output messageLabel="Out"

element="ghns:checkAvailabilityResponse" />

<outfault ref="tns:invalidDataFault" messageLabel="Out"/>

</operation>

</interface>

. . .

</description>

This specification defines a single interface reservationInterface for this web ser-

vice. This interface has a fault message named invalidDataFault which is of type

invalidDataError (namespace http://greath.example.com/2004/schemas/resSvc).

It has a single operation opCheckAvailability, which will be referenced later in the

specification, and uses the in-out message exchange pattern. The safe property of

the operation shows that invoking this operation will not obligate the client in any

way (such as making him/her to buy something). Then the input and output of

the operation are defined. The In and Out labels somehow emphasize the corre-

sponding message exchange pattern. Finally, the output fault of the operation is

defined referring to a previously defined fault in the interface.

The binding part in the WSDL specification, which comes after the interface

definition, defines the communication protocols used by the web service. So far,

the WSDL document has defined what the operations supported by the web service

are. In the binding section, it defines how those operations can be actually invoked.

It basically specifies binding details for each operation and the fault defined earlier

in the specification. The following is an example of such binding definitions:
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<description

xmlns="http://www.w3.org/ns/wsdl"

targetNamespace= "http://greath.example.com/2004/wsdl/resSvc"

xmlns:tns= "http://greath.example.com/2004/wsdl/resSvc"

xmlns:ghns = "http://greath.example.com/2004/schemas/resSvc"

xmlns:wsoap= "http://www.w3.org/ns/wsdl/soap"

xmlns:soap= "http://www.w3.org/2003/05/soap-envelope">

. . .

<types>

. . .

</types>

<interface name = "reservationInterface" >

. . .

</interface>

<binding name="reservationSOAPBinding"

interface="tns:reservationInterface"

type="http://www.w3.org/ns/wsdl/soap"

wsoap:protocol="http://www.w3.org/2003/05/soap/bindings/HTTP/">

<operation ref="tns:opCheckAvailability"

wsoap:mep="http://www.w3.org/2003/05/soap/mep/soap-response"/>

<fault ref="tns:invalidDataFault"

wsoap:code="soap:Sender"/>

</binding>

. . .

</description>

Two namespaces xmlns:wsoap and xmlns:soap are added to the description element

of this specification. xmlns:wsoap is used for the SOAP binding extensions defined

in WSDL 2.0; and xmlns:soap is used for the SOAP specification itself. A binding

element with name reservationSOAPBinding has been defined in this specification to

specify the binding information for reservationInterface defined above. The type

of message format and the transmission protocol used for this binding is SOAP and

HTTP, respectively. The next part references the opCheckAvailability operation

defined above to specify its binding details. The wsoap:mep indicates that GET

is used as the corresponding HTTP method. The last part provides the binding
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information for the fault element defined earlier in the interface section by specifying

the SOAP fault code that causes this fault message to be sent.

Now that the what and how questions regarding the functionality of the web

service are answered, we need to answer the where question, i.e., where this service

can be accessed. This is done using the service element. Each service element

specifies one interface that the service supports, and a list of endpoint locations

where the service can be accessed. Each endpoint references a previously defined

binding to indicate the protocols and transmission formats used at that endpoint.

Here is an example:

<description

xmlns="http://www.w3.org/ns/wsdl"

targetNamespace= "http://greath.example.com/2004/wsdl/resSvc"

xmlns:tns= "http://greath.example.com/2004/wsdl/resSvc"

xmlns:ghns = "http://greath.example.com/2004/schemas/resSvc"

xmlns:wsoap= "http://www.w3.org/ns/wsdl/soap"

xmlns:soap="http://www.w3.org/2003/05/soap-envelope">

. . .

<types>

. . .

</types>

<interface name = "reservationInterface" >

. . .

</interface>

<binding name="reservationSOAPBinding"

interface="tns:reservationInterface"

. . . >

. . .

</binding>

<service name="reservationService"

interface="tns:reservationInterface">

<endpoint name="reservationEndpoint"

binding="tns:reservationSOAPBinding"

address="http://greath.example.com/2004/reservation"/>

</service>

</description>
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The service reservationService is defined in this specification which supports

reservationInterface defined in the above interface element. Then, an endpoint

reservationEndpoint is defined for this service at which the previously defined

binding reservationSOAPBinding is used. The address attribute of this endpoint

defines the physical address at which the service can be accessed using the above

binding.

The only part left is the documentation of a WSDL specification. Although

the basic information on how to use the service is given by the WSDL structure

explained so far, additional explanation might be needed, for example to provide

the meaning of the messages, their constraints, . . . . The optional documentation el-

ement is used for this purpose and contains human-readable contents. This element

can be used at different places in the WSDL specification, such as the beginning.

<description

. . . >

<documentation>

This document describes the hotel reservation Web service.

Additional requirements for use of this service -- beyond

what WSDL 2.0 is able to describe -- are available at

http://greath.example.com/2004/reservation-documentation.html

</documentation>

. . .

</description>

The complete WSDL specification of the service we used in the above examples

is the following:

<description

xmlns="http://www.w3.org/ns/wsdl"

targetNamespace= "http://greath.example.com/2004/wsdl/resSvc"

xmlns:tns= "http://greath.example.com/2004/wsdl/resSvc"

xmlns:ghns = "http://greath.example.com/2004/schemas/resSvc"

xmlns:wsoap= "http://www.w3.org/ns/wsdl/soap"

xmlns:soap="http://www.w3.org/2003/05/soap-envelope"

xmlns:wsdlx= "http://www.w3.org/ns/wsdl-extensions">

<documentation>

This document describes the hotel reservation Web service.

Additional requirements for use of this service -- beyond

what WSDL 2.0 is able to describe -- are available at
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http://greath.example.com/2004/reservation-documentation.html

</documentation>

<types>

<xs:schema

xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://greath.example.com/2004/schemas/resSvc"

xmlns="http://greath.example.com/2004/schemas/resSvc">

<xs:element name="checkAvailability" type="tCheckAvailability"/>

<xs:complexType name="tCheckAvailability">

<xs:sequence>

<xs:element name="checkInDate" type="xs:date"/>

<xs:element name="checkOutDate" type="xs:date"/>

<xs:element name="roomType" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:element name="checkAvailabilityResponse" type="xs:double"/>

<xs:element name="invalidDataError" type="xs:string"/>

</xs:schema>

</types>

<interface name = "reservationInterface" >

<fault name = "invalidDataFault"

element = "ghns:invalidDataError"/>

<operation name="opCheckAvailability"

pattern="http://www.w3.org/ns/wsdl/in-out"

style="http://www.w3.org/ns/wsdl/style/iri"

wsdlx:safe = "true">

<input messageLabel="In"

element="ghns:checkAvailability" />

<output messageLabel="Out"

element="ghns:checkAvailabilityResponse" />

<outfault ref="tns:invalidDataFault" messageLabel="Out"/>

</operation>

</interface>

<binding name="reservationSOAPBinding"

interface="tns:reservationInterface"

type="http://www.w3.org/ns/wsdl/soap"

wsoap:protocol="http://www.w3.org/2003/05/soap/bindings/HTTP/">
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<fault ref="tns:invalidDataFault"

wsoap:code="soap:Sender"/>

<operation ref="tns:opCheckAvailability"

wsoap:mep="http://www.w3.org/2003/05/soap/mep/soap-response"/>

</binding>

<service name="reservationService"

interface="tns:reservationInterface">

<endpoint name="reservationEndpoint"

binding="tns:reservationSOAPBinding"

address ="http://greath.example.com/2004/reservation"/>

</service>

</description>

There have been some syntactical changes in the transition from WSDL 1.1 to

WSDL 2.0, the latter of which is now a W3C recommendation. For example, some

of the element names have changed, such as definition to description, portType

ro interface, and port to endpoint. Some main elements have been removed,

such as message, and some elements have been refined. In general, WSDL 2.0

documents are simpler to understand and more structured, compared to WSDL 1.1

documents. The World Wide Web Consortium (W3C) offers an online converter

for transforming WSDL 1.1 specifications into their equivalents in WSDL 2.0.

7.4.2 Compatibility with the Proposed Approach

In the proposed composition planning approach the information we need for each of-

fered functionality is its inputs, outputs, and their corresponding cardinality. Con-

sidering WSDL 2.0 specifications, each triplet (service, interface, operation) would

indicate a unique functionality and can be modeled as a component in our compo-

sition planning repository. For example, in the above WSDL specification the triplet

(tns:reservationService, tns:reservationInterface, tns:opCheckAvailability)

would specify the provided functionality, where tns is the target namespace defined

in the document.

The element parameter in the definition of an operation input/output would

specify its corresponding data type. For example, in the above WSDL specifica-

tion, ghns:checkAvailability is the name of the input element, which is of type
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tns:tCheckAvailability. Similarly, ghns:checkAvailabilityResponse is the cor-

responding output element, which is of type xs:double. Although the data type

tns:tCheckAvailability is specific enough, the data type xs:double is not. In

other words, tns:tCheckAvailability provides enough information about what

this component expects to receive as an input. On the other hand, this is not

the case for xs:double, as we do not know if this double number stands for a cost,

temperature, distance, or something else. However, if we attach the element name

ghns:checkAvailabilityResponse to it we would have a better understanding about

what this component returns. That is why we pick the pair (element name, element

type) to indicate the data type of inputs/outputs for each component. In creat-

ing realistic composite repositories during the performance evaluation, we assumed

that data types are uniformly distributed among the repository components. As

shown in Figure 7.13 choosing the pair (element name, element type) is expected to

conform much better to this assumption, rather than choosing only element types.

In Figure 7.13 and in the top chart we see that the frequency of element

types hugely differs for the types at the beginning. Those are in fact correspond-

ing to XML Schema data types, such as string and double, which appear fre-

quently in WSDL specifications. The other parts of this chart with much lower

frequencies correspond to data types that are defined in WSDL documents, such

as tsn:tCheckAvailability in the previous WSDL example. Since these locally

defined element types are normally used by only the operations defined in the same

WSDL document we would expect them not to be used by other web services.

In the bottom chart in Figure 7.13 we see that by adding the element names

to data types the type distribution becomes much closer to a uniform distribution.

In fact, the frequencies are quite dependent on the number of operations each

service provides. The reason is that, as mentioned above, element names are usually

local to WSDL documents, and the more the number of operations in a WSDL

document, the more each locally defined element name is likely to be used. In

other words, if we had picked only one operation from each web service this bottom

chart would have been much more similar to a uniform distribution. This chart

shows that creating semantic links between different namespaces is quite necessary,

as it will highly increase the chance of finding composition plans. This can be

done by introducing dummy components to the repository, where, for example,

each component represents a data type subsumption or equivalency between two

terms in different namespaces, or it represents a composite type and its constituent

component types. We did this in Section 5.2.2.
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Figure 7.13: The distribution of WSDL element types in operation inputs/outpus of

web services (top) and the distribution of WSDL element name and WSDL element

types in operation inputs/outpus of web services (bottom).
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As mentioned earlier in this section, the cardinality of input/output data types

is specified using minoccurs and maxoccurs attributes representing a range of values.

In the current version of our composition planning approach we consider a single

constant number for the cardinality of data types. Also, we used web services which

had a single cardinality value in their input/output data types (where minoccur

and maxoccur specified the same number) for creating a realistic repository. Our

approach is still applicable if only inputs are assigned a cardinality range. For

example, if a component has a single input of type t specified by minoccurs="1"

and maxoccurs="2" attributes, we can use this component with either one instance

of type t, or two instances of type t. However, if an output is specified with a

cardinality range some nondeterminism appears, as we do not know how many

instances would actually be created by that component. In case the precondition

determines how a component behaves, involving preconditions and effects might

still make the current approach work by avoiding this nondeterminism.

In the logic-based composition planning approach we did not capture composite

types and their component types. As this would improve the composition plans

returned by the approach, we can use the same technique we used in the dependency

graph (Section 5.2.2).

In WSDL specifications, different order indicators might be used for components

of a composite type, as in the above WSDL example sequence is used for the com-

posite type tCheckAvailability. Other indicators are choice and all. Considering

operation inputs, for a sequence indicator, we can assume that the elements are

given to the component in the same order; while for a choice indicator, whenever

one of the elements is ready, the component can be triggered. The only potential

problem is when a choice indicator appears in an output, meaning that it is not

known what data type is returned by the component, which creates another type

of nondeterminism. In practice, this is not expected to happen, as the study of a

large number of WSDL documents shows that the output composite types do not

use the choice order indicator.

As the overall conclusion, with some minor modifications, we can use the com-

position planning approach discussed in this thesis for web services and create

composite service plans for given requests.
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7.5 Summary

In this chapter we evaluated the proposed composition planning approaches from

different points of view. First, we compared their running time and space complexi-

ties and discussed how each of them would be a suitable option for specific domains.

Second, we explained the experimental results of implementing the reasoning-based

approach, and showed that its expected run time performance would be quite far

from the calculated worst case. Third, we picked Prolog and Alloy as two reason-

ing tools for solving the composition planning problem, and discussed their dis-

advantages compared to our proposed solutions. Finally, we studied web services

specification documents in details, and explained how our composition planning

approaches could be applied to web services in practice. We also emphasized on

the steps we still need to take to realize such an application.
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Chapter 8

Conclusion

In the final chapter of this thesis, we provide a short summary of the materials

covered in the previous chapters. Also, we suggest some of the directions that

could be followed in continuing this work.

8.1 Summary

In this thesis we studied a challenging, yet interesting problem towards the au-

tomation of component-based software development. To achieve this goal, the first

requirement is the availability of a rich enough repository of already developed

software components that, if put together appropriately, could constitute new com-

ponents with new functionalities. Then, given the specification of a new component

to be built, the expectation would be finding a set of components from this repos-

itory that, by communicating with each other, provide the requested functionality.

Therefore, the challenge would be how to find this set of repository components and

necessary communications among them. We called this problem the composition

problem.

We proposed a top level architecture of a component composition engine that

would solve the overall problem. That architecture identified different subprob-

lems of the composition problem, from extracting behavioral information from the

available components to publishing a composition as a new component ready to be

used by its users. From these subproblems, the most theoretically challenging one

would be the composition planning or synthesis, which is the focus of this thesis.

Composition planning refers to finding a plan involving the participating compo-

nents, their temporal order of execution, and the communications among them that
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provides the requested behavior for a software component.

In order to solve the composition planning problem we picked a specific subset,

in which the repository components are all stateless, meaning that they receive

some inputs and then return some outputs as a result. We studied different types of

component composition, including the sequential composition, parallel composition,

conditional composition, and synchronization. To formally represent how each of

these compositions work, we took advantage of interface automata and existing

process algebras and proposed a new process algebraic model called the composition

algebra. Composition algebra is a minimal model that supports all these different

types of composition by borrowing some properties of CSP, CCS, and interface

automata.

In the first composition approach proposed in this thesis, the repository of

available components was modeled by a graph structure, the dependency graph,

in which nodes represent data types, and edges represent connections among these

data types. These connections might be functional, which are imposed by repository

components, or semantic. The search for a composite component to satisfy a request

was narrowed down to the reachability of all output data types in the request from

its input data types in the dependency graph. However, there were some constraints

that made the problem more complex than a simple reachability search. One of

these constraints is related to the notion of cardinality, and the fact that each

component might receive/return multiple instances of the same data type. As

another constraint, we assumed that the outputs of each component is dependent

on all its inputs. These restrictions together converted a linear graph search to a

search with exponential time worst-case complexity. We reasoned why the approach

is expected to perform much better in realistic situations.

The second approach takes advantage of a reasoning algorithm for Horn clauses.

It implements the reachability procedure discussed above in some other way which

is easier to understand. Using this approach a multi-level graph is built, in each

level of which there are instances of data types created by repository components.

This graph is extended to a point at which either all the necessary instances are

created, or no more required instance can ever be created. In the former case, a

composition can be found, while in the latter, the search is terminated unsuccess-

fully. In a successful search, the links between instances created in the multi-level

graph and the corresponding stored information lead us to the specification of the

composite component in terms of the involved components and composition types.

Similar to the first approach, the worst-case running time complexity of this one

is also exponential. However, after implementing the approach and applying some
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performance heuristics, we presented experimental results which indicate a much

better performance complexity. The performance heuristics used in implement-

ing the reasoning-based approach borrow some techniques from the graph-based

approach. In general, the expectation is that merging the two approaches would

provide better running time results.

We considered Prolog and Alloy as two available reasoning tools, and compared

their performance against the performance of the proposed composition planning

approaches. Specifically, we explained why Prolog and Alloy are not good choices

when we are searching for shortest-path solutions. We also studied WSDL docu-

ments as the specification documents of web services and discussed the adaptability

of the proposed approaches for web services composition.

8.2 Future Work

The work presented in this thesis can be extended from different points of view.

We explain some of these directions in this section. We start with higher level

suggestions regarding the composition problem, and then move to the specific plans

for composition planning.

As shown in Figure 2.2, other than the composition planning, there are other

subproblems in the composition problem. We addressed some of the works in

progress in those subproblems in Chapter 3. Since the research in those areas

is in its initial stages there is no known solution that is widely accepted by the

community.

We studied a simple form of composition planning, in which we assumed all

repository components and the request are stateless. Although, a large percentage

of components are stateless, this assumption is restrictive. As an example, two

components C1 = a · b · c and C2 = b · c · d that are not stateless, if synchronized,

result in a stateless component whose behavior is a · d. Therefore, when we put a

limitation that repository components are stateless, we might lose or decrease the

chance of finding a valid composition. Improvements in this regard would include

allowing the repository to contain all types of components in search for a stateless

component, or not restricting both the repository components and the request to

be stateless. However, these changes are expected to add much to the complexity

of the composition approach.

In Chapter 5 we explained how we can use auxiliary components in order to

create semantic relations among the repository data types that are realized by
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GenSpec and CD edges between graph nodes. Although we did not apply auxiliary

components in the reasoning-based approach, we can simply improve the approach

by using these components. Auxiliary components can be specified similar to other

repository components, and therefore, can be simply added to the repository. The

only thing that should be considered is that GenSpec components come with an

external behavior, but they do not actually do anything. As a result, when a

composition takes advantage of a GenSpec component some considerations have to

be taken into account. For instance, if we know that type c is a subtype of type d, we

would add a component B = c · d to the repository. If A = a · b and C = (b || d) · e
are also repository components and the request (a || c) · e is submitted against

this repository, the composition (A || B) � C would be returned by the current

reasoning-based approach. However, since B is a dummy component, the correct

solution would be A � C. In this regard, we leave the necessary improvements to

the approach as a future work.

Since the goal of this thesis is automatic signature matching in component

composition, we did not consider preconditions and effects of repository components

along with their nonfunctional properties. Therefore, it is quite possible that the

composition planning approaches of this thesis return a composition which has a

valid signature, but is not valid in general since, for instance, the effect of one

component in the composition is not compatible with the precondition of another.

As a future work, preconditions, effects and nonfunctional properties of repository

components have to be considered as well.

We mentioned in Chapters 1 and 2 that the main application of the composi-

tion problem is in the world of web services. Inputs and outputs of web services

are specified using namespaces, and these namespaces usually represent different

ontologies. Since a large number of ontologies exist based on which published web

services are specified, it is vital to make semantic connections among these ontolo-

gies to increase the chance of finding valid compositions for service requests. This

problem, that could be referred to as ontology matching, is another related problem

that should be solved.

169



References

[1] Jean-Raymond Abrial, Stephen A. Schuman, and Bertrand Meyer. Spec-

ification Language. In On the Construction of Programs, pages 343–410.

Cambridge University Press, 1980. 147

[2] Sudhir Agarwal and Anupriya Ankolekar. Automatic Matchmaking of Web

Sservices. In WWW ’06: Proceedings of the 15th International Conference

on World Wide Web, pages 1057–1058. ACM Press, 2006. 5, 17

[3] Sudhir Agarwal and Rudi Studer. Automatic Matchmaking of Web Services.

In ICWS ’06: Proceedings of the 2006 IEEE International Conference on Web

Services, pages 45–54, 2006. 17

[4] Rohit Aggarwal, Kunal Verma, John Miller, and William Milnor. Constraint

Driven Web Service Composition in METEOR-S. In SCC ’04: Proceedings

of the 2004 IEEE International Conference on Services Computing, pages

23–30. IEEE Computer Society, 2004. 24

[5] Marco Aiello, Mike P. Papazoglou, Jian Yang, M. Carman, Marco Pistore,

Luciano Serafini, and Paolo Traverso. A Request Language for Web-Services

Based on Planning and Constraint Satisfaction. In TES ’02: Proceedings

of the Third International Workshop on Technologies for E-Services, pages

76–85. Springer-Verlag, 2002. 21
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