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Abstract

Because of differences between the colour gamuts of different printing devices.
often some colours of an image are not producible by the output device of choice. To
handle this problem. gamut mapping is used to make certain that every input colour
has a corresponding printable output colour. Gamut mapping is normally done in a
trichromatic device-independent space. such as the CIEXYZ. CIELAB or CIELUV
colour spaces. The colour coordinates in such spaces can only be computed by
assuming a source of illumination. Unfortunately. satisfactory results obtained for
one viewing illuminant do not guarantee good results for other illuminants. Using
colours specified as spectral reflectances can solve some parts of this illuminant

dependency problem.

The basic concepts of colour image reproduction in reflectance space are de-
veloped in this thesis. The major reproduction steps for reflective images. includ-
ing device characterization. gamut mapping. and backward colour transformation
are examined. For device characterization. a colour lookup table (CLUT) with
nonuniform sampling should be used for better accuracy. Reflectance space gamut
mapping based on objective measurement and subjective measurement were inves-
tigated. A novel algorithm that preserves the fundamental component of reflectance
is developed. Compared to the usual mapping algorithm. projective mapping. the
new algorithm consistently produces results with small colour differences between

reproduction and original colours for multiple illuminants.

The essential concepts for developing gamut mapping that based on appearance
matching in reflectance space are developed. Two gamut mapping algorithms based
on perceived colour attributes are provided. Finally. to reduce the high cost of cell
extraction associated with nonuniformly sampled CLUTs. a novel algorithm for
cell-finding is developed. This algorithm improves the performance of the backward

transformation. which must be done once per image pixel.
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Chapter 1

Introduction

With the advance of digital technology. almost all colour image reproduction pro-
cessing is now controlled by computer. Most image reproduction processes are
variants of the following process. A colour image is first scanned into digital form.
The digitized image is then read by a colour matching program to determine the
colours to be produced by the output device. Once the output colours are de-
termined. a backward colour transformation determines the corresponding control

signals to drive the output device.

Even though the reproduction process is described simply by the above three
steps. many subtle issues must be resolved in designing a colour reproduction sys-
tem. For example. after scanning. the colour of each pixel of an image is usually
represented by a set of discrete numbers. How does a colour matching program
know which set of numbers represents which colour? Worse. the same set of num-
bers from different input devices often represents more than one colour. Similarly,
how does the program know which control signals should be sent to the output
device to produce a particular colour? But. the most important issue is how the
colour matching program assigns output colours for any given input colours. Be-
cause of differences in the ranges of producible colours. or gamut, from one device
to another, the program must handle situations where input colours cannot be

produced by an output device.
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CHAPTER 1. INTRODUCTION

The above colour representation problems can be solved effectively using a de-
vice characterization process. which determines the relationships between device
values and an objective. device-independent colour specification. The out of gamut
problem is solved by gamut mapping. which defines a procedure to map colours
between the input and output gamuts.  Gamut mapping is best defined in a
device-independent colour specification. All input and output colour devices that

are characterized for the device independent space can then use the same gamut

mapping procedures.

Many gamut mapping techniques have been proposed by researchers throughout
the decade. Most of them were developed for the CIE (Commission International de
I" Eclairage) standard colour tristimulus spaces. such as the CIEXYZ. CIELAB or
CIELUY spaces. Since the tristimulus values in each of these spaces are computed
based on the spectral distribution of the sources of illumination. problems arise
when illuminants are changed. Two objects that are the same colour under the
test illuminant may be different in colour under the viewing illuminant. Therefore.
reproductions created for a specific test illuminant may be quite different when seen
under a different viewing iluminant. To handle this problem better. some basic

understanding of our visual system is needed.

Our visual system has the ability to adapt to changes in illuminant. Hluminant
changes usually cause only a moderate change in the colour appearance of an object.
The effect of discounting illuminant changes for colour sensation is referred to as
colour constancy. Without colour constancy. the perceived colour of an object is
based solely on the light emitted from the object: conversely, with perfect colour
constancy. the perceived colour of an object is based solely on the surface reflectance
of the object. It has been shown [Wys86] that our visual system exhibits good colour
constancy under daylight illumination. but colour constancy is less effective under
artificial illumination.

Because partial colour constancy is normal. neither a gamut mapping that pre-
serves the emitted light reflected from a surface nor one that preserves reflectance

information! provides a general solution for colour image reproduction. A com-

Clearly, if a reproduction has the exact spectral reflectances of the original, the output image



CHAPTER 1. INTRODUCTION 3

promise between the two often provides a better result. Thus. it is important to
understand gamut mapping techniques that use surface reflectance data. Unfor-
tunately. there is no infrastructure of concepts and techniques available for gamut

mapping using reflectance data.

Generating reflective images of real world is not practical with currently avail-
abe input devices. Nevertheless. technology of capturing. editting and creating
reflectance information exists and the future availability of reflective images that
require high quality reproduction is likely. This thesis develops the basic concepts
of colour image reproduction in reflectance space. It studies the major reproduction
steps in reflectance space. which including device characterization. gamut mapping.
and backward colour transformation. Several algorithms have been developed for
the basic operations of colour image reproduction. With this infrastructure in place.
future development of gamut mapping techniques in reflectance space is possible.

1.1 Overview

The thesis is organized in seven chapters. After this introduction. Chapter 2. Digi-
tal Colour Image Reproduction Concepts. provides background information that is
needed to understand the concepts described in the later chapters. It examines the
current technology of colour reproduction. and describes different characterizations
and gamut mapping techniques for device independent colour spaces based on emit-
ted light. Because the thesis extends these techniques to reflectance specification
data. that use high dimensional linear reflectance spaces. the properties of such

spaces are also described.

Before any controlled colour reproduction process is undertaken, the charac-
teristics of both input and output devices must be known. Chapter 3, Device

Characterization. describes model-based and the colour lookup table based methods

is always identical to the original one. Because of differences in device characteristics. it is almost

impossible to obtain such reproduction in general.
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for reflective characterizations. Important performance questiorns relating to accu-
racy and efficiency are examined for both approaches. Difficulties associated with

model-based approaches and problems in constructing effective colour lookup tables

are also discussed.

Gamut mapping algorithms can be developed based on objective criterion. such
as minimizing a predefined colour difference function. or subjective criterion. such
as maintaining perceptual colour attributes. Chapter 4. Gamut Mapping in Re-
Aectance Space. develops objective criterion for gamut mapping in reflectance space.
The shortcomings of orthogonal projective mapping are presented. Fundamental
component mapping. which was developed to solve some of the problems associ-
ated with the projective mapping. is described. The two mapping techniques are

compared in terms of reproduction accuracy.

To use subjective criteria in reflectance space. the relationship between a re-
flectance and its colour attributes must be determined. Chapter 5 develops re-
lationships between reflectance and perceptual attributes like hue. lightness. and
saturation. Methods for finding reflectances that have the same hue under different
tluminants is provided. Two possible gamut mapping techniques based on colour

attributes are given.

The high dimensionality of reflectance spaces presents a potential high cost in
efficiency for colour reproduction. The backward colour transformation. the most
costly operation for colour reproduction. is studied in Chapter 6. A fast extraction
algorithm for backward transformation is described. and a performance analysis
of the algorithm is presented. Procedures for using the algorithm with reflectance

data are given.

Chapter 7 is the conclusion of the thesis. It summerizes the results of the thesis

and provides directions for future work.



Chapter 2

Digital Colour Image

Reproduction Concepts

The success of colour image reproduction is highly dependent on gamut mapping.
Matching tristimulus values or some measurable quantities related to colour ap-
pearance. which will be referred as matching colour appearance in short. is the
most common criterion used when developing gamut mapping algorithms. These
algorithms produce satisfactory results for many applications. However. since most
of them are developed based on the CIE tristimulus values measured using a pre-
defined illuminant. problems exist when the images are viewed under other illumi-
nants. Because of colour constancy. gamut mappings based on reflectance data,

which i1s independent of viewing illuminant. may be able to improve the results.

In this chapter. the basic concepts of colour image reproduction are described
in terms of current colour reproduction technology using device independent colour
spaces. The representation of reflectance data in a high dimensional reflectance
space is also described. The geometrical features of such reflectance spaces are also

presented.
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2.1 A Formalism for Colour Image Reproduction

A colour image reproduction process can be represented as a mapping function f
that causes an output device to produce to an image that looks as closely as possible
to the original image. The function is defined over the domain of all possible input

colours. D;. and the range of producible colours. D,:
f:D;—7D,.

Both D; and D, are the finite sets of colour points associated with the discrete
device control values. A calibration function v : D" — D can be used to map a
finite colour set into a continuous device colour space generated from the elements
in D': its inverse v~! : D — D’ discretizes a colour value [Bel96]. The space D can
be partitioned into two sets: one is a device gamut. G. which contains all colours

producible by the device. the other set. D — G. contains all nonproducible colours.

Since colours are usually described by device coordinates. the same colour value
on two different devices only rarely produces two perceptually identical colours.
This problem is usually handled by representing colours in a device independent
colour space. Z. Device characterization (described in Chapter 3) is used to define
the relationship. In essence. a device characterization determines a continuous
function between device coordinate space D and the colour space Z. where D is
viewed as a continuation set of the device control values. That is.for A : D" = T
and h: D — I. h(v(z)) = h'(z). for every z € D'. and T as a continuation of the

device gamut. The mapping for the input device characterization is
h;: D; —T.
and the mapping for the output device characterization is

h,: D, —T.

To define the mapping f. the inverse of h,. h;!'. must be defined first,

h;': T —D,. such that h;'oh, =er
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Figure 2.1: Mappings for colour image reproduction. which includes calibration

functions (v). device transfer functions (k). and device gamut mapping (g)-

where ey : T — T is the identity function on Z . The inverse mapping k! describes
the backward transformation. the most important mapping in colour image repro-
duction. It can be created empirically from the colour lookup table generated by a
set of measured samples. Otherwise. it can be created from a mathematical model
of the device transfer function. which describes the output response of a device for

any given control values.

Ideally. the mapping f can be fully described in terms of v;, v,, h; and A ! as
f=D; %D, M TR, p, 2, D

However. because of differences in device characteristic. it is quite possible that some
input colours are not producible by the output device. An additional mapping can
be defined to handle such a situation. Let G, C D, be an output device gamut. A

mapping

g: Do_>go
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maps colours in an output device space to the device gamut is applied before the

inverse of v,. Thus. f becomes
.o h; Ry g vl .
f=D;:—D;,—7I->D,— G, =>7D,.

The function g is often referred as a gamut mapping between the devices. The

success of image reproduction depends strongly on the actual form of g (see Figure

92.1).

2.2 Device Independent Colour Spaces

For colour image reproduction as described in the previous section. a device inde-
pendent colour space is necessary. Many suitable colour spaces have been devel-
oped. Some of them define a colour based on its psychophysical properties. such as
the CIE colour spaces [CIE78]. the Munsell System [Mun46]. or the Mutually Op-
posed Trichromatic Response (MOTR) model [Hun89], while others define descrip-
tive parameters approximating perceived visual attributes, such as HSV [SmiT78].
Lsa [Lai93]. Most of these colour spaces are derived from or standardized on the

CIEXY?Z tristimulus space. described in the following paragraph.

Based on colour-matching experiments conducted in 1931 and 1964. the CIE
developed a standard colour representation referred as the CIEXYZ colour space
[CIET8]. It is the most widely used and recognized colour space. To determine the
colour of a light. its colour is compared in appearance to an additive mixture of
red. green. and blue primary lights. By adjusting the amounts of the red. green,
and blue primary colours. a match is found. The amounts of each primary in the
mixture are used to specify the colour. Using a linear transformation, the colour
of the light can be represented by its tristimulus values X, ¥, and Z. The X, Y,
Z values specify the weights of standard primaries defined for the CIE Standard
observer. Two lights with the same tristimulus values are perceived as matched in

colour when perceived under identical viewing conditions. The tristimulus values
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14

Tristimulus values

0.4

400 500 600 700
wavelength (nm)

Figure 2.2: Colour-matching functions Z(A). §(A). and Z(A) for the CIE Standard

observer.
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of a light. p,. are computed by the following formulas:

X=/<p,\a-,-(,\)d,\. Y=/¢Ag()‘)d,\. Z:/wz(,\)dx-
A A A

where Z(\). §()). and Z(\) are the colour-matching functions (Figure 2.2) [WS82].
The tristimulus values of the reflected light from a surface with reflectance. r.
illuminated by ®, are computed by the above formulas with ¢ = r(A)®x

X = /r(/\)@,\i(/\)d/\. Y = /r(/\)@)\g(,\)d)\. Z = /r(z\)(b,\f(/\)d)\.
A A A

For computer calculations. the tristimulus values are usually approximated by
the summation of the N discrete sample points. suitably positioned across the entire

visible spectrum. The above equations become

X= Y rA)8xEN) . Y= Y r)&BgA) . 2= Y r(M)BaEN) .

1=1---N i=1.--N =1--N
(2.1)

or in matrix form:
t=HEr.

where t = [X Y Z]*. H is the N x 3 colour matching matrix given by the discrete

CIE colour-matching functions as

z(A1) z(A2) -+ z(AN)
H = | y(A\) y(A2) -+ y(An)
z(A1) z(A2) --- z(AN)

E is the N x N diagonal matrix with ®,; in its (z.%) entry, and r = [r(A;) 7(A2)

- r(An)]*. Notice that even though the XYZ tristimulus values are used for
colorimetric specification. they do not tell us the appearance of a colour; instead,
their primary function is to determine whether two colours match. Two colours
with the same tristimulus values for a given illuminant are perceived as matching

in colour when observed in identical viewing conditions.
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The most important advantage of using CIEXYZ colour space is its linearity.
According to Grassmann's Law. additive mixtures of colour stimuli can be uniquely
described using only their tristimulus values [Hun91b]. The colour of a mixture can
be expressed as a linear combination of the XYZ values of each individual colour.
However. the CIEXYZ colour space has several related disadvantages:

1. There are no well defined geometric functions that describe surfaces of con-

stant saturation or hue.

o

The Euclidean distance in the space does not correlate well with the percep-

tion of colour difference.
3. The colour of a surface. specified by its XYZ values. is illuminant dependent.
In an attempt to reduce these problems the CIE defines two uniform colour

spaces. The more commonly used of the two is CIELAB. Its coordinates are derived
directly from the XYZ tristimulus values using the following nonlinear equations:

Y\*
L~ = 116 (=) -
16<Yn) 16 (

. [/ X\ 3 Y\ 5
o= w](2) ()] oo

. Vs A
b= 20 (7) "(‘z“” (24)

where X,.. Y,.. and Z,, are the tristimulus values for a reference white colour.! In

(V]
[o]

colour printing. the reference white object is normally the white paper used for
printing. The tristimulus values are normalized to offset some of the influence of

the illuminant.

The coordinate L~ corresponds roughly to the lightness: a™ to red /green balance:
and b~ to green/blue balance. The values of a* and b~ do not correspond to simple

1When X/X,.Y/Y, or Z/Z, are smaller or equal to 0.008856. different equations are used to
compute the values of L. a+. and b+. The exact formula can be found in [WS82, Page 167].



CHAPTER 2. COLOUR IMAGE REPRODUCTION CONCEPTS 12

psychophysical properties of the colour. but they can be used to approximate the
colour attributes of hue and saturation [Hun95]. The colour difference between two

colours can be approximated by the CIELAB colour difference formula:
AE. = VA(L*)? + A(a™)2 + A(b7)2.

This formula has been widely used in colour image reproduction research [Kan96.
Hun91b. SFB92. HRV97] and is used in this thesis as an objective measurement of
colour difference.

Other colour spaces have been defined based on perceptual attributes. The HSV
space [Smi78]. and the Lsa space [Lai93] are two such colour spaces. The HSV space
approximates the perceptual properties of hue. saturation. and value. Similarly. the
Lsa space defines the coordinates closely related to hue. saturation. and level. The
terms value and level in these colour spaces correspond to the lightness of a colour.
Since these spaces are designed for improving user interaction for colour image
manipulation. accurate colour representation is not guaranteed. Thus. these colour

terms are only defined as perceptually approximate.

2.3 Gamut Mapping using Tristimulus Colour Spaces

Once a colour space is chosen. a gamut mapping algorithm can be developed for
the space. In doing so colour image reproduction algorithms are grouped into two
different categories based on reproduction criteria. One category tries to preserve
the original tristimulus values or similar derived values like L=, a*. and 4. Since
two coclours with the same tristimulus values invoke similar colour semsations. a
reproduction that has tristimulus values similar to those of the original is expected
to be good. The difference in tristimulus values between reproduction and original
is minimized with respect to a metric function. Based on past experience [Hun95,
WG93]. however. good results are obtained only when the output medium and

viewing condition are similar to those of original.

When viewing conditions differ. simply matching tristimulus values is frequently

inadequate. In this case. a second approach that matches colour appearance is used
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[Sch86. VW92. Mac93. Gra95. MLI7]. The appearance of a colour is determined
using a colour appearance model derived from psychophysical experimentation.
Colour appearance is specified in terms of perceived attributes such as lightness.
hue. and saturation. During the reproduction process. colours that are close in
appearance are used to represent the original colours. Unfortunately. whether an
exact model of colour appearance even exists is currently unresolved. and all pro-
posed models have high computation cost. To avoid the high cost. most algorithms
use colour attributes that are simply defined in terms of CIE tristimulus values.
To handle out-of-gamut colours. the algorithms usually maintain hue. while scaling
lightness and chroma to fit into the gamut of the target output device. When the
output gamut is very different from the input gamut. this method can produce
good results that are not possible using the methods that attempt to preserve the

tristimulus values.

2.3.1 Matching Tristimulus Values

Two surfaces with the same spectral reflectance are perceived as being identical
in colour under all illuminants because the re-emitted light reflected from them
is always identical. As a result. the problem of illuminant dependency can be
avoided if the reflectances of a reproduced image are matched with the original
ones. Unfortunately. reflectance matched outputs rarely exist because of physical
differences in device technology. Instead. methods based on surface metamerism

concepts must be used.

Two colours that have the same CIE tristimulus values produce the identical
colour sensations when viewed in isolation. Thus. an intuitive approach to colour
image reproduction is to obtain the same tristimulus values in the reproduced image

as in the original image when both are viewed under the same reference illuminant.

In the abstract. reproduction can occur in the following steps. Convert the
colour of an original image from device coordinates to CIEXYZ values. Locate
the colour in the output device gamut that has the same tristimulus values as

the original. Output that colour. The process is complicated by two problems.
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First. the relationship between the colour sensation and the tristimulus values is
illuminant dependent: a change of illumination may affect the matching results.
Second. because of the differing characteristics of colour devices. the output device
can have a different colour gamut than the input image. Thus. a simple match of

tristimulus values may be impossible.

To understand the first problem. metamerism must be introduced. Surface
metamerism occurs when two spectrally different surface reflectances are perceived
as being identical in colour [BS81]. This occurs when the tristimulus values of
light re-emitted from the two surfaces are identical. Because the re-emitted light is
controlled by both illuminant and surface reflectance. a change of lluminant causes
changes of the colour signals reflected from the two surfaces. Problems arise when
the viewing illuminant of the reproduction is different from the original. Surfaces
that matched in colour for the standard may now be perceived as having distinct
colours. Thus. reproduction that is based only on the tristimulus values under a

given illuminant does not generate consistent results for other illuminants.

Much research has been done on matching paint colours [Yul67. GB82]. They ex-
amine how appearance changes with changes of illuminant and try to produce paints
with smooth spectral reflectance that exhibit little metamerism. Even though ex-
act spectral matches are not possible in most cases. stable results can be obtained
using reflectance. As shown in Chapter 4. matching colour appearance for multiple

illuminants is possible using the fundamental component of a reflectance.

The second problem occurs because output devices have very different gamuts.
To illustrate this problem for luminance. consider the reproduction of a photo-
graphic transparency as a reflective print. The luminance range of the transparency
is ten fold larger than that of reflective printing, so that most colours in the trans-
parency lie outside of the printing gamut in CIEXYZ space [Hun95]. Any matching

criteria in XYZ colour space are guaranteed to fail.

The first problem is hard to solve. while the second one can be handled directly
either by scaling during gamut mapping. which will be discussed in Section 2.3.2, or
by using a normalized colour space. For the luminance example, CIE perceptually
uniform spaces. such as CIELUV and CIELAB. use colour coordinates that are
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calculated with respect to reference white as shown in Equation 2.2. As a result.
the lightness value L is normalized with values between 0 to 100. The effect
of changing illuminant and luminance range can be offset by this normalization
step. If the viewing illuminants do not change much. matching colour values in the

perceptually uniform space can produce satisfactory results.

The idea of maintaining tristimulus values is to preserve colour appearance.
As discussed above. this strategy may not work well for cross media reproduction
because problems related to different viewing environments. and different gamuts of
the devices. Even when the above problems can be reduced by using a CIE uniform
colour space. the results may not be acceptable because of differences between the
colour gamuts of the devices. On the other hand. the colour specification using the

tristimulus values is hard to interpret in terms of our colour sensation.

2.3.2 Matching Colour Appearance

When the original and reproduction are viewed in very different environments., it
is often more appropriate to match colour appearance than to match tristimulus
values. Predicting colour appearance is hard: many researchers have worked for
several decades trying to understand how different factors affect perceived colour.
The colour of the illuminant. luminance level and surrounding field are some of the
important factors that affect the appearance of colour. When the colour of the illu-
minant changes drastically. the colour of an illuminated object changes somewhat.
though the change of an object colour is often less than the change of tristimulus
values would suggest. an effect called colour constancy. Luminance level also affects
the sensation of colour. For example. colour appears desaturated at low luminance
and vivid at high luminance [Hun95. Chapter 5|. The colour and luminance of
surrounding areas also affects colour appearance. A grey patch appears lighter or
darker depending on whether it is placed on a dark or light background. an effect
called simultaneous contrast. Similarly, a grey patch appears greenish on a red
background and reddish on a green background. effect called chromatic contrast.

In addition to the factors described above. other conditions such as viewing
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angle and adaptation level also influence colour sensation. To accurately determine
colour appearance. all factors must be taken into account. Unfortunately. a compre-
hensive understanding of these factors and their interactions is not available. Many
colour appearance models. such as the Hunt model [Hun9la. Hun94b|. the Nay-
atani model [NTS90]. the Guth ATD model [Gut91]. and RLAB [Fai9l. Fai93].
have been developed to explain some appearance phenomena. but using these
models for colour reproduction is uncommon because of problems related to accu-
racy and efficiency [BF95]. Instead. existing colour image reproduction algorithms
[SWOI1. Gua92. HB93. WAB94. Gra95] tend to use the colour attributes. normally
derived directly from the CIE tristimulus values. to try to retain the appearance of
an original image.

Unlike tristimulus value matching algorithms. appearance matching algorithms
are not based on objective measurements. Instead they adopt rules of thumb com-
monly used in the graphics arts community to produce satisfactory output. A
typical set [SCB88]| is the following :

1. Preserve the grey axis of the image.

V]

. Maximize luminance contrast.
3. Reduce the number of out-of-gamut colours.

4. Minimize shifts of hue and saturation.

5. Maximize colour saturation.

Such principles are used as general guidelines when developing gamut mapping
algorithms for digital image reproduction. Other properties. such as preserving
detail in both light and dark regions. mapping distinct input colours to distinct
output colours [SW91]. and maintaining smooth transitions between neighbouring
colours [Gua92]. are also important. Such guidelines cannot be followed rigidly,
because conflicts exist between some rules. For example, luminance contrast can
often be increased only at the cost of increasing out-of-gamut colours in dark re-

gions: sometimes increasing saturation causes large shifts of saturation from the
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original image. Thus. compromises are made when designing a gamut mapping
algorithm.

Gordon. Holub. and Poe [GHP87] proposed a very simple gamut mapping algo-
rithm. They first mapped neutral colours to output neutrals. then tried to preserve
colour difference by compressing saturation in each constant lightness plane using
a constant scaling factor. The scaling factors were derived from the largest discrep-
ancies between the input and output saturation on the constant lightness planes.
As a result. the input gamut was compressed to fit inside the output gamut. This
approach achieves the first. third and fourth principles stated above. while ignoring
the second and fifth. The results suffer severe compression of tonal and chromatic
range. To alleviate the problem. the authors suggest using the input image gamut

instead of the device gamut to compute the scaling factors.

Stone. Cowan. and Beatty [SCB88] used the above principles to develop a set
of heuristic transformations for digital image reproduction. The image gamuts
are first translated. scaled. and rotated to align the gray axes. followed by an
umbrella transformation to conform with the target gamut. Any remaining out-of-
gamut colours are then projected onto the gamut boundary. The parameters of the
transformations are determined interactively image by image. Since the method
uses the XYZ colour space. which is not perceptually uniform. the transformations
have different perceptual effects on different regions of the colour space. To produce
high quality results. the trade-offs among the reproduction principles had to be
made carefully for each image. As discovered by Gordon et al. [GHP87], only some

reproduction rules can be followed.

These two algorithms provide a reference model for the process of designing
gamut mappings. The reference model first ensures that the neutral colours are
mapped correctly before chromatic components are introduced. Further transfor-
mations are defined to map the input colours into the output gamut while trying

to minimize the hue changes and maintain colour relationships.

Even after decades of research. there is no general solution for gamut mapping.
Gentile el at. [GWA90] compared several techniques for handling out-of-gamut
colours. Their results showed that clipping algorithms, which project out-of-gamut
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Figure 2.3: Colour signal. ;. is the hght reflected from a surface. 7()). illuminated
by a light source. ®,.

colours to the output gamut boundary. are preferred to piecewise linear compression
algorithms. which scale the image gamut to fit into the output gamut. Morovic and
Luo [ML97] evaluated different gamut mapping algorithms using a psychophysical
experiment. They showed that some algorithms have better overall performance
than others. but. there is no single algorithm that consistently outperforms the

others.

Almost all currently available colour image reproduction algorithms are based
on CIE tristimulus values. As a result. they work only for a predefined illuminant.

To avoid this problem. an illuminant independent colour space is needed.
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2.4 Colour Reproduction and the Human Visual
System

Before considering which colour space is better for colour image reproduction. it is
beneficial to understand how the human visual system perceives colour. As shown
in Figure 2.3. the colour signal reflected from a surface is jointly determined by the
illuminant. ®,. and the surface spectral reflectance. #(A). The colour signal. @,. is

expressed as
Ppr = @xl‘(/\) .

Thus. changes in illuminant can lead to comsiderable changes in reflected light.
However. illuminant changes only cause a moderate change in the colour appearance
of an object [LM71. PS86]. Effects based adaptation and contrast. which allow
colour appearance to remain approximately constant under different iluminants

are referred to as colour constancy.

Cousider a scenario where an observer looks at a colour patch surrounded by a
constant background under an arbitrary illuminant. Let the CIE chromaticity (the
normalized XYZ tristimulus values) of the colour patch be (z.y). Now change the il-
luminant so that the chromaticity of the colour patch becomes (z’.%'). If the patch
now has the same colour appearance as any colour patches that have chromaticity
(z’.y’) under the old illuminant. the visual system did not adjust to the changes in
illuminant at all. In such a case. there is no colour constancy. In contrast. if our
visual system had perfect colour constancy. then the colour appearance of the patch
under the new illuminant would be same as before: it’s colour appearance would
be the same as that of patches having chromaticity (x.y) under the old illuminant
and changes in illuminant are completely compensated by the visual system. In
fact. our visual system exhibits good colour constancy under daylight llumination,
but colour constancy is imperfect under artificial illumination such as tungsten or
fluorescent lamps [WS82]. The inconsistency can be explained using Bayesian
colour constancy theory [BF97]. which states that our visual system compensates
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for changes of illuminant based on prior probability distributions of natural illumi-
nants and surfaces that exist in the world. This illuminant compensation functions

perform poorly for artificial illuminants.

When the visual system has no colour constancy. algorithms that preserve the
colour signal reflected from a surface are the best solutions for colour image re-
production. On the other hand. when the visual system exhibits perfect colour
constancy. then algorithms that preserve surface reflectance are the best general

solution for colour image reproduction.

Our visual systems exhibit good. but imperfect. colour constancy. Therefore. a
colour reproduction algorithm should use information of illuminant and reflectance.
It is important to investigate colour reproduction based on reflectance. so as to

provide the basis for future algorithms related to partial colour constancy.

2.5 Surface Reflectance Spaces

To use reflectance data for colour image reproduction. a compact vision-oriented
representation is needed for reflectance data. Reflectance is a continuous function
over the visible spectrum. It is normally approximated by values of the function at a
finite set of wavelengths. evenly sampled across the visible spectrum between 400nm
to 700nm. A typical spacing is 10nm. at which each reflectance is represented by
31 values. The amount of data becomes so large that it is impractical for a colour
image reproduction system to handle and equally-weighted parts of the data are
not equally salient for human vision. The recent development of linear surface
reflectance models [MW86. Wan87. HFD90. D'Z92. Bok97]| showed that much of
this data is redundant. leading to representations compact enough for colour image
reproduction. (Even though a good nor-linear reflectance model [Fun93] exists, its
computational cost is high and the model is not considered in this thesis.) Using a
linear reflectance model. each surface reflectance is approximated by a linear model

with a small number of parameters. The reflectances are expressed as the weighted
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sum of basis functions as follows:
r(A) = aari(A) + aara(A) +--- +anty(A) ©

where r;(A). ¢ = 1.--- . N. are the basis spectra. and the a; are the weights of
the basis spectra that describe a particular reflectance. The vector of the weights

(a1.as.--<.ap) can be used to represent the reflectance.

Singular value decomposition {SVD) is the usual method for finding the basis
spectra of a set of surface reflectances. The resulting basis spectra are then or-
thonormal. It has been shown that most useful sets of surface reflectances are
effectively approximated by a small number of basis spectra. Maloney showed that
99% of the variance in the set of reflectances published by Krinov [Kri47] can be
described by three basis spectra. Dannemailler [Dan92] reported a similar result
using ideal-observer analysis for surfaces of naturally-occurring objects. Vrhel et al.
[VGI94] analyzed the errors with different number of basis spectra for the spectral
reflectance of Munsell chips. paints and various natural materials. and concluded

that fewer than seven basis spectra are sufficient to model the reflectance.

A linear reflectance space is defined to be the space spanned by the basis spectra.
With N basis spectra. the reflectance space is a N-dimensional linear space over a
real field. As the basis spectra may have negative values in some regions and values
above 1 in others. they are not directly related to any physical surface reflectance.
All physically valid reflectances must satisfy the condition:

0<r(A)<1.

for every visible wavelength. The set of points that correspond to the physical

reflectances defines a region in the space are referred as the reflectance solid [Pae94].

The ideal white reflectance (where r(A) = 1) does not necessarily exist for a
given basis spectra. and hence some grey reflectances (r(A) = c) do not lie in the
reflectance solid. Thus. neutral colours. which must be preserved in colour image
reproduction. may not be accurately represented by the basis spectra. To avoid
this problem. Paeth created a modified SVD to compute the basis spectra. [Pae94].
It ensures that the ideal white reflectance is the first basis spectrum and that
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Figure 2.4: Various reflectances sets. They are producible reflectance set R.. phys-

ical realizable reflectance set R,. reflectance space Rp,. and wavelength space W.
The relationship between these sets is R. C R, C Rp, C W
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orthogonality of the basis is maintained. The ideal neutral colour reflectances are
then represented in reflectance coordinates as (¢.0.--- .0). As shown in Chapter 5.
neutral reflectances are important for describing relationships between a reflectance
and its colour attributes. Therefore. the reflectance spaces described in the thesis

are computed using Paeth’s modified SVD.

Throughout the thesis. several important sets of reflectances are encountered.

They are defined below.

Wavelength space, W. A linear space having delta functions. one at each sam-

ple wavelength. as basis elements and coordinates any element of R. The

reflectances in the space may or may not be physically realizable.

Reflectance space, Rp. A linear space with basis reflectances derived by modi-
fied SVD from the set of reflectances produced by an output device D. and
weights any element of R. The reflectances in the space may or may not be

physically realizable.

Physical reflectances in Rp, R,. The set of reflectances in R that are physi-
cally realizable.

Producible reflectances in Rp, R.. The set of reflectances in R, that can ac-

tually be produced by the colour device D.

The relationship between these sets (Figure 2.4) can be expressed as

R.CR, CRp, CW.

2.5.1 Geometric Features of Reflectance Solids

The geometric properties of reflectance solids were studied extensively by Paeth
[Pae94]. With the modified reflectance basis. the reflectance solid can be visualized
as two cone-shaped objects with their bases joining together (Figure 2.5). The
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Belt Region
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Figure 2.5: Three Dimensional Reflectance Solid. It contains all the physical re-
alizable reflectances. The black apex (B) corresponds to the reflectance with zero
reflectivity over the entire visible spectrum. and the white apex (W) corresponds
to the ideal white reflectance with unit reflectivity over the entire visible spectrum.
The points in the belt region correspond to the reflectances having simultaneous

minimum and maximum values in the visible spectrum.
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left apex B in the figure is the black apez and corresponds to the colour with zero
reflectivity over the entire visible spectrum. i.e.. (A} = 0. It is associated with the
origin of the reflectance space. The right apex W is the white apez and corresponds
to the ideal white colour. which has unit reflectivity over the entire visible spectrum.
1.e.. 7(A) = 1. The left end of the solid containing the black apex in the figure is
called dark cone. while the right end is called light cone. The surface of the solid
defines all reflectances which have at least one wavelength \; at which 7(\;) =0 or
r(X;) = 1. Specifically. for any reflectance on the dark cone surface. there is at least
one wavelength A; at which r(\;) = 0. and for any reflectance on the light cone
surface there is at least one wavelength A; at which r(A;) = 1. The intersection
of the dark conme and the light cone is the belt region of a solid. It is a N — 2
dimensional subset of the N dimensional reflectance space. The points in the belt
region correspond to the reflectances having simultaneous minimum and maximum
values in the visible spectrum. i.e.. at least two different wavelength A; and A; at
which r();) =0 and r(};) = 1 (Figure 2.5).

The surface geometry of any reflectance solid is described uniquely by the convex
hull of the belt region and the two apices. Thus a reflectance solid is fully specified
by the points in the belt region plus the black and white apices in the solid.

As described in Chapter 5. the above properties are useful when describing the

relationship between reflectance and its colour attributes.

2.6 Conclusion

A formalism for colour image reproduction process was described. The image re-
production process was defined as the composition of three functions. Two of them
are obtained from device characterizations. which define the relationship between
the device control values and the corresponding colour values. and the third oneis a
gamut mapping. which defines the mapping between the input and output colours.
Gamut mapping is usually defined for a device independent space so that it can be

used by all devices characterized for the space.
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Two gamut mapping approaches have been used. One is defined as a minimiza-
tion problem. such as minimizing CIELAB colour difference. The other is defined
as a perceptual trade-off. such as balancing contrast and saturation. Current tech-
niques base both approaches on measurements in a device independent space. usu-
ally derived from CIE tristimulus values. The resulting algorithms are computed
with respect to a predefined illuminant. so that reproduction can be unsatisfactory
when different illuminants are used. Thus. iluminant independent colour specifica-
tion is worth investigating. and colour constancy suggests that surface reflectance

may be an interesting alternative.

It has been shown that surface reflectances can be adequately approximated by
linear models. In a linear model. reflectances are represented by its coordinates
in a reflectance space. By using modified SVD. a reflectance space with the ideal
white reflectance as its first basis spectrum can be comstructed. It has some nice

properties that are useful for defining relationships between a reflectance and its

colour attributes.



Chapter 3

Device Characterization

Successful colour reproduction depends on precise control of the relationship be-
tween device control values and the corresponding output colours. Device charac-
terization is the process that determines such relationships. For devices where the
transfer function is known. a mathematical model can be created to represent the
transfer function and used for characterization. This approach is referred as model-
based characterization. Otherwise. a colour lookup table (CLUT) generated from
empirical data is used for characterization. This practice is referred as lookup-table

characterization.

In model-based characterization. a model is first chosen to represent a device
transfer function. A few output samples are then measured to estimate the model
parameters. The accuracy of this approach depends on how well the chosen model
agrees with the true device transfer function: its efficiency depends on how compli-

cated the model is.

In lookup-table characterization. output samples distributed across the entire
device gamut are measured. The control values used to create the samples and
the corresponding colorimetric data are used to construct the CLUT. The output
value for a given control value is approximated by interpolating among points in the

CLUT. The accuracy of approximation depends on the sampling and interpolation

27
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techniques being used: its efficiency depends on the searching technique to locate
target points in the CLUT and on the complexity of the interpolation algorithm.

The characterization process defines forward and backward transformations.
The forward transformation converts device control values to corresponding output
colour values. The backward transformation determines device control values that
produce given colour values. The accuracy and computational costs of these colour
transformations are affected by the calibration approach being used. In this chapter.
the concepts of different characterization approaches are described. and the costs

associated with each approach are discussed.

3.1 Model-based Reflective Characterizations

Most of the mathematical models of colour printing devices are based on one of two
colour mixing theories: additive mixing for halftone images and subtractive mixing
for continuous tone ones. Developed decades ago. these models have stood the test
of time. and still provide colour printing models that are indispensable for digital

printing.

3.1.1 Halftone Images

Numerous models have been proposed for the halftone printing process. Most are
derived from the Neugebauer model and Yule-Nielsen refinement of it. Neugebauer
observed that cyan. magenta and yellow inks printed on white paper produce eight
different colours. In addition to the three primary colours. cyan, magenta. and
yellow. red is produced by combining magenta and yellow. green by cyan and yellow,
blue by cyan and magenta. black by all three primaries. and white with no ink
at all. Each of the eight colours covers a fraction of the printed area. Areas
combine spatially by additive mixture to form the perceived colour. Analogously,
Neugebauer suggested that the reflectances in an halftone image can be described
by the weighted sum of the reflectance of the dominant colours. The weights are



CHAPTER 3. DEVICE CHARACTERIZATION 29

associated with the areas covered by individual colours. The Neugebauer equation
1s
rA) = @uTw(A) + acTe(A) + amTm(A) + ayry(A) +
a,Tr(A) + agrg(A) + asrs(A) + arre(A) -
where a; and r;(\) are respectively the area coverage and reflectance of the colour .
The area coverage can be determined by the Demichel’s dot overlap model {Yul67.
Chapter 10]. which uses a joint probability model to compute the individual areas.

With p; the fraction of a unit area covered by primary <. the area coverage of each

colour is

aw = (1=p)(1—pm)(l—py)
a@c = pel{l —pm)(l—py)

am = pm(l—pc)(1—py)

ay = py(l—pc)(l—pm)

ar = Pmpy(l—pc)

ag = pePy(l —pm)

@, = pcPm(l —py)

Qr = PcPmPy -

The Neugebauer equations provide a relatively easy method to determine the
halftone colours. They are derived on the assumption that light emerges from
the paper at the point where it enters. However. some light scatters laterally
inside the medium before returning to the surface. an important inaccuracy in the
model. (Figure 3.1) To correct this problem. Yule and Nielsen [YN51]| proposed a
model that takes into consideration light penetration and scattering, and derived
the halftone equation to compute reflectance of a halftone area r(A). The equation

1s given as
T(A) = 15(A) + (A (1 = o(A) )[L — a(l — (X)) ] .

where r,,()) is the reflectance of the medium. r,(\) is the surface reflection at

the air-ink interface. a is the dot area coverage. £;(\) is the transmittance of the
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Figure 3.1: Light Path. (a) Neugebauer equations assume that light emerges from
the paper at the point where it enters. (b) In reality. some light scatters around

before returning to the surface.
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ink . and n is the empirical Yule-Nielsen value based on the fitting of sampling
data. To further improve the halftone model. Clapper and Yule [CY55] proposed a
halftone equation that takes into account the effects of multiple-scattering. internal-

reflection. and ink transmission.

3.1.2 Continuous Tone Images

Two different models are used to match colours for continuous tone images. The
Bouguer-Beer Law is used for transparent media such as colour film and trans-
parencies. while the Kubelka-Munk Law is used for translucent and opaque media
[ALI80].

The Bouguer-Beer Law states that the transmittance. T'(A). of a transparent

medium of thickness X is given by
T(A) = I(A)/I(A) = exp (K (A)X) .

where I,(A) is the light intensity entering the medium. and I(A) is the light intensity
leaving the medium. K(\) is the absorption coefficient of the medium. Since K ()
is proportional to the concentration of colorant. it can be expressed as K(\A) =
ck(A). with ¢ the concentration of colorant and %(A) be the absorption of a unit
concentration of the colorant. When multiple colorants are present. K(A) is the

linear function
K(A) = kn{A) + cthi(A) + coka(A) + - - - + ciki(A)

where &, () is the absorption coefficient of the uncoloured medium. k;(A) the unit

absorption coefficient and ¢; the concentration of the ith colorant.

The Bouguer-Beer Law cannot be used for translucent and opaque media since
it ignores light scattering within the medium. Based on the assumption that light is
absorbed and scattered only perpendicularly to the surface of the medium, Kubelka
and Munk derived an equation to compute the reflectance of a translucent film.
Once the absorption coefficient. K(A). the scattering coefficient, S(A). the film
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thickness. X. and the reflectance of the background. R,(A). are known. The re-

flectance of the film can be expressed as
1 —=Rg(A)[a(A) — b()) coth (B(A)S(A)X )]

R(A) = a(A) — Ry(A) + b(A) coth (B(A)S(A)X) (-4)

where
a(A) =1+ K(A)/S(A)

b(A) = [(K(A)/S(A)? +2(K(A)/S(N]*
exp (B(A)S(A)X ) + exp (—b(A)S(A) X )
exp (b(A)S(A)X ) —exp (—b(A)S(AN)X) -

If the medium has infinite thickness. the above equation can be simplied as

R(A) = 1+ K(N)/S(A) = [(KN/S(N))? +2(K(A)/S(A)]".

coth (B(A)S(A)X ) =

Since only the single constant ratio of K(A)/S(A) is needed to describe the medium.
this equation is referred as the single-constant KM theory. For multiple colorants.
the constant K(A)/S(\) is obtained by summing the ratio for each individual col-

orant weighted by the concentration of the colorant:
KA)/S(A) = (k(A)/s(A)),, +er(B(A)/s(A)); + e2( R(A)/s(N)), +
oot en(R(A)/3(A)), -
where ( A(A)/s())),, is the absorption and scattering ratio for the substrate. c;
and (k{A)/s(A)); is the concentration and the absorption and scattering ratio of

the colorant i. respectively. When the coloured layer is transparent on an opaque

medium. i.e.. the scattering coefficient S(A) approaches zero. then Equation 3.1 can

be simplified to
R(A) = Ry(A) exp(—2K (M) X) . (3.2)

3.1.3 Determining Control Values for a Model

Models like those described above are used to develop the device model. In addition,
a set of parameters must be measured to describe the qualities of the particular
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device. For example. dot area coverages. ink transmittances. and the Yule-Nielsen
value have to be determined for devices that produce halftone images: spectral
absorptions of the dyes. dye concentrations. and medium reflectance have to be
determined for continuous tone devices. To complete the model of a device. these

parameters are derived empirically from samples of the device output.

For purposes of illustration. the steps used to obtain the parameters of the model
of our dye diffusion thermal printer are described in this section. First. consider the
printer model. developed by Berns [Ber93]. which is based on Kubelka-Munk theory.
Since the Kubelka-Munk theory assumes there is no refractive index discontinuity
between the coloured layer and its medium. the Saunderson correction for refractive
index discontinuity is applied to the measured reflectance before any calculation.

The correction is expressed as

aneasured(A)
R(A) = ]
( ) (1 - kl)(:L - kz) + szmeasured(/\)
where k; is the Fresnel reflection coefficient based on the refractive indices of the

receiver layer and air. and %, is the diffuse internal reflection coefficient.

Assuming the paper medium to be opaque. Equation 3.2 is used to compute
reflectances. Since the medium thickness is constant. the term K(A)X can be

combined into a single term K,,;zture(A). The equation is rewritten as

R(A) = Rg(A) exp(—2Knizture(A)) - (3.3)
Its inverse is
_ R())
Kizture(A) = —0.51n (Rg(/\)) . (3.4)

The spectral absorption of any mixture is assumed to be the sum of the absorp-

tions of each dye:
Kmizture(A) = Keyan(A) + Kmagenta(A) + Kyettow (A) &
and the relative spectral absorption are independent of concentration:
Koan(A) = ceKeyanmaz(A)
Krmagenta(A)
Kyettow(A) = cyKyeltow.maz(A) - (3.5)

Cm Kmageﬂta.ma.z ( ’\)
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where c¢; is the concentration for dye . Thus. the relative spectral absorption can
be determined once the concentrations are known. c¢; is determined by the device
control value. Assuming that the channels to be independent of each other. Berns

suggested that the concentrations can be approximated by third-order polynomials

as
cc = and.+ alzdz + alsdz' .
em = a2dm + a2ads, + axds, .
cy = azdy + aazd;‘: + 033d3 . (3.6)

where d; is the normalized control value of dye . Since dye diffuses when heated.
two phenomena. diffuse back and dye transfer inhibition. affect the actual amount
of dye being transferred on the medium. Diffuse back occurs when previously
transferred dye diffuses back onto the supply. Transfer inhibition. which reduces
the amount of dye transferred. depending on the amount of dye already transferred
onto the print medium. As a result. the estimated concentrations. ¢;, are different
from the actual concentrations. ¢; getuar- transferred onto the medium. The following

relationships are hypothesized:

Ceactual = Pro~+ Price + Bract + Pracm + Bracy + PrsceCm + Brecety -
Ceactual = P20+ B21Cm + Boact, + Baace + Pa.acy + B2scmCc + B2.6CmCy
Ceactual = 30+ Baacy + ﬂs.zcz + Baasce + Pracm + Pascyce + Baecycm - (3.7)

With the above complete model. the relationship between control value and

output reflectance is determined by the following procedure:

. measure the reflectances of a set of output samples,

-

N

apply the Saunderson correction to the reflectances.
3. determine the spectral absorption using Equation 3.4,

4. compute the maximum spectral absorption. Kj.z(A), in Equation 3.5, of

each dye for the samples with single dye.
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5. calculate the concentrations. ¢;. of single dye samples.

6. compute the coefficients. a; ;. in Equation 3.6 by applying multiple-linear re-

gression on the control values and their corresponding concentrations obtained

from (5).

7. using the modified Newton-Raphson iteration method [All80]. determine the

actual concentrations of dyes for each sample.

8. determine the coefficients. B, m- in Equation 3.7.

Once the coefficients a;; in Equation 3.6 and 8,,, in Equation 3.7 are found.
reflectances corresponding to any given control value (d.. dn,. dy) can be determined

by the model.

Following the above procedure. we obtained the parameters of the model for
our DuPont 4Cast printer. To estimate the parameters. the reflectances of 216
(6 x 6 x 6) evenly spacéd samples were measured. The measured reflectances were
then normalized by the paper white. As the result. the spectrum of R ,(A) in
Equation 3.3 is unity. The normalized spectral absorption of each dye is shown in

Figure 3.2.

As expected. the coefficients of a;; and [, of our printer are quite different

from the ones published by Berns. In our experiment Equation 3.6 was:

c. = 0.2488d. + 1.7821d> — 1.0276d° ,
cm = 0.1594d, + 1.7615d%, — 0.9204d3, .
¢y = 1.1740d, — 1.1241d] + 0.9461d |
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Yellow Magenta Cyan

Figure 3.2: The scaled spectral absorption of the dyes with different concentrations
for the DuPont printer used in our experiment. The absorptions of different cencen-
trations for each dye differ by scaling factors. The assumption of relative spectral

absorption invariant with concentration is met.
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and Equation 3.7 was

—0.0056 + 1.0331c. — 0.0288¢2 + 0.0045¢,, + 0.0057¢,

Ceactual =
—0.0003¢c.cm + 0.0038c.cy -

Cmactuar = 0.0085 + 0.8340¢,, + 0.0898¢Z, — 0.0029¢. — 0.0089¢,
—0.2812¢,c. + 0.0490cmcy -

Cyactuat = —0.0359 + 1.0063¢, — 0.0269c;‘; + 0.0040c¢. + 0.0044c,,

—0.1889¢,c. — 0.1480cycm -

Ignoring the smaller values of the interaction terms (corresponding to coefficients

B:3 to PBie in Equation 3.7 where i referes to the colorant). the above equation

1

becomes

Ceactual = —0.0056 + 1.0331c. — 0.0288¢7 .
Cmactual = 0.0085 + 0.8340c,, + 0.0898¢2, — 0.2812¢mc. .

Cyactuat = —0.0359 + 1.0063c, — 0.0269¢c; — 0.1889¢,c. — 0.1480cyc -

The equations published by Berns were

ce = —0.19d. +2.394 — 1.194° .
em = 0.13d, +1.394% —0.52d>, .
¢y = 0.18d, + 1.55d; + 0.734 .

and
Ceactual = 0.03 +0.51c. + 0.47c§ — 0.014c.cn — 0.20cccy.
Cmactual = 0.02 4+ 0.74c,, + 0.32¢2, — 0.29¢cme..
Cyactual — —0.05 + 0.876,, + O.].QC;.

The coefficients of a;; that describe the relationship between the digital counts
and concentrations for the printers are similar for both cyan and magenta dyes.
But. the coefficients are quite different for the yellow dye. The reason for this may
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be caused by the excess fluorescence of the yellow dye. Berns stated that fluorescent
emission of the dyes pose no significant problems for their printer: however. it may

not be true for our printer.

For the coefficients of 3;; that describe the interactions between the dyes. pat-
terns are found in the coefficients in ours and Berns™ printers. Firstly. the actual
concentration of a dye is mainly determined by its estimated concentration. Sec-
ondly. the coefficients 3;3 and ;4. corresponding to direct interactions. are neg-
ligible for both printers. However. the interaction terms related to the covariance
of two dyes. which are described by the coeflicients 3;s and F;¢. are very different
between the two printers. By closely inspecting the coeflicients. it seems that there
was no interaction between the cyan dye and the others in our printer. This sug-
gests that the first dye transferred by our printer is cyan: whereas. yellow is the
first dye transferred by the printer used by Berns. Thus. taking into account the
difference in dye transfer order. the equations that described the dye interaction for
both printers agree qualitatively. Quantitatively. on the other hand. Berns™ printer

model fails to represent our printer since its coefficients do not work for our printer.

In general. the Berns™ printer model can correctly predict the trend of spectral
changes caused by the changes of digital counts. Unfortunately. even with extensive
measurement and data fitting we failed to obtain the level of accuracy described
by Berns. The average A E,; for our model was 7.0 which is quite large compared
to 3.0. which was obtained by Berns. As mentioned by Berns. a regression method
with the performance of our result produces images of very low colour quality. Such
a large error may come from several sources. Possibly. our printer may require a
different model than the one Berns used. Even though both printers were from the
same manufacturer and use dye diffusion thermal transfer technology, the model
described by Berns may not be compatible with our printer. Other problems such
as different characteristics of dyes and paper can also cause large errors. The
large. hard-to-explain discrepancies illustrates a serious drawback of model-based

characterization.



CHAPTER 3. DEVICE CHARACTERIZATION 39

3.1.4 Problems Associated with Models

A mathematical model provides a valuable analytical tool for studying colour re-
production. It can be used to simulate the printing process. Unlike real output
devices. the model always produces consistent output without disturbance from
environmental factors. Thus. it provides a good platform for testing new ideas

for reproduction. However. for several reasons such models are not widely used in

reproduction applications.

First. models are very expensive to develop. When a mathematical model is
developed for a colour device. it is important to verify that its assumptions are
valid for the device. For example. the unmodified Kubelka-Munk model does not
work for a dye diffusion thermal transfer printer since it assumes there is no refrac-
tive index discontinuity between the coloured layer and its surrounding medium.
The Fresnel reflection coefficient must be used to take into account this refractive
effect. However. even once the discontinuity in refractive index has been taken into
consideration. certain assumptions. such as no fluorescence being present. may not
be accurate. thereby degrading the performance of the model. as was illustrated
in the previous section. Second. a model developed for a particular device is only
valid under restricted operating conditions. Changes in the properties of ink or
paper often change the output results so much that the use of the model would be
inappropriate. As shown in the experiment that applied Berns® model to a different
printer. the large AE,; value were mainly caused by dye differences. Third, the
inverse of a model is usually very difficult to define and compute. As a result. the
backward transformation. which is heavily used in colour reproduction. is effectively
unusable. The difficulty of determining the inverse is one of the major problems of
model-based characterization. In fact. even if an inverse model exists, it would not
be used in practice owing to its high computational cost. For example. consider how
the inverse of Berns™ printer model is used to determine the device control values
for a given reflectance. The reflectance is first converted to its spectral absorption
using the Equation 3.4. Equation 3.5 is then solved to determine the actual con-
centration of each dye. Next. two sets of nonlinear equations, Equation 3.7 and
Equation 3.6. must be solved to find the control values.
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In general. the measurement cost of model-based characterization is small com-
pared to lookup-table characterization. But the development cost is very large since
it is necessary to understand every feature of a device in developing a model. It
is possible to obtain an acceptable result with this approach. However. the com-
putational costs of the colour transformations with this approach are usually very
high. Thus. it is infeasible to perform the transformations based on a mathematical
model in any practical applications. Instead. the transformation is often carried
out with a lookup-table approach. which derives colour values from a set of mea-
surement data stored in a CLUT. In this case. models can be used to verify and
smooth measured CLUT data.

3.2 Lookup Table Techniques for Colour Charac-
terization

Three steps are needed for colour lookup table (CLUT) characterization. They
are sampling. extraction. and interpolation. The process begins with measuring
the colour of a large set of samples printed by a device. Sample points may be
distributed either uniformly or nonuniformly in the device space. These sample
points can be thought of as the vertices of compact cells into which the entire
device gamut is divided. The control values and colour values of the samples are
used to create the CLUT for the device. Each entry of the CLUT comprises a

control value and its corresponding colour value.

To determine a colour value for a given control value. the forward transforma-
tion first identifies the cell that encloses the target control value in the device space
in an extraction step. the corresponding cell in the colour space is then used to
approximate the target colour values by interpolation. For the backward transfor-
mation. similar steps can be used to determine the control value for a given colour

value. except that the domain and range spaces are interchanged.

Each of these three steps has some impact on the performance of the colour



CHAPTER 3. DEVICE CHARACTERIZATION 41

reproduction process. This section describes the construction of the CLUT. and
discusses how the sampling technique affects the accuracy and computational cost

associated with the colour transformations.

3.2.1 Colour Lookup Table Construction

Sampling is the first step in CLUT construction. It has large impact on the effec-
tiveness of a colour reproduction process since both extraction and interpolation

steps operate on the sample points.

The simplest way to construct a CLUT is to sample points that are uniformly
distributed throughout the device coordinate space. This kind of CLUT is easy
to construct. but accuracy is a problem for this sampling technique. For example.
interpolation errors from uniformly sampled points can be high if the sampling
distribution is not dense enough.! To solve this problem. the sampling frequency can
be increased. However. increased sampling density increases measurement cost since
the total number of sampling points increases as né. where n is the sampling density
in each dimension and d the dimensionality of the colour space. Because reflectance
spaces often have high dimensionality. measurement cost can easily be too high
for adequate sampling density. An alternative is to use nonlinear interpolation.
Higher order interpolation can increase accuracy. but only at the cost of decreased

performance because nonlinear interpolation has high computation cost.

Improvement can otherwise be obtained by using nonuniform sampling: denser
sampling for regions with high curvature. sparser sampling for others. With the
same number of sample points. this approach generates results that have smaller
errors compared to those obtained from uniform sampling [Kan96. Chapter 4].

To use nonuniform sampling effectively. some knowledge about the transfer func-
tion of a device must be established prior to choosing sample points. A mathemat-
ical model of a device can be used to estimate the transfer function. However, the

!The relationship between accuracy and sampling density depends on the curvature of the

mapping from control values to printed colours.
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reliability and high cost problems discussed in the previous section will hinder the
effectiveness of this approach. Alternatively. the transfer function can be estimated

from empirical data.

By sampling each axis in such a way that the resulting L* values lie evenly
in the destination space. Kang [Kan95] demonstrated that this simple nonuniform
sampling technique can produce better results compared to those obtained from the
uniform sampling techniques. This technique uses sample points that are nonuni-
formly distributed across the gamut in the device space: however. each cell defined
by the sample points is rectangular. which is good for locating an enclosed cell dur-
ing colour transformation. More sophisticated techniques can be used to provide
better results. For example. iterative refinement was used by Allebach. Chang. and
Bouman [ACB93]. They repeatedly applied Sequential Scalar Quantization (SSQ)
and Sequential Linear Interpolation (SLI). which uses a flexible grid of values to
approximate the model. and were able to refine the distribution of sample points
until interpolation errors fell below a certain level. Bell and Cowan [BC94] first
characterized a printer transfer function with tensor product splines. sample points

for which are selected using SLI.

3.2.2 Performance Issues with Colour Lookup Tables

Because the performance of colour transformations is important for any colour re-
production process. the CLUT should be built in a way that allows transformations
to be performed as quickly as possible. Both extraction and interpolation must be
done once per pixel. Thus. high speed transformation requires good performance
in both steps. Linear interpolation is efficient enough for interpolation. There are
two methods for extraction. One alternative uses a CLUT with entries uniformly
distributed in a domain space. With such a CLUT enclosing cells can be located
directly through indexing. But accuracy is lower with this approach. The other
alternative uses denser sampling in regions where curvature is high. which requires

a search algorithm to identify the enclosing cells.
To build a CLUT with uniformly distributed samples for the forward transfor-
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mation. one can simply measure the sample points with equal spacing in the device
control space and store them in the CLUT. But. without knowing the transfer func-
tion of a device. it is difficult to construct the CLUT for backward transformation.

In practice. remeasuring or remapping is often used to build the CLUT.

Remeasuring is an iterative process to obtain sample points with equal spacing.
The process starts with uniform sampling in the device space. After the first mea-
surement. the process uses the sample points to approximate the transfer function
of the device. Based on the estimated transfer function. a new set of sample points.
which are equally spaced in a colour space with respect to the estimated function.
is chosen for the next measurement. The steps of chosing sample points and re-
measuring are repeated. terminating only when the set of samples is distributed
uniformly enough in the colour space. This approach has been used commercially
for producing film editing equipment. and requires as many as six to seven iterations
to obtain an acceptable distribution in a one dimensional lightness space. Many
more iterations would be required for data in a high dimensional space. making it

too expensive for practical applications.

Remapping is another approach commonly used in practice. Like remeasuring.
this approach uses sample points that are uniform in device space to estimate the
transfer function of a device. Since the function is derived from samples with
measurement errors. both measurement and sampling errors are present in the
estimated transfer function. Using the estimated transfer function. the control
values for a set of regularly distributed points are found. A new CLUT is created
with these colour points. Note that the points in the new CLUT are produced
from the estimated transfer function. not from the actual measurements. Since
resampling uses points that include measurement error to approximate points not
in the table. it has double approximation errors. This approach produces results

that are lower in accuracy than methods without remapping.

Instead of rebuilding the CLUT. extraction can be improved by using an efficient
search algorithm to locate the enclosing cell that contains the target point. A
new extraction algorithm is described in Chapter 6. the performance of which is

logarithmic in the number of sampling cells. This approach allows fast extraction
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without high measurement cost and without sacrificing accuracy. The CLUT is
usually built with nonuniform samples in device space to improve accuracy. after

which the enclosing cell can be extracted with performance comparable to binary

search.

3.2.3 Conclusion

To determine the relationship between device control values and output colours.
device characterization must be done. If the transfer function of a device is known.

model-based characterization can be used: otherwise. lookup-table characterization

is needed.

Different theories are available to model different kinds of output devices. How-
ever. these models are expensive to develop. Even when a good model exists for a
particular device. problems still exist. such as high computation cost. inflexibility
and difficulty in finding the inverse. In contrast. the CLUT approach. which pro-
vides low computation and implementation costs. and allows fast processing speed.

is widely used in practice.

The CLUT is created from sample points that are uniformly or nonuniformly
distributed. Uniform sampling allows fast extraction because direct indexing can be
used to locate the enclosing cells. while nonuniform sampling can provide better ac-
curacy by reducing interpolation errors. For high speed applications. a CLUT with
uniformly distributed sample points is normally used. Remeasuring or remapping
is sometimes used to construct a uniformly sampled CLUT for backward transfor-
mation. Unfortunately. high measurement and accuracy cost is always associated
with remeasuring and remapping. To maintain accuracy while reducing processing
time. a nonuniformly sampled CLUT combined with a fast searching technique is
best.



Chapter 4

Gamut Mapping in Reflectance
Space

Dluminant dependence is a serious problem when using the CIE colour specifications
for colour transformation algorithms of reflective media. When viewing reflective
stimuli. the colour signals that enter the eyes. which determine the CIE tristimu-
lus values. are affected by the illuminant. Thus. colour transformations that use
the CIE tristimulus values necessarily assume an illuminant. When the viewing
lluminant differs from the reference illuminant the results are hard to predict. By
reproducing reflectance. an intrinsic surface property that is independent of the
source of illumination. the problem of illuminant dependence can be eliminated
from gamut mapping.

As mentioned in the previous chapter. reflectance can be expressed as a linear
combination of basis functions. To minimize representation errors, basis functions
are developed empirically to fit specific output devices. They vary from output
device to output device. To match colour across devices, it is necessary to map

reflectances from one basis to another.

It is easy to see that two reflectances with similar spectra are likely, when illumi-
nated. to have similar tristimulus values. As a result. the colour difference between

45
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them is expected to be small under a variety of different sources of illumination.
Based on this observation. any mapping that minimizes spectral error seems a nat-
ural choice for gamut mapping between reflectance spaces. Orthogonal projective
transformation is one such mapping. It can be implemented by matrix multiplica-
tion. which makes it inexpensive to compute. However. because it does not account
for the colour sensitivity of the human visual system. it is a poor choice for gamut
mapping between reflectance spaces. It often fails to map to the reflectance that
has the smallest tristimulus value difference. and can produce rather large colour

differences. This result can be explained in terms of human visual sensitivity space.

To obtain better performance. a gamut mapping for reflectance. based on the
fundamental component of reflectance. was developed [CC96]. By using reflectance
information. this mapping better preserves the original colours for a variety of

illuminants because it maps to the reflectance with the smallest tristimulus value

difference.

4.1 Human Visual Sensitivity Space

To study colour reproduction for different illuminants. it is essential to understand
human visual sensitivity (HVS) space. HVS space weights reflectance components
in proportion to the response of the light sensitive cells in the retina. As such it is
derived from the colour matching functions and is illuminant-dependent. As given
in Chapter 2. the tristimulus values. t. of any surface can be computed using the

matrix equation
t=H'Er.

with H the 3 x N colour matching matrix. E the N x N diagonal matrix of the
spectrum of an illuminant. and r the N element vector describing the reflectance

of a surface. With Az = H' E. the above equation can be rewritten as

t=Agr. (4.1)
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The 3 x N matrix Ag is a transformation matrix from the N-dimensional wave-
length space to the 3-dimensional HVS space under the illuminant specified in E.
1 Ajg can be thought of as a sensor that incorporates illuminant information.

For a given illuminant. the V dimensional wavelength space R can be expressed
as a direct sum of the 3 dimensional HVS space. which is spanned by the rows of
Ag. and its N — 3 complement space A (Ag). the null space of Ag with respect
to R. Each surface reflectance can thus be divided into two components. One is
the fundamental component in the HVS space and another is the metameric black
component in N(Ag). The metameric black component is invisible to normal
observers. Two reflectances are metameric when they have identical fundamental
components and different metameric black components. Since the values of matrix
A g depend on the illuminant. the fundamental component and the metameric black

component of the surface reflectance are in general different for different illuminants.

Mathematically. any surface reflectance r can be expressed as
r=f,.+b,.

where f, is the fundamental component. and b, is the metameric black component.
The fundamental component can be obtained by using a projection operator. Pjy.
which is defined as Ag(A5Ag) 'A%, The metameric black component can be
obtained by using the projection operator P, = I — P;. The matrix that represents
the projection operator P is commonly referred as the R matrix. An extensive
discussion of its properties can be found in Cohen and Kappauf's paper [CKS82.
Coh88].

To simplify the discussion that follows. HVS space is referred as the fundamental
subspace. denoted by F;. and AN (A;,) as the metameric black subspace. denoted by

B;. each for the illuminant /;.

1Under certain special illuminants. it is possible that the HVS space could have a dimensionality
less than 3. Since these illuminants are rarely used for viewing colour images, this pathological

case will not be further considered in this thesis.



CHAPTER 4. GAMUT MAPPING IN REFLECTANCE SPACE 48

4.2 Orthogonal Projective Mapping

In mapping a reflectance from one reflectance space to another. it is natural fo
minimize the spectral difference between the mapped reflectance and the original
one. With orthogonal projection. a reflectance that has a minimum mean squared
spectral error in the target space can be readily found. But. unless the spectrum of
the mapped reflectance is exactly the same as the original. minimizing the spectral
error does not necessarily preserve the original colours. Thus. projection does

not always map reflectance to one that has the same colour appearance even if one

exists.

This section describes how to use orthogonal projection for reflectance map-
ping. Conditions under which projective mappings maintain colour appearance are
studied. Unfortunately such conditions are too restrictive for practical applications.

4.2.1 Steps for Orthogonal Projective Mapping

Let Rp be the reflectance space that is spanned by the orthonormal reflectance basis
set {c1{A).ca(A).-=- .ca(A)}. Using the orthonormal basis. any reflectance r € R
can be projected onto Rp by a single matrix multiplication. The coordinates of

the projected results. u,. is given by the matrix equation
u, = Bfr.

where B is the N x n matrix with ¢;(A) as its column vectors. The projected

reflectance is
r =Bu, =BB‘r.

Thus. the orthogonal projection operator for Rp can be expressed as a N x N

matrix:

P, = BB®.
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The spectral error. Ar. 1s

Ar = r—r
= r—Ppr
= [I—PDII‘ . (42)

which is equivalent to the projection of r onto the complementary space of Rp.
Rp. In fact. the orthogonal projection of any reflectance r onto r’ € Rp is the one
that has minimum mean-squared spectral errors. that is |[[s — r{ > |[r' — r]| for
any s € Rp. where || - || is defined as: || x|| = /z(A1)? + z(A2)? + - - + z(An)? for

any vector x in the wavelength space. To see this. let s = r’ + As. Since both s

and r are in Rp. As must also be in Rp. Then.

Is—rll = [I[f'+As—r|

| (" —r) + As||

Il Ar + As ||

| Ar|| + || As|| as As € Rp and Ar € Rp
> |lAr].

Even though this projective mapping identifies the reflectance that has the most
similar spectrum. it may not be the one that is closest in colour appearance because
spectral errors do not necessarily correlate well with human colour sensitivity. Dif-
ferences in the tristimulus values of the spectral errors are not guaranteed to be
small. In fact. only under very restrictive conditions can orthogonal projective

mapping preserve colour appearance.

4.2.2 Projective Mapping and Colour Matching

Projective mapping is not guaranteed to preserve the original tristimulus values
even when there is a reflectance with the same tristimulus values in the target
reflectance space. However. under certain conditions the mapping can preserve the

tristimulus values. In this section. we study these conditions by examining the
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tristimulus values of the spectral errors. It is shown that the conditions under
which projective mapping minimizes tristimulus value error are too restrictive for
practical applications.

Consider projective mapping between two reflectance spaces of Rp, and Rp,.
each of which is constructed by modified SVD. as discussed in Chapter 2. For
r € Rp, and r' € Rp, to have the same colour under illuminant [. the tristimulus
values of the spectral error must be zero. The next few paragraphs describe how
the tristimulus values are computed.

Let u, be the coordinates of r with respect to the basis of Rp,. Gp, be the
N x n column matrix of the orthonormal reflectance basis vectors with the unity

reflectance. w. the first basis element (see Chapier 2). and Pp, be the projec-
tive operator from Rp, to Rp,. From the Equation 4.2. the spectral error after

projective mapping can be written as
Ar = r—r'.

= [I-Pp,]Gp, u..
The corresponding tristimulus values are

At., = A;Ar
= A[[I—PD._,]GDl U,
= A;Du,. (4.3)
where A; is the 3 x N transformation matrix under /. and D is the N x n matrix

with values of [I — Pp, | Gp,. the columns of which represent the projected basis

elements onto the complementary space of Rp,. Rp,.

Note that for u, representing any real reflectance. the condition of 0 < Gp,u, <
1 must be satisfied. Thus. u, cannot take on arbitrary values. To study the con-
ditions under which At, has zero value. a general formula is needed for computing

errors in tristimulus values.

Since w is the first basis element of Rp,. r can be expressed as

r =aGp, v, +bw.
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where v, = (a@.%s.u3.--- .u,) and b = u; — a. Equation 4.3 can be rewritten as

At, = AI—Pp,|(aGp, v, + bw)
= aA(DV,--{-bAz[I—PD,_,]W.

Because the white reflectance. w. is one of the basis elements for Rp,. the second
term in the equation is zero since w is orthogonal to the complementary space of

Rp,- Thus. the above equation simplifies to
At, =aA;Dv,.

The above formula differs from Equation 4.3 by a scalar value. Since v, can be any
value. the column vectors of D must be orthogonal to the row vectors of A, for
the tristimulus values of Ar to be zero. With the column vectors of D being the
projected basis of Rp, onto the complementary space of Rp,. the above condition
states that the basis of Rp, projected onto the complementary space of Rp, must

be in the metameric black space for the illuminant I.

The necessary condition of colour preservation for projective mapping can be
understood by examining an arbitrary basis element of Rp,. Since the wavelength
space is a direct sum of Rp, and 7202. the basis element. ¢(A) € Rp,. can be

expressed as
c(A) = CD...(/\) + 'C.D...(/\) .

where cp,(A) € Rp, and ¢p,(A) € Rp,. Since the condition states that ¢p,(A) must
be in the metameric black space. the visual sensation of ¢(A) must come from cp, (A).
This condition ensures that all colours associated with any reflectances in Rp, must

be realizable by the reflectances in Rp, for the illuminant under consideration.

Unfortunately. the above requirement for the projective mapping to maintain
the original colours cannot be satisfied under common viewing illuminants. To

understand this. let us rewrite Equation 4.3 as

At,- = AEDu,
= H'EDu, .
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where H is the colour matching matrix. and E is the diagonal matrix of the spec-
trum of an illuminant. If the projective mapping preserves colour. At, must be a
zero vector for any u.,.- Therefore. the result of the matrix multiplication of H* E D
must be a 3 x n zero matrix. This condition is satisfied only if the spectrum of the

viewing illuminant. ®,. is a solution of the homogeneous system

z(A1)di(A1) z(Az)di(A2) --- z(An)di(Aw)

y(A1)di(Ar) y(Aa)di(A2) --- y(An)da(AN) 5. ]
A
z(A1)di(A1) z(Az2)di(A2) --- z(An)di(Aw) $
: : : A =0. (4.4)
£(A1)dn(A1) z(A2)dn(X2) --- z(AN)dn(AN) 5
AN

y(A)da(Ar) y(Aa)da(A2) -- y(An)da(Ay) | = 7 -
z(A1)dn(A1) z(A2)da(A2) --- z(An)dn(AN) |

where z(\;}.y(\;). z(A;) is value of the colour matching function of Z.7, Z. respec-
tively. at the wavelength );. and d;(A;) is the value of the jth basis element of
Rp,at \; projected onto the complementary space of Rp,. which is the value of the
(¢. 7)th entry of the matrix D.

Given the above equation. we have tested orthogonal projective mapping be-
tween our DuPont and Kodak printers. In the experiment. the reflectance basis
functions of reflectance spaces for the DuPont and Kodak printers are constructed.
The basis construction method is the one proposed in Paeth’s thesis [Pae94]. The
reflectance basis of the Kodak printer is projected to the complementary reflectance
space of the DuPont printer to obtain the matrix D. The entries of the matrix for
the above homogeneous system are computed with the 1964 CIE Standard ob-
servers. The system is then solved by the SVD method. The solutions represents
a set of lluminant basis functions which form a space that contains illuminations

under which the projection mapping preserves colour appearance.

Figure 4.1 shows the spectra of illuminants and their residual components for

projective mapping. None of the CIE standard illuminants is inside the illuminant
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Figure 4.1: Projecting the spectra of each illuminant on the column space of the

matrix D. The dashed lines represent the residual components of the illuminant

that do not satisfy Equation 4.4
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space. In general. colours are not maintained after orthogonal projective mapping
under normal illuminants. To conserve colour sensation. the mapping that preserves

the fundamental component of the reflectance provides a better result.

4.3 Fundamental Component Mapping

As mentioned in the last chapter. the colour appearance of a reflectance is closely
related to its fundamental component. Two reflectances that have identical fun-
damental components under a given illuminant have the same colour appearance
under that illuminant. Thus. the problem of finding reflectances that match re-
flectance r under illuminant I; consists of finding reflectances. r’. with the same
fundamental component as r. This section describes how to use the fundamental
component for reflectance mapping. Fundamental component mapping is better
than projective mapping in two ways: first. when colour identity is possible within
the given reflectance gamuts. it always finds it: second. when colour identity is not
possible. empirical results show that it consistently outperforms projective map-

ping.

4.3.1 Basic Concepts of Fundamental Component Mapping

Let R be the reflectance space generated by the output of an output device. To de-
termine the fundamental components of the reflectances in R under /;. we represent

R as the direct sum of two subspaces Fg, and Byg;:
R = fT\’.; ) B'R-.' -

Here. By, is the intersection between the reflectance space R and the metameric
black subspace B;. and Fg, is the subspace of R orthogonal to By, (Figure 4.2).
Note that Fg, is not the fundamental component space F; intersected with R.
The definition ensures that every non-zero reflectance in Fg; is made up of a
fundamental component and a possibly zero black component. The basis of Fg;
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Figure 4.2: Each reflectance space R can be represented as the direct sum of two
subspaces Fg, and Bg, under illuminant [;. Bg; is the intersection between the
reflectance space R and the metameric black subspace B;. and Fg; is the subspace

of R orthogonal to Bz,
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is the set of reflectances that always cause some kind of colour sensation. whereas
that of Bx, is the set of reflectances that are invisible to normal observers. (The
elements in both sets may not be physically realizable.) The computation of Fx;
and Bz, can be carried out by singular value decomposition (SVD). which provides
both basis sets in a single computation [GVL83].

Every trichromatic reflectance space. R.% has a 3-dimensional subspace Fx,.
Now let {f’;.f’». '3} be the basis of Fr,. Since each f'; contains both a fundamental

component and a metameric black component. it can be expressed as
f’j = fj + bj -

where f; € F; and b; € B;. Because R produces a three dimensional colour
sensation. the reflectances f; must span at least a three dimensional space. Since
F; is a 3-dimensional space. any three linear independent reflectances in it can be
used as its basis. The set {f;. f». f3} is chosen here as the basis of F;.

Now consider the problem of finding a reflectance r’ € R that has the same
fundamental component as that of r. Let f. be the fundamental component of r.

It can be expressed in terms of f;:
f. = aif; + a.fy + asf;.

Every element r’ € Fx, that has the same coefficients a; with respect to the basis
{f’;. f'». '3} has a fundamental component identical to that of r. To see this

express r’ as

r = a]_f’]_ =+ agf'g + a3f'3 -+ brl
= ai(fy +b1) + as(f2 + b2) + a3(fs + bs) + by
= a1f; + a-f2 + asf; + bz ! for bz o = a1b; + asbs + azbsz + b,

where b,s € Bg,. Since by » € Bx. r’ has the same fundamental component as r.

Their colours match under illuminant I;. In fact any reflectance r € R matches the

2Trichromatic reflectance space refers to a reflectance space generated by the output of a device

which causes 3-dimensional colour sensation.
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colour appearance of r if I can be expressed as
r = aif'y, + a-f’y + aaf’s + bs.

for any bz € Bg,. Among these reflectances. it is possible that the spectral re-
flectance of r may be different from that of r. A large spectral difference is unde-
sirable because the larger the difference in spectral reflectance. the more likely it is
that the two reflectances do not match under other lluminants. The reflectance in
R that has the same fundamental component with smallest amount of difference in
the spectral distribution is the best mapped value of r.

To find such a reflectance. the residual reflectance. Ar = r — r’. is first com-
puted. Then a spectral distribution similar to Ar is added to r’. To maintain the
fundamental component. the added reflectance must be chosen from Bx,. This can
be done by orthogonal projection of Ar onto Bgz,. The result is the metameric
black component in R that is closest to Ar in terms of least squared spectral error.

4.3.2 Fundamental Component Mapping under Several Il-

luminants

Now let us consider the two-illuminants case first. which can be easily extended to
several illuminants. Let s € R be a reflectance that matches the colour of r under

tlluminants /; and [,. Then s can be expressed as

s = f',, + b, for illuminant [, .
and

s = f',, + b,, for illuminant I, .

where b,, € Bg,. and f',; € Fg, which is same as the fundamental component of r
under the illuminant /;. By combining the above two equations. we have
', —f, = b, — b,
= Py,s—Pg,s
= (Pp —Pp,)s. (4.5)
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where P;, . Py, is the projection transformation matrix that maps s to b,, and b,,.
respectively. Since the values of f,; and Py, are known once the reflectance space R
and the illuminants are defined. the reflectance s can be found by solving the above
linear equation. Like the single illuminant case. a metameric black component for
both illuminants. i.e.. by, € (Bg, N Br,). can be added to r to reduce the spectral

error. In fact. R can be expressed as
R:f"?—m @BRl’_' -

where Bg,, = (Bg, N Br,). Fr,. contains reflectances orthogonal to the elements
in Bg,, and which have nonzero fundamental components under at least one of the
illuminants.

The above approach can be easily extended to several illuminants. For instance.
in the three illuminants case. the left hand side of the Equation 4.5 can be defined

as

Af',., Py, — Py,
Af,,, Py, — Py,

The reflectance r can be obtained as in the two illuminants case.

Note that the possibility of finding a reflectance that matches colours of a given
reflectance decreases rapidly as the number of illuminants considered increases.
Consider the subspace of Fr, for k illuminants. Since every element x € Fz, has
nonzero fundamental components under at least one of the illuminants. x must be
in UjerF;. For R be a trichromatic reflectance space under each illuminant. the
subspace that contains U;c;F; may have dimension as large as 3k. As a result,
the dimension of Fg, may be as large as 3k. Certainly. if the illuminants in 7 are
similar to one another. the dimension of Fz, is less than 3k. In general, however,
the possibility of finding a reflectance s € R with the same colours as r ¢ R under

tluminants in 7 decreases as the number of illuminants in Z increases.

When no reflectance matches the colour of r under the complete set of illumi-
nants. the linear equation has no solution. However, by using SVD to solve the

equation. it is possible to get the least-squares best approximation of r. Since it
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is difficult. perhaps impossible. to derive an error model for fundamental compo-
nent mapping. experiments are used to show the performance of the mapping for

multiple illuminants.

4.4 Experimental Results

Both orthogonal projection and fundamental component mappings were imple-
mented. Experiments were conducted to test their relative performance empiri-
cally. This section describes the results. which show that fundamental component

mapping consistently outperforms projective mapping.

To test the effectiveness of fundamental component mapping, two reflectance
spaces were constructed using Paeth’s modified SVD. Two sets of illuminants were
used. One set comprised CIE Standard luminant A. F7 fluorescent light. and a
high pressure sodium light. The other comprised CIE Standard Hluminants D50.
D55. and D65. Two reflectance spaces were constructed. One of the spaces was
constructed based on the reflectances of 40 real objects. and the other based on a
set of output colours from a Kodak dye sublimation printer. Each reflectance space
serves as a target space in one of our two experiments. The input reflectances
obtained from the 24 patches of the Macbeth Colorchecker and the 40 real objects

were then transformed to the target reflectance spaces.

For each reflectance space. three transformations were performed.

1. Projective Mapping. The original reflectances were mapped to the target re-
flectance space using projective mappmg. The average CIELAB colour differ-
ence. AE,,. between the original and the mapped reflectances were computed
for each of the six illuminants in the two illuminant sets. The results are
listed in Table 4.1 labelled “Proj.”.

JOV)

. Fundamental Component Mapping for the First luminant Set. The original
reflectances were mapped to the space using fundamental component map-
ping for the illuminant set containing the CIE D50, CIE D55, and CIE D65.
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Reflectance CIE D50 CIE D55 CIE D65

Samples F.M. Proj. | FM. Proj. | FM. Proj
Real Object | 0.000 0.364 | 0.000 0.357 { 0.000 0.346
Macbeth 0.000 0.809 { 0.000 0.810 | 0.000 0.810

(a)

Reflectance CIE A F7 HP Sodium
Samples FM. Proj. | FM. Proj. | FM. Proj
Real Object || 0.289 0.352 | 0.011 0.432 | 0.023 0.490
Macbeth 0.072 0.700 | 0.054 1.144 | 0.054 1.077

(b)

Table 4.1: The average CIELAB colour differences for the fundamental mapping
The re-

(F.M.) and directed projection (Proj.) under two set of illuminants.

flectances of 40 real objects and 24 patches of Macbeth Colourchecker were mapped

to the reflectance space which constructed based on the reflectances from 40 real

objects.

The average AE,, over the test reflectances were computed for the three
tlluminants in the set. The results are listed in Table 4.1(a) labelled “F.M.”

3. Fundamental Component Mapping for the Second Illuminant Set. The orig-
inal reflectances were mapped to the space using fundamental component
mapping for the iluminant set contains the CIE A. F7 fluorescent light. and
the sodium light. The average AE,; between over the test reflectances were
computed for the three illuminants in the set. The results are listed in Table
4.1(b) labelled “F.M.”
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Reflectance CIE D50 CIE D55 CIE D65
Samples FM. Proj. | FM. Proj. | FM. Proj
Real Object || 0.000 2.658 | 0.000 2.627 | 0.000 2.582
Macbeth 0.000 0.942 | 0.000 0.895 | 0.000 0.840
(a)

l?ieﬂectance CIE A F7 HP Sodium
Samples F.M. Proj. | FM. Proj. | FM. Proj
Real Object || 0.126 2.486 | 0.146 2.072 | 0.038 2.402
Macbeth 0.187 1.253 | 0.251 1.372 | 0.043 2.005

61

(b)

Table 4.2: The average CIELAB colour differences for the fundamental mapping

(F.M.) and directed projection (Proj.) under two set of illuminants. The re-
flectances of 40 real objects and 24 patches of Macbeth Colourchecker were mapped
to the reflectance space which constructed based on the reflectances of the evenly

sampled printer output colours.
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D50 vs D55 D50 vs D65 D55 vs D65
Ist min. angle 1.0000 1.0000 1.0600
2nd min. angle 0.9998 0.9991 0.9997
3rd min. angle 0.9994 0.9961 0.9986
A vs A vs F7 vs

F7 H.P. Sodium H.P. Sodium
1st min. angle 0.9663 0.8945 0.8832
2nd min. angle 0.9039 0.8643 0.7195
3rd min. angle 0.7818 0.5849 0.4765

Table 4.3: Cosine of the principal angles between the fundamental component
subspaces of the pairs of illuminants within a set. When the cosine of principal

angle equals to 1. it means two vectors in the two subspaces coincide with each

other
4.4.1 Iluminant Differences

The principal angles between the fundamental component subspaces within each
set of illuminants have been computed. The principal angles describe the similarity
between two subspaces. The computed principal angles provide the qualitative
measurement of how different the light source would be with each illuminant set.
From Table 4.3. which shows the cosine of principal angles between two illuminants.
it shows that the fundamental component subspaces for the first set of illuminants

are very similar. whereas the illuminants of the second set are quite different.

The first set is daylight illuminants. all of each have good colour rendering
index. the largest principal angle is 3°. In contrast the first minimum principal
angles among the second set of illuminants. which contains artificial illuminants,
lies between 15° and 27°. and the third principal is as large as 62°. Thus, it is
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difficult to reproduce colours with small colour differences under the second set of

illuminants.

4.4.2 Mapping Results

As shown in Tables 4.1 and 4.2. the fundamental component mapping provides
much better results than simple projective transformation. In our experiments for
the daylight illuminants. the fundamental component mapping always identifies the
reflectances with the same colour as the original. whereas the projective mapping
does not always map to the ones with the same colours. The average colour differ-
ence using the fundamental component mapping less than 0.0005. and using projec-
tive mapping is 1.17. For the second set of illuminants. the results. as expected. are
not as good as the first one. However. the largest average colour difference using
the fundamental component mapping is 0.289. whereas the projective mapping is
2.486. In most cases. the average colour differences for the fundamental component
mapping are ten times smaller than those for the projective mapping. The pro-
jective transformation sometimes maps to reflectances objectionably different from

the original. but the fundamental mapping never does.

The fundamental mapping does well for the following reasons. When the view-
ing illuminants are similar. the fundamental mapping performs effectively because
of the overlay of large portion of the fundamental component subspaces for the illu-
minants (see Tables 4.1a & 4.2a ). Even when the illuminants are very different, the
mapping is still able to find a suitable reflectance that matches the original colour
because the fundamental component of the reflectance is similar to the original one
for the given illuminants. (see Tables 4.1b & 4.2b).

Since the fundamental component is directly related to the CIE XYZ tristimulus
values. the fundamental component mapping in essence is trying to maintain the
tristimulus values. However. the XYZ values are not commonly used to measure
colour difference since the XYZ space is not perceptually uniform. Instead, CIELAB
or CIELUV are a better choice for measuring colour difference. Mappings that are
developed to preserve the CIELAB or CIELUV values are believed to produce better
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results. However. the nonlinearity of these colour spaces substantially increases the
complexity of the algorithms. As a result. their performances is unlikely to be
suitable for practical applications. Fortunately. the differences in the XYZ values
obtained from the fundamental component mapping are usually very small which
leads to small differences in the CIELAB and CIELUYV spaces as well. Therefore.
the fundamental component mapping is a very useful approach for preserving the

colour appearance of reflectively defined images.

4.5 Conclusions

Reflectance spaces are constructed to provide representations that have minimal
errors in spectral reflectance. Thus. it is natural to minimize spectral errors when
mapping a reflectance from one reflectance space to another. This objective is
achieved by orthogonal projective mapping. which maps the original reflectance
to the one that has minimum mean squared spectral errors in the target space.
However. without taking into account the illuminant and the colour sensitivity of
the human visual system. this simple transformation does not. in general. map
reflectances to the ones that have the same colour appearance even when they ex-
ist in the target space. This problem can be avoided by using the fundamental
component mapping. which tries to preserve the fundamental component of the
reflectances. Colours are preserved by the mapping when possible. When an exact
colour match is not possible. our experimental results shows that fundamental com-
ponent mapping consistently outperforms projective mapping in terms of perceived

colour difference.



Chapter 5

Colour Attributes in Reflectance

Space

As discussed in Chapter 1. there are two different approaches to gamut mapping for
colour reproduction. One minimizes an objective function. such as AE,,. that is a
CIE measure of perceived colour difference: another uses models of colour appear-
ance to maintain the perceptual colour attributes. The previous chapter showed
that objective functions can be extended to reflectance space using the fundamen-
tal component mapping. This chapter discusses how to evaluate perceptual colour
attributes in reflectance space. In doing so we establish the relationships between
a reflectance and its colour attributes. Since the colour attributes are always more
or less affected by the viewing illuminant. issues such as how the attributes vary
due to the change of illuminant. and how to choose the reflectances for colour re-
production under different illuminants are important. Unless stated otherwise, the
arguments for reflectances in this chapter apply to both physically realizable and

nonrealizable reflectances.

All colour spaces have similar topological properties for colour attributes. For
example. a circuit around the neutral axis sees hue changing through the sequence,

blue. cyan, green. yellow. orange. red. magenta in all colour spaces. The pattern of

65
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hues. placed circularly following the above order. is referred as the hue circle. Sim-
ilarly. lightness changes from dark to light along the neutral axis: and saturation
increases along radial lines running from the neutral axis to the most saturated
colours (Figure 5.1). Furthermore. transformations between colour spaces are con-
tinuous and ‘monotonic” in the sense that the relative strengths of colour attributes
between nearby colour points are preserved in the transformations. By studying the
relationship between a reflectance and its hue. lightness and saturation. we show
that very similar topological properties can be realized in a high dimensional re-
flectance space. Based on this fact. relative colour appearance between reflectances
can be controlled even when it is not possible to specify the exact appearance of
an illuminated reflectance. As a result. gamut mapping ideas that were developed

based on the colour attributes of trichromatic spaces can be extended to reflectance

spaces.

5.1 Constant Hue in Reflectance Space

Because the human visual system is very sensitive to hue changes. it is important
to preserve the hues of an original image. Deviation of hue from original to re-
production jeopardizes reproduction quality. Many gamut mapping algorithms for
trichromatic colour spaces are implicitly designed to operate within constant hue
planes to simplify hue relationships. Thus. it is important for colour reproduction

processes to identify all reflectances in a reflectance space that have the same hue.

Because colour constancy in the human visual system is incomplete. affected by
both illuminant and the viewing context [BW91]. the appearance of a reflectance
changes when the viewing illuminant changes. Thus. thereis no definite relationship
between the reflectance and hue in general. Fortunately, absolute hue sensation
1s often less important than hue relationships. Specifically. it is most important
to know whether or not two reflectances have the same hue for the given set of

illuminants, which is the focus of this section.
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saturaton

hue

(a)

Blue
Cyan
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Green

Red

Orange Yellow
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Figure 5.1: Common topological properties for colour attributes. (a) Lightness
changes from dark to light along the neutral axis: and saturation increases along
radial lines running from the neutral axis to the most saturated colour. (b) Hue

changes from blue. cyan. green. yellow. orange. red. and magenta.
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Figure 5.2: The constant hue lines for Munsell Value 5 are slightly curved in the
CIE (x.y) chromaticity diagram and the CIE (u*.,v*) chromaticity diagram.
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»”

Figure 5.3: The dominant wavelength (D) of the colour (C) is the wavelength of
intersected locus from a radial line extending out from the white point (W) to a
colour point. The complement wavelength (D"} of the colour (C’) is the wavelength

of intersected locus from a radial line extending out from C’ to W
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5.1.1 Hue Sensation and Colour Spaces

Wyszecki and Stiles [WS82] summarize research on hue sensation in CIE colour
spaces by examining the distribution of colours having the same hue. They showed
that the set of colours of constant hue for any lightness are slightly curved lines in
the chromaticity diagram of CIELUV and the constant lightness plane of CIELAB
(Figure 5.2). Similarly. the lines of constant hue are also slightly curved in the (z.y)-
chromaticity diagram. To simplify computation. the CIE specifies radial lines in
the (x’.2') and (a=.b*) plane that approximate the true constant hue lines [WS82].
Similarly. the German Standard DIN Colour System [RW86] defines hue based
on the dominant (or complementary) wavelength. Dominant and complementary
wavelengths are based on the observation that any colour can be uniquely created
as the additive mixture of a monochromatic colour and a neutral colour. The
dominant wavelength of the colour is the wavelength of the monochromatic colour
(Figure 5.3). Thus. all points on a radial line extending out from the white point in
the (z.y)-chromaticity diagram are defined. in these systems. to have the same hue.
a close approximation to constant perceived hue. The points on a line of constant
hue defined above do not exactly have constant hue perceptually. Their hues in fact
vary slightly. But. because the curvatures of the lines of constant hue are small. the
amount of hue difference is less than the hue shift caused by chromatic induction
and adaptation [Wys86].

In this thesis. we adopt the idea of the DIN Colour System that hue does not
change when a colour is mixed additively with achromatic colours. As shown in
Section 5.1.2. this approach allows us to specify the set of reflectances with same

hue under a given set of illuminants as a linear expression.

The ideas developed in this chapter are based on the following definitions.

Definition 1 (Achromatic Hue Set). The set of reflectances. which may or may
not be physical realizable that have uniformly distributed spectra. called H 4.

The ideal white. w. is an element in this set. All elements in H,4 can be obtained
by scaling the spectrum of white. They appear as achromatic under most light

sources.
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Definition 2 (Constant Hue). Two reflectances have the same hue if they are
related to one another by changing intensity and/or by additive mizing with any
amount of achromatic reflectance in Ha. The set of reflectances with the same hue

as a reflectance r is defined as the constant hue set of r. H,.

Using the DIN Colour System definition of hue. the above definition ensures that

elements in H, have the same hue as r under all illuminants.

Mathematically. the definition states that

réeH. = are H, .

and
rcH, = r+bmeH,.

where a. and b are any positive scalars. n is any reflectance in the achromatic set

H,. and + means additive mixture. The above two statements can be combined

as

reH, = ar+bneH,.

Note that H, does not relate to a single hue sensation: instead. it relates to the set

of hue sensations associated with r under different illuminants.

Constant hue for reflectance as defined above is analogous to hue defined for
emitted lights using dominant wavelength. In fact. when reflectances with a con-
stant hue are projected on the (z.y) plane for a given illuminant. they form radial
lines exactly like hue in the DIN Colour system. Since the set H, is closely related
to lines of constant hue. the hues of reflectances in #, are almost perceptually

identical.

Definition 3 (Complementary Hue). The complementary reflectance T of a given
reflectance r is defined as w —r over the wvisible spectrum. The complementary hue

is the hue associated with the complementary reflectance of a given reflectance.

From the above two definitions. the following theorem must be true:
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Theorem 1. Whenever two reflectances have the same hue. so do their comple-

mentary reflectances.

Proof. Let r; and ra, be two reflectances with the same hue. By Definition 2. the

relationship of r;, and r» can be expressed as
ry = airs + a»n . (5-1)

where a; are real numbers and n belongs to H4. Now consider the complementary

reflectance of r;:

r, = wW—r;.
w — (a,rs + a2n}) .
a(w —r3) +[(1 —a;)w —a-n] .
ay(w—r3)+n’ for n’ = [(1 — a;)w — a»n] .

= alfg + n' .

By the definition of achromatic hue. n’ belongs to H,4. Thus. r; and r» have the

same hue. O

From the above theorem. it can be seen that complementary hue is uniquely de-
termined by the constant hue set. The above definition of complementary hue for a
reflectance is based on its spectral distribution. Roughly speaking. the complement
of green is magenta. and yellow is cyan. Notice that this definition is different
from the complement of unique hue sometimes used in psychophysical literature.
where the complement of green is red. and the complement of yellow is blue. The
complementary hue concept in Definition 2 is analogous to complementary hue as
defined for Lights within the DIN colour system.

With the concepts of constant and complementary hue in place. a constant hue

space can now be defined:

Definition 4 (Constant Hue Space). A constant hue space ?{§ is the space that
contains all reflectances that have the same hue asr or T under a set of illuminants

£.
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At first. it seems strange that a constant hue space includes reflectances associ-
ated with the complementary hue. As discussed in Section 5.1.3 constant hue spaces

defined like this are subspaces of linear reflectance spaces. This greatly simplifies

our later analysis.

5.1.2 Matching Hue under an Unknown Illuminant

Like other colour attributes. the hue sensation of a reflectance is affected by the
viewing illuminant. Because of surface metamerism. reflectances with the same
hue for one illuminant may appear to have different hues under other illuminants.
However. hue difference is not necessary. Based on our definition of constant hue.
it is possible for two reflectances to have identical hue for every illuminant. This
occurs if they are related to each other in one of the two following ways: their
spectra differ only by a constant scale factor: or one reflectance can be obtained
by mixing another with an uniformly distributed reflectance. known as ideal white

spectrum w. which is achromatic.

Thus. when r and r; have the same hue under all illuminants. r; can be expressed

as
r; = blr + bgW - (5.2)

If each reflectance is considered as a vector in the wavelength space. the equation
indicates that all reflectances in the space spanned by the vectors r and w have
the same hue as r regardless of the viewing illuminant. A special case occurs when

b; = 0. In this case. r; = bow is achromatic.

The mathematical equations described so far in this chapter apply to both
physical realizable and nonrealizable reflectances. Now consider how Equation 5.2
can be used to restrict the results to physical reflectances. If the values of b; and b,
are restricted to positive real numbers. reflectances that are more saturated than r
cannot be expressed even though they have the same hue as r. This problem can
be solved by using negative values for b,. However. this complicates the process of

determining whether or not a reflectance is physically realizable. Alternatively, it
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wavelength (nm)
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(b) (c)

Figure 5.4: Saturated reflectance corresponding to a reflectance (shown in (a)) can

be obtained by first subtracting its neutral component (b), followed by scaling (c).
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is possible to use the reflectance with maximum saturation r, to express all other
reflectances of same hue. The variable r in the above equation is then replaced by
r, (Figure 5.4).

The spectrum of any maximally saturated reflectance r, has 0 as its minimum
value. and 1 as its maximum value. i.e.. miny r,(A) = 0 and max)r,(A) = 1. r, is

thus determined by the following two steps:
ry=r-— m}nr(A) w

and
rp
rg=———
maxy 71 (A)
Note that the above procedure does not work for reflectances with spectra of which

are uniformly distributed. In such cases. r, is simply defined as O.

When r is in a reflectance space R. the saturated reflectance defined above is
also in R since it is obtained by adjusting the coefficient of the first basis vector in
r. followed by scalar multiplication. Every r € R can be expressed as

r= blr, +b‘_)W .

Using this representation. any reflectance that is not physically realizable can
easily be identified. Since every saturated reflectance has the value zero somewhere
in its spectrum. any negative value in the resultant reflectance r is contributed by
the white component. Thus. any reflectance that has negative values in its spectrum
has b, < 0. and every b, < 0 has negative values and is therefore unphysical. On
the other hand. since both r, and w have the maximum value of 1 in their spectra.
any (b; + b») value larger than 1 results in a spectrum with values higher than 1.
Consequently. any physically realizable reflectance r, that has the same hue as r,

can be expressed as
rp, = br, + byw. (5.3)

with 0 < b;.0, < 1 and (b; + b,) < 1. Conversely, when 0 < b;.6, < 1 and
(b1 + b2) < 1. the smallest possible value in the spectrum of r, is 0. and the largest
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is 1. Thus. r, is physical realizable. In summary. a reflectance r, is physical
realizable if and only if it can be expressed as Equation 5.3 with 0 < b;.5, <1 and
(by + b2} < 1.

In fact. r, can also be represented in parametric form:

r, =r(a.B) =pB(ar, + (1 —a)w) .

for 0 < a.p < 1. Notice that the complementary reflectance r, of r,. which is
defined as r, = w —r,. also lies in the space spanned by r, ard w. Consider the

following equations:

I, = W-—r,
= w — (bir, + baw) for r, = byr, + baw
= —blrs + (1 - bZ)w

= ¢iF, + CoW forec; =—b; and ¢ =1-5,.

Since 0 < b;.5, < 1.1t follows that —1 < ¢; < 0 and 0 < ¢; < 1. Furthermore.
0 < ¢1 + ¢2 < 1. The last equation shows that all reflectances with the same hue as

the complement of r lie in the space spanned by r, and w.

With the saturated reflectance r, and the ideal white reflectance w. all re-
flectances that can be represented as a linear combination of r, and w have the
same hue as r, or as its complement ¥, = W — r,. regardless of the viewing illumi-
nant. By simple linear algebra. the constant hue space of r, is a 2-dimensional linear
subspace in the wavelength space. The achromatic reflectance, w. is an exception.

Its constant hue space is a one dimensional space aligned with the achromatic axis.

As discussed above. the constant hue space is a 2-dimensional subspace. In fact.
this is the most restricted case in the sense that the reflectances in the subspace
match in hue under all viewing lluminants. This 2 dimensional space is called the
universal hue plane to emphasize that it is illuminant independent. In the following
sections. we will investigate what happens to the constant hue space for a specific

set of illuminants.
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5.1.3 Matching Hue with a Single Light Source

Most commonly used device independent colour spaces are 3-dimensional. all colours
being specified with respect to a given viewing illuminant. Colours with the same
hue as defined by Definition 2 are a 2-dimensional subset of the colour space. As
shown in the following paragraph. the manifold of constant hue lies on a plane in
any colour space that is a linear transformation of the CIEXYZ space: whereas. the

manifold lies on a curved surface in nonlinear spaces. such as the CIELAB space.

In any 3-dimensional linear colour space. the set of reflectances identical in hue.
with respect to the Definition 2. can be easily identified. Consider the colour point
P..in CIEXYZ colour space. the colour of reflectance r under an illuminant 1;. Any
reflectance that has the same hue as r is a linear combination of r and the ideal
white reflectance w. Because tristimulus value computation is linear. the set of
colour points with the same hue as P, can be expressed as a linear combination of
P. and the white point P,. In other words. they lie in the plane defined by the
achromatic axis and the line segment connecting the colour point P, and the ideal
black point P, in the colour space. Thus. the colours produced by illuminating a
constant hue space H’ are a 2-dimensional subspace of CIEXYZ space spanned by
the vectors P, P, and P,P,,. In effect. an illuminant imposes a single linear equation

of constraint that defines the colours in a constant hue space.

Now consider the constant hue space generated by a given reflectance r, ina N
dimensional linear reflectance space R. Let I; be the illuminant under consideration.
As described in Chapter 4. r, can be divided into two components: a pseudo funda-
mental component f;', € Fr, and a metameric black component b, € Bz;. Recall
that Fx; is a 3-dimensional subspace that contains reflectance components that
always cause non-zero colour sensation. and Bg; is a N — 3 dimensional subspace
that contains the components invisible to normal observers. For any reflectance
ry € R that has the same hue as r; under l;. the pseudo fundamental component

f,. € Fr, can be expressed as

7] ! f
fy'_ = azf:'_ + a.f,, .
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where f/, is the pseudo fundamental component for the ideal white reflectance. and
a, and a, are real numbers. When r_ is not an achromatic colour. f;i is linearly
independent of f,, . The pseudo fundamental components of the set of reflectances
with the same hue as r, thus make up a 2-dimensional subspace in Fx,. Any
reflectance that can be expressed as a linear combination of f, . f,, and the basis

of Bg,. b;j. is in the constant hue space 'Hf.:.

Since Bg, is a N —3 dimensional subspace and both f__ and f;, are orthogonal to
Bz, by definition. it follows that the constant hue space in R under the illuminant
l; is a N — 1 dimensional subspace spanned by f_ . f,,. and b;;.

To determine the constant hue space H, for a refiectance r € R under an il-
luminant ;. the following procedure can be used: (1) partition R into the pseudo
fundamental subspace Fg, and the metameric black subspace Bx; using the meth-
ods discussed in Chapter 2. (2) compute the pseudo fundamental components of r
and ideal white reflectance w. (3) use the pseudo fundamental components of r. w.

and the basis of Bg, as a basis to construct the constant hue space H.,.

5.1.4 Matching Hue with Multiple Light Sources

With a method for constructing a constant hue space for a single illuminant. the
constant hue space for multiple illuminants can be easily found. Consider finding
the constant hue space of r for illuminants 1; and I;. Let 'Hi be the constant hue
space of r under illuminant I;. Then the set of intersection of H; and H? contains

all reflectances that have the same hue as r for both 1, and I,.

The same idea can be extended to several iluminants. In that case. the constant
hue space HE is defined as

N
HE = ﬂ HE .
=1

where E represents the illuminant set under consideration. Since the intersection
of subspaces is always a subspace [FIS89]. 'Hf is a subspace of R.
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In general. as the number of illuminants increases. the dimension of HE de-
creases. However. when a constant hue space is constructed from the basis of
a illuminant space. the dimensionality of the constant hue space is not reduced
for any additional illuminant from the illuminant space. As shown by Wyszecki
[WS82]. daylight is well approximated as a linear combination of three spectral
distributions. As a result. the constant hue space in R for these basis spectra
has dimension N — 3. which is invariant with respect to the number of daylight
illuminants. In fact. when a new illuminant is added only the part of it that is
linearly independent of illuminants already taken into account affects the constant
hue space. Since artificial illuminants often have components independent of the
daylight basis. the dimension of a constant hue space is usually decreased when
artificial illuminants are added. This is one of the reasons why -~daylight™ is so
commonly used as reference in graphic arts applications [AFR96]. Note that the
lowest dimension of a constant hue space is two since both r and w. which are

linearly independent of each other. are always in every subspace of H:.

5.1.5 Summary

We have found a way to to determine whether two reflectances have the same hue
under a given set of illuminants. Given the definition of constant hue space. the set
of reflectances with same hue can be found by intersecting the constant hue space
for each illuminant. Thus. it is possible for a reproduction process to retain the

original hue for a set of illuminants by using reflectances from the same constant

hue space.

5.2 Lightness in Reflectance Space

Lightness is a second important attribute that affects the colour appearance of an
object. As discussed in Chapter 1. many gamut mapping algorithms try to preserve
the lightness of original colours. while others change lightness depending on the



CHAPTER 5. COLOUR ATTRIBUTES IN REFLECTANCE SPACE 80

saturation of original colours. To accommodate these different requirements for
reflective data. it is important to understand how lightness fits into a reflectance
space. In this section. the subspace of constant lightness in a reflectance space
is discussed. I show that chromatic and achromatic colours do not. in general.
retain relative lightness under different illuminants. In fact. the rate of of lightness
change due to illuminant change depends on how far a reflectance is away from
the achromatic axis in the reflectance space. which is a measure of its saturation
(Section 5.3).

5.2.1 Constant Lightness in Reflectance Space

The usual equations for computing the lightness of a reflectance r are restated

below:
. Y . Y
Y Y
R B3 X (=) — < 0. . .
L 903.3 x () for - < 0.008856 (5.5)

The luminance. Y. and the reference white luminance. Y. are computed using

Equation 2.1:

Y=Y rA)8xdh and Yo=Y w(h)®si
i=1--N i=1--N
The above equations state that the lightness of a given reflectance is proportional
to the cube root of its luminance divided by the luminance of reference white. Since
each reflectance is obtained by normalizing the measured spectrum with respect to
the spectrum of reference white. the normalized reference white reflectance is unity
across the visible spectrum. and its luminance value is constant for any given illumi-
nant. L~ can thus be rewritten as a x Y's with a = 116.0 x(1/Y,)*® or 903.3x(1/Y§1)§T.
depending on the ratio of Y and Y,,. As a consequence, two reflectances that have
the same luminance always have equal lightness. Since constant luminance implies
constant lightness. and since luminance can be calculated linearly, luminance is

used for discussing constant lightness.
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The computation of luminance can be expressed in matrix form. Let Y¥; be

the luminance of a reflectance r under lluminant ®;. As in Chapter 2. ¥; can be

expressed as
Y=y'Eir=g;-r. (5.6)

where y is a vector of the luminance function. 7(A;). and E; is the N x N diagonal

matrix with ®;A; in its (j.j) entry. and g; = yE; is the luminous vector of ®;.

When g; is considered as the generator of a one dimensional subspace G; in a
wavelength space. the wavelength space W is the direct sum of G; and the null
space of g;. i.e. W = G; ® N (g;). Equation 5.6 can be considered as the projection
of r on the subspace G;. Clearly. N'(g;} is 2 N — 1 dimensional subspace of W that
contains all reflectances with zero luminance under illuminant ®;. The following
theorem shows that the coset of r + A (g;) defines all reflectances that have the

same luminous values as r.

Theorem 2 (Equal Luminance). A reflectance r; has the same luminance as r
under ®; if and only if r; is in the coset of r + N (g;).

Proof. Suppose r; € r + A (g;). Then. there exists a Ar € N (g;) such that r; =
r+Ar. The luminance difference between r; and ris: AY; = g;(r;—r) =g,;-Ar = 0.

Conversely. let r; be any reflectance that has the same luminance as r. i.e..
AY; = 0. For Ar = r; — r. Ar must be in the null space M(g;) since AY; =
g; - Ar = 0. Thus. r; must be in the coset of r + N (g;). O

In follows from the above theorem that a reflectance r* equal in luminance to r
for n different illuminants must be in every coset of r + N(g;) for j = 1.... .n.
That is r” € ();(r + NM(g;)) =r + N; N(g;). The elements in the the subspace of
N, N (g;) are those that have zero luminous values for the 7 illuminants. Consider

the multiple illuminants version of Equation 5.6:

Y=LA,r=Gr. (5.7)
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where L is the n x N matrix obtained by stacking the n row vectors of l;. and
G = L A, is the luminous matrix of the illuminants. As mentioned before. any r
that is mapped to 0 value of Y associates with a reflectance in (); A/(g;). Therefore.
N(G). the null space of G. corresponds to the set of [}; M(g;). Once N (G) is
determined. reflectances that have the same luminance as r can be obtained by

adding r with any reflectance difference Ar € N(G).
The dimension of A (G) depends on the rank of row space of G. rank(G). It

is equal to N — rank(G). If. for example. the sources of illuminations for viewing
are natural daylight. which can be effectively represented by a linear combination
of three spectra [WS82]. N(G) is a N — 3 dimensional space. Generally speaking.
the more illuminants used. the smaller the dimension of AN (G). As a result. there
are fewer reflectances that preserve luminance under all the lluminants.

5.2.2 Changes of Lightness Due to Illuminant Changes

Unless the spectral difference between two reflectances belongs to A'(G). the light-
ness relationship between two reflectances can vary with changes of illuminant. How
this happens can be understood by inspecting Figure 5.5. In the figure. the lumi-
nous vectors. g; and gs. for two illuminants ¢, and &, are shown. These vectors
make up a 2-dimensional projection space. Each point in the space corresponds to
a unique luminance pair. For example. the luminance pair for r is (Y;;.Y¥,,). which

corresponds to the projecticns of r on the luminous vector g; and g,. respectively.

As shown in the figure. the projection space for the two illuminants is divided
into four regions by the projection lines. Any reflectance that has a projected value
lying below the projection line for g; is smaller in luminance than r under ®,; any
reflectance that has a projected value lying on the left side of the projection line
for g, is smaller in luminance than r under ®,. Thus. the region marked as B
in the figure contains all projected reflectances that are smaller in luminance than
r for both illuminants. Similarly. region C contains all reflectances with higher
luminance than r for both illuminants. Reflectances in region A are higher in
luminance than r under ®;. but lower than r under ®&,. Reflectances associated
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Figure 5.5: The projection space for two illuminants. g; and g¢,. is divided into four
regions which associated with certain luminance relationship with the reflectance r.
For reflectances associated with regions B and C. the luminance relationship with
r remains the same under both illuminants. For reflectances in regions A and D.

the relative illuminance depends on the iluminant.
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(a) )

Figure 5.6: The sizes of regions A and D determine the number of useful reflectances
available for colour reproduction. The two luminous vectors are very close to each
other {a). which corresponds to the much smaller regions of A and D compared to

those have luminous vectors separated wide apart (b).

with the region D are the reverse. In summary. for reflectances associated with
regions B and C. the luminance relationship with r remains the same under both
illuminants. However. for reflectances in regions A and D. the relative illuminance

depends on the illuminant.

Changes of lightness relationships when the illuminant changes cause problems
for colour reproduction. Imagine. for example. that an original has two colours.
one darker than the other. The relative lightness should be preserved in the repro-
duction. If the lighter reproduced colour lies in region A. as defined by the darker
colour. it is lighter under ®,. However. if the illuminant is changed to ®,, it is
darker. which is not desired. To avoid unexpected changes of lightness, reproduc-
tion algorithms should use only those reflectances that have consistent lightness
relationships for all relevant illuminants. Specifically. only reflectances that corre-
spond to regions of B and C should be used.
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H.P.
A D50 D65 F7 Sodium
A - 12¢ 16° 22° 42°
D50 12° - 3° 17° 49°
D65 16° 3° - 18° 51°
F7 22° 17° 18° - 50°
HP Sodium 42° 49° 51° 50° -

Table 5.1: Angles between luminous vectors of two light sources

The sizes of regions A and D. compared to the size of B and C. determine
the number of useful reflectances available for colour reproduction. The more sim-
ilar the spectra of two illuminangs. the smaller the sizes of regions A and D. The
measurement of closeness can be done by computing the angle between the cor-
responding luminous vectors. Figure 5.6(a) shows two vectors that are very close
to each other. producing small regions A and D. By contrast Figure 5.6(b) shows
luminous vectors widely separated. As shown in Table 5.1. luminous vectors of nat-
ural illuminants. such as D50 and D65. are close together: whereas. the luminous
vectors among the artificial illuminants are far apart. Thus. when the reproduction
is to be viewed under artificial lighting. great care must be taken in selecting the

reproduction reflectances.

5.2.3 Lightness Changes for Chromatic Colours

From Equation 5.6. it is easy to see that the ratio of Y/ Y, for uniformly distributed
reflectances remains constant when the illuminant changes. As a result. the light-

ness of these reflectances are constant for all lluminants. However. the lightnesses

of other reflectances vary with illuminant.

The rate of change of lightness depends on its relative position with respect to
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Figure 5.7: The changing of illuminant has different impact on luminance for differ-
ent reflectances depending on their relative location in its universal hue plane. The
luminance of the most saturated reflectance (& — 1) in a constant hue plane is more
sensitive to illuminant change. while the luminance of the desaturated reflectances

(a — 0) are less sensitive to illuminant change.
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the ideal white w and the most saturated reflectance r, in the universal hue plane.
which was defined in the Section 5.1.2. Now consider the change of luminance of a
reflectance r. Assume the luminance of r, to be Y;; and Y, under illuminants &,
and ®,. respectively. r can be expressed as a linear combination of r, and w. Its
luminous values. Y;; and Y;,. are the same linear combination of Y,; and Y,; under
®,. and of Y;» and Y, under .. When r is expressed as r = G(ar, + (1 — a)w).
for 0 < 3.a < 1 (Figure 5.7). the change of luminous value is

AY, = gir—gr
= giB(ar, + (1 - a)w)] — g,[B(ar, + (1 — a)w)]
= of(girs — gors) + B(l —a)(g; — 82)W
= of(Ya —Ye2) + B(1 —a)AY,
= apBAY, +B(1 - a)AY,
= pBaAY, + (1 — a)AY,)

The above equation shows that changing the illuminant has different impacts on
the luminance of different reflectances. and that the difference depends on relative
location in the universal hue plane. For a fixed a value. AY; increases as the value
of 3 increases. Thus. larger changes in luminance are expected for reflectances
with larger 8 values. In other words. larger changes in lightness are expected for

reflectances with larger 3 values.

For a fixed 3 value. the a value can be viewed as varying the ratio of luminance
change of the saturated reflectance and of the ideal white reflectance. The value
of AY,, reflects the difference in luminance between the two illuminants. We want
to factor out this effect because it is common to the whole image. We adjust the
brightness of the second illuminant until AY;, = 0. Then the change of lightness due
to the change of illuminant is larger for reflectances with larger a values. in which
the saturated reflectance has larger influence. In summary. the most saturated
reflectance in a constant hue plane always has the largest lightness change owing

to the change of illuminant.
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5.2.4 Summary

In brief. it is possible to retain the luminance of a reflectance in the reproduction
process. However. if maintaining luminance is not wanted. care must be taken
to ensure the relationship between the original and reproduction luminances is
consistent under the possible viewing illuminants. As shown in the previous section.
luminance changes due to change of illuminant are varied across a constant hue
plane. This may explain why maintaining lightness is not as important as hue.

which is changed in the same direction as lluminant changes.

5.3 Saturation in Reflectance Space

Saturation is the last colour attribute that affects colour appearance. Even though
saturation is not as important as hue or lightness for colour reproduction. it still
has a major impact on the quality of a reproduction. This section describes the
relationship between the spectrum of a reflectance and its saturation. and studies

how saturation changes within a hue plane.

5.3.1 Reflectance and Saturation

Saturation describes the colorfulness of a colour. Basically the more achromatic
component a reflectance has the less saturated it is. The Commission Internationale
de I'Eclairage defines an objective function for saturation in the CIELUV space as

follows:

3

sw = 13 [(v' —up)? + (v — v,)’]
where

" 4 X/(X +15Y +32) .
v = 9Y/(X +15Y +3Z).

il
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Figure 5.8: The chromaticity diagram of CIELUV. Saturation increases as colour

points are located further away from the lightness axis.



CHAPTER 5. COLOUR ATTRIBUTES IN REFLECTANCE SPACE 90

with X. Y. Z the tristimulus values of the target colour. and u; and v, the value
of v’ and v’ of the reference white. respectively. As shown in Figure 5.8. saturation

increases as colour points are located farther away from the lightness axis.

To determine how the position of a reflectance r on a constant hue plane re-
lates to its saturation. s,,. we express r as a linear combination of the ideal white
reflectance w and the most saturated reflectance r, of the plane (Equation 5.3).
Now consider the set of reflectances with a fixed a value. Let (sx. sy-- sz) and (wx-
w,-. w;) be the CIE XYZ values for r, and w. respectively. For any reflectance

r = 3 ( ar, + (1 — a) w). the tristimulus values (rx.ry-.7;) are

Ty = PBlasx +(1—a)wy)
Ty = PBasy+ (1l —a)wy)
r, = Blasz+(l—-a)wz).

Let ryyz = rx + 157y +37; and wxyz = wx + 15w, +3w,. The value of (u. —u! )

is

u, —u, = frx  Lwx (5.8)
Txyz Wxyz
Basx + (1 —a)wy) Wy J
4 - 5.9
[.B (asxyz + (1 — a)wxyz) Wxyz ( )
(asx + (1 — a)wy) Wx ]
_ 4 _ : 5.10
[( asxyz + (1 —a)wyyz) Wxyz ( )

and the value of (v, — v ) is

(5.11)

(asy + (1 — a) wy) Wy- ]

v.—v, = 9 [ —
( QaSyxyz + (1 - a) wxrz) Wxyz

The above equations show that the values of (. —u! ) and (v. —v.,) are independent
of the B value. Consequently, saturation of a reflectance is not affected by the
changes of 3 value. In other words. the points that lie on a line emerging from
the null point in a reflectance space. which all have a constant a value. always
define a set of reflectances having constant saturation (Figure 5.7). As shown in

the equations. reflectance saturation is determined by the value of c.
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Equation 5.8 and Equation 5.11 can be viewed as a projection from CIEXYZ
to CIELUYV spaces. The projection is monotonic in the sense that the values of
(w. — u!) and (v! — v) increase as a increases. This feature is often found in a

trichromatic colour space [Hun95].

5.3.2 Summary

Saturation varies with «. but remains constant as J changes. As the result. re-
flectance has high saturation when it is located farther away from the ideal white
axis within a constant hue plane. This topological property for saturation is com-
monly found in other colour spaces. Thus. ideas about how to handle saturation

for conventional colour space can be adopted easily in a reflectance space.

5.4 Possible Mapping Methods

From the discussion of sections 5.1 to 5.3. we see that developing a satisfactory
gamut mapping algorithm for reflectance data is possible. but nontrivial. In this
section. two mapping methods are discussed to illustrate how reflectance data can
be used in the colour reproduction process. Both methods maintain hue. which is

the most critical colour attribute for colour reproduction.

5.4.1 Hue Mapping that Minimizes Surface Metamerism

The basic idea of this approach is to choose the reflectance that most closely matches

the original reflectance spectrum while maintaining its hue.

As shown in Section 5.1. those reflectances that have the same hue under a
set of given illuminants are a subspace of the reflectance space. This subspace is
easily found once the fundamental component of the original reflectance for each

illuminant is known. The original reflectance is then projected orthogonally to the
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subspace. The result of projection is the reflectance that has the minimum mean
squared spectral errors. This reflectance should be used to reproduce the original

reflectance.

This approach preserves hue. However. the relative lightness and saturation
among the reflectances may not be maintained since closeness of spectral reflectance

does not guarantee identity of lightness and saturation.

5.4.2 Barycentric Mapping on the Universal Hue Plane

An alternative approach that better preserves the relative lightness and saturation
uses barycentric coordinates. To map a given reflectance into a reflectance space.
the barycentric coordinates of the reflectance are defined with respect to a triangle.
the vertices of which are defined by the ideal white and black points and the point
of the most saturated reflectance in the corresponding hue plane. A corresponding
target triangle lying on the hue plane with the same hue as the original in the
output reflectance space is also found. The same barycentric coordinates define a

point in the target triangle to reproduce the original reflectance.

This mapping is similar to the triangular gamut mapping defined by Morovic
and Luo [ML97] except that the mapping is applied in reflectance space instead
of a trichromatic space. This approach is able to maintain relative lightness and
saturation. and also to maximize luminance contrast since the whole luminance
output range is used. In addition. saturation is maximized in the reproduction
since reflectances lying on the gamut boundary are mapped onto the boundary of
the output gamut. However. the possibility that lightness will be altered excessively.
noted by Morovic and Luo. exists when the shapes of input and output gamuts are

very different.
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5.5 Conclusion

To develop a colour reproduction process based on perceptual colour attributes in
reflectance space. the relationships between reflectance and colour attributes must
be understood. Since colour attributes are affected by the viewing illuminant. the

colour attribute of a reflectance viewed under several illuminants is not unique.

Fortunately. in most cases the absolute values of the colour attributes are less
important for the colour reproduction process than are relative values. For example.
the exact perceived hue of a reflectance does not have to be known in order to find

reflectances with the same hue under several different illuminants: the hue subspace

in reflectance space identifies them easily.

This chapter identifies how to determine the constant hue subspace. and the
coset space for reflectances that are identical in lightness. Thus. reproduction
algorithms that preserve hue and lightness are possible in reflectance space. Fur-
thermore. the distribution of saturation within constant hue planes in reflectance
space is similar to that of other colour spaces. Since the topological properties of
the colour attributes are very similar in reflectance spaces and in illuminant depen-
dent colour spaces. conventional algorithms that operate on a constant hue plane

in trichromatic spaces are easily extended to reflectance space.



Chapter 6

Device Control Values for

Reflective Images

Once the output colours are determined. a backward transformation is needed to
calculate corresponding device control values. For reflective images. pixels are rep-
resented in reflectance coordinates. The domain of the backward transformation is
a reflectance space rather than the usual CIE colour space. Except for operating
in a different space. backward transformations for reflective images and for normal
colour images are very similar. Thus. current techniques for backward transforma-

tion are expected to perform well for reflective images.

As mentioned in Chapter 2. either model based or colour lookup table (CLUT)
approaches can be used to determine the relationship between control values and
output colours. If a mathematical model is available for a device. it may be possible
to determine control values from the inverse of the model: otherwise. control values
are approximated by interpolating data in a CLUT.

Since the backward transformation has to be performed for every pixel while
printing. it must be efficient for any practical application. Because of its high com-
plexity. the model-based approach is seldom used for the backward transformation
in practice: instead. the CLUT approach, which provides high speed performance,

94



CHAPTER 6. DEVICE CONTROL VALUES FOR REFLECTIVE IMAGES 95

is the most common choice.

Speed and accuracy are the two most important factors for developing an ef-
fective backward transformation. Unfortunately. these two factors are in conflict
with one another. This conflict is exacerbated further for reflective image reproduc-
tion because images are represented in a higher dimensional space. For reflective
image reproduction to be possible in practice. further improvements in backward
transformation technique are needed. To address this problem. a new cell-finding
algorithm based on a divide-and-conquer strategy is developed in this section. It
finds the correct cell using an amount of processing that is logarithmic in the num-
ber of CLUT cells. This performance does not depend on evenly spaced samples in
a reflectance space. Given this performance. the size of the CLUT can be increased.

As a result. higher accuracy conversion using this search algorithm is possible.

In this chapter. I describe the concepts of backward transformation using a
CLUT. The relationship between accuracy and speed is examined. In the later
sections. the newly developed algorithm is described. An analysis of its performance

i1s also presented.

6.1 Backward Transformations Using Colour Lookup

Tables

As for the forward transformation. CLUT-based backward transformations deter-
mine the device control values of a given colour by first locating the cell that encloses
the colour point. The corresponding cell in the device space. identified through the
CLUT. is then used to approximate the target control values. The operation that
locates the enclosing cell is referred to as eztraction: approximation is done by
interpolation.

Ezxtraction and interpolation are the two critical operations that determine the

performance of a backward transformation. Specifically. extraction most influences

speed. while interpolation most influences accuracy. However, the two operations
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are related in the sense that they are both affected by the size of the CLUT. A large
CLUT allows data to be approximated more accurately by the interpolation step.
but a longer time is needed to locate the cell during extraction. In contrast. a small
CLUT allows fast extraction but poor interpolation. Backward transformation can
be improved by increasing the speed of extraction or the accuracy of interpolation.
This section compares different ways of doing these two operations. emphasizing

their effect on the performance of backward transformation.

6.1.1 Extraction

The sole purpose of extraction is identification of the vertices of an enclosing cell 1n
a CLUT. Thus. speed is paramount for extraction. Data can be found in a CLUT
by searching or indexing. The performance of either process depends strongly the
structure of the sampling distribution used to construct the CLUT. In general.
locating an individual point from a well structured sampling distribution is much

easier than from an unstructured one.

CLUT sampling distributions with N sample points in a d-dimensional colour

space can be classified into the following five categories.

Uniform Sample points are equally spaced in each dimension of a colour space.
N =n; X na X --- x ng ~ n%. where n; is the number of sampling points in
dimension . and n is the average number of sampling points in each dimen-

sion.

Orthogonal Sampling locations are the cartesian products of the nonevenly dis-
tributed spacing in each dimension of a colour space. The distribution can be
visualized as a set of parallel planes orthogonal to each axis of a colour space.
As for the uniform distribution. N = nd.

Pseudo-uniform Sample points are obtained from a uniform sampling in device
coordinates. The corresponding distribution in the colour space is not regular.
but systematically deviates from a set of parallel planes. With n the average

number of sampling points in each dimension. N == nf.
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Pseudo-orthogonal Sample points are obtained from an orthogonal sampling in
device coordinates. The corresponding distribution in the colour space is not
regular. but systematically deviates from a set of parallel planes. Similar to

a pseudo-uniform distribution. N =~ n¢.

Random Sample points are not structured. either in device coordinates or in
colour space. The average number of sampling points in each dimension.

n. is approximately equal to VN

For uniform CLUT. indexing locates the entry of a given data point. By strip-
ping off the low order bits of the data values in each dimension. the position of the
corresponding entry is identified directly. Since no searching is done. the process-
ing time is independent of the size of the CLUT. The computational cost. which
depends only on the dimensionality of the colour space. is O(d). With this regular
structure. a large CLUT can be used to improve accuracy of interpolation without

affecting the speed of extraction.

For orthogonal CLUTs. a series of comparisons is performed. one series per di-
mension. to determine the range in which a given point lies. The set of comparisons
identifies the cell. With binary search. the total number of comparisons needed is
dlog(n). Since the number of comparisons increases with the number sample points

in each dimension. the performance decreases as the size of CLUT increases.

For pseudo-uniform and pseudo-orthogonal distributions. the CLUT is created
by measuring a set of sample data regularly spaced in device coordinates. Thus
forward transformations are easily made efficient. As for the random CLUTs. how-
ever. the corresponding distribution in colour space is unstructured. Thus. it is dif-
ficult to obtain high speed extraction for backward transformations. To solve this
problem. remapping is usually performed to construct a more structured CLUT.
However. the accuracy of this approach is limited by cumulative approximation
errors: one from measurement errors when constructing the CLUT. the other from
interpolating colour values within a cell. Thus. a fast searching algorithm that does

not compromise accuracy is often needed.
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Several techniques have been proposed to speed up extraction. One widely used
method is bounding box detection. the same idea that speeds up ray tracing in
computer graphics. The idea is to enclose each cell by a regularly shaped polyhedron
for fast detection of enclosure [NKP92. Hun93]. For example. when a rectangular
bounding box is used. points that are not located between three sets of parallel
planes associated with the bounding box of a cell are simply rejected. after which
a further test for cell enclosure is performed. Because most bounding boxes do not
contain the target point. the simplified enclosure test provides better performance
by reducing the number of costly operations needed to determine point enclosure in
an irregularly shaped cell. However. the need to check every individual bounding

box for every pixel is still very expensive.

Improvement is possible if each cell is a simplex. an (m+1)-vertex polytope in
a m dimensional space. Using Delaunay tetrahedrization. Bell and Cowan [BC93]
developed a walking algorithm that can find the enclosing tetrahedron much faster.
Any point outside a given tetrahedron has at least one negative barycentric coor-
dinate when represented in terms of the four vertices. Based on this observation.
after finding the point is not inside the current tetrahedron. the algorithm checks
the tetrahedron that shares the facet with the most negative coordinate. The pro-
cess finds the enclosing tetrahedron by walking through the tetrahedra until all
barycentric coordinates are positive. Bell and Cowan showed that on average it
needs to traverse O(n) tetrahedra. where n is the number sample points on each
axis. They also discussed using a binary space-partitioning algorithm to locate the
enclosing tetrahedron. but the computation cost was higher than for the walking
algorithm. Even with these fast algorithms. the computational cost for extraction

from an unstructured sample distribution is too high.

6.1.2 Interpolation

After the cell that contains the target point is located. interpolation is performed
to approximate the desired control values. Interpolation approximates between

the sample points. Speed and accuracy are the two major criterion for evaluating
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interpolation technique in a colour reproduction process. Of linear and nonlinear
interpolation. linear interpolation provides faster performance. whereas nonlinear

interpolation provides better accuracy.

Because of its simple implementation and excellent performance. linear interpo-
lation is widely used. Many researchers have developed linear interpolation tech-
niques specifically for colour reproduction. All algorithms are multiple applications
of one dimensional linear interpolation. These techniques can be differentiated by
the way the sample points are chosen for computing a target value. i.e.. how cells

are constructed for interpolation.

When the entire 3D device gamut is made up of cubic cells. the eight corner
points are used as input for trilinear interpolation [Kan96]. Four linear interpola-
tions are first applied to determine four interpolated points along the parallel edges
of the cube. then two linear interpolations are applied on these. using two pairs of
edge points to locate another two points on the opposite faces of the cube. The tar-
get point is then approximated by linearly interpolation of the last two interpolated
points (Figure 6.1(a}).

Other interpolation techniques [Pyg74. SIT8. Fla82. KFK92] use cells of prisms
or tetrahedra. Six and four lattice points form a cell for prismatic and tetrahedral
interpolation. respectively. The cells are created by slicing a cubic cell into sev-
eral polyhedra. For prismatic interpolation. a cube is first sliced into two halves
to obtain two triangular prisms. interpolation is then applied to whichever prism
contains the target point. Linear interpolations are performed along two axes to
obtain a point on each triangular face. The target point is obtained by the linear
interpolation of these two points (Figure 6.1(b)).

For tetrahedral interpolation. a cubic cell is sliced into six tetrahedra. Since the
tetrahedron is the 3-D simplex. its interpolation scheme amounts to determining
barycentric coordinates of the target point within the tetrahedron. Using the fol-
lowing equation the target point P, is represented by a linear combination of the

four vertices:

P, = a,v, + asvs + azvs + agv, -
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©

Figure 6.1: (a) Trilinear interpolation: (b) prism interpolation: and (c) tetrahedral
interpolation are shown in the figure. Sample points are represented in dark circles.

the intermediate interpolated points are in white circles. and the source points are

in shaded circles.



CHAPTER 6. DEVICE CONTROL VALUES FOR REFLECTIVE IMAGES101

where a; are positive coefficients. with 3 .a; = 1. Compared to other geometric
interpolations. tetrahedral interpolation is the least expensive to compute (Figure
6.1(c)).

The major challenge for linear interpolation is ensuring that interpolation errors
are low enough to produce satisfactory accuracy. The success of linear interpolation
relies heavily on the assumption that surfaces in a device gamut are well approx-
imated by linear surfaces. When this condition is not met. interpolation errors
can be high. When non-linearity is present. the sample points in the CLUT must
be dense to avoid excessive errors. Usually this is not possible without excessive

measurement cost. To solve this problem. nonlinear interpolation can be used.

As discussed in Chapter 3. nonlinear interpolation generally performs much bet-
ter for colour devices with nonlinear transfer functions. To improve efficiency. how-
ever. nonlinear interpolation is not applied directly to sample data during printing.
Instead. a CLUT large enough for linear interpolation is constructed by interpolat-

ing the sample points nonlinearly.

The procedure is the following.

1. Measure a small number of sample points. usually evenly distributed in the

device space.

Choose a suitable nounlinear function to model the transfer function of a de-

o

vice.
3. Determine the parameters of the function from the sample point values.

4. Use the function to compute the values of extra points that lie between the

sample points.
5. Use these extra points to build the large CLUT.

Step (3) is a data fitting process that determines a set of parameters of the
function chosen in step (2). Many nonlinear functions have been used to approx-
imate the transfer function. including Bell functions [RK93], third-order polyno-
mials [Hun93]. and cubic spline functions [BC94]. These nonlinear functions can
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produce better results than simple linear interpolation methods. However. there
are no guidelines for determining which nonlinear function should be used for a

given device. Further research is needed in this area.

6.2 A Fast Extraction Algorithm for the Back-
ward Transformation

Except uniform CLUTs. the processing time required for the backward transfor-
mation is often directly proportional to the size of a CLUT. With a large CLUT.
better accuracy can be obtained from linear interpolation. but the time required
for extraction is longer: with a smaller CLUT. extraction time decreases at the cost
of worse accuracy. This tradeoff poses a constraint for the speed of extraction at
a given level of accuracy. For high dimensional colour reproduction to be practi-
cal. this constraint must be loosened. To achieve this. a new searching algorithm
was developed [CC97]. This algorithm provides high speed searching. with cost
roughly logarithmic in the size of CLUT. As a result. high speed performance can

be obtained without sacrificing accuracy.

6.2.1 Basic Idea

The proposed algorithm provides a fast colour transformation method for all colour
reproduction processes. For illustration purpose. a CMY device space and the
CIELAB colour space are used to describe it. The problem is to determine the
CMY value corresponding to a given L*a*b* value within the printer gamut. It
assumes only that the forward transformation from a CMY value to its L*a*b*
value is cheap to evaluate. As discussed earlier. this is easily accomplished by using
a uniform CLUT followed by interpolation.

The proposed extraction algorithm uses a divide-and-conquer approach, analo-
gously to binary subdivision. Initially. the algorithm uses the minimum and max-
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Figure 6.2: Regions defined by the contour curves of Cy and My. Each region has
a well-determined relationship on one of the CMY coordinates. The current point
(CMY)o advances to the next point (CMY'); based on the region in which the

target L*a*b* value locates.
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imum colour values as the lower and upper bound for the colour components of
the target CMY value. It starts with an initial CMY value. (CMY)o. for which
L*a*b* has been measured to have the value (Lab)o. In the neighbourhood of
‘(Lab)o the entire L*¥a*b* space is partitioned into regions. with each region having
a well-determined relationship to one of the CMY coordinates. For example. one
region has C > Cy. another has M > M,. and so on (Figure 6.2). The colour
space is completely filled by the partition. which is approximated using only local
information so that partitioning can be performed in constant time. Depending on
which partition contains the desired L*a*b* value. one of the colour components of
(CMY ) becomes the new lower or upper bound for the target CMY value. For
instance. if the desired L*a*b* value lies in a region that has a smaller C value. then
Co is the new upper bound for the C component while the bounds on the M and ¥
components do not change. The mid-point of the current lower and upper bounds
of each colour component is chosen to be the updated CMY value. (CMY');. This
value has an improved estimate for whichever of the CMY values was indicated
by the partition. This process continues until the point that has the closest CMY
value related to the desired L*a*b* colour has been identified. Interpolation is then
used to find the correct CMY value within the cell.

As described above. there are three basic operations in each iteration. namely.
gamut partition. region detection. and point advancement. These operations are

discussed in detail in the next few sections.

6.2.2 Gamut Partition

Since fast convergence depends on effective region subdivision. a robust partition
method is essential. The following partition method is based on geometric features

of printer gamuts in the CIELAB space.

Consider the set of CMY values having a specified value of a particular colour
component. say C. These colour values define a plane in CMY space. which cor-
responds to a smooth continuous surface (iso-C-surface) in the CIELAB space. As
the values of the M and Y components change across this surface, their L*a*b*
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Figure 6.3: Partition of 2D printer gamut. Four boundary lines divide the 2D
printer gamut into four regions. Each region is defined such that it corresponds to
a portion of the gamut that has either a smaller or a larger amount of one of the

colour components than does P..

values vary continuously. The curvatures of such surfaces are usually small but not
negligible. This assumption. which holds for well-behaved printers. underpins the

partition method described below.

To simplify the description of the partition procedure. let us first consider the
2 dimensional case. Imagine that there is a 2D device independent colour space.
similar to the CIELAB space. covering all the colours generated by the two inks.
for example cyan (C) and yellow (Y). Any printer using only these two inks has
a gamut that is a closed region in the colour space. Figure 6.3 shows a possible
printer gamut. Each curve in the figure is a contour curve for a constant C or Y
value. Now consider a point P, inside the printer gamut. with C, and Y, its C and
Y components. The printer gamut can be divided into four regions based on the
location of P,. Each region contains points that have a fixed relationship with one
of the colour components of P,. One such partition is shown in Figure 6.3, in which
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the regions are defined by four boundary lines ¢c™y~. ¢"y™. ¢"y~. and c*y*. The
points inside the region bounded by the lines ¢c"y~ and ¢”y* have C smaller than
C.. while the points inside the region bounded by the cty* and ¢~y ™ have Y larger
than Y;. and so on. In general. each region corresponds to a portion of the gamut
that has either a smaller or a larger amount of one of the colour components than
does P,. A partition is not unique. but every partition must meet the following two
conditions: (1) the boundary lines do not cross the contours defined by C = C, and
Y = Y;. (2) only two boundary lines lie on the same side of the region separated
by the C, or ¥, contour curves. The first condition ensures that all points from
the same side of a boundary line have the same relationship with one of the colour
components of P,. and the second condition ensures that each one of four gamut
regions bounded by the two contour curves has one and only one boundary line in
it. As a result. the segment of contour line that runs from P, to the gamut border
is inside a single region.

Applying the above criteria strictly. it is potentially costly to define a suitable
set of boundary lines. A better alternative approximates the boundary lines on
local values of P,. Because printers use inks with chromaticities that are far apart
in the colour space. the contour curves of different inks are almost perpendicular
to each other in the region close to P.. If the lines that evenly divide the cross
contour angles are chosen to be the boundary lines. the criteria are met locally. The
local region is very large if the curvature of the contours is small. as it normally is.

(Figure 6.4)

To obtain the angles of two cross contour curves. the tangents of the contours
at the cross point have to be computed. When a precise mathematical model of the
printer is not available. it is impossible to compute the tangents in general. And
even when a model is available precise tangent computation is costly. However,
tangent-defined boundary lines are not the only way to partition the gamut: close
approximations to them serve equally well. One workable solution uses the four
lines that connect the current P, point to the point (C. — AU. Y. — AU). (C: —
AU Y, + AU). (C. + AU. Y, — AU) and (C; + AU. Y, — AU), respectively. where
AU i1s a fixed value.
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Figure 6.4: Boundary lines that partition the 2D printer gamut. Lines (thick solid
line) that evenly divide the cross contour angles are good candidates for boundary
lines. These lines are inexpensively approximated by joining the current point with
a point offset by a fixed amount for each component (dash line). The thin solid

and dotted lines represent the lines for iso-surfaces.
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Figure 6.5: Boundary planes of gamut partition in 3D colour space. Similar to the
2D case. the boundary planes defined by two neighbouring lines which connecting
the current point P, to any two points in the set {(C, = AU. M, £ AU.Y, £ AU)}
that differ by only one component.
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Partitioning the printer gamut in the 3D CIELAB space is analogous to the
2D case described above. Instead of four boundary lines. twelve boundary planes
are using to partition the gamut. Each region in the gamut is confined by four
planes (Figure 6.5). The criteria for choosing these planes is the following: (1)
the boundary planes do not cross any iso-surface of the colour components of P..
and (2) four and only four planes lie on the same side of the region separated by
each iso-surfaces. As for the 2D case. one possible way to partition the gamut is to
use the boundary planes defined by two neighbouring lines which connecting the
current point P, to pair of points in the set {(C, + AU. M, + AU.Y; = AU)} that
differ by only one component. For example. one boundary plane is defined by the
line connecting P, to (C, — AU. M, — AU.Y, — AU) and the line connecting P,
to (C; — AU. M, — AU.Y, + AU). With the set of eight points {(C: + AU. M, =
AU.Y, + AU)}. twelve planes are defined to partition the gamut in the CIELAB
space. If P, lies on the boundary of gamut. the outside gamut boundary planes can

be obtained by extrapolating the inside gamut planes through P..

The value chosen for AU is not critical. In practice. we choose for AU the
interval used to build the CLUT. The boundary planes defined based on this AU

value accurately partition the gamut for any colour point P;.

6.2.3 Region Detection

Once the regions are defined it is necessary to find out which region contains the
target point P;. Based on this information. the direction for point advancement
can be determined. Since each region is bounded by four planes and each plane
divides the colour space into two half spaces. the region detection problem amounts
to calculating which half space P, occupies for each boundary plane. Using a fixed
normal vector convention. and computing the dot product of the normal vector
of a plane and the vector. defined by the difference of the points P, and P, the
half space containing the target point is cheaply identified. For example. if the dot
product is positive. then P, lies on the same side as the normal vector; otherwise,

P, is on the opposite side. Repeating this calculation for each boundary plane, the
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partition region containing P, is found.

6.2.4 Point Advancement

Knowing which region contains P,. the components of P; can be updated. If. for
instance. the P; is in the region in which all points have less magenta component.
M. than the P.. then the magenta component of P, should be reduced and the cyan
and yellow components maintained to define the new P.. Note that. in this case. the
current magenta component can be used to define the upper bound of the magenta
component for P,. Conversely. if the magenta component is too small. it should be
increased to define the new P,. The current level of the magenta component is the
lower bound for P;. The amount of change to the colour component is calculated
based on the current upper and lower bound values of the colour component. The
new colour component value is most effectively placed at the mid-point of the
bounding values. When the colour relationship between the CMY and L*a*b*
spaces is defined by the CLUT. the L*a*b* value of the mid-point may not be
available without interpolation. In this case. the nearest sample point is used as the
new P.. Notice that the region in which the new P, is centered is necessarily smaller
after point advancement. The operations of gamut partition. region detection and
point advancement are repeated until the point that has the closest CMY value
related to the desired L*a*b* colour has been identified. Interpolation is then used
to find the correct CMY value within the cell.

6.2.5 Performance Analysis of the Algorithm

Table 6.1 shows pseudocode of the algorithm. Steps 2 to 10 are performed for
each iteration. The total number of iterations depends on the precision required.
As mentioned in ther previous subsection. the new colour component value is the
mid-point of its upper and lower bound. This approach is similar to binary search
which has running time the order of log(M). where M is the number of points being
searched. To determine the final CMY value. this algorithm requires O(dlog(n))
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1. Set up the initial point of P, and compute its Lab values

!\D

If P, = P,. go to step (11)

3. Determine 12 boundary planes based on the 8 neighbour
points of P,

4. Compute the normal vector of each plane

5. Compute the dot products of the vector (P, - P;) with
the normal vector of each plane

6. Determine the region in which P, lies

7. If P, lies in the outside gamut region. go to step (12}

8. Adjust the lower or upper bound of P; based on the result
of (6)

9. Update the colour component of P, based on the bound-
ing values of (8)

10. Go to step (2)

11. Return the CMY value of P,

12. Return out of gamut status

Table 6.1: Pseudocode of the extraction algorithm

Expected Cost | Worst-Case Cost
Tetrahedral Walk O(n) O(d®logn)
Tetrahedral BSP O(n¥1?2) O(d®log n)
Iterative Extraction O(dlog(n)) O(dlog(n))

Table 6.2: Compare the expected and worst-case costs of extraction for the tetra-
hedral walking and binary space partitioning tree algorithms with the iterative

extraction algorithm.
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iterations. where n is the number of sample points for each colour component. and
d is the dimension of the colour space. For printer with 8 entries in a CLUT. the
maximum number of iterations needed to find the CMY value is 3log(8) = 9. The
expected and worst-case costs of this algorithm compared to the walking algorithm
and binary space partitioning tree approaches [BC93| are shown in Table 6.2. The
algorithm is fast enough that colour transformation in high dimensional spaces is

possible for practical applications.

6.2.6 Applying the Extraction Algorithm in Reflectance
Space

As discussed in the previous section. the success of the extraction algorithm relies
on the iso-surfaces of the device gamut being smooth. It works well as long as
the smoothness criterion is met. Thus. the algorithm works for a high dimensional
reflectance space with little modification. In such a case. (d-1)D planes. hyperplanes
are used to partition the regions. However. the complexity of gamut partition and
region detection increases. and performance decreases. It is better to project a
printer gamut into a space with dimension equal to the number of colour channels.
The algorithm then works for any three ink printer with the performance described

above. The latter approach is used in our studies and is described below.

In a reflectance space. a three-ink printer gamut is a 3-dimensional manifold in
a high dimensional space. To use the extraction algorithm. the manifold should
be projected into a space such that the smoothness property of the iso-surfaces is
maintained. This can be achieved by projecting each iso-surface onto its tangent
plane. The projection plane can be obtained by averaging the tangent planes of the
iso-surfaces for different component values. Unfortunately. unless a mathematical
model of the printer is known. the tangent planes cannot be computed. However,
any close approximation of the planes serves equally well. The planes are defined
by the gradient vectors of the iso-surfaces. which are computed by averaging the
spectral differences between two reflectances. one of a colour with full amount of
ink z. and the other with no ink z. The other two inks are kept constant. These
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[so-surface

Approximated

Gradient vectors Tangent Plane

Figure 6.6: To maintain the smoothness property of an iso-surface, the surface is
projected onto a tangent plane. However. since the printer model is not known in
most cases. it may not be possible to compute the tangent plane. An approximation

of the tangent plane is obtained by using gradient vectors.
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Proj. C

Figure 6.7: Projection of printer gamut in a reflectance space. Each projection

direction is determined from the average gradients for the corresponding ink.

gradient vectors serve as the axes of a projection space. Any two axes define a

projection plane in the reflectance space (Figure 6.6).

Once a projection space is defined. reflectances are projected into the space.
The control value of any given reflectance is determined by the extraction algorithm

operating as it does in CIELAB space.

The above procedure has been implemented and tested for the DuPont printer
model discussed in Chapter 1. Figure 6.7 shows the printer gamut in the projection
shape. The smoothness of the iso-surfaces is maintained by the projection. Each
plot of Figure 6.8 is the orthogonal projection of an iso-surface for a given C value
onto the projected plane defined by the gradient vectors of M and Y components.
It shows that the points with constant C component are distributed in an orderly
fashion. For testing purpose. the algorithm was applied to the 1000 randomly
distributed colour samples of our DuPont printer. All results were converged to the
target points. Thus. the extraction algorithm can be applied to the gamut in the

projection space without any problems.
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Figure 6.8: Orthogonal projection of printer gamut onto a plane. The smoothness

of the iso-surfaces is maintained after projection.
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6.3 Conclusion

The backward transformation is needed to compute the control values for a given
output colour or reflectance. The CLUT method is commonly used for the trans-
formation. To determine the control values. extraction first identifies the cell that
contains the target point. after which the target control value is approximated by
interpolation. Since the backward transformation has to be performed on every
pixel. speed is important.

A fast extraction algorithm for backward transformation was developed. Its
computation cost is logarithmic in the number of cells in the CLUT. and its perfor-
mance is robust provided that the printer gamut in the colour space is sufficiently
smooth. It was shown experimentally that printer models currently in use are
adequately smooth. Measurement error can upset this condition. of course. and
the gamut fitting techniques previously investigated in our laboratory [Bel96] can
be used to condition measured data so that the new algorithm is guaranteed to

converge. As shown in Section 6.2.6. the algorithm also works for reflective images.

The speed of the new algorithm makes it possible to increase the size of pseudo-

uniform and pseudo-orthogonal CLUTs. Thus. higher accuracy conversion can be

obtained.



Chapter 7

Conclusion

7.1 Summary of the Thesis

Digital colour image reproduction is one of the most active research areas in the
printing industry. Those reproduction problems that are most difficult to solve
occur because of differences in colour gamut from one device to another. This thesis
studies how the gamut difference problem can be handled for colours specified as
spectral reflectances. The following reproduction model is used. Devices are first
characterized with respect to a device independent colour space. Input colours are
then transformed to output colours by a gamut mapping defined in the device-
independent space. Finally. output colours are converted to the device control

signals through a backward transformation.

The two most common strategies for gamut mapping are discussed in Chapter

2. Based on the idea that colours with similar tristimulus values invoke similar

colour sensations. one strategy seeks to minimize differences between reproduction
and original in a colour space based on tristimulus values. The other is to match in
the reproduction the colour relationships of the original image. Whichever strategy
is used. most current algorithms perform the gamut mapping step on data specified

directly or indirectly by CIE tristimulus colour values. which are derived from
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emitted light. and depend on the source of illumination.  If the human visual
system has no colour constancy. perceived colours are solely based on the tristimulus
values. Matching tristimulus values then provide a general solution for colour image
reproduction. But the results are likely to be upset by changes in illumination.
particularly when the spectral compositions of illuminants are significantly different.
On the other hand. if the visual system exhibits perfect colour constancy. then
matching appropriate aspects of surface reflectance is the best general solution for
colour image reproduction. The human visual system exhibits good. but imperfect.
colour constancy. Thus. gamut mapping techniques that take into account both

reflectance and illumination may be expected to produce better results.

As an initial step towards making this possible the thesis develops the basic
concepts of colour image reproduction in reflectance space. Both model-based and
lookup-table methods for reflective characterization are described in Chapter 3.
Compared to lookup-table methods. model-based characterization has lower mea-
surement cost. However. the development cost of a device model is very high.
Furthermore. the complexity of the model is usually too high to allow efficient
colour transformation. Lastly. as demonstrated by the results of applying Berns’
dye diffusion thermal transfer printer model to a similar printer. a general device
model is very hard to find. Nevertheless. a device model that produces consistent
output without disturbance by environmental factors is a valuable tool for study-
ing colour image reproduction. In particular. even an incomplete device model can

verify and smooth data measured for lookup tables.

Despite its larger measurement cost. a colour lookup-table (CLUT) characteri-
zation is most often used in practice because it provides very fast colour transfor-
mation. To construct a CLUT. samples can be chosen uniformly or nonuniformly
throughout the device gamut. Uniform sampling allows fast data access with lower
accuracy for nonlinear devices: nonuniform sampling provides higher accuracy with
slower data access because of the high cost of extracting the cell within which

interpolation is done.

After a CLUT is constructed. interpolation and extraction are used to iden-

tify target colours for colour transformation. a process that must be fast for both



CHAPTER 7. CONCLUSION 119

forward and backward characterization transformations. A CLUT with uniformly
sampled data is an intuitive choice. However. for the backward transformation it
is difficult to obtained a CLUT with uniformly distributed data since the transfer
function of the device is usually not known. Remeasuring or remapping can be
used to build the CLUT. Remeasuring often needs several iterations before a final
CLUT is built. which is too expensive to use with high dimensional colour spaces.
On the other hand. remapping increases measurement errors that are present in the
estimated control values because extensive resampling is required. Thus. a CLUT
with nonuniformly distributed samples is likely to be preferred for colour spaces
based on reflectance. In this case. fast interpolation and extraction are needed to
provide good performance. Linear interpolation handles interpolation efficiently.
The new iterative searching algorithm for extraction proposed in Chapter 6 can be

used to improve extraction performance.

Once the input and output devices have been characterized. gamut mapping can
be applied. The two common strategies for gamut mapping. matching trichromatic
colour specifications and matching colour appearance. are studied for reflective data
in Chapter 4 and Chapter 5. Since the reflectance spaces of colour devices are usu-
ally constructed to minimize spectral errors in the representation of reflectances.
orthogonal projective mapping. which minimizes spectral errors. is a natural choice
for gamut mapping between reflectance spaces. Chapter 4 shows that projective
mapping produces perfect colorimetric matches only under restricted sets of illumi-
nants. It does not always map to the reflectance that has the smallest trichromatic

difference. Sometimes. it can produce rather large colour differences.

By taking account of the colour sensitivity of the human visual system. a gamut
mapping based on the fundamental component of a reflectance was developed. This
mapping preserves the fundamental component of a reflectance whenever possible.
If no reproducible reflectance has the same fundamental component as the original.
it finds the one that has minimal spectral errors as weighted by human visual sensi-
tivity. This mapping is extended to multiple illuminants. Experiments to study its
performance were conducted for two sets of illuminants. each having three different

lluminants. The results show that fundamental component mapping consistently
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outperforms projective mapping in terms of CIELAB colour differences.

To develop gamut mapping for matching appearance. the relationship between
a reflectance and its perceived colour attributes must be known. Since colour
attributes vary somewhat with illuminant while reflectance does not. there is not a
fixed relationship between a reflectance and its colour attributes. Nevertheless. it

turned out to be possible to develop useful concepts for colour attributes of different

reflectances.

Most gamut mapping algorithms based on colour attributes reproduced colour
lightness. hue and saturation. This thesis defined methods for identifying sets of
reflectances that are constant in these attributes. To begin. it defines a procedure
to identify constant hue spaces within a reflectance colour space. A constant hue
space is a linear subspace that contains the set of reflectances that are identical in
hue under a given set of illuminants. To retain the hue of an original reflectance.

the reproduced reflectance is chosen from the subspace.

Similarly. luminance can be maintained by choosing the reproduced reflectance
from cosets of spaces of constant luminance. However. when reproducing relative
lightness care must be taken because relative luminance varies with illuminant.
Our results show that luminances of colours far from the achromatic axis are more
sensitive to illuminant change. making it important to ensure that luminances of

saturated colours are mapped correctly.

By examining relative saturations of reflectances in a constant hue plane. we see
that the distribution of saturation in a reflectance space is similar to the distribution
of saturation in colour spaces based on tristimulus values. The further away a
reflectance is from the achromatic axis. the higher saturation it has. although there
is a variable monotonic scaling factor. In fact. the topological properties of lightness
and saturation in a constant hue plane of a colour space based on reflectance are

similar to those of trichromatic colour spaces.

As aresult. many current gamut mapping algorithms can be easily adopted for
reflectance space. As a proof of this concept. two basic mapping algorithms based

on colour attributes have been defined for reflective images. Both methods ensure
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that the hues of the original reflectances are maintained.

Once the desired reflectance is known. the control values of an output device
corresponding to the reflectance must be found using the backward transformation.
As mentioned previously. transformations using a CLUT created with nonuniform
sampling are preferred for colour spaces based on reflectance. However. algorithmic
inefficiencies associated with nonuniformly sampled CLUTs must be overcome to
obtain acceptable performance. For this reason. a general cell-finding algorithm
based on the divide-and-conquer concept of binary subdivision has been developed
for extraction. Its computation cost is logarithmic in the number of cells in the
CLUT. The algorithm identifies cells for extraction from any smooth printer gamut.

The procedure for using the algorithm in a reflectance space was given in Chapter

6.

7.2 Future Work

Research in colour image reproduction has expanded rapidly because of recent
advances in desktop technology. It was not possible to investigate all aspects of
image reproduction in reflective colour spaces during this research. A complete
reflective image reproduction solution will not be possible until further research

has been done. Here are some of the important issues that need further study.

1. Device gamuts in reflectance space. The gamut mapping algorithms developed
in this thesis focus on the physically realizable reflectances. which may or may
not be producible by a specific output device. A mapping from reflectances to
printable colours should be defined. Thus. it is important to find a compact

representation for device gamuts in a high dimensional reflectance spaces.

X

Gray component replacement. Gray component replacement. which replaces
mixtures of cyan (C). magenta (M). and yellow (Y) inks with appropriate
amounts of black (K) ink. has been widely used for enhancing reproduction
quality. It is often done in two steps [HPK89. Hun94a, Say87]. First, the
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required amount of C. M. and Y inks are determined. Then the amount of
black ink to replace part of the C. M. Y inks is calculated. Gray component
replacement is complicated by there being more than one possible mixture
of inks for a given colour in a trichromatic colour space. Because reflective
colour specifications are more resistant to metamerism there are fewer mix-
tures that match reflectance components. Future research may able to find

gray component replacement solution that improve resistance to metamerism.

3. Additional inks for better colour image reproduction. Colour image repro-
duction process using more than four inks have been studied [Ost93. Bol94].
As more inks are used. the printer gamut becomes larger. However. part of
the extra gamut is hidden in a trichromatic space because some colours can
be produced by more than one possible mixture of inks. This hidden gamut
is revealed in reflectance space. Future study would able to provide multiple

illuminant solutions for extra inks using concepts developed in Chapter 4.

Even after such issues have been resolved. image reproduction using colour
spaces based on reflectance fails to guarantee a general solution of colour image
reproduction. Better understanding of the working of the human visual system.
and particularly of colour constancy. is essential for future advance in colour image
reproduction. With this knowledge. algorithms for colour reproduction can take

into account both illuminant and reflectance information to produce better results.

7.3 Final Conclusions

This research developed the basic concepts of colour image reproduction in colour
spaces based on reflectance. It examined each of the major image reproduction steps
for reflective images. including device characterization. gamut mapping. and back-
ward colour transformation. The findings of this research provide a basic framework

for developing future colour image reproduction in reflectance space.
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By studying model-based and colour CLUT characterization methods. this re-
search concludes that device characterization based on a CLUT is preferred to
model-based characterization. Specifically. CLUT with nonuniform sampling should
be used since it provides better accuracy without incurring the high measurement

cost of uniform sampling.

Reflectance space gamut mapping algorithms based on objective measurement.
such as the colour difference between the original and reproduced colours in the
CIELAB colour space. and ones based on subjective criterion. matching colour
appearance. were investigated.  For minimizing colour difference. this research
shows that the seemingly neutral choice of orthogonal projective mapping should
be avoided. By taking into account the human visual system. a novel algorithm
that preserves fundamental component was developed. It was proven to exhibit con-
sistently smaller colour differences for multiple illuminants. For matching colour
appearance. useful concepts. such as constant hue space. relative luminance and
saturation for reflectances. were developed in this thesis. These concepts are essen-
tial for developing appearance matching gamut mapping algorithms in colour spaces
based on reflectance. As demonstrated in this thesis. gamut mapping algorithms
based on perceived colour attributes in the CIE tristimulus colour spaces can be
easily adapted for reflectance colour spaces because of luminance and saturation

distributions are similar in constant hue planes of both kinds of colour spaces.

Since nonuniformly sampled CLUTs. which increase the cost of extracting colour
cells for the backward transformation. are recommended for reflectance colour
spaces. it 1s essential for practical applications to have a fast backward transforma-
tion. A novel algorithm for cell-finding was developed. This algorithm improves
the speed of extraction. which must be done once per image pixel. As a result.

better performance of the backward transformation can be obtained.

As mentioned in the previous section. a general colour image reproduction sys-
tem based on reflectance is far from complete. However. this research provides the
starting point for developing reproduction systems for reflective images. The basic
concepts and the novel algorithms for gamut mapping and backward transforma-

tion developed in this thesis set up the groundwork for future development of colour
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reproduction for reflective images.
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