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Abstract 

Transparent oxide semiconductors (TOSs) are materials that exhibit electrical 

conduction and optical transparency. The traditional applications of these materials 

are transparent conducting oxides in flat-panel displays, light-emitting diodes, solar 

cells, and imaging sensors. Recently, significant research has been driven to extend 

state-of-the-art applications such as thin-film transistors (TFTs). A new and rapidly 

developing field is emerging, called transparent electronics. This thesis advances 

transparent electronics through developing a new technique to fabricate TOSs and 

demonstrating their applications to active semiconductor devices such as diodes and 

TFTs. 

Ion beam assisted evaporation (IBAE) is used to deposit two common TOSs: zinc 

oxide (ZnO) and indium oxide (In2O3). The detailed material study is carried out 

through various characterization of their electrical properties, chemical composition, 

optical properties, crystal structure, intrinsic stress, topology, and morphology, as well 

as an investigation of thin-film property as a function of the deposition parameters: 

ion flux and energy, and deposition rate. The study proves that IBAE technique 

provides the capability for fabricating TOSs with controllable properties. 

By utilizing the newly developed semiconducting ZnO, p-NiO/i-ZnO/n-ITO and n-

ITO/i-ZnO/p-NiO heterostructure photodiodes with a low leakage are proposed and 

assessed. Analysis of their current-voltage characteristics and current transient 

behaviour reveals that the dominant source of leakage current stems from the deep 

defect states in the intrinsic zinc oxide layer, where its dynamic response at low signal 

levels is limited by the charge trapping. The exploration of the photoconduction 

mechanism and spectral response confirms that such photodiodes are potentially 
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applicable for ultraviolet (UV) sensors. The comparative study of both device 

structures provides further insights into the leakage current mechanisms, p-i interface 

properties, and quantum efficiency.  

Secondly, with the novel semiconducting In2O3, TFTs are fabricated and evaluated. 

The device performance is optimized by addressing the source/drain contact issue, 

lowering the intrinsic channel resistance, and improving the dielectric/channel 

interface. The best n-channel TFT has a high field-effect mobility of ~30 cm2/Vs, a 

high current ON/OFF ratio of ~108, and a sub-threshold slope of 2.0 V/decade. More 

important, high-performance indium oxide TFTs here are integrated with the silicon 

dioxide and silicon nitride gate dielectrics by conventional plasma-enhanced chemical 

vapour deposition, which makes indium oxide TFT a competitive alternative for next 

generation TFTs to meet the technical requirements for flat-panel displays, large area 

imager arrays, and radio frequency identification tags. The stability study shows that 

indium oxide TFTs are highly stable with a very small threshold voltage shift under 

both a long-term constant voltage and long-term current stress. The dynamic 

behaviour indicates factors that affect the operation speed of such TFTs. A descriptive 

model is proposed to link the material properties and the processing issues with the 

device performance to facilitate further research and development of TOS TFTs.  

The research described in this thesis is one of the first investigations of the fabrication 

of TOSs by the IBAE and their applications to a variety of thin-film devices, 

particularly UV sensors and TFTs.  
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1.1 

Chapter 1 
Introduction 

Metal oxides are very interesting materials which can behave as insulators, 

superconductors, and semiconductors. Some of them exhibit electrical conductivity 

and visible transparency such as transparent oxide semiconductors (TOSs). 

Traditionally, the semiconductors such as indium-tin oxide (ITO), doped tin oxide 

(SnO2:F; SnO2:Sb), and doped zinc oxide (ZnO:Al; ZnO:Ga; ZnO:In) are  widely 

used as transparent conducting oxides (TCOs) in flat-panel displays, light-emitting 

diodes, solar cells, and imagers [2]. Recently, thin-film transistors (TFTs) based on 

TOSs have attracted a great deal of attention.  

This thesis addresses materials, processing, and devices regarding TOSs with a 

focus on diodes and TFTs. The purpose of this chapter, in particular, is to review this 

group of materials, focusing on ZnO and In2O3, to describe the challenges of the 

emerging transparent electronics.   

Overview of TOSs 

This section contains a brief introduction of TOSs from fundamental material physics 

to industrial applications, a review of two well-known TOSs: ZnO and In2O3, 

including their crystal and electronic structures, and the research challenges in the 

field of transparent electronics.   

TOSs are a series of metal oxides, composed of heavy metal cations (HMCs) with 

an outside shell electronic configuration of (n-1)d10ns0 (n>4) and oxygen anions [3]. 
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In terms of this definition, the candidates of HMCs to form TOSs can be sorted out 

from the chemical periodic table and their electronic configurations are in Table 1.1. 

Table 1.1: Candidates for HMCs with the electronic configuration 
Cu 

[Ar]3d104s1
Zn 

[Ar]3d104s2
Ga 

[Ar]3d104s24p1
Ge 

[Ar]3d104s24p2
As 

[Ar]3d104s24p3

Ag 

[Kr]4d105s1
Cd 

[Kr]4d105s2
In 

[Kr]4d105s25p1
Sn 

[Kr]4d105s25p2
Sb 

[Kr]4d105s25p3

Au 

[Xe]4f145d106s1
Hg 

[Xe]4f145d106s2
Tl 

[Xe]4f145d106s25p1
Pb 

[Xe]4f145d106s25p2
Bi 

[Xe]4f145d106s26p3

[Ar]: 1s22s22p63s23p6

[Kr]: 1s22s22p63s23p63d104s24p6

[Xe]: 1s22s22p63s23p63d104s24p64d105s25p6 

 

TOSs have wide bandgaps in which the ns orbitals of the HMCs primarily 

constitute the bottom part of the conduction band and the oxygen 2p orbitals form the 

top of the valence band. Uniquely, the spatial spreading of the outside ns orbitals with 

a spherical symmetry in the HMCs is much larger than that in light metal cations such 

as aluminium, leading to a wider conduction band. Since the carrier mobility is 

proportional to the width of the conduction band, TOSs are electrically active and 

differ from light metal oxides such as MgO and Al2O3 which are typical insulators. 

The metal ion radius, metal and oxygen bond length and angle are among the critical 

parameters that determine the carrier mobility of these oxide semiconductors. Table 

1.2 lists these critical parameters of the common HMCs and TOSs, and their ns orbital 

overlap integrals [1]. 
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Table 1.2: Critical parameters of HMCs and TOSs [1] 
HMC TOS ion radius 

(pm) 
M-O length 

(Å) 
M-O-M 

angle  
Overlap 

Zn 4s ZnO 1.16  1.976 108.20 0.6045 

Ga 4s β-Ga2O3 0.88  1.978 100.40 0.4632 

Ge 4s GeO2 0.71  1.738 130.00 0.2848 

Cd 5s CdO 1.25 2.348 90.00 0.6905 

In 5s In2O3 0.95  2.180 98.20 0.5613 

Sn 5s SnO2 0.77  2.052 101.90 0.4523 

 

As seen from this table, the Zn-Zn 4s and the In-In 5s orbitals have large overlap 

integrals compared with the other HMCs. As a result, ZnO and In2O3 should have a 

high carrier mobility. This has already been proven by Hall-effect measurements: 

single crystalline n-type ZnO has a Hall mobility of around 200 cm2/Vs, and single 

crystalline n-type In2O3 has a Hall mobility as high as ~ 160 cm2/Vs [1]. Moreover, 

the large ns-ns orbital overlap makes the mobility less sensitive to any angular 

variation or bond stretching in the M-O-M bonds; that is, the mobility of TOSs is 

immune to the structural disorder because of such ionic bonding. Thus, amorphous 

TOSs still display a considerable carrier mobility comparable to their crystalline 

counterparts. This characteristic cannot be found in other types of semiconductor 

materials. For instance, the mobility of polycrystalline silicon (covalent bonding) is 

2~3 orders of magnitude higher than that of amorphous silicon (a-Si:H). 
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1.2 Two Common TOSs: In2O3 and ZnO 

As discussed in the previous section, both In2O3 and ZnO are non-toxic and have 

relatively large overlap integrals, leading to a high mobility that is desirable for device 

applications. In this section, an introduction of these two vital TOSs is given. 

1.2.1 Crystal Structure 

In2O3 has a bixbyite crystal structure that is inherently a cubic-type rare earth, 

vacancy-defect oxide. Bixbyite has an 80 atom unit cell with the Ia3 space group and 

a 1 nm lattice constant in an arrangement, based on the stacking of the MO6 

coordination groups [2]. The bixbyite structure is similar to that of fluorite and has a 

face-centred cubic array of indium atoms with all the tetrahedral interstitial positions 

filled with oxygen atoms. The primary difference between fluorite and bixbyite is the 

MO8 coordination units in the bixbyite structure (the oxygen position is on the corners 

of a cube and the indium atom is located at the centre of the cube) are replaced by 

units with oxygen atoms missing from either the body or the face diagonally as 

depicted in Figure 1.1. The removal of two oxygen atoms from the MO8 to form the 

MO6 coordination units forces the displacement of the indium from the centre of the 

cube. Thus, indium is distributed in two nonequivalent sites with one-quarter of the 

indium atoms positioned at the centre of a trigonally distorted oxygen octahedron 

(diagonally missing O), and the remaining three-quarters positioned at the centre of a 

more distorted and less symmetric octahedron that results from the removal of two 

oxygen atoms from the same face of the octahedron. The resulting MO6 coordination 
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units are then stacked such that one-quarter of the oxygen atoms are missing from 

each {100} plane in the fluorite structure [4]. 

 

 

             

Figure 1.1: Schematic illustration of atomic arrangement in crystalline In2O3 

Zinc oxide crystallizes in the hexagonal wurtzite lattice in Figure 1.2. The zinc 

atoms are nearly in the position of hexagonal close packing. Each oxygen atom lies 

within a tetrahedral group of four zinc atoms, which are in the same direction along 

the hexagonal axis. ZnO lattice has space group P63mc, with the lattice constants of a 

= b = 3.24 Å, c = 5.19 Å [2]. Three of the oxygen atoms in the distorted ZnO4 

tetrahedron are placed in one close-packed ab plane, whereas the fourth oxygen atom 

is located in the adjacent plane. As a result, the structure contains an array of vertical 

Zn-O vectors along the c axis, resulting in a classical polar structure. 

 

In atom O atom O vacancy 
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O atom Zn atom 

Figure 1.2: Wurtzite structure of ZnO lattice 

1.2.2 Electronic Structure 

In2O3 has a cubic bixbyite structure in which O2- ions occupy, in an ordered manner, 

three-quarters of the tetrahedral interstices of a faced-centered-cubic In3+-ion array. 

Consequently, In2O3 should consist of a filled O2-:2p valence band that is primarily 

oxygen 2p in character [5]. The In: 3d core lies below the valence band edge (Ev). The 

conduction band is the In: 5s band with an band edge (Ec) approximately 3.75 eV 

above Ev. As discussed in Section 1.2.1, In2O3 is usually oxygen-deficient. At high 

oxygen vacancy concentration, an oxygen vacancy band forms and overlaps Ec at the 

bottom of the conduction band such that In2O3 becomes a degenerated semiconductor 

[6]. Hereby, the oxygen vacancies act as doubly ionized donors and contribute a 
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maximum of two electrons to the conduction band. Electrons can also be generated by 

doping tin into indium oxide to form tin-doped In2O3. Since indium has a valence of 

three, the tin substitution results in an n-type doping by providing an extra electron to 

the conduction band to preserve the overall charge neutrality.  

The second semiconductor of interest is ZnO. The electronic structure of ZnO has 

been calculated by many researchers. The lowest two valence bands correspond to the 

O2-: 2s core-like states. The next six valence bands correlate to the O2-: 2p bonding 

states. The first two conduction band states are strongly localized on zinc and 

correspond to the unoccupied Zn2+: 4s levels. The higher conduction bands are free-

electron-like. The fundamental bandgap, calculated by using band structure models, is 

~3.4 eV at room temperature [2]. The undoped ZnO is slightly an n-type wide and a 

direct bandgap semiconductor. The n-type conduction is attributed to the deviation 

from the stoichiometry. The free carriers are created from the self-donors, associated 

with the oxygen vacancies and/or interstitial zinc [7, 8]. The donor levels are also 

produced by the incorporation of foreign atoms such as hydrogen, indium, aluminium, 

and gallium. It is necessary to fabricate both p-type and n-type ZnO in order to realize 

bipolar devices from ZnO. However, wide bandgap semiconductors generally have an 

asymmetric doping problem; that is they can be easily doped to either an n-type or a 

p-type, but not both. For example, ZnO is easily doped to an n-type with a very high 

carrier density and low resistance by group Ш elements [9]. However, p-type doped 

ZnO is very difficult to achieve [10]. Group V elements such as nitrogen have been 

considered as acceptor dopants.  
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1.3 Transparent Electronics 

In 2003, the invention of the first transparent TFTs with ZnO as channels, marked the 

birth of transparent electronics [11-13]. Immediately, transparent electronics 

represented by transparent TFTs becomes one of the most nascent and attractive 

research areas in thin-film electronics. Continuous efforts have been made to fabricate 

TFTs with many TOSs including zinc oxide [14, 15], tin oxide [16], indium oxide 

[17-19], as well as binary or ternary oxide compounds such as zinc-tin oxide [20, 21], 

zinc-indium oxide [22], zinc-indium-tin oxide [23], and indium-gallium-zinc oxide 

[24-27].The field-effect mobility of these TFTs is generally in the range of 10~30 

cm2/Vs. Compared with their silicon and organic counterparts, TOS TFTs have much 

higher field-effect mobility, leading to a higher drain current density which is well 

suited for current-driven organic light-emitting diode (OLED) displays. Furthermore, 

low temperature process renders TOS TFTs compatible with future generation of 

large area electronics that require flexible substrates [24].  

Table 1.3 summarizes the available TFT technologies. Compared with amorphous 

silicon and organic TFTs, TOS TFTs demonstrate the potential for better device 

characteristics in terms of mobility, leakage current, processing temperature, and 

transparency as a bonus. With the continuous research and development efforts, TOS 

TFT technology is believed to be an attractive alternative to existing TFT 

technologies. 
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Table 1.3: Comparison of available TFT technologies 
 Poly-Si 

TFT 

uc-Si TFT a-Si:H 

TFT 

Organic TFT TOS TFT 

Circuit Type CMOS NMOS NMOS PMOS NMOS 

Device Performance      

-Mobility Good Good Poor Poor Good 

-Leakage Current Medium High Low Medium Low 

-Uniformity Poor Good Good Good Good 

-Stability Good NA Poor Poor NA 

Cost High Low Low Very low Medium 

Processing Temperature High Low Low Very low Very low 

Flexible Substrate Alternative Promising Promising Promising Promising 

Transparent No No No Can be Can be 

 

Besides the research on TOS TFTs, some work has been conducted in TOS-based 

thin-film diodes. The primary application is for ultraviolet (UV) sensors. Wide 

bandgap semiconductors, including GaN, ZnS, and SiC are commonly used to form 

solar-blind UV sensors [28]. However, the integration of these devices with CMOS 

circuits is a complex technological issue. UV sensors based on oxide semiconductors 

such as ZnO can overcome this obstacle and offer significant advantages in terms of 

fabrication cost and processing simplicity [29].  

1.3.1 Research Challenges 

The advancement of transparent electronics largely depends on an in-depth 

understanding of oxide semiconductor physics and chemistry, material and device 

processing issues, and more important, device physics. In this section, several 

challenges in transparent electronics are addressed and some of them are the focus of 

this thesis work.  
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As discussed previously, most TFTs use ZnO-based oxide semiconductors as 

channel materials. Very few attempts have been made to fabricate singular indium 

oxide TFTs. However, the indium oxide TFTs exhibit the highest field-effect mobility 

of ~ 180 cm2/Vs, one order of magnitude higher than the other TOS competitors, and 

looks promising for TFT applications [18].   

The reason for the unpopularity of In2O3 TFT research is mainly due to the 

challenge of producing semiconducting indium oxides. Conventional sputtering 

techniques have been employed as an appropriate technology to prepare most oxide 

semiconductors including ZnO, SnO2, and other multi-component oxides such as In-

Ga-Zn-O. However, it is difficult to deposit semiconducting indium oxide with a low 

background carrier concentration. Since as a doubly-charged donor, oxygen vacancy 

doping in indium oxide is more efficient than that in Zn- and Sn-oxide systems [2], it 

becomes difficult to effectively control the oxygen vacancies in indium oxides and 

thereby the free carrier density. Consequently, new techniques are pivotal to prepare 

semiconducting indium oxides for active devices. 

Apart from this, a gate dielectric with a low defect density, a high break down 

voltage, and a highly packed density is another vital factor to achieve high-

performance TOS TFTs. To date, a few gate dielectrics have been used in TOS TFTs, 

including thermally grown SiO2 [12, 22], sputtered SiO2 [30], laser-ablated Y2O3 [24], 

e-beam evaporated Al2O3 [31], atomic layer deposited Al2O3 and hafnium oxide [32], 

Al2O3 and TiO2 superlattices [14, 20], and self-assembled organic polymers [18]. The 

most commonly-used gate dielectrics in modern TFTs, SiOx and SiNx, deposited by 

plasma-enhanced chemical vapour deposition (PECVD) are not that popular in TOS 
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1.4 

TFTs and the viability of PECVD dielectrics in TOS TFTs remains unproven. There 

are very few reports on the fabrication of TOS TFTs with PECVD-derived gate 

dielectrics. Presley et al. have reported indium-gallium oxide TFT circuits with 

PECVD SiOx [33]. Carcia et al. have conducted a comparative study of zinc oxide 

TFTs with PECVD SiOx and SiNx dielectrics [34]. Recently, it has been demonstrated 

at the University of Waterloo, the stable indium oxide TFTs with a PECVD SiOx gate 

dielectric [19]. However, to our knowledge, high-mobility TOS TFTs with PECVD 

dielectrics have not been reported.  

Besides device performance, two other concerns: device stability and dynamic 

characteristics, have also not well addressed for these TFTs. Even though some 

preliminary studies on oxide TFTs has been conducted by several groups [19, 35, 36], 

information on these two issues is sparse and a more detailed study is necessary. 

Thus, one part of this thesis is dedicated to device stability and dynamic behaviour.  

With regards to TOS-based diodes, one serious problem is the imperfection and 

interfacial defects which cause a very high leakage current. Therefore, the task is to 

fabricate TOS-based diodes with a decreasing leakage current. In addition to this, an 

investigation of leakage mechanism in TOS-based diodes is also required. 

Organization of the Thesis 

This section describes the organization of this thesis. First, Chapter 2 is a discussion 

of IBAE as the fabrication technique in this research. After the introduction of the 

deposition system, some key deposition parameters are described.  
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In Chapter 3, a detailed material study for both ZnO and In2O3 is conducted. The 

electrical properties, chemical composition, optical properties, crystal structure, 

intrinsic stress, topology, and morphology, are measured in order to fully examine the 

material properties by the IBAE.  

Thin-film devices are demonstrated by employing optimized semiconducting oxide 

thin films. In Chapter 4, ZnO-based heterostructure diodes are fabricated and 

characterized. The device analysis including current-voltage characteristics, current 

transients, leakage current, and spectral response, is followed. 

 Chapter 5 details indium oxide TFTs with gate dielectrics by PECVD. The device 

analysis includes transfer and output characteristics, device stability, and dynamic 

behaviour.   

Lastly, Chapter 6 concludes this thesis and summarizes its contribution to the field 

of transparent electronics. 
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2.1 

Chapter 2 
Fabrication Technique 

This chapter describes the fabrication technique for developing TOSs. After a brief 

introduction of the IBAE technique, the schematic structure of the system is 

presented. Since the ion source is a very important unit in such a system, one section 

is devoted to the working principle of the ion source. In the last section, a discussion 

of the deposition parameters is given. 

Introduction 

IBAE deals with the use of energetic ions to assist the growth of thin films. It 

combines a traditional evaporation technique with an independent ion source, 

providing more capability in thin-film growth and processing.  

Generally, the bombardment of a growing film with energetic particles has been 

recognized to produce significant modification such as improved adhesion, 

densification, texture, grain size, crystallinity, and morphology in thin-film properties 

[37]. Here, the energetic particles refer to those with kinetic energies that are typical 

of ion beam assistance processing; that is from a few tens to approximately one 

thousand electron volts (eV). For the purpose of substrate pretreatment or precleaning, 

a few tens of eV is enough to remove most of the physical and chemical adsorbed 

contaminants and moisture. Regarding the assistance of thin-film growth, a kinetic 

energy as much as one thousand eV is suitable and avoids plasma damaging and 

etching. Since most particles are ions and radicals, throughout this thesis, the term, 
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2.2 

ion, is used for the impinging particles that assist thin-film growth. However, it is 

noteworthy that ion refers to two particles: ions and radicals. An independent ion 

source also offers the possibility of realizing reactive evaporation. For instance, in the 

preparation of oxides, an oxygen ion source can provide reactive oxygen ions during 

the oxide growth. Compared with a conventional reactive evaporation, immersed in 

an oxygen atmosphere, reactive IBAE is more feasible for low temperature deposition 

and more effective control in the stoichiometry. 

Ion Beam Assisted Evaporation 

The IBAE technique can be realized in several experimental configurations. In 

general, it consists of an independent ion source and a traditional evaporator. The ion 

source can be in different types such as Kaufman-type ion source, End-Hall ion 

source, and plasma-based ion source [38]. Evaporation can be carried out either by the 

resistive heating of a crucible or more efficiently, by the electron beam (e-beam) 

bombardment of a bulk solid.  

2.2.1 Schematic Configuration of the IBAE system 

A typical IBAE system is illustrated schematically in Figure 2.1. It consists of dual 

chambers: the main vacuum chamber and the loadlock chamber. An evaporator and 

ion source are housed in the main chamber. The roughing pump and cryopump serve 

the system with a base pressure down to ~10-6 torr. The gas introduced into the system 

generates a desirable range of working pressure of approximately 10-3~10-4 torr. The 

loadlock chamber separates the sample holder and main chamber by a loadlock gate 
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to facilitate an efficient pumping to attain the base pressure. The equipped quartz 

crystal sensor is used to in-situ monitor the thickness and evaporation rate during film 

growth. In some systems, the Faraday cup is employed to measure the ion beam flux 

and energy simultaneously. An independent ion source allows the independent control 

of the ion type, energy, and flux, which ultimately provides the capability to deposit 

different kinds of materials.  

Loadlock Gate

Substrate Holder

Shutter

Ionsource

Roughing 
Pump

Cryo
Pump

Quartz Crystal Sensor

Crucible

Loadlock 
Chamber

Main 
Chamber

 

Figure 2.1: Schematic structure of a typical IBAE system 

2.2.2 Reactive IBAE 

Thanks to more reliable ion sources, reactive IBAE technique is developing rapidly in 

thin-film fabrication, particularly in the low temperature deposition of oxides and 

nitrides. A high portion of ion beam processing deals with an inert gas such as Ar, He, 

and Ne. The ion effects are mainly physical. In a traditional reactive evaporation, 

oxygen or nitrogen gas is introduced into the vacuum chamber. It can be less efficient, 
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since the oxygen or nitrogen is in the form of atom, not as radical and reactive as 

oxygen or nitrogen plasma. Reactive ion assisted evaporation, however, uses oxygen 

or nitrogen ions as reactants and it is a technique that is emerging for the fabrication 

of many oxide or nitride compounds at low temperatures.  

The system adopted in this research includes a typical e-beam evaporator and an 

independent oxygen ion source. The distance between the substrate and evaporation 

source is fixed at 35 cm. The oxygen ion source module is located 20 cm below the 

substrate with an incident angle of 600. The water-cooling coils surrounding the 

sample holder maintains a substrate temperature below 400C, principally coming from 

the oxygen plasma heating during deposition. Figure 2.2 and Figure 2.3 are 

photographs of the IBAE system and the main chamber during deposition. 

                       

Figure 2.2: IBAE system used in this research 
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Figure 2.3: Main chamber during deposition  

2.2.3 Oxygen Ion Source 

The ion source plays a very important role in the reactive IBAE. Several 

commercially-available ion sources exist for different applications. The most 

commonly-used ion sources include the Kaufman-type ion source, End-Hall ion 

source, and filament-less ion source. The difference between each ion source lies in 

the mechanism and set-up of its plasma generator. The oxygen ion source in our 

IBAE system is the Kaufman-type ion source. Figure 2.4 is a schematic diagram of 

the oxygen ion source. The module includes a hollow cathode electron source, where 

the keeper tube generates a high voltage between the cathode tip and the keeper to 

ionize the Ar gas. The keeper first initiates the discharge of the Ar gas into the hollow 

cathode electron source. Once the bias voltage is applied, electrons flow toward the 

anode, but are prevented from flowing directly to the positive anode by the magnetic 
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field. The electrons bombard the oxygen gas to create the oxygen ions. They are then 

accelerated by the discharge voltage and reach the substrate.  

Ar

O2

VDischarge 

VBias

VKeeper

e-

Oxygen Plasma

Anode
Ion Source Body

Cathode Tip

Keeper

 

Figure 2.4: Schematic diagram of oxygen ion source 

2.3 Deposition Parameters 

The deposition rate, ion beam energy and flux, dynamic pressure, and substrate 

temperature are among the deposition parameters, determining the film properties. 

Table 2.1 gives the deposition parameters of the IBAE technique used in this research.  

Since the material properties such as resistivity and transparency correlate to the 

composition of the films, the ratio between the ion flux and arrival atoms from the 

evaporation source becomes the most important factor in the reactive IBAE. 
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Therefore, in the material development, the idea is to control the film properties by 

simply modifying the oxygen ion beam flux, ion beam energy, and metal evaporation. 

Table 2.1: Deposition parameters of the IBAE technique  
Parameters Typical Range Comments 

Deposition Rate 0.5 ~ 4 Å/s It varies with the metal 
evaporation and oxygen ion flux.

Discharge Current 0.5 ~ 3.0 A 
It is proportional to the ion flux 
with a density ranging from 
0.025 mA/cm2 to 0.1 mA/cm2. 

Discharge Voltage 80 ~ 180 V 
It is proportional to the ion beam 
energy with a range of 50 to 130 
electron volts. 

Substrate Temperature 30 ~ 400C It is due to plasma heating 
during deposition. 

Dynamic Pressure 0.1 ~ 1 mTorr 

It is adjusted with a flow rate of 
O2 (5 ~ 20 sccm); The flow rate 
of Ar stays at 10 sccm during 
deposition. 
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3.1 

Chapter 3 
Material Study 

This chapter describes the preparation, characterization, and optimization of TOSs. 

Two widely-used TOSs are fabricated. One is ZnO and the other is In2O3. The 

correlations between deposition conditions and thin-film properties are also 

investigated. 

Zinc Oxide  

3.1.1 Introduction 

Zinc oxide thin films are deposited by the reactive IBAE [39]. A high-purity zinc 

metal is chosen as the evaporation source, and the oxygen reactants are introduced in 

the forms of oxygen ions, generated by the oxygen ion source. The discharge voltage 

and current of the ion source are proportional to the oxygen ion energy and flux, 

respectively. The electrical and optical properties of IBAE-derived ZnO thin films are 

examined in the following sections.   

3.1.2 Deposition Rate 

In the reactive IBAE, the deposition rate depends on the number of arrival atoms and 

their migration on the substrate. The arrival mass and migration are determined by the 

evaporation rate of zinc, the oxygen ion flux, and the oxygen ion energy. The IBAE 

system has a deposition controller and quartz crystal sensor to set the deposition rate 
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while the actual evaporation is monitored. The measured deposition rate can differ 

from the set deposition rate. Therefore, the first thing that should be done is to 

calibrate the deposition rate before each deposition.  
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Figure 3.1: Deposition rate calibrated in terms of the discharge current 

Figure 3.1 denotes the calibration of the deposition rate in terms of the discharge 

current. The measured deposition rate varies slightly from the deposition rate (1.5 

Å/s) set in the deposition controller. The measured deposition rate increases with the 

discharge current, which is reasonable because the greater the ion beam flux, the 

greater the film growth.  
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Figure 3.2: Deposition rate calibrated in terms of the discharge voltage 

Similarly, the deposition rate is also calibrated in relation to the discharge voltage, 

which is proportional to the ion beam energy as observed in Figure 3.2. The set 

deposition rate is 1.5 Å/s. Here, the measured deposition rate decreases with the 

discharge voltage due to the atom peening effects which high-energy ions usually 

display [38]. Therefore, a low or modest discharge voltage is preferred in order to 

avoid any plasma damaging during deposition.   

3.1.3 Electrical Properties 

Since the primary goal of this chapter is to develop semiconducting ZnO thin films for 

active device applications, the first priority is to study the electrical properties:  the 

resistivity of IBAE-derived ZnO thin films and the dependence of resistivity on the 

deposition parameters. 
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The ZnO films are deposited on Corning 1737 glass substrates for resistivity 

evaluation. All the films have a thickness of approximately 100 nm. The resistivity 

measurements are performed by sputtering Molybdenum (Mo) on the top of the ZnO 

films through a shadow mask on which the electrode patterns are defined by different 

widths and lengths. The resistivity of ZnO films is then extracted from the current-

voltage curves by microprobing the electrodes.  
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Figure 3.3: Resistivity of the ZnO films as a function of the discharge current 

Figure 3.3 illustrates the dependence of the ZnO resistivity on the discharge current. 

The deposition rate and discharge voltage are maintained at the constants of 1.5 Å/s 

and 120 V, respectively. By increasing the discharge current, the resistivity of the 

ZnO films increases from 9×105 Ω-cm to 7×108 Ω-cm. Since the discharge current is 

proportional to the ion beam flux, the oxygen vacancy concentration inside ZnO films 

also rises with the discharge current. 
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Figure 3.4 depicts the resistivity of the ZnO films as a function of the discharge 

voltage. The deposition rate and discharge current are fixed at 1.5 Å/s and 2.5 A, 

respectively. The resistivity does not change when the discharge voltage is in the 

range of 80 V to 180 V, suggesting that the discharge voltage is not a determining 

parameter, in particular, for the resistivity. 
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Figure 3.4: Resistivity of the ZnO films as a function of the discharge voltage 

Active semiconductor devices such as TFTs require semiconducting films with a 

low background carrier concentration and high carrier mobility. The experimental 

results in this thesis indicate that by simply modifying the discharge current, it is 

possible to achieve semiconducting ZnO thin films with a resistivity ranging from 106 

Ω-cm to 108 Ω-cm that is appropriate for device applications. To avoid high-energy 

ion damage, a modest discharge voltage of 100~120 V should be chosen for the 

following semiconducting film deposition. 
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3.1.4 Optical Properties 

In this section, the optical properties of the IBAE-derived ZnO thin films are 

investigated. After the optical transmittance and optical constants of the ZnO films are 

measured, the optical bandgaps of the ZnO thin films are extracted from an absorption 

model. The optical transmittance is measured by a Shimadzu UV/Vis spectrometer 

(UV-2501PC) in a wavelength range of 300 to 800 nm with a measurement resolution 

of 1 nm. The film thickness for the transmittance measurements is around 100 nm.  
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Figure 3.5: Transmittance spectra of the 100 nm ZnO films deposited at different 

discharge currents 

Figure 3.5 plots the transmittance spectra of the 100 nm ZnO thin films, deposited 

at different discharge currents. The discharge voltage and deposition rate are set at 

120 V and 1.5 Å/s, respectively. Figure 3.6 displays the transmittance of the 100 nm 



 

 26

ZnO films, deposited at different discharge voltages. The deposition rate and 

discharge current are kept constants at 1.5 Å/s and 2.25 A, respectively. 
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Figure 3.6: Transmittance spectra of the ZnO films deposited at different discharge 

voltages 

In the visible region, with a wavelength ranging from 400 to 700 nm, all the ZnO 

films are highly transparent with an average transmittance of more than 85%, and the 

transmittance spectra are not very dependent on either the discharge current or the 

discharge voltage.  

Another optical parameter, refractive index (n) as a function of the visible 

wavelength, is also evaluated. The refractive index is measured by a spectroscopic 

ellipsometer, produced by J. A. Woollam Co.. The value of n should slightly increases 

with the decrease of the wavelength in the visible region due to dispersion effects [2]. 
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The best fit for the refractive index as a function of the wavelength is to use the 

following three-term Cauchy equation [29]: 

                                           42)(
λλ

λ CBAn ++= ,                                                  (3-1) 

where A, B, and C are parameters that fits the Cauchy model.  
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Figure 3.7: Variation of the refractive index with the wavelength of the ZnO films 

deposited at different discharge currents 

Figure 3.7 presents the variation of the refractive index with the wavelength of the 

ZnO films, deposited at different discharge currents with a fixed deposition rate of 1.5 

Å/s and a discharge voltage of 120 V. Figure 3.8 gives the refractive index as a 

function of the wavelength of the ZnO deposited at different discharge voltages, 

whereas the deposition rate and discharge current are selected as 1.5 Å/s and 2.25 A, 

respectively. As observed, the refractive index depends very little on the discharge 
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current or discharge voltage. The index ranges from 1.90 to 2.20 in the visible region, 

which is consistent with the results in the literature, and is close to the refractive index 

of the bulk ZnO [2]. In this wavelength range, the extinction coefficient can be 

negligible because all the films are highly transparent with very weak absorption. 
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Figure 3.8: Dependence of the refractive index on the wavelength of the ZnO films 

deposited at different discharge voltages 

The optical bandgap of the ZnO films can be extracted according to the direct band-

to-band transition model [2]:  

                                    ,                                                  (3-2) )()( 0
2

gapEhvhv −= αα

where  is the photon energy, hv α  is the absorption coefficient, 0α  is approximately a 

constant that is independent of the photon energy, and  is the optical bandgap. gapE
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The curve , in terms of  extrapolated to zero, yields the value of . 2)( αhv hv gapE α  is 

obtained from the transmittance by the relation [2]: 

                                     ,                                                     (3-3) )exp()1( 2 tRT α−−=

where T  is the transmittance, R  is the reflectance, and t  is the film thickness. By 

assuming  in the absorption region of the ZnO films, the absorption coefficient 

is simplified to: 

1<<R

                                              )1ln(1
Tt

=α .                                                      (3-4) 
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Figure 3.9: Representative absorption curves of the ZnO films deposited at the 

discharge of 2.45 A and 1.85 A for the optical bandgap extraction 

Figure 3.9 sketches two representative absorption curves of the ZnO films for the 

optical bandgap extraction. The 100 nm films are deposited at a deposition rate of 1.5 

Å/s and discharge voltage of 120 V, and the two discharge currents of 1.85 A and 
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2.45 A, respectively. The extracted optical bandgap is around 3.2 eV for the 1.85 A 

film and 3.3 eV for the 2.45 A film, both very close to those reported undoped ZnO 

films in the literature [2].  

3.1.5 Crystal Structure 

The crystal structure of the deposited semiconducting ZnO film is obtained by 

performing x-ray diffraction (XRD) measurements with a Rigaku D/MAX 2000 x-ray 

diffractometer (Source: Cu Kα1 with a wavelength of 1.54056 Å; Tube voltage: 50 

kV; and Tube current: 40 mA). 
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Figure 3.10: XRD patterns of the semiconducting ZnO film 

Figure 3.10 reflects the XRD patterns with 2 θ, ranging from 200 to 600 of the 

semiconducting ZnO film, fabricated at a discharge current of 2.25 A, discharge 

voltage of 120 V, and deposition rate of 1.5 Å/s. Only the (002) peak at 2 θ ≈ 340 is 
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observed, identifying the formation of the ZnO film with a hexagonal structure and a 

preferred orientation with the c-axis perpendicular to the substrate. Calculated from 

the Scherrer formula: 

                                                      
θ

λ
cos2/1B

KD = ,                                               (3-5) 

in which  is the average grain size, D λ  is the wavelength of the incident x-ray, K  is 

a numerical constant from 0.95 ~ 0.98, θ  is the Bragg angle, and  is the full-

width half-maximum, the estimated average grain size is around 13 nm.   

2/1B

3.2 Indium Oxide 

Indium oxides are also fabricated by the reactive IBAE [40]. A high-purity indium is 

used as the evaporation source. The electrical properties are first characterized, 

followed by the chemical composition, optical properties, crystal structure, intrinsic 

stress, topology, and morphology.  

3.2.1 Electrical Properties 

In the reactive IBAE, in order to achieve semiconducting indium oxides for the active 

device applications, the oxygen vacancy concentration must be restrained as discussed 

in Section 1.2.2.  Therefore, the indium and oxygen atom arrival ratio to the substrate 

are modified by adjusting two most important deposition parameters: deposition rate 

and oxygen ion flux. 
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Figure 3.11: Dependence of the resistivity of the indium oxide films on the deposition 

rate  

Figure 3.11 illustrates the dependence of the resistivity on the deposition rate. All 

the indium oxide films are deposited on Corning 1737 glass substrates with a 

thickness of ~100 nm. The discharge voltage and current of oxygen ion source are 

kept at 100 V and 1.0 A, respectively. As seen in Figure 3.11, the resistivity of the 

indium oxide films can be tuned from 105 Ω-cm down to 10-4 Ω-cm by simply 

increasing the deposition rate. At a deposition rate higher than 3 Å/s, the resistivity 

approaches a stable value of 5×10-4 Ω-cm, on par with the current TCOs for flat-

pannel displays [2]. At lower deposition rates, the resistivity undergoes a sharp 

transition from the conducting (~ 10-2 Ω-cm) to the semiconducting states (~ 103 Ω-

cm), suggesting a critical oxygen vacancy concentration that causes a shift of the 

Fermi-energy level from close to the conduction band down to close to the mid-

bandgap. 
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Figure 3.12: Variation of the resistivity of the indium oxide films with the discharge 

current  

Figure 3.12 exhibits the variation of the resistivity of the indium oxide films with 

the discharge current. The deposition rate and discharge voltage are set at 1.5 Å/s and 

100 V, respectively. In non-stoichiometric indium oxides, the oxygen vacancies act as 

doubly-charged donors [2]. Therefore, a small discharge current: that is less oxygen 

ions, tends to generate a high population of oxygen vacancies, and consequently, a 

low resistivity. In contrast, a large discharge current helps decrease the population of 

the oxygen vacancies, leading to an increased resistivity. Moreover, it is found that 

the resistivity of the indium oxide films can reach values as high as 109 Ω-cm, which 

is difficult to achieve with conventional sputtering or evaporation. Thus, the IBAE 

allows the engineering of the resistivity of indium oxides from metallic to insulating.  

Such a wide range of variation in the resistivity also indicates that the defect density 
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in these films is not that high, and the Fermi-energy level is not pinned, such that it 

can be shifted from the conduction band edge to close to the mid-bandgap. 

3.2.2 Compositional Analysis 

To verify that the oxygen concentration inside the films changes with the deposition 

conditions and to identify how the concentration depends on the oxygen ion flux, x-

ray photoelectron spectroscopy (XPS) measurements are performed in a multiple-

technique ESCA microprobe system (VG ESCALab 250). In addition, XPS can be 

used to identify the chemical bonding states of the indium oxides. 
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Figure 3.13: XPS spectra of (a) In 3d and  (b) O 1s of the indium oxide films 

deposited at two different discharge currents of 0.5 A and 2.0 A 

Figure 3.13 depicts the XPS spectra of In 3d and O 1s of the indium oxide films, 

deposited at the two different discharge currents of 0.5 A and 2.0 A for comparison. 

The binding energy of In 3d5/2 and In 3d3/2 is located at  444.6 eV and 452.2 eV for 

the 0.5 A film, similar to that of ITO reported elsewhere [5, 41]; and 445.3 eV and 

452. 9 eV for the 2.0 A film. A shoulder peak appears adjacent the main peak of the O 
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1s spectra in both samples, as shown in Figure 3.13 (b). Two Gaussian functions with 

variable positions and intensities are used to deconvolute each spectrum, where the 

two resolved peaks in the O 1s spectrum are located at 530.1 eV and 531.9 eV for the 

0.5 A film, and 530.8 eV and 532.7 eV for the 2.0 A film. Both the In 3d and O 1s 

spectra shift towards the lower binding energy by decreasing the oxygen ion flux. It is 

indicated that the oxygen bonding states depend more strongly on the discharge 

current compared with the In bonding states. Also from the XPS spectra, two types of 

O2- ions are distinguished: OI and OII. The main peak of OII is related to the O-In 

state, where the In atoms with the six closet O2- ions form the InO6 octahedra. The 

subpeak of OI with a higher binding energy is associated with an O-In binding state in 

the oxygen-deficient region [5]. Consequently, OI is more sensitive to the loss of 

oxygen. Compared with the integrated areas of the In 3d5/2 and O 1s peaks, the 

relative atomic ratio between indium and oxygen can be calculated. This ratio is 0.61 

for the 0.5 A film and 0.53 for the 2.0 A film. Thus, by tuning the oxygen ion flux, the 

stoichiometry of indium and oxygen inside the film can be varied. The more oxygen-

deficient film is obtained at a smaller discharge current and the more oxygen-rich film 

is achieved at a larger discharge current, which is also in line with the resistivity 

results. For the TCO applications, the more oxygen-deficient film with a high 

conductivity is needed, whereas for the device applications, oxygen-rich films with a 

low electron density are desirable.  
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3.2.3 Optical Properties 

The visible transmittance, the refractive index, and the extracted optical bandgap of 

indium oxides are presented. The measurements and extraction are similar to those for 

the ZnO films. The details are found in Section 3.1.4.  
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Figure 3.14: Transmittance spectra of the indium oxide films deposited at different 

deposition rates 

Figure 3.14 shows the transmittance of the indium oxide films, deposited at 

different deposition rates. The discharge voltage and current are fixed at 100 V and 

1.0 A, respectively. The film thickness is approximately 100 nm. The wavelength 

ranges from 300 to 900 nm. An average visible transmittance of more than 80 % is 

achieved for all the derived indium oxide films. The strong near-UV absorption is 

observed due to the band-to-band transition. Also, it is found that the transmittance 

spectra of the indium oxide films, fabricated at a higher deposition rate demonstrate 
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the blue shift: that is the transmittance spectrum shifts towards short wavelengths. 

This can be due to Burstein-Moss effect described as [2]: 

                                     3/2
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where  is the optical bandgap,  is the intrinsic optical band gap,  is the 

effective mass, and 

gE 0gE *
rm

N  is the free carrier density. The shift towards shorter 

wavelengths is caused by the increased free carrier density in the films with the 

deposition rates of 3 Å/s and 4 Å/s.  
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Figure 3.15: Transmittance spectra of the indium oxide films deposited at different 

discharge currents 

Figure 3.15 illustrates the transmittance of the indium oxide films, deposited at 

different discharge currents. The deposition rate and discharge voltage are kept 

constants at 1.5 Å/s and 100 V, respectively. The thickness of all the deposited films 
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is approximately 100 nm. The transmittance varies little with the discharge current for 

the semiconducting indium oxides with an overall average visible transmittance of 

around 80%. The blue shift is not observed since the indium oxides, deposited under 

these conditions, are not degenerated and the free carrier density is not that high.  
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Figure 3.16: Representative absorption curves of the indium oxides deposited at the 

discharge currents of 0.5 A and 2.0 A for the optical bandgap extraction 

Figure 3.16 conveys the direct optical bandgap extraction for the indium oxides, 

deposited at the discharge currents of 0.5 A and 2.0 A, while the deposition rate and 

discharge voltage remain at 1.5 Å/s and 100 V, respectively. The bandgap is retrieved 

from the transmittance data by extrapolating the linear part of the (αhv)2 versus the 

photon energy hv plot to the absorption coefficient, α = 0, as seen in Figure 3.16, 

yielding 3.6~3.7 eV for both the conducting and semiconducting indium oxides. This 

value is also close to that reported in the literature [2].  



 

 39

400 450 500 550 600 650 700 750
1.90

1.95

2.00

2.05

2.10

2.15

2.20

2.25

 

 

 2.0 A
 1.0 A

R
ef

ra
ct

iv
e 

In
de

x

Wavelength (nm)
 

Figure 3.17: Refractive index of the indium oxides fabricated at two different 

discharge currents 

The refractive index in the relation to the wavelength curves of the indium oxides 

fabricated at two different discharge currents are shown in Figure 3.17. The 

deposition rate and discharge voltage are chosen as 1.0 Å/s and 100 V, respectively. 

Figure 3.18 presents the refractive index as a function of the wavelength of the indium 

oxides deposited at two different deposition rates. The discharge voltage and current 

are kept at 100 V and 1.0 A, respectively. The refractive index ranges from 2.30 to 

1.95. The value slightly varies with the deposition conditions. Since the discharge 

current and deposition rate in the reactive IBAE affect the chemical composition of 

indium oxides, it is anticipated that the refractive index is dependent on the oxidation: 

that is more oxidized samples have the relatively smaller refractive index.    
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Figure 3.18: Refractive index of the indium oxides deposited at two different 

deposition rates 

3.2.4 Crystal Structure 

The crystal structure of the indium oxides are evaluated by the XRD technique 

performed by the same diffractometer described in Section 3.1.5. The structural order 

of the films is significantly dependent on the discharge current.  Figure 3.19 signifies 

the XRD patterns of the indium oxide films, deposited at different discharge currents: 

0.5 A, 1.5 A, and 2.0 A. The deposition rate and discharge voltage are kept constants 

at 1.5 Å/s and 100 V. The 1.5 A and 2.0 A films are polycrystalline with a dominant 

(222) orientation, whereas the 0.5 A film is amorphous in nature. As observed from 

the increased number of diffraction peaks, a large discharge current helps improve the 

structural ordering. The estimated grain size for the 2.0 A film is around 12 nm from 

the Scherrer formula.  



 

 41

10 20 30 40 50 60 70

2.0 A (622)(611)(440)(332)

(400)

(222)

(211)

 

 

In
te

ns
ity

 (a
. u

.)

2θ (degrees)

0.5 A

1.5 A

 

Figure 3.19: XRD patterns of the indium oxide films deposited at different discharge 

currents: 0.5 A, 1.5 A, and 2.0 A 

The reactive IBAE is proven a versatile technique that allows for modifying the 

crystal structure of the indium oxide films from amorphous to polycrystalline simply 

by adjusting the discharge current of the oxygen ion source.  

3.2.5 Intrinsic Stress 

The obvious shift of the XRD peaks in Figure 3.19 is most likely caused by the 

intrinsic stress, generated from the growth process. To identify this, the intrinsic stress 

under different deposition conditions is measured. The stress measurements are 

performed by using a mechanical stress gauge from Ionic Systems. It is also crucial to 

study the film stress issue, especially for applications on flexible substrates. Excessive 

stress can cause the delamination of the film from the substrate. The film stress can be 

from thermal stress and intrinsic stress. The thermal stress arises from the difference 
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in the growth temperature and the thermal expansion coefficients between substrate 

and the grown film. The intrinsic stress is generated during the growth process varied 

with deposition technique and deposition conditions. Since all the films were grown at 

low temperature on water-cooled glass substrates (~ 400C due to plasma heating 

during deposition), the thermal stress can be negligible, and therefore, the key stress 

would be intrinsic stress.  
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Figure 3.20: Intrinsic stress of the indium oxide films as a function of the deposition 

rate  

Figure 3.20 displays the intrinsic stress of the indium oxide films as a function of 

the deposition rate. The discharge current and voltage are 1.0 A and 100 V. Figure 

3.21 presents the dependence of the intrinsic stress on the discharge current, whereas 

the discharge voltage and deposition rate are kept constants at 100 V and 1.0 Å/s. Due 

to the atom peening effects [38], compressive stress generally occurs, when the 
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growing film is bombarded  by ions with an energy of tens to hundreds of eV. In these 

figures, all the films have compressive stress ranging from 0.4 GPa to 1.8 GPa, 

slightly higher than that in the low-stress sputtered ITO films. The intrinsic stress 

increases with deposition rate and discharge current. This implies that the stress is 

proportional to the arrival mass, suggesting that a low deposition rate and low 

discharge current facilitates the realization of the low-stress films by the IBAE. 
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Figure 3.21: Intrinsic stress of the indium oxide films as a function of the discharge 

current 

3.2.6 Topology 

To examine the topology of the deposited films, the surface roughness is evaluated by 

a Veeco WYKO NT1100 optical profiler. The three surface roughness evaluation 

parameters are the average roughness, which is defined as the arithmetic mean or 
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average of the absolute distances of the surface points from the mean plane; the root 

mean square roughness, which is the root mean square of the surface departures from 

the mean plane within the sampling area; and the peak to valley roughness, which is 

defined as the sum of the largest peak height value and the largest valley depth from 

the mean plane within the sampling area. 

Figure 3.22 and Figure 3.23 show the image of the topology and representative 

surface profiles scanned in both the x- and y-directions. The 200-nm-thick film on a 

single crystalline silicon wafer is deposited at a discharge current of 2.0 A, discharge 

voltage of 100 V, and deposition rate of 1.5 Å/s. The calculated peak to valley 

roughness is around 4.0 nm for an area of 200 µm×200 µm. The calculated root mean 

square roughness and average roughness are ~ 1.0 nm and ~ 0.8 nm, respectively, 

comparable to those of the best ITO films by sputtering. 

Figure 3.24 and Figure 3.25 are the image of the topology and the scanned surface 

profiles in both x- and y-directions for the 200 nm highly-conducting films, deposited 

at a rate of 3.0 Å/s. The discharge current is 1.0 A, and the discharge voltage is 100 V. 

The calculated peak to valley roughness is approximately 10.3 nm for the area of 200 

µm×200 µm. The calculated root mean square roughness and average roughness are ~ 

1.4 nm and ~ 1.2 nm, respectively.  
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Figure 3.22: Topological image of the semiconducting indium oxide 
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Figure 3.23: Representative surface profiles scanned in both the x- and y- directions 

for the semiconducting indium oxide 
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Figure 3.24: Topological image of the highly-conducting indium oxide 
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Figure 3.25: Representative surface profiles scanned in both the x- and y- directions 

for the highly-conducting indium oxide 

The IBAE-derived films are smoother and more uniform than those deposited by 

conventional evaporation, since the incident ions physically promote the migration of 

the atoms, which is one of the main physical effects of the IBAE technique [38]. 
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3.2.7 Morphology  

The scanning electron microscopy (SEM) images are attained by a LEO 1530 FE-

SEM with an operating voltage of 15 KV and an amplification factor of 50 K. Figure 

3.26 reflects the fractured cross-sectional SEM images of the semiconducting indium 

oxide film, deposited on a bare single crystalline silicon wafer. The film thickness is 

about 200 nm. The left image is captured from a secondary electron detector and the 

right image is from a back scattering electron detector. The column structures are 

identified in the cross-sectional morphology images, typical for most thin films, 

deposited by physical vapour deposition at low substrate temperatures [42].  
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Figure 3.26: Cross-sectional SEM images of the semiconducting indium oxide film on 

a single crystalline Si wafer 

Interestingly, the SEM images further reveals that the film growth by the IBAE can 

be divided into two consecutive processes: at the initial stage of the growth, a very 

thin indium oxide (around 20 nm in this case) with an amorphous phase is grown at 

the interfacial region as marked in Figure 3.26, followed by a polycrystalline growth 

of the column structure to the top. Thus, from growth process point of view, ion 

assisted deposition is quite different from conventional evaporation or sputtering, 
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3.3 

which is typically an island-mode growth. It is believed that the ion assistance 

enhances the adatom diffusion length, along the substrate surface, and tends to break 

up the three-dimensional islands so that the column structure growth less likely occurs 

at the bottom. After a certain thickness, the growth becomes normal due to cluster 

aggregation and the change in the surface conditions.     

Summary  

In this chapter, a comprehensive material study of the zinc oxide and indium oxide 

thin films, prepared by the oxygen ion assisted reactive IBAE at low temperatures. 

The focus is on the investigation of the correlations between deposition conditions 

and film properties. The electrical properties, chemical composition, optical 

properties, crystal structure, intrinsic stress, topology, and morphology as a function 

of the deposition conditions are studied. The process windows for achieving the 

semiconducting zinc and indium oxides are eventually figured out. In addition, the 

work in this chapter demonstrates that as a versatile technique, IBAE can effectively 

control the TOS thin film properties to meet the technical requirements of a variety of 

applications, including TCOs, TFTs, and optical coatings. 
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4.1 

Chapter 4 
ZnO-based UV Sensors 

This chapter includes a review of the ZnO-based thin-film UV sensor technology, a 

description of the device fabrication and processing, and the details on the device 

characterization and analysis, including the current-voltage characteristics, current 

transients, leakage mechanisms, and spectral response. 

Introduction 

Undoped zinc oxide is transparent at visible wavelengths, has a direct and wide 

bandgap of ~3.3 eV at room temperature, and a large exciton binding energy (~60 

meV at room temperature) [29]. Doped zinc oxides such as ZnO:Al and ZnO:In are 

well-known for many optoelectronic device applications, including TCOs in flat-panel 

displays and solar cells. Recently, ZnO-based UV sensors and light-emitting diodes 

have been reported [43, 44]. Among these applications, ZnO-based UV sensor 

technology offers definite advantages due to its direct and wide bandgap, strong UV-

response, simple and low-cost processing, and capability of working in harsh 

environments [45-47].  

The Schottky and p-n junction have been widely-adopted for structuring ZnO-based 

UV sensors. Since the growth of reproducible and reliable p-type ZnO films are still 

under development, Schottky diodes and a number of p-n heterojunctions have been 

developed by combining n-type ZnO with metal Ag [46] and other p-type material 

such as Si [47], SiC [48], SrCu2O2 [49], NiO [43], ZnMgO [50], and ZnRh2O4 [51]. A 
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high leakage current, due to the imperfection of the heterojunction interface, is a 

serious technical issue for these devices as UV sensors. The lowest level of leakage 

current to date is 2×10-4 A/cm2 at -10 V for n-ZnO/p-SiC heterojunction diodes, 

grown by plasma-assisted molecular-beam epitaxy [48]. As for the other materials, 

the p-n heterojunction performance is far inferior because of the lattice mismatch of 

the used materials and electronic defects.  

To take advantage of the development of the semiconducting ZnO, the approach in 

this thesis is to fabricate a p-i-n heterostructure instead of a p-n heterojunction by 

using semiconducting ZnO as the intrinsic layer, and p-NiO and n-ITO as the 

contacts. The property and thickness of the intrinsic layer is critical for the device 

performance. Generally, it is perceived that in order to absorb the light at a certain 

wavelength, the thickness of the absorption layer should be thicker than , 

where  is the absorption coefficient at the particular wavelength, referring to 

the optical bandgap [2]. By applying this simple rule and taking the wavelength 

corresponding to the ZnO optical bandgap of 3.2 eV as a reference, the minimal 

thickness for the ZnO absorption layer is approximately 140 nm, which means the 

ZnO absorption layer must be thicker than this value in order to efficiently absorb the 

photons. 

1−
bandedgeα

bandedgeα

In ZnO-based diodes, NiO with a bandgap of ~3.7 eV is used as a p-type contact. 

Non-stoichiometric NiO is p-type conductive due to the presence of Ni3+ ions, 

resulting from the appearance of nickel vacancies and/or interstitial oxygen in the NiO 

crystallites [52]. The details of the NiO films, fabricated by the IBAE can be found in 

the literature [53]. 
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4.2 Device Fabrication and Processing 

Both p-i-n and n-i-p structures are achieved by simply changing the deposition 

sequence. Figure 4.1 is a schematic diagram of the p-i-n and n-i-p heterostructures. 

Semiconducting i-ZnO and p-NiO are fabricated by the reactive IBAE and n-ITO is 

deposited by a conventional radio frequency sputtering technique. For the p-i-n 

configuration, first, a 20 nm NiO layer is deposited by using the IBAE, followed by a 

200 nm ZnO deposited by the IBAE. Finally, a 50 nm ITO is sputtered through a 

shadow mask with a contact area of 0.025 cm2 to form the top transparent electrodes. 

Similarly, the n-i-p diodes are constructed by the following deposition steps. A 200 

nm i-ZnO film is prepared on a commercial ITO-coated glass substrate. Then, a 20 

nm p-NiO layer is deposited through the same shadow mask to form the top contact. 

All the deposition steps are performed at low temperatures without heating the 

substrate and post-deposition annealing. 

The deposition rate is maintained at 0.3 Å/s for the NiO films and 1.5 Å/s for the 

ZnO films. The optimized discharge voltage and current are 120 V and 2.25 A and 

100 V and 1.45 A for the ZnO and NiO, respectively. The resistivity of the 20 nm p-

NiO is around 1 Ω-cm on the glass substrate. The amorphous ITO films are sputtered 

in an Ar plasma at a working pressure of 5 mTorr and a deposition rate of 1.1 Å/s. 

The sheet resistance of the ITO layer is ~70 Ω/sq. 
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 Figure 4.1: Schematic diagram of the (a) p-i-n and (b) n-i-p heterostructures 

4.3 Device Characterization and Analysis 

4.3.1 Current-Voltage Characteristics 

The current-voltage (J-V) characteristics of both diodes are measured in a 4200 

Semiconductor Characterization System from Keithley instruments. Figure 4.2 shows 

the typical J-V characteristics of the as-deposited p-i-n and n-i-p diodes. The 

measurements are performed by changing the bias voltages from -5 V to +2 V and 

vice versa.  The voltage increment and delay time are set to 25 mV and 2 s, 

respectively. Both diodes exhibit clear diode-like behaviour with a current 

rectification ratio as high as 104 ~105 at the bias voltages of +/- 2 V. The reverse dark 

leakage current is ~10 nA/cm2 for the p-i-n structure and ~100 nA/cm2 for the n-i-p 

structure at -5 V, which is orders of magnitude lower than that reported for the ZnO-

based diodes prepared by other techniques [43, 48, 51, 53]. This is the lowest leakage 

current recorded for ZnO-based diodes to date. The observed hysteresis in Figure 4.2 
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is similar to that in a-Si:H p-i-n diodes and is attributed to a time-dependent current 

component, induced by the depletion of the charge from the intrinsic layer [54].  
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Figure 4.2: Typical J-V characteristics of the ZnO-based p-i-n and n-i-p diodes 

4.3.2 Leakage Current Mechanisms 

Since a UV sensor works under reverse bias conditions, it is crucial to decrease 

leakage current as much as possible, particularly for low-level UV detection. The 

lowest leakage current (~ 10 nA/cm2 at -5 V) is achieved in the diode with a p-i-n 

configuration, whereas the sample with a n-i-p structure has a one order of magnitude 

higher leakage current at the same reverse bias. However, at reverse biases, lower 
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than 3 V, the n-i-p diode has a lower leakage current than the p-i-n diode in Figure 

4.2.  
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Figure 4.3: Time dependence of the dark current at different bias voltages for the p-i-n 

diode 

There are bulk and contact components to the leakage current. The large value of 

the leakage current may be due to the increased charge generation through the defect 

states in the i-layer bulk and at the interfaces. To identify the dominant source of the 

leakage current, the time dependence of the dark current measurements are carried out 

at different reverse biases.  
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Figure 4.4: Time dependence of the dark current at different bias voltages for the n-i-p 

diode 

Figure 4.3 and Figure 4.4 present dark current transient curves of the p-i-n and n-i-p 

diodes. At a low reverse bias of 1 V, a slow decrease in the dark current is observed in 

both diodes over a period of 1000 s. Such a current decay is attributed to the depletion 

of the charge from the deep defect states in the i-ZnO layer. The time taken for the 

depletion ( Dτ ) is   

                                     ,                                        (4-1) ]/)exp[(1
0 kTEE qFcD −= −ντ

where 0ν  is the excitation rate prefactor, is the Boltzmann constant, T is the 

absolute temperature in Kelvin, E

k

c and EqF  are the conduction band energy and the 

quasi Fermi energy [55]. For wide bandgap semiconductors such as ZnO, the 

depletion time can be very lengthy when the quasi Fermi-energy level approaches the 
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mid-bandgap. Since at low reverse biases, the leakage current originates primarily 

from the thermal generation of the carriers from the defect states and is proportional 

to the defect density, the expectation is that the ZnO-based n-i-p diode has a smaller 

thermal generation current than that of the p-i-n diode.  

At reverse biases within the range of 1.5 V and 5 V, the leakage current of both 

diodes increases with the applied reverse bias and exhibits strong field-dependence, 

evident in the J-V characteristics and dark current transients.  

0 100 200 300 400 500
-38

-36

-34

-32

-30

-28

 

 

Ln
[J

/E
 (A

cm
-1
V-1

)]

[E (V/cm)]1/2

 p-i-n diode
 n-i-p diode

 

Figure 4.5: Ln (J/E) as a function of E1/2, obeying the Poole-Frenkel model, accounts 

for the leakage current mechanism at a reverse bias higher than 1.5 V 

Figure 4.5 reveals that both the J-V characteristics at this reverse bias range follow: 

)exp( EEJ β∝ ,                                           (4-2) 
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where 
kT

FP

ξ
β

β −=  is a constant and E  is the electric field strength under a reverse 

bias, assuming 
d

VE R= , where  is the applied reverse bias and d  is the thickness 

of the i-ZnO film. This increasing leakage current is likely caused by a field-enhanced 

carrier generation mechanism, matching well with the Poole-Frenkel model [56].

RV

 The 

Poole-Frenkel constant, FP−β , is given by  

 
r

FP
e

επε
β

0

3

=− ,                                                 (4-3) 

where  is the elementary charge, e 0ε  is the permittivity of the free space and rε  is 

the optical dielectric constant of the ZnO film, which should satisfy  (~ 4), and 

n is the refractive index of the ZnO film. 

2nr =ε

The coefficient (ξ ) is introduced to reflect the modification of the normal Poole-

Frenkel effect, where ξ  is unity. A large value of ξ ( 21 << ξ ) is agreeable if the 

material contains a non-negligible number of traps [57, 58]. Since the deposited ZnO 

is not fully compensated, the Fermi-energy level lies above the mid-bandgap and the 

depletion of the i-ZnO layer causes a larger increase in the electric field strength at the 

p-i interface, compared to that of the n-i interface (i.e. the charge injection is more 

probable from the p-layer than from the n-layer). Furthermore, the p-i interface on the 

top of the i-ZnO (the n-i-p configuration) favours even a larger electric field 

enhancement than the p-i interface on the bottom (p-i-n configuration) due to surface 

condition that is rougher on the top. However, the early assumption on the electric 

field strength in Eq. (4-2) does not consider this situation. Therefore, the larger field 
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enhancement at the p-i interface can lead to a smaller value of ξ , which explains well 

that the leakage current of the n-i-p diode has a stronger field-dependence than that of 

the p-i-n diode. 

In addition to the generation currents: thermal and Poole-Frenkel, contact leakage is 

another mechanism. The principal observable effect of the contact leakage is a dark 

current increase over time, after the reverse bias is applied [54]. As seen in Figure 4.3, 

the dark current transient of the p-i-n diode (at -2 V, -3 V and -5 V) exhibits two 

stages of time dependence: the current decay at the beginning corresponds to the 

charge depletion, and the current slowly increases afterwards, which can be due to the 

contact leakage. For an ideal Schottky barrier, the contact leakage is the saturation 

current, , which is associated with the Schottky barrier height,  and the absolute 

temperature, T [59]:

0J BΦ

  

                                        ,                                              (4-4) )/exp(2*
0 kTeTAJ BΦ−=

where  is the effective Richardson constant. For a non-ideal Schottky barrier, 

tunneling across the barrier reduces the barrier height and the contact leakage 

current,   is expressed by [59]:

*A

contactJ

                            ,                                    (4-5) ]/)(exp[2* kTREeTAJ ttBcontact −Φ−=

where  is an effective tunnelling length and  is the field at the contact. Therefore, 

the slow leakage current increase in the p-i-n diode at high reverse biases is attributed 

to the depletion of the i-ZnO layer. The depletion slowly increases the electrical field 

at the p-i interface, and consequently, augments the contact leakage. However, such a 

tR tE
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current tendency does not appear in the n-i-p diode in Figure 4.4. The possible reason 

is that the n-i-p diode has a higher BΦ  than that of the p-i-n diode. 

4.3.3 Forward-Bias Analysis 

The forward-bias J-V characteristics can be fitted by a typical diode model [60]: 

                                              )exp()( 0 nkT
eV

JVJ F
FF = ,                                             (4-6) 

where is the forward-bias current at a forward-bias of  and n is the ideality 

factor.  
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Figure 4.6: Forward-bias ln(J)-V characteristics of the p-i-n and n-i-p diodes 

With Eq. (4-4), the Schottky barrier height, BΦ , can be determined. Calculated from 

the forward-bias J-V characteristics presented in Figure 4.6 , the Schottky barrier 
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energy  of the n-i-p diode is approximately 0.34 eV higher than that of the p-i-n 

diode, which can explain why the contact leakage of the n-i-p diode is greatly 

suppressed. The ideality factor (n) is greater than unity in both diodes, suggesting that 

the carrier recombination and generation in the depletion layer and the interfacial 

states exist in both diodes. Fewer interfacial states of the n-i-p diode yield smaller 

ideality factors, consistent with the results in the thermal generation current. 
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Figure 4.7: At higher biases, the current depends on V2, fitting well with the space-

charge-limited current model 

At forward biases higher than the turn-on voltage, a large value for n (2~30) 

violates the exponential J-V relationship, and  in Figure 4.7 indicates that the 

Space-Charge-Limited current accounts for the carrier transport [59]. Therefore, the 

forward-bias J-V characteristics undergo a transition from the recombination and 

generation current at low bias voltages to the space-charge-limited current at higher 

bias voltages. 

2VJ ∝
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4.3.4 Photocurrent Transient 

The photocurrent transient measures the current’s response to the pulse light 

illumination, describing how the current changes dynamically with and without the 

light illumination. The measurements of the transient photocurrent are performed by 

using a 1.8 mW GaN-based LED as a light source to provide a uniform 

photogeneration within the diode. The current measurements are conducted by the 

Keithley 4200 Semiconductor Characterization System. 
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Figure 4.8: Photocurrent transient of the p-i-n diode under the reverse bias of 1 V 

Figure 4.8 displays the transient photoresponse of the p-i-n diode at the reverse bias 

of 1 V. After the light pulse, the current first decreases rapidly from the steady-state 

level of 4×10-8 A/cm2 to about 7×10-10 A/cm2, and then decays exponentially due to 
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the continuous charge release. The trapped charge density, estimated for a pulse width 

of 100 s yields a value of ~3×1016 electrons/cm3 [61]. 

4.3.5 Spectral Response and Linearity 

To demonstrate the UV sensing performance, spectral response measurements are 

conducted by using the Oriel monochromator. Also the linearity results are also 

presented to examine the photosensitivity. Both quantum efficiency (QE) and spectral 

responsivity ( ) are functions of the photon’s wavelength. To covert from the to 

the QE: 

λR λR

                                                      
e

hcR
QE ×=

λ
λ λ)(  ,                                            (4-7) 

where λ  is the photon’s wavelength in nm, h is the Planck constant, c is the speed of 

light in a vacuum, and e is the elementary charge. 

Figure 4.9 illustrates the QE of the p-i-n and n-i-p diodes with a wavelength 

between 300 and 450 nm. The transmittance spectrum of the ZnO absorption layer is 

also plotted for reference. Both diodes are sensitive to UV irradiation with a 

wavelength range of 320 to 400 nm. It is also found that the p-i-n diode has a larger 

QE than the n-i-p diode for most of the wavelengths. The long wavelength component 

of the QE spectrum is associated with the optical interband transition in the i-ZnO. 

The QE reaches a maximum of 18% and 6% at the wavelength of 380 nm for the p-i-n 

and n-i-p diodes, respectively, and then decreases at shorter wavelengths due to the 

absorption in the top electrode. 

 

http://en.wikipedia.org/wiki/Nanometer
http://en.wikipedia.org/wiki/Planck_constant
http://en.wikipedia.org/wiki/Speed_of_light
http://en.wikipedia.org/wiki/Speed_of_light
http://en.wikipedia.org/wiki/Elementary_charge
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Figure 4.9: Comparison of the quantum efficiency between the p-i-n and the n-i-p 

diodes; transmittance spectrum of the ZnO intrinsic layer at wavelengths from 300 to 

450 nm is also included 

Figure 4.10 provides a comparison of the transmittance spectra between the 20 nm 

p-NiO and the 50 nm ITO films at wavelengths ranging from 300 to 450 nm. For most 

wavelengths, the ITO top contact in the p-i-n diode has an optical loss that is less than 

the NiO contact in the n-i-p diode, such that the p-i-n diode has larger values of the 

QE than the n-i-p diode.  
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Figure 4.10: Transmittance spectra of the 50 nm ITO and 20 nm NiO in the 

wavelength range of 300 to 450 nm 

Under the uniform illumination of the 1.8 mW GaN-based UV light-emitting diode, 

the photocurrent density increases linearly with the light intensity over five decades as 

portrayed in Figure 4.11, and as such, meets most of application requirements for the 

UV sensors. The p-i-n diode has a photocurrent density that is roughly three-times 

larger than the n-i-p diode under the same light density, consistent with the results in 

the QE. 
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Figure 4.11: Photocurrent density as a function of the light intensity for both the p-i-n 

and n-i-p diodes 

4.3.6 Photoconduction Mechanisms 

The sensitivity of the heterostruture photodiode stems from the photoconduction of 

the i-layer ZnO. An understanding of the photoconduction mechanisms is pivotal to 

guide material optimization and device design in the future. 

The photoconduction in the nanocrystalline i-ZnO films may be due to the 

following. First, the photo-induced desorption of the oxygen, primarily accumulated 

at the grain boundaries [62]. In the absence of the UV light, excess oxygen is 

adsorbed by taking a free electron from the grain boundary of the ZnO crystallite to 

form a chemically adsorbed surface state, leaving behind a depletion region near the 

surface, expressed as: 
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−− →+ 22 OeO , 

under illumination, when the photon energy is higher than the fundamental absorption 

bandgap of ZnO (~3.2 eV), holes are produced by the light absorption near the grain 

boundary surface, discharging the negatively-charged oxygen ions, represented by: 

22 OOh →+ −+ , 

and simultaneously producing electrons that increase the conductivity. Thus, 

nanocrystalline ZnO can have larger photocurrent because of the larger specific 

surface area or surface to volume ratio, which can adsorb more oxygen at the grain 

boundaries. Secondly, UV illumination lowers the barrier height of the grain 

boundary which enhances the mobility [63]. For polycrystalline semiconductor 

materials, the mobility µ has the relationship of   

                                      ,                                     (4-8) 11
0

1 )]/exp([ −−− −+= kTEbgbµµµ

and is related to the mobility of a ZnO crystalline grain, 0µ , and )/exp( kTEbgb −µ  is 

the contribution, accounting for the grain boundary scattering. Here is the barrier 

height of the grain boundary, k  is the Boltzmann constant, and T  is the absolute 

temperature in Kelvin [64]. The lowered barrier height  by UV illumination, 

enhances the carrier mobility from Eq. (4-8). Lastly, an increase of free carriers due to 

photovoltaic effects. The photogenerated carrier density  and  is the charge 

integration of generation rate in the entire depletion region, 

bE

bE

phgn phgp

                                  ,                                                       (4-9) ∫==
W

phgphg dxxGpn
0

)(
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where W  is the width of the depletion layer, and  is the carrier generation rate, 

given by 

)(xG

                                   ,                                         (4-10) x
TCOph eTxG )()()()( λαλαλ −Φ=

where  is the photon flux reaching the device, phΦ )(λTCOT  is the transmittance of the 

top-contact NiO or ITO, and )(λα  is the absorption coefficient of the ZnO, a function 

of the penetration depth [28, 65].  
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Figure 4.12: Photoconduction mechanisms of the nanocrystalline ZnO thin film 

Figure 4.12 illustrates these three photoconduction mechanisms of the 

nanocrystalline ZnO thin film in a schematic band diagram. The ZnO thin films, 

derived by the IBAE can have a strong UV photosensitivity due to its nanocrystalline 

structure. 

4.4 Summary 

Both p-i-n and n-i-p heterostructure photodiodes are fabricated with the optimized 

semiconductiong ZnO as the intrinsic absorption layer. The diodes exhibits a low 
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leakage current level and a high current rectification ratio, compared with those 

reported for the ZnO-based Schottky and p-n heterojunction diodes. A comparative 

study between two heterostructures is conducted with an in-depth analysis of current-

voltage characteristics, leakage current mechanisms, current transients, spectral 

response, and linearity. Both diodes are sensitive to UVA (320-400 nm) irradiation 

and might be promising for low levels of UVA detection. A discussion on 

photoconduction mechanisms is also presented.  
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5.1 

5.2 

Chapter 5 
Indium Oxide TFTs 

This chapter reports on fabrication, characterization, and analysis of indium oxide 

TFTs. The focus is on the optimization of the device performance along with the 

detailed study of device characteristics, stability and dynamic behaviour. 

Introduction 

After the successful fabrication of semiconducting indium oxides by the IBAE, the 

possibility of applying semiconducting indium oxides to TFTs is considered. Even 

though indium oxide TFTs have been demonstrated with different gate dielectrics, as 

discussed in Chapter 1, the interest here is indium oxide TFTs with SiNx or SiOx gate 

dielectrics, deposited by conventional PECVD, which seems more attractive for large 

area fabrication and low-cost industrial practice.     

TFTs with a Silicon Dioxide Gate Dielectric 

5.2.1  First-Run Indium Oxide TFTs 

The first-run indium oxide TFTs are constructed with a SiOx gate dielectric by 

PECVD. The bottom-gate staggered TFT test structure is shown in Figure 5.1. The 

device fabrication steps are described as follows. First, a 200 nm SiOx layer is 

deposited on heavily doped p-type single crystalline silicon wafers. Then, a 100 nm 

indium oxide layers are grown by the IBAE and patterned by traditional 
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photolithography and wet etching. The semiconducting In2O3 channel layer is 

deposited at a discharge current of 2.0 A and deposition rate of 1.7 Å/s. Before the 

deposition of the indium oxide channel, the SiOx surface is treated by a beam of low-

energy O2 plasma to remove contaminants and moisture. Finally, a 70 nm amorphous 

ITO with a sheet resistance of 70 Ω/sq. is sputtered in an Ar plasma at a working 

pressure of 5 mTorr and a deposition rate of 1.1 Å/s. The ITO layer is patterned by the 

lift-off technique to form source and drain contacts. Al is sputtered on the back side of 

silicon wafer to form a common gate electrode.  

The TFT performance, transfer characteristics and output characteristics are 

characterized by the 4200 Semiconductor Characterization System from Keithley 

instruments. The sweeping time and holding time are selected as 1 s and 2 s, 

respectively. The sweep voltage inclement is set to 0.5 V.  

Al

P+-single crystalline silicon wafer

PECVD SiOx (200 nm) 

 IBAE-In2O3 (100 nm)  
ITO     ITO 

 

Figure 5.1: Cross-sectional schematic diagram of the indium oxide TFT test structure 



 

 71

0 5 10 15 20
0

5

10

15

20

 

 

 

VDS (V)

I D
S (µ

A
)

VGS=5 to 20 V, 5 V steps
W/L=600 µm/50 µm

 

Figure 5.2: Output characteristics of the first-run indium oxide TFT with the PECVD 

SiOx gate dielectric 

Figure 5.2 depicts the output characteristics of the first-run indium oxide TFT with 

the PECVD SiOx gate dielectric. W and L refer to the channel width and length, 

respectively (W/L = 600 µm / 50 µm).The output characteristics shown here are very 

poor and there is no clear pinch off or “hard” saturation observed in the studied 

voltage range.  
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Figure 5.3: Transfer characteristics and field-effect mobility dependence on the gate 

voltage of the first-run indium oxide TFT with the PECVD SiOx gate dielectric 

Figure 5.3 presents the transfer characteristics of the same indium oxide TFT. An 

current ON/OFF ratio of 2×106 is achieved at VDS = 10 V and VGS, ranging from -15 

V to 20 V. The gate leakage current is below 1 pA under bias conditions. The 

threshold voltage VT of this TFT is around 5.7 V, extracted from the linear 

extrapolation plot of the transfer characteristics at VDS = 1 V. Also, the field-effect 

mobility µFE as a function of VGS is included in Figure 5.3. The details of the field-

effect mobility and threshold voltage extraction can be found in Appendix of this 

thesis. The field-effect mobility strongly depends on the gate bias. It increases with 

the gate bias due to the fact that the traps at the interface and/or in the “bulk” of the 

channel layer are continuously filled by increasing the VGS. In an ideal case, the 

mobility should saturate at a certain VGS. However, as observed here, the mobility 

drops with a continuous increase in the VGS that might be caused by series resistance, 
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channel mobility degradation, and/or interface scattering [66]. The peak value of the 

field-effect mobility is 1.4 cm2/Vs at VGS = 15 V, much lower than start-of-the-art 

TOS TFTs reported elsewhere. Another important device parameter, the sub-threshold 

slope defined by S = (d log10IDS/dVGS)-1, can be calculated from the logarithmic scale 

transfer characteristics, and yields a value of 2.9 V/decade. S is quantified by: 

                                            
)log(

)(
eC

DtNTqk
S

ox

itctB +
=                                             (5-1)                        

where  is the equivalent capacitance per unit area of the SiOoxC x (~19 nF/cm2), 

retrieved from measurement of capacitance-voltage characteristics of the TFT,  is 

the electron charge,  represents Boltzmann’s constant, T  is the absolute 

temperature in Kelvin, and  is the channel layer thickness [67]. The value of S 

depends on the trap density in the bulk channel layer (N

q

Bk

ct

t) and at the In2O3/SiOx 

interface (Dit). If Nt or Dit is set to zero, the maximum values of Nt and Dit are 

5.7×1017 cm-3eV-1 and 5.7×1012 cm-2eV-1, respectively. The large values of Nt and Dit 

suggests that either the semiconductor channel and/or interface needs to be further 

optimizing. 

5.2.2 Problem Identification and Proposed Solutions 

The first-run TFTs with the PECVD dielectrics SiOx are demonstrated in the last 

section. The TFTs work as field-effect devices, but the device performance is poor, 

and far from meeting the technical needs of practical applications such as active 

matrix OLED displays.  
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The principal problems in such TFTs are two-fold. One is that the output 

characteristics have a “soft” saturation, showing the ineffective gate control. The 

other is that the large values of sub-threshold slope signifies the large amount of 

interfacial traps and/or defect states in the indium oxide bulk and the TFTs are prone 

to a low field-effect mobility with degradation.  

To solve these problems and improve the device performance, three solutions are 

proposed: (1) Replace ITO with Mo to diminish the contact resistance between the 

source/drain (S/D) and channel. In indium oxide TFTs, Mo can be slightly doped into 

the indium oxide surface layer during the Mo sputtering so as to enhance the contact 

conduction; (2) Shrink the channel layer thickness in order to decrease the intrinsic 

channel resistance. The thicker channel is detrimental to the device performance, 

particularly field-effect mobility due to the grain boundary scattering from 

polycrystalline indium oxide layer. As noted in Section 3.2.7, the indium oxide 

channel layer consists of a very thin amorphous interfacial layer at the bottom and a 

thicker polycrystalline layer on the top, where carriers injected from the S/D contacts 

are most likely scattered by a large number of grain boundaries in this polycrystalline 

layer. Therefore, a thinner channel layer with an amorphous nature is preferred to 

avoid grain boundary scattering. 

5.2.3 TFTs with the Improved Device Performance 

The goal of this section is to implement the strategies previously mentioned and 

examine if these strategies work effectively to improve the device performance. 
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A schematic cross section and a micrograph of the fabricated bottom-gate staggered 

TFT are denoted in Figure 5.4. The TFT is produced by a four-mask 

photolithographic process. First, an 80 nm Mo is sputtered and patterned on Corning 

1737 glass substrate to form gate electrodes (Mask #1). Then after a 200 nm SiOx 

dielectric layer is deposited at 3000C by conventional PECVD, the deposition of 30 

nm indium oxide by the IBAE is carried out. The indium oxide film is deposited at the 

discharge current of 2.0 A, discharge voltage of 100 V, and deposition rate of 1.7 Å/s. 

The channel layer is patterned by traditional photolithography and wet etching (Mask 

#2). Then, the SiOx layer is patterned to open via under the gate contact pads (Mask 

#3). Finally, a 100 nm Mo film is sputtered and patterned by the lift-off technique to 

form the source and drain contacts as well as the contact pads (Mask #4).  
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Figure 5.4: (a) Schematic cross section of the fabricated bottom-gate indium oxide 

TFT with the PECVD SiOx dielectric and (b) micrograph of the fabricated TFT 

Figure 5.5 depicts the output characteristics of the indium oxide TFT with the 

PECVD SiOx dielectric. The obvious saturation and pinch off are observed. The drain 

current increases with the gate bias level, indicating that the electrons are accumulated 

under the gate biases. There is no current crowding at the low drain-source biases, 

suggesting that the Mo source/drain electrodes and indium oxide channel forms a 

reasonably good Ohmic contact.  
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Figure 5.5: Output characteristics of the indium oxide TFT with the PECVD SiOx 

dielectric 

Figure 5.6 conveys the transfer characteristics of the same indium oxide TFT at the 

drain-source voltages of 10 V, 1 V and 0.1 V, respectively. The high current ON/OFF 

ratio of 107~108 with a very low OFF current of ~10-13 A is obtained. The extracted 

threshold voltage of ~2.0 V is achieved from the linear transfer characteristics at VDS 

= 1 V. From the dependence of the field-effect mobility on the gate-bias voltage 

curve, the value of the field-effect mobility can reach as high as 33 cm2/Vs at VGS = 

20 V, one of the highest mobility achieved in TOS-based TFTs. More important, the 

field-effect mobility does not indicate any degradation at the higher gate biases.  
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Figure 5.6: Transfer characteristics of the indium oxide TFT with the PECVD SiOx 

dielectric; the field-effect mobility as a function of the gate bias is also included 

Another critical device parameter, the sub-threshold slope is around 2.0 V/decade, 

still much higher than the required value of several tens mV/decade for practical 

applications. From Eq. (5-1), the large value of the sub-threshold slope can be due to 

either large trap density at the interface or the large defect density in the channel. 

Since the interface condition does not change much with the thickness of the channel, 

the large defect density in the bulk is the most plausible reason. In order to identify 

this, a TFT with a 100 nm indium oxide channel is fabricated and characterized for 

the purpose of comparison.  
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Figure 5.7: Transfer characteristics of the indium oxide TFT with the 100 nm channel 

layer  

Figure 5.7 presents the transfer characteristics of the indium oxide TFT with the 

100 nm channel layer. It is evident that the sub-threshold slope improves up to 0.5 

V/decade, about four-times smaller than that of the previous TFT with a 30 nm 

indium oxide channel layer, suggesting that the sub-threshold slope is more dependent 

on the defect density in the indium oxide bulk than the trap density at the interface. 

Nevertheless, the field-effect mobility in this TFT is much lower (~3 cm2/Vs at VGS = 

10 V) than the one in the previous TFT with the thinner channel layer. The intrinsic 

channel resistance, mainly coming from grain boundary scattering in the 

polycrystalline indium oxide layer, increases with the channel thickness. Therefore, 

the “actual” drain voltage applied to the conduction channel decreases, resulting in a 

lower drain current as well as a lower extracted field-effect mobility [68]. This 
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5.3 

implies that the thick amorphous indium oxide channel is preferable in achieving 

TFTs with a high field-effect mobility, as well as a small sub-threshold slope.  

TFTs with a Silicon Nitride Gate Dielectric 

The TFT with a PECVD SiNx gate dielectric is also fabricated and characterized. 

Figure 5.8 and Figure 5.9 illustrate the output and transfer characteristics of the first-

run indium oxide TFT with the PECVD SiNx gate dielectric. Similar to the first-run 

TFTs with the PECVD SiOx gate dielectric, the TFT shown here also exhibits poor 

output characteristics and transfer characteristics. For example, the current crowding 

and concave shape of the IDS-VDS curves indicate that an improved source/drain 

contact with a low contact resistance is required. The extracted threshold voltage is 

around 10.5 V from the linear transfer characteristics curve at VDS = 1 V. The peak 

field-effect mobility is very low, around 0.18 cm2/Vs at VGS = 15 V. It also drops at 

the higher gate biases, indicating the same degradation as that occurred in the TFT 

with the PECVD SiOx gate dielectric. 
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Figure 5.8: Output characteristics of the first-run indium oxide TFT with the PECVD 

SiNx gate dielectric 
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Figure 5.9: Transfer characteristics of the first-run indium oxide TFT with the 

PECVD SiNx dielectric 
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 By addressing the series resistance issues in the first-run TFTs and applying the 

same strategies as in Section 5.2.2, the second-run TFTs with the improved 

performance are fabricated and characterized. Figure 5.10 and Figure 5.11 give the 

output and transfer characteristics of the second-run indium oxide TFTs. Compared 

with the TFT performance in Figure 5.8 and Figure 5.9, both the output and transfer 

characteristics are substantially enhanced. The output characteristics have an obvious 

“hard” saturation and there is no current crowding at the low bias drain voltages. The 

transfer characteristics demonstrate a low OFF current of 10-12~10-13 A, an ON/OFF 

current ratio of 107~108, and a field-effect mobility of ~30 cm2/Vs at VGS = 20 V. The 

field-effect mobility does not degrade with the gate bias in the range that is 

investigated.  
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Figure 5.10: Output characteristics of the second-run indium oxide TFT with the 

PECVD SiNx dielectric 
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Figure 5.11: Transfer characteristics of the second-run indium oxide TFT with the 

PECVD SiNx dielectric 

In conclusion, the effectiveness of the proposed solutions is examined by studying 

the transfer and output characteristics of the indium oxide TFTs. It is evident that the 

channel layer thickness and S/D contact resistance are two critical factors that affect 

the device performance. The output characteristics can be improved by decreasing the 

contact resistance. The sub-threshold slope and the field-effect mobility are mainly 

dependent on the channel layer thickness, which is related to the intrinsic channel 

resistance. The study also implies that the device performance of the indium oxide 

TFTs seems insensitive to the choice of the gate dielectric. High-performance indium 

oxide TFTs can be achieved with both the silicon dioxide and the silicon nitride gate 

dielectrics by conventional PECVD. 
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5.4 Threshold Voltage Stability 

Device stability is another concern of the indium oxide TFTs. This section is devoted 

to the study of the threshold voltage shift of the indium oxide TFTs under long-term 

constant voltage and long-term current stress modes, and to identify the mechanisms 

underlying the TFT instability. 

5.4.1 Stability under Constant Voltage Stress  

To examine the threshold voltage stability, long-term stress tests are executed. The 

measurements are performed in the constant voltage bias stress mode, where different 

gate biases are applied and the drain and source are kept grounded [19]. The rapid 

sweeps of the transfer characteristics at the drain voltage of 1 V are carried out during 

the stress with an interval time of 600 s. Thus, the threshold voltages are extracted 

from the linear transfer characteristics.  
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Figure 5.12: Threshold voltage of the indium oxide TFT with the PECVD SiOx 

dielectric as a function of the stress time 

Figure 5.12 illustrates the dependence of the threshold voltage on the gate bias 

stress time for the indium oxide TFT with the PECVD SiOx gate dielectric. The 

threshold voltage is kept constant at a 10 V and 20 V gate voltage stress for 6000 s, 

suggesting that the TFT is highly stable under low gate bias stress conditions. 

However, at a high gate bias stress of 30 V and -30 V, the VT shifts significantly 

towards the negative direction from 2 V to -3 V after a 6000 s stress. 
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Figure 5.13: Shift in transfer characteristics of the TFT due to a stress gate bias of 30 

V for different stress time 

A constant voltage of 30 V stress induces a parallel shift in the transfer 

characteristics of the TFT, as seen in Figure 5.13. Typically, two mechanisms cause 

the TFT instability: defect creation in the channel and charge trapping in the gate 

dielectric and/or at the dielectric/channel interface [69].  It has been reported that in 

the a-Si:H TFTs, a positive shift of the threshold voltage under positive gate bias 

stress and a negative shift under a negative gate bias stress are the evidence to 

distinguish charge trapping from the defect generation mechanism [70]. Another 

distinction between these two mechanisms is the required energy level to fill and/or 

release the trapped charges: usually defects are located at deep energy level, and 

therefore, require a high energy to fill and/or release the trapped charges by means of 

heating and/or a high electric field; the charged traps are in the shallow energy level 

and are easily filled and/or released by simply relaxing the device [71].  
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Figure 5.14: Transfer characteristics of the indium oxide TFT measured before stress, 

after 6000 s stress, after 24 hr relaxation, and after 800C baking for 24 hours (stress 

voltage: 30 V) 

The VT here shifts towards the negative direction under a positive and negative 30 

V gate bias stress, indicating that the charge trapping at the interface is less likely the 

cause of the observed VT shift in the indium oxide TFT. It is also found that the 

transfer characteristics of the indium oxide TFT are extremely difficult to recover by 

itself for a long period of relaxation after the 30 V gate voltage stress. After baking 

the device at 800C for 24 hours, the characteristics return to their original status, as 

shown in Figure 5.14. The findings strongly support the arguments that the defect 

creation as in a-Si:H TFTs does not likely occur in TOS TFTs, because of the absence 

of covalent bonds [19, 35]. Additionally, after a 30 V gate bias stress, the field-effect 

mobility remains the same, implying that the defects are not likely generated in the 

indium oxide channel. Deep-level traps, created in the gate dielectric under a high 
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electric field stress and the hydrogen motion from the PECVD gate dielectric to the 

interface are possible causes. The role of hydrogen in the oxide semiconductors are 

addressed theoretically [72, 73]. Unlike the hydrogen in amorphous silicon materials 

that plays a positive role in passivating the dangling bonds, the hydrogen in the oxide 

semiconductors acts as shallow donors, as well as interstitial atom. They are very 

small, easily activated, and become mobile in the film. Under an electric field across 

the gate dielectric layer, the chemical potential of hydrogen should be lower to 

facilitate the interlayer diffusion of the hydrogen from the gate dielectric into the 

active semiconductor channel [74]. The increase in the electrically active hydrogen 

concentration in the active channel leads to the increase in the carrier density through 

hydrogen doping. In addition, the defect density can be increased through the 

interlayer diffusion of mobile hydrogen atoms. At present, it is still too early to 

conclude the instability mechanisms for TOS TFTs and more research work needs to 

be carried out in the future. 

5.4.2 Stability under Current Stress 

To better evaluate the device stability, the threshold voltage shift under a long-term 

constant current stress mode is performed. Instead of applying a constant bias voltage 

to the gate, a constant current signal is applied to the drain, while keeping the gate and 

drain remain connected. Also, the source is grounded so that the stress current flows 

only through the channel [75]. 
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Figure 5.15: Threshold voltage shift of the indium oxide TFT with the PECVD SiOx 

gate dielectric under constant current stress 

Figure 5.15 plots the threshold voltage shift of the indium oxide TFT as a function 

of the stress time under the constant current of 1 µA. The device is highly stable and 

exhibits a very small VT shift of 0.8 V after a constant current stress of approximately 

150 hours. The fluctuation patterns seen in this plot are possibly due to the variation 

of the ambient temperature during tests. 

Figure 5.16 reflects the threshold voltage shift of the TFT under a constant current 

stress with relaxation. In this case, the stress current signal is divided into a 13-ms 

driving cycle of 1.2 µA and a 3-ms relaxation cycle of 0 µA. During the relaxation 

cycle, the TFT is not under stress [76].  
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Figure 5.16: Threshold voltage shift of the indium oxide TFT under the current stress 

with relaxation 

It is obvious that the VT shift under the long-term constant current stress can be 

compensated by applying the relaxation cycle in the stress current, and there is no 

obvious threshold voltage change after a 160 hour stress. It is further suggested that 

the VT shift in Figure 5.15 is mostly likely caused by temporary charge trapping.  

In summary, the TFT reported here is highly stable under both long-term constant 

voltage and long-term current stress conditions. The deep-level traps, created in the 

gate dielectric and/or hydrogen motion from the gate dielectric to the interface, are 

possible mechanisms for causing the VT shift under a high gate bias stress and the 

temporary charge trapping is the mechanism, accounting for the small VT shift under 

a long-term constant current stress.  
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5.5 Dynamic Characteristics 

Since a TFT is commonly used as a “switch” to drive active matrix displays, it is 

necessary to identify the operation speed and study the TFT’s dynamic behaviour. To 

our knowledge, such a study has not yet been reported for TOS-based TFTs in the 

literature.  
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Figure 5.17: Set up for the dynamic behaviour test  

The test set up for the dynamic behaviour is illustrated in Figure 5.17.  The drain is 

biased by using a DC voltage power supply (Keithley 6430 Sourcemeter). Voltage 

pulses with a controllable amplitude, frequency, and duty cycle, generated by a 

functional signal generator (Wavetek 40MS/s Universial Waveform Generator Model 

195)) are applied to the gate. A current amplifier (Keithley 427) transfers the input 

drain current into the voltage level, and the output signal is measured and stored in a 

digital form by a digital oscilloscope (Tektronix TDS5054). 
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Figure 5.18: Switching waveform of the TFT with the 100 nm indium oxide channel 

layer 

The TFT with the 100 nm indium oxide channel layer (W/L = 200 µm/ 200 µm) is 

first tested. The gate dielectric in this TFT is PECVD SiOx. Figure 5.18 sketches the 

switching waveform. The applied gate bias is a square function signal with a 

frequency of 0.1 Hz and a peak to peak voltage (Vpp) of 7 V. The drain-source voltage 

is kept at 1 V. As observed in Figure 5.18, it is difficult to completely turn ON/OFF 

this TFT even under a gate bias signal with a very low frequency of 0.1 Hz. The drain 

current continuously increases with time and also undergoes a slow current decay 

when the device is turned off. 

It might be attributed to the cutoff. The maximum operating frequency ( ), also 

called the cutoff frequency of the TFT which can be estimated from [60]:  

maxf
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2max 2 L
V

f DFE

π
µ

=   if  DsatD VV ≤ .                                             (5-2) 

The calculated cutoff frequency is around 1 KHz for the fabricated indium oxide TFT 

with the 100 nm channel layer. Therefore, the very slow switching behaviour 

observed here cannot be explained by the cutoff.  
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Figure 5.19: Switching waveform of the indium oxide TFT with the 30 nm channel 

layer 

It is found that the TFT with the thinner indium oxide channel layer exhibits a much 

faster switching characteristic. Figure 5.19 represents the switching waveform of the 

indium oxide TFT with the 30 nm channel layer. The W/L ratio of this TFT is 100 

µm/100 µm. The applied gate bias is also a square function signal with a frequency of 

10 Hz and a Vpp of 20 V. The TFT can be switched ON/OFF to respond to the 

continuous 10 Hz square function gate bias signal.  
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5.6 

Consequently, the channel thickness plays a very critical role in the TFT operation 

and the TFT with a thick channel layer has an undesirable “memory” phenomenon. 

Together with the morphological structure, observed in Section 3.2.7, it is anticipated 

that such a ‘memory” effect stems from the top polycrystalline indium oxide layer due 

to the charge storage in the polycrystalline layer, where a large amount of grain 

boundaries exist. From this perspective, amorphous indium oxide is preferred as a 

semiconductor channel instead of its polycrystalline counterpart for TFTs. Here, the 

research results of the dynamic behaviour provide more evidence to support the view 

that amorphous TOSs are superior to polycrystalline TOSs, as channel materials in 

TOS TFTs [77]. 

Summary 

In this chapter, device processing, device performance and stability, and dynamic 

characteristics of the indium oxide TFTs with the PECVD gate dielectrics are 

presented and discussed. Three goals of this research work in this chapter are 

achieved: the demonstration of the TFT with the semiconducting indium oxide 

channel; the device optimization through addressing the contact issue and shrinking 

channel layer thickness; and the detailed investigation of device physics, instability 

mechanisms, and the dynamic characteristics of the fabricated indium oxide TFTs.  

Here, a descriptive model in Figure 5.20 is proposed to summarize those factors 

that affect the device performance of TOS TFTs with PECVD dielectrics in general. 

These factors include the contact resistance between source/drain and semiconductor 

channel (RC); the intrinsic resistance of the semiconducting layer (Ri); the intrinsic 
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capacitance of the semiconductor layer (Ci), which have a great impact on TFT’s 

dynamic response. Ri and Ci are dependent upon the channel layer thickness and 

crystallinity. The hydrogen dissipated from the PECVD gate dielectrics into the 

semiconducting channel is a non-negligible factor which might affect the device 

instability. This descriptive model links the material properties and the device 

processing issues with device performance and stability. The model will provide a 

guideline for device engineers to achieve high-performance TOS TFTs with PECVD 

dielectrics. 

Gate

PECVD-SiOx or SiNx

TOS 
             Source                     Drain

Rc
 RcRi Ci Ri Ci

ChannelH

 
 

Figure 5.20: Summarized factors which affect the performance of TOS TFTs with 

PECVD dielectrics
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Chapter 6 
Conclusions and Contributions 

In this thesis, the capability of using the IBAE to fabricate TOSs, in particular, zinc 

oxides and indium oxides is demonstrated. It is believed that this technology is also 

applicable to other oxide systems.  

A detailed material study of zinc oxides and indium oxides is conducted. The 

electrical, optical, structural, mechanical, topological, and morphological properties of 

the developed films are examined. The achieved performance of semiconducting 

oxide films enables the use for active device applications.  

The core parts of this thesis address the device applications of TOSs. Most of this 

research proves concepts, demonstrates the working devices, investigates device 

processing issues to further optimize device performance, and explores device 

performance including long-term device stability and dynamic characteristics.  

The contributions of this research to the field of transparent electronics are 

summarized. 

• One of the first investigations of the use of IBAE to fabricate transparent 

oxide semiconductors and devices. 

• The successful fabrication and characterization of ZnO-based p-i-n and n-i-p 

heterostructure diodes with the lowest reported leakage current that can be 

implemented for low-level UV detection. 
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• The study of current-voltage characteristics, dark current transients, spectral 

response, and linearity to identify the leakage current mechanisms, and 

determine the quantum efficiency and photosensitivity of ZnO-based 

photodiodes.  

• The fabrication and study of indium oxide TFTs with PECVD gate dielectrics 

to find solutions for device processing issues and identify factors that affect 

device performance.  

• The proof that high-performance indium oxide TFTs can be achieved with 

PECVD gate dielectrics. 

• The achievement of highly stable indium oxide TFTs with a very small VT 

shift under both a long-term constant voltage and long-term current stress 

conditions and the preliminary investigation of instability mechanisms. 

• The first report on dynamic characteristics of TOS TFTs. 
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Appendix  
TFT Parameter Extraction 

The TFT parameters, including threshold voltage (VT), sub-threshold slope (S), and 

field-effect mobility (µFE) are extracted according to the square-law theory [60]. An 

explicit IDS-VDS relationship in the linear operation of the TFT is expressed as: 

)(]
2

)[
2

TGSDS
DS

DSTGS
oxFE

DS VVV
V

VVV
L

CW
I −≤−−=

µ
. 

The field-effect mobility is deduced from the transconductance: 

DS
FEox

GS

DS
m V

L
WC

dV
dI

g
µ

== .                                                  

By knowing the gate capacitance (Cox), W/L ratio, and a certain VDS in the linear 

operation of the TFT, the field-effect mobility which is a function of the VGS is 

calculated.  

The threshold voltage can be extracted by two methods: (1) from the transfer 

characteristics in the linear operation of the TFT and (2) from the transfer 

characteristics in the saturation operation of the TFT. In the linear transfer 

characteristics, where TGSDS VVV −≤ , VT is given as the intercept of the line that is 

extrapolated on the VGS axis. The VT is also extracted from the following saturation 

operation of the TFT:  

2)(
2 TGS

ox
DS VV

L
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I −=
µ

     )( TGSDS VVV −> .                                          
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The intercept of  the  plots is the extracted VGSDS VI −2/1
T. It is noteworthy that in this 

thesis, the first method is used to extract the VT.  

The sub-threshold slope is defined as the voltage that is required to enhance the 

drain current in the sub-threshold regime by a factor of ten and it is given by:  

)(log DS

GS

Id
dV

S =       )( TGS VV ≤ . 
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