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Abstract 

Progress in DNA sequencing of plant genomes has revealed that, in addition to 

microorganisms, a number of plants contain genes which share similarity to microbial 1-

aminocyclopropane-1-carboxylate (ACC) deaminases. ACC deaminases break down ACC, 

the immediate precursor of ethylene in plants, into ammonia and α-ketobutyrate. We 

therefore sought to isolate putative ACC deaminase cDNAs from tomato plants with the 

objective of establishing whether the product of this gene is a functional ACC deaminase. It 

was demonstrated that the enzyme encoded by the putative ACC deaminase cDNA does not 

have the ability to break the cyclopropane ring of ACC, but rather that it utilizes D-cysteine 

as a substrate, and in fact encodes a D-cysteine desulfhydrase. Kinetic characterization of the 

enzyme has shown that it is similar to other previously characterized D-cysteine 

desulfhydrases. Using site-directed mutagenesis, it was shown that altering two amino acid 

residues within the predicted active site changed the enzyme from D-cysteine desulfhydrase 

to ACC deaminase. Concomitantly, it was shown that by altering two amino acids residues at 

the same position within the active site of ACC deaminase from Pseudomonas putida UW4 

changed this enzyme into D-cysteine desulfhydrase. 
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Chapter 1 
Introduction 

1.1 Ethylene 

The gaseous phytohormone ethylene is one of the simplest known organic molecules 

with the ability to regulate plant growth and development. It was first recognized as a 

biologically active gas by the Russian plant physiologist Dimitri Neljubov in 1901, when he 

observed that etiolated pea seedlings grew upright in outside air but horizontally in the lab 

(Abeles, 1992). Neljubov demonstrated that the cause of this behavior was contamination by 

illuminating gas, where the active principle component was ethylene. Conclusive chemical 

proof that ethylene is a natural product of plants was provided by Gane in 1934, who 

collected and analyzed gases evolved from 60 pounds of ripening apples (Abeles, 1992).   

Recognized as a biologically active gas for over a century now, effects of ethylene on 

plant development have been studied extensively; the phytohormone  regulates many diverse 

metabolic and developmental processes, including germination, flower and leaf senescence, 

fruit ripening, leaf abscission, programmed cell death, root nodulation, and responsiveness to 

stress and pathogen attack (Abeles, 1992; Bleecker and Kende, 2000). Ethylene is vital to 

plant development and survival, however, large increase in ethylene levels due to various 

stresses, known as stress ethylene, can cause deleterious symptoms in plants, including the 

onset of senescence and an inhibition of plant root growth. Having multiple effects on plants, 

the biosynthesis of this hormone must be tightly regulated. This is achieved by a diverse 

array of factors including developmental cues and other phytohormones. Establishing how 

these factors act to modulate ethylene levels is fundamental to an understanding of ethylene 

functioning in plants. 
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1.2 Ethylene Biosynthesis, Perception and Signaling 

The pathway of ethylene biosynthesis is well characterized in higher plants (for a 

review see Bleecker and Kende, 2000; Figure 1-1). Ethylene synthesis begins with the 

conversion of the amino acid methionine to S-adenosyl-methionine (AdoMet), which is then 

converted to the immediate ethylene precursor, 1-amioncyclopropane-1-carboxylic acid 

(ACC). ACC is formed from AdoMet through the action of ACC synthase (ACS) and the 

conversion of ACC to ethylene occurs through the enzyme ACC oxidase (ACO) (Kende, 

1993; Figure 1-1).  In addition to ACC, the reaction of ACC synthase also produces 5’-

methylthioadenosise (MTA), which is utilized for the synthesis of a new methionine via a 

methionine salvage pathway. This pathway preserves the methylthio group through every 

revolution of the cycle at the cost of one ATP molecule. ACS and ACO are thought to be the 

major regulatory enzymes of ethylene biosynthesis, however, other enzymes such as those in 

the methionine cycle or those involved in methionine synthesis have also been implicated in 

regulating ethylene synthesis (Katz et al., 2006; Sauter et al., 2005). ACC may also be 

converted to 1-(malonyl-amino)cyclopropane-1-carboxylic acid (MACC) by ACC N-

malonyltransferase. This reaction irreversibly decreases available levels of ACC in plant 

tissues.  

Unlike the biosynthetic pathway, the ethylene signaling cascade is more complicated 

and therefore has been more difficult to study; many questions still remain unanswered. 

However, one attribute scientists have used extensively to study the signaling pathway is the  

so-called triple response. When treated with exogenous ethylene or when manipulated to 

produce high ethylene levels, the plants respond with the triple response. This response is 

characterized by the inhibition of hypocotyl and root cell elongation, swelling of the
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Figure 1-1. Ethylene biosynthesis and methionine metabolism. Abbreviations: ACC, 1-
aminocyclopropane-1-carboxylate; ACS, 1-aminocyclopropane-1-carboxylate synthase; 
ACO, 1-aminocyclopropane-1-carboxylate oxidase; AdoMet, S-adenosyl-methionine; 
SAMS, S-adenosyl-methionine synthase; MS, methionine synthase; CBL, cystathionine-β-
lyase; CGS, cystathionine-γ-synthase; MTA, 5’-methylthioadenosine; MTR, 
methylthioribose; MTR-P, methylthioribose phosphate; KMBT, 2-keto-4-methylthiobutyrate. 

 

 



 

hypocotyls and exaggerated curvature of the apical hook. It is a highly specific ethylene 

response and it has been exploited to screen for a variety of mutants defective in ethylene 

signaling. More than a dozen ethylene perception mutants have been identified, and 

subsequently utilized to elaborate their role in ethylene signaling (Guo and Ecker, 2004). 

Generally, the mutants can be divided into three categories: constitutive triple-response 

mutants, ethylene-insensitive mutants and tissue-specific ethylene-insensitive mutants. The 

combination of molecular and genetic studies has defined the mostly linear ethylene response 

pathway, starting from hormone perception at the endoplasmic reticulum membrane to 

transcriptional regulation in the nucleus (Figure 1-2). 

Ethylene is perceived by a family of membrane associated ethylene-binding receptors 

first identified in Arabidopsis and including ETHYLENE RESPONSE 1 (ETR1)/ETR2, 

ETHYLENE RESPONSE SENSOR 1 (ERS1)/ERS2 and ETHYLENE INSENSITIVE 4 

(EIN4) (Bleecker and Kende, 2000; Johnson and Ecker, 1998; Stepanova and Ecker, 2000). 

All ethylene receptors have a sensor domain, a histidine kinase domain and a response 

domain, where they bind ethylene with the help of a copper cofactor. Upon ethylene binding, 

these receptors are inactivated and thus cannot activate the protein kinase CTR1 (constitutive 

triple response) anymore, also a negative regulator of the pathway. Consequently, the 

repression of the membrane protein EIN2 (ethylene-insensitive) by CTR1 is relieved. The 

activation of EIN2 in turn stabilizes the EIN3 transcription factor that regulates the 

expression of its immediate target genes such as ETHYLENE RESPONSE FACTOR1 

(ERF1). ERF1 belongs to a large family of transcription factors that bind to a GCC-box 

present in the promoters of many ethylene-inducible or defense-related genes (Hao et al., 

1998; Figure 1-2).  
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1.3 Regulation of Ethylene Biosynthesis 

Nearly all plant tissues have the potential to produce ethylene, yet the amount of 

ethylene is relatively low in most cases. Ethylene levels increase drastically when a plant is 

under stresses such as wounding, flooding or drought, pathogen attack, and when exposed to 

harmful chemicals such as ozone and sulfur dioxide. During several growth and 

developmental process, including germination, leaf and flower senescence, and fruit ripening, 

ethylene production also increases. Ethylene can affect its own levels, either increasing 

(autocatalysis) or decreasing (autoinhibition) its rate of production, as seen in climacteric 

fruit ripening and during normal vegetative growth, respectively (Kende, 1993). Other 

hormones, such as auxin, abbscisic acid and cytokinins are also known to affect ethylene 

levels. 

1.3.1 Developmental Factors Regulating Ethylene Levels 

Studies to determine how developmental cues regulate ethylene synthesis have 

mainly focused on establishing how the expression patterns of ethylene synthesizing genes 

ACC synthase and ACC oxidase change through the process. The role of ACC synthase was 

first demonstrated in 1991 in transgenic tomato plants expressing an antisense ACS gene. The 

transgenic plants could not ripen unless exposed to exogenous ethylene (Rottmann et al., 

1991; Theologis et al., 1993). Since the first gene was isolated by Van der Straten et al., 

(1990), at least eight ACS genes have been identified in tomato (LEACS1A, LEACS1B and 

LEACS2-7) (Rottmann et al., 1991; Shiu et al., 1998; Zarembinski and Theologis, 1994) 

whereas the Arabidopsis genome contains nine ACS genes, of which eight encode functional 

ACS proteins (ACS2, ASC4-9, ACS11) (Arabidopsis Genome Initiative, 2000; Yamagami et 

al., 2003). ACS genes have also been isolated from many other plants including melon,
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Figure 1-2. Ethylene perception and signal transduction. Ethylene is perceived by a 
family of ethylene-binding receptors located in the ER membrane. Upon ethylene binding, 
these receptors are inactivated and can not activate the protein kinase CTR1 (constitutive 
triple response). As a result, the repression of the membrane protein EIN2 (ethylene 
insensitive) by CTR1 is relieved. The resulting activation of EIN2 in the presence of ethylene 
stabilizes the EIN3 transcription factor, which brings ethylene signal transduction into the 
nucleus. 
 

 

 



 

cucumber and citrus (Miki et al., 1995; Nakajima N., 1990; Wong et al., 1999).  

Although ACS activity has been recognized early on as the rate limiting step in 

ethylene biosynthesis, it has been demonstrated recently that ACO activity also increases in 

some plant tissues in response to ethylene (Kende, 1993). The fact that the rise in ACO 

activity precedes ACS activity in pre-climacteric fruit in response to ethylene was the first 

indication of importance of ACO activity in regulating ethylene levels (Lui et al., 1985). 

Further evidence came with the examination of ACO mRNA expression patterns in various 

tissues and during different developmental stages (Barry et al., 1996; Hamilton et al., 1990).  

Similar to what has been observed for ACS, ACO is a member of a multi-gene 

family. However, unlike ACS this enzyme has proven difficult to study, due to the lack of an 

in vitro assay, and even more difficult to purify (Kende, 1993). The first ACO gene was 

identified through antisense expression of the ripening-related clone, pTOM13, at the time a 

gene of unknown function (Holdsworth et al., 1987a). Down-regulation of this gene in 

transgenic tomato produces plants which synthesize reduced levels of ethylene; the role of 

the enzyme was confirmed by expression of the pTOM13 clone in yeast and Xenopus 

oocytes, where it was directly shown to convert ACC into ethylene (Hamilton et al., 1991; 

Spanu et al., 1991). Since then, another three ACO genes have been identified in tomato 

(Barry et al., 1996; Blume and Grierson, 1997; Holdsworth et al., 1987b; Llop-Tous et al., 

2000; Nakatsuka et al., 1998) and in numerous other plants including mung bean, peach, 

banana, apples and avocado (Callahan et al., 1992; Clendennen and May, 1997; Dong et al., 

1992; Kim and Yang, 1994; McGarvey et al., 1990). 

Fruit ripening is one of the developmental processes that has been studied extensively 

in terms of regulation of ethylene synthesis. It has been important commercially to 
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understand the ripening mechanisms of climacteric fruit such as melons, bananas and 

tomatoes; regulation of ethylene synthesis during fruit ripening is described below as an 

example of developmental cues that regulate ethylene.  

A number of physical changes occur during fruit ripening such as changes in colour, 

texture and aroma. Fruit with different ripening mechanisms can be divided into two 

categories. Climacteric, in which a massive production of ethylene commences at the onset 

of the respiratory period and where exogenously applied ethylene induces ripening and 

endogenous production of ethylene. Non-climacteric in which respiration shows no dramatic 

change and ethylene production remains at constantly low levels. Tomato fruit begins as 

green, enters a mature green stage (pre-breaker stage), and acquires the first spot of visible 

colour (breaker stage) after which it becomes softer and the colour changes to a deep red. 

Throughout the process the characteristic increase in ethylene synthesis and perception are 

essential for the full completion of the ripening process (Oeller et al., 1991; Picton et al., 

1993a). 

Expression of both ACS and ACO has been investigated in a number of different 

climacteric fruit including apple, tomato, melon, pear, banana and fig (Barry et al., 1996; 

Dong et al., 1992; Lelievre et al., 1997; Liu et al., 1999; Miki et al., 1995; Nakatsuka et al., 

1998; Olson et al., 1991; Ross et al., 1992; Rottmann et al., 1991). These plants are proposed 

to have two systems of ethylene regulation. System 1 functions during normal vegetative 

growth and produces basal ethylene levels that can be detected in all tissues including the 

non-climacteric fruit. System 2 functions during the ripening process of climacteric fruit and 

during senescence, where ethylene production is typically at a much higher level than in 

system 1.  
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A model to explain the transitions from system 1 to system 2 and the overall 

complexity of ethylene regulation in fruit is emerging based on studies carried out with 

tomato plants. Expression of two ACS genes, LEACS2 and LEACS4, has been well 

documented in ripening fruit (Lincoln et al., 1993; Olson et al., 1991; Rottmann et al., 1991; 

Yip et al., 1992). Inhibition of LEACS2 by antisense expression of the gene in transgenic 

plants caused down-regulation of both LEACS2 and LEACS4 and reduced ethylene synthesis 

to 0.1% of that usually produced by fruit during ripening (Oeller et al., 1991). Additionally, 

expression of LEACS1A, LEACS3 and LEACS6 has been demonstrated somewhat more 

recently in tomato fruit (Nakatsuka et al., 1998).  

The use of tomato mutants has proven a useful tool in deciphering which ACS genes 

are ethylene regulated. For instance, the Never ripe (Nr) mutant cannot perceive ethylene due 

to a mutation in the NR ethylene receptor; additionally, fruit from the ripening inhibitor (rin) 

mutant do not show autocatalytic ethylene production and do not transmit the ethylene 

message downstream to ripening-related genes due to a mutation in the RIN transcription 

factor (Vrebalov et al., 2002; Wilkinson et al., 1995). Based on the studies utilizing these two 

mutants, it has been proposed that LEACS1A and LEACS6 are involved in maintaining the 

system 1 ethylene production in green fruit. System 1 continues to function until the fruit is 

ready to proceed through the ripening pathway, whereupon a transition occurs, such that 

LEACS1A expression increases and LEACS4 is induced. System 2 ethylene synthesis is 

initiated and sustained by ethylene dependent induction of LEACS2 (Barry et al., 2000).  

Furthermore, the importance of ACO in regulating ethylene synthesis during ripening 

process was also demonstrated using antisense technology (Hamilton et al., 1990; Picton et 

al., 1993b). Down-regulation of LEACO1 expression in transgenic plants caused reduced 
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ethylene levels and impaired ripening. LEACO1 has been shown to be the major ACO gene 

expressed in tomato fruit, but ripening related expression of LEACO3 and LEACO4 has also 

been reported (Barry et al., 1996; Nakatsuka et al., 1998). LEACO1 and, at a lower level 

LEACO3, are expressed at the onset of ripening. LEACO1 levels peak three days post-

breaker and then fall back to levels observed at the breaker stage; LEACO3 transcripts are 

only briefly expressed at the breaker stage before disappearing completely. 

1.3.2 Post-transcriptional Regulation of ACS  

Numerous studies have demonstrated the differential expression patterns of the ACS 

gene family to various environmental or developmental stimuli, but it has only recently 

become evident that ACS levels are also controlled by post-transcriptional mechanisms. The 

first evidence of possible post-transcriptional regulation was the observation that various 

ACS proteins have different half-lives. For instance, the half-life of wound induced ACS 

activity from pericarp tissue of green tomato fruit was found to be much shorter than that of 

ripening fruit (Kende and Boller, 1981). Many studies in Arabidopsis have led to the 

conclusion that post-transcriptional regulation of ACS must relay on the control of protein 

stability. These studies have utilized, among others, two classes of mutants which affect 

ethylene biosynthesis: eto (ethylene-overproducer) mutants which display constitutive 

ethylene response due to increased ethylene biosynthesis (Chae et al., 2003; Vogel et al., 

1998a; Vogel et al., 1998b; Woeste et al., 1999); and cin (cytokinin-insensitive) mutants 

which synthesize reduced ethylene levels in response to cytokinin (Vogel et al., 1998a).  

Analysis of etiolated Eto- mutant seedlings in Arabidopsis showed they have 

increased ACS activity but steady-state levels of ACS encoding transcripts. eto2 and eto3 

mutations were shown to be the result of single base pair insertions and a single amino acid 
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change at the C-terminus of ACS5 and ACS9, respectively (Chae et al., 2003; Vogel et al., 

1998b). Furthermore, in vitro analysis of tomato LEACS2 enzyme activity has illustrated that 

the deletion of 52 C-terminal amino acids increased enzymatic activity (Li et al., 1996). 

These findings have shown that the C-terminal domains of at least ACS5 and ACS9 in 

Arabidopsis and LEASC2 in tomato may have a regulatory role in protein stability.  

To elaborate how the stability of the protein is regulated, studies have focused on yet 

another ethylene-overproducer mutant, eto1. The ETO1 protein is a BTB (Broad-complex, 

Tramtrack, Bric-à-brac) domain containing protein, a class of proteins that have been shown 

to link their substrate proteins to degradation pathways. The breakthrough came when ACS5 

was shown to directly interact with ETO1, suggesting that it targets ACS5, and possibly other 

ACS isoforms for rapid degradation.  

An important question arises regarding what mechanisms control and delay ACS 

protein degradation. While this question has not yet been answered for all ACS isoforms, 

data for some has shown that modification of ACS’ C-terminus by phosphorylation is the 

key. It was reported that a C-terminal serine residue of LEACS2 is phosphorylated in 

wounded tomato fruit by a calcium-dependent protein kinase (CDPK); recombinant LEACS2 

and LEACS3 were also shown to be phosphorylated in vitro (Tatsuki and Mori, 2001). 

Studies of a mitogen-activated-protein kinase (MAPK) pathway have revealed that a subset 

of ACS proteins are also substrates of MAPK phosphorylation (Liu and Zhang, 2004). 

Activation of the MAPK pathway in Arabidopsis resulted in stabilization of ACS6 protein in 

vivo, but MPK6 was also found to phosphorylate three serine residues from both ACS6 and 

ACS2 in vitro. Altering the target serine residues such that phosphorylation is blocked results 

in a protein that cannot be stabilized in vivo (Liu and Zhang, 2004). This data implies that 
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phosphorylation of ACS protects the protein from degradation, which in turn causes ACS to 

accumulate and ACS activity to increase as part of a pathway leading to increased ethylene 

production. Whether all ACS isoforms undergo this type of modification, and in turn 

stabilization, or whether it is specific to only certain ACS proteins remains to be determined.  

1.3.3 Co-expression and Functional Heterodimerization of ACS 

 A recent in-depth study of the eight functional (ACS2, ACS4-9, and ACS11) and one 

non-functional ACS1 genes from Arabidopsis, where transgenic Arabidopsis lines were 

constructed to express β-glucoronidase (GUS) and green fluorescent protein (GFP) reporter 

genes under the promoter of each of the gene family members, demonstrated their patterns of 

expression during plant development. All genes were expressed in 5-day-old etiolated or 

light-grown seedlings with a distinct expression pattern, except for ACS9 which was 

expressed later in development (Tsuchisaka and Theologis, 2004b). Expression in various 

organs of adult plants and expression changes due to indoleacetic acid (IAA) treatment, 

wounding, cold, heat, anaerobiosis and Li+ ions was also examined. Unique and overlapping 

gene expression patterns were observed, with extensive co-expression among the various 

gene family members during plant development (Tsuchisaka and Theologis, 2004b). These 

findings not only help in elucidating the mechanisms which control ethylene biosynthesis, 

but at the same time bring up an interesting question: what is the biological significance of 

having a multi-gene ACS family that is so extensively co-expressed? It has been suggested 

earlier that the presence of ACS isozymes may implicate tissue specific expression that 

satisfies the biochemical environment of the tissue in which the isozyme is expressed 

(Rottmann et al., 1991). More specifically, if the tissue in question contains low 

concentration of the ACS substrate, AdoMet, then this tissue would express an isozyme with 
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high affinity for its substrate. This notion would require that each isozyme carry distinct 

enzymatic properties; biochemical characterization of all ACS enzymes from Ababidopsis 

supports this idea (Yamagami et al., 2003).  

The evidence that ACS enzymes, which have been shown to occur as homodimers, 

can also form functional heterodimers in a complementation assay in Escherichia coli has 

lead to the hypothesis that if functional heterodimerization occurs in vivo it may further 

enhance the isozyme diversity of the ACS gene family and provide additional physiological 

versatility (Tsuchisaka and Theologis, 2004a). Whether plants form functional heterodimers 

still remains to be proven; however, if this hypothesis is confirmed, it would corroborate that 

the patterns of differential co-expression and not just patterns of expression of the ACS gene 

family members play a major role in regulating ethylene levels in plants.  

1.3.4 Stress Ethylene 

 If plants are exposed to conditions that threaten their ability to survive, the same 

biosynthetic pathway that produces ethylene for development, functions to produce what is 

referred to as stress ethylene (Figure 1-1). An increase in ethylene levels is observed in plants 

exposed to various types of biotic and abiotic stresses. The precise role of ethylene in disease 

or stress symptoms is still unclear due to a network of cross-communicating signaling 

pathways with other hormones which are induced together with ethylene in response to 

stress. 

 Similar to other growth and developmental processes, the biosynthesis of ethylene 

during stress has most intensively been studied at the level of the regulation of ACS and 

ACO. For instance, ACO genes are differentially expressed during pathogen attack or abiotic 

stress stimuli such as wounding, flooding or ozone exposure (Cohn and Martin, 2005; 

 13



 

Moeder et al., 2002; Nakatsuka et al., 1998; Nie et al., 2002; Woltering et al., 2005). On a 

more interesting note, Cohn and Martin (2005) have shown the involvement of the 

virulence/avirulance factors AvrPto and AvrPtoB from the pathogen Pseudomonas syringae 

pv. tomato in ethylene synthesis in a susceptible tomato cultivar. These pathogen derived 

proteins up-regulated two tomato ACO genes, LEACO1 and LEACO2, whereas the other two 

tomato ACO genes remained unaffected. Furthermore, in Arabidopsis, ACO genes 

demonstrate significant abiotic and biotic stress-mediated gene regulation. The data implies 

that transcriptional control of ACO genes contributes to the regulation of ethylene production 

under stress. 

 However, the control of ethylene production under stress still remains largely 

attributed to the ACS genes. Tsuchisaka and Theologies (2004b) examined spatio-temporal 

expression patterns in response to different abiotic stress stimuli, including cold, heat, 

anaborosis, Li+ ions and wounding. Similar to the developmental regulation of ACS, they 

found specific and partially overlapping patterns of expression among the various ACS gene 

family members. For instance, wounding of hypocotyl tissue resulted in inhibition of 

constitutively expressed ACS1 and ACS5 and induction of ACS2, 4, 6, 7, and 8. A similar 

pattern was observed with other stimuli (cold, heat, anaerobiosis) where constitutively 

expressed ACS genes were inhibited or expressed at significantly lower levels post-treatment 

and other ACS genes were induced, depending upon the stimuli.  

1.3.5 Interaction of Ethylene with Other Hormones 

 Ethylene biosynthesis may also be regulated by interaction with other hormones, such 

as auxin, brassinosteroids, abscisic acid, gibberillic acid or cytokinin. Auxin is one of the 

most well-known inducers of ethylene production (Bleecker and Kende, 2000; Yang and 
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N.E., 1984). Interactions between ethylene and auxin have been described for adventitious 

root formation, root hair growth, and root elongation among others (Hirayama et al., 1999; 

Hua et al., 1998; Huang et al., 2003). These two hormones together stimulate petiole 

elongation during submergence, hypocotyl elongation in the light and phototropism (Iavicoli 

et al., 2003; Iordachescu and Verlinden, 2005; Ishigaki et al., 2004). These facts imply tight 

interaction between ethylene and auxin, their synthesis, transport and signaling. Indeed, it is 

well known that ethylene biosynthesis is regulated by auxin, primarily by activation of the 

transcription of ACC synthase (Hua et al., 1995; Tsuchisaka and Theologis, 2004b). It is 

however, less known that ethylene affects auxin, for instance, auxin distribution in the 

Arabidopsis apical hook or the fact that ethylene may inhibit auxin transport and signal 

transduction (Glick et al., 2007; Prayitno et al., 2006). Ethylene inhibition of auxin synthesis 

or functioning limits the amount of ACC synthase, ACC, and therefore ethylene. 

 Until recently, it was known that the Arabidopsis ACS4 gene is an auxin primary 

response gene and that there are auxin-responsive motifs present upstream of this gene (Abel 

et al., 1995), but little information was available on the response of other ACS genes to auxin. 

Tsuchisaka and Theologis (2004b) have shown that not only are other ACS genes also 

regulated by auxin, but also that auxin enhances the expression of the genes that are 

constitutively expressed and alters their patterns of expression. On the other hand, auxin has 

no effect on ACS1 and ACS9 in Arabidopsis. 

 Cytokinin is another phytohormone that is known to modulate ethylene levels. For 

instance, it was reported that cytokinin induces ethylene biosynthesis in seedlings from 

several plant species (Vogel et al., 1998a; Vogel et al., 1998b). Arabidopsis seedlings grown 

in presence of cytokinin demonstrate elevated ethylene levels and triple response 
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morphology (Vogel et al., 1998b). This characteristic has been exploited to identify mutants 

that fail to increase ethylene production in response to cytokinin.  

 One such mutant identified as a loss-of-function in ACS5 (cin) produces severely 

reduced amount of ethylene in response to cytokinin, suggesting that this ACS isoform is 

cytokinin regulated. However, Northern blot analysis has revealed that cytokinin mainly 

increased ACS5 function by a post-transcriptional mechanism, as cytokinin treatment has 

little effect on the steady-state level of the ACS5 transcript. Furthermore, analysis of Eto- 

plants suggests that cytokinin could induce ethylene by modifying the ACS5 C-terminal 

domain in a manner that blocks ACS5 from being targeted for degradation (Chae and Kieber, 

2005). Based on an analysis of eto2 and eto3 mutants, it has been concluded that cytokinin 

acts partially by blocking the C-terminus of ACS5, but also in an ACS C-terminus 

independent manner, which has not yet been characterized. 

1.3.6 Other Mechanisms that Control Ethylene Levels 

 The biosynthetic pathway of the essential amino acid, one of only two sulfur 

containing amino acids, methionine, is placed at a regulatory junction, where it is required 

for protein synthesis and as a precursor for S-adenosyl-methionine (AdoMet). AdoMet serves 

as a methyl donor and a substrate for the synthesis of a number of metabolites, including 

polyamines and of course ethylene. The level of methionine in plant tissues is therefore 

highly regulated; however, the significance of de novo methionine synthesis and methionine 

recycling for ethylene synthesis has not been investigated in detail. Nevertheless, recently 

published reports suggest that both, de novo synthesis and recycling may play an important 

regulatory role. 
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Studies in Arabidopsis plants imply that the level of methionine is regulated mainly 

by the first enzyme unique to methionine biosynthesis, cystathionine-γ-synthase (CGS) 

(Amir et al., 2002; Hesse and Hoefgen, 2003; Kim et al., 2002; Figure 1-1), but the 

regulatory role of CGS in other plant species is not clear yet. Katz et al. (2006) have 

demonstrated that ethylene induces CGS gene expression and more notably that the level of 

free methionine is rate-limiting for ethylene biosynthesis in tomato fruit. This study also 

suggests that the massive wave of ethylene evolution which occurs during tomato fruit 

ripening requires an increase in de novo methionine synthesis through up-regulation of CGS 

gene expression. 

The first committed step in ethylene synthesis, catalyzed by ACS, results in formation 

of ACC from AdoMet and release of 5’-methylthioadenosine (MTA) as a side product. The 

sulfur retained in MTA is recycled such that a methionine molecule is produced using the 

sulfur group of MTA and a ribose moiety in a cyclic pathway known as the Met or Yang 

cycle (Yang and Hoffman, 1984). It was predicted early on that the recycling of methionine 

from MTA is required for sustained ethylene synthesis (Baur and Yang, 1972). Bürstenbinder 

et al. (2007) have used an ethylene-overproducing eto3 mutant and an mtk mutant which has 

a disrupted Met cycle to study and demonstrate the significance of Met cycle for ethylene 

synthesis. The study utilized double mutant mtk/eto3 plants, which have high ACS activity 

and no capacity for regeneration of the ACS substrate AdoMet from MTA. They have shown 

that the Met cycle contributes to the maintenance of AdoMet homeostasis, especially when 

de novo AdoMet synthesis is limited. Moreover, Met cycle is required to sustain high rates of 

ethylene synthesis. It has been proposed, based on this data, that the regulation of Met cycle 

by ethylene may be restricted to plants that naturally produce high levels of ethylene for a 
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long period. Therefore, ethylene itself, methionine biosynthetic enzymes and methionine 

recycling enzymes may all be members of a regulatory loop that participate in ethylene 

production. 

1.4 Lowering Ethylene Levels with Plant Growth Promoting Bacteria 

Plant growth promoting bacteria have the ability to act as protective beneficial 

bacteria that can facilitate plant growth. However, these typically have little effect on plant 

growth when the plants experience an optimal and stress-free environment. A large number 

of these microorganisms have been isolated to date, each with one or more characteristic 

properties that under certain conditions may enhance plant growth. Some bacteria exert their 

beneficial effects indirectly by acting as biocontrols, where they may limit the growth of 

other microorganisms such as potential pathogens by synthesizing antibiotics, siderophores 

that sequester iron from the soil, enzymes such as protease or lipase that facilitate the lysis of 

fungal cells (Chet and Inbar, 1994; Haas et al., 1991). Others influence plant growth directly, 

e.g. by fixing atmospheric nitrogen, synthesizing phytohormones such as auxin or cytokinins 

or by synthesizing the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which 

can lower plant ethylene levels (Glick, 1995).  

 In the last few years, a number of the plant growth promoting bacteria that have been 

isolated and characterized synthesize ACC deaminase (Glick et al., 1995; Glick et al., 1998; 

Hontzeas et al., 2005; Jacobson, 1994; Ma et al., 2003b). In practice, these organisms have 

been used to protect plants against some deleterious effects caused by: flooding, organic 

toxicants, heavy metals, high salt and phytopathogens (Cheng et al., 2007; Farwell et al., 

2007; Glick, 2003; Greenberg et al., 2006; Grichko and Glick, 2001; Mayak et al., 2004; 

Reed et al., 2005; Wang et al., 2000). The microorganisms that contain ACC deaminase are 
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able to promote plant growth by acting as a sink for the plant ethylene precursor ACC, thus 

protecting the plant from deleterious effects brought upon by high ethylene levels. 

Additionally, several transgenic plants, including tomato, canola and tobacco have been 

constructed to express the bacterial ACC deaminase. The plants have been reported to be 

more tolerant to pathogens, high salt and metals; they generally responded in a similar 

manner to the non-transformed plants that have been treated with ACC deaminase-containing 

plant growth promoting bacteria (Grichko and Glick, 2001; Robinson et al., 2001; Stearns et 

al., 2005).  

 A model has been developed to explain the effects of bacterial ACC deaminase in the 

promotion of plant growth (Glick et al., 1998; Figure 1-3). Briefly, the ACC deaminase-

containing plant growth promoting bacteria bind to the surface of the seed or root; in 

response to plant synthesized compounds, including the amino acid tryptophan, the bacteria 

synthesize indoleacetic acid (IAA). Plant cells take up some of the bacterially synthesized 

IAA, which together with the endogenous IAA can stimulate plant cell elongation and 

proliferation as well as the synthesis of ACC synthase. Some of the ACC is exuded and taken 

up by the ACC deaminase-containing bacteria. To be utilized by the bacterium, ACC is 

cleaved via ACC deaminase into α-ketobutyrate and ammonia, where the products are used 

as a carbon and nitrogen source respectively. By taking up ACC, the immediate ethylene 

precursor, the bacteria lower the amount of ethylene that is formed within the plant tissues. 

When the plant is challenged with anyone of a variety of biotic and abiotic stresses, the direct 

consequence of this interaction is increased plant fitness, including increase in biomass. 
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1.5 ACC Deaminase 

ACC deaminase was first isolated by Honma and Shimomura (1978) from 

Pseudomonas sp. ACP and since then has been characterized in a few other species, 

including the yeast Hansenula saturnus. The large portion of known biochemical properties 

of this enzyme can be attributed to the work done by Honma and co-workers (Honma, 1985; 

Honma et al., 1993; Jia et al., 1999; Minami et al., 1998; Ose et al., 2003; Walsh et al., 1981). 

However, others have also carried out a few biochemical studies of the enzyme (Hontzeas et 

al., 2004; Jacobson, 1994; Li et al., 1996; Liu et al., 1984; Zhao et al., 2003). 

 ACC deaminase is a multimeric enzyme, forming homodimers or homotrimers, 

depending of the source, with a subunit molecular mass of 35-42 kDa. The enzyme binds one 

pyridoxal phosphate (PLP) molecule at each subunit via the conserved lysine residue. PLP is 

not only an essential co-factor, but also involved in the catalysis of the cyclopropane ring. 

 The Km of various ACC deaminases for ACC as the substrate indicates that the 

enzyme does not bind the substrate with high affinity; the reported Km values range from 1.5 

to 9.2 mM (Honma, 1978; Hontzeas et al., 2004; Minami et al., 1998; Walsh et al., 1981). 

The interest in the ACC deaminase catalytic reaction has not only been from a physiological 

perspective of lowering plant ethylene levels, but also due to its unique catalysis, which is 

still not completely understood.  

To gain insight into the functioning of this PLP-dependent enzyme, the crystal 

structures of bacterial (Pseudomonas sp. ACP) and yeast (Hansenula saturnus) ACC 

deaminase as well as an ACC deaminase homologue without this activity from Pyrococcus 

horikoshii have been determined (Fujino et al., 2004; Karthikeyan et al., 2004b; Ose et al., 

2003; Yao et al., 2000). The crystal structures, along with site-specific mutagenesis studies, 
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Figure 1-3. A model to explain how plant growth promoting bacteria with ACC 
deaminase promote plant growth under stress. Abbreviations: IAA, indoleacetic acid; 
SAM, S-adenosyl-methionine; ACC, 1-aminocyclopropane-1-carboxylate.
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have allowed for identification of the essential amino acid residues for catalysis and substrate 

recognition. The studies have also indicated that ACC deaminase folds to form two domains, 

each of which has an open twisted α/β structure, similar to the β-subunit of the PLP-

dependent enzyme tryptophan synthase. For most of the other PLP-dependent enzymes, two 

basic properties of PLP have been conserved: (i) PLP forms an external aldimine between its 

aldehyde group and the α-amino group of the substrate and (ii) PLP acts as an electron sink, 

withdrawing electrons from the substrate (John, 1995). The ACC deaminase ring opening 

reaction starts with conversion from an internal aldimine between the enzyme and PLP to an 

external aldimine between the substrate ACC and PLP. In most other PLP-dependent 

reaction the next step is the nucleophilic abstraction of either an α-proton or an α-carboxylate 

group. However, in this regard the ACC deaminase catalyzed reaction is considered as a 

special case, since the substrate does not contain an α-proton and the carboxylate group is 

retained in the product, ruling out the usual mechanisms. Walsh et al., (1981) proposed two 

possible routes for the ring fragmentation: (i) nucleophilic addition at the Cβ methylene 

position followed by β-proton abstraction and (ii) direct β-proton abstraction leading to the 

cyclopropane ring cleavage. The exact mechanism is still unknown, with data to support both 

routes (i) and (ii) (Karthikeyan et al., 2004a; Ose et al., 2003). 

1.6 Plant Encoded ACC Deaminase 

With the progress in the sequencing of plant genomes, it has been suggested that there 

may exist a plant encoded ACC deaminase which could have a role in regulating plant 

ethylene levels. The sequences in tomato (Accession #BT013578), Arabidopsis 

(NM_103738), poplar (AI161555), birch (AY154652), rice (BAD16875), and corn 

(AY106365) share anywhere from 20 to 40% sequence identity at the amino acid level to 



 

known bacterial ACC deaminase proteins. Two research groups have investigated the 

presence of a functional ACC deaminase in Arabidopsis with contradicting results 

(McDonnell et al., in press; Riemenschneider et al., 2005). Riemenschneider (2005) and co-

workers have isolated the cDNA, expressed the protein in E. coli and characterized it after 

purification. They have shown that this enzyme has no activity towards ACC as the substrate, 

but rather that it breaks down D-cysteine into pyruvate, ammonia and hydrogen sulfide with 

a Km of 0.25 mM. They have also demonstrated the dependence of the enzyme on PLP, they 

have localized it to mitochondria and they have shown some data to suggest that the enzyme 

may be involved in regulating sulfur levels. However, the precise role of this enzyme, D-

cysteine desulfhydrase, has not been reported yet, nor has it been shown that plants 

synthesize D- amino acids, including D-cysteine. 

 On the other hand, the data from McDonnell and co-workers (in press) suggests that 

this same enzyme does utilize ACC and breaks it down. They have argued that it utilizes 

ACC as the substrate on the basis of the ability of E. coli (that expresses a cloned cDNA) 

encoding this enzyme to grow on solid media with ACC as the sole nitrogen source. 

Additionally, they have also shown activity in plant tissues using plant protein extracts. The 

group has used the colorimetric assay in which 2,4-dinitrophnylehydrazine (2,4-DNP) is 

added to detect the product of the reaction, the α-keto acid, α-ketobutyrate. However, the  

2,4-DNP is a compound that will react with any α-keto acid such that the accuracy of the 

assay when determining low activity in a setting as such (using plant protein extracts) is 

questionable. 

 However, results consistent with the hypothesis suggested by McDonnell and co-

workers were observed when the cDNA encoding the enzyme was expressed in Arabidopsis 
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under the CaMV-35S promoter. They have used the triple response characteristic of plants to 

show that when grown in the presence of 1.6 µM ACC, the wild type seedlings exhibited a 

triple response, whereas the transgenic plants had significantly longer hypocotyls and no 

apparent triple response (i.e. the overexpressed enzyme utilized some of the added ACC, 

thereby protecting the plants from the ethylene production). Hence, the contradictory results 

from the two research groups still leave the question of whether plants encode a functional 

ACC deaminase unanswered. 

In this work, we therefore examine whether tomato (Solanum lycopersicum) cDNA 

predicted as a putative ACC deaminase will encode for a protein with this activity. We 

examine both ACC deaminase and D-cysteine desulfhydrase activity of the recombinant 

enzyme. Using structural protein modeling and structural data available for bacterial and 

yeast ACC deaminase enzymes, we also explain why certain enzymes show ACC deaminase 

activity and others do not. Sequences sharing similarity to true ACC deaminase enzymes 

have been annotated as putative ACC deaminase for many organisms, yet only a fraction of 

these have been shown to have the ability to break the cyclopropane bond of ACC, and 

others have the ability to deaminate other substrates. We demonstrate that only two amino 

acid residues in the active site of ACC deaminase and D-cysteine desulfhydrase may have the 

control over which reaction is carried out. 
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Chapter 2 
Experimental Procedures 

2.1 Plant Growth and Tissue Collection 

Seeds of tomato (Solanum lycopersicum; Bony Best variety, Ontario Seed Co #5750) 

were surface sterilized, by soaking in 70% (v/v) ethanol for one minute followed by soaking 

for ten minutes in 1% (v/v) bleach, then washed five times in sterilized Milli-Q water. 

Sterilized seeds were planted in Promix BX greenhouse mix (Premier Horticulture, 

Quakertown, PA, U.S.A) containing 75-85% (v/v) sphagnum peat moss, perlite, vermiculite, 

macronutrients (calcium, magnesium, nitrogen, phosphorus, potassium and sulfur), 

micronutrients (boron, copper, iron, manganese, molybdenum and zinc), dolomitic limestone, 

calcite limestone and a wetting agent. The plants were grown in the greenhouse during the 

months of June through September with a temperature of approximately 25°C during the day 

and 20°C overnight. The plants were under 16 h of light and 8 h of dark (supplemented with 

High Intensity Discharge (HID) lamps when necessary). They were watered as needed with 

tap water from above, and were fertilized every seven days, beginning on day fourteen, with 

a 10-52-10 fertilizer for the first three times, then with a 20-20-20 fertilizer containing 20% 

nitrogen, 20% phosphorous and 20% potassium (Plant Products, Brampton, ON). The plants 

were twice transplanted into successively larger pots; first when they reached the stage of 

having 3-4 true leaves, then when they grew to approximately 20 cm in height. At the 

flowering stage the plants were pollinated three times a week, always between 11:00 am and 

1:00 pm. 

The leaf tissue was collected at the mature green stage, prior to any noticeable 

yellowing and senescence; the fruit tissue, on the other hand, was collected at the breaker 
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stage, which is defined as the stage where first spot of pink/red colour appears at the blossom 

end. All tissue was flash-frozen in liquid nitrogen and was either used immediately or stored 

at -80°C until required. 

2.2 Bacterial Strains, Plasmids and Culture Conditions 

The bacterial strains, plasmids and constructs used in this study are described in Table 

1. Escherichia coli DH5α (Invitrogen, Burlington, ON) or NovaBlue GigaSingles (Novagen, 

Mississauga, ON) were used as the host for initial construction and maintenance of 

recombinant plasmids. Escherichia coli BL21(DE3), which is a lambda DE3 lysogen, 

(Novagen, Mississauga, ON) was used as the host for recombinant protein expression of 

putative ACC deaminase from tomato, Pseudomonas putida UW4 ACC deaminase and all 

the constructed mutants. Unless otherwise specified, all Escherichia coli strains were 

cultivated aerobically at 37°C in Luria-Bertani (LB) broth (10 g/L tryptone, 5 g/L yeast 

extract, 5 g/L NaCl) or on solid media with 15 g/L agar added to the medium. When 

appropriate, antibiotics or other supplements were added at the following concentrations: 100 

µg/ml ampicillin, 30 µg/ml kanamycin, 20 µg/ml tetracycline, 1 mM isopropyl β-D-1-

thiogalactopyranoside (IPTG) or 40 µg/ml 5-bromo-4-chloro-3-indolyl- beta-D-

galactopyranoside (X-Gal).  

The plasmid pET30 Xa/LIC was purchased from Novagen (Mississauga, ON) and 

was used for recombinant protein expression of the putative ACC deaminase from tomato 

(Table 1). pBluescript SK (+) (Fermentas, Burlington, ON) was used for initial cloning 

procedures whereas pET30a (+) (Novagen, Mississauga, ON) was utilized for recombinant 

protein expression of  Pseudomonas putida UW4 ACC deaminase. 
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2.3 RNA Extraction from Plant Tissues 

RNA was extracted using the guanidine isothiocyanate (GIT) method (Davis et al., 

1986), where all required solutions were made with RNase-free diethylpyrocarbonate 

(DEPC) treated water, and stored in RNase-free containers. Frozen tissue (<5 g) was added to 

a mortar and pestle (previously cooled with liquid nitrogen), and ground to a fine powder. 

The powder was added to 10 ml of denaturing solution (4 M guanidine isothiocyanate salt, 25 

mM sodium acetate, pH 6.0, 0.8 M β-mercaptoethanol) in a 50 ml conical tube and vortexed. 

The mixture was filtered through two layers of MiraCloth (Calbiochem, Mississauga, ON) 

into 50 ml round-bottom SS-34 rotor centrifuge tubes, and centrifuged for 1 h at 4°C and 

15,000 rpm (26,890 x g) in a Sorvall centrifuge. The supernatant was carefully layered onto 

3.3 ml of 5.7 M cesium chloride, and RNA was pelleted by centrifuging for 23 h at 10°C and 

115,915 x g. The aqueous phase was removed carefully and the pellet was washed once with 

1 ml of 70% (v/v) ethanol, then air dried. Subsequently the pellet was re-suspended in 0.5 ml 

of DEPC water; two volumes of ice cold 100% ethanol and 100 µl of 3 M sodium acetate 

(pH 6.0) were added and RNA was precipitated overnight at -80°C. The samples were then 

centrifuged at 4°C and 14,000 rpm (20,798 x g) for 1 h after which 1 ml of 70% (v/v) ethanol 

was added to the pellet which was centrifuged at 4°C and 14,000 rpm (20,798 x g) for 30 

min. The pellet was air dried and re-suspended in DEPC-treated water. Extracted RNA was 

aliquoted and stored at -80°C until necessary. The quality and quantity of total RNA sample 

was determined using spectrophotometric measurements at 230, 260, 280 and 320 nm. Purity 

of RNA was determined by the A260/A280 and A260/A230 ratios, which ideally should be ~2.0. 

Ratios below ~2.0 indicate possible protein or carbohydrate contamination, respectively. The 

integrity of total RNA was checked by denaturing formaldehyde agarose-gel electrophoresis  
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Table 2-1. Bacterial strains, plasmids and constructs used in this work. 
Strains or plasmids Description Source/ 

reference 
Strains   
Escherichia coli   
DH5α F80d/lacZ M15, recA1, endA1, gyr96, thi-1, 

hsdR17(rk-, mk+), sup E44, relA1, (lacZYA-argF)U169 
Invitrogen 

NovaBlue endA1 hsdR17(rK12
– 
mK12

+
) supE44 thi-1 recA1 gyrA96 

relA1 lac F'[proA
+
B

+ 
lacI

q
ZΔM15::Tn10 (Tc

R
)] 

Novagen 

BL21(DE3) F– ompT hsdSB(rB
– mB

–) gal dcm (DE3) 
 

Novagen 

Plasmids   
pBluescript SK (+) DNA cloning vector; AmpR Fermentas 
pET30Xa/LIC Bacterial expression vector designed for ligation 

independent cloning and high-level expression of target 
proteins fused with His-tag and S-Tag under T7 lac 
promoter; KanR 

Novagen 

pET30a (+) Bacterial expression vector with the same features as 
pET30 Xa/LIC but not does not offer ligation 
independent cloning (LIC); KanR 

Novagen 

pBS-acd pBluescript SK (+) carrying a putative acdS gene from 
tomato in the EcoRV site (Accession # EU639448) 

This study 

pRKLACC Broad host range plasmid pRK415 with the acdS gene 
from  Pseudomonas putida UW4, under the control of 
the lac promoter; TcR 

(Holguin 
and Glick, 
2001) 

ET30-acd (*) Plasmid pET30Xa/LIC with a putative tomato acdS; 
the recombinant protein contains an N-terminal 6xHis-
tag; KanR 

This study 

ET30-Tm1 (▪) Derivative of (*) containing  the point mutation S358E This study 
ET30-Tm2 Derivative of (*) containing  the point mutation T386L This study 
ET30-Tm3 Derivative of (▪) containing  the point mutation T386L This study 
ET30-UW4 (**) Plasmid pET30a (+) with the  Pseudomonas putida 

UW4 acdS gene cloned directionally into EcoRV and 
HindIII sites; KanR 

This study 

ET30-Um1 (▪▪) Derivative of (**) containing the point mutation E295S This study 
ET30-Um2 Derivative of (▪▪) containing the point mutation L322T This study 
acdS=ACC deaminase gene 



 

as described below (Sambrook and Russell, 2001). 

2.3.1 Formaldehyde Gel Electrophoresis 

To determine RNA integrity and to show that no degradation of the sample had 

occurred prior to downstream applications and use, the method of denaturing formaldehyde 

gel electrophoresis was utilized. Prior to the preparation of the gel, the electrophoresis 

apparatus including the combs and trays were soaked in 10% (w/v) SDS solution (prepared in 

DEPC water), then rinsed with DEPC water to ensure RNase free conditions. All necessary 

solutions were prepared using only DEPC treated water; any necessary equipment, such as 

glassware was baked at 250°C overnight. 

To prepare a 1% (w/v) mini gel, 0.5 g of agarose was added to 5 ml of 10X MOPS 

buffer (0.2 M 3-[N-morpholino]propanesulfonic acid (MOPS), 50 mM sodium acetate, 10 

mM EDTA, pH 7.0) and 36 ml of water; it was melted in a microwave oven and then cooled 

to 60°C. In the fume hood, 9 ml of 37% formaldehyde solution was added, mixed and the gel 

was poured; it was left in the fume hood to polymerase for at least 30 min. When preparing 

the RNA samples to be analyzed, the following was mixed in an Eppendorf tube: 7 µl of 

RNA (as little as 2 µg of RNA can be visualized), 3 µl of 10X MOPS, 5 µl of 37% 

formaldehyde, 15 µl of deionized formamide and 0.5 µl of 0.5 µg/µl ethidium bromide. The 

samples were heated at 65°C for 5 minutes and cooled on ice immediately.  Three µl of 

loading buffer (50% glycerol (v/v), 1 mM EDTA, 0.25% bromophenol blue (w/v), 0.25% 

(w/v) xylene cyanol) was added and the samples loaded. The gel was run in 1X MOPS at a 

constant voltage of 100V. Once the dye front had traveled at least 3 cm, the gel was 

examined under UV light. RNA integrity was assessed by the appearance of major rRNA 

bands. For un-degraded RNA these bands exhibit little tailing and the upper band appears at 
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least as bright as the lower one. RNA from leaf tissue contains several smaller rRNAs in 

addition to the two major bands. 

2.4 Primers and Oligonucleotides 

All oligonucleotides used for RT-PCR, PCR, DNA sequencing or site-directed 

mutagenesis were purchased from Sigma-Aldrich, Canada. The sequences of the 

oligonucleotides that were used in this study are given in Table 2. Restriction sites in the 

corresponding primers are highlighted in light grey, start and stop codons are given in bold; 

mutated codons in primers used for mutagenesis are underlined; fwd = forward primer; rev = 

reverse; sequence in italics indicates pET30 Xa/LIC complementary sequence necessary for 

ligation independent cloning. Where indicated as “5’ P, PAGE” primers where 

phosphorylated at 5’ end and PAGE purified. 

2.5 Cloning of Putative ACC deaminase from S. lycopersicum (tomato) 

2.5.1 Primers  

To obtain the putative ACC deaminase cDNA from tomato, the primers F(BT013578) 

and B(BT013578)-1 were used (Table 2). Both the forward and reverse primer sequences 

were based on the DNA sequence from GenBank with the accession number BT013578. This 

sequence has not yet been annotated, but it shares sequence similarity to other putative ACC 

deaminase genes from plants and has some sequence similarity to bacterial ACC deaminase 

genes. BT013578 is a 1492 bp cDNA sequence initially isolated from tomato fruit, with a 

predicted open reading frame (ORF) of 1254 bp. The above primers were designed based on 

the sequence outside the predicted ORF. Since there was limited sequence information based 
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Table 2-2. Primers and oligonucleotides used in this work. 
Name Sequence Description 

F(BT013578) 5’-GAAAGGGGAAAGGTTAAAAATGTCG-3’ BT013578 specific; outside ORF, fwd
B(BT013578)-1 5’-CTCAACTAGTCTTGGATGTAGGC-3’ BT013578 specific; outside ORF, rev
XaSense2 5’-GGTATTGAGGGTCGCATGTCGAGTTGCCAATGGAGTAG-3’ pET30Xa/LIC cloning, fwd
XaAntisense2 5’-AGAGGAGAGTTAGAGCCTCAGAACATTTTGCCGATGCC-3’ pET30Xa/LIC cloning, rev
Primer1 5’-GCAATTAGGGAATTGGAGC-3’ BT013578 expression, fwd
Primer3 5’-GAGCTAACTCCAGCAGTGATT-3’ BT013578 expression, rev
Primer4 5’-ATTGTTGTAGCTTGTGGCAGTTTC-3’ BT013578 expression, fwd
Primer5 5’-GGATCGTCGCAGACACAAAATGC-3’ BT013578 expression, rev
UW4-F-EcoRV 5’-ATGATATCATGAACCTGAATCGTTTTGAACG-3’ UW4 ACCD, fwd, EcoRV
UW4-R-HindIII 5’-ATAAGCTTTCAGCCGTTGCGAAACAGGAAGC-3’ UW4 ACCD, rev, HindIII
Tomato-M1-F 5’-TGACCCTGTCTACGAAGGTAAAGCAGCTT-3’ ET30-Tm1 S358E, fwd; 5’ P, PAGE
Tomato-M1-R 5’-AGAATAACACCTGTGGTTTCAGCAACTTG-3’ ET30-Tm1, S358E, rev; 5’ P, PAGE
Tomato-M2-F 5’-TCTGTTCATACACCTGGGTGGGCTACTAG-3’ ET30-Tm2 T386L, fwd; 5’ P, PAGE
Tomato-M2-R 5’-ATCTTTCTTCCCTCCCACTTTGTTGGATT-3’ ET30-Tm2, T386L, rev; 5’ P, PAGE
UW4-M1-F 5’-CGATCCGGTCTACAGCGGCAAATCCATGC-3’ ET30-Um1, E293S, fwd; 5’ P, PAGE
UW4-M1-R 5’-GTCAACACCCCCTCAAGACTGCCGCACAG-3’ ET30-Um1 E293S, rev; 5’ P, PAGE
UW4-M2-F 5’-TCTTTATGCCCACACCGGCGGCGCACCTG-3’ ET30-Um2, L322T, fwd; 5’ P, PAGE
UW4-M2-R 5’-ACTTTGGAGCCGTCAGGGAATTCCCCGCG-3’ ET30-Um2, L322T, rev; 5’ P, PAGE
F20 5’-CCTTGACTGCTATCTCATCTTACGC-3’ Tomato gene sequencing, fwd
F23 5’-TTGACCGTTTAGTTGGAGCACAC-3’ Tomato gene sequencing, fwd
F29 5’-AACCACAGGTGTTATTCTTGAC-3’ Tomato gene sequencing, fwd
F31 5’-TTGACGGAATCACTGCTGGAG-3’ Tomato gene sequencing, fwd
B29 5’-CACTTTGTTGGATTCTCGCCC-3’ Tomato gene sequencing, rev
UW4 Seq 1 5’-TATGGAGGGCTCGGGTTTGTCGGCTTC-3’ UW4 ACCD sequencing, fwd
UW4 Seq 2 5’-CGAAATCACTGAAGAGGATGTGGTGC-3’ UW4 ACCD sequencing, fwd
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on which of the primers could be designed, and as these regions of the gene sequences 

typically tend to have a large number of repeats, especially in the 3’ end where the poly-

adenylation signal is located, optimization of primers and their position was limited. Instead, 

the polymerase chain reaction (PCR) was optimized to isolate the cDNA of interest, as 

described below.  

2.5.2 Reverse-transcriptase PCR (RT-PCR) 

The reverse transcription reaction was carried out using the Invitrogen SuperScript III 

reverse transcriptase and buffers (Burlington, ON). The following components were 

combined on ice: 10 µl 2X RT reaction mix (containing oligo(dT)20, random hexamers, 

MgCl2, and dNTPs in a buffer formulation that has been optimized by the manufacturer), 2 µl 

RT enzyme mix (200 U/µl reverse transcriptase and RNaseOUT™ Recombinant 

Ribonuclease Inhibitor), and 1 µg of RNA from leaf tissue, with a final volume, using DEPC 

treated water of 20 µl. The reaction was gently mixed and the tube contents were incubated at 

25°C for 10 min. Following that, the reaction was incubated at 42°C for 50 min and then 

terminated at 85°C for 5 min and chilled on ice for 5 min. One µl (2 U) of E. coli RNase H 

was added to the mixture and incubated at 37°C for 20 min. A negative control reaction 

without the Invitrogen SuperScript III reverse transcriptase was done to determine if there 

was DNA contamination in the extracted RNA sample. The samples were used immediately 

for PCR. 

Hot-start PCR was performed with the KOD Hot Start DNA Polymerase (Novagen, 

Mississauga, ON). The 50 µl reaction was set up on ice and included: 5 µl of 10X PCR 

buffer (1X final), 5 µl dNTP (final 0.2 mM), 2 µl of MgSO4 (final 1 mM), 1 nmol of each 

forward and reverse primers, 2 µl of reverse transcription reaction as template, 1 µl (1U) 



 

KOD Polymerase and 30 µl of sterile water. PCR was performed in the PTC-100TM 

Programmable Thermal Controller (MJ Research Inc., Watertown, MA, U.S.A.) using the 

following amplification conditions:  

94°C for 5 min 
94°C for 30 sec 
55°C for 30 sec   35 cycles 
72°C for 40 sec 
 

2.5.3 Cloning into pBluescript SK (+) and Gene Sequence Analysis 

The PCR products from the above reactions were separated by gel electrophoresis on 

a 0.7% (w/v) agarose gel. The band of interest was excised from the gel and purified using a 

QIAgen-QIAquick Gel Extraction Kit (Mississauga, ON) as described in the “Other general 

protocols” section. Next, the fragment was cloned into the pBluescript SK(+) plasmid; since 

the KOD Pol produces blunt ends, the plasmid DNA was digested with a blunt ended cutter, 

EcoRV (Fermentas, Burlington, ON) by incubating the reaction at 37°C for 2 h in the 

appropriate buffer, then terminating by incubation at 65°C for 20 min. To promote efficient 

cloning, a vector to DNA insert ratio of 1:3 was used. The amount of vector DNA after 

digestion and the amount of insert post extraction from the gel was estimated by running 

another DNA gel and comparing the band intensities to the DNA ladder. The ligation 

reaction was set up using a Rapid DNA Ligation Kit (Fermentas, Burlington, ON) in the 

following manner: 145 ng of insert, 68 ng of digested plasmid DNA, 4 µl of 5X rapid ligation 

buffer, 1µl of T4 DNA ligase (5U) and water for a total reaction volume of 20 µl. The 

reaction was incubated at 22°C for 5 min, then used to transform E.coli DH5α (Invitrogen, 

Burlington, ON) as described in the “Other general protocols” section. 
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Post-transformation, random white colonies were picked from the plate and screened 

for presence of the insert and tested to determine the insert orientation. Plasmid DNA was 

extracted from these colonies (refer to “Other general protocols” section), and digested with 

BamHI (Fermentas, Burlington, ON), then subject to gel electrophoresis. When the insert is 

not present, only one band is visible on the gel since pBluescript SK (+) has one BamHI 

recognition sequence in its multiple cloning site (MCS). However, when the insert is present, 

two bands are visible. The insert was sequenced at the York University Core Molecular 

Biology and DNA Sequencing Facility (York University, Toronto, ON). This construct is 

referred to as pBS-acd; the isolated cDNA sequence has been deposited to GenBank with the 

Accession # EU639448. 

2.6 Determining Whether BT013578 is Expressed 

Since the putative ACC deaminase sequence that was isolated from tomato differs 

from the published sequence in GenBank (BT013578) in the region between ~780 bp and 

890 bp by having a 7 bp gap and an “extra” 31 bp of coding region (Figure 2-1), a PCR 

strategy was devised to test whether BT013578 version is expressed in Bony Best variety of 

Solanum lycopersicum.  

2.6.1 Rationale for Primer Design 

Differences between the pBS-acd insert sequence (EU639448) and the BT013578 

sequence were exploited to determine what is expressed. Two primers, Primer 1 and Primer 

3, were designed to be used as positive controls, which would bind both pBS-acd 

(EU639448) and BT013578 cDNA. Primer 4 was designed to specifically bind BT013578 in 
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BT013578      AGAAAGCCATATGTCATCCCTGTTGGTGGATCCAATTCTCTAGGAACCTGGGGCTATATT 720 
pBS-acd       AGAAAGCCATATGTCATCCCTGTTGGTGGATCCAATTCTCTAGGAACCTGGGGCTATATT 720 
              ************************************************************ 
  ● 
BT013578      GAGGCAATTAGGGAATTGGAGCAACAACTTCAGCACTTGAGCATTGAACAGAAATTCGAC 780 
pBS-acd       GAGGCAATTAGGGAATTGGAGCAACAACTTCAGCACTTGAGCATTGAACAGAAATTCGAC 780 
              ************************************************************ 
  ♦ 
BT013578      GACATTGTTGTAGCTTGTGGCAGTTTCCAGTGGGGGTACGGTTGCTGGTTTGTCAATTGC 840 
pBS-acd       GACATTGTTGTAGCTTGTGGCAGT-------GGGGGTACGGTTGCTGGTTTGTCAATTGC 833 
              ************************       ***************************** 
 
BT013578      ATCCATGCTCAGTGGCTTGAAAGCAAAGA------------------------------- 869 
pBS-acd       ATCCATGCTCAGTGGCTTGAAAGCAAAGATTAATGCATTTTGTGTCTGCGACGATCCAGA 893 
              *****************************                            ▲    
 
BT013578      TTACTTTTATGAATATGTTCAAGGCCTACTTGACGGAATCACTGCTGGAGTTAGCTCCCG 929 
pBS-acd       TTACTTTTATGAATATGTTCAAGGCCTACTTGACGGAATCACTGCTGGAGTTAGCTCCCG 953 
              ************************************************************ 
 ■ 
BT013578      TGATATTGTTAGCATCAAAACTGCAAAAGGCCTTGGGTATGCTTTGAGCACCACTGATGA 989 
pBS-acd       TGATATTGTTAGCATCAAAACTGCAAAAGGCCTTGGGTATGCTTTGAGCACCACTGATGA 1013 
              ************************************************************ 
 
BT013578      GCTTAAATTTGTGAAGCAAGTTGCTGAAACCACAGGTGTTATTCTTGACCCTGTCTACAG 1049 
pBS-acd       GCTTAAATTTGTGAAGCAAGTTGCTGAAACCACAGGTGTTATTCTTGACCCTGTCTACAG 1073 
              ************************************************************ 
 

●Primer 1 – fwd ■Primer 3 – rev ♦Primer 4 – fwd ▲Primer 5 – rev 

 
 
1(●)+3(■)   – positive control; amplifies both (if pBS-acd then 227 bp product; if BT013578  
   then 203 bp) 
4(♦)+3(■)   – if amplified, then BT013578 is expressed; product of 143 bp 
1(●)+5(▲)  – if amplified, then pBS-acd is expressed; product of 167 bp 
               
 
 
 
 
 
 
 
 

Figure 2-1. A portion of the alignment between the pBS-acd cDNA (EU639448) and the 
BT013578 cDNA where the sequence difference between the two occurs. Numbers to the 
right of the alignment represent base pair positions. Gray shading and arrows indicate primer 
positions. Description below the alignment explains the three different RT-PCR reactions 
that were set up for each of the templates (leaf, breaker fruit, pBS-acd plasmid DNA) when 
testing for the expression of BT013578 in Bony Best variety of tomato. 
 

 

 



 

the region where pBS-acd contains the 7 bp gap. In order for DNA polymerase to perform 

the reaction, a primer at its 3’ hydroxyl end must be attached to the template. If BT013578 is 

expressed, when Primer 4 and Primer 3 are used in the PCR reaction, a product of 143 bp 

would be observed; on the other hand, pBS-acd (EU639448) would not be amplified at all in 

this reaction since the Primer 4 hydroxyl end would not be attached. Furthermore, to confirm 

the expression of the isolated cDNA (pBS-acd (EU639448)), the second difference between 

the two sequences was utilized. Primer 5 was designed as the reverse primer that binds in the 

region which only occurs in the pBS-acd cDNA (the “extra” 31 bp region). This third 

reaction would be set up with Primer 1 and Primer 5; when the pBS-acd cDNA is selectively 

amplified using these two primers a product of 167 bp is observed (Figure 2-1).  

2.6.2 RT-PCR 

Two reverse transcription reactions were carried out as previously described (Section 

2.5.2) using RNA extracted from leaf tissue as well as from breaker fruit. The PCR reactions 

were performed using the GoTaq® Green Master Mix (Promega, Madison, WI, U.S.A.); 

each 25 µl reaction was set up with 12.5 µl of Master Mix, 1 µl of each of forward and 

reverse primers (from 20 µM stock), 1 µl of reverse transcription reaction or 1 ng of pBS-acd 

plasmid DNA as the template and sterile water for a total of 25 µl. A total of nine reactions 

were set up, three for each template (leaf, breaker fruit and the pBS-acd plasmid DNA) and 

each with the above described primers (Figure 2-1). PCR was carried out in a PTC-100TM 

Programmable Thermal Controller (MJ Research Inc., Watertown, MA, U.S.A.) using the 

following amplification conditions:  

 
 
 

 36



 

95°C for 2 min 
95°C for 30 sec 
55°C for 30 sec   35 cycles 
72°C for 30 sec  
 

Three µl of each amplification reaction was examined on a 3% (w/v) agarose gel. The 

product sizes were determined using AlphaEaseFC (Alpha Innotech Corporation, San 

Leandro, CA, U.S.A.) software and its built-in feature for determining molecular weight 

based on the gel mobility of the fragments in the DNA ladder.   

2.7 Protein Expression 

2.7.1 Sub-cloning into the Expression Vector pET30 Xa/LIC 

For the purposes of protein expression, the construct called pBS-acd was used as the 

template to subclone the cDNA into the pET30 Xa/LIC (Novagen, Mississauga, ON) 

expression vector. pET30 Xa/LIC is provided by the manufacturer as a linear double stranded 

molecule with sticky ends designed for ligation independent cloning. Briefly, when 

amplifying the gene of interest for cloning into pET30 Xa/LIC, the primers must be designed 

such that their 5’ end contains the complementary sequence to that of the sticky end of the 

vector. This allows for fast, directional and efficient cloning of the insert into the vector 

without the need for restriction enzyme digestion or ligation.  

Forward primer XaSense2 and reverse primer XaAntisense2 (Table 2) were used in 

the PCR reaction to prepare the insert for cloning into pET30 Xa/LIC. The reaction was set 

up with KOD Hot Start DNA Polymerase (Novagen, Mississauga, ON): 5µl of 10X PCR 

buffer (1X final), 5 µl dNTP (final 0.2 mM), 2 µl of MgSO4 (final 1 mM), 2.5 µl of each 

forward and reverse primers (1 nmol of each), 1 ng of pBS-acd plasmid DNA as the 

template, 1 µl (1U) KOD Polymerase and 30 µl of sterile water. PCR was completed in the 
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PTC-100TM Programmable Thermal Controller (MJ Research Inc., Watertown, MA, U.S.A.). 

using the following amplification conditions:  

 
94°C for 5 min 
94°C for 30 sec 
51°C for 30 sec   35 cycles 
72°C for 40 sec 

Following PCR, the entire reaction was loaded on a 0.7% agarose gel and the band 

was excised from the gel and purified using the QIAgen-QIAquick Gel Extraction Kit (refer 

to “Other general protocols” section). The concentration of the PCR product after 

purification was determined by running another DNA gel and comparing the band intensity 

to the intensities of the bands that are part of the DNA ladder. 

To prepare the PCR product for cloning into pET30 Xa/LIC, the product was treated 

with T4 DNA Polymerase. Two reactions were assembled in the following manner: 0.2 pmol 

of purified PCR product (or β-galactosidase gene; positive control provided by the 

manufacturer), 2 µl of 10X T4 DNA Pol buffer, 2 µl of 25 mM dGTP, 1 µl of 100 mM DTT, 

0.4 µl T4 DNA Pol (from 2.5 U/µl stock) and water up to 20 µl in total. The reaction was 

started with the addition of the enzyme; it was gently stirred with a pipette tip and incubated 

at 22°C for 30 min. Then, T4 DNA polymerase was inactivated by incubation for 20 min at 

75°C. The prepared insert was used immediately in subsequent steps, but it could be stored at 

-20°C for up to several months.  

The vector to insert annealing reaction was performed by combining 1 µl of pET30 

Xa/LIC vector (Xa/LIC Cloning Kits, Novagen, Mississauga, ON) with 2 µl of T4 DNA 

polymerase treated insert (0.02 pmol) then incubating the mixture at 22°C for 5 min. 1 µl of 

25 mM EDTA was added for a total of 4 µl reaction volume. The mixture was further 

incubated at 22°C for 5 min; 1 µl of the annealing reaction was used directly to transform E. 
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coli NovaBlue GigaSingles as described in the “Other general protocols” section. The 

colonies were screened by extracting plasmid DNA and determining the plasmid size. Prior 

to protein expression, the insert was also sequenced (York University, Toronto) to determine 

if any polymerase induced changes had occurred. Moreover, plasmid DNA which had been 

confirmed as having no polymerase induced changes was used to transform the protein 

expression host, BL21(DE3) following the standard transformation protocol. This strain is 

referred to as ET30-adc.  

2.7.2 Optimization of Target Protein Expression 

To determine whether the recombinant protein is expressed and what the optimum 

IPTG concentration is, a small scale induction protocol was utilized along with sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis. Three ml of LB 

containing kanamycin at 30 µg/ml was inoculated with ET30-acd and incubated overnight at 

37°C with shaking. The following day, 50 ml of fresh LB with kanamycin was inoculated 

with the entire 3 ml of the overnight culture and incubated at 37°C with shaking until the 

cells reached mid-log phase (OD600 of ~0.5). One ml of culture was sampled as an un-

induced control. The cells were collected by centrifugation for 1 min at 14,000 rpm (20,798 x 

g) and the pellet was re-suspended in 100 µl of 1X SDS-PAGE gel loading buffer (100 mM 

Tris-Cl, pH 6.8, 4% (w/v) SDS, 0.2% (w/v) bromophenol blue, 20% (v/v) glycerol, 200 mM 

DTT). The sample was stored at -20°C until used for SDS-PAGE analysis. The remainder of 

the culture was induced with 0.1, 0.4 or 1.0 mM IPTG. The induction was continued at 30°C 

with sufficient shaking to provide aeration. One ml sample of the culture was collected at 

various time points (following 1, 3, 4, 6 h of induction) and processed/suspended as 

described above. Once all the samples were collected, they were thawed on ice, warmed to 

 39

http://en.wikipedia.org/wiki/Sodium_dodecyl_sulfate
http://en.wikipedia.org/wiki/Sodium_dodecyl_sulfate
http://en.wikipedia.org/wiki/Polyacrylamide_gel
http://en.wikipedia.org/wiki/Electrophoresis


 

room temperature and 0.15OD600 units of the original culture was examined on a 10% (w/v) 

SDS-PAGE gel (refer to “Other general protocols”).  

2.7.3 Determining the Solubility of Expressed Protein 

To determine if the recombinant protein is expressed in soluble form or if it forms 

aggregates and inclusion bodies, the following procedure was used. Five ml from a 10 ml 

overnight culture was used to inoculate 50 ml of fresh LB with kanamycin (30 µg/ml). The 

culture was grown to mid-log phase (OD600 ~0.5) at 37°C at which point a 1 ml sample was 

collected and the cell pellet was re-suspended in 50 µl of 1X SDS-PAGE sample buffer (un-

induced sample). The sample was stored at -20°C, and the remaining culture induced with 

0.1 mM IPTG for 5 h at 30°C. After the induction period, another 1 ml sample was collected, 

and the remaining culture was harvested by centrifugation at 4,000 x g for 20 min at 4°C. 

The collected cell pellet was re-suspended in 5 ml of lysis buffer for native purification (50 

mM NaH2PO4, 300 mM NaCl, 10 mM imidazole); the cells were lysed by adding 1 mg/ml 

lysozyme and incubating on ice for 30 min. Afterwards, the suspension was sonicated 6X for 

10 sec with 10 sec pauses at 200-300 W. The lysate was kept on ice at all times; it was 

centrifuged at 10,000 x g for 30 min and 4°C. The supernatant was saved on ice, representing 

the soluble fraction, whereas the pellet was re-suspended in another 5 ml of lysis buffer, and 

represents insoluble protein and cellular debris. The un-induced, induced, soluble and 

insoluble fractions were examined by SDS-PAGE. 
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2.8 Protein Purification 

2.8.1 Culture Preparation 

Fifty ml of the overnight culture grown at 37°C was used to inoculate 700 ml of fresh 

LB with kanamycin (30 µg/ml). The freshly inoculated culture was grown at 30°C with 

vigorous shaking for 1 h, at which point the OD600 of the culture was ~0.4-0.5. The culture 

was induced with 0.1 mM IPTG for 6 h at 30°C; to harvest the cells, the culture was 

centrifuged at 8,000 rmp (9,715 x g) for 15 min at 4°C using a Sorvall centrifuge and a SLA-

1500 rotor. The collected pellet was stored at -20°C overnight, or if frozen for longer periods 

of time, then at -80°C. 

2.8.2 Purification 

The recombinant protein, expressed with an N-terminal 6X His-tag was purified 

under native/non-denaturing conditions using Ni-NTA Superflow resin (QIAgen Inc., 

Mississauga, ON). Briefly, the pellet was suspended in 4 ml of lysis buffer (Table 3), after 

being thawed on ice for ~15 min (or quickly thawed in a 35°C waterbath for 3-4 min). To 

lyse the cells, lysozyme was added at a concentration of 1 mg/ml; the suspension was 

incubated on ice for 30 min, and then sonicated 6X for 10 sec with 10 sec breaks at 200-300 

W. To obtain the soluble fraction that would be applied to the column, the sonicated 

suspension was centrifuged at 10,000 x g for 30 min at 4°C. The supernatant was applied to 

0.5 ml of prepared Ni-NTA resin (1 ml of 50% slurry was carefully poured into disposable 

11 ml columns, and the resin was allowed to settle; it was then washed with water to remove 

any ethanol, then 10 column volumes of lysis buffer) and was allowed to pass through the 

column using gravity flow. After the supernatant passed through the column, the column was 
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washed with wash buffers of gradually increasing imidazole concentrations. Wash 1 and 

wash 2: 4 ml of lysis buffer; wash 3 and wash 4: 4 ml of 20 mM imidazole wash buffer; wash 

5: 4 ml of 40 mM imidazole wash buffer; wash 6: 4 ml of 50 mM imidazole wash buffer. The 

recombinant protein was eluted off the column with 4X 0.5 ml elution buffer.  

 
 
 
Table 2-3. Composition of buffers used for purification of the recombinant protein(s) on Ni-
NTA column. 
 Lysis 

buffer 
20 mM 
wash 
buffer 

40 mM 
wash 
buffer 

50 mM 
wash 
buffer 

Elution 
buffer 

NaH2PO4 50 mM 50 mM 50 mM 50 mM 50 mM
NaCl 500 mM 1 M 1 M 1M 300 mM 
Imidazole 10 mM 20 mM 40 mM 50 mM 250 mM 
β-mercaptoethanol 20 mM -- -- -- -- 
PMSF 1 mM -- -- -- -- 
pH 8.0 Yes Yes Yes Yes Yes 

2.8.3 Gel Filtration 

After purification using affinity chromatography, fraction(s) containing the protein of 

interest were used in gel filtration. This method was utilized for the purposes of buffer 

exchange. In order to store the purified protein and test for activity, the elution buffer was 

unsuitable; hence, gel filtration was used to obtain the recombinant protein in the final 

storage buffer (20 mM potassium phosphate, pH 7.0, 15% glycerol, 10 µM PLP, 0.1 mM 

DTT, 0.1 mM EDTA).  

The gel filtration column was packed, tested and calibrated as follows: 10 ml column 

with Sephadex G-25, fine grade beads (formerly Pharmacia; GE Healthcare Bio-Sciences 

Inc., Baie d'Urfé, QC) were prepared by swelling 2.5 g of Sephadex G-25 powder in 13.5 ml 

of 0.1 M Tris-Cl, pH 8.0. The mixture was incubated for 1 h at 90°C, and then cooled to 

room temperature. It was poured carefully in one motion, avoiding air bubbles, into an empty 
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column of 1 cm in diameter. The column was then calibrated using 100 µl of dextran blue 

solution (0.025 g dissolved in 2 ml of 50% (v/v) ethanol solution; filtered), which determined 

the void volume of the column. The packed column was further calibrated with a 2 mg/ml 

BSA solution, prepared in elution buffer. The point at which the protein elutes, as well as the 

fraction where salt from elution buffer elutes from the column was monitored by testing each 

fraction for protein content and conductivity. When not in use, the column was thoroughly 

washed then stored in 20% (v/v) ethanol.    

Prior to applying the sample and exchanging the buffer, the gel filtration column (10 

ml of resin in a 1 x 12.75 cm column) was equilibrated with at least 20 ml of the final storage 

buffer. Either 0.5 or 1 ml of sample (depending upon where the recombinant protein eluted 

from the Ni-NTA column) was slowly and carefully applied to the column; once the sample 

entered the column (i.e. no liquid above the column was left), 10 ml of storage buffer was 

applied. When ~2 cm of the buffer was left above the column, another 10 ml of buffer was 

applied. The samples were collected in 1 ml aliquots, up to 16 ml, to ensure that no protein 

would be lost in case it was sticking or interacting with the column. The fractions were tested 

for protein concentration, and those containing the recombinant protein were aliquoted and 

stored at -20°C. The recombinant protein was frozen and thawed only once prior to all 

downstream analysis (activity, pH and temperature optima curves). 

2.8.4 Mass Spectrometry 

To determine which proteins had co-purified with the protein of interest, mass 

spectrometry was utilized. After running the samples on an SDS-PAGE gel, the spots of 

interests were excised from the gel; the gel pieces were washed with water and destained 

with 50 mM NH4HCO3/50% (v/v) acetonitrile (ACN). Proteins were reduced by incubation 
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with 10 mM DTT in 100 mM NH4HCO3 at 50°C for 30 min, and then alkylated by 

incubating with 55 mM iodoacetamide in 100 mM NH4HCO3 for 30 min in the dark. After 

being dehydrated with 100% ACN and air-dried, the gel pieces were rehydrated for ten 

minutes in a trypsin solution (Promega, Madison, WI, U.S.A.) in a ratio of approximately 

1:10 (w/w) of trypsin:protein. Fifty μl of 50 mM NH4HCO3 (pH 8.0) was added to the gel 

pieces and the proteins were digested at 37°C for 18 hours. The peptides were extracted by 

vortexing and then concentrated to 10 μl in a Savant SpeedVac. The samples were cleaned 

using the C-18 ZipTip system (Millipore, Billerica, MA, U.S.A) and eluted with 5 μL of 50% 

ACN.  One μL of 1% formic acid was added to the eluate to protonate the peptides. 

Mass spectrometry was performed with a Waters Micromass Q-TOF Ultima using 

nano-spray injection as the sample delivery method. Proteins were identified either by the 

PEAKS software 3.1 (Ma et al., 2003a) (Bioinformatics Solutions Inc., Waterloo, ON), 

which combines auto de novo sequencing and database searching, or by the MASCOT 

peptide-fingerprinting algorithm (Perkins et al., 1999). 

2.8.5 Densitometry 

Subsequent to SDS-PAGE analysis of gel filtration samples, densitometry was 

performed to determine the purity of recombinant protein. TotalLab TL100 Control Center 

(Nonlinear Dynamics, Durham, NC, U.S.A.) software and its 1D gel analysis tool were used. 

The background was subtracted by placing a manual baseline; Band% value from the 

Management Window was used as the value for percent purity of the recombinant protein. 
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2.9 Enzymatic Characterization 

2.9.1 Activity  

The recombinant protein was tested for two activities: ACC deaminase activity and 

D-cysteine desulfhydrase. Both assays were performed in the same manner, using a lactate 

dehydrogenase (LDH) linked protocol (Figure 2-2). For the initial activity test, the reactions 

were set up using 0.1, 1 and 10 mM D-cysteine or ACC as substrates. The 250 µl reactions 

were set up in a 96-well plate as follows: 50 mM potassium phosphate, pH 8.0, 0.13 mM 

NADH, 5 U of LDH from rabbit muscle and 5 µl of purified protein; to initiate the reaction 

each substrate was added. The mixture was pipetted quickly to mix the contents, placed at 

37°C and the change in absorbance at 340 nm was monitored immediately. For calculation 

purposes, the NADH molar absorption coefficient of 6.22 x l03 M-1 cm-1 at 340 nm was used. 

When shown, the error bars represent standard error. 

2.9.2 Km Determination 

To determine the Km value for the recombinant protein, D-cysteine was used as the 

substrate at concentrations of 0.02, 0.03, 0.05, 0.1, 0.2, 0.5, and 1 mM. At each 

concentration, the reactions were set up as previously described, each containing five 

replicates. Therefore, the Km of the enzyme was determined at 37°C and pH 8.0. 

2.9.3 pH Optima 

The reactions were carried out in the following buffers: phosphate at pH 6.2 – 8.0, 

pyrophosphate  at pH 7.6 – 9.0, and glycine  at pH 9.0 – 10.4. Five µl of purified 

recombinant protein, 1 µl of D-cysteine (from 50 mM stock; 0.8 mM final) and 54 µl of each 
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Figure 2-2. D-cysteine desulfhydrase and ACC deaminase reactions linked to LDH. A: 
D-cysteine desulfhydrase (D-CDes) utilizes D-cysteine as the substrate, breaks it down to 
pyruvate, ammonia and hydrogen sulfide. In presence of lactate dehydrogenase (LDH), D-
CDes activity is monitored by a decrease in the absorbance at 340 nm as LDH converts 
pyruvate into lactate. In the process of the LDH reaction, the co-enzyme NADH is also 
converted to NAD; NADH, but not the NAD has an absorption peak at 340 nm. B: The ACC 
deaminase (ACCD) reaction converts ACC into 2-oxobutanoate (or α-ketobutyrate), which in 
presence of LDH, is converted into 2-hydroxybutyrate. As the LDH reaction proceeds, a 
decrease in the absorbance at 340 nm is observed due to the consumption of NADH. 



 

representative buffer was incubated at 37°C for 15 min. Subsequently, the pyruvate 

concentration was determined by adding 900 µl of 0.56 N HCl and 150 µl of 0.2% (w/v) 2,4-  

dinitrophenylhydrazine (DNP; in 2 N HCl). The mixture was then incubated at 30°C for 30 

min; 1 ml of 2 N NaOH was added and the absorbance determined at 540 nm. Reactions for 

each pH point were set up in four replicates. For a representative pyruvate standard curve, 

please refer to the Appendix. 

2.9.4 Temperature Optima 

All reactions were set up as described for the pH optima; however, these 

measurements were carried out at the determined pH optimum of 7.6. The temperature 

dependence of the reaction was tested from 10 -70°C. Only the first 15 min incubation was 

carried out at the desired temperature; when determining the pyruvate formed the incubation 

was carried out at 30°C as previously described. 

2.9.5 Determining PLP Dependence 

The reaction progress was monitored in presence of aminooxyacetic acid (AOA), a 

known inhibitor of PLP dependent enzymes. The reactions were set up at pH 7.6 in 

phosphate buffer; the buffer, the enzyme and AOA in the concentration range of 5 to 10 000 

µM were incubated for 15 min at 30°C. After the incubation other components of the 

reaction, as described above, were added and the reaction progress and the absorbance at 340 

nm was monitored. Each reaction point was tested in triplicates. 

2.10 Three-dimensional Structure Prediction  

The nucleotide sequence was translated into protein using the ExPASy Translate tool 

(http://ca.expasy.org/tools/dna.html), and the reading frame corresponding with the highest 
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sequence similarity to bacterial ACC deaminase was chosen. Structure prediction of putative 

ACC deaminase from tomato, shown to lack this activity, has been based on the availability 

of the three-dimensional models of the yeast Hansenula saturnus ACC deaminase (Yao et. 

al., 2000), PDB code 1F2D, Pseudomonas sp. ACP ACC deaminase (Karthikeyan et. al., 

2004b), PDB code 1TYZ, as well as the Pyrococcus horikoshii ACC deaminase homologue 

(PH0054) (Fujino et. al., 2004), PDB code 1J0A. These potential templates were chosen with 

a BLAST search within the non-redundant SWISS-PROT Protein Sequence database and 

PDB database. However, the P. horikoshii protein was selected as the template for prediction 

of the 3D structure, since it carries the highest sequence similarity to the sequence for tomato 

enzyme. The multiple sequence alignments were performed using the MUSCLE program 

(Edgar, 2004), with default parameters, and was edited using BioEdit multiple sequence 

alignment editor (Hall, 1999). For the modeling procedure, only the sequence region for 

which the 3D structure of the template is available was considered. As a consequence, the 

model does not include the first 74 amino acids of the isolated protein, as well as the last 21 

amino acids. The secondary structure was predicted with the SOPMA method (Geourjon and 

Deleage, 1994) which determines the consensus of different prediction methods and does not 

perform a multiple sequence alignment. PredictProtein server (http://www.predictprotein.org) 

was used for further secondary structure predictions with PHD (Rost, 1996), as well as to 

search for motifs with PROSITE (Hofmann et al., 1999). The secondary structure of 3D 

models has been assigned with the program DSSP through the ENDscript server (Gouet et 

al., 2003; Kabsch and Sander, 1983). The SWISS-MODEL server 

(http://swissmodel.expasy.org//SWISS-MODEL.html), along with the program Swiss-

pdbViewer (http://www.expasy.org/spdbv/) were used to build the three-dimensional models 

 48

http://www.predictprotein.org/
http://www.expasy.org/spdbv/


 

according to the comparative protein modeling method and to generate images of all 

represented proteins. Swiss-pdbViewer was also used for any refinements; energy 

computations were done with the GROMOS96 implementation in Swiss-pdbViewer. The 

stereochemical quality of the model was verified with the program PROCHECK (Laskowski 

et al., 1993). The search for structural classification was performed on SCOP (Murzin et al., 

1995) and CATH (Orengo et al., 1997). 

2.11 Mutagenesis Studies 

2.11.1 Sub-cloning of the P. putida UW4 ACC Deaminase into pET30 

For consistency purposes and to purify all recombinant proteins with the same 

approach using the N-terminal 6X His-tag, the gene for P. putida UW4 ACC deaminase was 

sub-cloned into the pET30 vector. Using PCR, the construct pRKLACC (Holguin and Glick, 

2001) as the template and primers UW4-F-EcoRV and UW4-R-HindIII (Table 2), the gene 

was amplified to contain EcoRv and HindIII restriction enzyme sites. The PCR reaction was 

carried out with the KOD Hot Start DNA Polymerase (Novagen, Mississauga, ON). The 50 

µl reaction was set up on ice: 5µl of 10X PCR buffer (1X final), 5 µl dNTP (final 0.2 mM), 2 

µl of MgSO4 (final 1 mM), 1 nmol of each forward and reverse primers, 1 ng of template 

plasmid DNA, 1 µl (1U) KOD Polymerase and 30 µl of sterile water. PCR was performed in 

the PTC-100TM Programmable Thermal Controller (MJ Research Inc., Watertown, MA, 

U.S.A.) using the following amplification conditions:  

94°C for 5 min 
94°C for 30 sec 
55°C for 30 sec   35 cycles 
72°C for 40 sec 
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Following PCR, the product was cleaned with the QIAqick PCR Purification Kit 

(please see “Other general protocols section”), digested with the appropriate restriction 

enzymes and ligated into already digested pET30 vector, in a similar fashion as described 

previously. The DNA sequence of the insert was confirmed by DNA sequencing analysis. 

2.11.2 Site-directed Mutagenesis 

ET30-Tm1, ET30-Tm2, ET30-Tm3, ET30-Um1 and ET30-Um2 mutants were 

created by specifically mutating one or two amino acid residues, as described in Table 1 

using a Phusion Site Directed Mutagenesis Kit (New England Biolabs, Mississauga, ON), 

and the primers shown in Table 2 (Figure 2-3); note that the primers were phosphorylated 

and purified using PAGE prior to use. ET30-Tm3 and ET30-Um2, which contain two point 

mutations, were obtained using ET30-Tm1 and ET30-Um1 as templates, respectively. The 

other two tomato mutants were constructed using ET30-acd as the template, and ET30-Um1 

was obtained when ET30-UW4 was used as the template. 

Each PCR reaction was set up and performed by modifying the instructions provided 

by the manufacturer. The reactions were set up using a higher amount of template (100-250 

pg) and a longer extension time than recommended. Briefly, the PCR reactions were set up as 

follows: 10 µl of 5X Phusion HF Buffer, 1 µl of 10 mM dNTPs, 1.25 µl of each primer (from 

20 µM stock), 0.5 µl of template (100-250 pg), 0.5 µl of Phusion Hot Start DNA polymerase 

(2U/µl) and water for a total of 50 µl. The reactions were cycled as follows: 

98°C for 30 sec 
98°C for 15 sec 
65°C for 20 sec 25 cycles 
72°C for 7 min 
72°C for 5 min 
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Five µl of the PCR reaction was examined using a 0.7% (w/v) agarose DNA gel; the 

remaining reaction products were purified using the QIAquick PCR Purification Kit, as 

described in the “Other general protocols” section. After purification, the concentration of 

DNA was determined using ND-100 (NanoDrop Technologies, Inc., Wilmington, DE, 

U.S.A.), and 25 ng was ligated as follows: a 10 µl ligation reaction was set up by adding the 

DNA, 5 µl of 2X Quick Ligation Buffer and 0.5 µl of Quick T4 DNA Ligase (buffers and 

enzymes provided in the Phusion Site Directed Mutagenesis Kit). The mixture was incubated 

at room temperature for 15 min and used immediately for transformation. Plasmid DNA was 

recovered from the potential mutants and sequenced; initially the sequencing was restricted 

to the region where the mutation occurs, as a screening method. Generally, the mutation 

efficiency was high, such that on average no more than three potential mutants had to be 

screen to obtain the desired mutation. The complete sequence for each mutant was obtained 

thereafter. Multiple sequence alignment of the constructed mutants, for both the tomato and 

P. putida UW4 enzymes is provided in the Appendix. 

2.11.3 Protein Purification  

The cultures were induced with IPTG and the altered proteins were purified for all 

mutants as well as for the native P. putida UW4 ACC deaminase using the same procedure 

described previously. For a representative SDS-PAGE gel picture of purified samples for P. 

putida UW4 ACC deaminase, please refer to the Appendix. Contrary to the purification of 

the tomato enzyme and its mutants, the purification of the UW4 ACC deaminase was 

achieved to almost 100% purity. Densitometry, but not mass spectrometry was carried out for 

all samples. The deviation from the previously described protocol included the omission of 

the gel filtration step, but utilization of a diafiltration protocol to exchange the buffer. 
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Figure 2-3. Summary of the site-directed mutagenesis protocol. Note that the mutation is introduced in the forward primer. 
Forward and reverse primers are designed back-to-back and they must be phosphorylated at the 5’ end. 
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Vivaspin 6 (Sartorius Stedim Biotech, Mississauga, ON) columns were used, where 0.5 ml 

of protein was diluted with 5.5 ml of storage buffer immediately after elution from the Ni-

NTA column. Centrifugation was carried out at 4,500 x g and 4°C until 0.5 ml of solution 

remained in the column. Following that, the protein was diluted again using 5.5 ml of 

storage buffer and this centrifugation and washing step was repeated twice. The procedure 

resulted in most of the salt from elution buffer being removed (0.17 mM salt is estimated to 

be remaining as opposed to 300 mM that is found in elution buffer); the final 0.5 ml of 

purified protein was aliquoted and stored in storage buffer at -20°C. 

2.11.4 Analysis of the Mutants 

All mutants were tested for activity towards both ACC and D-cysteine at substrate 

concentrations that bracketed the known Km values for similar enzymes. The activity 

assays were carried out as previously described, using the lactate dehydrogenase linked 

assay. The reported values for ACC deaminase activity are based on the reactions carried 

out at 10 mM ACC; the values for D-cysteine desulfhydrase activity are based on reactions 

set up at 0.8 mM D-cysteine. Km determination for the double mutant of UW4 ACC 

deaminase (ET30-Um2) are based only on the values at 1 mM D-cysteine and below. All 

reactions were set up in triplicates and also included a negative control without substrate. 

2.12 Other General Protocols 

 The protocols described in this section were used routinely for cloning purposes and 

protein analysis. 



 

2.12.1 DNA Purification 

After certain DNA manipulations such as PCR amplification or restriction 

endonuclease digestion, QIAquick PCR Purification Kit (Qiagen Inc., Mississauga, ON) 

was used to remove unwanted primers and enzymes from the DNA samples. The DNA was 

purified according to the manufacturer’s instruction; it was eluted in sterile water instead of 

Buffer EB, in volumes ranging from 30 to 50 µl. If not otherwise specified, the post-

purification DNA concentration as well as the purity was determined with the ND-100 

(NanoDrop Technologies, Inc., Wilmington, DE, U.S.A.).  

2.12.2 Recovery of DNA from Gels 

DNA fragments were recovered from agarose gels using the QIAquick Gel 

Extraction Kit (Qiagen Inc., Mississauga, ON). The DNA fragment was excised from the 

agarose gel with a clean, sharp scalpel and the gel slice was weighed in a microtube. 

Following gel excision, the fragment was purified according to the manufacturer’s 

instructions, where the fragment was eluted from the column with 30 to 50 µl of water. The 

purity was determined with the ND-100 (NanoDrop Technologies, Inc., Wilmington, DE, 

U.S.A.).  

2.12.3 Transformation 

All transformation reactions were carried out using heat shock and CaCl2 competent 

cells. For instance, up to 10 µl of a ligation mixture (or appropriate amount of plasmid 

DNA) was added to competent cells that had been previously thawed on ice. The cells were 

gently mixed, then incubated on ice for 20 min. The cells were then heat shocked at 42°C 

for 40 sec, and placed on ice immediately for 2 min. While still on ice, LB medium was 
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added to a total volume of 1 ml. The culture was recovered for 1 h by shaking at 37°C. 

Depending on the transformation efficiency of the competent cells, up to 200 µl aliquots 

were plated onto LB solid media with appropriate antibiotics. The plates were incubated at 

37°C overnight. 

2.12.4 Isolation of Plasmid DNA 

Plasmid DNA was extracted from bacterial cells using the Wizard Plus SV 

Minipreps DNA Purification System (Promega, Madison, WI, U.S.A). 5-10 ml of 

overnight bacterial culture was centrifuged to collect the pellet; isolation was carried out 

according to the manufacturer’s instructions. Plasmid DNA was eluted in 50-100 µl of 

water. 

2.12.5 Determination of Protein Concentration 

Protein concentrations were measured according to the instructions from Bio-Rad 

Laboratories; the assay is based on the method of Bradford (1976). Briefly, the protein 

BSA standards as well as the samples were assayed in triplicates. The assay was performed 

in 96 well plates, where 10 µl of either the standard or the appropriately diluted sample was 

pipetted and 200 µl of diluted Bio-Rad reagent added (diluted with water in the ratio of 1:4 

Bio-Rad reagent to water, then filtered). The samples were mixed, and then incubated for 

10 min at room temperature; the absorbance at 595 nm was measured. A typical standard 

curve is shown in the Appendix. 
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2.12.6 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-

PAGE) 

Proteins were routinely analyzed on 10 or 12% polyacrylamide gels. A separating 

gel was prepared by mixing together, in order: 2.0 ml of water, 1.25 ml of 1.5 M Tris-base, 

pH 8.8, an appropriate volume of 40% acrylamide/bis solution, 50 µl 10% SDS, 50 µl 10% 

ammonium persulfate and 5 µl of TEMED. The mixture was immediately poured between 

two glass plates to approximately 1 cm bellow the comb teeth. A thin layer of isopropanol 

was added to the top of the gel to keep the surface flat and to speed the polymerization 

process by preventing the gel solution from coming into contact with air and oxygen. After 

the separating gel had polymerized, the layer of isopropanol was removed and a stacking 

gel was prepared (1.7 ml of water, 0.3 ml of 1 M Tris-base pH 6.8, acrylamide/bis solution 

(final 5%), 25 µl of 10% SDS, 15 µl of 10% ammounium persulfate and 2.5 µl of 

TEMED). The stacking gel was poured on top of the separating gel, and then the comb was 

inserted immediately. Samples were prepared by mixing appropriate amount of protein, 

water and SDS-PAGE loading buffer (1X buffer contains 100 mM Tris-Cl, pH 6.8, 4% 

(w/v) SDS, 0.2% (w/v) bromophenol blue, 20% (v/v) glycerol, 200 mM DTT); these were 

then incubated in a boiling water bath for 5 min, cooled to room temperature and 

centrifuged for 30 sec. After polymerization and sample preparation, the samples were 

loaded and the gel was run in electrophoresis buffer (1 L of 5X buffer consists of 15 g of 

Tris-base, 72 g of glycine and 5 g of SDS). The gel was run at 100 volts through the 

stacking gel, then at 140 volts through the separating gel.
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Chapter 3 
Results 

3.1 Cloning of Putative ACC Deaminase 

With the progress in the sequencing of plant genomes, including tomato, gene 

sequences bearing similarity to bacterial ACC deaminases have been identified in plants 

(Arabidopsis, accession # NM_103738; poplar, accession # AI161555; birch, accession # 

AY154652; rice, accession # BAD16875; corn, accession # AY106365). The tomato 

sequence (accession number BT013578) shares ~30% identity with bacterial ACC 

deaminases at the protein level. The plant encoded sequences, however, are more similar 

among each other, sharing an identity of ~70% or higher. To isolate and clone the putative 

ACC deaminase from Solanum lycopersicum, Bony Best variety, primers F(BT013578) 

and B(BT013578)-1 (Table 2) were designed such that they would bind outside the 

predicted open reading frame of the BT013578 sequence; the amplified product would be 

1408 bp in length. The cloning procedure was carried out by first reverse transcribing the 

RNA from leaf tissue, then using the first strand cDNA as the template in a PCR reaction 

with the above primers. The overall isolation and cloning procedure is illustrated in the 

Figure 3-1. The amplified fragment was cloned into the EcoRV site of pBluescript SK(+), 

then sequenced from both directions; the insert sequence of the pBS-acd construct is 

provided in the Appendix. 



 

 

 
Figure 3-1. Overall cloning procedure to isolate a putative ACC deaminase from S. 
lycopersicum. A: formaldehyde RNA denaturing gel; 1: leaf tissue RNA; 2: breaker fruit 
RNA. B: 0.7% DNA agarose gel; 1: entire PCR reaction set up with F(BT013578) and 
B(BT013578)-1 primers and using cDNA from leaf tissue as the template; 2: negative 
control; 3: 100 bp ladder (Fermentas, Burlington, ON). C: 0.7% agarose gel; 1: 1 kb DNA 
ladder (Fermentas, Burlington, ON); 2: undigested pBluescript SK(+) plasmid DNA; 3 and 
4: EcoRV digested pBluescript SK (+) plasmid DNA; 5: purified fragment from B. D: 1 kb 
ladder (Fermentas; same as in C) is marked on the left with the corresponding fragment 
size in bp; All three lanes are BamHI digested plasmid DNA isolated from E. coli colonies 
carrying the potential construct after ligation and transformation. The appearance of two 
bands indicates the presence of the insert. 
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3.2 Analyzing and Comparing the pBS-acd Insert Sequence with the 

GenBank Published BT013578 Sequence 

Comparing the isolated cDNA (pBS-acd insert) sequence with the GenBank 

published sequence for the putative ACC deaminase (BT013578), it is apparent that they 

are not identical. The expected product size based on the primer positions was 1408 bp, 

however, the sequence that was isolated and cloned is 1432 bp (Figure 3-2). At the 

nucleotide level, there appears to be a 7 bp gap starting at nucleotide 819 (counting based 

on the entire sequence that was cloned, not just the ORF), as well as an “extra” 31 bp that 

appear only in the pBS-acd insert sequence, but not in BT013578, and starting at nucleotide 

885 (based on the BT013578 sequence; in pBS-acd this corresponds to the position of base 

pair 878) (Figure 3-2). As such, the isolated cDNA sequence has been deposited to 

GenBank with the Accession # EU639448. 

When comparing these two sequences at the protein level (Figure 3-3), the gap and 

the “extra” sequence in EU639448 result in a different open reading frame, consequently 

changing the portion of the protein from amino acid 269 to 290 in BT013578 and 269 to 

298 in pBS-acd (EU639448), with pBS-acd having an additional 8 amino acids in this 

region. Interestingly, beginning at the amino acid D291 for BT013578 and D299 for pBS-

acd (EU639448) the sequences resume the same reading frame, resulting in the identical 

amino acid sequence thereafter. Hence, the protein that is encoded by BT013578 is 

predicted to be 417 amino acids long with a calculated molecular weight of 46.28 kDa; on 

the other hand, the pBS-acd (EU639448) encoded protein is predicted to be 425 amino 

acids long, with a predicted molecular weight of 46.51 kDa. When these two protein 

sequences are aligned with protein sequences for putative ACC deaminases from other 
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plants, in this case Arabidopsis and rice, it is apparent that pBS-acd, in the region where the 

difference between pBS-acd (EU639448) vs. BT013578 occurs, is more similar to the other 

plant sequences (Figure 3-4). 

Additionally, the search of Expressed Sequence Tags (EST) databases and 

Tentative Consensus (TC) databases (TCs are clusters of ESTs assembled into a tentative 

consensus sequence) using the The Gene Index Project 

(http://compbio.dfci.harvard.edu/tgi/) database indicates that the pBS-acd (EU639448) 

version is in fact expressed, including in other tissues besides leaf, such as callus, flower 

and fruit. On the other hand, no ESTs were found that are the same as BT013578.  

3.3 Determining if BT013578 Version is Expressed in S. lycopersicum, 

Bony Best Variety 

The expression of the BT013578 version in S. lycopersicum Bony Best variety of 

tomato was tested by exploiting the differences between the sequence that was cloned, 

pBS-acd insert sequence (EU639448), and BT013578. A simple PCR strategy was 

developed where primers were designed to specifically bind to either BT013578 or pBS-

acd (EU639448), if expressed. The primer design and rationale for primer design is 

explained in the Materials and Methods section and in Figure 2-1. 

RNA was isolated from leaf tissue and from breaker fruit, reverse transcribed, and 

used as the template. The additional template, as a control, included plasmid DNA from 

pBS-acd. Each of these templates were set up with three different sets of primers. The 

reactions with Primers 1 and 3, which bind outside of the region that was different, were 

used as a positive control, amplifying both pBS-acd (EU639448) and BT013578  
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Figure 3-2. Nucleotide sequence alignment between putative ACC deaminase 
sequence from GenBank (Accession # BT013578) and the isolated and cloned putative 
ACC deaminase from S. lycopersicum Bony Best variety (i.e. insert from the pBS-acd 
construct). The predicted start and stop codons are marked with a box. The sequences are 
identical at the nucleotide level, except for the 7 bp gap and an “extra” 31 bp in the pBS-
acd insert sequence (EU639448). 
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Figure 3-3. Protein sequence alignment between the predicted protein sequences for 
BT013578 and pBS-acd insert (EU639448). The region where amino acids do not align is 
indicated with a box. Before S268 and after D291 for BT013578 and D299 for pBS-acd, 
the reading frame is the same for both sequences, resulting in the identical amino acid 
sequence. 
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Figure 3-4. Protein alignment between predicted protein sequences for BT013578, 
isolated tomato sequence (pBS-acd), Arabidopsis (NM_103738) and rice (BAD16875) 
putative ACC deaminase. The region where BT013578 and pBS-acd (EU639448) differ 
is indicated with a box; pBS-acd (EU639448) sequence in this region is more conserved to 
the other plant putative ACC deaminase proteins than is BT013578. 
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whenever expressed. The PCR reactions with Primers 4 and 3 were set up to specifically 

test for the expression of BT013578, where a product of 143 bp was expected. RT-PCR 

reactions with Primers 1 and 5 specifically bind to the pBS-acd version (EU639448) 

(Figure 2-1). 

As seen in Figure 3-5, the positive control (Primers 1 and 3) successfully amplifies 

a fragment of ~225 bp for all templates. If both versions were expressed, two bands would 

be visible on the gel, one product of 227 bp and the other 203 bp, where pBS-acd 

(EU639448) and BT013578 are amplified respectively. Additionally, this approach has 

illustrated that pBS-acd (EU639448) is expressed in both leaf and breaker fruit; when using  

Primers 1 and 5, a fragment of expected  size (167 bp) is obtained for all templates.  

The expression of the BT013578 version could not be determined in leaf or breaker 

fruit; however, BT013578 could be expressed in low levels and only in certain tomato 

tissues that were not tested here, or there may exist variety specific differences for this 

gene. Primer 4 was designed to bind in the region where there is a 7 bp gap in pBS-acd 

(EU639448), hence only amplifying BT013578 (Figure 2-1). As mentioned, the expected 

product size for PCR reactions with Primers 4 and 3 is 143 bp. A band of this size has not 

been obtained, but rather a much larger band of ~700 bp is seen for all three templates. 

This indicates that the BT013578 version is not expressed in leaf or breaker fruit, fruit 

being the tissue from which this cDNA sequence was originally obtained. The ~700 bp 

band that appears for these PCR reactions is due to nonspecific primer binding; the band of 

same size is also observed when pBS-acd plasmid DNA is used as the template. Increasing 

the annealing temperature for the PCR reaction does not avoid this problem, as test PCR 

reactions with gradient annealing temperature from 59-63°C were also performed (data not  

   64



 

 

 
 
 

Figure 3-5. Determining BT013578 expression in S. lycopersicum Bony Best variety. 
3% DNA agarose gel; DNA ladder is O’GeneRuler Low Range ladder from Fermentas 
(Burlington, ON). Numbers above each lane indicate the primer sets used in that reaction 
(e.g. 1+3 indicates Primer 1 and Primer 3); leaf, breaker fruit or pBS-acd plasmid are the 
respective templates used. For primer positions and primer design, please refer to Materials 
and Methods section and Figure 2-1. The same band pattern is obtained for all three 
templates, where in 1+3 a product of ~225 bp is observed; in 4+3, a product of ~700 bp is 
observed (whereas a band of 143 bp was expected if BT013578 is expressed). A 167 bp 
product is obtained for primer set 1+5. This indicates expression of the pBS-acd insert 
(EU639448), but not BT013578. 
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shown; performed initially for all primers). The most likely region where Primer 4 binds 

nonspecifically is shown in the Appendix. 

3.4 Protein Expression and Solubility  

 For protein expression and purification purposes the isolated cDNA from the pBS-

acd construct was sub-cloned into the expression vector pET30 Xa/LIC and this construct 

was then transformed into the expression host E. coli BL21(DE3). To determine the 

effective IPTG induction concentration, as well as the time required for protein expression, 

cultures were induced with IPTG concentrations of 0.1, 0.4 and 1.0 mM, and incubated for 

up to 6 h at 30°C. Samples were collected at several time points, and then analyzed by 

SDS-PAGE. SDS-PAGE protein gels for all analyzed time points are included in the 

Appendix. As seen in Figure 3-6, the recombinant protein is effectively expressed at all 

tested IPTG concentrations (0.1, 0.4, 1.0 mM), with no apparent difference between the 

samples. Additionally, the pET30 Xa/LIC expression vector and BL21(DE3) E. coli host 

seem to be an excellent expression system with observable protein expression even after 

one hour of induction. 

Having ascertained effective protein expression, the recombinant protein was tested 

for solubility. For downstream application, activity testing and characterization, the 

recombinant protein must be expressed in a soluble, and hence enzymatically active form. 

The culture was induced, soluble and insoluble fractions separated, then examined by SDS-

PAGE. It appeared that all of the expressed recombinant protein was present in the 

insoluble fraction (Figure 3-6). Other culture conditions were examined, including 

decreasing the induction temperature to 16°C, decreasing the IPTG concentration, and 

changing the host and expression vector. However, the recombinant protein always 
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appeared in the insoluble fraction (data not shown). Utilization of another expression 

vector (pQE30) with the lac promoter resulted in what appeared to be lower level of 

protein expression at the same IPTG concentration. Separated soluble and insoluble 

fractions for ET30-acd were also tested by Western blotting (using an anti-His primary 

antibody), however expression of the recombinant protein in soluble form was not detected 

(data not shown).  

3.5 Protein Purification  

Even though the recombinant protein appeared to be expressed entirely in the 

insoluble fraction, most likely occurring primarily as insoluble aggregates known as 

inclusion bodies, a procedure was optimized to partially purify the expressed protein. When 

expressed as an insoluble aggregate, typically recombinant proteins can efficiently be 

purified under denaturing conditions. However, to determine the enzymatic activity of the 

protein of interest, purification must be carried out under native non-denaturing conditions. 

Utilizing the N-terminal 6X His-tag on the recombinant protein and 0.5 ml of Ni-

NTA superflow resin, the 51.48 kDa recombinant protein (including the 6X His-tag and 

some vector-encoded sequence) was purified as seen in Figure 3-7. The typical purification 

fractions obtained are shown in Figure 3-7A. The column with the bound protein was 

washed with buffers of increasing imidazole concentrations, up to 60 mM, and then eluted 

with a 250 mM imidazole solution. The majority of the protein elutes in E2 and E3 

fractions, with a typical recovery of ~600-700 µg of protein. However, the purification 

results in only a partially purified recombinant protein with two major contaminating 

proteins that appear above and below the recombinant protein on an SDS-PAGE gel, that is  
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Figure 3-6. Examining protein expression and solubility with SDS-PAGE. A: induction 
with different IPTG concentrations of ET30-acd for 3h at 30°C. Protein is efficiently 
expressed at all IPTG concentrations. The protein ladder on the left and the right side is 
marked in kDa. B: testing for the solubility of the recombinant protein; based on SDS-
PAGE analysis, the recombinant protein appears exclusively in the insoluble fraction. 
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to say, two larger and two smaller proteins than the recombinant protein. The purification 

procedure was tested with different buffer compositions, including the addition of ethanol 

and glycerol which decrease hydrophobic protein-protein interactions; however, the 

procedure used here resulted in the highest recombinant protein recovery, whereas other 

buffer compositions still only resulted in partial purification, but with somewhat reduced 

recovery (data not shown). 

After purification by affinity chromatography, the purified protein was passed 

through a Sephadex-G25 gel filtration column to exchange the buffer; gel  

filtration was used instead of dialysis since this latter procedure was found to be inefficient 

for buffer exchange purposes. The recombinant protein eluted from the gel filtration 

column in 4 and 5 ml fractions (Figure 3-7C). Moreover, the overall purity of the protein of 

interest was determined using an SDS-PAGE image of the 4 and 5 ml protein fractions 

after gel filtration, then determining the percentage that each protein band constitutes via 

densitometry. After subtracting the background, the recombinant protein represents ~40% 

of each fraction (each purification procedure being slightly different). 

 The four major bands that co-purified with the recombinant protein were analyzed 

by mass spectrometry. The largest protein, indicated as “1” in Figure 3-7B was determined 

to be the host chaperone protein, heat shock protein 70 (hsp70). Additionally, the protein 

that appears right below the hsp70 on the SDS-PAGE gel, marked as “2”, was determined 

to be Cpn60, a heat shock 60 protein. Based on the peptide sequences, the band below the 

recombinant protein, marked as “3,” was shown to share identity with the putative ACC 

deaminase from rice. Thus, it is most likely that the appearance of this band is due to 

recombinant protein degradation during the process of purification. The last analyzed band,  
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Figure 3-7. Protein purification, densitometry and mass spectrometry. A: SDS-PAGE 
gel of purification fractions. CL=cleared lysate (soluble fraction), FT=flow-through, 
W1,2,3,4,5,6=wash 1-6, E1,2,3,4=elution 1-4. The recombinant protein is indicated with an 
arrow. B: Densitometry using the SDS-PAGE image with protein samples after gel 
filtration. 4 ml and 5 ml labels on the gel indicate the two different fractions in which the 
recombinant protein elutes after gel filtration. The dots on each protein band indicate that 
the band was considered in densitometry analysis. The pixel position plot on the right 
indicates the intensity of each band that was picked from the SDS-PAGE gel on the left. 
The largest peak indicated by 4 on the pixel plot is the recombinant protein. C: plot of 
protein concentration and conductivity for each gel filtration fraction; samples were 
collected as 1 ml fractions. 
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“4,” was determined to be another host chaperone protein, FKBP-type peptidyl-proly cis-

trans isomerase. 

3.6 Kinetic Characterization of Putative ACC Deaminase from Tomato 

 The purified protein was tested for both ACC deaminase activity, as well as D-

cysteine desulfhydrase activity. Using the linked lactate dehydrogenase assay and 

various concentrations of the two substrates it was determined that this tomato enzyme 

utilizes only D-cysteine as a substrate. Hence, it was shown that the putative ACC 

deaminase that was isolated from tomato is not a functional ACC deaminase, but rather that 

it shows the same activity as determined by Riemenschneider and co-workers (2005) for an 

Arabidopsis ACC deaminase homologue (NM_103738). The specificity of this enzyme 

towards D-cysteine was also determined, based on the finding that it does not break down 

the optical isomer L-cysteine at all. Initial testing showed substrate inhibition above 1 mM 

D-cysteine; the same was previously observed for the Arabidopsis enzyme 

(Riemenschneider et al., 2005; Appendix).  

 Hence, the kinetic characterization of the enzyme, including the Km determination 

was performed at D-cysteine concentrations below 1 mM. Non-linear regression and data 

fitted to the Michaelis-Menten equation yielded a Km for D-cysteine of 0.21 ± 0.05 mM at 

pH 8.0 and 37°C (Figure 3-8). The turnover number, kcat, was estimated to be 230 min-1, 

and the second order rate constant kcat/Km (=catalytic efficiency) of 1095 mM-1 min-1. 

However, it should be noted that the turnover number and the second order rate constant 

are only estimates, since the protein was partially purified; hence, the turnover number is 

biased towards the densitometry analysis of protein purity. The calculated Km is 

comparable to that for the Arabidopsis homologue, where the Km was determined to be 
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0.25 mM, as well as to the E. coli enzyme where the Km was reported to be 0.15 or 0.3 

mM in two different studies (Riemenschneider et al., 2005; Nagasawa et al., 1985; 

Soutourina et al., 2001).  

 The effects of pH and temperature on the activity of the enzyme were also 

investigated (Figure 3-9 and Figure 3-10). The enzyme shows the highest activity at pH 

7.6; substantial decrease in activity, by almost 50%, is observed at pH 6.8 as well as on the 

other side of the curve, above pH 8.8. pKa1 and pKa2 of the recombinant protein were 

estimated to be 6.7 and 8.9, respectively. At D-cysteine concentration of 0.8 mM, below 

substrate inhibition, but well above the determined Km, the effects of temperature on the 

progress of the reaction were also examined. The temperature profile of the enzyme, from 

10 to 70°C is shown in Figure 3-10. The optimum temperature of 30°C for this tomato 

enzyme agrees with that reported for the Arabidopsis homologue, where it was also found 

to be 30°C. However, contradictory to results reported by Riemenschneider et al. (2005) 

for the Arabidopsis homologue, the enzyme was found to be very stable with almost 80% 

of activity still retained at 50°C. The stability of the enzyme at higher temperatures is more 

in agreement with the reports for the E. coli D-cysteine desulfhydrase, where the optimum 

temperature was found to be 45°C (Nagasawa et al., 1985). Substantial loss in activity of 

the tomato enzyme was observed at temperature over 60°C, e.g. at 70°C only about 15% of 

maximum activity was observed.  

 Furthermore, the enzyme was predicted to be a pyridoxal phosphate (PLP) 

dependent enzyme; true ACC deaminase proteins and D-cysteine desulfhydrase proteins 

have been shown or predicted to bind PLP at a conserved lysine residue. Therefore, the 

dependence of the enzyme on PLP was investigated. A number of inhibitors of PLP 
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Figure 3-8. Kinetic data for Solanum lycopersicum enzyme. Top plot: Michaelis-Menten 
plot; effects of substrate concentration on the activity of the enzyme. Bottom plot: 
Lineweaver-Burk plot of the data.  
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Figure 3-9. pH-rate profile of recombinant D-cysteine desulfhydrase from Solanum 
lycopersicum. The activity of the enzyme was determined at pH values of 6.2 – 9.8. 
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Figure 3-10. Temperature-rate profile of the recombinant D-cysteine desulfhydrase 
from Solanum lycopersicum. The activity of the enzyme was determined at temperatures 
of 10 – 70 °C. 
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Figure 3-11. PLP dependence of recombinant D-cysteine desulfhydrase from Solanum 
lycopersicum. Aminooxyacetic acid (AOA) is a known inhibitor of PLP dependent 
enzymes. Incubation of the recombinant protein with various concentrations of AOA 
inhibits the activity of the enzyme. 
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dependent enzymes have been identified; one such inhibitor, aminooxyacetic acid (AOA) 

was used to show that the enzymatic activity is progressively inhibited as the AOA  

concentration is increased (Figure 3-11), rendering the enzyme PLP dependent. From this 

data it has been calculated based on non-linear regression that the Ki for AOA is 3.3 ± 0.17 

µM. 

3.7 3D Structure Prediction and Implications for Activity 

To determine tertiary structure of D-cysteine desulfhydrase from tomato, a BLAST 

search was performed for proteins with similar sequence and known 3D structure. 

Similarities to bacterial and yeast ACC deaminase were found to be only ~20%, however 

the similarity to the Pyrococcus horikoshii ACC deaminase homologue was somewhat 

higher, showing an identity of ~30%. No significant similarities were found to any other 

proteins with known 3D structures. Based on the sequence identity, bacterial and yeast 

ACC deaminase structures were excluded as templates; since the P. horikoshii PH0054 

ACC deaminase homologue has higher sequence identity in addition to features suitable for 

protein model construction, it was chosen as the template for the model presented herein 

(PDB ID 1J0A).  

To assess the quality of the P. horikoshii homologue as the template, a multiple 

sequence alignment was performed, which included the S. lycopersicum enzyme and 

potential templates (yeast ACC deaminase and the P. horikoshii ACC deaminase 

homologue). Secondary structures were assigned to the primary sequence of each and 

compared based on the multiple sequence alignment. The experimentally observed position 

of secondary structures in the templates was also considered. Good agreement was found 

between the predicted secondary structure for the model and the experimentally determined 
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secondary structure position of the template, as well as the position of gaps, such that no 

refinements were necessary. The choice of the PH0054 P. horikoshii protein was confirmed 

as a suitable template for construction of 3D model.  

Once constructed, the 3D model was then subjected to analysis by PROCHECK 

which determines the stereochemical quality of the structure. The model was found to have 

81.2% of its residues in most favored regions and only 2.2% of its residues in disallowed 

regions. A good quality model is expected to have over 90% of residues in most favored 

regions, however, considering that for the template only 85.9% of residues are in most 

favoured regions, the model at 81.2% is considered to be of high quality based on the 

stereochemical features.  

The quality of the model was also evaluated by comparing the position of 

secondary structure elements after the model construction (i.e. from 3D coordinates). The 

positions were compared to that of the template as well as to the position in other structures 

that were identified by the BLAST search of the PDB protein bank. The position of these 

elements was identified by a DSSP analysis on the model. Again, these are in agreement 

with each other, confirming the good quality of the model, as there are very few gaps, and 

those that are present fall into loop regions. The positions are also in agreement with those 

predicted by PHD from the primary sequence of the S. lycopersicum enzyme. 

The 3D structure of the model is represented in Figure 3-13A. The modeled protein folds as 

an open twisted α/β structure consisting of 42.0% helical, 13% β-strand, 45% other 

structures. Comparing the modeled structure with the structure of the template, it appears 

that this enzyme is also composed of two domains: the small domain and the large or PLP-

binding domain. The small domain consist of a central four-stranded parallel β-sheet and  
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Figure 3-12. Multiple sequence alignment of annotated and putative ACC deaminase 
proteins. The Pyrococcus horikoshii homologue, plant putative ACC deaminases including 
the cloned tomato cDNA sequence (pBS-acd, EU639448) and the GenBank published 
putative ACC deaminase sequence from tomato (BT013578), E. coli putative ACC 
deaminase, and true ACC deaminases from Hansenula saturnus, Rhizobium 
leguminosarum, Pseudomonas sp. ACP and Pseudomonas putida UW4. The lysine residue 
that binds PLP is marked as well as the two amino acids that are the targets of site-directed 
mutagenesis. The coloring of the alignment was adjusted such that when at least 50% of 
residues are identical, the colour appears blue.
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four surrounding helices. The PLP-binding domain contains seven helices and four β-

strands of which three are parallel, but one short strand is anti-parallel. 

It must be mentioned, however, that the model was constructed excluding some of 

the amino acid residues at the N- and C-terminal regions, which would have most likely 

resulted in an additional α-helix at the N-terminal of the protein, and additional β-strands in 

the PLP-binding domain. These conclusions are based on the comparison to the yeast and 

PH0054 structures (Figure 3-13). The structural organization of the model is in perfect 

agreement with SCOP and CATH analyses performed on crystallographic structures of 

yeast and bacterial ACC deaminase and PH0054 protein.  

Furthermore, the overall topology of the predicted structure is very similar to the 

template, as well as to the yeast ACC deaminase. Comparing the structures, the model also 

seems to form a crevice between the two domains. The co-enzyme PLP is expected to bind 

within the crevice with a Schiff base to Lys117. This residue is conserved between all 

examined sequences (Figure 3-12), implying that the D-cysteine desulfhydrase from 

tomato is also a PLP-dependent enzyme. The most obvious difference in overall structure 

between yeast and PH0054 proteins is the lack of two loop regions in PH0054 (residues 

104-116 and 168-171 in the yeast ACC deaminase); these also appear to be lacking in the 

predicted structure. These loops have been described as important in stabilizing the two 

domains through hydrogen bonding. In addition, the loops that bury the PLP deep into the 

interior of the molecule in the yeast ACC deaminase appear to be lacking in the constructed 

model, whereas PH0054 appears to contain only one of the loops. These are the loops 

formed by residues 101-116, 132-141, 262-273 (numbered according to the yeast ACC 

deaminase); PH0054 contains the loop corresponding to position of 262-273 residues in  



 

 

CB 
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Figure 3-13. Predicted 3D structure of tomato enzyme, known structures of H. 
saturnus and P. horikoshii enzymes. Ribbon diagram of A: predicted structure of putative 
ACC deaminase from tomato, B: P. horikoshii homologue (PDB 1J0A) of ACC deaminase 
(PH0054) and C: H. saturnus (yeast) ACC deaminase (PDB 1F2D). The structures are 
coloured according to the secondary structure; helices in red, sheets in yellow and coils in 
gray. The PLP molecule in B and C is shown as ball-and-stick. Only monomers of PH0054 
and yeast ACC deaminase are shown. 
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yeast, but not the other two (Fujino et. al., 2004). This observation suggest that the active 

site of yeast ACC deaminase is less accessible, perhaps accessible only to smaller 

molecules, and that the active site of the modeled enzyme and the homologue PH0054 are 

less buried and could be accessed by larger molecules.  

Essential residues for ACC deaminase catalytic activity were described based on 

the three-dimensional structures of the yeast and bacterial ACC deaminases and the P. 

horikoshii ACC deaminase homologue, together with mutational studies of some of the 

residues that were thought to be necessary for activity. Based on the yeast ACC deaminase 

numbering, these residues are Lys51 (binds PLP), Lys54, Ser78, Asn79, Gln80, Tyr269, 

Tyr295, Gln296 and Leu323 (Figure 3-14). Only three of these amino acids are different 

for PH0054, which resulted in different enzymatic activity. These include Thr283 (Glu296 

in yeast), Thr308 (Leu323 in yeast) and His80 (Gln77 in yeast). The presence of His80 is a 

feature of PH0054 protein; in the modeled structure of the tomato enzyme, this position is 

occupied by a glutamine residue, as is the case for true ACC deaminases (Figure 3-14).  

Residues important in substrate recognition, Ser78 and Asn79 are conserved in all 

examined sequences (Figure 3-12). The positions occupied by Lys54, Tyr269 and Tyr295 

residues are also fully conserved when examined in the multiple sequence alignment 

(Figure 3-12). In the 3D structure, the phenol group of Tyr295 is stacked to the plane of the 

pyridinium ring, such that it prevents movement of the pyridine ring so as not to over-

rotate, whereas Tyr269 is thought to play a role in the reaction mechanism as part of the 

charge relay system. However, the corresponding residue for Tyr269 in the predicted 

model from tomato (Tyr331) is found away from the active site, such that the charge relay 

system would not be possible (Figure 3-14).  
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The key difference in the putative active site of the modeled tomato structure is at 

the positions of Glu296 and Leu323 (based on yeast numbering). At the Glu296 position, 

examined plant sequences including the tomato enzyme, have a serine residue, while the 

putative E. coli ACC deaminase and P. horikoshii homologue have a threonine (Figure 3-

12). Additionally, genuine ACC deaminases seem to have a leucine residue conserved at 

the position of Leu323 in yeast, whereas the homologue PH0054 and the predicted 

modeled protein both have a threonine. In the tertiary structure, the leucine residue 

provides space for the long side-chain of the glutamate (i.e. Glu296 in yeast) residue by 

orienting itself in the opposite direction.  

Based on the data examined herein, the modeled structure from tomato appears to 

have the overall topology of ACC deaminase conserved, but the analysis of the putative 

active site suggests that this enzyme has more features in common with the P. horikoshii 

PH0054 ACC deaminase homologue, and appears to be more like other members of 

TRPSβ family than a true ACC deaminase. It is therefore, most likely that the two amino 

acid  residues at the position where true ACC deaminases have a glutamate and leucine 

(e.g. at the position of Glu296 and Leu323 in yeast ACC deaminase) make the major 

difference between whether the enzyme can or cannot cleave the cyclopropane ring of ACC 

(Figure 3-12). Hence, these two amino acid residues were the targets of the site-directed 

mutagenesis studies described below.  

3.8 Analysis of the Mutants 

To determine what makes the ACC deaminase reaction unique and to investigate 

why the putative ACC deaminase from S. lycopersicum does not utilize the amino acid 

ACC as its substrate, but instead uses D-cysteine, the two C-terminal amino acids of 
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interest were changed (Figure 3-12) and the activity of the resultant recombinant proteins 

was examined. The S. lycopersicum enzyme was modified to resemble a true ACC 

deaminase at the two amino acid positions, whereas the P. putida UW4 ACC deaminase 

was mutated in the same two amino acids such that its active site should look more like that 

of the P. horikoshii ACC deaminase homologue, or the S. lycopersicum D-cysteine 

desulfhydrase. 

In Figure 3-15A the relative activities of the S. lycopersicum D-cysteine 

desulfhydrase and the two single mutants, in addition to the double mutant, is illustrated. 

This data indicates that both residues Ser358 and Thr384 are important for activity. The 

Ser358 appears to be more important, since the substitution at this position causes a 

complete loss of activity; the same being observed for the double mutant, ET30-Tm3. 

Nevertheless, changing the threonine residue reduces the activity of the enzyme 

substantially (to ~11.5% of the wild-type recombinant enzyme), although it does not cause 

complete loss of activity. 

 As has been previously reported for true ACC deaminase proteins, substitution at 

the glutamate residue leads to complete loss of activity (Ose et al., 2003; Figure 3-12). 

Now, the same has been demonstrated with the mutation of Glu295 to a Ser residue in P. 

putida UW4 ACC deaminase (Figure 3-15B). Not surprisingly, the double mutant (ET30-

Um2) where both the Glu295 residue is mutated to a Ser and Leu322 is changed to a Thr 

shows complete loss of activity (Figure 3-15B). 

All of the recombinant proteins of the constructed mutants were tested for the 

ability to utilize a new substrate, in this case ACC for the tomato mutants, and D-cysteine 

for the P. putida UW4 mutants. The double mutant, ET30-Tm3 whose active site should  
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Figure 3-14. Superimposed active site residues. A: P. horikoshii ACC deaminase homologue (carbon atoms are yellow), H. 
saturnus (carbon atoms are green), and Pseudomonas sp. ACP (carbon atoms are cyan) ACC deaminase. The amino acid residues 
are labeled in that order. B: P. horikoshii ACC deaminase homologue (carbon atoms are green) and predicted active site residues 
for tomato D-cysteine desulfhydrase (carbon atoms are cyan); amino acid residues are labeled in that order. 
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resembles that of a true ACC deaminases, loses its ability to use D-cysteine as the 

substrate, but acquires a low level of activity when 10 mM ACC is provided as the 

substrate (Figure 3-16, Table 4) and the reaction carried out at 30°C and pH 8.0.  

The data for the P. putida UW4 mutants also illustrates that they lose the ability to 

break down the original substrate, ACC, but they acquire the ability to use D-cysteine as 

the substrate and break it down as a true D-cysteine desulfhydrase (Figure 3-17), albeit at a 

slower reaction rate than native. The single mutant, ET30-Um1 shows a slight increase in 

activity as compared to the wild-type UW4 ACC deaminase when D-cysteine is provided 

as the substrate (Table 4); however, a more significant activity towards D-cysteine as the 

substrate is observed in the double mutant, ET30-Um2 (Figure 3-17, Table 4). This UW4 

mutant was also further characterized, such that from non-linear regression the Km for D-

cysteine was determined to be 0.34 ± 0.1 mM, and the kcat value of 10.9 min-1. 

Interestingly, the ET30-Um2 mutant also shows the characteristic substrate inhibition 

above 1 mM D-cysteine as observed with other true D-cysteine desulfhydrase enzymes 

(Figure 3-18).  

 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3-15. Activity of wild-type recombinant proteins and their mutants. A: ability 
of S. lycopersicum D-cysteine desulfhydrase (ET30-acd) and the mutants ET30-
Tm1(S358E), ET30-Tm2 (T386L) and ET30-Tm3 (S358E + T386L) to use D-cysteine as 
the substrate. B: ability of P. putida UW4 ACC deaminase and ET30-Um1 (E295S) and 
ET30-Um2 (E295S + L322T) mutants to use ACC as the substrate; α-KB= α-ketobutyrate. 
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Figure 3-16. Comparison of activities of S. lycopersicum enzyme and its mutants 
towards both substrates, D-cysteine and ACC. ET30-acd, wild-type recombinant D-
cysteine desulfhydrase; ET30-Tm1 contains a point mutation S358E; ET30-Tm2 contains a 
point mutation T386L; and ET30-Tm3 contains two point mutations S358E and T386L. D-
cysteine was used at 0.8 mM concentration and ACC at 10 mM. The reactions were carried 
out at 30°C and pH 8.0. 
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Figure 3-17. Comparison of activities of P. putida UW4 ACC deaminase and its 
mutants towards both substrates, ACC and D-cysteine. ET30-UW4 is the wild-type 
recombinant ACC deaminase; ET30-Um1 contains the point mutation E295S; and ET30-
Um2 contains two point mutations E295S and L322T. ACC was used at 10 mM 
concentration and D-cysteine at 0.8 mM. The reactions were carried out at 30°C and pH 
8.0.  
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Table 3-1. Activity of native ACC deaminase from P. putida UW4, 
native D-cysteine desulfhydrase from tomato and the mutants of both 
enzymes. 

ACCmg)  

 ACC deaminase activity D-cysteine desulfhydrase activity 

 (nmol α-ketobutyrate/min/mg) (nmol pyruvate/min/mg) 

ET30-acd Activity below detection 5784.20 ± 9.0 

ET30-Tm1 (S358E) Activity below detection Activity below detection 

ET30-Tm2 (T386L) 11.43 ± 2.75 665.33 ± 13.4 

ET30-Tm3 (S358E/T386L) 59.88 ± 2.00 Activity below detection 

ET30-UW4 2811.75 ± 76.42 15.94 ± 0.09 

ET30-Um1 (E295S) 8.19 ± 0.45 35.6 ± 1.68 

ET30-Um2 (E295S/L322T) Activity below detection 147.47 ± 9.42 

 

 
 Km (mM) kcat (min-1) 

 

kcat/Km  

(mM-1 min-1) 

ET30-acd + D-Cys 0.21 230 1095 

ET30-UW4 + ACC† 3.4 146 42.9 

ET30-Um2 (E295S/L322T) + D-Cys 0.34 10.9 32.1 

 

                                                 
† Hontzeas et al., 2004 
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Figure 3-18. Kinetic analysis of the ET30-Um2 mutant (E295S + L322T) of P. putida 
UW4 ACC deaminase. Top plot: Michaelis-Menten plot; effects of substrate concentration 
on the activity of the enzyme. Bottom plot: Lineweaver-Burk plot of the data. 
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Chapter 4 
Discussion 

 
The possibility that plants encode a functional 1-aminocyclopropane-1-carboxylate 

deaminase (ACC deaminase) has been investigated previously (McDonnell et al., in press). 

In that instance the focus was on the model plant Arabidopsis thaliana, and a gene that 

showed some sequence similarity to bacterial ACC deaminases (Accession # NM_103738). 

Riemenschneider and co-workers (2005) isolated what appeared to be the ACC deaminase 

gene and found that the enzyme encoded by this gene does not have the ability to break the 

cyclopropane ring of ACC, but rather it catalyzes the conversion of D-cysteine into pyruvate, 

ammonia and hydrogen sulfide. On the other hand, the gene isolated by Riemenschneider et 

al., (2005) differs from the putative Arabidopsis ACC deaminase gene by five amino acids 

(McDonnell et al., in press). Moreover, McDonnell et al. (in press) demonstrated that 

transgenic Arabidopsis lines that over-express this gene no longer respond with the 

characteristic triple-response when seedlings are grown in presence of the ethylene precursor 

ACC. This finding has suggested that either Arabidopsis contains two enzymes with similar 

sequences but different activities or that besides having the D-cysteine desulfhydrase activity, 

the enzyme in question may also have a low level of ACC deaminase activity. To determine 

whether other plants have a functional ACC deaminase, we have focused on the tomato 

(Solanum lycopersicum) homologue of the above mentioned Arabidopsis enzyme.  
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4.1 The Gene 

Here, a tomato (Bony Best variety) cDNA was isolated using primers that were 

designed based on the GenBank published sequence for a putative tomato ACC deaminase 

(Accession # EU639448). The isolated cDNA has an ORF of 1278 bp encoding a predicted 

protein of 425 amino acids and 46.51 kDa. Comparison between the GenBank published 

sequence (Accession # BT013578) and the isolated sequence (Accession # EU639448) 

reveals some differences (Figure 3-3). Starting with Bony Best tomato and using a PCR 

protocol where primers were designed to specifically amplify, from leaves or breaker fruit, 

either the BT013578 version or the version isolated (Figure 2-1), only the expression of the 

isolated version was observed (Figure 3-5). Whether the BT013578 version of the gene is 

expressed in other tomato tissues is unknown, but unlikely, since BT013578 cDNA was 

originally isolated from fruit tissue. The expression of this gene may be variety specific.  

The use of available EST databases has also proven a useful tool in deciphering the 

expression patterns of the two versions. When GenBank, EMBL and DDBJ databases are 

searched, ESTs identical to the isolated sequence (in the region where the difference between 

BT013578 and EU639448 occurs) are present and come from callus, flower, leaf and fruit 

tissue. On the other hand, ESTs that are identical to cDNA for the putative ACC deaminase 

from GenBank (BT013578; with the extra 7 bp and lacking 31 bp that occur in EU639448 

(Figure 3-2)) were not found. Moreover, a multiple sequence alignment has illustrated that 

the isolated version of the cDNA (EU639448) is more similar to homologues from other 

plants, both at the nucleotide and protein level (Figure 3-4).  
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4.2 Kinetic Characterization of the Recombinant Enzyme 

 It has been reported that the Arabidopsis homologue of the tomato recombinant 

enzyme has the ability to break down the ethylene precursor ACC. This is based on the 

ability of transgenic plants over-expressing the cDNA to grow on medium supplemented 

with ethylene precursor ACC without displaying the ethylene triple response (McDonnell et 

al., in press).  

Given the uncertainty that exists regarding the nature of putative ACC deaminase 

from plants, the recombinant protein for putative ACC deaminase from tomato was tested for 

both ACC deaminase and D-cysteine desulfhydrase activity. Both enzymatic activities were 

determined through a coupled assay with lactate dehydrogenase (LDH), where the 

disappearance of NADH (the co-enzyme for LDH) was monitored at 340 nm. With the 

enzyme from tomato, when ACC was provided as the substrate at various concentrations, no 

change in absorbance at 340 nm was observed, indicating that the enzyme does not have the 

ability to break the cyclopropane ring of ACC and thus is not a functional ACC deaminase. 

However, when D-cysteine is used as a substrate, a rapid decrease in absorbance at 340 nm 

was observed, indicating that the enzyme was a D-cysteine desulfhydrase, breaking down D-

cysteine into pyruvate, ammonia and hydrogen sulfide.  

 The catalytic activity of the His-tagged recombinant enzyme compares well with 

other D-cysteine desulfhydrase enzymes from eukaryotes as well as microorganisms 

(Nagasawa et al., 1985; Riemenschneider et al., 2005; Soutourina et al., 2001). The observed 

Km value of 0.21 ± 0.05 mM is similar to that reported for the homologue from Arabidopsis 

(Km=0.25 mM), and to the E. coli D-cysteine desulfhydrase where the Km was reported to 
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be 0.15 mM or 0.3 mM for the recombinant and purified enzyme, respectively (Nagasawa et 

al., 1985; Soutourina et al., 2001). As for the kcat, D-cysteine desulfhydrase from tomato is 

similar to its Arabidopsis homologue. The reported value for the Arabidopsis enzyme is 360 

min-1, and that estimated for the tomato enzyme is 230 min-1.  

 Optimal activity for tomato D-cysteine desulfhydrase was observed at pH 7.6 in 

phosphate buffer, with almost complete loss of activity at the lowest tested pH of 6.2 and the 

highest tested pH of 9.8 (Figure 3-9). The pH optima for the D-cysteine desulfhydrase-

catalyzed reaction has been reported as pH 9.0 in E. coli, whereas pH of 8.5 for the Chlorella 

fusca and Spinacia oleracea (Nagasawa et al., 1985; Schmidt, 1982; Schmidt and Erdle, 

1983). The tomato enzyme is again most similar to the Arabidopsis homologue which has a 

pH optimum of 8.0 (Riemenschneider et al., 2005). The data from different organisms 

indicates that this reaction is carried out at various pH values. 

 Tomato D-cysteine desulfhydrase is a stable enzyme as evident by a broad 

temperature-rate profile (Figure 3-10). The enzyme has a temperature optimum of 30°C, with 

relatively high activity remaining at 50°C. The stability of the enzyme correlates well with 

the reports for the E. coli D-cysteine desulfhydrase, where only 11%, 24% and 40% of 

activity was lost when the enzyme was incubated at 65, 70 and 75°C, respectively (Nagasawa 

et al., 1985). Contradictory results were reported for the Arabidopsis homologue, where 

complete loss of activity occurs at 60°C (Riemenschneider et al., 2005). Perhaps, the method 

of storage of purified enzyme may play a role in the different observations on enzymatic 

stability. Both E. coli and tomato enzymes were stored in a similar buffer containing 

glycerol, whereas the Arabidopsis enzyme was stored without glycerol. 
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 The tomato enzyme was predicted to require pyridoxal phosphate as a co-factor. 

Hence, the activity of the enzyme was investigated in presence of the PLP inhibitor, 

aminooxyacetic acid (AOA). AOA is a competitive inhibitor, serving as a α-methyl analogue 

of the substrate. Incubation of the enzyme with various concentrations of AOA for 15 min at 

30°C inhibits the activity (Figure 3-11); a Ki value of 3.3 µM was observed. This data is 

consistent with the enzyme being classified as a pyridoxal phosphate dependent enzyme.  

4.3 D-cysteine Desulfhydrase: Its Role in Microorganisms and Plants 

The breakdown of L-cysteine by an L-cysteine desulfhydrase in higher plants was 

first reported by Harrington and Smith (1980). They used cultured tobacco cells and found 

that sulfide and pyruvate were produced from L-cysteine. The existence of L-cysteine 

desulfhydrase was later observed in other plant species (Rennenberg, 1983; Rennenberg et 

al., 1987; Rennenberg and Filner, 1983; Schutz et al., 1991). Additionally, in several 

organisms D-cysteine desulfhydrase activity, converting D-cysteine into pyruvate, 

ammonium and hydrogen sulfide has also been measured (Nagasawa et al., 1985; Nagasawa 

et al., 1988). A similar activity was detected in the green alga Chlorella fusca, and in several 

plant species including Spinacia oleracae, Cucurbita pepo, Cucumis sativus and Nicotiana 

tabacum (Rennenberg, 1983; Rennenberg et al., 1987; Schmidt, 1982; Schmidt and Erdle, 

1983). 

The E. coli D-cysteine desulfhydrase is one of the best characterized enzymes with 

this activity; it is a PLP-dependent enzyme, catalyzing the α,β-elimination reaction of D-

cysteine and of several D-cysteine derivatives (Nagasawa et al., 1985; Soutourina et al., 
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2001). The enzyme also catalyzes the β-replacement reaction of β-chloro-D-alanine in the 

presence of a high concentration of various thiols or from O-acetyl-D-serine and H2S to form 

D-cysteine or D-cysteine-related amino acids (Nagasawa et al., 1985). E. coli growth is 

impaired in the presence of micromolar amounts of D-cysteine (Soutourina et al., 2001). 

Over-expression of D-cysteine desulfhydrase protects E. coli against D-cysteine, whereas its 

inactivation renders the bacterium hypersensitive to this D-amino acid. Therefore, the 

involvement of the enzyme in enabling the bacterium to thrive in the presence of D-cysteine 

has been established. It has been suggested that D-cysteine exerts its toxicity through 

inhibition of threonine deaminase, the key enzyme in isoleucine, leucine and valine 

biosynthesis pathway. The presence of this enzyme also stimulates cell growth when D-

cysteine is provided as a sole sulfur source, where the expression of the enzyme is induced 

under sulfur limiting conditions. 

Some studies have examined the distribution of D-cysteine desulfhydrase activity in 

other bacterial strains. Nagasawa et al. (1985) tested 10 strains of E. coli and 52 other 

bacterial strains for their ability to catalyze the α,β-elimination of D-cysteine to form 

pyruvate and the β-replacement reaction of β-chloro-D-alanine and sodium hydrosulfide to 

form D-cysteine. These two activities were found in E. coli, Citrobacter freundii, Klebsiella 

pneumoniae, and Enterbacter cloacae. On the other hand, no activity was found in the 

bacteria of genera Arthrobacter, Alcaligenes, Agrobacterium, Bacillus, Brevibacterium, 

Corynebacterium, Erwinia, Flavobacterium, Micrococcus, Proteus, Pseudomonas, 

Salmonella, Sarcina, Serratia, and Santhomonas (Nagasawa et al., 1985). 
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The first report of D-cysteine desulfhydrase activity in tomato has been described in 

this work. The same activity has been detected in several other plant species, however, the 

role of this enzyme in plants is not clear. It has been well documented that in general, amino 

acids are used in the L-form, and the enzymes involved in their metabolism are specific for 

the L-enantiomers. However, D-amino acids are distributed widely in living organisms, e.g. 

in unprocessed vegetables and fruit about 0.5-3% of D-amino acids are present relative to L-

enantiomers (Bruckner and Westhauser, 2003; Friedman, 1999). Nevertheless, synthesis of 

D-amino acids in plant tissues has not been described, but is assumed to occur 

(Riemenschneider et al., 2005). It is thought that several enzymes might be synthesizing D-

amino acids from L-amino acids such as racemases, transaminases and amino acid oxidases. 

The occurrence of D-amino acid aminotransferase has been reported in pea seedlings(Ogawa 

et al., 1973).  

Information on the possible role of this enzyme in plants comes from the studies with 

the Arabidopsis homologue (Riemenschneider et al., 2005). It has been shown that the 

enzyme is a nuclearly encoded protein transported into the mitochondria. Previous 

experiments have demonstrated the highest specific activity in cytoplasm and mitochondria 

(Burandt et al., 2001). In Cucurbita pepo plants the highest D-cysteine desulfhydrase activity 

was localized in the cytoplasm, with small amounts of activity present in mitochondria and 

chloroplasts (Rennenberg et al., 1987). Localization of L-cysteine desulfhydrase activity was 

also reported exclusively to mitochondria and chloroplasts. Based on a computer analysis 

predicting the intracellular localization of proteins in plant cells (iPSORT, TargetP, Predotar, 
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MITOPROT and ChlorP from the http://www.expacy.ch/tools website), the localization of 

the tomato D-cysteine desulfhydrase enzyme is unclear.  

To gain more insight into the role of D-cysteine desulfhydrase in Arabidopsis, 

Riemenschneider et al. (2005) examined RNA and protein levels in developing plants. The 

RNA levels were shown to increase in developing Arabidopsis, but decreasing levels in 

senescent plants were observed.  The protein levels remained unchanged, with the specific 

activity highest in senescent plants. Plants grown under low sulfate concentrations showed 

increased D-cysteine desulfhydrase RNA and protein levels. Similar to the role of E. coli D-

cysteine desulfhydrase, the plant encoded enzymes may be involved in providing the plant 

with essential sulfur when the environmentally provided concentrations are too low. 

Based on limited data, a number of other functions of this enzyme have been 

proposed. For instance, the biosynthesis of cysteine may be specific for the L-isomer and 

degradation might occur via the corresponding D-amino acid. The separation could facilitate 

the regulation of synthesis and degradation by compartmentalization of amino acid 

concentration without a special compartment (Schmidt, 1982). Other possible roles such as 

the involvement of the enzyme in certain biosynthetic routes which use D-amino acids have 

been proposed; certain D-amino acids could act as signals for specific regulatory 

mechanisms, then be degraded by enzymes such as D-cysteine desulfhydrase (Schmidt, 

1982). In addition, the enzyme could also be involved in detoxification mechanisms. For 

instance, the phytotoxic peptide malformin, produced by Aspergillus niger, contains D-

cysteine, such that D-cysteine desulfhydrase may be involved in detoxification of malformin 

http://www.expacy.ch/tools
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and its components (Riemenschneider et al., 2005). The tomato D-cysteine desulfhydrase 

may therefore, have a similar function. 

It has also been hypothesized that cysteine desulfhydrase enzymes may be a part of 

what is known as sulfur-induced resistance (SIR). The role of sulfur in the resistance of crops 

to disease is apparent, where a number of field trials have demonstrated that an adequate 

sulfur supply through fertilization can increase the resistance of plants to fungal pathogens 

(Papenbrock et al., 2007). The term sulfur-induced resistance was coined to describe the 

phenomenon, however, the molecular basis of SIR is still largely unknown. Sulfur-containing 

compounds in plants which might be involved in SIR range from elemental sulfur to complex 

proteins; thiols, glucosinolates, cysteine-rich proteins, phytoalexins, elemental sulfur and H2S 

may all be involved. (Bohlmann and Apel, 1991; Giamoustaris and Mithen, 1997; 

Kliebenstein, 2004). All of these most likely employ different mechanisms in defense of the 

plant against pathogens and herbivores. For example, it has been demonstrated that H2S is 

cytotoxic to some pathogens and that a relationship between increasing H2S emission and 

resistance of crops to pests and disease is possible (Beauchamp et al., 1984). Cysteine 

desulfhydrases have been proposed to be good candidates as H2S-relasing enzymes which 

may, therefore, be involved in the pathways of plant defense (Papenbrock et al., 2007). 

Bloem and co-workers (2004) have used canola plants (Brassica napus) to 

demonstrate a correlation between sulfur status, pathogen infection, and cysteine 

desulfhydrase activity. In field trials, they have shown that sulfur fertilization increases the 

contents of total sulfur, sulfate, organic sulfur, cysteine and glutathione in plants, but 

decreases the L-cysteine desulfhydrase activity. Additionally, infection of canola plants with 



 

   104

Pyrenopeziza brassicae, pathogenic fungi, increases cysteine and glutathione content and 

increases L-cysteine desulfhydrase activity. Hence, canola plants react to a fungal infection 

by increasing their potential to release H2S (Bloem et al., 2004; Papenbrock et al., 2007). The 

molecular and enzymatic basis for cysteine degradation and H2S release are mainly attributed 

to the activity of L-cysteine desulfhydrase, and possibly D-cysteine desulfhydrase. 

4.4 PLP-dependent Enzymes: ACC Deaminase and D-Cysteine 

Desulfhydrase 

 Both ACC deaminase and D-cysteine desulfhydrase have been shown to belong to a 

diverse pyridoxal phosphate family of enzymes. The two enzymes share sequence similarity, 

but have different activities. Enzymes that are PLP dependent catalyze a diverse number of 

reactions, acting upon amino acids and their derivatives as substrates. They are essential in 

linking the carbon and nitrogen metabolism, they are principally involved in biosynthesis of 

amino acids and are also found in biosynthetic pathways of amino sugars and other amine-

containing compounds. PLP is one of the most versatile co-enzymes, comparable to zinc. 

Even though this group of enzymes carry out diverse reactions, they all share mechanistic 

features. In all of these enzymes, PLP is bound covalently via an imine bond to the ε-amino 

group of a lysine residue, forming what is referred to as “internal” aldimine. As a first step of 

all PLP enzyme catalyzed reactions, the amino group of the incoming substrate replaces the 

ε-amino group to form a co-enzyme substrate imine. This complex is referred to as an 

“external” aldimine and is common to all enzymatic and non-enzymatic reactions of PLP 

with amino acids. In the following step, different reaction pathways diverge; reaction types 
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can be divided according to the position on the substrate where the reaction occurs. Reactions 

at the α position include transamination, decarboxylation, racemization, and elimination and 

replacement of an electrophilic R group (Eliot and Kirsch, 2004). Those at the β and γ 

position include elimination or replacement. Exception to the common types of reactions 

includes the formation of cyclopropane ring from S-adenosyl-methionine, catalyzed by ACC 

synthase (Adams and Yang, 1979), and the cleavage of ACC to α-ketobutyrate and ammonia 

catalyzed by ACC deaminase. In all of the above mentioned reactions the co-enzyme acts as 

an electron sink, storing electrons from cleaved substrate bonds, then dispensing them for the 

formation of new linkages with incoming protons or second substrates.  

 PLP-dependent enzymes are classified into four major groups based on their 

structure. Early on it was postulated that the structures of PLP enzymes would correlate with 

the reaction type (Alexander et al., 1994), but it has since been found that each of the 

structural classes contains representatives of multiple reaction types. These are: aspartate 

aminotransferase family, the largest and most diverse group; tryptophan synthase family 

(TRPSβ) which is similar to the aspartate aminotransferase family but is evolutionarily 

distinct; alanine racemase family, strikingly different from other groups; and D-amino acid 

aminotransferase family, which is similar to the aspartate aminotransferase family and 

trypophan synthase family. According to this classification, ACC deaminase fits into the 

tryptophan synthase (TRPSβ) family; structural information for D-cysteine desulfhydrase 

enzymes is not available and hence no absolute classification can be made. However, based 

on the sequence similarity to ACC deaminases and an ACC deaminase homologue (Fujino et 
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al., 2004; Karthikeyan et al., 2004b; Yao et al., 2000), it is likely that this enzyme also 

belongs to the TRPSβ family.  

 Evolutionary relationships among PLP-dependent enzymes have been extensively 

examined (Christen and Mehta, 2001). It is believed that reaction types generally evolved 

first within each fold type, followed by narrowing substrate specificity. Due to its many 

diverse member enzymes, the evolutionary pedigree of the aspartate aminotransferase family 

is most informative for deducing how functional specialization occurred during molecular 

evolution. Analysis of this family clearly shows that the ancestor protein first diverged into 

reaction-specific enzymes, followed by the last and shortest phase in the development of the 

modern enzymes with specialization for substrate specificity (Christen and Mehta, 2001). 

Evolutionary preference for reaction specificity over substrate specificity is also observed in 

other cases, for instance, in families of proteinases or sugar kinases (Perona and Craik, 1997). 

 Researchers have used site-directed mutagenesis and directed molecular evolution to 

successfully simulate the specialization for substrate and reaction specificity that may occur. 

For instance, the conversion of tyrosine phenol-lyase (aspartate aminotransferase family) to 

glutamate/aspartate β-lyase, an enzyme not found in nature, was achieved by a double point 

mutation in the active site (Mouratou et al., 1999). The activity of the newly generated 

enzyme is orders of magnitude lower than that of an average PLP-dependent enzyme, with 

the kcat of 0.2 s-1(or 12 min-1). Further optimization of other amino acid residues, including 

non-active site residues would be required to improve the catalytic potency of the enzymes. 

This example is only one of several that have been recently published, demonstrating how 

mutagenesis of a few important amino acid residues in an active site of a PLP-dependent 
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enzyme can result in a change of reaction type and substrate specificity (Graber et al., 1999; 

Oue et al., 1999). This kind of change may have occurred during evolution, such that an 

ancestor protein either evolved into an ACC deaminase or D-cysteine desulfhydrase. Hence, 

we have also utilized site-directed mutagenesis as a tool to establish why certain enzymes 

predicted to be an ACC deaminase encode a functional ACC deaminase and others, as in the 

case of tomato D-cysteine desulfhydrase, do not. 

4.4.1 ACC Deaminase Reaction and Requirements for Activity 

The first step of the ACC deaminase reaction is common with all other PLP-

dependent enzymes. However, after the “external” aldimine formation between PLP and the 

substrate, the common mechanisms cannot be applied to the ACC deaminase reaction since 

ACC as a substrate does not have an α-hydrogen and the reaction must be initiated without 

the accessibility to an α-carbanionic intermediate (reviewed in Hontzeas et al., 2006). The 

mechanism of ACC cleavage is still not fully understood, with two proposed pathways, either 

nucleophilic addition to open the ring followed by β-proton abstraction or direct β-proton 

abstraction leading to ring cleavage (Walsh et al., 1981). In the nucleophilic addition 

followed by β-proton abstraction mechanism, it is proposed that nucleophilic attack by an 

amino acid residue occurs on the pro-S β-carbon of ACC which initiates the cyclopropane 

ring opening, followed by β-proton abstraction at the pro-R carbon by a basic active site 

residue, such as the lysine residue that binds PLP (Zhao et al., 2003). The model for direct β-

proton abstraction was proposed by Ose and co-workers (2003) where following direct β-

proton abstraction a quinonoid intermediate undergoes rearrangements, which eventually 
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leads to hydrolysis into the respective products. There seems to be more experimental data, 

and more methodical explanation in terms of the chemistry and thermodynamic favorability 

for the nucleophilic addition and β-proton abstraction mechanism (Hontzeas et al., 2006). 

Comparison of ACC deaminase with other PLP-dependent enzymes of TRPSβ family 

whose structures have been solved reveals similarities, such as the overall fold topology, 

despite the fundamentally different chemistries of the reactions carried out (Yao et al., 2000). 

However, the environment surrounding PLP is different from those of other PLP-dependent 

enzymes. For instance, at the front side of the PLP pyridine of the H. saturuns ACC 

deaminase, the extra loops bury the PLP deep in the interior of the molecule. Another major 

difference between ACC deaminase and other members of TRPSβ family is the stacking of 

the phenol group of Tyr295 (according the H. saturnus numbering) to the plane of the 

pyridinium ring at an angle of about 20° (Yao et al., 2000; Figure 3-14). This kind of 

stacking is the first occurrence in the TRPSβ family, however it has been found in other types 

of PLP-dependent enzymes. 

4.4.2 Comparing ACC Deaminase to the P. horikoshii homologue 

 Most of our understanding of the mechanisms employed by ACC deaminase to break 

the cyclopropane ring of ACC comes from the structural studies of true ACC deaminases 

from the bacterium Pseudomonas sp. ACP and the yeast Hansenula saturnus (Karthikeyan et 

al., 2004b; Yao et al., 2000). The essential residues for the catalysis and ACC recognition 

were derived from these structures, in addition to site-specific mutagenesis studies to confirm 

the essential residues (Ose et al., 2003). Most of the important residues are conserved 
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between the bacterial and yeast ACC deaminase (Figure 3-14); for instance, the lysine 

residue that binds PLP, the tyrosine residue that stacks with the pyridine ring, and residues 

important in recognizing ACC are all conserved. The bacterial and yeast active sites are thus 

virtually identical (Figure 3-14). 

 The protein PH0054 from Pyrococcus horikoshii OT3 was predicted to be an ACC 

deaminase due to its sequence similarity to other ACC deaminase enzymes. PH0054 

preserves the key amino acid residues; however, it does not show ACC deaminase activity, 

but rather has deaminase activity toward D- and L-serine (Fujino et al., 2004). The three-

dimensional structure of this ACC deaminase homologue has also been reported and the 

comparison between the yeast and PH0054 structures provides information on the structural 

requirements for the enzymatic activity of ACC deaminase. The overall topology of the 

PH0054 structure is very similar to that of yeast ACC deaminase, the main difference being 

the lack of loop regions that are thought to play a role in stabilizing the small and PLP-

binding domain of the yeast ACC deaminase (Fujino et al., 2004). The environment around 

PLP is similar in the P. horikoshii homologue to the true ACC deaminases; e.g. the pyridine 

ring of PLP is stably stacked by the aromatic ring of Tyr282, a feature of a true ACC 

deaminase. The substitutions around the active site are only His80(P. horikoshii)-Gln77(H. 

saturnus), Thr283(P. horikoshii)-Glu296(H. saturnus) and Thr308(P. horikoshii)-Leu323(H. 

saturnus) (Figure 3-14). The side chain directions of His80 and Gln77 are different; the 

Thr308 residue is located within hydrogen bonding distance of the pyridine nitrogen atom of 

PLP. The corresponding H. saturnus residue, Leu323, has completely different 

characteristics and is positioned differently. The carboxylate oxygen atom of Glu296 in the 
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H. saturnus structure makes a hydrogen bond with pyridine nitrogen atom. The existence of 

the carboxylate group at this position is widely seen in PLP-dependent enzymes, except in 

other members of the TRPSβ family. In the TRPSβ family, a hydroxyl group such as a serine 

or threonine side-chain is always found within hydrogen-bonding distance of the pyridine 

nitrogen atom. The side-chain of the corresponding residue in the homologue, Thr283, is 

oriented in the opposite direction such that the hydroxyl group cannot interact with the 

pyridine nitrogen atom (Figure 3-12, Figure 3-14) 

4.5 3D Modeling of Tomato Enzyme and Implications for Activity 

 There is no structural information available for D-cysteine desulfhydrase from tomato 

or any other organism. Therefore, the amino acid residues that form the active site have not 

been described. It is, however, known that the catalyzed reaction to form pyruvate, ammonia 

and H2S from D-cysteine involves an α,β-elimination. We have therefore used proteins which 

share sequence similarity to D-cysteine desulfhydrase and whose tertiary structures are 

known, to predict the structure and active site residues for the tomato enzyme characterized 

in this work. True ACC deaminase proteins from bacteria and fungi share ~20% sequence 

identity at the amino acid level to the tomato enzyme; the above described ACC deaminase 

homologue from P. horikoshii is ~30% identical at the protein level. Therefore, the 

homologue was chosen as the template for structural predictions. 

 A sequence identity between 20 and 40% is considered low or borderline when 

constructing protein models, however, with careful assessment and treatment of individual 

cases, protein structures may be successfully predicted (Kuiper et al., 2001; Marabotti et al., 
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2004). The largest problem with low sequence identity between the template and subject is 

that these sequences may be aligned in different ways with similar scores, and gaps may fall 

in the middle of secondary structure elements or represent loops, leading to a high probability 

of producing incorrect models. Even so, when proteins used for alignment and modeling 

belong to the same family, where the structure is well conserved, functional information and 

overall structure similarity can overcome the low sequence identity and a good sequence 

alignment suitable for structure modeling can be built. Furthermore, information such as the 

position of secondary structure elements may be used to verify the quality of the alignment, 

and if necessary to optimize the position of any gaps. Based on a multiple sequence 

alignment and the position of secondary structure elements, the P. horikoshii homologue was 

confirmed as a good template for structural modeling. 

 The structure of D-cysteine desulfhydrase from tomato is shown in Figure 3-13. The 

overall topology of the enzyme is predicted to be well conserved compared both to the 

template (P. horikoshii ACC deaminase homologue) and to the true ACC deaminase from H. 

saturnus. This suggests that the enzyme, as mentioned previously, is most likely a member of 

the tryptophan synthase family (TRPSβ). More notably, an analysis of the putative active site 

reveals the possible changes from the true ACC deaminase enzymes that may have an impact 

on the activity (Figure 3-14). Based entirely on an analysis of the primary sequence, 

important residues appear to be conserved. These include the Lys117 residue that binds the 

co-enzyme, Lys120 (Lys57 in P. horikoshii), and the active site tyrosine residues Tyr331 and 

Tyr357 (Tyr256 and Tyr282 in P. horikoshii). One major difference is the position of His80 

of P. horikoshii; at this position the tomato D-cysteine desulfhydrase appears to be more like 
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a true ACC deaminase with Gln143 (Figure 3-14). Additionally, the tomato enzyme shares 

comparable differences to true ACC deaminase enzymes as does the P. horikoshii 

homologue; at the position of Glu296 and Leu323 in H. saturnus, the P. horikoshii enzyme 

contains two threonine residues (Thr282 and Thr308). The tomato enzyme contains a serine 

residue (Ser358) at the position of Glu296 (from yeast), and a threonine (Thr384) residue at 

the position of Leu323.  

Tertiary structure modeling has revealed that the above described conserved residues 

indeed occur in the putative active site (Figure 3-14). However, one difference is predicted to 

occur at the position of Tyr331. This residue is found somewhat further away from the active 

site, such that it should not play a role in catalysis. When this residue was mutated in a true 

ACC deaminase, the enzyme lost 90% of its activity (Ose et al., 2003). Considering that 

residue positioning is based on protein structure modeling, it cannot be ruled out that this 

observation may be an artifact of the structural modeling procedure. 

 Researchers have used structural data from the P. horikoshii  homologue as a means 

to suggest why this enzyme is inert towards ACC as a substrate (Fujino et al., 2004). Having 

established that D-cysteine desulfhydrase catalyzes a similar reaction to the P. horikoshii 

homologue, and that the two are predicted to have similar active sites (more similar to each 

other than either is to a true ACC deaminase), the same principles can be applied to the 

inertness of the tomato enzyme. Fujino and co-workers (2004) have shown that the common 

step to all PLP enzymatic reaction, the formation of “external” aldimine occurs between the 

inert enzyme and ACC. They have also established through the analysis of the enzyme-ACC 

complex that conformational changes or domain closure occur upon ACC binding, which is 
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common to many enzymes. This suggests that the homologue, and most likely D-cysteine 

desulfhydrase, binds ACC but cannot abstract the β-proton from the pro-R/S carbon atom of 

ACC. Rather, these enzymes have the ability to abstract an α-proton from L- or D-serine in 

the case of the homologue and the α-proton of D-cysteine in the case of D-cysteine 

desulfhydrase. It has been proposed that the electron density of the ACC cyclopropane ring is 

influenced by the pyridine ring of PLP through an external aldimine group and is different in 

the homologue of ACC deaminase than in yeast or bacterial ACC deaminase. The charge 

density of the pyridine ring is strictly modulated by various neighboring amino acids. The 

nitrogen atom of the pyridine ring in a true ACC deaminase is within hydrogen bonding 

distance of the side-chain carboxyl oxygen atom of glutamate (Glu296 in yeast), which is not 

the case in the homologue or in D-cysteine desulfhydrase. This creates a different 

environment in the active site, such that D-cysteine desulfhydrase and the homologue are 

more similar to the other members of the TRPSβ family such as cystathionine β-synthase, 

threonine deaminase or threonine synthase. Additionally, true ACC deaminase enzymes have 

a leucine residue in the active site (Leu323 in yeast) which provides space for the long side-

chain of the glutamate residue by orienting itself in the opposite direction (Fujino et al., 

2004). It is therefore likely that the major difference that occurred during the evolutionary 

process to distinguish between ACC deaminase activity and D-cysteine desulfhydrase 

activity is at the position of these two amino acids. Hence, mutating the two positions of a 

true ACC deaminase (Glu296 and Leu323 in H. saturnus, for instance) to resemble the 

predicted active site of a D-cysteine desulfhydrase should result in this enzyme becoming a 

D-cysteine desulfhydrase. In addition, mutating these residues in D-cysteine desulfhydrase 



 

   114

(Ser358 and Thr384 to glutamate and leucine, respectively) should enable the enzyme to 

acquire ACC deaminase activity. 

4.6 Changing the Activity of the ACC Deaminase and D-cysteine 

Desulfhydrease 

 Five different mutants were constructed with the aim of obtaining double mutants of 

both D-cysteine desulfhydrase and P. putida UW4 ACC deaminase. S358E, T386L and the 

double mutant S358E/T386L of the tomato D-cysteine desulfhydrase was constructed 

through site-directed mutagenesis. In addition, two P. putida UW4 ACC deaminase mutants 

were created; these include E295S and a double mutant E295S/L322T. The active site of the 

double mutant of the D-cysteine desulfhydrase is predicted to resemble an ACC deaminase, 

whereas, the mutation of the glutamate and leucine to a serine and a threonine residue should 

create an enzyme whose active site looks like that of D-cysteine desulfhydrase. The double 

mutant of the P. putida UW4 ACC deaminase should be more similar to the D-cysteine 

desulfhydrase than the P. horikoshii homologue, due to the mutation of the glutamate residue 

to a serine, instead of a threonine that is present in the P. horikoshii homologue. 

 The mutated recombinant proteins were purified and tested for their ability to use 

either D-cysteine or ACC as the substrate. As seen in Figure 3-15, the S358E mutation of the 

tomato enzyme results in complete loss of activity towards D-cysteine as the substrate; this is 

true for both the single S358E mutant, and the double mutant S358E/T386L. The change of 

the characteristic serine residue common to other members of TRPSβ family renders the 

enzyme completely inactive. This may indicate that unlike the Thr283 residue of the P. 
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horikoshii homologue, the serine of the tomato enzyme residue may be involved in hydrogen 

bonding with the nitrogen atom of the pyridine ring of PLP. Mutation of the threonine 

residue that is characteristic of both tomato D-cysteine desulfhydrase and the P. horikoshii 

homologue (involved in hydrogen bond formation between pyridine ring nitrogen atom in the 

homologue), to a leucine residue characteristic of ACC deaminase enzymes causes a loss of 

activity without completely abolishing it. Approximately 11.5% of the original activity is 

retained. Therefore, the serine residue most likely influences the pyridine ring through 

hydrogen bonding, and hence the electron density of the substrate, whereas the threonine 

residue is most likely not hydrogen bonded with the co-enzyme, but it still influences 

activity. 

 It has previously been shown that mutation of Glu296 in yeast ACC deaminase 

results in a complete loss of activity (Ose et al., 2003). The same is true for the P. putida 

UW4 ACC deaminase, since the E295S mutant shows no significant activity (Figure 3-15). 

Again, this illustrates the necessity of the hydrogen bonding between the glutamate side-

chain and the nitrogen atom of the pyridine ring. The double mutant (E295S/L322T) of the 

UW4 enzyme also shows undetectable activity towards ACC as the substrate (Figure 3-15).  

 When analysis of the mutant proteins for the ability to perform a new catalytic 

activity was examined, the double mutant of tomato D-cysteine desulfhydrase (S358E/T386L 

mutation) shows over a 50-fold increase in activity towards ACC as the substrate (Figure 3-

16, Table 4). The same mutant shows no detectable activity towards the original D-cysteine 

substrate. Additionally, only a very low and insignificant level of activity was detected when 

D-cysteine was used in a reaction with the wild-type UW4 ACC deaminase, but an activity 
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increase of approximately 10-fold was observed with the double mutant E295S/L322T 

(Figure 3-17, Table 4). The same double mutant lost the ability to break the cyclopropane 

ring of ACC, illustrating that these two amino acids represent the major difference between 

ACC deaminase and D-cysteine desulfhydrase activity.  

 The UW4 double mutant was further characterized to determine whether the enzyme 

shows typical Michaels-Menten kinetics. Based on non-linear regression, the Km of the 

enzyme for D-cysteine was determined to be 0.34 ± 0.1 mM, which is stronger than the 

binding of the native ACC deaminase for ACC, where the Km is 3.4 mM (Hontzeas et al., 

2004). In fact, the Km of the mutant is comparable to the Km of a true D-cysteine 

desulfhydrase enzyme (Nagasawa et al., 1985; Soutourina et al., 2001; Riemenschneider et 

la., 2005). The inefficiency of the UW4 mutant enzyme is illustrated by kcat value of 10.9 

min-1. Similar observations have been made in other studies where the kcat of a newly created 

activity was low, which suggests that during the evolutionary process changes in other amino 

acid residues need to occur to render the enzyme more active. The UW4 ACC deaminase 

catalytic efficiency with ACC as the substrate has previously been determined to be 42.9 

mM-1 min-1 (Hontzeas et al., 2004). The double mutant of UW4 ACC deaminase has a 

similar catalytic efficiency for D-cysteine of 32 mM-1 min-1. 

The change in the reaction type and substrate specificity of D-cysteine desulfhydrase 

and ACC deaminase through mutation of just two amino acids, as shown in this work, 

illustrates that through evolution the change in the two residues may have occurred in an 

ancestral protein, such that two different activities arose. Other changes must have 

subsequently occurred to improve upon the efficiency of the enzyme.  
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4.7 Conclusion 

 With the availability of sequences from both microorganisms and plants, many have 

been annotated as a putative ACC deaminase. However, only a portion of these have been 

shown to have ACC deaminase activity, and others such as the enzyme from tomato 

characterized in this study use other substrates. The question arises why certain organisms 

have ACC deaminase activity and others do not despite the fact that they both have genes 

encoding for putative ACC deaminase.  

 The puzzling reaction of ACC deaminase has led researchers to determine its tertiary 

structure, and the structure of an ACC deaminase homologue that does not have the activity. 

With the availability of structural data, amino acid residues necessary for activity have been 

described, yet the exact mechanism of the reaction is still unknown. We have shown that two 

important amino acid residues may distinguish between ACC deaminase and D-cysteine 

desulfhydrase activity. Since other plant putative ACC deaminase enzymes share virtually 

identical amino acid residues that are predicted to be important, especially the serine residue 

at the position of glutamate in a true ACC deaminase and threonine at the position of leucine 

in a true ACC deaminase (Figure 3-12), these enzymes are all predicted to be unable to break 

the cyclopropane bond of ACC. They also share high sequence similarity to the tomato D-

cysteine desulfhydrase, and hence will most likely encode a functional D-cysteine 

desulfhydrase. As for other organisms predicted to have a functional ACC deaminase, all that 

lack the glutamate or leucine will most likely also lack this activity. These enzymes should 

have the ability to deaminate other amino acids such as serine or cysteine. 
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Figure 6-1. The insert sequence from pBS-acd construct (Accession # EU639448). The 
insert was sequenced from both directions, using vector specific primers (T7 and T3 
promoter primers) as well as sequence specific primers. 
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Figure 6-2. Nonspecific binding of Primer 4. The major product observed on the gel when 
Primer 4 and Primer 3 are used in a PCR reaction is approximately 700 bp; this is true for 
both reverse-transcriptase PCR reactions and PCR reactions where pBS-acd plasmid DNA 
was used as a template. The expected size of the produce if BT013578 version is expressed is 
143 bp; the observed PCR product of just over 700 bp is due to unspecific primer binding. 
Analysis of BT013578 sequence and pBS-acd insert sequence (EU639448) has revealed that 
there exist regions in both sequences where Primer 4 may be binding nonspecifically. 
Indicated in pink, underlined and italicized is the region where Primer 4 shares significant 
overlap, and is most likely binding and amplifying the EU639448 version. The first region 
(starting from the ATG start codon) would result in a product of 721 bp when pBS-acd is 
amplified. The second region would result in a product of 591 bp.  
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Figure 6-3. Putative ACC deaminase recombinant protein expression over time. T1-T6 
indicates time points at which expression was examined (e.g. T1 indicates 1 h after 
induction). Recombinant protein is expressed after an hour of induction. 
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Figure 6-4. Substrate inhibition of D-cysteine desulfhydrase from tomato. Above 1 mM 
D-cysteine, the activity of the enzyme decreases; Km values were determined based on D-
cysteine concentration below 1 mM. 
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Figure 6-5. Protein purification of recombinant P. putida UW4 ACC deaminase.  The 
gel illustrates typical elution fractions for the wild-type recombinant UW4 ACC deaminase 
and mutants of the enzyme. The recombinant protein is 42.17 kDa, whereas the enzyme 
without the 6X His-tag is 36.88 kDa, based on the amino acid sequence.E1-E4: elution 
fractions 1-4. 
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Figure 6-6. Typical standard curves. Top: standard curve for the BioRad protein assay. 
Bottom: pyruvate standard curve for the D-cysteine desulfhydrase assay.



 
 
 
 
 
 
 
Figure 6-7. Nucleotide sequence alignment between D-cysteine desulfhydrase from 
tomato and the constructed mutants. 
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ET30-Tm3        ATGCACCATCATCATCATCATTCTTCTGGTCTGGTGCCACGCGGTTCTGGTATGAAAGAA 
ET30-acd        ATGCACCATCATCATCATCATTCTTCTGGTCTGGTGCCACGCGGTTCTGGTATGAAAGAA 
ET30-Tm1        ATGCACCATCATCATCATCATTCTTCTGGTCTGGTGCCACGCGGTTCTGGTATGAAAGAA 
ET30-Tm2        ATGCACCATCATCATCATCATTCTTCTGGTCTGGTGCCACGCGGTTCTGGTATGAAAGAA 
                ************************************************************ 
 
ET30-Tm3        ACCGCTGCTGCTAAATTCGAACGCCAGCACATGGACAGCCCAGATCTGGGTACCGGTGGT 
ET30-acd        ACCGCTGCTGCTAAATTCGAACGCCAGCACATGGACAGCCCAGATCTGGGTACCGGTGGT 
ET30-Tm1        ACCGCTGCTGCTAAATTCGAACGCCAGCACATGGACAGCCCAGATCTGGGTACCGGTGGT 
ET30-Tm2        ACCGCTGCTGCTAAATTCGAACGCCAGCACATGGACAGCCCAGATCTGGGTACCGGTGGT 
                ************************************************************ 
 
ET30-Tm3        GGCTCCGGTATTGAGGGTCGCATGTCGAGTTGCCAATGGAGTAGCTTCACTAGAGTATCA 
ET30-acd        GGCTCCGGTATTGAGGGTCGCATGTCGAGTTGCCAATGGAGTAGCTTCACTAGAGTATCA 
ET30-Tm1        GGCTCCGGTATTGAGGGTCGCATGTCGAGTTGCCAATGGAGTAGCTTCACTAGAGTATCA 
ET30-Tm2        GGCTCCGGTATTGAGGGTCGCATGTCGAGTTGCCAATGGAGTAGCTTCACTAGAGTATCA 
                ************************************************************ 
 
ET30-Tm3        CTATCTCCATTTCCCTTGCAGCCAGCACAACTCAATACGGCATTAAACTTGAAGAAACAG 
ET30-acd        CTATCTCCATTTCCCTTGCAGCCAGCACAACTCAATACGGCATTAAACTTGAAGAAACAG 
ET30-Tm1        CTATCTCCATTTCCCTTGCAGCCAGCACAACTCAATACGGCATTAAACTTGAAGAAACAG 
ET30-Tm2        CTATCTCCATTTCCCTTGCAGCCAGCACAACTCAATACGGCATTAAACTTGAAGAAACAG 
                ************************************************************ 
 
ET30-Tm3        TGTTGCTTTACCAAATCATCGATGGAGGATTCCAGTTCCCAGGGTCACCAATCGGCCTTT 
ET30-acd        TGTTGCTTTACCAAATCATCGATGGAGGATTCCAGTTCCCAGGGTCACCAATCGGCCTTT 
ET30-Tm1        TGTTGCTTTACCAAATCATCGATGGAGGATTCCAGTTCCCAGGGTCACCAATCGGCCTTT 
ET30-Tm2        TGTTGCTTTACCAAATCATCGATGGAGGATTCCAGTTCCCAGGGTCACCAATCGGCCTTT 
                ************************************************************ 
 
ET30-Tm3        CAGTTTCTGACGAAGAAGCCTTACGAGCCTCCTCCATGGGCTTCGCTTCTTAGCCCAATT 
ET30-acd        CAGTTTCTGACGAAGAAGCCTTACGAGCCTCCTCCATGGGCTTCGCTTCTTAGCCCAATT 
ET30-Tm1        CAGTTTCTGACGAAGAAGCCTTACGAGCCTCCTCCATGGGCTTCGCTTCTTAGCCCAATT 
ET30-Tm2        CAGTTTCTGACGAAGAAGCCTTACGAGCCTCCTCCATGGGCTTCGCTTCTTAGCCCAATT 
                ************************************************************ 
 
ET30-Tm3        CCCTCTCACACCTTTTCGCTTGGTCATTTTCCGACTCCAATTCACAAGTGGAACCTGCCT 
ET30-acd        CCCTCTCACACCTTTTCGCTTGGTCATTTTCCGACTCCAATTCACAAGTGGAACCTGCCT 
ET30-Tm1        CCCTCTCACACCTTTTCGCTTGGTCATTTTCCGACTCCAATTCACAAGTGGAACCTGCCT 
ET30-Tm2        CCCTCTCACACCTTTTCGCTTGGTCATTTTCCGACTCCAATTCACAAGTGGAACCTGCCT 
                ************************************************************ 
 
ET30-Tm3        AATTTACCGAAGAACACCGAGGTTTGGTTAAAGCGTGATGATATGTCAGGAATGCAATTA 
ET30-acd        AATTTACCGAAGAACACCGAGGTTTGGTTAAAGCGTGATGATATGTCAGGAATGCAATTA 
ET30-Tm1        AATTTACCGAAGAACACCGAGGTTTGGTTAAAGCGTGATGATATGTCAGGAATGCAATTA 
ET30-Tm2        AATTTACCGAAGAACACCGAGGTTTGGTTAAAGCGTGATGATATGTCAGGAATGCAATTA 
                ************************************************************ 
 
ET30-Tm3        AGTGGAAACAAGGTCAGAAAGCTGGAGTTCTTGTTGGCAGATGCTGTAGCACAGGGTGCT 
ET30-acd        AGTGGAAACAAGGTCAGAAAGCTGGAGTTCTTGTTGGCAGATGCTGTAGCACAGGGTGCT 
ET30-Tm1        AGTGGAAACAAGGTCAGAAAGCTGGAGTTCTTGTTGGCAGATGCTGTAGCACAGGGTGCT 
ET30-Tm2        AGTGGAAACAAGGTCAGAAAGCTGGAGTTCTTGTTGGCAGATGCTGTAGCACAGGGTGCT 
                ************************************************************ 
 
ET30-Tm3        GACTGCATAGTGACTATAGGTGGCATACAAAGTAATCACTGTCGTGCTACTGCTGTCGCT 
ET30-acd        GACTGCATAGTGACTATAGGTGGCATACAAAGTAATCACTGTCGTGCTACTGCTGTCGCT 
ET30-Tm1        GACTGCATAGTGACTATAGGTGGCATACAAAGTAATCACTGTCGTGCTACTGCTGTCGCT 
ET30-Tm2        GACTGCATAGTGACTATAGGTGGCATACAAAGTAATCACTGTCGTGCTACTGCTGTCGCT 
                ************************************************************ 
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ET30-Tm3        GCCAAGTACTTGAACCTTGACTGCTATCTCATCTTACGCACTTCAAAGTTACTTGTAGAT 
ET30-acd        GCCAAGTACTTGAACCTTGACTGCTATCTCATCTTACGCACTTCAAAGTTACTTGTAGAT 
ET30-Tm1        GCCAAGTACTTGAACCTTGACTGCTATCTCATCTTACGCACTTCAAAGTTACTTGTAGAT 
ET30-Tm2        GCCAAGTACTTGAACCTTGACTGCTATCTCATCTTACGCACTTCAAAGTTACTTGTAGAT 
                ************************************************************ 
 
ET30-Tm3        AAAGATCCTGGATTAACAGGGAACCTCCTTGTTGACCGTTTAGTTGGAGCACACATTGAT 
ET30-acd        AAAGATCCTGGATTAACAGGGAACCTCCTTGTTGACCGTTTAGTTGGAGCACACATTGAT 
ET30-Tm1        AAAGATCCTGGATTAACAGGGAACCTCCTTGTTGACCGTTTAGTTGGAGCACACATTGAT 
ET30-Tm2        AAAGATCCTGGATTAACAGGGAACCTCCTTGTTGACCGTTTAGTTGGAGCACACATTGAT 
                ************************************************************ 
 
ET30-Tm3        CTTGTTTCAAAAGAAGAATATGCAAAAGTTGGCGGTGAGGCTCTTACCAAAATATTGAAA 
ET30-acd        CTTGTTTCAAAAGAAGAATATGCAAAAGTTGGCGGTGAGGCTCTTACCAAAATATTGAAA 
ET30-Tm1        CTTGTTTCAAAAGAAGAATATGCAAAAGTTGGCGGTGAGGCTCTTACCAAAATATTGAAA 
ET30-Tm2        CTTGTTTCAAAAGAAGAATATGCAAAAGTTGGCGGTGAGGCTCTTACCAAAATATTGAAA 
                ************************************************************ 
 
ET30-Tm3        GAAAAGCTGTTAAATGAAGGGAGAAAGCCATATGTCATCCCTGTTGGTGGATCCAATTCT 
ET30-acd        GAAAAGCTGTTAAATGAAGGGAGAAAGCCATATGTCATCCCTGTTGGTGGATCCAATTCT 
ET30-Tm1        GAAAAGCTGTTAAATGAAGGGAGAAAGCCATATGTCATCCCTGTTGGTGGATCCAATTCT 
ET30-Tm2        GAAAAGCTGTTAAATGAAGGGAGAAAGCCATATGTCATCCCTGTTGGTGGATCCAATTCT 
                ************************************************************ 
 
ET30-Tm3        CTAGGAACCTGGGGCTATATTGAGGCAATTAGGGAATTGGAGCAACAACTTCAGCACTTG 
ET30-acd        CTAGGAACCTGGGGCTATATTGAGGCAATTAGGGAATTGGAGCAACAACTTCAGCACTTG 
ET30-Tm1        CTAGGAACCTGGGGCTATATTGAGGCAATTAGGGAATTGGAGCAACAACTTCAGCACTTG 
ET30-Tm2        CTAGGAACCTGGGGCTATATTGAGGCAATTAGGGAATTGGAGCAACAACTTCAGCACTTG 
                ************************************************************ 
 
ET30-Tm3        AGCATTGAACAGAAATTCGACGACATTGTTGTAGCTTGTGGCAGTGGGGGTACGGTTGCT 
ET30-acd        AGCATTGAACAGAAATTCGACGACATTGTTGTAGCTTGTGGCAGTGGGGGTACGGTTGCT 
ET30-Tm1        AGCATTGAACAGAAATTCGACGACATTGTTGTAGCTTGTGGCAGTGGGGGTACGGTTGCT 
ET30-Tm2        AGCATTGAACAGAAATTCGACGACATTGTTGTAGCTTGTGGCAGTGGGGGTACGGTTGCT 
                ************************************************************ 
 
ET30-Tm3        GGTTTGTCAATTGCATCCATGCTCAGTGGCTTGAAAGCAAAGATTAATGCATTTTGTGTC 
ET30-acd        GGTTTGTCAATTGCATCCATGCTCAGTGGCTTGAAAGCAAAGATTAATGCATTTTGTGTC 
ET30-Tm1        GGTTTGTCAATTGCATCCATGCTCAGTGGCTTGAAAGCAAAGATTAATGCATTTTGTGTC 
ET30-Tm2        GGTTTGTCAATTGCATCCATGCTCAGTGGCTTGAAAGCAAAGATTAATGCATTTTGTGTC 
                ************************************************************ 
 
ET30-Tm3        TGCGACGATCCAGATTACTTTTATGAATATGTTCAAGGCCTACTTGACGGAATCACTGCT 
ET30-acd        TGCGACGATCCAGATTACTTTTATGAATATGTTCAAGGCCTACTTGACGGAATCACTGCT 
ET30-Tm1        TGCGACGATCCAGATTACTTTTATGAATATGTTCAAGGCCTACTTGACGGAATCACTGCT 
ET30-Tm2        TGCGACGATCCAGATTACTTTTATGAATATGTTCAAGGCCTACTTGACGGAATCACTGCT 
                ************************************************************ 
 
ET30-Tm3        GGAGTTAGCTCCCGTGATATTGTTAGCATCAAAACTGCAAAAGGCCTTGGGTATGCTTTG 
ET30-acd        GGAGTTAGCTCCCGTGATATTGTTAGCATCAAAACTGCAAAAGGCCTTGGGTATGCTTTG 
ET30-Tm1        GGAGTTAGCTCCCGTGATATTGTTAGCATCAAAACTGCAAAAGGCCTTGGGTATGCTTTG 
ET30-Tm2        GGAGTTAGCTCCCGTGATATTGTTAGCATCAAAACTGCAAAAGGCCTTGGGTATGCTTTG 
                ************************************************************ 
 
ET30-Tm3        AGCACCACTGATGAGCTTAAATTTGTGAAGCAAGTTGCTGAAACCACAGGTGTTATTCTT 
ET30-acd        AGCACCACTGATGAGCTTAAATTTGTGAAGCAAGTTGCTGAAACCACAGGTGTTATTCTT 
ET30-Tm1        AGCACCACTGATGAGCTTAAATTTGTGAAGCAAGTTGCTGAAACCACAGGTGTTATTCTT 
ET30-Tm2        AGCACCACTGATGAGCTTAAATTTGTGAAGCAAGTTGCTGAAACCACAGGTGTTATTCTT 
                ************************************************************ 
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ET30-Tm3        GACCCTGTCTACGAAGGTAAAGCAGCTTATGGAATGATGAAAGACATGGGCGAGAATCCA 
ET30-acd        GACCCTGTCTACAGTGGTAAAGCAGCTTATGGAATGATGAAAGACATGGGCGAGAATCCA 
ET30-Tm1        GACCCTGTCTACGAAGGTAAAGCAGCTTATGGAATGATGAAAGACATGGGCGAGAATCCA 
ET30-Tm2        GACCCTGTCTACAGTGGTAAAGCAGCTTATGGAATGATGAAAGACATGGGCGAGAATCCA 
                ************   ********************************************* 
 
ET30-Tm3        ACAAAGTGGGAGGGAAGAAAGATTCTGTTCATACACCTGGGTGGGCTACTAGGTTTGTAT 
ET30-acd        ACAAAGTGGGAGGGAAGAAAGATTCTGTTCATACACACAGGTGGGCTACTAGGTTTGTAT 
ET30-Tm1        ACAAAGTGGGAGGGAAGAAAGATTCTGTTCATACACACAGGTGGGCTACTAGGTTTGTAT 
ET30-Tm2        ACAAAGTGGGAGGGAAGAAAGATTCTGTTCATACACCTGGGTGGGCTACTAGGTTTGTAT 
                ************************************   ********************* 
 
ET30-Tm3        GACAAAGCTGATGAAATAGGGTCACTAATGGGCAAATGGCGTAAAATGGATATCAATGAA 
ET30-acd        GACAAAGCTGATGAAATAGGGTCACTAATGGGCAAATGGCGTAAAATGGATATCAATGAA 
ET30-Tm1        GACAAAGCTGATGAAATAGGGTCACTAATGGGCAAATGGCGTAAAATGGATATCAATGAA 
ET30-Tm2        GACAAAGCTGATGAAATAGGGTCACTAATGGGCAAATGGCGTAAAATGGATATCAATGAA 
                ************************************************************ 
 
ET30-Tm3        TCTATCCCTAGACAAGATGGCATCGGCAAAATGTTCTGA 
ET30-acd        TCTATCCCTAGACAAGATGGCATCGGCAAAATGTTCTGA 
ET30-Tm1        TCTATCCCTAGACAAGATGGCATCGGCAAAATGTTCTGA 
ET30-Tm2        TCTATCCCTAGACAAGATGGCATCGGCAAAATGTTCTGA 
                *************************************** 
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ET30-Tm3        MHHHHHHSSGLVPRGSGMKETAAAKFERQHMDSPDLGTGGGSGIEGRMSSCQWSSFTRVS 
ET30-acd        MHHHHHHSSGLVPRGSGMKETAAAKFERQHMDSPDLGTGGGSGIEGRMSSCQWSSFTRVS 
ET30-Tm1        MHHHHHHSSGLVPRGSGMKETAAAKFERQHMDSPDLGTGGGSGIEGRMSSCQWSSFTRVS 
ET30-Tm2        MHHHHHHSSGLVPRGSGMKETAAAKFERQHMDSPDLGTGGGSGIEGRMSSCQWSSFTRVS 
                ************************************************************ 
 
ET30-Tm3        LSPFPLQPAQLNTALNLKKQCCFTKSSMEDSSSQGHQSAFQFLTKKPYEPPPWASLLSPI 
ET30-acd        LSPFPLQPAQLNTALNLKKQCCFTKSSMEDSSSQGHQSAFQFLTKKPYEPPPWASLLSPI 
ET30-Tm1        LSPFPLQPAQLNTALNLKKQCCFTKSSMEDSSSQGHQSAFQFLTKKPYEPPPWASLLSPI 
ET30-Tm2        LSPFPLQPAQLNTALNLKKQCCFTKSSMEDSSSQGHQSAFQFLTKKPYEPPPWASLLSPI 
                ************************************************************ 
 
ET30-Tm3        PSHTFSLGHFPTPIHKWNLPNLPKNTEVWLKRDDMSGMQLSGNKVRKLEFLLADAVAQGA 
ET30-acd        PSHTFSLGHFPTPIHKWNLPNLPKNTEVWLKRDDMSGMQLSGNKVRKLEFLLADAVAQGA 
ET30-Tm1        PSHTFSLGHFPTPIHKWNLPNLPKNTEVWLKRDDMSGMQLSGNKVRKLEFLLADAVAQGA 
ET30-Tm2        PSHTFSLGHFPTPIHKWNLPNLPKNTEVWLKRDDMSGMQLSGNKVRKLEFLLADAVAQGA 
                ************************************************************ 
 
ET30-Tm3        DCIVTIGGIQSNHCRATAVAAKYLNLDCYLILRTSKLLVDKDPGLTGNLLVDRLVGAHID 
ET30-acd        DCIVTIGGIQSNHCRATAVAAKYLNLDCYLILRTSKLLVDKDPGLTGNLLVDRLVGAHID 
ET30-Tm1        DCIVTIGGIQSNHCRATAVAAKYLNLDCYLILRTSKLLVDKDPGLTGNLLVDRLVGAHID 
ET30-Tm2        DCIVTIGGIQSNHCRATAVAAKYLNLDCYLILRTSKLLVDKDPGLTGNLLVDRLVGAHID 
                ************************************************************ 
 
ET30-Tm3        LVSKEEYAKVGGEALTKILKEKLLNEGRKPYVIPVGGSNSLGTWGYIEAIRELEQQLQHL 
ET30-acd        LVSKEEYAKVGGEALTKILKEKLLNEGRKPYVIPVGGSNSLGTWGYIEAIRELEQQLQHL 
ET30-Tm1        LVSKEEYAKVGGEALTKILKEKLLNEGRKPYVIPVGGSNSLGTWGYIEAIRELEQQLQHL 
ET30-Tm2        LVSKEEYAKVGGEALTKILKEKLLNEGRKPYVIPVGGSNSLGTWGYIEAIRELEQQLQHL 
                ************************************************************ 
 
ET30-Tm3        SIEQKFDDIVVACGSGGTVAGLSIASMLSGLKAKINAFCVCDDPDYFYEYVQGLLDGITA 
ET30-acd        SIEQKFDDIVVACGSGGTVAGLSIASMLSGLKAKINAFCVCDDPDYFYEYVQGLLDGITA 
ET30-Tm1        SIEQKFDDIVVACGSGGTVAGLSIASMLSGLKAKINAFCVCDDPDYFYEYVQGLLDGITA 
ET30-Tm2        SIEQKFDDIVVACGSGGTVAGLSIASMLSGLKAKINAFCVCDDPDYFYEYVQGLLDGITA 
                ************************************************************ 
 
ET30-Tm3        GVSSRDIVSIKTAKGLGYALSTTDELKFVKQVAETTGVILDPVYEGKAAYGMMKDMGENP 
ET30-acd        GVSSRDIVSIKTAKGLGYALSTTDELKFVKQVAETTGVILDPVYSGKAAYGMMKDMGENP 
ET30-Tm1        GVSSRDIVSIKTAKGLGYALSTTDELKFVKQVAETTGVILDPVYEGKAAYGMMKDMGENP 
ET30-Tm2        GVSSRDIVSIKTAKGLGYALSTTDELKFVKQVAETTGVILDPVYSGKAAYGMMKDMGENP 
                ********************************************.*************** 
 
ET30-Tm3        TKWEGRKILFIHLGGLLGLYDKADEIGSLMGKWRKMDINESIPRQDGIGKMF 
ET30-acd        TKWEGRKILFIHTGGLLGLYDKADEIGSLMGKWRKMDINESIPRQDGIGKMF 
ET30-Tm1        TKWEGRKILFIHTGGLLGLYDKADEIGSLMGKWRKMDINESIPRQDGIGKMF 
ET30-Tm2        TKWEGRKILFIHLGGLLGLYDKADEIGSLMGKWRKMDINESIPRQDGIGKMF 
                ************ *************************************** 
 
 
 
 
 
 
 

Figure 6-8. Protein sequence alignment between D-cysteine desulfhydrase from tomato 
and the mutants of the enzyme. 
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Figure 6-9. Nucleotide sequence alignment between ACC deaminase from P. putida 
UW4 and the constructed mutants. 
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ET30-UW4        ATGCACCATCATCATCATCATTCTTCTGGTCTGGTGCCACGCGGTTCTGGTATGAAAGAA 
ET30-Um2        ATGCACCATCATCATCATCATTCTTCTGGTCTGGTGCCACGCGGTTCTGGTATGAAAGAA 
ET30-Um1        ATGCACCATCATCATCATCATTCTTCTGGTCTGGTGCCACGCGGTTCTGGTATGAAAGAA 
                ************************************************************ 
 
ET30-UW4        ACCGCTGCTGCTAAATTCGAACGCCAGCACATGGACAGCCCAGATCTGGGTACCGACGAC 
ET30-Um2        ACCGCTGCTGCTAAATTCGAACGCCAGCACATGGACAGCCCAGATCTGGGTACCGACGAC 
ET30-Um1        ACCGCTGCTGCTAAATTCGAACGCCAGCACATGGACAGCCCAGATCTGGGTACCGACGAC 
                ************************************************************ 
 
ET30-UW4        GACGACAAGGCCATGGCTGATATCATGAACCTGAATCGTTTTGAACGTTATCCGTTGACC 
ET30-Um2        GACGACAAGGCCATGGCTGATATCATGAACCTGAATCGTTTTGAACGTTATCCGTTGACC 
ET30-Um1        GACGACAAGGCCATGGCTGATATCATGAACCTGAATCGTTTTGAACGTTATCCGTTGACC 
                ************************************************************ 
 
ET30-UW4        TTCGGTCCATCCCCCATCACTCCCTTGAAACGCCTCAGCGAGCACCTGGGCGGCAAGGTG 
ET30-Um2        TTCGGTCCATCCCCCATCACTCCCTTGAAACGCCTCAGCGAGCACCTGGGCGGCAAGGTG 
ET30-Um1        TTCGGTCCATCCCCCATCACTCCCTTGAAACGCCTCAGCGAGCACCTGGGCGGCAAGGTG 
                ************************************************************ 
 
ET30-UW4        GAACTGTATGCCAAGCGTGAAGACTGCAATAGCGGCCTGGCCTTCGGCGGGAACAAAACG 
ET30-Um2        GAACTGTATGCCAAGCGTGAAGACTGCAATAGCGGCCTGGCCTTCGGCGGGAACAAAACG 
ET30-Um1        GAACTGTATGCCAAGCGTGAAGACTGCAATAGCGGCCTGGCCTTCGGCGGGAACAAAACG 
                ************************************************************ 
 
ET30-UW4        CGCAAGCTCGAATATCTGATTCCCGAGGCCATCGAGCAAGGCTGCGACACCTTGGTGTCC 
ET30-Um2        CGCAAGCTCGAATATCTGATTCCCGAGGCCATCGAGCAAGGCTGCGACACCTTGGTGTCC 
ET30-Um1        CGCAAGCTCGAATATCTGATTCCCGAGGCCATCGAGCAAGGCTGCGACACCTTGGTGTCC 
                ************************************************************ 
 
ET30-UW4        ATCGGCGGTATCCAGTCGAACCAGACCCGCCAGGTCGCTGCGGTCGCCGCCCACTTGGGT 
ET30-Um2        ATCGGCGGTATCCAGTCGAACCAGACCCGCCAGGTCGCTGCGGTCGCCGCCCACTTGGGT 
ET30-Um1        ATCGGCGGTATCCAGTCGAACCAGACCCGCCAGGTCGCTGCGGTCGCCGCCCACTTGGGT 
                ************************************************************ 
 
ET30-UW4        ATGAAGTGTGTGCTTGTGCAGGAAAACTGGGTGAACTACTCCGACGCTGTATATGACCGC 
ET30-Um2        ATGAAGTGTGTGCTTGTGCAGGAAAACTGGGTGAACTACTCCGACGCTGTATATGACCGC 
ET30-Um1        ATGAAGTGTGTGCTTGTGCAGGAAAACTGGGTGAACTACTCCGACGCTGTATATGACCGC 
                ************************************************************ 
 
ET30-UW4        GTCGGCAACATCGAGATGTCGCGGATCATGGGAGCGGATGTGCGGCTTGATGCTGCAGGT 
ET30-Um2        GTCGGCAACATCGAGATGTCGCGGATCATGGGAGCGGATGTGCGGCTTGATGCTGCAGGT 
ET30-Um1        GTCGGCAACATCGAGATGTCGCGGATCATGGGAGCGGATGTGCGGCTTGATGCTGCAGGT 
                ************************************************************ 
 
ET30-UW4        TTCGACATTGGAATTCGGCCGAGCTGGGAAAAGGCCATGAGCGATGTCGTGGAGCGCGGC 
ET30-Um2        TTCGACATTGGAATTCGGCCGAGCTGGGAAAAGGCCATGAGCGATGTCGTGGAGCGCGGC 
ET30-Um1        TTCGACATTGGAATTCGGCCGAGCTGGGAAAAGGCCATGAGCGATGTCGTGGAGCGCGGC 
                ************************************************************ 
 
ET30-UW4        GGCAAACCGTTTCCAATTCCGGCGGGCTGTTCCGAGCATCCCTATGGAGGGCTCGGGTTT 
ET30-Um2        GGCAAACCGTTTCCAATTCCGGCGGGCTGTTCCGAGCATCCCTATGGAGGGCTCGGGTTT 
ET30-Um1        GGCAAACCGTTTCCAATTCCGGCGGGCTGTTCCGAGCATCCCTATGGAGGGCTCGGGTTT 
                ************************************************************ 
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ET30-UW4        GTCGGCTTCGCTGAGGAAGTGCGGCAGCAGGAAAAGGAGTTGGGCTTCAAGTTTGACTAC 
ET30-Um2        GTCGGCTTCGCTGAGGAAGTGCGGCAGCAGGAAAAGGAGTTGGGCTTCAAGTTTGACTAC 
ET30-Um1        GTCGGCTTCGCTGAGGAAGTGCGGCAGCAGGAAAAGGAGTTGGGCTTCAAGTTTGACTAC 
                ************************************************************ 
 
ET30-UW4        ATCGTGGTCTGCTCGGTGACCGGCAGTACCCAGGCCGGCATGGTCGTCGGTTTCGCGGCT 
ET30-Um2        ATCGTGGTCTGCTCGGTGACCGGCAGTACCCAGGCCGGCATGGTCGTCGGTTTCGCGGCT 
ET30-Um1        ATCGTGGTCTGCTCGGTGACCGGCAGTACCCAGGCCGGCATGGTCGTCGGTTTCGCGGCT 
                ************************************************************ 
 
ET30-UW4        GACGGTCGCTCGAAAAACGTGATCGGGGTCGATGCTTCGGCGAAACCGGAGCAAACCAAG 
ET30-Um2        GACGGTCGCTCGAAAAACGTGATCGGGGTCGATGCTTCGGCGAAACCGGAGCAAACCAAG 
ET30-Um1        GACGGTCGCTCGAAAAACGTGATCGGGGTCGATGCTTCGGCGAAACCGGAGCAAACCAAG 
                ************************************************************ 
 
ET30-UW4        GCGCAGATCCTGCGTATCGCTCGACATACCGCTGAACTGGTGGAGCTGGGGCGCGAAATC 
ET30-Um2        GCGCAGATCCTGCGTATCGCTCGACATACCGCTGAACTGGTGGAGCTGGGGCGCGAAATC 
ET30-Um1        GCGCAGATCCTGCGTATCGCTCGACATACCGCTGAACTGGTGGAGCTGGGGCGCGAAATC 
                ************************************************************ 
 
ET30-UW4        ACTGAAGAGGATGTGGTGCTCGATACGCGTTTCGCCTATCCGGAATATGGCTTGCCCAAC 
ET30-Um2        ACTGAAGAGGATGTGGTGCTCGATACGCGTTTCGCCTATCCGGAATATGGCTTGCCCAAC 
ET30-Um1        ACTGAAGAGGATGTGGTGCTCGATACGCGTTTCGCCTATCCGGAATATGGCTTGCCCAAC 
                ************************************************************ 
 
ET30-UW4        GAAGGGACGCTGGAAGCGATTCGCCTGTGCGGCAGTCTTGAGGGGGTGTTGACCGATCCG 
ET30-Um2        GAAGGGACGCTGGAAGCGATTCGCCTGTGCGGCAGTCTTGAGGGGGTGTTGACCGATCCG 
ET30-Um1        GAAGGGACGCTGGAAGCGATTCGCCTGTGCGGCAGTCTTGAGGGGGTGTTGACCGATCCG 
                ************************************************************ 
 
ET30-UW4        GTCTACGAGGGCAAATCCATGCACGGCATGATTGAAATGGTACGCCGCGGGGAATTCCCT 
ET30-Um2        GTCTACAGCGGCAAATCCATGCACGGCATGATTGAAATGGTACGCCGCGGGGAATTCCCT 
ET30-Um1        GTCTACAGCGGCAAATCCATGCACGGCATGATTGAAATGGTACGCCGCGGGGAATTCCCT 
                ******   *************************************************** 
 
ET30-UW4        GACGGCTCCAAAGTTCTTTATGCCCACCTGGGCGGCGCACCTGCGTTGAACGCCTACAGC 
ET30-Um2        GACGGCTCCAAAGTTCTTTATGCCCACACCGGCGGCGCACCTGCGTTGAACGCCTACAGC 
ET30-Um1        GACGGCTCCAAAGTTCTTTATGCCCACCTGGGCGGCGCACCTGCGTTGAACGCCTACAGC 
                ***************************   ****************************** 
 
ET30-UW4        TTCCTGTTTCGCAACGGCTGA 
ET30-Um2        TTCCTGTTTCGCAACGGCTGA 
ET30-Um1        TTCCTGTTTCGCAACGGCTGA 
                ********************* 
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ET30-UW4        MHHHHHHSSGLVPRGSGMKETAAAKFERQHMDSPDLGTDDDDKAMADIMNLNRFERYPLT 
ET30-Um2        MHHHHHHSSGLVPRGSGMKETAAAKFERQHMDSPDLGTDDDDKAMADIMNLNRFERYPLT 
ET30-Um1        MHHHHHHSSGLVPRGSGMKETAAAKFERQHMDSPDLGTDDDDKAMADIMNLNRFERYPLT 
                ************************************************************ 
 
ET30-UW4        FGPSPITPLKRLSEHLGGKVELYAKREDCNSGLAFGGNKTRKLEYLIPEAIEQGCDTLVS 
ET30-Um2        FGPSPITPLKRLSEHLGGKVELYAKREDCNSGLAFGGNKTRKLEYLIPEAIEQGCDTLVS 
ET30-Um1        FGPSPITPLKRLSEHLGGKVELYAKREDCNSGLAFGGNKTRKLEYLIPEAIEQGCDTLVS 
                ************************************************************ 
 
ET30-UW4        IGGIQSNQTRQVAAVAAHLGMKCVLVQENWVNYSDAVYDRVGNIEMSRIMGADVRLDAAG 
ET30-Um2        IGGIQSNQTRQVAAVAAHLGMKCVLVQENWVNYSDAVYDRVGNIEMSRIMGADVRLDAAG 
ET30-Um1        IGGIQSNQTRQVAAVAAHLGMKCVLVQENWVNYSDAVYDRVGNIEMSRIMGADVRLDAAG 
                ************************************************************ 
 
ET30-UW4        FDIGIRPSWEKAMSDVVERGGKPFPIPAGCSEHPYGGLGFVGFAEEVRQQEKELGFKFDY 
ET30-Um2        FDIGIRPSWEKAMSDVVERGGKPFPIPAGCSEHPYGGLGFVGFAEEVRQQEKELGFKFDY 
ET30-Um1        FDIGIRPSWEKAMSDVVERGGKPFPIPAGCSEHPYGGLGFVGFAEEVRQQEKELGFKFDY 
                ************************************************************ 
 
ET30-UW4        IVVCSVTGSTQAGMVVGFAADGRSKNVIGVDASAKPEQTKAQILRIARHTAELVELGREI 
ET30-Um2        IVVCSVTGSTQAGMVVGFAADGRSKNVIGVDASAKPEQTKAQILRIARHTAELVELGREI 
ET30-Um1        IVVCSVTGSTQAGMVVGFAADGRSKNVIGVDASAKPEQTKAQILRIARHTAELVELGREI 
                ************************************************************ 
 
ET30-UW4        TEEDVVLDTRFAYPEYGLPNEGTLEAIRLCGSLEGVLTDPVYEGKSMHGMIEMVRRGEFP 
ET30-Um2        TEEDVVLDTRFAYPEYGLPNEGTLEAIRLCGSLEGVLTDPVYSGKSMHGMIEMVRRGEFP 
ET30-Um1        TEEDVVLDTRFAYPEYGLPNEGTLEAIRLCGSLEGVLTDPVYSGKSMHGMIEMVRRGEFP 
                ******************************************.***************** 
 
ET30-UW4        DGSKVLYAHLGGAPALNAYSFLFRNG 
ET30-Um2        DGSKVLYAHTGGAPALNAYSFLFRNG 
ET30-Um1        DGSKVLYAHLGGAPALNAYSFLFRNG 
                ********* **************** 

 

 

 

 

 

 

 

Figure 6-10. Protein sequence alignment between ACC deaminase from P. putida UW4 
and the mutants of the enzyme. 
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