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Abstract

Determining the maximum power system loadability, as well as preventing the sys-

tem from being operated close to the stability limits is very important in power

systems planning and operation. The application of optimization techniques to

power systems security and electricity markets is a rather relevant research area in

power engineering. The study of optimization models to determine critical operat-

ing conditions of a power system to obtain secure power dispatches in an electricity

market has gained particular attention. This thesis studies and develops optimiza-

tion models and techniques to detect or avoid voltage instability points in a power

system in the context of a competitive electricity market.

A thorough analysis of an optimization model to determine the maximum power

loadability points is first presented, demonstrating that a solution of this model

corresponds to either Saddle-node Bifurcation (SNB) or Limit-induced Bifurcation

(LIB) points of a power flow model. The analysis consists of showing that the

transversality conditions that characterize these bifurcations can be derived from

the optimality conditions at the solution of the optimization model. The study

also includes a numerical comparison between the optimization and a continuation

power flow method to show that these techniques converge to the same maximum

loading point. It is shown that the optimization method is a very versatile technique

to determine the maximum loading point, since it can be readily implemented

and solved. Furthermore, this model is very flexible, as it can be reformulated to

optimize different system parameters so that the loading margin is maximized.

The Optimal Power Flow (OPF) problem with voltage stability (VS) constraints

is a highly nonlinear optimization problem which demands robust and efficient so-

lution techniques. Furthermore, the proper formulation of the VS constraints plays

a significant role not only from the practical point of view, but also from the mar-

ket/system perspective. Thus, a novel and practical OPF-based auction model is

proposed that includes a VS constraint based on the singular value decomposition

(SVD) of the power flow Jacobian. The newly developed model is tested using

iii



realistic systems of up to 1211 buses to demonstrate its practical application. The

results show that the proposed model better represents power system security in

the OPF and yields better market signals. Furthermore, the corresponding so-

lution technique outperforms previous approaches for the same problem. Other

solution techniques for this OPF problem are also investigated. One makes use of

a cutting planes (CP) technique to handle the VS constraint using a primal-dual

Interior-point Method (IPM) scheme. Another tries to reformulate the OPF and

VS constraint as a semidefinite programming (SDP) problem, since SDP has proven

to work well for certain power system optimization problems; however, it is demon-

strated that this technique cannot be used to solve this particular optimization

problem.
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Chapter 1

Introduction

1.1 Research Motivation

Among the different challenges faced by market and system operators, maintaining

system security has become one of the main concerns in the wake of privatization

and deregulation around the world. The new structure of the power industry has

pushed power systems to be operated even closer to their limits, due to market

pressures or physical limitations in the transmission network. Thus, system oper-

ators are demanding tools that allow them to make fast and effective decisions, in

order to prevent the power system from being operated close to its stability limits,

and at the same time generate adequate pricing signals for the market participants.

This challenge has motivated researchers to come up with Optimal Power Flow

(OPF) models that better represent power system security in electricity markets.

Particular interest has been given to the incorporation of voltage stability (VS)

constraints in the OPF [1], since this phenomena is believed to be directly associated

with many major blackouts experienced around the world during the past decade [2–

4]. Consequently, different OPF models with an emphasis on system security have

been proposed, such as Security-constrained OPFs (SC-OPFs) and VS-constrained

OPFs (VSC-OPFs). However, further research to improve these models and the

1



Chapter 1. Introduction 2

corresponding solution techniques is needed, since the large computational burden

of these models in the solution of real systems is still a problem. Thus, this thesis

elaborates on the development of an enhanced VSC-OPF model, and a robust and

efficient solution technique that can be used in realistic systems.

Determining the maximum power system loadability is very important in order

to design preventive actions that help keep the system secure even in the worse con-

tingency scenario (N-1 security criterion). The OPF-based Direct Method (OPF-

DM) is a very flexible and efficient optimization technique that has been used to

carry out this task [5, 6]. However, the theoretical background that supports the

use of this model has not been fully addressed in the literature. Therefore, a full

theoretical and numerical analysis, is presented in this thesis to formally prove

the equivalency of OPF-DM and Continuation Power Flow (CPF) techniques to

determine the maximum power system loadability.

The SC-OPF, VSC-OPF, and OPF-DM models have been developed using dif-

ferent optimization techniques, such as multiobjective optimization [1], successive

linear programming [7], and Interior-point Method (IPM) [8]. These techniques

have become a powerful tool in power engineering to, for example, minimize costs

in an electricity market or to determine/prevent insecure operating conditions of a

power system. Semidefinite Optimization (SDP) is a very active research area in

mathematical optimization, and it has been applied to hydrothermal coordination

and power dispatch problems [9,10]. However, the particular characteristics of SDP,

which could be useful in solving VSC-OPFs have not yet been studied. Therefore,

this subject is investigated here to determine whether SDP can be applied to the

solution of the VSC-OPF problem.

1.2 Literature Review

One of the main objectives of any system or grid operator is to operate the electri-

cal power system at the lowest cost, while guaranteeing system security. In order
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to achieve this objective, the incorporation of advanced large-system analysis, op-

timization techniques and control technology in an Energy Management System

(EMS) is required. The EMS is a large and complex hardware-software system

used by the grid or system operator to perform on-line monitoring, assessment, and

optimizing functions for the network, to prevent or correct operational problems

while considering its most economic operation [11].

Security Assessment (SA) and optimization techniques are becoming a unified

mathematical problem in modern power system operations [11, 12]. On the one

hand, new models to appropriately and efficiently represent power system security

are required. On the other hand, rapid optimization techniques to deal with very

large and highly nonlinear models are also needed. Thus, researchers have been

studying optimization methods to determine optimal control parameters guaran-

teeing certain security margins, particularly to avoid voltage collapse.

1.2.1 Voltage Stability

VS has become rather important in modern power systems, due to the fact that

systems are being operated close to their security limits, as demonstrated by many

recent major blackouts which can be directly associated with VS problems [13].

Furthermore, the implementation and application of open market principles have

exacerbated this problem, since security margins are being reduced to respond to

market pressures [14–16]. Consequently, the prediction, identification and avoid-

ance of voltage instability points play a significant role in power systems plan-

ning and operation. Nonlinear phenomena, particularly Saddle-node Bifurcations

(SNBs) and Limit-induced Bifurcations (LIBs), have been shown to be directly as-

sociated with VS problems in power systems [13]. Other types of bifurcations in

power systems, such as Hopf Bifurcations (HB), associated with oscillatory instabil-

ities [17], and Singularity-induced Bifurcations (SIB), associated with differential-

algebraic models [13,18,19], have not been shown in practice to be directly related

to VS problems [13], therefore, these bifurcations are not addressed in this thesis.
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CPF and OPF-DM are two different techniques that are used to compute VS

margins, i.e., the distance to an SNB or a particular LIB from the current loading

point. The most widely used method is the CPF [20], which is a technique that

consists of increasing the loading level until a voltage, current, or VS limit is de-

tected in a power flow model. CPF is based on a predictor-corrector scheme to

find the complete equilibrium profile or bifurcation manifold (PV curve) of a set of

power flow equations, with respect to a given scalar variable. This scalar parameter

is typically referred to as the bifurcation parameter or loading factor, as it is used

to model changes in system demand [20, 21]. In [22], it is shown that this method

can be viewed as a Generalized Reduced Gradient (GRG) approach for solving a

maximum loadability optimization problem.

The OPF-DM is an optimization-based method that consists of maximizing the

loading factor, while satisfying the power flow equations, bus-voltage, generators’

reactive power limits, and other operating limits of interest (e.g., transmission-line

thermal limits) [23, 24]. A variety of OPF models based on the OPF-DM have

been proposed; for example, the authors in [1, 25, 26] propose a multiobjective

OPF for maximizing both the social welfare and the loading factor. This type of

optimization problem can be solved by means of IPMs, which have been shown to

be computationally efficient for power system studies [27].

An important difference between the CPF and the most popular implementa-

tions of the OPF-DM is that, in the CPF, the voltage is kept constant at generation

buses while their reactive power output is within limits (PV bus model). In the

“standard” OPF-DM, generator voltages and reactive powers are allowed to change

within limits, so that “optimal” operating conditions are obtained. These different

approaches may lead to different solutions; an interesting discussion about this is-

sue can be found in [15]. An OPF-DM model that is shown empirically to produce

similar results to the CPF approach is presented and discussed in [6], where PV

buses are modeled using complementarity constraints. The latter are shown here to

be particularly important in demonstrating the equivalency of CPF and OPF-DM

approaches. The use of complementarity constraints for representing generators’
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limits is also discussed in [5], where an interesting analysis of the loadability sur-

face of a power system is presented. This thesis presents a detailed theoretical

analysis of the OPF-DM, demonstrating its “equivalency” with CPF approaches.

1.2.2 OPF-based Auction Models

OPFs have become one of the most widely used market tools in the electricity

industry, particularly in planning, real-time operation, and electricity market auc-

tions. New challenges have arisen with the introduction of competitive market

principles in electricity markets that have pushed power systems to be operated

closer to their stability limits in order to respond to market pressures. One of

these challenges is the proper representation of power system security in traditional

OPF-based auction models to guarantee reliable operations at reasonable electric-

ity prices. Furthermore, with the lack of investment in and development of new

transmission lines, and the increase in power transactions in a competitive elec-

tricity market, these challenges have become more relevant for market and system

operators.

The objective of the present research is to develop OPF-based auction mod-

els that are computationally robust and can properly represent system security,

so that these can be used in a market/system operating environment [12, 28, 29].

Thus, different approaches to represent system security limits in the OPF-based

auction models have been proposed in the literature [30–34], so that the optimal

solution guarantees a secure power dispatch. These OPFs have evolved from “clas-

sical” optimization models with simple lower and upper bounds in some of the

operating constraints (e.g., bus voltage and reactive power limits [35]), to more

sophisticated models such as the VSC-OPFs, which incorporate highly nonlinear

constraints derived from traditional VS analysis (e.g., [34]).

The OPF models which look for optimal control settings in the pre-contingency

state to prevent violations in the post-contingency state are commonly referred to

as SC-OPFs [36]. An example of a SC-OPF model can be found in [35], where the
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authors propose an OPF iterative technique that searches for secure voltage levels,

which meet the bus voltage and reactive power limits after any single outage. The

authors in [37, 38] put emphasis on secure generation schedules to prevent trans-

mission lines from overloading. The authors in [39] propose the use of line outage

distribution factors to formulate contingency constraints in the SC-OPF. An inter-

esting approach of a linear SC-OPF, which includes bus voltage magnitudes and

reactive power, is proposed in [40]; the model is formulated using graph theory. The

main disadvantage of these models is that the operating constraints are calculated

off-line; therefore, these constraints may impose a more restrictive operative region

that does not necessarily reflect actual security levels, yielding improper market sig-

nals [1, 41]. Furthermore, the condition of voltage collapse is not well represented

in any of these models.

The aforementioned disadvantages led to the development of VSC-OPFs, which

include constraints that better represent VS limits (e.g., [1]). These models have

been shown to yield more “relaxed” auction models, providing higher transaction

levels and better electricity prices while guaranteeing proper system security levels.

Thus, based on the idea of maximizing the distance to voltage collapse using opti-

mization techniques, the authors in [14, 31, 42] propose a second set of power flow

equations and associated security limits to represent a “critical” operating point

associated with a voltage collapse condition. In this case, the objective is an opti-

mal dispatch that is secure for both the current and critical operating conditions.

Multiobjective optimization techniques to deal with both market and system secu-

rity scenarios in the OPF have been proposed in [33]. In this context, the authors

in [1, 26, 43] propose VSC-OPF models based on multiobjective optimization to

optimize active and reactive power dispatch while maximizing voltage security. A

second set of power flow equations to represent a critical operating condition is used

in these papers. The problem with this approach is choosing proper values for the

weighting factors in the multiobjective function; furthermore, the number of con-

straints practically doubles, making it computationally impractical. Consequently,

other approaches have been proposed to reduce the number of constraints and to
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make them more practical. One method consist of the use of VS indices (VSI) to

represent proximity to voltage collapse in the OPF. Most of the proposed indices

are based upon small perturbations in the load, loading margins, or the monitoring

of some variables whose deviations at the collapse point can be predicted, such as

the Available Transfer Capability (ATC), tangent vector indices, or reactive power

indices [23, 30, 44–52].

The use of the minimum singular value (MSV) of the power flow Jacobian has

been also proposed as a VSI for VS assessment [44, 45], since this index tends to

become zero at the voltage collapse point. Thus, the authors in [34,53] incorporate

this index into the OPF as a VS constraint to guarantee a minimum distance to

voltage collapse. Approximate derivatives are required during the solution process

of this VSC-OPF, however, which may lead to convergence problems. The main

disadvantage of available VSC-OPF models is that they present significant com-

putational problems, which render them impractical. This thesis focuses on this

particular issue by proposing novel solution techniques, so that VSC-OPFs can be

better applied in practice.

1.3 Objectives

The following are the main objectives of this thesis, concentrating on the application

of optimization techniques to VS analysis, and on the development of practical

methods to solve VSC-OPFs:

1. Demonstrate that a solution of the OPF-DM correspond to either an SNB or

LIB point of a power flow model.

2. Propose practical solution methods to solve a MSV-based VSC-OPF, so that

it can be applied to more “realistic” systems.

3. Implement and test the proposed VSC-OPF solution technique using “stan-

dard” mathematical optimization tools.
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4. Study the possible application of SDP to solve the VSC-OPF.

1.4 Thesis Outline

This thesis is organized into six chapters and one appendix as follows:

Chapter 2 presents a review of the main concepts of VS analysis and optimiza-

tion techniques of interest in this thesis. It describes the models used in nonlinear

theory for the characterization of VS in bifurcation analysis. Then, a brief intro-

duction to power systems security assessment is presented, followed by a discussion

of the most recently proposed VSC-OPF-based auction models. This chapter also

summarizes the primal-dual IPM, and the basis of SDP.

Chapter 3 presents a comprehensive theoretical study of the OPF-DM. This

work consist of reordering the the Karush-Kuhn-Tucker (KKT) conditions for op-

timality at the solution of the OPF-DM, so that the transversality conditions for

SNB and LIB in bifurcation theory can be derived. The analytical results are fur-

ther illustrated with numerical examples that show this optimization method yields

equivalent maximum loading points as the CPF.

Chapter 4 describes the development of a solution technique for the MSV-based

VSC-OPF, which is based on the SVD of the power flow Jacobian, plus an iterative

solution process. The proposed model and solution technique is tested using two

realistic test systems and compared with both a previously proposed method and

a SC-OPF.

Chapter 5 presents an optimization method based on the primal-dual IPM and

cutting planes (CP) to solve the MSV-based VSC-OPF. The proposed solution

technique is first described, and then several simulations are carried out to study

its performance. This is followed by numerical examples and a comparison with

the proposed technique in Chapter 4. Finally, it presents an analysis of the possible

application of SDP to the solution of the same VSC-OPF model.
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Chapter 6 summarizes the conclusions and main contributions of this thesis, as

well as discusses possible future work.

Finally, Appendix A presents a brief description of the test systems, and provides

the data of the test systems.



Chapter 2

Background Review

2.1 Introduction

This chapter presents a review of the concepts, models, and tools related to the

research work presented in this thesis. It first discusses the modeling and analysis

of VS, using bifurcation theory, and also the tools used for VS assessment, as well

as the use of these concepts and tools for power system security analysis. The

most recent SC-OPFs and VSC-OPFs models are also discussed here, highlighting

advantages and disadvantages of each one. The primal-dual IPM algorithm, and

SDP are summarized in this chapter as well.

2.2 Voltage Stability Analysis

Voltage stability is associated with the capability of a power system to maintain

steady acceptable voltages at all buses, not only under normal operating conditions,

but also after being subjected to a disturbance [54]. It is a well established fact

that voltage collapse in power systems is associated with system demand increasing

beyond certain limits, as well as with the lack of reactive power support in the

10
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system caused by limitations in the generation or transmission of reactive power.

System contingencies such as generator or unexpected line outages exacerbate, if

not trigger, the VS problems [13, 55]. Usually, VS analysis consists of determining

the system conditions at which the equilibrium points of a dynamic model of the

power system merge and disappear; these points have been associated with certain

bifurcations of the corresponding system models [13].

Voltage stability is an important problem in modern power systems due to

the catastrophic consequences of this phenomena. Thus, determining the largest

possible margin to the point of voltage collapse is becoming an essential part of

new electricity markets. These markets are also seeking ways to reduce operating

costs; as a matter of fact the application of open market principles has resulted

in stability margins being reduced to respond to market pressures [14, 15]. In an

open electricity market, voltage security requirements are typically associated with

transmission congestion and its associated high prices [16].

2.2.1 Effects of Increasing Demand

A slow increase in the system demand, such as that due to normal daily load

variations, can have negative effects on VS. If any small increase in loading demand

occurs, the reactive power demand will be greater than supply, and the voltage will

decrease. As the voltage decreases, the difference between reactive power supply

and demand increases, and the voltage falls even more until it eventually falls to a

very small value. This phenomenon is generally known as voltage collapse. The two

terms of voltage collapse are total voltage collapse and partial voltage collapse. The

former means that the collapse in permanent; the latter is used when the voltage is

below some technical acceptable limit and does not correspond to system instability

but an emergency state [56].

It is well-known that an excess of reactive power results in voltage increase,

while a deficit of reactive power results in a voltage decrease. Thus, consider the

equilibrium point s shown in Figure 2.1. If one assumes that there is small negative
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Figure 2.1: QS(V ) and QL(V ) characteristics and equilibrium points

voltage disturbance ∆V , the reactive power supply QS(V ) would be greater than the

reactive power demand QL(V ). This excess of reactive power tends to increase the

voltage until it returns to point s. If the disturbance produces an increase in voltage,

the resulting deficit in reactive power will force the voltage to decrease and return

to point s. Thus, one can conclude that the equilibrium point s is stable. If one now

considers the equilibrium point u under the same small negative disturbance, the

reduction in voltage will produce a deficit of reactive power with QS(V ) < QL(V ),

which will produce a further decrease in voltage. As a result of both the voltage and

reactive power being reduced, the voltage will not recover; therefore, the equilibrium

point u is unstable [56]. Notice that if the QL(V ) characteristic is lifted upward,

the equilibrium points u and s tend to move toward each other until they eventually

merge and disappear, which is a phenomenon explained using bifurcation theory as

explained below.
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2.2.2 System Models

Power systems are typically modeled with nonlinear differential-algebraic equations

(DAE), which are a class of nonlinear systems, as follows:
[

ẋ

0

]
=

[
f(x, y, λ, p)

g(x, y, λ, p)

]
= F (z, λ, p) (2.1)

where x ∈ R
nx is a vector of state variables that represents the dynamic states

of generators, loads, and system controllers; y ∈ R
ny is a vector of algebraic vari-

ables that typically results from neglecting fast dynamics, such as load bus voltages

magnitudes and angles; z = (x, y) ∈ R
nz ; λ ∈ R

+ stands for a slow varying “uncon-

trollable” parameter, typically used to represent load changes that move the system

from one equilibrium point to another; and p ∈ R
np represents “controllable” pa-

rameters associated with control settings, such as Automatic Voltage Regulator

(AVR) set points. The function f : R
nx × R

ny × R
+ × R

np 7→ R
nx is a nonlinear

vector field directly associated with the state variables x, and representing the sys-

tem differential equations, such as those associated with the generator mechanical

dynamics; and g : R
nx × R

ny × R
+ × R

np 7→ R
ny represents the system nonlinear

algebraic constraints, such as the power flow equations, and algebraic constraints

associated with the synchronous machine model.

If the Jacobian ∇T
y g(·) of the algebraic constraints is invertible, i.e., nonsingular

along a “solution path” of (2.1), the behavior of the system is mainly defined by

the following Ordinary Differential Equation (ODE) model

ẋ = f(x, y−1(x, λ, p), λ, p)

where y−1(x, λ, p) results from applying the Implicit Function Theorem to the al-

gebraic constraints along the system trajectories of interest [22,57]. The interested

reader is referred to [58] for a detailed discussion when ∇T
y g(·) is not guaranteed

to be invertible. This problem is associated with SIBs, which go beyond the scope

of this thesis, since this phenomenon is not directly related to VS problems in

practice [13].
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Equilibrium points zo = (xo, yo) of (2.1) are defined by the solutions of the

nonlinear equations:

F (zo, λo, po) =

[
f(xo, yo, λo, po)

g(xo, yo, λo, po)

]
= 0

It is important to highlight the fact that the system equilibria are in practice

obtained from a subset of equations:

G(ẑo, λo, p̂o) = G|o = 0 ⊂ F (zo, λo, po) = F |o = 0 (2.2)

where G|o = 0 stands for the power flow equations; G ⊂ g; ẑo ∈ R
nẑ ⊂ z is the

set of voltage and angles at all buses as well as the reactive power of the generator

(PV) buses; and p̂o ∈ R
np̂ ⊆ p usually represents the voltage levels and “base”

active power injections at PV buses, “base” active and reactive power injections at

load buses, transformer fixed-tap settings and other controller settings.

Power flow models have been used in practice for VS assessment, since these

models form the basis for defining the actual system operating conditions [13].

However, one should be aware that the solutions of the power flow equations do

not necessarily correspond to system equilibria, since a solution of G|o = 0 does

not imply that F |o = 0; however, in practice, this issue tends to be ignored.

2.2.3 Bifurcation Analysis

Bifurcation theory yields concepts and tools to classify, study, and give qualitative

and quantitative information about the behavior of a nonlinear system close to

bifurcation or “critical” equilibrium points as system parameters change [59]. The

parameters are assumed to change “slowly”, so that the system can be assumed to

“move” from equilibrium point to equilibrium point by these changes (quasi-static

assumption). Hence, bifurcation analysis is usually associated with the study of

equilibria of the nonlinear system model [13].
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In power systems, SNBs and some types of LIBs are basically characterized

by the local merging and disappearance of power flow solutions as certain system

parameters, particularly system demand, slowly change; this phenomena has been

associated with VS problems [13]. These kinds of bifurcations are also referred to

in the technical literature as fold or turning points.

Saddle-node Bifurcations

These types of codimension-1 (single parameter), generic bifurcations occur when

two equilibrium points, one stable and one unstable in practice, merge and disap-

pear as the parameter λ slowly changes, as illustrated in the PV curves of Figures 2.2

and 2.3. In these figures, VGi
and QGi

stand for a generator i’s terminal voltage

magnitude and reactive power, respectively. Mathematically, the SNB point for

the power flow model (2.2) is a solution point (ẑc, λc, p̂o) where the Jacobian ∇T
ẑ G|c

has a simple zero eigenvalue, with nonzero eigenvectors [60, 61]. The following

transversality conditions can be used to characterize and detect SNBs [22]:

∇T
ẑ G|cv̂ = ∇ẑG|cŵ = 0 (2.3)

∇λG|c ŵ 6= 0 (2.4)

ŵT
[
∇2T

ẑ G|cv̂
]
v̂ 6= 0 (2.5)

where v̂ and ŵ ∈ R
nẑ are unique normalized right and left eigenvectors of the

Jacobian ∇T
ẑ G|c. The first condition implies that the Jacobian matrix is singular;

the second and third conditions ensure that there are no equilibria near (ẑc, λc, p̂o)

for λ > λc (or λ < λc, depending on the sign of (2.5)). Note that the subscript c is

used throughout this thesis to denote a bifurcation point.

Limit-induced Bifurcations

These types of codimension-1 (single parameter), generic bifurcations in power sys-

tems were first studied in detail in [62], and can be typically encountered in these
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Figure 2.3: Stable limit point (LIDB) followed by a SNB.
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Figure 2.4: Unstable limit point (LISB).
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Figure 2.5: LISB preceded by a LIDB.
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systems. Hence, as the load increases, reactive power demand generally increases

and reactive power limits of generators or other voltage regulating devices are be-

ing reached. These bifurcations result in reduced VS margins, and in some cases

the operating point “disappears” causing a voltage collapse [13], as illustrated in

Figures 2.3-2.5. Mathematically, the LIBs associated with power flow models are

solution points (ẑc, λc, p̂o) where all the eigenvalues of the corresponding Jacobian

∇T
ẑ G|c have nonzero real parts, i.e., the power flow Jacobian is nonsingular [63].

The authors in [5] refer to this bifurcations as Switching Loadability Limit (SLL),

to emphasize the absence of the singularity condition and their relation to reactive

power limits being reached.

These bifurcations are divided into two types, namely, Limit-induced Dynamic

Bifurcations (LIDB), and Limit-induced Static Bifurcations (LISB) [58]. In the

case of LIDBs, the equilibrium points continue to exist after being reached as the

bifurcation parameter λ changes, as illustrated in Figures 2.3 and 2.5. On the other

hand, LISBs are somewhat similar to SNBs in the sense that these correspond to

points at which two solutions merge and disappear as the bifurcation parameter λ

changes, as depicted in Figure 2.4. Thus, LISBs also are associated with maximum

loadability margins in power flow models.

In general, the limits that trigger LIBs can be categorized into three basic types

of limits, namely, actuation limits, state limits and switching limits [63]. The

actuation limits appear when certain variables, which are functions of some of the

state variables, encounter a limit. These limits do not directly affect the state

variables but the overall dynamics, and they can be modeled through the use of

actuation functions. In power systems models, actuation limits typically depend on

only one state variable at a time, and one of these inequalities becomes an equality

upon encountering a limit. The state limits have a direct effect on the state variables

and occur when a state reaches its limit. The result in the system dimension is that

it drops by one, since the state variable becomes a constant in the model. These

kinds of limits can be modeled by setting the state derivative equal to zero when

the limits are reached. Finally, the switching limits are followed by pre-established
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actions (e.g., relaying mechanisms or protective limiters in the physical system),

which might result in a change in the whole system, and consequently in the states.

These limits can be modeled, for instance, by introducing certain binary variables

that represent the internal logic of a relay element.

For the power flow model, actuation limits can be directly associated with LIBs.

Therefore, this thesis focuses on these types of limits to analyze LIBs, using the

following representation that results from the proper ordering of the power flow

equations (2.2), and with similar notation to the one proposed in [63]:

G(ẑ, λ, p̂) =

[
ĝ(z̃, r̂, λ, p̂)

r̂ − ŝ(z̃, λ, p̂)

]
= 0 (2.6)

where z̃ ∈ R
nz̃ , r̂ ∈ R

nr̂ , ẑ = (z̃, r̂), and the actuation limits are modeled as:

r̂i =






r̂imin
, if ŝi(z̃, λ, p̂) < r̂imin

ŝi(z̃, λ, p̂), if r̂imin
≤ ŝi(z̃, λ, p̂) ≤ r̂imax

r̂imax , if ŝi(z̃, λ, p̂) > r̂imax

(2.7)

Since in power flow models, LIBs of interest are typically associated with gen-

erators reaching their maximum reactive power limits, at a LIB point (ẑc, λc, p̂o) =

(z̃c, r̂c, λc, p̂o), the following two sets of equations apply:

Ga(ẑc, λc, p̂o) =




ĝ(z̃c, r̂c, λc, p̂o)

r̂kc − ŝk(z̃c, λc, p̂o) ∀k 6= i

r̂ic − ŝi(z̃c, λc, p̂o)


 = 0 (2.8)

Gb(ẑc, λc, p̂o) =




ĝ(z̃c, r̂c, λc, p̂o)

r̂kc − ŝk(z̃c, λc, p̂o) ∀k 6= i

r̂ic − r̂imax


 = 0 (2.9)

where (2.8) corresponds to the system equations “before” a limit is reached, and

(2.9) represents the system “after” a limit is reached as λ increases. These system

conditions can be referred to as the system in actuation regime and in saturation
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regime, respectively, as depicted in Figures 2.3-2.5. Notice that a “critical” solution

or bifurcation point must satisfy both sets of equations, and that the difference

between (2.8) and (2.9) is only the equation corresponding to actuation limit i,

since a LIB occurs when a single generator i reaches its maximum reactive power

limit.

The transversality conditions for LIBs may then be defined as follows [63]:

1. Ga|c = Gb|c = 0

2. Jacobians J i
a = ∇T

ẑ Ga|c and J i
b = ∇T

ẑ Gb|c have nonzero real parts, i.e.,

det(J i
a) 6= 0 and det(J i

b) 6= 0 (2.10)

3. The index:

α =
det J i

a

det J i
b

6= 0 (2.11)

defines the type of LIB; thus, α > 0 for a LISB, and α < 0 for a LIDB.

Chapter 3 concentrates on demonstrating that the transversality conditions (2.3)-

(2.5) for an SNB point, and (2.10)-(2.11) for a LIB point, can be derived from the

optimality conditions of the OPF-DM described in Section 2.4.2.

2.3 Power System Security

Power system security can be defined as the ability of the system to survive any

credible contingency without serious consequences [16, 64]. NERC defines relia-

bility as the degree to which the performance of electrical system could result in

power being delivered to consumers within accepted standards and desired amounts.

NERC’s definition of reliability encompasses two concepts: adequacy and security.

Adequacy is the ability of a power system to properly supply consumers’ electrical

power and energy requirements at all times. Security is defined as the ability of a

power system to withstand sudden disturbances [65].
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System security is composed of three major functions that are carried out in a

control center:

1. System Monitoring: Provides the operators of the power system with up-to-

date information on the conditions on the power system.

2. Contingency Analysis: The results of this analysis allow systems to be oper-

ated defensively.

3. SC-OPF: A contingency analysis is combined with an OPF, so that no con-

tingencies result in limit violations. A SC-OPF model is discussed in detail

in Section 2.5.2.

Transmission-line failures cause changes in the flows and voltages on transmis-

sion equipment remaining connected to the system. Therefore, the analysis of

transmission failures requires methods to predict these flows and voltages so as

to be sure they are within their respective limits. One way to gain speed in the

solution of a contingency analysis procedure is to use an approximate model of

the power system. For many systems, the use of DC load flow models provides

adequate capability. In such systems, the voltage magnitudes may not be of great

concern, and hence the DC load flow provides sufficient accuracy with respect to

the megawatt flows. For other systems, when voltage is a concern, a full AC load

flow analysis is required [36].

2.3.1 Security Assessment

Security Assessment is the process by which the power system static security level

is determined, by means of detecting limit violations in its pre-contingency or post-

contingency operating states [11, 64]. The first function in this process is violation

detection in the actual operating state (e.g., monitoring actual flows or voltage

limits). The second is contingency analysis, which identifies potential emergency
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operating states, through iterative simulations on the power system in the context

of what would happen if certain outages occur [11,64]. The second function implies

several difficulties in practice; for instance, how to handle the power system, de-

termine which contingency scenarios are more likely to happen, and speed up the

process, since the solution of many contingency cases requires a significant compu-

tational effort. In the same manner, the determination of the VS margin consists

of finding how much the system can be stressed in a particular load direction from

its current operating state and yet remain secure [16].

Two alternative definitions of SA exist, namely, direct and indirect. In direct

SA, the objective is to estimate the probability of the power system changing from

the normal state to the emergency state. In indirect SA, one defines the system

“security” variables that must be maintained within limits to provide adequate

reserve margins [64].

2.3.2 Available Transfer Capability

The ATC is defined as “a measure of the transfer capability remaining in the phys-

ical transmission network for further commercial activity over and above already

committed uses”. Mathematically, ATC is defined as [66]:

ATC = TTC - TRM - ETC

where:

• Total Transfer Capability (TTC): Is the maximum loading level of the system

considering an N-1 contingency criterion. The TTC is defined as:

TTC = min{Pmax
Ilim

, Pmax
Vlim

, Pmax
Slim
} (2.12)

where Ilim, Vlim and Slim represent the thermal, voltage magnitude, and sta-

bility limits, respectively [67].
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Figure 2.6: ATC evaluation with dominant voltage limits.

• Transmission Reliability Margin (TRM): This measure considers uncertainty

to account for other contingencies; it is usually assumed to be a fixed value

(e.g., WECC’s 5% of TTC). The authors in [68], propose a formula that cal-

culates the TRM based on a probabilistic approach for various uncertainties.

• Existing Transmission Commitments (ETC): Basically, represents the current

loading level.

• Capacity Benefit Margin (CBM): is a reserve made by load-serving entities to

guarantee access to generation from different interconnected systems to meet

their generation reliability requirements [69]. This could be considered to be

included in the ETC.

2.3.3 Loading Margin

The maximum loading margin can be defined as the distance between a given op-

erating point and a maximum loading condition reached in a particular pattern of
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load increase. This margin is the most basic and widely accepted index of voltage

collapse [13]. Mathematically, the loading margin for a typical power flow model is

defined as follows:

λ = λc − λo

where λc is the maximum loading of the system at a given limit, either the bus

voltage limit (Vlim), thermal limit (Ilim), or VS limit (Slim), which corresponds to

an SNB or LIB point in the PV curve of a power flow model [67], and λo stands for

the base or current operating point. The parameter λ typically represents variations

in load and generation schedules as follows:

PG = PGo + (λ + KG)PS (2.13)

PL = PLo + λPD (2.14)

QL = QLo + λKLPD (2.15)

where PGo , PLo and QLo stand for the “base” generation and load levels, thus

defining an “initial” operating point; KG is a variable used to represent a distributed

slack bus; and KL is a parameter used to represent a load with a constant power

factor. PS and PD are used here to define the generation and load “directions”,

respectively, needed to compute loading margins and PV curves. All loads are

typically assumed to have constant power factors.

Figure 2.6 depicts the computation of ATC based on the loading margin in terms

of PV curve typically used in VS studies [13]. In this analysis, system stability is

assumed to be represented by VS margins, which is an adequate approximation,

since blackouts are typically associated with VS problems. The “external” PV

curve corresponds to the system under normal operating conditions and assuming

certain dispatch, whereas the “internal” PV curve is the system under the worst

single contingency for the assumed system conditions. Observe that the voltage

limits in this example are assumed to define the lowest loading level corresponding

to the TTC. The current operating point defines the ETC (and CBM), any point

before the ATC is considered a “safe” operating point, and the TRM is a small
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Figure 2.7: Predictor-corrector scheme in the CPF.

margin away from any operating point at risk of collapse. Hence, based on the use

of PV curves, the ATC terms can be defined as [70]:

TTC =
∑

PLo + λc

∑
PD

ETC =
∑

PLo

TRM = 0.05 TTC

The most widely used techniques to find the maximum loading factor λc are the

CPF and the OPF-DM, which are described in Section 2.4.

2.4 Voltage Stability Analysis Tools

2.4.1 Continuation Power Flow (CPF)

The algorithm of the CPF method simply considers a set of power flow equations

reformulated to include a load parameter λ, basically using the generation and load
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directions shown in (2.13)-(2.15). The power flow model in this technique is solved

for automatic changes in λ using a predictor-corrector scheme that remains well-

conditioned at and around the critical point, i.e., the maximum loadability point

λc.

Figure 2.7 illustrates the iterative process of a typical CPF technique. The al-

gorithm starts from a known solution A which corresponds to a power flow solution

at the current loading point. Then, it uses a tangent predictor to estimate a so-

lution B corresponding to an increased value of the load parameter, and it finally

uses a “corrector” to find the exact solution C using a classical Newton-Raphson

technique [20]. This method allows one to trace the voltage profile of a power

flow model, also known as an equilibrium profile or bifurcation manifold. Hence, it

allows for the calculation of security indices such as the ATC.

The advantage of this method is that additional information regarding the be-

havior of some system variables can be obtained during the solution process. This

information, then, can be used as indices to predict proximity to a voltage collapse.

However, although this algorithm is very robust, it is computationally expensive,

especially for large systems with multiple limits [71].

UWPFLOW is a CPF research tool that allows one to trace PV curves and

calculate λc values [72]. This tool is used in this thesis to obtain all the PV curves

and VSI.

2.4.2 OPF-based Direct Method (OPF-DM)

Optimization methods can be used to compute maximum loadability points of

power flow models, which are directly associated with SNBs and LISBs of the

corresponding model equations, as initially proposed in [23]. Thus, based on the

SNB and LIB definitions presented in Section 2.2.3, the bifurcation point directly

corresponds to the solution of the following optimization model, as formally demon-
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strated in Section 3.2:

max
z̃,r̂,λ

λ (2.16a)

s.t. ĝ(z̃, r̂, λ, p̂o) = 0 (2.16b)

ĥ(z̃, r̂, λ, p̂o) = 0 (2.16c)

r̂min ≤ r̂ ≤ r̂max (2.16d)

where the nonlinear function ĥ is used to represent the actuation limit equations

introduced in (2.6), since in these optimization models the actuation limits are typ-

ically not represented explicitly, as illustrated below. The issue of how constraints

(2.16c) are actually represented in this model, and the effect of this modeling on

the solution of the optimization problem (2.16) is discussed in detail below. Note

that (2.16d) basically corresponds to (2.7).

OPF-DM in Standard Form

For a typical power flow model, let z̃ = (δ, VL, KG), r̂ = (QG, VG), and p̂ = (PS, PD).

In this case, δ stands for all the bus voltage phasor angles but one (slack bus);

VL and VG correspond to the load and generator bus voltage phasor magnitudes,

respectively, and QG represents the generator reactive power output. The variables

PS and PD define the change in power generation and demand, as shown in (2.13)-

(2.15).

Based on the aforementioned variable definition and if the actuation functions

(2.16c) are omitted, the model can be restated as:

max
δ,VL,KG
QG,VG,λ

λ (2.17a)

s.t. Ĝ(δ, VL, KG, QG, VG, λ, PS, PD) = 0 (2.17b)

QGimin
≤ QGi

≤ QGimax
∀i ∈ G (2.17c)

VGimin
≤ VGi

≤ VGimax
∀i ∈ G (2.17d)
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where Ĝ stand for the classical active and reactive power balanced equations for

each generator and load bus (two for every system bus), as defined in (2.6), i.e.,

PGi
− PLi

− Ĝp(δ, VL, VG, Gij, Bij) = 0 ∀i ∈ B (2.18)

QGi
−QL

i
− Ĝq(δ, VL, VG, Gij, Bij) = 0 ∀i ∈ B (2.19)

PGi
, PLi

, and QLi
are defined in (2.13)-(2.15); Gij and Bij are the real and imaginary

part of the bus admittance matrix, respectively; G is the set of indices of generating

units; and B is the set of indices of network buses. Observe that Ĝ ⊂ G in (2.2),

since G contains some additional equations representing limits as per (2.6). It is

also important to highlight the fact that in this optimization model no other limits

such as load bus voltage magnitude limits, generator active power limits, or power

transfer limits, which are typical operating limits considered in such OPF models,

are represented here. The reason for this is that these are “hard” limits and not

actuation limits, i.e., limits that basically define “undesirable” operating conditions

which may be associated with system protections rather than system controls, and

hence do not lead to LIBs. These limits would only clutter the theoretical analyzes

presented in Chapter 3, without adding much to the discussions.

It has been shown that if no limits become active, the sufficient KKT opti-

mality conditions evaluated at the solution point of (2.17) are equivalent to the

transversality conditions (2.3) and (2.4) for SNBs [22]. However, it has not yet

been formally shown that the third transversality condition (2.5) will also be met,

which is an issue addressed in Chapter 3. It can also be argued that this model

may provide a maximum loading point different from that obtained using the CPF

technique if reactive power limits become active [6]. This is due to the fact that the

objective of the optimization model (2.17) is to “optimize” the generator voltage

and reactive power levels so that the loading factor is maximized. Hence, there is no

guarantee that the voltage at generation buses would be maintained at a constant

level while the reactive power output at such buses is within its limits. This is the

typical representation of the generator voltage regulation controls in the power flow

models used in CPF techniques.
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If limits are considered, and the parameters PS and PD are free to change, the

problem is transformed into an optimal active and reactive dispatch problem for

the maximization of the loading margin. Indeed, other optimization problems can

be derived from this concept, such as the maximization of the social welfare while

ensuring a loading margin, as discussed in Section 2.5.2.

OPF-DM with Complementarity Constraints

An optimization model that has been empirically shown to yield the same SNB

or LISB points as a CPF technique has been proposed in [6]. The authors in this

paper propose an optimization model that is based upon the idea that many prob-

lems encountered in engineering, physics, or economics, which behave according to

different rules under different circumstances, can be modeled using complementar-

ity constraints because these constraints can be used to model a change in system

behavior. Thus, the change from a PV to a PQ bus, when a generation reactive

power limit is reached can be modeled using these type of constraints in the OPF

problem as follows [73]:

0 ≤ (QGk
−QGkmin

) ⊥ Vak
≥ 0

⇒ (QGk
–QGkmin

)Vak
= 0

0 ≤ (QGkmax
−QGk

) ⊥ Vbk
≥ 0

⇒ (QGk
−QGkmax

)Vbk
= 0

where Va and Vb are auxiliary, nonnegative variables that allow increasing or de-

creasing the generator voltage set point, depending on the state of QG. Thus:

if QGk
= QGkmin

⇒ Vak
≥ 0 and Vbk

= 0

if QGkmin
< QGk

< QGkmax
⇒ Vak

= Vbk
= 0

if QGk
= QGkmax

⇒ Vak
= 0 and Vbk

≥ 0
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This yields the following Mixed Complementarity Problem (MCP) [6]:

max
δ,VL,KG
QG,VG,λ

λ (2.20a)

s.t. Ĝ(δ, VL, KG, QG, VG, λ, PS, PD) = 0 (2.20b)

(QGk
−QGkmin

)Vak
= 0 ∀k ∈ G (2.20c)

(QGk
−QGkmax

)Vbk
= 0 ∀k ∈ G (2.20d)

VGk
= VGko

+ Vak
− Vbk

∀k ∈ G (2.20e)

QGkmin
≤ QGk

≤ QGkmax
∀k ∈ G (2.20f)

Vak
, Vbk

≥ 0 ∀k ∈ G (2.20g)

where VGo is the generator voltage regulator set point, i.e., the generator termi-

nal voltage level if QG, is within limits; and the constraints (2.20c)-(2.20e), asso-

ciated with the auxiliary variables Va and Vb, are used to model the actuation

limits associated with the generator voltage regulators. Hence, in this model,

z̃ = (δ, VL, KG, VG), r̂ = (QG, Va, Vb), p̂ = (PS, PD, VGo), and ĝ and ĥ are con-

tained within constraints (2.20b)-(2.20e). The actual representation of these two

vector functions is discussed in detail in Section 3.2.

2.5 Optimal Power Flow Models with Security

Constraints

An independent system operator has to deal with the market participants by re-

ceiving their bids and offers, so that it can accommodate the necessary transactions

to balance supply and demand while maintaining power system security. Typically,

the system operator accomplishes these objectives through a cost minimization pro-

cess based on an OPF. This section briefly discusses the most recent OPF models

that include security constraints.

The first model represents system security by imposing limits on the transmis-

sion system power flows. The second makes use of a multiobjective optimization
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technique and a second set of power flow equations to represent system security,

whereas the third model uses the MSV of a power flow Jacobian to represent VS.

2.5.1 Security-Constrained OPF (SC-OPF)

The following optimization model, typically referred to as an SC-OPF, corresponds

to a single-period auction model; the objective function in this case is social welfare,

to ensure that generators maximize their income from power production, while loads

minimize the prices paid for their power demand:

max
δ,VL,QG

VG,PS ,PD

∑

j∈D

CDj
PDj
−
∑

i∈G

CSi
PSi

(2.21a)

s.t Ĝ(δ, VL, QG, VG, PS, PD) = 0 (2.21b)

PSimin
≤ PSi

≤ PSimax
∀i ∈ G (2.21c)

PDjmin
≤ PDj

≤ PDjmax
∀j ∈ D (2.21d)

QGimin
≤ QGi

≤ QGimax
∀i ∈ G (2.21e)

Vimin
≤ Vi ≤ Vimax ∀i ∈ B (2.21f)

Iij(δ, V ) ≤ Iijmax ∀(i, j) ∈ T , i 6= j (2.21g)

Pij(δ, V ) ≤ Pijmax ∀(i, j) ∈ T , i 6= j (2.21h)

Here CS and CD are the cost functions; PSmin
and PSmax represent the minimum

and maximum power output limits of the generators’ bid power; PDmin
and PDmax

represent the minimum and maximum power limits of demand bid blocks; and

Iij(δ, V ) represents the current in the transmission element between buses i and

j. The function Pij(δ, V ) is used to represent transmission system security limits,

which are determined off-line by means of stability and contingency studies, in order

to represent security limits in the auction model. Finally, D is the set of indices of

loads, and T is the set of indices of transmission lines and transformers.

It is important to highlight that the stability limits Pijmax used in this model are

computed off-line using possible dispatch scenarios that do not necessarily represent
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the actual system conditions [1, 43]. Thus, VSC-OPF models have been proposed

to better represent system security by means of including additional constraints,

such as the MSV of the power flow Jacobian, as described in the following section.

2.5.2 Voltage-Stability-Constrained OPF (VSC-OPF)

Multiobjective VSC-OPF

A technique for representing system security in the operation of decentralized elec-

tricity markets, with special emphasis on VS, is proposed in [1]. In this case, the

proposed optimization model is:

max
PS ,PD,λc,QGc

QG,V,Vc,δ,δc,kGc

w1

(
∑

j∈D

CDj
PDj
−
∑

i∈G

CSi
PSi

)
+ w2λc (2.22a)

s.t. Ĝ(δ, V, KG, QG, PS, PD) = 0 (2.22b)

Ĝc(δc, Vc, KG, QGc , λc, PS, PD) = 0 (2.22c)

λcmin
≤ λc ≤ λcmax (2.22d)

PSimin
≤ PSi

≤ PSimax
∀i ∈ G (2.22e)

PDjmin
≤ PDj

≤ PDjmax
∀j ∈ D (2.22f)

QGimin
≤ QGi

≤ QGimax
∀i ∈ G (2.22g)

QGimin
≤ QGci

≤ QGimax
∀i ∈ G (2.22h)

Vimin
≤ Vi ≤ Vimax ∀i ∈ B (2.22i)

Vimin
≤ Vci

≤ Vimax ∀i ∈ B (2.22j)

Pij(δ, V ) ≤ Pijmax ∀(i, j) ∈ T i 6= j (2.22k)

Pij(δc, Vc) ≤ Pijmax ∀(i, j) ∈ T i 6= j (2.22l)

This model accounts for the system security by including a second set of power flow

equations, reactive power and voltage limits at the critical condition associated with

the maximum loading point λc, hence the subscript c. The maximum or critical

loading point could be either associated with a thermal or bus voltage limit, or a VS
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limit corresponding to a system singularity SNB or LISB. The loading margin λc

is free to change between certain limits which ensures a minimum level of security,

while the upper limit defines a maximum required level of security.

The multiobjective function (2.22a) is composed of two terms weighted by two

factors w1 > 0 and w2 > 0. The first term represents the social welfare, whereas

the second term ensures that the distance between the market solution and the

critical point is maximized [1]. The disadvantage of this formulation is that the

solution will depend on the value of the weighting factors, leading to “improper”

market signals. Notice that w1 must be greater than zero, otherwise there would

be no representation of the social welfare, and if w2 is zero, λc does not necessarily

represent a maximum loading condition. To link the social welfare and the max-

imum loading condition, the author in [74] defines w1 = (1 − w) and w2 = w for

0 < w < 1.

In this model, the generator and load powers at the current and maximum

loading condition are defined as follows:

PG = PGo + PS PGc = (1 + λc + KG)PG

PL = PLo + PD PLc = (1 + λc)PL

(2.23)

where KG in this case is used to distribute the system losses associated with the

power flow equations that represent the critical conditions, in proportion to the

value of PS obtained in the solution process.

A similar VSC-OPF model that considerers an N-1 contingency criterion is

proposed in [74]. The model is essentially the same as the one shown in (2.22); the

main difference is that contingencies are included by taking out selected lines when

formulating the power flow equations at the critical point (2.22c). By doing this, it

is ensured that the current solution of the VSC-OPF problem is also feasible for the

worst single contingency. Similar OPF approaches are proposed in [14, 31, 41, 42].

The disadvantages of this model are as follows: the number of constraints in-

creases considerably; the difficulty of choosing adequate values for the weighting
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factors; and the presence of the loading margin in the objective function. This final

disadvantage leads to not having pure market signals.

A mixed CPF-OPF technique based on sensitivities obtained from the OPF

Lagrangian multipliers is proposed in [32]. The sensitivities are used to approxi-

mate the power directions for the CPF method in order to calculate the loading

parameter based upon an N-1 contingency criterion. This technique has important

advantages over previous work proposed by the authors in [1], since the multi-

objective optimization is no longer used because of the drawback of dealing with

weighting factors, and not providing pure market solutions. However, the compu-

tational effort is still a problem.

MSV-based VSC-OPF

A model to improve the representation of VS margins in the OPF has been pro-

posed in [34, 53]. The resulting VSC-OPF market clearing and power dispatch

optimization model is defined as follows:

max
δ,VL,QG

VG,PS ,PD

∑

j∈D

CDj
PDj
−
∑

i∈G

CSi
PSi

(2.24a)

s.t Ĝ(δ, VL, QG, VG, PS, PD) = 0 (2.24b)

σmin{J} ≥ σc (2.24c)

PSimin
≤ PSi

≤ PSimax
∀i ∈ G (2.24d)

PDjmin
≤ PDj

≤ PDjmax
∀j ∈ D (2.24e)

QGimin
≤ QGi

≤ QGimax
∀i ∈ G (2.24f)

Vimin
≤ Vi ≤ Vimax ∀i ∈ B (2.24g)

Iij(δ, V ) ≤ Iijmax ∀(i, j) ∈ T , i 6= j (2.24h)

where J is the power flow Jacobian of the system at a power flow solution point,

and σmin is the MSV of J . This model is basically the same as the SC-OPF, except

for the transmission system limits on Pij , which are implicitly represented in the VS
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Figure 2.8: σc versus λc changes for different power dispatches.

constraint (2.24c). This constraint is a performance index used to determine how

close the system is to a voltage collapse point associated with a singularity of the

power flow Jacobian (SNB point), and is commonly used in VS studies [13]. There-

fore, σc (obtained from off-line voltage studies) is used to guarantee a minimum

distance from a voltage collapse point, considering, at least, an N-1 contingency

criterion. The constraint (2.24f) is used to represent LIBs, which are also respon-

sible for voltage collapse problems as previously discussed. Hence, (2.24c), (2.24f),

(2.24g) and (2.24h), are used to directly represent security limits in the auction

model (2.24).

The advantage of this model is that it accounts for the two most important

types of bifurcations responsible for voltage collapse problems in practice, as well

as other security limits such as thermal limits. Another important advantage is

that the σc value used in the VS constraint (2.24c) exhibits a low dependency

on the power dispatch, unlike the associated λc value used in model (2.22), as

illustrated in Figure 2.8, where ∆λ represents a security margin. However, the main

disadvantage of this model is that it is mathematically and numerically difficult to

implement and solve, as the constraint (2.24c) is an implicit function. Hence, the

derivatives needed to solve this OPF problem can be only approximated using
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interval formulas that may lead to convergence problems [34], since the MSV can

behave in a rather nonlinear way [13]. As a result, this constraint becomes a

“soft” constraint, and it may not guarantee an accurate solution in some cases,

as demonstrated in Section 4.3. Furthermore, current mathematical programming

languages and large-scale solvers available for nonlinear optimization cannot be

used for its implementation and solution, since these are not able to handle this

type of implicit function constraint.

The aforementioned drawbacks are what motivates the development of the prac-

tical solution method for this particular VSC-OPF model. The proposed solution

method, which is described and analyzed in detail in Chapter 4, concentrates on

the practical reformulation of constraint (2.24c).

2.5.3 Locational Marginal Prices (LMP)

The theory of spot pricing states that the spot market price must reflect the inter-

action of supply and demand. Thus, the price in a competitive market is set by

the highest cost supplier when there is enough supply, and by the marginal (low-

est value) demand [75]. In this context, a central operator receives voluntary bids

from market participants, assuming that the submitted bids reflects true marginal

costs1 of production and marginal benefits2 of consumption. The operator then

finds an optimal operating state by means of a cost minimization process, which

is based on an OPF. The solution must satisfy all the transmission constraints,

balance of power, and minimum cost, and must provide the Locational Marginal

Prices (LMPs), which are basically the Lagrange multipliers of the OPF, as shown

below. The LMPs differ by location because energy is cheaper to produce in some

locations, and the transmission line capacity is limited. For this reason, locational

pricing of energy is also called congestion pricing [77, 78].

1The change in total cost that results from a unit increase in output. It is calculated as the

increase in total cost divided by the increase in output [76].
2The extra benefit received from a small increase in the consumption of a good or service. It

is calculated as the increase in total benefit divided by the increase in consumption [76].
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Consider the following standard OPF model:

min
δ,VL,QG

VG,PS ,PD

∑

i∈G

CSi
PSi
−
∑

j∈D

CDj
PDj

(2.25a)

s.t Ĝ(δ, VL, QG, VG, PS, PD) = 0 (2.25b)

0 ≤ PSi
≤ PSimax

∀i ∈ G (2.25c)

0 ≤ PDj
≤ PDjmax

∀j ∈ D (2.25d)

QGimin
≤ QGi

≤ QGimax
∀i ∈ G (2.25e)

Vimin
≤ Vi ≤ Vimax ∀i ∈ B (2.25f)

Pij(δ, V ) ≤ Pijmax ∀(i, j) ∈ T , i 6= j (2.25g)

which can be restated as the following Lagrangian function using a logarithmic

barrier IPM approach:

min L =
∑

i∈G CSi
PSi
−
∑

j∈D CDj
PDj

−µT
GĜ(δ, VL, KG, QG, VG, PS, PD)

−µT
PSmax

(PSmax − PS − sPSmax
)

−µT
PDmax

(PDmax − PD − sPDmax
)

−µT
QGmax

(QGmax −QG − sQGmax
)

−µT
QGmin

(QG −QGmin
− sQGmin

)

−µT
Vmax

(Vmax − V − sVmax)

−µT
Vmin

(V − Vmin − sVmin
)

−µPijmax
(Pijmax − Pijmax − sPijmax

)

−µs(
∑

i ln si)

(2.26)

where [µT

Ĝ
µT

PSmax
µT

PDmax
µT

QGmax
µT

QGmin
µT

Vmax
µT

Vmin
µT

Pijmax
µT

s ] > 0 is a vector of La-

grange multipliers, and [sT
PSmax

sT
PDmax

sT
QGmax

sT
QGmin

sT
Vmax

sT
Vmin

sT
Pijmax

] ≥ 0 is a vec-

tor of slack variables. Thus, the marginal cost for supply and demand can be

defined as [41]:

∂L
∂PSi

= CSi
− µ

ĜSi
+ µPSimax

(2.27)

∂L
∂PDi

= −CDi
+ µ

ĜDi
+ µPDimax

(2.28)
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as ∂Ĝi

∂PSi
= 1 and ∂Ĝi

∂PDi
= −1, and where µĜ = [µT

ĜS
µT

ĜD
µT

ĜQ
]. Thus, from (2.27)

and (2.28), the LMP or shadow price for each market participant is given by the

corresponding Lagrange multiplier [79]:

LMPi =





µ

ĜSi

µ
ĜDi

(2.29)

Furthermore, conditions (2.27) and (2.28) set the suppliers’ and consumers’ op-

eration conditions, so that their marginal cost and marginal benefit match the

corresponding market price [77].

It is well-known that as the loading level increases, the stability margin de-

creases, and some control actions have to be taken; however, this might result in

increased operating cost. Hence, the associated cost of such actions can be consid-

ered as the operational cost of improving system security [26] [42].

2.6 Optimization Methods

2.6.1 Primal-Dual Interior-Point Method (IPM)

Optimality Conditions

In general, the OPF problem is a non-linear programming (NLP) problem that is

used to determine the “optimal” control parameter settings to minimize a desired

objective function, subject to certain system constraints [42]. An OPF can be

generally represented as follows:

min
χ

F̄ (χ) (2.30a)

s.t. Ḡ(χ) = 0 (2.30b)

H ≤ H(χ) ≤ H (2.30c)

χ ≤ χ ≤ χ (2.30d)
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where F̄ (χ) : R
nχ → R is the objective function, e.g, the social welfare in (2.21a)

or the loading factor λ; Ḡ(χ) : R
nχ → R

m generally represents the power flow

equations (G); and H(χ) : R
nχ → R

p can represent transmission line limits, voltage

or reactive power, with lower and upper limits represented by H and H , respectively.

The vector of system variables χ ∈ R
nχ typically includes voltage magnitudes and

angles, active and reactive power levels, or control variables; their lower and upper

limits are represented by χ and χ, respectively.

Thus, assume that F̄ (χ), Ḡ(χ) and H(χ) are twice continuously differentiable.

The first step to state the optimality conditions is to transform the inequality

constraints into equality constraints by adding slack variables. The slack variables

are handled implicitly by incorporating them into the objective function using a

logarithmic barrier term, imposing strict positivity on the slack variables as follows:

min F̄ (χ)− µ̄k

p∑

i=1

(ln ιi + ln κi) (2.31a)

s.t Ḡ(χ) = 0 (2.31b)

−ι− κ + H −H = 0 (2.31c)

−H(χ)− κ + H = 0 (2.31d)

ι > 0, κ > 0 (2.31e)

where ι ∈ R
p and κ ∈ R

p are slack variables. The Lagrangian function Lµ̄(φ) is

then stated as follows:

Lµ̄(φ) = F̄ (χ)− µ̄k

P∑

i=1

(ln ιi + ln κi)

− ρT Ḡ(χ)− βT
(
−ι− κ + H −H

)
− γT

(
−H(χ)− κ + H

)
(2.32)

where φ = [ιT κT βT γT χT ρT ]; ρ ∈ R
m, β ∈ R

p and γ ∈ R
p are the Lagrange

multipliers, also called dual variables. A local minimum of (2.32) satisfies the
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following KKT optimality conditions:

∇φLµ̄(φ) =




∇ιLµ̄(φ)

∇κLµ̄(φ)

∇βLµ̄(φ)

∇γLµ̄(φ)

∇χLµ̄(φ)

∇ρLµ̄(φ)




=




Θβ − µ̄ke

Λ̟ − µ̄ke

ι + κ−H + H

H(χ) + κ−H

∇χF̄ (χ)− JḠ(χ)T ρ + JH(χ)T γ

−Ḡ(χ)




= 0 (2.33)

where Θ = diag(ι1, ι2, ..., ιp); Λ = diag(κ1, κ2, ..., κp); e = [1 1 ... 1]T ; ̟ = γ + β;

∇χF̄ : R
nχ → R

nχ is the gradient of F̄ (χ); JḠ : R
nχ → R

m×nχ is the Jacobian of

Ḡ(χ); and JH : R
nχ → R

p×nχ is the Jacobian of H(χ).

The third, fourth and sixth terms in (2.33) along with (ι, κ) ≥ 0 ensure primal

feasibility. The fifth term along with (β, ̟) ≥ 0 ensures dual feasibility, and the

first and second terms are the µ̄-complementarity conditions.

Primal-dual Interior-Point Method Algorithm

The primal-dual IPM algorithm, is based on Newton’s method to solve nonlinear

equations. Figure 2.9 shows the algorithm’s flow chart, and the steps are described

below.

Computing Newton Directions

The solution of the KKT optimality conditions with Newton’s method leads to the

following indefinite system of equations parameterized by µ̄k, which are used to

compute the Newton direction at every iteration:

[
Jo −JT

Ḡ

−JḠ 0

][
∆χ

∆ρ

]
=

[
ϕx

ϕρ

]
(2.34)
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Initialization

Compute Newton Direction

Update Variables

Test for
Convergence of

the IPM

Update barrier
parameter

Optimal

k=k+1

Yes

No

Figure 2.9: Primal-dual IPM

∆κ = −JH(χ)∆χ

∆ι = −∆κ

∆β = −µ̄kΘ−2∆ι

∆γ = −µ̄kΛ−2∆κ−∆β

(2.35)

where

Jo = ∇2
χLµ̄(φ) + µ̄kJH(χ)T (Θ−2 + Λ−2)JH(χ) (2.36)

∇2
χLµ̄(φ) = ∇2

χF̄ (χ)−
m∑

j=1

ρj∇2
χḠj(χ) +

p∑

j=1

γj∇2
χHj(χ) (2.37)

Detailed information about the reduced system shown in (2.34)-(2.35) and other

issues regarding the algorithm can be found in [27, 80, 81].

Updating variables

Once the Newton direction has been computed, the next step is to update the

primal and dual variables. Separate step lengths for primal and dual variables are
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calculated as follows:

αk
P = min

{
1, γ min

i

{−ιki
∆ιi

∣∣∣∆ιi < 0,
−κk

i

∆κi

∣∣∣∆κi < 0

}}
(2.38)

αk
D = min

{
1, γ min

i

{−βk
i

∆βi

∣∣∣∆βi < 0,
−̟k

i

∆̟i

∣∣∣∆̟i < 0

}}
(2.39)

where the scalars αk
P ∈ (0, 1] and αk

D ∈ (0, 1] are the step length parameters; and

the scalar γ ∈ (0, 1] is a safety factor to ensure that the next point will satisfy the

strict positivity conditions (a typical value is γ = 0.99995). Thus, the variables are

updated as follows:

χk+1 = χk + αk
P ∆χ ρk+1 = ρk + αk

D∆ρ

ιk+1 = ιk + αk
P ∆ι βk+1 = βk + αk

D∆β

κk+1 = κk + αk
P∆κ γk+1 = γk + αk

D∆γ

(2.40)

Testing for Convergence and Reducing the Barrier Parameter

The last step in the IPM algorithm is to test for convergence and reduce the barrier

parameter. The criterion to stop the iterative process is based on the primal (ξ1)

and dual (ξ2) feasibilities, as well as complementarity conditions (ξ3), to satisfy

certain tolerances. Thus, the residual of the complementarity conditions, called the

complementarity gap, is computed at the point φk from:

ζk = (ιk)T βk + (κk)T νk (2.41)

µ̄k+1 = σk
dir

ζk

2p
(2.42)

where the parameter σk
dir ∈ (0, 1] is called the centering parameter. If σk

dir = 1, it

defines a centering direction, and if σk
dir = 0, it gives a pure Newton step, known as

the affine-scaling direction. In practice, to decide whether to improve centrality or

reduce µ̄k, σk
dir is computed using to the following heuristic:

σ0
dir = 0.2 (2.43)

σk
dir = max{0.99σk−1

dir , 0.1}
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The algorithm is stopped when one of the two sets of the following conditions are

met:
ξk
1 ≤ ǫ1 µ̄k ≤ ǫµ̄

ξk
2 ≤ ǫ1 or ||∆χ||∞ ≤ ǫ2

ξk
3 ≤ ǫ2 ||Ḡ(χk)||∞ ≤ ǫ1

ξk
2 ≤ ǫ2 ξk

4 ≤ ǫ2

(2.44)

where

ξ1 = max
{

max
{
H −H(χ)

}
, max

{
H(χ)−H

}
, ||Ḡ(χ)||∞

}
(2.45)

ξ2 =
||∆χF̄ (χ)− JḠ(χ)T ρ + JH(χ)T γ||∞

1 + ||χ||2 + ||ρ||2 + ||γ||2
(2.46)

ξ3 =
ζ

1 + ||χ||2
(2.47)

ξ4 =
F̄ (χk)− F̄ (χk−1)

1 + |F̄ (χk)| (2.48)

Typical tolerances are ǫ1 = 10−4, ǫ2 = 10−2ǫ1, and ǫµ̄ = 10−12.

Choosing an Initial Point

An important characteristic of the primal-dual IPM is that a strictly feasible point is

not mandatory, hence the usual denomination infeasible primal-dual interior-point

method. Nonetheless, (ι, κ) > 0 and (β, ̟) > 0 have to be satisfied at every point,

so the IPM starts from a point φ0 such that (ι0, κ0) > 0 and (β0, ̟0) > 0. Besides

the strict positivity conditions, a good starting point should also satisfy two other

conditions. First, the point should be well-centered, and second, the point should

not be “too unfeasible”; that is, the duality gap should not be too large [81].

In practice, IPMs perform better if some initialization heuristic is used. For the

OPF the following estimations are suggested in [27, 81]:

• Estimate χ as a flat start using the middle point between the upper and lower

limits for the bounded variables.
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• The primal slack variables are initialized as follows:

ι0 = min{max{γH∆, H(χ0)−H}, (1− γ)H∆}
κ0 = H∆ − ι0

where H∆ := H −H, and γ := 0.25.

• The initial dual variables β0 and γ0 are defined as:

β0 = µ̄0(Θ0)−1e,

γ0 = µ̄0(Λ0)−1e− β0

2.6.2 Semidefinite Programming (SDP)

In SDP one minimizes a linear function of a symmetric matrix X, subject to lin-

ear constraints on the entries in X, under the restriction that X must be positive

semidefinite. Such a constraint is nonlinear and nonsmooth, but convex, so SDP

problems are convex optimization problems. This is significant because, for con-

vex optimization problems, any local minimum is a global minimum. SDP unifies

several standard problems (e.g., linear programming) and finds many applications

in engineering and combinatorial optimization [82–84]. A SDP problem is an opti-

mization problem of the following form:

min C ·X (2.49a)

s.t Ai ·X = bi, i = 1, ..., m (2.49b)

X � 0 (2.49c)

where X ∈ Sn is the matrix variable, and Sn is the set of symmetric n×n matrices,

and C ∈ Sn is the matrix of coefficients of the objective function. X � 0 denotes

that X is positive semidefinite (PSD), and:

C ·X = trace(CX)
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is the standard inner product in Sn. A matrix A ∈ Sn is said to be positive

semidefinite (PSD) if:

ṽT Aṽ =

n∑

i=1

n∑

j=1

Aij ṽiṽj ≥ 0 ∀ṽ ∈ R
n

It may be helpful to think of X � 0 as stating that each of the n eigenvalues

of X must be non-negative. This concept fosters the application of SDP to the

MSV-based VSC-OPF problem, since the power flow Jacobian tends to be either

singular or close to singularity at a voltage collapse point.

2.7 Summary

This chapter introduces power system security concepts and the basis of VS. Bifur-

cation theory definitions used to characterize the VS phenomena in power systems

are presented, as well as the techniques used to determine SNB and LIB points

of a power flow model. This chapter also discusses the OPF-DM, and the most

recently proposed VSC-OPFs market clearing and power dispatch models. Finally,

the primal-dual IPM for NLP, and a brief introduction to SDP is presented.

The concepts presented in this chapter are used throughout this thesis to study

and propose optimization-based techniques to better represent VS in OPF-based

auction models in competitive electricity markets.



Chapter 3

Analysis of the OPF-DM

3.1 Introduction

This chapter presents a detailed theoretical analysis of the application of OPF-DM

to the study of SNBs and LIBs in power systems. Previous works have formally

shown that optimization methods can be used to compute SNBs in power system

models, and that these methods are basically equivalent to more “classical” com-

putational approaches [22]. Also, some issues associated with the application of

OPF-DMs to the computation of LIBs are discussed in [85], and the structure of

the loadability surface is studied in [5] using similar optimization methods. In [86],

fold bifurcations are also studied using an optimization model. However, up to now,

to the author’s knowledge, the links between solutions of OPF-DMs and SNBs and

LIBs have not yet been dealt with in the technical literature as formally and sys-

tematically as is done here. Hence, this chapter concentrates on demonstrating that

solution points obtained from a given OPF-DM model correspond to either SNB or

LIB points; this is accomplished by showing that the optimality conditions of these

solution points yield the transversality conditions of the corresponding bifurcation

points. A simple but realistic test system example is used to numerically illustrate

the theoretical discussions presented here.

46
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3.2 Theoretical Analysis of the OPF-DM

In this section, it is formally shown that a solution to the OPF-DM model (2.20)

corresponds to either an SNB or a LISB, by demonstrating that the transversality

conditions of the corresponding bifurcations are met, based on the necessary and

sufficient optimality conditions of the optimal solution. Only LIBs associated with

maximum reactive power limits are analyzed here, since VS problems in practice are

typically associated with generators reaching these limits as demand in the system

increases. Therefore, in this thesis, actual SNBs and LIBs (2.1) are assumed to

correspond to similar “bifurcation” points of the power flow equations. This is the

case in certain power system models [61,87]; thus, this chapter concentrates on the

analysis of SNBs and LIBs of (2.2).

The following assumptions are made for the statement of the theorems and

corollary presented next [88]:

• Regularity and strict complementarity conditions must be met at the optimal

point, i.e., there must not be degeneracy of the optimization problem at the

solution point.

• The constraints should be C2 and convex in a neighborhood of the optimal

solution.

These assumptions are referred to throughout the rest of the chapter as optimality

solution (OS) assumptions for convenience. It is important to highlight the fact that

there is no guarantee that all possible solutions of (2.20) would meet these OS as-

sumptions. If these conditions are not met, then the solution could not be classified

as an SNB or LIB point with certainty, as per the theorems proved below. However,

from numerical results reported in various papers (e.g., [6, 23]), where these types

of optimization problems are solved for a variety of small and large electrical power

systems, these solutions are shown to meet these assumptions [86]. This is due to

the fact that in nonlinear system theory, codimension-1 (single parameter) bifurca-

tions SNBs and LIBs are considered generic [59], i.e., they are expected in power
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Stable points

Unstable points

−λ

ẑ

Figure 3.1: Solution points for the system (3.1).

systems under typical operating conditions and modeling assumptions [47,89]. Fur-

thermore, it can be reasonably argued that the characteristics of the power flow

model in which (2.20) is based, should in general meet these OS assumptions. For

illustration purposes, consider the following examples:

Example 3.1: In general, an SNB can be described by the following equation [59]:

Ĝ(ẑ, λ) = ẑ2 + λ (3.1)

The solution points of this equation describe a parabola which just exists for λ ≤ 0,

as depicted in Figure 3.1. For λ < 0, two solution points may be found, one stable

and one unstable, as defined by ẑ = ±
√
−λ. For λ = λc = 0, only one solution

ẑc = 0 exists, which corresponds to the SNB point. Thus, the gradient at the

bifurcation point is

∇ẑĜ|c = 2ẑc = 0 (3.2)

and the Hessian is

∇2
ẑĜ|c = 2 > 0 (positive definite) (3.3)

Hence, λc is a strict local maximum satisfying the OS assumptions.

However, there are other examples were the positiveness of the Hessian is not met,

thus:
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Stable points

Unstable points

−λ

ẑ

Figure 3.2: Solution points for the system (3.4).

Example 3.2: Consider the following equation:

Ĝ(ẑ, λ) = ẑ4 + λ (3.4)

The solution points of this equation, given by ẑ = ± 4
√
−λ, also trace a “parabolic”

function for λ ≤ 0, as depicted in Figure 3.2. Thus, the gradient at the bifurcation

point (ẑc, λc) = (0, 0) is

∇ẑĜ|c = 4ẑ3
c = 0 (3.5)

and the Hessian is

∇2
ẑĜ|c = 12ẑ2

c = 0 (3.6)

Therefore, the Hessian is not positive definite at the bifurcation point.

It is now argued that the first example is more representative of the OPF-DM

context. This is because the only constraints that are not linear (or equivalent to

linear at optimality) are the power flow equations:

Pi + jQi = (eri
+ jfri

)

nb∑

k=1

[(Gik + jBik)(erk
+ jfrk

)]∗ (3.7)

where

Pi = PGoi
+ (λ + KG)PSi

− PLoi
− λPDi

(3.8)

Qi = QGi
−QGoi

− λKLPDi
(3.9)
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1.0

B

1.0d 0

P

Figure 3.3: Generator-Infinite Bus system

are the power injections at bus i, as per (2.13)-(2.15); Yik = Gik + jBik; nb is the

number of buses; and V̂k = erk
+ jfrk

are the complex bus voltages in rectangular

coordinates. Hence, the power flow equations (∆P, ∆Q) can be written as follows:

PGoi
+ (λ + KG)PSi

− PLoi
− λPDi

=
nb∑

j=1

[
eri

(erj
Gij − frj

Bij) + fri
(frj

Gij + erj
Bij)

]
(3.10)

QGi
− QGoi

− λKLPDi
=

nb∑

j=1

[
fri

(erj
Gij − frj

Bij)− fri
(frj

Gij + erj
Bij)

]
(3.11)

Observe that this model has basically the same structure as (3.1): a quadratic

form on er, fr and a linear term in λ. This special structure, plus the empirical

evidence (e.g., [90]), make reasonable to assume that the OPF-DM satisfy the OS

assumptions. It is further noted that the sufficient KKT conditions imply that

∃µ1, µ2 such that

µ1∇2
ẑ∆P |c + µ2∇2

ẑ∆Q|c ≻ 0 (3.12)

The following two examples further illustrate the properties of the power flow model

used in the OPF-DM. Notice that these examples basically show that (3.12) is

positive definite:

Example 3.3: Consider the generator-infinite bus shown in Figure (3.3). The active

power flow equation in this case is defined as:

P = BV sin δ (3.13)
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since er = V cos δ and fr = V sin δ, it follows that:

P = BV sin δ ⇔ λ = Bfr (3.14)

The maximum loading point optimization problem here can be formulated as

follows:

min
er,fr,λ

−λ (3.15a)

s.t. Bfr − λ = 0 (3.15b)

e2
r + f 2

r − 1 = 0 (3.15c)

where (3.15c) is a constraint on the voltage magnitude at the generation bus. The

Lagrangian function can then be stated as:

L(er, fr, λ, µ1, µ2) = −λ + µ1(Bfr − λ) + µ2(e
2
r + f 2

r − 1) (3.16)

and the first-order KKT conditions are:

∇erL|c = 2ercµ2c = 0 (3.17)

∇frL|c = Bµ1c + 2frcµ2c = 0 (3.18)

∇λL|c = −µ1c − 1 = 0 (3.19)

∇µ1
L|c = Bfrc − λc = 0 (3.20)

∇µ2
L|c = e2

rc
+ f 2

rc
− 1 = 0 (3.21)

Thus, the optimal solution is:



erc

frc

λc

µ1c

µ2c




=




0

1

B

−1
B
2




(3.22)

On the other hand, the Hessian of the Lagrangian function can be written as follows:

∇2
(er,fr ,λ)L =




2µ2 0 0

0 2µ2 0

0 0 0


 (3.23)
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Figure 3.4: Generator-Infinite Bus system

which evaluated at the optimal point yields:

∇2
(er ,fr,λ)L|c =




B 0 0

0 B 0

0 0 0


 (3.24)

Hence,

µ1c∇2
(er,fr)(Bfr − λ)|c + µ2c∇2

(er,fr)(e
2
r + f 2

r − 1)|c ≻ 0 (3.25)

i.e.,

− 1

[
0 0

0 0

]
+

B

2

[
2 0

0 2

]
=

[
B 0

0 B

]
≻ 0 (3.26)

Example 3.4: Consider the generator-load bus shown in Figure 3.4. The active and

reactive power flow equations are defined in this case as:

P = −BV sin δ ⇔ −frB − λ = 0 (3.27)

KLP = −BV 2 + BV cos δ ⇔ −B(e2
r + f 2

r ) + Ber −KLλ = 0 (3.28)

The maximum loading point can then be calculated as follows:

min
er,fr,λ

−λ (3.29a)

s.t. −Bfr − λ = 0 (3.29b)

−B(e2
r + f 2

r ) + Ber −KLλ = 0 (3.29c)

and the Lagrangian can be stated as:

L(er, fr, λ, µ1, µ2) = −λ + µ1(−Bfr − λ) + µ2[−B(e2
r + f 2

r ) + Ber −KLλ] (3.30)
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Therefore, the first order KKT conditions are:

∇erL|c = B(1− 2erc)µ2c = 0 (3.31)

∇frL|c = −B(µ1c + 2frcµ2c) = 0 (3.32)

∇λL|c = −µ1c −KLµ2c − 1 = 0 (3.33)

∇µ1
L|c = −Bfrc − λc = 0 (3.34)

∇µ2
L|c = −B(e2

rc
+ f 2

rc
− erc)−KLλc = 0 (3.35)

which yields the optimal solution:




erc

frc

λc

µ1c

µ2c




=




1
2

KL−
√

K2

L+1

2

−B
KL−
√

K2

L+1

2

KL−
√

K2

L+1√
K2

L+1

− 1√
K2

L+1




(3.36)

Hence, the Hessian of the Lagrangian (3.30) is:

∇2
(er ,fr,λ)L =




−2Bµ2 0 0

0 −2Bµ2 0

0 0 0


 (3.37)

which evaluated at the optimal reduces to:

∇2
(er ,fr,λ)L|c =




2B√
K2

L+1
0 0

0 2B√
K2

L+1
0

0 0 0


 (3.38)

And

µ1c∇2
(er ,fr)(−Bfr − λ)|c + µ2c∇2

(er ,fr)[−B(e2
r + f 2

r ) + Ber −KLλ]|c ≻ 0 (3.39)

i.e.,

KL −
√

K2
L + 1√

K2
L + 1

[
0 0

0 0

]
− 1√

K2
L + 1

[
−2B 0

0 −2B

]
=




2B√
K2

L+1
0

0 2B√
K2

L+1



 ≻ 0

(3.40)
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Other types of bifurcations for systems with codimension 2 and higher are stud-

ied in [90], which may have similar forms as (3.4), however, these types of bifurca-

tions are out of the scope of this thesis.

The theorem below shows that an optimal solution of (2.20), at which a given

generator is at its reactive power limit while its terminal voltage is at its regulator

set point, corresponds to a LISB and cannot be a LIDB. This is something one can

intuitively deduce from Figure 2.5, if the OS assumptions are met.

Theorem 3.1. Let (ẑc, λc), ẑc = (z̃c, r̂c), be a local optimum of (2.20) that meets

the aforementioned OS assumptions for p̂ = p̂o, where a given generator i satisfies:

QGic
= QGimax

VGic
= VGio

}
⇒ Vai

= Vbi
= 0 (3.41)

while some other generators j 6= i ∈ Gj ⊂ G satisfy:

QGjc
= QGjmax

VGjc
< VGjo

}
⇒

{
Vaj

= 0

Vbj
> 0

(3.42)

and the rest of the generators ̄ 6= j 6= i ∈ G̄ ⊂ G are not at their reactive power

limits, i.e.,

QG̄min
< QG̄c

< QG̄max

VG̄c
= VG̄o

}
⇒ Va̄ = Vb̄ = 0 (3.43)

(Assumptions (3.42) generalizes the case where a LISB occurs after a LIDB in λ

space, as depicted in Figure 2.5.) Then, (ẑc, λc, p̂o) is a LISB of the power flow

model defined by equations (2.20b)-(2.20e).

Proof. Let QG = (QG, QGi
), i.e., the generator reactive power variables are ordered

so that generator i is the last variable; similarly for VG, Va and Vb. Hence, the
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Lagrangian function of (2.20) may then be expressed as:

L = λ− µ̂T
1 ĜS(ẑc, λc, p̂o)− µ̂T

2 ĜQG
(ẑc, λc, p̂o)

−µ̂3ĜQGi
(ẑc, λc, p̂o)− µ̂T

4 (QG −QGmin
)Vā

−µ̂T
5 (QG −QGmax

)Vb̄ − µ̂6(QGi
−QGimin

)Vai

−µ̂7(QGi
−QGimax

)Vbi
− µ̂T

8

(
QGmin

−QG

)

−µ̂T
9

(
QG −QGmax

)
− µ̂10

(
QGimin

−QGi

)

−µ̂11

(
QGi
−QGimax

)
− µ̂T

12

(
VG − VGo

− Vā + Vb̄

)

−µ̂13

(
VGi
− VGio

− Vai
+ Vbi

)
− µ̂T

14(−Vā)

−µ̂T
15(−Vb̄)− µ̂16(−Vai

)− µ̂17(−Vbi
)

where the functions ĜS, ĜQG
and ĜQGi

are appropriately defined subsets of Ĝ; and

the µ̂’s correspond to the Lagrange multipliers of (2.20).

The KKT optimality conditions state that the gradient of the Lagrangian func-

tion must be equal to zero at the optimum [88]. Thus:

∇δL|c = −∇δĜS|cµ̂1c −∇δĜQG
|cµ̂2c −∇δĜQGi

|cµ̂3c = 0 (3.44)

∇VL
L|c = −∇VL

ĜS|cµ̂1c −∇VL
ĜQG
|cµ̂2c −∇VL

ĜQGi
|cµ̂3c = 0 (3.45)

∇KG
L|c = −∇KG

ĜS|cµ̂1c = 0 (3.46)

∇QG
L|c = −µ̂2c −Māc µ̂4c −Mb̄c

µ̂5c + µ̂8c − µ̂9c = 0 (3.47)

∇QGi
L|c = −µ̂3c − Vaic

µ̂6c − Vbic
µ̂7c + µ̂10c − µ̂11c = 0 (3.48)

∇VG
L|c = −∇VG

ĜS|cµ̂1c −∇VG
ĜQG
|cµ̂2c −∇VG

ĜQGi
|cµ̂3c − µ̂12c = 0(3.49)

∇VGi
L|c = −∇VGi

ĜS|cµ̂1c −∇VGi
ĜQG
|cµ̂2c

−∇VGi
ĜQGi

|cµ̂3c − µ̂13c = 0 (3.50)

∇λL|c = −∇λĜS|cµ̂1c −∇λĜQG
|cµ̂2c −∇λĜQGi

|cµ̂3c + 1 = 0 (3.51)

∇VāL|c = −MQGminc
µ̂4c + µ̂12c + µ̂14c = 0 (3.52)

∇Vb̄
L|c = −MQGmaxc

µ̂5c − µ̂12c + µ̂15c = 0 (3.53)

∇Vai
L|c = −(QGic

−QGimin
)µ̂6c + µ̂13c + µ̂16c = 0 (3.54)

∇Vbi
L|c = −(QGic

−QGimax
)µ̂7c − µ̂13c + µ̂17c = 0 (3.55)
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where Māc = diag(Vāc), Mb̄c
= diag(Vb̄c

), MQGminc
= diag(QGc

− QGmin
), and

MQGmaxc
= diag(QGc

−QGmax
) are diagonal matrices. Also, the equality constraints

must be equal to zero and the inequality constraints are less than or equal to zero

at the optimum, i.e., this point must be feasible.

The complementarity slackness condition provides an indication of whether an

inequality constraint is active or not. Hence, based on the regularity and strict

complementarity OS assumptions, which imply that µc = (µ1c , . . . , µ17c) 6= 0 is

unique, and that µlc > 0 ∀l ∈ {Active Constraint Set} [88], it follows from (3.41)-

(3.43) that:

µ̂8kc
(QGkmin

−QGkc
) = 0 ⇒ µ̂8kc

= 0 ∀k ∈ Ḡ (3.56)

µ̂9̄c
(QG̄c

−QG̄max
) = 0 ⇒ µ̂9̄c

= 0 ∀̄ ∈ G̄ (3.57)

µ̂9jc
(QGjc

−QGjmax
) = 0 ⇒ µ̂9jc

> 0 ∀j ∈ Gj (3.58)

µ̂10c(QGimin
−QGic

) = 0 ⇒ µ̂10c = 0 (3.59)

µ̂11c(QGic
−QGimax

) = 0 ⇒ µ̂11c > 0 (3.60)

µ̂14kc
(−Vakc

) = 0 ⇒ µ̂14kc
> 0 ∀k ∈ Ḡ (3.61)

µ̂15̄c
(−Vb̄c

) = 0 ⇒ µ̂15̄c
> 0 ∀̄ ∈ G̄ (3.62)

µ̂15jc
(−Vbjc

) = 0 ⇒ µ̂15jc
= 0 ∀j ∈ Gj (3.63)

µ̂16c(−Vaic
) = 0 ⇒ µ̂16c > 0 (3.64)

µ̂17c(−Vbic
) = 0 ⇒ µ̂17c > 0 (3.65)

where Ḡ = G̄ ∪ Gj .

Now, based on (3.41)-(3.43), the following actuation regime and saturation

regime equations, evaluated at the solution point (ẑc, λc, p̂o), are the minimum

subsets of constraints (2.20b)-(2.20g) that uniquely define ẑc for a given (λc, p̂o),

since the number of equations and unknowns is the same, i.e., N = 2nb +nG, where

nb is the number of system buses and nG is the number of generators:
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Ga|c =




Ĝ(δc, VLc , KGc, QGc , VGc, λc, PSo, PDo)

VG̄c
− VG̄o

∀̄ ∈ G̄

QGjc
−QGjmax

∀j ∈ Gj

VGic
− VGio




= 0 (3.66)

Gb|c =




Ĝ(δc, VLc , KGc , QGc , VGc , λc, PSo, PDo)

VG̄c
− VG̄o

∀̄ ∈ G̄

QGjc
−QGjmax

∀j ∈ Gj

QGic
−QGimax




= 0 (3.67)

Notice that these equations have a similar form as (2.8) and (2.9) respectively,

where z̃c = (δc, VLc , KGc, VGc), r̂c = QGc , p̂o = (PSo , PDo, VGo), ĝ|c = Ĝ|c, and

r̂c–s|c ≡




VG̄c
− VG̄o

∀̄ ∈ G̄

QGjc
−QGjmax

∀j ∈ Gj

VGic
− VGio


 (3.68)

Observe that in this case, some of the actuation limit functions are implicit

instead of explicit functions of the corresponding variables r̂. Hence, for the optimal

solution to be a LISB, one must first prove that the Jacobians J i
a and J i

b associated

with (3.66) and (3.67) are nonsingular.

Let first prove that J i
b is not singular. Hence, from (3.44)-(3.55) and with

the proper ordering of variables and equations in (3.67), and assuming that VG =

(VG̄ ∀̄ ∈ G̄, VGj
∀j ∈ Gj), and similarly for QG, it can be shown that:

J iT

b x̂b = b̂b (3.69)
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where

J iT

b =




∇δĜS |c ∇δĜQG
|c ∇δĜQGi

|c 0 0 0

∇VL
ĜS |c ∇VL

ĜQG
|c ∇VL

ĜQGi
|c 0 0 0

∇KG
ĜS |c 0 0 0 0 0

∇VG
ĜS |c ∇VG

ĜQG
|c ∇VG

ĜQGi
|c U 0 0

0 InḠ
0 0 W 0

0 0 1 0 0 1

∇VGi
ĜS |c ∇VGi

ĜQG
|c ∇VGi

ĜQGi
|c 0 0 0




=

[
AT e

cT 0

]

x̂b =




µ̂1c

µ̂2c

µ̂3c

µ̂12G̄c

µ̂9Gjc

µ̂11c




b̂b =




0

0

0

−Wµ̂12Gjc

−Mācµ̂4c −Mb̄c
µ̂5c + µ̂8c–Uµ̂9G̄c

−Vaic
µ̂6c − Vbic

µ̂7c + µ̂10c

µ̂13c




and µ̂9 = (µ̂9G̄
, µ̂9Gj

), µ̂12 = (µ̂12G̄
, µ̂12Gj

),

U =

[
InG̄

0

]
, W =

[
0

InGj

]

where In is an n× n identity matrix. From (3.48), (3.59) and (3.60):

µ̂3c = −µ̂11c 6= 0 (3.70)
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From (3.58)

µ̂9Gjc
6= 0 (3.71)

And from (3.55) and (3.65)

µ̂13c = µ̂17c 6= 0 (3.72)

Hence, from (3.70)-(3.72), it follows that:

x̂b 6= 0 and b̂b 6= 0

and are both unique. Therefore, one can conclude from (3.69) that J i
b is nonsingular,

i.e.,

det(J i
b) 6= 0 (3.73)

Similarly, it can be readily shown that:

J iT

a x̂a = b̂a (3.74)

where

J iT

a =

[
AT 0

cT 1

]
(3.75)

x̂a =




µ̂1c

µ̂2c

µ̂3c

µ̂12G̄c

µ̂9Gjc

µ̂13c




b̂a =




0

0

0

−Wµ̂12Gjc

−Māc µ̂4c −Mb̄c
µ̂5c + µ̂8c–Uµ̂9G̄c

−Vaic
µ̂6c − Vbic

µ̂7c + µ̂10c − µ̂11c

0



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Therefore, from (3.70)-(3.72), it follows that:

x̂a 6= 0 and b̂a 6= 0

and are both unique, yielding a nonsingular J i
a, from (3.74) i.e.,

det(J i
a) 6= 0 (3.76)

Thus, from (3.73) and (3.76), it is clear that the solution point (ẑc, λc, p̂o) meets

transversality conditions (2.10).

The second transversality condition (2.11) simply states that the ratio of the

determinants of J i
a and J i

b must be positive for (ẑc, λc, p̂o) to be a LISB. Thus, from

(3.70) and (3.75), and based on Schur’s Complements [91], it follows that:

det(J i
a) = det(A)

det(J i
b) = −eT A−1c det(A)

Therefore:

α =
det(J i

a)

det(J i
b)

=
1

−eT A−1c
(3.77)

Now, from (3.66), it follows that:

∇T
ẑ Ga|c dẑ +∇T

VGio
Ga|c dVGio

= 0

which from (3.75) can be rewritten as:
[

A c

0 1

][
dz̄

dV̄Gi

]
−
[

0

1

]
dVGio

= 0

where ẑ = (z̄, VGi
). This yields:

dz̄ = −A−1c dVGi
(3.78)

dVGi
= dVGio

(3.79)

On the other hand, from (3.67) and (3.70), one knows that:
[

A c

eT 0

][
dz̄

dVGi

]
−
[

0

1

]
dQGimax

= 0
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which yields (3.78) as well as:

dQGi
= eT dz̄ = dQGimax

(3.80)

Thus, from (3.78), (3.79) and (3.80), it follows that:

dQGimax

dVGio

∣∣∣∣
c

= −eT A−1c

which, from (3.77), leads to:

α =
dVGio

dQGimax

∣∣∣∣
c

(3.81)

Now, from the optimization model (2.20), the sensitivities of the objective func-

tion with respect to QGimax
and VGio

evaluated at the optimal point can be stated

as [92]:

µ̂11c =
dλ

dQGimax

∣∣∣∣
c

µ̂13c =
dλ

dVGio

∣∣∣∣
c

Hence, from (3.60), (3.72), and (3.81), it follows that:

α =
µ̂11c

µ̂13c

> 0 (3.82)

which satisfies the second transversality condition (2.11). Therefore, the optimal

solution (ẑc, λc, p̂o) which meets the given OS assumptions is a LISB.

Finally, observe that at a LIDB, assumptions (3.41)-(3.43) are also met. How-

ever, (3.82) rules out the possibility of a LIDB being a solution of (2.20).

This theorem basically proves that a given local optimum of (2.20) can be a

LISB and not a LIDB, and that it can be preceded by some generators reaching

reactive power limits, i.e., LIDBs. The following theorem shows that this local

optimum can also be an SNB.
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Theorem 3.2. Let (ẑc, λc) be local optimum of (2.20) that meets the abovemen-

tioned OS assumptions for p̂ = p̂o, where some generators j ∈ Gj ⊂ G satisfy:

QGjc
= QGjmax

VGjc
< VGjo

}
⇒

{
Vaj

= 0

Vbj
> 0

(3.83)

while the rest of the generators ̄ 6= j ∈ G̄ ⊂ G, G = G̄∪Gj, are not at their reactive

power limits, i.e.,

QG̄min
< QG̄c

< QG̄max

VG̄c
= VG̄o

}
⇒ Va̄ = Vb̄ = 0 (3.84)

(Assumptions (3.83) and (3.84) generalize the case where an SNB occurs after a

LIDB in λ space, as depicted in Figure 2.3.) Then, (ẑc, λc, p̂o) is an SNB of the

power flow model defined by equations (2.20b)-(2.20e).

Proof. Following a similar approach to the proof of Theorem 3.1, let QG = (QG, Q
G̃
),

where QG = (QG̄ ∀̄ ∈ G̄, QGj
∀j ∈ Gj), and similarly for VG, Va and Vb. Hence,

the Lagrangian function of (2.20) may then be expressed as:

L = λ− µ̂T
1 ĜS(ẑc, λc, p̂o)− µ̂T

2 ĜQG
(ẑc, λc, p̂o)

−µ̂3ĜQ
G̃
(ẑc, λc, p̂o)− µ̂T

4 (QG −QGmin
)Vā

−µ̂T
5 (QG −QGmax

)Vb̄ − µ̂T
6 (Q

G̃
−Q

G̃min
)Vã

−µ̂T
7 (QG̃ −QG̃max

)Vb̃ − µ̂T
8

(
QGmin

−QG

)

−µ̂T
9

(
QG −QGmax

)
− µ̂T

10

(
Q

G̃min
−Q

G̃

)

−µ̂T
11

(
QG̃ −QG̃max

)
− µ̂T

12

(
VG − VGo

− Vā + Vb̄

)

−µ̂13

(
VG̃ − VG̃o

− Vã + Vb̃

)
− µ̂T

14(−Vā)

−µ̂T
15(−Vb̄)− µ̂T

16(−Vã)− µ̂T
17(−Vb̃)
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From the KKT optimality conditions, it follows that:

∇δL|c = −∇δĜS |cµ̂1c −∇δĜQG
|cµ̂2c −∇δĜQ

G̃
|cµ̂3c = 0 (3.85)

∇VL
L|c = −∇VL

ĜS |cµ̂1c −∇VL
ĜQG

|cµ̂2c −∇VL
ĜQ

G̃
|cµ̂3c = 0 (3.86)

∇KG
L|c = −∇KG

ĜS |cµ̂1c = 0 (3.87)

∇QG
L|c = −µ̂2c −Māc µ̂4c −Mb̄c

µ̂5c + µ̂8c − µ̂9c = 0 (3.88)

∇Q
G̃
L|c = −µ̂3c −Mãc µ̂6c −M

b̃c
µ̂7c + µ̂10c − µ̂11c = 0 (3.89)

∇VG
L|c = −∇VG

ĜS |cµ̂1c −∇VG
ĜQG

|cµ̂2c −∇VG
ĜQ

G̃
|cµ̂3c − µ̂12c = 0 (3.90)

∇V
G̃
L|c = −∇V

G̃
ĜS |cµ̂1c −∇V

G̃
ĜQG

|cµ̂2c −∇V
G̃
ĜQ

G̃
|cµ̂3c − µ̂13c = 0 (3.91)

∇λL|c = −∇λĜS |cµ̂1c −∇λĜQG
|cµ̂2c −∇λĜQ

G̃
|cµ̂3c + 1 = 0 (3.92)

∇VāL|c = −MQGminc
µ̂4c + µ̂12c + µ̂14c = 0 (3.93)

∇Vb̄
L|c = −MQGmaxc

µ̂5c − µ̂12c + µ̂15c = 0 (3.94)

∇Vã
L|c = −MQ

G̃minc

µ̂6c + µ̂13c + µ̂16c = 0 (3.95)

∇Vb̃
L|c = −MQ

G̃maxc
µ̂7c − µ̂13c + µ̂17c = 0 (3.96)

where Māc = diag(Vāc), and similarly for Mb̄c
, Mãc , Mb̃c

; and MQGminc
= diag(QGc

−
QGmin

), and similarly for MQGmaxc
, MQ

G̃minc

, and MQ
G̃maxc

. Furthermore, all the

equality constraints must be equal to zero, while the inequality constraints must

be less than or equal to zero.

From the regularity and strict complementarity OS assumptions, which imply

a unique µc = (µ1c , . . . , µ17c) 6= 0, with µlc > 0 ∀l ∈ {Active Constraint Set}, it

follows from (3.83) and (3.84) that:

µ̂8̄c
(QG̄min

−QG̄c
) = 0 ⇒ µ̂8̄c

= 0 ∀̄ ∈ G̄ (3.97)

µ̂9̄c
(QG̄c

−QG̄max
) = 0 ⇒ µ̂9̄c

= 0 ∀̄ ∈ G̄ (3.98)

µ̂10jc
(QGjmin

−QGjc
) = 0 ⇒ µ̂10jc

= 0 ∀j ∈ Gj (3.99)

µ̂11jc
(QGjc

−QGjmax
) = 0 ⇒ µ̂11jc

> 0 ∀j ∈ Gj (3.100)

µ̂14̄c
(−Va̄c

) = 0 ⇒ µ̂14̄c
> 0 ∀̄ ∈ G̄ (3.101)

µ̂15̄c
(−Vb̄c

) = 0 ⇒ µ̂15̄c
> 0 ∀̄ ∈ G̄ (3.102)

µ̂16jc
(−Vajc

) = 0 ⇒ µ̂16jc
> 0 ∀j ∈ Gj (3.103)
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µ̂17jc
(−Vbjc

) = 0 ⇒ µ̂17jc
= 0 ∀j ∈ Gj (3.104)

Now, based on (3.83) and (3.84), the following equations, evaluated at the solu-

tion point (ẑc, λc, p̂o), form the minimum subset of constraints (2.20b)-(2.20g) that

uniquely define ẑc for a given (λc, p̂o), since the number of equations and unknowns

are the same, i.e., N :

G|c =




Ĝ(δc, VLc , KGc , QGc , VGc, λc, PSo, PDo)

VGc
− VGo

Q
G̃c
−Q

G̃max


 = 0 (3.105)

Hence, for the optimal solution to be an SNB, one must first prove that the

Jacobian J = ∇T
ẑ G|c is singular with unique nonzero eigenvectors, where ẑ =

(δ, VL, KG, VG, QG).

From (3.85)-(3.96) and with the proper ordering of variables and equations in

(3.67), it can be shown that:

∇ẑG|c ŵ = b̂ (3.106)

where,

∇ẑG|c =




∇δĜS|c ∇δĜQG
|c ∇δĜQ

G̃
|c 0 0

∇VL
ĜS|c ∇VL

ĜQG
|c ∇VL

ĜQ
G̃
|c 0 0

∇KG
ĜS|c 0 0 0 0

∇VG
ĜS|c ∇VG

ĜQG
|c ∇VG

ĜQ
G̃
|c InG̄

0

∇V
G̃
ĜS|c ∇V

G̃
ĜQG
|c ∇V

G̃
ĜQ

G̃
|c 0 0

0 InG̄
0 0 0

0 0 InGj
0 InGj




(3.107)
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ŵ =




µ̂1c

µ̂2c

µ̂3c

µ̂12c

µ̂11c + Mb̃c
µ̂7c




(3.108)

b̂ =




0

0

0

0

−µ̂13c

−Māc µ̂4c −Mb̄c
µ̂5c + µ̂8c–µ̂9c

−Mãc µ̂6c + µ̂10c




Now, from (3.96) and (3.104):

µ̂13c = µ̂17c = 0 (3.109)

From (3.84), (3.97) and (3.98):

−Māc µ̂4c −Mb̄c
µ̂5c + µ̂8c–µ̂9c = 0 (3.110)

From (3.83) and (3.99):

−Mãc µ̂6c + µ̂10c = 0 (3.111)

Hence, from (3.109)-(3.111), it follows that:

∇ẑG|c ŵ = 0

Finally, from the regularity and strict complementarity OS assumptions, it follows

that µ1c 6= 0, µ2c 6= 0, and µ3c 6= 0, as µ̂c 6= 0 and is unique. Hence, ŵ 6= 0 and

is unique, from which it can be concluded that the optimum (ẑc, λc, p̂o) meets the

SNB transversality condition (2.3).
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Now, from (3.92), (3.105) and (3.108), it follows that:

∇λL|c = −∇λG|c ŵ + 1 = 0

⇒ ∇λG|c ŵ 6= 0

which corresponds to the SNB transversality condition (2.4).

The third SNB transversality condition (2.5) is now verified. Thus, from as-

sumptions (3.83) and (3.84) regarding the optimum (ẑc, λc, p̂o), and from (3.105),

as well as based on the previous analysis, the optimization model (2.20) can be

restated as follows, since it would yield the same optimal solution:

max λ

s.t. G(ẑ, λ, p̂o) = 0

The corresponding Lagrangian function may then be defined as:

L(ẑ, λ, p̂o, µ̂) = λ− µ̂T G(ẑ, λ, p̂o)

which, based on the KKT optimality conditions, leads to:

∇ẑL|c = −∇ẑG|cµ̂c = −∇ẑG|cŵ = 0 (3.113)

∇µ̂L|c = −G|c = 0 (3.114)

∇λL|c = −∇λG|cŵ + 1 = 0 (3.115)

Based on the OS assumptions, which guarantee that the set of equations (3.113)-

(3.115) have a unique solution, the full Hessian of the Lagrangian function, i.e., the

Jacobian of these equations, must be nonsingular; thus:

∇2
(ẑ,µ̂,λ)L(ẑc, λc, p̂o, ŵ) ρ 6= 0 ∀ρ 6= 0 (3.116)

where

∇2
(ẑ,µ̂,λ)L|c = −




∇2
ẑG|cŵ ∇ẑG|c ∇2

λẑG|cŵ
∇T

ẑ G|c 0 ∇T
λG|c

ŵT∇2T

ẑλG|c ∇λG|c ∇2
λG|cŵ


 (3.117)
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Hence, for a chosen ρ = (v̂, 0, 0) 6= 0, from (3.116) one has that:

[
∇2

ẑG|cŵ
]
v̂ 6= 0 (3.118)

since, in this case, ∇2T

ẑλG|c = ∇2
λẑG|c = 0. On the other hand, from the second-order

KKT necessary optimality conditions [88]:

ρ̂T ∇2
(ẑ,λ)L|c ρ̂ ≤ 0 ∀ρ̂ ∈ U(ẑc, λc) (3.119)

where

U(ẑc, λc) =
{
ρ̂ ∈ R

nẑ+1 :
[
∇T

ẑ G|c∇T
λG|c

]
ρ̂ = 0

}

Hence, for ρ̂ = (v̂, 0) it follows from (3.117) and (3.119) that:

v̂T
[
∇2

ẑG|cŵ
]
v̂ ≥ 0

Therefore, from (3.118), it can be concluded that:

v̂T
[
∇2

ẑG|cŵ
]
v̂ > 0

Finally, taking the transpose of this equation and considering the properties of

tensor products:

ŵT
[
∇2T

ẑ G|cv̂
]
v̂ > 0

This corresponds to the third SNB transversality condition (2.5).

It is important to highlight that this theorem proves that the solution is not

simply a fold but an SNB, since the uniqueness of the zero eigenvectors is demon-

strated here. Finally, the following corollary argues that an optimum of (2.20) can

only be a LISB or an SNB.

Corollary 3.1. Any solution point (ẑc, λc, p̂o) of (2.20) that meets the aforemen-

tioned OS assumptions is either a LISB or an SNB.

Proof. Observe that Theorem 3.1 proofs that a LIDB cannot be a solution of (2.20).

Now, notice that all possible limit conditions of the inequality constraints of (2.20)
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are considered in assumptions (3.41)-(3.43) and (3.83)-(3.84) of Theorems 3.1 and

3.2, respectively. Thus, the cases of none or all generators reaching their limits

are simply particular cases of these assumptions. Hence, any feasible solution of

(2.20), would either meet assumptions (3.41)-(3.43) or (3.83)-(3.84). Therefore, the

solution point (ẑc, λc, p̂o) can only be a LISB or a SNB.

3.3 Numerical Examples

This section presents a numerical comparison between the OPF-DM and the CPF

method to illustrate some of the theoretical issues discussed in the previous section.

Thus, the maximum loading factor, voltage, and reactive power levels obtained

from solving (2.20) are compared with those obtained using the standard CPF,

for a variety of test cases for the 6-bus system shown in Figure A.1 [1]. In these

cases, the generators’ voltage set points and reactive power limits are assumed to

be VGo = 1.05 p.u. and QG = ±1.5 p.u., respectively. The CIGRE-32 test system

described in Appendix A is also used to compare both techniques.

3.3.1 Practical Implementation Issues

The OPF-DM with complementarity constraints can be implemented in AMPL,

using the complements operator [93, 94], which allows complementarity conditions

to be directly specified in the constraint declarations, and then solved using solvers

specifically designed for complementarity problems such as KNITRO [95]. Alterna-

tively, the complementarity constraints can be specified as nonsmooth constraints

as in (2.20), solving the optimization problem with nonlinear programming solvers

such as LOQO, KNITRO or IPOPT. This second approach is used here to obtain

the numerical results discussed in this section. On the other hand, UWPFLOW [72],

which is a popular and well-tested software tool with a robust implementation of

a CPF technique, was used to obtain PV curves for illustrative and comparison
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Figure 3.5: Generators’ PV curve for the 6-bus system: The base case

exhibits a LISB.

purposes. For both techniques, the generation and load variations were assumed to

be defined by (2.13)-(2.15).

It is important to highlight the fact that the initial operating point is rather

important, since it is used to define the generator voltage set points for the opti-

mization problem as well as the starting point for the CPF; and it must be obtained

by running an initial power flow simulation. The auxiliary variables used in the

definition of the complementarity constraints must be initialized to zero.

3.3.2 Numerical Results

The PV curves in Figures 3.5-3.7 present three bifurcation profiles under different

operating conditions: Figure 3.5 shows a LISB at λc = 4.5049 p.u., preceded by

LIDBs, for the base system topology; Figure 3.6 shows an SNB at λc = 1.9081 p.u.,

preceded by LIDBs, when line 2-4 is removed from the system; and Figure 3.7 shows
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QG-limits.
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Table 3.1: OPF-DM vs CPF for the 6-bus test system

LISB SNB (with QG-limits) SNB (without QG-limits)

OPF-DM CPF OPF-DM CPF OPF-DM CPF

VG1
1.0500 1.0500 0.9648 0.9657 1.0500 1.0500

VG2
1.0025 1.0026 1.0500 1.0500 1.0500 1.0500

VG3
1.0029 1.0029 1.0500 1.0500 1.0500 1.0500

VL4
0.8458 0.8458 0.6027 0.6048 0.5360 0.5360

VL5
0.8546 0.8545 0.8586 0.8591 0.7129 0.7125

VL6
0.8687 0.8686 0.9465 0.9466 0.7679 0.7677

QG1
1.5 1.5 1.5 1.5 3.1588 3.1600

QG2
1.5 1.5 0.9577 0.9511 6.2724 6.2734

QG3
1.5 1.5 1.4712 1.4682 3.5828 3.5856

λc 4.4966 4.5049 1.9046 1.9081 11.1141 11.1330

All values in p.u.

another SNB at a λc = 11.1330 p.u. when QG-limits are ignored for the base system.

Observe in these plots that the bifurcations in the first two cases are preceded by

some LIDBs in λ space. Also, in the last case, the SNB occurs at a larger loading

factor, with the voltages at generator buses remaining constant. Notice as well the

sharp “edge” of the bifurcation manifold at the maximum loading point defined by

a LISB, which is a characteristic of these type of bifurcations, and the “quadratic”

shape of the manifolds around the SNBs which are also typical.

Table 3.1 presents a comparison of the solutions obtained using the optimiza-

tion model (2.20) as well as the equivalent results obtained from the CPF, depicted

in Figures 3.5-3.7. The results presented in the first and second columns corre-

spond to the base case, and they show that GENCO 1 satisfies the LISB condition
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QG1c
= QG1max

and VG1c
= VG1o

at λc, while GENCO 2 and GENCO 3 are at their

reactive power limits with their voltages below the corresponding set points. That

is, the system has undergone 2 LIDBs before reaching a LISB in λ space, as clearly

illustrated in Figure 3.5. The results in the third and fourth columns, obtained by

removing line 2-4, show GENCO 2 and GENCO 3 within their reactive power limits

and at their corresponding voltage set points. Meanwhile, GENCO 1 has reached

its maximum reactive power limit and its voltage is below its set point, indicating

the occurrence of a LIDB before the SNB in λ space, as depicted in Figure 3.6.

Finally, the results presented in the last two columns, which correspond to the base

system without generator reactive power limits, show all generators at their volt-

age set points as well as large reactive power outputs. That is, there are no LIDBs

before the SNB in λ space. This table shows that both techniques essentially give

the same solution; the small differences can be basically attributed to numerical

approximations, particularly in the case of the CPF. The execution time for the

OPF-DM was in the range of 0.12s, which was faster than the CPF.

The sequence of generators reaching the maximum reactive power limit can be

also obtained from the OPF-DM, by ranking the difference ∆VGic
= VGio

− VGic
in

descending order. Thus, the largest difference corresponds to the first generator’s

reaching its maximum reactive power limit, and so on. If the difference is negative,

then the generator would have reached the minimum reactive power limit. For

example, the ranked differences for the base case are: ∆VG2c
= 0.0475, ∆VG3c

=

0.0471 and ∆VG1c
= 0, which agrees with what is observed in Figure 3.5.

A test was carried out to study the effect of setting the upper voltage limits

at generation buses at their corresponding set points for the model without com-

plementarity constraints (2.17), with the objective that by defining VGmax = VGo ,

the optimization solution process would “fix” the generator voltages at their ini-

tial maximum voltage levels. This would yield similar results as those obtained by

solving (2.20), since voltages at generation buses, if not fixed, typically increase

when increasing the load. It is interesting to notice that this approach generated

the same results as those depicted in Table 3.1. However, this was not the case for
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other test systems, since (2.17) does not necessarily guarantee that generators are

going to be at their maximum voltage values (voltage set points in this case) if their

reactive power limits have not been reached. For instance, Table 3.2 summarizes

the results for the CIGRE-32 test system corresponding to the PV curves shown

in Figure 3.8 and Figure 3.9, where an SNB at λ = 0.1473, and at λ = 0.8144

are shown for the base case and neglecting QG-limits, respectively. Observe in this

table that the reactive power at some buses is significantly different from that ob-

tained using CPF, if complementarity constraints are not used. Also notice that in

some generators:

• VG = VGo when the reactive power is within limits, e.g., QG4047max
= 6.0 p.u.,

and VGo4044
= 0.9473 p.u.

• VG < VGo if a QG-limit is reached, e.g., QG4042max
= 3.5 p.u., and VGo4042

=

0.9831 p.u.

• both QG and VG are set to the upper limit, e.g., QG4011max
= 5.0 p.u.,

QG4012max
= 4.0 p.u., VGo4011

= 1.05 p.u., and VGo4012
= 1.04 p.u.

Table 3.2: Comparison of the OPF-DM vs CPF for the CIGRE-32 system

SNB (with QG-limits) SNB (without QG-limits)

OPF-DM CPF OPF-DM CPF

(2.17) (2.20) (2.17) (2.20)

VG4011
1.0500 1.0500 1.0500 0.9341 1.0500 1.0500

VG4012
1.0400 1.0400 1.0400 0.2430 1.0400 1.0400

VG4042
0.9537 0.9521 0.9521 0.9831 0.9831 0.9830

VG42
0.9314 0.9298 0.9298 0.9457 0.9467 0.9465

VG4043
0.9075 0.9066 0.9065 0.8099 0.8030 0.8029

VG43
0.8820 0.8811 0.8810 0.7537 0.7477 0.7476

VG4047
0.9473 0.9473 0.9470 0.9473 0.9473 0.9470

Continued on next page
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Table 3.2 – continued from previous page

SNB (with QG-limits) SNB (without QG-limits)

OPF-DM CPF OPF-DM CPF

(2.17) (2.20) (2.17) (2.20)

VG4046
0.9064 0.9059 0.9057 0.8082 0.8064 0.8062

VG47
0.9235 0.9235 0.9232 0.9067 0.9078 0.9074

VG46
0.8764 0.8759 0.8757 0.7403 0.7405 0.7402

QG4072
-0.2130 4.9683 4.9665 8.7258 8.9849 8.9826

QG4071
2.5000 1.1419 1.1415 22.1923 2.2520 2.2519

QG4011
5.0000 0.8662 0.8540 100 9.4523 9.4458

QG4012
4.0000 -0.6065 -0.6119 -40.4752 1.5048 1.5037

QG4021
1.5000 1.5000 1.5000 14.0337 11.1244 11.1261

QG4031
1.7500 1.7500 1.7500 49.0580 23.4120 23.3409

QG4042
3.5000 3.5000 3.5000 30.1225 34.3495 34.3127

QG4041
2.0941 2.2167 2.1972 12.3894 15.2220 15.2365

QG4062
1.7610 1.7601 1.7197 36.9707 10.5022 10.4566

QG4063
2.2965 2.2905 2.3130 3.4694 5.2850 5.3054

QG4051
3.5000 3.5000 3.5000 15.9721 16.5290 16.5068

QG4047
3.7669 3.8447 3.8065 15.2604 15.5880 15.5650

QG2032
1.3713 1.3802 1.3758 26.2726 4.3197 4.3239

QG1013
2.2579 1.2057 1.2052 12.1313 2.8660 2.8643

QG1012
-0.7905 -0.3673 -0.3678 100 1.9076 1.9058

QG1014
-0.9999 0.4218 0.4218 0.6924 0.6075 0.6091

QG1022
1.2500 1.2500 1.2500 31.5172 12.1901 12.1866

QG1021
2.7510 2.7467 2.7436 11.6739 6.8142 6.8071

QG1043
1.0000 1.0000 1.0000 20.0257 20.1360 20.0896

QG1042
0.4923 0.5040 0.4993 2.7057 2.7233 2.7192

λc 0.1492 0.1476 0.1473 0.8578 0.8148 0.8144
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3.4 Summary

This chapter has presented a detailed, theoretical study of an optimization method

able to determine two types of fold bifurcations directly associated with voltage

instabilities in power systems. It was demonstrated that the necessary and sufficient

optimality conditions yield the transversality conditions for SNBs and LISBs. Thus,

it has been shown that the solution of the studied optimization problem yields the

same results as those obtained with the more popular CPF techniques, which is

typically used to analyze these types of bifurcations in power systems.

The advantages of stating the SNB/LIB problem as an optimization problem

is that optimization solution techniques can be computationally more effective

than CPF methods for maximum loadability studies, particularly when using well-

tested and efficient solution techniques such as IPM. Furthermore, optimization

approaches are more versatile than CPF techniques, since the problem can be read-

ily restated so that optimal control parameter values can be calculated to increase

the maximum loadability margins of a system, or readily carry out a variety of

sensitivity studies.



Chapter 4

Practical Solution of

Voltage-Stability-Constrained

Optimal Power Flows

4.1 Introduction

Chapter 3 demonstrated the feasibility of an optimization method to determine

the voltage collapse point of a power flow model, namely an SNB or LIB point.

This chapter proposes a novel and practical method to enforce a VS constraint in

an OPF auction model, based on the MSV and minimum singular vectors of the

power flow Jacobian. By ensuring that this singular value is bounded from reaching

zero and guaranteeing that generators’ reactive power and other security limits are

met, adequate security margins in a power system can be ensured, hence preventing

a voltage collapse point. The proposed technique is based on a SVD of the power

flow Jacobian at a given solution point, plus an iterative process to satisfy the

VS constraint. A small but realistic, 6-bus test system and a 1211-bus model of

a European grid are used to analyze the performance of the proposed technique.

Comparisons with previously proposed solution techniques for similar VSC-OPFs

77
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are presented. The results obtained demonstrate the feasibility of applying the

proposed VSC-OPF in practice.

4.2 Proposed Solution Method

The main objective in the development of the proposed solution method is to re-

place (2.24c) with an equivalent constraint that can be written explicitly in terms

of the VSC-OPF optimization variables. Thus, SVD concepts and an iterative tech-

nique to deal with this constraint in practice are used in the proposed VSC-OPF

method, as described below.

4.2.1 Singular Value Decomposition (SVD)

The SVD is typically used to determine the rank of a matrix, i.e., the maximum

number of independent rows or columns, and it can be used as a measure of how

close a matrix is to the set of singular matrices [96]. Therefore, if the Jacobian

J ∈ R
n×n, where n = 2nb (nb is the number of buses in (2.21b)), is invertible or

nonsingular, this matrix is full rank and its orthonormal decomposition is defined

as:

J = UΣW T =

n∑

i=1

σiuiw
T
i (4.1)

where the singular vectors ui and wi are the ith columns of the unitary matrices

U and W , and Σ is a diagonal matrix of positive real singular values σi, such that

σ1 ≥ σ2 ≥ · · ·σn. Thus, for the ith column of the unitary matrices it follows that:

JT ui = σiwi

Jwi = σiui

}
⇒ uT

i Jwi = σi, (4.2)

where uT
i ui = 1, wT

i wi = 1, and uT
i wi = 0 [96] (σn is zero if J is singular).

Since J becomes singular at an SNB point, the proximity to voltage collapse

can be determined by monitoring the smallest singular value σn [13,44]. Therefore,
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the following equation is proposed as an alternative formulation for (2.24c):

σmin{J} ≥ σc ⇔ uT
nJwn ≥ σc (4.3)

Consequently, (2.24) can be restated as follows:

max
δ,VL,QG

VG,PS ,PD

∑

j∈D

CDj
PDj
−
∑

i∈G

CSi
PSi

(4.4a)

s.t Ĝ(δ, VL, QG, VG, PS, PD) = 0 (4.4b)

uT
nJ(δ, VL, VG)wn ≥ σc (4.4c)

PSimin
≤ PSi

≤ PSimax
∀i ∈ G (4.4d)

PDjmin
≤ PDj

≤ PDjmax
∀j ∈ D (4.4e)

QGimin
≤ QGi

≤ QGimax
∀i ∈ G (4.4f)

Vimin
≤ Vi ≤ Vimax ∀i ∈ B (4.4g)

Iij(δ, V ) ≤ Iijmax ∀(i, j) ∈ T , i 6= j (4.4h)

The main advantages of model (4.4) is that the explicit function (4.4c) does

not require to approximate derivatives in the solution process, and it can be imple-

mented using mathematical programming languages and solved with commercial

solvers for large-scale nonlinear optimization problems. Furthermore, it can be ap-

plied in the solution of more realistic systems, as demonstrated later in Section 4.3.5.

However, the discussed observations below lead to the development of an iterative

solution method.

Observe that σn may not be necessarily greater or equal to σc at the optimal

solution, since the parameters un and wn come from the SVD of J at a particular

power flow solution, which does not necessarily correspond to the solution of (4.4);

this leads to having to update these vectors iteratively until σn ≥ σc. Furthermore,

notice that the structure of J may also differ from that at the initial point, due

to some PV buses becoming PQ buses during the solution process; however, the

proposed method to solve this model requires an invariant Jacobian to reduce the

execution time and make it more practical. The following two sections address
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these two particular issues; thus, Section 4.2.2 studies the MSV of an invariant

Jacobian that is not affected by PV buses becoming PQ buses, and Section 4.2.3

describes the proposed algorithm to update the parameters un and wn.

4.2.2 MSV VSI of Invariant Jacobian

The power flow model used to obtain the VSI used in (2.24) is based on the following

nonlinear set of equations that define the active and reactive power mismatches at

the system buses:

[
∆P (δ, VL, KG, VG, λ)

∆Q(δ, VL, QG, VG, λ)

]
= Ĝ(δ, VL, QG, KG, VG, λ) = 0 (4.5)

Notice that the reactive power mismatch equations at PV buses are included

in (4.5). Thus, for an nb-bus system, there are two equations and two variables for

each PQ, PV, or slack bus (SL). This allows to solve (4.5) without the need for

changing the dimension of J when a QG-limit is reached or released, requiring only

to swap variables VG with QG, or viceversa.

In the “classical” way of solving the power flow problem using a Newton-

Raphson method, the power flow Jacobian is associated with two equations for

each PQ bus and one for each PV bus, and none for the slack bus, since only the

δ and V variables for each PQ bus and the variable δ for each PV bus are consid-

ered [97]. This Jacobian is referred here as JPF ∈ R
n×n, where n = 2nb − nPV − 1

(nPV is the number of original PV buses), and is a submatrix of J as follows:

J =

[
JPF J2

J3 J4

]
(4.6)

Table 4.1 summarizes the number of equations and associated variables with

each of the submatrices of J . In this table, ∆PPV , ∆PSL and ∆PPQ represent the

active power mismatch equations at PV, SL, and PQ buses, respectively, and ∆QG
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Figure 4.1: PV curves, and MSV of J and JPF for a 6-bus test system: (a)

SNB neglecting QG-limits; (b) LIB considering QG-limits.
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Table 4.1: Structure and dimensions of J

Equations Variables Dimension

(rows) (cols)

JPF ∆PPV , ∆PPQ, ∆QPQ δ, VL n× n

J2 ∆PPV , ∆PPQ, ∆QPQ KG, QG n×m

J3 ∆PSL, ∆QG δ, VL m× n

J4 ∆PSL, ∆QG KG, QG m×m

n = 2nb − nPV − 2,m = nPV + 2

and ∆QPQ are the reactive power mismatch equations at generation (PV and SL

buses) and PQ buses, respectively.

As λ increases, some PV buses become PQ buses as QG-limits are reached,

and the structure of J changes to accommodate the switch between QG and VG

variables; hence, as λ changes, J is affected, and this fact has to be taken into

consideration in the formulation of the proposed VS constraint (4.4c). However,

given the matrix subdivision of J in (4.6), JPF remains invariant as λ increases,

i.e., the change in variables when PV buses become PQ buses does not affect it.

Furthermore, through numerical tests it can be observed that the MSV of JPF

decreases as λ increases; there is no formal proof of this fact, but the author has

observed this in all small and large systems studied. For example, consider the

6-bus test system shown in Figure A.1. Figure 4.1 depicts the MSV of J and

JPF obtained while calculating the PV curves using a CPF technique [72], based

on (2.13)-(2.15). Figure 4.1(a) shows that the MSVs of both J and JPF become zero

at the SNB point if QG-limits are not considered. Figure 4.1(b), which corresponds

to a LIB due to QG-limits being reached, shows that the MSV of JPF is different

from that of J at the maximum loading point and that it does not undergo sudden

changes. The latter is an important advantage, since the convergence problems

that can result from the rapid changes of the MSV of J are less likely to occur.

Note that even though the MSVs of J and JPF are not the same, the MSVs
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Figure 4.2: PV curve, and two critical MSV for J and JPF at the the same

loading point; ∆λ defines a security margin.
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Figure 4.3: MSV of JPF for the CIGRE-32 test system considering QG-

limits.

of these Jacobians associated with any maximum loading point of interest can be

used as a VSI for a particular system. This is illustrated in a more general form

in Figure 4.2, where σc1 or σc2 define a “critical” MSV of a particular system

at certain loading point defined by λc; these values are chosen off-line, so that

λc defines a maximum loading point for a given dispatch pattern considering the

worst contingency. It should be mentioned that the MSV of JPF does not necessary

become zero at the SNB point when QG-limits are considered, as observed in studies

of larger test systems (e.g., the CIGRE-32 test system case shown in Figure 4.3).

However, as illustrated in Figure 4.2, the MSV of JPF simply defines an alternative

VSI that can be used to determine the σc value, which is a valid value from the

practical perspective of applying the proposed VSC-OPF.
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4.2.3 Updating Algorithm

As previously mentioned, an iterative algorithm to update the vectors un and wn

during the solution process is required. The initial values for these parameters can

be obtained by relaxing (4.4c), i.e., basically solving an OPF. In fact, if (4.4c) holds

for the optimal solution, then the solution for this subproblem is also a solution

of (4.4). Thus, the following algorithm is proposed to solve the VSC-OPF model,

which calculates the SVD of JPF at the OPF solution to update un and wn until

σn ≥ σc:

Algorithm: Solution of the VSC-OPF using a SVD

begin1

σc ← Off-line VS study2

k ← 13

(δ∗, V ∗
L , V ∗

G)← VSC-OPF (“relaxed”)4

(un, σn, wn)← SVD(JPF |∗)5

if σn ≥ σc then6

end7

else8

repeat9

k ← k + 110

(δ∗, V ∗
L , V ∗

G)← VSC-OPF11

(un, σn, wn)
(k) ← SVD(JPF |∗)12

until σ
(k)
n ≥ σc13

end14

(δ∗, V ∗
L , Q∗

G, V ∗
G, P ∗

S , P ∗
D)→ Optimum15

end16

Note that in Step 4, the algorithm initially solves (4.4) without (4.4c) to obtain

(un, σn, wn)
(1). Then, it verifies whether σn ≥ σc. If true, the process stops. If not,

then (un, wn)(k) is used to solve the VSC-OPF in Step 11, with (4.4c) incorporated
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into the optimization. The SVD is updated at the new solution, and k is increased.

The process is repeated until σ
(k)
n ≥ σc.

4.3 Numerical Results

This section presents and discusses numerical examples of the proposed method,

concentrating first on demonstrating how the proposed VSC-OPF method (4.4)

works, and comparing it to the VSC-OPF model (2.24). A comparison between the

VSC-OPF (4.4) and the SC-OPF (2.21) is then presented to study the effect of the

proposed VS constraint on a single 6-bus model. Finally, a 1211-bus system model

representing an actual European network is used to demonstrate the feasibility of

applying the proposed technique in practice.

The proposed method (4.4) was formulated using the AMPL [93] modeling

language and solved with IPOPT [98], whereas Matlab [99] was used for the required

SVD computations. The optimization model (2.24) was implemented in Matlab,

since current mathematical programming languages are not able to handle implicit

constraints.

4.3.1 Effect of Proposed VS Constraint

A numerical example to illustrate the application of the proposed method and the

effect of σc on the results is presented here using the 6-bus test system shown in

Figure A.1. Observe in Figure 4.1(b) that a small change in σc for this system,

e.g., from 4.99 to 5.03, can have a significant effect on the loading margin (security

levels), hence affecting system dispatch levels and market conditions.

Table 4.2 shows the initial values of un and wn obtained at each iteration of

the proposed method. Notice the progress of σn with respect to the values chosen

for σc, with the starting system conditions meeting the initial value chosen for

σc1 = 4.99 (in this case the proposed method did not require any iterations), and
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Table 4.2: Progress of the unitary vectors and MSV when σc is increased

from 4.99 to 5.03.

Initial values k = 1 k = 2

u
(0)
n w

(0)
n u

(1)
n w

(1)
n u

(2)
n w

(2)
n

-0.3504 0.3556 -0.3535 0.3583 -0.3535 0.3583

-0.5266 0.5377 -0.5275 0.5375 -0.5275 0.5376

-0.2540 0.2426 -0.2557 0.2447 -0.2557 0.2448

-0.5102 0.4879 -0.5078 0.4879 -0.5055 0.4878

-0.5242 0.5167 -0.5227 0.5161 -0.5228 0.5162

0.0076 0.0659 0.0100 0.0642 0.0101 0.0642

-0.0019 0.0993 0.0043 0.0936 0.0045 0.0934

0.0086 0.0784 0.0131 0.0742 0.0132 0.0741

σ
(0)
n = 4.99 ≥ 4.99 σ

(1)
n = 5.0291 < 5.03 σ

(2)
n = 5.0302 > 5.03

Table 4.3: Comparison of voltage, power dispatch, and LMPs at the solu-

tion of the VSC-OPF when σc is increased from 4.99 to 5.03.

Participant

VSC-OPF (σc = 4.99) VSC-OPF (σc = 5.0302)

V PS/PD LMP V PS/PD LMP

[p.u.] [MW] [$/MWh] [p.u.] [MW] [$/MWh]

GENCO 1 1.1 0 8.95 1.1 0 9.06

GENCO 2 1.1 25 8.90 1.1 6.0 8.80

GENCO 3 1.1 20 9.07 1.1 20 9.33

ESCO 1 1.021 25 9.48 1.022 25 9.60

ESCO 2 1.012 10 9.58 1.020 0.85 9.98

ESCO 3 1.038 8.0 9.35 1.044 0 9.73
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after two iterations the method converged to σn > σc2 = 5.03. Table 4.3 shows that

the voltage profile at load buses improves by increasing σc; however, the LMPs

increase, and the power dispatch levels are reduced. This is to be expected, since

the system security levels rise with an increase in σc, thus positively affecting system

operating conditions, and negatively affecting market conditions.

4.3.2 Efficiency of the Proposed Method

A small change in σc was used in the last section to see the effect of increasing

system security on the market and system conditions. This section presents a

similar test to determine how the proposed method performs when it is subject to

a σc value considerably different from that at a given power flow solution. The

following two cases are studied: the current operating point is close to an SNB, and

the operating point is close to a LIB point. Thus, σc = 4.98 is used to force the

VSC constraint to become active and determine how fast the method converges to

this value. Note that σn ≈ 0 at the SNB point, and that σn = 4.262 at the LIB

point in Figure 4.1(b).

Figure 4.4 shows σn at every iteration for the two cases. Observe that in both

cases the proposed method required only one iteration to increase σn to approxi-

mately 4.98, plus one iteration to converge. The author’s experience with different

test cases shows that, in general, the proposed method requires less than three

iterations to converge regardless of the difference between the σc and σn. These

results permit one to conclude that the proposed method can handle large incre-

ments of σn during the solution process, allowing a quick and efficient solution of

the VSC-OPF.

4.3.3 Comparison of VSC-OPF Formulations

Although the VSC-OPF models (2.24) and (4.4) are somewhat equivalent, their

corresponding stability constraints (2.24c) and (4.4c) require different solution ap-
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Figure 4.4: MSV at every iteration when σc is increased from 0 to 4.98,

and when increased from 4.262 to 4.98.

proaches. In (2.24), approximate derivatives of the constraint are needed in the

IPM solution process [34], whereas an iterative procedure is used in (4.4). There-

fore, a comprehensive comparison of both methods to understand their properties

is of interest.

In order to better understand the differences between different VSC-OPF solu-

tion methods, neither thermal nor generation reactive power limits are considered

here, thus concentrating on the effect and handling of the MSV constraint without

lost of generality. The highly nonlinear nature of the MSV as it approaches maxi-

mum loading condition is the main disadvantage of this index [13], and this feature

may result in convergence problems. Therefore, in order to study this issue, the

operating point at λc = 10 in Figure 4.1(a), which is closer to the maximum loading

point and hence results in large changes of the MSV with only small loading level

changes, is considered to be the base loading condition. Thus, the MSV associated

with this loading level is used as the σc value, i.e., σc = 3.8603. The tests then
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consist of increasing λ from 10 following the directions shown in (2.13)-(2.15) until

both (2.24) and (4.4) become unfeasible. This allows a comparison of solutions

obtained with these methods and their overall performance.

Figures 4.5(a) and 4.5(b) show the most significant results from the test, i.e.,

the final MSV of the power flow Jacobian at the optimum in p.u. with respect to

σc, and the number of iterations required to converge. The values of the MSV

are normalized in these two figures due to the fact that (2.24) and (4.4) are not

based on the same Jacobian (as discussed in detail in Section 4.2.2). Figure 4.5(a)

demonstrates that the proposed method successfully meets the MSV constraint for

all the feasible values of λ. A consistent number of iterations to attain convergence

is obtained, where k is the number of iterations in the proposed algorithm (as

discussed in Section 4.2.3), and ks is the number of iterations needed by the IPOPT

solver for each k (k ≤ 2 in all cases). Notice that this behavior is observed even

when close to the point where the optimization becomes unfeasible at λ = 10.21.

Figure 4.5(b) reveals two important characteristics of the VSC-OPF model

(2.24). First, observe that σmin is slightly below σc for most of the feasible values of

λ; and second, the feasible values of λ are larger (for (2.24), λmax = 10.72, whereas

λmax = 10.21 for (4.4)). These differences are due to the fact that the VS constraint

in (2.24) is handled approximately within the solution technique in [34, 45], i.e., it

is basically a “soft” constraint; this is not the case in (4.4), where this constraint is

“hard”. With respect to the number of iterations, (2.24) requires a comparatively

larger number of total iterations to converge than (4.4). It is important to high-

light that although both methods were implemented using different computational

environments, the number of iterations should provide a reasonable comparison of

the performance. Thus (4.4) is significantly more efficient than (2.24).

The differences in the handling of the VS constraint by these two models have a

significant impact in the system and market conditions, obtaining different dispatch

and voltage levels as well as LMPs for both methods as λ is increased. Notice, for

instance, that the power dispatch for ESCO 3 and GENCO 3, shown in Figure 4.6

and Figure 4.7, respectively, is significantly different when using (4.4) or (2.24).
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Figure 4.5: MSV at the optimum with respect to the loading factor (a)

for (4.4), and (b) for (2.24).
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Figure 4.6: ESCO 3 power with respect to the loading factor for the 6-bus

system.
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Figure 4.7: GENCO 3 power with respect to the loading factor for the

6-bus system.
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6-bus system.
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Figure 4.10: ESCO 3 voltage with respect to the loading factor for the

6-bus system.
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This difference is reflected in the corresponding LMP shown in Figure 4.8. The

social welfare depicted in Figure 4.9 shows that the power dispatch obtained us-

ing (4.4) is practically zero at the maximum loading point. This result permits one

to conclude that the proposed model tends to reduce the dispatchable loads in or-

der to satisfy the VS constraint until it becomes unfeasible. In contrast, the model

(2.24) continues to dispatch power until it becomes unfeasible due to convergence

problems, as concluded from the large number of iterations shown in Figure 4.5(b).

Notice that Figure 4.10 is in accordance with the differences in the market con-

ditions, i.e., the voltage increases at the buses where the power dispatch is reduced

using (4.4) as expected, since the VS constraint is closely related to the voltage lev-

els. Similarly, Figure 4.11 corroborates that the proposed model tends to reduce the

dispatchable loads when the system is under stressed security conditions, since re-

active power is still available. However, the proposed model is also able to readjust

other control variables when the load is inelastic, as discussed in Section 4.3.5.

4.3.4 Proposed VSC-OPF vs SC-OPF

The results presented in the previous section demonstrate that the proposed method

successfully and efficiently guarantees the required VS constraint. This section

presents a comparison between the VSC-OPF model (4.4) and the SC-OPF model

(2.21) to study how the corresponding VS constraint affects both the system and

market conditions.

The stability limits Pijmax in (2.21) were obtained by means of off-line maxi-

mum loadability analysis using a CPF method and considering an N-1 contingency

criterion. At the same time, σc in (4.4) corresponds to the value of σmin(JPF ) at

the same loading level λc corresponding to Pijmax.

The results presented in Tables 4.4 and 4.5 correspond to the solution of the

SC-OPF as well as the proposed VSC-OPF models at the base loading condition,

respectively. This comparison shows that the VSC-OPF auction model provides
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Table 4.4: SC-OPF Results for 6-bus Test System.

Participant
V LMP PS PD QG

[p.u.] [$/MWh] [MW] [MW] [Mvar]

GENCO 1 1.1 9.7 5.41 - 39.91

GENCO 2 1.1 8.8 21.24 - 78.83

GENCO 3 1.1 7.85 20 - 78.08

ESCO 1 1.022 10 - 25 0

ESCO 2 1.018 12.12 - 0 0

ESCO 3 1.033 6.33 - 20 0

TTC = 548.59 MW

Table 4.5: VSC-OPF Results for 6-bus Test System.

Participant
V LMP PS PD QG

[p.u.] [$/MWh] [MW] [MW] [Mvar]

GENCO 1 1.1 8.94 0 - 44.78

GENCO 2 1.1 8.90 25 - 72.20

GENCO 3 1.1 9.07 20 - 73.94

ESCO 1 1.021 9.48 - 25 0

ESCO 2 1.012 9.57 - 10 0

ESCO 3 1.038 9.35 - 8.12 0

TTC = 549.47 MW
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lower and more uniform LMPs than the SC-OPF; furthermore, the TTC level

obtained using a continuation method and the corresponding dispatch directions

in (2.13)-(2.15) are slightly higher than in the SC-OPF. These results show that

the VSC-OPF yields better market and system conditions than the SC-OPF, while

meeting the required security constraints. Thus, the proposed representation of

system security is better overall than simply using fixed limits on power flows.

The base loading level was then increased following the power directions shown

in (2.13)-(2.15) to determine the maximum feasible point of these two models. For

these studies, the differences in the power dispatch at every bus for both models

are shown in Figures 4.12-4.14, for ESCOs, and in Figures 4.15-4.17, for GENCOs.

These figures show that the use of a more “relaxed” stability constraint in the

proposed VSC-OPF than in the SC-OPF yields higher dispatch levels and conse-

quently better objective function values, as shown in Figure 4.18. Observe that

the maximum feasible point for both models occurs at λ = λc = 1.98, as expected,

since this value corresponds to the loading level defining Pijmax and σc. However,

notice also that the dispatch in the SC-OPF starts to decrease earlier than in the

VSC-OPF, becoming practically zero at λc. Figures 4.19-4.24 show that the LMPs

obtained using the VSC-OPF have a better profile than the LMPs obtained using

the SC-OPF as the load increases, as expected from the results shown in Tables 4.4

and 4.5. Observe the drastic change in the LMP values as these models approach

the maximum feasible point.

Observe in Figures 4.25 and 4.26 (corresponding to the most representative buses

as well) that the bus voltage levels are within limits, and more reactive power can

be supplied. However, the lower voltage and higher reactive power values obtained

in the VSC-OPF indicate that this model allows a greater power supply than in

the SC-OPF within the same operational limits.

Figure 4.27 shows the MSV for both SC-OPF and VSC-OPF, as well as the value

of σc used in (4.4). Observe that the MSV constraint in the VSC-OPF becomes

active at λ = 1.6. Furthermore, the SC-OPF is shown to be more secure than

the VSC-OPF as the loading increases, since its corresponding σmin value is higher
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Figure 4.12: ESCO 1 power with respect to the loading factor for the 6-bus

system.
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Figure 4.13: ESCO 2 power with respect to the loading factor for the 6-bus

system.
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Figure 4.14: ESCO 3 power with respect to the loading factor for the 6-bus

system.
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Figure 4.15: GENCO 1 power with respect to the loading factor for the

6-bus system.
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Figure 4.16: GENCO 2 power with respect to the loading factor for the

6-bus system.
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Figure 4.17: GENCO 3 power with respect to the loading factor for the

6-bus system.
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Figure 4.18: Objective function with respect to the loading factor for the

6-bus system.
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Figure 4.19: Locational Marginal Price (LMP) at bus 1 with respect to

the loading factor for the 6-bus system.
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Figure 4.20: Locational Marginal Price (LMP) at bus 2 with respect to

the loading factor for the 6-bus system.
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Figure 4.21: Locational Marginal Price (LMP) at bus 3 with respect to

the loading factor for the 6-bus system.
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Figure 4.22: Locational Marginal Price (LMP) at bus 4 with respect to

the loading factor for the 6-bus system.
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Figure 4.23: Locational Marginal Price (LMP) at bus 5 with respect to

the loading factor for the 6-bus system.
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Figure 4.24: Locational Marginal Price (LMP) at bus 6 with respect to

the loading factor for the 6-bus system.
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Figure 4.25: ESCO 2 voltage level with respect to the loading factor for

the 6-bus system.
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Figure 4.26: GENCO 2 reactive power with respect to the loading factor

for the 6-bus system.
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Figure 4.28: ATC with respect to system loading for the 6-bus system.
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Figure 4.29: TTC with respect to system loading for the 6-bus system.
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Table 4.6: Solution statistics when increasing σc from 2.6762 to 2.7 in the

1211-bus test system.

VSC-OPF VSC-OPF

(base case) (increased security)

C 266,555 267,222

σc 2.6762 2.7001

ks 158 159

k 1 1

CPU (s) 11.53 45.059

than that of the VSC-OPF. This is further corroborated by the ATC shown in

Figure 4.28, which shows that the SC-OPF is more secure overall than the VSC-

OPF. The TTC value shown in Figure 4.29 clearly demonstrates that the SC-OPF

becomes more restrictive as the load increases, allowing fewer market transactions.

These results show that, while both models (2.21) and (4.4) meet required security

limits, the Pijmax security constraints in the SC-OPF model are more restrictive

than the σmin constraint in the VSC-OPF formulation, thus demonstrating that

the latter is a better auction model overall.

4.3.5 Generation Cost Minimization in a Real System

Generally, solving an OPF with inelastic demand is computationally more difficult,

since the degrees of freedom are reduced. Thus, to test the feasibility and efficiency

of the proposed VSC-OPF method, the VSC-OPF model (4.4) is solved using a

European test system of 1211 buses. A classical OPF formulation is used in this

case, i.e., the objective function is to minimize a quadratic cost function C, with

an inelastic demand. It should be mentioned that thermal limits on transmission

lines were not used, since the objective of these studies is to analyze the practical
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Figure 4.30: Generation re-dispatch when the VSC-OPF is applied to a

1211-bus test system.
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1211-bus test system.
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feasibility and performance of the proposed VSC-OPF. Thus, the VSC-OPF (4.4)

was solved first under normal operating conditions without the MSV constraint

(base case), and a σmin(JPF ) was obtained for this solution. Then, to force the

MSV constraint (4.4c) to become active, a slightly larger value than σmin was used

as the σc value in the solution of (4.4).

Figure 4.30 shows that a generation re-dispatch with respect to the base case

solution is required to meet the required security constraint, improving the voltage

profile at most of the buses, as expected and depicted in Figure 4.31. However,

this corrective action is accompanied by an increase in the total generation costs,

as shown in Table 4.6; this increase in the total cost can be seen as the cost of

improving system security.

The results presented in Table 4.6 demonstrate the feasibility of the proposed

method in practice, since for this large system, it only required one iteration and

45s of CPU time for the method to converge using a (Intel Xeon 2.83GHz with

3.00 GB of RAM). In general, the author’s experience with different test systems

shows that the proposed method converges in less than three iterations (k ≤ 3),

regardless of the system size.



Chapter 4. Practical Solution of VSC-OPF 110

4.4 Summary

In this chapter, a novel and practical solution method to solve a VSC-OPF model

that includes a VS constraint based on a MSV index is proposed. The method

consists of solving the VSC-OPF iteratively to update the SVD of the power flow

Jacobian until the MSV constraint is satisfied. The proposed method is shown to

have better numerical characteristics than a previously proposed VSC-OPF model

based on a similar VS constraint.

The advantages of using the proposed method with respect to “standard” SC-

OPF are highlighted by means of numerical comparisons. In this context, it is

demonstrated that the VSC-OPF model provides better system and market con-

ditions when compared to the SC-OPF. It is shown that the proposed method

performs well in large systems, demonstrating its practical feasibility by applying

it to a real European system. One of the main advantages of the proposed model

is that commercial mathematical programming languages and solvers can be used

to formulate it, making it easier to implement and more practical. Overall, the

proposed method is shown to be a good alternative to SC-OPFs.



Chapter 5

Other Approaches to Solving the

VSC-OPF

5.1 Introduction

This chapter proposes two alternative methods to solving the MSV-based VSC-OPF

model, besides the method discussed in the previous chapter. The first method is a

modified primal-dual IPM which handles the MSV constraint using a CP technique

at every iteration. The second method attempts to reformulate the VSC-OPF as a

SDP relaxation.

5.2 Solving the VSC-OPF via CP/IPM

Although the CP method is commonly used to solve mixed-integer problems in

linear programming, the basic idea of adding linear constraints (cuts) until the op-

timal solution reaches desired values is extended here to solve the VSC-OPF. Thus,

a modified primal-dual IPM algorithm is proposed in this section to incorporate

a CP step to modify the upper limits of the demand block bids at a particular

111
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Figure 5.1: Graphic representation of the proposed CP/IPM algorithm.

iteration, so that the optimal power dispatch satisfies the MSV constraint. Two

test systems are used to study the proposed CP/IPM algorithm.

5.2.1 Proposed Technique

Refer to Figure 5.1, and suppose that the constraint σmin{JPF} ≥ σc in (2.24) is

not included in the model, i.e., the problem is “relaxed”. Thus, the optimal point

denoted by x∗ is reached by taking Newton steps along the central path using an

IPM scheme. At this solution point σmin(JPF |∗) < σc. Therefore, the optimization
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model must be re-solved with this constraint included in the problem, so that

σmin(JPF |∗) ≥ σc.

In the proposed algorithm, the constraint on the MSV is handled in the IPM by

monitoring σmin at every iteration k, and by adding “cuts” when σ
(k)
min < σc. This

idea is also illustrated in Figure 5.1 and can be described as follows: Let x(0) be the

initial point, let ∆x(k) be a Newton step at iteration k, and let x(k) be the solution

point at which σ
(k)
min < σc. Suppose that at k = 4, σ

(k)
min < σc. Then, the upper limit

of PD in (2.24) is modified by adding a cut(k). The cut basically modifies the line

search or central path for subsequent iterations, leading the Newton steps towards

another local optimal point x∗∗ where σmin ≥ σc, as illustrated in Figure 5.1.

Given the characteristics of the aforementioned approach, it must be noticed

that adding the first cut at k 6= 4 may result in different lines search. Consequently,

the algorithm would either find another local optimum, or it may not be able to

find any. The proposed algorithm deals with these two main problems when adding

the cut as follows:

1. Define the cut magnitude (a constraint in PD).

2. Determine the iteration at which the cut has to be added.

Calculating the Cut Magnitude

The particular characteristics of the VSC-OPF can be exploited to determine the

cut. Thus, σmin tends to zero as the load increases, and a power flow solution must

exist for this value to have a practical meaning from the VS point of view. Based

on these characteristics, the following formula to modify the upper limit of PD is

introduced:

P
(k+1)
Dmax

= P
(k)
D − â ◦ αP

(k)
D (5.1)

where

â =
∆P

(k)
D

|∆P
(k)
D |

(5.2)
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is a unit vector with the same direction of the Newton step at iteration k; α ∈ (0, 1)

is a scaling factor for tuning purposes and is explained in more detail below, and

0 ≤ P
(k+1)
Dmax

≤ PDmax (5.3)

Note that the second term in (5.1) defines a step backward from the current

solution point, taken in a component-wise basis of the last Newton direction. The

vectors â and αPD are the Newton step and step length, respectively. This equation

along with (5.3) allows PD to either recover its actual maximum limit, or to reduce

it when a cut is added.

Determining the Cut Iteration

The cut must be added at the iteration where the feasibility of the power flow

equations is within a tolerance ξ. However, notice that a small value of ξ implies

that the magnitude of the Newton step is also small. Therefore, this value would

directly affect the ability of the algorithm to recover from an undesired point where

σ
(k)
min < σc, as inferred from (5.1). In other words, if the cut is added when the

algorithm is “too close” to an optimal where σ∗
min < σc, then it may be “too late”

to find another one where σ∗
min ≥ σc. Similarly, if the cut is added regardless of

the feasibility of the power flow equations, the algorithm may not yet have enough

accurate information to find a better solution. Therefore, it is necessary to tune ξ,

and the step length which defines how much the upper limit of PD must be modified.

For this purpose, the scalar α has been included in (5.1) to determine the fraction

of the step length that would result in better solutions and greater performance of

the algorithm. These parameters are determined by means of experimental results,

as described in Section 5.2.1.

CP/IPM Algorithm

The method described above is formally stated in the flow chart shown in Figure 5.2,

which is basically a modified primal-dual IPM with standard Newton method or
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Figure 5.2: CP/IPM flow chart to solve the VSC-OPF

predictor-corrector method to solve the Newton direction [80]. The proposed algo-

rithm steps can be then described as follows:

1. Initialization:

• Set k = 0.

• Define the barrier parameter µ̄0.

• Choose a starting point that satisfies the strict positivity conditions (e.g.,

a power flow solution or a flat start).

• Set P bk
Dmax

= PDmax and P bk
Dmin

= PDmin
.

2. Compute Newton Direction: The Newton direction can be obtained by solving

the system (2.34) using the standard Newton method, or a predictor-corrector
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method.

3. Update Variables: Compute the step length parameters for primal and dual

variables using (2.38)-(2.39), and update the variables using (2.40).

4. Test for Feasibility of the Power Flow Equations: If the feasibility is within

a predetermined tolerance ξ, then start monitoring σmin using a SVD.

• If σ
(k)
min < σc, i.e., the MSV constraint is not satisfied, then proceed

to calculate the cut as follows: Use equation (5.1), and verify if 0 ≤
P

(k+1)
Dmax

≤ PDmax . If P
(k+1)
Dmax

> PDmax , then set P
(k+1)
Dmax

= P bk
Dmax

. A similar

process for the lower limit is followed.

• Otherwise, continue the iterative process.

5. Test for Convergence: If the new point satisfies the convergence criteria,

stop. Otherwise, set k = k + 1, update the barrier parameter µ̄k, and return

to Step 1.

Tuning of the Algorithm

As in many iterative solution methods such as the Newton method, determining

the step length parameters is one of the most important issues to ensure a good

performance of the algorithm. Different approaches to calculate these parameters

have been proposed. For instance, separate step lengths for primal and dual vari-

ables are used to update the variables in the IPM [80]; dynamic adjustments of

step sizes and tolerances have been proposed in [100]. One common practice is to

calculate these parameters based on heuristic methods.

In the proposed algorithm, choosing an adequate value for ξ and α is a problem

independent of determining the step length parameters of the Newton direction. It

also requires a heuristic type of method to ensure that the algorithm converges to

a desired solution point in a reasonable number of iterations. Thus, experimental
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results are needed to study how the algorithm performs when the cut is added at

different iterations, in combination with different step sizes.

Let ξ = {NPF, 1 × 10−1, 1 × 10−2, 1 × 10−3, 1 × 10−4} be a set of threshold

values to test the feasibility of the power flow equations at iteration k. If ξ = NPF

no test is carried out and the cut is added at any iteration where σ
(k)
min < σc. If

ξ 6= NPF and if σ
(k)
min < σc, then a cut is added at iteration k. On the other hand,

α ∈ (0, 1) is used to take a fraction of the Newton step at the current iteration. If

α = 0, then P
(k+1)
Dmax

= P
(k)
D ; whereas, α = 1 takes a full step backwards in the same

direction of the last Newton step in order to avoid the point P
(k)
D , as this value

results in a violation of the MSV constraint.

Figures 5.3-5.10 show different optimal solutions for different combinations of

ξ and α, using an IPM with a Newton or predictor-corrector method, initialized

using a flat start or a power flow solution start. The 6-bus test system and the

CIGRE-32 test system presented in Appendix A were used to test the proposed

algorithm. The CP/IPM algorithm was implemented in Matlab.

Figures 5.3(a), 5.3(b), 5.4(a) and 5.4(b) show the MSV of the power flow Jaco-

bian at the optimal solution for various values of α and ξ; the results correspond to

the 6-bus system for σc = 5.0. These figures show that for various (α, ξ) values, the

algorithm satisfies σmin ≥ σc, while it fails for others. One of the most significant

results is that if the cut is added at any iteration where the MSV constraint is

violated (ξ = NPF), a higher value of the MSV is obtained; thus, observe that the

(α, NPF) values provide a solution with a higher MSV than other cases where the

feasibility of the power flow equations is tested at every iteration before adding a

cut. For instance, the combination (1, NPF) generally results in the highest MSV

values, which means that if a full Newton step is taken backwards whenever the

MSV constraint is violated, the algorithm encounters a wider feasible region where

it can find the desired optimal point. From these results, it could be concluded

that the best values are α = 1 and ξ = NPF; thus, let the algorithm add the cut at

any iteration where σ
(k)
min < σc, and take a full Newton step backward to calculate

P
(k+1)
Dmax

. However, observe in Figures 5.5(a), 5.5(b), 5.6(a) and 5.6(b), that if such
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criteria are used, the lowest transaction levels (T =
∑

PLoi
+ PDi

) are obtained,

which yields a lower objective function (SW) value, as shown in Figures 5.7(a),

5.7(b), 5.8(a) and 5.8(b). This is to be expected, since a higher MSV requires a

lower demand levels, since the security margins are higher. Therefore, adding a cut

is equivalent to shedding load from the demand block bids represented by PD to

maintain the required security levels given by the constraint σmin ≥ σc.

Notice that the combinations (0, ξ) represent a cut P
(k+1)
D = P

(k)
D . This results

in the algorithm getting “stuck” trying to avoid the solution point x(k). This can

be observed in Figures 5.9(a), 5.9(b), 5.10(a) and 5.10(b), where it is shown that

the maximum number of iterations (k = 250) is reached. Observe in these figures

that the algorithm performs very well for all ξ, and for all α close to one.

Figures 5.11(a), 5.11(b), 5.12(a) and 5.12(b) show the cuts calculated at every

iteration for different solution methods and starting points. These figures corre-

spond to the case where the cut is added only if the feasibility of the power flow

equations is within ξ = 1 × 10−3. Observe that the limits do not change during

the first iterations, thus some cuts are added until the algorithm finds a feasible

point where σ
(k)
min ≥ σc, and then converges to an optimal point. Notice that (5.3)

holds during the solution process, as required. However, the results in these figures

along with those described above, show that the algorithm is highly dependent on

both the solution method and on the starting point, since (5.1) is different in all

four cases, yielding different optimal solutions. This problem is also observed in

Figure 5.13, which shows σ
(k)
min using different solution methods and starting points,

as well as the application of the cut for the criteria ξ = NPF or ξ = 1 × 10−3.

Notice that the final value of σ
(k)
min is closer to σc if the cut is applied only if the

feasibility of the power flow equations is within ξ = 1 × 10−3. This is the desired

final value of the MSV, since the power dispatch and transaction levels are better

when it is closer to σc.

Figure 5.14 shows the most representative result for the CIGRE-32 test system.

Observe that a similar response of the algorithm for this larger and heavily loaded

system.
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Figure 5.3: MSV of the power flow Jacobian using a Newton method: (a)

flat start; (b) power flow start.
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Figure 5.4: MSV of the power flow Jacobian using a predictor-corrector

method: (a) flat start; (b) power flow start.
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Figure 5.5: Total transaction level using a Newton method: (a) flat start;

(b) power flow start.
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Figure 5.6: Total transaction level using a predictor-corrector method: (a)

flat start; (b) power flow start.
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Figure 5.7: Objective function using a Newton method: (a) flat start; (b)

power flow start.
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Figure 5.8: Objective function using a predictor-corrector method: (a) flat

start; (b) power flow start.
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Figure 5.9: Number of iterations using a Newton method: (a) flat start;

(b) power flow start.
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Figure 5.10: Number of iterations using a predictor-corrector method: (a)

flat start; (b) power flow start.
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Figure 5.11: Cuts at every iteration using a Newton method: (a) flat start;

(b) power flow start.
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Figure 5.12: Cuts at every iteration using a Predictor-corrector method:

(a) flat start; (b) power flow start.
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Figure 5.13: Final value of σ(k) when the cut is added using different

criteria: (a) ξ = NPF (b) ξ = 1 × 10−3. In each case, the top two figures

correspond to the Newton method; the two in the bottom correspond to the

predictor-corrector method; the two on the left correspond to flat start, and

power flow start is on the right.
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Figure 5.14: MSV of the power flow Jacobian using a predictor-corrector

method with a power flow start for the CIGRE-32 test system.

After several tests, it was concluded that the best values in general are α = 1

and ξ = 1 × 10−3. It was also observed that the algorithm performs well using

either the Newton method or the predictor-corrector method; however, the later

usually required less iterations.

5.2.2 Numerical Results

Having studied and tuned the algorithm, a comparison between the CP/IPM al-

gorithm and the proposed method presented in Chapter 4 to solve the VSC-OPF

model (2.24) is presented in this section. These methods are applied to the same

6-bus test system, and the CIGRE-32 system. The σc value used in the MSV

constraint for each system is σc = 5.0 and σc = 0.8, respectively. The CP/IPM al-

gorithm was solved using the Newton method with a power flow start, ξ = 1×10−3

and α = 1.

The results presented in Table 5.1, corresponding to the 6-bus system, show
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Table 5.1: Comparison of solution methods for the VSC-OPF for the 6-bus

test system and σc = 5.0.

Participant

Model (4.4) (σn = 5.0003 > σc) CP/IPM (σmin = 5.003 > σc)

V PS/PD LMP V PS/PD LMP

[p.u.] [MW] [$/MWh] [p.u.] [MW] [$/MWh]

GENCO 1 1.1 0 8.88 1.1 0 8.83

GENCO 2 1.1 19.59 8.8 1.1 19.1 8.8

GENCO 3 1.1 20 9.02 1.1 20 8.94

ESCO 1 1.021 25 9.41 1.021 25 9.36

ESCO 2 1.013 10 9.56 1.014 9.6 9.44

ESCO 3 1.041 3.04 9.31 1.042 2.9 9.21

that the proposed CP/IPM algorithm yields similar results to the proposed VSC-

OPF model (4.4). Notice that the CP/IPM is more secure than the latter, i.e.,

σmin > σn > 5.0; therefore, the power dispatch and LMPs are less than the ones

obtained using (4.4), with the voltage levels being slightly better, as expected.

It is also interesting to analyze how the CP/IPM algorithm attains optimality

when solving a larger and heavily loaded system. Figure 5.15 shows σ
(k)
min during

the solution process for the CIGRE-32 system. Notice that this value starts to be

monitored from k = 172, accordingly with the feasibility of the power flow equations

criterion shown in Figure 5.16(b). Observe in Figure 5.17 that the upper limit of

PD is modified only if the MSV constraint is violated and if the feasibility of the

power flow equations is within 1× 10−3, (ξ1 ≤ ξ) in (2.45). Figure 5.18 shows the

feasibility of the IPM; thus, the step length parameters converge to 1, the centering

parameter is close to 0, and the complementarity gap and barrier parameter are

within the expected tolerances.

Table 5.2 shows a numerical comparison between the solution technique de-
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Figure 5.15: MSV at every iteration in the CP/IPM when solving the

CIGRE-32 system.

scribed in Chapter 4 and the proposed CP/IPM approach. Notice that the small

difference between the σmin values obtained from these two techniques, i.e., 0.00409,

has a significant effect on the power dispatch and LMPs at some buses. This is

to be expected, since a big increase in system demand may result in a very small

change in the MSV; however, this difference can be also attributed to the fact that

these methods just converge to different local optimal. Finally, these results show

that the two proposed methods can successfully solve the VSC-OPF model (2.24).

Nevertheless, in general, the proposed model (4.4) and its solution technique is

better than the CP/IPM algorithm, because:

• The CP/IPM method depends on the starting point and on the solution

technique, yielding different solutions, whereas (4.4) does not.

• The CP/IPM method requires elastic demand bids, which limits its appli-

cation to other OPF problems, since in most electricity markets, demand is
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Figure 5.16: Feasibility of (a) the objective function and (b) the power flow

equations (equality constraints) in the CP/IPM when solving the CIGRE-32

system.
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Figure 5.17: The box encloses the iterations at which some cuts are added

in the CP/IPM when solving CIGRE-32 system.

inelastic. This is not the case for (4.4), which works for any type of load

demand.

Table 5.2: Comparison of the proposed solution methods for the VSC-OPF

using the CIGRE-32 test system, for σc = 0.8.

Bus

Model (4.4) (σn = σc = 0.8) CP/IPM (σmin = 0.80409 > σc)

V PS PD LMP V PS PD LMP

[p.u.] [MW] [MW] [$/MWh] [p.u.] [MW] [MW] [$/MWh]

4072 0.972 0 845.224 10.000 0.985 0 856.5 9.950

4071 0.964 0 0 9.499 0.972 0 0 9.360

4011 1.016 227.548 0 9.000 1.017 0 0 8.724

4012 1.009 600.6 0 8.734 1.009 573.06 0 8.500

Continued on next page



Chapter 5. Other Approaches to Solving the VSC-OPF 135

Table 5.2 – continued from previous page

Bus

Model (4.4) (σn = σc = 0.8) CP/IPM (σmin = 0.80409 > σc)

V PS PD LMP V PS PD LMP

[p.u.] [MW] [MW] [$/MWh] [p.u.] [MW] [MW] [$/MWh]

4021 1.100 0 0 6.517 1.100 0 0 6.861

4031 1.001 19.333 0 7.500 0.994 256.39 0 7.500

4042 0.978 658 0 7.289 0.971 0 0 6.761

4041 1.018 282 0 7.888 0.992 282 0 7.421

4062 1.094 564 0 6.388 1.009 564 0 6.171

4063 1.098 884.778 0 5.500 1.006 878.84 0 5.500

4051 1.009 658 0 8.257 0.979 658 0 7.215

4047 1.002 769.6 0 7.841 0.963 769.6 0 6.983

2032 0.968 728.277 200 4.000 0.977 694.06 200 4.000

1013 1.011 543.2 100 7.869 1.011 543.2 99.995 7.582

1012 0.900 0 300 8.717 0.900 0 300 8.473

1014 1.031 0 0 7.962 1.031 0 0 7.692

1022 0.920 0 280 8.202 0.900 0 280 8.118

1021 1.100 0 0 6.841 1.057 0 0 6.819

1043 0.964 0 0 9.677 0.932 0 17.088 8.363

1042 1.100 0 0 8.302 1.100 0 0 7.143

4022 1.004 0 0 8.200 0.996 0 0 8.104

4032 1.035 0 0 6.960 1.029 0 0 7.072

4043 0.946 0 0 8.384 0.947 0 0 7.077

4044 0.969 0 0 8.264 0.955 0 0 7.203

Continued on next page
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Table 5.2 – continued from previous page

Bus

Model (4.4) (σn = σc = 0.8) CP/IPM (σmin = 0.80409 > σc)

V PS PD LMP V PS PD LMP

[p.u.] [MW] [MW] [$/MWh] [p.u.] [MW] [MW] [$/MWh]

4045 0.962 0 0 8.852 0.934 0 0 7.568

4046 0.949 0 0 8.470 0.933 0 0 7.160

4061 1.069 0 0 7.292 0.991 0 0 6.887

2031 0.900 0 100 7.390 0.900 0 99.995 7.397

1011 0.900 0 200 9.011 0.900 0 200 8.732

1041 0.927 0 0 10.732 0.890 0 0 9.792

1044 0.968 0 0 8.451 0.952 0 0 7.206

1045 0.946 0 700 9.261 0.915 0 700 7.772

42 0.937 0 400 7.094 0.930 0 400 6.295

41 0.986 0 540 8.143 0.959 0 540 7.421

62 1.058 0 300 7.192 0.968 0 300 6.716

63 1.043 0 590 6.388 0.944 0 590 6.152

51 0.990 0 0 8.507 0.958 0 0 7.320

47 0.961 0 100 8.155 0.920 0 99.995 6.983

43 0.900 0 837.795 9.131 0.924 0 77.584 7.020

46 0.918 0 186.956 8.899 0.900 0 199.570 7.309

61 1.052 0 55.512 7.727 0.970 0 93.825 7.176

Totals 5935.36 5735.47 5219.15 5054.52

Iterations 234 341
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Figure 5.18: Feasibility parameters in the CP/IPM when solving the

CIGRE-32 system.

5.3 Solving the VSC-OPF via SDP

This section discusses the possible application of SDP to the VSC-OPF problem,

demonstrating that this optimization problem cannot really be casted as a SDP

relaxation. Thus, consider the 2-bus test system with one generator and one load

at each bus shown in Figure 5.19, and the OPF model (2.21). In order to obtain an

equivalent SDP relaxation of this OPF, and since in general, optimization problems

that can be solved using SDP have a quadratic form, the power flow equations

in rectangular coordinates shown in (3.7) are used in this section with nb = 2,

Pi = PSi
− PDi

, and Qi = QGi
−KLPDi

.

Notice that C, A, and X in a SDP problem are matrices, as explained in Sec-

tion 2.6.2. Therefore, the power flow equations (3.7), along with the objective func-

tion (2.21a), can be arranged in such a way that the inner products C ·X and A ·X
yield these sets of quadratic and linear equations, respectively. In this case, C is a
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Figure 5.19: 2-bus system

matrix containing the coefficients CD and CS of the objective function; A is a matrix

containing all the constraints coefficients; and X is a matrix containing all the vari-

ables. For example, the objective function in (2.49) for x = [er1
fr1

er2
fr2

PS1
PD1

1]T

yields:

X = xxT =



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(5.4)

or

X =


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(5.5)

where ēr1
= (er1

)2; f̄r1
= (fr1

)2; ēr2
= (er2

)2; f̄r2
= (fr2

)2; P̄S1
= (PS1

)2, and P̄D1
=

(PD1
)2 are considered variables in the SDP solution process, and the coefficient
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matrix can be stated as follows:

C =




0 · · · 0 0 0
...

. . .
...

...
...

0 · · · 0 0 −CS1

2

0 · · · 0 0
CD1

2

0 · · · −CS1

2

CD1

2
0




(5.6)

On the other hand, the coefficients of matrix A1 corresponding to the active power

flow equation (3.10) can be stated as follows:

A1 =




G11 0 G12

2
−B12

2
0 0 0
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2
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2
0 0 0
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2
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2
0 0 0 0 0

−B12

2
G12

2
0 0 0 0 0

0 0 0 0 0 0 −PS1

2

0 0 0 0 0 0
PD1

2

0 0 0 0 −PS1

2

PD1

2
0




(5.7)

Notice that A1 is symmetrized, and is composed by elements of the bus admittance

matrix and power bids, so that A1 ·X = b1 represents (3.10) with b1 = 0. Similarly,

there is a matrix A2 to represent the reactive power equation (3.11).

Therefore, the objective function and the power flow equations can be repre-

sented by means of symmetric matrices and inner products.

Observe that, as defined, X contains quadratic and linear elements, and as

per (2.49c) it should be positive semidefinite. This leads to the following problem:

Notice that (5.5), in its simplest form has the following structure:

[
ēr1

er1

er1
1

]
� 0 (5.8)

which implies that ēr1
≥ (er1

)2. Since X − xxT � 0, and not X − xxT = 0, there is

no guarantee that ēr1
= er1

er1
will hold during the SDP solution process. Thus, the
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variable matrix (5.5) does not accurately represent the variables of the problem. In

conclusion, the nonlinear OPF cannot really be cast as an SDP problem.

It should be mentioned that SDP has been successfully applied to 0/1 problems

such as power dispatch [10] and hydrothermal coordination [9], where nonconvex

integer-value constraints are replaced by convex quadratic constraints.

5.4 Summary

Two alternative methods to solving the MSV-based VSC-OPF model are studied

in this chapter. In the first method, a CP technique is used to handle the VS

constraint at every iteration of the primal-dual IPM method. The handling of the

VS constraint consist of modifying the upper limit of the demand block bids (adding

a cut) when the MSV at a particular iteration is less than a predetermined value.

By doing this, the load power dispatch is reduced until the MSV constraint holds,

since it is well known that the MSV of the power flow Jacobian decreases when the

load increases.

The results obtained for two test systems show that the proposed algorithm

successfully solves the VSC-OPF, and that is somewhat comparable with respect

to the proposed method in Chapter 4. However, its dependency on both the solution

method and on the starting point, as well as the need for an elastic demand, limit

the practical application of the algorithm.

The possible use of SDP is also studied, since the inherent constraint on the

positivity of the matrix variable in SDP could be related to the required nonsin-

gularity of the power flow Jacobian in the MSV-based VSC-OPF. It is shown that

the OPF in rectangular form with social welfare as the objective function can be

represented with the inner product of two matrices, as needed in SDP. However,

it is also demonstrated that this OPF cannot really be casted as a SDP relaxation

problem.



Chapter 6

Conclusions

6.1 Summary

This thesis concentrates on the analysis of an optimization-based method for VS

studies, and on the development of solution techniques for VSC-OPF-based auction

models. A detailed theoretical study of an optimization method to determine the

maximum point of loadability at which a power system experiences a voltage col-

lapse is presented. A novel and practical method to solve a VSC-OPF model which

represents VS through the use of the MSV of the power flow Jacobian is proposed.

Furthermore, a modified primal-dual IPM to solve a VSC-OPF model using CP is

proposed, and SDP is also investigated as a possible solution method.

The following summarizes the main content and conclusions of this thesis:

• Chapter 3 studies in detail the OPF-DM. It is analytically shown that the

optimal point of this model corresponds to a SNB or LISB point. This is

accomplished by demonstrating that the KKT optimality conditions at the

solution of this model yield the same transversality conditions that charac-

terize these bifurcations in nonlinear theory. Numerical examples are also

presented to show the numerical equivalence between the OPF-DM and the

141
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CPF technique. The results show that the optimization model is a very flex-

ible tool to study these bifurcations, as current mathematical programming

languages and solvers allow one to efficiently solve this problem. Furthermore,

this model has been extended to optimize other system parameters so that

the loadability of the system is maximized.

• In Chapter 4, a novel and practical method to solve a VSC-OPF which in-

corporates a VS constraint through the use of the SVD of the power flow

Jacobian is proposed. The method consists of iterating to update the SVD

of the power flow Jacobian at an optimal power flow solution, until a prede-

termined MSV is satisfied. A comparison between the proposed VSC-OPF

and a typical SC-OPF is presented to highlight the advantages of the VSC-

OPF model. The proposed VSC-OPF model is applied to small and large

test systems of up to 1211 buses to study its performance and to demonstrate

its robustness and practical application in realistic systems. The results from

this research yield the following conclusions:

– The main problem in the formulation of a MSV-based VS constraint

is to find an explicit function constraint that can be readily written in

terms of the VSC-OPF optimization variables, since the MSV constraint

in the originally proposed model is an implicit function.

– In the proposed VSC-OPF model, the VS constraint (uT
nJPFwn ≥ σc)

becomes explicit. This constraint and corresponding solution technique

are shown to computationally outperform the previously proposed MSV-

based VSC-OPF model.

– The main advantages of the proposed model and solution technique are

that it is easy to implement using mathematical programming languages,

and that there is no need for approximations of the MSV constraint

during the solution process. These advantages result in a more robust

and practical model.
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– The proposed VSC-OPF model is shown to better represent power sys-

tem security, resulting in better system and market conditions with re-

spect to SC-OPF models.

– The main disadvantage of the proposed method is that it requires an

iterative solution process, where appropriate parameters (un, wn) are

calculated at each iteration. However, experience with different test

systems show that the method converges in less than three iterations

regardless of the system size.

• In Chapter 5, two alternative techniques to solve the VSC-OPF are proposed.

A CP technique to handle the MSV constraint at every iteration of the primal-

dual IPM is first proposed to solve the MSV-based VSC-OPF. The developed

CP/IPM algorithm is based on a basic concept used in mixed-integer linear

optimization, i.e., adding linear constraints (cuts) until the solution holds.

In the proposed CP/IPM algorithm the MSV of the power flow Jacobian

is monitored at every iteration using a SVD. Then, a cut is added at this

iteration if the MSV is less than a predetermined value. The second method

tries to formulate the VSC-OPF as an SDP relaxation, so that the positiveness

of the eigenvalues of the matrix variable can be related to the MSV constraint.

The following conclusions are derived from this investigation:

– Different optimal solutions are obtained depending upon the initial point

and solution method for the Newton direction.

– The algorithm achieves the desired objective by having to tradeoff be-

tween a Newton or predictor-corrector method and flat start or a power

flow start. These trade-offs make it less practical than previously pro-

posed methods.

– It is concluded that the algorithm, in general, has a good performance

using a Newton method with a power flow start.

– The VSC-OPF model cannot be cast as an SDP problem, because the
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relaxation of the matrix variables cannot be used to properly formulate

the quadratic terms of the power flow equations in rectangular form.

6.2 Contributions

The main contributions of this thesis to the field of power engineering are:

1. A complete theoretical background that supports the use of the OPF-DM

to determine the maximum point of loadability of a power system has been

developed. This is accomplished by formally demonstrating that the KKT

optimality conditions at the solution of the OPF-DM yield the transversality

conditions for SNBs and LIBs in bifurcation theory.

2. Two methods to solve a MSV-based VSC-OPF model are proposed.

• The first method is a novel and practical VSC-OPF model, where the

implicit function used in a previously proposed model to represent VS

is replaced with an explicit constraint easier to solve and implement,

resulting in a more robust and practical model.

• The second method is a modified primal-dual IPM which makes use of

a CP technique to handle the MSV constraint of the VSC-OPF. The

CP/IPM is different from traditional IPM schemes, and is specially de-

veloped to solve this particular VSC-OPF model.

3. It is analytically shown that the VSC-OPF cannot be cast as an SDP relax-

ation problem.

The main contents of this thesis has been accepted for publication or is under review

for publication in IEEE journals [101,102], and a conference paper has been already

accepted for presentation and publication [103].
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6.3 Future Work

Further research may be carried out to address the following issues:

• The use of other VSIs in the VSC-OPF should be studied.

• Other optimization methods to solve the proposed VSC-OPF model should

be studied, e.g., sequential linear programming.

• Multiperiod OPF models are widely used in power system planning and gener-

ation scheduling, among other applications. However, these models are based

on linear OPFs which do not include voltage or reactive power variables;

therefore, these models do not include voltage security constraints. Hence,

developing a linear VSC-OPF would be of great interest.

• The main disadvantage of the proposed CP/IPM algorithm is the dependence

on the initial point and solution method for the Newton direction. Therefore,

a sensitivity-based approach to calculate the cuts could alleviate this problem.



Appendix A

Test Systems

A.1 6-bus Test System

Figure A.1 shows the 6-bus test system, which has been used by many authors to

carry out different studies (e.g., [32,36]) and is also used in this thesis. This system

consists of 6 buses, 3 generators, and 11 transmission lines.

Table A.1 show the supply and demand bids for generators and load demands

respectively, whereas Table A.2 shows the transmission line parameters. Transmis-

sion line limits were computed off-line using a CPF technique, using the generation

and load bids as power directions. Bus voltage minimum and maximum limits

are considered to be 0.9 p.u. and 1.1 p.u. respectively. The data was obtained

from [74].
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Bus 1
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Figure A.1: 6-bus test system.

Table A.1: GENCOs and ESCOs bidding data for the 6-bus test system

Participant
CS/CD PSmax PDmax PLo QLo PGo QGmin/max

($/MWh) (MW) (MW) (MW) (Mvar) (MW) (MVar)

GENCO 1 9.7 20 0 0 0 90 ± 150

GENCO 2 8.8 25 0 0 0 140 ± 150

GENCO 3 7.0 20 0 0 0 60 ± 150

ESCO 1 12.0 0 25 90 60 0 0

ESCO 2 10.5 0 10 100 70 0 0

ESCO 3 9.5 0 20 90 60 0 0
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Table A.2: Line data for the 6-bus test system

From To Rij Xij Bi/2 Pmaxij
Imaxij

Bus i Bus j [p.u.] [p.u.] [p.u.] [MW] [A]

1 2 0.1 0.2 0.02 17.08 37

1 4 0.05 0.2 0.02 59.89 133

1 5 0.08 0.3 0.03 48.89 122

2 3 0.05 0.25 0.03 14.38 46

2 4 0.05 0.1 0.01 92.22 200

2 5 0.1 0.3 0.02 37.68 103

2 6 0.07 0.2 0.025 57.33 132

3 5 0.12 0.26 0.025 33.51 95

3 6 0.02 0.1 0.01 76.65 200

4 5 0.2 0.4 0.04 5.33 26

5 6 0.1 0.3 0.03 0.167 29

A.2 CIGRE-32 Test System

The single-line diagram of the CIGRE-32 test system is depicted in Figure A.2.

This system consist of 41 buses, 20 generators, and 52 transmission lines.

Table A.3 show the supply and demand bids for generators and load demands

respectively, whereas Table A.4 shows the transmission line parameters. Bus volt-

age minimum and maximum limits are considered to be 0.9 p.u. and 1.1 p.u.,

respectively.
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Figure A.2: CIGRE-32 test system.



Appendix A. Test Systems 150

Table A.3: Bid data for the CIGRE-32 test system.

Bus CD PDmax CS PSmax PLo QLo PGo QGmax QGmin

[$/MWh] [MW] [$/MWh] [MW] [MW] [Mvar] [MW] [MVar] [MVar]

4072 10 20 10 13.33 2000 500 1332.97 1000 -300

4071 9.5 3 9.5 4.70 300 100 469.98 250 -50

4011 0 0 9.0 4.37 0 0 437.39 500 -100

4012 0 0 8.5 6.00 0 0 600.58 400 -160

4021 0 0 8.0 2.82 0 0 281.99 150 -30

4031 0 0 7.5 3.29 0 0 328.99 175 -40

4042 0 0 7.0 6.58 0 0 657.98 350 0

4041 0 0 6.5 2.82 0 0 281.99 300 -200

4062 0 0 6.0 5.64 0 0 563.98 300 0

4063 0 0 5.5 11.2 0 0 1127.97 600 0

4051 0 0 5.0 6.58 0 0 657.98 350 0

4047 0 0 4.5 7.69 0 0 769.58 600 0

2032 8.5 2 4.0 7.99 200 50 798.98 425 -80

1013 9.0 1 7.5 5.43 100 40 543.18 300 -50

1012 9.7 3 9.3 7.52 300 100 751.98 400 -80

1014 0 0 9.5 4.21 0 0 421.09 350 -100

1022 11 2.8 10.1 2.35 280 95 234.99 125 -25

1021 0 0 15.2 5.64 0 0 563.98 300 -160

1043 10.5 2.3 10.3 1.88 230 100 187.99 100 -20

1042 5 3 9.6 3.76 300 80 375.99 200 -40

Continued on next page
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Table A.3 – continued from previous page

Bus CD PDmax CS PSmax PLo QLo PGo QGmax QGmin

[$/MWh] [MW] [$/MWh] [MW] [MW] [Mvar] [MW] [MVar] [MVar]

4022 0 0 0 0 0 0 0 0 0

4032 0 0 0 0 0 0 0 0 0

4043 0 0 0 0 0 0 0 0 0

4044 0 0 0 0 0 0 0 0 0

4045 0 0 0 0 0 0 0 0 0

4046 0 0 0 0 0 0 0 0 0

4061 0 0 0 0 0 0 0 0 0

2031 9.0 1 0 0 100 30 0 0 0

1011 9.5 2 0 0 200 80 0 0 0

1041 8.5 6 0 0 600 200 0 0 0

1044 7.6 8 0 0 800 300 0 0 0

1045 11 7 0 0 700 250 0 0 0

42 8.7 4 0 0 400 125.7 0 0 0

41 9.0 5.4 0 0 540 128.8 0 0 0

62 8.5 3 0 0 300 80.02 0 0 0

63 9.2 5.9 0 0 590 256.2 0 0 0

51 8.1 8 0 0 800 253.2 0 0 0

47 15 1 0 0 100 45.19 0 0 0

43 10 9 0 0 900 238.8 0 0 0

46 9.5 7 0 0 700 193.7 0 0 0

61 8.5 5 0 0 500 112.3 0 0 0
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Table A.4: Line data for the CIGRE-32 test system.

From To Rij Xij Bi

Bus i Bus j [p.u.] [p.u.] [p.u.]

4011 4012 .001 .008 .4

4011 4021 .006 .060 3.58

4011 4022 .004 .040 2.39

4011 4071 .005 .045 2.79

4012 4022 .004 .035 2.09

4012 4071 .005 .050 2.98

4021 4032 .004 .040 2.39

4021 4042 .010 .060 5.97

4031 4022 .002 .020 1.20

4031 4032 .001 .010 .6

4031 4041 .003 .020 2.39

4042 4032 .010 .040 3.98

4032 4044 .006 .050 4.77

4041 4044 .003 .030 1.79

4041 4061 .006 .045 2.59

4042 4043 .002 .015 .990

4042 4044 .002 .020 1.19

4043 4044 .001 .010 .600

4043 4046 .001 .010 .600

4043 4047 .002 .020 1.19

4044 4045 .001 .010 .6

4045 4051 .002 .020 1.20

4045 4062 .011 .080 4.77

4046 4047 .001 .015 .990

Continued on next page
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Table A.4 – continued from previous page

From To Rij Xij Bi

Bus i Bus j [p.u.] [p.u.] [p.u.]

4061 4062 .0015 .015 .900

4062 4063 .0015 .015 .900

4071 4072 .0015 .015 3.00

2031 2032 .00599 .045 .050

1011 1013 .00503 .03491 .130

1012 1014 .00710 .04497 .170

1013 1014 .00349 .02503 .100

1021 1022 .01503 .100 .290

1041 1043 .00503 .030 .120

1041 1045 .00751 .060 .240

1042 1044 .01899 .140 .570

1042 1045 .05000 .300 1.13

1043 1044 .00503 .040 .150

1011 4011 0 .008 0

1012 4012 0 .008 0

1022 4022 0 .012 0

1044 4044 0 .005 0

1045 4045 0 .005 0

2031 4031 0 .012 0

4042 42 0 .013 0

4041 41 0 .010 0

4047 47 0 .040 0

4043 43 0 .007 0

4046 46 0 .010 0

4051 51 0 .007 0

4061 61 0 .013 0

Continued on next page
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Table A.4 – continued from previous page

From To Rij Xij Bi

Bus i Bus j [p.u.] [p.u.] [p.u.]

4062 62 0 .020 0

4063 63 0 .010 0

A.3 1211-bus Test System

A more realistic test system which represents an actual European electric power

system is also used in this thesis to test a proposed model and solution technique.

This test system consists of 1211 buses, 190 generators, and 1567 transmission lines.

The data of this system is not provided because it is confidential.
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[43] F. Milano, C. A. Cañizares, and M. Invernizzi, “Voltage stability constrained

OPF market models considering N-1 contingency criteria,” Electric Power

System Research, vol. 74, no. 1, pp. 27–36, March 2005.
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[89] C. A. Cañizares, F. L. Alvarado, C. L. DeMarco, I. Dobson, and W. F.

Long, “Point of collapse methods applied to ac/dc power systems,” IEEE

Transactions on Power Systems, vol. 2, no. 7, pp. 673–683, May 1992.

[90] C. D. Vournas, B. M. Nomikos, D. N. Makridou, M. E. Karystianos, and G. A.

Manos, “Bifurcation analysis of electrical power systems,” January 2000, pre-

sented in the 1st Interdisciplinary Symposium of Nonlinear Problems, NTUA,

Athens.

[91] F. Zhang, The Schur Complement and Its Applications. Springer, 2005.

[92] E. Castillo, A. J. Conejo, C. Castillo, R. Mı́nguez, and D. Ortigosa, “Per-

turbation approach to sensitivity analysis in mathematical programming,”

J. Optimization Theory and Applications, vol. 128, no. 1, p. 49–74, January

2006.

[93] R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL A Modeling Language

for Mathematical Programming, 2nd ed. Thomson, 2003.

[94] M. C. Ferris, R. Fourer, and D. M. Gay, “Expressing complementarity

problems in an algebraic modeling languange and communicating them to

solvers.” [Online]. Available: www.ampl.com

[95] “KNITRO.” [Online]. Available: http://www.ziena.com

[96] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University

Press, 1985.

www.ampl.com
http://www.ziena.com


BIBLIOGRAPHY 166

[97] J. Arrillaga and C. Arnold, Computer Analysis of Power Systems. John

Wiley and Sons, 1990.

[98] Ipopt (Interior Point Optimizer). [Online]. Available:

http://homes.esat.kuleuven.be/∼optec/software/ipopt/index.html

[99] Matlab. [Online]. Available: http://www.mathworks.com/

[100] X. Yan and V. H. Quintana, “Improving an interior-point-based OPF by

dynamic adjustments of step sizes and tolerances,” IEEE Transactions on

Power Systems, vol. 14, no. 2, pp. 709–717, May 1999.
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