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Abstract

A new method for determining the number of k-means clusters in a given data set is
presented. The algorithm is developed from a theoretical perspective and then its imple-
mentation is examined and compared to existing solutions.
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Chapter 1

Introduction

1.1 Overview

Clustering is an important data analysis tool that involves dividing a set of data into some
number, k, of clusters that re�ect natural groupings in the data set. We will consider
the problem of k�means clustering and, speci�cally, the problem of determining a suitable
value of k for a given data set. We will develop a framework for answering this question,
the k�means Model Selection Problem, and consider desirable properties of a solution to
this problem. We examine various solutions proposed in the literature before proposing
and analyzing a novel approach. We give experimental results to show the e�ectiveness
of the proposed method. Finally, we present further possible development of the method
before o�ering conclusions.

1.2 Motivation

Clustering is a very important class of machine learning problems with wide-spread appli-
cations in bioinformatics and many other �elds. In the most general sense, the clustering
problem is, given a set of data points and a measure of distance between them, to partition
the data points into some number of sets, such that the data points within each set (or
`cluster' or `partition') are similar to each other and dissimilar from data points in other
sets. This is an instance of the problem of unsupervised learning as studied in the �eld of
arti�cial intelligence.

This de�nition, however, is broad, thus clustering is generally broken down into more
speci�c problems. Among the most important is the k�means clustering problem. We will
restrict our attention to this problem in the majority of this work; however, as discussed
in Section 4.1, the results we obtain may be much more generally applicable.
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1.2.1 How Many Clusters?

The k�means clustering problem has been thoroughly studied and many algorithms have
been proposed; however, it is important to note that for the standard formulation of the
problem the number, k, of clusters to partition the data into is given as input to the
algorithm. In many cases, it is not easy to decide how many clusters should be used.

The naive solution would be to optimize the clustering cost function over the number
of clusters. However, in this case, as we will see, the optimization puts each data point in
its own cluster, which is clearly not an interesting solution. Some notion of structure in
the data set must be analyzed in order to algorithmically determine the `correct' value of
k.

In the majority of real-world clustering applications, the appropriate value of k is
not known in advance and so must be guessed or found using some heuristic. Clearly,
this is an important problem in an applied sense, but it is also important theoretically:
understanding how to determine the number of clusters in a data set is an important step
towards thoroughly understanding the structure that clustering is intended to extract.

1.3 Problem De�nition

We are interested in �nding the number of clusters in a given data set. There is more than
one possible way to formulate this problem, and we will consider two possibilities. First,
however, we must formalize the clustering problem itself.

1.3.1 The k�means Problem

The k�means clustering problem is among the most important and thoroughly studied
forms of clustering. The term `k�means clustering' is often also used to describe certain
algorithms for solving the k�means problem, but we are not concerned here with how the
problem is solved.

We consider the k�means clustering problem on d-dimensional Euclidean space. The
input of the problem is a data set, X = {x1, x2, . . . , xn}, xi ∈ Rd, and an positive integer,
k ≤ n. The problem is to �nd a partitioning which will minimize the k�means cost function
given below.

A k�partitioning, C = {c1, c2, . . . , ck}, ci ∈ 2X , is de�ned as a set of partitions, each of
which is a set of data points. The de�nition of a k�partitioning requires that every element
of the data set is contained in one of the partitions and no partition contains an element
not in the data set:

⋃
c∈C

c = X

and that, assuming all data points are unique, the partitions are pairwise disjoint:

2



∀cα,cβ∈C cα 6= cβ → cα ∩ cβ = ∅.

This de�nition satis�es are intuitive sense of what it means to divide a data set into k
separate groups. However, there are many such divisions possible, so we use the k�means
cost function to choose the `best' such partitioning.

The k�means cost function that we wish for our partitioning to minimize is:

R(C, k) =
∑
c∈C

∑
x∈c

||x− c||2

where c = 1
|c|
∑

x∈c x is the center of mass of the partition c, and || · || is the Euclidean
distance.

We can now de�ne the optimal k�partitioning of a data set as the k�partitioning having
the lowest k�means cost. This optimal solution will not always be unique.

1.3.1.1 Properties of the k�means Cost Function

The following properties of the k�means cost function will be important later in our dis-
cussion:

• Scale Proportionality: If a data set is uniformly scaled by a constant, c, then
the cost of any given partitioning of that data set will be scaled by c2. This is because
the distances will all increase by a factor of c and the cost function is proportionate
to the square of the distances. That is, for all X and k:

R(Cc, k) = c2C(C1, k)

where C1 is any partitioning of X and Cc is the equivalent partitioning of c×X.

• Monotonic Decreasing with k: For any �xed data set, the k�means cost of
an optimal k�partitioning will be non-increasing as k increases. This is intuitively
reasonable, as increasing the number of partitions will allow for smaller, and thus
less costly, clusters.

1.3.2 The Meta-problem

Now we consider the problem of determining the correct number of clusters (or value of k)
for a given data set. This problem is ignored in the standard formulation of k�means, but
must be solved before any k�means algorithm can be usefully applied.

We are interested in the correct number of clusters in the context of the k�means
objective. The clusters that are found in k�means have speci�c properties (for example,
generally, they are convex) that may di�er from other clustering objectives. The number
of clusters in a data set may di�er under di�erent clustering objectives. From here, we will
simply use the term `cluster' to refer to a k�means style cluster.

3



1.3.2.1 The k�means Number of Clusters Problem

The k�means Number of Clusters Problem is, given a data set, to determine how many
clusters exist in the data set. The problem can be formalized as attempting to �nd a
function:

k(X) :, X → Z+

where X is the set of all possible data sets on the domain under consideration, i.e. X is
the power set of Rd for whichever value of d is being considered. We will consider the
properties we wish this function to have in Section 1.4.

The function will map any data set to the number of clusters that exist in that data
set. This de�nition, however, hides the real di�culty: in many cases the correct number
of clusters is ambiguous. There may be multiple numbers that can be considered correct,
perhaps depending on context. We will discuss this problem in further detail below. First,
however, we consider an alternative formulation of the problem that allows for slightly
more �exibility.

1.3.2.2 The k�means Model Selection Problem

Our alternative formulation is, given a data set and a k value, to determine the degree (the
Model Fit Value) to which the given k value �ts the given data set. This problem allows
for a much more �exible view than the Number of Clusters Problem and, as we will see in
Section 4.1, can be generalized in interesting ways.

In the context of this problem, each possible value of k represents a clustering model.
The problem is then to determine how well the model �ts the data. If we wish to �nd the
correct value of k for a data set, we must choose a set of prospective models that includes
the correct model and evaluate the Model Selection Measure on each of them. The model
that evaluates to the greatest Model Fit Value is the correct model. In some cases there
may be more than one correct model. The problem can be formalized as the search for a
function:

M : X × Z+ → R

such that, for a �xed data set, the value of the function will be greater for values of k that
better �t that data set. We will discuss the properties we desire this function to have in
more detail in Section 1.4.

1.3.2.3 The General k Problem

We have presented two di�erent formalizations of the problem of determining the number
of clusters in a data set; however, it is sometimes useful to consider the problem in a more
general sense. We shall refer to this problem in general as `the k problem'.
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1.3.2.4 Di�erences Between the Number of Clusters Problem and the Model
Selection Problem

Although they solve the same general problem, the Number of Clusters Problem and the
Model Selection Problem are di�erent in important ways. An instance X of the Number of
Clusters Problem can be reduced to n instances {〈X, 1〉, 〈X, 2〉, . . . , 〈X, n〉} of the Model
Selection Problem by returning the value of k which results in the maximal Model Fit
Value among the Model Selection Problem instances.

No reduction is possible in the opposite direction, however, as the Model Selection
Problem is more �exible than the Number of Clusters Problem. As we will consider in
Section 4.1, the Model Selection Problem might also be extended in some interesting ways
to provide capabilities further beyond the Number of Clusters Problem.

We will be primarily interested in the Model Selection Problem in the remainder of this
thesis.

1.3.2.5 The Fundamental Ambiguity of the Meta-problem

It is important to emphasize that, asked to �nd the `correct' value of k for a data set, the
problem is to de�ne the correct value. There is no intrinsically correct value of k for any
data set, thus any reference to a `true' or `correct' value is inherently subjective. We will
refer to `correct' solutions and, as we see below in Section 1.4, there are strong arguments
for what value of k should be correct for certain data sets; however, the reader is asked
to remember that the use of the terms `true' or `correct' in reference to a value of k is a
stretch of the terminology.

1.3.2.6 Terminology

When discussing the k problem, we must consider how a data set might be clustered for
various di�erent numbers of clusters and compare these clusterings. Because of this, there
are some concepts that are important to be able to describe succinctly, so we will �x some
terminology here. For any given data set, we may refer to a `correct' number of clusters,
which will be taken as an absolute and supersedes the judgment of any other method for
determining k. Thus, if we have �xed a correct solution for a given data set and a k�
determination method under consideration gives a di�erent answer on that data set, we
will refer to that solution as being `incorrect' on that data set. There may, however, be
more than one correct value of k as in Figure 1.1, in which both 2 and 4 could be correct.

We will refer to these correct values of k as follows: for a data set X for which we can
de�ne one or more correct numbers of clusters, we will denote this set of correct values of
k as k∗(X).

Relative to a particular value of k we consider to be correct, we will refer to `true`
clusters, those obtained under an optimal k�means clustering of a data set with that
`correct' value of k (the `true' clustering). Any other cluster is a `false' cluster or part of a
`false' clustering.

5



Now we can de�ne the intra�cluster and inter�cluster distances:

• The intra�cluster distances are those distances between points that are in the same
true cluster, i.e. they are clustered together in the optimal k�clustering for the correct
value of k considered.

• The inter�cluster distances are those distances between points that are in di�erent
true clusters, i.e. they are not clustered together in the optimal k�clustering for the
correct value of k considered.

By the de�nition of the k�means clustering objective, intra�cluster costs will tend to be
be small. In typical data sets in which there is separation between clusters, inter�cluster
costs will tend to be large.

1.4 Desired Properties of a Solution

In this section, we give some general properties we desire of a Model Selection Measure as
well as considering special classes of data sets that can be used for evaluating a measure;
these will be data sets for which we can make strong arguments regarding the correct
number of clusters.

1.4.1 Scale Invariance

First and most simply, we ask that, if a particular data set, X, has k clusters, then any
uniform scaling of that data set, α×X, should also have k clusters. This is a consequence
of one of the basic properties that might be desired of a clustering function as proposed
by Kleinberg in [12]: that the clustering of a data set should be invariant under uniform
scaling of the data.

1.4.2 Multiple Solutions

Secondly, we ask that a measure be capable of considering multiple good values of k for a
particular data set. For example, in Figure 1.1, we see a data set for which either 2 or 4 is
a reasonable number of clusters. We formalize this property as follows:

De�ning a local optimum for data set X as a value of k such that

M(X, k) > M(X, k − 1) and M(X, k) > M(X, k + 1),

we ask that a measure allow for multiple local optima for some data sets such as that in
Figure 1.1.
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1.4.3 Large Separation and Human Clustering

We now consider criteria which allow us to argue for the correct value of the number of
clusters in certain data sets. The �rst such case we consider is powerful but fundamentally
subjective: the opinion of a human observer. Clustering is one of the fundamental opera-
tions of the human brain, and we are very good at it [6]. Thus, in many cases, it is simple
for an observer to assess the number of clusters in a data set merely from observing a
graphical representation of that data set, especially when there is large separation between
the clusters.

This method is, however, limited. Typically, human clustering is possible only in the
case of a one or two dimensional data space. Another weakness is that we are interested
here in k�means clustering; however, the way the human brain clusters is often di�erent.
As such, there may be data sets for which the number of clusters according to the human
clustering algorithm is not the correct number of clusters for the k�means clustering algo-
rithm. Due to these weaknesses, it is di�cult to apply the human clustering criteria and
so we will consider some more formal criteria instead.

1.4.4 Perfect Clusterings

The human clustering approach generally relies on there being su�cient separation be-
tween clusters as to make the divisions unambiguous. This unambiguous division can be
formalized: In [7], the notion of a `perfect clustering' is introduced. A clustering is perfect
if the maximum distance between any two data points in the same cluster is less than
the minimum distance between any two data points in di�erent clusters. We can use this
notion as a criteria for membership in k∗(X):

• If, for a given data set, X, and a given value of k, there exists a perfect k-clustering
of X, then we say that k ∈ k∗(X).

It should be made clear that the existence of a perfect clustering is su�cient to justify
the membership of a particular value of k in k∗(X), but it does not su�ce to rule out any
other values of k. For example, the data set given in Figure 1.1 is perfectly clusterable for
k = 4 and for k = 2. It should also be noted that the absence of a perfect clustering does
not necessarily invalidate a prospective number of clusters: a perfect k�clustering of X is
a su�cient, but not necessary, criterion for membership in k∗(X).

1.4.5 The k�de�ning Distributions

We can also consider distributions over our data domain which can be said to have a
inherent justi�able number of clusters. It is generally not possible to claim that all data
sets sampled from a given distribution will have a particular number of clusters; however,
we often can argue that, with high probability, any su�ciently large sample will have the
number of clusters associated with the distribution. We will handle this with a failure

7
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Figure 1.1: Data Set with ambiguous k

probability function, ε(n0) which, for a minimum sample size n0, speci�es the maximum
probability with which a measure should choose a value of k other than that associated
with the distribution.

More formally, if G is a k�de�ning distribution with number of clusters k and failure
probability function ε(no), we ask that a measure, M, have probability less than or equal
to ε(n0) of choosing a number of clusters other than k for any sample of at least n0 data
points That is, for all n > n0:

Pr
X∼Sampn(G)

(
∃k′ M(X, k) < M(X, k

′
)
)
≤ ε(n0)

where Sampn(G)indicates a sample of n data points from G.

Having described the way a measure should behave on a k�de�ning distribution, we
now consider what distributions can be considered k�de�ning.

1.4.5.1 Mixture Distributions

A Mixture Distribution is simply a weighted sum of two or more component distributions,
such that the total weight of all components sums to 1. The PDF of a mixture distribution
is:

fmix(x) =

j∑
i=1

wifi(x)
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where j is the number of components in the mixture, fi(x) is the PDF of the ithcomponent
of the mixture, and wi is the weight of the ith component where

∑j
i=1 wi = 1. We will refer

to a Mixture Distribution with wi = 1
j
as a Uniform Mixture Distribution.

We will refer to a Mixture Distribution that is k�de�ning for the number of components
in the mixture (k = j) as a k�de�ning Mixture Distribution.

1.4.5.2 Examples

As an example, consider a uniform mixture distribution of two uniform distributions on R.
One of the uniform distributions is over [−5, −4] and the other is over [4, 5] . The PDF
of this mixture distribution will be:

f(x) =

{
1
2

where x ∈ [−5, −4] ∪ [4, 5]

0 otherwise.

In this case we can clearly see (using the human clustering criteria) that there is a very
high probability that for any large data set sampled from this distribution, k = 2 will be
justi�able as the number of components in the mixture. In fact, a Perfect Clustering will
exist in almost all cases, making the choice even easier to justify. If the data set is small,
however, there will be a non-negligible probability that all of the sample data points will
be from only one of the two components. It is likely that k = 2 will not be justi�able
for these data sets. Thus, a su�cient sample size is necessary and, even for an arbitrarily
large sample size, there is a non-zero probability that our data set will not have k = 2 as
desired. It is clear that there are limitations to k�de�ning distributions; these limitations
are characterized by the ε(n0) function. If we assume that the existence of a single data
point in each interval is su�cient to establish the existence of two clusters (a questionable
assumption, but such assumptions are typically necessary to precisely de�ne ε(n0)), then
ε(n0) = 2(1−n0) in this case.

As another example, consider a Uniform Mixture Distribution of three Uniform Distri-
butions on R. One of the Uniform Distributions is over [−5, −4], one is over [4, 5] and the
other is over [4.1, 5.1] . The PDF of this distribution will be:

f(x) =


1
3

where x ∈ [−5, −4] ∪ (4, 4.1) ∪ (5, 5.1)
2
3

where x ∈ [4.1, 5]

0 otherwise.

In this case, despite the fact that we have three components in the mixture distribution,
any data set sampled from this distribution is likely to have k = 2 and not k = 3. This
is because of the intersecting regions of two the components. Separation between the
regions of each of the components is, as we will see, a basic requirement on a mixture
distribution for it to be k�de�ning. In this case, although it is possible that a particular
data set sampled from this distribution might have k = 3, as the sample size increases, the
distribution will be increasingly likely to have only two clusters and thus, the probability
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of a correct measure choosing a value other than three will converge to 1. Thus, this
distribution is k�de�ning only in the pathological case with ε(n0) = 1.

1.4.5.3 Mixture Distributions of Convex Multivariate Uniform Distributions

One extremely simple class of k�de�ning distributions is the Mixture Distribution of Con-
vex Multivariate Uniform Distributions (MDCMUD). A Convex Multivariate Uniform Dis-
tribution assigns equal probability distribution over some convex subset of the data do-
main; we will refer to this subset as the region of the distribution. A MDCMUD is simply
a Mixture Distribution of these.

We will de�ne the minimum component separation of a MDCMUD as the minimal
distance between any two points in the regions of di�erent components of the distribution;
in the case of overlapping regions, this distance may be negative.

Assuming the minimal component separation of the distribution is greater than 0, a
MDCMUD is a k�de�ning Mixture Distribution. It is simple to show that, for these
distributions, the probability that a sample has a perfect k�clustering converges to 1 as
the size of the sample, n, approaches in�nity; this is because, if we map components to
clusters, by the de�nition of minimal component separation, the minimal distance between
points in di�erent clusters in greater than 0, but the maximum distance between points in
the same cluster will converge to 0 as n approaches in�nity.

Thus we have a large class of k�de�ning Mixture Distributions. With larger minimal
component separations, the ε(n0) function will be small even for relatively low values of
n0, while if the components are very close, this function will tend to be high.

1.4.5.4 Mixture Distributions of Multivariate Gaussians

Another important class of Mixture Distributions is the Mixture Distribution of Multivari-
ate Gaussians (MDMG). We consider this class as it is commonly used in the literature for
testing solutions to the k problem and because there are some theoretical results on these
distributions that gives us some insight into our error probability function, ε(n0).

A Multivariate Gaussian or Multivariate Normal random variable is de�ned by the
PDF:

1

(2π)
k
2

√
|Σ|

exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
where µ is a vector indicating the mean of the distribution, and Σ is the covariance matrix
which determines the shape and dispersion of the distribution.

Using this de�nition, the probability distribution function of a MDMG is:

k∑
i=1

wi

(2π)
k
2

√
|Σi|

exp

(
−1

2
(x− µi)

>Σ−1
i (x− µi)

)
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where wiis the relative weight of each component, µi is the mean of each component, and
Σi is the covariance matrix of each component.

There are good reasons why these models are frequently used in the literature for
testing of clustering and k�determination methods. The class of models is rich enough
to approximate many realistic data sets but simple enough to be easily parameterized.
Further, the maximum likelihood over these models (usually with all parameters other
than the means �xed) is another popular clustering objective function, quite similar to
the k�means objective function. In fact, for a uniform mixture of spherical Gaussians,
the maximum likelihood objective converges to the k�means objective as the variance of
the Gaussians approaches 0. Later, we will use these models in our experiments; �rst,
however, we wish to consider in what cases these distributions are k�de�ning and what
factors determine the error probability function ε(n0).

1.4.5.5 Theoretical Limitations

It can be seen that with insu�cient samples, a measure can not be expected to �nd k
clusters in a data set sampled from a k�determining MDMG. As a trivial example, consider
a sample of two data points from a three�component MDMG.

Likewise, if the means of two of the components are too close, the distribution might
have a very high error probability function. For two Multivariate Gaussians with means
µ1and µ2 and covariance σI for both, we can de�ne the separation between them as:

‖µ1 − µ2‖
σ

.

In the case of non-spherical Gaussians or Gaussians with di�erent covariances, the
de�nition is more complex. Given this de�nition, we can now discuss the minimum pairwise
separation (minimal among all pairs) of the components of an MDMG. It may also be
interesting to consider average pairwise separation or other similar measures as well.

In general, this minimum pairwise separation must be su�ciently large in order for an
MDMG to be k�de�ning. If two clusters are too close, it becomes reasonable for their
samples to be clustered together, reducing the correct number of clusters to less than the
number of components in the MDMG.

In order to consider these limitations, we will consider some work on a similar problem
and extrapolate the results. In [23], the problem of learning the centers of a MDMG is
considered, with a known number of components. It is shown that there is a theoretical
limit in the required sample size and required component separation for a MDMG to be
learnable with high probability. These limits are more restrictive with higher numbers of
components and higher dimensionality. Although these results apply to learning the means
only, the results can be extrapolated to the case of learning the number of components: in
the learning problem of [23], the means of the Gaussians are being learned; in our problem,
it is simply a di�erent parameter, the number of components in the mixture, that is being
learned.
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In general, we can say that a MDMG is only k-de�ning if there is su�cient separation
between its components. The separation required and number of samples required to keep
the error probability low will increase as the number of components and the dimensionality
of the space increases. The actual requirements will be explored experimentally in Chapter
3.

As an aside, it is also useful to note that in [23], it is found that there exists a regime
of MDMG models for which accurate learning is theoretically possible, but not tractable.
Thus it is likely that there is a regime of models which are theoretically k�de�ning, but
no e�cient algorithm will �nd the correct number of clusters consistently. This will be an
important limit to consider in the implementation of our Model Selection Measure.

1.4.5.6 Conclusions of k�de�ning distributions

We have seen that data sampled from a k�de�ning distribution should be found to have
k clusters with high probability, but it is generally not possible to specify exactly what
this probability is. As such, this property is valuable only in comparing di�erent methods
of k�determination: The method with the lower error probability function on a particular
distribution can be said to handle that distribution better.

1.4.6 Conclusions of the Desired Properties

We have given a number of properties here that we wish a Model Selection Measure to
possess. To summarize, a measure should:

• be scale invariant,

• allow for multiple solutions,

• accept k as a solution whenever there is a perfect k�clustering of the data set,

• accept k as a solution with probability at least 1− ε(n0) for a sample of at least n0

data points from a k�determining distribution with small as possible error probability
function ε(n0).

We will use these properties to evaluate previously proposed solutions as well as our new
solution proposed below.

1.5 Previously Proposed Solutions

In general, the previously proposed methods for determining the k problem �t into one
of two categories: those that analyze the `cost versus k' tradeo� on the data and those
that analyze the stability of the optimal k�means clustering of the data under various
perturbations. We describe a representative implementation from each class below.
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1.5.1 Cost Versus k

It is generally well accepted, as in [11], that analyzing the rate at which the k�means cost of
the optimal k-clustering decreases while k increases is a fairly e�ective heuristic for �nding
an appropriate value of k. Generally, the cost will decrease dramatically as k increases up
to the correct number of clusters, but will decrease only slowly after that point. In the
case of more than one correct number of clusters, there will be multiple points at which the
cost's rate of decrease lessens, although in these cases, the transitions can be more di�cult
to detect.

In order to understand the reasoning behind this heuristic, recall the terminology pre-
sented in Section 1.3.2.6 and consider that a data set is made up of k∗ `true' clusters. The
distances between any two data points within a true cluster (the intra�cluster distances)
should be relatively small and the distances between any two data point in di�erent true
clusters (the inter�cluster distances) should be relatively large.

The intuition behind the heuristic is that, up to the correct value, adding another cluster
should substantially improve the cost, as the increase in k will allow two true clusters that
were previously incorrectly combined to be separated, removing some large inter�cluster
distances from the cost of the clustering. However, once the correct k value is reached,
there will be little bene�t to adding additional clusters, as this will only serve to split one
or more true clusters, removing only the relatively small intra�cluster distances from the
cost.

Thus, the heuristic states that the correct value of k is that at which the decrease in
cost sharply �attens. This heuristic can be quite e�ective, but is subjective and di�cult to
formalize. Despite this, many of the successful heuristics used are based on this observation.
Perhaps the most e�ective such heuristic is the Gap Statistic.

1.5.1.1 The Gap Statistic

The Gap Statistic, proposed in [11], is among the best-known and most e�ective heuris-
tics for �nding the correct number of clusters in a data set. It was designed as a direct
formalization of the cost versus k heuristic, described in Section 1.5.1 above, but has some
interesting di�erences. Brie�y, the algorithm compares the cost of the optimal k�means
cost on the data set for each value of k considered to the optimal k�means cost of a
`reference', uniform distribution. The k for which the cost on the data has the greatest
advantage over the cost on the reference distribution is considered the correct value of k.
This technique is especially interesting as it includes heuristics to consider the hypothesis
that the data is unclusterable (k = 1), a feature missing from many other methods. Simply
stated, the heuristic will select k = 1 if no greater value of k has a su�cient di�erence in
cost between the data set and the reference distribution.

There are two variation of the method presented. In the �uniform� version, the reference
distribution is distributed uniformly in the minimal axis-aligned box containing the data;
in the �principal component� variation the box is aligned with the principal component of
the data.
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The Gap Statistic is generally fairly e�ective; however, it will not consistently perform
as expected even in relatively easy problems and, especially, will often inappropriately
conclude an absence of structure (k = 1). For example as shown in [14], the Gap Statistic
incorrectly concluded k = 1 for a mixture of 5 well-separated Gaussians.

Generally, the Gap Statistic meets all of our criteria of Section 1.4 except that, as
proposed in [11], it is not capable of handling multiple solutions and will fail on some
k�de�ning distributions with a worse than necessary error probability function as we will
discuss in Section 3.4.1.

1.5.2 Stability Methods

Stability is another common approach for solving the k problem or, more generally, eval-
uating whether or not a clustering model is correct on a given data set. There is a large
body of work on these methods, including [3] and [14]. The general principle of the stability
methods is that a model �ts a data set well if a speci�ed algorithm will �nd approximately
the same clustering of that data set even if the data is perturbed in some way, such as by
taking various partial samples of the data set or adding noise to the data.

These methods are often very e�ective; however, as explained in [2], their e�ectiveness
may be misleading. The paper shows that stability under sampling is dependent only
on the existence of a unique optimal solution to the clustering cost function. It can be
argued that a correct clustering model should induce a unique optimal solution; however,
this should not be taken as an absolute requirement. Consider a data set with two well-
separated clusters and a single data point centered between the clusters. It is possible to
form arguments for the correct number of clusters bring both 2 and 3. However, k = 2 does
not have a unique optimal solution, as the center point can be assigned to either cluster
without a�ecting the cost. See Section 3.3.1.8 for experimental analysis of this situation.
Unless we wish to disallow k = 2 as a solution for this case, we can not take uniqueness of
optimal solution as an absolute requirement for a correct model.

It is also important to note that incorrect models may also induce unique optimum
solutions, as shown in [2]. Thus the existence of a unique optimal solution can, at most,
be taken as a necessary, but insu�cient criterion for the correct clustering model.

Stability under perturbation of the data set has also been shown to be an e�ective
measure [3]; it is likely, however, that it is also determined by the existence of a unique
optimal solution.

In general, stability methods can meet all of the criteria discussed in Section 1.4; it
is only cases discussed above in which correct models have multiple optimal solutions or
incorrect models have a unique optimal solution in which the methods tend to fail.

1.5.2.1 The Swiss Stability Method

The implementation of the Stability Method given in [14] is an excellent example of such
methods. It determines the degree to which a given data set X can be clustered into
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k clusters by determining how similarly two subsets of X are clustered. In detail, X is
split into two non�intersecting subsets, Xa and Xb. The clustering algorithm being used
is applied to Xa �nding a labeling for each element of that set. This labeling is used to
train a classi�er. Xb is then clustered using both the clustering algorithm and the classi�er
trained on Xa and the di�erence between these two labelings (minimized under relabeling)
is used as a measure of stability for the clustering method, X and k: if the two cluserings
are very similar, the model �t is good.
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Chapter 2

Entropy-based k�means Model Selection

2.1 Overview

In this chapter we propose a new k�means Model Selection Measure based on the Renyi
entropy [21] of a random variable we construct to represent the possible k-clusterings of
the data set. This method is completely di�erent from existing methods in that it does
not rely on either the cost versus k heuristic nor any stability properties. We will �rst
consider the goal we wish to meet with our measure. We will then proceed to consider
the available information that may allow us to reach this goal, and then consider how the
information might be interpreted and applied. Once we have found a possible method, we
will formalize this method and then present the obtained measure before evaluating it and
comparing it to other existing methods.

2.2 The Goal

We wish to �nd a k�means Model Selection Measure, which we will de�ne as a function:

M : X × Z+ → R.

This function will be de�ned in detail in the remainder of this section. We will evaluate
the measure by considering the desired properties given in Section 1.4.

2.3 Available Information

The only information we are explicitly given is the value of k to be evaluated and the data
set itself. Combining these two elements and considering the k�means cost function as
well, we �nd that we also have access to the k�means cost of each possible k�partitioning
of the data, as well as the k�partitionings themselves.
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2.4 Interpretation of the Information

This information can, of course, be interpreted in many di�erent ways. It is intuitively
satisfying, however, to imagine a distribution of the cost over a space of possible partition-
ings with similar partitionings close to each other and dissimilar partitionings distant from
each other.

This cost distribution over the partitionings is interesting, but in order to simplify our
explanation, we will de�ne a new, similar, distribution. Instead of considering the k�means
cost of each partitioning, we will consider a normalized value, related to the cost. Given
a set of partitionings, P = {C1, C2, . . . , Cm}, we can �nd the k�means cost, R(C, k), for
each. We will then de�ne the value of each partitioning to be the normalized reciprocal

of the cost, V (C, k) = R(C, k)−1P
Ci∈P

R(Ci, k)−1 . We choose to take the reciprocal in order to ensure

that `better' partitionings have higher values, rather than lower. This distribution will be
called the Partitioning Value Distribution.

We can now consider the characteristics of the distribution. We will see peaks at the
locations of the `good' clusterings. These peaks will typically not be single-element spikes
as, usually, given a good clustering, there will be many similar clusterings that are almost
as good, perhaps varying only in the assignment of a single data point.

This distribution can be said to characterize how the particular clustering model applies
to the given data set. Careful examination of it can decide the degree to which the model
�ts the data.

2.5 Application of the Information

In order to determine how this distribution can be used to determine the model �t, we will
consider how the Partitioning Value Distribution might look in three cases. It is assumed
in all cases that the data set has a clearly de�ned number of clusters. It is important to
recall the terminology explained in Section 1.3.2.6 as it is used here extensively. It is also
important to emphasize that the `correct' number of clusters is loosely de�ned. There are
data sets for which there are multiple possible values of k that can be justi�ed. Thus, for a
data set that can reasonably be clustered into either two or four clusters, the case of k = 3
is, in a sense, an underestimation and an overestimation simultaneously, thus both cases
will apply to some extent.

It should also be mentioned that, in these cases in which the number of clusters is clearly
de�ned, the inter�cluster distances will tend to be larger than the inter�cluster distances.
This is necessary in order to create the separation that distinguishes the clusters.
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2.5.1 Partitioning Value Distribution in Case with k Underesti-

mated

If k is underestimated, all partitionings will be forced to include elements from multiple
true partitions in a single false partition. This will result in even the best partitionings
being little better than the average partitioning as they will include inter�cluster costs.
Under the general assumption that intra�cluster costs are substantially smaller than inter�
cluster costs, any partitioning that includes some inter�cluster costs will be substantially
worse than the true partitioning, which includes only intra�cluster costs.

Thus, the distribution will appear relatively �at, with many slightly higher plateaus
representing cases where the number of inter�cluster costs paid is relatively minimal.

2.5.2 Partitioning Value Distribution in Case with k Correct

Often, if the value of k is correct there will be a unique optimal solution. In this case,
there will be a single large peak in the distribution. Even if there are multiple optimal
solutions, there will generally be few of them and they will probably be very similar. The
peak (or peaks) will be quite sharp, as any deviation from the optimal solution will begin
to include the expensive inter�cluster costs.

Thus, in this case, the distribution will be sharply peaked.

2.5.3 Partitioning Value Distribution in Case with k Overesti-

mated

If k is overestimated, there will be a large number of solutions with near optimal cost. The
excessive partitions may result in one or more true partitions being split; however, this
splitting will only a�ect the (small) intra�cluster costs and will thus not change the overall
cost substantially. Each partition can be split in many di�erent ways, thus each possible
set of split partitions will generate a plateau of partitions with cost approximately equal
to the optimal.

Thus, the distribution will include a large number of plateaus, each of approximately
the same height.

2.5.4 Summary

We can see that there is generally a detectable di�erence in our distribution in each of
these three cases. As described, these di�erences are qualitative and somewhat subjective,
so it remains to �nd a method to detect each of these three cases algorithmically.
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2.6 Formalization

We wish to de�ne a function that will exploit these characteristics in order to perform the
desired model selection. The characteristics are only generally de�ned, and so there is still
some intuition needed in �nding an appropriate function.

2.6.1 Throwing Away Information

We can immediately see that, in the case that k is correct, there will be a peak with a
much better cost than most other parts of the distribution. This recognition leads us to
our �rst possible class of functions we consider, but �rst it is interesting to note that this
observation depends only on the values of the partitions, not the partitions themselves. We
have found that an e�ective measure can be formulated using only the set of values of the
partitionings, ignoring the partitionings themselves; we can consider only the Partitioning
Values, V = {v1, v2, . . . , vm}, not the Partitioning Value Distribution. Although it is
possible that a better measure could be found by incorporating partitioning information
(see Section 4.3), we believe that our value�only measure is very e�ective and is much more
e�cient because distances between partitionings need not be calculated.

Given this restriction, we can reformulate or measure to take a set of partitioning values
as its single parameter:

M : V → R, V = {v1, v2, . . . , vm}.

Note that V will (implicitly) be a function of X and k.

2.6.2 Simple Statistics: Minimum and Maximum Values

Our recognition that a high peak is an important factor in determining the correct model
suggests that the maximum value obtained is an important statistic (remembering that
costs are normalized). We could propose that the di�erence between the maximum value
obtained and the minimum or perhaps average value might be a useful measure. The ratio
between the maximum and minimum or average might also be considered. Empirically,
the functions were all found to be somewhat e�ective on the relatively easy problems
considered, but to varying degree. From best to worst, they were:

1. M(V) = max(V)
avg(V)

2. M(V) = max(V)− avg(V)

3. M(V) = max(V)−min(V)

4. M(V) = max(V)

min(V)
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Comparing the maximum to the average value is much more e�ective than comparing it to
the minimum value. Still, it seems it should be possible to do even better. In considering
only the maximum, minimum, and average cases, we lose a lot of the information that we
have available, such as whether there are many partitionings with near the maximum value
or only one.

2.6.3 Better Statistics: Entropy

2.6.3.1 Intuition

Intuitively, it is very natural to consider measures of entropy as prospective functions for
our Model Selection Measure. Entropy is normally a measure on probability distributions
only, but we will ignore this fact for the moment. As we discussed in Section 2.5, we
are trying to �nd how sharply peaked (although not necessarily just a single peak) our
distribution is; entropy can measure this. Entropy, of course, would be inversely related
to the quantity we are searching for: a more sharply peaked, and thus more clusterable,
distribution will have lower entropy.

2.6.3.2 How to Apply Entropy

Entropy is a measure on probability distributions, not Partitioning Value Distributions.
However, due to our normalization, our Partitioning Value Distribution sums to 1, as must
a probability distribution. To be clear, it can't be claimed that the Partitioning Value
Distribution actually is a probability distribution; however, the similarity is su�cient for
us to proceed and see what happens when we attempt to measure the entropy of our
Partitioning Value Distribution.

2.6.3.3 De�nitions of Entropy

The best known entropy measure is Shannon Entropy; however, as mentioned in [17], there
are other possible measures of entropy we may consider. We evaluated Shannon Entropy,
Renyi Entropy, and Burg entropy.

Given a random variable X with outcome probabilities p1, p2, . . . , pn, we can de�ne
each of our forms of entropy. Classical Shannon entropy, as introduced in [22], is de�ned
as :

H(X) = −
n∑

i=1

pi log pi.

Shannon gives three basic properties that a measure of entropy should satisfy:

1. The function should be continuous on the probabilities.
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2. If the probabilities are equal, the function should be monotone increasing with the
number of possible outcomes.

3. If the outcomes can be broken down into a multi-stage decision, the entropy of the
entire process should be a weighted (by probability) sum of the entropies of the
subprocesses.

Shannon goes on to prove that the only functions that can satisfy these requirements will be
constant scalings of his de�nition. However, there are still other useful entropy functions.

Renyi entropy, introduced in [21], is de�ned as:

Hα(X) =
1

1− α
log

(
n∑

i=1

pα
i

)
.

As can be seen, Renyi entropy is actually a class of entropy functions, as parameterized
by α. Renyi shows that in the limit as α → 1, the Renyi entropy approaches the Shannon
entropy, thus, Renyi entropy can be seen as a generalization of Shannon entropy.

Burg entropy is de�ned as:

H(X) =
∑

log pi.

2.6.3.4 Comparison of Entropy Measures

Informal experiments showed that Shannon and Renyi entropy were approximately equally
e�ective as Model Selection Measures, with Burg entropy being slightly less e�ective. Be-
tween Shannon and Renyi entropy, Renyi entropy was chosen for its computational sim-
plicity.

Further informal experiments showed that higher values of α made the measure very
slightly more e�ective; however, the di�erence was not su�cient to justify the increased
computational complexity, thus we chose to use Renyi Entropy with α = 2.

2.7 The Measure

2.7.1 Not Quite Entropy

Before continuing, we will more carefully examine the function we have chosen, Renyi
Entropy. The de�nition is:

Hα(X) =
1

1− α
log

(
n∑

i=1

pα
i

)
.
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Because we have decided to use α = 2, we can simplify the de�nition:

H2(X) = − log

(
n∑

i=1

p2
i

)
.

Because the log function is monotonic increasing and we are only interested in �greater
than� and �less than� relationships of the measure between models, not the actual values,
we can remove the log, leaving us with a new function related to Renyi entropy:

Hnew(X) = −
n∑

i=1

p2
i .

Finally, because we wish the measure to be greater for smaller entropies we negate the
measure. At this point the measure cannot be reasonably referred to as entropy any more.

F(X) =
n∑

i=1

p2
i .

2.7.2 The Function

Given a data set, X, and a model, speci�ed by a value of k, the measure is de�ned as
follows:

Taking the set of all possible k�partitionings of the data set:

P(X, k) = {C1, C2, . . . , Cm}

and given the k�means cost function:

R(C) =
∑
c∈C

∑
x∈c

||x− c||2

we de�ne the normalized value of each partitioning as:

V(C, P) =
R(C)−1∑

C∈P(X, k) R(C)−1
.

Now, our measure can be de�ned:

M(X, k) =
∑

C∈P(X, k)

(V(C, P(X, k)))2 .

This measure allows us to determine the Model Fit Value of a given number of clusters,
k, for a given data set, X. However, the number of partitionings possible, and thus the
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cardinality of P(X, k), will increase very quickly with k. The function we use is extremely
sensitive to this cardinality and so the Model Fit Value will typically decrease with k
regardless of the data set. We have not found any way to normalize the Model Fit Value
for the number of partitionings but we will consider in the implementation section below
how we can make this Model Fit Value useful.

2.8 The Implementation

The measure, as described in the previous section, has some problems that must be ad-
dressed for a practical implementation to be developed. The de�nition of the measure
itself can be implemented directly, but we must make some adjustments to the set of
partitionings, P(X, k), that we use. There are two reasons why this is necessary:

1. The space of the possible partitionings grows extremely large, as in the equation
below. For implementation to be practical, only a sample of the partitionings can be
used.

2. Currently, the Model Fit Value will decrease with k. If we wish to use the measure
to choose the correct value of k for a data set, this must be corrected.

If we wish to determine the correct value of k for a data set X, will will consider a set of
prospective k values, ktest, and evaluate the measure on 〈X, k〉 for each value of k in ktest.
We desire that the Model Fit Value will be greatest for the correct value of k. In order to
allow this, we must eliminate the bias from the number of partitionings sampled. The only
e�ective technique we have found is use only a sample of the possible partitionings and to
use exactly the same size of sample for each model evaluated.

2.8.1 Number of Partitionings

Because the number of partitionings increases with k, this means that the maximum num-
ber of partitionings that can be used is the number of partitionings that exists for the
minimal value of k considered. Thus, on a given data set, fewer partitionings can be used
to compare k = 2, k = 3, and k = 4 than to compare k = 3, k = 4, and k = 5.

The total number of k-partitionings of n data points can be de�ned as a recurrence:

f(k, n) =

{
1 where k = 1
kn−

Pk−1
i=1

k!
i!

f(k−1, n)

k!
otherwise.

To explain brie�y, each iteration of the summation is subtracting the cases with i empty
partitions and the division by k! is removing the partitionings that are only relabelings of
other partitionings.

This number can grow very large, but it turns out that the measure performs very well
with only a small sample of the partitionings. We will examine in Chapter 3 exactly how
many are necessary.
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2.8.2 The Partitions

In our implementation we will choose a number of partitionings to sample such that all
models being considered have at least that many partitionings. It must also be considered
exactly how the partitionings are to be sampled. We will consider some possible classes
of partitionings after de�ning a Lloyd�step, which is useful in describing the partitioning
classes.

2.8.2.1 The Lloyd�step

Lloyd's algorithm is the basis of many methods used for solving the k�means problem. It
was �rst proposed in 1982 in [15] and has been modi�ed and recycled many time since. The
algorithm starts with an initial partitioning and iteratively improves it until the solution
is `good enough' or until a �xed point is found. The algorithm is not guaranteed to
�nd the optimal solution, however, and is sensitive to the initial partitioning used. Each
iterative step is referred to as a `Lloyd�step' and consists of �nding the centers of mass of
each partitions of the input and then creating new partitions based on proximity to these
centers. More formally, we de�ne the Lloyd�step on data set X and initial partitioning C,
with |C| = k as:

L(C) =
{{

x|x ∈ X ∧ ∀i∈[1, k]‖x− c̄1‖ ≤ ‖x− c̄i‖
}

,{
x|x ∈ X ∧ ∀i∈[1, k]‖x− c̄2‖ ≤ ‖x− c̄i‖

}
, . . . ,

{
x|x ∈ X ∧ ∀i∈[1, k]‖x− c̄k‖ ≤ ‖x− c̄i‖

}}
.

Simply stated, the function assigns to each output partition those points closer to the
center of the corresponding input partition than to the center of any other input partition.
Note that this formalization assumes that all distances are unique; in the event on identical
distances, a rule is needed to assign points that are equally close to two centers.

Now, with this de�nition, we can proceed to de�ne the partitioning classes. Note that
each category is a subset of the preceding category.

2.8.2.2 General Partitionings

Any k sets that satisfy the partitioning requirements given in Section 1.3.1 are a general
partitioning. It is worth noting that the vast majority of these will have similar (and high)
costs.

2.8.2.3 Voronoi Partitionings

Voronoi partitionings are much more satisfying to our intuition of what a clustering should
look like. The Voronoi partitionings are those for which there exists a set of k points which
generate a Voronoi diagram that induces the partitioning. Equivalently, Voronoi diagrams
are those for which the convex hulls of each partition have no pairwise intersection.
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These partitions are those that `look' something like proper clusters. It is still quite
possible that they are nowhere near to optimal however.

2.8.2.4 Fixed-point Partitionings

The �xed point partitionings are those that are a �xed point under a Lloyd�step described
above. Or equivalently, they are the Voronoi partitionings in which the generating points
for the Voronoi diagrams are the centers of mass of the partitions. Informally but perhaps
more clearly, the Fixed-point Partitionings are those in which every data point is closer to
its partition's center of mass than the center of mass of any other partition.

There are typically very few of these. In the context of the search algorithm perspective
on Lloyd's algorithm, these are local optima.

2.8.2.5 Optimal Partitionings

These are the partitionings with the lowest possible cost of all k-partitionings on the given
data set. There may be multiple optima with the same cost.

2.8.2.6 Interesting Partitionings

The set of partitionings sampled must somehow characterize the Partitioning Value Distri-
bution. This will generally require that some of the higher�value partitionings be sampled
as well as some of the more average partitionings. If we are to consider only a sampling
of all partitionings, we must endeavor to ensure that a su�cient range of partitionings are
considered in order to generate useful results. It is not su�cient to consider, for example,
only the �xed-point partitionings, which typically all have relatively high value. For the
degree of peakedness of the distribution to be recognized, the peaks must be recognized,
but the lower value partitionings are necessary to give perspective on the peaks.

In general, there is a trade-o� between considering all partitionings and considering
only a restrictive class of partitionings. If all partitionings are considered, there are a very
large number of low�value partitionings and thus it is necessary to sample a very large
proportion of the partitionings in order to �nd enough of the high�value partitionings. On
the other hand, we must consider at least some of the lower�value partitionings, so can
not be too restrictive in our sampling. We �nd it most e�ective to consider the Voronoi
partitionings; they have su�cient range of value to well-characterize the distribution and
they are su�ciently restrictive that not too large a proportion of them must be sampled.

2.8.3 Sampling Partitionings

We use a sampling algorithm that samples Voronoi partitionings in a fairly uniform way.
Simply stated, a set of k centers is chosen uniformly from the minimal axis-aligned box
containing the data set and each data point is assigned to a partition corresponding to its
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nearest center. The method will not �nd partitionings for which the Voronoi diagram can
only be induced using points outside of the minimal axis-aligned box containing the data,
but we have found this method to be quite e�ective in practice.

When asked to �nd a speci�ed number, m, of k-partitionings, the system will run as
follows:

• initialize partitionings, an empty set of partitionings

• repeat while partitionings has fewer than m elements in it:

� generate newCenters, by choosing k centers uniformly from the minimal hy-
percube containing the data set

� create newPartitioning by assigning each data set element to a partition
corresponding to the closest element of newCenters

� if newPartitioning has no empty partitions and is not already in partition-
ings:

∗ add newPartitioning to partitionings

2.9 Properties of the Measure Implementation

We will consider here some properties of the measure as it is implemented.

2.9.1 A Stochastic Measure

Because we are considering a random sampling of the possible partitionings, our measure
becomes random as well. We must accept the possibility that a bad sample of partitionings
will result in an undesirable result. As such, when evaluating our measure, we ask only
that there be a high probability over a su�cient partitioning sampling that the measure
provides an appropriate result. We will examine this in more detail in Chapter 3.

2.9.2 A New Class

It is important to recognize that, in general, the majority of other methods proposed have
been, explicitly or implicitly, formalizations of the cost versus k heuristic described in
Section 1.5.1, with stability�based methods being the one major exception. The proposed
method belongs to an entirely new class, in that it does not examine the cost versus k
tradeo� and does not depend on stability.
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2.9.3 Scale Invariance

It is easy to show that the measure is scale invariant. We know that given a data set, X,
and a second data set, αX, that has been uniformly scaled by constant α, the k-means cost
of a particular partitioning of αX will be α2 times the cost of the equivalent partitioning
in X. Also, we must assume that our method for sampling partitionings is scale invariant.
It is easy to see that the method proposed above is.

• We now consider our data sets: the original, X, and the scaled version αX

• We take the corresponding sample of partitionings from each P(X, k) and P(αX, k)

• We now wish to �nd the values of the partitionings for each set of partitionings:

� For P(X, k), the values are:

V(C, P) =
R(C)−1∑

C∈P(X, k) R(C)−1
.

� For P(αX, k), the values are, by the scaling properties of the k�means cost
function:

V(C, P) =
α2R(C)−1∑

C∈P(X, k) α2R(C)−1
.

� It is now simple to factor α2 out of the summation in the denominator giving
us:

V(C, P) =
α2R(C)−1

α2
∑

C∈P(X, k) R(C)−1
.

� Then the α2 terms in the numerator and denominator cancel out, leaving us:

V(C, P) =
R(C)−1∑

C∈P(X, k) R(C)−1
.

� which is exactly the de�nition of the Values for the non-scaled data set; therefore,
the measure is scale invariant.

2.9.4 Multiple Solutions

By the very nature of the measure it is entirely possible to �nd multiple local optima as
discussed in Section 1.4.2. This will also be demonstrated experimentally in Chapter 3.

2.9.5 Other Properties

The other desirable properties we consider all relate to choosing the value(s) of k that we
consider to be correct. Although we cannot demonstrate that our measure will do so in all
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possible cases, we perform a set of experiments in the next section to explore the measure's
behaviour on various sorts of data.
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Chapter 3

Experimental Results

3.1 Experimental Framework

While development work was done under Wolfram Research's Mathematica, all �nal ex-
periments were run using a Java implementation of the measure in order to reduce the
necessary CPU time. The behaviour of the measure was explored using experiments on
synthetic data and the performance of the measure was evaluated using real-world data.

3.2 Experimental Data

3.2.1 Synthetic Data

For each experiment on synthetic data, the following general procedure was followed (al-
though there are exceptions as noted):

• All parameters were �xed except one or more experimental parameters.

• For each desired set of values for the experimental parameters:

� The speci�ed number of trials were performed:

∗ A new data set was generated according to the speci�ed model and number
of samples.

∗ The measure was evaluated on the data set for each value of k within the
test range.

∗ If the provided, true, value of k was that for which the measure returned
the greatest value, the trial was regarded as a success.

� The proportion of successful trials was returned, along with a 95% con�dence
interval based on the normal approximation of the binomial distribution.
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• The success rates for each set of experimental parameters was plotted.

There are many parameters involved in the synthetic experiments, and it is important to
understand them thoroughly. As inputs to the measure, one must specify:

• The data model with which to generate the data set.

• The number of data points to sample.

• The number of times the experiment is to be run (for a tighter con�dence interval).

• The range of values of k to be tested and which is to be speci�ed as correct.

In addition, each data model has several parameters. The model used in the majority of
the experiments is the Gaussian Circle Model, described below. When di�erent models are
used in speci�c experiments, they are described there.

In general, the space of possible models and parameters is far too large to explore
exhaustively. Thus, we focus our experiments by considering questions about the measure
we wish to answer and formulating experiments that can answer those questions.

3.2.1.1 Gaussian Circle Model

The Gaussian Circle Model is a uniform mixture of unit-covariance, two-dimensional Gaus-
sians, a form of MDMG model. The means of the Gaussians are equally spaced around
the circumference of a circle about the origin.

The model takes two parameters: k, the number of Gaussians, and s, the separation, or
straight-line distance, between each Gaussian's mean and the means of its neighbours. See
Figure 3.1 for a diagram. In order to create the correct separation, the radius of the circle
is set to r = s× 1

2
csc
(

π
k

)
. By varying the value of s, the di�culty of correctly determining

the value of k can be controlled. See Figures 3.10, 3.11, and 3.12 for example data sets
sampled from this class of models.

3.2.2 Iris Data

Although the synthetic data is very useful for exploring the behaviour of the measure, it
is interesting to see how the measure performs on real-world data. We consider a data
set consisting of the physical dimensions of certain parts of a number of Irises (�owers).
The data has been used in various computational learning experiments, �rst in 1936 [8].
The Irises measured for the data set come from three di�erent species of Iris. There are
150 samples each with 4 di�erent measurements, the sepal length and width and the petal
length and width. See Figure 3.2 for a plot of the Petal and Sepal areas of the data set. This
is a two-dimensional projection of the four-dimensional data, but retains the separation
characteristics of the full data set.
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Figure 3.1: A diagram of the placement of the Gaussians' means for the Gaussian Circle
Models with k = 3 and k = 4.
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Figure 3.2: Iris data.
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There are only two clusters immediately apparent in the data set; however, the larger
cluster actually consists of samples from two di�erent species divided at a petal area of
around 8. Thus, in consideration of the data source k∗ is 3; however, taken out of context,
it could be argued that k∗ is in fact 2. We will see later (Section 3.3.2) what our measure
thinks.

3.2.3 Comparison Data

In order to facilitate a direct comparison of the e�ectiveness of the measure to other
measures in the literature (speci�cally the Gap Statistic of [11] and the Swiss Stability
method of [14]), we test the method on data sets on which the other methods have been
evaluated. These data sets are taken from [11, 14]. We consider the Three Cluster Model,
with three fairly well separated, but unbalanced Gaussian clusters; the Two Elongated
Clusters Model, with two balanced and well-separated clusters made up of points from two
lines with a small amount of noise added; and the Five Cluster Model, with �ve unbalanced,
but fairly well-separated clusters.

3.3 Results

3.3.1 Synthetic Data

In these experiments, we use synthetic data to explore the behaviour of the measure.

3.3.1.1 Parameter Reference

We give here a reference of the parameters of the experiments.

• k∗ is the number of components in the Gaussian mixture used to generate the data.

• ktest is the set of k values that are considered in the experiment. This set is, in a
sense, the a priori knowledge about the data.

• n is the number of data points sampled from the distribution.

• m is the number of partitionings sampled.

• s is the separation between the adjacent Gaussians' centers in the data distribution.

• i is the number of times each experiment was run. Numerous runs were used to get
better estimates of the probability of success.
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3.3.1.2 Finding Sources of Error

We wish to consider what factors might cause the measure to return an undesirable result.
Understanding this will better allow us to test the capabilities of the measure. If we assume,
for the moment that the correct number of clusters is de�ned as the number of components
in the MDMG model from which the data is sampled, as in the k�de�ning distributions,
we �nd that the possible sources of failure are:

• m � insu�cient samples for the chosen k and n.

• no parameter � measure (incorrectly) de�nes result other than k∗ on this data set.

• n � insu�cient data points to distinguish clusters.

• s � insu�cient separation to distinguish clusters.

As discussed in Section 1.4.5.5, the last two sources of error above are properties of the
data set itself, not the measure. Thus, in these cases, the de�nition of the correct number
of clusters as the number of components in the source distribution is, in fact, incorrect.
This is modeled with the error probability function of a k-de�ning distribution; however,
we are not able to actually �nd explicit values for these functions, so we wish to run an
experiment to explore some of these failures. The probability of success was plotted for
di�erent values of k∗ and n. Other parameters were �xed: m = 60, s = 3, i = 1000,
ktest = [k∗− 1, k∗ + 1]. The separation value was chosen such that the correct answer can
be extracted, but the problem is non-trivial.

Examining Figure 3.3, we can notice a few properties. Firstly, in the cases where k
is 3 or 4, we see a sharp increase in probability of success with n for the low values of
n. This suggests that, in the cases with small values of n, there were insu�cient data
points. We notice, thereafter, a general decrease in probability of success with n. This can
be explained by the fact that m was held constant (and relatively low) while n increased,
thus the number of samples became increasingly insu�cient. Further, greater values of
k∗ were progressively less successful, with k∗ = 5 failing completely. This can, again,
be explained due to insu�cient samples, as well as an increasingly di�cult problem, as
separation tolerance is reduced as k increases. We can notice that the lack of samples with
n causes a very gradual decrease in e�ectiveness, whereas, with k∗, the e�ect is dramatic.
With only 60 samples, the measure performed only moderately better than guessing for
k∗ = 4 and even worse for 5.

The question of how many samples are required for successful results leads us to our
next experiment.

3.3.1.3 Finding Number of Samples Required

In order to experiment further with the measure, it is useful to have some sense of how many
partitioning samples are necessary in order to obtain reliable results. Thus, we performed
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Figure 3.3: Experiment Results. Error bars are 95% con�dence intervals.

experiments to determine the number of samples required in order to obtain a 90% success
rate for a variety of data sets sampled from Gaussian Circle Models. In all experiments,
the �xed parameters were: i = 500 and ktest = [k∗−1, k∗+1]. The number of data points,
number of partitioning samples, true number of clusters, and separation were all varied.
The results are given in Figures 3.4, 3.5, and 3.6. We �nd that, independent of the number
of data points, the number of samples necessary increases dramatically both as the true
number of clusters increases and as the separation between them decreases. Generally, the
number of data points has less e�ect on the required number of samples. We �nd with a
very small number of data points, fewer samples are needed, but once the size of the data
set reaches approximately 5000, the number of samples necessary levels o�. We also �nd,
however, that for k = 5, the e�ect of larger numbers of data samples is more substantial.

In general, however, the di�culty of the problem (k∗ and s) has much more e�ect than
the number of data points on the required number of samples.

3.3.1.4 Finding Toleration for Separation

Here we explored the limits of how well separated clusters must be in order to be distin-
guished by the measure. We �xed n = 1000 × k∗, ktest = [k∗ − 1, k∗ + 1], and i = 500.
We then found how the probability of successful selection varies with the separation for
various values of m. We attempted to try increasing values of m until no more performance
bene�ts are found; however, especially in the case of k∗ = 5, it was not possible to explore
the entire potential due to computational limitations. It is possible that better results are
possible with larger values of m. See the results for 3 clusters in Figure 3.7, 4 clusters in
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Figure 3.4: Samples required for models with k = 3.
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Figure 3.6: Samples required for models with k = 5.

Figure 3.8, and 5 clusters in Figure 3.9.

We can see that the minimum required separation for reliable results increases approxi-
mately exponentially as the number of clusters increases; examining the data sets in Figures
3.10, 3.11, and 3.12, which show example data sets from the experiment which produce an
approximately 90% probability of success, we can see that for k = 3 the required separation
is very small; however, as k increases, the required separation increases. From a human
cognitive standpoint, the k∗ = 5 data set seem very easy to analyze; however, as in [23],
with larger numbers of clusters, the required separations for tractable analysis increases.

3.3.1.5 Finding E�ects of Mixed Separation

In previous experiments, there has been a fairly uniform separation between the compo-
nents' centers. Here we examine the e�ects of major discrepancies in the separations. To
do so, we use a MDMG model with four components arranged at the corners of a rectangle
like the one in Figure 3.13. In this data set the horizontal separation between the two pairs
of clusters is the `small' separation and the vertical separation is the `large' separation.

Depending on the speci�c values of separation, the value of k∗ might be justi�ably
claimed to be either 2 or 4. For various values of the smaller separation value , we plot the
probability of the measure choosing k = 2, varying the separation ratio (the value of the
larger separation as a factor of the smaller separation).

In Figure 3.14 we give the results, with m = 50, n = 200, i = 500, and ktest =
[2, 4] �xed. The experiment was run a second time with ktest{2, 4} in order to eliminate
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Figure 3.7: Separation tolerance for three cluster model. Error bars are 95% con�dence
intervals.
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Figure 3.11: Data Set with minimal separation allowing reliable analysis (k=4).
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Figure 3.13: Mixed Separation data (4 components) with spacings of 3.0 and 15.0.

interference from cases where k = 3 might be selected. The results of the two experiments
are almost identical, showing the the measure chose k = 3 only very infrequently.

As expected for very small separation ratios, the measure will tend to choose k = 2,
whereas for larger separation ratios the measure will tend towards k = 4. Also, unsurpris-
ingly, smaller values of the short separation will increase the tendency towards k = 2 as
the close clusters overlap more, eliminating the cluster structure. What is strange is the
behaviour when the small separation is equal to 1. The tendency towards k = 2 decreases;
based on the �ndings of Section 3.3.1.6 below, we hypothesize that, in this case, the sep-
aration is too small resulting in a loss of clustering structure. In this situation, as we will
see, the measure will develop a bias towards larger numbers of clusters.

3.3.1.6 Behaviour With Lack of Structure

Here we ask how the measure will behave on a data set without any clustering structure.
In this case k∗ = 1; however, the measure is unable to test this case. Section 4.2 dis-
cusses a possible enhancement that might allow this, but for now, we will test models
k = 2, 3, 4, and, 5. We tested two data sets, a single, unit covariance Gaussian, and a uni-
form distribution on a unit square. Fixed parameters are n = 200, i = 500, ktest = [2, 5]
. The number of partitionings sampled was varied. See Figure 3.16 for the results on the
Gaussian distribution and Figure 3.17 for the results on the uniform distribution.

We can see clearly, that in the absence of real clustering structure, the measure will
tend to select larger numbers of clusters.
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Figure 3.14: Mixed Separation results consider 2, 3, and 4 as possible k values. Error bars
are 95% con�dence intervals.
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Figure 3.15: Mixed Separation results consider 2 and 4 as possible k values. Error bars
are 95% con�dence intervals.
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Figure 3.16: Structure Free results on a Gaussian Error bars are 95% con�dence intervals.
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Figure 3.17: Structure free results on a uniform distribution. Error bars are 95% con�dence
intervals.
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3.3.1.7 Finding Bias of Mis-selection

As seen above, in the absence of structure, the measure is biased towards larger numbers of
clusters. It was also noted in the experiments of Section 3.3.1.4 that a similar bias existed
as the separation became too small. This is unsurprising, as with decreasing separation,
the model approaches the case of having no clustering structure.

It remains to ask if a bias exists in the cases where the data set is easily classi�able
in general, but an insu�cient number of samples are used. To test this case, we ran an
experiment on a Gaussian Circle Model with k∗ = 3, n = 3000, s = 6, i = 500, and
ktest = [2, 5]. This is a fairly easy problem to solve. Remarkably, even with only two
partitioning space samples, the minimum with which the measure can operate, the correct
model was still chosen in the majority of cases. The results were as follows:

k = 2 1.4% of cases

k = 3 58% of cases
k = 4 27.6%of cases
k = 5 13% of cases

Clearly, the bias of failure is towards larger values of k; however, even for such an easy
problem, it is very di�cult to cause failure.

3.3.1.8 E�ects of Uniqueness of Optimal Solution

In order to determine if the measure is e�ected by the presence or absence of a unique
optimal solution, we considered a data set consisting of 100 samples from a mixture of
two unit covariance Gaussians with a separation of 6, combined with a single data point
between the clusters was considered. In this case, the solution k∗ = 2 seems reasonable
but is in fact an unstable solution as discussed in Section 1.5.2. With �xed parameters
m = 50, n = 101, s = 6, i = 100, and ktest = [2, 6], the measure chose k = 2 for every
trial. Clearly the absence of a unique optimum is not an important factor for the measure.

3.3.1.9 E�ects of Unbalanced Clusters / Outliers

So far, our experiments have been exclusively on uniform mixtures, each cluster being
assigned a probabilistically equal proportion of the data points. Here we considered the
measure's behaviour on unbalanced clusters using a model with three clusters, one with
weight 1

3
, one with weight (α)2

3
, and one with weight (1−α)2

3
. The parameter α controlled

the degree of balance, with α = 0.5 being perfectly balanced and α ∈ 0, 1 being completely
unbalanced in either direction. We perform an experiment, varying α and examining the
probabilities of the measure choosing either k = 2, k = 3, or k = 4. The �xed parameters
are: k∗ = 3, n = 3000, m = 75, i = 500, and s = 4.5. The results are given in Figure 3.18.

It can be seen that, as expected, as long as the clusters are not extremely unbalanced,
the measure will choose k = 3. Once the clusters are su�ciently unbalanced, the small
cluster can be considered a set of outliers rather than a true cluster and the measure
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Figure 3.18: Unbalanced cluster results. Error bars are 95% con�dence intervals.

switches to k = 2. What is interesting, however, is that in the transition regime (around
α = 0.85), the measure will occasionally select k = 4.

3.3.1.10 E�ects of Di�erent-sized Clusters

In order to verify that di�erent cluster sizes (di�erent sizes obtained by setting covariance
matrix to scalar factor of identity matrix) will not interfere with the measure's operation,
experiments were run on a Gaussian Circle Model with three components, two of normal
size, and one with size varied from one tenth of normal size to twice normal size. The
measure performed as expected, �nding k = 3 in each case.

3.3.1.11 E�ect of Non-circular Clusters

As well as considering clusters of di�erent sizes, it is worthwhile to consider non-circular
clusters. For these experiments, a three�component Gaussian Circle Model was used. One

cluster was given a covariance matrix of

[
1 0
0 α

]
while the other two used the identity

matrix. For the �rst experiment, the �xed parameters were k∗ = 3, n = 2000, m = 75,
i = 500, and s = 4. The value of α was varied and the likelihood of each model was
plotted. See Figure 3.19 for the results and Figure 3.20 for an example data set from this
model with α = 4.

The results are surprising. When the clusters are all relatively circular, the measure
selects k = 3 as expected; however, as the one cluster becomes elongated, the measure
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Figure 3.19: Non-circular cluster results. Error bars are 95% con�dence intervals.
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Figure 3.20: Example data from Non-circular Cluster experiment.
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Figure 3.21: Non-circular cluster results with larger separation. Error bars are 95% con�-
dence intervals.

will switch to k = 2 with a short regime of k = 4 in the middle. It is possible that this
middle regime is another example of the boundary�condition confusion evidenced in the
experiments in Section 3.3.1.9. The choice of k = 2 is more di�cult to explain, however.
It could be argued that the two circular clusters look like one cluster in the context of the
elongated cluster. To explore this hypothesis, we repeated the experiments with greater
separation (6). The results are in Figure 3.21.

This time, the measure will tend towards k = 4 as the elongation of the cluster increases.
It appears it is choosing to divide the longer cluster into two clusters instead of merging
the two smaller clusters as in the previous case.

3.3.2 Iris Data

The results for this experiment are especially interesting, although di�cult to explain. As
discussed in Section 3.2.2, the data set could be argued to have either 2 or 3 clusters: 2
from visual examination, or 3 based on the context of the data. The measure was tested for
values of k ranging from 2 to 6 for 1000 iterations each with various numbers of samples.
The results are presented in Figure 3.22.

As can be seen in the �gure, the measure will select k = 2 as the correct model for
su�cient samples. This is the model that is correct based on observation of the data;
however, for smaller numbers of samples, the measure is more likely to select k = 3, the
model that is correct based on data context. It is important to note that this is not a
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Figure 3.22: Iris Experiment Results. Probabilities do not sum to one due to other models
considered. Error bars are 95% con�dence intervals.

statistical anomaly as the experiment is easily repeatable. The general bias towards larger
k values with smaller numbers of samples found in Section 3.3.1.7 is far too small to explain
this behaviour.

3.3.3 Comparison Data

The measure was tested for 50 trials on each of the three comparison data sets, the Three
Cluster Model [11], the Two Elongated Clusters Model [11] , and the Five Cluster Model
[14]. The results of these trials, as well as published results of trials for the comparison
methods discussed in Section 1.5, are summarized in Figure 3.1 below. �48/50 correct �
indicates that the given measure determined the correct k value in 48 out of 50 total trials.

• For the Three Cluster Model, I considered {2, 3, 4, 5} as possible k values and used
100 samples for the trials.

• For the Two Elongated Clusters Model, I considered {2, 3, 4} as possible k values
and used 10 samples for the trials.

• For the Five Cluster Model, I considered {3, 4, 5, 6} as possible k values and used
20 samples for the trials.

• For the results for the Gap Statistic on the Five Cluster Model, the paper did not
specify if the p.c. or uniform method was used. It is assumed that both methods
failed.
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Data Set Three Cluster Two Elongated Clusters Five Cluster
Correct k 3 2 5

Gap Statistic (p.c.) 48/50 correct 50/50 correct 0/1 correct*
Gap Statistic (unif.) 49/50 correct 0/50 correct 0/1 correct*

Stability 1/1 correct no result available 1/1 correct
Entropy 49/50 correct 50/50 correct 20/50 correct

Table 3.1: Comparison Data Results

3.3.4 Performance

To test the speed of the measure, we give the time required for a single iteration of each
of the limiting case experiments from Section 3.3.1.4. As a reference, the experiment
parameters are: n = 1000 × k∗, ktest = [k∗ − 1, k∗ + 1], and i = 500 (although resulting
times are divided by 500 to give result for a single run). The experiments were performed
using the Java implementation under Mac OS X, on a 2GHz Intel Core 2 Duo with 1GB
of RAM. A new data set was sampled for each iteration and these times include the data
sampling. It should also be noted that three di�erent models were evaluated for each
experiment, as ktest had three elements in each case. The results are as follows:

k∗ = 3, s = 3, m = 75 2.65 seconds per iteration with 94% probability of success

k∗ = 4, s = 4.5, m = 100 7.52 seconds per iteration with 94% probability of success
k∗ = 5, s = 8, m = 200 64.3 seconds per iteration with 87% probability of success

Note that these are di�cult cases, with large data sets, and many typical problems can
be reliably solved using fewer samples, allowing for substantially faster processing.

3.4 Summary and Interpretation of Results

The experiments show that the measure generally behaves as desired on the k-de�ning
distributions and typically agrees with human clustering. It is e�ective with a relatively
small number of samples for cases with up to 4 clusters, but begins to require excessive
samples (and, thus, computer time) for more clusters. In cases where there is no clustering
structure or in some borderline cases in which two possible solutions are balanced, the
measure will tend to show a bias towards larger numbers of clusters, but this occurs only
in limited cases.

The measure can handle outliers, variations in separation, variations in cluster size, and
non-unique optimal solutions robustly. Only in the case of non-circular clusters does some
strange behaviour begin to emerge.

3.4.1 Comparison of Methods

We compare our Entropy Method to stability based measures, represented by the Swiss
Stability Method and to cost versus k based measures, represented by the Gap Statistic
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and �nd the following:

• All three measures are scale invariant. We demonstrate the scale invariance of the
Entropy Method in Section 2.9.3 and the scale invariance of the other methods follows
easily along a similar argument.

• Both our Entropy Method and the Swiss Stability Method are capable of handling
multiple solutions; the Gap Statistic is not.

• All three methods perform well on samples of extremely well-separated mixtures of
Gaussians, which typically have perfect clusterings.

• The Entropy Method will perform well on most k�de�ning distributions, but some-
time behaves incorrectly with non-spherical clusters and cannot e�ciently handle
large numbers of clusters.

• The Swiss Stability Method will perform well on most k�de�ning distributions but
may behave incorrectly in certain situations where the presence or absence of a unique
optimal solution does not correspond with a correct model.

• The gap statistic will perform fairly well on many k�de�ning distributions, but is
not as reliable as the other methods. For example, in [11] it is shown that the gap
statistic will occasionally fail on a well-separated mixture of three Gaussians and in
[14] it is shown that it will fail on a well-separated mixture of 5 Gaussians.

• The Comparison Data results, summarized in Section 3.3.3, suggests that the Swiss
Stability Method is the most accurate, the Entropy Method is as e�ective in cases
with few clusters, but fails with large numbers of clusters, and the Gap Statistic is
the least e�ective.

In conclusion, the Gap Statistic is inferior in terms of both �exibility and correctness. Both
the newly proposed Entropy Method and the Swiss Stability Method are generally quite
e�ective; however, the Entropy Method will tend to fail with large numbers of clusters and
the Swiss Stability Method may fail in particular cases in which a correct model does not
correlate directly with a unique optimal solution. In practical terms, the limitation of the
Entropy Method is far more severe than that of the Swiss Stability Method.
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Chapter 4

Future Work

4.1 A More General Measure

The proposed measure has been shown to be e�ective at determining the correct value of k
for k�means clustering of a some data sets. There are numerous related problems to which
it should be possible to adapt the measure.

First of all, there are many forms of clustering other than k�means, such as path-
based clustering [9, 25] or texture-based clustering [26], which is often not formulated as
a clustering problem but easily can be. In principle, it should be possible to adapt the
measure to work with any form of clustering for which a cost function can be formulated.
Further, it should even be possible to select between di�erent forms of clustering; thus, a
data set can be evaluated as to whether it would best be clustered with k�means or with,
perhaps, a path�based clustering algorithm instead.

Also possible is the development of the clustering model selection measure into a general
clusterability measure. Presently, the measure can only be used to compare di�erent models
on a �xed data set; however, it should be possible to use the measure on various data sets
under a �xed model in order to assess their relative clusterability. Initial experiments
suggest that this is quite reasonable; however, it would be necessary to somehow normalize
certain properties of the data sets as, presently, certain properties have the e�ect of skewing
the measure undesirably.

4.2 A More Informative Measure

Presently, the measure will indicate which of the models under consideration best �ts the
data set. If the correct model is completely unknown, it can require the evaluation of
the measure on a large number of models to �nd the correct choice. However, as we saw
in Section 2.5, the behaviour of the Partitioning Value Distribution is di�erent when k
is underestimated as compared to when it is overestimated. If this distinction could be
detected algorithmically, the measure could provide an indication of whether the model
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under consideration has too many or too few partitions in it. Even with this information,
it might be necessary to examine a fairly large number of models; though, in typical cases,
this information would allow very rapid apprehension of the correct value of k.

Additionally, either a characterization of the Partitioning Value Distribution in the case
where the data has no clustering structure or a method similar to that used in the Gap
Statistic described in Section 1.5.1.1 might allow the measure to determine if a data set
has no clustering structure, i.e. k = 1.

4.3 A More Powerful Measure

As discussed in Section 2.6.1, only the costs of the sampled partitionings are used in
calculation of the measure. A substantial amount of information is thrown away in the
form of the partitionings themselves. Given a data set and model with numerous near-
optimal partitionings, there is a substantial di�erence between the case in which each of
these partitionings is quite distinct and the case in which they are all very similar, di�ering
only in the classi�cation of a few of data points.

It is possible that the incorporation of this additional information could make the
measure much more reliable. As well, it is possible that this information would be necessary
to properly generalize the measure as described in Section 4.1 above.

4.4 Understanding Partitionings

As discussed in Section 1.3.2.5, it is not possible to prove the correctness of the measure as
there is no objectively correct answer to the clustering model selection problem; however,
it may be possible to make the measure easier to justify. Presently, the sampling of a
�xed number of partitionings is perhaps the greatest weakness in the method's theoretical
appeal.

It would be desirable to �nd some sort of normalization on the number of partitionings
in a model so that it would be possible to use all possible partitionings in the measure.
This would provide a somewhat justi�able `true' value that smaller samplings could be an
approximation of.

Further, the sampling process could be better understood. The sampling method used
is somewhat arbitrary, and the measure is certainly sensitive to the particular sampling
method chosen. A better understanding of the sampling process could lead to an improved,
or at least more justi�able, measure. It is also possible that a better sampling process could
be found which might improve the performance of the measure.
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4.5 A Stronger Justi�cation

The measure has some very nice properties that could potentially make it a reasonable
candidate to de�ne the correct number of clusters in any given data set. The relationship
to entropy allows the measure to be interpreted as determining the actual degree of or-
deredness of a given data set under a given model, which gets right to the heart of the
structure that clustering searches for. However, the actual connection to entropy is some-
what tenuous. With further analysis, it might be possible to strengthen the justi�cation
of the measure, allowing it to be proposed as a `solution' to the k problem.
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Chapter 5

Conclusions

The problem of determining the number of clusters in a data set is highly ambiguous in
many cases and can be di�cult to solve even when there is a clear solution. Nonetheless,
the problem is important for the e�ective use of clustering in many �elds, and is also
important from a theoretical perspective, as a thorough understanding of how to determine
the number of clusters in a data set will necessarily provide a thorough understanding of
the structure that clustering is intended to uncover.

Past approaches to the problem have either relied on the rate of decrease of the cost
of the optimal solution as k increases, which overly simpli�es the problem, or relied on
stability, which in not a su�cient criterion. The measure described here provides a novel
approach based on the actual information content of the clustering structure, which pro-
vides a natural argument for the correctness of the measure; experiments showed the
measure, although not yet generally e�ective, has great promise.

With further development, the measure might be extended to be a much more general
measure of clusterability which could lead to a deeper understanding of what clustering
really is.
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Appendix A

Glossary

Terminology:

• The terms `cluster' and `partition' are used interchangeably and represent a subset
of a data set. In some cases `set' is also used as a synonym.

• The terms `clustering' and `partitioning' are used interchangeably and represent the
division of a data set into several non-intersecting clusters or partitions.

Mathematical Notation:

• x is a data point, generally a real-valued vector, x ∈ Rd.

• d is the dimensionality of the data.

• || · || is the Euclidean Distance.

• X is a set of data points, or a data set, X = {x1, x2, . . . , xn}.

• n is the cardinality of a data set n = |X|.

• 2X is the power set of a data set.

• X is the set of all possible data sets. The dependence on the domain is implicit.

• c is a partition of a data set, c ∈ 2X .

• c is the mean of a partition.

• C is a partitioning of a data set, C = {c1, c2, . . . , ck}.

• k is the number of clusters is a clustering or the cardinality of a partitioning, k = |C|.

• k∗(X) is the set of `correct' numbers of clusters in data set X.
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• P is a set of partitionings, P = {C1, C2, . . . , Cm}.

• m is the cardinality of a set of partitionings, m = |P|.

• R(C, k) is the cost of partitioning C under the k�means model. Note that the k
parameter is redundant but included for clarity.

• V (C, k) is the value of partitioning C under the k�means model. Note that the k
parameter is redundant but included for clarity.

• V is a set of partitioning values, V = {v1, v2, . . . , vm}.

• v is a partitioning value, v ∈ R.

• M(X, k) is the model selection measure for the k�means model on data set X.

• M(P) is the model selection measure for the k�means model on data set X, using
the set of partitionings P . Dependence on X and k is implicit through P .
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