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Abstract

We study several extremal problems in graphs and hypergraphs. The first one is

on list-colouring hypergraphs, which is a generalization of the ordinary colouring of

hypergraphs. We discuss two methods for determining the list-chromatic number

of hypergraphs. One method uses hypergraph polynomials, which invokes Alon’s

combinatorial nullstellensatz. This method usually requires computer power to

complete the calculations needed for even a modest-sized hypergraph. The other

method is elementary, and uses the idea of minimum improper colourings. We apply

these methods to various classes of hypergraphs, including the projective planes.

We focus on solving the list-colouring problem for Steiner triple systems (STS).

It is not hard using either method to determine that Steiner triple systems of orders

7, 9 and 13 are 3-list-chromatic. For systems of order 15, we show that they are

4-list-colourable, but they are also “almost” 3-list-colourable. For all Steiner triple

systems, we prove a couple of simple upper bounds on their list-chromatic numbers.

Also, unlike ordinary colouring where a 3-chromatic STS exists for each admissible

order, we prove using probabilistic methods that for every s, every STS of high

enough order is not s-list-colourable.

The second problem is on embedding nearly-spanning bounded-degree trees in

sparse graphs. We determine sufficient conditions based on expansion properties

for a sparse graph to embed every nearly-spanning tree of bounded degree. We

then apply this to random graphs, addressing a question of Alon, Krivelevich and

Sudakov, and determine a probability p where the random graph Gn,p asymptoti-

cally almost surely contains every tree of bounded degree. This p is nearly optimal

in terms of the maximum degree of the trees that we embed.

Finally, we solve a problem that arises from quantum computing, which can be

formulated as an extremal question about maximizing the size of a type of acyclic

directed graph.
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Chapter 1

Introduction

We study three different extremal problems for graphs and hypergraphs in this

thesis. The subject of extremal combinatorics contains many diverse topics, and

many different methods from various areas of mathematics have been successfully

applied to solve extremal problems. We will use several of these methods to tackle

the three problems that we solve here.

Generally speaking, extremal questions ask for the maximum or minimum of

certain parameters in a graph (or hypergraph) such that some properties hold, and

what kind of structure do such “extremal” examples have. One basic example is the

simplest form of Túran’s theorem, which asks for the maximum number of edges

that a graph on n vertices can have without having a triangle. The solution is the

complete bipartite graph where the two parts of the partition are equal or nearly

equal. We refer the readers to [12] for more information regarding extremal graph

theory.

The first problem that we look at concerns the list-colouring of hypergraphs.

In Chapters 2, 3 and 4, we use various methods such as algebraic, probabilistic,

computational and extremal techniques to determine or bound the list chromatic

number of many hypergraphs, focusing in particular on Steiner triple systems. We

also investigate the relationship between list-colouring hypergraphs and its “pre-

decessors” such as the list-colouring of graphs and the colouring of hypergraphs,

where we find many interesting similarities and differences between these topics.

For example, the greedy colouring result in graphs and the gap between ordinary

and list colouring of graphs both extend to hypergraphs. However, the fact that the

list chromatic number of graphs grows with their minimum degrees does not hold

1



for hypergraphs in general (see Section 4.1). When we look at hypergraphs that

come from combinatorial designs, we find that for designs of small size, their list

colourability tends to be close to their ordinary colourability. However, for large

designs, the two parameters can differ by a lot. So far, very little is known about

this topic in the literature.

In Chapter 5, we study properties of sparse graphs that embed all nearly-

spanning bounded-degree trees. We use probabilistic and graph theoretic ap-

proaches as main methods for solving this problem. In particular, we are interested

in parameters of sparse random graphs that would satisfy these properties asymp-

totically. Our improvements over known results are near optimal in terms of the

maximum degree of the trees.

Finally, in Chapter 6, we solve an extremal problem arising in quantum com-

puting by considering acyclic directed graphs.

1.1 Background

We begin by giving some basic definitions and background information that we will

use in this thesis.

Graphs and hypergraphs

A hypergraph H = (V,E) consists of a set of vertices V and a set of edges E

where each edge is a subset of V of size at least 2. For a positive integer r, H

is r-uniform if each edge is an r-subset of V . A 2-uniform hypergraph is called a

graph. The degree of a vertex v, denoted dH(v), is the number of edges in H that

contain v. We will give an illustration of the definition in Section 2.1. For more

background in graph theory, we refer the readers to [25].

Colouring and list-colouring

For a positive integer k, a hypergraph H is k-colourable if given a fixed set of k

colours, there exists an assignment to each vertex of one of the k colours such that

no edge is monochromatic. Such a colouring is called a proper colouring. We say

that H is k-chromatic if k is the smallest integer such that H is k-colourable. This

k is also called the chromatic number of H, denoted χ(H).

List-colouring is a generalization of colouring. A k-list-assignment L of H is

a function that maps each vertex of H to a set (called “list”) of k colours. An
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L-colouring is a colouring where each vertex receives a colour from its list in L.

Such a colouring is proper if there are no monochromatic edges. We say that

H is k-list-colourable (or k-choosable) if for every k-list-assignment L, there is a

proper L-colouring. The smallest k such that H is k-list-colourable is called the

list chromatic number (or choice number) of H, denoted χl(H).

Some block designs and hypergraphs

Most of the hypergraphs that we consider in this thesis come from combinatorial

design theory. In the most general form, a design is a pair (X,A) where X is a

set of elements called points, and A is a collection of subsets of X called blocks.

Essentially we can consider the points as vertices and the blocks as edges of a

hypergraph. We will use the terms vertices and points interchangeably, and also

with the terms edges and blocks. We refer the readers to Stinson [64] for the basic

information about designs that is presented here.

A broad class of designs is called Balanced Incomplete Block Design (BIBD).

For positive integers v, k, λ where v > k ≥ 2, a (v, k, λ)-BIBD is a design (X,A)

where |X| = v, every block contains exactly k points, and every pair of points is in

exactly λ blocks. Note that the number of blocks in such a BIBD is λ
(

v
2

)

/
(

k
2

)

.

A BIBD where the number of vertices equals the number of blocks is called a

symmetric BIBD. We will state the following result regarding symmetric BIBDs:

Theorem 1.1 (Ryser [61]). In a symmetric (v, k, λ)-BIBD, every pair of distinct

blocks intersect at exactly λ points.

For a positive integer n, a projective plane of order n is defined as an (n2 + n +

1, n+1, 1)-BIBD. Notice that the number of blocks in a projective plane of order n

is
(

n2+n+1
2

)

/
(

n+1
2

)

= n2 + n + 1, so it is a symmetric BIBD. On the other hand, any

symmetric BIBD with λ = 1 must be a projective plane, i.e. there exists an n that

satisfies the parameters of a projective plane. By Theorem 1.1, we know that each

pair of blocks must intersect at exactly one point. So far, only projective planes

whose orders are prime powers are known to exist. There is only one projective

plane of order 2, and it is called the Fano Plane. It has 7 points and 7 blocks, and

can be represented as Figure 1.1.

For an integer n, a Steiner triple system of order n, denoted STS(n), is an

(n, 3, 1)-BIBD. The number of blocks of an STS(n) is
(

n
2

)

/3 = n(n − 1)/6. A

necessary condition for the existence of an STS(n) is that n ≡ 1, 3 mod 6. Such
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Figure 1.1: The Fano Plane.

an n is called admissible for STS. Bose [15] constructed Steiner triple systems of

all orders n ≡ 3 mod 6, and Skolem [63] modified the construction for all orders

n ≡ 1 mod 6. Hence an STS(n) exists if and only if n is admissible. The smallest

non-trivial Steiner triple system is the Fano plane, which is a STS(7).

Random graphs

The random graph G(n, p) is a probability distribution on graphs with a fixed

set of n vertices where each possible edge exists randomly and independently with

probability p. In this model, each graph with m edges would occur with probability

pm(1 − p)n−m. We will talk about the random graph G(n, c/n) for some constant

c, so the probability that each edge exists is linear with respect to n−1, and it is

considered to be a sparse random graph. In this model, the expected number of

edges is c(n − 1)/2, and so the expected average degree of this random graph is

about c. Let P be a property that a graph on n vertices may or may not have,

e.g. the graph is k-colourable, or the graph is bipartite. Such a property P holds

asymptotically almost surely (a.a.s.) for G(n, p) if the probability that P is true

approaches 1 as n approaches infinity. For an introduction to random graphs and

probabilistic methods, see e.g. [42] and [7].
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1.2 List-Colouring Hypergraphs

Colouring is perhaps the most studied problem in graph theory. It simply asks

what is the minimum number of colours that is required to colour the vertices of a

graph so that adjacent vertices have different colours. The most famous problem

in this area is the four-colour conjecture that started in the 19th century. The

conjecture asks if every planar graph can be coloured using four colours. This

seemingly innocent problem was only solved in late 20th century, and the proof

involves very heavy computations done by a computer (see [59]).

The subject of list-colouring of graphs was introduced independently by Vizing

[67] and Erdős, Rubin and Taylor [30]. One important open problem in this area

is the following conjecture regarding line graphs, which was raised by Vizing and

others, and first appeared in print form in Bollobás and Harris [14]. (When G is

a graph, L(G) is the line graph of G, i.e. vertices in L(G) represent edges of G,

and vertices in L(G) are adjacent if and only if their corresponding edges in G are

adjacent.)

Conjecture 1.2 (The List Colouring Conjecture). For every graph G,

χ(L(G)) = χl(L(G)).

This is a somewhat surprising conjecture since the gap between χ(G) and χl(G)

can be arbitrarily large (Theorem 2.1 by Erdős, Rubin and Taylor [30]). So far, only

special cases of this conjecture have been proven, the most famous one being from

Galvin [36] who proved that the conjecture is true for all bipartite multigraphs.

Another interesting result is from Kahn [44], who proved that for hypergraphs of

bounded edge size, the list colouring conjecture is asymptotically true with respect

to the maximum degree (note that the line graph of a hypergraph is a graph).

There have been works on the list colourability of planar graphs, perhaps in-

spired by the Four-Colour Theorem. The proofs for the list-colourability results are

much simpler than the computationally-heavy proof of the Four-Colour Theorem.

Alon and Tarsi [8] first proved that bipartite planar graphs are 3-list-colourable.

Then Voigt [68] proved that not all planar graphs are 4-list-colourable, meaning

that there can be a gap between the chromatic and list-chromatic number of planar

graphs. But Thomassen [65] showed that this gap cannot be too large by proving

that every planar graph is 5-list-colourable.
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There are several surveys of fundamental works on list colouring, including Alon

[2], Tuza [66] and Kratochv́ıl, Tuza and Voigt [47]. The authors of [47] noted that

list coloring of hypergraphs is an area where very little is known. We list a couple of

results in this topic, both of which take results for colourings of graphs and extend

them to list colourings of hypergraphs: Benzaken, Gravier and Škrekovski [11] ex-

tended Hajós’ Theorem for constructing non-k-colourable graphs into hypergraphs

that are not k-list-colourable; and Kostochka, Stiebitz and Wirth [46] proved the

hypergraph list-colouring version of Brooks’ Theorem, which essentially says that if

a hypergraph H has at least two edges and each edge has size at least 3, then χl(H)

is at most the maximum degree ∆. Note that in Section 2.1.2, as background, we

will give a weaker (but easier) result that χl(H) ≤ ∆ + 1, which is an extension of

the greedy colouring scheme for graphs.

In terms of colouring of designs, Jensen and Toft [43] listed several problems

involving the colouring of designs, including projective planes and some triple sys-

tems. For triple systems, a survey of results regarding the chromatic number can

be found in Colbourn and Rosa [19]. Steiner triple systems seem to have gained

special attention. Results include early ones like Erdős and Hajnal [28], who proved

that for any k ≥ 2, there exist k-chromatic partial Steiner triple systems (triple

systems where each pair of elements appears at most once). In a more recent paper,

de Brandes, Phelps and Rödl [24] used probabilistic methods to show that Steiner

triple systems can have arbitrarily large chromatic number. Colbourn and Rosa

[19] noted that the colourings of designs is one of the few subjects in triple systems

where probabilistic methods have effective applications.

Colouring smaller Steiner triple systems also gained some attention, and we

now know that the chromatic number of these systems can fall into a small range

of numbers. For example, Mathon, Phelps and Rosa [50] showed that all Steiner

triple systems of size between 7 and 15 are 3-chromatic by providing a list of all

such systems. Using elementary methods and detailed case analysis on the structure

of subsystems of Steiner triple systems, Horak [41] proved that all Steiner triple

systems with at most 25 points are 4-colourable. Since all nontrivial Steiner triple

systems have chromatic number at least 3, we know that the chromatic numbers of

these small systems are either 3 or 4.

The goal of the first half of this thesis is to merge these two subjects and attempt

to solve list-colouring problems for some of the most common designs. So far, very

little is known about this topic in the literature, save for an example of the Fano
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plane in Ramamurthi and West [55]. In Chapter 2, we will present two methods

for solving list-colouring problems. One is through hypergraph polynomials, which

uses a deep result by Alon [3] known as combinatorial nullstellensatz. Using this

method, we often resort to computers to do the heavy computations required to

solve the problem. The other is through elementary methods by manipulating

objects that we call minimum improper colourings (MICs). We solve the problem

for all symmetric BIBDs (which include projective planes) as illustrations for both

methods.

We then move the focus to solving the list-colouring problem for Steiner triple

systems. We deal with small STS in Chapter 3. In particular, we show that Steiner

triple systems of orders 9 and 13 have list-chromatic number 3, which matches

their chromatic numbers. For systems of order 15, we first show that they are all

4-list-colourable, and then use both methods to show that they are “almost” 3-

list-colourable. In Chapter 4, we prove several general bounds of the list-chromatic

numbers for all STS. We will use probabilistic methods to show that, unlike the

chromatic number, the list-chromatic number of STSs will grow as the order of the

STS increases. We will prove an upper bound on the lowest possible list-chromatic

number for all STSs of order n, which is around log n. These results imply various

bounds on other parameters regarding the list chromatic number of STSs.

1.3 Tree Embeddings

The most well-known conjecture from this area is the Erdős-Sós conjecture from

1963 [27].

Conjecture 1.3 (Erdős-Sós [27]). Let T be a tree with d edges, and let G be a

graph with average degree greater than d − 1. Then G contains T as a subgraph.

Ajtai, Komlós, Simonovits and Szemerédi have an unpublished proof that the

conjecture is true for sufficiently large d using difficult methods. Special cases of

this conjecture have been proven using elementary methods, e.g. McLennan [51]

showed that the conjecture is true when the tree has diameter at most 4; Brandt

and Dobson [16] proved the special case when the graph has girth 5, which Saclé

and Wozniak [62] later improved by only requiring the graph to be C4-free, and

Haxell [39] improved it further by only requiring the graph to contain no K2,r
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where r = ⌊t/18⌋; Yin and Li [70] proved the case when the complement of the

graph is C4-free, and Dobson [26] proved the case when the complement of the

graph does not contain K2,4.

A fundamental result in the area of tree embeddings is from Friedman and

Pippenger [34], who gave a sufficient condition based on expansion properties for a

graph to contain all small trees (Theorem 5.5). Suppose that NG(X) denotes the

set of neighbours of a subset of vertices X in G. Friedman and Pippenger proved

that if |NG(X)| ≥ (d+1)|X| whenever |X| ≤ 2n−2, then the graph G contains any

tree on at most n vertices and maximum degree at most d. The expansion factor

can be improved using a theorem by Haxell [39] (Theorem 5.6), implying that the

same statement holds if |NG(X)| ≥ 3d|X| whenever |X| ≤ n/d + 1 (Corollary 5.7).

The problem of embedding “large” trees was mostly studied with embedding

long paths in random graphs (maximum degree 2 for the problem). Erdős con-

jectured that G(n, c/n) contains a path of length at least (1 − α(c))n a.a.s. where

0 < α(c) < 1 for all c > 1, and α(c) approaches 0 as c approaches infinity. This

was proved by Ajtal, Komlós and Szemerédi [1] and Fernandez de la Vega [31].

Bollobás [13] improved this result by showing that α(c) decreases exponentially as

c increases. Frieze [35] settled the question by proving that α(c) = (1 + o(1))ce−c.

This implies that the random graph G(n, c/n) contains a nearly-spanning path when

c = O(log(1/ε)).

In terms of embedding large trees other than paths, Fernandez de la Vega [32]

showed that for a fixed tree Tn on n vertices with maximum degree d+1, there are

constants C1, C2 with N = C1n such that G(N,C2d/N) a.a.s. contains Tn. In fact,

this was proved with the constants C1 = C2 = 8, and the author noted that the

proof works when C2 is arbitrarily close to 1 (but not exactly one) as long as C1 and

d are sufficiently large. (To rephrase this, it means that G(n, 8d/n) a.a.s. embeds a

tree on (1 − 7/8)n vertices with maximum degree d + 1.) Note, however, that this

result embeds only one fixed tree in the random graph. The results that we give in

Chapter 5 embed all trees of maximum degree d.

One application of the tree embedding problem is in the study of fault tolerant

linear arrays, which was raised by Rosenberg [60] and was studied by Alon and

Chung [5]. The problem here is to find the minimum number of vertices and edges

of a graph such that after removing all but ε portion of vertices or edges, the

remaining graph still contains a path of length m. A natural extension of this is

to replace the requirement of a path of length m by all trees of maximum degree d
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and size m. This problem is also related to the size-Ramsey number (see e.g. [5],

[40]), which asks for the least number of edges in a graph with the property that

any two-colouring of the edges yields a monochromatic copy of a certain graph (in

this case, a tree).

Our focus in this thesis is on a problem raised by Alon, Krivelevich and Sudakov

[6]. They have proved that given a positive ε < 1/2 and a positive integer d, the

random graph G(n, c/n) contains every tree on (1 − ε)n vertices with maximum

degree d when

c = O

(

d3 log d log2(2/ε)

ε

)

.

They asked the question of what is the best possible order for c, given that a result

in [35] implies that the order for c cannot be smaller than O(d log(1/ε)). In Chapter

5, we improve the results in [6] and prove that

c = O

(

d log d log2(2/ε)

ε

)

is sufficient. In terms of the parameter d, this is only log d away from being best

possible. Improving the dependence on ε remains an interesting open problem.

1.4 Quantum Computing

In a quantum computer, the basic unit of information is stored as a “qubit,” which

is analogous to a “bit” in a classical computer. The bit and the qubit are quite

different, however. A bit can store either a one or a zero, but a qubit occupies

states describable as a linear combination of possible outcomes (perhaps a one or a

zero). We may think of it as a “probability vector,” which is a linear combination of

mutually orthogonal vectors (one for each possible outcome), where the coefficient

of each vector is complex. The state of a qubit cannot simply be read off like a

bit, instead they need to be measured. The norm of the coefficients constitute the

probability that such a state is the result of a measurement. One major problem

with quantum computing is that any interaction with the outside world such as a

measurement could turn a “coherent” state into a “decoherent” state, so sometimes

error correction is needed. Another special property in quantum computing is in

entanglement, where operations can be performed simultaneously on qubits that

are separated at a physical distance. We refer the readers to [52] for more specific

information related to quantum computing.
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In Chapter 6, we will solve an extremal problem based on the one-way measure-

ment model of quantum computing. Flow systems in this model may be described

as graphs. We describe a transformation from these graphs into directed graphs,

and those graphs that transform into acyclic directed graphs have “good” proper-

ties for the quantum problem. Determining the maximum size of “good” graphs

would simplify the analysis of an algorithm for determining if a flow system is good.

We do not assume any background on quantum computing for the readers (nor the

author of this thesis), and the extremal problem itself can be seen as a strictly

graph theoretical result.

Note: Sections 4.1 and 4.2 represent joint work with Penny Haxell. The content

of Chapter 6 represents joint work with Niel de Beaudrap, and has appeared in

[23].
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Chapter 2

List-Colouring Hypergraphs

In this chapter, we will introduce a couple of techniques for determining the list-

colourability of hypergraphs, and use them to determine the list chromatic number

of several classes of hypergraphs. These are the tools that we will use extensively in

Chapters 3 and 4 in solving the problem for Steiner triple systems. The structure

of this chapter is as follows: First, in Section 2.1, we will give a couple of basic

results that extend the standard results in list-colouring graphs. As symmetric

BIBDs and projective planes are the key examples in this chapter, we will give

known results about their colourability in Section 2.2. We will then consider two

techniques in solving list-colouring problems. The first technique is in Section

2.3, where we will present a generalization of hypergraph polynomials that were

introduced by Ramamurthi and West [55] that is computationally easier to work

with (Theorem 2.6), and use it to determine the list chromatic number of some small

hypergraphs through computations done by a computer. The second technique is

introduced in Section 2.4, and it uses elementary methods to handle objects that we

called Minimal Improper Colourings (MICs). We can use this method to determine

exactly the list chromatic number of all symmetric BIBDs, and in particular all

projective planes (Section 2.4.2), extending a result of Ramamurthi and West [55].

2.1 Background

We first give an example that illustrates the definition of list colouring and list

chromatic number. Consider the Fano plane with the lists of size 2 as assigned in

11



{1,3}{1,2}

{1,3}

{1,2}

{2,3}

{2,3}

{1,3} {1,2}{1,2}

{1,2}

{1,2}

{1,2}

{1,2}

{1,2}

Figure 2.1: Using the Fano plane to illustrate the definition of list colouring.

the left part of Figure 2.1. The highlighted colours represent a proper colouring of

the Fano plane from these lists. A different 2-list-assignment is given in the right

part of Figure 2.1. It is not difficult to see that it is impossible to properly colour

the Fano plane from these lists. Therefore, we conclude here that the Fano plane

is not 2-list-colourable.

For the remainder of the section, we will first consider how much difference

there can be between ordinary colouring and list colouring in the hypergraph case.

Then we will give a simple greedy upper bound that “carries over” from the graph

colouring case.

2.1.1 The Gap Between χ(H) and χl(H)

Note that χl(H) ≥ χ(H) for all H: Let k = χl(H), and give a list-assignment L to

H where each vertex receives the same list of k colours. Since H is k-list-colourable,

there exists a proper L-colouring. Since L only assigns k different colours to the

lists, this is also a proper k-colouring. Hence, χ(H) ≤ k = χl(H). The gap between

χl(H) and χ(H) can be arbitrarily large, however, as we will show in this section.

The standard examples for graphs whose discrepancy between the chromatic

number and list chromatic number is large were given by Erdős, Rubin and Taylor

[30]:

Theorem 2.1 (Erdős, Rubin and Taylor [30]). Let k ≥ 3 be an integer. Then the

complete bipartite graph Km,m where m =
(

2k−1
k

)

is not k-list-colourable.

12



Here, the list-assignment used to achieve this theorem is one where the m ver-

tices in each part of the bipartition receive all possible k-subsets of a (2k − 1)-set.

We now prove a generalization of this result for r-uniform hypergraphs.

Theorem 2.2. Let r ≥ 3 and k ≥ 3 be integers. Then there exists a 2-colourable

r-uniform hypergraph that is not k-list-colourable.

Proof. Let m =
(

rk−(r−1)
k

)

. We define a complete r-partite r-uniform hypergraph

Hr,k where the vertices of Hr,k consist of r disjoint sets V1, . . . , Vr of m vertices each,

and the edges are all possible r-subsets {(v1, . . . , vr) : vi ∈ Vi, i = 1, . . . , r}. Note

that this is 2-colourable by colouring V1 with one colour and the remaining vertices

with another colour. To show that Hr,k is not k-list-colourable, we give the list

assignment L where for each Vi, all possible k-subsets of a fixed (rk − (r − 1))-set

(the “colours”) appear as lists for the vertices. Let c be any L-colouring. Let Ci be

the set of colours given to vertices in Vi by c, and let D =
∑r

i=1 |Ci|. Then for all

i, |Ci| ≥ rk− (r− 1)− (k− 1), for otherwise a vertex in Vi with k of the remaining

colours as its list would contribute one more colour to Ci. So

D ≥ r(rk − (r − 1) − (k − 1)) = r2k − r2 + 2r − rk.

If every colour is in at most r − 1 of the Ci’s, then

D ≤ (rk − (r − 1))(r − 1) = r2k − r2 + 2r − rk − 1,

which is a contradiction. Therefore, there exists at least one colour that appears in

all Ci, and the edge containing a vertex with this colour from each Vi is monochro-

matic. Hence no L-colouring is proper, and Hr,k is not k-list-colourable.

2.1.2 Greedy Upper Bound

A graph is d-degenerate if every subgraph has a vertex of degree at most d. It

is well-known that the chromatic number of a graph that is d-degenerate is at

most d + 1 (see e.g. [69]). The case for list-colouring hypergraphs is the same: A

hypergraph is d-degenerate if every subhypergraph has a vertex of degree at most

d; and d + 1 is an upper bound for the list-chromatic number of a d-degenerate

hypergraph. Note that if a hypergraph has maximum degree d, it is d-degenerate.

For completeness, we will prove this result.

13



Lemma 2.3. Let H be a d-degenerate hypergraph. Then χl(H) ≤ d + 1.

Proof. Suppose H has n vertices. Let L be any (d+1)-list-assignment for H. Order

the vertices of H (backwards) as follows: Let vn be a vertex of minimum degree in

H (which must be no more than d). Suppose we have ordered vi+1, . . . , vn. Then

we pick vi to be a vertex of minimum degree in the subhypergraph Hi induced by

V (H) \ {vi+1, . . . , vn}. Note that vi has degree at most d in Hi. Now we attempt

to L-colour H. Start by picking any colour for v1 from L(v1). We wish to colour

the vertices in order so that each edge that is fully coloured is not monochromatic.

Suppose we have coloured v1, . . . , vi−1. Consider the edges Ei in the subhypergraph

Hi (which is the same as the subhypergraph induced by v1, . . . , vi) containing vi.

Because of the way we ordered the vertices, |Ei| ≤ d. For each of these edges, all

vertices but vi are coloured. Any edge in Ei that is not monochromatic among

vertices other than vi is already properly coloured regardless of which colour we

give to vi. So we only need to consider edges E ′
i in Ei that are monochromatic

without vi. Since |E ′
i| ≤ d, there is at least one colour in L(vi) (which has size

d + 1) that is distinct from the colours of each edge in E ′
i without vi. We give that

colour to vi, and we have properly coloured all edges in E ′
i. When we have coloured

all the vertices, we would have a proper L-colouring. Hence χl(H) ≤ d + 1.

2.2 Colouring Symmetric BIBDs

We start with a result that is recorded in Jensen and Toft [43]:

Lemma 2.4. A projective plane of order n ≥ 3 is 2-colourable.

We note that such a 2-colouring may be produced by finding three edges that do

not share a vertex, then assign a colour to the set of vertices that appear in these

three edges exactly once, and assign the remaining vertices with another colour.

Recall from Section 1.1 that the Fano plane is a projective plane of order 2. It

is easy to see that the Fano is 3-colourable, but not 2-colourable. Later in Lemma

2.13, we will give a short proof which shows that symmetric BIBDs with λ ≥ 2

have list chromatic number 2, which implies that they have chromatic number 2.

Combining with Lemma 2.4, we see that every symmetric BIBD except the Fano

plane has chromatic number 2.
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In Section 2.4, we will show that for all symmetric BIBDs and projective planes,

the chromatic number equals the list chromatic number.

2.3 Hypergraph Polynomials

We introduce the first of two techniques in approaching list-colouring hypergraphs

in this section. We will begin with a description of graph polynomials, and see

how Ramamurthi and West [55] extend them to hypergraph polynomials. We will

discuss the advantages and disadvantages of their method, and derive our own way

of creating hypergraph polynomials. These polynomials are potentially easier to

deal with. We will see how these polynomials help with list colouring, and finally

we utilize these tools and the computer to determine the list chromatic number of

several hypergraphs.

2.3.1 Graph Polynomials and List Colouring

For a graph G with n vertices and m edges, let the vertices be v1, v2, . . . , vn. Each

vertex vi has a corresponding vertex variable xi. The graph polynomial of G is

fG(x1, . . . , xn) =
∏{(xi − xj) : i < j, vivj ∈ E(G)}. Suppose that each vertex

variable xi is assigned a value ai. If we consider each ai as the “colour” of vertex

vi, then the colouring is proper if and only if fG(a1, . . . , an) 6= 0. This is because

for any edge vivj ∈ E(G), xi − xj = 0 if and only if xi = xj, i.e. vi and vj have

been assigned the same colour. Notice that when this polynomial is expanded, each

monomial has total degree m, the number of edges in the graph. Consider one such

monomial M = xd1

1 xd2

2 · · ·xdn
n (where

∑n
i=1 di = m), and suppose that each vertex

vi is given a list L(vi) of at least di + 1 colours. Through algebraic methods, Alon

and Tarsi [8] proved that if the coefficient of M in fG(x1, . . . , xn) is not zero, then

there is a proper L-colouring of G. In particular, if d = max{di : i = 1, . . . , n},
then χl(G) ≤ d + 1.

Alon later generalized the algebraic result in [8] as an application of his theorems

on “combinatorial nullstellensatz,” which is based on Hilbert’s nullstellensatz:

Theorem 2.5 (Alon [3]). Let F be any field, and let f be a polynomial in F[x1, . . . , xn]

with total degree
∑n

i=1 ti where each ti is a nonnegative integer. If the coefficient of
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the monomial
∏n

i=1 xti
i is nonzero and S1, . . . , Sn are subsets of F with |Si| > ti for

all i, then there are elements s1, . . . , sn where si ∈ Si such that f(s1, . . . , sn) 6= 0.

For the remainder of this section, we will use the field of rational numbers Q

whenever we apply this theorem. But for simplicity, the “colours” that we consider

in sets like S1, . . . , Sn in the theorem will be integers.

In addition to the list colouring application, Alon and Tarsi [8] found a com-

binatorial interpretation for the coefficients of monomials in fG. Consider any

orientation D of G. A subgraph of D is called Eulerian if for each vertex, the

in-degree equals the out-degree (connectivity of the subgraph is not a factor). Such

a subgraph is even or odd if it has an even or odd number of edges respectively.

Consider the monomial M as above, and let D be an orientation of G where vi is

the source of an edge di times. Then the absolute value of the coefficient of M in

fG(x1, . . . , xn) equals the absolute difference between the number of even Eulerian

subgraphs and the number of odd Eulerian subgraphs in D. In particular, this

means that if the number of even Eulerian subgraphs is different from the number

of odd Eulerian subgraphs in D, then the coefficient of M is not zero, hence G has a

proper list colouring when each vertex vi is given a list of di +1 colours. Using this

interpretation, Alon and Tarsi [8] proved that all planar bipartite graphs are 3-list-

colourable. Fleischner and Stiebitz [33] used this to prove the cycle-plus-triangles

problem, which is that a graph on 3n vertices that consists of a cycle of length 3n

and n pairwise disjoint triangles is 3-list-colourable.

2.3.2 Extending to Hypergraph Polynomials

For some prime number r, given an r-uniform hypergraph H with n vertices

v1, . . . , vn, Ramamurthi and West [55] extended the idea of a graph polynomial to

a hypergraph polynomial fH(x1, . . . , xn) in the following way: Let θ be a prim-

itive r-th root of unity, and let v1, . . . , vn be an ordering of the vertices. For

each edge e = {vi0 , . . . , vir−1
} where i0 < i1 < · · · < ir−1, create a polynomial

pe = xi0 + θxi1 + · · ·+ θr−1xir−1
where i0 < i1 < · · · < ir−1. Then fH =

∏

e∈E(H) pe.

As in the case for graphs, we can think of the values of x1, . . . , xn, say they are

a1, . . . , an respectively, as the colours for v1, . . . , vn. In order to use Theorem 2.5

and link this hypergraph polynomial to list colouring, we need to ensure that if

fH(a1, . . . , an) 6= 0, then the colouring c where c(vi) = ai is a proper colouring of H:
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If c is not a proper colouring, then there exists some edge e and some colour a such

that c(v) = a for all v ∈ e. But then pe(a1, . . . , an) = a · (1+θ+ θ2 + · · ·+ θr−1) = 0

since a property of θ is that 1+θ+θ2+· · ·+θr−1 = 0. Therefore, fH(a1, . . . , an) = 0.

In the discussion above, the only property of the roots of unity that we have

used is the fact that 1+θ+θ2+· · ·+θr−1 = 0. We may generalize this as follows: For

each edge e, suppose the factor that it contributes to the hypergraph polynomial fH

is pe = c0xi0 +· · ·+cr−1xir−1
for some constants c0, . . . , cr−1 where c0+· · ·+cr−1 = 0

(in fact, these constants can change among different edges, as long as they add up

to 0). Then the resulting hypergraph polynomial still satisfies the property that if

fH(a1, . . . , an) 6= 0, then the colouring c where c(vi) = ai is a proper colouring of

H. Combining this and Theorem 2.5, we get the following result.

Theorem 2.6. Let H = (V,E) be an r-uniform hypergraph where the vertices

are v1, v2, . . . , vn. For each e ∈ E where e = {vi0 , vi1 , . . . , vir−1
}, define a polyno-

mial pe = c0xi0 + c1xi1 + · · · + cr−1xir−1
for some numbers c0, c1, . . . , cr−1 (which

are not necessarily the same for all edges), where c0 + c1 + · · · + cr−1 = 0. Let

fH(x1, . . . , xn) =
∏

e∈E pe. Suppose that d1, . . . , dn are constants such that
∑n

i=1 di =

|E(H)|, and d = max{di : i = 1, . . . , n}. If the coefficient of
∏n

i=1 xdi

i in fH(x1, . . . , xn)

is not zero, then χl(H) ≤ d + 1.

We now briefly describe how one can apply this theorem. Any hypergraph

polynomial fH(x1, . . . , xn) is homogeneous with degree |E(H)|. Each monomial

can be obtained by taking one term (which represents a vertex) from each pe, so

it is natural to define an orientation of the hypergraph as setting one vertex from

each edge as its source vertex. Suppose a monomial M is of the form
∏n

i=1 xdi

i .

Then the powers di of xi form a degree sequence d1, . . . , dn. Each orientation where

each vertex vi is selected as source di times contributes a coefficient to M . So to

compute the coefficients of M , we need to consider all possible orientations that

have degree sequence d1, . . . , dn and sum up all the contributions.

One advantage of the hypergraph polynomial defined by Ramamurthi and West

is that there is a combinatorial interpretation for the coefficients of the monomials

called “balanced partitions” (which we will not describe here) that is a general-

ization of the interpretation for graph polynomials. So there is a possibility for

combinatorial proofs of hypergraph list colouring results, potentially creating re-

sults similar to the applications of Alon and Tarsi. However, this interpretation is
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more complicated for hypergraphs, it requires that r be a prime number, and it is

computationally more difficult to apply in general.

There are two applications using balanced partitions given in the paper by

Ramamurthi and West [55]. One is for the Fano plane, which we will illustrate using

Theorem 2.6 in Section 2.3.3. The other application is for a family of k-uniform

hypergraphs with girth g and chromatic number i constructed by Kostochka and

Nešetřil [45]. In this application, the authors chose a degree sequence where there

is only one possible orientation that contributes to the monomial associated with

that sequence. Therefore, in essence, any hypergraph polynomial that we define

can be used to prove this result (as long as the coefficient of the source variable in

the polynomial is nonzero in each edge).

Theorem 2.6 makes it possible to consider polynomials that are simpler to deal

with computationally, even though they do not have any (obvious) combinatorial

interpretations. For example, in the 3-uniform case, we may set ep = xi0 +xi1 −2xi2

for each edge e = {vi0 , vi1 , vi2}. Or in the 4-uniform case (which is not defined for

the hypergraph polynomials of Ramamurthi and West), we may set ep = xi0 −xi1 +

xi2 − xi3 for each edge e = {vi0 , vi1 , vi2 , vi3}.

We note that there is a limitation as to what we can prove using any hypergraph

polynomials in terms of list chromatic numbers. Since each monomial in a hyper-

graph polynomial has total degree |E(H)|, the average degree for a variable within

any monomial is |E(H)|/|V (H)|. So within each monomial, there must be a vari-

able of degree at least ⌈|E(H)|/|V (H)|⌉. Therefore, using the polynomial method,

we can only prove statements of the form χl(H) ≤ k for k ≥ ⌈|E(H)|/|V (H)|⌉+ 1.

Anything lower than this will require us to use a different method of proof.

We will use the Fano plane as a small example of how to apply Theorem 2.6

in the next subsection, and present some computational results in the remaining

subsections.

2.3.3 Example: Fano Plane

We now give an example showing that the Fano Plane is 3-list-colourable using the

polynomial method. In [55], Ramamurthi and West used the Fano Plane as their

example in illustrating the technique of balanced partitions. Here we give a poly-

nomial argument for the same result. We label the 7 vertices as {1, 2, 3, 4, 5, 6, 7},
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and the edges are

{124, 235, 136, 157, 267, 347, 456}.

See Figure 1.1 for reference. We define a hypergraph polynomial associated with

the Fano Plane as follows:

f(x1, x2, x3, x4, x5, x6, x7) =(x1 + x2 − 2x4)(x2 + x3 − 2x5)(x1 + x3 − 2x6)·
(x1 + x5 − 2x7)(x2 + x6 − 2x7)(x3 + x4 − 2x7)·
(x4 + x5 − 2x6).

Notice that the coefficients within each factor are 1, 1,−2, which sum to 0. Consider

the monomial x2
1x

2
2x

2
3x4. We wish to determine whether the coefficient of this

monomial in f is zero or not. To do this, we look at all orientations with the degree

sequence 2, 2, 2, 1, 0, 0, 0. For the edge 456, it must be the case that its source is

4, since vertices 5 and 6 have 0 in the degree sequence and cannot be chosen as

sources. For the edges 157, 267 and 347, it must be the case that their sources

are 1, 2 and 3 respectively. For the remaining three edges 124, 235 and 137, there

are exactly two ways to orient them so that 1, 2 and 3 become the source exactly

once: either with 1, 2 and 3 as sources respectively, or with 2, 3 and 1 as sources

respectively. Notice that in all cases, the coefficient for the sources in f is always 1.

Since there are two possible orientations with the degree sequence 2, 2, 2, 1, 0, 0, 0

and both contribute a coefficient of 1 to the monomial x2
1x

2
2x

2
3x4, we conclude that

this monomial has coefficient 2 in f . Therefore, using Theorem 2.6, the Fano Plane

is 3-list-colourable. Note that Lemma 3.1 implies that the Fano Plane is not 2-

colourable, so it is not 2-list-colourable, hence its list chromatic number is in fact

3.

2.3.4 Computations with Hypergraph Polynomials

As the hypergraph grows, the hypergraph polynomial grows as well, and it becomes

difficult to compute the coefficients by hand. So we turn to mathematical software

such as Maple for help with the computations.

Before we get into the results for the computations, we first discuss some basic

aspects of computational and complexity issues for colourings in general. Suppose

we are given a hypergraph (or graph) H with n vertices and m edges. To prove

that H is k-colourable, it is sufficient to present an actual colouring as a certificate
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to its k-colourability, and it is easy to check that such a colouring is proper (just

go through each edge and make sure it is not monochromatic, and check that at

most k colours are used). On the other hand, to prove that H is k-list-colourable,

there is no obvious certificate for it. One could potentially use a brute force al-

gorithm and create all possible k-list-assignments for vertices in H and check that

each assignment has a proper colouring. However, the number of choices of list

assignments is extremely large. For our hypergraph H, each assignment could use

up to nk distinct colours, which we can map to a fixed set of nk colours. Then

there are up to
(

nk
k

)n
configurations for the list assignments. In addition, given a list

assignment, determining whether this assignment has a proper colouring or not is

an NP-Complete problem in most cases. In fact, the problem is NP-Complete even

for 3-uniform hypergraphs where all the lists are the same and have size two (see,

e.g. [37]). Note that this is not true for graphs, since it is equivalent to determining

if a graph is bipartite, and there are polynomial algorithms to solve this problem.

If we use brute force to check if a list assignment has a proper colouring, this would

take knm steps (there are kn possible colourings from each list, and for each colour-

ing, we need to check that each of the m edges is not monochromatic). This gives

a worst case running time of
(

nk
k

)n
knm to determine whether H is k-list-colourable

or not.

This is where hypergraph polynomials are very helpful. By calculating the

coefficient of a certain monomial in the polynomial and determining that it is

nonzero, we have concrete evidence of the list-colourability of the hypergraph using

Theorem 2.6. For a given hypergraph polynomial, one could at worst perform km

multiplications to expand the polynomial and get the value of the desired coefficient,

which is a lot better than the brute force algorithm described above. However, there

are a couple of drawbacks. First, one needs to track the coefficients of an exponential

number of monomials during the calculation. So in using the polynomial method,

we could be very limited by the space constraint. Also, we gain no information if

we find that the coefficient of a desired monomial is 0. We could use a different

polynomial, but there are infinitely many polynomials to choose from. Even if the

coefficient of the same monomial is 0 in every such polynomial, we still cannot

conclude anything. In essence, the polynomial method cannot be used to prove

that a hypergraph is not k-list-colourable. However, if we can use the method to

produce a positive result (i.e. the coefficient of a desired monomial is nonzero), it

would have been done in a more efficient way than using brute force. So there is an
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i 1 4 7 1 2 3 1 2 3 3 2 1 10

j 2 5 8 5 6 4 4 5 6 5 4 6 11

k 3 6 9 9 7 8 7 8 9 7 9 8 12

l 10 10 10 11 11 11 12 12 12 13 13 13 13

Table 2.1: Projective plane of order 3 [18]

element of luck involved in choosing a “good” polynomial and monomial to work

with.

For more discussions on the complexity of list-colouring problems and some

variants, see [49] and [48]. For more on complexity theory in general, see [37] and

[53].

Using a standard personal computer, we can only compute the coefficients for

relatively small hypergraphs, since we have mentioned that the amount of memory

needed is substantial. We will present some results on small projective planes

obtained using Theorem 2.6 as computed by Maple. Note that these results can

also be proved using the elementary techniques in the next major section, but we

include them here as illustrations of how Theorem 2.6 can be applied.

2.3.5 Computational Results on Small Projective Planes

Projective planes have the same number of vertices as edges. Therefore, any chro-

matic polynomial associated with them has the property that the total degree of

each term in the expansion of the polynomial is equal to the number of vertices.

To prove that such a projective plane is 2-list-colourable, we just need to show that

the coefficient of the term that is the product of all vertex variables is nonzero.

There are 13 vertices and edges in a projective plane of order 3. Only one

projective plane of this order exists [18]. We list the edges as the columns in

Table 2.1, and a representative diagram is shown in Figure 2.2. We define our

hypergraph polynomial f to be the one where each edge (i, j, k, l) as listed in the

table contributes a factor of (xi − 2xj + 3xk − 2xl) to the polynomial. Note that

the coefficients within each factor 1,−2, 3,−2 add up to 0. Now Maple finds that

the coefficient for the term x1x2 · · ·x13 in f is 124416, so using Theorem 2.6, we

conclude that this projective plane is 2-list-colourable.
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1 2 3

4 5 6

7 8 9

10

11

12

13

Figure 2.2: Diagram for the projective plane of order 3.

[Note: When we used the “natural” factor of (xi − xj + xk − xl) instead of

(xi − 2xj +3xk − 2xl), the coefficient for the term x1x2 · · · x13 is 0. So this does not

give us any new information.]

There are 21 vertices and edges in a projective plane of order 4, and there is

also only one projective plane of this order [18]. We list the edges as the rows in

Table 2.2. We define our hypergraph polynomial f to be the one where each edge

(i, j, k, l,m) as listed in the table contributes a factor of (xi−2xj +2xk−3xl +2xm)

to it. Note that the coefficients within each factor 1,−2, 2,−3, 2 add up to 0. Now

Maple finds that the coefficient of the monomial x1x2 · · ·x21 in f is −4894888400,

so using Theorem 2.6, we conclude that this projective plane is 2-list-colourable

as well. Later in Section 2.4.1, we will use elementary methods to show that all

projective planes except for the Fano plane are 2-list-colourable.

2.4 Minimum Improper Colourings

We now turn to elementary methods in approaching the subject. To utilize the idea

of minimum improper colourings, we need to set up each problem as follows: Let

H = (V,E) be a hypergraph. Suppose that H is not k-list-colourable. Then there
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i j k l m

1 3 11 17 20

5 9 11 13 15

4 7 11 16 19

2 6 11 18 21

8 10 11 12 14

2 8 13 17 19

5 6 7 8 20

1 6 12 15 19

4 5 12 17 21

1 7 13 14 21

1 4 8 9 18

1 2 5 10 16

3 5 14 18 19

9 10 19 20 21

3 8 15 16 21

2 3 7 9 12

3 4 6 10 13

7 10 15 17 18

12 13 16 18 20

6 9 14 16 17

2 4 14 15 20

Table 2.2: Projective plane of order 4 [18]
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exists a k-list-assignment L such that every L-colouring is improper, i.e. there exists

at least one monochromatic edge for each possible L-colouring. An L-colouring c

that contains the smallest number of monochromatic edges among all L-colourings

is called a minimum improper colouring (MIC).

There are a few useful facts about MICs: Let H, k ≥ 2, L be as above, and let

c be a MIC. Suppose that v is a vertex in a monochromatic edge e, c(v) = 1, and

x ∈ L(v) \ {1}. Then,

Lemma 2.7. Changing the colour of v to x will create at least one monochromatic

edge f that is coloured x and e ∩ f = {v}.

Proof. Changing the colour of v to x destroys at least one monochromatic edge

(i.e. edge e), so by the minimality of c, at least one monochromatic edge f must be

created. This edge f is coloured x in the new colouring, it must contain v (since

this is the only vertex whose colour has changed), and cannot contain other vertices

of e (which still have colour 1 in the new colouring).

Define switch(c, v, x) to be the colouring obtained from c by changing the colour

of v to x (always assuming that x ∈ L(v)). Define Ec(v) to be the set of monochro-

matic edges that share v as a common vertex in the colouring c. Define Ec(v, x) to

be the set of edges that become monochromatic in switch(c, v, x). For convenience,

we will define ec(v, x) to be any edge in Ec(v, x). Note that for any e ∈ Ec(v) and

any f ∈ Ec(v, x), e ∩ f = {v}. Then we have the following:

Lemma 2.8. For any x ∈ L(v) \ {1}, 1 ≤ |Ec(v)| ≤ |Ec(v, x)|.

Proof. When we change the colour of v to x, |Ec(v)| monochromatic edges were

destroyed. So by minimality of c, at least |Ec(v)| monochromatic edges must be

created.

Corollary 2.9. For a MIC c, the number of monochromatic edges that share v as

a common vertex is at most ⌊dH(v)/k⌋.

Proof. Let m be the number of monochromatic edges that share v as a common

vertex. For each x ∈ L(v) \ {c(v)}, |Ec(v, x)| ≥ m. Since each list has size k, we

must have

dH(v) ≥ m +
∑

x∈L(v)\{c(v)}
|Ec(v, x)| ≥ m + (k − 1)m = km,
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Figure 2.3: An almost-intersecting hypergraph.

hence m ≤ ⌊dH(v)/k⌋.

Finally, we note the following simple lemma.

Lemma 2.10. If |Ec(v)| = |Ec(v, x)|, then switch(c, v, x) is also a MIC.

2.4.1 Almost-Intersecting Hypergraphs

We call a hypergraph H = (V,E) almost-intersecting if for every edge e, there

is at most one edge f in E that is disjoint from e (i.e. e ∩ f = ∅). Some small

examples include a 3-uniform 6-cycle on 6 vertices: V = Z6, E = {0, 1, 2} + Z6

(which can be extended to larger cycles), or any K4-like hypergraphs (e.g. Figure

2.3). Also, the class of projective planes is almost-intersecting (actually, they are

“always intersecting”).

The main theorem for this section is the following:

Theorem 2.11. If the edges of an almost-intersecting hypergraph H all have car-

dinality at least 3 and H is 2-colourable, then H is 2-list-colourable.

Proof. Suppose not. Then there exists a 2-list-assignment L such that all possible

L-colourings contain monochromatic edges. Let c be a MIC with respect to L. Let

e be a monochromatic edge which is, wlog, coloured 1. Let f be the edge in H

that is disjoint from e, if it exists. (If f doesn’t exist, then we may ignore case 1

below, and ignore mentions of f in case 2.) Note that all edges other than e and
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f must intersect both e and f . Let v ∈ e and suppose, without loss of generality,

that L(v) = {1, 2}. We break into two cases:

Case 1: If f is monochromatic, then f must be coloured 2 in c, since ec(v, 2)

intersects f . For any v′ ∈ e, suppose L(v′) = {1, x}. Then ec(v
′, x) intersects f ,

so x = 2. For any v′′ ∈ f , suppose L(v′′) = {2, y}. Then ec(v
′′, y) intersects e, so

y = 1. Therefore, all vertices in e and f have the list {1, 2}. We can now obtain

a proper L-colouring c′ as follows: For vertices w not in e ∪ f , if L(w) contains a

colour x that is neither 1 nor 2, then c′(w) = x. Since edges containing at least

one of these vertices intersect e (all of whose vertices have lists {1, 2}), they must

be properly coloured regardless of how e is coloured in c′. The remaining vertices

all have lists {1, 2} and they form a subhypergraph of H, which is 2-colourable by

assumption. So assign c′ to such a 2-colouring using the colours 1 and 2. We now

have a proper L-colouring of H.

Case 2: Suppose f is properly coloured. Let v1, . . . , vk be the vertices in e, and

let L(vi) = {1, xi} and ei = ec(vi, xi) for each i = 1, . . . , k. Note that k ≥ 3

since each edge contains at least 3 vertices by assumption. We want to show that

x1 = x2 = · · · = xk. Among the edges e2, . . . , ek, at most one is disjoint from

e1, say it is ek. Then e2, . . . , ek−1 intersect e1 outside of e (since ei ∩ e = {vi}), so

x1 = x2 = · · · = xk−1. Since k ≥ 3 and e1 is disjoint from ek, ek must intersect ek−1,

hence xk = xk−1. So all vertices in e have the same list, say they are all {1, 2}. Now

we can obtain a proper L-colouring c′ in the same way as in case 1. Note that in

this case, we do not change the colouring of f , so it is still properly coloured. The

remaining edges intersect e, so they are properly coloured by the same arguments

as in case 1.

Note that the two small examples we mentioned at the beginning of this section

are both 2-colourable, so using this theorem, we can conclude that they are both

2-list-colourable.

2.4.2 Projective Planes and Symmetric BIBDs

Projective planes are almost-intersecting hypergraphs, so we can combine Lemma

2.4 and Theorem 2.11 to conclude the following:

Corollary 2.12. A projective plane of order n ≥ 3 is 2-list-colourable.
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All symmetric BIBDs are almost-intersecting hypergraphs as well, and for λ ≥ 2,

it is easy to show that they are 2-colourable. But there is a simpler proof of their

2-list-colourability.

Lemma 2.13. A symmetric (v, k, λ)-BIBD with λ ≥ 2 is 2-list-colourable.

Proof. Let H be such a symmetric BIBD, and suppose that it is not 2-list-colourable.

Then there exists a 2-list-assignment L with no proper L-colourings. Let c be a

MIC, let e be a monochromatic edge coloured 1, and let v ∈ e where L(v) = {1, 2}.
Consider f ∈ Ec(v, 2) and c′ := switch(c, v, 2). Now f must be monochromatic

with colour 2 in c′. However, |f ∩ e| = λ ≥ 2, so there exists another vertex

w ∈ f ∩ e, which is coloured 1 in both c and c′, contradicting the fact that f is

monochromatic with colour 2 in c′.

In summary, we can conclude the following.

Theorem 2.14. Every symmetric BIBD except for the Fano plane is 2-list-chromatic.
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Chapter 3

List-Colouring Small Steiner

Triple Systems

For the next two chapters, we will focus on solving the list-colouring problem for

Steiner triple systems. In this chapter, we will apply the techniques introduced

in Chapter 2 to STSs of orders 9, 13 and 15. We will begin by presenting some

known results in the (ordinary) colouring of Steiner triple systems in Section 3.1.

This provides the groundwork for our investigation into list-colouring Steiner triple

systems. In Section 3.2, we will use computations on hypergraph polynomials to

solve the list-colouring problem for STS(9) and STS(13). The remainder of the

chapter focuses on STS(15). Using minimum improper colourings, we will first

prove that each STS(15) is 4-list-colourable in Section 3.3. We then use both

techniques from Chapter 2 to show that STS(15) is “almost” 3-list-colourable: first

using computations on hypergraph polynomials in Section 3.4, then using MICs in

Section 3.5.

3.1 Colouring Steiner Triple Systems

For an admissible n, the chromatic spectrum, denoted Spec(n), is defined to be the

set of values k such that there exists at least one STS(n) that is k-chromatic (this

notation is used in [41]). The minimum and the maximum values in Spec(n) are

denoted Specm(n) and SpecM(n), respectively. Determining Spec(n) is still largely

unsolved for most n. We can similarly define ListSpec(n) to be the set of values
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k such that there exists at least one STS(n) that is k-list-chromatic, and define

ListSpecm(n) and ListSpecM(n) in the same way.

We now present (or recall) some of the known results in colouring Steiner triple

systems that we will use in the following two chapters. We begin with the following

result (see Colbourn and Rosa [19]).

Lemma 3.1. If H is a STS(n) where n ≥ 7, then χ(H) ≥ 3.

In particular, this implies that every non-trivial Steiner triple system must have

list chromatic number at least 3. For any admissible n, the constructions by Bose

and Skolem mentioned in Section 1.1 yield 3-chromatic triple systems (see e.g. [19]).

We list this as a theorem.

Theorem 3.2. For every admissible n ≥ 7, there exists a 3-chromatic STS(n).

Writing in terms of Spec(n) notation, this means that Specm(n) = 3 for every

non-trivial admissible n. Also, a result from de Brandes, Phelps and Rödl [24]

mentioned in Section 1.2 implies that SpecM(n) → ∞ as n → ∞. In particular,

this also implies that ListSpecM(n) → ∞ as n → ∞. Moreover, Phelps and Rödl

[54] proved the following upper bound on SpecM(n).

Theorem 3.3 (Phelps and Rödl [54]). For each admissible n, SpecM(n) ≤ C
√

n/ log n

for some constant C.

For small Steiner triple systems, recall from Section 1.2 that Mathon, Phelps and

Rosa [50] showed that all STS(n) where 7 ≤ n ≤ 15 are 3-chromatic, i.e. Spec(n) =

{3} for these values of n. For the remainder of this chapter, we will show that the

corresponding list chromatic statement is true for n ≤ 13, and “almost” true for

n = 15. In particular, we will show that ListSpec(15) ⊆ {3, 4}.

3.2 Computations on Small STSs

In this section, we will record the results of the computations on Steiner triple

systems of orders 9 and 13.

There is only one Steiner triple system of order 9 [18], and its 12 blocks are listed

as columns of Table 3.1. We define our hypergraph polynomial f to be the one where
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i 1 4 7 1 2 3 1 2 3 1 2 3

j 2 5 8 4 5 6 5 6 4 6 4 5

k 3 6 9 7 8 9 9 7 8 8 9 7

Table 3.1: STS(9) [18]

each edge (i, j, k) as listed in the table contributes a factor of (xi + xj − 2xk). Now

Maple finds that the coefficient of the monomial x2
1x2x4x

2
5x6x

2
7x

2
8x9 in f is 144, so

by Theorem 2.6, this Steiner triple system is 3-list-colourable.

In fact, this polynomial result says something stronger than just STS(9) is 3-

list-colourable. This result implies that if we give an arbitrary list L where vertex 3

has a list of size 1 (so the colour for this vertex is fixed), vertices 2, 4, 6 and 9 have

lists of size 2 and the remaining vertices have lists of size 3, then there is always a

proper L-colouring.

There are two Steiner triple systems of order 13 [18], and each of their 26 blocks

are listed as rows of Table 3.2. Notice that the ratio between the number of blocks

and the number of points is exactly 2. So in order to show that such systems

are 3-list-colourable, we are forced to consider the monomial M = x2
1x

2
2 · · ·x2

13.

However, if we generate the hypergraph polynomial in the same manner as we did

for the STS(9), the computation for the coefficient of the monomial takes too many

resources and cannot be completed on our computer. So we need an approach that

reduces the size of the polynomial.

The idea is that for a block (i, j, k), the factor that this block contributes to our

hypergraph polynomial is of the form axi+bxj+cxk for some coefficients a, b, c where

a + b + c = 0. This 3-term factor could be reduced to a 2-term factor if we set the

three coefficients to be a permutation of 1,−1, 0. This means that the polynomial

we get represents the graph polynomial for a graph obtained by dropping one vertex

from each edge. If this graph is 3-list-colourable, then the original hypergraph is

3-list-colourable as well. Therefore, if we find that the coefficient of M is nonzero

in this smaller polynomial, then we can conclude that our Steiner triple system is

3-list-colourable.

For each block (i, j, k), we ask Maple to randomly produce one of six possible

factors: xi − xj, xj − xi, xi − xk, xk − xi, xj − xk and xk − xj. Once all the factors

are generated, it is relatively quick for Maple to compute the coefficient of M , so it
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#1 #2

0 1 2 0 1 2

0 3 4 0 3 4

0 5 6 0 5 6

0 7 8 0 7 8

0 9 10 0 9 10

0 11 12 0 11 12

1 3 5 1 3 5

1 4 7 1 4 7

1 6 8 1 6 8

1 9 11 1 9 11

1 10 12 1 10 12

2 3 9 2 3 9

2 4 5 2 4 5

2 6 10 2 6 10

2 7 12 2 7 11

2 8 11 2 8 12

3 6 11 3 6 11

3 7 10 3 7 12

3 8 12 3 8 10

4 6 12 4 6 12

4 8 9 4 8 9

4 10 11 4 10 11

5 7 11 5 7 10

5 8 10 5 8 11

5 9 12 5 9 12

6 7 9 6 7 9

Table 3.2: The two STS(13)s. [18]
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can be repeated several times until we find a polynomial with a nonzero coefficient

of M in a reasonable amount of time.

For system #1 in the table, Maple finds the following polynomial:

f =(x0 − x2)(x0 − x4)(x6 − x0)(x7 − x0)(x9 − x0)(x12 − x0)·
(x3 − x5)(x7 − x1)(x1 − x8)(x9 − x11)(x1 − x10)(x2 − x3)·
(x5 − x2)(x10 − x2)(x7 − x12)(x11 − x8)(x6 − x11)(x10 − x7)·
(x3 − x12)(x6 − x4)(x9 − x8)(x11 − x4)(x7 − x5)(x8 − x5)·
(x9 − x5)(x7 − x9).

The coefficient of M in f is −3, so this STS(13) is 3-list-colourable.

For system #2 in the table, Maple finds the following polynomial:

f =(x2 − x1)(x4 − x0)(x0 − x5)(x7 − x8)(x9 − x10)(x12 − x11)·
(x5 − x1)(x4 − x1)(x6 − x8)(x1 − x9)(x10 − x1)(x3 − x9)·
(x4 − x2)(x2 − x10)(x11 − x2)(x8 − x12)(x6 − x3)(x3 − x7)·
(x10 − x3)(x6 − x12)(x8 − x4)(x10 − x11)(x7 − x10)(x11 − x5)·
(x5 − x12)(x6 − x9).

The coefficient of M in f is also −3, so this STS(13) is also 3-list-colourable.

In summary, we have the following:

Theorem 3.4. All Steiner triple systems of order n where n ≤ 13 are 3-list-

colourable.

3.3 The 4-List-Colourability of STS(15)

There are 80 Steiner triple systems of order 15 [18]. We know from Section 3.1 that

each of them is 3-colourable. In this section, we will show the following:

Theorem 3.5. Each STS(15) is 4-list-colourable.

Proof. Let H be an arbitrary STS(15), and suppose that it is not 4-list-colourable.

So there exists a 4-list-assignment L such that there is no proper L-colouring. Let

c be a MIC with respect to L. Since each vertex has degree 7, by Corollary 2.9,
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we know that each vertex is in at most one monochromatic edge of c. So all

monochromatic edges in c are disjoint. Let e be one such edge, say it is coloured 1.

There are 12 vertices outside of e, and we will call them spare vertices.

Let e = {v1, v2, v3}, and let Li = L(vi) \ {1} for i = 1, 2, 3. Note that each Li

has 3 colours, since 1 ∈ L(vi) for each i. For each x ∈ Li, Ec(vi, x) uses at least a

pair of spare vertices of colour x. Since there are 12 spare vertices, there can be at

most 6 distinct colours in L1 ∪L2 ∪L3. We make the following two straightforward

claims.

Claim 3.6. If a colour x appears in at least 2 of L1, L2, L3, then at least 3 spare

vertices are coloured x in c.

Proof. Say x ∈ L1∩L2. Then ec(v1, x) and ec(v2, x) each contains two spare vertices,

both coloured x in c. However, they cannot contain the same pair of vertices since

each pair can only be in one edge in a Steiner triple system, so at least 3 spare

vertices are coloured x.

Claim 3.7. If a colour x ∈ Li is such that switch(c, vi, x) is not a MIC, then at

least 4 spare vertices are coloured x in c.

Proof. Since switch(c, vi, x) is not a MIC, |Ec(vi, x)| ≥ 2. Let f, g ∈ Ec(Vi, x). We

know that f ∩ g = {vi} and all vertices in (f ∪ g) \ {vi} are coloured x in c. So

there must be at least 4 spare vertices coloured x in c.

For a monochromatic edge e in a MIC c, we define

E(c, e) = {e} ∪
⋃

v∈e,x∈L(v)\{c(v)}
Ec(v, x).

For a colour x, we say that x is saturated in c by a set of edges E if each pair

of vertices coloured x in c can be found in an edge of E. For example, suppose

that the colour x appears in all of L1, L2, L3 and there are exactly 3 spare vertices

coloured x in c. Then each of Ec(v1, x), Ec(v2, x) and Ec(v3, x) contains at least

one pair of spare vertices coloured x. But there are only 3 pairs of spare vertices

coloured x, hence x is saturated in c by E(c, e).

Based on the remarks before Claim 3.6, we divide the rest of the proof according

to the number of distinct colours in the set L1 ∪ L2 ∪ L3.
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Case 1: If there are exactly 6 colours, then exactly two spare vertices are assigned

to each colour. At least one colour, say 2, must appear in at least two lists. By

Claim 3.6, at least three spare vertices are coloured 2, which is a contradiction.

Case 2: Suppose that there are 5 colours in L1 ∪ L2 ∪ L3. Then at least two

colours, say 2 and 3, must appear in at least two lists. Each of the two colours uses

up at least 3 spare vertices. The three remaining colours, say 4, 5 and 6, each uses at

least 2 spare vertices. But there are only 12 spare vertices, so these must be exact,

i.e. exactly 3 spare vertices are coloured 2 and 3, and exactly 2 for each colour 4, 5

and 6. This means that colours 4, 5 and 6 appear in only one of L1, L2, L3 (Claim

3.6). Therefore, colours 2 and 3 are in all three lists. So we may assume that the

lists are L1 = {2, 3, 4}, L2 = {2, 3, 5} and L3 = {2, 3, 6}. Notice that all colours

from 1 to 6 are saturated in c by E(c, e). Consider the colouring c′ := switch(c, v1, 4)

and the edge e′ = ec(v1, 4). Since there are only two spare vertices coloured 4, c′

must be a MIC. Let w ∈ e′ \{v1}, and let x ∈ L(w)\{1, 4} for some colour x. Since

c′ is a MIC, e′′ = ec′(w, x) exists, so some vertices are coloured x in c′. Note that

e′′ 6∈ E(c, e) since it does not contain any vertex coloured 1 in c. The possibilities

for x are 2, 3, 5 and 6. However, all of these colours are saturated by E(c, e),

i.e. there does not exist another pair of vertices in these colours that has not been

used. Therefore, we cannot have e′′, which is a contradiction.

Case 3: Suppose that there are 4 colours in L1 ∪ L2 ∪ L3. Then at least one

colour, say 2, must appear in all three lists. For the remaining three colours, there

are two possibilities, and we divide this case into these two subcases.

Subcase 3a: The lists are, without loss of generality,

L1 = {2, 3, 4}, L2 = {2, 3, 5}, L3 = {2, 4, 5}.

Since each of the four colours appears in at least two lists, each requires at least

three spare vertices. But there are 12 spare vertices, so each colour receives exactly

three spare vertices. Consider the colouring c′ = switch(c, v1, 2) and the edge

e′ = ec(v1, 2). Suppose that e′ = {v1, w1, w2} where w1, w2 are coloured 2 in both

c and c′. Note that c′ is a MIC as there are only three spare vertices coloured

2. Consider the lists L(w1) and L(w2). For each i = 1, 2, ec′(wi, x) exists for any

x ∈ L(wi) \ {2}, so x must be a colour that is used in c′. The possibilities for x
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are 1, 3, 4 and 5. However, since the colour 1 is saturated by e in both c and c′,

this is not a valid option. Therefore, L(w1) = L(w2) = {2, 3, 4, 5}. There are three

vertices coloured 3 in both c and c′, so three pairs of these vertices are available.

However, each of these four edges ec(v1, 3), ec(v2, 3), ec′(w1, 3) and ec′(w2, 3) requires

a distinct pair of vertices coloured 3, which is a contradiction.

Subcase 3b: The lists are, without loss of generality,

L1 = {2, 3, 4}, L2 = {2, 3, 4}, L3 = {2, 3, 5}.

The colours 2, 3 and 4 appear in at least two lists, so each colour receives at least

three spare vertices. The colour 5 appears in only one list, so at least two spare

vertices are coloured 5. So far, the colours of 11 spare vertices are determined. Let u

be the remaining spare vertex. At least one of the colours 2 and 3 have exactly three

spare vertices, say it is the colour 2. Consider the colouring c′ = switch(c, v1, 2)

and the edge e′ = ec(v1, 2). Let w ∈ e′ \ {v1} where w is coloured 2 in both c

and c′. Note that c′ is a MIC as there are only three spare vertices coloured 2.

Now ec′(w, x) exists for any x ∈ L(w) \ {2}, so x must be a colour that is used in

c′. The possibilities for x are 1, 3, 4 and 5. A different colour (say the colour of

u) cannot be considered since at least two spare vertices need to use that colour,

yet the colour of only one spare vertex is not determined. In c′ not counting the

vertex u, the colour 1 is saturated by e, the colour 3 is saturated by ec(vi, 3) for

i = 1, 2, 3, and the colour 5 is saturated by ec(v3, 5). Therefore, if any one of these

three colours, say x, is in L(w), then u must be coloured x in order to provide a

pair for ec′(w, x). However, at least two of the colours 1, 3 and 5 are in L(w), which

is a contradiction.

Case 4: Suppose that there are only 3 colours in L1∪L2∪L3. Therefore, we may

assume that

L1 = L2 = L3 = {2, 3, 4}.

Each of the three colours 2, 3 and 4 receives at least three spare vertices. We first

want to obtain a c so that at least one of the three colours receives exactly three

spare vertices. The only way that this does not happen is when all three colours

receive four spare vertices each. Consider a vertex w coloured 2 in c. At least one

colour x in L(w) is not 3 nor 4. We replace c by switch(c, w, x). We claim that

this new colouring is still a MIC, and this is true provided that we did not create a
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new monochromatic edge when we switched the colour. This is certainly true if x

is not 1 since w would be the only vertex coloured x. The only vertices coloured 1

are in e, so if x is 1, any new monochromatic edge must contain w and two vertices

in e, which cannot happen.

Now we may assume that exactly three spare vertices w1, w2, w3 are coloured

2 in c. At this point, we can also assume that if any colouring c′ is a MIC, then

vertices in any monochromatic edge e′ in c′ all have the same lists, which we may

assume to be {1, 2, 3, 4}. Otherwise, we can apply the previous three cases. Since

there are only three spare vertices coloured 2, ci = switch(c, vi, 2) is a MIC for each

i = 1, 2, 3. Therefore, L(w1) = L(w2) = L(w3) = {1, 2, 3, 4}. Suppose that

e1 = ec(v1, 2) = {v1, w1, w2},

e2 = ec(v2, 2) = {v2, w2, w3},

e3 = ec(v3, 2) = {v3, w1, w3}.

We see that ec1(w1, 1) forces at least one spare vertex to have colour 1. The following

6 edges force at least four spare vertices to be coloured 3:

ec(v1, 3), ec(v2, 3), ec(v3, 3), ec1(w1, 3), ec2(w2, 3), ec3(w3, 3).

Notice that these are distinct edges since each contains at least one unique vertex.

Similarly, the following 6 edges force at least four spare vertices to be coloured 4:

ec(v1, 4), ec(v2, 4), ec(v3, 4), ec1(w1, 4), ec2(w2, 4), ec3(w3, 4).

Again, these are distinct edges. But now, the colours of all spare vertices have been

determined. So there must be exactly one spare vertex of colour 1 (call it u), four

of colour 3, and four of colour 4. Four vertices of the same colour provide exactly

6 pairs, and for colours 3 and 4, each has at least 6 edges that want to claim a

pair. So all colourings of the form switch(c, vi, x), switch(ci, wi, x) where i = 1, 2, 3

and x = 3, 4 are MICs. Therefore, all spare vertices coloured 3 and 4 have the

list {1, 2, 3, 4}. Since all STS(15) are 3-colourable, we may use colours 1, 2 and

3 to properly colour all vertices except for u, where we can assign to it a colour

from L(u) that is neither 1, 2 nor 3. This gives a proper L-colouring, which is a

contradiction.
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3.4 The 3-List-Colourability of STS(15) I

In the following two sections, we will work toward the 3-list-colourability of Steiner

Triple Systems of order 15. We will give two results using two different methods

which show that STS(15)s are “almost” 3-list-colourable.

In this section, we give a computational result using hypergraph polynomials.

Recall that there are 15 vertices and 35 edges in an STS(15). Since the number of

edges is more than three times the number of vertices, we cannot use the polynomial

method to prove that an STS(15) is 3-list-colourable. However, we can try to

find the coefficient of monomials where 5 vertex variables have power 3 and the

remaining 10 vertex variables have power 2. (Note that we cannot have fewer than

5 vertex variables with power 3, for otherwise the total degree of the hypergraph

polynomial would be less than 35, the total number of edges.) Indeed, after having

computed through all 80 STS(15)s using Maple, we conclude the following:

Theorem 3.8. For any STS(15) on the vertex set V , there exists a set of five

vertices W ⊂ V such that every list-assignment L where vertices in W are given

lists of size 4 and vertices not in W are given lists of size 3 has a proper L-colouring.

The approach used in these computations is the same as the one we used in the

computations for STS(13) in Section 3.2. For each block of 3 vertices, we randomly

pick two vertices v, w to form a factor xv − xw. We form a random hypergraph

polynomial this way, and ask Maple to find the coefficient of a fixed monomial

where 5 of the vertex variables have power 3 and the rest have power 2. If the

coefficient turns out to be 0, we repeat this process. The full results are listed in

Appendix A. Here we give a sample of the results.

For STS#5, the list of blocks can be tabulated as follows:

00000001111112222223333444455556666

13579bd3478bc3478bc789a789a789a789a

2468ace569ade65a9edbceddecbcbdeedbc
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In this case, the random hypergraph polynomial that Maple finds is

f(x) =(x2 − x1)(x3 − x0)(x6 − x5)(x0 − x7)(xa − x0)(xb − x0)(xe − x0)

· (x3 − x5)(x6 − x4)(x1 − x9)(xa − x1)(x1 − xd)(xe − xc)(x3 − x2)

· (x2 − x5)(xa − x7)(x8 − x9)(xb − xe)(xc − x2)(x7 − x3)(x8 − xc)

· (x9 − x3)(x3 − xa)(x4 − x7)(x8 − x4)(x9 − xc)(xa − x4)(xc − x5)

· (xb − x8)(x9 − xd)(xa − x5)(xe − x6)(x6 − xd)(x9 − xb)(xc − x6).

And the coefficient of

x3
0x

3
1x

3
2x

3
3x

3
4x

2
5x

2
6x

2
7x

2
8x

2
9x

2
ax

2
bx

2
cx

2
dx

2
e

in f(x) is −1. Hence we may conclude that Theorem 3.8 holds for STS #5.

3.5 The 3-List-Colourability of STS(15) II

We now give a second theorem which shows that an STS(15) is “almost” 3-list-

colourable. This uses the elementary method involving MICs from Section 2.4.

Recall once again that each STS(15) is 3-colourable, and each vertex has degree 7.

We will prove the following:

Theorem 3.9. For any STS(15) and any 3-list-assignment L to the vertices, there

is an L-colouring that contains at most one monochromatic edge.

We will prove this theorem in two steps. We begin by showing the following.

Lemma 3.10. For any STS(15) and any 3-list-assignment L to the vertices, there

does not exist any MIC with respect to L which contains a pair of monochromatic

edges that intersect at a vertex.

Proof. Let H be an arbitrary STS(15), and let L be any 3-list-assignment. We may

assume that there is no proper L-colouring, and let c be a MIC with respect to L

such that there are two monochromatic edges E1 = Ec(v) = {e1, e2} that intersect

at a vertex v. We will show that there exists a proper L-colouring, which would

contradict the fact that c is a MIC.

We may assume that both e1 and e2 are coloured 1, and L(v) = {1, 2, 3}.
Consider E2 = Ec(v, 2) and E3 = Ec(v, 3). By Lemma 2.8, both |E2|, |E3| ≥ 2.
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Figure 3.1: Diagram for Claim 3.11. The labels represent the colouring.

Note that v has degree 7 and edges in E1, E2, E3 all contain v but are otherwise

disjoint. Therefore, |E2|, |E3| ≤ 3, and at most one of |E2| and |E3| is exactly 3.

We make the following (generalized) claim:

Claim 3.11. Let c be a MIC with two monochromatic edges joined at a vertex v

where L(v) = {x, y, z} and c(v) = x. Then |Ec(v, y)| = |Ec(v, z)| = 2.

Proof. Let E2 = Ec(v, y), E3 = Ec(v, z), and assume that the colours x, y, z are 1,

2, 3 respective. Suppose, wlog, we have |E2| = 2 and |E3| = 3 (see Figure 3.1).

Now the colour of every vertex in H is determined. We may assume that not all

the lists are {1, 2, 3}, since any STS(15) is 3-colourable. So a colour 4 exists in the

list of some vertex. Since c is a MIC, if this colour 4 is in say v′ ∈ e1 \ {v}, then

Ec(v
′, 4) cannot exist as no vertex is coloured 4 by c. Similarly, c′ := switch(c, v, 2)

is a MIC, so no vertex in any edge in E2 can have the colour 4 in its list. Therefore,

some vertex w in some edge in E3 must have colour 4. By recolouring w with 4

in c, we do not create a new monochromatic edge (since only one vertex has this

colour), so it is still a MIC, and the new colouring satisfies |E2| = |E3| = 2.

Now there are two vertices in H that are not in any of the edges in E1, E2, E3.

We call them the spare vertices, and let them be s and t. (See Figure 3.2.) The

colouring of all vertices except the spare vertices has been determined. Now we can

claim the following:
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Figure 3.2: Diagram for Claim 3.12.

Claim 3.12. The lists of all vertices in edges in E1, E2 and E3 are {1, 2, 3}.

Proof. We will first prove this for vertices in E1. Then since both switch(c, v, 2)

and switch(c, v, 3) are MICs, we may apply Claim 3.11 and the same argument in

the rest of this proof to both of them. This gives the result for vertices in E2 and

E3.

Suppose not all the vertices in E1 have the list {1, 2, 3}. So the list for a vertex

w in V (E1) \ {v} contains a colour other than 1, 2 or 3, say the colour 4. Since

c is a MIC, Ec(w, 4) must exist, and it must use at least two vertices of colour

4. But since all but the spare vertices have colours 1, 2 or 3, it must be the

case that |Ec(w, 4)| = 1, and ec(w, 4) = {w, s, t}. Therefore, c(s) = c(t) = 4.

No other vertices in E1 can have colour 4, since the colour 4 is saturated in c

by ec(w, 4), and we may recolour such a vertex to 4 to get fewer monochromatic

edges than c, which is a contradiction. Furthermore, for similar reasons, the lists

of these vertices in E1 cannot have any new colours. So it must be the case that all

vertices in E1 except w have the list {1, 2, 3}, and L(w) contains 1, 4 and another

colour, which must be either 2 or 3. Without loss of generality, L(w) = {1, 2, 4}.
There are only four vertices coloured 2, namely vertices in E2 except v. Now

E2 ∪ {ec(u, 2) : u ∈ V (E1) \ {v}} uses six pairs of vertices of colour 2, so the colour

2 is saturated in c by these edges.
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Now c′ := switch(c, w, 4) is a MIC, so for any colour x in L(s) or L(t) that is

not 4, Ec′(s, x) or Ec′(t, x) exists. So x must be a colour that is used by c, either

1, 2 or 3. But x cannot be 2, for the vertices coloured 2 in c (and therfore c′) are

saturated. Therefore, L(s) = L(t) = {1, 3, 4}. Now there are four vertices coloured

3, namely vertices in E3 except v. But there are seven edges each requiring a pair

of these vertices: the two edges in E3, three edges ec(u, 3) where u ∈ V (E1)\{v, w},
ec′(s, 3) and ec′(t, 3). This is not possible. Therefore, all vertices in E1 have the list

{1, 2, 3}.

Let W be the set of vertices in H that have the list {1, 2, 3}. From the previous

claim, we know that |W | ≥ 13. Since any STS(15) is 3-colourable, there is a proper

colouring for the partial STS(15) induced by W . If |W | = 15, then we are done.

Otherwise, for the remaining one or two vertices, assign to each a colour in its

list that is not 1, 2 or 3. This does not create a monochromatic edge since up to

two such vertices have these new colours. Therefore, there is a proper L-colouring,

contradicting the assumption that c is a MIC.

Proof of Theorem 3.9. Let H be an arbitrary STS(15), and let L be any 3-list-

assignment. We may assume that there is no proper L-colouring, and let c be a

MIC with respect to L. Using Lemma 3.10, we may assume that monochromatic

edges in c are disjoint. To prove the theorem, it suffices to show that there cannot

exist two disjoint monochromatic edges in c. We make a couple of observations

first.

Claim 3.13. Suppose that e is a monochromatic edge with colour 1, v ∈ e, x ∈
L(v)\{1} and |Ec(v, x)| = 1. Then ec(v, x) does not intersect any other monochro-

matic edge in c.

Proof. Since |Ec(v, x)| = 1, c′ := switch(c, v, x) is a MIC. If ec(v, x) intersects any

monochromatic edge f in c (which is also monochromatic in c′), then c′ is a MIC

that contains two monochromatic edges that intersect at a vertex. By Lemma 3.10,

this is not possible.

Claim 3.14. Suppose that e1, e2 are two monochromatic edges, v ∈ e1, w ∈ e2,

x ∈ L(v)∩L(w) where x is not the colour of e1 nor e2. If |Ec(v, x)| = |Ec(w, x)| = 1,

then ec(v, x) and ec(w, x) are disjoint.
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Proof. Otherwise, c′ := switch(switch(c, v, x), w, x) is a MIC with two monochro-

matic edges ec(v, x) and ec(w, x) intersecting at a vertex. Once again, by Lemma

3.10, this is not possible.

Suppose that there are at least two disjoint monochromatic edges, e1 and e2.

We first consider the case where both e1 and e2 have the same colour, say 1. There

are nine spare vertices in this case, so there can be at most four colours in the lists

of vertices in e1 and e2 in addition to colour 1. Consider the twelve couples

C = {(v, x) : v ∈ e1 ∪ e2, x ∈ L(v) \ {1}}.

Since c is a MIC, for each (v, x) ∈ C, Ec(v, x) exists and uses at least a pair of

spare vertices of colour x, since it is not possible for such an edge to intersect both

e1 and e2. Any colour can appear in C at most six times. We wish to determine

the minimum number of spare vertices of a colour that are needed based on how

many times this colour appears in C. This is recorded in the table below. For the

cases where a colour appears in C at most five times, the way this is calculated is

that if there are k spares of the same colour, then they can accommodate up to
(

k
2

)

pairs, which is the maximum for the number of times that this colour can appear

in C. For the case when a colour (say x) appears in C six times, this colour appears

in the lists of all six vertices in e1 ∪ e2. Now four spare vertices of colour x can

accommodate at most six pairs, so if there are exactly four spare vertices of colour

x, then |Ec(v, x)| = 1 for each v ∈ e1 ∪ e2. In particular, for a v ∈ e1, there must

exist a w ∈ e2 such that ec(v, x) and ec(w, x) intersect at a spare vertex. By Claim

3.14, this is not possible. Therefore, at least five spare vertices are needed for a

colour that appears six times in C.

# times a colour appears in C # spares needed

1 2

2, 3 3

4, 5 4

6 5

Suppose that x1, x2, x3, x4 are the four possible colours in C (some may not

exist). If f(xi) is the number of times xi appears in C and g(xi) is the minimum

number of spare vertices of xi needed, then we must satisfy

f(x1) + f(x2) + f(x3) + f(x4) = 12, (3.1)
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and

g(x1) + g(x2) + g(x3) + g(x4) ≤ 9. (3.2)

But according to the table,

g(xi) ≥ f(xi) − 1, (3.3)

and equality holds only when f(xi) is five or six. But at least three of the four

colours must satisfy g(xi) = f(xi) − 1, and the sum of their f -values must be

at least 15. This would contradict (3.1). Therefore, we cannot have two disjoint

monochromatic edges of the same colour.

Suppose now that e1 is coloured 1 and e2 is coloured 2. We define

C1 = {(v, x) : v ∈ e1, x ∈ L(v) \ {1}},

C2 = {(v, x) : v ∈ e2, x ∈ L(v) \ {2}},

and redefine C = C1 ∪ C2. If all the colours in C are not 1 nor 2, then the argument

above follows and we are done. So we may assume that the colour 1 appears at

least once in C2, or the colour 2 appears at least once in C1 (or both). Note that

if 2 ∈ L(v) for some v ∈ e1, then according to Claim 3.13, edges in Ec(v, 2) can

intersect e2 provided that |Ec(v, 2)| ≥ 2. In this case, each edge of Ec(v, 2) uses

a distinct spare vertex of colour 2. If |Ec(v, 2)| = 1, then ec(v, 2) uses two spare

vertices of colour 2. So regardless of the size of Ec(v, 2), at least two spare vertices

are coloured 2. Similarly, if 1 ∈ L(w) for some w ∈ e2, then at least two spare

vertices are coloured 1.

Once again, using (3.1) and (3.2), we need at least three of the four possible

colours in C to satisfy (3.3) with equality. In this case, we have additional possibil-

ities of when this equality holds, and that is when the colour 2 is in C1 three times,

or when the colour 1 is in C2 three times. If only one of the two occurs, say it is

for the colour x1, then at least two other colours x2 and x3 must satisfy (3.3) with

equality where f(x2), f(x3) ≥ 5. Then f(x1) + f(x2) + f(x3) ≥ 13, which is not

possible. So it must be that both cases occur, which means that f(1) = f(2) = 3,

and there is a colour x3 where f(x3) ≥ 5 and the equality holds for (3.3). These

three colours already satisfy (3.2) with equality, so a fourth colour cannot exist in

C. Therefore, f(x3) = 6.

Now we have that the lists for all vertices in e1 ∪ e2 are the same, say {1, 2, 3}.
There are two spare vertices of colour 1, two spare vertices of colour 2, and five
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spare vertices of colour 3. Now we may assume that not all the lists of the spare

vertices are {1, 2, 3}, since H is 3-colourable and we would be able to find a proper

L-colouring. So there exists a colour 4 in one of the spare vertices that is currently

coloured x. Switch the colour of this spare vertex to 4, which does not create any

new monochromatic edge since no other vertices are coloured 4. But now there are

not enough spare vertices of colour x to support the pairs required by f(x), so this

is a contradiction. We can now conclude that there exists an L-colouring that has

at most one monochromatic edge.

Since any STS(15) is 3-colourable and Theorems 3.8 and 3.9 are good steps

toward the 3-list-colourability of STS(15), we make the following conjecture.

Conjecture 3.15. Each STS(15) is 3-list-chromatic.
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Chapter 4

Bounds on List-Colouring All

Steiner Triple Systems

In this chapter, we will present three general bounds for list-colouring all Steiner

triple systems, and discuss various implications on the list chromatic spectrum

of STSs. We will use probabilistic methods to prove two different bounds: In

Section 4.1, we will prove that large Steiner triple systems do not have constant

list chromatic numbers, i.e. there is a growing lower bound on the minimum list

chromatic number for large STS. In Section 4.2, we give an upper bound on the

list chromatic number of an STS based on its chromatic number. These results will

show that in general, the list chromatic numbers of Steiner triple systems behave

differently from the chromatic numbers. Finally, in Section 4.3, we will give a simple

upper bound on ListSpecM(n), the highest possible list-chromatic number that an

STS(n) can have, using a simple application of minimum improper colourings.

4.1 A Lower Bound on Large STS

In [4], Alon proved that the list chromatic number for a graph of minimum degree

d is at least (1
2
− o(1)) log2 d. So graphs with large minimum degree have large list

chromatic number. This is not true for hypergraphs in general, however. Consider

the 3-uniform hypergraph Hn obtained by adding a vertex v to a graph Kn and

adding v to each edge in Kn. As n → ∞, the minimum degree of Hn (which is n−1)

also approaches ∞. Also, Hn is 2-list-colourable, since we can give v any colour in
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its list, and for each of the remaining vertices, we can give it a colour in its list other

than the one given to v. So it is possible for a hypergraph to have an arbitrarily

large minimum degree while maintaining constant list chromatic number.

This is not true for Steiner triple systems, however. In this section, we will use

probabilistic methods to prove the following theorem.

Theorem 4.1. For every integer s there exists an n0 = n0(s) such that every

STS(n) with n ≥ n0 has list chromatic number greater than s.

The value of n0(s) that we use for this theorem has order around s6s. Using

this value, the theorem gives us the following lower bound on ListSpecm.

Corollary 4.2. There exists a (small) constant c > 0 such that for any admissible

n,

ListSpecm(n) ≥ c log n

log log n
.

The rest of the section is organized as follows: We first give an outline for the

proof of Theorem 4.1 in Section 4.1.1, and then prove this theorem in Section 4.1.2.

We then prove Corollary 4.2 in Section 4.1.3. Finally, we discuss the implications

of these results in Section 4.1.4.

4.1.1 Idea of the Proof for Theorem 4.1

The proof proceeds in three steps. Let H be a STS(n) where n ≥ n0. First we

choose a small subset S of vertices such that each vertex v in H has about the same

number of pairs x, y in its neighbourhood (i.e. pairs such that vxy is an edge of H)

such that both x and y are in S. In the second step, we assign lists of size s to the

vertices of S such that no vertex has too many pairs in its neighbourhood that are

both in S and get the same colour in their lists. Then in the third step we assign

lists to the rest of the vertices so that for each colouring c of S from its lists, there

exists a vertex v of V (H) \ S whose list is contained in the set of colours forbidden

by c at v (where a colour i is called forbidden if both vertices of some pair in the

neighbourhood of v are assigned colour i by c). Thus with such a list assignment,

no colouring c of S could be extended to a proper colouring of the whole of H,

implying that H has list chromatic number greater than s.
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The way we ensure that suitable lists can be chosen for V (H)\S in the third step

is as follows. For each colouring c of S, since there is only a constant (M) number

of colours, many pairs of vertices in S are monochromatic. Since H is an STS,

each pair is in the neighbourhood of some vertex v. Since by Step 2 no vertex can

have too many monochromatic pairs of the same colour in its neighbourhood, this

implies that many vertices each have many colours appearing on monochromatic

pairs in their neighbourhoods. In other words, for many vertices, each of them has

many colours forbidden by c. This implies that only a very small proportion of the

total possible number of list assignments to the vertices V (H) \ S avoid assigning

to any vertex a list that is contained in its set of forbidden colours under c. This

proportion is so small that even when we take the union over all possible colourings

c of S (recalling S is a small set), the number of such list assignments that could

extend some colouring c is smaller than the total number of list assignments possible

for V (H)\S. Therefore we can choose a suitable list assignment as described above.

4.1.2 The Proof of Theorem 4.1

We first state the Chernoff bounds, which we use extensively in the proof.

Theorem 4.3 (Chernoff bounds [17]). Let X be the sum of n independent binary

random variables X1, . . . , Xn, and let µ be the expected value of X (which is the

sum of E[Xi]). Let 0 < δ ≤ 1. Then

1. P[X < (1 − δ)µ] < e−µδ2/2;

2. P[X > (1 + δ)µ] < e−µδ2/4; and

3. P[|X − µ| > δµ] < 2e−µδ2/4.

Let s be given, let M = 36s3, and set

n0 = 129(Ms log s)3

(

M

s

)3

. (4.1)

(Throughout this section, the notation log indicates the natural logarithm). We will

show that there exists a list assignment L of the vertices of H, where each vertex

receives s colours taken from the set {1, . . . ,M}, such that there is no proper

colouring of H from the lists L. We mention that here we do not attempt to
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optimize the constants in the definition of n0, but note that the order of magnitude

of n0 is about s6s.

Corresponding to Step 1 in the previous section, we begin by choosing a special

subset S of vertices of H. We want S to have the following two properties.

Property 1. The size of S is between 4M
s

√
n log n and 12M

s

√
n log n.

Property 2. Every vertex in H has at least 16M2 log n
s2 and no more than 48M2 log n

s2

pairs of vertices in its neighbourhood in S.

We now proceed to prove that there exists an S with these two properties.

We put each vertex of H into S randomly and independently with probability

p = 8M
s

√

log n
n

. Then the expected size of S is 8M
s

√
n log n.

Claim 4.4. The probability that S satisfies property 1 is greater than 1/2.

Proof. By part 3 of the Chernoff bound (Theorem 4.3), using δ = 1/2, we find that

P

[

4M

s

√

n log n ≤ |S| ≤ 12M

s

√

n log n

]

> 1 − 2 exp

(

−8M
√

n log n

16s

)

= 1 − 2 exp
(

−36s2
√

n log n/2
)

>
1

2
,

where the last inequality is true since n ≥ n0 ≥ 2 implies that exp(−36s2
√

n log n/2) <

1/4.

Claim 4.5. The probability that S satisfies property 2 is more than 1/2.

Proof. Let v be a vertex of H. Since H is an STS, the neighbourhood of v consists

of n−1
2

disjoint pairs of vertices. Let Xv denote the random variable that counts

the number of pairs xy in the neighbourhood of v that are both in S. Since each

vertex of H is in S with probability p, the expected value of Xv is

E[Xv] =
n − 1

2
p2 =

32(n − 1)M2 log n

s2n
.

For a fixed vertex v, we find that using part 1 of Chernoff bounds with δ = 1/2

and the fact that n ≥ 3, we get

P

[

Xv <
16M2 log n

s2

]

≤ P

[

Xv <
32(1 − 1

2
√

2
)(n − 1)M2 log n

s2n

]

< e−E[Xv]/16.
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Using part 2 of the Chernoff bounds, we get

P

[

Xv >
48M2 log n

s2

]

≤ P

[

Xv >
48(n − 1)M2 log n

s2n

]

< e−E[Xv]/16.

Combining the two we get

P

[

16M2 log n

s2
≤ Xv ≤ 48M2 log n

s2

]

> 1 − 2e−E[Xv ]/16

= 1 − 2 exp

(

−2(n − 1)M2 log n

s2n

)

> 1 − 2 exp

(

−M2 log n

s2

)

.

Therefore the probability that every vertex v has at least 16M2 log n
s2 pairs in its

neighbourhood that are in S, and at most 48M2 log n
s2 such pairs, is bounded below

by

1 − 2ne−
M2 log n

s2 = 1 − 2n(n−M2

s2 )

= 1 − 2n(n−362s4

)

>
1

2
,

since n ≥ n0 ≥ 2.

Combining Claims 4.4 and 4.5, we get that

Claim 4.6. There exists an S ⊆ V (H) such that Properties 1 and 2 hold.

We now fix an S that satisfies both Properties 1 and 2. For a vertex v we denote

by dS(v) the number of pairs in the neighbourhood of v that are both in S. Then

by Property 2 we have

16M2 log n

s2
< dS(v) <

48M2 log n

s2
.

Now for Step 2, we choose list assignments for the vertices in S. We claim the

following.

Claim 4.7. There exists a choice of lists for vertices in S such that for each vertex

v in H and each colour i, the number of pairs of vertices of S in the neighbourhood

of v that have colour i in both of their lists is at most 2dS(v) s2

M2 .
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Proof. We will also do this randomly. We give each vertex of S one of the s-subsets

of {1, . . . ,M} uniformly at random. Thus the probability that a vertex of S receives

colour i in its list is
(M−1

s−1 )
(M

s )
= s

M
. Let v be a vertex and i a colour. Let the random

variable Y i
v count the number of pairs xy in the neighbourhood of v such that both

x and y are in S and receive the colour i in their lists. Then the expected value of

Y i
v is dS(v) s2

M2 . Thus by part 2 of Chernoff and property 2 of S, we find that the

probability that there are more than 2dS(v) s2

M2 pairs incident to v that get colour

i in their lists is at most

e−dS(v) s2

4M2 < e−
16 log n

4 .

Thus the probability that some vertex v has more than 2dS(v) s2

M2 neighbour

pairs getting colour i for some i is bounded above by

Mne−
16 log n

4 = Mn−3 < 1,

where the last inequality holds since n ≥ n0 > 36s3 = M . Therefore, at least one

list assignment would satisfy the conclusion of this claim.

We fix a choice of lists L for the vertices in S that satisfies the conditions in

Claim 4.7. Let di(v) denote the number of pairs in the neighbourhood of v that

have colour i in both of their lists. From the claim, we know that di(v) ≤ 2dS(v) s2

M2

for any choice of vertex v and colour i.

Now our task for Step 3 of the argument is to choose lists for the remaining

n − |S| vertices so that there is no proper list colouring in H with these lists. Let

c be a partial colouring that assigns to each vertex of S a colour from its list. Let

us say that a colour i is forbidden at v by c if both vertices of some pair in the

neighbourhood of v are coloured i by c. We denote by Fc(v) the number of colours

forbidden at v by c. We claim the following.

Claim 4.8. For each choice of c, there are at least n
72s2 vertices v such that Fc(v) ≥

s.

Proof. We first fix a partial colouring c. Then the total number of pairs of vertices

in S that are monochromatic pairs under c is B =
∑M

i=1

(

C(i)
2

)

, where C(i) denotes
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the number of vertices in S that receive colour i under c. We will bound B in two

ways.

First, we give a lower bound for B. Since
∑M

i=1 C(i) = |S|, the value of B is

minimized when all C(i) are as close in size as possible. Therefore, using property

1 for S, we have

B ≥ M

(⌊ |S|
M
⌋

2

)

≥ M

2

( |S|
M

− 1

)2

− |S|
2

≥ |S|2
2M

− 3|S|
2

>
|S|2
4M

>
4Mn log n

s2
, (4.2)

where the second last inequality uses the fact that n ≥ n0 ≥ s4, which implies

|S| ≥ 4M
√

n log n/s > 6M.

Moreover, note that since H is a Steiner triple system, each of these monochromatic

pairs lies in the neighbourhood of (exactly) one vertex v.

Now we give an upper bound for B. We define the real number α such that the

number of vertices v for which Fc(v) < s is (1 − α)n. Then note that each of the

remaining αn vertices trivially has Fc(v) ≤ M . Also, if Fc(v) < s then certainly

v has at most di(v) monochromatic pairs in colour i for each i ∈ Fc(v), so v has

in total at most 2sdS(v) s2

M2 monochromatic pairs in its neighbourhood altogether

under c. Similarly, if Fc(v) < M , then v has at most 2MdS(v) s2

M2 monochromatic

pairs in its neighbourhood under c.

Therefore, using property 2 of S, we have

B ≤ (1 − α)n

(

2sdS(v)
s2

M2

)

+ αn

(

2MdS(v)
s2

M2

)

= 2ndS(v)
s2

M2
((1 − α)s + αM)

≤ 2n(
48M2 log n

s2
)

s2

M2
((1 − α)s + αM)

= 96n log n((1 − α)s + αM). (4.3)

Combining the two inequalities (4.2) and (4.3), we get

4Mn log n

s2
< 96n log n(s − αs + αM).

This implies
M

s2
< 24(s − αs + αM).
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Recalling that M = 36s3, we get

36s < 24(s + α(M − s))

which implies

α >
12s

24(M − s)
=

s

72s3 − 2s
>

1

72s2
.

Therefore for each colouring c of S, there are at least n
72s2 vertices v such that

Fc(v) ≥ s.

The number of colourings c of S is s|S|. By Claim 4.8, each one results in

at least n
72s2 − |S| ≥ n

144s2 vertices v of V (H) \ S each with at least s forbid-

den colours (the inequality is true since n ≥ n0 ≥ 1443 · M4 implies that |S| ≤
12M

s

√
n log n < n/144s2). For each colouring c, there are therefore at most (

(

M
s

)

−
1)

n

144s2
(

M
s

)n−|S|− n

144s2 possible list assignments to the vertices of V (H)\S that could

have a proper colouring that extends c, since if a vertex v had a list consisting of

s forbidden colours then no proper colouring could exist. Thus the number of list

assignments to V (H) \ S for which some colouring c of S could be extended to a

proper colouring of H is at most

s|S|
(

M

s

)n−|S|
(

1 − 1
(

M
s

)

)
n

144s2

<

(

M

s

)n−|S|
s|S| exp

(

− n

144s2
(

M
s

)

)

, (4.4)

which is less than the total number
(

M
s

)n−|S|
of list assignments for V (H) \ S

provided that

s|S| exp

(

− n

144s2
(

M
s

)

)

< 1.

This is true if and only if

|S| log s − n

144s2
(

M
s

) < 0.

Using property 1 of S, this is true when

12M

s

√

n log n log s <
n

144s2
(

M
s

) .

Squaring both sides and rearranging the inequality, we see that this holds if and

only if
(

123Ms log s

(

M

s

))2

<
n

log n
.
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Taking K0 = 123Ms log s
(

M
s

)

, we simplify this to the inequality

K2
0 <

n

log n
.

Since n/ log n is an increasing function, if this inequality is true for the lower bound

of n, it is true for all n. But since n ≥ n0 = K3
0 and 3 log K0 < K0, indeed we have

K2
0 < n/ log n. Therefore, (4.4) is true, and there exists an assignment of lists to

V (H) \ S such that no colouring c of S can be extended to all of H. Therefore the

list chromatic number of H is greater than s. 2

4.1.3 Proof of Corollary 4.2

Using (4.1), Theorem 4.1 shows that when

n ≥ 129(36s4 log s)3

(

36s3

s

)3

,

any STS(n) is not s-list-colourable. We may crudely estimate this as

n ≥ c0s
24s (4.5)

for some large constant c0. This is equivalent to

log n ≥ 24s log c0s

= c1s + 24s log s

= s log s(c1/ log s + 24),

where c1 = 24 log c0. If we fix n, then for c = 1/(c1 + 24) and substituting s =

c log n/ log log n, we have

s log s(c1/ log s + 24) ≤ s log s(c1 + 24)

=
log n

log log n
log

(

c log n

log log n

)

=
log n

log log n
(log log n + log c − log log log n)

≤ log n,

since c < 1 implies that log c < 0. Therefore, when s = c log n/ log log n, (4.5)

holds. Hence, ListSpecm(n) ≥ c log n/ log log n. 2
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4.1.4 Comparing χ and χl for STS

Theorem 4.1 raises an interesting question. Recall that Specm(n) = 3 for every

admissible n ≥ 7. However, Corollary 4.2 tells us that ListSpecm(n) → ∞ as

n → ∞. So this provides the first confirmed instance that we have seen where the

chromatic number of an STS differs from its list chromatic number. So we can ask,

when do the chromatic number and the list-chromatic number differ for an STS?

In particular, what is the smallest admissible n such that there exists an STS(n)

whose list-chromatic number is strictly greater than its chromatic number? Let N

be this number.

Based on the results in Sections 2.3.3 and 3.1, we see that N ≥ 15. If Conjecture

3.15 about Steiner triple systems of order 15 is true, then we would have N ≥ 19,

the next admissible order. From the proof of Theorem 4.1, we see that when we

plug in s = 3, this gives

N < 5.865692 · 1019.

However, we believe that the true value for N should be closer to 19 rather than

this astronomical number.

4.2 An Upper Bound on χl in Terms of χ

Here we give a bound that relates the list chromatic number of a Steiner triple

system to its chromatic number, showing that they cannot differ wildly, i.e. by at

most a factor of log n. This result will produce various bounds on ListSpecm and

ListSpecM in general. In particular, we will show that our bound on ListSpecm in

Corollary 4.2 is not too far from the truth. The idea for the proof of this lemma

comes from Exercise 2.7.9 in [7], about proving that a bipartite graph with n vertices

has list-chromatic number at most log2 n.

Lemma 4.9. Let n be given, and suppose H is a STS(n) with chromatic number

k. Then H is ⌈k(log n + 1)⌉-list-colourable.

Proof. Fix a vertex colouring c of H with k colours. Let lists of length ⌈k(log n+1)⌉
be assigned to each vertex of H. Let U denote the union of all the lists, then

certainly |U | ≥ ⌈k(log n + 1)⌉. We partition U randomly into k subsets U1, . . . , Uk

by putting each u ∈ U into Ui randomly and independently with probability 1
k
.
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We estimate the probability that a vertex v that is coloured i by c has a colour

from Ui in its list. Since each element in its list is in Ui with probability 1
k
, the

probability that no colour in v’s list is in Ui is

(

1 − 1

k

)⌈k(log n+1)⌉
< e− log n−1.

Thus the probability that some vertex v fails to have an element of Ui in its list,

where i is its colour under c, is at most

ne− log n−1 <
1

e
< 1.

Thus there exists a partition of U such that each vertex v has a colour in its list

from Ui where c(v) = i. Then we can give H a colouring by giving each v a colour

in its list from Ui where c(v) = i. We claim that no edge is monochromatic under

this colouring. For suppose an edge is monochromatic in colour j, and let i be such

that j ∈ Ui. Then since the only vertices that get any colour at all in Ui, hence in

particular j, are all coloured i by c, it must be true that this edge is monochromatic

in colour i under c. But this contradicts the fact that c is a colouring of H. Thus

this colouring is a valid list colouring of H, and the proof is complete.

Together with Theorem 3.2 which states that for every admissible n ≥ 7 there

exists a 3-colourable STS(n), the above result implies that for every admissible

n ≥ 7 there exists an STS(n) whose list chromatic number is at most ⌈3(log n+1)⌉.
This implies the following.

Corollary 4.10. For every admissible n, ListSpecm(n) ≤ ⌈3(log n + 1)⌉.

Together with Corollary 4.2, we have pinned down the order of ListSpecm to

somewhere between log n/ log log n and log n.

Furthermore, recall that Theorem 3.3 by Phelps and Rödl [54] gives an upper

bound SpecM(n) ≤ C
√

n/ log n for some constant C, where C is large. When

combined with Lemma 4.9, this gives the following.

Corollary 4.11. There exists a constant C such that for every admissible n,

ListSpecM(n) ≤ C
√

n log n.

Note that for relatively “small” n, we can obtain a better upper bound on

ListSpecM(n) using a simple argument based on minimum improper colourings.

We will give this proof in the next section.
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4.3 An Upper Bound on ListSpecM(n)

Here we give a simple proof for an upper bound on the list chromatic number of all

Steiner Triple Systems that is better than the greedy upper bound (Lemma 2.3),

and better than Corollary 4.11 when n is small. Recall that STS(n) exists only for

n ≡ 1, 3 mod 6. For t ≥ 1, if n = 6t + 1, then each vertex has degree 3t, so by the

greedy upper bound, its list chromatic number is at most 3t+1. If n = 6t+3, then

each vertex has degree 3t + 1, so its list chromatic number is at most 3t + 2. We

now give a proof that improves this upper bound by approximately two-thirds.

Lemma 4.12. For each t ≥ 1, if H is an STS(n) where n = 6t + 1, then χl(H) ≤
2t + 1. If n = 6t + 3, then χl(H) ≤ 2t + 2.

Proof. We will only prove the case for n = 6t + 1, as the case for n = 6t + 3 is

similar. Suppose that H is not (2t+1)-list-colourable. Then there exists a (2t+1)-

list-assignment L such that H is not properly L-colourable. Let c be a MIC with

respect to L, and let e = {v1, v2, v3} be a monochromatic edge with colour 1. There

are 6t − 2 vertices remaining, which we call spare vertices. There are 2t colours in

L1 = L(v1) \ {1}, and each such colour x must take up at least 2 spare vertices

in order to accomodate ec(v1, x). So at least 4t spare vertices are used up already.

Now there are 2t colours in L2 = L(v2) \ {1}. If a colour x in L2 is not in L1,

then x requires an additional two spare vertices. If x ∈ L1 ∩ L2, then x requires

one additional spare vertex to cover both ec(v1, x) and ec(v2, x). Therefore, at least

2t additional spare vertices are needed. However, this means a total of 6t spare

vertices are needed while there are only 6t − 2 available, which is a contradiction.

Hence H must be (2t + 1)-list-colourable.

This implies the following.

Corollary 4.13. For each admissible n, ListSpecM(n) ≤ 1
3
n + 1.
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Chapter 5

Embedding Nearly-Spanning

Bounded-Degree Trees

In this chapter, we will see a set of sufficient conditions for a graph to contain

(as subgraphs) all nearly-spanning trees of a fixed maximum degree, in terms of

the graph’s expansion properties. We will also apply this to random graphs. In

particular, we answer a question about embedding large trees in random graphs

asked by Alon, Krivelevich and Sudakov [6].

There are two main results that we will prove in this chapter, both of which

improve upon results of [6]. One is a general result regarding embedding nearly-

spanning trees in expanding graphs (Theorem 5.3), and the other is a result about

embedding in random graphs (Corollary 5.4). We will give the statements of the

results of [6] and our improved results in Section 5.1. In Section 5.2, we will prove

Theorem 5.3, and finally in Section 5.3, we will prove Corollary 5.4.

5.1 Embedding nearly-spanning trees

Given a graph G on n vertices, a small constant 0 < ε < 1/2, and an integer d ≥ 2,

we wish to find conditions on G such that it contains every nearly-spanning tree

with maximum degree at most d. A nearly-spanning tree is one that has (1 − ε)n

vertices. Our proof will follow the general ideas of [6].

First, we need to define the notion of expansion. Let G be a graph, and let

X ⊂ V . Define NG(X) to be the set of vertices that are adjacent to at least one
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vertex in X (the “neighbours”). Note that NG(X) may contain some vertices of

X. Let c and α < 1 be two positive numbers. A graph G = (V,E) is called an

(α, c)-expander if for all X ⊂ V with |X| ≤ α|V |,

|NG(X)| ≥ c|X|.

The main result that Alon, Krivelevich and Sudakov have proved is the follow-

ing:

Theorem 5.1 (Alon, Krivelevich and Sudakov [6]). Let d ≥ 2, 0 < ε < 1/2. Let

G = (V,E) be a graph on n vertices of minimum degree δ and maximum degree ∆.

Let n, δ, ∆ satisfy the following conditions:

1. (the orer of the graph is sufficiently large)

n ≥ 480d3 log(2/ε)

ε
,

2. (the maximum degree is not too large compared to the minimum degree)

∆2 ≤ 1

K
e(δ/8K)−1 where K =

20d2 log(2/ε)

ε
,

3. (local expansion) every subgraph G0 of G with minimum degree at least εδ
40d2 log(2/ε)

is a ( 1
2d+2

, d + 1)-expander.

Then G contains a copy of every tree T on at most (1−ε)n vertices with maximum

degree at most d.

A consequence of this theorem is the following result regarding embedding

nearly-spanning trees in random graphs:

Corollary 5.2 (Alon, Krivelevich and Sudakov [6]). Let d ≥ 2, 0 < ε < 1/2, and

c ≥ 106d3 log d log2(2/ε)

ε
.

Then the random graph G(n, c/n) asymptotically almost surely (a.a.s.) contains

every tree T on at most (1 − ε)n vertices with maximum degree at most d.
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In the same paper, the authors speculate that this lower bound for c may not

be necessary, perhaps c = O(d log(1/ε)) is sufficient to embed all nearly spanning

trees of maximum degree at most d a.a.s. This is best possible: d is needed because

a random graph needs to have vertices of degree at least d in order to embed trees

of maximum degree d; and as mentioned in the introduction, Frieze [35] showed

that c = O(log(1/ε)) is needed to embed a path of length (1−ε)n, so this is a lower

bound for embedding trees. We are close to achieving the speculated bound on c

with respect to the parameter d (with only an extra factor of log d), improving the

bound of c by a factor of d2. We first make a refinement on the main theorem:

Theorem 5.3. Let d ≥ 2, 0 < ε < 1/2. Let G = (V,E) be a graph on n vertices

of minimum degree δ and maximum degree ∆. Let n, δ, ∆ satisfy the following

conditions:

1. (the order of the graph is sufficiently large)

n ≥ 60d/ε,

2. (the maximum degree is not too large compared to the minimum degree)

∆2 ≤ 1

K
e(δ/8K)−1 where K =

40 log(2/ε)

ε
,

3. (local expansion) every subgraph G0 of G with minimum degree at least εδ
80 log(2/ε)

is a ( 1
4d+1

, 3d)-expander.

Then G contains a copy of every tree T on at most (1−ε)n vertices with maximum

degree at most d.

We note that condition 2 ensures that the minimum degree δ has order at least

Ω(K), which is Ω(log(1/ε)/ε). Since n > δ, n must be at least Ω(log(1/ε)/ε) as

well, and this is a lower bound for n in terms of ε. In some cases, this may already

be larger than the lower bound given in condition 1, which gives a lower bound for

n in terms of d and ε.

Using this theorem, we can prove the following improvement on Corollary 5.2:

Corollary 5.4. Let d ≥ 2, 0 < ε < 1/2, and

c ≥ 107d log d log2(2/ε)

ε
.

Then the random graph G(n, c/n) asymptotically almost surely contains every tree

T on at most (1 − ε)n vertices with maximum degree at most d.
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5.2 Embedding trees in expanding graphs

We will prove Theorem 5.3 in this section. First, we will give an overall framework

for this proof in Section 5.2.1. In three subsequent sections, we will provide the

tools that are necessary in the proof: Section 5.2.2 describes results that we use

to embed small trees, Section 5.2.3 shows how we can split the tree that we want

to embed into small trees, and Section 5.2.4 splits the graph into pieces that have

special properties. Finally in Section 5.2.5, we give the proof of Theorem 5.3.

5.2.1 Approach to proving Theorem 5.3

We will give an outline for how the proof of Theorem 5.3 works. We emphasize

again that the general approach comes from Alon, Krivelevich and Sudakov [6].

The gist of it is that we will cut the tree into pieces that are “small” relative

to the graph, find large subgraphs of G that have high expansion property, and

use Corollary 5.7 (which shows that one can embed small trees into expanding

graphs) to sequentially embed such subtrees into these subgraphs. Note that [6]

used Theorem 5.5 to embed small trees, and by using Corollary 5.7 instead, we

obtain a saving of a factor of d in the main result of Corollary 5.4.

First, in Section 5.2.2, we will divide the tree that we would like to embed into

several pieces. The way we divide the tree is different from [6], and this leads to

a saving of another factor of d in Corollary 5.4. Given the tree T , we cut it down

into a constant number s (dependent only on ε) of subforests T1, T2, . . . , Ts, with

the exception that T1 must always be a tree. The number of vertices in each Ti is

about a fraction of the size of T . Each of the subforests Ti where i > 1 has the

property that there exists a vertex vi−1 (called its “root”) in Ti−1 such that vi−1 is

adjacent to a vertex in each of the subtrees of Ti. In the embedding process, we will

embed the subforests one at a time. Whenever we try to embed Ti where i > 1, its

root has already been embedded in Ti−1, so we may attempt to embed Ti together

with its root (which would form a tree) using Corollary 5.7.

In Section 5.2.4, we will mention a result from [6] where, using the Lovász

Local Lemma, condition 2 of our theorem regarding the relationship between the

maximum degree and the minimum degree of the graph guarantees the existence

of a partition of V (G) into a constant number of pieces S1, S2, . . . , SK such that

each vertex in the graph has many neighbours (about a fraction of the minimum
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degree) in each piece. We pick the s smallest ones S1, . . . , Ss which will only occupy

at most εn/2 vertices, a small fraction of the graph. These pieces will eventually

provide us with subgraphs of G that have large enough minimum degree so that

condition 3 in our theorem would imply the expansion property necessary to apply

Corollary 5.7.

The proof of the main theorem is in Section 5.2.5. We embed the subforests in

sequential order T1, T2, . . . , Ts. We pick an arbitrary vertex to be the root of T1.

When we embed Ti, we consider the subgraph Ui which includes Si, the embedded

root of Ti, and vertices outside of any Sj’s which have not been used in embedding

T1, . . . , Ti−1. Since this subgraph Ui contains Si, it has high minimum degree and

hence high expansion factor. Also, since S1, . . . , Ss are small and n is sufficiently

large by condition 1 of the theorem, the size of Ui is large enough compared to Ti

so that we can apply Corollary 5.7 to embed Ti into Ui. Note that each Si is only

used once in the entire process, namely when we embed Ti. Unused vertices that

are not in any Sj’s are “recycled” after each embedding.

5.2.2 Embedding small trees

The proof of the main theorem essentially depends on the ability to embed small

trees into graphs of high expansion factor. Alon, Krivelevich and Sudakov relied

on the following result from Friedman and Pippenger:

Theorem 5.5 (Friedman and Pippenger [34]). Let T be a tree on t vertices of

maximum degree d rooted at r. Let H = (V,E) be a non-empty graph such that for

each X ⊂ V with |X| ≤ 2t − 2,

|NH(X)| ≥ (d + 1)|X|.

Let v be an arbitrary vertex in H. Then H contains a copy of T as a subgraph,

rooted at v.

To improve the result of Alon, Krivelevich and Sudakov, we need the following

refinement on the theorem of Friedman and Pippenger, proved by Haxell:

Theorem 5.6 (Haxell [39]). Let T be a tree on t vertices of maximum degree d

rooted at r. Let ∅ = T0 ⊂ T1 ⊂ T2 ⊂ · · · ⊂ Tl ⊂ T be a sequence of subtrees of T

such that T can be obtained from Tl by adding leaves to Tl. Let d = d1 ≥ · · · ≥ dl ≥ 1
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be a sequence of integers such that for each i with 1 ≤ i ≤ l and each v ∈ V (T ),

degT (v) − degTi−1
(v) ≤ di (where degG(u) is the degree of u in the graph G). Let

ti = |E(Ti)|. Suppose there is an integer k ≥ 1 and a graph H satisfying the

following l + 2 conditions:

(0) |N(X)| ≥ d|X| + 1 for all X ⊂ V (H), 1 ≤ |X| ≤ 2k,

(i) |N(X)| ≥ di|X| + ti + 1 for all X ⊂ V (H), k < |X| ≤ 2k (for 1 ≤ i ≤ l),

(l + 1) |N(X)| ≥ t + 1 for all X ⊂ V (H), |X| = 2k + 1.

Let v be an arbitrary vertex of H. Then H contains a copy of T as a subgraph,

rooted at v.

And here is an application that improves Corollary 5.2 by a factor of d:

Corollary 5.7. Let T be a tree on t vertices of maximum degree d rooted at r. Let

H = (V,E) be a non-empty graph such that for each X ⊂ V with |X| ≤ t/d + 1,

|NH(X)| ≥ 3d|X|.

Let v be an arbitrary vertex in H. Then H contains a copy of T as a subgraph,

rooted at v.

Proof. Let T1 be the tree obtained from T by removing a leaf. We use Theorem

5.6 with l = 1 and k = t/2d to prove this result. Suppose that |NH(X)| ≥ 3d|X|
for all X ⊂ V with |X| ≤ t/d + 1. We need to show that conditions (0), (1) and

(2) in Theorem 5.6 hold.

(0) For 1 ≤ |X| ≤ t/d, |NH(X)| ≥ 3d|X| clearly implies |NH(X)| ≥ d|X| + 1, so

this condition holds.

(1) For t/2d < |X| ≤ t/d, we first note that d1 ≤ d, and t1 = t − 1 ≤ t < 2d|X|,
which implies that t1 + 1 ≤ 2d|X|. So

|NH(X)| ≥ 3d|X| = d|X| + 2d|X| ≥ d1|X| + t1 + 1,

hence this condition holds.

(2) For |X| = t/d + 1, t = d(|X| − 1). Therefore, |NH(X)| ≥ 3d|X| ≥ t + 1, and

this condition holds.

Since all three conditions are satisfied, Theorem 5.6 implies that there exists a copy

of T in H, rooted at v.
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5.2.3 Splitting the tree

We need the following result to help us in splitting the tree into subforests. This is

a modification of the tree splitting method in [6]. Our method reduces the number

of pieces by a factor of d2, and this is another key in improving the results in [6].

We first define a pseudo-rooted subforest T ∗ of a rooted tree T as follows: Let

T be rooted at r. Let r1, . . . , rl be vertices in T that have a common parent v in

T . Let T1, . . . , Tl be subtrees of T where each Ti contains ri and all descendants of

ri in T . Then T ∗ consists of T1 ∪ · · · ∪Tl. We call the vertex v the root of T ∗. Note

that if T ∗ is a pseudo-rooted subforest of T , then T − T ∗ is a tree.

Proposition 5.8. Let k be a positive integer. Let T be a tree on at least k + 1

vertices. Root T at any vertex. Then there exists a pseudo-rooted subforest T ′ of T

such that the number of vertices in T ′ is between k and 2k − 2.

Proof. Let r be the root of T . Let Li be the set of vertices of distance i from r,

i ≥ 1. For each vertex v, define t(v) to be the number of vertices in the subtree of

T rooted at v. Define i0 to be the largest i such that at least one vertex v in Li

has t(v) ≥ k. Since there is only one vertex v in L1 and t(v) ≥ |V (T )| − 1 ≥ k, we

see that i0 ≥ 1. Let u be any vertex in Li0 satisfying t(u) ≥ k. If t(u) = k, then

the subtree of T rooted at u satisfies the conclusion of this proposition, and we are

done. Otherwise, let u1, . . . , ul be the children of u, and let Ti be the subtree of

T rooted at ui, 1 ≤ i ≤ l. Order the indices so that |T1| ≤ |T2| ≤ · · · ≤ |Tl|. Let

j be the smallest index such that
∑j

i=1 |Ti| ≥ k. But
∑j−1

i=1 |Ti| < k and |Tj| < k,

so
∑j

i=1 |Ti| ≤ 2k − 2. Therefore, T ′ = ∪j
i=1Ti satisfies the conclusion of this

proposition, and we are done.

We can now split a tree into one subtree and a constant number of pseudo-rooted

forests as follows.

Corollary 5.9. Suppose 0 < ε < 1/2, and T is an arbitrary tree on (1 − ε)n

vertices. Then we can cut T into a subtree T1 and s − 1 disjoint pseudo-rooted

subforests T2, . . . , Ts such that for each i > 1, the root vi of Ti is in ∪j<iTj, and

εn/2 +
∑

j>i |V (Tj)|
16

≤ |V (Ti)| ≤
εn/2 +

∑

j>i |V (Tj)|
8

.

For T1, the upper bound holds, but not necessarily the lower bound. (The union of

the vertices of the subforests is V (T ).) Also, s ≤ 20 log(2/ε).
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Proof. We will choose the subforests one by one in reverse order. So our choices

for the pseudo-rooted subforests T ′
1, T

′
2, . . . , T

′
s will satisfy

εn/2 +
∑

j<i |V (T ′
j)|

16
≤ |V (T ′

i )| ≤
εn/2 +

∑

j<i |V (T ′
j)|

8
,

except for T ′
s; and the root v′

i of each T ′
i is in T − ∪j≤iT

′
j . At the end, we will set

Ti = T ′
s−i+1 and vi = v′

s−i+1.

For T ′
1, we use Proposition 5.8 to obtain a subforest such that all components

are connected to the same vertex v′
1 of T −T ′

1, and the number of vertices is between
εn
32

and εn
16

. We now remove T ′
1 from T , and note that T − T ′

1 is still a tree.

Suppose we have obtained T ′
1, . . . , T

′
i−1 that satisfy the conditions stated above.

Let T ′ = T − ∪j<iT
′
j . If T ′ contains fewer than

εn/2+
P

j<i |V (T ′

j)|
8

vertices, then set

Ti = T ′, i = s, and we are done. Otherwise, use Proposition 5.8 to obtain a

pseudo-rooted subforest T ′
i whose number of vertices is between

εn/2+
P

j<i |T ′

j |
16

and
εn/2+

P

j<i |T ′

j |
8

with root v′
i in T − ∪j≤iT

′
j , and continue with this process.

It remains to bound the number of subforests s that we have created. Let

ai = εn/2+
∑

j<i |V (T ′
j)|. Then a0 = εn/2 and ai ≤ εn/2+ |V (T )| ≤ n−εn/2 ≤ n.

Also, ai+1 = ai + |V (T ′
i+1)| ≥ (1 + 1

16
)ai. Therefore,

2

ε
≥ as

a0

≥
(

1 +
1

16

)s

.

Solving the inequality, we get s ≤ 20 log(2/ε).

5.2.4 Splitting vertex degrees

The following result shows that when the minimum degree is not far from the

maximum degree, it is possible to partition the vertices of the graph into pieces so

that every vertex has a large number of neighbours in each piece. This is essential

in finding subgraphs that have high minimum degree.

Lemma 5.10 ([6]). Let numbers K, δ, ∆ satisfy

K∆2e(−δ/8K)+1 < 1.

Let H = (V,E) be a graph with minimum degree δ and maximum degree ∆. Then

H contains K pairwise disjoint sets of vertices S1, . . . , SK such that every vertex of

H is adjacent to at least δ/2K vertices in each Si.
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This is the same theorem as in [6]. The proof is an application of Lovász’s Local

Lemma.

5.2.5 Proof of Theorem 5.3

Suppose G = (V,E) is a graph on n vertices that satisfies conditions 1, 2, and 3

of the theorem. Let T be a tree on at most (1 − ε)n vertices of maximum degree

at most d. Use Corollary 5.9 to split the tree into s pseudo-rooted subforests or

subtrees T1, . . . , Ts with their respective roots v1, . . . , vs, where s ≤ 20 log(2/ε).

Denote t = |V (T )|, and ti = |V (Ti)| for 1 ≤ i ≤ s. Put K ′ = 2s/ε ≤ 40 log(2/ε)
ε

.

(Note that in condition 2 of this theorem, the right hand side of the inequality

decreases as K grows. Since substituting K = 40 log(2/ε)
ε

satisfies the inequality by

assumption, the K ′ we use here also satisfies the inequality.) Then using condition

2 of this theorem and Lemma 5.10, there exist K ′ mutually disjoint sets of vertices

S1, . . . , SK′ such that every vertex of G is adjacent to at least δ/2K ′ ≥ εδ
80 log(2/ε)

vertices in each Si. Pick the s smallest sets among S1, . . . , SK′ , and renumber them

as S1, . . . , Ss. The total size of these s sets is at most sn
K′

= εn
2

.

Let x1 be an arbitrary vertex that is not in any Si’s. This will be the root for the

embedded T1 (recall that T1 is a tree). Let U1 = V − ∪j 6=1Sj, and let G1 = G[U1].

Since U1 contains S1, the minimum degree of G1 is at least εδ
80 log(2/ε)

. By condition

3, G1 is a ( 1
4d+1

, 3d)-expander, hence for all X ⊂ U1 with |X| ≤ |U1|/(4d + 1), we

have |NG1
(X)| ≥ 3d|X|. In order to apply Corollary 5.7 and conclude that T1 can

be embedded into G1 with root x1, we need to show that |U1|
4d+1

≥ t1
d

+ 1. We know

that

|U1| ≥ n −
s
∑

j=1

|Si| ≥ n − εn/2.

From Corollary 5.9, we see that

t1 ≤
εn/2 +

∑

j>1 tj

8
≤ εn/2 + t

8
≤ εn/2 + (1 − ε)n

8
=

n − εn/2

8
≤ |U1|

8
.

Therefore,
t1
d

+ 1 ≤ |U1|
8d

+ 1 ≤ |U1|
4d + 1

.

The last inequality is true provided that

|U1| ≥ 13d ≥ 32d2 + 8d

4d − 1
,
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which is confirmed by

|U1| ≥ n − εn/2 ≥ 3n/4 ≥ 45d

using condition 1 of the theorem. So we can indeed embed T1 into G1 with root x1

using Corollary 5.7.

Suppose that we have already embedded T1, . . . , Ti−1, such that the root of each

subforest Tj is embedded to xj, and the embedded Tj does not use any vertices

in ∪l 6=jSl. We now wish to embed the subforest Ti by embedding the tree T ∗
i =

T [V (Ti) ∪ {vi}]. The root vi of T ∗
i has already been embedded to some vertex xi

in the previous steps. Let Ui be the set of vertices of G − ∪j 6=iSj that have not

been used in the embedding of T1, . . . , Ti−1, except for xi. Let Gi = G[Ui]. Since

Ui contains Si and no edge in Gi is used in embedding T1, . . . , Ti−1, the minimum

degree of Gi is at least εδ
80 log(2/ε)

. By condition 3, Gi is a ( 1
4d+1

, 3d)-expander, hence

for any X ⊂ Ui with |X| ≤ |Ui|/(4d + 1), we have |NGi
(X)| ≥ 3d|X|. In order to

apply Corollary 5.7 and conclude that T ∗
i can be embedded into Gi with root xi,

we need to show that |Ui|
4d+1

≥ ti+1
d

+ 1. For Ui, we have

|Ui| ≥ n −
s
∑

j=1

Sj −
∑

j<i

tj ≥ n − εn/2 −
∑

j<i

tj.

From Corollary 5.9, we see that

ti ≤
εn/2 +

∑

j>i tj

8
=

εn/2 + t −∑j≤i tj

8

≤
n − εn/2 −∑j<i tj

8
≤ |Ui|

8
.

Therefore,
ti + 1

d
+ 1 ≤ |Ui|

8d
+ 2 ≤ |Ui|

4d + 1
.

The last inequality is true provided that

|Ui| ≥ 30d ≥ 64d2 + 16d

4d − 1
,

which is confirmed by

|Ui| ≥ n − εn/2 − (1 − ε)n ≥ nε/2 ≥ 30d

using condition 1 of the theorem. So we can indeed embed T ∗
i into Gi with root xi

using Corollary 5.7.

We may continue this process until Ts, at which point T would be entirely

embedded into G. Hence the theorem holds.
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5.3 Embedding trees in random graphs

We aim to prove Corollary 5.4, which states that for 0 < ε < 1/2 and d ≥ 2, if

c ≥ 107d log d log2(1/ε)

ε
,

then the random graph G(n, c/n) contains every tree of maximum degree at most

d with at most (1 − ε)n vertices, asymptotically almost surely. We first show that

there are only a small number of vertices with very high and very low degrees, and

we may remove them without reducing the size of the graph too much. This way,

conditions 1 and 2 of Theorem 5.3 can be satisfied. The hard work is then to show

that such a sparse random graph has good expansion properties (i.e. each subgraph

of certain minimum degree is an expander). Again, we mimic the proof in [6] here.

The key in this proof is the following lemma:

Lemma 5.11 ([6] essentially). For every integer d ≥ 2, reals 0 < θ < 1/2 and

D ≥ 50θ−1, the random graph G(n, 4D
n

) a.a.s. contains a subgraph G∗ with the

following properties:

1. |V (G∗)| ≥ (1 − θ)n;

2. D ≤ dG∗(v) ≤ 10D for all v ∈ V (G∗); and

3. every induced subgraph G0 of G∗ of minimum degree at least D0 = 200d log D

is a ( 1
4d+1

, 3d)-expander.

To prove this lemma, we need the following properties about random graphs in

general:

Proposition 5.12 ([6]). Let G(n, p) be a random graph with np > 20. Then the

following two items occur a.a.s.:

(i) The number of edges between any two disjoint sets A,B ⊆ V with |A| = a

and |B| = b such that abp ≥ 32n is at least abp/2 and at most 3abp/2.

(ii) For every subset of vertices S with size a where a ≤ n/4, G[S] contains less

than anp/2 edges.

The proof of this proposition consists of simple applications of Chernoff bounds.

This statement is not changed from [6].
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Proof of Lemma 5.11. In the first part of the proof, we will remove vertices of

low degree and high degree so that at least (1 − θ)n vertices remain, in order to

satisfy conditions 1 and 2. Let G = G(n, p) be a random graph with p = 4D
n

,

and let X be the set of θn/2 vertices with the largest degrees in the graph. Since

np = 4D ≥ 200θ−1 ≥ 400 and θn/2 ≤ n/4, we may apply part (ii) of Proposition

5.12 to see that a.a.s. there are fewer than |X|np/2 = 2D|X| edges in G[X]. Also,

since |X|(n − |X|)4D
n

≥ 4D
n

θn
2

(1 − θ
2
)n ≥ 2Dθ(n/2) = Dθn ≥ 50n, we may apply

part (i) of Proposition 5.12 to see that a.a.s. there are at most 3|X|(n− |X|)p/2 ≤
3|X|n4D

n
/2 = 6D|X| edges between X and V (G)−X. Therefore, the sum of vertex

degrees in X is at most 10D|X|, which means there is at least one vertex in X of

degree at most 10D. By definition of X, we see that there are no more than θn/2

vertices with degree larger than 10D in G. Remove these vertices from G to obtain

G′.

We now want to remove vertices of low degree. In G′, if there is a vertex of

degree less than D, then we remove it from G′. Repeat this deletion until each

vertex in the remaining graph has degree at least D. Suppose we have deleted

more than θn/2 vertices by the end of this process. We claim that this does not

happen a.a.s., and we wish to use part (i) of Proposition 5.12 to show that. Let Y

be the first θn/2 vertices that we deleted. Then |V (G′) − Y | > (1 − θ
2
)n ≥ n/2.

So p|Y ||V (G′) − Y | > 4D
n

θn
2

n
2

= Dθn ≥ 50n, and the assumption of part (i) of the

proposition is satisfied. Therefore, the number of edges between Y and V (G′) − Y

is a.a.s. at least p|Y ||V (G′) − Y |/2 > Dθn/2. However, the choice of Y implies

that the number of edges between Y and V (G′) − Y is at most |Y |D ≤ Dθn/2,

which a.a.s. cannot occur. Therefore, this process of deletion ends with no more

than θn/2 vertices deleted a.a.s. We denote that remaining graph by G∗. Note that

G∗ has at least (1− θ)n vertices, and the degree of each vertex in G∗ is between D

and 10D, so it satisfies the first two conditions of this lemma.

It remains to show that the third condition holds. Suppose that it does not

hold, and there exists a subset of vertices U such that G0 = G∗[U ] has minimum

degree at least D0, but it is not a ( 1
4d+1

, 3d)-expander. So there exists a set X ⊂ U

such that |X| = t ≤ |U |/(4d + 1) and C = NG0
(X) satisfies |C| ≤ 3d|X|. Also,

there are at least D0|X|/2 = 100dt log D edges between X and C. If t < log D
D

n,

68



then the probability that G contains such sets X and C is at most

Pt ≤
(

n

t

)(

n

3dt

)(

3dt2

100dt log D

)

p100dt log D

≤
[

(en

t

)( en

3dt

)3d
(

3etp

100 log D

)100d log D
]t

≤
[

e
( e

3d

)3d (n

t

)3d+1
(

12etD

100n log D

)100d log D
]t

≤
[

(n

t

)4d
(

e

8
· tD

n log D

)100d log D
]t

=

[

(e

8

)100d log D
(

D

log D

)4d(
tD

n log D

)100d log D−4d
]t

≤
[

(e−1)100d log D · e4d log(D/ log D)

(

tD

n log D

)96d log D
]t

<

[

e−96d log D

(

t

n log D/D

)96d log D
]t

=

[

D−96d

(

t

n log D/D

)96d log D
]t

We wish to conclude that Pt = o(n−1). We split into two subcases to do this. When

t < log n,

Pt ≤
(

D log n

n

)96d log D

.

Since D is a constant, D log n/n.9 < 1 for sufficiently large n, i.e. D log n/n < n−.1.

Therefore, for sufficiently large n,

Pt ≤ (n−.1)96d log D = o(n−1).

Now when log n ≤ t < log D
D

n,

Pt ≤ D−96d log n.

Note that

n−1 = D− log n

log D .

Since −96d < −10/ log D, we can conclude that

Pt ≤ D−96d log n < D− 10 log n

log D = n−10 = o(n−1).
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We now deal with the case of t ≥ log D
D

n. Note that there are no edges in G

between X and Y = U − (X ∪ NG0
(X)). Using t = |X| ≤ |U |/(4d + 1) and

|NG0
(X)| ≤ 3dt, we get

|Y | ≥ |U | − |X| − |NG0
(X)|

≥ |U | − |U |
4d + 1

− 3dt

≥ |U | − |U |
4d + 1

− 3d
|U |

4d + 1

= (4d + 1 − 1 − 3d)|U |/(4d + 1)

= d|U |/(4d + 1)

≥ dt.

So the probability of G having these sets is at most

Pt ≤
(

n

t

)(

n

dt

)

(1 − p)dt2 ≤
[

en

t

(en

dt

)d

e−pdt

]t

≤
[

(en

t

)2d

e−pdt

]t

=

[

(en

t

)2

e−pt

]dt

≤
[

(

en

n log D/D

)2

e−
4D
n

· log D

D
n

]dt

≤ (D2D−4)dt = o(n−1).

(The first line uses the fact that 1− x ≤ e−x.) So the probability that G∗ does not

satisfy the third condition is at most
∑n

t=1 Pt = o(1). Hence, the third condition is

satisfied a.a.s.

Proof of Corollary 5.4. Let θ = 0.01ε, D = c/4, and ε1 = ε−θ
1−θ

≥ 0.99ε. Since

D ≥ 50θ−1 = 5000/ε, Lemma 5.11 implies that G(n, c/n) a.a.s. contains a subgraph

G∗ with n1 ≥ (1 − θ)n vertices such that the minimum degree is at least D, the

maximum degree is at most 10D, and every induced subgraph with minimum degree

at least 200d log D is an ( 1
4d+1

, 3d)-expander. Condition 1 of Theorem 5.3 is satisfied

since we are dealing with an asymptotic result where n → ∞. To check condition

2, we need to verify that since ∆ ≤ 10δ,

∆2 ≤ 100D2 ≤ 1

K
eD/8K−1,

which we can rearrange as

100K ≤ eD/8K−1

D2
.
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Since the right hand side is an increasing function in D, we may simply replace D

by its lower bound c/4 ≥ 107d log d log2(2/ε)/4ε. This gives

4000 log(2/ε)

ε
≤ ε2e104d log d log(2/ε)−1

1012d2 log2 d log4(2/ε)
,

which simplifies to

1016d2 log2 d log5(2/ε)

ε3
≤
(

2

ε

)104d log d

,

which holds.

To show that condition 3 holds, it suffices to show that

200d log D ≤ ε1D

80 log(2/ε1)
,

which we can rearrange as

16000d log(2/ε1)

ε1

≤ D

log D
.

Since x/ log x is an increasing function for x > 3, we may replace the right hand

side by the lower bound for D to get

D

log D
≥ 107d log d log2(2/ε)

4ε
· 1

log(107/4) + log d + log log d + 2 log log(2/ε) − log ε

≥ 107d log(2/ε)

4ε
· log d log(2/ε)

18 + log d + log log d + 2 log log(2/ε)

≥ 107d log(2/ε)

4ε · 22
≥ 105d log(2/ε)

(88/100)ε

≥ 105d log(2/ε)

.99ε
≥ 105d log(2/ε)

ε1

≥ 5 · 104d(2 log(2/ε))

ε1

≥ 16000d log(2/ε1)

ε1

,

where the third inequality is due to the fact that log d, log log d, log log(2/ε) <

log d log(2/ε), and where the last inequality can be justified by

log(2/ε1) ≤ log(2/.99ε)

≤ log(2/ε) − log .99 = log(2/ε)(1 − log(.99)/ log(2/ε))

≤ log(2/ε)(1 − log .99/ log 4) ≤ 2 log(2/ε).

So by Theorem 5.3, G∗ contains every tree on (1−ε1)n1 ≥ (1−ε1)(1−θ)n = (1−ε)n

vertices with maximum degree at most d.
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Chapter 6

An Extremal Result for Quantum

Computing

We consider an extremal graph problem that arises from the one-way measurement

model of quantum computing. We will roughly describe the one-way measurement

model in Section 6.1, then formulate and solve the corresponding extremal problem

in Section 6.2.

6.1 One-way Measurement Model and Flows

The one-way measurement model of quantum computation [56, 57, 58, 21] is a

scheme that consists entirely of one-qubit measurements on a particular class of

entangled states called the cluster states (groups of qubits that are entangled). We

can imagine a program or algorithm that runs on the one-way measurement model

as a system of qubits that are linked together in the way that is dictated by the

program. Some qubits are set apart as input, and some as output. Once the input is

set (through two-qubit entanglements), only single-qubit operations are performed

for the rest of the program until the output is formed.

These programs or algorithms can be described in part by a graph G where

each vertex represents a qubit, and each edge represents entanglement operations

performed on the qubits at the two ends of the edge. Two (not necessarily disjoint)

subsets of vertices, I and O represent the input and output of the algorithm re-

spectively. The triple (G, I,O) is called a geometry. A flow (f,4) in a geometry

72



(G, I,O) is defined as a function f : (V (G) \ O) → (V (G) \ I) and a partial order

4 on V (G) such that

• x is adjacent to f(x);

• x 4 f(x); and

• if y is adjacent to f(x), then x 4 y.

A flow can be thought of as a partial order describing when a qubit can be measured.

If x 4 y, then y cannot be measured before x is measured.

The concept of a flow was introduced by Danos and Kashefi [20]. Given a

geometry, the existence of a flow is a sufficient condition for the geometry to underlie

a “unitary embedding,” independent of the measurements to be performed on each

qubit. This is a good property for a geometry to have, as such geometries have a

more deterministic behaviour (in the probabilistic environment) and are considered

to be stable (not easily destroyed by entanglement operations). The main result of

this chapter is the following: In a geometry (G, I,O) where |V (G)| = n and |O| = k,

if it has a flow, then the maximum number of edges that G may have is kn−
(

k+1
2

)

,

and this bound is tight. We use a counting argument to prove the upper bound,

and that leads naturally to a construction that achieves the bound. An algorithm

in [22] efficiently determines whether a geometry has a flow. As a consequence of

the main result here, one can initially check that G does not have too many edges,

before proceeding with the algorithm. This would improve the running time for

the algorithm in [22] from O(km) to O(k2n) (where m is the number of edges).

6.2 Corresponding Graph Problem

The problem of bounding the number of edges in a flow can be reduced to the

following extremal problem:

Problem. Let n, k be integers where n ≥ k. Let G be a graph on n vertices

which includes k mutually disjoint directed paths P1, P2, . . . , Pk that cover V (G).

Let D(G,P1, . . . , Pk) be a directed graph derived from V (G) as follows: for each

edge xy in G that is not in any path Pi, say x ∈ Pi and y ∈ Pj, replace xy with

73



a directed edge from the predecessor of x in Pi to y, and a directed edge from the

predecessor of y in Pj to x (when these predecessors are well-defined). What is

the maximum number of edges Γ(n, k) that G may have, under the constraint that

D(G,P1, . . . , Pk) is acyclic?

We claim the following:

Theorem 6.1. Γ(n, k) = kn −
(

k
2

)

for all integers n ≥ k ≥ 1.

In this section, we will prove this theorem by bounding the number of edges

between any two paths Pi and Pj, and then give a construction which saturates

this bound.

6.2.1 Upper bound

To provide an upper bound on Γ(n, k), we make the following observations. Let G

and P1, . . . , Pk be as described in the problem above, and let D = D(G,P1, . . . , Pk).

We will use the notation v → w in a digraph to represent a directed edge from v

to w.

Observation 1. Consider any one of the paths Pi = v1 → v2 → · · · → vni
. If D

is acyclic, then vavb /∈ E(G) for any pair of vertices where a < b− 1. Otherwise, D

would contain the cycle va → va+1 → · · · → vb−1 → va .

Observation 2. Consider any two distinct paths Pi = v1 → v2 → · · · → vni
and

Pj = w1 → w2 → · · · → wnj
. If D is acyclic, then there cannot be two edges

vawb , vcwd ∈ E(G) where a < c and b > d. Otherwise, D(G,P1, . . . , Pk) would

contain the cycle va → · · · → vc−1 → wd → · · · → wb−1 → va .

The first observation implies that other than the edges contained in the paths Pi

themselves, the only edges G can have are between pairs of paths, which we will call

connecting edges. The second observation imposes a constraint on the connecting

edges that may exist between any two paths. We use these observations to prove

the following.

Lemma 6.2. Γ(n, k) ≤ kn −
(

k+1
2

)

for all integers n ≥ k ≥ 1.
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Proof. Consider a graph G and dipaths P1, . . . , Pk as above, where each path Pi

has ni vertices such that D(G,P1, . . . , Pk) is acyclic. We first bound the number of

connecting edges in G that may exist between each pair of paths Pi and Pj.

Define a function λ from the connecting edges of G to the integers as follows:

For any connecting edge vawb where va is the a-th vertex of Pi and wb is the

b-th vertex of Pj, let λ(vawb) = a + b. Consider two distinct connecting edges

vawb, vcwd ∈ E(G) between the same two paths Pi and Pj, and we may assume

that a ≤ c. By Observation 2, if a < c, then b ≤ d. Also, if a = c, then

b 6= d. Therefore, λ(vawb) = a + b 6= c + d = λ(vcwd). This means that any two

connecting edges between Pi and Pj have different images in the function λ. Since

2 ≤ λ(e) ≤ ni + nj, there are at most ni + nj − 1 connecting edges between Pi and

Pj.

Applying this to all pairs of paths Pi and Pj, the number of connecting edges

in G is then bounded above by

∑

1≤i<j≤k

(ni + nj − 1) = 1
2

[

k
∑

i=1

k
∑

j=1

(ni + nj − 1) −
k
∑

i=1

(2ni − 1)

]

= 1
2

[

k
∑

i=1

(kni + n − k) −
k
∑

i=1

(2ni − 1)

]

= 1
2
[(kn + kn − k2) − (2n − k)]

= kn − n − 1
2
(k2 − k).

Since the number of edges in the paths Pi themselves is n− k, the total number of

edges G may have is at most kn − k − 1
2
(k2 − k) = kn −

(

k+1
2

)

.

6.2.2 Lower bound

Consider the following construction for any n and k. Let n1, n2, . . . , nk be an

integer partition of n such that n1 ≤ n2 ≤ · · · ≤ nk . For each 1 ≤ i ≤ k , let

Pi = vi,1 vi,2 · · · vi,ni
. We then define G(n1, . . . , nk) to be the graph containing

these paths, as well as the following edges for each 1 ≤ i < j ≤ k :

(i) If ni > 1, then for each 1 ≤ r < ni , add the edge vi,rvj,r;
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v2,8
v2,2

v3,9v3,2v3,1

v2,1

v1,6v1,5v1,4v1,3v1,2v1,1

Figure 6.1: The graph G(n1, n2, n3) for n1 = 6, n2 = 8, n3 = 9.

(ii) If nj > 1, then for each 1 ≤ r < ni , add the edge vi,r+1vj,r;

(iii) For each ni ≤ r ≤ nj , add the edge vi,ni
vj,r.

An example of this construction with k = 3 and n1 = 6, n2 = 8, n3 = 9 is illustrated

in Figure 6.1.

In constructing the digraph associated with G = G(n1, . . . , nk) , the edge-rules

(i) – (iii) for G yield the following arc-rules for D(G,P1, . . . , Pk) for each 1 ≤ i <

j ≤ k :

(i)







(a) vi,r−1 → vj,r for 1 < r ≤ ni (if ni > 1), and

(b) vj,r−1 → vi,r for 1 < r ≤ ni (if nj > 1);

(ii)







(c) vi,r → vj,r for 1 ≤ r < ni − 1 (if ni > 1), and

(d) vj,r−1 → vi,r+1 for 1 < r ≤ ni − 1 (if ni > 1);

(iii)







(e) vi,ni−1 → vj,r for ni ≤ r ≤ nj, and

(f) vj,r−1 → vi,ni
for max{ni , 2} ≤ r ≤ nj (if nj > 1).

We can then prove:

Lemma 6.3. The digraph D(G,P1, . . . , Pk) described above is acyclic.

Proof. Any arc produced by one of the rules (a) – (e) is of the form va,s → vb,r with

s < r and no constraints on a and b , or va,r → vb,r with a < b . In either case, we

have (s, a) < (r, b) in the lexicographic ordering on ordered pairs of integers. Then,
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if there are arcs in D(G,P1, . . . , Pk) for vb,r → va,s where (r, b) > (s, a) , they must

arise from the rule (f), in which case s = na .

Note that none of the rules (a) – (f) produce arcs which leaves vertices vi,ni

for any 1 ≤ i ≤ k ; then, there are no non-trivial walks which leave such a vertex.

Then, it is easy to show by induction that if there is a directed walk between distinct

vertices va,s and vb,r , either (s, a) < (r, b) or r = nb .

Let va,s and vb,r be two vertices, with a directed walk W from va,s to vb,r .

Because of the existence of W , we know that s 6= na ; then, there is a directed walk

from vb,r to va,s only if (r, b) < (s, a) . We would then have r = nb , in which case

there are no directed walks from vb,r to any other vertices in D(G,P1, . . . , Pk) . So,

for any two distinct vertices va,s and vb,r , there cannot be a directed walk from va,s

to vb,r and also from vb,r to va,s , in which case D(G,P1, . . . , Pk) is acyclic.

As well as giving rise to an acyclic digraph D(G,P1, . . . , Pk) , we also have:

Lemma 6.4.
∣

∣E
(

G(n1, . . . , nk)
)∣

∣ = kn −
(

k+1
2

)

, for any n ≥ k ≥ 1 and integer

partition n1 ≤ · · · ≤ nk of n.

Proof. Between any pair of paths Pi and Pj in G(n1, . . . , nk) , there are ni − 1

connecting edges of type (i), ni − 1 connecting edges of type (ii), and connecting

edges of type nj − ni . There are then ni + nj − 1 connecting edges between Pi and

Pj , which saturates the upper bound for connecting edges between pairs of paths

in Lemma 6.2. Summed over all pairs of paths and including the edges in the paths

Pi themselves, the total number of edges in G(n1, . . . , nk) is kn −
(

k+1
2

)

.
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Chapter 7

Future Work

There are several interesting possibilities for future research work. We begin with

list colouring small Steiner triple systems. In Chapter 3, we have essentially solved

the problem for STS of order at most 13. For STS(15), we have shown that such

systems are almost 3-list-colourable. An obvious question is whether or not they

are indeed 3-list-chromatic. We cannot do better with the hypergraph polynomial

method, so it is very likely that a new technique using elementary methods is

required to solve this problem. Beyond STS(15), the next order is 19. Now there are

more than 11 million STS(19) (see [18]), so to compute hypergraph polynomials of

every STS(19) is not feasible. However, the size of one STS(19) is still small enough

that computing the coefficient of one hypergraph polynomial is still possible.

We have presented results on list colouring large Steiner triple systems in Chap-

ter 4. In particular, we proved that the order of ListSpecm(n) is between log n/ log log n

and log n. It would be interesting to further narrow down this range. Also, our up-

per bound of O(
√

n log n) for the list chromatic spectrum seems far from the lower

bound of log n/ log log n. Our bound is driven by the upper bound on the chromatic

spectrum, so any improvements in SpecM(n) would improve ListSpecM(n). Fur-

thermore, the proof of Theorem 4.1 has the potential to extend to other designs, for

example, Steiner quadruple systems, or triple systems where each pair of vertices

is in k edges for some constant k.

We can ask the more general question of which parameters of a hypergraph

dictate the behaviour of the list chromatic number. In graphs, the minimum degree

is an important factor in the list chromatic number, as higher minimum degree

implies higher list chromatic number. In hypergraphs, the minimum degree alone
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is not enough to determine a similar behaviour. It seems that the co-degree of a

hypergraph plays a role as well, where the co-degree of a pair of vertices is the

number of edges that contain both vertices. Steiner triple systems have co-degree

1 for each pair of vertices, and we have shown that in this case, the list chromatic

number increases along with the minimum degree. However, we also gave examples

with constant list chromatic number where the co-degree is at least O(n). So one

question is what role does the co-degree play in the behaviour of list chromatic

number of hypergraphs?

Finally, in Chapter 5, we have proved that random graphs G(n, c/n) where

c ≥ 107d log d log2(2/ε)

ε

a.a.s. contains all nearly-spanning trees of maximum degree d. We also mentioned

that the order of c cannot be lower than O(log(1/ε)). So the question is, can we

improve c to the best possible bound? Also, we can ask whether or not this result

extends to other types of graphs, for example, random bipartite graphs.
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Appendix A

Computation Results for STS(15)

In this appendix, we record the computational results used in proving Theorem 3.8

in Section 3.4. We first briefly describe the code used in Maple for the computations,

and then present the results for all 80 STS(15)s.

We first give the code used for generating a random hypergraph polynomial

given a Steiner triple system. The procedure randSTS15poly requires incmatrix

as an input matrix listing the vertices in each block. Then for each block in the

STS, say with vertices {1, 2, 3}, the procedure randomly picks a number k between

0 and 5 to determine which factor this block contributes to the overall hypergraph

polynomial. For example, if k is 0, then the factor it produces is x3 − x1; if k is 1,

then the factor it produces is x3 − x2, etc.

randSTS15poly := proc (incmatrix)

temppolylong := 1;

for i from 1 to 35 do

k := rand() mod 6;

if (k = 0) then temppolylong := temppolylong *

(x[incmatrix[i,3]] - x[incmatrix[i,1]]);

elif (k = 1) then temppolylong := temppolylong *

(x[incmatrix[i,3]] - x[incmatrix[i,2]]);

elif (k = 2) then temppolylong := temppolylong *

(x[incmatrix[i,1]] - x[incmatrix[i,2]]);

elif (k = 3) then temppolylong := temppolylong *

(x[incmatrix[i,1]] - x[incmatrix[i,3]]);

elif (k = 4) then temppolylong := temppolylong *

(x[incmatrix[i,2]] - x[incmatrix[i,3]]);

else temppolylong := temppolylong *
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(x[incmatrix[i,2]] - x[incmatrix[i,1]]);

end if;

end do;

RETURN(temppolylong)

end proc;

The following code asks Maple to first generate a random hypergraph polynomial

p using randSTS15poly, and then find the coefficient for the monomial

M = x3
0x

3
1x

3
2x

3
3x

3
4x

2
5x

2
6x

2
7x

2
8x

2
9x

2
ax

2
bx

2
cx

2
dx

2
e

in that polynomial. To find this coefficient, we utilize a Maple function called

coeftayl, which finds the coefficient of an input term in a Taylor expansion of

the input polynomial. We first find the “coefficient” of x3
0 in p and call this p[0].

Now p[0] is actually a polynomial in the variables x1, . . . , x14, and we then find

the coefficient of x3
1 in p[0] and call it p[1]. This process is repeated until x2

15, in

which case the result is the coefficient of M in p.

p := randSTS15poly(A);

p[0] := coeftayl(p, x[0]=0, [3]);

p[1] := coeftayl(p[0], x[1]=0, [3]);

p[2] := coeftayl(p[1], x[2]=0, [3]);

p[3] := coeftayl(p[2], x[3]=0, [3]);

p[4] := coeftayl(p[3], x[4]=0, [3]);

p[5] := coeftayl(p[4], x[5]=0, [2]);

p[6] := coeftayl(p[5], x[6]=0, [2]);

p[7] := coeftayl(p[6], x[7]=0, [2]);

p[8] := coeftayl(p[7], x[8]=0, [2]);

p[9] := coeftayl(p[8], x[9]=0, [2]);

p[10] := coeftayl(p[9], x[10]=0, [2]);

p[11] := coeftayl(p[10], x[11]=0, [2]);

p[12] := coeftayl(p[11], x[12]=0, [2]);

p[13] := coeftayl(p[12], x[13]=0, [2]);

p[14] := coeftayl(p[13], x[14]=0, [2]);

Note that technically speaking, we could use a for loop to accomplish this task,

but mysteriously it was not working for us in Maple.

We now present a table which lists the results found by Maple. Note the fol-

lowing when interpreting this table:

81



• For each Steiner triple system, the incidence table of its block structure is

presented first. The 15 vertices are labelled from 0 to 9 and a to e. Each

column contains the three vertices of a block. The 80 systems and their

blocks are listed in the same order as in [18].

• Right below the block structure is an encoding for the desired random poly-

nomial found by Maple. For each block, say it is [p, q, r]T in the first table,

and [α, β, γ]T , then it contributes the factor αxp + βxq + γxr to the polyno-

mial. For example, in STS #1, the first block gives the factor x1 − x0, and

the second block gives the factor x4 − x3.

• The “Coeff” listed for each system is the coefficient of the monomial M in

the polynomial generated from above, as calculated by Maple.

We use STS #1 as an example. The random polynomial that Maple generated is

f(x) =(x1 − x0)(x4 − x3)(x0 − x5)(x7 − x8)(x0 − x9)(xc − x0)(xd − xe)

· (x3 − x1)(x4 − x6)(x1 − x7)(x1 − x8)(xb − x1)(xe − xc)(x2 − x3)

· (x2 − x5)(x2 − x7)(x9 − x2)(x2 − xb)(xd − xc)(xb − x3)(xc − x8)

· (xd − x3)(xe − xa)(x7 − xc)(x4 − x8)(x4 − x9)(xd − x4)(x7 − x5)

· (x8 − x5)(x5 − x9)(xa − xc)(xe − x6)(x8 − xd)(x6 − xc)(x6 − xb).

The coefficient of M in f(x) is −3.

STS #1 Coeff = −3

00000001111112222223333444455556666

13579bd3478bc3478bc789a789a789a789a

2468ace569ade65a9edbcdecbeddebcedcb

-0+0+-0-0++-0+++-+0-0-00++---+0-0++

+--+-0+++--+--0-0--0-0-+--0++-+0+00

0+0-0+-0-000+0-0+0+++++-00+000-+---

STS #2 Coeff = −7

00000001111112222223333444455556666

13579bd3478bc3478bc789a789a789a789a

2468ace569ade65a9edbcdecbededcbdebc

-0+0-00-00---++0--+0--00-0---+0+-0+

0-0+0+-+++00+-0-000-+0+-0+00+0-0+-0

++--+-+0--++00-+++-+0+-++-++0-+-0+-

STS #3 Coeff = −1

00000001111112222223333444455556666

13579bd3478bc3478bc789a789a789a789a

2468ace569ade65a9edbcdedebcedcbcbed

-00+-+00+0+-0+00+-0-++-++00--+++---

++-00--+0-0++--+0+-00-+-0++++-00+++

0-+-+0+--+-0-0+--0++-000---000--000

STS #4 Coeff = −7

00000001111112222223333444455556666

13579bd3478bc3478bc789a789a789a789a

2468ace569ade65a9edbcdedbecedcbcebd

-000+-0+-0-++---+-----+++00+-000+-0

0+++-0+-+-+00+++-0000+00--+-++-+00-

+---0+-00+0--0000++++0--0+-00-+--++
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STS #5 Coeff = −1

00000001111112222223333444455556666

13579bd3478bc3478bc789a789a789a789a

2468ace569ade65a9edbceddecbcbdeedbc

0-0+---00+-+0-+000--0-++-0--00--+0-

-+--0+0+-000-+0-++++++--+++0-++00+0

+0+0+0+-+-+-+0-+--00-0000-0++-0+--+

STS #6 Coeff = 1

00000001111112222223333444455556666

13579bd3478bc3478bc789a789a789a789a

2468ace569ade65a9edbceddecbcdbeebdc

++-+-00-0+0--0-+-0+0-+-+0-0+-0--0++

-00-+--0-0+00-+00+-+000-+0-0+++0+00

0-+00++++--+++0-+-0-+-+0-++-0-0+---

STS #7 Coeff = 20

00000001111112222223333444455556666

13579bd3478bc3478bc789a789a789a789a

2468ace569ade65a9edbdececbdcedbdbce

-+00+++++-0+0--+----0---+--0-+0--0+

+-+-----0+---++-000+++00-00+0--+++-

00-+0000-0+0+000+++0-0++0++-+0+00-0

STS #8 Coeff = −1

00000001111112222223333444455556666

13579bd3478bc34789c78ab789a789a789a

2468ace569ade65abedc9deedcbdebcbcde

++-0-++-0+0-0+-+0+---++-00-0---00--

--+-00-+-0-0+00-+-0++--+-+++0++--00

000++-00+-++--+0-0+00000+-0-+00++++

STS #9 Coeff = 2

00000001111112222223333444455556666

13579bd3478bc34789c78ab789a789a789a

2468ace569ade65abedc9deedbcdecbbcde

0000-++-+0------+00++-0+-++00-0-++-

+++-0-0+--00000+-+---+--0--+-0++--0

---++0-00++++++00-+000+0+00-++-000+

STS #10 Coeff = −6

00000001111112222223333444455556666

13579bd3478bc34789c78ab789a789a789a

2468ace569ade65abedc9deedcbdcbebedc

0-0-+-00+-0-0---+-00--0++00+-00+0++

-0+0-0+-0+-0-++0-0--0++-0-+-+++-+00

++-+0+-+-0+++00+0++++0-0-+-00--0---

STS #11 Coeff = −13

00000001111112222223333444455556666

13579bd3478bc34789c789a789a78ab789a

2468ace569ade65abedcdbeecdbd9cebecd

+000+0-00-+-0+0-+-0+++00+00+-+-0+00

----0+++++-++0-+-++-00+-0++0+-++0+-

0+++--0--000--+000-0---+----000---+

STS #12 Coeff = −2

00000001111112222223333444455556666

13579bd3478bc34789c789a789a789a78ab

2468ace569ade65abedcdbeecdbbecdd9ce

00++--0--000--++-+-+00--++00+0+--0+

-+--0+-0++-+0+00+0+--+++0-+-0+0++-0

+-00+0++0-+-+0--0-00+-00-0-+---00+-

STS #13 Coeff = 9

00000001111112222223333444455556666

13579bd3478bc34789c789a789a78ab789a

2468ace569ade65abedcebdedcbd9cebcde

+0++0+0--+---+-+++00+0------++-00++

0--0--++0-+00-00-0-+0-++00++000-+0-

-+0-+0-0+00++0+-0-+--+00++00--++--0

STS #14 Coeff = 15

00000001111112222223333444455556666

13579bd3478bc34789c789a78ab789a789a

2468ace569ade65abedcebdd9ceedcbbcde

0+-0-+++0-++0++++0-+000+++++-+-0-00

--++00---0-0-0-00+00++--000-+0+++-+

+00-+-00++0-+-0---+---+0---00-0-0+-
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STS #15 Coeff = −8

00000001111112222223333444455556666

13579bd3478bc34789a78ac789a789b789a

2468ace569ade65bcdee9bddbecadcecebd

0-0--0+-+++--0-+00++00-----+--+---+

-+-+0+00-00++++---00--0++0+0000+0+0

+0+0+--+0--00-00++--+++00+0-++-0+0-

STS #16 Coeff = −6

00000001111112222223333444455556666

13579bd3478bc34789a789a78bc789a789a

2468ace569ade65bcdeedcba9eddebccbed

0+-0--0++00000+++-0++-00-+0-00-++0-

+-0-+0-0--+++---00---++++0-0--00-++

-0++0++-0+---+00-++000--0-+++++-0-0

STS #17 Coeff = 7

00000001111112222223333444455556666

13579bd3478bc34789a789a789c78ab789a

2468ace569ade65bcdeedcbabedd9cecebd

---0+00+000--0++-0-0++0+0+-+00-00-0

00+---+0++-+++000-0+--+-+00-++++-+-

++0+0+----+00---+++-00-0--+0--0-+0+

STS #18 Coeff = 5

00000001111112222223333444455556666

13579bd3478bc34789a78ac789b789a789a

2468ace569ade65bcede9bdadcedebccbde

0-0--0++00-+0++-+000+++-++++0--++00

-++0+-0-+++-+-0+-++-0-0+-0-0-+0-0-+

+0-+0+-0--00-0-00--+-0-00-0-+0+0-+-

STS #19 Coeff = −3

00000001111112222223333444455556666

13579bd3478bc34789a789a78ab789c789a

2468ace569ade65bdceebdcc9deaebddceb

0+0-++-0+0+0+--++00++++00+++0--0+0-

+0++--0-0+--00+---+0000+---0-+0-0-+

---000++--0+-+000+------+00-+0++-+0

STS #20 Coeff = −31

00000001111112222223333444455556666

13579bd3478bc34789a78ac789b789a789a

2468ace569ade65bdece9bdacdedbcecebd

--000+-00+--+++0-0+-+++0-++0-++0--+

0++-+0+++-0+--0+0--+0-0-+0--000-++0

+0-+--0--0+000--++00-0-+0-0++--+00-

STS #21 Coeff = 12

00000001111112222223333444455556666

13579bd3478ac34789b789a789a78ab789c

2468ace569bde65acedbdcecedbd9ceeabd

--000+-00+--+++0-0+-+++0-++0-++0--+

0++-+0+++-00--0+0-0+000-+00-000-++0

+0-+--0--00000-00+0000000--+0--000-

STS #22 Coeff = 3

00000001111112222223333444455556666

13579bd3478ac34789b789a789c789a78ab

2468ace569bde65acedbdceeabdcedbd9ce

+-0--+-+0++00-+-+++++0+0+++++0+--++

00-0+-+----++0-+-0-0--0+-0-00--0+-0

-+++0000+00--+000-0-0+--0-0--+0+00-

STS #23 Coeff = −2

00000001111112222223333444455566667

13579bd3478bc34589c789a58ab789789aa

2468ace569ade67abedcdbed9cebececdbd

+-+0000+++---++-0000+++--0--0+000-+

00-+++-000000--+--++-00+0+00--++-00

-+0---+---+++000++--0--0+-+++0--++-

STS #24 Coeff = −4

00000001111112222223333444455566667

13579bd3478bc34589c789a589a78978aba

2468ace569ade67abedcdbebecdecdd9ceb

++0---0-0-0-+++0-++++00-++0-++0+000

0--0++-++++0-0--+---0++0-0-+0-+----

-0++00+0-0-+0-0+0000---+0-+0-0-0+++
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STS #25 Coeff = 15

00000001111112222223333444455566667

13579bd3478bc34589c789a589a78978aba

2468ace569ade67abedcedbecbdbdcd9cee

+-0++0-0+0--0-0-+-00+++0---+00+0+-+

-0---+++-+++-0-+-+----0-+0+0-----0-

0++00-0-0-00+++000++00-+0+0-++0+0+0

STS #26 Coeff = −6

00000001111112222223333444455566667

13579bd3478bc3458ac789a589a789789ab

2468ace569ade67b9edcbededbcacddecbe
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[30] Erdős, P., Rubin, A.L. and Taylor, H., Choosability in graphs, West Coast

Conference on Combinatorics, Graph Theory and Computing (1979), 125-157.

[31] Fernandez de la Vega, W., Long paths in random graphs, Studia Sci. Math.

Hungar. 14(1979), 335-340.

[32] Fernandez de la Vega, W., Trees in sparse random graphs, J. Combin. Theory

Ser. B 45(1988) 77-85.

[33] Fleischner, H. and Stiebitz, M., A solution to a coloring theorem of P. Erdős,
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