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Abstract 
  

Cadmium is a highly toxic chemical and has been classified by the International Agency 

for Research on Cancer as a human carcinogen. Cadmium is abundant in the environment, at 

specific work places, and in food and water. Toxicological responses to cadmium exposure 

include respiratory diseases, neurological disorders and kidney damage. The present study 

examined the effects of cadmium on heat shock protein (HSP) accumulation in Xenopus laevis 

A6 kidney epithelial cells. HSPs are molecular chaperones involved in protein folding and 

translocation. In response to environmental stress these proteins bind to unfolded protein and 

inhibit their aggregation. Stress-inducible hsp gene transcription is mediated by the heat shock 

promoter element (HSE), which interacts with heat shock transcription factor (HSF). In the 

present study, hsp30 and hsp70 mRNA and protein were induced by heat shock, as determined 

by northern and western blot analysis. Exposure of A6 cells to cadmium chloride also induced 

the expression of hsp genes. For example, northern and western blot analysis revealed that 

exposure of A6 cells to cadmium chloride induced the accumulation of hsp30 and hsp70 mRNA 

and their respective proteins. Western blot analysis also revealed that A6 cells recovering from a 

cadmium chloride treatment retained relatively high levels of HSP30 and HSP70 protein 

accumulation over 24 h after the removal of the stress. Treatments combining a mild heat shock 

and cadmium chloride resulted in a synergistic increase in hsp30 and hsp70 gene expression at 

mRNA and protein levels. Further experiments in which two stressors were combined revealed 

that synergistic effects occurred with varying cadmium concentrations and different 

temperatures. Immunocytochemistry and confocal microscopy were used to confirm the results 

attained from western blot analysis. Further, this technique allowed the determination of 

intracellular localization of HSP30 in A6 cells and the examination of cellular morphology and 
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cytoskeletal structure during cadmium chloride treatments. A 2 h heat shock at 33ºC resulted in 

the accumulation of HSP30 in the cytoplasm, whereas a 2 h heat shock at 35ºC resulted in some 

HSP30 accumulation in the peripheral region of the nucleus. This is in contrast to cells treated 

with cadmium chloride, where HSP30 accumulation was restricted to the cytoplasm. A 14 h 50 

µM cadmium chloride treatment resulted in the accumulation of HSP30 in approximately 10% of 

cells. The proportion of cells displaying HSP30 accumulation increased to 80% and 95% in cells 

treated with 100 µM and 200 µM, respectively. HSP30 accumulation frequently occurred in large 

granular structures. High concentrations of cadmium chloride resulted in cell membrane ruffling 

at areas of cell-cell contact, as well as actin disorganization. This study characterized the pattern 

of hsp gene expression, accumulation and localization under various cadmium chloride 

conditions. These results suggest that hsp30 and hsp70 gene expression can be used as potential 

biomolecular markers for cadmium exposure.  
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1 Introduction 
 

Organisms are equipped with mechanisms to cope with changes in their external and 

internal environment, to enable adaptation and survival. Stress causes modifications in the 

pattern of gene expression, specifically resulting in the increased expression of selected genes. 

These genes include those that encode stress inducible proteins known as the heat shock proteins 

(HSPs).  

 

1.1 Heat Shock Proteins 

Ferruccio Ritossa was the first to report that a transient increase in temperature activates 

the expression of HSPs as a cellular protective response in Drosophila in 1962 (Ritossa, 1962). 

Since then a number of different HSP families have been discovered and characterized in a 

variety of organisms. HSPs are highly conserved, which suggests they play a crucial role in 

cellular processes (Kregel, 2002). They are also ubiquitous and have been found in all 

organisms, from bacteria and yeast to humans. HSPs are categorized into families by their 

molecular weight and function. These families include the small heat shock proteins (sHSPs), 

HSP40, HSP60, HSP70, HSP90 and HSP110. Some HSPs are constitutively expressed, whereas 

others are stress-inducible. HSPs serve as molecular chaperones by binding to denatured proteins 

and aiding in their refolding to the native functional states (Palleros et al., 1991; Wang and 

Spector 2000). They also prevent the aggregation of other proteins during stress and assist in the 

degradation of damaged proteins (Fernando and Heikkila, 2000; Abdulle et al., 2002).  
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1.2 The Heat Shock Response 

The term �heat shock response� is somewhat misleading, since the expression of HSPs 

has been documented as a result of exposure to a number of different stressors other than heat 

shock. Environmental stress conditions include heat, cold, heavy metals, oxidants, dehydration 

and toxic agents including sodium arsenite, ethanol and hydrogen peroxide (Darasch et al., 1988; 

Nowack et al., 1990; Muller et al., 2004; Gauley and Heikkila, 2006). HSPs are also induced by 

pathophysiological states, such as aging, infections, and hypoxia (Ciocca et al., 1993; Giffard et 

al., 2004; Njemini et al., 2007). Exposure to stress causes proteins to denature, misfold or unfold. 

The unfolding of proteins exposes hydrophobic areas, leading to aggregation. The heat shock 

response is therefore essential to maintain proper protein structure and thus cellular function.  

The mechanism by which a cell detects stress is unclear; however, it is thought that the 

presence of non-native or misfolded proteins triggers the heat shock response. Hsp genes were 

activated when denatured proteins were injected into frog oocytes  (Ananthan et al., 1986). 

Inducible HSP expression is regulated by heat shock transcription factors (HSF). There are 

several members of the HSF family that have been found in vertebrates. HSF1 is the functional 

vertebrate homologue of the HSF found in yeast and is activated by a number of different 

stressors (Rabindran et al., 1991; Sarge et al., 1993). HSF2 is not activated in response to stress, 

but rather in response to developmental conditions (Schuetz et al., 1991; Goodson et al., 1995). 

HSF3 is a unique avian HSF, which has been shown to respond to heat (Nakai et al., 1995), and 

HSF4 is functionally distinct and exhibits tissue-specific expression (Nakai et al., 1997). HSF1 is 

highly conserved and is regulated both at the level of DNA binding and the level of 

transcriptional activation (Newton et al., 1996; Pirrkala et al., 2001). HSF1 preexists in 

unstressed cells as inactive monomers either in the cytosol or nucleus, where it is unable to bind 
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DNA (Mercier et al., 1990; Sarge et al., 1993; Shi et al., 1998). This suppression is partially 

regulated by hydrophobic sequences within HSF1 itself, as well as by the constitutively 

expressed heat shock cognate 70 (HSC70), HSP70 and HSP90 (Ali et al., 1998; Bharadwaj et al., 

1998; Farkas et al., 1998; Voellmy, 2004). These chaperones have been shown to have a role in 

maintaining HSF1 in its inert state; however, it has yet to be confirmed how these interactions 

maintain this monomeric repression (Morimoto, 1998).  The HSP90-containing complex may 

interact with hydrophobic repeat regions or sequence elements at the N-terminal, but not with the 

regulatory domain of monomeric HSF1 (Voellmy, 2004). It has been suggested that during 

stress, proteins become denatured and HSP70 and HSP90 are recruited to other areas of the cell 

for their chaperone abilities. This relieves the repression of the HSF1 monomers allowing them 

to form an active trimer (Morimoto, 1998; Zou et al., 1998). Activation of HSF1 results in the 

relocalization of HSF1 into the nucleus where it is able to bind to a regulatory DNA motif known 

as the heat shock element (HSE), which is located in the 5� promoter region of hsp genes 

(Ovsenek and Heikkila, 1990; Gordon et al, 1997; Morimoto, 1998). Phosphorylation occurs on 

serine and threonine residues, and transcription of HSPs is facilitated by RNA polymerase II, 

resulting in the accumulation of HSPs (Sarge et al., 1993; Ali et al., 1998; Morimoto, 1998). 

HSP70, which has been shown to directly interact with the HSF1 activation domain, functions as 

a negative regulator (Shi et al., 1998). Elevated synthesis and accumulation of HSP70 leads to 

the binding of HSP70 to the HSF1 activation domain, and results in the repression of further heat 

shock-induced transcription. Shi and colleagues (1998) indicated that HSP70 chaperone function 

is required for direct binding to HSF1. During attenuation of the heat shock response, the 

transcriptional activity of HSF1 is repressed by the direct binding of HSP70, Hdj-1 and HSF 

binding protein 1 (HSBP1) (Satyal et al., 1998; Shi et al., 1998). This causes the HSF1 trimer to 
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dissociate into the inactive HSF1 monomers. Attenuation also occurs if cells are heated for an 

extended period, resulting in the loss of HSF1�s DNA-binding and transcriptional properties 

(Bharadwaj et al., 1998).  

 

1.3 Hsp Gene Regulation 

HSPs are expressed in a characteristic pattern of induction and repression that depends 

on the cell type, development stage and intensity and duration of stress (Heikkila et al., 1987a; 

Darasch et al., 1988; Lang et al., 1999; Lang et al., 2000). Hsp genes are temporarily inducible 

as well as subjected to developmental regulation (Bienz, 1984b). Inducible genes are triggered in 

response to stress, which activates HSF1 and results in the transcription of hsp genes. Regulation 

of hsp gene expression occurs primarily at the transcriptional level, with mediation occurring at 

the levels of mRNA synthesis and stability (Bienz, 1984; Lindquist 1986). However, expression 

is controlled at multiple levels, which also includes translational efficiency (Kim and Jang, 

2002). Hsp message is preferentially translated by a cell under stress, while synthesis of other 

proteins may be repressed (Schlesinger, 1990; Ovelgönne et al., 1995). Messenger RNAs from 

heat shock genes have structures that allow for their selective translation, including a lack of 

introns, and regions conferring translational efficiency and increased stability (Schlesinger, 

1990). HSP expression is autoregulated, such that high levels of HSPs inhibit further expression 

(Shi et al., 1998). Some hsp genes are constitutively activated or can be in a repressed state, 

likely due to changes in chromatin structure (Bienz 1984a; Heikkila, 2004). Development can 

also regulate gene specific transcription factors (Bienz 1984b).  
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1.4 Small Heat Shock Proteins 

1.4.1 Structure of sHSPs 

Small heat shock proteins (sHSPs) range in size from 12 to 43 kDa and include α-

crystallin (Wistow, 1985; MacRae, 2000). Structural homology between family members is quite 

low compared to other HSP families (Singh et al., 1996; Ganea, 2001). sHSPs share a conserved 

region of 80-100 amino acids at the C-terminal region, also known as the α-crystallin domain 

(MacRae, 2000; Ganea, 2001). The α-crystallin domain is highly conserved between species and 

consists of β-pleated sheet conformation. It plays a role in binding unfolded proteins during 

stress as well as potentially binding nucleotides and cytoskeletal proteins (Djabali et al., 1997; 

Singh et al., 2006). This region is flanked by an N-terminal hydrophobic region and a short, 

flexible C-terminal extension (Singh et al., 1996; Haslbeck, 2002). The N-terminal domain of 

sHSPs is poorly conserved, with the exception of a conserved WDPF sequence, which contains 

two α-helices and may play a role in oligomeric formation (Lambert, 1999; Ganea , 2001). C-

terminal extensions are variable in sequence and length, but are common in polar properties 

between sHSPs and are essential for chaperone functions (MacRae, 2000; Fernando and 

Heikkila, 2000). sHSPs also contain hydrophobic sites, which have been proposed to play a role 

in the binding of target proteins during stress (Smulders and de Jong, 1997; Kundu et al., 2007). 

A common feature of sHSPs is their organization into large oligomeric structures. These globular 

complexes are believed to be crucial for their regulation and chaperone function (Leroux et al., 

1997; Ehrnsperger et al., 1997; Ehrnsperger et al., 1999). During development and after the 

removal of stress, sHSPs are phosphorylated. This causes a change in secondary structure and 

oligomers to down-size, thereby limiting chaperone action of sHSPs (Lambert et al., 1999; 

Fernando et al., 2003).  
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1.4.2 Expression of sHSPs 

Expression of sHSPs depends on development, cell type, growth cycle and oncogenic 

status of the cell, as well as the type, duration and intensity of stimuli (Welch et al., 1985; 

Haslbeck, 2002). sHSPs accumulate in different organs and tissues, and levels vary in a stage-, 

tissue- and stress-specific manner (Ciocca et al., 1993). For example, Hsp25 is most abundant in 

lens, heart, stomach, colon, lung and bladder in rodents (Klemenz et al., 1993), whereas Hsp27 is 

detected in muscle, nervous, connective tissue and female reproductive tract in human (Ciocca et 

al., 1983). Developmental or tissue-specific controls in gene expression may be regulated at the 

level of chromatin structure or organization (Heikkila, 2004). Intracellular localization of sHSPs 

changes according to the physiological state of the cells and to the type and intensity of the 

stressor (Beaulieu et al., 1989; Adhikari et al., 2004; Gellalchew and Heikkila, 2005; Manwell 

and Heikkila, 2007). Expression of the sHSPs, Hsp27 and α-crystallin, increase in various types 

of cancer and overexpression of sHSPs have been observed in several neurodegenerative 

disorders (Hitotsumatsu et al., 1996; Renkawek et al., 1999; Wilhelmus et al., 2006). The 

variable distribution of the sHSPs demonstrates that they are a group of dynamic proteins, which 

are able to form large aggregates or complexes.  

 

1.4.3 Function of sHSPs 

sHSPs have diverse roles, including chaperone capabilities and protecting cells from 

stress. sHSPs form complexes with unfolded proteins and stabilize these proteins under stress 

conditions, thereby suppressing aggregation of denatured proteins (Ehrnsperger et al., 1997; 

Leroux et al., 1997). To date, chaperone activity of sHSPs have been found to be independent of 

ATP binding and hydrolysis (Haslbeck, 2002). sHSP monomers oligomerize as a prerequisite for 
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chaperone function  and functional efficiency depends on sHSPs ability to bind protein substrates 

(Bova et al., 1999). The sHSPs are effective chaperones since they are able to selectively bind 

non-native proteins in large quantities per oligomeric sHSP complex (Haslbeck, 2002). sHSPs 

bind denatured proteins and hold them in a folding-competent state until normal conditions are 

restored (Haslbeck, 2002). In Xenopus, HSP30 is phosphorylated once the stress has been 

removed, directing the release of HSP30 from denatured proteins, thus playing a role in the 

cellular recovery from stress (Fernando et al., 2003). sHSPs also cooperate with other HSPs, 

such as HSP70 in presence of ATP to refold proteins into their native states (Ehrnsperger et al., 

1997). Xenopus HSP30 has been shown to function as a molecular chaperone by inhibiting heat-

induced aggregation of citrate synthase in vitro (Fernando and Heikkila, 2000). Studies indicate 

that the carboxyl region is required to inhibit stress induced aggregation and to maintain 

secondary structure for chaperone function (Fernando and Heikkila, 2000; Fernando et al., 

2002). Mutations in α-crystallin impair flexibility and decrease chaperone function and are also 

associated with congenital cataracts and cardiovascular disease (Lentze et al., 2003; Wang et al., 

2003; Singh et al., 2006; Kundu et al., 2007). 

sHSPs also have a number of other roles, which include stabilizing actin filaments, 

maintaining the integrity of the cytoskeleton and preserving mitochondrial membrane potential 

(Djabali et al., 1997; Préville et al., 1999). sHSPs have also been implicated in actin capping and 

decapping, cellular differentiation, prevention of apoptosis and the acquisition of 

thermotolerance (Phang et al., 1999; Arrigo, 2000; Haslbeck, 2002). Over-expression of Xenopus 

HSP30 in E. coli cells conferred greater survival at increased temperatures (Fernando and 

Heikkila, 2000). sHSP expression and phosphorylation may also be involved in cellular signal 

transduction (Ciocca et al., 1993; Fernando et al., 2003).  



 

 8

1.5 Heat Shock Protein 70 

1.5.1 Structure of HSP70 

The 70-kDa heat shock protein family is extremely well conserved in different species 

(Bienz, 1984a; Heikkila et al, 1997). Functional properties are conserved, although HSP70 is 

synthesized in response to varying stimuli (Darasch et al., 1988; Briant et al., 1997; Ali et al., 

1997; Hallare et al., 2005). HSP70 is highly inducible and is synthesized in response to multiple 

stressors, HSC70 is constitutively produced (Yu et al., 1994; Ali et al., 1996a). The HSP70 gene 

consists of 2440 base pairs and contains at least two regulatory elements in the 5` region that 

interact with HSF1 (Wu et al., 1986). HSP70 proteins display highly conserved amino acid 

sequences and domain structures. The HSP70 molecule is composed of an ATP-binding domain 

at the N-terminal end, plus a region with protease sensitive sites (Daugaard et al., 2007; 

Goloubinoff and De Los Rios, 2007). At the C-terminal end there is a peptide binding domain, 

which contains an EEVD-motif enabling HSP70 binding to co-chaperones and other HSPs 

(Freeman et al., 1995). The substrate-binding site has a high affinity for polypeptides with a 

hydrophobic core, and binds a seven-residue peptide between β-sheet and α-helical subdomains 

(Rüdiger et al., 1997). A notable member of the HSP70 is Grp78 or immunoglobulin-binding 

protein (BiP), which contains a highly conserved endoplasmic reticulum (ER) retention signal 

(the KDEL sequence) at the C-terminal end (Munro and Pelham, 1986; 1987).  

 

1.5.2 Expression of HSP70 

Like other members of the HSP family, HSP70 is regulated at the transcriptional, post-

transcriptional and translational levels (Ali et al., 1997). Although production of HSP70 protein 

usually depends on the synthesis and accumulation of hsp70 mRNA (Heikkila et al., 1985), 
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message accumulation doesn�t always result in an increase in protein production (Bruce et al., 

1993). Hsp70 gene expression is dependent on the stage of development and displays tissue-

specific patterns of accumulation (Heikkila et al., 1985; 1987; Ali et al., 1997). In Xenopus 

laevis, Hsp70 mRNA is absent in oocytes and is not heat inducible until gastrulation (Bienz, 

1984; Heikkila et al., 1985; Davis and King, 1989). It is also localized to specific tissues during 

stress. For example, exposure of Xenopus laevis to hyperthermic conditions resulted in hsp70 

mRNA and protein accumulation in the heart at lower temperatures than in muscle, spleen, eye 

or liver (Ali et al., 1997). Tissue-specific expression may be caused by varying sensitivity to 

stress than what is present in other tissues and differences in the relative levels of hsp70 mRNA 

between tissues may be reflective of their specialized cell environment (Ali et al., 1997; Heikkila 

et al., 1997). HSP70 proteins are also expressed in a cell type and cell cycle dependent manner 

during normal conditions (Daugaard et al., 2007). Like any cell modulator, expression of HSP70 

needs to be tightly regulated, since over-expression of the protein can be problematic. HSP70 has 

been found to be abundantly expressed in malignant tumours (Jäättelä, 1995; Vargas-Roig et 

al.,1998; Kregel, 2002).  

 

1.5.3 Function of HSP70 

The main role of HSP70 is to control protein quality and regulate protein structures 

within the cell. These functions vary between stress-inducible HSP70 and constitutively 

expressed family members. The main roles of stress-inducible HSP70 are to prevent aggregation 

and to catalyze the refolding of unfolded proteins (Freeman and Morimoto, 1996; Nollen and 

Morimoto, 2002). HSP70 binds and releases extended sections of hydrophobic amino acids 

exposed by incorrectly folded proteins, in an ATP-dependent manner (Freeman and Morimoto, 



 

 10

1996; Freeman et al., 1995). Stress-inducible HSP70 thereby functions as a chaperone, which 

allows cells to cope with potentially detrimental aggregations of denatured proteins during stress. 

HSP70 is induced by a number of different stressors, including heat, hypoxia, reactive oxygen 

species and toxic compounds (Darasch et al., 1988; Giffard et al., 2004; Han et al., 2007). The 

expression of inducible HSP70 has been shown to enhance the survival of cells exposed to heat, 

although the mechanism is unclear (Heikkila et al., 1985; Phang et al., 1999). Thermotolerance 

has been shown to correlate with the synthesis of HSP70 and is associated with a high survival 

rate in Xenopus embryos (Heikkila et al., 1985). The loss of thermotolerance, usually occurring 

several days after the heat stress, is associated with increased HSP70 degradation (Heikkila et 

al., 1985; Phang et al., 1999). The induction of HSP70 is also correlated with acquired 

thermotolerance to other stressors, such as UV radiation, acidosis and energy depletion (Weitzel 

et al., 1985; Barbe et al., 1988; Samelman, 2000).  

HSP70 has roles in controlling physiological processes in the cell, which include 

vesicular trafficking, differentiation and signalling for growth (Goloubinoff and De Los Rios, 

2007). HSP70 has also been reported to play a role in preventing cell death, by interacting with 

factors that inhibit caspase-dependent apoptosis (Mosser et al., 1997). Under non-stressed 

conditions, specific HSP70s have roles in the import of cytoplasmic proteins into the 

mitochondria or ER. BiP, for example, facilitates the transport of newly synthesized proteins into 

the ER lumen and plays a role in their subsequent folding (Zimmerman et al., 2006). Cytosolic 

HSP70 may interact with growing polypeptide chains as they emerge from the ribosome to assist 

its exit and prevent aggregation (Beckmann et al., 1990; Georgopoulos and Welch, 1993). 

Further housekeeping roles of HSP70 include protein translocation, degradation of unstable 
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proteins, control of regulatory proteins, prevention of aggregation and disassembly of clathrin-

coated vesicles (Daugaard et al., 2007).  

 

1.6 Xenopus laevis as a Model Organism 

The South African clawed frog, Xenopus laevis, represents an excellent model to 

evaluate amphibian development on account of its rapid and well characterized development. 

Their eggs are easily obtainable in large quantities and can be fertilized in vitro. The large size of 

oocytes and eggs make them suitable for microinjection studies (Heikkila, 1990). Xenopus laevis 

is relatively inexpensive and easily maintained in the laboratory. They are also a valuable 

bioindicator for environmental studies and have been used often as an investigation tool. Studies 

have used Xenopus to evaluate reproductive and developmental toxicity (Sunderman et al., 1991; 

Herkovits et al., 1998; Lienesch et al., 2000; Mouchet et al., 2006; Mouchet et al., 2007).  

 A Xenopus laevis A6 kidney epithelial cultured cell line was derived from the renal 

uriniferous tubules of adult male Xenopus (Rafferty, 1969). This cell line is well established, 

with logarithmic growth until the culture is confluent (Rafferty, 1969). Hsp gene expression has 

been examined in Xenopus laevis A6 cells and embryos during development, and to a variety of 

stressors (Darasch et al., 1988; Lang et al., 1999; Heikkila 2003; Heikkila 2004).  

 

1.6.1 HSP30 in Xenopus laevis 

 To date, sixteen HSP30 polypeptides have been detected in Xenopus laevis and five 

Xenopus hsp30 genes (A-E) have been cloned and sequenced (Darasch et al., 1988; Krone et al., 

1992; Tam and Heikkila, 1995; Heikkila et al., 1997; Ohan et al., 1998a). Hsp30A contains an 

insertion in the coding region and hsp30B appears to be a pseudogene, and therefore both are not 
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representative of the hsp30 gene family (Bienz, 1984a). Hsp30C has a high level of sequence 

similarity with previously published hsp30 DNA, compared to the hsp30D gene. Both hsp30C 

and hsp30D are intronless genes that encode 24-kDa proteins (Heikkila et al., 1997). In contrast, 

only a portion of the hsp30E gene has been isolated (Krone et al., 1992). Hsp30C genes are 

developmentally regulated in Xenopus embryos. Hsp30C mRNA is not detectable in heat 

shocked oocytes (Davis and King, 1989), but is detected in relatively low levels at the late 

blastula stage (Ohan and Heikkila, 1995). Heat shock-induced accumulation of hsp30C mRNA 

and protein was first observed in early and midtailbud embryos, with enrichment in certain 

tissues (Lang et al., 1999). Hsp30C mRNA is constitutively expressed in the cement gland of 

early and midtailbud stage embryos, possibly to prevent apoptosis (Lang et al., 1999; Heikkila, 

2003). HSP30C protein synthesis was not detectable in early embryonic stages, but was heat-

inducible from the late tailbud stage (Tam and Heikkila, 1995). Hsp30 mRNA and HSP30 

protein are not constitutively expressed in Xenopus laevis cultured cells, although they are 

induced by heat shock, sodium arsenite, herbimycin A and hydrogen peroxide (Darasch et al., 

1988; Briant et al., 1997; Muller et al., 2004).  

HSP30 proteins form high molecular weight complexes that are capable of acting as 

molecular chaperones in Xenopus A6 kidney epithelial cells (Ohan et al., 1998b). HSP30 exists 

as multimeric complexes with molecular mass of 350-510 kDa consisting of monomers of 

approximately 24 kDa (Ohan et al., 1998b; Ganea et al., 2001). It also forms aggregates that 

combine upon heat shock to produce much larger structures known as heat shock granules (Ohan 

et al., 1998b). HSP30C in Xenopus holds other proteins in a folding-competent state to protect 

them from aggregating (Abdulle et al., 2002). HSP30C inhibits heat-induced aggregation of 

citrate synthase and luciferase (Fernando and Heikkila, 2000; Abdulle et al., 2002). The 
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chaperone capability of HSP30C is dependent on the C-terminal end (Fernando and Heikkila, 

2000; Abdulle et al., 2002). Current models suggest that sHSPs bind and hold misfolded proteins 

so that other HSPs, such as HSP70, can refold them in an ATP-dependent manner (Abdulle et 

al., 2002). Phosphorylation has been found to occur following removal of heat stress, during the 

period when cells recover from damage (Fernando et al., 2003). Phosphorylation has been shown 

to compromise the ability of HSP30C to prevent stress-induced aggregation of citrate synthase or 

luciferase in vitro, by resulting in protein structural changes. This ultimately destabilizes 

HSP30C multimeric complexes, leading to a decrease in HSP30C affinity for target protein 

binding and a subsequent loss of chaperone functions (Fernando et al., 2003). 

 

1.6.2 HSP70 in Xenopus laevis 

Hsp70 genes (A-D) have been isolated and sequenced in Xenopus laevis (Heikkila et al., 

1997). These genes are intronless and share a high level of similarity with Drosophila hsp70 at 

the mRNA and protein level. They also contain the HSE in the 5� region, as well as a TATA and 

CCAAT box (Heikkila et al., 1997). Two Hsc70 cDNA clones have also been isolated and 

sequenced in Xenopus (Ali et al., 1996a; 1996b) The hsc gene contains an ATP-binding domain, 

which is conserved between rat hsc70, and a more divergent carboxyl region (Ali et al., 1996a). 

Both hsp70 and hsc70 contain the EEVD motif and a putative nuclear localization signal, which 

likely plays a role in translocation into the nucleus (Ali et al., 1996a; Heikkila et al., 1997).  

Hsp70 mRNA is first detected in heat shocked embryos during the postblastula stages 

(Heikkila et al., 1987a; Lang et al., 2000). Accumulation increases in a development-dependent 

manner to the midtailbud stage, then decreases at the late tailbud stage (Lang et al., 2000). Heat 

shock also results in preferential enrichment of hsp70 mRNA in certain tissues, such as the heart, 
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somites, cement gland, spinal cord and proctodeum in heat shocked tailbud embryos (Lang et al., 

2000). Tissue-specific enhancement is detected following heat shock, and other stressors, such as 

zinc chloride and sodium arsenite, can also induce a similar hsp70 mRNA response (Lang et al., 

2000). Hsc70 mRNA, on the other hand, is not enhanced via heat shock and is detected 

constitutively in embryos, with levels increasing in the later stages of development (Ali et al., 

1996a; Lang et al., 2000). Basal levels of hsc70 mRNA are high in adult frog spleen and testis 

and moderate in the eye, heart, liver and brain (Ali et al., 1996a). BiP was detected constitutively 

in Xenopus unfertilized eggs, cleavage and blastula stage embryos. Heat shock enhanced BiP 

accumulation at the gastrula stage, with relative levels higher in selective tissues (Miskovic and 

Heikkila, 1999).  

 Hsp70 mRNA and protein are also stress inducible in the Xenopus A6 kidney epithelial 

cells. Treatments of elevated temperature, sodium arsenite, herbimycin A, hydrogen peroxide 

and ethanol resulted in enhanced accumulation of hsp70 mRNA and protein (Darasch et al., 

1988; Briant et al., 1997; Muller et al., 2004; Gauley and Heikkila, 2006). Hsp70 mRNA and 

HSP70 protein accumulation increased in Xenopus adult heart tissue following a mild 

hyperthermia (Ali et al., 1997).  

 

1.7 Cadmium 

Cadmium is a teratogenic and carcinogenic that occurs naturally in the environment and is 

also released anthropogenically (Vogiatzis and Loumbourdis, 1997; Waalkes et al., 1999; Fang 

et al., 2002). It is an industrial and environmental pollutant that exerts a large number of adverse 

effects on ecosystems and organism health (Mouchet et al., 2007). It is extracted during the 

production of other metals and emitted during the burning of fossil fuels (Cao et al., 2007; 
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Mendez-Armenta and Rios, 2007). Cadmium is used in metal plating, mining, ceramics and the 

production of chemical stabilizers (Martins et al., 2004). It is persistent in the environment, has 

no biological role and is not an essential metal (Jin et al., 1998). Cadmium exposure can occur 

through contaminated food or water, polluted air or inhalation of tobacco smoke (Waisberg et 

al., 2003). Cadmium accumulates in the major organs, but primarily in the kidney, liver and 

reproductive tissues, such as the gonads and uterus (Lohiya, 1976; Vogiatzis and Loumbourdis, 

1997; Barbier et al., 2004; Mouchet et al., 2006). It has been shown that cadmium contamination 

of freshwater can exert  a number of negative acute and chronic effects, which include renal 

impairment, cellular damage and apoptosis (Uriu et al., 2000; Audry et al., 2004; Agnello et al., 

2007; Mouchet et al., 2007). 

 

1.7.1 Effect of Cadmium on Cells 

Heavy metals can enter the cell by active ion transport or diffusion (Faurskov and 

Bjerregaard, 2002). In aquatic organisms, cadmium can enter dermally via skin and gills, or can 

be passed onto progeny during reproduction (Pederson and Bjerregaard, 2000; Fort et al., 2001). 

Uptake has been shown to be concentration-dependent due to an increase in active transepithelial 

ion transport (Bjerregaard, 2007). Cadmium exposure produces reactive oxygen species (ROS) 

and results in the formation of denatured or abnormal proteins (Waisberg et al., 2003; Wätjen 

and Beyersmann, 2004). Cellular damage, such as DNA adducts, DNA strand breaks, 

chromosomal aberrations and the presence of micronuclei also occur following cadmium 

exposure (Mouchet et al., 2007). The relative amount of DNA damage is dependent on both the 

concentration of cadmium and the length of exposure (Mouchet et al., 2007). Cadmium not only 

induces DNA damage, but also interferes with DNA repair processes and enhances genotoxicity 



 

 16

(Mendez-Armenta and Rios, 2007). Additionally, cadmium exposure also affects cellular 

calcium homeostasis and calcium-mediated functions in kidney cells by increasing intracellular 

calcium (Faurskov and Bjerregaard, 2002; Bjerregaard, 2007). Changes in cell morphology are 

also observed, including an alteration of cell shape, a loss of cell-cell attachment and monolayer 

integrity, as well as disruption of actin filament distribution when treated with cadmium 

(Bonham et al., 2003; Bjerregaard, 2007).  

 

1.7.2 Impact of Cadmium on Gene Expression 

Like other stressors, cadmium alters the expression of cellular genes in response to 

chemical-induced changes (Othumpangat et al., 2005). Cadmium modulates cellular signal 

transduction pathways by enhancing protein phosphorylation and activating transcriptional and 

translational factors (Waisberg et al., 2003). In particular, cadmium affects the regulation of the 

expression of genes involved in stress response, apoptosis, signal transduction and 

carcinogenesis (Cao et al., 2006; Liu et al., 2006). Cadmium triggers stress responses in various 

signalling cascades and by modifying transcription factor activity to deregulate gene expression 

(Cao et al., 2006; Xie and Shaikh, 2006). This includes the upregulation of stress response genes 

that encode for metallothioneins (MT), anti-oxidant defences and HSP expression (Bonham et 

al., 1993; Liu et al., 2006; Mouchet et al., 2006). MTs sequester and detoxify heavy metals, 

thereby limiting the genotoxic effects of cadmium on the cell (Mouchet et al., 2006). MTs are 

detected in renal epithelial cells in cells treated with cadmium, and are predominantly regulated 

at the transcriptional level (Choudhuri et al., 1993; Bonham et al., 2003). Cadmium also effects 

expression of genes regulating translation (Cao et al., 2006). For example, elongation initiation 
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factor 4E (eIF4E), a rate-limiting factor required for translation, is a cellular target for cadmium 

(Yokouchi et al., 2007).  

1.7.3 Effect of Cadmium on Organism 

Cadmium is toxic to organisms, especially in larvae and during early stages of 

development (Herkovits et al., 1998; Mouchet et al., 2007). Lethal concentrations of cadmium 

can cause immediate death, whereas sublethal concentrations may increase the risk of DNA 

damage and vulnerability to predation or unsuccessful fertilization (Mouchet et al., 2007). 

Histological and histochemical alterations occur in the livers and kidneys of frogs exposed to 

cadmium (Loumbourdis , 2005). Cadmium exposure also affects oocyte development and all 

stages of oogenesis in Xenopus (Lienesch et al., 2000). It affects embryo viability and results in 

malformations, including visceral edema, skeletal kinking of the notochord, craniofacial defects, 

ruptured pigmented retina. Further, cadmium exposure leads to a loss of weight, ovary health, 

sperm count and fertilization rates in adult frogs (Lienesch et al., 2000; Fort et al., 2001). Both 

reproductive and developmental toxicity is transgenerational and can be passed on to progeny 

(Fort et al., 2001). Cadmium has also been shown to result in greater toxicity, via cardiac and 

head edema, in a dose-dependent way when aggravated by extreme temperatures in zebrafish 

(Hallare et al., 2005).  

 
1.8 Objectives 

 
Cadmium chloride has been shown to induce hsp70 and hsp110 accumulation in Xenopus 

laevis A6 cells when treated with 200 µM for 5 h (Gauley and Heikkila, 2006). However, the 

effect of cadmium on hsp gene expression has yet to be fully characterized in this species or cell 

line. The objectives for this study were as follows: 
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• To determine the patterns of cadmium chloride-induced hsp30 and hsp70 gene 

expression in Xenopus laevis A6 kidney epithelial cells. 

•  To examine the effects of recovery from cadmium chloride exposure on the 

accumulation of HSP30 and HSP70 protein.   

• To examine the combined effect of cadmium exposure with a mild heat shock on the 

hsp30 and hsp70 mRNA and their respective proteins in Xenopus laevis A6 cells.  

• To monitor the cadmium-induced accumulation and intracellular localization of HSP30 in 

Xenopus laevis A6 cells using laser scanning confocal microscopy. 

• To examine the effects of cadmium chloride on cell morphology and cytoskeleton 

organization in Xenopus laevis A6 cells. 
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2 Experimental Procedures 
 
2.1 Xenopus laevis A6 Cell Treatments 
 
 Xenopus laevis A6 kidney epithelial cells were acquired from American Type Culture 

Collection (ATCC; Rockville, Maryland). A6 cells were cultured in 55% (w/v) Leibovitz (L)-15 

media (Sigma; Oakville, Ontario) supplemented with 10% (v/v) fetal bovine serum (100 U/ml) 

(Sigma) and 1% penicillin/streptomycin (100 µg/ml) (Sigma) and grown at 22ûC in T75 cm2 

flasks. When cells were confluent, they were washed with 2 ml of versene [0.02% (w/v) KCl, 

0.8% (w/v) NaCl, 0.02% (w/v) KH2PO4, 0.115% (w/v) Na2HPO4, 0.02% (w/v) sodium 

ethlenediaminetetraacetic acid (Na2EDTA), pH 7.2] for 2 min and then treated with 0.5 ml of 1X 

trypsin (Sigma) in 100% Hank�s balanced salt solution (HBSS; Sigma) until cells began to 

detach. Non-adherent cells were re-suspended in fresh media and aliquoted evenly into 

additional culture flasks. Cell treatments were performed once cells reached 90-100% 

confluence, with a minimum of 48 h between cell splitting and experimentation. 

Cadmium chloride treatments of A6 cells were performed at 22ûC using dilutions from a 

100 mM cadmium chloride stock solution made from 99.99% pure cadmium chloride (Sigma). 

Flasks of A6 cells were subjected to heat stress using a temperature regulated water bath (VWR; 

Cornelius, Oregon). Following treatment, cells were washed using 2 ml of 65% HBSS, with a 

subsequent addition of 1 ml 100% HBSS. Cells were harvested using a rubber scraper and 

transferred to 1.5 ml microcentrifuge tubes. Cells were pelleted in an Eppendorf 5415D 

microcentrifuge (Brinkmann Instruments Ltd; Mississauga, Ontario) for 1 min at 13,200 rpm. 

The supernatant was removed and cells were stored at -80ûC until protein or RNA isolation.  
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2.2 Production of hsp Antisense Riboprobes 
 
2.2.1 Hsp30C Template Generation 
 
 The entire open reading frame of the hsp30C gene was previously inserted into a pRSET 

expression vector (Invitrogen; Carlsbad, California) in our laboratory (Fernando and Heikkila, 

2000). Plasmids were transformed into Escherichia coli DH5α cells. Colonies were used to 

inoculate bacteria in 5 ml LB broth [1% w/v tryptone-peptone, 0.5% (w/v) yeast extract, 1% 

(w/v) NaCl, pH 7.5] supplemented with 100 µg/ml ampicillin (Bioshop; Burlington, Ontario) in 

15 mL Falcon tubes. Cells were grown overnight in a shaker waterbath at 37ûC for 14-16 h. 

 

2.2.2 Hsp70 Template Generation 

 The coding region of hsp70 genomic DNA was previously isolated (Lang et al., 2000) 

and inserted into the plasmid pSP72 (Promega; Napean, Ontario). Plasmids containing the hsp70 

insert were inoculated into 15 mL Falcon tubes and grown overnight in 5 mL of LB broth, 

containing 100 µg/ml ampicillin (Bioshop) at 37ûC.  

 

2.2.3 Isolation of Plasmid DNA 

Cells were centrifuged at 5,000 rpm for 5 min at 4 ºC in an Eppendorf Centrifuge 5810R 

(Brinkmann Instruments Ltd) in a swinging-bucket rotor. Pelleted cells were resuspended in 200 

µl of ice-cold alkaline lysis solution I [50 mM glucose, 25 mM Tris (pH 8.0), 10mM EDTA (pH 

8.0)], vortexed and transferred to a microcentrifuge tube. Cells were then lysed with 200 µl 

frehsly prepared alkaline lysis solution II [0.2 N NaOh, 1% (w/v) SDS], mixed via inversion and 

stored on ice. Next, 200 µl  of ice-cold alakline lysis solution III [3M potassium acetate, 5 M 

glacial acetic acid) was added and dispersed through the bacterial lysate by inverting the tube 
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several times. Samples were then stored on ice for 5 min. Samples were then centrifuged at 

14,000 rpm for 5 min at 4 ûC and supernatants were transferred to fresh tubes. RNase A (µg/mL; 

Bioshop) was added and samples were incubated at 37 ûC for 1 h to digest any remaining RNA. 

A solution of 600 µl phenol and chlorofrom (1:1) was added, vortexed for 30 sec and centrifuged 

at 14,000 rpm for 3 min at 4 ûC. The top layer was removed and transferred to a fresh tube. A 

600 µl solution of chloroform and isoamyl alcohol (25:1) was added, mixed via vortexing for 30 

sec and then centrifuged at 14,000 rpm for 3 min at 4 ûC. The supernatant was transferred to a 

fresh tube and nucleic acids were precipitated by adding 600 µl of ice-cold isopropanol. The 

solution was mixed by vortexing and allowed to stand at room temperature for 2 min. The 

precipitated nucleic acids were collected by centrifugation at 13,200 rpm at room temperature. 

The supernatant was removed, 1 ml of cold, filtered 70% (v/v) ethanol was added and DNA was 

recovered by centrifugation at 13,200 rpm for 2 min at room temperature. The supernatant was 

removed and the tube was opened and stored at room temperature for 5 min until the ethanol had 

evaporated. The nucleic acid was dissolved in 50 µl MilliQ water, quantified using a NanoDrop 

ND-1000 UV-Vis Spectrophotometer (NanoDrop Technologies) and stored at �20 ûC. Gel 

electrophoreses [1% agarose (Bioshop), 1X tris-acetate EDTA buffer (TAE, Millipore; Bedford, 

Massachusetts), 1 µl ethidium bromide (Sigma)] was performed, using 1X TAE running buffer, 

to ensure plasmid DNA was recovered. 2 µg of plasmid DNA, supplemented with 2 µl 6X 

loading dye (MBI Fermentas; Burlington, Ontario) was run with a 1 kB ladder (MBI Fermentas).  

 

2.2.4 Restriction Enzyme Digestion 

Restriction enzyme PvuII or MluNI (10 U/µl; Roche Molecular Biochemicals; 

Mississauga, Ontario) with buffer M or buffer A (Roche Molecular Biochemicals), for hsp30 and 
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hsp70, respectively, were added to 40 µl plasmid DNA and incubated for 2 h at 37 ûC. The cut 

plasmid sample (50 µl) was run on a 1% agarose gel [1X TAE, 1 µl ethidium bromide] for 1 h at 

100 V. A UV lamp was used to visualize the band of interest, which was cut out using a razor 

blade.  

  

2.2.5 Extraction of DNA from Agarose Gel  

DNA was extracted using a Montage DNA Gel Extraction Kit (Millipore).  The gel slice 

was placed in a Montage gel nebulizer and centrifuged for 10 min at 5,000 x g. The purified 

DNA was then precipitated by adding 1/10 volume of 3M sodium acetate (pH 5.2) and 2.5x 

100% cold, filtered ethanol. The sample was stored at �20 ûC for 30 min and then centrifuged at 

14,000 rpm for 5 min at 4 ûC. The supernatant was removed and 1 ml of 70% cold, filtered 

ethanol was added to the pellet. The sample was centrifuged at 14,000 rpm for 5 min at 4 ûC and 

the supernatant was removed. Another 1 ml of 70% ethanol was added and the sample was 

centrifuged again at 14,000 rpm for 5 min at 4 ûC. The supernatant was removed and the pellet 

was resuspended in 12 µl diethyl pyrocarbonate-treated (DEPC; Sigma) water.  

 

2.2.6 In Vitro Transcription 

In vitro transcription was used to synthesize a digoxigenin (DIG)-labelled riboprobe. 

Ingredients were brought to room temperature (except for RNA polymerase and RNA inhibitors) 

and mixed in a microcentrifuge tube in the following order: 4 µl DIG-rNTPs [10 µM rCTP, 10 

µM rGTP, 10 µM rATP, 10 µM rUTP (Promega), 10 µM DIG-11 UTP (Roche Molecular 

Biochemicals)], 5.5 µl of linearized DNA template, 4 µl 100 mM dithiothreitol (DTT) (final 20 

mM; Promega), 0.5 µl RNase inhibitor (MBI Fermentas), 4 µl 5 X transcription buffer (final 1X; 
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MBI Fermentas) and 2 µl SP6 RNA polymerase (MBI Fermentas). Transcription reactions were 

incubated for 2 h at 37 ûC followed by the addition of 1 µl of RNase-free DNase I (Roche 

Molecular Biochemicals) for 10 min at 37 ûC to digest any remaining DNA template. Then, 1 µl 

was removed for analysis by electrophoresis to determine transcript integrity. Transcripts were 

precipitated from the remainder of the sample with 10 µl 3M sodium acetate (pH 5.2), 80 µl TES 

[10 mM Tris-Hcl (pH 7.4), 5 mM EDTA (pH 8.0), 1% (w/v) SDS] and 220 µl of ice-cold, 100% 

filtered ethanol. The sample was mixed via vortexing and incubated at �80 ûC for 30 min. After 

precipitation, transcribed riboprobes were pelleted by centrifugation at 14,000 rpm for 10 min at 

4 ûC. The supernatant was removed and the pelleted riboprobe was re-suspended in 20 µl DEPC- 

treated water and stored at �80 ûC until use for northern hybridization analysis.  

 
 
2.3 RNA Isolation and Northern Hybridization 
  
2.3.1 RNA Isolation from A6 Cells 
 
 RNA was isolated from A6 cells using the QIAGEN RNeasy Mini Kit (QIAGEN; 

Mississauga, Ontario) according to the manufacturers protocol in RNeasy Mini Handbook (3rd 

edition, 2001). Pelleted cells stored at �80 ûC were lysed with 600 µl Buffer RLT containing 1% 

(v/v) β-mercaptoethanol, vortexed and homogenized by 5 passages of the lysate through a 20 ½ 

inch-gauge needle, fitted to a sterile syring. An equal volume of 70 % cold, filtered ethanol was 

added to the homogenized lysate and mixed via pipetting. Samples were applied in 600 µl 

aliquots to RNeasy mini columns held in 2 ml collection tubes and centrifuged at 13,200 rpm for 

15 sec in an Eppendorf 5415 D microcentrifuge (Brinkmann Instruments Ltd). The flow through 

was discarded and 700 µl of Buffer RW1 was added to the RNeasy column, followed by a 15 sec 

13,200 rpm centrifugation. The RNeasy column was transferred to a new 2 ml collection tube 
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and 500 µl Buffer RPE was added to the columns, and centrifuged for 15 sec at 13,200 rpm. The 

eluent was discarded and another 500 µl Buffer RPE was added and centrifuged for 2 min at 

13,200 rpm. The RNeasy column was then transferred to a new 1.5 ml Eppendorf tubes. RNA 

was eluted by two 30 µl aliquots of DEPC-treated water, followed by centrifugation at 13,200 

rpm for 1 min each. RNA was stored at �80 ûC.  

 

2.3.2 RNA Quantification  

RNA samples were quantified using a NanoDrop ND-1000 UV-Vis Spectrophotometer 

(NanoDrop Technologies). RNA quantity was measured three times and the average was taken. 

RNA integrity was assessed by electrophoresis of 2 µg samples on a 1.2% (w/v) 

formaldehyde/agarose gel [1.2% (w/v) agarose (Bioshop), 10% (v/v) 10X MOPS (0.2 M 3-

morpholino propane sulfonic acid, pH 7.0 (Bioshop)); 3 M sodium acetate, pH 5.2, 0.5M EDTA, 

pH 8.0 and 16% (v/v) formaldehyde]. RNA samples were denatured for 10 min at 68 ûC in 

solution of 1 µl 10X MOPS, 1.6 µl formaldehyde (Bioshop), 5 µl formamide (EMD Biosciences; 

Gibbston, New Jersey) 2 µl 10X loading dye [0.2% (w/v) bromophenol blue, 1 mM EDTA (pH 

8.0) and 50% (v/v) glycerol] and 1 µl ethidium bromide. Samples were cooled on ice for 5 min, 

loaded onto a 1.2% formaldehyde agarose gel and electrophoresed at 90 V for 1 h to confirm 

RNA quality and equal loading.  

  

2.3.3 Northern Hybridization 
 
 Gel electrophoresis was performed using 10 µg of isolated RNA in a 1.2% formaldehyde 

agarose gel, as described above, with the exception that ethidium bromide was not included in 

the loading buffer (Sambrook and Russell 2001). The gel was electrophoresed for 3 h at 70 V 
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and then soaked in 0.05 NaOH for 20 min to ensure RNA denaturation. Gels were rinsed with 

DEPC-treated water then soaked twice for 20 min each in 20X SSC [3M sodium chloride, 300 

mM sodium citrate (pH 7.0)].  

RNA was transferred overnight by capillary action onto a positively charged nylon 

membrane (Roche Molecular Biochemicals). For transfer, gels were inverted onto Whatman 

filter paper (VWR International; West Chester, Pennsylvania) wick, presoaked in 20X SSC, set 

on a Plexiglass support over a Pyrex® dish filled with 500 ml 20X SSC. Nylon membrane was 

laid directly on top of the gel and covered with two pieces of presoaked filter paper and a 4 inch 

stack of cut paper towels and approximately 500 g of weight. After transfer RNA was 

crosslinked to the membrane using a UV Crosslinker (UltraLum Inc; Claremont, California) at 

12,000 microJ/CM2.  

Equal loading and the success of the transfer was determined by staining the membrane 

with 1X Blot Stain Blue Reversible Northern Blot Staining Solution (Sigma) (Herrin and 

Schmidt, 1988). The membrane was pre-soaked in 10% (v/v) glacial acetic acid for 5 min prior 

to addition of the blot stain. DEPC-treated water was used to destain the membrane in order to 

visualize the individual RNA bands. The image was scanned using a Hewlett Packard ScanJet 

3300C.  

The membrane was transferred to a hybridization bag (Kapak SealPAK pouches; 

KAPAK; Minneapolis, Minnesota) and incubated in a Boekel Scientific Shake�N�Bake 

Hybridization Oven (VWR International) at 68 ûC for 4 h in 50 mL pre-hybridization buffer 

[50% (v/v) formamide, 5X SSC, 0.02% SDS, 0.01% N-lauryl sarcosine, 2% blocking reagent 

(Roche Molecular Biochemicals)]. The membrane was then incubated overnight in 50 ml of 
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hybridization buffer containing either the DIG-labeled hsp30 riboprobe or the DIG-labeled hsp70 

riboprobe.  

Stringency washes in decreasing concentrations of SSC were performed to remove any 

unbound probe. The first two washes (5 min each) occurred in 2X SSC (with 0.1% (w/v) SDS) at 

room temperature. This was followed by a 15 min wash in 0.5X SSC (with 0.1% (w/v) SDS) at 

68 ûC. Finally, the membrane was washed in 0.1X SSC (with 0.1% (w/v) SDS) for 15 min at 68 

ûC . The membrane was equilibrated at room temperature for 1 min in washing buffer [100 mM 

10X maleic acid (pH 7.5), 0.3% (v/v) Tween 20 (Sigma)]. Incubation for 30 min at room 

temperature in blocking solution [2% (w/v) blocking reagent, 10% (v/v) 10X maleic acid buffer 

(pH 7.5)] was used to prevent non-specific binding of the secondary antibody. The membrane 

was then incubated for another 30 min at room temperature in blocking solution containing a 

1:8000 dilution of secondary antibody anti-DIG-AP-conjugated Fab fragments (Roche Molecular 

Biochemicals). The membrane was washed twice for 15 min each in washing buffer at room 

temperature to remove any excess unbound antibody. The membrane was equilibrated for 2 min 

in detection buffer [0.1M Tris-HCl (pH 9.5), 0.1M NaCl]. The membrane was placed in a new 

Kapak bag and chemiluminescent reagent CDP-Star (Roche Molecular Biochemicals) was 

applied and incubated for 10 min in the dark. Signal detection was visualized using a DNP 

chemiluminescent imager (DNR BioImaging Systems Ltd.; Kirkland, Quebec) for 2-10 min.      

 

2.4 Protein Isolation and Western Immunoblotting 

2.4.1 Polyclonal Antibodies 

 A polyclonal anti-HSP30 Xenopus antibody was previously made in our laboratory using 

the entire open reading from of the hsp30C gene (Fernando and Heikkila, 2000). Previous studies 
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suggest that the anti-HSP30 antibody binds to all HSP30 family members in Xenopus laevis. A 

polyclonal anti-HSP70 antibody was commercially made against a C-terminal peptide fragment, 

specific to the stress-inducible HSP70B (Abgent; San Diego, California). The anti-HSP70 

antibody will recognize all stress-inducible HSP70 family members but not HSC70 or BiP in 

Xenopus laevis. 

 
2.4.2 Protein Isolation 
 

Protein was isolated from A6 cell pellets using 500 µl lysis buffer at pH 7.4 [160 mM 

sucrose, 1.6 mM ethylene glycol-bis N,N,N',N'-tetraacetic acid (EGTA; Bioshop), 0.8 mM 

EDTA, 32 mM NaCl, 24 mM N-Z-hydroxylethylpiperazine-N'-2 ethane sulfonic acid (HEPES; 

Bioshop), 1% (w/v) SDS] containing protease inhibitors [100 µg/ml phenylmethyl-sufonyl 

fluoride (PMSF; Bioshop), 1 µg/ml aprotinin (Sigma), 0.5 µg/ml leupeptin (Sigma)]. Samples 

were mixed via vortexing, sonicated (output control 4.5, 65% duty cycle for 15 pulses) using a 

Branson sonifier (Branson Sonic Power Co., Danbury, Connecticut) and then centrifuged at 

14,000 rpm for 1 h at 4ûC in an Eppendorf Centrifuge 5810R. The supernatant containing the 

protein sample was isolated and kept at -20ûC until use. 

 
2.4.3 Protein Quantification 
 
 Protein concentrations were determined by means of a bicinchoninic acid (BCA) protein 

assay, according to the manufaturer�s protocol (Pierce; Rockford, Illinois). A standard series of 

bovine serum albumin (BSA; G Biosciences; St. Louis, Missouri) dilutions, ranging from 0 to 2 

mg/ml were prepared in MilliQ water from a 2 mg/ml stock. Protein samples were aliquoted and 

diluted in MilliQ water at concentration of 1:2. Standards and samples were loaded in triplicate 

onto a polystyrene 96 well assay plate in 10 µl aliquots with the addition of 80 µl of BCA reagent 
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A and reagent B (50:1; Pierce). Samples were mixed via pipetting and plates were incubated for 

30 min at 37 °C. Reactions were analyzed with a Versamax Tunable microplate reader 

(Molecular Devices, Sunnyvale, California), and the plate was read at 562 nm.  BSA standards 

were used to construct a standard curve using Microsoft Excel, which was used to determine the 

protein concentration of each sample.  

 
2.4.4 Immunoblot Analysis 
 
 Immunoblot analysis was performed using 20-40 µg of protein and sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Gels were run on a BioRad Mini 

Protean III system (BioRad; Mississauga, Ontario). Separating gels [12% (v/v) acrylamide, 

0.32% (v/v) n�n;-bis methylene acrylamide, 0.375 M Tris (pH 8.8), 1% (w/v) SDS, 0.2% (w/v) 

ammonium persulfate (APS), 0.14% (v/v) n,n,n�n�-tetramethylethylenediamine (TEMED)] were 

prepared, poured and allowed to polymerize for 30 min with 100% ethanol layered on top. 

Ethanol was poured off and stacking gel [4% (v/v) acrylamide, 0.11% (v/v) n�n�-bis methylene 

acrylamide, 0.125 M Tris (pH 6.8), 1% (w/v) SDS, 0.4% (w/v) APS, 0.21 % (v/v) TEMED] was 

prepared, poured and allowed to polymerize for 30 min. 

 Protein samples (20-40 µg) were aliquoted and loading buffer [0.0625M Tris (pH 6.8), 

10% (v/v) glycerol, 2% (w/v) SDS, 5% (v/v) β-mercaptoethanol, 0.00125% (w/v) bromophenol 

blue] was added, to a final concentration of 1X. Samples were denatured via boiling for 10 min, 

cooled on ice for 5 min and pulse-centrifuged prior to loading. Gels were electrophoresed with 

1X running buffer [25mM Tris, 0.2M glycine, 1 mM SDS] at 90 V until samples reached the 

separating gel, at which time the voltage was turned up to 160-170 V until the dye front reached 

the bottom of the gel. 
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 Pure nitrocellulose transfer blot membranes (BioRad) and filter paper (BioRad) were cut 

to 5.5 cm x 8.5 cm, and membranes were incubated for 30 min in transfer buffer [25 mM Tris, 

192 mM glycine, 20% (v/v) methanol]. After electrophoresis, the stacking gel was cut away and 

the remainder of the gel was soaked in transfer buffer for 15 min. Protein was transferred to the 

nitrocellulose membrane with a Trans-Blot Semi-Dry Transfer Cell (BioRad) at 20 volts for 20 

min. Blots were then stained with Ponceau-S stain [0.19% (w/v) Ponceau-S, 5% (v/v) acetic 

acid] for 20 min to determine the success of the transfer and equal loading. The membrane was 

destained with MilliQ water and then scanned with a Hewlett Packard ScanJet 3300C. The 

membrane was incubated in  5% blocking solution [20 mM Tris (pH 7.5), 0.1% Tween 20 

(Sigma), 300 mM NaCl, 5% (w/v) Nestle® Carnation skim milk powder] for 1 h to prevent non-

specific binding. The membrane was then incubated for 1 h in blocking solution containing the 

primary polyclonal antibody. The antibodies used were either rabbit polyclonal anti-HSP30, anti-

HSP70 (Abgent) or anti-actin antibodies at a dilution of 1:5000; 1:200 and 1:200, respectively. 

Excess unbound antibody was removed by rinsing the membrane with 1X Tris-Buffered Saline 

with Tween (TBS- T) [20 mM Tris, 300 mM NaCl, (pH 7.5), 0.1% Tween 20 (Sigma)]. The 

membrane was washed with fresh TBS-T for 15 min, followed by two 10 min washes. The 

membrane was then incubated for 1 h with blocking solution containing the secondary antibody 

conjugate, AP-conjugated goat-anti-rabbit (BioRad) at a 1:3000 dilution). The membrane was 

rinsed with TBS-T and then washed with fresh TBS-T for 15 min, followed by two 5 min 

washes. The membrane was incubated in alkaline phosphatase detection buffer [alkaline 

phosphatase buffer (100 mM Tris base, 100 mM NaCl, 50 mM MgCl2 (pH 9.5)), 0.3% 4-nitro 

blue tetrazolium (NBT; Roche Molecular Biochemicals), 0.17% 5-bromo-4-chloro-3-indolyl-
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phosphate, toluidine salt (BCIP; Roche Moelcular Biochemicals)] until the bands were visible. 

Images were scanned using a Hewlett Packard ScanJet 3300C. 

 

2.5 Densitometric Analysis 

 Densitometry was performed using ImageJ (1.38) software on individual blots. 

Experiments were repeated in triplicate, and the average densitometric values were expressed as 

a percentage of the maximum hybridization band. The data were graphed with standard error, 

represented as vertical error bars. Two-tailed, unpaired T-tests were performed for some 

experiments to determine if statistically significant differences existed between the sample with 

the maximum binding and another treatment. Confidence levels used were 95% (p < 0.05) and 

99% (p < 0.001). 

 

2.6 Confocal Laser Scanning Microscopy 
 
 Xenopus laevis A6 cells were grown on 22x22 mm, base-washed [48% distilled water, 

50% mL 100% filtered ethanol and 2% 10M NaOH], flame sterilized glass coverslips at 22ºC. 

Cells were treated once they were confluent, approximately 48 h after seeding, with the direct 

addition of cadmium chloride to the media and/or incubation in a hot water bath (VWR). 

Following treatment, cells were washed twice (2 min each) with 1X phosphate buffered saline 

(PBS), containing magnesium and chloride [ 8% NaCl, 0.2% KCl, 0.2% KH2PO4, 2.1% 

Na2HPO4·10H2O, 1 mM MgCl2, 1 mM CaCl2] and fixed in 3.7% (w/v) paraformaldehyde in PBS 

for 15 min. Cells were washed three times for 5 min each in PBS and then permeablized in 0.3% 

(v/v) Triton X-100 (Sigma) in PBS for 10 min. Cells were washed again in PBS (3 x 2 min) and 

then incubated for 1 h in 3.7% (w/v) bovine serum albumin (BSA) fraction V (Sigma) in PBS, 
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filter sterilized using a 0.4 µm filter (Pall Filtration Corporation, Mississauga, Ontario).   Indirect 

labeling was performed using a 1:500 dilution of rabbit anti-Xenopus HSP30 polyclonal antibody 

in 3.7% BSA fraction V for 1 h. Cells were washed with PBS (3 x 2 min) to remove any 

unbound antibody. Secondary antibody incubation occurred for 30 min, using a mouse anti-

rabbit IgG antibody conjugated with Alexa-488 (Invitrogen) at a 1:2000 dilution in 3.7% BSA 

fraction V in PBS. Cells were washed with PBS (3 x 3 min) and then incubated with rhodamine-

tetramethylrhodamine-5-isothiocyanate (TRITC; 300 U of rhodamine phalloidin in 1.5 mL 100% 

methanol, Invitrogen Molecular Probes) at a 1:60 dilution for 15 min to visualize the actin 

cytoskeleton. Coverslips were washed again in PBS (3 x 3 min), dried and mounted on a 

microscope slide with Vectashield (Vector Laboratories Inc; Burlingame, California) containing 

4,6-diamidino-2-phenylindole (DAPI) to stain the nucleic acids. After a 10 min incubation with 

DAPI, excess Vectashield mounting medium was removed and coverslips were sealed to slides 

using clear nailpolish. Slides were kept at 4°C until use. 

Slides were imaged using a Zeiss Axiovert 200 confocal microscope with LSM 510 

META software (Carl Zeiss Canada Ltd., Mississauga, Ontario) according to the manufacturer�s 

instructions. Slides were mounted using oil emmersion (Zeiss) and observed using Plan-Neofluar 

40x / 1.3 numerical apenture (NA) oil differential interference contrast (DIC) and Plan- 

Apochromat 63x / 1.4 NA oil DIC objectives. Individual channels were used to detect TRITC 

(red), DAPI (blue) and HSP30 (green) separately, and then images were merged.  
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3. Results 

3.1. Characterization of hsp mRNA and HSP protein accumulation in A6 cells in response 

to elevated temperature. 

Initial studies used Northern hybridization analysis to examine the effect of heat shock on 

hsp30 and hsp70 mRNA accumulation in Xenopus laevis A6 cells. Cells were maintained at 22ºC 

or subjected to a heat shock at 30, 33, or 35ºC for 1 or 2 h. Hsp30 and hsp70 mRNA were not 

detected in control cells or in cells treated with a 30ºC heat shock, but accumulation was detected 

at temperatures of 33ºC and 35ºC (Figure 1). Both hsp30 and hsp70 mRNA accumulation 

increased with increasing temperature, as well as with duration of the heat shock.  

The next phase of this study utilized Western blot analysis to determine the effects of 

heat shock on HSP30 and HSP70 protein accumulation in A6 cells. Cells were maintained at 

22ºC or exposed to a 1 or 2 h heat shock at 30ºC, 33ºC or 35ºC, with a 2 h recovery period at 

22ºC. HSP30 or HSP70 protein was not detectable in control cells (Figure 2). Whereas a 30ºC 

heat shock failed to elicit a detectable heat shock response, treatment of cells at increased 

temperatures (33ºC and 35ºC) resulted in the accumulation of both HSP30 and HSP70 protein. 

Subsequent longer durations of heat shock (2 h versus 1 h) yielded greater accumulations of both 

HSP30 and HSP70 protein.  

Immunocytochemistry and LSCM were used to examine intracellular localization and 

accumulation of HSP30 protein in A6 cells. Cells were maintained at 22ºC or heat shocked at 30, 

33, or 35ºC for 2 h, followed by a 2 h recovery period at 22ºC. Whereas HSP30 protein was not 

detectable in control cells (Figure 3, A-C), or in cells treated at 30ºC (Figure 3, D-F), 

temperatures of 33ºC or higher resulted in the accumulation of HSP30 (Figure 3, G-L). In cells 

treated at 33ºC (Figure 3, G-I), HSP30 protein was localized to the cytoplasm whereas  
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Figure 1. Effect of heat shock on hsp30 and hsp70 mRNA accumulation in A6 cells. Cells 

were maintained at 22ºC (C) or subjected to a 1 or 2 h heat shock at 30ºC, 33ºC or 35ºC. Cells 

were harvested and total RNA was isolated and quantified. Total RNA (10 µg) was analyzed via 

northern hybridization analysis using antisense hsp30 and hsp70 riboprobes. The lower panel 

shows a reversible blot stain to confirm equal loading and quality of transfer.  
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Figure 2. Effect of heat shock on HSP30 and HSP70 protein accumulation in A6 cells. Cells 

were maintained at 22ºC (C) or exposed to a 1 or 2 h heat shock at 30, 33 or 35ºC with a 2 h 

recovery period at 22ºC. Protein was isolated and quantified. Total protein (20-40 µg) was 

analyzed using immunoblotting with HSP30 and HSP70 polyclonal antibodies. A Ponceau-S 

stain shows equal loading and quality of transfer.  
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Figure 3. The effect of heat shock on the intracellular localization of HSP30 in A6 cells 

using LSCM. A6 cells were grown on glass coverslips in L-15 media (A-L). Cells (A-C) were 

maintained at 22ºC or were heat shocked at 30ºC (D-F), 33ºC (G-I) or 35ºC (J-L) for 2 h, 

followed by a recovery for 2 h at 22 ºC. Actin and nuclei were directly detected by staining with 

TRITC (red) and DAPI (blue), respectively. HSP30 was indirectly detected with an anti-HSP30 

antibody and Alexa-488 secondary antibody conjugate (green). Columns, from left to right, 

indicate fluorescence detection channels for actin, HSP30 and merged images of all three 

channels. Temperatures greater than 30ºC resulted in the accumulation of HSP30. Cells treated at 

33ºC display HSP30 accumulation in the cytoplasm only, whereas at 35ºC, HSP30 also 

accumulated in the peripheral region of the nucleus (white arrow). Cells treated at 35ºC also 

displayed some membrane ruffling (white asterisks). The 10 µM white scale bar is indicated.  
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incubation of cells at 35ºC (Figure 3, J-L) resulted in HSP30 accumulation at the nuclear 

periphery (Figure 3, white arrow). Incubation of cells at 30ºC or 33ºC did not disrupt actin 

organization, whereas cells treated at 35ºC displayed some ruffled edges in areas of cell-cell 

contact (Figure 3, white asterisk).  

 

3.2. Characterization of hsp30 and hsp70 mRNA and protein accumulation in response to 

cadmium chloride.  

The effects of cadmium chloride on hsp30 and hsp70 mRNA accumulation in Xenopus 

laevis A6 cells were examined by Northern hybridization analysis, coupled with densitometry. 

Cells were maintained at 22ºC or treated with cadmium chloride (10 � 400 µM) for 5 h. Control 

A6 cells did not display hsp30 or hsp70 mRNA accumulation, nor did cells treated with low (10-

50 µM) cadmium chloride concentrations (Figure 4 and 5). Hsp30 transcript accumulation was 

detected following a 100 µM and 200 µM treatment, at approximately 8% and 67%, respectively, 

of the maximum signal observed at 400 µM. Hsp70 message was also detected following a 100 

µM and 200 µM treatment, but at approximately 50% and 72%, respectively, of the maximum 

signal at 400 µM. 

 This study also evaluated the effect of cadmium chloride on HSP30 and HSP70 protein 

accumulation in A6 cells via western blotting and densitometric analysis. Cells were maintained 

at 22ºC or treated with cadmium chloride (10 � 400 µM) for 14 h. As shown in Figure 6, HSP30 

and HSP70 protein were not detectable in A6 control cells. Immunoblot analysis also revealed 

that cadmium chloride treatment increased the relative  levels of HSP30 and HSP70 in cells 

treated with 100 µM or greater concentrations of cadmium chloride (Figure 6 and 7). Both 

HSP30 and HSP70 protein reached a maximal level of accumulation with a 200 µM cadmium  
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Figure 4. Effect of cadmium chloride on the accumulation of hsp30 and hsp70 mRNA in A6 

kidney epithelial cells. A6 cells were maintained at 22ºC (C) or exposed to varying 

concentrations of cadmium chloride (10 � 400 µM) for 5 h. Cells were harvested and total RNA 

was isolated and quantified. Ten µg of total RNA was analyzed by northern hybridization 

analysis using hsp30 and hsp70 antisense riboprobes. The bottom panel shows a reversible blot 

stain to confirm equal loading and quality of transfer.  
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Figure 5. Densitometric analysis of cadmium chloride-induced accumulation of hsp30 and 

hsp70 mRNA in A6 cells. ImageJ (1.38) software was used for densitometric analysis of hsp30 

(solid bars) and hsp70 (open bars) mRNA bands on northern blot images. The data were 

expressed as a percentage of the maximum hybridization band (at 400 µM) and then graphed 

with standard error represented as vertical error bars.   
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Figure 6. Cadmium-induced HSP30 and HSP70 protein accumulation in A6 cells. Cells 

were maintained at 22ºC (C) or exposed to various concentrations of cadmium chloride (10-400 

µM) for 14h. Cells were harvested and total protein was isolated. Total protein (20 µg for HSP30 

and actin and 40 µg HSP70, respectively) was analyzed via immunoblotting. Polyclonal primary 

HSP30, HSP70 and actin antibodies were used to detect protein accumulation. A Ponceau-S 

reversible blot stain is shown (bottom panel) to confirm equal loading and quality of transfer.  
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Figure 7. Densitometric analysis of cadmium-induced HSP30 and HSP70 protein 

accumulation in A6 cells. ImageJ (1.38) software was used for densitometric analysis of HSP30 

(solid bars) and HSP70  (open bars) protein bands on immunoblot images. The data were 

expressed as a percentage of the maximum binding within each blot. Vertical error bars represent 

standard error.  
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chloride treatment for 14 h. Relative levels of HSP30 and HSP70 protein decreased 8% and 60%, 

respectively, as the cadmium chloride concentration increased to 400 µM. Actin was detected in 

control cells and its levels remained fairly constant throughout all treatments.  

The effects of cadmium chloride on HSP30 protein localization and accumulation in A6 

cells were then examined by immunocytochemistry and LSCM. Cells were grown on coverslips 

and either maintained at 22ºC, or treated with 50, 100 or 200 µM cadmium chloride for 14 h. 

HSP30 accumulation was not detected in control cells (Figure 8, A-C), but was present at low 

levels in approximately 10% of cells treated with 50 µM cadmium chloride (Figure 8, D-F; 

Figure 9 A-L). A6 cells treated with 100 µM cadmium chloride displayed an increase in the 

relative abundance of HSP30 protein within the cytoplasm compared to cells treated with 50 µM 

cadmium chloride (Figure 10, A-L). Incubation of cells in the presence of 100 µM cadmium 

chloride also resulted in enhanced HSP30 accumulation in an average of 80% of cells (Figure 8, 

G-I; Figure 10, A-L). HSP30 staining occurred in large granular structures in cells treated with 

50 or 100 µM (Figure 8-10, white arrows). The relative level of HSP30 further increased with 

increased cadmium chloride concentrations. An average of 95% of cells treated with 200 µM 

cadmium chloride showed the presence of HSP30 protein (Figure 8, J-L). Treatment of A6 cells 

with 200 µM cadmium chloride also resulted in the disruption of stress fibers (Figure 8, white 

asterisks) and resulted in cell aggregates (Figure 8, J-L). 

 

3.3. Time course of hsp30 and hsp70 mRNA accumulation in A6 cells treated with cadmium 

chloride.  

Northern hybridization and densitometric analysis were used to characterize a time 

course of hsp30 and hsp70 transcript accumulation in A6 cells treated with cadmium  
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Figure 8. Cadmium chloride-induced HSP30 accumulation in A6 cells using LSCM.  Cells 

were grown on glass coverslips in L-15 media at 22 ºC. Cells were maintained at 22ºC (A-C) or 

treated with either 50 µM (D-F), 100 µM (G-I) or 200 µM (J-L) cadmium chloride for 14 h at 

22ºC . Actin was directly stained using TRITC (red) and the nucleus was directly stained using 

DAPI (blue). HSP30 was detected indirectly via an anti-HSP30 antibody and Alexa-488 

secondary antibody conjugate (green). From left to right the columns indicate fluorescence 

detection channels for actin, HSP30 and merged images (containing all three channels). HSP30 

was not detected in control cells (A-C) and present in low levels in approximately 10% of cells 

treated with 50 µM (D-F). Treatments with 100 µM resulted in an increased accumulation of 

HSP30 in the cytoplasm and of a larger proportion of cells (approximately 80%) (G-I). HSP30 

staining occurred in large granule structures (white arrows). Cells treated with 200 µM cadmium 

chloride displayed an even greater increase in HSP30 accumulation, and the presence of HSP30 

in approximately 95% of cells. Treatment with 200 µM also caused the disruption of actin fibers 

(white asterisks) and resulted in cell aggregation (J-L). The 10 µM white scale bar is indicated.  

 

 

 

 

 



 

 50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A B C 

D 

G 

J 

E 

H 

K 

F 

I 

L 

* 

* 

A B C

D

G

J

E

H

K

F

I

L

*

*



 

 51

 

 

 

 

 

Figure 9. Detailed analysis of HSP30 accumulation in A6 cells following a 14 h 50 µM 

cadmium chloride treatment. A6 cells were grown on glass coverslips at 22ºC in L-15 media, 

supplemented with 50 µM cadmium chloride (A-L). TRITC (red) and DAPI (blue) stains were 

used to directly detect actin and the nuclei, respectively. HSP30 was detected using an anti-

HSP30 antibody and Alex-488 secondary antibody conjugate (green). From left to right, the 

columns indicate fluorescence detection channels for actin, HSP30 and merged channels. Images 

A-C were taken using a Plan-Neofluar 40x / 1.3 NA oil DIC objective and show the relative 

proportion of cells (approximately 10%) that accumulate HSP30 following the 14 h cadmium 

treatment. All other images (D-L) were taken using a Plan-Apochromat 63x / 1.4 NA oil DIC 

objective, with increasing magnification. HSP30 accumulation occurs in only some cells when 

treated with 50 µM cadmium chloride for 14 h (A-F). Zoomed in images reveal that HSP30 is 

restricted to the cytoplasm, with the occurrence of large granules (white arrows) (G-L). The 10 

µM white scale bar is indicated.  
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Figure 10. Detailed analysis HSP30 accumulation in A6 cells following a 14 h 100 µM 

cadmium chloride treatment. A6 cells were grown on glass coverslips at 22 °C in L-15 media, 

supplemented with 100 µM cadmium chloride (A-L). Actin (red) and the nuclei (blue) were 

directly stained using TRITC and DAPI, respectively. HSP30 was detected using an anti-HSP30 

antibody and Alexa-488 secondary antibody conjugate (green). From left to right, the columns 

indicate fluorescence detection channels for actin, HSP30 and all three merged channels. Images 

A-C were taken using a Plan-Neofluar 40x / 1.3 NA oil DIC objective to show the relative 

proportion of cells that accumulate HSP30 following the 14 h 100 µM cadmium treatment. All 

other images (D-L) were taken using a Plan-Apochromat 63x / 1.4 NA oil DIC objective, with 

increasing magnification. HSP30 accumulation occurs in approximately 80% of cells treated 

with 100 µM cadmium chloride for 14h (A-C). Higher magnification revealed that HSP30 

accumulation occurs in the cytoplasm, with some formation of large granule structures (white 

arrow) (D-L). The 10 µM white scale bar is indicated.  
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chloride. Cells were maintained at 22ºC or treated with 200 µM of cadmium chloride for 2 - 24 

h. Hsp30 and hsp70 mRNA were not detected in control A6 cells, or in cells exposed to 

cadmium for 2 h  (Figure 11 and 12).  Hsp30 mRNA accumulation was first detectable at 4 h 

(2% of the maximum signal), whereas hsp70 mRNA accumulation was first detectable at 3 h 

(14% of the maximum signal). The relative levels of hsp30 transcript increased with increasing 

duration of treatment, to a maximum observed at 16 h, and a decline to 65% of peak values by 24 

h. Hsp70 transcript accumulation followed a similar pattern of expression, but with maximal 

accumulation observed at 8 h, and a subsequent decrease to 64% of peak values by 24 h.  

A time course of hsp30 and hsp70 gene expression was also characterized at the protein 

level in A6 cells by using Western blot and densitometric analysis.  Cells were maintained at 

22ºC or treated with 200 µM for 5 - 24 h. HSP30 protein accumulation was first detected in low 

amounts (2% of maximum band) at 5 h, whereas HSP70 protein accumulation was not visibly 

detectable until 8 h (24% of maximum band) (Figure 13 and 14). Treatment of A6 cells for 14 or 

16 h resulted in a maximal accumulation of HSP70 and HSP30, respectively. During prolonged 

cadmium chloride exposure (24 h) HSP30 protein levels declined by less than 1%, whereas 

HSP70 protein levels declined by approximately 50% from their respective maximum bands. 

Actin accumulation was detected in the control cells and levels decreased slightly with duration 

of treatment. 

 

3.4. Heat shock protein accumulation during recovery from cadmium chloride exposure in 

A6 cells. 

The relative levels of HSP30 and HSP70 during recovery from cadmium exposure were 

analyzed via Western blotting and densitometry. Cells were treated with 200 µM cadmium  
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Figure 11. Time course of hsp30 and hsp70 mRNA accumulation in A6 cells treated with 

cadmium chloride. A6 cells were maintained at 22ºC (C) exposed to 200 µM of cadmium 

chloride for various durations of time (2-24 h). RNA was isolated and quantified after treatment. 

Total RNA (10 µg) was analyzed by northern blot hybridization using hsp30 and hsp70  

antisense riboprobes. A reversible blot stain (bottom panel) verifies equal sample loading and 

efficient transfer.  
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Figure 12. Time course of cadmium-induced accumulation of hsp30 and hsp70  mRNA in 

A6 cells. ImageJ (1.38) software was used for densitometric analysis of hsp30  (solid bars) and 

hsp70 (open bars) mRNA bands on northern blot images. The data were expressed as a 

percentage of the maximum band at 16 h and 8 h, for hsp30 and hsp70, respectively. Vertical 

error bars represent standard error.  
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Figure 13. Time course of cadmium-induced HSP30 and HSP70 protein accumulation in 

A6 cells. Cells were maintained at 22ºC (C) or treated with 200 µM cadmium chloride for 

various lengths of time (5-24 h). Total protein was isolated and 20-40 µg were analyzed by 

immuoblotting using polyclonal HSP30, HSP70 and actin antibodies 
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Figure 14. Time course of cadmium-induced HSP30 and HSP70 accumulation. ImageJ 

(1.38) software was used for densitometric analysis of protein on western blot images. HSP30 

(solid bars) and HSP70 (open bars) data were expressed as a percentage of the maximum 

hybridization within each blot and then graphed with the standard error, represented as vertical 

error bars.  
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chloride for 8 h, and then allowed to recover from the stress for 0 - 72 h. HSP30 and HSP70 

protein accumulation was detected following an 8 h cadmium chloride treatment, at 22% and 

55% of the maximum signal, respectively (Figure 15 and 16). Maximum levels of HSP30 and 

HSP70 accumulation occurred 12 h after the removal of the cadmium chloride stressor. HSP30 

and HSP70 accumulation levels subsequently decreased as the duration of recovery increased. 

HSP30 accumulation was significantly lower after a 48 and 72 h recovery period, when 

compared to maximum accumulation at 12 h (p < 0.05). HSP70 accumulation also decreased 

with longer recovery times after the 12 h maximum, with significant differences observed at 24 

(p < 0.05), 48 (p < 0.001) and 72 h (p < 0.001). HSP70 accumulation was nearly undetectable in 

recovery periods longer than 24 h, with HSP70 protein levels decreasing 99% relative to the 

maximum signal at 12 h of recovery. In contrast, HSP30 accumulation remained visible on the 

blot at approximately 53% of the maximum signal.   

 

3.5. Characterization of hsp30 and hsp70 gene expression in A6 cells after a mild heat shock 

plus cadmium treatment.  

Studies, using Northern hybridization analysis with densitometry, examined the effect of 

a mild heat shock plus cadmium chloride treatments on hsp30 and hsp70 mRNA accumulation 

Xenopus laevis A6 cells. Cells were either maintained at 22ºC, treated with heat shock at 30ºC or 

200 µM cadmium chloride, or subjected to a combination of the two stressors for 5 h. Hsp30 and 

hsp70 mRNA were not detectable in control A6 cells or following a 30ºC heat shock for 5 h 

(Figure 17 and 18). Treatment of cells with 200 µM for 5 h induced the accumulation of the 
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Figure 15. HSP30 and HSP70 protein accumulation in A6 cells during recovery from 

cadmium exposure. Cells were maintained at 22ºC (C) or subjected to an 8 h 200 µM cadmium 

chloride treatment and then allowed to recovery for 0-72 h. The media containing cadmium was 

removed and fresh media was added to the cells. Total protein was isolated and 20-40µg was 

analyzed by immuoblotting using HSP30 and HSP70 polyclonal antibodies. A Ponceau-S 

reversible blot stain (bottom panel) reveals equal loading and quality of protein transfer.  
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Figure 16. HSP30 and HSP70 protein accumulation levels in A6 cells during recovery from 

a cadmium treatment. ImageJ software (1.38) was used to perform densitometric analysis of 

protein bands from western blots. HSP30 (solid bars) and HSP70 (open bars) data were 

expressed as a percentage of the maximum hybridization within each blot. Vertical error bars 

represent standard error. Significant differences are denoted between HSP30 at 12 h and longer 

recovery times (*, p < 0.05), as well as between HSP70 at 12 h and longer recovery times (∆, p < 

0.05, ∆ ∆ p < 0.001).  
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Figure 17. Accumulation of hsp30 and hsp70 mRNA in A6 cells after a mild heat shock plus 

cadmium treatment. Cells were maintained at 22ºC (C), or treated with either a heat shock at 

30ºC, 200 µM of cadmium chloride or a combination of the two stressors for 5 h. Total RNA (10 

µg) was analyzed by northern blot hybridization using hsp30 and hsp70  antisense riboprobes. 

The bottom panel shows a reversible blot stain to confirm equal loading and quality of transfer.  
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Figure 18. Densitometric analysis of hsp30 and hsp70 mRNA induction by a combination of 

stressors in A6 cells. ImageJ (1.38) software was used to perform densitometric analysis of 

hsp30 (solid bars) and hsp70 (open bars) mRNA bands on northern blot images. Results are 

expressed as a percentage of the maximum hybridization within the blot. Vertical error bars 

represent the standard error. Significant differences between individual stressors and combined 

treatment are annoted for hsp30 (**, p < 0.001) and hsp70 (∆, p < 0.05; ∆ ∆, p <0.001) 
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hsp30 message (42% of the maximum band) and the hsp70 message (71% of the maximum 

band). Cells that were exposed to a combination of the two stressors displayed over a 2-fold 

increase in hsp30 mRNA compared to the cadmium chloride treatment alone, whereas a hsp70 

mRNA accumulation increased 1.4-fold. Analysis revealed significant differences between cells 

treated with a single stressor (either heat shock or cadmium) and hsp30 (p < 0.001, p < 0.001, 

respectively) and hsp70 ( p < 0.001, p < 0.05, respectively) transcript accumulation in cells 

treated with both stressors  

 The effect of heat shock plus cadmium on the relative levels of HSP30 and HSP70 in A6 

cells was examined using Western blot analysis and densitometry. Cells that were maintained at 

22ºC or incubated at 30ºC for 5 h did not result in the accumulation of HSP30 and HSP70 

protein (Figure 19 and 20). Treatment of A6 cells with 200 µM cadmium chloride for 5 h 

resulted in a small accumulation of HSP30 (8% of the maximum band), whereas HSP70 protein 

was not detectable. Cells treated with 200 µM cadmium chloride plus a mild heat shock at 30ºC 

for 5 h resulted in an enhanced increase in the relative levels of both HSPs. Compared to A6 

cells treated with one stressor alone, 200 µM cadmium chloride plus a heat shock at 30ºC 

significantly increased the accumulation of HSP30 and HSP70 protein (p < 0.001). Actin 

accumulation was detected in control cells and its relative levels remained relatively constant, 

with a slight decrease observed in the more intense treatments.  

 Further experiments, using western blot and densitometric analysis, were performed to 

determine if similar effects of a mild heat shock plus cadmium treatment held true for lower 

cadmium chloride concentrations.  HSP30 and HSP70 protein were not detected in cells treated 

with a 30ºC heat shock or 10, 25, 50 or 100 µM cadmium chloride for 5 h (Figure 21 and 22). 

Treatment of A6 cells with 10 µM cadmium chloride plus a 30ºC heat shock for 5 h resulted in a 
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Figure 19. Effect of heat shock plus cadmium chloride on HSP30 and HSP70 protein 

accumulation in A6 cells. Cells were maintained at 22ºC (C) or treated with a 30ºC heat shock, 

200 µM cadmium chloride or a combination of the two stressors for 5 h. Total protein was 

isolated and quantified and 20-40 µg was analyzed by immunoblotting using HSP30, HSP70 and 

actin antibodies. A Ponceau-S reversible stain confirms equal loading and efficient transfer.  
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Figure 20. Accumulation of HSP30 and HSP70 protein after treatment with a mild heat 

plus cadmium exposure in A6 cells. ImageJ (1.38) software was used to perform densitometric 

analysis of protein bands from western blots. Data for HSP30 (solid bars) and HSP70 (open bars) 

were expressed as a percentage of the maximum hybridization within each blot and then graphed 

with the standard error, represented as vertical error bars. Significant differences between 

individual stressors and combined treatment are annoted for HSP30 (**, p < 0.001) and HSP70 

(∆∆, p < 0.001). 
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Figure 21. Concentration series showing accumulation of HSP30 and HSP70 protein in A6 

cells after treatment with a mild heat shock plus cadmium. Cells were maintained at 22ºC (C) 

or subjected to either a 30ºC heat shock, a cadmium chloride treatment (10-100 µM) or a 

combination of two stressors. Cells were harvested and total protein was isolated. Total protein 

(20-40 µg) was analyzed by immunoblotting using HSP30 and HSP70 primary antibodies. The 

bottom panel shows a Ponceau-S reversible stain, which confirms equal loading and the quality 

of transfer.  
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Figure 22. Analysis of accumulation of HSP30 and HSP70 protein in A6 cells. Densitometric 

analysis was performed using ImageJ (1.38) software. Protein bands were analyzed from their 

respective western blots and the data for HSP30 (solid bars) and HSP70 (open bars) were 

expressed as a percentage of the maximum binding within each blot. Results were graphed with 

the standard error, which is represented as vertical error bars.   
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small accumulation of HSP30 (0.5% of the maximum band), whereas HSP70 protein was not 

detectable. Incubation of cells at 30ºC in the presence of 25 µM cadmium chloride for 5 h 

induced a small accumulation of HSP70 as well as a 3-fold increase in HSP30 compared to the 

10 µM cadmium chloride plus a 30ºC heat shock treatment. Compared to the treatment that 

combined a heat shock at 30ºC with 25 µM, a heat shock in the presence of 50 µM  showed a 3-

fold increase in both HSP30 and HSP70 protein accumulation. A6 cells treated with 100 µM 

cadmium chloride with a 30ºC heat shock for 5 h resulted in greater enhanced levels of HSP30 

and HSP70 protein (8- and 4-fold, respectively).  

 The next set of studies also examined the effects of combining two stressors, but in this 

case, the concentration of cadmium chloride was kept constant and the temperature of the heat 

shock was varied. Cells were maintained at 22ºC or treated with either a heat shock at 30ºC, 200 

µM cadmium chloride or a combination of a mild heat shock (26, 28, 30ºC) plus the cadmium 

chloride treatment for 5 h. A 30ºC heat shock alone did not result in detectable amounts of 

HSP30 or HSP70, whereas treatment of cells with 200 µM cadmium chloride for 5 h resulted in a 

small accumulation of HSP30 (3% of the maximum band) but not HSP70 protein (Figure 23 and 

24). Cells treated with a combination of the two stressors resulted in larger increases in the 

relative level of HSP30 and HSP70 protein. Both HSP30 and HSP70 protein accumulation 

increased with increasing temperature up to 30ºC. Compared to a heat shock at 26ºC with 200 

µM cadmium chloride, treatment with 200 µM at 28ºC showed a 2-fold increase in both HSP30 

and HSP70 protein, while treatment at 30ºC in the presence of cadmium chloride showed a 3-

fold increase. 
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Figure 23. Effect of different temperatures on HSP30 and HSP70 protein accumulation in 

A6 cells exposed to 200 µM cadmium chloride. Cells were maintained at 22ºC (C) or treated 

with either a heat shock at 30ºC, 200 µM or a combination of mild heat shock (26, 28 or 30ºC) 

plus the cadmium treatment. Total protein was isolated and 20-40 µg was analyzed by 

immunoblotting using HSP30 and HSP70 antibodies. Equal loading and quality of transfer is 

confirmed via a reversible Ponceau-S stain.  
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Figure 24. Effect of temperature on cadmium-induced accumulation of HSP30 and HSP70 

protein in A6 cells. ImageJ (1.38) software was used for densitometric analysis of HSP30 (solid 

bars) and HSP70 (open bars) protein on immunoblot images. Data were expressed as a 

percentage of the maximum binding within each blot and graphed. Vertical error bars represent 

the standard error.  
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Immunocytochemistry and LSCM was then employed to examine the accumulation and 

localization of HSP30 in A6 cells treated with a mild heat shock plus cadmium. Cells were 

maintained at 22ºC or treated with either a heat shock at 30ºC, 200 µM cadmium chloride or a 

combination of the two for 5 h (Figure 25). HSP30 protein was not detectable in control cells 

(Figure 25, A-C) or cells incubated at 30ºC for 5 h (Figure 25, D-F). Cells treated with 200 µM 

cadmium chloride for 5 h resulted in low relative levels of HSP30 accumulation in the cytoplasm 

(Figure 25, G-I), whereas a combination of a mild heat shock and the cadmium treatment 

resulted in larger increases in HSP30 accumulation, as well as increased ruffled edges in areas of 

cell-to-cell contact (white asterisks) and actin disorganization (white arrows) (Figure 25, J-L). 

Further experiments examined the effect of cadmium chloride concentration in conjunction with 

a mild heat shock on HSP30 accumulation in A6 cells. Cells were maintained at 22ºC or 30ºC or 

treated with 10,  25 or 50 µM cadmium chloride for 5 h. Additionally, cells were heat shocked at 

30ºC in the presence of either 10, 25 or 50 µM cadmium chloride for 5 h. HSP30 protein  

accumulation was not detectable in control cells (Figure 26, A-C), or in cells treated with 10 

(Figure 26, D-F), 25 (Figure 26, G-I) or 50 µM (Figure 26, J-L) cadmium chloride alone. 

Further, cells incubated at 30ºC also did not result in HSP30 accumulation (Figure 26, M-O). 

However, treatment of A6 cells with a combination of stressors resulted in enhanced HSP30 

levels. Incubation of cells at 30ºC in the presence of 10 µM cadmium chloride induced a small 

accumulation of HSP30 protein (Figure 26, P-R), whereas a larger increase in HSP30 

accumulation was observed when cells were treated with 25 µM cadmium chloride plus heat 

shock at 30ºC (Figure 26, S-T). The abundance of HSP30 accumulation and proportion of cells 

exhibiting HSP30 accumulation increased with increasing cadmium chloride concentrations up 

to 50 µM (Figure 26, U-X).  
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Figure 25. Localization of HSP30 accumulation in A6 cells treated with a mild heat shock 

plus cadmium. Cells were grown on glass coverslips in L-15 media at 22 ºC. Cells were either 

maintained at 22ºC (A-C) or treated with a 30ºC heat shock (D-F), a 200 µM cadmium chloride 

treatment (G-I) or a combination of the two stressors (J-L) for 5 h. Actin and nuclei were 

detected directly by staining with TRITC (red) and DAPI (blue). HSP30 was indirectly detected 

with an anti-HSP30 antibody and Alexa-488 secondary antibody conjugate (green). Columns, 

from left to right, represent fluorescence detection channels for actin, HSP30 and merged 

images. HSP30 was not detected in cells heat shocked at 30ºC  (D-F). Cells treated with 200 µM 

cadmium chloride (G-I) show low levels of HSP30 accumulation in the cytoplasm, as well as 

increased ruffling at cell edges (white asterisks). A combination of the two stressors (J-L) 

produced a relatively large increase of HSP30 accumulation in the cytoplasm. Further, actin 

fibers were disorganized (white arrows), cellular periphery showed ruffled edges in areas of cell-

cell contact (white asterisks) and cells formed aggregates (J-L). The 10 µM white scale bar is 

indicated.  
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Figure 26. Accumulation of HSP30 in A6 cells treated with varying concentrations of 

cadmium plus a mild heat shock. Cells were grown on glass coverslips in L-15 media at 22 ºC. 

Cells were maintained at 22ºC (A-C) or treated with either 10 µM (D-F), 25 µM (G-I), 50 µM (J-

L) cadmium chloride or a mild heat shock at 30ºC  (M-O) for 5 h. Additionally, cells were heat 

shocked at 30ºC in the presence of either 10 µM (P-R), 25 µM (S-U) or 50 µM cadmium chloride 

(V-X). Actin and nuclei were directly stained with TRITC (red) and DAPI (blue), respectively. 

HSP30 was detected using an anti-HSP30 antibody and a secondary antibody conjugate, Alexa-

488 (green). From left to right, columns show fluorescence detection channels for actin, HSP30 

and merged channels with DAPI. Control cells (A-C), as well as cells treated with 10-50 µM 

cadmium chloride alone (D-L) did not result in the accumulation of HSP30. Cells treated with 

heat shock alone at 30ºC also did not display an accumulation of HSP30 (M-O). When the two 

stressors were combined, HSP30 accumulation was detected in low levels in cells treated with 

the lowest concentration of cadmium chloride (10 µM) (P-R). However, when cells were treated 

with higher concentrations of cadmium chloride (25 and 50 µM) in conjunction with a mild heat 

shock, enhanced HSP30 accumulation was observed in a concentration-dependent manner (S-X). 

Actin organization remained intact throughout control and experimental conditions (A-X). The 

10 µM white scale bar is indicated.  
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 A temperature profile of heat shock plus cadmium was then performed to observe its 

effects on HSP30 accumulation in A6 cells. Cells that were maintained at 22ºC (Figure 27, A-C) 

or incubated at 26ºC (Figure 27, D-F), 28ºC (Figure 27, G-I) or 30ºC (Figure 27, J-L) for 5 h did 

not result in HSP30 accumulation. A 5 h 100 µM cadmium chloride treatment induced the 

accumulation of HSP30 protein in some A6 cells (Figure 27, M-O). Cells treated with a 

combination of 100 µM plus a mild heat shock displayed a relatively large increase in HSP30 

accumulation. HSP30 accumulation levels increased with increasing temperature when cells 

were heat shocked at 26, 28 or 30ºC in the presence of 100 µM cadmium chloride. While 

treatment of cells with 100 µM plus a 26ºC heat shock induced HSP30 (Figure 27, P-R), 

treatment of cells with 100 µM at 28ºC (Figure 27, S- U) or 30ºC (Figure 27, V-X) resulted in 

enhanced HSP30 levels. HSP30 remained localized to the cytoplasm, sometimes forming large 

granular structures (Figure 27, white arrows). Actin stress fibers remained intact when cells were 

subjected to one stress; however a combination of stressors resulted ruffled edges at the cellular 

periphery (Figure 27, white asterisks) and some actin disorganization (Figure 27, white 

triangles). Ruffled edges in areas of cell-cell contact and actin disorganization increased with 

increasing temperature during combination treatments.  
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Figure 27. Temperature profile of heat shock plus cadmium and its effects on HSP30 

accumulation in A6 cells. Cells were grown on glass coverslips in L-15 media at 22 ºC. Control 

cells were maintained at 22ºC (A-C) or treated with either a heat shock at 26 ºC (D-F), 28 ºC  (G-

I), 30ºC  (J-L) or 100 µM cadmium chloride (M-O) for 5 h. To examine the effects of more than 

one stressor on HSP30 accumulation, cells were also subjected to a combination of 100 µM with 

26 ºC (P-R), 28 ºC(S-U) or 30ºC (V-X). TRITC (red) and DAPI (blue) were used to directly stain 

actin and nuclei, respectively. Secondary antibody conjugate Alexa-488 (green) was used with 

anti-HSP30 antibody to detect HSP30. From left to right, columns indicate fluorescence 

detection channels for actin, HSP30 and all three merged channels. As expected control cells 

were void of HSP30 (A-C). Cells heat shocked at 26, 28 and 30ºC also showed no accumulation 

of HSP30 (D-L). HSP30 was detected in low levels in cells treated with 100 µM cadmium 

chloride for 5 h (M-O). Enhanced accumulation was observed when cells were exposed to a 

combination of cadmium and a mild heat shock (P-X). HSP30 accumulation levels increased 

with increasing temperature (P-X). HSP30 remained localized to the cytoplasm and the 

formation of large structural granules (white arrows) was observed (P-X). Actin stress fibers 

remained intact when cells were subjected to one stress; however cells that experienced a 

combination of stressors displayed ruffled edges (asterisks) and some actin disorganization 

(white triangles) (P-X). Membrane ruffles and actin disorganization increased with increasing 

temperature (P-X). The 10 µM white scale bar is indicated.  
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4 Discussion 
 

The present study has characterized cadmium chloride-induced hsp gene expression in 

Xenopus laevis A6 cells. Initial studies demonstrated that treatment of A6 cells with cadmium 

chloride induced the accumulation of hsp30 and hsp70 mRNA. Relative levels of hsp30 and 

hsp70 transcripts increased with increasing concentrations of cadmium chloride. Also, both 

hsp30 and hsp70 mRNA accumulation increased with increasing duration of treatment to a 

maximum at 8 and 16h, respectively, which was followed by a decrease at 24 h. Preliminary 

studies also showed that treatment of A6 cells with cadmium chloride resulted in the 

accumulation of HSP30 and HSP70 protein. In time course studies, HSP30 was detected earlier 

than HSP70 accumulation; however, both reached maximum levels of accumulation at 14-16 h. 

These results are consistent with previously published results. In our laboratory, Gauley and 

Heikkila (2006) reported that a 200 µM cadmium chloride treatment for 5 h resulted in enhanced 

accumulation of both hsp110 and hsp70 mRNA in Xenopus laevis A6 cells. In other studies, a 

concentration-dependent increase in HSP27 and elevated HSP70 levels were detected in MDCK 

and LLC-PK1 renal epithelial cells treated with cadmium (Bonham et al., 2003). Also, HSP70 

induction in zebrafish was also found to be dependent on cadmium concentration (Hallare et al., 

2005).  

Accumulation of stress-inducible HSPs is dependent on the activation of HSF1 and its 

subsequent binding to HSE, to initiate hsp gene expression. The specific interaction between 

HSF1 and HSE was shown to be enhanced in heat shocked Xenopus laevis embryos (Ovsenek 

and Heikkila, 1990). Also, Manwell and Heikkila (2007) demonstrated that KNK437, a HSF1 

inhibitor which is known to inhibit HSF-HSE binding activity, reduced the heat shock-induced 

accumulation of hsp30 in Xenopus laevis cultured cells. In the present study, it is probable that 
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cadmium induced hsp gene expression in A6 cells occurs through the activation of HSF1. 

Cadmium has been shown to induce HSE binding activity, resulting in the formation of an 

HSE/HSF-specific complex in Xenopus laevis oocytes (Gordon et al., 1997). Also, Uenishi et al. 

(2006) demonstrated that HSF1 was activated by cadmium, resulting in the formation of 

HSF1/HSE complexes in HeLa cells. Although the mechanism by which a cell detects stress is 

unclear, it is thought that the presence of non-native or misfolded proteins triggers HSF1 

activation, thereby initiating the heat shock response (Georgopoulos and Welch, 1993; Krebs and 

Feder, 1997; Morimoto, 1998; Pirkkala et al., 2001). Cadmium has been shown to induce the 

generation of denatured or abnormal proteins by substituting for zinc in proteins or by reacting 

with vicinal thiol groups within cells (Waisberg et al., 2003).   

While both hsp30 and hsp70 mRNA and their respective proteins were induced by 

cadmium chloride, there were differences in the pattern of their expression and accumulation. 

For example, hsp70 mRNA accumulation was detectable and reached its maximum several hours 

before hsp30 mRNA. Dissimilarly, HSP30 protein was initially detected several hours earlier 

than HSP70 accumulation. Interestingly, a 14 h 400 µM cadmium chloride treatment resulted in 

a 60% decrease in relative levels of HSP70 protein, whereas HSP30 accumulation only 

decreased 8% from the maximum signal observed at 200 µM. Also, HSP30 protein levels did not 

decrease as rapidly as HSP70 protein during recovery from a cadmium chloride treatment. These 

results suggest that distinct patterns of hsp30 and hsp70 expression may be due to differences in 

regulation at the levels of transcription, translation and/or mRNA or protein stability. Differences 

in hsp30 and hsp70 mRNA levels during a recovery from heat shock have been previously noted 

(Darasch et al., 1988). Further dissimilarities in expression between HSP30 and HSP70 protein 

may be caused by differences in sensitivity to stress or differences in demand, since HSP30 and 
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HSP70 have unique roles inside the cell. HSP30 and HSP70 are biologically different; HSP30 

maintains proteins in a stable state, whereas HSP70 actively refolds proteins using ATP. Earlier 

studies have documented differences in expression patterns between HSPs with respect to 

stressor type, stage of development and tissue specificity (Bienz, 1984; Ali et al., 1993; Lang et 

al., 1999). It is also plausible that differences observed in HSP30 and HSP70 protein 

accumulation are a function of the binding efficiency of each antibody. However, it is important 

to note that hsp30 and hsp70 mRNA and their respective proteins are inducible by cadmium 

chloride, even if there is variation in their pattern of expression. 

Recovery experiments demonstrated that hsp gene expression continued, even after the 

cadmium chloride treatment had been stopped. It was possible that A6 cells required additional 

time to recover from cellular damage produced by cadmium chloride. Cadmium was shown to 

produce reactive oxygen species, interfere with calcium signaling and cause DNA damage 

(Faurskov and Bjerregaard, 2002; Han et al., 2007; Mouchet et al., 2007). Continued expression 

of HSP30 may assist with returning cellular machinery back to a normal state. The decrease in 

the relative level of HSP30 accumulation 72 h after removal of the cadmium stressor could be an 

indication of the cells returning to normal conditions. Another possible explanation for the 

sustained level of HSP30 accumulation during recovery from cadmium chloride treatment, is that 

cadmium chloride is still present in the cells, even though the media were replaced. Cadmium is 

readily absorbed by the kidneys and has been shown to accumulate in the kidneys in amphibian 

species (Vogiatzis and Loumbourdis, 1997; Barbier et al., 2004). Also, in Xenopus laevis 

embryos, it was found that cadmium uptake was directly related to the external cadmium 

concentration (Herkovits et al., 1998). Furthermore, cadmium accumulation in the kidneys 

occurs in a time-dependent manner (Vogiatzis and Loumbourdis, 1998). If the intracellular 
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cadmium chloride in A6 cells was not excreted, it may still have exerted its adverse effects, thus 

requiring a continued accumulation of HSPs to manage this stress. In this instance, the decrease 

in HSP30 accumulation observed 72 h after removal of the cadmium stress could have been due 

to the breakdown of cellular machinery. However, A6 cells displayed normal morphology 72 h 

after the removal of cadmium chloride and the cadmium chloride treatment did not appear to 

inhibit cell growth or division, since cells were able to achieve normal confluency. If A6 cells 

retained cadmium chloride, it would have likely interfered with cell adherence and cell 

morphology would have been abnormal.  

 A synergistic increase in hsp30 and hsp70 mRNA levels and their respective proteins 

were observed when two stressors, which individually had a weak effect, were combined in A6 

cells. This phenomenon was previously reported when a mild heat shock was combined with 

sodium arsenite in Xenopus laevis A6 cells (Heikkila et al., 1987b). Also, a synergistic increase 

in the relative levels of hsp30 and hsp70 mRNA were observed in Xenopus A6 cells when heat 

shocked in the presence of herbimycin A or hydrogen peroxide (Briant et al., 1997; Muller et al., 

2004). Further, enhanced synthesis of HSPs was demonstrated in mouse lymphocytes treated 

with elevated temperature plus ethanol (Rodenhiser et al., 1986). The mechanism by which 

synergistic accumulation of HSPs was produced is not yet known; however, it could be 

explained by an increase in either the rate of transcription or stability of hsp30 and hsp70 

mRNA, or stability of their proteins (Heikkila et al., 1987b). It was also plausible that a 

combination of stressors caused a significant increase in denatured or misfolded protein, thereby 

increasing the magnitude of the heat shock response. This may be the case since heat and 

cadmium affect protein structure through different means.  
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 The present study also examined the intracellular localization and accumulation of 

HSP30 in Xenopus laevis A6 cells after heat shock or cadmium chloride treatment. 

Immunocytochemistry and LSCM revealed that HSP30 accumulation was localized in the 

cytoplasm following cadmium chloride treatments, whereas HSP30 enrichment in the 

perinuclear region was observed following a heat shock at 35ºC for 2 h, with a 2 h recovery 

period. HSP30 may relocalize to the nucleus in A6 cells to protect target nuclear proteins; 

however the mechanism has yet to be described. Translocation of sHSPs from the cytosol to the 

nucleus during heat shock have been observed in Drosophila and mouse myoblasts (Beaulieu et 

al., 1989; Adhikari et al., 2004). A more detailed examination of HSP30 revealed the presence of 

large granular structures. HSP30 has been shown to form large multimeric structures in Xenopus 

laevis A6 cells (Ohan et al., 1998b). An increase in molecular mass and the appearance of 

granules have been documented in other sHSP family members in response to stress (Leroux et 

al., 1997; Ehrnsperger et al., 1997; Ehrnsperger et al., 1999). The formation of a multimeric 

complex was imperative for sHSP chaperone function and prevention of protein aggregation 

(Leroux et al., 1997; Ehrnsperger et al., 1997). Therefore, it is possible that the observed 

granules were a result of the formation of high molecular weight multimeric structures. A similar 

pattern of HSP30 expression was observed in Xenopus laevis A6 cells treated with sodium 

arsenite (Gellalchew and Heikkila, 2005).  

 While cadmium chloride treatments at low concentrations or durations did not induce a 

detectable alteration in A6 cell shape or F-actin structure, incubation of cells at higher cadmium 

concentrations resulted in localized areas of F-actin disorganization and ruffled edges at the 

cellular periphery, especially when cells were heat shocked in the presence of cadmium. 

Physiological stress results in alterations in cytoskeletal organization, such as the aggregation, 
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fragmentation or collapse of microfilaments, intermediate filaments and microtubules (Welch 

and Suhan, 1985; Wiegant et al., 1987; Head and Goldman, 2000). The presence of HSPs has 

been implicated in the development of thermotolerance in the cytoskeleton, likely by protecting 

cytoskeletal proteins and maintaining the integrity of filaments (Wiegant et al., 1987; Lavoie et 

al., 1993; Mairesse et al., 1996; Mounier and Arrigo, 2002).  

 Cells that experienced the most intense stressors resulted in the formation of cellular 

aggregates and/or cell rounding. The addition of cadmium chloride affected the settling and 

adherence of A6 cells, thereby inhibiting the development of confluent epithelia in Xenopus 

laevis (Bjerregaard, 2007). Cadmium specifically damages cadherin-dependent junctions 

between epithelial cells, which coincides with the loss of cell-to-cell contacts (Prozialeck et al., 

2003). Calcium-dependent cell adhesion molecules are an essential structural component of 

adherens junctions. Studies have suggested that cadmium may disrupt intercellular junctions by 

mimicking calcium (Prozialeck and Niewenhuis, 1991a; Prozialeck and Edwards, 2007). Also, 

cadmium caused time and concentration dependent changes in cell adherence, which resulted in 

complete separation of renal epithelial cells (Prozialeck and Niewenhuis, 1991b). In the present 

study, it is possible that cadmium chloride damaged or altered cadherin-dependent junctions, and 

disrupted actin filaments, resulting in a loss of adherence of A6 cells.          

 In summary, the present study has shown that cadmium chloride is an inducer of hsp30 

and hsp70 gene expression in A6 cells. In future studies, it would be beneficial to examine the 

effects of cadmium chloride on the expression of other stress response genes, such as other HSP 

family members and the metallothioneins in A6 cells. As well, it would be valuable to 

characterize the pattern of hsp gene expression during development by exposing Xenopus laevis 

embryos to cadmium chloride. It was demonstrated that Xenopus embryos grown in media 
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containing cadmium chloride exhibited a concentration-dependent mortality and a concentration-

related pattern of malformations (Sunderman et al., 1991). Also, cadmium induced an increase 

hsp70 and metallothionein gene expression in Xenopus laevis larvae (Mouchet et al., 2006). 

However, it is not known if cadmium induces a tissue-specific enrichment of hsp gene 

expression during Xenopus development. Interestingly, an increase in cadmium resistance was 

noted in the late embryonic stage (hindlimb bud distinct) of Xenopus, which may be correlated 

with an enhancement of hsp gene expression (Herkovits et al., 1998).    

  Future studies should also examine the effect of cadmium chloride on cell proliferation 

and cell death. Previously, it was demonstrated that cadmium chloride inhibited cell division, by 

inducing a dose-dependent increase in the proportion of G1 phase A6 cells in Xenopus laevis 

(Bjerregaard, 2007). Studies have also reported that cadmium induces apoptosis, likely through 

activating pathways that lead to cytochrome C release (Waisberg et al., 2003; Wätjen and 

Beyersmann, 2004). Thus, it would be interesting to determine whether cadmium is able to 

induce apoptosis in the A6 cell, as well as in whole embryos.  

 HSP30 and HSP70 protein accumulation has been correlated with the acquisition of 

thermotolerance in Xenopus embryos and A6 cells (Heikkila et al., 1985; Phang et al., 1999). In 

Reuber H35 rat hepatoma cells, it was found that an initial cadmium exposure was followed by 

development of tolerance towards a second cadmium treatment, as well as additional increases in 

HSP accumulation (Wiegant et al., 1997). Since cadmium chloride induces the accumulation of 

HSP30 and HSP70 in A6 cells, it would be interesting to examine its role in conferring 

thermotolerance or stress resistance. 

 The discovery of cadmium as an HSP inducer has proved to be a valuable biomarker for 

aquatic organisms. The synergistic effects of cadmium plus elevated temperatures may also be 
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beneficial, given aquatic organisms are often subjected to more than one stressor in their natural 

environments. In humans, the present findings may be important given that febrile states are 

often associated with kidney disease. Therefore, it is important to further characterize hsp gene 

expression so we can have a better understanding of how cells cope with cadmium stress.    
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