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Abstract

We study a proposed statistical explanation for the Bekenstein-Hawking entropy
of a black hole in which entropy arises quantum-mechanically as a result of entan-
glement. Arguments for the identification of black hole entropy with entanglement
entropy are reviewed in the framework of quantum field theory, emphasizing the
role of renormalization and the need for a physical short-distance cutoff.

Our main novel contribution is a calculation of entanglement entropy in loop
quantum gravity. The kinematical Hilbert space and spin network states are intro-
duced, and the entanglement entropy of these states is calculated using methods
from quantum information theory. The entanglement entropy is compared with
the density of states previously computed for isolated horizons in loop quantum
gravity, and the two are found to agree up to a topological term.

We investigate a conjecture due to Sorkin that the entanglement entropy must
be a monotonically increasing function of time under the assumption of causality.
For a system described by a finite-dimensional Hilbert space, the conjecture is found
to be trivial, and for a system described by an infinite-dimensional Hilbert space a
counterexample is provided.

For quantum states with Euclidean symmetry, the area scaling of the entangle-
ment entropy is shown to be equivalent to the strong additivity condition on the
entropy. The strong additivity condition is naturally interpreted in information-
theoretic terms as a continuous analog of the Markov property for a classical ran-
dom variable. We explicitly construct states of a quantum field theory on the
one-dimensional real line in which the area law is exactly satisfied.
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Chapter 1

Introduction

The problem of finding a fundamental theory encompassing both quantum mechan-
ics and general relativity is a major unanswered question of theoretical physics. The
study of black hole physics has provided a wealth of insight into the problem of
quantum gravity, as it incorporates general relativity, quantum theory and thermo-
dynamics. This is seen in the Bekenstein-Hawking formula for the thermodynamic
entropy of a black hole ,
_4c (1.1)
4 Gh
which depends on the area A of the black hole horizon in units of the Planck length
lp = \/Gh/c3. The problem of deriving the Bekenstein-Hawking formula from a
microscopic description is an important open question, and is expected to provide
insight into the nature of quantum gravity.

SBH

There are a number of proposals for a microscopic derivation of the black hole
entropy [I]. Ome proposal is the holographic principle of ‘t Hooft, in which the
Bekenstein-Hawking entropy is taken as a measure of the number of internal states
of a region of space [2, B]. This line of reasoning has led to the conjecture that
the degrees of freedom within a region of space are isomorphic to the degrees of
freedom of a conformal field theory on its boundary, a proposal known as the
AdS/CFT correspondence [4].

Another proposal is that the Bekenstein-Hawking entropy measures possible ge-
ometric states of the horizon [5]. This approach has been pursued in loop quantum
gravity where it has led to a counting of degrees of freedom for isolated horizons
[6]. This proposal will be described in greater detail in chapter .

The subject of this thesis is a third proposal due originally to Rafael Sorkin
that the Bekenstein-Hawking entropy is a measure of entanglement of a quantum
state [7]. An appealing aspect of this proposal is that it allows the Bekenstein-
Hawking entropy to be understood as a consequence of ordinary quantum theory,
rather than as a result of exotic gravitational physics. As we will see it also al-
lows the Bekenstein-Hawking entropy to be studied using the methods of quantum
information theory.
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Figure 1.1: Correspondence between properties of thermodynamic systems vs.
properties of black holes

1.1 Black hole thermodynamics

The problem of black hole entropy comes from the study of black hole thermody-
namics [8]. A most surprising feature of general relativity is the existence of a set of
laws of black hole mechanics in precise correspondence with the laws of thermody-
namics [9]. The correspondence between properties of a black hole and properties
of a thermodynamic system are summarized in figure [I.1]

Though there exist black hole analogues of all four laws of thermodynamics, of
particular interest are the first and second laws. The first law of thermodynamics
states that when energy dF at temperature T is added to thermodynamic system
via a reversible process, the entropy increases by an amount dS satisfying

dE =TdS.

Similarly the first law of black hole mechanics says that when matter is added to
a black hole with surface gravity x the area of its event horizon will increase by an
amount dA such that .
dM = 87TdA. (1.2)
The second law of thermodynamics states that the entropy of a closed system
cannot decrease. The black hole analogue of the second law of thermodynamics
is the theorem of Hawking, stating that the surface area of a black hole’s event
horizon is non-decreasing in time [I0]. This theorem relies only on the assumption
of cosmic censorship, and applies very generally even to systems where multiple
black holes collide and merge. Note that the asymmetry of this law with respect
to time reversal is a result of the asymmetry in the definition of a black hole.

From the perspective of classical physics, the assignment of a temperature to
a black hole has no clear interpretation. Classically, no matter can escape the
horizon of a black hole, and an observer in the vacuum outside a black hole will
measure no temperature. Without quantum physics the similarity between black
hole mechanics and thermodynamics can be no more than an analogy.

Indications that the black hole area represents a true thermodynamic entropy
were provided by thought experiments in which thermodynamic entropy of a system
is decreased by lowering matter into a black hole [I1]. These thought experiments



led Bekenstein to postulate the generalized second law, according to which the sum
of the black hole entropy and entropy of matter cannot decrease.

The strongest indication that the black hole entropy is a real physical entropy
was provided by Hawking, who showed that in the presence of quantum fields a
black hole radiates thermally at the Hawking temperature

k hed

proportional to its surface gravity . This cemented the status of the laws of black
hole mechanics as real laws of thermodynamics, and the black hole area as a physical
entropy. Substituting the relation between temperature and surface gravity
into the first law of black hole mechanics and identifying the black hole energy
with its mass, one arrives directly at the expression for the Bekenstein-Hawking

entropy (LI).

This thermodynamic behaviour is not specific to black holes, but extends to
other types of causal horizons. Gibbons and Hawking considered an analogous
situation in de Sitter space, in which an observer has a cosmological horizon due to
the exponential expansion of space [12]. In de Sitter space, the thermal state has
a temperature related to the rate of expansion, which has the same relation to the
surface gravity at the horizon as the Hawking temperature

K he?
“ T Gk’

An important difference between cosmological horizons and black holes is the
observer-dependence of the cosmological horizon. The black hole horizon is de-
fined as the boundary of the past of future null infinity, which is clearly observer-
independent. It may be equivalently defined as the boundary of the past of the
world line of any observer that does not eventually cross the horizon. All such
observers will agree on the location of the horizon. This is not the case in de Sitter
space, where different observers will have different past horizons.

There is also an analogue of black hole radiation in flat Minkowski spacetime.
A uniformly accelerating observer in Minkowski space has a horizon, called the
Rindler horizon. This is because a constant acceleration allows the observer to
outrun certain light rays. If the observer is modelled as a particle detector locally
coupled to the field with acceleration a, it would behave as if immersed in a thermal
bath at the Unruh temperature [13]

_ ahe
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The similarities between the temperature associated with these different types
of horizons suggest that they have a common physical origin. In fact the Rindler
geometry in the Unruh effect can be seen as a limit of the exterior geometry of a



black hole in the limit of large mass. By the equivalence principle, it may also be
viewed as the limit where the observer approaches the horizon.

These considerations have led to the suggestion that the black hole entropy
should extend to every causal horizon, defined as the boundary of the past of any
time-like curve with infinite proper length [I4]. This definition encompasses all
three of the previously-mentioned cases, and there are indications that the laws
of black hole mechanics extend to general causal horizons. This suggests that any
statistical derivation of black hole entropy must apply to all causal horizons.

At the heart of the derivation of black hole temperature is the fact that in
quantum field theory the very concept of a particle is observer-dependent. Different
observers will in general disagree about which modes are of positive frequency, and
therefore disagree on which state represents the true vacuum. Since the vacuum
may be described either as a pure state or as a mixed state depending on the
observer, any statistical derivation of the black hole entropy must account for the
observer-dependence of the entropy.

Although the black hole temperature is derived directly, the black hole entropy
is derived indirectly via the laws of black hole mechanics. We know from statistical
mechanics that entropy has an interpretation as a quantitative measure of the lack
of information about the microscopic state of a system. The problem of black hole
entropy is to account for the Bekenstein-Hawking entropy without appealing to the
first law of black hole mechanics.

1.2 Entanglement entropy

In quantum theory a pure state of a composite system AB is described by a state
in a tensor product Hilbert space

[) € Ha ® Hp.

If there exist vectors |¢A> € H4 and ’z/JB> € Hp such that |[¢) = WA> ® WB> then
1) is unentangled, otherwise it is entangled.

In order to quantify the degree of entanglement, |¢)) may be expressed as a

Schmidt decomposition. There exist positive real numbers {\;},.; called Schmidt
coefficients, and orthonormal sets {WZA>}161 C H4 and {WZB>}¢€I C Hp such that

) =Y Ni|uty @ |vf).
€T

The number of non-zero Schmidt coefficients |Z| is called the Schmidt rank, which
may be either finite or countably infinite. In particular we see that |¢)) is unentan-
gled if and only if its Schmidt rank is one.



The density matrix p = [} is sufficient to recover statistics for any mea-
surement done on the system AB. If one is concerned only with measurements on
system A then it is sufficient to consider the partial trace

pa=Trngp =  pi |0 Xvi|

i€l

where p; = A?. One can do the same for system B yielding the state

pp=Tr,p =Y pi [EXVE].

€T

The rank of py4 is the Schmidt rank of the state [¢)). An important property of the
density matrices p4 and pp is that they have the same non-zero spectrum, which
is entirely determined by the Schmidt coefficients.

The physical entropy of a quantum system is given by the von Neumann entropy

S(p) = —Tr(plogp).

If ) is entangled, then the states p4 and pg will each have positive entropy given
by
S(pa) = S(ps) = = > _ pilog pi.
i€
This quantity is called the entanglement entropy of the state |1)). The entanglement

entropy is symmetric and measures the degree of entanglement between systems A
and B.

As a consequence of entanglement the density matrix p may have zero entropy
S(p) = 0, while the states ps and pp both have positive entropy. Note that this
does not occur in classical probability theory. There the entropy is given by the
Shannon entropy, which for a discrete probability distribution p : N — R is given
by

H(p) = — Zp(i) log p(i).

We can therefore consider the analogous case where the density matrix p is re-
placed with a probability distribution psp : N> — R where pag(a,b) > 0 and
zmprB(a, b) = 1. The analogue of ps is the function py : N — R given
by pa(a) = >, pas(a,b). It is a theorem of classical information theory that
H(pa) < H(p), in other words the entropy of a system is larger than the entropy of
any of its subsystems [I5]. For quantum systems there is no equivalent restriction
on the von Neumann entropy S. This fact has been summarized by saying that
“quantum information can be negative” [16].



1.3 Black hole entropy as entanglement

The idea that entanglement entropy could provide a microscopic explanation for the
Bekenstein-Hawking entropy was first proposed by Sorkin and collaborators [7, [17].
They observed that in quantum field theory, regions of space are subsystems. In
particular, in the presence of a horizon the degrees of freedom on a Cauchy surface
can be partitioned into those inside the horizon and those outside the horizon. It
is then possible for the state on the full Cauchy surface to be a pure state such as
the vacuum state, while the state of the subsystem outside the horizon is a mixed
state such as a thermal state of non-zero temperature.

This naturally explains why a horizon has entropy. In thermodynamics entropy
arises because some variables are considered observable such as the total energy of
the system, while others such as the exact positions of particles are unobservable. A
horizon provides a natural division of the degrees of freedom into those outside the
horizon which are observable, and those behind the horizon which are unobservable.

Note that the entanglement entropy is not the same as ignorance of the state of
the region beyond the horizon. The entanglement entropy is a measure of ignorance
about the state of the exterior region which arises because of an observer’s inability
to measure beyond the horizon.

Any statistical derivation of the Bekenstein-Hawking entropy must explain the
area law, which is the proportionality of the entropy and the area of the horizon.
This is contrary to the expectation from thermodynamics that the entropy of a
system should be proportional to the system’s volume.

For example, consider a large but finite lattice with a finite number d of degrees
of freedom at each point. Given a subset of n lattice points, it is clear that the total
number of degrees of freedom grows like N = d". If all states are equally likely then
the von Neumann entropy reduces to the Boltzmann entropy S = log N = nlogd
which is proportional to the volume of the region considered.

One reason why the entanglement entropy cannot scale with volume is that the
entanglement entropy is symmetric. Recall that if A and B are two systems and
|4)) € Ha ® Hp then the entropy of system A is equal to the entropy of system B.
However it is clear that the volume of a general subset of lattice points is not the
same as the volume of its complement. This rules out the possibility of an exact
volume scaling of the entanglement entropy. The area law is not ruled out, since
the boundary of A is the same as the boundary of its complement B.

In fact, the area-scaling of the entanglement entropy has been confirmed for
a scalar quantum field theory in flat spacetime by both analytic and numerical
methods [17, 18, [19]. In all cases the entanglement entropy of the vacuum state has
been found to scale linearly with the surface area of the region traced over. This is
described in greater detail in chapter

The entanglement entropy is divergent in quantum field theory, and must be
regulated by introducing an ultraviolet cutoff scale e. The entanglement entropy



of v non-interacting scalar fields depends linearly on the number of fields and the
boundary area A as

S x —. (1.4)

The exact coefficient of proportionality may differ depending on the regularization
method. While the dependence on area matches the Bekenstein-Hawking entropy,
there are two aspects in which differs from the Bekenstein-Hawking formula.
The first is that this expression diverges in the limit € — 0, whereas Sy is finite.
The second is that has the wrong dependence on the number of fields, an issue
which has been called the species problem.

The divergence of the entanglement entropy is not surprising if the black hole
entropy and entropy of entanglement are the same quantity. If this is the case, then
the entanglement entropy ought to satisfy the Bekenstein-Hawking formula when
both quantum theory and general relativity are taken into account. The scalar
quantum field theory neglects the gravitational influence of the quantum fields on
spacetime, and therefore describes a theory where G = 0. When G = 0, Sgy is
infinite, so it is not surprising that these entanglement entropy calculations yield
divergent results.

This would seem to imply that this divergence will be present unless we take
into account the effect of matter on spacetime. The simplest model that takes this
influence into account is semiclassical gravity. In this model the Einstein tensor is
set equal to the expectation value of the quantum energy momentum tensor

Gab = &7 <Tab> .

It is not hard to see that this does not help to regulate the entanglement en-
tropy. This is because the entanglement entropy diverges for the vacuum state
in Minkowski spacetime, for which G, = (T,) = 0. In order to regulate the
divergence of entanglement entropy we must treat gravity as a quantum field.

In order to understand the divergence of entanglement entropy and the species
problem it is important to consider that the gravitational constant G is not a
constant, but depends on the energy scale at which it is observed. There is a bare
constant GGy which appears in the classical action and a renormalized constant G'g
which appears in the effective action. The relationship between Gy and Gr depends
on the number and type of fields, giving a resolution of the species problem described
in section 2.3

While renormalization of GG resolves the species problem, it shows that the
problem of constructing a theory with a finite entanglement entropy between regions
of space is equivalent to the problem of constructing a theory with a non-zero
renormalized gravitational constant. Gravity is known to be non-renormalizable,
suggesting that the entanglement entropy is also non-renormalizable.

The divergence of the entanglement entropy suggests the need for a physical
ultraviolet cutoff at the Planck scale. It is expected on general grounds that a fun-
damental theory of quantum gravity will provide exactly such a cutoff, solving both



the ultraviolet problem of quantum gravity and the divergence of the entanglement
entropy.

In chapter 3| we consider the entanglement entropy in loop quantum gravity.
Loop quantum gravity is a quantum theory of pure gravity without matter in
which space is represented by a discrete structure, a spin network. We show that
the entanglement entropy obeys a discrete version of the area law which reduces to
the exact area law for a certain class of Euclidean-invariant states.

In order for the entropy of entanglement to be considered as a physically mean-
ingful entropy, it should satisfy some form of the second law of thermodynamics. It
has been argued by Sorkin that the entanglement entropy should satisfy the second
law exactly when the surface under consideration is a horizon [20]. The important
property distinguishing a horizon is that the state of the region beyond the horizon
does not influence the evolution of the rest of the universe. The increase of black
hole entropy is therefore a manifestation of two factors: entanglement from quan-
tum theory, and causality from general relativity. Sorkin’s argument is evaluated
in chapter [4

Inspired by the problem of regularizing the entanglement entropy without break-
ing the continuous symmetry of space, in chapter [5| we consider a generic class of
quantum field theories defined in three-dimensional Euclidean space. We show that
the area law is equivalent to a property of the entropy known as strong additivity.
The strong additivity property has a natural information-theoretic interpretation
in terms of conditional independence which we relate to the theory of quantum
Markov networks. Our hope is that this characterization of the area law will help
to define a continuous theory in which the entanglement entropy is finite.

We conclude in chapter [6] with several proposed directions for future work.



Chapter 2

Quantum field theory

A natural setting in which to study the properties of entanglement entropy is quan-
tum field theory in a fixed background spacetime. In this theory, gravity is treated
according to classical general relativity, but all other fields are quantized. One
therefore constructs a classical background as a solution to Einstein’s equations,
and then studies quantum fields that propagate on this classical background. This
theory has been successfully used to calculate radiation from a black hole, so it is
natural to seek the entropy within this theory as well.

In this chapter we will consider quantum field theory in flat Minkowski space.
There are several reasons for this choice, mostly due to difficulties that arise in more
general curved backgrounds. The first difficulty is the ambiguity in the choice of
vacuum state. We would like to identify the entropy of a horizon with the vacuum
entanglement entropy, but general spacetimes do not admit a unique choice of
vacuum state. At best we could hope to compute the entanglement entropy in one
of the cases where there is a physically motivated choice of vacuum state.

The most pressing difficulty is the challenge of regularizing the theory in the
presence of curvature. As we will see, the entanglement entropy diverges because of
the inclusion of modes of arbitrarily small wavelength. This ultraviolet divergence
must be regulated by introducing a distance scale € and ignoring modes with wave-
lengths smaller than €. Even in flat space, this is difficult to do without violating
Lorentz invariance. In curved space this process is even further complicated due to
the presence of curvature.

The entanglement entropy is equally well defined in flat space, so as a first step
we can study its properties there. Although Minkowski space has no horizon, we can
instead consider entanglement entropy for an arbitrary set Q C R3. In fact, we can
expect flat space calculations to be a good approximation to those in curved space.
This is because the entanglement entropy is primarily a UV phenomenon, and for
non-microscopic black holes the horizon is approximately flat, so that Minkowski
space is a good approximation of the near-horizon geometry.

Consider a classical scalar field ¢ in flat space with conjugate momentum .



The simplest case is the Klein-Gordon scalar field which has the Hamiltonian

H(6.7) = 5 [ [7@ 7 + Vo) + mio(e. )] o

To simplify quantization we have confined the system to a box B = [—L/2, L/2]>.
We can then consider the Fourier modes of the field

21k 2
bp = L7372 / o(z) exp (z n x) Pz ke g3
B

L L
Y 2mkx\
=1L m(x)exp (i d’x
B L

In terms of the modes, the Hamiltonian simplifies to

1 2 20,2 2
H(gm) = 5 3 [Imel* + K [6n]* + m?[6]”]
k
which reduces the quantum field to a collection of independent harmonic oscillators,
one for each mode k. It is important to note that these are complex-values harmonic
oscillators; these can either be quantized directly or by making a change of variables
to real-values oscillators. The angular frequency of mode k is given by

wp = \/ |k +m?

In this case we can define the vacuum state |0) to be the state of least energy.
It can be written explicitly as the product of ground states of oscillators with

frequencies wy,
Wk 1 2
0 e Ny _—
(0]¢) |k| \V eXP( 5@k [ o] )

We can now take the limit of this expression as L — 00, replacing the discrete
index k£ with a continuous parameter also denoted k

(0[¢) o< exp (—% /wk \¢k\2d3k)

This can be interpreted as the probability amplitude for measuring the field con-
figuration ¢ when the field is in its ground state. Because this integral includes
both arbitrarily short and long wavelengths, there are infrared and ultraviolet di-
vergences which lead to ill-defined expressions for certain physical quantities. A
regularization must be applied in order to extract physical predictions.

Given an arbitrary region of space 2, we can write ¢ = (dq, ¢5) where Q denotes
the set-theoretic complement of . In general, there do not exist states |0g) and
|0g) such that

(0l¢) = (Oal¢a) (Ogldg)

Thus the vacuum state |0) is entangled. In order to calculate the entanglement
entropy, we will have to introduce a regularization.

10



2.1 The Hamiltonian approach

The Klein-Gordon quantum field theory considered above can be thought of as a
theory of a continuous family of harmonic oscillators, with one oscillator at each
point in space. A natural way to regularize the theory is to replace the continuum
of harmonic oscillators with a finite lattice of harmonic oscillators. To recover
continuum results, we take the limit in which the density and number of oscillators
increases to fill all of space.

We will therefore consider the entanglement entropy of a finite collection of
coupled harmonic oscillators [I7, [18]. If the displacement of the oscillators is given
by ¢ = (q1, - - ., qn) with conjugate momenta p = (py,...,p,). The Hamiltonian is

1 (& al 1
H(q,p) =5 (Zpiz + ) KijQin) =5 (0'p+4"Kq)
=1

1,j=1

By choosing a basis which diagonalizes the matrix K, we can express this as a theory
of uncoupled harmonic oscillators. It is useful to introduce the matrix W = VK ,
whose diagonal elements are the angular frequencies of the uncoupled modes. The
ground state density matrix p therefore has the Gaussian form

W o
(alpld) = \/Ee—éqTqu—;quq

Let n < N be the set of oscillators within a region (). Because of the Gaussian

form of p, we can explicitly perform the partial trace over the oscillators n+1,..., N
using the identity
n b A1
/exp (—2" Az +b'z) d"x = #(A) exp (T> (2.1)

We can express ¢ = (¢;,q,) in terms of “inside” and “outside” oscillators, and
W in block form as

-

Wl W,

The outside density matrix is obtained by integrating over the inside oscillators

(Qo] o |go) = 1 [ det K (/ equz'qi(qﬁqé)Tquidnqi) o~ 590 Wotlo o= 55" Woto
T

Using ([2.1)), this becomes

det% 1 INTy/ Ty —1 ’ 1.7 1T /
v —1(qo+a5)" Wy Wm Wi (g0+45) =390 Wodo o =395 Wods

<QO| Po ‘QO> = —F/——=¢€
\/det%

11



This is most conveniently expressed by introducing variables

T = quo

A=WV wEw w2
and using the identity for the determinant of a block matrix

det W = det W; det W, det(I — W, "W W, 'W,)
= det W; det W, det(I — A)

With these substitutions, the outside density matrix is

(2| po |2") = 1/ det = Ae’%xT“e’%I/Txle’i(“x/)TA(”x')
m

By diagonalizing the matrix A into eigenvalues {)\j}?zl, the matrix p, can be
expressed as a product of density matrices p; where

1—\;

T

(z] pj |2) = e~ 2 (@ +a?) =3 (wta)?

To compute the entropy of the density matrix p; we introduce new variables w;
and §; such that

1— &2 4.

(1+¢5)? (1-¢5)?

The density matrix p; is diagonal in the energy eigenbasis for the harmonic oscillator
with angular frequency w;, and can be written as

pi=(1=&)) & In)n|
n=1
The entropy of the j™ oscillator can be written either in terms of &; or \;,

Sj = —log(1=¢;) -

1 1 1
=log /A + 1+ A1 1+~ = 2.2
OgQ ]+ + Jog< +)\]+ \/)\—J> ( )

Thus the entanglement entropy is given by the sum

S = znjsj
j=1

12



It is possible to express the eigenvalues of A directly in terms of the operator
W using the expression for the inverse of a 2 x 2 block matrix

Wl (W; — WyW, w1 —(W; = W, W W= tw, w1 ]

W wlEw, = wyaw twh=t Wt wotw (W, — W Wt W) T v

If we now let P be the projector onto the interior degrees of freedom, then

PW(I - PYW™! =

—W,W W (W, — W, tw )t 0}
0 0

Up to additional zero eigenvalues which do not contribute to the entropy, this is
equivalent to the operator

N = (1= W, W)

whose non-zero spectrum is the same as the operator (I — A)~'. Thus to find the
entropy it is sufficient to compute the eigenvalues of A’.

We can now remove the cutoff and take the continuum limit of this expression,
by making the following substitutions. Let K be the operator —V2+m2, W = VK
and P be the projector onto the subspace L*(€2). The compact operator A’ has a
non-zero spectrum given by an infinite sequence {)\n}zozl such that lim,,_,. A, = 0.
The entanglement is now given as a sum over the spectrum

o0

SQ) =), (2.3)

Where S; is given by (12.2]). The problem of computing the entanglement entropy of
a vacuum state has been reduced to finding the spectrum of the integral operator
A

2.2 The Euclidean approach

The Hamiltonian approach allows the entanglement entropy to be expressed in
terms of the spectrum of an integral operator. This expression is divergent, and
its dependence on the geometry of € is difficult to calculate except in special cases
or by numerical methods. We therefore present an alternative derivation of the
entanglement entropy in terms of the Euclidean path integral. As we will see, the
expressions are still divergent, but the relation between the entanglement entropy
and the geometry of the region €2 is much clearer.

In the Schrédinger picture, the state [1)(t)) evolves according to the Schrédinger
equation

0
ihos () = H ()

13



Thus given an initial state [1(0)), the state at a later time ¢ is given by
() =U@)[(0)  where  U(t)=e""

The path integral formalism is a method for expressing the matrix elements of U(t).
In particular if f is a field configuration at time 0 and g is a field configuration at
time t, then the probability amplitude for a process in which the field evolves from

f to g in time t is
p(z,t)=g(x)

le i) = [ #SODg (2.4
¢(x,0)=f(z)

Where S is the action for the Klein-Gordon field
1 06\’ 2 2 24
s0) =5 [ () - Vol - mtetia

The path integral is generally ill-defined analytically, but is a useful computational
tool.

We can also express the vacuum state |0) using the path integral formalism.
To do this, we perform a Wick rotation which entails a change of variables to the
imaginary time T = it. Performing this substitution in equation (2.4) we find a
path integral representation of the operator e=##

#(x,8)=g(x)
(9] e PH 1f) = / e*SE(QS)D(ﬁ
(;S(LL’,O):f(.Z’)
Where Sg is the Euclidean action
1 [ [(0¢\°
se0) =3 [ (57) + Vol + meras

The substitution 7 = it has two effects on this expression. It causes the time
derivative % to change signature, and also appears in the integration d*z, resulting
in a factor of 4 that multiplies with the factor of i in e**(®) to give e=5#(). Up to
a normalization factor, this is a thermal state at temperature T = 57!, which is

given by Z(3) te P where Z(83) is the partition function
Z(B) = Tre "1
The vacuum state density matrix p = |0)(0| is the low-temperature limit of the

thermal state Z(3) 'e ", As 3 becomes large, any states with energy larger than
the ground state energy by an amount AFE are suppressed by a factor e #2F

lim Z(3)~" e = |0)0|

p—o0

IThis assumes there is a unique ground state separated by a finite energy gap from the first
excited state. For the scalar field theory considered in this chapter it is sufficient to put the system
in a box so that the Laplacian operator has discrete spectrum.
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This means that p|g) « |0) independently of g

¢(z,8)=g(z)
(f10) o< lim e~y
=00 Jo(2,0)=1(x)

_ / efSE(¢)D¢
¢(z,0)=f (=)

Therefore the vacuum state is obtained by a Euclidean path integral over the whole
region 7 > 0.

The vacuum state density matrix can therefore naturally be expressed by com-
bining two vacuum state path integrals: one for 7 € [0, 00) and one for 7 € (—o0, 0]
as follows

{glpf) = (910) (O[f)

¢($707 ):g(x)
_ / e_SE(¢)D¢
P(z,0%)=f ()

Here the integral is taken over all fields on R* with boundary conditions such that

lim Qb(va) = f(l’) lim ¢(I7T) = g(l‘)

T—0t+ T—0~

Given a region © C ¥ a classical field f can be written as |f) = |fq) ® | fq)-
The reduced density matrix is obtained from the density matrix by a partial trace

(ol palgn) = / (ol ® (al plga) @ |fa) Dfe

This is naturally expressed in the path integral formalism since it amounts to re-
placing the condition on the path integral

¢(z,07) = f(z)  é(x,07)=g(x) z€Q
with the continuity condition
o(2,0%) = ¢(,07)  z€Q
Yielding
¢(z,07)=g(z),z€N g
lonlfr= | 59Dy (25
@

(z,0T)=f(x),z€Q

To see how this expression is useful for studying the entropy, we consider an
important special case in which € is a half-space.
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2.2.1 Rindler space and the Unruh effect

The Unruh effect is the prediction that in quantum field theory a uniformly acceler-
ated detector will respond as if exposed to a thermal state at the Unruh temperature

a

Ty = —
v 2

There are a number of ways to derive the Unruh effect. Unruh’s original deriva-
tion describes the response of an accelerating detector coupled to the field [13].
We will present a derivation of the Unruh effect using the Euclidean path integral
[21]. This approach is much more abstract than Unruh’s derivation, which directly
describes the behaviour of detectors. Moreover the Euclidean approach only ap-
plies to the uniformly accelerating detector, while Unruh’s method can be used
to describe detectors moving along arbitrary trajectories. The utility of the path
integral derivation is that it illustrates how the Euclidean path integral is related
to entanglement entropy.

The Rindler wedge is the wedge-shaped region of Minkowski space
{(z,y,2, 1)z > |t[}
The Rindler coordinates are (r,7,y, z) where

r=va?—t? t = rsinhn

t
n = tanh™! (—) x = rcoshn

X

In terms of these coordinates, the Minkowski metric is
ds* = —r?dy® + dr® + dy* + d2°

A uniformly accelerating observer with proper acceleration a in the 4+ direction is
described by the world-line in terms of proper time XE|

r(x) = Teosh(ax) () =+

() = Tsinh(e)  n(x) = ax

The Rindler Hamiltonian is defined as the generator of translations in the n
direction, just as the Hamiltonian generates translations in the t direction. After
Wick rotation, ¢ = i7 and 6 = i1, and the spacetime has the Fuclidean signature
ds? = dr* + dx? + dy? + dz?. We then have

T =it = irsinh(n) = ir sinh(—if) = rsin 6

x = rcosh@ = rcosh(—if) = rcosf

2We denote proper time as x to avoid confusion with the imaginary time 7.
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Thus (7, 0,y, z) are cylindrical coordinates for the Euclidean spacetime.

Just as the operator e can be obtained by the Euclidean path integral for
7 € [0, 3], the operator e PH= is obtained by a Euclidean path integral for 6 € [0, 3].

é(r.8)=g(r)

(gl e PHr | f) = / e SE@Dg
o(r0)=1(r)

This corresponds to a path integral over a wedge in the (z,y, z,t) coordinates.

For 3 = 27 the wedge covers the entire Euclidean spacetime, so we have

¢(2,07)=g(z),2>0

(gl e 2 | ) = / =Dy

#(z,01)=f(z),2>0

This is identical to the expression (2.5) for the reduced density matrix po where
Q = {(z,y,2)|z > 0} is the half-space. It follows that the reduced density matrix

pq is a thermal state
po = Z te ¥R (2.6)

Note that the temperature % is a temperature relative to the observer whose clock
measures the coordinate time 7. The accelerating observer’s proper time is related
ton by x = %7} so the temperature is given by ;- which is the Unruh temperature.

It follows that the entanglement entropy S(pgq) is the entropy of a thermal state
(2.6)). For states of this form, the entropy can be written entirely in terms of the
partition function Z(/3)

STherm = (1 - ﬁ%) log Z (2.7)
0
=log Z — 52—1%% (e77)
=log Z + BZ 'Tx (He ")
=logZ + (G (H)

This coincides with the von Neumann entropy
S(p) = =Tr(plogp)
= —Tr (p log (Z_le_ﬁH))
= —Tr (p(—log Z + log e 1))
=logZ + (5 (H)

Note that for 8 # 2w, Z([3) requires doing a path integral over a geometry with a
conical singularity.
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2.2.2 The deficit angle method

If Q is a general region of space, the previous argument that relied on polar coor-
dinates is not applicable. However we will see that it is still possible to express the
entropy in terms of the partition function in the Fuclidean spacetime.

As a first step toward computing S(pq), we can express the quantity Tr(pg,) as
a path integral on a new manifold M,, | Recall that (f| pq|g) is expressed as a
path integral with fields having boundary conditions lim, o+ ¢(x,7) = f(x) and
lim, - ¢(z,7) = g(x) for all x € Q . The manifold M,, is obtained by taking n
copies of R*, and gluing the 7 < 0 side of Q x {0} of the n'® copy of R* to the 7 > 0
side of © x {0} of the (n+ 1) copy of R*. Then Tr(p") may be expressed directly
as a path integral over M,,

Tr(p") = /e_SE(¢)D¢

This new manifold M,, is flat everywhere except for the 2-dimensional surface
02 which is a conical singularity. A polygon that does not encircle 92 will have
exterior angles summing to 27, but a polygon that encircles 02 will have exterior
angles summing to 27n. This conical singularity is described by a deficit angle
0 = 27 — 3 where 3 = 27n is the sum of the exterior angles of a polygon that
encircles the conical singularity.

In order to compute the von Neumann entropy S(p) from Tr(p"), it is useful to
introduce the Rényi a-entropy

log Trp®
Salp) = ———

a—1
which is defined for all a > 0 except for « = 1. The Rényi a-entropy shares some
useful properties of the von Neumann entropy. In particular they are additive across
tensor products, and the maximally mixed state of dimension d has a-entropy

log Tr(1/d* log(d'~

11—« l—«

In the limit &« — 1 we have

log Trp® —log Trp _ _£ log Tr(p®)|,_, = S(p) (2.8)

lim1 Sa(p) = lim

a—1 1—05

So the von Neumann entropy can be recovered as the a — 1 limit of the Rényi
entropy.

We can express the formula (2.8)) for the von Neumann entropy in a form that
does not require p to be normalized [19]

S(p) = (1 - %) log Tr(p®)],_,

3M,, is actually a conifold, and not a manifold, since it contains a conical singularity.
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This reduces to the original expression when Tr(p) = 1, and is invariant under
rescaling of p, since for any scalar a > 0,

(1 - %) log Tr((ap)"‘)|a:1 = (1 — %) (log Tr(p®) + alog a) ‘a:l
= S(p) + (loga —loga) = S(p)

We observe that for integer a = n, the Rényi entropy can be expressed in terms
of the Euclidean path integral on the manifold M,,, which is flat everywhere except
for a conical singularity of § = 2wn at the surface 0. To evaluate the Shannon
entropy, we need the Rényi entropy as a — 1. This suggests that we define Z(f3)
as the partition function of a manifold which is flat everywhere with a conical
singularity of conical angle 3. Letting § = 27a, we have

0 o
S = <1 — a—a) log Trp ‘a:l

0
= <1 — ﬁ%> log Z(8)|,_,, (2.9)
Note that in the Rindler spacetime, this expression is equivalent to the expression
(2.7) for the entropy in terms of the partition function. The great advantage of this

expression is that Z(() can be computed in terms of the geometry of the surface
0f.

2.2.3 Heat kernel and effective action

What makes the Euclidean framework so powerful is that it allows the entropy
of entanglement to be understood in terms of the partition function Z(3) on a
manifold with a conical singularity. In particular, the entropy depends only on the
Fuclidean effective action

W(B) = —log Z(f3)

The effective action can then be expressed in terms of properties of the Laplacian
operator on the manifold Mg.

To give an expression for the effective action, we first diagonalize the positive
operator —V?2. By putting the system in a box, this operator has a discrete spec-
trum and can be diagonalized in terms of positive eigenvalues \,, and eigenfunctions

¢n(x) so that

These eigenfunctions form a complete orthogonal basis, so that any field ¢(z) can

be written as
gb(w) = ch(bn(x)

n

Then the Euclidean action is
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=5 [ Gt = Vo)ts = 5 Y (0, + md)d

n

We can then express the partition function as

Z = /exp (—% Z()\n + m2)ci) D¢

n

— H/exp (—%()\n + m2)x2) dx
T )
= det(m? — V?)~1/2

So that the Euclidean effective action is given by the functional determinant

1
W=—-logZ = 3 log det(m* — V?)

To study the behaviour of this operator we introduce the trace of the heat kernel
Cu(t) = Tre!™” = Z e An

The trace of the heat kernel has been studied in the case of manifolds with conical
singularities [22]. In particular, it has a well-studied asymptotic expansion in the
limit ¢ — 0 in terms of geometric invariants of the underlying manifold. To under-
stand how W relates to the geometry of the underlying manifold, we express it in
terms of the trace of the heat kernel.

Let € be a small cutoff scale with dimensions of length. We consider the following
expression in terms of the heat kernel

~1 2 ~1 2
— [ )™ dt = — —e~ n )t gy
[, w2

Where we have introduced the exponential integral function
1

Ey(z) = / et
1 t

For small 2z, we have the identity

o0

—1)n
Ei(z) = —y—logz— Z% ~ —v — log z
n=1 ’
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where 7 is Euler’s constant. Thus for small ¢
By (2(\y +m?)) =y +log (A, +m?) = —y — 2log e — log(\, +m?)

We will ignore the additive constant, since we are not interested in the exact value
of this expression, only the way it changes when A\, is varied. Thus we have for
small €

> 1 2
—/ et ~ Zlog (An +m?) = log det(m? — V?)

2

Combining this expression for Z(3) with the expression for the entropy (2.9),
we have

S(pm) = (1 5 fﬁ) log Z(9)

B=2m

_ Y _,0 2

=5 (1 ﬁﬁﬁ) log det(m? — V?) o
1 [ e m’t 0

5 [ (1= 5) cwtia N

2
e—m t

The presence of the term ensures that this expression only depends on the
behaviour of (g, (t) for small values of ¢.

For small ¢ the heat kernel has an asymptotic expansion [22]
t) = Zt(k*”mak(./\/l
k>0

The coefficients a, can be expressed in terms of the geometry of the manifold M.
The leading term always depends on the volume. The odd terms are integrals
over the boundary, which will be neglected because we consider manifolds without
boundary

ao(M) = VOL(;\/[)
al(/\/l) = ag(M) =.--=0

The manifolds we will consider have conical singularities, which affect as. Letting
C5 denote a cone of angle (3 this term is [22]

B 4m? — 62 1 /2nr [
@)= SoE T 1 (F - %)

Consider the example of the Rindler spacetime. The geometry is a product
of an infinite cone Cj in the (x,t) plane with a 2-dimensional plane in the (y, 2)
coordinates

MQZCQXRZ
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In order to eliminate the infrared divergence due to infinite volume, we make the y
and z coordinates periodic with period L. Similarly, we allow the radial coordinate
r to run to a maximum radius R. We will neglect contributions to the heat kernel
coefficients from the boundary » = R. Thus we consider the manifold

Mp=Csx S; xS}

where S} is the circle of circumference L.

The trace of the heat kernel on a product of manifolds is simply the product of
the traces of heat kernels

v () = Cu(t)Car(t)

The heat kernel for Cs has two contributions: one from the total volume and one
from the conical singularity

oy (1) = aolCo) + ax(C)

_ﬁR2 1 /[2n [
_EZ+E(E_%)

The heat kernel for the remaining part is

L

CSi (t) = \/m

The relevant terms in the heat kernel are proportional to 3 or 7. For the
terms which are linearly proportional to 3,

( ﬁﬁ)ﬁ B-p=0

Whereas for the terms proportional to 571,

( ﬁaﬁ) B =g 57 =287

Thus the terms proportional to # do not contribute to the entropy, and the remain-
ing term is simply

127
( - B ﬂ) Co,(t )‘6% 60

This simplifies the expression for the entanglement entropy, which becomes

1 [®emt 1
SO = [ s er

[B=27

2 )2
L2 oo ,—m?t
==
487T €2 t2
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This is proportional to the horizon area A = L?.

The remaining term is an exponential integral

00 e—mQt oo e—m262u 5
S—dt = 5 € du
€2 t 1 €U

1
= 6—2E2(m2€2)

Where we have the exponential integral function

o -zt
EQ(Z) = / ¢ dt
1

We assume that m?e? will be small, so that the Compton wavelength is much larger
than the cutoff scale. Then for small z we have Es(z) ~ E»(0) = 3 This gives the
final answer 4

5(0) = 967e?

This is proportional to the area, and diverges quadratically with the cutoff scale.
The constant 967 is just an artifact of the particular regularization method we used
to remove the ultraviolet divergence. It has no particular significance, and different
methods of regularization lead to different constants, but the qualitative behaviour
is the same.

An important aspect of this derivation is that the terms in the heat kernel that
are integrals over Mg do not contribute to the entropy. The remaining terms are
all integrals over 02, which implies the strong additivity property [23]

S(Q) + S(Q) = S(Q U Q) + S(Q N Q)

This property is discussed in more detail in chapter [5

2.3 The species problem

An objection to the identification of entanglement entropy with black hole entropy
first pointed out by Sorkin, is the observation that the entanglement entropy S(2)
depends on the number of quantum fields, whereas Sgy is given by the Bekenstein-
Hawking formula and depends only on the constants A, ¢ and G [7].

The solution to this problem arises when we consider that the gravitational
constant GG undergoes a renormalization that depends on the matter fields present
[24, 25]. We must make a distinction between the bare gravitational constant Gy
which appears in the classical action, and the renormalized gravitational constant
Gr which appears in the effective action.
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The entropy can be expressed in terms of the effective action W = —log Z. If
we expand W as a power series in curvature [25]

W = /(ao + a1 R+ O(R?))\/gd*z

. _]‘ 2 4
~ 1o /(QAR+ R+ O(R?)\/gd's

Comparing these equations, the renormalized gravitational constant is related to

aj by
-1

- 167G R
We now return to the Rindler spacetime with deficit angle 2 — 3. The entropy

is given by
0
S=—(1-0—|W
< ﬁgﬁ) B=2m

There are three classes of terms that arise in W [24]:

ai

e The cosmological constant term ay. Being constant, its integral is propor-
tional to the volume of space, which depends linearly on 3. Thus this term
does not contribute to the entropy.

e The Einstein-Hilbert term a;R. The only contribution from the curvature is
at the singularity, so that

/ R\/gd*r = 2A(21 — B3)

This term gives a contribution to the entropy of

(1) fos = (e

aﬂ B=27
=4na; A (2.10)

e Higher-order terms in R. These all contribute with a # dependence given by
(2m — B)" for n > 2. It follows that when [ is set to 27, these terms vanish.

It follows that only the Einstein-Hilbert term contributes to the entropy, with a
contribution given by equation (2.10). Using the definition of a; in terms of the
renormalized gravitational constant, we see that

A
S = 47TACL1 = E (211)

Thus the species problem is completely avoided once the renormalization of G is

taken into account.

A consequence of equation is that the divergence in the entanglement
entropy is directly related to the non-renormalizability of gravity. This suggests
the need for a physical cutoff on degrees of freedom near the Planck scale. In the
next chapter we will consider a proposal for such a theory.
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Chapter 3

Loop quantum gravity

While the entanglement entropy is a promising candidate for the microscopic origin
of black hole entropy, an issue we must face is the fact that the former is ultravi-
olet divergent and non-renormalizable. Since the divergence of the entanglement
entropy is intimately related to the non-renormalizability of gravity, it is necessary
to consider a model of quantum gravity which is ultraviolet-finite. One such the-
ory, which we will now consider is loop quantum gravity [26]. The calculation of
entanglement entropy which we will present in this chapter is an extended version
of previous work by the author [27].

The starting point of loop quantum gravity is the Hamiltonian formulation of
general relativity in Ashtekar variables. We begin with a manifold M = R x X
where R represents time and > represents space. The Ashtekar variables are an
SU(2) connection A! and a densitized inverse triad E¢ on ¥. They are related to
the 3-metric g, and extrinsic curvature tensor K, by

AL =T + yy/det gK Y
(det q) gap = El-“E?(Sij
where T is the spin connection associated to the triad [28]. The variable v is
the Barbero-Immirzi parameter, which is a free dimensionless parameter of loop

quantum gravity. As we will see 7 plays an important role in the relationship
between entropy and area.

The dynamics in the Ashtekar formulation of general relativity is given entirely
in terms of constraints, each of which generates a different type of gauge transfor-
mation. If a state is in the kernel of the constraint, this is equivalent to the state
being invariant under the corresponding gauge transformation. The constraints are:

e the Gauss’ law constraint, that generates SU(2) gauge transformations,
e the diffeomorphism constraint, that generates diffeomorphisms of ¥, and

e the Hamiltonian constraint, that generates diffeomorphisms of M in the time
direction.
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The strategy employed in loop quantum gravity is to first quantize, then to solve
the constraints. This means first constructing a Hilbert space containing a unitary
representation of the SU(2) gauge transformations and the diffeomorphism group of
Y. This is the Kinematical Hilbert space which we will denote K. The quotient of IC
with the group of SU(2) gauge transformations is the gauge-invariant Hilbert space
Ko. The quotient of Ky with the diffeomorphism group E] is the diffeomorphism-
invariant Hilbert space Kqig. Finally, the kernel of the Hamiltonian constraint
operator H is the physical Hilbert space H.

The relation between these Hilbert spaces can be illustrated schematically as
follows:
K 2ok 25 K 5 M
For the purposes of this derivation, only I and Ky are directly relevant, although
the construction of gy is very briefly sketched. The true physical states of the
theory are those in the dynamical Hilbert space H. Although there exist candidates
for the Hamiltonian constraint operator, construction of a Hilbert space of solutions
to the Hamiltonian constraint is still an open problem [29]. The considerations in
this chapter are therefore purely kinematical, as has been the case for all previous
investigations of black hole entropy in loop quantum gravity.

An important feature of the Ashtekar variables is that the connection and the
densitized triad are canonically conjugate

{AL(2), Ej(y)} = (877G)3,0;0° (, 1)

In particular we can treat the connection A as the configuration variable analogous
to position in the Schrodinger picture of quantum mechanics. The states in the
quantum theory are then described by wave functionals on the space of SU(2)
connections. In this representation the connection A is promoted to a multiplication

operator A and the triad E becomes a differential operator B¢ = —ih 5511‘ .

For a suitable definition of the Hilbert space of functionals, the gauge and dif-
feomorphism constraints can be explicitly solved. The resulting Hilbert space is
separable and has a basis labelled by knotted SU(2) spin networks [30]. The spin
networks are abstract graphs whose edges are labelled by half-integers 7 which rep-
resent irreducible representations of SU(2). The vertices are labelled by intertwining
operators which are rules for mapping the representations on the incident vertices
into the trivial representation j = 0. The geometry of the manifold X is therefore
replaced by a discrete combinatorial structure. This suggests that loop quantum
gravity provides the ultraviolet finiteness required to remove the divergence of the
entanglement entropy.

Loop quantum gravity is a background-independent theory; the manifold X is
not equipped with a classical metric, so that all information about the geometry of
Y is encoded in the quantum state. In order to recover a notion of geometry for the
spin network states it is necessary to define geometric operators for the quantities

!Technically, it is a larger group of extended diffeomorphisms Diff* (%) [26].
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of interest. These are obtained by constructing expressions for these quantities in
terms of the connection A' and the densitized triad E¢, and then substituting the
operators A% and E¢.

The simplest geometric operator is the area operator, associated with a 2-
dimensional surface ¢ embedded in ¥. The geometry of ¥ is described completely
by a a spin network S. Suppose for simplicity that no vertices of the spin network
S lie on o. In general there will be P “punctures” where the spin network S inter-
sects with o, and we can let 7, denote the spin of the edge intersecting at the p™
puncture. Then the area operator A(c) acts on the spin network state |S) as

A(0)|S) —87rGVZ (7, +1)15) (3.1)

There are several things to note about this equation. The spin network states are
eigenvectors of the area operator, and therefore represent states of minimum area
uncertainty. The corresponding eigenvalues take the form of a sum over punctures
where the spin network intersects the surface. Note also that the Barbero-Immirzi
parameter v appears in the spectrum of the area operator. It does not appear in the
definition of the spin network states, and therefore will not appear in the calculation
of the entanglement entropy. The Barbero-Immirzi parameter therefore controls the
coefficient of proportionality between entropy and area. It has been suggested that
the value of the Barbero-Immirzi parameter could be fixed by requiring consistency
with the Bekenstein-Hawking formula.

Equation describes what is called the non-degenerate part of the area
spectrum, since it does not apply in the “degenerate” case in which a vertex of the
spin network lies on the surface o. The full spectrum of the area operator must
include the case where one or more vertices intersect the surface [31]. In this case
the eigenvalue to the area operator is still expressed as a sum over the points where
the spin network intersects the surface. Where one or more vertices intersect o, the
action of the area operator may be computed using SU(2) recoupling theory. The
recoupling theory is described in section |3.3.3]

It should be noted that there is also a volume operator V(2) for each 3-
dimensional region ) C ¥. This operator is also diagonal in the spin network
basis, and its eigenvalue is a sum over all vertices in 2 of degree at least four. Its
construction is more complicated than the area operator and the details are not
relevant for this discussion. We refer the reader to the book of Rovelli [26].

Note that all of these operators are defined on the kinematical Hilbert space /C.
The calculation of entanglement entropy will also be carried out in the kinematical
Hilbert space. This is analogous to performing calculations in a fixed gauge or
in a fixed coordinate system. Working in K does not affect the results of the
calculations, which are independent of the choice of coordinate system and are
therefore well-defined also in KCgig.

27



3.1 Black hole entropy in loop quantum gravity

The dominant view in loop quantum gravity is that black hole entropy arises as
ignorance about the state of the black hole horizon geometry. This point of view
has been advocated by Krasnov and Rovelli |32 [33]. In this approach the state
of a black hole is treated as an ensemble of indistinguishable configurations with
a single relevant macroscopic parameter being the area of the event horizon. It is
argued that the black hole entropy should be given by

S =log N(A)

where N (A) is the number of horizon geometries of area A. The entropy is therefore
given as a function of area, which may be studied in the asymptotic limit of large
area. For certain choices of ensemble this yields S o« A in the asymptotic limit
A — o0.

This approach to black hole entropy introduces the issue of which statistical
ensemble should be used. Rovelli and Krasnov each arrived at different numerical
values of the entropy by considering different statistical ensembles. The entropy
further depends on which configurations are considered distinct, and whether the
degenerate spectrum of the area operator is included. These ambiguities affect
not only the numerical coefficient in front of the area, but also affect the form of
sub-leading order corrections to the entropy.

A key issue with the state counting approach is the assumption that the horizon
area is the only relevant macroscopic parameter. This assumption is based on the
classical area theorem of Hawking, which states that horizon area is non-decreasing
as a function of time. It is therefore argued that area is a conserved quantity for a
black hole in equilibrium. This result depends on the specific dynamics of general
relativity; in a more general theory we know that the entropy has a more general
form as a function of horizon shape [34]. The state-counting approach can only
lead to an entropy that is a function of the area alone, and therefore cannot explain
corrections to the black hole entropy.

While corrections to the area law have been studied in loop quantum gravity,
they are necessarily of the form f(A) where f is a function such that f(A)/A — 0
as a — 00. They have typically taken the form of a logarithmic correction to the
entropy [35),136]. These corrections are not of the same form as those that arise from
modified gravity, and are small enough to be negligible for black holes of larger than
Planckian size. The physical meaning of these logarithmic corrections is therefore
unclear, since for all but the smallest microscopic black holes they will be negligibly
small.

An alternative to the state counting approach is to treat a horizon as a boundary
of space, and construct a theory of quantum gravity on the exterior region [37].
Boundary conditions must be introduced and the gravitational action acquires an
additional term that depend on the boundary geometry. This term can be used
to define a theory on the boundary, which can then be quantized. This resolves
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the ambiguity in choosing an ensemble of states, since the quantity N(A) can be
defined as the dimension of the space of eigenvectors to the area operator in the
boundary Hilbert space with fixed area eigenvalue A.

One such theory was explicitly constructed by Smolin for self-dual boundary
conditions, resulting in an SU(2) Chern-Simons theory on the boundary surface
[37]. This program was extended by Ashtekar et. al. to the isolated horizon bound-
ary conditions [0, 38, [39]. The relation between this model and the entanglement
entropy is explored more thoroughly in section [3.4]

Entanglement entropy has previously been studied in loop quantum gravity by
Dasgupta[40]. Instead of using spin network states, a new kind of coherent states
were introduced. These coherent states are defined over a web-like graph, which
contains two classes of edges: those which emanate radially from a central point, and
those which run along trajectories of constant distance from the central point. The
coherent states are elements of L?(SU(2)) labelled by elements of SL(2,C), since
SU(2) is a real form of SL(2,C). This is analogous to the case of the harmonic
oscillator, in which the coherent states are elements of L?(R) labelled by complex
numbers x + p.

A horizon is introduced as a fixed radius where the apparent horizon condition
is imposed on edges inside and outside the horizon. The apparent horizon condition
introduces correlations between the state inside the horizon and the state outside
the horizon which are responsible for the entanglement entropy. We note that unlike
the work of Dasgupta, our result applies to arbitrary graph topologies and does not
require the imposition of apparent horizon boundary conditions.

Terno and Livine also considered entanglement of spin network states but used a
very different definition of a black hole [41], [42]. Rather than tracing over the black
hole interior, they treat a black hole as a single spin network vertex. The former
corresponds to the case where the holonomies inside the black hole are unknown;
the latter corresponds to the case where all holonomies are known and trivial. The
single-vertex black hole is labelled with an intertwiner between all the representa-
tions of edges intersecting the horizon. The number of possible intertwiners is taken
to be the dominant source of black hole entropy. The entanglement corresponding
to a division of the horizon punctures into two sets is interpreted as a logarithmic
correction to the black hole entropy. This is in contrast with the present approach,
in which the entire black hole entropy is naturally attributed to entanglement.

3.2 Kinematical Hilbert space

The strategy pursued by loop quantum gravity is to first quantize, then apply con-
straints. To do this we first construct the kinematical Hilbert space as a space of
wave functionals on connections with a unitary representation of the diffeomor-
phism group of ¥ and of local SU(2) gauge transformations. A motivation for the
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definition of the kinematical Hilbert space is the idea that a connection is deter-
mined by the holonomy along every smooth curve. To make this idea concrete it is
necessary to introduce generalized SU(2) connections and generalized SU(2) gauge
transformations. Our definitions follow the work of Ashtekar and Lewandowski
[43].

Let v, and 7, be analytic curves such that the endpoint of 7, coincides with the
beginning of v5. The composition v, o v, is the curve obtained by the union of v,
and ;. The inverse y~! is the curve v with its orientation reversed. A generalized
SU(2) connection on ¥ is a function A that maps every analytic curve v in ¥ to an
element A(y) € SU(2) in a way that preserves composition and inverses

A(y1072) = A(11) 0 A(72)
Ay =A™

The set of generalized connections is denoted A. These conditions are satisfied by
the holonomy of an SU(2) connection A, given by

A6) =P / Aot

As the name implies, a generalized connection need not arise from a connection A,
in this way.

A generalized gauge transformation is a map ¢ : ¥ — SU(2). Unlike the usual
gauge transformations, a generalized gauge transformation need not be continuous.
The gauge transformation g acts on a generalized connection as

(gA) () = g(7(0))A(7)g(~(1)) (3.2)

The action of a generalized connection A is defined to match the action of a gauge
transformation on a holonomy.

A graph T is a finite set of piecewise analytic curves « : [0, 1] — ¥ that intersect
each other only at their endpoints. The curves are called the edges of I' and their
endpoints are called vertices]

Let T be a graph with edges v1,...,vz and let f € L*(SU(2)Y, ) where p is
the Haar measure on SU(2). We can define a functional on the space of generalized
connections A — C by

Ur p(A) = fF(AMm), - - Alye))

For fixed I', the image of the map f +— 9r ; is the graph subspace denoted Kr.

We would like to define K as a space which contains every Kr as a subspace. A
natural choice is the direct sum @ Kr, but this does not give the desired Hilbert

2In the loop quantum gravity literature edges are sometimes called links and the vertices are
sometimes called nodes.
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space. This is because the representation in terms of graph states contains some
redundancy; it is possible to define states supported in different graph subspaces
which define the same function of the connection A, as in the following example.
Let I' and I be two graphs such that every edge =1, ...,7v, of I' can be written as
a composition of edges in [V and their inverses. If this is the case we write I' C I".
In particular, we have that for every £ = 1,..., L there is a function m, such that
Yo =me(Vy, .- 7)- Let ¥r s € Kr, and define

FOhs- o) = fma(hs ), ome(ns -, 7)

Clearly the states ¢r ; and 9 ; define the same functional on the space of gen-
eralized connections, so we would like to identify them in the kinematical Hilbert
space. We therefore define the operator Tt p : Kr — Kp by T9r ¢ = s pr.

Whenever I' C I, Tt is an isometry. This fact depends crucially on the
group invariance of the Haar measure. In particular, the functions i(g) = g~! and
m(g, h) = gh satisfy

p(iH (X)) = u(X)
(1 p)(m~H (X)) = p(X)

where X is any subset of SU(2) and p is the Haar measure. For a detailed con-
struction of the isometry operator 1t v, see [44].

If ' € IV C I' then the corresponding isometries satisfy the compatibility
condition
TI_"F/TF/’F// = TF7F//

We can therefore define the kinematical Hilbert space I as the direct limit of
the spaces Kr [45]. This Hilbert space is defined such that there exist isometries
Ur : Kr — K where UproTr v = Urv. It further satisfies a universal property making
it the unique smallest Hilbert space such that the isometries Ur exist, up to unitary
equivalence. Thus we have constructed I as the smallest Hilbert space containing
all the graph subspaces Kr. Note that because there are an uncountable number
of graphs, K is non-separable.

This completes the definition of the kinematical Hilbert space K. It contains a
representation of the group of generalized SU(2) gauge transformations defined by
the action of the SU(2) gauge transformations on the generalized connections (3.2)).
This representation is unitary as a consequence of the group invariance of the Haar
measure. We can similarly find a unitary representation of the diffeomorphism
group Diff(X) by the action of the diffeomorphism group on each graph T.

In order to define the entropy of entanglement for a region 2 C > we need to
define a tensor product decomposition of the Hilbert space I corresponding to the
decomposition ¥ = QU Q. To do this we define this decomposition for the graph
spaces. Let I' be a graph in X, and €2 C X any region whose boundary intersects
[' in a finite number of points. We can then define the graph I'g to consist of the
portions of edges of I' that lie in €2. The graph I'g is defined analogously. Note
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that I'g may have more edges than I' if some edges of I' intersect the boundary of
2 multiple times.

We can then define a graph [" = I'q UI'g whose edge set consists of the union of
all edges from I'g and all edges from I'g. Because every edge of I' can be expressed
as a composition of edges in I'q and I'g we have I' C I”. We also have the natural

identification
}CF/ — ’CFQ ® Krﬁ

Therefore for any state in Kr can be identified as a state of Kr,, ®/Cp§. This gives a
natural tensor product decomposition for which we can compute the entanglement
entropy of any state.

3.2.1 Spin network states

We now construct a basis of Kr consisting of extended spin network states [43].
While there are of course many possible choices of basis, the extended spin network
states are useful because of their simple transformation properties under generalized
gauge transformations. In particular, the extended spin network basis contains as
a subset the spin network basis of the gauge-invariant Hilbert space K.

To construct a basis of Kr we first construct a basis for L*(SU(2)) since
Kr = L*(SU(2)%) = L*(SU(2))%*

A basis of L?(SU(2)) can be constructed using the Peter-Weyl theorem, which gives
a unitary equivalence

L*(SU(2) = P VeV (3.3)

01
Jj=0,5,1,...

where the half-integer spin j indexes all irreducible representations of SU(2). The
space V; = C%™! is the vector space for the spin-j representation R’ : SU(2) —
U(2j+1).

By applying the decomposition (3.3) to each edge of a graph I' we have the
unitary equivalence

L
=@ D viel;

=1 j,=0,31,...
L
=RV eV
7oe=1
Where 7= (j1,...,7r) and the direct sum over 7 is shorthand for the sum j, =
0, %, 1,...forall ¢ =1,..., L We therefore have a direct sum decomposition of Kr

L
Kr=@Kkr; Kryj=@QV,0V;
7 =1
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The action of the generalized gauge transformations on the Hilbert space Kr y
has a rather simple form. For a fixed vertex v, the state transforms by g(v,) in
the following representation

® Re ® ® RJe*

{€:70(0)=vn} {lye()=vn}

We can express this representation as a direct sum of irreducible representations
Jn. For each J, we can introduce an intertwining operator

i ® Vi, | ® ® Vil =V, (3.4)

{€:7¢(0)=vn } {l:ve(1)=vp}

that commutes with the action of g(v,). Upon fixing an intertwining operator for
each vertex, we have a Hilbert space K ;7 where 7" = (1,...,in) specifies an
intertwining operator for each node.

The intertwiners form a vector space, which becomes an inner product space
using the inner product

<Zl|12> = TI'(Zﬂg)
This gives a further decomposition of the Hilbert space Kr

N
- HOOY.
oy v on=

Where the sum over 7’ is a sum over an orthogonal basis of the intertwiner space
in equation (3.4). The gauge transformation g(v,) acts on this space in the repre-
sentation R’7". To specify a state in K. 77 we need only specify a set of vectors

m = (mq,...,my) where m,, € V; for n=1,..., N. This motivates the following
definition:

-

An extended spin network is a tuple S = (I, 7, J, 7, m) where

I' is a graph in ¥ consisting of vertices vy, ...,vy and edges v4,...,7r,

7= (J1,...,7L) where j, € {%, 1, %, . } labels each edge with a non-trivial

irreducible representation of SU(2),

o J= (Ji,...,Jn) where J, € {0, %, 1, %, .. } labels each vertex with a possibly
trivial irreducible representation of SU(2),

e V= (iy,...,iy) where i, is an intertwining operator from the representations
of all incoming edges and the duals of all outgoing edges to the spin J,
representation, and

e 7 = (my,...,my) where m,, € V; is a vector in the spin .J,, representation
space.
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The extended spin network state |S) is defined as a functional acting on a gen-
eralized connection A € A as follows

(Als) = <®m ) . (é) o (gmff(m»)

In this expression, for each £ the expression R%(A(~,)) defines a matrix in U(2j,+1)
which may be viewed as an element of V;, ® V*. Thus the rightmost part of this
expression has a tensor factor corresponding to Vj, at the endpoint of every edge
and one corresponding to V7 at the beginning of each edge. The intertwiner R in
maps this to a vector in the space @) J,, which can be contracted with &) m?
yielding a complex number.

A generalized gauge transformation acts on the extended spin network state by
transforming the vector m,, in the spin-.J,, representation of g(v,). Thus the gauge
invariant sector of the Hilbert space is simply the space spanned by extended spin
network states with J, = 0 and m,, =1 forn =1,..., N. In this case the extended
spin network state reduces to a spin network state. We will write S = (I, 7,7) for a
spin network state, with J, = 0 and m,, = 1 implied.

An important property of these states that we will use is their orthogonality.
We first assume that all intertwiners ¢,, are normalized so that Tr(i*7,) = 1. We can
do this without loss of generality because scaling ¢,, has the same effect as scaling
my, in the definition of the extended spin network state (3.2.1). Now suppose that
S = (7 j,?,?ﬁ) and S’ = (I, }, ji’,rﬁ’) so that S and S’ differ only by their set
of vectors. Then

(sls) = T St (35)

Thus the extended spin network state is normalized when the vectors m,, are nor-

malized so that ||m,|| = v2J, + 1.

3.3 Entanglement entropy of spin network states

Having defined the tensor product decomposition of the Hilbert space Kr and with
the definition of the spin network states, we can now compute the entanglement
entropy of the spin network states. Before computing the entropy of entanglement
for an arbitrary spin network it is useful to consider the simpler case of the Wilson
loop states.

3.3.1 Wilson loop states

Let v be a curve in ¥ such that v(0) = (1) and j € {3,1,2,...}. The Wilson loop
state is the state |, j) defined by

(Aly,j) = Tr(R'A(7))
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The Wilson loops are the simplest possible examples of spin network states, where
the graph I' consists of a single curve 7 labelled by spin j and a single vertex with
intertwiner i, given by the normalized identity map i, = ﬁ where I; is the
identity map I; : V; — Vj.

The Wilson line state |7, j, a,b) is defined similarly as the matrix element of the
representation of the holonomy along ~

<A|77j7 a, b> =V 2] +1 [RJA(’Y)] a,b

In terms of these states the Wilson loop state can be written as

. ; 1 .
|’77j> = Z[RJA(V)]a,a = \/ﬁ ; |77]7 a, (l>

a

We can check that the Wilson lines are orthonormal using the following fact
from representation theory. Let z,y, z,w € V; then

/sm) (R (9)z]y) (R (97 ")z|w) dg =

3 ) (alw)

Then letting {e;}:”*" denote an orthonormal basis of V,

(. Joas by g esd) = (25 + 1) / PO )

— (24 1) /S o (@) (Rl dy

=(2+1)

3 {eslee) {ealed)

= 0acObd (3.6)

We can then verify the normalization of the Wilson loop state
AR,
G . b b
(v, 317:9) 212 (v,4,a,alv,5,b,b)

2j+1

Z 5a,b5a,b

a,b=1

1
2541

=1

For a single curve v = 7y o, we have an identification IC, C K, ® IC,,. In order
to express the state |7, j,a,b) in this decomposition, we introduce a resolution of
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the identity

<A|/71 o 727j7 a, b> =V 2] +1 [R]A(’yl © 72)j| a,b
2j+1

= VLY [RAM)],, [RAM)],,

2j+1

1
= s Z <A|’}/1,j7a,c> <A|’727j’ ) b>
V2i+1 —

This gives the following decomposition of the Wilson loop state
Ly

o 7.7a7b = T 7.70’76 ® 7iuc7b 3.7
|71 V2,7 > \/m;hlj > ‘723 > ( )

In fact, this equation is a Schmidt decomposition of the state |y, o 79, j, a, b), which
follows from the orthogonality of the Wilson line states ({3.6]).

This identity can be iterated to give a Schmidt decomposition of an arbitrary
Wilson loop state. Let €2 be a subset of ¥ for which we will calculate the entangle-
ment entropy. In general the curve 7 intersects 0€2 at n points. We can decompose
the curve as v = 73 0 --- 0 v, where V1,73, ...,%-1 C Q and Y2, 74, ...,V C .
Then applying equation at all intersection points

25+1 n

|’7 j) \/ﬁ Z ®|’7’w]7a27az+1

at,...,.apn=1 i=1

2j+1 n—1 n
® 7is Js aiaai+1>) ® < ® |7is Js Gi,ai+1>) (3.8)
\% 23 +1 <i:1,3,... i=24...

aiy...,an=1

The states on the left of this tensor product are in the Hilbert space
Ky @Ky, @ @K, =Ko

Similarly, the right side of the tensor product is in K, g

Equation is a Schmidt decomposition of the Wilson loop state |y, j). The
Schmidt rank is (25 + 1)" and each Schmidt coefficient equals (25 + 1)™/2. Each
reduced density matrix is therefore proportional to a rank-(2j 4+ 1)™ projection op-
erator. The entanglement entropy of the Wilson loop state |, j) can be determined
directly from the Schmidt decomposition

S(Q) =log(25 +1)" =nlog(2j + 1)

This equation depends linearly on the linking number of v with 02, just as the

area operator
A(0Q) xny/j(5+1)

36



3.3.2 Spin network states

The formula for entanglement entropy of a Wilson loop state extends naturally to
the extended spin network states. We first give a formula that is a direct analogue
of the formula for inserting a resolution identity into the Wilson line state ([3.7]).

Let S be an extended spin network, and v a point on an edge 7, at which we
will insert a vertex. We can then write 7, as a composition of two curves meeting at
v, ¢ =y, 07, so that v,(1) = v/(0) = v. We construct an equivalent spin network
S’ as follows. Let S" = (F’,j’,f’,f’,ﬁz’).

e [V is the graph with edges

/ "
Y1y Ye—1Yey Ve s Ve+1,- - -5 VL
and vertices vq,...,UN,V,

e The new edges are assigned the same representations as the subdivided edge
jﬂ - (jl’ s 7jf—1)j€7jf7 s 7jL)7

e The intertwiner assigned to the new node is proportional to the identity in-

. s . 1
tertwiner ¢/ = (i1, ..., 0p, WI)’

e The representation attached to the inserted node is trivial J' = (J1,-- ., Jn,0)
and m' = (mq,...,my, 1).

Then the extended spin networks S and S’ define the same state |S’) = |.5).

Suppose now that €2 is a subset of ¥ for which we will consider the reduced
density matrix of a spin network state |S). For the moment we will assume that no
vertices of I lie exactly on the boundary 0€2. By applying the previous construction
repeatedly we may assume without loss of generality that all edges of S intersect
the boundary 0f) at vertices. Let P be the number of points where I' intersects
082, N the number of vertices of I in 2, and Ng the number of vertices in Q. We
can then partition the vertices vq,..., vy into three classes

e vertices that lie on the boundary, v,, € 0Q2 forn=1,..., P,
e vertices in Q, v, € Qforn=P+1,..., P+ Nq, and
e vertices in Q, v, € Qforn=P+ Nqo+1,...,N.
Similarly, the edges ~v1,...,7yr can be partitioned so that v, C Q for £ =1,..., Lo

and v, C Qfor ¢ =Lo+1,..., L.

By assumption all the vertices on the boundary arose from the construction for

inserting a vertex. This means that S has i, = ——~ T forp=1,..., P where Jp

\/25p+1
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denotes the spin of the edge that was subdivided to produce the vertex v,. Each of
these intertwiners i, may be expanded in an orthogonal basis of Vj ,

2]p+1
7:77 Z ‘ ap eap (39)
\% 2]1’ ap=1
Given a vector @ = (ay, . .., ap) we define the extended spin network state |Sq, @)
as follows:
e the graph I'g consisting of edges v, ..., and vertices vy, ..., vp4ng,

e the labels on the edges are unchanged, j, = jo for £ =1,..., Lq,

e the existing nodes are also unchanged J, = J,, i/, = i, and m/ = m,, for
n=P+1,..., P+ Ng, and

e the vertices on the boundary have forp=1,..., P.
Jy=Jp
./
i
P 25, +1

= \/2)p + 16%

The state |Sq, @) is defined analogously.

We can then apply the resolution of the identity (3.9) at each intertwiner of S
on the boundary, giving

(H \/ﬁ> Z |Sa, @) ® |Sg, @) (3.10)

where the sum over @ denotes a sum over all n-tuples (as,...,ap) with a, =
1,....25,+ 1.

By the orthogonality relation (3.5)), the set {|Sq, @)} is orthonormal. Therefore
(3.10]) is a Schmidt decomposition of |S). The Schmidt rank is

N=][@5+1 (3.11)

p=1
The entanglement entropy of |S) is therefore

= log(2j, + 1) (3.12)

p=1
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The Schmidt decomposition also allows us to compute the reduced density ma-

trix for the region €2,
1

p() = 5 D 150,80, d (3.13)

-

a

Note that although the individual states |Sq, @) transform non-trivially under a
gauge transformation, the linear combination (3.13)) is gauge-invariant.

This is not surprising, since the proper graph subspace Kr, does not contain
any gauge-invariant pure states except in the trivial case where I' does not intersect
the boundary. This is a result of Schur’s lemma, which states that any intertwining
operator V; — Vj is either a proportional to the identity if j = j' or zero if
j # j'. 1f the graph I' N Q contains vertices of degree one on the boundary, a gauge
invariant pure state would need to have an intertwining operator V; — V4, which
is impossible. However it is possible to have a gauge invariant mixed state, which
is a density matrix V; — V;. By Schur’s lemma there is exactly one such state,
which is proportional to the identity. It is the maximally mixed state ﬁ] , whose
entropy is log(2j + 1).

The similarity between the entanglement entropy and the area operator is ap-
parent. The entanglement entropy is a sum over intersections of the spin network
with the surface 02, much like the eigenvalue to the area operator A(@Q) How-
ever they are not linearly related for any choice of the Immirzi parameter. Possible
physical implications of this fact are discussed in section [3.5]

Spin networks therefore give a rather literal realization of the holographic picture
of ‘t Hooft in terms of entanglement [2]. The bits on the boundary do not encode
possible states of the interior, rather they represent entangled bits or “ebits” shared
by the region €2 and its complement. Any surface, including a black hole horizon is
divided into elementary cells, each labelled by a spin j. Each of these cells carries
one ebit for j = %, one etrit for j = 1, etc. The entanglement is a direct consequence
of how gauge transformations act at points on the boundary, and in this sense the
degrees of freedom responsible for the entanglement entropy are entirely local to
the boundary.

3.3.3 Degenerate spin network states

In the previous section, we derived a general expression for the entanglement en-
tropy S(€2) of a spin network state |.S) when no vertices of S intersect the boundary
of the region 2. This expression (3.12)) is analogous to the non-degenerate part of
the area spectrum . We know however that the spectrum of the area operator
also has a degenerate part, corresponding to the case in which a vertex of the graph
' lies on the boundary. In this section we consider the entanglement entropy of
these degenerate spin networks.

First, we have the technical subtlety that it is in general possible to have edges
of I' that lie exactly on the boundary of 2. In this case we must be careful,
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since these could behave differently from edges which only touch the boundary at
isolated points. For example, the degenerate spectrum of the area operator changes
depending on whether incident edges are tangent to the surface. For the purposes of
the entanglement entropy the tensor product decomposition requires that the edges
on the boundary must be part of Q or Q. This means we must specify whether
Q) is topologically open or closed. We could also choose €2 to be neither open nor
closed, in which case a boundary edge could lie partly in  and partly in . For
the calculation of entropy, it will not matter whether edges lie on the boundary
or not, but only whether they lie in Q or Q. This is to be expected; the fact
that the area operator acts differently on tangential edges results from a particular
choice of regularization. In fact it is possible to construct regularizations with no
dependence on tangential edges. This ambiguity is not present in the calculation
of entanglement entropy, since no regularization is required. For definiteness we
will consider € to be an open set, so that 92 C Q. This choice is based on the
interpretation of €2 as a black hole exterior region, which is always an open set.

In the case of a spin network state which may have vertices lying on the bound-
ary, we may still construct the reduced spin network states |Sq, @). Because there
now exist intertwiners on the boundary which are not proportional to the identity,
we do not have the Schmidt decomposition (3.10). In general we have the following
decomposition (which is not a Schmidt decomposition)

ZA a’ |Sﬂa X |SQa >

_.—;,

We will find it convenient to work with the operator S defined by the partial
transpose

S = ZAQySQ, (S, d|

The partial transpose is a bijection, so all the information about |S) is encoded in
S. In particular, the Schmidt decomposition of |S) corresponds to a singular value
decomposition of S.

The support of this operator is confined to the subspace spanned by the vec-
tors {|Sq,@)}. This is a subspace of dimension H§:1(2jp + 1), so there is unitary
equivalence

P
span{|Sq, @)} = ® Vi, (3.14)

p=1
Associated to each vertex v,, on the boundary is an intertwining operator #,, between
the tensor products of all edges incident to v,. Let j1, ..., jp be the spins associated

to edges incident to v, from Q and ji,. .., j% be those associated to edges incident
to v, from ). The intertwiner can then be naturally described as an operator

P P’
in: @V = QV;
i=1 i=1
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Using the unitary equivalence between Hilbert spaces (3.14) we have the unitary
equivalence between operators
iaQ = ® in

S
{n:v, €00}

1%

By the equivalence between the singular value decomposition of S and the
Schmidt decomposition of |.S) the entanglement entropy can be expressed in terms
of S

S(Q) = S(55%)

Which in turn allows us to express the entropy in terms of igq

S(58%) = S (igqisg) = S ( & wn> = Y S(iniy) (3.15)
n:v, €0SY n:vy €0KY
In the last line, we used the additivity of the von Neumann entropy across tensor
products. Thus the entanglement entropy can be expressed as a sum of terms of
the form S(i,i) which we recognize as the entanglement entropy of an intertwining
operator. In the next section we will compute the entanglement entropy of these
intertwining operators.

Note that the formula for the entropy of the non-degenerate spin network
is a special case of this formula. In the non-degenerate case we view each point
where a spin-j edge crosses the boundary as a bivalent intertwiner 4, : V; — V.
Each intertwiner on the boundary has the form i, = ﬁ[ ;5 this fact can be seen
directly from the formula for inserting vertices on the boundary, and is a direct
consequence of Schur’s lemma combined with the normalization of 7,. It follows

that the entanglement entropy of ¢, is
1

Sy =5 (—
Since the entanglement entropy of the spin network is just a sum of terms of this
form (3.15)), we arrive at the formula for the entanglement entropy (13.12)).

3.3.4 Graphical calculus and intertwiners

We now consider the problem of finding the entanglement entropy of an intertwin-
ing operator. Initially one would not expect to find a general expression for the
entanglement entropy; this requires diagonalization of a density matrix, for which
there is generally no explicit formula. Here the group invariance plays an important
role since it restricts the possible operators that may appear. For example, we know
there is no general formula for the spectrum of a general map V; — Vj ﬂ If the map

3In principle this is only true for j > 2. The reason is that finding the spectrum of a matrix
is equivalent to finding the zeroes of its characteristic polynomial. The characteristic polynomial
has degree 25 + 1, and therefore there is no explicit expression for the roots when 2j + 1 > 5, or
Jj=2

41



is required to be an intertwiner, Schur’s lemma allows us to compute the entropy
explicitly. Although we will not provide a formula for the entanglement entropy of
a general intertwining operator, we can give an explicit formula in certain special
cases which happen to be of physical interest.

Calculations involving intertwiners are most easily expressed using a graphical
calculus originally developed by Penrose [30]. This graphical calculus has been
generalized to Temperley-Lieb recoupling theory, which may be viewed as a ¢-
deformed version of spin network theory [46]. For a discussion of how recoupling
theory applies to loop quantum gravity and a translation between Temperley-Lieb
recoupling theory and spin network notation see the book by Rovelli ([26], appendix
A). For a thorough introduction to spin networks and their graphical calculus see the
course notes of Baez [47]. We will give a short introduction to the graphical calculus.
This introduction is not meant to be complete, and results will be introduced as
needed for the calculation of entanglement entropy.

An intertwining operator T': V;, @ --- @ V; — Vyy @ --- @V}, is represented as
a box with lines n entering from the top and m lines exiting from the bottom

A special case is the identity operator I; : V; — Vj, which is represented as a single
vertical line

Composition of two intertwiners 7" and S is represented as vertical concatenation
of boxes

Horizontal concatenation of boxes represents the tensor product
The 1-dimensional vector space V; = C is denoted by no lines. There is a unique

intertwining operator cup; : V; ® V; — C. This map has two incoming lines of spin
7 and no outgoing lines, and is denoted

cup; = u

Its dual is the map cap; : C — V; ® V; denoted

cap; = (™
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With these definitions the graphical calculus is topologically invariant, so that any
planar deformation of a diagram represents the same intertwiner.

A network with no inputs and no outputs represents a linear map C — C, which
is just a complex number. For any network 1" we can define a complex number by
connecting all inputs to outputs using cup,; and cap;. This gives a multiple of the

trace of an operator:
Tr(T) '

We can apply this to the identity operator, getting a circle of spin j
A= Os = (“1¥Te(ly) = (<)% (2 + 1)

There is a unique intertwiner between three spins a, b, ¢ providing they satisfy
the Clebsch-Gordan condition:

a+b+ceZ and la—b<c<a+b

This intertwiner is denoted by a 3-vertex

a
A

By attaching two 3-vertices together we construct the 6-net

0(a,b,c) = c

It is possible to give an explicit combinatorial formula for 6(a, b, ¢) [46], 26].

We now express some basic properties of the von Neumann entropy in terms of
these diagrams

(3.16)

(3.17)

(3.18)

The first property (3.16]) follows from the fact that the von Neumann entropy
depends only on the non-zero spectrum of the operator, and the following property
of the spectrum

o(ST)\ {0} = o(T'S) \ {0}
Property (3.17) expresses the additivity of the von Neumann entropy across tensor

products. The last property (3.18) is the von Neumann entropy of the maximally
mixed state on a vector space of dimension 25 + 1.
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An important fact that we will use is Schur’s lemma. It states that if T is an
intertwining operator V; — V; then either ¢ # j and T is zero, or 7z = j and T is a
scalar multiple of the identity. It can be expressed concisely in graphical form

D
FAAY

i | (3.19)

As we will see this formula combined with the properties of the von Neumann en-
tropy is what makes it possible to compute the entanglement entropy of intertwining
operators.

Suppose that our intertwiner I is of the following form:

nl

Here the single edge of spin j is called the principal link. Intertwiners of this
form have a physical interpretation. Suppose a surface o intersects a vertex v,
the eigenvalue to the area operator fl(a) depends on the intertwiner at v. The
superposition of two intertwiners corresponding to different eigenvalues is again an
intertwiner, but is not an eigenvalue of the area operator 121(0). Therefore for a given
surface only certain intertwiners diagonalize the area operator. The intertwiners
of the form ([3.20)) are precisely the intertwiners that diagonalize the area operator

A(6Q) [31].

The entanglement entropy of I is the von Neumann entropy S(I7*), which can
be evaluated using the properties of S along with Schur’s lemma:

(3.20)

The diagram in the second last step represents Tr(I7*), which is equal to 1 by the
normalization of the intertwiner.

With some effort we can generalize this to intertwiners with two principal links.
To do this we use the following identity, which is a graphical version of the Clebsch-
Gordan rule [47]
a®@b=la—b& - -®(a+D)

a+b Al a 'b
“ ‘b — Z WI (3.21)




Let P; denote the i*® term in the sum above. Then we can check that {R»}?i'l;_b' is
an orthogonal set of projectors

b
' AZA] 9<a,b,i>a b
: 0(a,b,9)0(a, b, j) <5” A, Ib) oubi

Equation ([3.21)) is a resolution of the identity on V, ® V} into projectors. Note that
this is not a complete resolution of the identity into rank-1 projectors, since

A aVN'b .
o (_ 2a+2b ? i — (12 A. — 9;

We can use this resolution of the identity to express any intertwining operator
S as follows

A,

PP, = a
"7 0(a,b,9)0(a,b, )

= AYAY

Where we have defined the constant \; as

1 a
= 22
. e(a,b,z') 52

We therefore have a formula for diagonalizing an arbitrary intertwining operator
on V, ® V. If a reduced density matrix p is expressed as ), \;P;, we can compute
its von Neumann entropy

S (Z AiPi) = —Tr (Z i log )\Z-Pi) == (2i+1)\log

)

Where the eigenvalues \; may be computed from (|3.22)) using the rules of the
graphical calculus.
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Now suppose that we have an intertwiner / with two principal links:

Once again these coefficients can be computed using the graphical calculus, giving
an explicit form for the entropy of an intertwiner with two principal links.

3.4 Isolated horizons

For non-degenerate spin networks, the reduced density matrix (3.13)) is of a very
special form. All of its eigenvalues are equal, so that the reduced density matrix is
proportional to a projector onto a subspace of dimension

N=]]@p+1 (3.23)

p=1

This subspace depends only on the intersection of the spin network with the bound-
ary, and its dimension grows with the area of the boundary. This suggests that
there is a Hilbert space associated to the boundary whose dimension is /N, and
which would be sufficient to completely encode all observables relevant for an out-
side observer’s description of the black hole.

In fact, exactly such a Hilbert space has been constructed in the isolated hori-
zon framework for loop quantum gravity. In the isolated horizon framework, one
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considers a spacetime €2 x R where R is time, and 2 has a boundary 0f). Here ()
represents the exterior region of a black hole and 0f) represents the horizon. The
classical theory is given in terms of an action S(A, E') which is a function of the
Ashtekar variables. To get the equations of motion one must vary the action, and
then integrate by parts. In the presence of a boundary, the integration by parts
gives a term proportional to the variation §A on the boundary. There are several
ways to remedy this situation. One may simply require dA = 0 on the boundary,
so that only a limited class of variations are considered. The alternative pursued in
the isolated horizon program is to add an additional boundary term to the action
that cancels the extra term in 0 A on the boundary. This yields additional equations
of motion that must be satisfied on the boundary.

This procedure was originally carried out by Smolin using the Capovilla-Dell-
Jacobson action for general relativity [37]. In this case the boundary action is the
action for SU(2) Chern-Simons theory and the boundary conditions are known as
the self-dual boundary conditions. This analysis was extended by Ashtekar et. al.
to the isolated horizon boundary conditions [6, 39]. The isolated horizon boundary
conditions give a set of conditions describing a spherical black hole whose area is
constant in time [48]. The boundary action in this model is described by a U(1)
Chern-Simons theory. In this section we will consider the isolated horizon boundary
conditions, but similar considerations apply to the self-dual boundary conditions.

The classical theory described above may be quantized using the techniques of
loop quantum gravity. The resulting kinematical Hilbert space has the form

K =Ksa @ Kq

Where the bulk space Kq is the kinematical Hilbert space described in section [3.2]
The boundary space Kgq is a direct sum of Chern-Simons Hilbert spaces

Koo = @D Koq
P
Here the sum over P runs over all vectors P = (xy,...,2p, J1,...,jp) Where {xp};;:l
are points in 0 called punctures and (ji,...,jp) is a labelling of the punctures

with spins. The vector space K7, is the Hilbert space of Chern-Simons theory on
0f) with the labelled punctures P. Chern-Simons theory is topological, meaning
that there are no local degrees of freedom: the connection on 0f2 is flat except at the
punctures. It follows that the only degrees of freedom in K%, are the holonomies
of curves with non-trivial winding numbers around the punctures.

From the kinematical Hilbert space one must pass to the gauge-invariant Hilbert
space Ky. The gauge transformations on Cq, act the same way as in the theory with-
out boundary, and the action of the gauge transformations on Kyq is determined
by the boundary conditions. We can then form the quotient with these gauge
transformations, giving the gauge-invariant Hilbert space

K5 @ K
Ko =& % (3.24)
P
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The space K}, is spanned by the extended spin network states |Sq, @) with spin
networks S whose edges meet 02 at the points zy,...,z, with spins ji,...,j,.
The quotient with G indicates that we still have to take the quotient with gauge
transformations that act on the boundary punctures. These act on the the extended
spin networks as well as on the states of the Chern-Simons theory.

Given any gauge-invariant state in K, ® K7, we can take the partial trace
yielding a mixed state on KJ,. In fact, because of the way gauge transformations
act, it is the maximally mixed state on K’,. The entropy of entanglement is
therefore given by log dim KJ,, where dim K, is given in the limit of large numbers
of punctures P — oo as

P
dim KBy, ~ [J (25, + 1) (3.25)
p=1
Therefore the dimension of the boundary theory approaches the Schmidt rank of
the spin network state intersecting the boundary 02 in the punctures P.

It is not hard to see why the dimension of the boundary Hilbert space should
be the same as the Schmidt rank. For any state in K, ® KT, its restriction to
the space g is a gauge invariant mixed state with support on an extended spin
network with endpoints coinciding with the punctures P. There is exactly one such
mixed state; it is the mixed spin network state given by equation . It follows
from the Schmidt decomposition that the reduced density matrix on K, must have
the same spectrum, making it a maximally mixed state whose rank is [[(27, + 1).

However the dimension of the boundary Hilbert space and the Schmidt
rank N of the spin network state are not exactly equal. In fact the dimen-
sion of the boundary Hilbert space is slightly smaller than N. the reason for this
difference comes from what would appear to be the most innocuous of the isolated
horizon boundary conditions: the restriction to spherical topology.

On a punctured sphere, the product of the holonomies around any set of points is
trivial. This gives a restriction on the surface degrees of freedom [49]. In particular,
we saw that the range of the reduced density matrix is isomorphic to a product of

representation spaces
P
N = dim ((X) Vjp>

p=1
The Hilbert space K7, is instead isomorphic to a quotient of this space with the
diagonal action of SU(2)

P
ne
dim KJ;, = dim <—®P—1 ”p>

SU(2)
Equivalently, this is the number of intertwiners &) V;, — C.

In fact, this difference has caused some confusion in the derivation of the black
hole entropy. The Schmidt rank /N is the number of sequences {ap}le satisfy-
ing a, € {—Jp,—Jp+1,....7}. The dimension of the boundary Hilbert space is
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equal to the number of such sequences that satisfy the additional spin projection
constraint

P
> a,=0 (3.26)
p=1

The spin projection constraint was not taken into account in the original counting
of black hole entropy [6]. It was subsequently corrected, leading to a modification
of the logarithmic correction to the entropy [35, [36].

We have shown that the dimension of the boundary Hilbert space agrees with
the result computed purely from considering the Schmidt decomposition of a spin
network state. The latter calculation is completely independent of the complex
apparatus of the isolated horizon framework, yet yields an almost identical state
counting. The only modification from the isolated horizon framework is the intro-
duction of the spin projection constraint, whose origin is purely topological and
which is so small that it is unlikely to have any physical implications.

The fact that the state counting in the isolated horizon approach is independent
of boundary conditions was already suggested by Husain [50]. He illustrated this
with a model having the same kinematics as the isolated horizon framework, but
with a degenerate metric so that the boundary does not define a horizon. It was
shown explicitly that the constraint requiring 92 to be an apparent horizon does not
enter into the calculations. It was further conjectured that the boundary entropy
does not depend on the choice of boundary action, and that any other topological
theory such as BF theory could replace Chern-Simons theory on the boundary. The
arguments of this section strongly support this conclusion, by giving an account for
black hole entropy without introducing any boundary conditions at all.

The same considerations would appear to apply to the boundary theory of
Smolin [37]. His construction is similar, but requires a formulation of loop quan-
tum gravity with a positive cosmological constant [51]. In this theory the SU(2)
spin networks are replaced with quantum-deformed SU(2), spin networks and the
boundary theory is an SU(2), Chern-Simons theory where ¢ = e, In the limit
k — o0, the dimension of the boundary state space coincides with the Schmidt
rank. Interestingly, this is the limit in which the cosmological constant approaches
zero. To make the correspondence between the entanglement entropy and Smolin’s
boundary theory precise, one would need to compute the Schmidt decomposition
of the SU(2), spin network states.

3.5 Corrections to the area law

We have already noted the similarity between the entanglement entropy (3.12)) of
a general region €) in terms of a spin network intersecting 0€) and the eigenvalue of
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the area operator (3.1, given by these two expressions

S(Q) =) log(2j, + 1) (3.27)

p=1

A(09) = 87Gy > /3y + 1) (3.28)

These quantities do not have a linear relationship, suggesting the possibility of
corrections to the Bekenstein-Hawking formula.

One of the motivations for studying corrections to the black hole entropy formula
is that these corrections could indicate deviations from Einstein gravity. In a theory
with a diffeomorphism-invariant gravitational action, Wald [34] has shown that for
a black hole with bifurcate Killing horizons, the entropy is of the form

S =2 Q
00

where () is the Noether charge depending on the Lagrangian. This suggests that
corrections to black hole entropy encode corrections to the gravitational action.

The formal similarity between the entropy formula and the area operator
suggests that the entanglement entropy may be expressed as the integral of
a local density over the horizon. This suggests that we define the horizon entropy
density () as the geometric quantity such that

(27;’; Q) |1S) = log(2j, +1)|S) (3.29)

peEP

Usually in loop quantum gravity, we start with a geometric expression in terms of
the Ashtekar variables A and E and apply a quantization procedure to produce an
operator. Here we have the inverse problem: we have defined an operator and want
to know whether it corresponds to a geometric expression. So far it is not clear
whether such a geometric quantity () exists, or what its form could be.

3.6 Weave states

One possibility for relating the entanglement entropy to the classical geometry of
a manifold ¥ is to construct a spin network state approximating the geometry,
known as a weave state [52]. A weave state is a spin network state such that the
eigenvalues of the area and volume operators approximate the classical volumes
and areas of the associated surfaces. Although the original weave states were later
found to have zero spatial volume, it was subsequently shown that it is possible to
construct weave states for which both the area and volume operators approximate
their classical values [53].
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One procedure for constructing a random weave state in flat space is to randomly
sprinkle points in R? at a fixed density p [54]. These points are taken to be the
vertices of a graph I', and the edges of I' correspond to the Delauney triangulation
of the set of points. In a fixed region €2 the expected number of points, and hence
the expected quantum volume of the region, is proportional to the classical volume
of €2. Similarly the number of intersections with a 2-dimensional surface o, and
hence the eigenvalue to the area operator, grows linearly with the area of o.

For the statistical weave state the expected entanglement entropy is proportional
to the number of intersections of the spin network with 0€2, and hence proportional
to the classical area of 02. As we will see in chapter [5| this is a consequence of a
general theorem of geometric probability theory.

51



Chapter 4

The second law

Any microscopic description of the Bekenstein-Hawking entropy should be able to
account for the laws of black hole thermodynamics. In this chapter we will consider
the analogue of the second law of thermodynamics for the entanglement entropy.
Specifically, we will investigate conditions under which the entanglement entropy
is non-decreasing in time.

We will consider the proposal due to Rafael Sorkin that increase of entanglement
entropy is a consequence of the fact that a black hole horizon is a causal barrier [20].
An important defining feature of a black hole event horizon is that the evolution of
the black hole exterior is independent of the state of the interior. Evolution maps
of this form are called semicausal [55].

Let A and B be Hilbert spaces, and U be a unitary map U : AQ B — A® B.
Let &€ be the trace-preserving completely positive map E(p) = UpU*. The map &
is semicausal A — B if there exists a trace-preserving completely positive map €| 4
such that

Trgo& =E&|ao0Trp (4.1)

This definition says that system A evolves autonomously from system B. Equiva-
lently, it says that there is no signalling from B to A. We can think of system A
as analogous to the black hole exterior, and system B as the black hole interior.

Sorkin’s proposed proof of entropy increase rests on the following result due to
Lindblad [56]. Let £ be any channel, and let p be a density matrix. Then

S(EIE(a)) < S(pllo)

The quantity S(pl||o) is the quantum relative entropy of p with respect to o, defined
for o > 0 as

S(plle) = Tr(p[log(p) — log(o)])

When ¢ does not have full support, the operator log o is not well defined. In this
case it is still possible to define S(p||o) as a limit which diverges when supp(o) N

supp(p) # {0} [56].
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In order to see how this leads to a condition for entropy increase, let o be the
maximally mixed state o = %I so that

1
S(pllo) = Trplogp — Trplogg = —S(p) +logn

Now suppose the channel € is unital, so that £(I) = I. Then by Lindblad’s theorem,
we have

SEP)E(a)) < S(pllo)
—S(&(p)) +logn < —=S(p) +logn
S(E(p)) = S(p)

Therefore a channel £ leads to an increase of entropy for all initial states if and
only if £ is unital.

The entropy of entanglement of the system AB is the von Neumann entropy of
system A, so increase of entanglement entropy is equivalent to increase of entropy
for system A. By the previous result, this is equivalent to the statement that &| 4 is
unital. To see that this is the case, we simply apply the definition of the semicausal

map £ (4.1) to the maximally mixed state on A ® B:

8|AOT1“B( ]A®IB>:TI"BO((:< ]A®IB>
nanpg nang

1 1
Ela <_IA> =Trp ( Ipn® ]B)
na nanpgp
1 1
Ela (—]A> =—1I4
na na

It follows that if U is a finite-dimensional unitary matrix such that its associated
channel £ is semicausal, then the entanglement entropy of any pure state of AB is
non-decreasing under the action of U.

In finite dimensional Hilbert spaces, the above argument in fact holds trivially.
This is because in finite dimensions all unitary semicausal maps A — B are also
semicausal B — A ([55], theorem 7). Such a unitary operator is called fully causal.
Any fully causal unitary map U factors as U = Uy ® Ug. It follows that the
entropy of entanglement neither increases nor decreases, but is exactly preserved
by the evolution.

In the next section we consider the case where A and B are infinite dimensional
separable Hilbert spaces. Specifically we will determine whether the two results
above - that all unitary semicausal operators are fully causal, and that entanglement
entropy increases under semicausal evolution - continue to hold in the infinite-
dimensional setting.
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4.1 Infinite dimensions

To understand why semicausal operations do not exist in finite dimensional Hilbert
spaces, we can appeal to a classification of semicausal maps for tripartite finite
dimensional systems [57]. In this model we consider operations on a system ABC
which do not allow signalling from B to A. All of these maps may be described by
an interaction of A with C' followed by an interaction of C' with B. In other words,
Alice prepares a qubit, sends the qubit to Bob, who then interacts with it. Maps
of this form are called semilocalizable.

To see why the bipartite case cannot be semicausal, we see that in order to send
a single qubit, a piece of system A must be transferred to B. For this to happen
dim A must decrease by a factor of two, and dim B must increase by a factor of
two. In an infinite dimensional Hilbert space it is possible to double the dimension
without changing the dimension of the Hilbert space. This is the subject of the
famous Hilbert’s hotel paradox, whose content is that an infinite set can be put
in bijection with two copies of itself. This idea motivates the construction of the
following unitary semicausal map.

Let A= (*(N) and B = (*(N) and define U by

o0

U= (Im)2n) 2m| (n| +|m)|2n + 1) (2m + 1] (n])

m,n=0
It can be easily verified that U is semicausal A — B.
The channel &4 is described in terms of Kraus operators as

Elalp) = E}pEy + ElpE,

where

o0

By =Y [2n)n

n=0

Ey =) [2n+1)n]
n=0

Thus we have shown that unlike the finite-dimensional case, it is possible to have
a unitary causal map that is not fully causal. However, the increase of entropy no
longer holds, which can be easily seen for the state p = $(|0)0] + [1)(1])

€lalp) = 0X0]

Thus the theorem that entropy is increasing in finite dimensional spaces does not
hold for infinite-dimensional ones.
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The reason entropy can decrease is that in this case the operator £|4 is not
unital

Ela(I)) = BBy + EIE, = Iy + 1, =214
Lindblad’s theorem therefore gives the weaker inequality

SEMPNEU)) < S(pllI)
—S(&(p)) —log2 < —=S(p)
S(E(p)) = S(p) —log2

Thus the entropy may decrease by at most one bit. For the map U, this inequality
is saturated for the state p = £(|0)X0[ + [1)(1]).

We have considered Sorkin’s argument in two cases. In the case where the
systems A and B are described by finite dimensional Hilbert spaces, the theorem
holds trivially. When A and B are described by infinite-dimensional Hilbert spaces,
the theorem no longer holds because there is no analogue of the maximally mixed
state.

In the finite-dimensional case, the algebra of observables of system A is the
algebra of all n X n matrices, which is a von Neumann factor of type I,, [58]. In the
infinite case, the algebra of observables is the algebra B(H) of bounded operators
on a separable Hilbert space H, which is a von Neumann factor of type I,,. We
could equally consider the case where the algebra of observables on the exterior of
a black hole is a von Neumann factor of type II or I1I[]]

Of particular interest is the type-II; factor, which in a sense is an intermediate
case between a factor of type I,, and a factor of type I. An important property
of II; factors is the existence of a unique maximally mixed state, a property which
is important in the proof of entropy increase. The problem of formulating Sorkin’s
conjecture in the framework of more general von Neumann algebras is left as an
area for future work.

!The suggestion that Sorkin’s conjecture may hold for type II von Neumann factors is due to
Aron Wall, and was pointed out to me by Ted Jacobson.
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Chapter 5

The area law

In many cases of physical interest, the entanglement entropy of the region € is
known to scale with the surface area of the boundary 0€2. This empirical fact is
sometimes called the area law for entanglement entropy. We have shown that the
area law holds both for the vacuum state of a quantum field and for spin network
states in loop quantum gravity. In this chapter we will investigate the conditions
under which the area law holds exactly.

We will assume a quantum field theory on Euclidean space ¥ = R? with a pre-
ferred state |¢)) that is Euclidean invariant. For each 2 C X, there is an associated
entropy S(€2). We wish to find necessary and sufficient conditions that

S(Q) = A(09) for all Q C X

5.1 Valuations and intrinsic volumes

In order to understand when the entanglement entropy is proportional to area, it
is useful to develop a characterization of area as a function of subsets of R?. For
example, it is known that the volume is characterized as the unique Euclidean-
invariant measure on R3. We will use a similar characterization of the area from
the theory of geometric probability [59].

Let L be a collection of subsets of X. We say that L is a lattice if for every pair
of subsets A, B € L we also have AUB € Land ANB € L.

A function f: L — R is a valuation if it is zero on the empty set

f@) =0

and is strongly additive

f(AUB) = f(A) + f(B) = f(AN B) (5.1)

56



This identity is also known as the inclusion-exclusion principle, and has a natural
interpretation in terms of counting. Suppose we wish to count the elements of
AU B. We can begin by adding the number of elements in A and the number of
elements in B. The elements of AN B will have been counted twice, so we subtract
this from the total. It is natural to think of a valuation as a continuous notion of
cardinality.

The strong additivity condition is similar to the Carathéodory condition on a
measure, which states that if B is a measurable set then

p(A) = p(AN B) + u(A\ B)
In fact the Carathéodory condition implies the valuation condition

AU B) = pu((AUB)N B) + pu((AUB)\ B)
= u(B) + w(A\ B)
1(B) + u(A) — p(An B)

Thus a signed measure is a special case of a valuation. As we will see, the converse
is not true; there exist valuations which are not measures.

Let K denote the lattice of polyconver sets, consisting of all finite unions of
compact, convex sets. The set IC is clearly a lattice, since it is closed under union
and intersection. It is also metric space with the Hausdorff distance

d(A, B) = max (sup d(a, B),sup d(b, A))

acA acA
d(a,B) = inf d(a,b
(a, B) = inf d(a,b)
Two sets A and B are close in the Hausdorff distance if every point of A is close
to a point of B and vice versa. We will say that a valuation is continuous if it is
continuous in the topology induced by the Hausdorff metric.

A valuation f is Euclidean-invariant if f(A) = f(TA) for every Euclidean
transformation 7' € E(n) and A € K. An important theorem of measure theory
is the characterization of the Lebesgue measure as the unique Euclidean-invariant
measure on R"”. The analogue of this theorem for valuations is Hadwiger’s theorem:

The vector space of Euclidean-invariant continuous valuations on K is n + 1-

dimensional, and has a basis consisting of the intrinsic volumes pug, ..., jt,. The
intrinsic volume gy is homogeneous of degree k, meaning for every a > 0,
pr(af2) = a*pu(Q) (5.2)

Thus in three dimensions, us has the dimensions of volume, o has the dimensions
of area, p; has the dimensions of length and p is dimensionless. The proof of
Hadwiger’s theorem is elementary, but beyond the scope of this chapter [59, [60] [61].

In R3, the intrinsic volumes are as follows:
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o 13(2) = V(Q) is the volume of €.
e 12(02) = A(0RQ) is the surface area of the boundary of )

e 111(2) is the mean width of 2, defined as follows.

For a compact convex set ) containing the origin, define the support function
hq(v) = max {z - v|z € Q}

For a unit vector v, this represents the distance from the origin to the closest
plane which is orthogonal to v and tangent to €2. This gives the interpretation
that for each unit vector v the quantity

ha(v) + hqo(—v)

gives the width of the set () as measured parallel to v. The mean width is
obtained by averaging the width over all directions

B(Q) = % /52 hy(v)dv

While the above definition applies only to convex sets, it can be shown that
B = %M where M is the integral mean curvature H of the boundary

B(Q):% HdA
™ Joq

This latter definition extends to all polyconvex sets.

o () = x(Q) is the Euler characteristic. The Euler characteristic depends on
the topology of 2, and is given by x = 2 —2g where ¢ is the topological genus
of Q. By the Gauss-Bonnet theorem the Euler characteristic is proportional
to the integral of the Gauss curvature K over the boundary.

1
X(Q) = — KdA
2 a0

Hadwiger’s theorem establishes that a necessary condition for the area law is
that the function S(£2) be a continuous Euclidean-invariant valuation. Before giving
an interpretation of this condition, we will show that the valuation condition is also
a sufficient condition for the area law.

Suppose that we consider a purely classical statistical field theory for which
the Shannon entropy H (£2) satisfies the conditions of Hadwiger’s theorem. Then it
follows that the entropy must be proportional to the volume. This is because the
Shannon entropy is monotone

QCQ=HQ) <H) (5.3)
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Since volume is the only monotone valuation, the Shannon entropy must be pro-
portional to volume ([59], theorem 8.1.1). This leads to the usual volume scaling
law for the entropy in classical thermodynamics.

In the case of a pure quantum state, the situation is quite different from the clas-
sical case. The quantum entropy does not satisfy the above monotonicity property
(5.3). It does however satisfy the symmetry property

S(Q) =5(Q) (5.4)

Thus suppose S is a continuous Euclidean-invariant valuation. Then by Hadwiger’s
theorem S is of the form

S(Q) = Z%’Mi(9> (5.5)

Clearly the volume does not satisfy the symmetry property (5.4). Because the
functions {yx;};_, are linearly independent, a3 = 0.

We will now show that properties of the entanglement entropy imply the only
non-zero term in equation ({5.5)) is proportional to the area. To do this we appeal
to another property of the entropy, the positivity

S(Q) >0

Suppose that ag < 0. Fix € to be a surface of positive Euler characteristic, such
as a sphere (x = 2). Then for such a surface we can use the homogeneity property

(5.2) to show that

lim S(af2) = lim Z ;i (al)

a—0 a—0

By continuity, there exists some a > 0 for which S(af?) is negative. This contradicts
positivity, so we must have ay > 0. Repeating this argument for a surface of
negative Euler characteristic such as a double torus (x = —2) yields oy < 0.
Combining these two properties, we see that ay = 0. Repeating this argument for
two surfaces of positive and negative total mean curvature, a;; = 0.

We therefore have the following result:

The area law in 3-dimensional Euclidean space holds for every convex
set if and only if S is a Euclidean-invariant continuous convex valuation.

What remains to be understood is under which conditions will the entropy define
a continuous valuation.
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5.2 Strong additivity and the Markov property

Suppose we have a Euclidean-invariant state |¢). We will assume that the entan-
glement entropy has been regulated so that S(f2) is finite and continuous. It is
always the case that S(()) = 0, so the only condition requiring interpretation is the
strong additivity condition (5.1)).

Given two overlapping sets A and B, we can divide the Hilbert space of their
union as

HAUB:HX®HY®HZ
X=A\B Y=ANB Z=B\A

We will use a notation in which concatenation of symbols corresponds to union of
subsystems, so that we have the identifications XY = A, YZ = B and XY Z =
AUB.

The conditional entropy is defined as the quantity
S(X|Y)=S(XY)-S(Y)
The conditional mutual information is
I(X:Z]Y)=8SX|Y)-SX|YZ)
=S(XY)=-SY)-SXYZ)+S(YZ)
=S(A)+S(B)—-S(AnB)—-S(AUB)

The strong subadditivity inequality states that the conditional mutual information
is non-negative, which is equivalent to [62]

S(AUB) < S(A)+ S(B) - S(AN B)

The strong additivity condition holds exactly when this inequality is saturated. The
strong additivity condition is therefore equivalent to the vanishing of the conditional
mutual information

I(X:Z]Y)=0 forall A, B € K (5.6)
This equation says that conditioned on the state of A N B, the state of A\ B is
independent of the state of B\ A.

This condition is analogous to the classical Markov property for random vari-
ables X,Y, Z, given by
p(X[YZ) = p(X]Y) (5.7)

There is no object analogous to the conditional probability p(X|Y) for quantum
systems. However the following are all equivalent:
p(X[YZ) = p(X]Y)
H(X|YZ)=H(X|Y)
HXYZ)-H(YZ)=H(XY)—-H(Y)
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This last condition is analogous to the condition (5.6) with Shannon entropy in
place of von Neumann entropy.

There are a number of equivalent characterizations of the Markov property.
Ruskai showed that the Markov property is equivalent to the operator equation
[63]

log py +10g pxyz = log pxy +10g pyz (5.8)
Note that this has a similar form to the classical Markov property, since the fol-
lowing are equivalent

p(X[YZ) = p(X]Y)
log p(X|Y'Z) = log p(X|Y')
log p(XY'Z) —logp(Y Z) = log p(XY') —logp(Y')

Which resembles ((5.8)), with p(X) in place of py.

5.3 Quantum Markov networks

The quantum Markov property is a mathematical statement of conditional inde-
pendence for a set of three systems. The strong additivity condition holds for all
pairs of sets in K, and describes a much more complex set of independence rela-
tions for a large number of quantum systems. To study systems of this kind, Leifer
and Poulin introduced quantum Markov networks [64]. Quantum Markov networks
allow conditional independence of systems to be represented in a graphical way.

A quantum Markov network is pair (G, p) where G = (V, ') is an abstract graph
with vertices labelled by Hilbert spaces H,, and p is a state in ®,¢yH, such that

for every vertex v
I({v} -V = n(v) = {v}n(v)) = 0
Where n(v) is the set of neighbours of v.

As a simple example, consider a triple of systems X, Y, Z such that I(X : Z|Y) =
0 as in the previous section. This is represented by a graph with vertices (X, Y, Z)
and edges (X,Y) and (Y, Z).

The lattice IC is infinite, but we can consider a finite sublattice by decomposing >
into a finite number of closed tetrahedra. Let 7 be the collection of all tedrahedra,
their closed faces, edges and vertices and arbitrary unions of these. Then 7 is
closed under union and intersection and hence forms a finite sublattice of /.

We can now consider the entropy function S defined on the lattice 7. An initial
problem is that S is only defined for tetrahedra, and unions of tetrahedra. In order
to define S for a face F' that is the intersection of tetrahedra 77 and 715, we define

S(F) = S(T1) + S(Ty) — S(T; UT»)

61



In other words, whenever S'is not defined, we define it by the requirement of strong
additivity. We can then appeal to Groemer’s integral theorem, which ensures that
the valuation S defined only on tetrahedra extends uniquely to a valuation on the
lattice 7" [59].

For each such decomposition of ¥ into tetrahedra, there is an associated graph
dual G7. We define the vertex set V(G7) to be the set of all tetrahedra in 7. The
edge set F(G7) is defined as the set of all pairs (77, T%) such that 77 and 75 share
a common face. To each vertex v of Gz we can define the Hilbert space ‘H, to be
the Hilbert space Hy of the corresponding tetrahedron 7'. Because the tetrahedra
cover all of ¥ and the intersection of any two tetrahedra has measure zero, we have

the identification
e~ @ - Q1
T v

Thus given a decomposition 7 of the manifold > with a state p € Hy, there is a
natural choice of graph G'7 and a state p € ), H,.

We can now show that if p satisfies strong additivity, then (G, p) is a quantum
Markov network.

I({a} V= n(z) — {2} |n(z))

bV
(V =n(z) = {z}n) = S(V = n(z) - {z} [{z} Un(z))
vV
(A

—{z}) = S(n(z)) = S(V) + S({z} Un(z))
)~ S(ANB) — S(AUB) + S(B)

S(V
SV
S
0

Where we have defined A = {z} Un(z) and B =V — {z}.

We leave for future work the question of whether the converse also holds. That
is, whether G7 being a quantum Markov network implies that the entropy function
extends uniquely to a valuation on the lattice 7.

5.4 Examples

We have constructed a number of states satisfying some of the conditions required
for an exact area law: continuity, strong additivity, and Euclidean invariance. As
we saw in chapter [2] the vacuum state of a quantum scalar field in flat space satisfies
the strong additivity and is Euclidean invariant. However it does not satisfy the
continuity condition, because the entropy is divergent.

In chapter , we showed that when [¢)) is a spin network state the entropy
S(€2) is a sum of intersections between the spin network and the boundary 0f2. It
therefore satisfies the strong additivity condition, and is finite. Because the spin
networks are discrete, the entropy is not continuous or Euclidean invariant. It is
possible to define a statistical weave state as a Euclidean-invariant ensemble of
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spin network states, as described in section [3.6] In this case the expectation value
of the entanglement entropy satisfies all the conditions for a Euclidean-invariant
valuation, and therefore satisfies the area law.

In the one dimensional case we can define a state whose entropy satisfies all
conditions of Hadwiger’s theorem. In the one-dimensional Euclidean space R, poly-
convex sets consist of unions of closed intervals. Let €2 be a polyconvex set,

Q = [al,bﬂ J---u [an,bn]

There are only two continuous translation-invariant valuations on the real line, the
number of connected components and the total length

po(€2) = n

ILL1<Q) = Zbl — Q;
=1

Since p; does not satisfy the symmetry property, the entropy of a state satisfying
strong additivity must be proportional to .

We will consider the Hilbert space of generalized connections on the real line,
as described in chapter [3] A natural choice of state is the Wilson loop state

o

B(A) = TP exp ( /

—00

A(x)dx)

As we showed in chapter [3| the entanglement entropy is exactly one bit for every
endpoint, which is two bits for each connected component

S(Q2) = 21og 210(Q)

Thus we have an exact area law, where in one dimension the boundary of a polycon-
vex set is a finite number of points, and the area is simply the number of boundary
points.

We have given several examples of states satisfying some of the conditions re-
quired for an exact area law. In the 1-dimensional real line, we have constructed a
state satisfying all three conditions, so that the area law is exactly satisfied. It is
not known whether it is possible to construct a state satisfying all three conditions
in two or more dimensions. We consider this an important problem for future work.
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Chapter 6

Conclusion and future work

The entanglement entropy provides a compelling solution to the problem of giving a
microscopic derivation of the Bekenstein-Hawking entropy. A priori, the entangle-
ment entropy would seem to have no relation to gravitational physics. Remarkably,
when quantum effects are taken into account the entanglement entropy is found
to obey exactly the Bekenstein-Hawking area law in terms of the renormalized

gravitational constant Gg,

g_4c
1 G

It follows that in order to describe a universe with a finite gravitational constant
G, the entanglement entropy between two regions must be finite. This reinforces
both the necessity of a physical ultraviolet cutoff in nature, and the importance of
information theory as a tool for understanding this cutoff.

In loop quantum gravity the continuum spacetime of general relativity is re-
placed with a discrete spin network, which has a finite entanglement entropy. Each
edge of the spin network acts like a maximally entangled state, carrying an entan-
glement entropy equal to the logarithm of the dimension of its associated repre-
sentation. The standard approach to black hole entropy in loop quantum gravity,
based on counting states of isolated horizons, emerges as a special case of our en-
tanglement entropy calculation. The latter calculation has many advantages; it is
simpler, applies to all types of horizons and can be extended to the more general
class of degenerate spin network states.

Although the entanglement entropy in loop quantum gravity is finite, the contin-
uous spacetime manifold is replaced by a discrete structure. An important question
about the entanglement entropy is its relation to the geometry of space in the con-
tinuum limit. This is related to the general problem in loop quantum gravity of
understanding how continuum physics arises from a discrete structure. Despite its
fundamental importance, little progress has been made on this difficult issue.

An important area for future work is to realize Sorkin’s proposal for a proof
of the increase of entanglement entropy as a consequence of causality. We have
shown that the conjecture is either trivial or false when the algebra of operators
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on the black hole exterior is described by a von Neumann factor of type I. It may
however be possible to find an analogue of the conjecture for a factor of type II or
III. In particular the type II; factor has several properties that make it a promising
candidate.

Our hope is that it will be possible to define a continuous theory for which the
entanglement entropy satisfies the Bekenstein-Hawking area law exactly. To this
end we have considered a model of quantum theory in Euclidean space and studied
properties that lead to an exact area law. The area law is found to be equivalent to
strong additivity of the entropy, which has a straightforward information-theoretic
interpretation in terms of conditional independence of subsystems. As a next step
we would like to use this characterization to define a theory satisfying the exact
area law.
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