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Abstract 

    A comparison of the composition and structure of carbon films deposited by ns and fs laser 

ablation of graphite is the subject of this thesis. In addition, the effect of irradiation on the surface of 

graphite has been investigated in detail. Laser-induced phase transitions from graphite to sp-bonded 

carbon and trans-polyacetylene chains as well as the formation of nano-diamond have been observed 

after irradiation with fs pulses. An optical orientation mechanism involving both electric and 

magnetic interactions is proposed to understand the formation of nano-stripes and other structures on 

irradiated graphite surfaces. These phenomena are not observed after nanosecond laser irradiation.  

     Tetrahedral carbon (ta-C) films deposited at cryogenic temperatures using ns laser radiation 

consist of sub-micron graphitized grains embedded in a matrix of sp3-hybridized bonded carbon. 

Nano-buckling is evident in ta-C films deposited by fs ablation where the composition is found to 

consist of mixed sp, sp2, and sp3 – hybridized carbons species. It is found that the concentration of sp-

bonded chains is negligible in ns-C films.   Surface enhanced Raman spectroscopy has been used to 

characterize molecular species in ns and fs carbon films.  Time of flight mass spectroscopy has been 

used to study plume species produced by laser ablation.   

     It is also found that polyyne molecules can be formed by fs laser dissociation of small molecules 

in organic solvents. This process is accompanied by the deposition of hexagonal nano-diamond films 

on substrates placed near the laser focus during irradiation. This opens a new path in the synthesis of 

1D conducting molecules and nano-diamond materials for nano-science applications.  

     Quantum chemical calculations involving density functional theory (Gaussian '03) have been 

carried out in support of this work and have been used to study Raman and IR vibrational modes of 

several novel carbon molecules synthesized in ta-C films and in the liquid phase. These studies have 

been extended to assist in the identification of astronomical spectra.  

 



  iv

Acknowledgements 

I would like to thank Prof. Walt Duley for giving me the opportunity to tackle a project covered 

everything from ultrafast laser, nanoscience, physics chemistry to calculating chemistry. I am 

especially appreciated it very much for him to award me the research freedom in the full-scale. I am 

indebted to him for his penetrating guidance for the last three years. 

I am grateful to the support from Prof. Q. –B. Lu for his permission to use his 120 fs Ti:sapphire 

laser source. His partial financial supprt is also acknowledged. I would like to thank Prof. J. 

Sanderson let me to access his 50 fs Ti:sapphire laser system.  His cooperation is very impressive. 

Thanks also go to my committee, Prof. P. Chen, Prof. D. Strickland, and Prof. P. Bernath for taking 

the time from their busy schedules to answer my questions and guide my research.  

Special thanks go to I. Alkhensho for his assistant for prepare the deposition system, to Randy 

Fagan (earth science), and to Dr. C. Wang for experimental help. International cooperation with Dr. 

M. Rybachuk, Dr. H. Zhou (Queensland University of Technology, Australia), Mr. Stefan Griesing, 

Dr. M. Koblischka (Universitaet des Saarlandes, Germany), Dr. Jibao Cai (University of Science and 

Technology, China), Ms. Y. Xu and Prof. M. Izumi (University of Tokyo Marine Science and 

Technology, Japan) is also appreciated. 

Finally, I would like to thank my parents, my wife, Yi Yang, two kids, Leyang and Jinpeng, for 

their loving care and support, and for bringing happiness to my life.     

 



  v

Table of Contents 
AUTHOR'S DECLARATION ...............................................................................................................ii 
Abstract….. ...........................................................................................................................................iii 
Acknowledgements ............................................................................................................................... iv 
Table of Contents ................................................................................................................................... v 
List of Figures ....................................................................................................................................... ix 
List of Tables........................................................................................................................................ xv 
 

Chapter 1 Laser-Matter Interaction ........................................................................................................ 1      
1.1 Introduction .................................................................................................................................. 1 

1.2 Carbon science and the phase diagram of carbon......................................................................... 2 

1.3 Carbynes....................................................................................................................................... 5 

1.4 Diamond-like carbon (DLC) films ............................................................................................... 7 

1.5 Positive carbon ions and the growth of carbon clusters ............................................................... 9 

1.6 Light-matter interactions: the general picture ............................................................................ 10 

1.7 Two-temperature model ............................................................................................................. 12 

1.8 Plasma annealing theory............................................................................................................. 16 

1.9 Present work ............................................................................................................................... 19 

 

Chapter 2 Laser-induced nanopatterning and phase transition on graphite surfaces exposed to fs laser    

pulses .................................................................................................................................. 21      
2.1 Introduction ................................................................................................................................ 21 

2.2 Experimental setup ..................................................................................................................... 23 

2.3 Optical orientation and linear arrays of surface carbon nanoparticles........................................ 24 

2.3.1 Patterns with horizontally polarized wave........................................................................... 24 
2.3.2 Patterns with s wave polarization ........................................................................................ 29 
2.3.3 Absence of patterns with circularly polarized wave............................................................ 30 
2.3.4 Nanopatterns induced by linearly polarized waves with a wavelenth of 400 nm................ 31 
2.3.5 Optical orientation mechanisms .......................................................................................... 32 

2.4 Surface phase transition and synthesis of sp-bonded carbon chains .......................................... 35 

2.5 Conclusions ................................................................................................................................ 40 

 



  vi

Chapter 3 Optical and microstructural properties of diamond-like carbon films grown by nanosecond  

laser  deposition ................................................................................................................. 41      
3.1 Introduction................................................................................................................................ 41 

3.2 Experimental ............................................................................................................................. 43 

3.3 Experimental results................................................................................................................... 43 

3.3.1 UV-NIR spectroscopy......................................................................................................... 43 
3.3.2 Raman/XPS spectra ............................................................................................................ 45 
3.3.3 Microstructure..................................................................................................................... 48 

3.4 Discussion .................................................................................................................................. 52 

3.5 Conclusions................................................................................................................................ 53 

 

Chapter 4 Sub-micro cryogenic graphitization and buckling of tetrahedral amorphous carbon films 54      
4.1 Introduction................................................................................................................................ 55 

4.2 Experimental details................................................................................................................... 55 

4.3 Results and Discussion .............................................................................................................. 56 

4.3.1 Microstrocture characterization .......................................................................................... 56 
4.3.2 Nanohardness...................................................................................................................... 58 
4.3.3 Raman spectra ..................................................................................................................... 61 
4.3.4 X-ray photoelectron spectra (XPS) ..................................................................................... 62 
4.3.5 Microbuckling and stress relaxation ................................................................................... 63 

4.4 Conclusions................................................................................................................................ 67 

 

Chapter 5 Nanostructure and sp/sp2 clustering of tetrahedral amorphous carbon films grown by 

femtosecond laser deposition ............................................................................................. 68      
5.1 Introduction................................................................................................................................ 68 

5.2 Experimental setup..................................................................................................................... 70 

5.3 Results and Discussion .............................................................................................................. 71 

5.3.1 Nanostructure and optical energy gap................................................................................. 71 
5.3.2 Vis/UV Raman characterization ......................................................................................... 74 
5.3.3 XPS spectra ......................................................................................................................... 77 

5.4 Discussion .................................................................................................................................. 79 

5.5 Conclusions................................................................................................................................ 80 

 



  vii

Chapter 6 Molecular structure, SERS specta and nanobuckling in fs-DLC......................................... 82      
6.1 Introduction ................................................................................................................................ 82 

6.2 Experimental setup ..................................................................................................................... 84 

6.3 Results ........................................................................................................................................ 85 

6.3.1 Comparative spectroscopic studies of ns-DLC and fs-DLC................................................ 85 
6.3.2 Surface enhanced Raman spectroscopy (SERS) ................................................................. 89 
6.3.3 Nanobuckling in cryogenic fs-DLC .................................................................................... 94 

6.3.4 Internal stress and Nanohardness ........................................................................................ 98 

6.3.5 Interfacial binding states and origin of nanohardness...………………………………….100 

6.4 Discussion ................................................................................................................................ 102 

6.5 Conclusions .............................................................................................................................. 103 

 

Chapter 7 Dissociation of hydrocarbon compounds by fs laser irradiation: synthesis of sp-bonded 

carbon chains and nanodiamonds in organic solvents...................................................... 104      
7.1 Introduction .............................................................................................................................. 104 

7.2 Experimental setup ................................................................................................................... 106 

7.3 Chemical species in irradiated organic solvents....................................................................... 108 

7.3.1 SERS spectra of irradiated solvents................................................................................... 108 
7.3.2 HPLC and HPLC-Mass spectroscopy ............................................................................... 115 

7.4 Synthesis of hexagonal nanodiamonds in organic solvents...................................................... 118 

7.5 Discussion ................................................................................................................................ 120 

7.6 Conclusions .............................................................................................................................. 122 

 

Chapter 8 Theoretical vibational spectra of nanocarbon species and time-of-flight mass spectra of fs 

pulsed laser ablation ......................................................................................................... 124      
8.1 Introduction .............................................................................................................................. 124 

8.2 Computational procedure ......................................................................................................... 125 

8.3 Vibrational spectra of sp-bonded carbon chains....................................................................... 125 

8.4 Polyynes terminated by either hydrogen or silver atoms.......................................................... 130 

8.5 Trans-polyacetylene and cis-polyacetylene chains................................................................... 132 

8.6 Graphynes................................................................................................................................. 133 

8.7 Time-of-flight mass spectroscopy ............................................................................................ 134 

8.8 Conclusions .............................................................................................................................. 142 



  viii

 

Chapter 9 Suggestions for the future work ........................................................................................ 143 

 

Appendix A List of publications........................................................................................................ 145 
 

Bibliography ...................................................................................................................................... 148 
 



  ix

List of Figures 
 

Figure 1.1. Phase diagram of carbon allotropes ..................................................................................... 3 

Figure 1.2. P-T transition phase diagram for carbon.............................................................................. 4 

Figure 1.3. Polyyne and polycumulene bonding configurations in carbynes......................................... 5 

Figure 1.4. Interchain cross-linking of polyynes leads to graphitization. .............................................. 6 

Figure 1.5. Subplantation model for ta-C deposition ............................................................................. 8 

Figure 1.6. Absorption, transmission and reflection in a planar sample .............................................. 10 

Figure 1.7. Single-, double and three photon electronic excitations in a semiconductor ..................... 11 

Figure 1.8 Time scale for various secondary processes in laser-matter interactions............................ 11 

Figure 1.9 Cutting-edge study with femtosecond laser sources ........................................................... 19 

Figure 2.1. Diagram of experimental set-up for surface patterning and phase transition..................... 23 

Figure 2.2. Scanning electron microscopy micrograph of a highly oriented pyrolytic graphite after 

irradiation with (a) 25 overlapping 120 fs 300 μJ p-polarized laser pulses and (b) 50 

overlapping 50 fs 270 μJ p-polarized laser pulses at a wavelength of 800 nm. I-IV stand 

for four different characterized regimes.. .......................................................................... 25 

Figure 2.3. SEM images of 4 regimes (a-d)from outer to center of vertical irradiation areas with a 

horizontally polarized light of 120 fs pulses (p-wave). The arrow indicates the magnetic 

field direction (vertical to the polarizon).. .......................................................................... 26 

Figure 2.4. SEM images of HOPG surfaces irradiated by a horizontally polarized light of 50 fs pulses. 

(a, b) 50 pulses of 270 μJ/pulse, (c, d) continuing shifting of the laser beam at 300 

μJ/pulse with a scanning speed of about 0.2 mm/s. (d) is observed at the area indicating by 

the dash line in ( c), which corresponds to Regime I marked in Fig. 2.2. The arrow 

indicates the magnetic field direction……………………… …………………………….27 

Figure 2.5. SEM micrographs for HOPG surface irradiated by the vertically polarized wave (s wave). 

                  (a) shows serially irradiated areas with variable energys. The arrow indicates the direction 

of the electric field.  (b) nanopatterns obted in Regime I. The Arrow indicates the 

magnetic field direction…………………………………………………………………..29 

 

Figure 2.6. SEM images of irradiation areas with a circularly polarized light at 150 μJ/pulse and pulse 

width of 120 fs.. (a) nanoparticles in the outer belt. (b) central crater with a higher laser 

fluent................................................................................................................................... 30 



  x

Figure 2.7. SEM morphology of HOPG irradiated by linearly polarized fs laser at 400 nm and 50 fs of 

pulse width.. The arrow indicates the polarization direction. ............................................ 31 

Figure 2.8. Surface plasmon modes induced in the vicinity of metal-dielectric interfaces…………..33 

Figure 2.9. Possible mechanisms involved in optical orientation to produce nanostripes. Upper panel: 

magnetic carbon nanoparticles are directly oriented by the pulsed magnetic field. Lower 

panel: charged carbon nanoparticles become oriented by excitation of a surface plasmon. 

The horizontal arrows indicate the direction of displacement of charged carbon 

nanoparticles. Particles are concentrated at the zero field value of electrical field intensity..

........................................................................................................................................... 34 

Figure 2.10. SEM micrographs of highly oriented pyrolytic graphite after irradiation with 25 

overlapping 120 fs 700μJ laser pulses at a wavelength of 800 nm. Inset:  SEM image of 

the wall of the central crater………………………………………………………………35 

Figure 2.11. Ablation depth per pulse as a function of incident fluence. The solid line corresponds to a 

two-temperature model. Inset: Measured area vs. pulse energy for the central crater 

(squares) and the weakly ablated surrounding region (circles)…………………………...36 

Figure 2.12. UV Raman spectra of material within the central crater and far away from this region 

after fs irradiation............................................................................................................... 36 

Figure 2.11. X-ray photoelectron spectra of C1s lines measured within the irradiated crater and an 

unirradiated region. Inset: deconvolution of C1s line of irradiated crater with sp, sp2 and 

sp3 binding energy at 283.5 , 284.4  and 285.2 eV, respectively. ...................................... 37 

Figure 2.12. Surface enhanced Raman spectra of a crater, in the weakly ablated region and for pristine 

HOPG surface recorded at 632 nm . .................................................................................. 38 

Figure 2.13. Load-displacement curves measured by a nanoindenter at different positions on 

irradiated HOPG. Virgin stands for unirradiated HOPG surface. Edge: irradiated areas 

where nanodiamonds are synthesized. Center: central crater………………………… ..39 

Figure 3.1. Schematic of high vacuum deposition chamber with in-situ UV/NIR spectroscopy ....... 42 

Figure 3.2. Tauc plot of (αhν)1/2 versus photo energy hν for three typical films deposited at 77K, 298K 

and 573K respectively. The solid line is a linear fit over the energy range from 2 - 4 eV.44 

Figure 3.3. Raman spectra of amorphous carbon films deposited at different temperatures. Inset: 

normalized D/G band......................................................................................................... 45 

Figure 3.4. Analysis of Raman spectra for (a) 598K films (b) 298 K films. The solid line corresponds 

to a theoretical fit. The G peak is fitted with a BWF function. In (a) the D peak is fitted 

with a Lorentzian line.. ...................................................................................................... 46 



  xi

Figure 3.5. XPS spectra of the C1s line for amorphous carbon films deposited at different 

temperature. The inset shows the deconvolution of the C1s peak in a 298K 

film………………………………......................................................................................47 

Figure 3.6. SEM micrographs for (a) 298K films and (b) 77K films................................................... 49 

Figure 3.7. Surface characterization of ta-C films by AFM. (a) 298K film. The solid line displays a 

roughness analysis depicted in Fig. 3.7 (c). (b) 77K film. The solid line displays a 

roughness analysis depicted in Fig. 3.7 (d). ....................................................................... 50 

Figure 3.8. X-ray diffraction patterns measured with Cu-Kα radiation................................................ 51 

Figure 4.1 AFM surface images of (a) clean quartz, (b) ta-C films deposited at room temperature (RT) 

and (c) ta-C films deposited at 20-100K (cryogenic films). The surface roughness along a 

straight line is shown in Fig. 4.1 (d)………………………………………………………56 

Figure 4.2 Micrographs of embedded submicron grains in nanostructure diamond-like carbon films.57 

Figure 4.3. Nanohardness characterization by AFM. (a) AFM image shows the grains selected. The 

white points indicate measured points. (b) Cantilever deformation of the measured loop 

along AFM tips approaching, then piercing into the film and finally moving away from the 

surface. (c) Deformation gradient of AFM cantilever at individual measured point. Solid 

and dash lines correspond to the average deformation estimated using a linear least square 

fit. ....................................................................................................................................... 59 

Figure 4.4. Resonant Raman spectra of RT and cryogenic films. ........................................................ 60 

Figure 4.5. XPS spectra for RT and Cryogenic films…………………………………………………62 

Figure 4.6. Surface stress relief morphology of 77K films observed by optical microscopy. ............. 64 

Figure 4.7. Raman spectra focusing on the ridge of a 77K film at 100 and 10% laser power. The 

location of focus spot is shown in Fig. 4.7 (a)…………………………….…………….65 

Figure 4.8. SEM images of DLC films deposited on HOPG at 77K.................................................... 66 

Figure 5.1. Schematic of the vacuum furnace used for deposition at high temperatures. Symbols: (L) 

lens, (H) heater, (T) graphite target, (S) substrate, (C) cooling water pipe, (LN2) liquid 

nitrogen trap ....................................................................................................................... 69 

Figure 5.2. Typical SEM images for fs-DLC films of various thickness deposited at representative 

temperatures: (a) a 200 nm thick film deposited at 77K; (b) a 600 nm thick film deposited 

at 77K; (c) a 100 nm thick film deposited at room temperature (RT), (d) a 400nm thick 

film at RT; (e) a 100 nm thick film deposited at 573K in He; (f) a 400 nm film deposited at 

573K in He. Note that (a-d) have the same magnification as do (e) and (f)……………...72 



  xii

Figure 5.3. Tauc plot of (αhν)1/2 as a function of photon energy hν for fs-DLC deposited at different 

temperatures. Solid line is a linear fit to data. Inset: a room-temperature (RT) sample 

measured in-situ (vaccum) and immediately after exposure to air. ................................... 73 

Figure 5.4. Raman spectra of fs-DLC films deposited at various temperatures (elevated temperatures 

from bottom). The Raman excitation wavelength is 632 nm. Inset: the detailed Raman 

feature around 2100 cm-1.. ................................................................................................. 74 

Figure 5.5. Visual Raman spectra for fs-DLC samples deposited at three typical temperatures with 

excitation at 632 nm (He-Ne laser). The arrow points to an additional band indicating 

Raman scattering from sp linearly bonded carbon chains. Inset: quantitative analysis of the 

Raman spectrum of a RT sample. The solid line corresponds to a fit using a BWF 

lineshape…………………………………………………………………………………..75 

Figure 5.6. UV Raman spectra for fs-DLC samples deposited at three typical temperatures with 

excitation at 325 nm (Cd-He laser). G and sp stand for the vibration of graphitic G mode 

(sp2) and the peak from sp-bonded carbon chains (carbyne). The broad band “T” is 

attributed to sp3 bonds. The arrow points to a narrow peak from nanodiamond………….76 

Figure 5.7. XPS C1s core-level spectra for three typical fs-DLC films. Inset is the survey for the 

binding energy ranged from 450-650 eV…………………………………………………78 

Figure 6.1. Visual Raman spectra for fs- and ns- DLC samples, both deposited at room temperature 

(293K). ............................................................................................................................... 86 

Figure 6.2. UV Raman spectra for fs-DLC and ns-DLC samples with excitation at 325 nm (Cd-He 

laser) D/G and sp stand for the vibration of graphitic D/G modes (sp2) and the peak from 

sp-bonded carbon chains (carbyne). The broad band “T”  is attributed to sp3 bonds.. ...... 87 

Figure 6.3. XPS spectra for the C1s core-level binding energy for fs-DLC (300 nm in thickness), ns-

DLC (300 nm in thickness) and HOPG samples. Inset: deconvolution of C1s peak......... 88 

Figure 6.4. Typical SEM image of a SERS sample.. ........................................................................... 89 

Figure 6.5. Surface enhanced Raman spectra of a fs-DLC and a ns-DLC film. .................................. 90 

Figure 6.6. Morphology of diamond-like carbon films deposited by fs laser deposition at 77K.  (a) 

SEM image of a film with 600 nm thickness (sample A) (b) AFM micrograph of sample 

A, (c) SEM image of a film with 450 nm thickness (sample B), (d) SEM image of a film 

with 300 nm thickness (sample C). .................................................................................... 94 

Figure 6.7. (a) film thickness as measured using a profilometer. (b) surface roughness analysis along 

the straight lines shown in Figs. 6.6 c and 6.6 d. ............................................................... 95 



  xiii

Figure 6.8 (a) SEM image and (b) AFM micrograph of fs DLC films deposited for 1 min with a 

thickness of 50 nm (sample D). (c) SEM image of fs-DLC films with of a thickness of 300 

nm after thermal processing (sample E). (d) A magnified SEM image corresponding to a 

point located on a buckling branch as indicated in (c). The white arrow points to the 

position observed in a high resolution................................................................................ 97 

Figure 6.9 Raman spectra recorded at 632 nm for fs-DLC films. ........................................................ 98 

Figure 6.10. Load-displacement curves measured by nano-indenter at different positions of sample E. 

Inset: scaling of loading curves .......................................................................................... 99 

Figure 6.11. (a).  Si2p core-level XPS spectra for fs-DLC and ns-DLC samples (both 40 nm in 

thickness) deposited at 77K. (b) O1s core-level binding energy for fs-DLC and ns-DLC 

samples (both 40 nm in thickness) deposited at 77K. ...................................................... 101 

Figure 7.1. Schematic diagrams of laser irradiation processing. The stir bar is put on the bottom of 

quartz cell. ........................................................................................................................ 106 

Figure 7.2. Schematic diagram of nanodiamond deposition in solvents.  M: metal, S: substrate, B: 

stirring bar.. ...................................................................................................................... 107 

Figure 7.3. Typical TEM images of nanosilver particles suspended in water fabricated by the 

reduction of citrate............................................................................................................ 108 

Figure 7.4. Surface enhanced Raman spectra of acetone irradiated by 50 fs pulse trains at an energy of 

350 μJ/pulse and incident wavelength of 800 nm. ........................................................... 109 

Figure 7.5. SERS spectra of irradiated pentane (350 μJ, 1KHz, 30 min.) measured at variable 

positions in the vicinity of penate/water interface. Up: the focal point locates inside 

pentane at 1mm away from interface. Near: almost cross the interface. Over: inside 

nanoAg water solution at about 1 mm of depth away from interface. Inside: about 2 mm 

away from interface inside water. Virgin: nonirradiated pentane. ................................... 110 

Figure 7.6 Optimized SERS spectra of species produced from representative alkanes (350 μJ, 1KHz, 

30 min.) as a function of C-C chain length....................................................................... 111 

Figure 7.7 SERS spectra of benzene irradiated at different times (350 μJ, 1KHz). ........................... 112 

Figure 7.8. SERS spectra of irradiated acetone diluted in pure acetone (HPLC grade). .................... 113 

Figure 7.9. SERS spectra of two representative alkanes irradiated with 50 fs pulse trains at lower 

intensity. (a) pentane, (b) octane. ..................................................................................... 114 

Figure 7.10. HPLC spectra of products resulting from fs laser irradiation of hexanes at room 

temperature.  The detection wavelength is 198 nm. ......................................................... 115 



  xiv

Figure 7.11. Mass spectra of irradiated hexanes at certain retention times. (a) 7.012 min for 50 fs 

irradiation. (b) 6.442 min for 120 fs irradiation. .............................................................. 116 

Figure 7.12. Yield of C8H2 as a function of average irradiation power in hexanes for 20 minute 

reaction time..................................................................................................................... 117 

Figure 7.13. Raman spectra of diamond films deposited in liquid hexane after fs laser irradiation of 

Cu, Co and Fe. Inset: deposition configuration................................................................ 118 

Figure 7.14. Scanning electron microscopy (SEM) images for deposited nanodiamonds for Fe in 

hexane. ............................................................................................................................. 119 

Figure 7.15. XPS spectra for the C1s core-level binding energy for hexagonal nanodiamond 

synthesized in different alkanes. Inset: deconvolution of C1s peak with sp2 and sp3 binding 

energy at 284.4 eV, 285.2 eV, respectively. The peak at 288.4eV corresponds to a C=O 

bond. ................................................................................................................................ 120 

Figure 7.16 Surface enhanced Raman scattering spectra for fs laser irradiated acetone with the 

presence of Fe or Cu. The SERS spectrum of pristine acetone is also given for 

comparison. Note that the spectra of irradiated acetone with and without the presence of 

Cu are the same. ............................................................................................................... 121 

Figure 8.1. Polyyne and cumulene structures of C4 molecules. ......................................................... 126 

Figure 8.2. Raman activities of representative C14 molecules……………………………………….127 

Figure 8.3. Patterns of the CC stretching vibrational modes obtained by DFT simulation, with 

vibration at the indicated frequencies. The bars represent relative variations in bond length 

from the equilibrium bond lengths given in Table 8.1..................................................... 128 

Figure 8.4. (a) SERS spectra of fs-DLC films deposited in acetylene and ethylene and (b) calculated 

Raman spectra of linear carbon chains after application of a scaling factor of 0.9614.... 129 

Figure 8.5. SERS spectra of irradiated acetone (upper spectrum) compared to CnH2 polyynes (middle) 

and Ag4CnH molecules (lower spectrum). ....................................................................... 131 

Figure 8.6. Theoretical Raman spectra of (a) trans- and (b) cis-polyacetylene chains. ..................... 132 

Figure 8.7. Graphyne linked by acetylenic species and terminated with hydrogen........................... 133 

Figure 8.8 Calculated Raman spectra of the graphyne molecule with acetylenic linkage. ................ 134 

Figure 8.9 Schematic diagram of the TOF-mass spectrometer. (a) light path: S: shutter, B: 95% 

beamsplitter, D: photodiode, PC: laser power attenuator,  O: oscilloscope, T: trigger 

signal, I: input signal. (b) inside of ablation chamber, drift tube and MCP detector. ...... 135 

Figure 8.10. Time-of-flight mass spectrum of carbon species ablated at an intensity of 1.96 x 1014 

W/cm2 with an acceleration voltage of 4 KV................................................................... 136 



  xv

Figure 8.11. Time-of-flight mass spectrum of carbon species ablated at an intensity of 1.17 x 1015 

W/cm2 with an acceleration voltage of 4 KV. .................................................................. 137 

Figure 8.12. TOF mass spectra of carbon species ablated at 1.96 x 1014 W/cm2 with an acceleration 

voltage 3KV (upper), 2KV (middle) and 1KV (lower). ................................................... 138 

Figure 8.13. TOF mass spectra of carbon species ablated at 1.17 x 1015 W/cm2 with an acceleration 

voltage 3KV (upper), and 2KV (lower). .......................................................................... 139 

Figure 8.14. Initial velocity of C2+  as a function of incident laser intensity ..................................... 141 

Figure 8.15. Initial velocity of C+ as a function of incident laser intensity ........................................ 141 

Figure 8.16. TOF mass spectra of carbon species ablated at an intensity of 1.63 x 1015 W/cm2. ...... 142 



  xvi

List of Tables 
 

Table 5.1. Summary of characteristic parameters for diamond-like carbon films deposited by fs pulsed 

laser deposition .................................................................................................................. 77 

 

Table 6.1. Summary of characteristic parameters for diamond-like carbon films deposited by fs and ns 

pulsed laser deposition....................................................................................................... 84 

 

Table 6.2. Assignment of the peaks of DLC films reported in the literature and as shown in SERS 

characterization ................................................................................................................. 88 

 

Table 8.1. Optimized bond lengths (Å) of polyynes Cn with n = 10-16 at the B3LYP level using the 6-

31G(d) basis set ............................................................................................................... 122 

 

Table 8.2. Optimized bond lengths (Å) of H-terminated polyynes CnH2 with n = 10-16 at the B3LYP 

level using 6-31G(d) basis set ......................................................................................... 126 

 

Table 8.3. Initial velocity (m/s) as a function of incident intensity (W/cm2)..................................... 136 

 



 1 

Chapter 1 
Laser-Matter Interactions 

 

 

1.1 Introduction 
 

The study of intense laser-matter interaction is a rapidly expanding field due to the development of 

ultrafast laser sources and the emergence of novel materials. The nature of this interaction varies with 

pulse power, wavelength, pulse shape, pulse width and chemical binding (material properties). Table 

top femtosecond laser systems provide an easy access to laser intensities of 1016 W/cm2 (pulse width τ  

≈ 100fs, spatially focused to 1 μm2).  Meanwhile, the typical intensity of a 30 ns excimer laser is 108-

109 W/cm2.  This dramatic difference in laser intensity allows us to conveniently probe different 

interaction mechanisms.  Furthermore, another distinctive feature of ultrafast interactions is that the 

picosecond energy transfer time from the electrons to ions by coulombic collisions is significantly 

longer than the laser pulse width (~ 100 fs). Therefore, conventional hydrodynamical motion does not 

occur on a femtosecond interaction scale.  

   There are two forces which are responsible for energy transfer from the laser field and the energetic 

electrons to the ions in the absorption area: one is static Coulomb force due to the charge separation 

occurring when the absorbed energy by electrons exceeds the Fermi energy (approximately a sum of 

the binding energy and work function). Excited electrons (single photo or mutilphoto excitation 

dependent on the laser intensity and wavelength) escape from the target and thereby form a Coulomb 

force, which pulls the ions out of the target. On the other hand, the ponderomotive force of the laser 

field in the skin larger pushes electrons deeper into the target. Correspondingly the second force 

accelerates ions into the target. Gamaly et al. (2002) shows that the first mechanism governs the 

ablation process by femtosecond pulses at an intensity more than 1013 W/cm2.   At a laser intensity 

more than 1015 W/cm2, the electric field produced by laser pulses is about 8.68 V/Ǻ, which is 

comparable with the atomic field binding an electron to the proton in hydrogen atom (51.4V/ Ǻ). 

Electric fields of laser pulses can directly break the chemical binding of molecules and the interaction 

is thus not treated as a perturbation. Coulomb explosion or photofragment can be the dominant 

mechanism in ultra intensive interaction instead of conventional ablation with a melting and 

subsequent vaporization procedure (Stoian et al. 2002, Stuart et al. 1996, Duley 1996). Intense laser 
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field interaction with atom/molecules can be either through a multiphoton process or through a field 

ionization.  

   One important physical effect of laser-matter (solid) interaction is material removal or laser 

ablation, which can be used for the deposition of thin films, the creation of new materials, and for 

micromachining or surface-engineering. Fs laser ablation has the important advantage in such 

applications compared with ablation using ns pulses because there is little or no collateral damage due 

to shock waves and heat conduction. Thus fs pulses have many potential applications for biomedical 

proceedures including nanosurgery.  These sources are also finding applications in  nano-composition 

analysis and nanoscaled surface processing for microelectronics.  

   In this chapter, I will first discuss the carbon phase diagram and explain why carbon has been 

chosen as a target material. I will review the microstructure and chemical binding states of two 

special carbon materials; carbynes and tetrahedral amorphous carbon, which are materials studied in 

this work. Subsequently I will review various theoretical models developed to describe fs ablation 

mechanisms. I will also discuss the dissociation mechanisms of hydrocarbon compounds and small 

organic molecules. Finally, I describe the research plan for my Ph. D degree study and the structure of 

this thesis.    

1. 2 Carbon science and the phase diagram of carbon 

 

It is long known that carbon is one of the key components of universe and an essential element for life 

on earth. New carbon materials, such as sp-bonded linear carbon chains (carbynes), nanodiamond, 

graphene, and carbon nanotubes, are paving the way for next generation microelectronics 

(Amaratunga 2002; Berger et al. 2006). Of these materials, graphene is an optical 2D conductor (Van 

Duyne et al. 2004, Andrew and Barnes 2004), carbynes and carbon nanotubes are 1D conductors, and 

nanodiamond and fullerenes are 0 D materials (Shvartsburg et al. 2002; Kiang and Goddard III 1997; 

Saito 1997). They present a novel assembly, which can be easily engineered for nanoelectronics and 

molecular electronics. These introduce carbon as an important material in state-of-the-art science and 

technology.  

   The carbon atom can have three different hybridizations; sp3, sp2 and sp. In the sp3 configuration, as 

in diamond, each of a carbon atoms four valence electrons is bonded via a tetrahedral hybrid σ orbital 

to an adjacent atom. In the 3-fold sp2 coordination, as in graphite, three of four valence electrons are 

assigned to trigonal orbitals which form intra-plane σ bonds. The fourth electron forms a pπ orbital 
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which lies normal to this plane. This π bond is weak and also called unsaturated bonding. In the sp 

configuration, such as in the carbynes, two valence electrons are assigned to linear sp hybrids which 

form σ orbitals with two neighboring atoms and the other two electrons are placed in each of the pyπ 

and pxπ orbitals. 

   Crystalline carbon materials may mix two or three of carbon bonds. Shown in Fig. 1.1 is carbon 

phase diagram.   

sp sp2

sp3

diamond/lonsdaite

carbyne graphitegraphyne

fullerene

nanotube

superdiamond
DLC

graphene

 
Fig. 1.1 Phase diagram of carbon allotropes 

 

Clearly, fullerenes and carbon nanotubes mix sp2 and sp3 bonds, while graphyne combines sp and sp2 

carbon bonds. It is notable that graphene is a 2D layer with hexagonally graphitic binding (sp2), 

graphyne is that individual hexagonal carbon rings link by sp-bond carbon chains. Meanwhile, 

numerous disordered carbons, including soots, chars, carbon fibres, glassy carbon and thermal 

evaporated amorphous carbon, are basically sp2 bonded.  

   Tetrahedral amorphous carbon (ta-C) having relative low concentration of sp2 bonded clusters 

embedded in a tetrahedral carbon network is a very promising material for various applications 

because it possess ultrahigh hardness similar to that of diamond and is transparent.  The presence of 

sp2-bonded clusters modifies its local electron affinity. Such a carbon film can be deposited by 

nanosecond laser pulsed ablation or other sputtering methods with proper processing parameters 

(Robertson 2002 & Grill 1999).   
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   Phase transitions between different carbon allotropies generally requires high temperature and high 

pressure conditions (Bundy et al. 1996; Utsumi and Yagi 1991; Yagi et al. 1992; Scandolo et al. 

1995). Fig. 1.2 shows a T-P phase and tranition phase diagram for pure carbon.  
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Fig. 1.2 P-T transition phase diagram for carbon 

 

   The path R corresponds to a reversible phase transition from hexagonal graphite to hexagonal 

diamond and then cubic diamond with increasing pressure. An irreversible graphite to cubic diamond 

transition is marked by path C, and is the basis for a commercial approach to synthesize diamond at 

high temperatures. Path H represents a phase transition from graphite to the metastable hexagonal 

diamond phase (Utsumi and Yagi 1991).  The transformation of cubic diamond transferring into 

disordered graphite occurs either under pressure (Gogotsi et al. 1999) or during irradiation with 

ultrafast laser pulses (Yang and Wang 2000).   

 Phase transitions from graphite to nanodiamond (Bonelli et al. 1999) and fullerene (Luo et al. 

2005) or from cubic diamond to hexagonal diamond (He et al. 2002) can also be obtained with laser 

irradiation.   
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1.3 Carbynes  
 

Carbynes are composed of linear carbon chains containing pure sp hybridized bonds, either as 

alternating triple and single bonds (polyynes) or with conjugated double bonds (polycumulenes) 

(Kavan and Kastner 1994; Heimann 1994; Szafert et al. 2003). Fig. 1.3 shows these two 

configurations. 

 

 
 

Fig. 1.3 Polyyne and polycumulene bonding configurations in carbynes 
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   Theoretical calculations shows that the first structure is more stable (Kertesz et al. 1978; Springborg 

and Kavan 1992). Such linear carbon chains are very interesting materials because theoretical studies 

predict that they may exhibit high temperature superconductivity (Little 1964; Kavan 1988), charge 

density waves (Springborg and Kavan 1992) and strong nonlinear optical effects (Eisler et al. 2005). 

Moreover, several laser-induced gas phase studies have suggested that they can be elemental building 

blocks for three-dimensional fullerenes (Heimann et al. 1983, Shvartsburg et al. 2000) and nanotubes 

(Kiang and Goddard III 1996). Recently, nanotubes have been successfully synthesized by irradiation 

of polyynes by electron beams at 800oC (Yasuda et al. 1999) or by polymerization of 1-iodohexa-

1,3,5-triyne and hexa-1,3,5-triyne at room temperature (Hlavaty et al. 2000).   

   sp-bonded carbon chains have been identified in laser ablation products (Heath et al. 1987) and are 

possibly present in interstellar materials (Duley 2000). Recently, they have been synthesized in grain-

assembled amorphous carbon films and embedded in sp2-bonded matrices (Ravagnan et al. 2002). In 

organic solvents, sp chains have been grown by arcing graphite electrodes (Cataldo 2003) or laser 

ablation of suspended nano-graphite, C60 and nano-diamond particles (Tauji et al. 2002 & 2003; 

Tabata et al. 2006a). However, it is still a challenge topic to fabricate pure carbynes in the laboratory 

because polyynes are highly reactive with oxygen, water, even N2, H2, He (Casari et al. 2000). They 

can also graphitize via interchain cross-linking of an array of parallel polyyne chains as shown below.  

 

     
Fig. 1.4 Interchain cross-linking of polyynes leads to graphitization. 
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Polyynes in solution can only reach a concentration of about 1mM at room temperature. This is 

limited to lower concentrations (μM) at increased temperature (60oC) (Cataldo 2004, Heymann 2005, 

Wakabayashi et al. 2007).      

   Fortunately, recent studies show that cross-linking can be hindered by pinning polyynes on the 

surface of Ag nanoparticles (Casari et al. 2007) or by intercalating alkali metal nanoclusters (Kavan  

et al. 1995) or encaging linear chains in a carbon nanotube (Nishide et al. 2006).  

     

1.4 Diamond-like carbon (DLC) films 
     

Diamond-like films are tetrahedral amorphous carbon (ta-C) materials embedded with sp2 bonded 

graphite clusters. Theoretical studies show that the density changes from 2.2 g/cm3 to 4.4 g/cm3 as the 

sp3 content increases from 7.9% to 89%. The concentration of sp–bonded carbon decreases quickly to 

less than 2% at a density of 3 g/cm3 (Wang and Ho 1994).  Generally the sp-bonded carbon 

component in ta-C is very small and can be neglected (Ferrari and Robertson 2000) and it has been 

shown that the mechanical properties and optical gap of ta-C are mainly determined by the 

concentration of sp3-bonded species while sp2 sites govern electrochemical and electrical properties 

(Robertson 2002; Voevodin et al. 1996). By adjusting the sp2/sp3 ratio as well as controlling the 

microstructure of sp2 clusters, one can obtain a wide range of mechanical, electronic and optical 

properties for various applications, such as, high infrared transmission, optical coating, field emission, 

wear and corrosion protection of magnetic storage media, and biocompatible coatings for biological 

environments (Grill 1999; Hauert 2003). 

ab initio simulation of the structure of ta-C (Wang and Ho 1993, Marks et al. 1996; Schultz et al. 

1999) shows that sp2-bonded sites prefer to cluster in the sp3 coordinated network. Typical sizes of 

sp2 clusters in ta-C are  ≈ 1-2 nm (Carey and Silva 2004). However, this size increases to 3-5 nm in 

ta-C after annealing at 600C. 100 nm graphite clusters can also be seen in scanning electron 

microscopy (Siegal et al. 2000).  

The typical Raman vibration band of ta-C under visual excitation does not show individual features 

at 1600 cm-1 for graphite stretching mode (G band) and 1375 cm-1 for graphite breathing mode or at 

1333 cm-1 for diamond crystals. Instead, it shows a broad band centered at 1550 cm-1 with an 

enhanced tail at lower frequencies. Thus, it is widely accepted that the ratio of sp2/sp3 contents can be 

deconvolved with a Breit Wigner Fano (BWF) lineshape (Ferrari and Robertson 2000, Prawer et al. 

1996): 
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Here Io is the peak intensity, ωo is the peak position, Г is the full width at half height (FWHH), and Q-

1 is the BWF coupling coefficient. A Lorentz lineshape is recovered with Q-1 → 0. It is notable that 

the sp3 content can only be detected by UV excitation since the σ → σ* gap is 5.5 eV, which is well 

beyond the visual excitation energy (Gilkes et al. 1997; Ferrari and Robertson 2001). Thus a direct 

observation of sp3 fractal in tetrahedral amorphous carbon should employ a UV Raman spectroscopy.   
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Fig. 1.5 Subplantation model for ta-C deposition 

 

    A sub-plantation model is developed to understand the deposition of ta-C (McKenzie et al. 1991, 

Robertson 1993; Lifshitz et al. 1994). Energetic carbon ions can directly penetrate the film surface 

and implant at specific depth depending on their energy. This procedure results in the densification of 

the intra-layer. A compressive stress is thus accumulated due to the plastic deformation of this 

interlayer. This internal stress is the key to grow sp3 bonds or to transfer sp2 to sp3 bonds. Experiment 

shows that deposition at high temperatures results in a low sp3 concentration and that the sp3 to sp2 

phase transition occurs at 250oC to 300oC (Robertson 2002). Thus carbon ions with higher kinetic 

energy do not result in higher sp3 content due to the annealing effect of implanted species. On the 

other hand, low energy carbon ions cannot generate sp3 because internal stress is required for this to 

occur. The optimized energy for carbon ions to promote sp3 species is found to be 10-100 eV 
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(Robertson 1993, Prawer et al. 1996). However, internal stress is unnecessary to retain the sp3 

configuration once growth has finished (Ferrari et al. 2002). Experiment shows that the sp3 bonded 

network is stable until 1100oC (Ferrari et al. 1999).   

 

1. 5 Positive carbon ions and the growth of carbon clusters  
 

Time-of-flight mass spectrometric studies show that carbon species such as Cn
+ (n=1, 3, 5, 7, 11) are 

predominant in the ablation of graphite with ns laser pulses (Gaumet et al. 1993; Kokai et al. 2000). 

This can be explained by the “magic number” of small carbon clusters (n<25) (Bernholc and Phillips 

1986), whereby odd-numbered clusters are positively charged while even-numbered clusters are 

negative. With UV laser ablation (wavelength 355 nm, pulse width of 10 ns), it is found that smaller 

carbon ions prefer to be generated with increasing laser fluence. This indicates a further interaction 

between laser pulse and ablation plume (Koo et al. 2002). A fragmentation of large carbon clusters 

occurs in plume. The yield of Cn
+ as a function of laser intensity is well understood and involves the 

conversion of multiphoton energy into thermal energy (Gaumet et al. 1993). Theoretical studies also 

show that clusters having fewer than 10 carbon atoms tend to have a linear structure while larger 

clusters with 10-29 atoms have a monocyclic ring structure (Yang et al. 1988). 

   Time of flight (TOF) mass spectra with a delay time after laser ionization (nanosecond pulses), 

show that cluster sizes increase with delay time (Shibagaki et al. 2000 & 2002; Koo et al. 2002). This 

shows a clustering of carbon ions through a gas-phase reaction even without ambient gas. Carbon 

dimerization is also evident under an argon atmosphere (Wakisaka et al. 1993). Bimodal cluster size 

distribution is also found in carbon vapor by ablation with the second harmonic or 3rd harmonic from 

a Q-switched Nd:YAG laser (Rohlfing et al. 1984; O’keefe et al. 1984). The experiments show both 

odd and even Cn
+ clusters for 1≤ n ≤ 30 and only even numbers of C atoms for larger clusters. This 

phenomenon is explained by the formation of carbynes induced by laser annealing. Ablation of 

graphite with 308 nm ns laser radiation produces Cn
+   ions having n > 300 (Scott et al. 2001).        

   Carbon species in the plume accompanying fs laser ablation have kinetic energies extending from 

300eV to several keV. This is about one order of magnitude higher than the energies observed in ns 

ablation (Vanrompay et al. 1998; Qian et al. 1999; Banks et al. 1999, Yao et al. 2000, Duley 1996).  

Highly charged carbon ions are also present. These do not appear in ns-ablation of graphite (Ehler 

1975). These highly charged carbon ions are likely produced by Coulomb explosion in the laser focus 

(Lenner et al. 2007).   
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   Carbon species in the fs ablation plume have also been studied by emission spectroscopy (Okoshi et 

al. 2000). Time-resolved images taken by an intensified charged-coupled device (ICCD camera) (Loir 

et al. 2003; Fuge et al. 2006) indicate that the drift velocity is as high as 105 m/s. C2+  ions have been 

identified in these plumes.   

    
1. 6 Light-matter interactions: the general picture  

 

In these experiments, structural modification of solid materials begins with the deposition of a certain 

amount of laser energy. The total absorbed energy and the spatial and temporal energy distribution, 

determine the nature of this modification. Fig. 1.6 shows a light transmitting material with absorption 

coefficient, α.  According to the Lambert-Beer law, the transmission T can be expressed as 

 

                                                                                    (1.1) x
o eIIT α−== /

x 

Io
I 

I' 
 

 

Fig. 1.6  Absorption, transmission and reflection in a planar sample 

 

where, x is the width of media, Io, I and I’ stand for incident, transmitted and reflected light 

intensities, respectively. Thus the interaction only happens in the surface layer α/1=L for a 

non-transparent material. For graphite, this depth is about 30 nm for 620 nm light (Seibert et al. 

1990). For aluminum, the penetration depth is about 15 nm at 308 nm (Palik 1985).      

   The primary laser-solid interaction process involves the excitation of electrons from their 

equilibrium states to higher energy levels by photoabsorption. For example, in semiconductors 

electrons can be excited from the valence band to the conduction band by single or multiphoton 

absorption, as shown schematically in Fig. 1.7.  
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Fig. 1.7 Single-, double and three photon electronic excitations in a semiconductor 

 

   At a given laser fluence τIF ∝ , a shorter pulse duration favors multiphoton excitation 

because the probability of nonlinear absorption increases strongly with laser intensity. Different 

interactions have been discussed by von der Linde et al. (1997) with increasing pulse widths.  

 

 
Fig. 1.8 Time scale for various secondary processes in laser-matter interactions 
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As shown in Fig. 1.8, a very short-lived transient coherent polarization is associated with a primary 

electronic excitation. This polarization is destroyed by a de-phasing process occurring at a time scale 

of 10 fs.  

   The initial distribution of excited electronic states corresponds to the coupling states of optical 

transitions. The occupation of these primary states is subsequently changed by nonthermal carrier-

carrier Coulomb interaction on a time scale of about 100 fs. The hot electron state can be further 

cooled by emission of phonons. Electron cooling and phonon relaxation occurs in < 1 ps.  

   Thermal cooling occurs on time scales > 1 ps. Heat diffusion occurs by electron-lattice interactions 

and by phonon coupling. The lattice thermal melting is longer than 10 ps while ablation occurs during 

the laser pulse. Thus, the interaction between intense laser radiation and matter can be modeled by a 

two-temperature theory in which electrons and lattice remain at different temperatures.   

 

1. 7 Two-temperature model 
 

According to a one-dimensional, two temperature diffusion model (Kaganov et al. 1957, Anisimov et 

al. 1974),  the energy of low intensity short laser pulses is absorbed by free electrons due to inverse 

Bremsstrahlung (Joule heat). The evolution of the absorbed energy involves thermalization within the 

electron gas (electron subsystem), energy transfer to the lattice and thermal diffusion in the lattice. 

These processes can be expressed as: 
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zTkzQ ee ∂∂−= /)(     ,          )exp()( zAtIS αα −=                        (1.4) 

 

Here z is the direction of energy propagation perpendicular to the target surface, Q(z) is the heat flux, 

S is the laser source function, I(t) the laser intensity, A=1-R is the surface transmissivity and α is the 

absorption coefficient. Ce and Ci are the specific heat of the electron and lattice subsystems with Ce 
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=aTe where a is a constant, γ is the electron-lattice coupling parameter, and ke is electron thermal 

conductivity.   

     In eq. (1.2-4) we should consider three characteristic time scales: τe, τi , and τL. τe =Ce/γ is the 

electron cooling time, τi=Ci/ γ is the lattice heating time and τL the laser pulse width. Following 

previous studies (Chchkov et al. 1996, Momma et al. 1996, 1997, von der Linde et al. 1997), the 

pulses can be separated into three time regimes. 

 

Femtosecond pulses 

 

For a fs pulse, the laser width is much shorter than the electron cooling time, τL « τe ~ 1ps. Then, 

 / t >>  γ TeeTC e, and electron-lattice coupling can be neglected. If LeD τ < α-2, where De = ke/Ce is 

the electron thermal diffusivity, the electron heat conduction term can be neglected in and eq. (1.2) 

reduces to   

)exp(2/2' zItTC aee αα −=∂∂                                                                    (1.5) 

 

and gives 
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Here it is assumed that I(t) = Io and Ia = IoA, while To = Te(0) is the initial temperature.  

is a constant when T

eee TCC /' =

e remains smaller than the Fermi energy (in temperature). At the end of the laser 

pulse the electron temperature is given by  
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where Te(τL) >>To, Fa = Ia τL is the absorbed laser fluence, and δ =2/α is the skin depth.  

After the laser pulse the electrons are rapidly cooled due to energy transfer to the lattice and heat 

conduction into the bulk. Since the electron cooling time is very short, eq. (1.3) can be written as Ti ~ 
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Te(τL)t/τi (neglecting the initial lattice temperature).   The maximum lattice temperature can be 

estimated from the average cooling time of the electrons,  and is given 

by 
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Significant evaporation occurs when CiTi > ρ Lv, where ρ is the density and Lv is the specific heat of 

evaporation. Using (1.8), we can express the condition of strong evaporation as )exp( zFF tha α≥ , 

where Fth ~ ρ Lv/α is the threshold laser fluence with fs pulses. Then the ablation depth per pulse L is  

 

)/ln(1
tha FFL −≈ α .                                                                                (1.9) 

 

Such a logarithmic dependence of the ablation depth per pulse has been confirmed by the ablation of 

copper in vacuum using 150 fs laser pulses (780 nm, Momma et al. 1997) and in the ablation of 

highly oriented pyrolytic graphite (HOPG) with 120 fs pulses (Shirk and Molian 2001).   

 

Picosecond pulses 

 

For a ps pulse, τe ~ 1ps < τL <τi ~ 10 ps. At times t >> τe,  / t << γ TeeTC e, eq. (1.2) becomes quasi-

stationary, eqs. (1.2-4) reduce to  
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The integral corresponds to the temperature increase of the lattice. At t << τi, (1.11) can be simplified 

due to the quasi-stationary character of the electron temperature. Neglecting To, we get 
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It is obvious that in the ps regime the lattice temperature remains much less than the electron 

temperature. Thus the lattice temperature can be omitted in (1.10). When the condition << 

γT

2αeeTk

e is fulfilled (1.10) and (1.12) are very simple. The electron and lattice temperatures at the end of a 

ps pulse are given by 
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Note that the obtained lattice temperature is governed by the electron cooling time. Thus, in fs and ps 

regimes (1.8) and (1.13) give the same expression for the lattice temperature. This indicates that a 

logarithmic dependence of the ablation depth on laser fluence is also found in the ps regime. 

However, this conclusion is based on an assumption that the electron heat conduction is negligible. 

This is a very crude approximation since the electron heat conduction and the formation of melted 

zone must be related in ps ablation.  

 

Nanosecond pulses 

 

Ablation with ns pulses can be modeled with the condition τi ~ 10 ps << τL. In this case, the electron 

and lattice temperatures are equal, Te = Ti = T and (1.2- 1.4) reduce to  

 

)exp()/(// zIzTkztTC aoi αα −+∂∂∂∂=∂∂ .                                                 (1.14) 

 

There are many experimental and theoretical studies on the processes involved in laser heating and 

irradiation with long pulses (Duley 1996). In this regime the target surface is first heated to the 

melting point and then to the vaporization temperature.  During the interaction the dominant energy 

loss is heat conduction into the solid target. The heat penetration depth is given by l ~ (Dt)1/2 , where 

D = ko/Ci is the thermal diffusivity. Note that for a long pulse, DτL >> 1/α2. The energy deposited 

inside the target per unit mass is given by Em ~ It / ρl. Evaporation occurs when Em ~ Lv at tth, where 

Lv is the specific heat of evaporation. So, the condition for strong evaporation becomes, Em > Lv (or τL 

> tth) and  
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for the laser intensity and the fluence, respectively. A striking characteristic is that the threshold laser 

fluence depends on the square root of the laser pulse width. A deviation of the damage threshold from 

the τ1/2 scaling with short pulses has been clearly evident by ablation of fused silica by infrared (1053 

nm) and visible (526 nm) laser radiation (Perry et al. 1999).   

     In summary, fs pulses trigger a nonthermal ablation mechanism since both the electron-lattice 

thermal coupling and thermal diffusion to the lattice take longer time than the pulse width. ns pulses 

allow thermal equilibrium to occur between the electrons and the lattice.    

 

1. 8 Plasma annealing theory 
   

Work on high density electron-hole plasmas has been initiated by the investigation of laser annealing 

(Khaibulli et al. 1979) and nanosecond/picosecond laser-induced phase transitions in solid materials 

(Van Vechten 1979). The so-called plasma model describes processes occurring in laser excited e-h 

plasmas and plasma-induced softening of the crystal lattice (Van Vechten 1979; Heine et al. 1976; 

Biswas and Amebegaokar 1982; Kopaev et al. 1985; Stampfli and Bennemann 1990; Das Sarma  and 

Senna 1994; Silvestrelli et al. 1996, Perry et al. 1999; Gamaly et al. 2002).    

   We suppose that the target fills half-space at x > 0, overlapped by the skin depth (optical 

penetration depth) 
k

cls ϖ
=    , where k is the imaginary part of the refractive index and ω the laser 

frequency. The dielectric function in the Drude approximation describes the initial solid state just 

before ablation: 
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Here ne is the electron density,  is the electron plasma frequency, v2/12 )/4( mne epe πω = eff is an 

effective collision frequency of electrons with the lattice (ions).  For normal incidence, the absorption, 

reflection, and transmission coefficients, A, R, and T, are given by  
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Here  is the critical density.  )/( 222 λπ emcnc =

   Laser-matter interaction can be separated into excitation and transition stages. In the former, the 

photoionization process is sensitive to the Keldysh parameter (Keldysh 1965),  
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γ =                                                                                (1.18) 

 

where UI  is the zero field ionization potential, ωe is the electron quiver frequency in the light field, E 

is the peak electrical field, e and m are the charge and mass of the electron, respectively. At γ << 1, 

the ionization process is charactized as a tunneling procedure (Keldysh 1965). At γ >> 1, ionization is 

better modeled as a multiphoton process. Recently, the appropriate boundary of multiphoton regime is 

found closely to γ > 0.5 (IIlov et al. 1992). The non-resonant nth order multiphoton ionization rate 

(Gontier and Trahin 1984) is  
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where σN  is the generalized nth order cross section and I is the peak laser intensity.  With increasing 

electron density, the second ionization mechanism, impact ionization can not be avoided. Thus, the 
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time dependence of free electron density is defined by the rate equation (Perry et al. 1999; Raizer et 

al. 1977; All’insky and Keldysh 1994): 
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Here na is the density of neutral atoms, Pimp is the probability for ionization by electron impact.  For 

single ionization (Luther-Davies et al. 1992; All’insky and Keldysh 1994) these two probabilities can 

be expressed as 
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It is evident that the relative role of the impact and multiphoton ionization depends on the relation 

between the electron quiver energy and the ionization potential. For a 100 fs pulse, multiphoton 

ionization creates a substantial amount of free electrons. When the electron density approaches 1017 

cm-3, the collisional ionization rate begins to exceed the multiphoton ionization rate (Stuart et al. 

1996). When this density approaches 1022 cm-3, the reflectivity dramatically increases (Sokolowski-

Tinten and von der Linder 2000). The maximum density was found to be in excess of 1022 cm-3, 

which corresponds to approximately 10% of the total valence-band population (Sokolowski-Tinten 

and von der Linder 2000).   

   A lattice softening has been theoretically expected when 10% of the valence electrons are excited 

into the conduction band (Stampfli and Bennemann 1990 &1992). Lattice softening leads to melting, 

as predicted by ab initio molecular-dynamic calculation (Silvestrelli et al. 1996, 1997) and observed 

experimentally by time-resolved reflectivity (Reitze et al. 1992).  Such melting is a ultrafast 

phenomenon and is not a consequence of conventional thermal heat transfer. 
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1. 9 Present work 
 

In order to understand the interaction between femtosecond laser pulses and carbon a program of 

experimental and theoretical (ab initio chemical calculation) investigations have been undertaken: 

 

1. Investigation of the carbon species in the fs ablation plume using time-of-flight (TOF) mass 

spectroscopy. 

2. Investigation of microstructure evolution and phase transition by surface spectroscopic and 

microstructure characterization. 

3. Investigation of the deposition of diamond-like carbon films by fs pulsed laser ablation 

together with a comparison study using ns pulsed laser ablation. 

4. Investigation of the direct disassociation of small organic molecules in liquid. 

5. ab initio density-function theory using Gaussian ’03 for related small hydrocarbon molecules.   
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Fig. 1.9 Cutting-edge study with femtosecond laser sources 
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   I thus will carry out a cutting-edge study, which covers femtochemistry, spectroscopic and physical 

chemistry and nanoscience. A femtosecond laser plays the core role in these investigations. We will 

show that the high-temperature high-pressure interaction between fs pulses and carbon occurs on the 

nanoscale. The intense laser-induced evolution of physicial structure and chemical states allows us to 

probe the nature of carbon in a novel scope under extreme conditions.  

   This thesis is organized as follows: Chapter II discusses the ablation mechanism, surface nano-

engineering and surface carbon phase transitions in highly oriented pyrolytic graphite induced by fs 

laser irradiation.  Chapter III shows the nanostructure and chemical binding states of diamond-like 

carbon films deposited by ns pulsed laser ablation. Chapter IV presents sub-micron cryogenic 

graphitization and buckling of tetrahedral amorphous carbon films deposited by ns pulsed laser 

ablation. Chapter V presents nanostructure and sp/sp2 clustering of tetrahedral amorphous carbon 

films grown by femtosecond laser deposition. Chapter VI shows the molecular structure, SERS 

spectra and nanobuckling of diamond-like carbon films deposited by fs laser ablation. Chapter VII 

explores the synthesis of polyynes in organic solvents by directly disassociation of various 

hydrocarbon molecules and the direct deposition of hexagonal diamond films via a liquid method. 

Chapter VIII presents the results of ab initio calculations on the Raman spectra of carbynes, poly-

acetylenic chains and poly-graphyne and the characterization of carbon species and the growth of 

carbon clusters in the fs ablation plume using TOF-MS.. In Chapter IX I will give some suggestions 

for the future work.  

    Although these materials are organized in each chapter by a relatively subjects along my practical 

research order, one can still found intrinsic relationships among these chapters: I. We first study the 

interaction of laser and carbon solid. Chapters 2, 3, 4, 5, 6 present the results on ablated carbon 

surface, deposited films and a comparative study to nanosecond laser ablation. II. We focus the laser-

liquid interaction in Chapter 7. III. Chapter 8 gives the theoretical study compared to experiments 

given in these two fields (solid and liquid). TOF mass spectra, which characterize the carbon ion 

spicies in fs ablation plumes, are also demonstrated and discussed in this chapter in order to 

understand experimental results from both carbon condensed matters (solid and liquid).   
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Chapter II 
Laser-induced nanopatterning and phase transition on graphite 

surfaces exposed to fs laser pulses 
 
2.1  Introduction 
       

Intense laser irradiation results in comprehensive microstructure, chemical phase transition and 

material ablation on solid surfaces (Duley 1996). Laser induced ordered structures are fundamental 

features to understand the light-matter interaction and possess the potential for surface engineering. A 

large variety of ordered structures have been observed at different laser wavelengths, intensities and 

at pulse widths ranging from cw to fss (Emmony et al. 1973; Preston et al. 1989; Ozkan et al. 1999; 

Vorobyev et al. 2007). The development of chirped pulse amplification has allowed the construction 

of table-top amplifiers which can generate pulses with millijoule energies and femtosecond durations, 

leading to peak powers of several terawatts (Strickland and Mourou 1985). In recent experiments 

using such fs laser pulses, several groups have reported a new type of periodic structure having 

nanoscale modulation (Ozkan et al. 1999; Vorobyev et al. 2007; Reif et al. 2002; Borowiec et al. 

2003; Singh et al. 2002; Wu et al. 2003; Miyaji et al. 2006), which is much smaller than the incident 

wavelength. In most cases, these subwavelength structures (or nanostrctures) are observed at the edge 

of the irradiation area, where the laser fluence is relatively low. It is worth noting that the irradiation 

with fs laser pulses at fluences less than the single-pulse ablation threshold have produced 

nanostructures with spacings as small as ∼ λ /10 on hard thin films such as diamondlike carbon 

(DLC) and TiN (Yasumaru et al. 2003 & 2005). An understanding of the origin of these very fine 

nanostructures can provide important information on the nature of fs laser-matter interactions.     

   Numerous theories have been developed for explaining the formation mechanism of surface 

patterning. The first is based on the interference between incident laser radiation and the wave 

scattered by the surface (Zhou et al. 1982, Sipe et al. 1983, Young et al. 1983). The second 

mechanism considers the instability of capillary waves created by thermal-capillary effects which can 

result in surface fluctuation and cellular structure in the melted film (Bugaev et al. 1986, Akmanov et 

al. 1985). A third case incorporates the formation of structure from the self assembly of nanoparticles. 

In this mechanism, nanostripes are formed by linear arrays of nanoparticles (Rudolph et al. 2004, 

http://www.rp-photonics.com/amplifiers.html
http://www.rp-photonics.com/peak_power.html
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Varlamova et al. 2006). There are some novel explanations, such as, boson condensation, which can 

also lead to a surface ripple structure (Singh et al. 2002, Vechten 1981). Although it is possible that 

different mechanisms are important under specific experimental configurations, understanding the 

formation of nanostripes by fs laser irradiation requires further experimental studies and consideration 

of processes such as non-equilibrium freezing of a melt phase, the role of phase transitions and the 

evolution of chemical binding states.   

   The availability of unique carbon materials such as sp-bonded linear carbon chains (carbynes) 

nanodiamond, graphene, and carbon nanotubes is paving the way for carbon electronics (Amaratunga 

2002, Berger et al. 2006, Ravagnan et al. 2002). Conversion between one carbon phase and another 

usually involves high-temperature and high pressure processes (Bundy et al. 1994). Obviously, a 

concise all-on-chip processing is desired. Here, I report the evidence of a phase transformation 

between graphite to carbyne and nanodiamond induced by fs laser pulses. Since carbynes are 

prototypes for 1D nanowires and precursor molecules in the formation of carbon nanotubes and 

fullerenes (Casari et al. 2007), the present work represents an initial step in the development of new 

technology based on processing with fs pulses.  

   The bombardment of graphite with intense nanosecond laser pulses has been demonstrated to be 

effective in synthesizing nanodiamond, fullerenes, and diamond-like amorphous carbon (Boneli et al. 

1999; Luo et al. 2005, Shirk and Molian 2001). However, a significant lateral melting of target 

material up to ≈ 0.5 mm cannot be avoided due to thermal effect (Luo et al. 2005, Shirk and Molian 

2001). In contrast, fs  laser pulsed ablation displays a non-thermal mechanism since the characteristic 

time of electron-lattice interaction is a few picoseconds, at least one order of magnitude longer than 

the pulse width. Fs-ablation hence allows precise surface processing while minimizing lateral damage 

(Shirk and Molian 2001, Momma et al. 1997, Lenner et al. 2007). Recently, tetrahedral carbon films 

embedded with sp-bonded carbon chains have been fabricated by fs-ablation of graphite (Hu et al. 

2007b). This stimulates us to study the phase transition of irradiated graphite.  

   This chapter reports the effect of irradiation with fs laser pulses on highly oriented pyrolytic 

graphite with different polarizations and wavelengths. The results show that the orientation of 

nanostripes is strongly correlated to the incident polarization and the spacing can be related to higher 

harmonic generation. Based on these results, an optical orientation model is proposed. It is also found 

that in the vicinity (tens of microns) of the irradiation crater fs pulses can induce direct phase 

transformations from sp2-bonded carbon to carbynes or sp3-bonded nanodiamond, dependent on laser 

intensity.    
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Fig. 2.1 Diagram of experimental set-up for surface patterning and phase transition 

 

2.2  Experimental setup 
 

Two 800 nm Ti:sapphire laser system were employed to irradiate a high oriented pyrolytic graphite 

(HOPG, Alfa Aesar, grade 2) target at 300K in a high vacuum chamber with a typical pressure of 3 

x10-6 Torr (1 Torr =133.3 Pa). The first system (Spectra Physics: Tsunami pumped by Millennia and 

then further amplified by Spitfire) yields 120 fs 700 μJ pulses with a repetition rate of 500 Hz. The 

second laser system provides 50 fs 350 μJ laser pulse trains with a repetition rate of 1KHz. The pulse 

energy was measured just before the optical window of the vaccum chamber. For the latter, a seed 

laser (Femto laser production GmbH, pumped by Millennia, Spectra Physics) was amplified with a 

stretch-less compressor regenerative amplifier (home-made) pumped by a Q-switch green Nd: YLF 

laser (Quantronix). The laser beam was subsequently focused by a lens with a focal length of 9 cm. 
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The incident angle is 90o to HOPG surface. A shutter was used to control the number of laser pulses. 

Incident polarization direction was varied using a λ/2 plate and two broadband beam splitters. The 

circular polarization was achieved by a λ/4 plate. The 400 nm light was obtained with a type-I BBO 

crystal. The input 800 nm laser is removed by BG40 filter (ThorLabs FGB37S). Microstructures of 

samples irradiated by overlapping pulses at energy of 30 μJ-700 μJ /pulse were characterized by 

scanning electron microscopy. The experiment displayed that the waist size of the focused beam was 

about 50 μm. Based on these beam parameters, a laser intensity more than 1014 W/cm2   was 

achieved.  

   To study the surface phase transition, HOPG was irradiated with 120 fs pulses. The laser beam was 

focused on the surface of HOPG with 15 cm focal length lens at 300 K in a vacuum chamber at a 

typical pressure of 5x10-7 Torr, a lower vacuum pressure in order to avoid the oxidization of surface 

species. 

   The local chemical binding state was measured by UV-Ramam with 325 nm excitation wavelength, 

SERS (Surface enhanced Raman spectroscopy) and X-ray photoelectron spectra (XPS) (Hu 2007d). 

Prior to the recording of SERS spectra, the HOPG surface was coated in-situ with a silver 

nanoparticle film (Hu et al. 2007b). The SERS spectra were recorded with x50 objective using an 

excitation wavelength of 632 nm at a power of 0.3 mW. The magnetic properties of pristine and 

surface irradiated samples were determined from a DC magnetization with a superconducting 

quantum interference device (SQUID).   

 

2.3 Optical orientation and linear arrays of surface carbon nanoparticles  
    

2.3.1 Patterns with horizontally polarized wave (p wave) 
 

Fig. 2.2 shows the morphology of HOPG in the vicinity of the laser focus after vertical irradiation by 

p-wave with (a) a 25 pulse train at energy of 500 μJ/pulse and pulse width of 120 fs and (b) a 50 pulse 

train at energy of 270 μJ/pulse and pulse width of 50 fs. It is worth noting that the less symmetric 

distribution of the latter is probably due to slight off-axis of focusing lens relative to the central 

maxium intensity of 50 fs beam.  The beam size of 50 fs pulses from the regeneration amplifier is 

about 8 mm. It is difficult to determine the central maximum before checking the irradiated 

microstructure image (a beam profile meter is currently being built). It is also important to point out 

that a slight deviation of input focal lens will result in a big shift in the central crater in the SEM 
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images. However, the central crater in 50 fs irradiation is not clearly determined. This is probably due 

to an improper focusing of 50 fs which results in a low irradiation intensity. For 120 fs irradiation the 

central crater of 30 μm in diameter is surrounded by an outer region with less ablation. According to 

local microstructures, in both cases the irradiation can be clearly separated into 4 regimes. Regime I is 

the most outer belt which gradually transfers to nonirradiated surface. Regime II is a relatively 

smooth regime with a titled surface toward center. Regime III is a very steep ring-shape wall of 

crater. Regime IV is the crater bottom where laser has a highest intensity. In the following sections 

we will display that these 4 regimes have different microstructures and phase transitions. 

 

I 

II 

III 

20 μm 

IV 

I 

(a)

20 μm

(b)

I II 
20 μm 

 
Fig. 2.2. Scanning electron microscopy micrograph of a highly oriented pyrolytic graphite after 

irradiation with (a) 25 overlapping 120 fs 300 μJ p-polarized laser pulses and (b) 50 overlapping 50 fs 

270 μJ p-polarized laser pulses at a wavelength of 800 nm. I-IV stand for four different characterized 

regimes.  

 

The individual characteristics of each region are shown in Fig. 2.3 for 120 fs and 2.4 for 50 fs 

pules. The oriented features (nanostripes and microstripes) are observed and stably repeated in both 

kinds of lasers. This is clearly evident that the surface patterns are not sensitive to the variation of 

pulse width. However, we do observe some subtle differences in strong ablation areas, which is worth 

further invesitgation. Anyway, with decreasing pulse energy to 100 μJ/pulse the regime I will 

gradually extend inside while Regimes II to IV get small and the modulation intensity gets weak. At 
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the pulse energy of 100 μJ/pulse regimes II-IV become almost invisible. This can be generally 

understood by the two-temperature model of fs ablation (Chchkov et al. 1996, Momma et al. 1996, 

1997, and von der Linder et al. 1997), in which the central area (IV) corresponds to the strong 

ablation area where the laser density is extremely intense while the surrounding area (I and II) 

corresponds to the gentle ablation due to the relative weak laser intensity. Regime III is the boundary 

between two kinds of ablations.  

 

 

(a) (b)

( c) (d)

 

200 nm

 

200 nm

 

1 μm

 

2 μm

 

Fig. 2.3. SEM images of 4 regimes (a-d)from outer to center of vertical irradiation areas with a 

horizontally polarized light of 120 fs pulses (p-wave). The arrow indicates the magnetic field 

direction (vertical to the polarizon). 
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(a) (b)

( c) (d)
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20 μm 

 

20 

μm 

 

Fig. 2.4. SEM images of HOPG surfaces irradiated by a horizontally polarized light of 50 fs pulses. 

(a, b) 50 pulses of 270 μJ/pulse, (c, d) continuing shifting of the laser beam at 300 μJ/pulse with a 

scanning speed of about 0.2 mm/s. (d) is observed at the area indicating by the dash line in ( c), which 

corresponds to Regime I marked in Fig. 2.2. The arrow indicates the magnetic field direction. 

 

   It is obvious that in the center region (Fig. 2.3 d) the cellular structure can be attributed to instability 

in the capillary wave of a melting liquid (Varlamova et al. 2006, Vechten 1981). These cellular 

structures are surrounded by an array of nano-filaments. In Fig. 2.3 c and Fig. 2.4 d one can easily see 

the nano-filamentary structure forms ridges in the crater wall. These arrays are curved on a scale of 

microns. The curved filamentary structure has a spacing d of 300 nm-400 nm, which can be explained 
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by capillary instability with  λ/m < d < λ, where λ is the incident wavelength and m ≈ 6-7 is the 

optical extinction coefficient of liquid carbon (Varlamova et al. 2006, Vechten 1981, Talapatra et al. 

2005). The liquid droplets on the surface of nanofilements in Fig. 2.3 c clearly indicate the melt of 

carbon. Fig. 2.4 ( c) shows the hollow created by the accumulated ablation. However, there are no 

clear nanofilaments on the hollow wall. At the moment, it is unclear if this can be simply attributed to 

a lower irradiation energy than that of 120 fs pulses or the decreasing thermal effect by shortening the 

pulse width. A point-type irradiation with tightening focal beams is necessary to elucidate this issue.  

    Fig. 2.3 b and Fig. 2.4 (b) show microstripes having a spacing of about 800 nm or about one laser 

wavelength.  This ripple structure can be explained by interference theory (Zhou et al. 1982, Sipe et 

al. 1983, Young et al. 1983). For an absorbing medium with a dielectric constant , the 

incident wave with wave vector k can excite a surface wave of wave vector q under the condition 
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   One can easily find that such a mechanism indicates that the spacing of micropatterns due to the 

intereference is largely dependent on the incident angle. If the local surface has different incident 

angles, the spacing of microstripes may vary. This is clearly verified by observing the stripes 

approaching to the central crater: more near the central crater the larger the spacing. Besides, the 

surface roughness and defects will also induce different microstripes. In Fig. 2.3 b one can view two 

kinds of micropatterns with different orientations. This can related to the wavy surface. No matter 

how, this mechanism can not explain a spacing less than λ/2. A much narrower pattern with a spacing 

less than λ/2 is hard to be explained in this theoretical context.       
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In Fig. 2.3a and Fig. 2.4 (a, d), nanostripes are observed with a spacing of 60 nm to 100 nm. There 

are no remarkable spacing differences of nanostripes induced by two kinds of laser pulses. Moreover, 

both are parallel to the magnetic field direction. Obviously, this spacing cannot be generated by 

interference since the minimum value of d is 400 nm at an incident wavelength of 800 nm. Although 

this value is slightly smaller than d/m according to surface capillary instability, it is evident that this 

nanoscopic pattern in region I is linearly oriented, quite different from those in Region III and IV, 

which are curved in the micrometer scale.  Indeed, the present nanostripes are always perpendicular to 

the polarization direction (parallel to the magnetic direction) at any points of the ring-shape Region I 

around the strongly ablated crater. It is important to note that there are no remarkable differences 

between microstructure in regions II to IV at different polarizations although these features are 

dependent on the laser intensity. Decreasing pulse energy to 100 μJ/pulse these modulations in 

regions II to IV become weaker. At pulse energies less than 100 μJ/pulse these features become 

almost disappear. In contrast, the spacing of nanostripes is not a function of laser intensity. We fail to 

observe the remarkable differences by attenuating pulse energy from 700 μJ/pulse to 100 μJ/pulse for 

120 pulses and 350 μJ/pulse to 70 μJ/pulse for 50 fs pulses.  

 

2.3.2 Patterns with s wave polarization  
 

Fig. 2.5 shows the surface morphology of HOPG irradiated by a vertically polarized wave with a  

 

E 

 

200 μm

 

200 nm

(a) (b) 

Fig. 2.5. SEM micrographs for HOPG surface irradiated by the vertically polarized wave (s wave). 

 (a) shows serially irradiated areas with variable energys. The arrow indicates the direction of the 

electric field.  (b) nanopatterns obted in Regime I. The Arrow indicates the magnetic field direction.   
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wavelength of 800 nm and 120 fs pulses. Regions I-IV can be easily distinguished in the pulse energy 

range of 150-300 μJ/pulse. In region I nanostripes are evident with a spacing of 60 -100 nm. One can  

find that nanostripes lie in the magnetic field direction, i.e., perpendicular to the direction of 

polarization. Indeed, when the polarization is rotated to a certain angle, these nanostripes rotate by the 

same angle. For all linear polarizations, these stripes are oriented in the direction of the magnetic 

field.  

 

2.3.3 Absence of patterns with circularly polarized waves 
 

To further elucidate the relationship between the orientation of stripes and polarization, we check the 

irradiation effect of circularly polarized light. Fig. 2.6 presents the morphology of HOPG irradiated 

with 25 consecutive circularly polarized pulses at 150 μJ/pulse and the pulse width of 120 fs. The 

pulse energy is reduced due to beam splitting. It is evident that in the edge area, where linearly 

polarized lights induce nanostripes there are no ordered structures but only a collection of 

nanoparticles.  In regions II-IV, the characteristic microstructures are also weak due to low laser 

intensity. There are a few nanofilaments in region III where the laser intensity is higher. However, the 

remarkable difference between the effects of linearly and circularly polarized light is that the latter 

does not induce any nanostripes. This suggests that nanostripes can be correlated to optical 

orientation.        

 

 

200 nm 

 

20 μm 

(a) (b)

Fig. 2.6. SEM images of irradiation areas with a circularly polarized light at 150 μJ/pulse and pulse 

width of 120 fs. (a) Nanoparticles in the outer belt. (b) Central crater with a higher laser fluence.  
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2.3.4 Nanopatterns induced by linearly polarized waves with a wavelength of 400 nm     
 

Fig. 2.7 shows the morphology of nanostripes induced by linearly polarized light at a wavelength of 

400 nm of 50 fs pulses.  The double frequency is generated by a type I BBO crystal. The remaining 

800 nm light in the 400 nm output light was removed by a BG40 bandpass colored glass filter 

(THORLABS INC, FGB37S). For this filter the transmission is over 40% for the band of 330 nm -

600 nm. The transmission at 400 nm is over 92%. Wavelengths over 700 nm are cut off. Due to about 

10% transferring coefficient of a BBO type I crystal, the incident energy was reduced to 30 μJ/pulse. 

It is obvious that the nanostripes move into the central area due to the decrease of laser intensity and 

regions II-VI disappear. It is evident that these nanostripes are oriented parallel to the magnetic field 

direction.  

400 nm 

100 nm

 

20 um 

 
Fig. 2.7. SEM morphology of HOPG irradiated by linearly polarized fs laser at 400 nm and 50 fs of 

pulse width. The arrow indicates the polarization direction. 
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   Furthermore, the spacing is only 30-50 nm, 1/13-1/8 of the incident laser wavelength, λ. This ratio 

clearly coincides with that obtained at the incident wavelength of 800 nm. Hence, one can conclude 

that the direction of the nanostripes is determined by the polarization while the spacing is correlated 

with incident wavelength. However, the present nanostripes cannot be explained by the interference 

model (Zhou et al. 1982, Sipe et al. 1983, Young et al. 1983), in which the minimum spacing is only 

half of incident wavelength. The thermal surface capillary wave cannot explain our results, either, 

since the orientation direction must be taken into account in such a mechanism (Bugaev et al. 1986, 

Akmanov et al. 1985). In addition, self-organization can also be ruled out since experiments show 

that the orientation and spacing as a function of incident laser is well established and repeatable. Such 

a relationship is not determined by the size, shape and other morphological features of carbon 

nanoparticles and nanoribbons.  It is certainly difficult to relate nanostripe orientation to polarization 

in self-assembly model and Boson condensation. This allows us to rule out the possibility of 

nanostripes originating from these processes.  

Comparing experiments to the theoretical culcalation according to the capillary instability, it is 

evident that the calculated spacing value of nanofilaments, d = λ/m with m=6-7 for liquid carbon 

(Downer et al. 1993) is significantly larger than the observed stripes with a spacing d = λ/13 to λ/8. 

This indicates that the capillary instability can not account for the present nanostripes. 

  

2.3.5 Optical orientation mechanisms         
 

Previous studies have shown that fs laser irradiation can result in ulstrafast phase transitions in the 

HOPG surface (Hu et al. 2007b). In the edge area of irradiation where the laser intensity is relatively 

weak the dominant binding component is sp3-bonded carbon as a consequence of sp2-sp3 high 

temperature and high pressure phase transition (Hu et al. 2007d). It is reasonable for us to identify the 

nanoribbons in Fig. 2.3a, Fig. 2.4a and nanoparticles in Fig. 2.6a are nanocrystalline diamond. 

According to recent studies, vacancy defects in nanodiamond can attribute a ferromagnetic moment 

(Talapatra 2005) and the high concentration of dangling sp3-bond in the nanodiamond surface can 

induce a giant Pauli-like paramagnetic moment by forming alternative chains –C=C-C=C- due to 

surface reconstruction (Osipov et al. 2006).  Fe impurities which are present in HOPG can also be 

incorporated into the surface of nanodiamonds giving rise to a ferromagnetic moment. For a 50 fs 

laser pulse at an energy of 200 μJ/pulse (for a 120 fs pulse at an energy of 400 μJ/pulse), an 
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instantaneous magnetic peak field of 50 T can be generated in a focus size of 50 μm. Such a strong 

field should easily line up magnetic nanocarbon particles.  

    Since the ionization is involved in the ablation procedure, it is reasonable to assume the surface 

species are charged. Thus an electronic orientation effect of fs pulses should be taken into account. 

Because graphite is a semi-metal and its surface is exposed to vaccum (or a dielectric medium), a 

surface plasmon can be induced by the incident laser (shown in Fig. 2.8).  The displacement of 

charged carbon spicies can be directly driven by such a surface plasmon mode.  

 
Fig. 2.8. Surface plasmon modes induced in the vicinity of metal-dielectric interfaces. 

 

To understand the origin of nanospacing we consider the propagation of surface plasmon in liquid 

carbon/vaccum interface. The velocity of surface plasmon can be written 

n
cv =   = fp d  

where fp and d are the frequency and wavelength of surface plasmon, c is the velocity of light, and n 

is the index of refraction.  Because the surface plasmon is the resonant excitation of the incident light, 

one can express the plasmon frequency, fp as 

 

inp mff =  

 

with the frequency of the incident light, fin and the integer m = 1, 2, 3,… For m =1, the theory gives a 

similar result as the capillary instability (Bugaev et al. 1986, Akmanov et al. 1985).  For m = 2, one 

can easily find  
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With n = 5-7 of liquid carbon at the concerning incident wavelength (Taft and Philipp 1965), one can 

find d = λ /10 to λ /14, well coinciding with present experiments. It is important to mention that the 

present model indicates that these nanostripes are not pulse width-dependent rather a incident 

wavelength. This explains why we obtain the similar nanopatterns in two kinds of laser. Besides,  the 

strong second-harmonic generation has been observed in the rough metallic nanoparticle surface 

(Chen et al. 1983).  Hence, further experiments to observe the second harmonic radiation can help to 

clarify the proposal mechanism. Finally, optical orientation due to both magnetic and electronic effect 

of fs pulses is illustrated in Fig. 2. 9. 

B

Magnetic mechanism 

Electrical mechanism 
B 

E

S

 
Fig. 2.9. Possible mechanisms involved in optical orientation to produce nanostripes. Upper panel: 

magnetic carbon nanoparticles are directly oriented by the pulsed magnetic field. Lower panel: 

charged carbon nanoparticles become oriented by excitation of a surface plasmon. The horizontal 

arrows indicate the direction of displacement of charged carbon nanoparticles. Particles are 

concentrated at the zero field value of electrical field intensity (also see Fig. 2.8) .  
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 2.4. Surface phase transition and synthesis of sp-bonded carbon chains 

 

Fig. 2.10 shows the morphology of HOPG in the vicinity of the laser focus after irradiation with 25 

overlapping 120fs pulses at energy of 700 μJ /pulse. The central crater of 50 μm in diameter is 

surrounded by an outer region with less ablation. Such two-area irradiation features are found in the 

energy range of 700 μJ/pulse-150 μJ/pulse.  These two areas as a function of pulse energy are shown 

in the inset in Fig. 2.10. At a given pulse energy we find that these two diameters are unchanged after 

3-60 pulses, indicating that incubation effects are not important in determining the size of fs ablation 

(Lee et al. 1988).  The inset in Fig. 2.10 shows condensed liquid droplets on the crater wall, indicating 

that melting of carbon occurs during ablation. 

 

20 μm

200 nm 

 
Fig.2.10. SEM micrographs of highly oriented pyrolytic graphite after irradiation with 25 overlapping 

120 fs 700μJ laser pulses at a wavelength of 800 nm. Inset:  SEM image of the wall of the central 

crater.  

 

     Fig. 2.11 shows the ablation depth (L) per pulse verse incident fluence. It is apparent that L can be 

described using a two-temperature model, , with α)/ln(1
thFFL −= α -1 is the electronic thermal 

penetration depth and Fth the damage threshold (Nolte et al. 1997). The best fit yields α-1 = 139 nm 

and Fth = 0.41 J/cm2.  These data are significantly larger than the measured optical penetration depth 

of 33 nm at a wavelength of 620 nm (Reitz et al. 2001) and the ablation threshold of 0.18-0.25 for 

HOPG (Shirk and Molian 2001). This is primarily due to the present ablation occurring at higher 

incident fluence.  
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Fig. 2.11. Ablation depth per pulse as a function of incident fluence. The solid line corresponds to a 

two-temperature model. Inset: Measured area vs. pulse energy for the central crater (squares) and the 

weakly ablated surrounding region (circles). 
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Fig. 2.12. UV Raman spectra of material within the central crater and far away from this region after 

fs irradiation.   
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   Fig. 2.12 presents Raman spectra recorded at 325 nm of irradiated HOPG within the area of the 

crater. It is long known that the feature centered at 1570 cm-1 originates from the stretching mode of 

graphite (G band). The enhanced band at 1900-2300 cm-1 can be identified with sp-bonded carbon 

chains (Ravagnan 2002, Casari 2007). The presence of sp3- bonded species is also indicated by the 

appearance of a T-band centered at 1050 cm-1 (Ferrari and Robertson 2001). Although roughly 10% 

of sp3-bonded components can be estimated from the ratio of T/G bands there are no models available 

that permit the deduction of the remaining sp and sp2 concentrations from Raman spectra of a 

material containing three types of carbon bond (Hu et al. 2007b, Ferrari and Robertson 2001), since sp 

and sp2 cross sections are structure dependent and are governed by the sp chain length distribution 

and clustering of sp2 network.  

    Although sp-bonded chains are more stable when they are formed in high vacuum (10-7 Torr), little 

change in UV spectra is observed after a one-month exposure to air. This enhanced stability of sp-

bonded chains may arise because chains are pinned by bonding to sp3 components (Hu et al. 2007b). 

Meanwhile, irradiation at 10-6-10-5 Torr displays a dramatic decrease of the sp bonded carbon 

concentration. This is in accord with previous experiments, where, it is reveiled that the sp-bonded 

carbon chains oxidized or graphitized by cross-linking as exposing to dry air (Casari et al. 2004).  

283 284 285 286 287 288 289
0

1000

2000

3000

4000

5000

6000

282 285 288
0
1
2
3
4

  

 

 Raw
 sum
 sp3
 sp2
 spIn

te
ns

ity
 (a

.u
.)

BE (eV)

 
 

In
te

ns
ity

 (c
ps

)

B inding Energy (eV)

crater

virgin

 
Fig. 2.13. X-ray photoelectron spectra of C1s lines measured within the irradiated crater and an 

unirradiated region. Inset: deconvolution of C1s line of irradiated crater with sp, sp2 and sp3 binding 

energy at 283.5 , 284.4  and 285.2 eV, respectively. 
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   As shown in Fig. 2.13 local binding state transformations are also apparent in XPS spectra of C1s 

line for material in and outside the irradiated areas. An extended C1s lineshape with a tail shifting to 

lower binding energy in the central irradiated region is a fingerprint of the presence of carbynes (Hu 

2007c). The deconvolution of the C1s line (Fig 2.13) in the irradiated region shows that the sp, sp2 

and sp3 fractions in the central area are 0.3, 0.6 and 0.1, respectively (Haerle et al. 2001).   

   Fig. 2.14 shows SERS features associated with specific molecular groups. These features do not 

arise from contamination since they are absent in the SERS spectra of unirradiated areas (Virgin 

curve) (Otto 2002). SERS spectra of the central irradiated area show that peaks at 1960 and 2095 cm-1 

can be identified with cumulenes, (C=C)n.and polyynes, (-C≡C-)n, respectively (Ravagnan et al. 2002, 

Lee et al. 1988). The presence of a diamond component can be seen in the lightly ablated area, which 

displays a band at 1260 cm-1 due to tetrahedral carbon (Beeman et al. 1984) and another at 1280 cm-1 

corresponding to 
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Fig. 2.14. Surface enhanced Raman spectra of a crater, in the weakly ablated region and for pristine 

HOPG surface recorded at 632 nm.   
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scattering by nano-diamond at the L point (Roy et al. 2002). Trans-polyacetylene chains having 

different lengths are identified by the presence of several modes at 1150, 1190 and 1450 cm-1 (Hu et 

al. 2007b, Lopez-Rios et al. 1996). Different SERS modes dependent on laser intensity agree with 

theoretical calculation and experiments showing that bonding in liquid carbon progresses from sp to 

sp3 with increasing liquid density (Wang and Ho 1993, Johnson et al. 2005).      

   Further evidence for a phase transition can be found in Fig. 2.15, in which the microhardness is 

measured by a nanoindenter. Unirradiated HOPG surface yields a value of 2.6-2.8 GPa, while a 

higher value (4-6 GPa) is found in the edge (region I) where nanodiamonds are synthesized. In 

contrast, in the central valley of the crater, the hardness is only 240 MPa, indicating the presence of 

amorphous carbon. It is worth noting that the hardness of pyrolytic carbon can be as low as 75-80 

MPa (Oberlin 2002). This suggests that the melted carbon in the central irradiated area involves a mix 

of 
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Fig. 2.15 Load-displacement curves measured by a nanoindenter at different positions on irradiated 

HOPG. “Pristine” stands for unirradiated HOPG surface. Edge: irradiated areas where nanodiamonds 

are synthesized. Center: central crater. 
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different types of carbon bonds. A low concentration of sp3-bonded carbon can still dramatically 

enhance the local hardness. 

   In the crater, the incident fluence is so strong that the thermal effect significantly results in much 

liquid (evident in Figs. 2.3c and Fig. 2.4d). As a result, an abundance of sp-bonded chains is readily 

generated.  Meanwhile in the lightly-ablated area outside the central crater the thermal effect is almost 

absent at lower fluence. Material removal is due to coulomb explosion and photodissociation favoring 

the formation of nanodiamond in a shock wave.  Some trans-polyacetylene phase may also be created 

during this process. The two-temperature model can further explain the electronic thermal penetration 

depth α-1 obtained from the fit in Fig. 2.11 (Nolte et al. 1997). According to the thermal diffusion 

length , where  is the thermal diffusivity, τ is electron relaxation time, 2/1)( aDl τ= τν 2)3/1( FD ≈

e

ion
a M

M
ττ = electron-lattice interaction time, υF = 8 x 105

 m/s, the Fermi velocity, assuming τ =2 fs 

(Johnson et al. 2005), one can deduce l =134 nm, which agrees with the experimental value of 139 

nm.    

    

2.5. Conclusions 
 

fs laser pulses have been used to generate very fine nanostripes having a spacing of 1/13 to 1/8 of an 

incident wavelength. Experimetns unveiled that the spacing of nanostripes are not a function of pulse 

energy. It is not sensitive to the laser pulse widths by comparing 120 fs and 50 fs pulses. Such narrow 

stripes cannot be explained by presently available theories. By varying polarization and incident 

wavelength, it has been found that the presence of nano-stripes can be correlated with the extremely 

high magnetic fields generated by fs pulses. As a consequence of surface plasmon excitation, narrow 

nanostripes may be also attributed to the electronic orientation effect of the second harmonic 

resonance generated in the interaction. 

   It has been shown that local phase transformations on the surface of graphite are strongly dependent 

on the incident fs pulse fluence. A variety of carbon species including carbyne and trans-

polyacetylene chains have been detected in addition to regions containing nano-diamond structure. 

This work reveals the potential of fs surface engineering for future applications. 
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Chapter III 
Optical and micro-structural properties of diamond-like carbon 

films grown by nanosecond pulsed laser deposition 
 

3.1. Introduction 
 

Diamond-like carbon (DLC) films, deposited by nanosecond laser ablation (ns-PLD) of graphite, 

usually contain a high proportion of sp3 – hybridized C bonds together with a relatively low 

concentration of sp2 – hybridized bonds. These materials exhibit a wide range of mechanical, 

electronic, and electrochemical properties and are thus promising for applications involving the 

formation of protective coatings for magnetic recording disks and optical devices as well as in the 

development of field emission components for vacuum microelectronic devices (Robertson 1991; 

Voevodin 1996; Lifshitz 1996). DLC films having high sp3 content deposited in the absence of 

hydrogen are also known as tetrahedral amorphous carbon (ta-C) (Wang 1993, Donadio 1999).  The 

hydrogenated analog of tetrahedral amorphous carbon is ta-C:H and often has a low C-C sp3 bond 

content and very low hardness (Roberston 1991, 2002). In this chapter we discuss some properties of 

ta-C prepared by nanosecond laser ablation in the absence of hydrogen. It has been shown that the 

mechanical properties of ta-C are mainly determined by the concentration of sp3 – bonded C-C 

species, while sp2 sites govern optical and electrical properties (Pappas et al. 1992; Chhowalla et al. 

2000; Ferrari and Robertson 2001). It is likely that, in a sp3 – dominated material such as ta-C, 

clustering of the sp2 phase and the orientation of this phase in the sp3 matrix, are the most important 

parameters in determining the overall properties of DLC films.  Hence, a microscopic picture of the 

structure of ta-C and its relation to optical and mechanical properties is of interest.  

   It has been found that the energy of C ions during PLD of DLC films, together with the substrate 

temperature, are two major parameters that determine the relative concentration of sp2 and sp3 bonded 

C species in these materials (Pappas et al. 1992; Chhowalla et al. 2000, Prawer et al. 1996, Cuomo et 

al. 1991, Fallon et al. 1993). While there have been numerous investigations into the properties of 

films deposited at temperatures up to 1300oC (Chhowalla et al. 1997, Sattel et al. 1997, Kalish et al. 

1999, Ferrari et al. 1999), there are only a few studies on the properties of films deposited at 

cryogenic temperatures (Pappas et al. 1992, Cuomo et al. 1991).  Since the energy of C ions in 

excimer laser ablation is typically 10-40 eV (Duley 1996, Pappas et al. 1992), PLD can be considered 



 

  42
 

to be an energetic process compared to plasma deposition.  The temperature of the substrate is then 

expected to be especially important in determining the overall structure of these deposits. To date 

there appears to be no systematic characterization of microstructure in ta-C films deposited via PLD 

at cryogenic temperatures. In this chapter, the structure of ta-C films deposited at 77K and at higher 

temperatures up to 573K is discussed. We report the appearance of a novel nano-sized grain-

assembled structure in ta-C films deposited at 77K. The relaxation of stress in these films and the 

morphology of the structures that result from this effect has been examined.  

   This work also provide a comparative study for understanding the deposition of diamond-like 

carbon films deposited by femtosecond pulsed laser ablation. 
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3.2 

ll depositions were carried out in a vacuum chamber at pressures between 5 x 10-7 and 6 x 10-6 Torr.  

o-Raman spectrometer with a 50x objective and 

3.3. Experimental results    

3.3.1 UV-NIR spectroscopy 

The characteristic optical band gap, Eg, in amorphous semiconducting films can be obtained from the 

absorption coefficient α from a Tauc plot (Tauc et al. 1966). The absorption coefficient α can be 

evaluated using the expression of , where R is the reflectance and T = I/Io is the  

 Experimental 

 
A

Fig. 3.1 shows the experimental setup with a high vacuum chamber for film deposition. A high purity 

pyrolytic graphite rod was used as the ablation source and this was rotated during deposition to ensure 

a constant ablation rate. Deposition occurred on a fused quartz substrate oriented almost parallel to 

the target at a distance of 4.5 cm. This could be heated by conduction or cooled to liquid nitrogen 

temperature. The substrate temperature was measured by a Cu-constantan thermocouple in contact 

with the substrate holder. DLC films were deposited at 573 K (300oC), 298 K (room temperature 

25oC) and 77K (LN2) and the ablation source was a XeCl excimer laser (308 nm, 30 ns) operating at a 

repetition rate of 15 Hz. The incident laser intensity was 3 x 108 W/cm2 corresponding to a fluence of 

9 J/pulse.cm2 at the target surface. The area of the focal spot was ≈ 0.03 mm2. To avoid the formation 

the moisture on 77K films after the deposition we keep the high vacuum till the temperature reaches 

room temperature. The UV/VIS spectrum was monitored during deposition using an Ocean Optics 

spectrometer (HR4000 CG) and a deuterium lamp.   

   Raman spectra were recorded by a Renishaw micr

using an excitation wavelength of 633 nm and a power of up to 3mW. The spectral resolution was 2 

cm-1 and the laser beam spot size on the target was 5 μm at full laser power. The Raman spectrometer 

was calibrated by the 520 cm-1 line of Si. single crystal. XPS measurements were carried out using a 

Kratos Ultra photoelectron spectrometer with a monochromatic Al Kα 1486.6 eV X-ray source. The 

spectrometer was calibrated by Au 4f1/2 (BE of 84 eV) with respect to the Fermi level. Microstructure 

characterization was performed with optical microscopy, scanning electron microscopy (Leo SEM) 

operating at 15 KV and a commercial atomic force microscope (AFM).    
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Fig. 3.2 Tauc plot of (αhν)1/2 versus photo energy hν for three typical films deposited at 77K, 

298K and 573K respectively. The solid line is a linear fit over the energy range from 2 - 4 eV. 

 

tran

stud itu 

ith varying thickness in order to neglect the reflectance. Fig. 3.2 shows Tauc plots at different 

rgy (0.35 eV), while the gap energy is 1.27 eV and 0.95 eV for films 

deposited at 298K and 77K, respectively.  

    It is well known that the optical band gap of DLC films is controlled by the sp2/sp3 ratio, the level 

of impurity/doping and microstructural properties (Scheibe et al. 1994, Fonlani et al. 2003, Adhikary 

smittance, which can be measured by UV/VIS/NIR spectroscopy, d is the film thickness (in this 

y about 150 nm for 20000 pulses measured with AFM). We measure the transmittance in-s

w

substrate temperatures. The optical band gap Eg can be deduced from the extrapolation of the linear 

part of the curve at α = 0 ,  

)()( 2/1 ννα hEBh g −=  

where B is the density of localized states and hν is photon energy.  The film deposited at 573K 

displays the lowest gap ene
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ree films deposited at different substrate temperatures. The 

Raman spectrum of the quartz substrate is also shown for comparison and indicates that features 

between 200 and 500 cm-1, arise from quartz. The well-known broad Raman band near 1500 cm-1 can 

e G and D peaks associated with scattering from sp2 sites.  The 

weak feature near 2900-1 cm-1 can be attributed to second-order scattering (Nemanich 1979).  

     

et al. 2005). The effect of these terms can be characterized using Raman/XPS spectrometry and by 

observation of the film microstructure. 

 
3.3.2 Raman/XPS spectra    

 
    Fig. 3.3 shows Raman spectra for th
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Fig. 3.3 Raman spectra of amorphous carbon films deposited at different temperatures. Inset: 

normalized D/G band 
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Fig. 3.4 Analysis of Raman spectra for (a) 598K films (b) 298 K films. The solid line corresponds 

to a theoretical fit. The G peak is fitted with a BWF function. In (a) the D peak is fitted with a 

Lorentzian line. 
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    The inset in Fig. 3.3 shows the normalized D/G band for three different films. Clearly the FWHM 

(full width at half maximum) of the D/G peak  is smaller in spectra of films deposited at 77K and 

298K than in films deposited at 573K. Obviously a narrower Raman feature corresponds to a more 

transparent film. The D/G band width is known to be a function of laser ablation energy (Siegal et al. 

2000) and deposition energy (Prawer et al. 1996) so the width of these features can be correlated to 

the sp2/sp3 bond ratio.   

   Spectral fits to the D/G peak are shown in Fig. 3.4 with a Breit-Wigner-Fano (BWF) profile for the 

G peak and a Lorentzian function to fit the D peak (Ferrari and Robertson 2001, Prawer et al. 1996). 

We find that a BWF fit to the data in Fig. 3.4 (b) gives Q = - 6.1, ωo = 1503 cm-1 Γ = 310 cm-1, where 

Q  ,ωo and Γ are respectively a coupling coefficient, the peak position and the full width at the half 

maximum (FWHM). A combined BWF/Lorentzian fit to the Raman profile of the film deposited at 

598K (Fig. 3.4 a) yields Q = - 5, ωo = 1533 cm-1 and Γ = 260 cm-1, with a Lorentzian centered at 1302 

cm-1 representing the D line. The I(D)/I(G) ratio in this film is 0.28. These data indicate that both 77 

nd 298K fil  20% sp3 

onded carbon (Ferrari and Robertson 2001, Prawer et al. 1996). This is compatible with the 

xistence of a phase transition from ta-C to a-C near 520K (Pappas et al. 1992, Chhowalla et al. 2000) 

bove which a-C becomes the dominant structure. 

a ms contain more than 70% sp3 bonded carbon while the 598K film has less than

b
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ig. 3.5 XPS spectra of the C1s line for amorphous carbon films deposited at different temperature. 

he inset shows the deconvolution of the C1s peak in a 298K film. 
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 is consistent with an a-C structure in this material.   It is worth noting that 

xposure to air because it can be removed by Ar-ion 

surface treatment. However, it may indicate a surface activation of 77K films since this band does not 

appear in spectra of the other two films.        

 
3.3.3 Microstructure 

 
Fig. 3.6 shows typical SEM images of films deposited at 77 and at 298K. It is apparent that 

temperature has a profound effect on structure as the film deposited at 77K consists of nanometer 

clusters embedded in a granular matrix, while films deposited at 298K are basically free from 

granular structure even at high resolution although C clusters are occasionally found on the surface of 

films deposited at 298K. Chemical compsotion analysis by the local energy dispersive X-ray spectra 

(EDAX) shows that these are C particles due to a “splashing” mechanism occurring during PLD 

(Singh et al. 1990). Films deposited at 598K have a similar morphology to those deposited at 298K. 

   At the Raman excitation wavelength of 632 nm the G peak in 77 K and 298K films shifts to 1503 

cm-1, about 50 cm-1 lower in energy than when excitation occurs at 514.5 nm (Ferrarri and Robertson 

2001). This result agrees with previous studies on ta-C films (Ferrari and Robertson 2001, Wagner et 

al. 1989). The dispersion of the G peak arises from the presence of disordered carbon and is smaller 

in a-C than in ta-C (Ferrari and Robertson 2001). We observe the G peak at 1533 cm-1 in films 

deposited at 598K. This

electron-energy-loss spectroscopy (EELS) is the direct tool to evaluate the sp3/sp2 ration. However, 

considering EELS as a destructive and time-consuming method we choose XPS as a complementary 

analysis to estimate the sp3 content.   

   Fig. 3.5 shows C 1s spectra of amorphous carbon films deposited at three different temperatures. 

The inset shows the deconvoluted XPS spectrum of the film deposited at 298 K film. Each individual 

peak is comprised of a combined Gaussian and Lorentzian profile. These are centered at 284.4 and 

285.2 eV corresponding to sp2 C-C and sp3 C-C bonds, respectively. The sp2/sp3 ratio can be obtained 

from ratio of the strength of the two components (Merel et al. 1998, Diaz et al. 1996). This 

calculation yields 72, 68 and 20% sp3 in 298, 77 and 573 K films, in agreement with the estimate of 

this ratio from Raman spectra. Note that a band attributable to C-O appears at 286.5 eV in films 

deposited at 77K. This oxygen is certainly due to e

Images of 77K films show that the largest clusters, typically having a size of ≈ 0.5 μm, are assembled 
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from a collection of many nm particles. The matrix in these films consists of a range of additional 

clusters having sizes ≤ 100 nm.   

 

 

          

 
Fig. 3.6 SEM micrographs for (a) 298K films and (b) 77K films. 

(b) 

 

1 μ m 

(a) 

 
500 nm 
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nm. Films deposited at 77K appear to have been assembled from 

grains with sizes ≤  40 nm. Furthermore, these grains preferentially aggregate into large clusters with 

sizes of ≈ 0.5 μm.  Fig. 3.7 (c) and (d) show sample roughness along the straight lines in Figs. 3.7 (a, 

b), respectively. It is evident that 298K films are atomically flat except for a few particles attached to 

the SEM images (Fig. 3.6 (a)). The large 

 
 

   Fig. 3.7 shows AFM images recorded in tapping mode. It is found that no substructure exists in 

298K films at a resolution > 10 

surface. These particles are the same as those observed in 

clusters observed in 77K films are about 35 nm in height.  
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Fig. 3.7 Surface characterization of ta-C films by AFM. (a) 298K film. (b) 77K film.The solid 

line displays a roughness analysis depicted in Fig. 3.7 (c). The solid line displays a roughness 

 

analysis depicted in Fig. 3.7 (d). 
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Apparently, microstructure of this kind has not previously been observed in cryogenic films (Pappas 

et al. 1992, Cuomo et al. 1991). 
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Fig. 3.8 X-ray diffraction patterns measured with Cu-Kα radiation.  

 

     Fig. 3.8 shows XRD patterns of carbon films deposited on silica at room temperature (298K). The 

dominantly extended peaks correspond to SiO2 from the substrate. A very weak peak near 44o can be 

assigned to cubic diamond (111) plane with a space group of Fd3m and lattice parameter of 3.56 Å. 

Similar XRD patterns are obtained for cryogenic and 573K films. It is long kown that the loss of 

long-range crystalline orders and the light carbon atomic mass may result in the weak XRD patterns 

of carbon films depositied by ns PLD. This confirms that the present film is amorphous. To 

characterize nanostructured carbon films, a high resolution XRD with the glazing angle can be an 

effe

 

 

ctive method.  
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The clusters that appear in the images of Figs. 3.6 (b) and 3.7 (b) appear to constitute the building 

blocks of the resulting films. They are, in turn, aggregates of smaller (<40 nm) grains.  These clusters 

are of mixed sp2 / sp3 composition as evidenced by the similarity between Raman spectra of 77 and 

298K deposits. This indicates that the Raman spectrum is determined primarily by the composition of 

the smaller grains, rather than by that of the larger clusters. Further Raman study with UV laser 

excitation may clarify this point, since shorter wavelength excitation will probe closer to the surface.   

   The deposition of ta-C can be understood in the context of a sub-plantation model (Robertson 

1993). In the present study, the average C ion energy, as inferred from Raman spectra, is about 20-30 

eV (Duley 1996).  A large compressive stress thus occurs due to a plastic deformation of the surface 

by ion bombardment. This internal stress can be released by post-annealing (Ferrari and Robertson 

1999b), Cu/Ti doping (Siegal et al. 2000) or local structure clustering (Angus et al. 1988, Cary et al. 

2004). Mercer et al (1998) have reported that nano-particles of about 100 nm can successfully be 

created by local electric stress induced by a scanning tunneling microscopy tip.  Siegal et al. (2000) 

also showed that annealing to 600oC results in the creation of a-C nano-composites in DLC films. 

Apparently, deposition at low temperature produces additional thermal stress compared to deposition 

at room temperature. It is possible that this thermal stress may encourage the ordering of nano-sized 

clusters during deposition. 

    F  that the sp2/sp3 ratio governs 

the optical band gap of the DLC films produced in this set of experiments. The lower band gap energy 

 

 

3.4. Discussion   

 

rom an analysis of the optical band gap energy, it can be concluded

in films deposited at 77K compared to those deposited at 298K, indicates that there is enhanced 

coupling between sp2 clusters through the sp3 bonded matrix. This property is further studied using 

transport measurements.      

    Finally, it is important to point out that cryogenic grain-assembled ta-C films are of interest in 

tribological applications (Voevodin 1995).  Currently a nanoscale roughness modulation of ta-C films 

can be created by deposition on Ni-nano-dots (Lee et al. 2003, Park et al. 2005). Our results show that 

such a surface is naturally present in the present cryogenic films.  
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3.5. Conclusions  

Optical and microstructure properties of diamond-like carbon films have been investigated at 

deposition temperatures between 77 and 598K. Raman/XPS analysis shows that tetrahedral 

amorphous C films were obtained at 77 and 300K while amorphous C films with predominant sp2 

bonding are obtained on deposition at 598K. Nano-structured cryogenic films with embedded 

submicrometer clusters have been produced, likely induced by the enhanced internal stress on 

deposition at cryogenic temperatures.  
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Chapter IV 
Sub-micron cryogenic graphitization and buckling of tetrahedral 

films having relatively low concentrations of sp2 bonds in an 

p3 bonded matrix are regarded as promising materials for ultrahard coatings and microelectronic 

pplications. These applications are possible because the physical and chemical properties of these 

materials can be controlled by changing the sp2/sp3 bond ratio (Robertson 2002, Grill 1999). It is 

found that the sp3 phase governs the optical band gap and yields a high hardness and transparency 

sim r to diamond while the presence of sp2 nanoclusters acts to modify the electrical conductivity 

and local electron affinity. For cold cathode applications and planar displays, sp2 bonded species in 

ta-C have been shown to play a critical role in facilitating low field emission (Talin et al. 1996, Ilie et 

al. 2000). With regard to tribological properties, the presence of nanoscale undulation due to sp2 

bonded species on the surface of ta-C has been shown to dramatically suppress tribochemical 

reactions resulting in stable friction behavior (Park et al. 2005). These studies suggest that further 

work on clustering and segregation of the sp2 phase in sp3 bonded matrix is of fundamental 

importance.    

   Theoretical calculations predict that clustering of sp2 bonds diluted in a sp3 bonded matrix is 

favored energetically (Wang and Ho 1993, Marks et al. 1996, Schultz et al. 1999). However, this does 

not imply that there is any preference for the growth of large graphite-like grains. The Tuinstra-

Koenig (TK) relationship shows that the average size La of graphite clusters can be obtained from 

(1/L ) ∝ (I1355/I1575) = (ID/IG), the intensity ratio of the Raman D and G bands (Tuinstra et al. 1970). 

This analysis shows that the typical size of sp2 clusters is ≈ 1-2 nanometers in ta-C (Ilie et al. 2000, 

Ferrari and Robertson 2000). Although there is some uncertainty whether or not the TK relationship 

can be applied to describe the properties of ta-C (Schwan et al. 1996), the direct observation of these 

sp2 clusters by scanning tunneling microscopy yields a similar size (Carey et al. 2004). It is well-

known that high temperature annealing can induce the coarsening of sp2 clusters, however, only 3-5 

nm 2 clusters have been identified by transmission electron microscopy in 600oC ta-C films (Siegal 

amorphous carbon films 

 
4.1  Introduction 

 

Tetrahedral amorphous carbon (ta-C) 

s

a
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et al. 2000). However, the formation of  ta-C films with large stress gradients 

induced by a scanning electron microscopy et al. 1998). In addition, 

Bo n 

films at high helium pressure. T hat these large clusters are sp2 

onded. It is then of interest to see if micrometer-sized graphite-like grains can be fabricated in ta-C 

nal techniques. 

d ta-C films containing embedded submicron graphitic 

grains can be produced on quartz substrates at 20 – 100K using pulsed laser deposition (PLD). Our 

lsewhere (Hu et al. 2007a). The substrate was heated to 300 C by conduction from a 

source. The spectrometer was calibrated by Au 4f1/2 (BE of 84 eV) with respect to the Fermi level.  

 100 nm sp2 clusters in

 tip has been reported (Mercer 

lgiaghi et al. (2005) have reported the growth of micrometer scale glass-like clusters in carbo

here is, however, no clear evidence t

b

films using conventio

   In this chapter, I show that nanostructure

study finds that these materials have a number of unique properties including enhanced surface 

chemical activation.   

 

4.2  Experimental details 
 

 The films were deposited at temperatures between 20 and 573 K on cleaned fused quartz (silica) 

substrates. The vacuum chamber was evacuated using a turbo pump to pressures in the 2 x 10-6 Torr 

(2.66 x 10-4 Pa) range. High purity pyrolytic graphite (99.99%) was ablated with XeCl excimer laser 

radiation (λ=308 nm, pulse duration τ = 30 ns, repetition frequency 15 Hz, incidence angle 45o). The 

incident laser intensity was 3 x 109 W/cm2 corresponding to a fluence of 90 J/pulse.cm2 at the target 

surface. The area of the focal spot was ≈ 0.03 mm2. Further details on the deposition system have 

been reported e o

resistive element. Low temperatures were obtained by cooling with liquid nitrogen and by using a 

refrigerator (CTI-Cryogenics). The temperature was measured by a thermocouple attached to the 

substrate. Film growth was monitored in-situ with a UV-NIR spectrometer enabling control of 

absorbance. Film thickness as measured by the AFM was typically 250-300 nm (Hu et al. 2007a). 

   Microstructure characterization and nanohardness measurements were carried out with a 

commercial atomic force microscope (AFM) with a Si3N4 tip.  Resonant Raman spectra were 

examined by a Renishaw micro-Raman spectrometer with 10 mW He-Ne laser at an excitation 

wavelength of 633 nm (red) and with a Kimmon 5161R-GS Raman spectrometer using He/Cd laser 

radiation at 442 nm (blue) and 325 nm (UV). To avoid excessive heating of the carbon sample, 10% 

power was used at 325 nm and 50% power was used at 442 nm. XPS measurements were carried out 

using a Kratos Ultra photoelectron spectrometer with a monochromatic Al Kα 1486.6 eV X-ray 
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ica disc after ultrasonic cleaning in acetone and then in reagent 

 

4.3  Results and Discussion 
 

4.3.1 Microstructure  characterization  
 

Fig. 4.1 (a) shows the surface of a sil

alcohol (both HLPC grade) for 10 minutes. Surface roughness of the clean silica substrate is shown in 

Fig. 4.1(d). Apart from a few depressions, the substrate is smooth to less than 1 nm. Fig. 4.1 (b) 

shows the morphology of a ta-C film deposited at room temperature (RT). These deposits are 

 
Fig. 4.1. AFM images of (a) clean quartz, (b) ta-C films deposited at room temperature 

(RT=25oC, 298K) and (c) ta-C films deposited at 20-100K (cryogenic films). The surface 

roughness along a straight line is shown in Fig. 4.1 (d). 
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 4.2 SEM Micrographs of embedded submicron grainFig. s in nanostructure diamond-like carbon 

films. These images are taken at the same position with elevated magnifications. 
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amorphous and except for a few particles on the surface, the roughness measurement indicates that 

room-temperature films are atomically flat. This is a typical feature of ta-C films.  

   Compositional analysis, measured by energy dispersive spectroscopy, shows that the nanoparticles 

on the ta-C surface are carbon, and probably originate from a laser “splashing” mechanism during 

deposition (chapter 3). It was found that films deposited at 573K have a similar surface structure as 

that of the room temperature films (Hu et al. 2007a). Furthermore, films grown at 20-100 K possess 

similar morphologies. Fig. 4.1 (c) shows an AFM micrograph of a cryogenic film. It is assembled 

from nanoparticles having an average size of 40-50 nm. These nanoparticles further aggregate to form 

submicron grains with typical sizes of 0.4-0.5 μm. Fig. 4.1(d) shows that these grains are about 30-40 

nm in height, and introduce surface modulation into cryogenic films. Although nanostructured ta-C 

films have been seen before (Carey et al. 2004, Siegal et al. 2000, Mercer et al. 1998), there are few 

reports of nanoparticle-assembled micrometer grains embedded in the ta-C matrix (Bolgiaghi et al. 

2005). It is important to point out that the average size of nanoparticles inside the matrix and in grains 

are very similar in our cryogenic films. This is different from the morphology of ta-C films grown 

with various He gas pressures (Bolgiaghi et al. 2005). With He atmosphere, the particles which 

assemble micrometer grains either are quite big, about 1 micrometer in 60 Pa gas pressure, or are 

quite small, less than 10 nm in 250 Pa.   

   Fig. 4.2 shows the detailed SEM images of embedded submicron grains in cryogenic tetrahedral 

amorphous carbon films. It is evident that at a low magnification the distribution of these submicron 

grains is quite uniform with a spacing of ≈ 1 μm. The average size of these grains is 200-500 nm, 

which is in agreement with the AFM observation. With a high resolution SEM images show these 

grains are assembly by nanograins with a size of 20-50 nm. The size variation of these submicron 

grains indicates that they are formed by the segregation of nanoparticles.    

 

4.3.2 Nanohardness 
 

To help understand the composition of cryogenic ta-C films, we have measured the nanohardness 

both inside and outside of grains. Fig. 4.3 (a) shows the measurement configuration. The white points 

in this figure correspond to the measuring positions. Nanohardness is obtained by monitoring the 

deformation (corresponding to a current measured by the deflecting laser) of the AFM cantilever as 

the tip approaches the film, pierces to some depth, and then moves away from the film. This path  
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nes 

correspond to the average deformation estimated using a linear least square fit.   

 
Fig. 4.3 Nanohardness characterization by AFM. (a) AFM image shows the grains selected. The 

white points indicate measured points. Unit: nm. (b) Cantilever deformation of the measured loop 

along AFM tips approaching, then piercing into the film and finally moving away from the surface. 

(c) Deformation gradient of AFM cantilever at individual measured point. Solid and dash li
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corresponds to the cantilever deformation along the loop ABCDEF shown in Fig. 4.3 (b). In this 

measurement, the slope of BC is proportional to hardness. An analysis of these results is shown in 

Fig. 4.3 (c). It is evident that the intergranular hardness is remarkably higher than that inside a grain. 

This shows that graphitic bonding is localized within grains. To further confirm the present results, 

five grains and over 100 points have been measured, all with similar results. Thus it can be concluded 

that submicron grains must possess a higher concentration of sp2 bonded carbon than exists in the 

matrix. Although the absolute value of nanohardness can in principle be obtained by imaging the tip 

shape and calibrating the cantilever deformation, it is expected that both granular and intergranular 

hardness will be less than the bulk value since the present interaction between ta-C and the AFM tip 

is mainly an elastic deformation. It is apparent that there is almost no indentation in Fig. 4.3 (a). 
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Fig. 4.4 Resonant Raman spectra of RT (298K) and cryogenic films. 
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ies is 

about 2 eV while the σ→σ* gap of sp3 atoms is ≈ 5.5 eV, so that excitation at 442 nm (3.56 eV) and 

632 nm (0.5 eV) couples primarily to the π→π* excitation.  It is apparent that there is a blue-shift of 

the D and G bands with decreasing excitation wavelength. This can be explained in term of the π→π* 

resonant Raman scattering of sp2 carbon clusters (Yoshikawa et al. 1988). If we assume there is a 

cluster size distribution of sp2 bonded carbon atoms in the films, it is expected that Raman scattering 

from variable sp2 bonded clusters will show a wavelength dependent resonant enhancement.  

With excitation at 632 nm, the relative concentration of sp3-bonded species can be evaluated by 

deconvolving the D/G band. We find that this concentration is ≈ 70% and 68% for RT and cryogenic 

films, respectively (Hu et al. 2007a). With UV excitation, the concentration can also be estimated 

from either the dispersion of G band or the Raman intensity ratio, IT/IG (Shi et al. 2001). However, it 

is important to point out that the D and G bands produced with 325 nm excitation are unusual. This 

anomaly can be clearly seen in Fig. 4.4.  It is evident that the D and G bands of cryogenic films 

consist of two overlapping features: one broad weak band is similar to that seen in RT films while a 

second peak appears with significantly enhanced intensity. There is then some uncertainty in 

determining the center positions of the D and G bands as well as their widths. The narrow peak at 

1600 cm-1 in cryogenic films corresponds to the well-known E2g stretching mode in sp2 sites (sixfold 

rings or aromatic and olefinic molecules). The enhancement of this peak indicates that there is a 

significant aggregation of sp2 bonded atoms in cryogenic films. This result differs from that reported 

for glass-like grain assembled ta-C films grown in He gas (Bolgaghi et al. 2005) since those film

displayed a Raman  at 1375 cm  

and the G band at 1575 cm . The separation of D and G bands is consistent with a low concentration 

of sp3 bonded atoms (Ferrari and Robertson 2001). Thus resonant Raman spectra of cryogenic films 

4.3.3. Raman spectra  
 

To understand bonding in these ta-C films, Raman spectra have been measured at 632, 442 and 325 

nm. Fig. 4.4 shows Raman spectra for cryogenic films. For comparison, spectra from a RT film and a 

clean quartz substrate at 325 nm (3.8 eV) excitation wavelength are also plotted. In these spectra, the 

band near 800 cm-1 arises from the substrate. The broad band near 1500 cm-1 excited at 632 nm can be 

deconvolved into the G-band at 1570 cm-1 and D-band near 1355 cm-1, corresponding to the 

stretching and breathing modes of sp2 bonded carbon, respectively (Tuistra et al. 1970 and Hu et al. 

2007a). The T-band centered at 1060 cm-1 can be assigned to sp3 bonded species and only appears at 

an excitation wavelength of 325 nm (Gilkes 1997). In ta-C the π→π* gap of sp2 bonded spec

s 
-1 feature similar to that of microcrystalline graphite with the D band

-1
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s in which graphitic grains assembled in a sp3 bonded matrix generate 

two overlapping spectral features, one from atoms in the matrix and the other from those inside 

are indicative of composition

grains. This agrees with the conclusions reached from the results of AFM characterization. Hence, we 

conclude that sp2 bonded atoms significantly segregate and accumulate in the submicron-sized grains. 

This directly contributes to different intragrain and intergranule nanohardnesses. Obviously, the 

origin of graphitization and clustering is worth further investigation. Since the PLD is an energetic 

process with C species of 20-40 eV (Duley 1996, Cuomo et al. 1991, Robertson 1993), this 

graphitization may occur on heating metastable C clusters in DLC films deposited at 20-100K. 

Meanwhile, at room temperature or higher temperatures, energetic C species are more mobile and can 

thus induce the relaxation of internal stress. Apparently, deposition at 20K-100K produces additional 

thermal energy compared to that at room temperature. It is possible that this energy transfer promotes 

the conversion of sp3 to sp2 bonds. Further dynamic stress relief may encourage the ordering of nano-

sized clusters during deposition.  
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Fig. 4.5 XPS spectra for RT and Cryogenic (20K-100K) films. 

 

4.3.4. X-ray photoelectron spectra (XPS) 
 

Novel features in the present assembled nanostructure can be further elucidated by XPS 

characterization. It is found that cryogenic (20K-100K) films display very similar XPS spectra. A 
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p2 ratio is nearly constant in these two types of films, this reactivity 

can be attributed to the submicron grain-assembled nanostructure of cryogenic films. Evidently, there 

are many dangling sp2 bands on the surface of submicron grains, which enhances their affinity for 

oxygen. This property of cryogenic films suggests they may be potentially useful in gas sensor or 

biosensor applications.   

 

4.3.5 Microbuckling and stress relaxation  
 

Stress relief by film buckling is a common phenomenon in DLC films (Enke 1981, Nir 184, Matuda 

1981, Iyer 1995) and has been observed in 77K films with thicknesses of ≈ 150 nm (Fig. 4. 6). 

Buckling and separation of films from the substrate initially occurs near the film edge after exposure 

to air and subsequently spreads into the center.  This phenomenon is not observed in 298 and 573K 

films having similar thickness. In general, three types of buckling can be detected.   Fig. 4. 6 (a) 

shows typical zigzag ridge lines with a turning angle of about 120o while a sinusoidal pattern is seen 

in Fig. 4.6 (b).  Fig. 4 nate from and/or 

nd in some curved crack lines.    

of a high intrinsic compressive stress, similar to 

that observed in hydrogenated amorphous carbon films (Enke 1981). The morphology of these stress 

comparison of the C1s binding energy range of 281-294 eV for RT (298K) and cryogenic (20-100K) 

films has been displayed in Fig. 3.5. The sp3/sp2 ratio can be obtained from a deconvolution of the 

C1s band (Merel et al. 1998, Diaz et al. 1996). In the RT film, this peak can be deconvolved into two 

Gaussian/Lorentzian profiles centered at 284.4 eV and 285.2 eV as shown in the inset. These peaks 

correspond to sp2 C-C and sp3 C-C bonds, respectively. We find that the concentration of sp3 bonded 

atoms is 72 and 68% in RT and cryogenic films, respectively, coinciding with deconvolved Raman 

analysis (Hu et al. 2007a). This suggests that the sp3 content is little affected by structure. We also 

find a band attributable to C-O at 286.5 eV in cryogenic films. To investigate this origin of this peak 

we have studied XPS spectra in a wider energy range (Fig. 4.5). These show a Si2p line at 100 eV in 

cryogenic films, together with a very strong O1s at 532.6 eV. From a fit to the peak area we find that 

the oxygen content in cryogenic films is about 17 times higher than that in RT films. The oxygen 

content is little affected by Ar-ion surface treatment, showing that cryogenic films react with oxygen 

to form C-O bonds. Since the sp3/s

.6 (c) shows type of pattern in which sinusoidal structures origi

e

   These structures can be attributed to the existence 

relief patterns has been analyzed in terms of a linear theory of plate buckling (Nir 1984). 
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y. The focal 

point indicated by the cross lines. 

 
 

Fig. 4.6 Surface stress relief morphology of 77K films observed by optical microscop

(a) 

(b) 

(c) 
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Fig. 4.7 Raman spectra focusing on the ridge of a 77K film at 100 and 10% laser power. The 

location of focus spot is shown in Fig. 4.6 (a).   

 

Matuda et al. (1981) have calculated the residual internal stress in these structures as a function of 

film thickness. The elastic energy per area of wrinkles has been estimated by Iyer et al. (1995). These 

calculations suggest that stress relief patterns are correlated to film thickness and the adhesion energy 

of the film to the substrate (Iyer et al. 1995, Wei et al. 1999). In the present study, film buckling is 

found only in 77K films and is not seen in films of similar thickness, deposited on the same substrate 

at 298 and 598K.  Fig. 4.7 shows Raman spectra at a point on the ridge shown in Fig. 4.6 (a). The top 

spectrum, obtained at full laser power (3 mW), shows the two characteristic peaks of microcrystalline 

graphite: a D peak at 1350 cm-1 and a G peak at 1550 cm-1. This transformation is due to heating by 

the incident laser beam. By decreasing the laser power to 0.3 mW, the film is unaffected and the 

spectrum (lower curve in Fig. 4. 7) is the same as that obtained for points on the film that are in 

contact with the substrate.  This indicates that the film in the ridge is completely peeled away from 

the substrate and that irradiation results a transformation from primarily sp3 to sp2 bonding at this 

location (Friedmann et al. 1996, Kalish et al. 1999, Ferrari and Robertson 1999).  
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    T

sub hs of these films are demonstrated in Fig. 4.8. The coexistance 

of m crobuckling (in x500 image) and nanoscaled defects (in x50K image) is clearly observed. These 

nanodefects locate in the valley areas between microbucking ridges (black lines in x500 image). 

These nanodefects are similar to nanograins which are embedded in the matrix.  This indicates the 

relationship between the graphitization of submicron grains and microbuckling: both of them are 

originated from the relaxation of internal stress. 
 

he origin of microbuckling is further investigated by the deposition of DLC films on HOPG 

strate at 77K. The SEM micrograp

i

 
 

Fig. 4.8 SEM images of DLC films deposited on HOPG at 77K. 
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 grown at various croygenic temperatures has been 

investigated. It is found that a submicron-sized grain embedded matrix structure occurs in cryogenic 

films deposited between 20 and 100K. These submicron grains have lower hardness than that of the 

surrounding matrix.  Resonant Raman spectra show that sp2 bonded C atoms are concentrated within 

these grains. However, the overall fraction of sp3 bonded atoms is as high as 68%. XPS spectra show 

that these films display an enhanced affinity for oxygen. Some possible applications of grain-

assembled nanostructured ta-C cryogenic films are suggested. Microbuckling has also been discussed. 

Similarities in nanostructures indicates that both the graphitization of submicron grains and 

microbuckling arise from the relaxation of internal stress.     

 

  
 

      

      

 

 

4.4. Conclusions    
 

Although we mention partial characterization of nanostructured ta-C films deposited in 77K in 

Chapter 3, the detailed re;lationship between embedded submicrometer grains and the relaxation of 

internal stress is not unveiled there. In this chapter we focus this issue and investigate in a wide 

deposition temperature range. Furthermore, we have combined nanostructure characterization with 

AFM and several spectroscopic methods, which allow us to unveil the origin of submicrometer grains 

embedded in ta-C films.   

In summary, the nanostructure of ta-C films
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Chapter V 
2 trahedral amorphous 

lms grown by femtosecond laser deposition 
 
5.

 al. 2001, Guo et al. 1991). Diamond-like carbon films with a dominant 

fra

es having pulse energy in the mJ range, 

the deposition of diamond-like carbon films (fs-DLC) has been extensively studied (Qian et al. 1999, 

koshi et al. 1999, Yao et al. 2000, Loir et al. 2003).  Because the laser pulse width is so short, 

excited electrons cannot transfer their energy to the lattice. Thus ablation is enhanced relative to that 

uced by nanosecond laser pulses (Gamaly et al. 2002). In addition, carbon ion energies can be as 

 as 0.5-2 keV during fs ablation (Qian et al. 1999, Okoshi et al. 1999, Yao et al. 2000, Loir et al. 

2003), almost one order of larger than the 30 eV energies obtained during ablation with nanosecond 

s) pulses (Duley 1996). The sp3-bonded carbon content is then typically 20-60% in ta-C films 

deposited with fs pulses (Cuomo et al. 1991, Banks et al. 1999, Qian et al. 1999, Okoshi et al. 1999, 

Yao et al. 2000, Loir et al. 2003). Despite this change in composition, higher microhardness is found 

in fs-DLC in comparison with ns-DLC (Yao et al. 2000). In addition, C1s K-edge X-ray absorption 

fine structure (NEXAFS) spectra of fs-DLC films display several unidentified peaks (Ravagnan et al. 

2006). These observations show that there are many unresolved questions concerning the nature of 

electronic bonding states and molecular structure in fs-DLC materials. 

Nanostructure and sp/sp  clustering of te
carbon fi

1 Introduction 

 
Pulsed laser vaporization/ablation has been successfully used to deposit advanced carbon materials 

including diamond-like amorphous carbon (DLC) films, carbon nanotubes and fullerenes (Voevodin 

and Donley 1996, Scott et

ction of sp3-bonded carbon containing embedded sp2-bonded clusters are referred to as tetrahedral 

amorphous carbon (ta-C). The growth mechanism for these materials involves substrate-induced 

quenching of energetic ions generated during laser ablation followed by sub-implantation. The 

formation of sp3-bonded carbon is attributed to the compressive internal stress induced by the plastic 

deformation of the surface as a result of ion bombardment (McKenzie et al. 1991, Robertson 1993, 

Cuomo et al. 1991). It has been found that kinetic ion energies in this process range from 20 to 100 

eV (McKenzie et al. 1991, Robertson 1993, Cuomo et al. 1991). High ion energy induces annealing 

and appears to convert sp3-bonded carbon to sp2 bonded species.    

   With the availability of solid state femtosecond laser sourc

O

prod

high

(n
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Linear carbon structures containing ating triple and single bonds 

(pol ts 

because th

lthough natural sp-bonded carbon 

sp bonds, either as altern

yynes) or with conjugated double bonds (polycumulenes), are important molecular componen

ey represent the building block and precursors that can be used to form  

 
 

Fig. 5.1 Schematic of the vacuum furnace used for deposition at high temperatures. Symbols: (L) 

lens, (H) heater, (T) graphite target, (S) substrate, (C) cooling water pipe, (LN2) liquid nitrogen trap   

 

fullerenes (Shvartsburg et al. 2000) and carbon nanotubes (Kiang and Goddard III 1996). These 

components are also promising as linear molecular conductors. A

chains have been identified in carbon vapor at a temperature higher than 2600K (Pitzer 1959), in 

interstellar materials (Duley 1996) and in some biological species (Heimann et al. 1999), the 

synthesis of sp-coordinated all-carbon skeletons (carbynes) remains a challenging topic in carbon 

science. Theoretical calculations suggest that polyynes are more stable than polycumulenes (Rice et 

al. 1986). Both species are, however, highly reactive to oxygen and exhibit a strong tendency to form 

interchain cross-links leading to graphitization (Kavan 1997). Recently, Ravagnan et al. have 

fabricated carbyne-rich carbon films by deposition of larger carbon clusters containing up to ≈ 600 

atoms in ultra-high vacuum (UHV) (Ravagnan et al. 2002). Such carbon films have been in-situ 

characterized as sp2-dominated amorphous carbon with a sp/sp2 ratio of 10-25% (Ravagnan et al. 

2002&2006, D’Urso et al. 2006). Unfortunately, the concentration of sp-bonded species strongly 

decreases when an sp2-dominated carbyne-like film is exposed to gases like H2, He, N2 and dry air or 

after annealing at temperatures up to 200oC (Casari et al. 2004).  Hence, a method of creating stable 

carbon films having a high concentration of sp-chains for ex-situ studies is highly desired. 
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ature. The present 

experiments and analysis yield additional insight into the structure and composition of novel carbon 

systems fabricated by fs laser deposition.   

 

5.2  Experimental setup 
 

Diam orphous carbon films were deposited on silicon and quartz substrates by ablation of 

graphite using 120 fs pulses from an amplified Ti:sapphire laser operating at 800 nm. A base pressure 

of 2.67x10  Pa was obtained in a high vacuum chamber evacuated by a turbo-molecular pump with a 

liquid nitrogen trap. During deposition the pressure typically increased to 5 x 10-7 Torr (1Torr = 

 Ti:sapphire laser system (λ=800 nm, pulse duration τ=120 fs, repetition frequency 

 

mm. The peak laser intensity at the focus was 4.5 x 1014 W/cm2. The design of the low 

spectro

 eV with 

respect to the Fermi level). The chamber vacuum pressure was maintained below 2 x 10-10 Torr 

(1Torr = 133.33Pa). The spot size for the XPS analysis was approximately 0.5 x 1.0 mm. 

 This paper discusses the microstructure and optical properties of fs-DLC films in more detail and 

the presence of both sp and sp2 bonded carbon in an sp3 bonded matrix has been confirmed. 

Nanocrystalline diamond is also evident in fs-DLC deposited at room temper

ond-like am

-5

133.33Pa). A

500Hz, pulse energy 1mJ, incidence angle 45o) was employed to ablate high purity pyrolytic graphite 

(99.99%). The laser beam was focused into a 50 μm diameter spot using a quartz lens with a focal

length of 90 

temperature (77 – 273K) deposition chamber has been reported elsewhere (Hu 2006). Deposition at 

293 – 873K was carried out in a separate high vacuum system attached to a furnace (Fig. 5. 1). The 

pressure and composition of a buffer gas was adjusted to generate different deposition conditions.        

Film thickness was controlled by measuring the UV absorption of the sample during deposition. 

The final thickness was measured by a profilometer (AMBios XP-2) after deposition. Microstructure 

was characterized with scanning electron microscope equipped with a LaB6 field emission gun. UV 

Raman spectra were obtained with a Kimmon 5161R-GS Raman spectrometer using He-Cd laser 

radiation at 325 nm (UV). To avoid excessive heating of the carbon sample, the laser power was 

reduced to 4.5 mW.  Surface enhanced Raman spectra (SERS) were measured with a Renishaw 

micro-Raman spectrometer. Spectra were excited with 0.3- 3 mW of He-Ne laser radiation at a 

wavelength of 632 nm. The resolution was 1 cm-1 in both meters. X-ray photoelectron 

spectrum (XPS) measurements were carried out using a multi-technique ultra-high vacuum imaging 

XPS microprobe spectrometer (Thermo VG Scientific ESCALab 250) with a monochromatic Al Kα 

1486.6 eV X-ray source. The spectrometer was calibrated by Au 4f7/2 (binding energy of 84.0
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ms of various thicknesses deposited at temperatures 

between 77 and 573K in vacuum and in the presence of He. We find that nanobuckling often occurs 

5.2a, b). In 100 nm thick films, this takes the form of quasi-periodic, 

discrete point-like excursions extending over widths of 50-200 nm. (Fig.5.2a). This changes to a 

DL

5.3  Results and Discussion 
    

5.3.1 Nanostructure and optical energy gap 
 

Fig.5.2 shows the morphologies of fs-DLC fil

in films deposited at 77K (Fig 

regular structure of ripples having a modulation period of 30-50 nm as the film thickness increases to 

600 nm (Fig. 5.2b). The origin of this nanobuckling which can be attributed to the combined effect of 

reduced internal stress and enhanced Si-C binding between film and the substrate is discussed in the 

next chapter. It is worth noting that the tendency for nanobuckling does not depend on the presence of 

He gas. This demonstrates that He has little effect on the growth characteristics of these cryogenic 

films.       

   SEM micrographs of fs-DLC films deposited at room temperature are shown in Figs 5.2c (100 nm) 

and 5.2d (400 nm). It is apparent that very thin films prepared under these conditions are atomically 

smooth and have little structure, while thicker films are assembled from clusters having diameters 

between 20 and 100 nm. These results are consistent with other studies (Banks et al. 1999), in which 

nanostructure appears as the film thickness increases over 300 nm. It is important to point out that ns-

C films deposited at room temperature are not nano-assembled even at thicknesses in excess of 

400 nm (Hu et al. 2007a). This indicates that nanostructure seems to be a special character of fs-DLC.   

Figs.5.2e and 5.2f show the morphologies of 400 nm thick films deposited at 573K in vacuum and 

in the presence of 100 millitorr of He, respectively. These films exhibit no nano-structure when 

deposited in vacuum but a nano-texture is found after deposition in He. This indicates that a higher 

substrate temperature enhances the mobility of deposited species suppressing the formation of 

structure (Wei et al. 2003). The role of a buffer gas such as He during ablation has been shown to 

promote the formation of carbon clusters (Hu et al. 2006). These clusters collide with the substrate 

during condensation and become incorporated in the resulting film (Fig 5.2f).   
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(a) (b)

 
Fig. 5.2 Typical SEM images for fs-DLC films of various thicknesses deposited at representative 

temperatures: (a) a 200 nm thick film deposited at 77K; (b) a 600 nm thick film deposited at 77K; (c) 

a 100 nm thick film deposited at room temperature (RT=298K), (d) a 400nm thick film at 298K; (e) a 

100 nm thick film deposited at 573K in He; (f) a 400 nm film deposited at 573K in He. Note that (a-

d) have the same magnification as do (e) and (f). 

 

 

( c) (d)

(e) (f)
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Fig. 5.3 Tauc plot of (αhν)1/2 as a function of photon energy hν for fs-DLC deposited at different 

temperatures. Solid line is a linear fit to data. Inset: a room-temperature (RT) sample measured in-situ 

(vaccum) and immediately after exposure to air. 

 

Fig.5.3 shows a Tauc plot calculated from in-situ UV/VIS spectra for fs-DLC at three typical 

e inset in Fig. 5.3 shows that Eg increases slightly 

fter exposure to air.  This can be attributed to a reduction in the concentration of carbynoid species in 

e film after exposure to air (Casari et al. 2004). A reduction in the concentration of defects can be 

ruled out since there is no difference in Eg of samples in vacuum after 2 hours.  A similar increase in 

Eg on exposure to air is also observed in films deposited at 77 and 573K.   

 

temperatures and a film thickness of ≈ 500 nm. The linear fit yields an optical energy gap, Eg, of 0.5 

eV for RT films, 0.7 eV for 77K films and ≈ 0 eV for films deposited at 573K.  Since Eg is not only 

dependent on the concentration of sp3 bonded species, but is also governed by sp2 clustering, 

localized chemical states and the presence of defects (Robertson 2002), these low values of Eg do not 

necessarily indicate a low sp3 concentration. Th

a

th
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5.3.2 VIS/UV Raman characterization 
 

Fig. 5.4&5 show VIS-Raman spectra for fs-DLC deposited on quartz excited at 632 nm. Three major 

bands can be identified in this spectrum. A broad band, at 1100 -1800 cm-1, corresponds to a 

combination of the breathing (D) and stretching (G) modes associated with Raman scattering from sp2 

sites (Ferrari 2000). Shown in the inset of Fig. 5.4 a small shoulder at 2100 cm-1 in RT and 77K films, 

which can be attributed to linear sp-bonded chains (Kavan 1997, Ravagnan et al. 2002 & 2004). The 

shoulder at 1300 cm-1 indicates an increase in the concentration of sp2 bonded carbon in 573K films. 

As noted previously, the sp2/sp3 ratio in tetrahedral carbon can be evaluated by deconvolution of the 

D/G band using a Breit-Wigner-Fano (BWF) lineshape (Ferrari and Robertson 2000, Prawer et al. 

1996). This analysis is shown in the inset in Fig.5.5. At 632 nm (1.97 eV) excitation, the G peak 

occurs at 1530 cm-1 and has a width of 225 cm-1 (Shi et al. 2001, Hu et al. 2006). The best fit to our 

Raman spectra yields a coupling factor of 3.53 indicating a sp3 fraction of 55% and a deposition 

energy of 2 KeV, approximately in agreement with the results of Qian et al. (1999).  Raman spectra of 

films produced at 77 and 573K have not deconvolved in this way because the related scale is likely 

not valid for films  
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Fig. 5.4 Raman spectra of fs-DLC films deposited at various temperatures (elevated temperatures for 

curves from bottom to top) on Si wafers. The Raman excitation wavelength is 632 nm. Inset: the 

detailed Raman feature around 2100 cm
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-1 for T=77K. 
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ig. 5.4 shows that sp2-bonded amorphous carbon 

creasing with elevated substrate temperatures.  

deposited at these temperatures. However, F

in
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Fig. 5.5 Visual Raman spectra for fs-DLC samples deposited on SiO2 at three deposition temperatures 

with an excitation at 632 nm (He-Ne laser). The arrow points to an additional band indicating Raman 

scattering from sp linearly bonded carbon chains. Inset: quantitative analysis of the Raman spectrum 

of a RT=298K sample. The solid line corresponds to a fit using a BWF lineshape.  
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Fig. 5.6 UV Raman spectra for fs-DLC samples deposited at three temperatures with an excitation at 

325 nm (Cd-He laser). G and sp stand for the vibration of graphitic G mode (sp2) and the peak from 

sp-bonded carbon chains (carbyne). The broad band “T” is attributed to sp3 bonds. The arrow points 

to a narrow peak from nanodiamond.  

 

Fig. 5.6 illustrates UV-Raman spectra for three representative samples with an excitation at 325 

f bonds after the 

hybridization of the outer shell 2s2 and 2p2 electrons: a σ bond is formed by the head-to-head overlap 

of two sp orbits while a π bond comes from the shoulder-to-shoulder overlap of two sp orbits. It costs 

different energy to excite these two bonds: the π→π* gap of sp2 bonded species is about 2 eV while 

the σ→σ* gap of sp3 atoms is ≈ 5.5 eV, so that UV excitation primarily couples to the σ→σ* 

nm (3.8 eV). In these spectra, the band near 800 cm-1 arises from the substrate (Hu et al. 2006) and 

the band centered at 2700 cm-1 is the second order of the G mode. The T-band centered at 1060 cm-1 

can be assigned to sp3 bonded species and does not appear with visual excitation (Ferrari and 

Robertson 2001). It is well-known that in ta-C there are mainly two kinds o
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transition. It should be noted that all three samples indicate the presence of sp3 coordinated carbon. In 

addition, the Raman scattering cross-section of sp bonds increases at shorter excitation wavelengths 

(D’Urso et al. 2006), accounting for the enhancement of the 2100 cm-1 peak of sp chains in UV-

Raman spectra. All samples show this feature. The RT spectrum of fs-DLC exhibits a narrow peak at 

1140 cm-1 that can be identified with nanocrystalline diamond (Loir et al. 2003, Sharda et al. 2001). It 

is also apparent that the D band is almost absent with UV excitation and the G band is much narrower 

than that in VIS-Raman spectra. From the intensity ratio IT/IG of the T and G bands we can deduce the 

concentration of sp3-bonded carbon (Shi et al. 2001). This analysis is summarized in Table 5.1. It is 

evident that the sp3 concentration in RT fs-DLC films is consistent with that obtained from 

deconvolution of the VIS-Raman spectra. However, in both 573 and 77K films the concentration of 

sp3-bonded carbon is quite small. This may account for the low value of Eg in films deposited at 573K 

films. It is important to mention that the concentration of sp-bonded carbon chains is highest in films 

deposited at 77K films, and slightly decreases at higher deposition temperatures.   

 

Table 5.1. Summary of characteristic parameters for diamond-like carbon films deposited by fs pulsed 

laser deposition 

 

 

5.3.3  XPS spectra 
 

Fig. 5.7 shows C1s core-level energy XPS spectra for three fs-DLC films deposited on Si at different 

temperatures. Measured values of the C1s binding energy are 284.4 eV in graphite, 285.2 eV in 

diamond and 284.6-285 eV in ns-DLC (Diaz 1996, Haerle 2001). These values are much higher than 

those measured in fs-DLC films. It is well known that the surface charging can seriously influence 

Substrate 

Temperature 

Optical 

energy gap 

(eV) 

IT/IG sp3 Isp1/IG C1s core-

level energy 

(eV) 

RT 0.5 0.31 

77K 

57

0.7 0.23 

55% 

27% 

0.23 

0.255 

283.5 

283.8 

3K 0 0.20 20% 0.19 283.7 
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281 282 284 2 286 287 289 2

peak position, especially in dielectric or non-conducting samples, but this is not important here 

because the Si2p core-level line in all our samples occurs at the standard value of 100.4 eV. Thus the 

chemical shift of the C1s core-level shown in Fig.5.6 is a true effect. It is also notable that the C1s 

line in the least conducting 77K films appears at 283.8 eV, the highest energy among the three 

samples. Moreover, the full width at half maximum (FWHM) of the peak in fs-DLC is about 1.6 -1.8 

eV, which is much larger than that of graphite (FWHM 1.1 eV) or diamond (FWHM 1.25 eV) (Diaz 

et al. 1996, Haerle et al. 2001). This suggests that the C1s peak in fs-DLC  
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ig. 5.7 XPS C1s core-level spectra for three fs-DLC films deposited at various temperatures. Inset is 

g energy for the identical three samples ranged from 450-650 eV. 

F

the survey for the bindin

 

arises from the hybridization of different carbon bonds. It has been found that the transfer of 0.1 

electron per C atom to iodine in iodine-doped polyacetylene shifts the C1s energy to 283.8 eV 

(Salaneck 1980). However, in the present composition there is no similar oxidant that could result in 
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ave also reported that the 

C1s core level appears at 282.6 eV in carbyne-like carbon films (Danno et al. 2004). As a result, it 

can be concluded that the low energy of C1s peaks in fs-DLC (283.5 eV for RT and 283.7 eV for 

573K films) arise from the presence of sp-bonded carbon chains.    

 

5.4 Disccusion 
 

Films deposited at 77K exhibit distinguishable microstructure and optical properties from those 

deposited at higher temperatures. These properties can be understood on the basis of growth by sub-

implantation (Robertson 1993). The observation of surface buckling in these materials originates from 

the relaxation of internal stress. Low internal compressive stress in fs-DLC films has been reported by 

other groups (Banks et al. 1999, Loir et al. 2003). This stress relaxation arises when films are 

annealed by keV carbon ions, in a process similar to the stress reduction that occurs in high 

temperature annealing of ns-DLC films (Ferrari and Robertson 1999). It is significant that nano-

buckling is not found in ns-DLC films. Because of this property, involving a growth mechanism 

associated with stress relaxation, much thicker films can be fabricated. In our current study, we have 

grown films having thicknesses of several micrometers that do not exhibit surface buckling at room 

temperature. In contract, ns-PLD can typically deposit DLC films with thicknesses of only a few 

hundred nanometers (Hu et al. 2007a). We find, however, that stress relaxation may result in a low 

ted at RT. 

eanwhile, defects in 77K films can be reduced due to localized heating activated by high energy 

electron transfer, although it is possible that aromatic sp2 clusters could have significant electron 

affinity. 

    An additional peak in 77K films is found at 288.4 eV, and can be attributed to C-O bonds. The 

survey XPS spectra shown in the inset display the O1s line at 530.8 eV. Surface cleaning by Ar ion 

bombardment effectively weakens both C-O bond and O1s peaks, which indicates these species are 

the consequence of surface oxidization.  However, surface Ar ion etching does not influence the 

chemical shift of C1s core-level of fs-DLC films. Recently, Danno et al. h

concentration of sp3-bonded species. In films deposited at 77K, the high kinetic energy of incident C 

ions also generates a higher concentration of amorphous carbon than in films deposi

M

ions. As a result, 77K films display a higher optical energy gap than RT films. In films deposited at 

573K films, the phase transition from sp3 to sp2 at a deposition temperature higher than 523K should 

also be considered (Robertson 2002, Voevodin et al. 1996).  



 

  80

LC even with a mediate sp3-bonded carbon concentration in fs-DLC (Loir et al. 2003). 

006, D’Urso et al. 2006, Casari et 

l. 2004). In those experiments, sp chains had to be studied in-situ in high vacuum due to the high 

roups to oxygen. After exposure to dry air for 0.6 hours, IT/IG ratio of Raman 

tensity with 532 nm excitation reduces from 40% to 3.6 % in amorphous sp2-bonded carbon films 

e materials is significant. It is found that 

    Nanocrystalline diamond found in RT films may account for a higher microhardness of fs-DLC 

than ns-D

These spherical nanodiamonds are also evident in the laser irradiated induced graphite-diamond phase 

transition on graphite target (Bonelli et al. 1999). We expect these diamond particles in fs-DLC are 

directly removed by surface plasmas repulsion of Coulomb explosion. Further investigation of fs 

laser-graphite interaction is worth to elucidating this point. 

   sp-bonded carbon is evident in all fs-DLC films. It is important to note that the UV-Raman and 

XPS experiments were carried out after exposing films to air for over one month. This indicates that 

the stability of sp-bonded species in tetrahedral carbon films is significantly improved in comparison 

with amorphous sp2-bonded carbon films (Ravagnan et al. 2002 & 2

a

reactivity of these g

in

(Casari et al. 2004). However, for one-month exposure to air, this ratio with 325 nm excitation for the 

present composition is still as high as 19%-26% for different deposition temperatures. Followed the 

model of D’Urso et al. (2006), one can compare these two Raman ratios at different excitation 

wavelengths from the sp fraction (relative to sp2 bonded carbon), XT/XG, according to XT/XG=1/R 

IT/IG, where R is the sp/sp2 cross section ratio. With R=0.5 at 532 nm and R=2.5 at 325 nm, IT/IG of 

18% is obtained for sp2-bonded carbon films after exposing to air for only half hour. This may 

indicate that the oxidization and/or interchain cross-linking of sp chains in ta-C is much more slower 

than that in a sp2 coordinated carbon film. 

   The reason for the appearance of enhanced stability of sp-chains in the present tetrahedral carbon 

samples is unclear, but one possibility is that these chains are intercalated by sp2 aromatic clusters, 

similar to stabilizing by alkali metal inclusions (Heimann et al. 1999). However, the structure of sp-

bonded carbon chains in ta-C and the length of these chains are still to be determined. 

  

5.5 Conclusions 

 

   Microstructure and electronic bonding of fs-DLC have been investigated by combining SEM 

observation, UV/NIR spectroscopy, UV/VIS Raman and XPS spectra. The presence of 

nanocrystalline diamond and sp-bonded carbon chains in thes
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the stability of sp-bonded chains is greatly enhanced in tetrahedral carbon films. This may lead to the 

fabrication of stable carbyne-rich carbon films.  

    By comparison to ns-PLD, fs-PLD generates much energentic carbon ions, which allows us to 

deposite carbon films with novel species, such as, nanodiamonds, sp-bonded carbon. These novel 

species are interesting for material science and promising for applications, through surface bindings.    
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 Chapter V it has been shown that the concentration of sp chains in tetrahedral (sp3) carbon is 

remarkably enhanced by replacing nanosecond pulse laser deposition with fs pulse deposition.   

However, a comparative study of these two types of material has not yet been carried out.  

Furthermore, the concentration of individual carbon binding states, i.e. sp, sp2 and sp3 bonded carbon 

in fs-DLC, are not quantitatively characterized. Hence, a thorough study combining various 

spectroscopic methods is necessary. This study will reveal the co-existence of sp2 clusters and sp 

chains in the sp3-bonded matrix. To elucidate this structure, high resolution spectroscopic 

observations are required. 

urface enhanced Raman spectroscopy (SERS) is a highly sensitive tool that can be used to 

investigate molecule structure, particularly in interfacial systems (Kneipp et al. 1997, Nie et al. 1997). 

The enhancement of Raman cross-sections in SERS is can be attributed to the excitation of a surface 

plasmon resonance in metal nanoparticles as well as to local mixing of molecular and metal energy 

levels leading to a phenomenon similar to that occurring in the resonance Raman effect (Creighton et 

al. 1978, Lombardi et al. 1984). SERS spectra have been previously used to identify vibrational 

modes and bond structures in CVD diamond and amorphous carbon films, but this technique has not 

ye been utilized in a detailed characterization of carbon films prepared by fs ablation (Roy et al. 

2000, Kudelski and Pettinger 2000).        

   here have been several studies of diamond-like carbon films deposited using fs laser deposition 

(Banks et al. 1999, Qian et al. 1999). Higher deposition rates are obtained with fs laser sources (fs-

DLC) than with nanosecond pulsed lasers (ns-DLC). In addition, carbon ion energies can be as high 

as 0.5-2 keV in fs ablation, some 1-2 orders of magnitude larger than the 10-100 eV energy found 

during ablation with ns pulses (Merkulov et al. 1998, Cuomo et al. 1991, Duley 1996). High ion 

energy can give rise to a conversion of sp3-bonded species into graphitic components in fs-DLC with 

a resultant decrease in the concentration of the diamond phase in these materials. Electron energy loss 

spectroscopy (EELS) (Banks et al. 1999, Qian et al. 1999) has shown that the sp3 concentration in 

these materials may be as low as 40%-55%.  This does not imply that the remaining component can 

Chapter VI 
Molecular structure, SERS spectra and nanobuckling in fs-DLC 

 
6.1  Introduction 

In
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be exclusively associated with sp2 bonde of sp bonded species are also possible. 

Analysis of this phase in fs-DLC is the subject s found that both sp and sp2 bonded 

car g 

vironment is not present in ns-DLC films. The relative concentration of these components has been 

 spectra of fs-DLC.  

     The role of internal stress on buckling and delamination of thin films deposited on substrates has 

be

urface implantation of energetic carbon ions during deposition (Mckenzie 

et 

) (Hu et al. 2007 c). It has been shown that a fs-DLC film 

d carbon as a variety 

 of this chapter.  It i

bon chains are present in addition to sp3 bonded species in fs-DLC, but the same bondin

en

obtained from Raman

  

en the subject of much interest because of the importance of thin films in industrial products.  For 

example, buckling without delamination of thin metallic films deposited on compliant elastomer 

substrates can be used to create optical sensors on deformable devices (Bowden et al. 1998, Lacour et 

al. 2003). In another application, enhanced field emission has been observed in partially detached 

diamond-like carbon (DLC) films (Thaigen et al. 2001). It is well-known that DLC is an amorphous 

material in which nano-scale sp2-bonded  carbon clusters are embedded in a sp3-coordinated carbon 

matrix (Hu et al. 2007a, Hu et al. 2006a). High internal compressive stresses have been found to be 

generated in DLC by the s

al. 1991). Relief of this internal stress involves buckling and the localized separation of the film 

from the substrate (Nir and Emory 1984, Iyer et al. 1995).   

    On the other hand, DLC films deposited using femtosecond pulsed laser ablation (fs-DLC) exhibit 

low stress despite the fact that carbon ion energies are often in the keV range (Banks et al. 1999, Qian 

et al. 1999). Low compressive stress in these materials is evidently due to the annealing during high 

energy ion impact (Garrelie et al. 2003). This effect is not observed in DLC films deposited using 

nanosecond laser ablation (ns-DLC), where the ion energy is ≤ 10 eV.  This difference may be due, in 

part, to the relatively low fraction of sp3-bonded carbon in fs-DLC deposited at room temperature (0.4 

- 0.6) compared to that in ns-DLC (≈ 0.7

deposited at room temperature possesses a mixture of sp, sp2 and sp3 coordinated carbon (Hu et al. 

2007 c). Since sp bonded carbon chains are linear molecular conductors and have been shown to be 

the precursors of nanotubes (Ravagnan et al. 2002), it is of interest to study the microstructure and 

electron bonding states in fs-DLC films deposited at cryogenic temperatures.  

In this chapter, I report the observation of a nano-buckling structure in fs-DLC deposited on Si. 

The occurrence and evolution of this structure has been investigated using AFM analysis as well as 

by Raman and XPS spectroscopy. The mechanical properties of these materials have also been 

characterized using nano-indentation techniques.  These measurements are shown to reveal insight 
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(99.99%). The pulse energy was 1mJ for 

ctrometer using He-Cd 

las

were carried out using a multi-technique ultra-high vacuum imaging XPS microprobe spectrometer 

into the origin of nano-buckling in DLC materials as well as the role played by the presence of sp/sp2 

clusters.           

   

6.2  Experimental setup 
 

Amorphous carbon thin films were deposited on polished p-type Si wafers with (100) orientation. 

Before deposition, the Si wafer was first degreased in an ultrasonic bath of acetone (high-performance 

liquid chromatography grade), and then further cleaned by immersion in a 1% HCl solution. The 

wafer was then rinsed in nanopure water (18MΩ).  The Si wafer was cooled to 77K by liquid nitrogen 

in a high-vacuum deposition chamber at a base pressure of 2.67 x 10-5 Pa evacuated with a turbo-

molecular pump. During deposition the pressure typically increased to 6.65 x 10-5 Pa. A regenerative 

Ti:sapphire laser system (λ=800 nm, pulse duration τ=120 fs, repetition frequency 500Hz, incidence 

angle 45o) was employed to ablate high purity pyrolytic graphite (99.99%). Either a Ti:sapphire laser 

system (λ=800 nm, pulse duration τ=120 fs, repetition frequency 500Hz, incidence angle 45o) or a 

XeCl excimer laser (λ=308 nm, pulse duration τ=30 ns, repetition frequency 15 Hz, incidence angle 

45o) was employed to ablate high purity pyrolytic graphite 

the fs laser source and 20 mJ for the excimer laser. The laser beam was focused into a spot with a 

typical size of 100 μm by a quartz lens with a focal length of 160 mm. The peak laser intensity was 

1.1 x 1014 W/cm2 corresponding to a fluence of 12.7 J/cm2 at the target surface. Details on the 

deposition system with the ns laser source have been discussed in Chapter 4 & 5 (Hu 2006b, 2007a).  

    Film thickness was monitored in-situ by measuring the UV absorption of the sample during 

deposition. The final thickness was measured with a profilometer (AMBios XP-2) after deposition. 

Microstructure was characterized via scanning electron microscope (SEM) equipped with a field 

emission gun and atomic force microscopy (AFM). The microhardness and reduced elastic modulus 

were determined from load-displacement curves obtained using a Nano Indenter (Hysitron) apparatus. 

A three-sided pyramid Berkovich indenter was used in the experiment.  

    UV Raman spectra were obtained with a Kimmon 5161R-GS Raman spe

er radiation at 325 nm (UV, 3.8 eV). To avoid excessive heating of the carbon sample, the laser 

power was reduced to 4.5 mW.  Visual Raman spectra were measured using a Renishaw micro-

Raman spectrometer with 0.3- 3 mW He-Ne laser at an excitation wavelength of 632 nm (1.97 eV). 

For both spectrometers the resolution was 1 cm-1. X-ray photoelectron spectrum (XPS) measurements 
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as calibrated by Au 4f7/2 (Binding energy of 84.0 eV) with respect to the Fermi level. 

e chamber vacuum level was maintained below 2.67 x 10-8 Torr. The constant pass energy was set 

1 eV step and 100 millisection per scan. Only one scan was used to 

collect the spectra. The pass energy of 20 eV was used for C1s/O1s/Si2p scans, with an energy 

 

n of sp2 groups (Ferrari and 

(Thermo VG Scientific ESCALab 250) with a monochromatic Al Kα 1486.6 eV X-ray source. The 

spectrometer w

Th

at 160 eV for survey scans at 

resolution of 0.05 eV. The dwell time was 250 millisection and 3 sweeps were used. Films with 300 

nm were used for the survey scanning and the C1s line study while a 40 nm thin film was employed 

for the Si2p and O1s line scanning in order to focus on binding properties of film-Si substrate 

interfaces.  To obtain optimum conditions for SERS, a silver film was deposited on the surface of the 

DLC films using femtosecond laser ablation of a pure Ag target. For both fs-DLC and ns-DLC the 

same processing parameters were used for surface Ag deposition.  

 

6.3  Results 
    

6.3.1 Comparative spectroscopic studies of ns-DLC and fs-DLC 
 

Fig. 6.1 shows conventional (non-SERS) Raman spectra of fs- and ns-DLC films obtained at for 

excitation at 632 nm. It can be seen that the FWHH (full width at half height) of the 1500 cm-1 feature 

in fs-DLC is much larger than that occurring in the spectrum of ns-DLC. Since the broad peak at 

1000-1700 cm-1 can be attributed to the overlap of the D (1350cm-1) and G (1570cm-1) breathing and

stretching modes of sp2 hybridized rings, respectively, the sp2/sp3 ratio is conventionally obtained by 

fitting Raman spectra in this region with a Breit-Wigner-Fano (BWF) lineshape (Ferrari and 

Robertson 2000, Hu et al. 2007a).  This approach suggests that fs-DLC contains ≈ 51 % of sp3 bonded 

carbon atoms while the sp3 content in ns-DLC is ≈ 72% (Hu et al. 2007a). In ta-C, the π→π* gap of 

sp2 bonded species is about 2 eV while the σ→σ* gap of the sp3 component is ≈ 5.5 eV. Thus the 

excitation at 632 nm (1.98 eV) primarily couples to the π→π* transitio

Robertson 2001). On the other hand, UV excitation couples to sp and sp3 groups so that UV Raman 

spectra provide extra insight into the presence of these species in DLC films. 
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. 6.1 Visual Raman spectra for fs- and ns- DLC samples, both deposited at room temperature 

  UV-Raman spectra of fs- and ns-samples are shown in Fig. 6.2 and differ from Raman spectra 

 changing the excitation 

avelength from 632 nm (R≈0.25) to 325 nm (R ≈2.5) (D’Urso 2006), the sp band at 2000-2200 cm-1 

in UV Raman spectra is virtually absent in Raman spectra recorded with 632 nm excitation (Fig. 6.1). 

Fig

(293K).  

  

obtained at lower photon energy (Fig. 6.1). A peak appearing at 750 cm-1 in Fig. 6.2 can be assigned 

to the bending mode of sp2 bonded components while the band centered at 2700 cm-1 is the second 

order of the G mode (Merkulov et al. 1997). The T-band centered at 1050 cm-1 only appears with 325 

nm (3.8 eV) excitation and can be attributed to a C-C stretching mode of sp3 bonded species.  From 

the intensity ratio IT/TG, it can be concluded that the concentration of the sp3 component is greater in 

ns-DLC than in fs-DLC films. The shift of the D and G bands to higher energy with UV excitation 

arises from the well-known dispersion of these features (Ferrari and Robertson 2000).   

   A notable feature of UV-Raman spectra of fs-DLC is the presence of a band in the 2000-2200 cm-1 

range. This is unlikely to arise from adsorbed CO (Haslett 1995) as it is absent in ns-DLC films.  We 

assign this feature to sp carbon chains since previous studies (Ravagnan et al. 2002) have shown that 

cumulenes (C=C)n and polyynes (C≡C)n give rise to Raman bands in this spectral range.  Because the 

sp/sp2 cross section ratio, R, is enhanced by over one order of magnitude on

w
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Fig. 6.2 UV Raman spectra for fs-DLC and ns-DLC samples with excitation at 325 nm (Cd-He laser). 

D/G and sp stand for the vibration of graphitic D/G modes (sp2) and the peak from sp-bonded carbon 

chains (carbyne). The broad band “T”  is attributed to sp3 bonds.  

 

   Following the model proposed by D’Urso et al. (2006), the sp fraction relative to that of sp2 bonded 

carbon is Xsp/Xsp2=(1/R) (Isp/Isp2) where Isp/Isp2=0.38 is the Raman intensity ratio at 325 nm. Then, 

Xsp/Xsp2 ≈ 0.15 in fs-DLC. As the previous estimate of the sp3 carbon fraction in fs-DLC

sp, sp2 and sp3 fractions in fs-DLC are 0.06, 0.43 and 0.51, respectively (Table 6.1). These fractions 

are those existing in samples that have been exposed to air for over one month. This may indicate that 

oxidation and/or cross-linking of sp chains in fs-DLC is much slower than that in other carbon films, 

where the Isp/Isp2 ratio has been found to decrease to ≈ 0.036 after exposure to dry air for 0.6 hour at 

532 nm excitation (R=0.5), which corresponds to an Isp/Isp2 ratio of 0.18 at 325 nm (Casari et al. 

2004). 
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Table 6.1. Summary of characteristic parameters for diamond-like carbon films deposited by fs and ns 

pulsed laser deposition.  
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ig. 6.3 XPS spectra for the C1s core-level binding energy for fs-DLC (300 nm in thickness), ns-DLC 

carbon (at 285.2 eV) components in ns-DLC can be used to show that the sp2 content in these 

lms is 0.68 (Hu et al. 2007a, Haerle et al. 2001, Jernigan et al. 2000). The C1s peak of carbyne (sp-

bonded carbon chains) is found at 283.5 eV, a lower level (Zhang et al. 2007, Sergushin et al. 1978). 

samples sp3 IT/IG Isp1/IG  Xsp/Xsp2

fs-DLC 

ns-DLC 

51% 

73% 

0.28 

0.41 

0.38 

0 

15.2% 

0 

F

(300 nm in thickness) (both deposited at room temperature, 298K) and HOPG samples. Inset: 

deconvolution of C1s peak. 

 

   XPS spectra of fs-DLC, ns-DLC and a highly oriented pyrolytic graphite (HOPG) sample in the 

C1s region are shown in figure 6.3.  The fs-DLC and ns-DLC films were both deposited at 77K with a 

thickness of 300 nm.  In these spectra, the C1s peak in fs-DLC has a full-width-at-half-height 

(FWHH) of 1.9 eV while the FWHH in ns-DLC is 1.5 eV. The C1s peak in HOPG has a FWHH of 

0.7 eV. Deconvolution of the broad C1s core-level peak into sp2 bonded carbon (at 284.4 eV) and sp3 

bonded 

fi
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 as well as sp2 and sp3 bonded species. Based on a mixture of sp (283.5 eV), 

p2 (284.4eV) and sp3 (285.2 eV) bonded components a deconvolution of C1s line of fs-DLC is 

hown in to Fig.  The concen s of three carbons nic fs-DLC are 

btained a p), 0.4 nd 0.55 (s  consistent the quantit alysis of UV-vis 

aman sp le a sli higher sp3  temperature) 

(Hu 2007b).  

 

6.3.2  Surface enhanced Raman spectroscopy (SERS)  
 

Fig. 6.4 shows the morphology of fs-Ag particles deposited on the surface of carbon films by laser 

ablation of Ag. The deposit consists of 10-30 nm Ag nanoparticles and 100 nm - 1 μm grain 

aggregates embedded in a matrix of finer material. The Ag film on the ns-DLC has a similar structure.  

Optimized SERS spectra can be obtained after a 5 min deposition. Under these conditions, the silver 

totally masks the DLC film and Raman spectra are enhanced through the entire DLC deposit.  Since 

the Ag nanoparticle film are in-situ deposited the surface contamination can be minimized.  

 

 

 

 

Hence, the broad C1s peak in fs-DLC which includes an additional component near 284 eV indicates 

that these films contain sp

s

s the inset 6.3. tration bonded in cryoge

(sp2) a p3), in  with ative ans 0.05 (so

ectra whi ghtly  content (0.51 in fs-DLC deposited in roomR

 

 

 

 

 

 

 

 

 

 

Fig. 6.4 Typical SEM image of a SERS sample.  
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Fig. 6.5 Surface enhanced Raman spectra of a fs-DLC and a ns-DLC film. 

 

   A comparison between SERS spectra of fs- and ns-DLC films is given in Fig. 6.5, and a list of 

major spectral features together with possible assignments is shown in Table 6.2. Both spectra show 

structures that are not present in conventional Raman spectra. The appearance of discreet features in 

the region of the D and G bands can be understood as arising from the enhancement of scattering 

from specific molecular structures within a nominally amorphous material. This indicates that the D 

and that the presence of Ag particles selects out 

specific components of this inhomogeneously broadened profile. The spectral width of individual 

 

and G bands are inhomogeneously broadened, 
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SERS components (5-30 cm-1) is consistent with a model in which the primary source of broadening 

is vibrational relaxation, rather than as the result of variations in chemical bonding. This indicates that 

the SERS features that do appear out of the broad D and G bands, likely correspond to chemical 

groups associated with well-defined, reproducible, structures within these films.  This is expected as 

these films are nano-assembled, and specific molecular structures will dominate under these 

conditions. The occurrence of a larger number of lines in fs-DLC compared to ns-DLC, then reflects 

the fact that smaller molecular components are generated in the fs ablation of graphite than in ns 

interactions.  These small molecular components become embedded in the overall deposit, resulting 

in the appearance of characteristic frequencies in SERS spectra.  

   Evidence for this can be seen in Fig. 6.5 where strong features corresponding to vibrational modes 

of aromatic hydrocarbon ring structures are observed at 674, 848, and 1002 cm-1 in the SERS 

spectrum of fs-DLC. These features are not seen in SERS spectra of ns-DLC, although other weaker 

bands are observed in the same spectral region. The Raman band at 1002 cm-1 is characteristic of the 

breathing vibration of substituted benzene rings (Liu et al. 2006), suggesting that small rings are 

present in this material.  The mode of 1307 cm-1 can be attributed to hexagonal diamond (Schwan et 

al. 1996). fs-DLC and ns-DLC films also have features at 1600 and 1559 cm-1 corresponding to the 

stretching mode in larger aromatic rings (Ferrari and Robertson 2000) together with bands near 1360-

1370 cm-1 arising from the breathing mode of these molecular groups (Roy et al. 2002, Mapelli et al. 

1999). Additional spectral lines are observed in the region 1500-1620 cm-1 indicating that a range of 

ring structures are to be found in these materials. A feature appears at 1332 cm-1 in some spectra that 

can be identified with crystalline diamond (Roy et al. 2000) while fs-DLC shows several bands in the 

100-1200 cm-1 region that can be associated with the presence of trans-polyacetylene (t-PA) chains 

f different length (Ferrari and Robertson 2001, Lopez-Rios et al. 1996). Other features in the 1450-

).  This indicates that the 

verall structure of fs-DLC films consists of sp2 bonded rings and sp3 bonded diamond-like structures 

1

o

1480 cm-1 range may also arise from t-PA (Ferrari and Robertson 2001

o

linked by chains of various length and composition.    
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Table 6.2. Assignment of the peaks of DLC films reported in the literature and as shown in SERS 

characterization.  

Peak position (cm-1)        fs     ns                Possible origin                              References 

      ~2138                        x                            polyyne                                Ravagnan 2000 

      ~1957                        x                            cumulene                             Ravagnan 2000 

      ~1929                        x                            cumulene                                           .. 

      ~1717                        x                    HOPG mode, aldehyde                  Kasashima 79 

       

      ~1600                        x       x                         ”G”                                     Ferrari 99                    

, coronene                       Liu 06 

      ~ 863                         x                                A2u crystal graphite?           Nemanich 79 

      ~ 848                         x                         out-of-plane (oop) ring                Mapelli 99        

      ~ 674                         x                                     oop ring                            Mapelli 99 

      ~ 617                         x                                         

 

      ~1559                        x       x                         “G”                                     Ferrari 99 

 

      ~1520                        x                          hexabenzocoronene                      Mapelli 99 

      ~1472                        x       x                trans-polyacetylene                        Ferrari 99 

      ~1397                                 x                  E2g  coronene                               Mapelli 99  

      ~1372                                 x             “D” microcystalline graphite            Ferrari 99 

      ~1362                        x                                  “D”                                        Roy 02 

      ~1332                        x       x                 diamond, Γ point                           Roy 02 

     

      ~1307                                 x                  hexagonal diamond?                   Schwan 96 

      ~1280                        x                    scattering at L point from diamond      Roy 02 

      ~1176                        x                           trans-polyacetylene              Lopez-Rios 96     

      ~1160                        x                           trans-polyacetylene                      Ferrari 99 

      ~1149                        x                           trans-polyacetylene              Lopez-Rios 96   

   

      ~1036                        x 

      ~1002                        x                    subst. benzene
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1800-2500 cm-1.  In keeping with previous studies (Ravagan et al. 2002 &2006, 

D igned to CC 

s  containing 

s  assigned to 

p  appear to be due 

t noted that a 

Raman peak near 2140 cm-1 can also be produced by adsorbed CO (Haslett et al. 1995). As we do not 

d our 

s

 ent with SERS spectra of carbon chains prepared by electric arc discharge 

i  25-30 cm-1 

e  derive from 

t  the fs-DLC 

s  carbonized 

f tching mode in 

p r of C atoms. If 

this correlation also holds for fs-DLC, then N ≈ 10 in our samples. This is somewhat larger than the 

v fact that the 

b length may be 

s 2140 cm-1 

c

 at observed 

in ns-DLC, shows that the ablation mechanism has a profound effect on the properties of the resulting 

d gh energy and high charge of carbon ions produced during fs ablation 

s nic chains are 

o o stabilize 

n olecules 

i to be absent. 

T the composition of ns-DLC is a mixed sp2/sp3 

structure consisting primarily of nanocrystalline diamond and nanocrystalline graphite embedded in a 

tetrahedral carbon matrix. 

   Further insight into the nature of these chains is obtained by the observation of Raman features in 

the energy range 

’Urso et al. 2006, Lucotti et al. 2006, Szepanski et al. 1997), these bands can be ass

tretching modes in polyyne and cumulene chains.  Two major Raman bands, each

ubstructure, are seen in the spectrum of fs-DLC. That centered at 2140 cm-1 can be

olyyne chains (-C≡C-)n with n = 3 -4, while the band centered at 1950 cm-1 would

o cumulenic chains (C=C)n having a similar number of carbon atoms. It should be 

etect a peak at 2140 cm-1 in our ns-DLC films, it is unlikely that adsorbed CO is present in 

amples.  

  These results are consist

n methanol (Lucotti et al. 2006) that show strong bands at 1975 and 2110 cm-1. The

nergy shifts of these bands in the present spectra compared to spectra in methanol likely

he fact that there is no direct Ag-chain bond in our samples, since Ag is deposited after

ample has been created.  Analysis of Raman scattering by carbon chains in

luoropolymers (Kastner et al. 1995) has shown that energy, ν(N), of the CC stre

olyynic chains is approximately ν(N) = 1750 + (3980/N) cm-1, where N is the numbe

alue of N derived from DFT calculations for isolated polyyne chains, reflecting the 

onding environment is quite different in fs-DLC deposits and the average chain 

maller. On the basis of this model, the observation of structure in the bands at 1950 and 

an be attributed to the presence of chains of different length. 

    The appearance of extensive structure in the SERS spectrum of fs-DLC compared to th

eposit. In particular, the hi

eem to favor the formation of carbon chains. As a result, t-PA, polyynic and cumule

bserved in fs-DLC but not ns-DLC films. The occurrence of chains in fs-DLC then acts t

ovel (sp, sp2, sp3) - bonded carbon compositions that incorporate a range of small carbon m

ncluding C6 rings. This is not possible in ns-DLC deposits since the sp phase seems 

hus, without the stabilizing effect of the sp phase, 
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y fs laser deposition at 77K.  (a) SEM 

 roughness along the straight lines appearing in figures 6.6 (c) and 6.6 (d) 

6.3.3 Nanobuckling in cryogenic fs-DLC 
 

 
Fig. 6.6 Morphology of diamond-like carbon films deposited b

image of a film with 600 nm thickness (sample A) (b) AFM micrograph of sample A, (c) SEM image 

of a film with 450 nm thickness (sample B), (d) SEM image of a film with 300 nm thickness (sample 

C).  

 

Figure 6.6 shows the nanostructure observed in fs-DLC films deposited on Si at 77K as a function of 

deposition time. The morphology of films after a 7 min deposition (sample A) is shown in figures 6.6 

(a) and 6.6 (b). Figures 6.6 (c) and (d) (samples B and C respectively) were deposited for 5 and 3 min, 

respectively. The film thickness for samples A and C as measured with a profilometer is shown in 

figure 6.7 (a). The sharp step in figure 2(a) occurs along the line where the substrate was masked 

prior to deposition. Surface

340n m
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1 μm 
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Fig. 6.7. (a) film thickness as measured using a profilometer. (b) Surface roughness analysis along the 

straight lines shown in Figs. 6.6 c and 6.6 d. The thicknesses for sample A, B and C are 600 nm, 450 

nm and 300 nm.   
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is recorded in 6.7 (b). These measurements show that surface buckling develops as the film thickness 

increases. At a thickness of 300 nm (sample C), peeling occurs at intervals of ≈ 1.5 micrometer in the 

form of point-like buckling sites having dimensions of ≈ 1 micrometer. The amplitude of height 

modulation in these regions is ≈ 20 nm. The regions of the film between the sites of point-like 

buckling appear granular i.e. consist of a matrix-assembled from nanoclusters. 

As the thickness increases to 450 nm (sample B) the buckling amplitude increases to ≈ 60 nm 

(figure 6.7 (b)) and surface peeling develops a linear structure with segments oriented approximately 

perpendicular to each other. The resulting ripples can be clearly seen in figure 6.1(c). With a further 

increase in film thickness to 600 nm (figures 6.6 (a), (b)), these ripples increase in amplitude and are 

separated by ≈ 100nm. Each ripple extends over a length of ≈ 500-3000 nm and the pattern, as a 

whole, is found to cover the entire surface of the sample. The morphology observed in fs-DLC 

samples is quite different from that seen in DLC films, where partially detachment of films occurs on 

a scale of micrometers and there is no substructure in the detached regions (Tharigen et al. 2001, Nir 

1984, Iyer et al. 1984). 

   To explore the origin of nanobuckling in fs-DLC, we further investigate films with smaller 

thickness and examine the effect of thermal processing on these samples. Figures 6.8 (a) and 3(b) 

shows the microstructure of a 50 nm thick film (sample D) after deposition for 1 min. Figures 6.8 (c) 

and 6.8 (d) are micrographs of thick sample B (as initially shown in figure 6.6 (c)) after temperature 

cycling between 77 and 300K. This cycle involved taking a sample deposited at 77K to 300K in half 

hour and keeping there for 30 min., and then recooling it to 77K before final observation at 300K. 

The same rate is employed for warming up and cooling down. This cycle was carried out in vacuum 

in order to avoid the influence of moisture. Figures 6.8 (a, b) display the buckling that appears in the 

50 nm film, which is representative of the initial growth stage.  

   Figure 6.8 (a) shows that the buckling takes the form of a grouping of discrete dots in a low 

magnification SEM image. The details of individual points taking a form of the nanostripes that are 

evident in figure 6.8 (b). The line profile shows the height of such a nanobuckling is about 40 -50 nm. 

Figure 6.8 (c) shows the micron-scale buckling formed by thermal cycling in a 300 nm thick fs-DLC 

f (Tharigen et al. 2001, Nir 1984, Iyer et al. 1984). It is necessary to mention that 

the present temperature increasing/decreasing rate is the biggest value we can employ. With a slower 

film (sample E). The local morphology at one buckling site is shown at higher magnification in figure 

6.8 (d). This type of buckling also appears thick ns-DLC films, and likely originates from thermally 

induced stress relie
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te, such as a thermal cycling in 2 hours, the microbuckling almost disappears. Hence, the present 

 

ra

results show that nano-scale buckling created during deposition and micron-scale buckling generated 

by thermal stress, can coexist in fs-DLC films deposited at cryogenic temperatures.  

 

 

 ( c )

 

Fig. 6.8. (a) SEM image and (b) AFM micrograph of fs DLC films deposited for 1 min with a 

thickness of 50 nm (sample D). (c) SEM image of fs-DLC films with a thickness of 300 nm after 

thermal processing (sample E). (d) A magnified SEM image corresponding to a point located on a 

buckling branch as indicated in (c). The white arrow points to the position observed at a high 

resolution. 
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igure 6.9 shows Raman spectra of two fs-DLC films with different bucklings deposited at 77K 

recorded with 623 nm excitation. The broad asymmetric band at 1100-1700 cm-1 corresponds to the 

overlapped D and G bands of tetrahedral carbon. The D and G bands, centered at 1355 cm-1 and 1570 

cm-1, respectively, arise from the stretching and breathing modes of sp2 bonded carbon (Hu et al. 

2006b). As a result, the relative concentration of sp3-bonded species can be estimated by 

deconvolving the D/G band into the two components (Hu et al. 2007a, Hu et al. 2006a, Ferrari and 

Robertson 2000). Such an analysis shows that the fraction of sp3-bonded carbon in these materials is 

≈ 0.51 (Hu et al. 2007b). As the D/G band is sensitive to internal stress and shifts to higher frequency 

with increasing stress, the Raman spectrum can be used to map this effect (Ager et al. 1995, Ferrari 

and Robertson 2000). Spectra in figure 6.9 then show that the D/G band of fs-DLC is independent of 

thickness, indicating that both internal stress and the concentration of sp3 –bonded carbon are not 

functions of film thickness.   

 

 

6.3.4 Internal stress and Nano-hardness     
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Fig. 6.9 Raman spectra recorded at 632 nm for fs-DLC films. Note that the Sample A is a 600 nm 

sample coverd by nanobuckling, sample D is a 50 nm sample only with separated point-like 

kling. buc
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 Fig. 6.10 Load-displacement curves measured by nano-indenter at different positions of sample E. 

Inset: scaling of loading curves. Sample E is a sample mixing micro- and nanobuckling. 

 

Figure 6.10 demonstrates three loading-displacement curves measured at different positions of 

sample E by a nano-indenter with a 5 micro-Newton force. The plot designated as “microbuckling” is 

obtained at a peak of the microbuckling pattern. The “nanobuckling” plot was measured in the valley 

of the microbuckling pattern, but on top of a nanobuckling feature. The “valley” line corresponds to a 

measured point at a point on the surface without any buckling. Values of the nanohardness, reduced 

elastic modulus and contact stiffness can be obtained by fits to free-load drawback curves (Robertson 

2002). By fitting to the valley curve, a hardness of 16.7 GPa, and a reduced modulus of 177 GPa are 

found in non-buckling areas.  These values are slightly lower than those measured for fs-DLC 

deposited at room temperature, where the sp3 bonded carbon fraction is 0.7 (Garrelie et al. 2003).  

The curves measured on the top of both microbuckling and nanobuckling features show 

unsupported displacements of 580 and 60 nm, respectively. From the roughness analysis shown in 

figure 6.10 it is reasonable to conclude that this initial free-loading displacement is a consequence of 

partial detachment of the films from the substrate. The load-displacement curves have been re-plotted 

in

va

unchanged in both micro- and nano-buckling regions. However, microbuckling shows a slightly 

 the inset in figure 6.10 after removal of the displacement at a force of 2μN and it evident that 

lley and nanobuckling curves then coincide. This indicates that the mechanical properties are 
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larger displacement at a given loading than is seen in the other two locations. This may signal a 

higher  concentration of defects in this region, leading to reduced hardness. 

      

6.3.5 Interfacial binding states and origin of nanobuckling         
 

To examine the influence of interfaces between carbon film and Si substrate on nanostructure, XPS 

spectra of fs-DLC and ns-DLC films deposited at 77K, both with a thickness of about 40 nm, are 

compared in figure 6.11.  Figure 6.11 (a) shows spectra of fs-DLC and ns-DLC films in the region of 

the Si2p core energy level. Three distinct valence states of Si are detected, one located at 99.6 eV, the 

second at 100.2 eV and the third at 103.6 eV. The peak at 99.6 eV can be attributed to Si substrate 

and 100.2 eV is identified with the charge neutral covalent state in SiC while that at 103.6 eV arises 

from the +4 oxidation state in SiO2 (Didziulis and Fleischauer 1990, Hartney et al. 1989, Smith and 

Black 1984). To obtain a detailed deconvolution of Si2p one has to consider the split of Si2p and low-

 a result, it is 

apparent that SiC is preferentially formed at the C-Si interface in fs-DLC. The passivating SiO2 layer 

pr

unt 

fo

shifting of Si2p by the screening of a covalent state. However, it is evident that the Si2p peak of fs-

DLC films at an intensity approximately twice that of the peak seen in ns-DLC films. As

esent on Si is absent in fs-DLC, but is found in ns-DLC films. This effect can be also seen in figure 

6.11 (b) which shows spectra of the O1s core energy level in fs- and ns-DLC films. The intensity of 

the O1s level in ns-DLC is roughly 3 times that in fs-DLC indicating that a SiO2 layer is attached to 

the substrate surface in ns-DLC but has been partially removed in fs-DLC films.  

The origin of this SiO2 layer is uncertain since cleaning in dilute HCl will remove the majority of 

the original SiO layer on the Si wafer and inhibits further oxidation by dangling Si bonds with H 

atoms. However, after deposition at cryogenic temperatures, ns-DLC graphitizes on a sub-micron 

scale and exhibits an enhanced affinity for oxygen (Hu et al. 2006a). Diffusion of oxygen may then 

further oxidize the Si surface. As a similar graphitization does not occur in fs-DLC, this may acco

r the presence of SiO2 in ns-DLC and not in fs-DLC, which only shows a preferential SiC layer. It 

is also possible that the high energy ions in fs ablation can remove any residual SiO2 at the Si surface. 

This model would be consistent with the observed low abundance of SiO2 in ns-DLC deposited at 

room temperature (Hu et al. 2006a). The thickness of SiC layer is worth further investigation.  
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Fig. 6.11 (a).  Si2p core-level XPS spectra for fs-DLC and ns-DLC samples (both 40 nm in thickness) 

deposited at 77K. (b) O1s core-level binding energy for fs-DLC and ns-DLC samples (both 40 nm in 

thickness) deposited at 77K.  
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 6.4.  Discussion 
 

    It is well established that buckling originates in response to stress relief and that the resulting 

profile of the surface is governed by the distribution of internal stress. These quantities reflect the 

value of Young’s modulus as well as the adhesion energy at the film-substrate interface (Nir 1984, 

Iyer et al. 1995, Matuda et al. 1981). Furthermore, enhanced bonding between film and substrate in 

fs-DLC is evident from XPS spectra which show the formation of Si-C covalent bonds at the 

interface. These bonds are less apparent in spectra of ns-DLC. As a result, one expects higher 

adhesion energy in fs-DLC than in ns-DLC films.  From Matuda et al. (1981), the adhesion energy, 

Ua, as a function of buckling width is 
)()1(12 22

322

lLl
LEdcU a −−

=
ν

π
, where E is Young’s modulus, ν is 

the Poisson ratio, d is the film thickness, L the width of the whole film, c is a constant, and l is the 

buckling wavelength. Then, as Ua increases, l will generally decrease.  This connection between 

buckling width and adhesion energy explains why nanobuckling is observed in fs-DLC and not in ns-

DSLC films. One can also see that as d increases, l will also increase if Ua is constant. This 

correlation is also evident in Fig. 6. 1. Since the energy of C ions in fs ablation is 1-2 keV, compared 

to ≤ 10 eV in ns-DLC (Banks et al. 1999, Qian et al. 1999, Duley 1996), C ions can directly implant 

into the substrate surface forming covalent Si-C bonds.  This may explain why nanobuckling is absent 

in ns-DLC films deposited at cryogenic temperatures (Hu et al. 2006a). Other solutions of the 

buckling equation based on a thin shell model predict point-like, flower-shaped, and wavy relief 

patterns (Nir 1984, Iyer et al. 1995). This may account for point-like and stripe-like patterns observed 

in fs-DLC although further analysis of these effects is required for nano-scale buckled structures. 

   Surface charging in XPS samples result in shifting of peaks to higher energy. Hence, the red-shift of 

the C1s peak in fs-DLC (Figure 6.3) cannot be attributed to surface charging. The presence of sp-

bonded carbon chains in fs-DLC would be in keeping with the shift of the C1s level to lower energy 

as seen in Figure 6. 3.  Then it can be concluded that fs-DLC films can be regarded as constituting a 

novel carbonaceous material with mixed sp/sp2/sp3 bonding. The data discussed here show that the 

inclusion of sp-bonded carbon does not dramatically modify the mechanical properties of DLC. 

 graphite clusters (Hu et al. 2006b). Because sp-bonded carbon chains 

are molecular conductors, the conductivity of fs-DLC films can be enhanced by a percolation 

However, unlike semiconducting/insulating ns-DLC (∼GΩ) the present fs-DLC films are conducting 

(∼MΩ). Due to the enhanced stability of sp-bonded carbon chains in the present composition we 

assume they are terminated by



 

  103

 sp2 clusters by sp-bonded carbon chains although the sp-concentration is still 

w. The microstructure and mechanical properties of nanobuckled fs-DLC films then make this 

ma

 

yacetylenic, polyynic and cum

s of 

network, i.e., bridging

lo

terial a promising candidate for field emission sources or as an element in electromechanical 

devices since the buckling significantly change transporting properties (Bowden et al. 1998, Lacour et 

al. 2003, Tharigen et al. 2001). A special application is a pressure sensor sampling a nanoscopic 

displacement. Due to the high hardness of nanobuckling of fs-DLC such a sensor is expected to work 

on a high pressure range than that of microbuckling metallic films on elastomer substrates.     

  

6.5. Conclusions 

We find that carbon contained in trans-pol ulenic chains containing 6-8 

carbon atoms represents a significant fraction of the composition of fs-DLC films. These chains act to 

stabilize a composition in which relatively small aromatic rings, together with diamond-like material 

are present in an amorphous structure.  The relative fraction of sp, sp2, and sp3 – hybridized bonded 

material in these films has been found to be 0.06, 0.43 and 0.51, respectively. The corresponding 

fractions in ns-DLC are ≈ 0, 0.27 and 0.73, respectively.  SERS spectra of fs-DLC films exhibit a 

wide range of features that can be identified with molecular species, including substituted benzene, 

coronene and larger polycyclic aromatic hydrocarbon rings.   

   The presence of microstructure and nanobuckling in fs-DLC films deposited at 77K has been 

investigated. A nanobuckling structure has been found to be a function of film thickness and is shown 

to arise from enhanced film-substrate adhesion energy. This occurs as the result of the formation of 

C-Si covalent bonds as high energy C ions impact on the Si surface during the initial stage

deposition.  Our analysis indicates that these materials have mixed sp/sp2/sp3 bonding.  This may 

make these materials of interest in applications.     
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1 Introduction 

 Chapter V we have shown that linear carbon structures with sp hybridization represent novel 

ally less favorable (Lagow et al. 1995, 

rbon chains embedded in tetrahedral amorphous 

arbon films (Hu et al. 2007 a-d). In solvents, isolated sp chains have been synthesized by pulsed 

laser irradiation (nsec pulse width) of carbon-based particles suspended in various solvents (Tsuji et 

2& 2003, Tabata et al. 2004&2006a &b, Compagnini et al. 2007) or by arcing graphite 

lectrodes under organic solvents (Cataldo 2003). It is worth pointing out that a source of solid carbon 

as to be presented in these studies. To obtain a solution of sp-bonded chains the solid carbon source 

has to be filtered. Direct irradiation with nanosecond laser pulses (second harmonic 532 nm, Nd:YAG 

uce linear carbon chains (Tsuji et al. 2002). This suggests that 

Chapter VII 
Dissociation of hydrocarbon compounds by femtosecond laser 

irradiation: synthesis of sp-bonded carbon chains and 
nanodiamonds in organic solvents 

 
7.
 

In

systems for fundamental aspects related to the science of fullerenes and nanotubes. Recent studies 

have shown that sp-bonded carbon species can directly work as functional elements in molecular 

devices such as conducting nanocables formed by inserting sp-bonded molecules into carbon 

nanotubes (Nishide et al. 2006 & 2007). A nonlinear optical response has also been observed in 

polyynes (Eisler et al. 2005). This further highlights the potential scientific importance of sp-bonded 

carbon chains for nano-optoelectronic applications.  

   The formation of sp carbon chains is expected in the initial stage of formation of small carbon 

clusters leading to fullerenes when the sp2 phase is energetic

Shvartsburg et al. 2000, Kent et al. 2000). sp hybridization is also thought to be present in large 

metastable carbon clusters (Bogana et al. 2005) and in interstellar dust (Duley 2000). Wakabayashi et 

al. (Wakabayashi et al. 2004) deposited small isolated sp clusters in a solid Ar matrix to investigate 

the reactivity of these species when interacting with each other. The amorphous sp/sp2 carbon films 

are synthesized by supersonic cluster beam deposition (Ravagnan et al. 2002 & Casari et al. 2004). 

Recently we have reported the presence of sp ca

c

al. 200

e

h

laser) of organic solvents does not prod
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is worthwhile investigating the direct ic molecules in solution by fs laser 

irradiation. 

f 

cytotoxici e strong 

fluorescence from nitrog well suited for cellular 

et al. 2007). The key to the use of NDs in biomedical applications is the 

reparation of dispersive nanodiamond solutions. Although nanodiamonds can be synthesized by 

ercial scale (Greiner et al. 1988), purification to remove graphite soot and other 

ontaminants as well as de-aggregation of NDs from larger grains is a significant challenge (Kruger et 

y of chemical vapor deposited (CVD) diamond 

       

 dissociation of organ

Nanocrystalline diamonds (NDs) are promising carriers for drug delivery due to a lack o

ty (Huang et al. 2007). The surface of NDs is also readily functionalized whil

en-vacancies in NDs ensures that these particles are 

labeling applications (Fu 

p

detonation on a comm

c

al. 2005, Baidakova et al. 2007). Alternative methods of preparation are therefore of interest, 

especially those involving the growth of NDs in solution. 

    Lonsdaleite is the name of the hexagonal diamond phase of the sp3-bonded carbon structure. It can 

be synthesized by static compression of crystalline graphite at ≈ 13 GPa and at temperatures > 

1000oC (Bundy and Kasper 1967). Hexagonal diamond is energetically unfavored and is therefore 

observed much less frequently than the normal cubic phase of diamond. Trace amounts of hexagonal 

diamond are often found in the crystalline boundar

films, where it accommodates large anisotropic stresses (Rossi 1998). Misra et al. successfully 

deposited 88% hexagonal diamond films on strained gallium nitride-coated quartz substrates at 800oC 

by hot filament CVD (Misra et al. 2006).  Another technique, involving the dissociation of methane 

molecules in water with nanosecond UV laser pulses (λ=193 nm), only results in the formation of 

diamond-like nanoparticles consisting of tetrahedral carbon with graphitic inclusions (Hidai and 

Tokura 2005).  Recently, it has been found that a localized graphite-diamond phase transition can be 

induced by fs laser pulses due to the generation of high pressure and temperature in a laser-induced 

shock wave (Hu et al. 2007d).  

   In this chapter, I report that intense femtosecond laser irradiation of organic solvents can break all 

chemical bonds of hydrocarbon compounds. As a consequence, C and C2 species are created as 

building blocks for the formation of sp-bond carbon chains in organic solvents. High-purity 

hexagonal nanodiamonds can be also fabricated in the presence of iron. These experiments are 

necessary to explore various novel applications of these materials.  
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Th

ectrometry (HP100/1100MSD). 10 μL per run of the filtered solution 

ture.  The irradiation also resulted 

 lot of bubbles. These bubbles were collected in sealed vials and analyzed by gas chromatography 

ombined with ion trap mass spectrometry (GC-MS).  

7.2  Experimental setup 
 

e output beam of a regenerative amplified Ti:sapphire laser  operating at 800 nm, and producing 

50fs pulses at a frequency of 1KHz was focused into a quartz cell containing 20 ml of organic 

hydrocarbon liquid by a 3 cm focal length lens. A simple device skeleton is shown in Fig. 7.1. Sp-

bonded carbon chains were fabricated in various alkanes, including pentane, hexanes, heptanes, 

octane, decane, dodecane and hexadecane. Acetone, methanol, benzene and cyclohexane were also 

examined.  As the diameter of the focused beam was ≈ 10 μm, the resulting laser intensity was ≥ 1015 

W/cm2 at a pulse energy of 350 μJ. The irradiated solution was first filtered through a PVDF 

Acrodisc® membrane having pore size of 0.45 μm to remove any possible suspended carbon particles  

liquid

 
Fig. 7.1. Schematic diagrams of laser irradiation processing. A stir bar is located on the bottom of the 

quartz cell.  

 

due to premature crosslinking reaction or to the aggregation of amorphous carbon. The chemical 

composition of irradiated solution was identified by high performance liquid chromatography (HPLC) 

combined with ion trap mass sp

were injected into a 4.6 x 150 mm column (Zorbax Eclipse XDB-C8 or C18). A mobile phase of 

CH3CN/H2O of 80/20 (v/v) was used under isocratic conditions at a flow rate of 2 ml/min and 160 

bar. The polyynes eluted from the column were measured by variable wavelength diode detectors and 

mass spectrometry. The wavelength was set at 225, 250, 274, 295 and 350 nm, respectively.  All 

analyses were made by keeping the HPLC column at room tempera

in

c
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Fig. 7.2 Schematic diagram of nanodiamond deposition in solvents.  M: metal, S: substrate, B: stirring 

bar. 

 

   For the deposition of nanodiamond films, as shown in Figure 7.2, a transition metal plate was 

immersed in the liquid and the laser was focused on its surface. The liquid was stirred during 

irradiation to ensure uniformity.  The resulting diamond deposit was collected on a Si substrate placed 

in the vicinity of the laser focus. Before deposition, the Si wafer was first degreased in an ultrasonic 

bath of acetone (high-performance liquid chromatography HPLC grade), and then further cleaned by 

m of a light grey film. The chemical composition and structure of the deposited films 

racterized using visual Raman spectra and x-ray photoelectron spectra (XPS). Molecular 

 

M

 BS 

fs laser 

Solvent 

 

immersion in a 1% HCl solution. The wafer was then rinsed in nanopure water (18MΩ).  This deposit 

took the for

were cha

species in the solution following irradiation were also investigated from surface enhanced Raman 

spectra (SERS) after mixing at a ratio of 5:1 with a 0.1 M silver nanoparticle solution. Silver 

nanoparticles suspended in nanopure water (18MΩ) were synthesized through a standard citrate 

reduction procedure (Lee and Meisei 1982, Kneipp et al. 1993). SERS spectra were recorded by 

focusing a 632 nm laser beam into the resulting solution with a x50 objective at an excitation power 

of 0.3 mW.   
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7.3  Chemical species in irradiated organic solvents  
    
7.3.1 Surface enhanced Raman spectra (SERS) of irradiated solvents 

 
Fig. 7.3 shows typical TEM mircograph of nanosilver particles used for surface enhanced Raman 

spectra. It is evident that the typical size of silver particles is about 20 nm. Fig. 7.4 shows the SERS 

spectra of acetone irradiated by 50 fs laser pulse trains at the pulse energy of 350 μJ and repetition 

rate of 1 KHz for 30 minutes. For comparison, the pristine acetone (HPLC grade) is also displayed.  It 

is clearly evident that after irradiation strong vibration modes corresponding to sp-bonded carbon 

chains appears in the range of 1800 -2200 cm-1.  It is long known that the modes at high frequencies 

modes centered of 1980 cm-1 originating from poly-cumulenes with double C-C bonds 

al. 2004, Hu et al. 2007b). The shifted vibration frequency is 

   

ig. 7.3. Typical TEM images of nanosilver particles suspended in water fabricated by the reduction 

f citrate.  

centered around 2100 cm-1 arising from polyynes with alternative single and triple C-C bonds and at 

lower 

(Ravagnan et al. 2002, Casari et 

attributed to variable chain lengths of both polyynes and cumulenes (Lucotti et al. 2006, Kastner et al. 

1995, Kurti et al. 1995, Akagi et al. 1987). A longer carbon chain yields a lower vibration frequency. 

Although the overlapped spectra do not allow us to identify individual chain lengths 4 peaks in the 

present spectra clearly display the mixing of various polyynes and cumulenes in the irradiated acetone 

(Tabata et al. 2006 a&b ). 

 

20 nm 
  

F

o
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Fig. 7.4. Surface enhanced Raman spectra of acetone irradiated by 50 fs pulse trains at an energy of 

350 μJ/pulse and incident wavelength of 800 nm.   

 

It is important to point out that the present spectra show a lower band range than that in nanosecond 

laser irradiation, where the carbynes appear at 1900-2200 cm-1 (Lucotti et al. 2006, Tabata et al. 2006 

b, Wakabayashi et al. 2007). This indicates that linear carbon chain molecules have a longer chain 

length in fs irradiation in comparison with ns irradiation. Besides, sp2-bonded graphitic carbon is also 

observed after irradiation. The bands centered at 1350 cm-1 and 1570 cm-1 stand for the breathing and 

stretching modes of graphite (Hu et al. 2006). From the spectra one can easily conclude the 

concentration of sp2-bonded graphite has a low value in comparison with that of carbynes.      

   In case of alkanes and benzene, which possess a low solubility in water, SERS measurements are 

carried out by focusing the excitation laser near the interface between organic solvent and nanoAg 

solution. To optimize the spectra, the solution is violently vibrated or stirred in order to well bond 

bon chains to the surface of silver nanoparticles. ig. 7. 5 shows the SERS spectra measured at 

on.   The spectra display strong carbyne species 

while enhanced sp2-bonded compositions. The carbynes show a wide distribution of chain lengths and 

car  F

different positions near interfaces.   It is obvious that there are some nanoAg particles diffused into 

pentane and well diluted carbon chains in water soluti
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even longer chains since there is a strong band centered at 1780 cm-1. With the similar procedure 

SERS spectra are successfully obtained in benzene, hexanes, heptane, octane, dodacane and 

hexadecane with different focal positions.       
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Fig. 7.5. SERS spectra of irradiated pentane (350 μJ, 1KHz, 30 min.) measured at variable p

in the vicinity of penate/water interface. Up: the focal point locates inside pentane at 1mm away from 

interface. Near: almost cross the interface. Over: inside nanoAg water solution at about 1 mm of 

depth away from interface. Inside: about 2 mm away from interface inside water. Virgin: 

nonirradiated pentane. 
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Fig. 7.6. Optimized SERS spectra of species produced from representative alkanes (350 μJ, 1KHz, 30 

min.) as a function of C-C chain length.  

 

   Fig. 7.6 shows carbyne species dependent on different alkanes as carbon sources. Except for an 

extra band at 1780 cm-1 in irradiated pentane, the vibrational modes of carbynes shift to lower 

frequencies with increasing alkane chain length. This indicates that carbynes with longer chain 
-1

ntane are quenched much faster than that in other alkanes.  

lengths can be obtained by irradiating larger alkane molecules. The additional band at 1780 cm  in 

pentane may be attributed to different quenched conditions of alkanes since the stability of carbynes 

is a function of temperature (Heymann 2005, Casari et al. 2006). Longer carbynes are much more 

easily oxidized and can be graphitized by cross-linking at elevated temperatures.   It is possible that 

dissociated species in pe
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Fig. 7.7. SERS spectra of benzene irradiated at different times (350 μJ, 1KHz).  

rent irradiation times. Extended irradiation leads to 

 is easily found that sp-bonded carbon chains possess 
3

is associated with thermal diffusion inside the liquid. Transferring of photo energy to thermal 

vibration of molecules may dramatically lower the dissociation effect. Even with these drawbacks, 

these ultrathin diamond films can work as seeds for CVD growth of diamond thick films (Singh et al. 

1993).     

 

   Fig. 7.7 show SERS spectra of benzene for diffe

higher concentrations of the obtained species. It

lower fractions than that of graphitic species. It is interesting that sp -bonded carbon (diamond) is 

also created by fs irradiation. These species display Raman modes at 1300 cm-1 and 1330 cm-1, which 

indicate a mixture of conventional diamond and hexagonal diamond (lonsdalite) (Bundy and Kasper 

1967, Knight and White 1989). This shows us an approach to synthesize a nanodiamond solution, 

which will be discussed later in this chapter. Diamond films with mixed cubic and hexagonal 

structure have been deposited with UV photolysis of nanosecond pulses of benzene (Singh et al. 

1993) and cyclohexane (Sharma et al. 1993). These films are generally ultrathin (a few nanometers in 

thickness) due to a low yield of solid species. The dissociation mechanism with a nanosecond pulses 
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Fig. 7.8. SERS spectra of irradiated acetone diluted in pure acetone (HPLC grade). 

 

   Fig. 7.8 shows SERS spectra of diluted acetone after irradiation. Dilution leads to a reduction in the 

intensity of sp-bonded carbon chains. The vibration frequency shifts to lower energy is clearly 

evident. Such a red-shift can be explained by decreasing interchain crosslinking which increases the 

average chain length (Tanaba et al. 2006c).  

   Fig. 7.9 shows SERS spectra of pentane and octane irradiated with 50 fs pulsed trains with an 

attenuated intensity for 30 min. It is obvious that lower laser intensity results in longer carbon chains, 

which is evident by both the appearance and enhancement of a vibrational band at low frequencies. 

This can also be understood by decreasing thermal effects leading to enhanced stability of longer sp-

bonded carbon species (Heymann 2005, Casari et al. 2006).      
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Fig. 7.9. SERS spectra of (a) pentane and (b) octane, two representative alkanes irradiated with 50 fs 

pulse trains at lower intensity.  
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7.3.2 High performance liquid chromatography and mass spectroscopy 
(HPLC-MS)  

 

Fig. 7.10 shows HPLC spectra of irradiated hexanes measured at 198 nm. Similar characterizing 

conditions allow us to identify the species by comparison with previous studies (Eastmond et al. 

1972, Tsuji et al. 2003, Cataldo 2004). The results show that 50 fs irradiation yields sp-bonded carbon 

chains of C6H2, C8H2, C10H2, C12H2, and C18H2. In addition, 120 fs irradiation results in C6H2, C8H2, 

C10H2, C12H2, C14H2 and C16H2. A peak at longer retention times after 50 fs irradiation may indicate 

the presence of longer carbon chains. These species have different concentrations but C8H2 is the 

dominant product. It is worth noting that the proportion of C18H2  and C16H2 are much high under 50 

fs and 120 fs irradiation conditions, respectively. Both are dramatically different after nanosecond 

irradiation (Tsuji et al. 2003, Tanaba et al. 2006 a-c), where concentration decreases rapidly with 

increasing chain length and C18H2  and C16H2 are only found at a trace level (Cataldo 2004). The 

observation of longer carbon chains after 50 fs irradiation than after 120 fs irradiation can be 

attributed to a reduction of thermal effects at shorter pulse length.   
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Fig. 7.10. HPLC spectra of products resulting from fs laser irradiation of hexanes at room 

temperature.  The detection wavelength is 198 nm.  
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Fig. 7.11. Mass spectra of irradiated hexanes at certain retention times. (a) 7.012 min for 50 fs 

irradiation. (b) 6.442 min for 120 fs irradiation. 
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    HPLC spectra are also consistent with mass spectra. Fig. 7.11 shows mass 

spectra of irradiated hexanes at 7.012 min for 50 fs irradiation and 6.442 min for 120 fs irradiation. It 

is evident that the maximum molecular mass is 218 and 196, respectively. This corresponds to C18H2  

and C16H2, respectively.  Other mass peaks correspond to isotope and the daughter species due to 

electrospray ionization.   
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Fig. 7. 12. Yield of C8H2 as a function of average irradiation power in hexanes for 20 minute reaction 

time. 

 

Fig. 7. 12 shows that C8H2 concentration in hexanes irradiated by 120 fs laser for 20 mins at a 

repetition rate of 500 Hz. The yield is estimated from the area of the HPLC peak at a retention time of 

1.182 min. The best fit to these data gives 47.1IY ∝ , which corresponds to a nonlinear relationship. 

Since the irradiation products include series of carbynes, sp2- and sp3- bonded species, a multiphoton 

issociation is expected.   d
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 liquid chromatography) grade hexane. Carbon films deposited using Cu 

show spectra that are typical of tetrahedral amorphous carbon in which the G band (the stretching 

band of graphite) at 1570 cm-1 overlaps with a D band (graphitic breathing mode) at 1350 cm-1 (Hu et 

al. 2006). A small bump near 1900 cm-1 can be attributed to Raman scattering from carbynes 

accompanying Cu nanoparticles (Hu et al. 2007b). Carbon films deposited from Co show two modes 

near 1320 and 1600 cm-1, indicating the presence of a mixture of hexagonal diamond and 

microcrystalline graphite (Hu et al. 2007b, Knight et al. 1989, He et al. 2002). Carbon films deposited 

 

7. 4.  Synthesis of hexagonal nanodiamonds in organic solvents     
 

Figure 7.13 shows Raman spectra of carbon films deposited using different transition metal targets in 

HPLC (high-performance
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Fig. 7. 13. Raman spectra of diamond films  in liquid hexane after fs laser irradiation of Cu, 

Co and Fe.  
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from Fe show a strong Raman feature at 1308 cm-1 that can be attributed to hexagonal diamond (Hu et 

7  cm-1 can be 

ssigned to trans-polyacetylene chains (Hu et al. 2007b, Ferrari and Robertson 2001). It is worth 

 
 

Fig. 7.14. Scanning electron microscopy (SEM) images of deposited nanodiamonds for Fe in hexane. 

 

    Fig. 7.14 shows a typical micrograph of hexagonal diamond films deposited in hexane after 

irradiation with a pulse energy of 350 μJ for 15 minutes. These films are assembled from individual 

NDs with an average size of 10 nm. Aggregated grains form larger structures with sizes up to several 

100 nm. These films cover a substrate area of ≈ 1 cm2 and have a thickness of ≈ 300 nm. Their 

thickness varies with distance and orientation relative to the focal point. Fig. 7.15 illustrates the 

evolution of chemical binding in these carbon films as characterized by the C1s core level XPS 

ases as the chain length in the alkane becomes longer. The small peak near 288.4 eV 

corresponds to C=O bonds. The fraction of different hybridized bonded carbon components can be 

al. 200 b, He et al. 2002, Schwan et al. 1996). A weak band extending from 1050 to 1140

a

noting that pyrolytic amorphous carbon possesses two Raman modes centered at 1355 cm-1 and 1570 

cm-1 (Darmstadt et al. 1997). It is thus evident that the presence of different metals can dramatically 

influence the final chemical binding states of carbon films. Fe is the proper choice for synthesizing 

hexagonal diamond in hexane.   

 

 

100 nm

spectra with different alkanes as the parent organic compound. It is apparent that the C1s binding 

energy incre
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estimated by deconvolution of the C1s peak (Hu et al. 2007 c&d). Using this technique, 

deconvolution of the C1s core-level peak into sp2-bonded carbon (284.4 eV) and sp3-bonded carbon 

(285.2 eV) indicates that the fraction of sp3- bonded carbon component is 72.6, 80.7 and 88.6% in 

pentane, hexane and hexadecane, respectively.  
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Fig. 7.15. XPS spectra for the C1s core-level binding energy for hexagonal nanodiamond synthesized 

in different alkanes. Inset: deconvolution of C1s peak with sp2 and sp3 binding energy at 284.4 eV, 

285.2 eV, respectively. The peak at 288.4eV corresponds to a C=O bond. 

 

7.5 Discussion 
 

Additional experiments have shown that hexagonal diamond films can also be synthesized in a 

variety of other hydrocarbon liquids, including acetone, methanol, and benzene when Fe is used as 

the substrate at the laser focus. This suggests that the composition of the parent hydrocarbon is not 
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007d). Some additional insight into the photolysis of 

quid hydrocarbons by fs radiation can be obtained from SERS spectra of the solution after 

irradiation.  Figure 7.16 shows SERS spectra of pristine acetone and acetone after irradiation in the 

presence of Cu and Fe substrates. Spectra of irradiated solutions both show the  

critical in the formation of hexagonal diamond as the liquid only acts as a source of carbon. It is well 

known that pyrolytic carbon can be synthesized by heating hydrocarbons to 700-1200oC (Shi et al. 

1997) but pyrolysis is unlikely in our experiments because the interaction between fs pulses and 

molecules is a non-thermal process (Hu et al. 2

li
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Fig. 7.16. Surface enhanced Raman scattering spectra for fs laser irradiate

Fs/Fe

Fs/Cu

pristine

d acetone with the presence 

f Fe or Cu. The SERS spectrum of pristine acetone is also given for comparison. Note that the 

acetone with and without the presence of Cu are the same. 

o

spectra of irradiated 

 

characteristic Raman bands of carbynes at 1800-2200 cm-1 (Hu et al. 2007 c&d ). This indicates that 

sp-bonded carbynes are one of the primary products of fs laser photolysis. It is important to point out 

that without a catalyst (directly focusing laser inside the liquid) and with the presence of Cu, the 
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rometry (GC-MS). In 

our experiments, the dissociation of hexanes yields C2H4 and CH4. The dissociation of acetone yields 

CO and C2H4. We expect H2 and H2O should be included in the gas products, but it was difficult to be 

detected due to small molecule mass. This conclusion is further supported by the observation that C2 

dimers can act as fundamental building blocks in the growth of nanodiamond and carbynes 

(McCauley et al. 1 al. 2002). In the dissociation process, chemical bonds will break in 

order of their bind or example, the sequence of the primary dissociation of acetone 

involves the sequential breaking of C-C, C-O and C-H bonds as the laser intensity is gradually 

increased (Tang et al. 2003). To get elemental carbon and the carbon dimmer, all hydrocarbon bonds 

must be dissociated.  It has been previously found that a laser intensity of ≈ 1015 W/cm2 is required to 

dissociate C-H bonds (Buzza et al. 1996, Wang et al. 2003) and this condition is roughly satisfied in 

the current experiments. As this laser intensity is close to the threshold for Coulomb explosion of gas 

molecules, we attribute fs-induced dissociation in hydrocarbon solutions to this effect.   

 

7.6 Conclusions 
 

Isolated sp-bonded carbyne chains have been synthesized in various organic solvents by dissociation 

of hydrocarbon compounds and characterized by surface enhanced Raman spectroscopy, high 

performance liquid chromatography and mass spectrometry. Variable carbon chain lengths of alkanes 

tion of longer carbyne 

hains.  

spectra of irradiated solutions are identical and the amorphous carbon is evident in characteristics of 

1370 and 1560 cm-1.  This suggests that Cu does not promote the formation of NDs. However, fs 

irradiation of hexanes with Fe results in hexagonal diamonds as evidenced by the Raman feature at 

1308 cm.-1, trans-polyacetylene chains with Raman modes at 1140, 1160 and 1450 cm-1 and carbynes. 

These results suggest that the dominant mechanism in fs irradiation may be multiphoton ionization 

which causes a step-wise dissociation of the precursor hydrocarbon molecules. This conclusion is in 

harmony with the gas product analyzed by gas-chromatography and mass spect

998, Tsuji et 

ing energy. F

lead different carbyne lengths. A long carbyne chain can be generated using large alkane molecules as 

the carbon source. The process is enhanced by the dissociation at lower pulse energy and with shorter 

pulse width. Diluted irradiated solvents also result in a increase in the concentra

c

Nanocrystalline hexagonal diamond films have been synthesized by fs laser dissociation of liquid 

hydrocarbons at room temperature. Spectroscopic studies show that the concentration of sp3-bonded 
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carbon in these samples is ≥ 88.6%.  This new synthetic route to hexagonal diamond solution may 

open up novel applications for this material in a variety of fields.  
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Theoretical vibrational spectra of nanocarbon species and time-of-
flight mass spectra of fs pulsed laser ablation 

 
8.1.  Introduction 
 

ab initio theoretical calculations based on density function theory (DFT) has been successfully 

applied to understand novel molecule structures, electronic binding states, vibrational spectra and 

optical and transportation properties, and even transient states. Recently, Raman spectra of polyynes 

(Lucotti et al. 2006, Tabata et al. 2006, Wakabayashi et al. 2007) and nanocrystalline, and electronic 

structure of one-dimensional and zero-dimensional graphene (Shemella et al. 2007) have been 

characterized. Such a study provides considerable insight into the nature of these nanocarbon species 

and further predicts novel applications, such as the properties required to form nanocables (Nishida 

2006&2007) based on polyyne molecules encapsulated in single wall carbon nanotubes. There are 

also applications involving nanoscale field effect transitors (Ouyang et al. 2006, Obradovic et al. 

2006), and nanobiosensors made of graphitic nanostrips (Gunlycke et al. 2007). Obviously, 

theoretical modeling is especially important when a pure polyyne compound is not available. In this 

Chapter we will investigate vibration modes and electronic structure of several carbon chain 

mo ecules. The discussion focuses on a comparison between theory and experimental results.   

   Although ex situ surface morphology and surface enhanced Raman spectroscopy yield many details 

on processes involved in laser-carbon interaction (Chapter II), time-of-flight mass spectroscopy 

(TOF-MS) is a direct tool to characterize ablated species and their relation to the evolution of carbon 

clusters. Previous studies used detectors with low mass resolution (Qian et al. 1995&1999, Banks et 

al. 1999, VanRompay et al. 1998, Lenner et al. 2007). A high resolution TOF spectrum of fs laser 

ablated carbon is not reported yet.  In this study, a multi-channel plate (MCP) with a gain of over 106 

is used as the positive ion detector. Narrow ion flight peaks allow us to identify highly charged ion 

species, small carbon clusters as well as carbon clusters with large molecular weight.    
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8.2 Computational procedure 
 

 

the three-param Yang, and Parr 

3LYP). The 6-31G(d) and 6-311G(d, p) bases were chosen for comparison, but major differences 

cu  noted for most of the molecules that were investigated. Geometries were 

ized using the Berny algorithm and vibrational frequencies were determined by computing the 

ration 

lations proved 

at the first structure is energetically more favorable (Kertesz et al. 1978, Springborg and Kavan 

992).  

Molecular species were modeled using the Gaussian 03 package. Calculations were performed using

eter hybrid functionals of Becker and the correlation function of Lee, 

(B

in cal lated results were

optim

second derivatives of the energy with respect to the Cartesian nuclear coordinates.  

   To edit an input file for density function theory simulation using Gaussian package, Gauview03 is 

employing for an interface work station. The structure is first imaged and designed according to 

chemical basics and the single point energy is calucalted. Once a minimum of single point energy is 

found the structure is optimized. The vibration mode is further calculated according the optitimized 

structure.  In most cases, the difficulties are that the single point energy calucation does not convege. 

This means that the structure can not be optimized. Several skills are employed to circumvent this 

issue: 1. The structure is first optimized with a low-level basis, like 3-21G and the advanced basis is 

calculated. 2. The structure is further distorted, such as, making the bond length a bit longer or 

shorter, and then caluculated. 3. An intermediated structure is achieved from the monitoring file of 

the broken calculation and then used as a new inout file after slight changes.      

For the output file, the vibration frequency and intensity are given. Peak intensities correspond to 

the vibration strength according to quantum chemistry. Different mocules give different vib

intensities since these are their fingerprints. The frequency has to be scaled in order to compare to 

experimental spectra. The different bases have different scaling factors.   

 

8.3 Vibrational spectra of sp-bond carbon chains  
    
It is well known that linearly sp-bonded carbon chains (carbynes) can be formed either by alternating 

triple and single bonds (polyynes) or by conjugated double bonds (cumulenes). Fig. 8.1 shows two 

configurations of carbynes composed of 4 carbon molecules. Previous theoretical calcu

th

1
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Fig. 8.1. Polyyne and cumulene structures of C4 molecules. 

 

Table 8.1 presents the optimized bond length in numerous Cn polyynes. The alternative chain 

structure is clearly evident. Meanwhile, the bond length for both trible bonds and single bonds in the 

m

 

iddle is much shorter than that of the edge bonds, indicating a stronger interaction inside of 

molecule chains.  

 

 

 

 

 

 

 

 

 



 

  127

Table 8.1. Optimized bond lengths (Å) of polyynes Cn with n = 10-16 at the B3LYP level using the 6-

31G(d) basis set 

 

Bond  C10 C12 C14 C16 

C1-C2 1.2963 1.2945 1.2933 1.2924

C2-C3 1.2953 1.2961 1.2967 1.2972

C3-C4 1.2764 1.2754 1.2745 1.2740

C4-C5 1.2856 1.2859 1.2864 1.2866

C5-C6 1.2781 1.2779 1.2774 1.2771

C6-C7 1.2856 1.2847 1.2847 1.2846

C7-C8 1.2764 1.2779 1.2783 1.2785

C8-C9 1.2953 1.2859 1.2847 1.2840

C9-C10 1.2963 1.2754 1.2774 1.2785

C10-C11  1.2961 1.2864 1.2846

C11-C12  1.2945 1.2745 1.2771

C12-C13   1.2967 1.2866

C13-C14   1.2933 1.2740

C14-C15    1.2972

C15-C16    1.2924
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Fig. 8.2. Raman activities of calculated C14 molecules.   
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 and 2140 cm-1 are apparent in the range of 1750-2200 cm-1 with a factor of 0.9614 

cott et al. 1996). Fig. 8.3 shows the calculated vibration patterns in bond length from the 

equilibrium bond leng ese 4 s.  

         

    Fig. 8.2 shows calculated Raman spectra of C14 polyyne. Four strong stretching bands, centered at 

1768, 1854, 2027
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Fig. 8.3. Patterns of the CC stretching vibrational modes obtained by DFT simulation, with vibration 

at the indicated frequencies. The bars represent relative variations in bond length from the equilibrium 

bond lengths given in Table 8.1. 

 

The patterns displaying at 1854 cm-1 turn out to be one kind of interesting modes for all polyyne 

hains: triple bonds expand and single bonds shrink. Such a mode appears at different frequencies c

depending on the total chain length of the molecule.  



 

  129

Fig. 8.4 shows a comparison between experimental spectra and calculated spectra. One can see that 

there is good agreement of frequencies between calculated and experimental SERS spectra of sp-

bonded carbon chains.  
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Raman spectra of linear carbon chains after application of a scaling factor of 0.9614.   

 

Fig. 8.4. (a) SERS spectra of fs-DLC films deposited in acety
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dded in tetrahedral amorphous carbon films. Vibrational modes of C8-C16 

contribute to the Raman features found in the 1800-2200 cm-1 range. However, the spectrum 

intensities keep mismatching between theoretical and experimental spectra. This difference can be 

understood by considering different concentrations of individual polyynes. Since the SERS spectra of 

a film sample is still much broad, it is difficult to deconvolute experimental spectra based on 

theorectical calculation.     

 

8.4 Polyynes terminated by either hydrogen or silver atoms 
 

Table 8.2. Optimized bond lengths (Å) of H-terminated polyynes CnH2 with n = 10-16 at the B3LYP 

level using 6-31G(d) basis set 

 

 C10H2 C12H2 C14H2 C16H2

This frequency agreement indicates that there is a distribution of different chain lengths for linear 

carbon molecules embe

H-C1 1.0666 1.0666 1.0648 1.0667

C1-C2 1.2161 1.2164 1.2220 1.2166

C2-C3 1.3558 1.3551 1.3556 1.3544

C3-C4 1.2285 1.2295 1.2338 1.2302

C4-C5 1.3445 1.3427 1.3428 1.3412

C5-C6 1.2314 1.2334 1.2379 1.2349

C6-C7 1.3445 1.3402 1.3391 1.3370

C7-C8 1.2285 1.2334 1.2390 1.2364

C8-C9 1.3558 1.3427 1.3391 1.3360

C9-C10 1.2161 1.2295 1.2379 1.2364

C10-C11  1.3551 1.3428 1.3370

C11-C12  1.2164 1.2338 1.2349

C12-C13   1.3556 1.3412

C13-C14   1.2220 1.2302

C14-C15    1.3544

C15-C16    1.2166
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able 8.2 presents optimized bond lengths (Å) of H-terminated polyynes CnH2 with n = 10-16 at the T

B3LYP level using 6-31G(d) basis set. These data are well corresponding to the bond lengths 

calculated with cc-pVDZ basis set (Tabata 2006) and 6-311G** basis set (Lucotti et al. 2006).  
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Fig. 8.5. SERS spectra of irradiated acetone (upper spectrum) co to simulated CnH2 polyynes 

(middle) and simulate o es (lower spec um).  

R = 0 9 . 6 1 4

mpared 

d Ag4CnH m lecul tr



 

  132

. 8.5. 

Laboratory spectra can be partially reproduced by isolated CnH2 polyynes and by Ag terminated 

polyyne groups Ag4CnH. This confirms the presence of isolated polyynes directly synthesized by fs 

laser irradiation. 

 

8.5 Trans-polyacetylene and cis-polyacetylene chains    
 

To compare with experimental data, polyyne Raman vibrational spectra have also been calculated for 

molecules terminated with Ag atoms. DFT modeling for Ag uses a 3-21G* basis set. The SERS 

spectrum of acetone and calculated spectra for CnH2 and Ag4CnH molecules are shown in Fig
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Fig. 8.6. Theoretical Raman spectra of (a) trans- and (b) cis-polyacetylene chains. 
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 indicates the presence of trans-polyacetylene chains in our samples. 

 

Graphyne is a carbon allotrope, which consists of layered carbon sheets containing sp and sp2 carbon 

atoms (Baughman et al. 1987). Recently graphyne and graphdiyne have been synthesized and consist 

of graphitic rings bridged by acetylenic (-C≡C-) and diacetylenic (-C≡C-C≡C-) linkages (Ferrara et 

al. 1987, Haley et al. 1997, Narita et al. 1998). Here we apply this structure to simulate sp/sp2 

dominant composition in fs-DLC films. Fig. 8.7 shows a graphyne molecule connected with 

acetylenic species.  Fig. 8.8 presents theoretical Raman spectra of this graphyne molecule. In this 

spectrum, the vibrational mode of the acetylenic linkage is intense. The band at 1570 cm-1 

corresponds to the stretching mode of graphitic ring and 3100 cm-1 corresponds to the stretching 

mode of C-H groups. These characteristics show features that are similar to the SERS spectra of fs-

DLC films (chapters 3-5).   

      

Fig. 8.6 shows Raman spectra of trans- and cis-polyacetylene chains in the 1000-1300 cm-1 frequency 

range.  It is evident that the vibrational mode shifts to a lower energy with increasing chain length. 

Trans-polyacetylene chains possess Raman features in the 1100-1200 cm-1 region in agreement with 

the assignments of experimental SERS spectra of irradiated HOPG in chapter 2 and fs-DLC films in 

chapters 3-5. This

 

8.6 Graphynes 

 
Fig. 8.7. Graphyne linked by acetylenic species and terminated with hydrogen. 



 

  134

 

1000 1500 2000 2500 3000 3500

8000

10000

 graphyne1

R=0.9614

6000

0

2000

4000

 

In
te

ns
ity

 (a
. u

.)

Raman shift (cm-1)

 
Fig. 8.8. Calculated Raman spectra of the graphyne molecule with acetylenic linkage. 

 

8.7 Time-of-flight mass spectroscopy 
 

Fig. 8.9 shows experimental configurations of time-of-flight mass spectrometry for fs laser ablation of 

graphite. The pulse number was controlled by a mechanical shutter with an exposure time of 7.5 ms. 

Within this period, 3 consecutive pulses can be chosen from a 500 Hz pulse train.  The laser output 

was separated into two beams. The oscilloscope trigger signal was obtained from a diode and laser 

power was varied using an attenuator. The laser beam was tightly focused on the surface of graphite 

target with a 9 cm focal length lens.  Ablation experiments were carried out at a pressure of 8 × 10-8 

Torr.  Ablated species are accelerated by a constant electric field with a voltage of 0 - 4 k V through 

6.5 cm acceleration electrodes and then enter a free drift chamber with a size of 96.4 cm. A Chevron 

configured multichannel plate works as a positive ion  
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r,  O: oscilloscope, T: trigger signal, I: input 

signal. (b) inside of ablation chamber, drift tube and MCP detector.  

s
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Fig. 8.9. Schematic diagram of the TOF-mass spectrometer. (a) light path: S: shutter, B: 95% 

beamsplitter, D: photodiode, PC: laser power attenuato
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detector. The detector operates at ground potential with -2kV acceleration and the detector gain was ≥ 

106.  The light source is a 50 fs laser operating at 800 nm with a repetition rate of 1000 Hz. The 

average power is attenuated at a range of 0.019-0.255 W. According to the SEM images, the diameter 

of the irradiated crater at the surface of the HOPG was less than 100 μm. From this information, the 

incident laser intensity was found to range from 1.2 x 1014 - 1.63 x 1015 W/cm2. 

   It is reasonable to assume that the length of the ion path can be obtained from the effect of a 

constant acceleration combined with a initial velocity.  Then one can easily find that the time of flight 

can be expressed as  

  

                                                                                                                                           (8.1) 

 

 

Where, Vo is the initial ion velocity, U is the acceleration voltage. d is the distance over which 

acceleration occurs, D is the drift length. In our case, d=6.5 cm and D=96.4 cm. By varying the 

acceleration voltage, one can easily determine the ratio of q/m and further identify the ions.  
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 Fig. 8.10 Time-of-flight mass spectrum of carbon species ablated at an intensity of 1.96 x 1014 

W/cm2 with an acceleration voltage of 4 kV. 
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Fig. 8. 11 Time-of-flight mass spectrum of carbon species ablated at an intensity of 1.17 x 10

(b)

   Figs. 8.10-11 show TOF mass spectra of carbon species ablated at different laser intensities. It is 

apparent that several species appear at short times corresponding to high charged ions. These species 

are due to superheated ions (Qian et al. 1999, Ehler 1978). At lower incident laser intensity peaks 

associated with these ions become weaker. At intensities < 2 x1014 W/cm2, these suprathermal species 

are undetectable. Instead, molecules are generated with lower drift velocity. It is notable that the 

present TOF spectra are quite different from those in previous reports (Qian et al. 1999, Banks et al. 

1999), where only two suprathermal ion and plasma peaks were observed. This difference can be 

attributed to the higher resolution of the present detector.  These species can be further identified by 

altering acceleration voltages. Using eq. (8.1) one can calculate the initial ion velocity at a certain 

charge/mass q/m ratio. It is reasonable to assume that initial velocity remains constant as the 

acceleration voltage changes since these initial velocities are produced in the laser-matter interaction. 

 oriented pyrolytic graphite is used as a target, and the incident laser beam is 

cation of mass peaks.   

15 

W/cm2 with an acceleration voltage of 4 kV. 

 

In addition highly

focused perpendicular to the HOPG surface. The use of a high purity target and the reproducibility of 

the irradiation conditions simplify the identifi
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Fig. 8. 12 TOF mass spectra of carbon species ablated at 1.96 x 1014 W/cm2 with an acceleration 

voltage 3kV (upper), 2kV (middle) and 1kV (lower). 
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Fig. 8.13. TOF mass spectra of carbon species ablated at 1.17 x 1015 W/cm2 with an acceleration 

voltage 3KV (upper), and 2KV (lower).  
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Figs. 8.12-13 show TOF mass spectra obtained at different acceleration voltages. Highly charged 

carbon species and small carbon clusters are assigned to individual peaks according to eq. (8.1). This 

analysis indicates that highly charged carbon species consist of C4+, C3+, and C2+.  Small carbon 

species correspond to C+, C2
+, C3

+, C4
+, and C5

+.  Table 8.3 gives the initial velocities as a function of 

incident laser intensity. Highly charged carbon ions have the higher velocities than that of the charged 

monomer (only one carbon atom), dimer (2C+), trimer (3C+), tetramer (4C+) and pentamer (5C+). 

This difference should be related to the ablation mechanism by fs pulses.  

 

Table 8.3. Initial velocity (m/s) as a function of incident intensity (W/cm2).  

 

Intensity 

(w/cm2) 

C4+ C3+ C2+ C+ 2C+ 3C+ 4C+ 5C+ 

1.63x1015 91300 83900 88200 42700     

1.17x1015  70660 63000 32300     

6.85x1014   56600 27600     

3.32x1014   30098 14120 16100    

1.96x1014    12790 15300 14500 13660 12160 

1.2x1014     14730 13900 12200  

 

It is notable that the velocity of C2+ monomer is almost double of that of C+ monomer at a given 

incident intensity. This suggests that highly charged carbon particles are created by Coulomb 

explosion since the momentum scaling is common for multi-charged ions generated by such as 

mechanism (Lenner et al. 2007, Stoian et al. 2002). Under the Coulomb explosion picture, electrons 

which bond atoms forming the lattices are taken away by mutiphoton excitation. The positive ions are 

immediately (through a ultrafast procedure) expanded due to Coulomb repulsion. Injected ions will 

gain the initial kinetic energy through a similar accelerating potential. Obviously, if the momentum of 

multicharged ions can be scaled by their charged number this indeed means they are generated by the 

identical channel. It is hard for them to obey a momentum scaling law through a step-ionization 

because there are little possibilities for the further interaction between fs photons and ions once ions 

ar

lse is not a well-established Gaussian pulse rather a narrow 

e generated. However, both C3+ and C4+ are not held a proper momentum scaling. This can probably 

be related to the pulse shape. The 50 fs pu
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pulse stands on an uncharacterized background pulse (under investigation). It is unclear if this 

background pulse can ionize species before the central peak comes. A detailed energy scanning can 

help elucidate this point. However, one can easily see the substructure of the fastest TOF peak in Fig. 

10-13. To identify such a structure can be of benefits to understanding the Coulomb explosion. 

Further work is planning to focus on these issues.    
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Figs. 8. 14-15 show initial velocities verse incident laser intensity. It is evident that the initial 

velocities increase with incident laser intensity. This is consistent with previous reports of fs ablation 

(Qian et al. 1999, Banks et al. 1999). 
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Fig. 8.16. TOF mass spectra of carbon species ablated at an intensity of 1.63 x 1015 W/cm2.  

    8.16 shows TOF mass spectra at long drift times. Large carbon clusters are clearly evident. 

The small ions, the most abundant products, are followed by some medium-size carbon clusters 

(N=10-40). Some heavy ions with N=300-500 are also detected.  

 

8.8.  Conclusions 
 

Theoretical calculations confirm that there are abundant linearly sp-bonded polyyne molecules 

embedded in fs-DLC films. The simulations carried out indicate that these carbon chains occur as 

linkages to form large carbon molecules by linking graphitic rings and nanodiamonds. Isolated 

hydrogen-terminated polyyne chains are also evident in various irradiated organic liquids. 

   Time-of-flight mass spectra show the presence of highly charged carbon species. Momentum 

scaling confirms that ablation is due to Coulomb explosion. The initial kinetic energy of highly 

charged ions is up to several keV, while small carbon species possess energies of a few hundred eV.   

 

 

Fig. 
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stions for Future Work 
 
Through my Ph. D research work the following conclusions have been obtained: 1. Interaction 

between fs pulses and HOPG is a nonthermal processing. We have successfully synthesized polyynes 

on HOPG surface by fs irradiation. 2. During interaction with carbon, nanopatterns of carbon particles 

are induced by optical orientation of fs pulses. 3. Coulomb explosion is evident by TOF mass spectra 

of fs ablation of carbon. 4. Molecular structure and chemical binding states are elucidated by 

combining UV/Vis/SERS Raman, XPS and UV/NIR optical spectroscopy. These results are further 

applied to simulate and identify astronomical spectra. 5. Isolated polyyne chains and hexagonal 

nanodiamonds are successfully synthesized by the direct disassociation of hydrocarbon solvents by fs 

pulses. 6. Calculation indicates the polyyne in both fs-ta-C and fs-a-solvent has a chain length 

between 2-8 C-C pairs. The major accomplishments are listed below: 

1. We have elucidated the interaction between fs laser pulses and solid carbon.  

aphite 

surface and in organic solutions. Both have high scientific value and possible high 

 very high resolutions.  

4. Based on these works I have published 10 1st authored papers (excludes one under review) on 

eferenced journals. Half of them are the leading journals on Applied physics, 

Chemical Physics. and Astrophysics. Some of them are immediately cited by other 

extend present studies.  

Chapter IX 
Sugge

2. We have developed two novel methods to synthesize polyynes and nanodiamonds in gr

commercial potiential. 

3. We build our own surface enhanced Raman spectroscopic methods and materials, which can 

repeatably characterize solid thin films and solutions with

professionally r

researchers and virtual journals of Ultrafast Science and Applied Physics.     

   During these researches some new topics are founded and planning to be investigated in the future 

work. Some of them are presented below: 

 

      1. Identification of heavy species by time-of-flight mass spectroscopy in femtosecond laser 

ablation has been initiated in a following cooperation project. 

2. Deposition and dissociation with a few fs short pulses (less than 10 fs) will be of interest to 
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3. Present works display that nanoc  magnetic properties. The nature of 

nanomagnetism is unclear. Theoreti obe the spin distribution of 

graphitic nanoribbon experimental and 

theoretical investigations are desired to elucidate femtosecond laser irradiation-induced 

arbon possesses novel

cal calculation is possible to pr

s with variable boundaries. However, further 

magnetization. 

4. Surface enhanced Raman spectroscopy has a capacity of the ultrahigh resolution to detect 

single molecule. The development of the periodic array of silver nanoparticle is very 

promising to develop practial molecular analystic methods and investigate cold surface 

plasmons. 

5. Application of the nanodiamond solution and surface nano-engineering to biomedical 

projects is highly rewarding. This is being carried out in a postgraduate study.  
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	1. 2 Carbon science and the phase diagram of carbon
	   For the deposition of nanodiamond films, as shown in Figure 7.2, a transition metal plate was immersed in the liquid and the laser was focused on its surface. The liquid was stirred during irradiation to ensure uniformity.  The resulting diamond deposit was collected on a Si substrate placed in the vicinity of the laser focus. Before deposition, the Si wafer was first degreased in an ultrasonic bath of acetone (high-performance liquid chromatography HPLC grade), and then further cleaned by immersion in a 1% HCl solution. The wafer was then rinsed in nanopure water (18M().  This deposit took the form of a light grey film. The chemical composition and structure of the deposited films were characterized using visual Raman spectra and x-ray photoelectron spectra (XPS). Molecular species in the solution following irradiation were also investigated from surface enhanced Raman spectra (SERS) after mixing at a ratio of 5:1 with a 0.1 M silver nanoparticle solution. Silver nanoparticles suspended in nanopure water (18M() were synthesized through a standard citrate reduction procedure (Lee and Meisei 1982, Kneipp et al. 1993). SERS spectra were recorded by focusing a 632 nm laser beam into the resulting solution with a x50 objective at an excitation power of 0.3 mW.  
	Molecular species were modeled using the Gaussian 03 package. Calculations were performed using the three-parameter hybrid functionals of Becker and the correlation function of Lee, Yang, and Parr (B3LYP). The 6-31G(d) and 6-311G(d, p) bases were chosen for comparison, but major differences in calculated results were noted for most of the molecules that were investigated. Geometries were optimized using the Berny algorithm and vibrational frequencies were determined by computing the second derivatives of the energy with respect to the Cartesian nuclear coordinates. 
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