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ABSTRACT 

There is now widespread recognition that chemical monitoring of the environment is not 

suficient given that pollution is essentially a biological phenornenon because of its 

impact on living organisms. Careful interpretation of the biota, in light of the known 

ecology of the species involved, is needed to ascertain whether there is impact, and may 

even indicate the nature of the cause. An approach developed in Great Britain 

(RIVPACS) provides a method for biological surveillance, conservation, and 

environmental impact assessment in rivers. It predicts the macroinvertebrate fauna to be 

expected at a given site based on a small number of environmental features. Using the 

mode!, it is possible to predict the benthic community that should occur at a site. 

A modified approach to that described in the British Riven study has been used in the 

assessment of the Great Lakes. A goal of that study was to predict what the benthic 

community should look like at a site if it were undisturbed. The approach also provides 

an appropriate reference for determining the degradation at a site due to anthropogenic 

contamination. However, when there is divergence fiom an expected state, as yet it is not 

possible to define what ishre the causative agent@). In a site exposed to multiple 

stresson, no clear statement can be made as to which potential sources should be 

controlled, other than by inference fiom chemicai anaiysis. 

As divergence fiom an expected state is due to changes in abundance of species corn 

those predicted, it is reasonable to assume that communities of organisms will have 

characteristic responses to certain stresson. Therefore, the way in which a site diverges 

fkom its expected state rnay provide useN diagnostic information as to the nature of a 

stress. This study was intended to complement the predictive mode1 designed for the 

Great Lakes. The invertebrate communities contained within the sediment of intact box 

cores, coiiected from the field and manipulated under laboratory conditions, were used to 

investigate the directional changes in cornmunity composition as a result of 

contamination. 



This study showed that the intact box cores could be maintained in the laboratory with 

little change in the resident fauna. Despite reductions in the overall abundance of species, 

which was evident in the separation of the field and control boxes in ordination space, 

univariate analysis of the most abundant taxa and a number of diversity and richness 

measures showed that there was little significant change between the field and laboratory 

boxes on collection, or over time. It was also established that the addition of low levels of 

nutrients had little effect on the communities. 

Clean sieved sediment spiked with cadmium, atrazine or nutrient enriched was added to 

intact box cores. Upon sarnpling the boxes, the benthic macroinvertebrate community 

composition was analysed using the ordination technique Multi-Dimensional Scaling. 

The consistency and pattern of change in the community composition as a result of the 

contaminants was identified with respect to the direction in which each treatment moved 

the community in ordination space. Not al1 of the contaminants were identified as having 

an impact when compared to the field data. However, this study did establish that 

different contaminants did have distinct impacts on community composition. 

Intact cores of naturally CO-adapted species show potential as a diagnostic tool and are a 

usefid technique for the analysis and identification of sediment contamination. They 

combine the reaiism of naiural communities fiom the environment uith the power of 

controlled laboratory experiments. Their use may avoid some of the problems 

encountered when extrapolating data obtained from in vitro studies to natural 

communities. 
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CHAPTER I 

Tlzesis Outline 

1.1 Current problern 

Efforts to measure and mitigate the impacts of contaminants associated with sediments 

have arisen from the continuing need to remove and dispose of large volumes of sediment 

for purposes such as navigation (Reynoldson & Zarull, 1993). The need to quickly and 

inexpensively assess the potential environmental impacts of dredged matenal, prior to 

disposal, resulted in the development of chemical-specific criteria. From these, sediments 

are usually designated as contaminated on the basis of bulk chemical concentrations. 

However, the measurement of chemical concentrations in the sediment does not address 

the question of bioavailability. It is generally believed that it is no longer sufficient to 

document aquatic pollution in ternis of chemical concentrations of the contaminants 

(Metcalfe, 1989). Although chemical concentrations are important for inventory 

purposes, fiom an ecological viewpoint, they are inadequate by themselves as a method 

of determinhg and interpreting pollution levels (Chapman & Long, 1983). 

Physical, chemical and biological factors controllhg the distribution of animals and 

community composition often act synergistically. When these factors are taken into 

account, the benthos reflect changing environmental conditions (Barton, 1989). Bulk 

chemical measurements serve to indicate 'hot spots', where hi& concentrations of 

contaminants occur. To provide more direct and conclusive proof of adverse 

contamination effects, a combination and integration of both chemical and ecological 

methods are required (Chapman & Long, 1983). 



1.2 Recent trends and developments 

There is general agreement throughout Europe (Metcalfe. 1989) that there is a need to 

define reference communities based on chemical, physical and geographical features 

unrelated to pollution as the first step toward the identification of expected/ best achieved 

communities for each type of water. An approach developed in Great Bntain (Wright et 

al., 1993). the River Invertebrate Prediction And Classification System (RiVPACS), 

offers a method for the prediction of macroinvertebrate fauna to be expected at a given 

site based on a small number of environmental features. 

A modified approach to that described by Wright and CO-worken (1 993) has been used in 

the sediment assessrnent of the Great Lakes (Reynoldson and Zanill, 1989; IJC, 1988; 

1987). The process relies heavily on the benthic community, and the primary concem is 

the determination of sediment quality. As a result, a large database has been assembled 

from reference sites in Lakes Ontario, Erie, Michigan, Superior and Huron. It includes 

information on the composition of the benthic invertebrate cornmunities, measured 

environmental variables, and the responses of four species of benthic invertebrates 

exposed in the laboratory to sediment collected from the same sites. 

Reynoldson and CO-workers (1995) have shown that the utility of the biological 

guidelines developed (Reynoldson & Zarull, 1993, and the predictive rnodelling 

approaches used, do work. They found that test communities showed expected trends in 

relation to a range of reference communities. 

1.3 Proposed work 

Community composition data c m  be portrayeci in a reduced number of dimensions using 

multivaiate ordination techniques, such as Multi-Dimensional Scaling (MDS). In MDS, 

environmental and biological variables c m  be related to one another through Principal 

Axis Correlation (PCC). PCC takes each environmental (or species) attribute and fin& 

the best Location of the fitted vector in ordination space. Two pieces of information result: 



the direction of the best fit, and the correlation with that direction. Although the 

correlation coefficient may be used as a rough indicator of the significance of each 

attribute, the significance of the relationships c m  be tested through Monte-Carlo 

permutation tests. 

Figure 1.1 gives a diagrammatic representation of an ordination plot. Axis 1 and axis 2 

are summaries of the largest and second largest arnount of variation in the data set. 

Hypothetically, the inverted triangles represent samples taken from a reference site and 

the ellipse its community state. The 3 sites indicated by the crosses, circles and squares 

were al1 predicted, based on their environmental conditions, to have a community type 

similar to that represented by the ellipse. The results represented in figure 1.1 a indicate 

that the sites indicated by the crosses are unimpacted and lie witliin the defined 

community type. The circles and squares al1 lie outside of the ellipse. It can rherefore be 

suggested that there is some stress or impact acting upon these two sites. However, based 

on this type of analysis no information is provided about the nature of the stresses acting 

on these two sites, which are obviously quite different. 

Axis 1 

Fig. L I :  Hypothetical ordination plot. Reference grmp (ellipse), reference sites (inverted 
tricmgles), and mkiown sites (crosses, squares, und circles). 



In their current fom, the guidelines developed in this type of model allow one to 

determine whether or not the community is impacted (different from the reference 

community). However, when there is divergence from an expected state, as in figure 1.1 a, 

the causative agents cannot be determined, except by means of correlation with measured 

environmental variables. Thus, in a site exposed to multiple stresson, no clear 

recommendations can be made as to the potential sources to be controlled. 

Divergence from an expected state is due to differences in the abundance of species and 

changes in species composition from that predicted. It is, therefore, reasonable to 

hypothesise that communities of organisms will have characteristic responses to certain 

stressors. It is believed that the direction in which a site diverges from its expected state 

may provide useful diagnostic information as to the nature of an impact. 

The environmental (and species) variables can be correlated to the position of the sites in 

ordination space through Principal Axis Correlation (PCC), and their significance 

identified using Monte-Carlo permutation procedures. These attributes can be displayed 

on the ordination plot, as illustrated in the hypothetical example (fig. 1.1 b) in the form of 

vectors; the arrows indicate the direction in which that environmental variable explains 

the ordination pattern. Similar vectors can be plotted for the taxonornic data. 

The research outlined here is an expansion of the work carried out by Reynoldson and co- 

workers (1995) to develop a predictive model using benthic macroinvertebrates for the 

assessment of sediments. It has been shown that community type c m  be predicted 

successfully based on the site's environmental variables. The question now arises as to 

whether changes in community composition can be used to indicate the nature of a stress. 

An attempt was made in this thesis to address the diagnostic capacity of benthic 

invertebrate community structure in the assessment of sediment conramination. This was 

achieved using mesocosms, consisting of intact box cores taken fiom the field, brought 

back to the laboratory, and maintained under laboratory conditions. If such methods are 

to be used successfully, and have any diagnostic capabilities, two questions must be 

answered: 



2. Can the cornmzrnities be maintained linder luborutory conditions ivit h no signijcunt 

eflecr on the resident benthic fauna? 

2. Do the cornmiinities respond predicrably and comistently to speczfic stresses? 

This thesis attempts to answer these questions using boxes collected over two field 

seasons. 

In Chapter 2, an ovewiew of the problem is presented. Current trends in the assessment 

of sediment contamination, and developments in assessment techniques, are outlined. The 

utility of indicators in environmental monitoring is introduced, together with the use of 

multivariate statistical techniques. Both general and specific site descriptions of the area 

used for this study are given. The community composition of the site and factors 

influencing the community composition of the site are also considered. 

In Chapter 3, an attempt is made to evaluate whether cornmunities within the intact box 

cores cm be successfûlly maintained under laboratory conditions. To achieve this a 

number of hypotheses are tested: 

Collection and tnmsportation of the boxes to the laboratory do not significantly alter 

the community composition, compared to that found in the field. 

The communities within the laboratory boxes do not change significantly over time. 

The cornmunities do not require the addition of nutrîents to survive in the laboratory. 

As a result of maintainhg the intact boxes at temperatures higher than that observed 

in field, there are no significant changes in cornmunity composition between the 

laboratory and field boxes. 

It has been suggested (Sheehan et al., 1986) that small mesocosms, containing naturally 

CO-adapted communïties, exhibit typicai ecosystem properties. The ability to maintain 

such mesocosms would allow sediment contamination to be assessed using the 



replicability and statistical power of laboratory techniques while retaining much of the 

ecological realism of field studies. Multivariate anaiysis of the complete benthic 

macroinvertebrate community composition will be compared to the more traditionai 

univariate statistical methods. The rfiost abundant (predominant) species. together with 

various measures of diversity and nchness will be considered in the univariate analyses. 

There is a lot of speculation as to the effects of the exotic species Dreissena on 

comrnunity composition (Dermott et al., 1993; Griffiths, 1993; Mackie, 199 1 ). Dreissena 

are very patchy in their distribution and tend to rnigrate to the sides of the intact boxes 

when maintained in the laboratory. It is therefore important to establish the relationship 

between Dreissena and community composition, if the intact boxes are to be successhlly 

used to evaluate the sensitivity of macroinvertebrate community structure for the 

assessrnent of sediment toxicity. The relationship of Dreissena has on cornmunity 

composition will also be addressed in this chapter. 

It was necessary to make certain assumptions at the b e g i ~ i n g  of the project. The test 

boxes and field cores are collected from the same site. It is therefore assumed that upon 

collection, the boxes are comparable in al1 physical and chemical aspects and. the 

community composition of the intact boxes do not differ significantly. Lack of extemal 

migration of species. nutrients. and predation is assumed to have negligible impact upon 

the community structure of the mesocosm, within the tirne fnme of the observations. An 

attempt is made to address these assumptions, where possible. during the analysis. 

Changes in cornmunity assemblage as a result of sediment contamination are considered 

in Chapter 4. The research presented in this chapter is designed to determine whether the 

communities respond differently to various contaminants. The predictability and 

consistency of cornmunity response to specific stressors is evaluated, and in doing this, 

the following hypotheses are tested: 



Seasonal changes in community composition of the intact boxes are greater than 

between- and within-box variation. 

Changes in the community composition caused by the addition of the stressors are 

greater than between- and within-box variation. 

A consistent pattern, regardless of seasonal effects. is observed in the changes in 

community composition in ordination space as a result of the different stressors. 

Directional changes in ordination space of the intact boxes can be related to changes 

in specific species. 

Directional changes in ordination space of the contaminated boxes can be related to 

changes in the measured environmental parameters. 

The utility of the benthic macroinvertebrate community composition for the assessment 

of sediment toxicity will be addressed using intact box cores. Clean sieved sediment from 

the sample site will be contaminated with either cadmium, or the pesticide atrazine. 

Nutrient enrichment will also be applied, as it is perhaps the most common perturbation 

in Great Lakes sites. 

Spatial variation of the community composition is assumed to be similar between and 

within the boxes. Variation seasonally, and between boxes, will be addressed using 

univariate statistical techniques. Responses to the different contaminants will be 

addressed using Multi-Dimensional Scaling (MDS), and displayed graphically in the 

form of ordination plots. Divergence from the control will be assessed for the treated 

boxes, and the directional trends, consistent nature and predictability of these divergences 

considered. 

Data fiom both the 1995 and 1996 sampling seasons will be considered in Chapter 5. The 

capabiiity of using intact boxes will be assessed using descriptive methods outlined by 

Reynoldson and Day (1 W8), to qualm directional changes of community composition as 

a result of various contaminants. These trends will then be related to the changes in both 



species composition and rneasured environmental variables. In doing this. an attempt will 

be made to address the diagnostic capacity of the techniques descnbed in this thesis. 

The final chapter will tie together the findings of this thesis in a final discussion, 

highlighting the relationships between sediment quality and community structure and 

their potential use as a diagnostic tooi to predict the type of contamination at a site with 

an unknown impact. Summary of the methods employed. recommendations and possible 

future work will also be discussed. 



CHAPTER 2 

Introduction 

2.1 Sediment contamination 

Sediments are increasingly being recognised as both repositories and possible sources of 

contarninants in aquatic systems (Forstner et ai., 1986). They tend to become 

contarninated with both organic and inorganic chemicals, accumulating both nutrients and 

toxins, which c m  be the principal cause of environmental degradation in fieshwater 

systems. These contarninants may sorb to particulate matter or remain in solution in the 

sediment pore-water (Chapman. 1987; Cairns et al., 1984). Sediment contamination is 

one of the major end results of potlutant discharges into fieshwater and manne aquatic 

environrnents (Landrum & Robbins, 1990), and has resulted in sediments highly 

contaminated with metals, persistent toxic organics, and nutrients, representing a 

significant concem throughout aquatic systems around the world. 

Bottom sediments play an important role as sinks in aquatic systems, where a wide 

variety of chemicals c m  be stored. Fine-grained sediments, such as silt-clay muds, have a 

hi& &ty for agricultural and industrial pollutants, particularly toxic metds (Bolsenga 

& Herdendorf, 1993). These fine-grained sediments tend to readily sorb with 

contaminants (Rand, 1999, and thus, together with their high s d a c e  area/volume ratio, 

have the potential for accumulating the highest concentrations of contaminants. However, 

chemicals are not necessarily fked pemanently in the sedirnents but may become re- 

mobilised when physico-chernical conditions change, thus sediments have the potential to 

be a source of contaminants to the overlying water and to the biota (Calmano et al., 1 995; 



Baudo & Muntau, 1990). Metals, for example (Fontner et al.. 1986). are not necessarily 

fixed permanently to sediment, but may be recycled via chernical, biological and, 

physical processes both within the sediment and the water coiumn. Sedimenting particles 

are subject to degradation, which results in the remobilization of contaminants. These 

degradation processes rnay also continue into the sediment layer; causing a difference in 

the concentrations of some elements between the pore-water and surface waters, and 

resulting in a Rwc of metals from the oxic layer in the sediment (Solomons et al.. 1987). 

The mobilisation of accumulated pollutants may also result from anthropogenic 

influences such as changes in pH due to acid rain (Solomons et al.. 19871, reworking of 

the sediments by benthic organisms and upward mixing of sediments by turbulence 

(Bennett, 1987). 

Fine sediments, known for their ability to absorb both trace metals and relatively 

insoluble organic compounds (Thomas & Frank. 1987). tend to be deposited in deeper 

waters where the physical processes necessary to induce resuspension are lacking, or in 

shallow, Iow energy areas of restricted circulation. Many such areas are also recipients of 

urban and agncultural inputs of contaminants. ï h e  highest levels of sediment associated 

contarninants and some of the worst manifestations of their resultant problems are found 

in these urban-industrial harbours, embayments and river mouths (Zamll& Reynoldson, 

1992). 

Measurement and mitigation of the impacts of sediment associated contamioants are of 

particuiar importance when there is a need to remove and dispose of large volumes of 

sediment for purposes such as navigation (Reynoldson & Z d l ,  1993). From as early as 

the late 16003, large vessels have sailed on the Great Lakes (Ashworth, 1991). As vesse1 

Ne and nurnbers rapidly increased, new harbours and deeper channels had to be 

constructed. Maintenance of these harbours and channels, together with the disposal of 

dredged material, remain an issue. A report produced in 1990 by the international Joint 

Commission indicated that 24.26 x lo6rn3 of material was removed and disposed of 



throughout the Great Lakes between 1980 and 1984. Indeed. an earlier report produced by 

the International Joint Commission (IJC, 1982) documented volumes of around 

1.8 x 1 06m3 between 1975 and 1979 for the Canadian sectors of the Great Lakes alone. 

The need to quickly and inexpensively assess the potential environmental impacts of 

dredged material, p ior  to disposal, resulted in the development of chemical-specific 

cntena. Chernical monitoring depends upon knowing what pollutants are likely to be 

present. With the increasing complexity of industrial effluents. this is becoming more 

difficult (Hawkes. 1978). As a result, sediments have been designated as contarninated on 

the basis of bulk chemical concentrations. Although chemical concentrations are 

important for inventory purposes, as a rnethod of determining and interpreting pollution 

levels they are inadequate by themselves (Chapman & Long, 1983); the measurement of 

chemicai concentrations in the sedirnents does not directly address the question of the 

bioavailability of these contarninants to the resident fauna. These chemical criteria c m  

also tend to be overprotective and thus making, for example, disposai of dredged 

sediment very costly (Darby et al., 1986). 

There has been a developing awareness that chemical objectives alone are insufficient as 

indicators of the overall "health" of aquatic systems, and that ultirnately the biological 

integrity of the ecosystem is the prime concern (Reynoldson er al., 1989). In order to 

predict the effects on organisms, there is a need to deal with chemical concentrations in 

sedirnents in such a way as to take into account the complex interactions occwring as a 

r e d t  of the increased complexity of industrial effluents (Butcher, 1946). The 

determination of contaminant concentration per se provides M e ,  if any, information on 

the availability (its bioavailability) of these compounds to the resident biota or their 

potential adverse effects (Chapman & Long, 1 983). 

Concem over the degree of environmentai protection offered by chemical guidelines 

prompted the development of alternative approaches to sediment assessrnent (Reynoldson 

Br Zaruil, 1993). There is now widespread recognition (Reynoldson & ZaruII, 1993; IJC, 

1987; Chapman & Long, 1983) that chemicai monitoring aione is not enough, and that 



pollution is essentially a biological phenomenon because of its impact on living 

organisms. Evidence from monitoring indicates that even though water-quality critena 

are not exceeded. organisms in or near sedirnents rnay be adversely affected at 

concentrations below those detectable by chemical analysis (Chapman, 1995). Biological 

guidelines, however, may be less stringent than univenal chemical criteria as they 

incorporate site-specific adaptations and reflect only bioavailable material (Painter, 

1992). Invertebrates are useful indicators of water quality, especially in relation to 

fisheries. However, they may not be sensitive to some pollutants, which affect other water 

uses. For example, work done by Hawkes ( 1978) indicated that the presence of low 

concentrations of the herbicide TBA (trichiorobenzoic acid) had only slight effects on the 

invertebrate fauna. Although, biological surveillance detects ecological change indicative 

of water quality changes, it does not identifv the specific cause. Bulk chemical 

measurements serve to indicate "hot spots" where large concentrations of contaminants 

occur. However, some chemicals known to be toxic are not readily detected with standard 

analytical techniques. To provide more direct and conclusive proof of adverse 

contamination effects, a combination and integration of both chemical and biological 

methods is required (Chapman & Long, 1983). Biological and physico-chernical 

approaches are essentially complementary i n  monitoring water and sediment quality. and 

it is appropriate to detect and assess impact through examination of the biota (Wright et 

al., 1994). Careful interpretation of changes in the biota, in light of the known ecology of 

the species involved, may indicate the nature of the cause, which may then be confmed 

by physico-chernical tests (Hawkes, 1978). Such an approach provides different types of 

information, contributing to a full assessrnent of water quality. In some cases, when 

biological results do not support the physico-chernical data, they probably indicate 

contaminants for which tests were not conducted (Hawkes, 1978). Hence, chemicai and 

biological approaches are complementary. 



2.1.1 Utiliiy of biological indicators in rnvironmenral monitoring ciml decision making 

There are many different ways in which biological studies are used to address water and 

sediment quality. These include toxicity studies and bioassays for linking concentrations 

of pollutants to observed effects, and bioconcentration and bioaccumulation studies to 

assess the exposure of organisms to pollutants and the potential effect higher in the food 

chain. These can be used to provide base-line information for comparison with impacted 

areas, to detect changes, and to assess the impact of pollutants (Norris & Noms, 1995). 

Unknown factors, which may affect the estimation of sediment toxicity using dose- 

response relationships, include the efficiency of the extractions and analyses. the 

availability of the toxicants to the biota, and potentiai interactions arnong the toxicants. 

Therefore, measured contaminant concentrations may not accurately refleci the potential 

toxicity of the sediments to the organisms (Giesy & Hoke, 1989). While dose-response 

techniques provide useful information and should be rnaintained as methods for sediment 

toxicity evaluation, Chapman and CO-workers (1 987) suggest that they are limited and do 

not provide suficient information to answer al1 of the pertinent questions regarding the in 

situ toxicity of contaminant mixtures in sediments. 

Benthic macroinvertebrates continue to be used for biological monitoring and, indeed, are 

the group of organisms most widely used for the assessment of both water and sediment 

health (Resh a al., 1995). They are present in most aquatic habitats and are relatively less 

mobile than other groups (e.g. phytoplankon, zooplankton, fish, etc.), thereby being more 

representative of the location being sampled (Reynoldson & Metcalfe-Smith, 1992). 

Benthic community responses to changes in water qudity have long been recognised 

(Reynoldson, 1984; Sheldon, 1984; Hynes, 1960) and, in general, their taxonomy is well 

established. They are often considered the most appropnate biological indicators for 

sediment quality as they are directly associated with contamlliants in the sediments 

through their feeding and behaviour. Animals buried in sediment are exposed to toxicants 

in both sediment particles and pore waters. Therefore, animals that are adapted to live in 

fine sediments, such as oligochaetes, bivalve molluscs, chironomids, bmowing may£iies, 



etc., are excellent indicators of sediment toxicity (Swift et al.. 1996). 

Species composition of benthic invertebrate cornmunities has frequently been used in 

environmental monitoring and assessment (e.g. Cadïefld et al.. 1996; Canfiefld et af., 

1994; Hawkins et al., 1994; Reynoldson & Metcalfe-Smith. 1992; Furse et al., 1984). 

Community composition, which provides evidence of impact at one or more trophic 

levels within the ecosystem, can be easily and relatively inexpensively obtained 

(Reynoldson, 1984). However, studies involving community composition alone are not 

suficient. An absence of macroinvertebrates in sediments does not necessarily indicate 

sediment toxicity as the causative factor (Painter, 1992; Giesy & Hoke. 1989), and may 

fail to account for the ecological complexity of the system. Functional tests. such as 

biological tests of sediment toxicity, can provide quantifiable relationships between 

contarninants and organisms and cm isolate contributing factors. Most of these tests, 

however, are performed using single species, which may not be indigenous to the area 

under investigation. Not al1 species can be tested in the laboratory, and extrapolation 

between species is highly uncertain. A lack of environmental realism and failure to 

incorporate ecosystem complexity limits any investigative utility of laboratory tests and 

possibly their ability to establish acnial impairment (Monk. 1983). Nevertheless, 

laboratory bioassay data for specific contaminants cm provide information on toxicity 

and the potential for bioaccumulation. 

Acceptable levels of physical and chernicd indicators of water and sediment quality are 

usually set through toxicity testing. Prediction of effects under field conditions is not 

easy, because exposure to the contaminant can be variable. Laboratory data allow 

uncertainties about contaminant effects in the "real" environment to be reduced such that 

a specific hypothesis c m  be formulated and tested, either through additional laboratory 

tests, field studies, or a combination of the two (Chapman, 1995). The relative strengths 

and weaknesses of field and laboratory approaches make them complementary, and it is 

clear both fieid and laboratory methods should be used to examine stress. 



A clear link needs to be established between the single (and multiple) species tests 

conducted in the laboratory under controlled conditions and the potential effects in the 

ecosystem (Chaprnan, 199%). This can be achieved by validating laboratory data in real 

ecosystems whenever possible (Bacher et al.. 1992). Ecotoxicological assessment 

addresses the effect of chemicals on a range of species and species interactions in the 

environment. It encompasses both laboratory tests and field assessments. as well as a 

variety of microcosrn and mesocosm experiments (Rand, 1995). The response of a test 

organism to single compounds or mixtures of cornpounds is often correlated with that of 

other species, but seldom is the correlation perfect. Therefore, no single bioassay c m  be 

expected to be adequate for the detection of potential adverse effects of cornplex mixtures 

of contaminants, due to the different sensitivities and natural histories of bioassay 

organisms (Giesy & Hoke, 1989). 

21 .2  Trends N> biornonitoring 

By definition, benthic rnacroinvertebrates are closely associated with sediments. and so 

are continuously exposed to sediment contaminants (Canfield et al.. 1994). Field surveys 

of invertebrates have several advantages over laboratory methods tbr the assessment of 

sediment toxicity. Indigenous benthic organisms complete most, if not all, of their life 

cycles in the aquatic environment and serve as continuous monitors of sediment quality. 

They are relatively sedentary, so are representative of local conditions. They are aiso 

relatively easy to collect and are ubiquitous across a broad array of sediment types. 

Finaily, a field assessment of indigenous populations can be used to screen potential 

sediment contamination. 

The idea that certain species cm be used as indicaton of different types of environmental 

conditions is weii-established (Cairns & Pratt, 1993). The concept of biologicai indicators 

of environmental conditions onginated with the work of Kokwitz and Marsson (1909, 

1908), who developed the idea of saprobity (the degree of pollution) in rivers as a 

measure of the amount of contamination by organic matter. Although biological methods 



of assessing water quality have been used in Europe since early in the century, and later 

in America, it was only in the latter half of this century that the possibility of using 

aquatic organisms as indicaton of pollution received senous consideration in the United 

Kingdom (Hawkes, 1978). Hynes (1 960) advocated the use of benthic invertebrates as 

indicators of pollution. By comparing quantitative sarnples at various points dong the 

length of a river he was able to assess effects of pollution. even where the levels of 

pollution were very slight. He reasoned that different types of pollution brought about 

different ecological conditions. 

Toward the end of the 1950's a number of the river authorities in the UK had deveioped 

biological methods for classifying pollution conditions of rivers. n i e  Trent Biotic Index. 

developed fiom the Saprobien system of Kolkwitz and Marsson ( 1  909. 1908). was a 

landmark in the development of biological methods for assessing river water quality in 

Britain, as it was formed on the basis of other systems which were designed by biologists 

in other areas (Hawkes, 1978). The Trent Index has been largely superseded in the United 

Kingdom by the Biological Monitoring Working Party (BMWP) score (Chesters, 1980). 

which was designed to give a broad indication of the biological condition of rivers 

throughout the UK. Despite the fact that studies have s h o w  that the BMWP score is a 

reliable indicator of water quality (Armitage et al., 1983). researchen as yet. seem 

sornewhat reluctant to relate these index values directly to levels of pollution (Mason, 

199 l), which is essential if the indices are to be of direct value to the management of 

water quality. Similar views are held in both Australia and Canada (Chapman. 1995; 

Noms, 1995; Noms & Noms, 1995; Resh et al., 1995; Reynoldson et al., 1995; 

Reynoldson & Zaruil, 1993). 

Early in its history, the use of stream and lake benthos in biomonitoring focused on the 

detection of organic pollution, employing structural and taxonomie changes in benthic 

invertebrate communities as an indicator of anthropogenically and naturally induced 

stresses (Reynoldson & Metcalfe-Smith, 1992). As with Bioûc Indices, Diversity Indices 

were developed as a measure of stress in the environment (Mason, 199 1). This approach 



assumes that unpolluted environments are characterised by Iarger numbers of species. 

with no single species making up the majority of the community. When the environment 

becomes stressed. the species sensitive to that particular stress will be eliminated. 

Warwick & Clarke (1993) suggested that increasing levels of disturbance may either 

decrease or increase diveaity, or it may even remain the same. Most diversity indices 

take into account the number of species in a sarnple and their relative abundance. but the 

sensitivity of the individual species to particular pollutants is not accounted for. Also. no 

indication of the type of pollutant is provided. 

In North Amenca there has been a movement to incorporate cost-effective biological 

tools into impact assessment (Norris. 1995). Developments have followed dong similar 

lines to those in Europe with respect to the use of indices. These, and other such 'metrics' 

approaches continue to be widely used in the USA for the analysis of water quality, using 

severa! indices (or metrics) presurned to represent ecological features of interest (Resh et 

al., 1995). As a result, numerous indices have been created and used in benthic 

monitoring studies. However, many workers believe that such methods result in the loss 

of information on the composition of the comrnunity (Reynoldson & Metcalfe-Smith. 

1992), arguing that diversity does not behave consistently or predictably in response to 

environmental stress. 

2.1.3 ldentzjicution of impacts 

It is difficult to predict the effects of contarninants on an ecosystem fiom studies based on 

its individual component parts. The impact of a chernical in the environrnent may occur at 

lower concentrations than predicted fiom standardised single species tests (Dewey, 1986). 

To be predictive, such tests must be more environmentally realistic (Buikema & Voshell, 

1993). 

One purpose of biologicd assessment is to characterise the statu of water resources and 

monitor trends in the condition of biologicai assemblages that are associated with 



anthropogenic perturbation characteristics (Resh et al.. 1995). Fundamental to such 

bioassessment methods is the classification of aquatic systems so that cornparisons can be 

made between reference areas and areas of concern, or test sites with similar 

characteristics. 

Until recently, the development of numerical biological objectives has been considered 

too difficult due to temporal and seasonal variation inherent in these biological systems 

(Reynoldson et al., 1995). Reynoldson and CO-workers (1 997) have defined a reference- 

condition approach. A reference condition has been defined as the condition which best 

represents a group of minimally disturbed sites. based on selected physical, chemical and 

biological chancteristics (Reynoldson et al.. 1997. Reynoldson et al.. 1995). With this 

approach, an array of reference sites characterises the biological condition of a region; a 

test site cari then be compared to an appropriate subset of reference sites. Using reference 

communities, defined through the collection of physical, chemical and biological data, 

methods have been developed (Wiederholm, 1989; Armitage et al., 1987; Corkum & 

Cume, 1987; Moss et ai., 1987; Ormerod & Edwards, 1987: Johnson & Wright et al.. 

1984) which have demonstrated an ability to predict the community structure of benthic 

macroinvertebrates using simple habitat and water quality descripton (Reynoldson et al., 

1995). 

There bas been general agreement within Europe (Metcalfe, 1989) that there is a need to 

define reference communities based on chemical, physicai and geographicai features, 

unrelated to pollution, as the f is t  step toward the identification of expectedmest achieved 

communities for each type of water. These communities could then be used as sediment 

and water quaiity objectives, expressed either in terms of whole communities or 

important discriminating species (Reynoldson & Metcalfe-Smith, 1992). One of the first 

proposals combining structural and functionai methods in aquatic ecosystem management 

was the Sediment Quaiity Triad (Chapman Br Long, 1983; Chapman, 1986). This 

approach included measurernents of toxicity, community structure and physical and 

chemical variables. It incorporates measures of sediment chemistry, sediment toxicity. 

and benthic community structure to describe sediment quality. The approach has been 



used to identiQ and differentiate pollution-degraded ares  in marine, estuarine and 

freshwater sediments, by determining concentrations of contaminants and associated 

effects (Canfield et al., 1994). 

2.1.4 Temporal and spatial variabiIity 

Factors controlling the distribution of animals and their community composition often act 

synergistically, including biotic as well as environmental interactions. When such factoa 

are taken into account, the benthos may reflect changing conditions (Barton, 1989). 

Spatial and temporal variability at site unimpacted by anthropogenic disturbances must 

first be understood before disturbance effects can be distinguished from natual 

variability (Johnson et al., 1993). The interactive effects of environmental change must 

be understood when predictions about the expected community assemblage are being 

made (Furse et al., 1984); however, separation of the sources of variability, as opposed to 

combining their effects, often helps to illustrate the underlying factors causing the 

observed patterns (Resh & McElravy, 1993). 

The value of benthic invertebrates as indicators of both sediment and water quality 

increases with an increase in the understanding of the ways in which the environmental 

and methodological factoa can affect the results of field studies (Barton, 1989). Benthic 

animals are not evenly distributed in aquatic systems, and comrnunities cm Vary a great 

deal over relatively short distances (Swift et al., 1996). Diversity in feeding, reproduction 

and morphological and behavioural characteristics makes it difficult to generalise as to 

the factoa responsible for heterogeneity for the entire benthic animal community 

(Wetzel, 1989). 

A great deai of discrepancy exists as to the importance attributed to different 

environmental influences on community structure. Water quaiity characteristics such as 

pH, heavy metal concentration, municipal effluent, and salinity have been suggested as 

factors effecting the benthic community composition (Jackson, 1993). Other factors 



affecting the abundance of benthic invertebrates and tlieir community composition in 

freshwater lakes include, for example, sediment texture and habitat-specific effects on 

timing of reproduction (Jackson. 1993; Brinkhurst, 1968). For many species of benthic 

organisms, clay and silt content of the substrate is an important factor afEecting their 

distribution and abundance (Sauter & Güde, 1996). For example, in substrates with 

heterogeneous grain size, where tubificids can be selective, many species occur almost 

exclusively in their particle size preference range (Sauter & Güde, 1996). The occurrence 

of species is not determined by any one single environmental factor. 

Dissolved oxygen is essential to the respiratory metabolism of most aquatic organisms. 

The dynamics of oxygen distribution in lakes are govemed by a balance between 

exchanges with the atrnosphere, photosynthesis, and losses due to chemical and biotic 

oxidation (Wetzel, 1989). In the profundal zone of many eutrophic Mes, oxygen is a 

limiting factor for most species (Volpen & Neumann, 1992). Oxygen, as well as being 

important for the direct needs of organisms, also affects the solubility and availability of 

many nutrients and toxins, and therefore the productivity of aquatic ecosystems (Wetzel. 

1989). 

Temperature also has a strong controllhg influence on the composition of a cornmunity 

and, indeed, even small changes in temperature can result in a shifi in the dominant taxa 

found at a site. Reynoldson (1 987) showed that Tubifex tubifex and Limnodrilus 

ho$heisteri grow only within a narrow temperature range (10-1 3OC). Thus, thermal 

stratification during the surnrner months has a great effect on at least these two species. 

Not only is it important to address seasonal effects but, where possible. year to year 

variation should also be considered. DXerences fkom year to year may affect thermal 

stratification and restrict the annual temperature range of aquatic systems. Valle (1 927) 

recognised causal relationships between temperature and benthos, and significant 

temporal changes occur in the numbers of dl taxa. In fieshwater lentic systems, it is 

known that temperatwe effects both fecundity and growth of most benthic organisms 

(Reynoldson, 1990). 



The oxygen concentration. water temperature and other physico-chemical variables near 

the sediment-water interface are also effected by patterns of water movement 

(Slepukhina. 1996). Mass water movement affects the distribution and development of 

bottom habitats in lakes through a number of processes. Variation in water movement 

near the bottom sediments cm fom heterogeneous sediment distributions. Low mobility 

bottom water, which c m  lead to excessive accumulation of organic matter in the 

sediments, can limit the distribution of oligochaetes. Organic contamination in stagnant 

conditions can result in the absence of oligochaetes as a result of oxygen depletion 

(Slepukhina, 1996). 

The potentially confounding effects of seasonal changes must be accommodated into the 

design of biomonitoring prognms; knowledge of the life history of the species involved 

will help in this regard (Johnson et al., 1993). The life history of benthic 

macroinvertebrates ultimately is defined by factors that govem the survival and 

subsequent reproduction of a species or population (Johnson et al.. 1993). Samples 

collected j u s  after a recruitment penod can seriously over- or under-estimate the relative 

importance of the particular organism depending upon how the samples are handled 

(Barton, 1989). Many insects, especially in the nearshore zone. have aquatic stages for 

only part of the year, so can be easily missed entirely. The lack of temporal consistency 

and different temporal responses to environmentai change introduce variation into the 

data, which can distort analysis and hinder interpretation (Furse et al., 1984). The 

existence and importance of strong seasonal variations in life-history patterns, such as 

emergence and recruitment, must be known in order to avoid erroneous inferences 

regarding the abundance and distribution of macroinvertebrates (Johnson et al., 1993). 

Johnson and CO-workers (1 993) suggest that, in order to get the best representation of 

benthic organisms in lentic systems, sampling be carried out in the months of September 

and October. Studies carried out by Reynoldson and CO-workers (1995) also indicate that, 

for their study of the Great Lakes, September and October give the best representation of 

benthic organisrns. However, Furse and CO-workes (1 984) suggest that the accuracy with 

which sites could be assigned to a pre-detennined taxa group using either environmental 



data or differential taxa cm be improved by merging seasonal data. 

2.1.5 Utility of mulfivari~te analysis for the prediction of bioiogical statr. 

With increasing frequency, benthic invertebnte communities are used as indicators of 

environmental degradation or restoration (Clarke & Green, 1988: Cairns rr al.. 197 1 )  

because they broadly reflect environmental conditions. Measuring sirnilarity arnong 

samples or groups of samples with respect to the taxa that occur in them is one of the 

most common problems in ecology (Cushing et al., 1983). Biologists working with 

benthic invertebrates have long been aware of problems of variability in what they 

measure, and have emphasised the need to account for the variability of benthic 

invertebrate counts in their sampling data (Noms & Georges, 1986). 

Standard statistical techniques that assume linear relationships among variables have a 

limited application in ecology due to the generally non-linear response of species to 

environmental conditions. Ecologists have independently developed a variety of 

alternative techniques (Ter Braak & Prentice, 1988). Measures such as diversity are much 

less sensitive than multivariate methods for measwing community change (Gray et al., 

1990; Warwick & Clarke, 199 1; Warwick et al., 1990), which is no surprise in view of 

the much greater amount of information multivariate analysis retains. Many 

environmental problems invoive multiple variables and should. therefore. be analysed 

using multivariate techniques (Green, 1979). With the use of multivariate statistics, subtle 

changes in the species composition across sites are not hidden by the need to summarise 

the combined characteristics of the site as a single value, as with indices. Multivariate 

methods are now accepted by many ecologists, because of their power to both detect and 

describe subtle patterns of differences on many variables (Cushing et al., 1983). Indeed. 

multivariate techniques show greater promise than univariate cornparisons for detecting 

and understanding spatial and temporal trends in the benthic fauna (Noms & Georges, 

1993). However, univariate methods can provide a robust interpretaîion of data. If the 

study were nich that there was concern over the response of an individual species. or oniy 



one environmental variable, univariate methods such as analysis of variance or regression 

should certainly be considered (Hendrickson & Honvitz, 1984). Multivariate approaches 

allow patterns in the species abundance and CO-occurrence to be summarised (Jackson, 

1993). However, there is no reason why univariate methods cannot be used to further 

analyse the data set once patterns in the data have been identified using rnultivariate 

techniques (Noms. 1995). 

The use of multivariate approaches in ecology is often motivated by the desire to assess 

and describe similarity (Goodall, 1973; Orloci, 1973). Such approaches are often viewed 

as "objective techniques". allowing greater understanding of the cornmuni ty assemblage 

and relationships with corresponding environmental conditions (Jackson. 1993). Indeed. 

in the past few years considerable advances have been made by applying multivariate 

statistics to large data matrices and relating benthic comrnunity structure to key 

environmental variables. 

The complexity of benthic comrnunities has lead many researchen to adopt multivariate 

approaches to summarise patterns of species abundance and CO-occurrence. Techniques 

for data reduction (classification and ordination) have aided the progress toward deriving 

predictive relationships between macroinvertebrate community and environmental factors 

of lotic systems (Furse et al. 1984: Moss et d. 1987; Wright et ai. 1984). 

British, Canadian, Australian and Amencan efforts to classify aquatic systems take into 

account the biological consequences of different habitat characteristics, such as sediment 

type, depth, temperature, pH, oxygen, and organic content, etc. (Resh et al., 1 995). In the 

UK approach, for example, habitat characteristics are used to predict the fauna expected 

at a test site. Multivariate analysis of biotic and environmental features may have 

considerable practical application, and it was with this in mind that the British Riven 

Study was developed (Furse et al., 1984). An approach developed in Great Britain 

(Wright et al., 1 993 ; Armitage et al., 1 987), the River Invertebrate Prediction And 

Classification System (RIVPACS), has many applications for biological surveillance, 



conservation and environrnental impact assessrnent in rivers. and offers a method for the 

prediction of macroinvertebrate fauna to be expected at a given site based upon a small 

number of environmental features. Moss and CO-workers ( 1987) described the techniques 

used in RIVPACS for predicting the probability of capture of taxa at a site with known 

physical and chernical characteristics. Using these techniques. it is possible to estimate 

the reference communities for a set of environrnental conditions in order to predict the 

benthic cornmunity that should occur at a site. 

To date, European efforts to classify aquatic systems have primarily been on ruming- 

water systems. However, sirnilar strategies have been applied to lakes. A study of 

numerous lakes in Sweden was carried out by Johnson & Wiederholm (1 989). using 

sirnilar techniques to those described by Armitage and CO-workers ( 1 987). Assemblages 

of profundal zoobenthos were classified using two-way indicator species analysis 

(TWINSPAN), ordinated by Canonical Correspondence Analysis (CCA). and related to 

the physico-chemical factors using CCA. discriminant analysis and regression. The 

analysis showed the species assemblage amongst the profundal zoobenthos to be a good 

indicator of lake type. The work carried out by Johnson & Wiederholm (1  989) was the 

first of its kind using such techniques on lentic cornmunities. More recently. a modified 

approach to the RIVPACS system, described by Wright et al. (1 993, and the Sediment 

Quality Triad approach used by Chapman & Long (1 983) and Chapman (1 986) have been 

presented for use in sediment assessrnent in the Great Lakes (Reynoldson & Zanill. 1989: 

IJC, 1988, 1987). The relative sensitivity of such methods of assessrnent of 

environmental integrity are yet unknown (Calow, 1989). Efforts carried out in the 

Laurentian Great Lakes were part of a project to develop sediment criteria based on 

benthic cornmunities and toxicity response of selected benthic invertebrates (Reynoldson 

et al., 1995). The fundamental approach here of reference site classification, development 

of predictive models, prediction of test sites, and cornparison with guidelines denved 

nom the reference site can be used in any type of environment for the estimation of 

ecological integrity. The approach sirnply requires the selection of appropriate biological 

and environmental data matrices (Reynoldson & Zanill, 1993). 



21.6 Development of a predictive model for sedimen1 assessntent in rhr Grrut Lakes. 

A modification of the approach used in the Bntish Rivers study (Wright et ai.. 1984) has 

been used in sedirnent assessrnent of the Great Lakes (Reynoldson & ZarulI, 1989; IJC, 

1988; 1987). The process relies heavily on the benthic community. Reynoldson and CO- 

workers (1 995) conducted studies for biological guidelines for sediment. The BEnthic 

Assessrnent of SedimenT (The BEAST) used a multivariate approach, which predicts 

community composition from environmental data. The ultimate goals of the study were to 

develop a method to determine the need for, and the success of, remediai action 

predicting what a benthic community should be like at a site if it were undisturbed. The 

approach allows appropriate site-specific biological objectives to be set from rneasured 

habitat characteristics. It also provides an appropriate reference for determining the 

degradation at a site due to anthropogenic contamination. 

In the BEAST model, cluster analysis and an ordination technique. Non-rnetric Multi- 

Dimensional Scaling (NMDS), were employed in the analysis of cornmunity composition 

and rnembership groupings of the reference sites. Multiple Discriminant Analysis (MDA) 

was then employed to assess and predict site groupings using environmental variables. 

The accuracy of the predictions from the discriminant model was then confirmed by 

performing several validation runs on subsets of data. The technique was more sensitive 

than the currently used provincial sediment quality criteria based on Screening Level 

Concentration (SLC) and laboratory toxicity tests in determining a need for remediation. 

It was also shown that test communities will fa11 within. or outside of, a range of 

reference communities depending upon sediment quality. The model was developed to 

address sediment quality criteria in the near-shore areas of the Laurentian Great Lakes. 

As a result of ihis study, a large database has been assembled from reference sites in 

Lakes Ontario, Erie, Michigan, Superior, Huron and St. Clair. It includes information on: 

the composition of the benthic invertebrate communities; measured environmental 

variables; and the response of four species of benthic invertebrates exposed in the 

laboratory to sediment collected fiom the same sites. 



2 1 . 7  Diagnostic capacity of benthic rnucroinvertebrate community structiire for ihe 

assesment ofsediment toxicity. 

Reynoldson and CO-workers (1 993. 1995) have shown that the Biological Sediment 

Guidelines developed, and their predictive modelling approach. c m  be used in the 

assessrnent of sediment quality. Collingwood Harbour, located in Collingwood Bay, 

Georgian Bay, Lake Huron, was identified as an area of concem by the International Joint 

Commission (IJC, 1987) partly because of the sediment contamination by various metals 

and partly due to eutrophication. As part of the remediation program for the harbour, 

dredging and removal of the sediments was being considered. 

On the basis of sedirnent chemistry. the harbour \vas heavily contaminated by metals, 

with sorne sites within the boat slips exceeding the Ontario Ministry of Energy and 

Environment's severe effects criteria. Al1 of the sites in the boat slips and outer harbour 

exceeded the low effects levels. The large area of sediment for removal and the 

anticipated costs prompted the biological significance of the contamination to be 

exarnined. 

Using a number of previously selected predictor variables. Reynoldson and CO-worken 

(1995) were able to predict the community assemblage for the test sites in the harbour. 

The harbour sites were compared with reference sites fiom the Great Lakes database of 

the same community type to determine whether the observed community assemblage was 

similar to that predicted. Of the 24 sites predicted as having the same cornmunity type, 

most fell within the range of variation found in the reference sites of that cornrnunity 

type* 

From the model, Reynoldson and CO-workers were able to conclude that sediment 

rernediation was not warranted at al1 of the harbour sites in the bay. Based on the resuits 

found, removal of contaminated sediment was only necessary in the boat slips. The 

remainder of Collingwood Harbour was not considered as having a degraded benthic 

cornmunity despite the fact that severai of the provincial chernical sediment critena were 



exceeded for metals. Thus, it h a  been s h o w  that the guidelines described by 

Reynoldson et al. (1 995) have the capability to define whether or not a cornmunity is 

impacted (whether it significantly diffen from that predicted). and whether there is 

evidence of sedirnent toxicity. 

While ordination techniques can provide a clear pass or fail criterion, by placing impacted 

communities either within or outside the reference/expected community boundaries. they 

can also provide a measure of the extent of failure by the degree to which the test site is 

outside the reference/predicted community boundaries. The degree by which the site c m  

diverge from the predicted state before it is considered statistically significant. and hence 

affected, can be addressed as can the significance of such a divergence (i.e. what does it 

indicate?). When there is divergence from the expected state. as yet it is not possible to 

define what is/are the causative agent(s). In a site exposed to multiple stressors no clear 

statement c m  be made as to which potential sources should be controlled, other ihan by 

inference from chemical analysis. Because divergence from an expected biological state 

is due to a change in species abundance from the predicted community, it is reasonable to 

hypothesise that communities of organisms will have characteristic responses to certain 

stressors. The direction in ordination space in which a site diverges from the expected 

state, together with the supporting toxicity data, may provide useful diagnostic 

information on the nature of an impact at a site. Thus, the appropriate management action 

cm be made. When there is divergence fiom an expected state, the question now cirises as 

to whether this change in community composition has any diagnostic capacity to indicate 

the nature of a stress. 

2.2 Site Description 

2.2. I General site description - The Great Lakes 

The Great Lakes were formed over a span of 2 million years by glacial and geologicai 

action, and took their most recent form alrnost 10,000 years ago, at the end of the last ice 



age. Lakes Superior , Michigan, Huron. Erie and Ontario are joined by riven and other 

connecting channels to form the largest surface freshwater system in the world (Bolsenga 

& Herdendorf, 1999, and account for one-fifth of the world's fresh surface water. The 

area is heavily used for a variety of water related activities. They provide water for 

drinking and industrial use, and a valuable fishery is contained in the lakes. They are a 

source of hydropower, and they serve as a focal point for recreation. 

In the early nineteenth century. the whole of the Great Lakes basin supponed fewer than 

300,000 peopie. The basin has since been tnnsformed from a hunting and f m i n g  

ground of the native Nonh Americans to the industrial heartland of Nonh America. Over 

30 million people now reside dong the Great Lakes. a hundred-fold increase in the 

population in less than 200 years. Much of the natuml chancter of the region has changed 

in the last two centuries, and the lower lakes have seen the most change (Bolsenga & 

Herdendorf, 1993). 

The Great Lakes as an environment 

Approximateiy 30 million people depend upon the Great Lakes as a source of Water (IJC, 

1991), and the basin's ecosystem has been, and currently is. being seriously altered by the 

large amounts of pollutants the lakes have been receiving from various sources. For some 

time now there has been a great deal of research into the manui). and mried effects of these 

pollutants on this water system. As a result, there is considerable background information 

available on the many aspects of the Great Lakes. 

Changes in the water quality of the Great Lakes have been fairly well docurnented. 

Beeton (1961) noted that, "Changes in the chernical charactenstics in Lake Ontario have 

closely paralleled those of Lake Erie. Pnor to 19 10 the chernical characteristics of the two 

lakes were similar, and conditions in Lake Erie were probably the same as those indicated 

by the 1854 and 1884 analysis of Lake Ontario water". Some of the most ciramatic 

biological changes in the lower Great Lakes appeared to be in the bottom fauna and 

among certain fishes (Dambach, 1968). Dambach felt that the most significant changes 



occurred from 1929 through to 1965. Hexugenia. once abundant in the western basin of 

Lake Erie, was almost locally extinct by the end of this period. With the decline in 

Hexagenia there was a definite increase in the abundance of chironomids. More recent 

studies have shown a retum of the burrowing mayfly to the western basin (Corkum et al.. 

1995). Many of these changes appear to be intimately related to the eutrophic conditions 

in the western end of Lake Erie (Brinkhurst, 1968) which, together with toxic 

contaminants, modifications of fish stocks. and habitat loss. is one the most significant 

impacts on the Great Lakes fiom human activity (Reynoldson et al.. 1989). 

Barton (1989) documented changes in the Great Lakes fauna from the 1950's. For 

example. in 193 1 Lake Michigan benthos consisted mainly of Diporcia and a small 

number of oligochaetes, sphaeriids and a few chironomids. B y 1964, al1 of the major 

groups had increased in abundance. as would be expected if the lake had become more 

eutrophic. From the mid 1960's to the early 1980's there was a funher increase in the 

abundance of benthic animals. There were no major changes in the species composition; 

the increase in standing stock of benthos seemed to reflect the generally increasing 

nutrient levels in the lake. It was suggested that controls on phosphorus inputs into the 

lakes in the 1970's were the cause of decreases in the magnitude of spring blooms 

(Barton. 1989). However, despite this being a major source of input of energy to the 

benthos, it was not reflected in their abundance. 

In the 1 960's the Great Lakes fishing industry was in serious decline and the quality of 

the water was beg i~ ing  to draw public attention (Barton, 1989). The average abundance 

of benihic invertebrates in nearshore Lake Ontario decreased since the 1970's (Barton, 

1986). This might be expected following the improvements in the sewage treatment 

facilities around the lake. 
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2.2.2 Specijc site description - Lake Erie 
Geologicaily the oldest of the Saint Lawrence Great Lakes, Lake Erie's entire water mass 

lies above sea level, which is not the case for the other four Great Lakes (fig. 2.1). In 

comparison to the other Great Lakes, Lake Erie is also the southernmost, wannest, most 

biologically productive, and most eutrophic (Bolsenga & Herdendorf, 1993). Ninety-five 

percent of Lake Erie's total inflow of water comes from the Detroit River. Lake Erie lies 

between 4 1 2 1 'N and 42 SO'N latitude, and 78 50'W to 83 3O'W longitude. It is a 

relatively narrow lake, with its long axis orientated west-southwest to east-northeast. This 

axis parallels the prevailing wind direction, which causes the lake to react violently to 

storrns, with high waves and wide fluctuations in water level (Bolsenga & Herdendorf, 

1993; Hamblin, 1987). Wind, which pushes water from one end of the lake toward the 

other, usually comes fiom west to east and can produce large short-term differences in 

water levels at the eastern and westem ends of the Me. These di fferences have been up to 

16Ft. (4.88m). 

As the shailowest of the Great Lakes, Lake Erie is particularly prone to fluctuating water 

levels. It has the smallest volume of water and the shortest retention tirne, yet is the fourth 

largest of the Great Lakes in surface area. Liike Erie is approximately 3 8 8 h  long and 

92km wide with a mean depth of 19m. Its three major physiographic divisions, westem, 

central and eastem basins, and are divided by their depth contours (bathymetry) (fig.2.2) 

(Bolsenga & Herdendorf, 1993). One of the principal characteristics distinguishing the 

three basins is mean depth, which in turn affects thermal structure and productivity 

(Schertzer et al.. 1987). The three basins of Lake Erie have sharply defined individual 

characteristics and have distinct bathymetric, thermal, and trophic characteristics. 
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BoZsenga & Herdendo?$1993). represents the location of Site 303. 



Seasonal fluctuations of the water temperatures of Lake Erie are the greatest of any of the 

Great Lakes, and it is the only lake that typically freezes fiom shore to shore. The thermal 

bar advance lasts about 5 to 6 weeks from April to mid-May and permanent stratification 

usually begins in midJune with maximum heat storage in mid-August and overtum in 

mid-September. The centnl basin thermocline position varies significantly from year to 

year, the variability of the upper and lower mesolimnion boundaries being as large as 

10m. Thermocline position shows some dependence on prevailing meteorological condi- 

tions and has implications to the development of central basin anoxia (Schertzer et al., 

1987). Water exchanges among the basins have both local and basin-wide effects in both 

the short and long term. n i e  major exchange mechanisms are hydraulic or riverine flow 

from the rnouth of the Detroit River to the entrance of the Niagara River (Bartish, 1987). 

A substantial proportion of Lake Erie's drainage area and immediate shoreline is made up 

of soils capable of sustaining high biological production, rich f m l a n d  and industry, but 

which are readily erodable. The influences of drainage from these soils on biological 

production in the lake were probably present long before cultural eutrophication. Lake 

Erie was probably the best-publicised example of eutrophication and severe detenoration 

of water quality through pollution. It has consequently been the central object of debate 

on Great L&es watcr quality and pollution control (Mortimer, 1987). The sexonal 

disappearance of oxygen fiom the lower layers of the central basin, which prornoted the 

pronouncement that Lake Erie as "dead", may have occurred episodically before the onset 

of human activities (Mortimer, 1 987). 

The water provided by Lake Erie for water-borne commerce, navigation, manufachiring, 

and power production has led to intensive industrial development dong its shore, and 

more than 1 1 million people obtain their drinkllig water fiom Lake Erie. The basin's 

moderate temperatures have also encouraged recreation and agriculture (Bolsenga & 

Herdendorf, 1993). 



Lake Erie is also the most sediment-dominated of the Great Lakes. Not only are long 

stretches of its shoreline subject to episodes of active erosion by storm waten, the lake 

also receives sediment. via the Detroit river, from Lake St. Claire which in turn is fed 

from the Thames River, and from actively eroding shores at the south east corner of Lake 

Huron (Mortimer, 1987). Topsoil erosion also contributes sediment to the other rivers. and 

total sediment (and dissolved nutrient) load profoundly influences the ecology of that 

basin (Mortimer, 1987; Langlois, 1954). The western basin is generally the most turbid of 

the three bains. 

It has long been known that sediment deposits in lakes and rivers exert a signifkant 

influence on the cycle of dissolved oxygen in overlying waten (Adams et al.. 1982). The 

oxygen demand of these sediments may account for as much as 50% of the total oxygen 

consurnption in rivers (Hanes & Irvine. 1968). Sedirnents. especially the clay and silt 

fractions, are also the dominant pathways by which toxic substances are transported in 

Lake Erie (Bedford & Abdelrhman, 1987). Resuspension of boaom sediments is the net 

result of a wide variety of different fluid mechanisms with characteristic time and length 

scales that extend over six orders of magnitude. The aggregate of these effects is most 

heavily concentrated in the layer adjacent to the bottom. which is the benthic boundary 

Iayer (Bedford & Abdelrhman, 1987). 

Lake Erie as an environment 

The macroinvertebrate cornmunity of Lake Erie, particularly the western basin, has 

undergone ciramatic changes over the past years. In a study carried out on Lake Erie, 

Barton (1988) noted that in the 1970's water quality declined from east to west. The 

bottom fauna suggested a west - east gradient fiom extremely eutrophic to moderately 

oligotrophic conditions. There is a similar south-north gradient in the lake that is at least 

partly a reflection of temperature regime (Brinkhurst, 1968). The decline of Hexagenia 

populations in the 1950s and the subsequent increase in the nurnber of oligochaetes, 

chironomids and sphaeriids in the 1960s demonstrated the negative impact of pollutant 

loadings into the basin (Carr & Hiltunen, 1965; Britt, 1955). As a result of phosphorus 



control measures, there has generally been a improvement in the water quality since the 

early 1970s, with the re-establishment of Hexugenia in certain areas of the westem basin 

(Corkurn et al., 1995; Thomley, 1985) and a decrease in abundance of oligochaetes 

(Nalepa et al., 199 1 ; Britt et al., 1973; Wood, 1973). The most striking differences in the 

biota of Lake Erie between 1954 and 1974 were: the greatly expanded coverage of solid 

surfaces by Cladophora, which supported larger numben of Gammarus fasciatus; 

increases in the abundance of the Trichopten, Hydropsychidae; and the decrease in 

diversity of other groups such as Epherneroptera and the Trichopten Cernclea (Barton, 

1989). Limnodrilus hofieisteri and Spirosperma ferox are found almost exclusively in 

the central basin (Barton, 1988). Barton (1 989) described the major species found within 

each of Lake Erie's three basins. The westem basin, having a low diversity. was 

dominated by the tubificids; the central basin predominantly by S. j2ro.r and Chironomrrs 

sp.; and the eastem basin was dominated by the more oligotmphic indicators such as 

Sty/odrillis heringontis, Diporein, and Hetero~rissociadirrs. A striking feature of the 

chironomid fauna of Lake Erie is the marked difference in the species composition that 

occun in different parts of the lake; Psezrdochironomus sp. and Heterotrissocladitis 

changi are largely restricted to Long Point Bay area. There are a number of 

environmental features that contribute to this, but distributions of many of the species 

appear to be intimately related to the progressively more eutrophic conditions 

encountered towards the western end of Lake Erie (Bnnkhurst, 1968). 

Over the past 8 years the Great Lakes have seen the invasion of the zebra musse1 

(Dreissena polymorpha) and the "quagga" mussel (Dreissena bugensis) (Rosenberg & 

Ludyansliy, 1994). The invasion of the Great Lakes by the European bivalves D. 

polymorpha and D. btigenris has been associated with subsequent physico-chernical 

changes in the environment and alteration of the benthic community composition (Howell 

et al., 1996; Stewart & Haynes, 1994; Griffiths, 1993). Adult Dreissenu have the ability 

to colonise and alter the physical structure of hard substrates (Stewart & Haynes, 1994). 

Studies on the effects of Dreissena invasion by Dermott (1993) in îhe northeastem Lake 

Erie bedrock substrates, have shown a greater abundance of macroinvertebrates on 



colonised substrates. Gri ffiths ( 1993) found that species richness and total abundance of 

benthic macroinvertebrates increased in both northwestem and southwestern regions of 

Lake St. Clair, following the invasion of Dreissena. However, there is evidence that 

health of other benthic invertebrates cm be adversely affected by Dreissena due to direct 

colonisation or crowding (Mackie, 199 1 ). 

Changes in water clarity and quality, particularly in Lake Erie and Lake St. Clair, have 

been attributed to the filtering of large volumes of water by Dreissena (Griffiths. 1993; 

Leach, 1993; Nicholls & Hopkins, 1 993). Howell and CO-workers ( 1 996) showed that at a 

site in eastem Lake Erie near the Niagara River, Dreissena populations were as high as 

320,000 individualslm~. Increasing secchi disc transparency, from less than 4m to over 

6m. and decreasing chlorophyll concentration. together with decreases in the numbers of 

native bivalves and polychaetes have also been associated with chese high densities of 

Dreissena, wwhile gammarid amphipods and tubificid worms remained abundant (Howell 

et al.. 1996). These data also suggest that the large Dreissena population has altered the 

depositional patterns of sediment in this area. The demise of native bivalves has also been 

noted in other heavily impacted areas of the Great Lakes (Gillis & Mackie, 1994; Mackie, 

199 1). It has been suggested that other members of the benthic community may actually 

benefit from changes in conditions mediated by Dreissencr. For exarnple. gammarid 

amphipods and some species of oligochaetes have increased in areas colonised by 

Dreissena, presumably as a result of increased availability of particulate organic carbon 

and through the creation of interstitial habitat (Stewart & Haynes, 1994; Dermon et al., 

1993; Griffiths, 1993). 

2.2.3 Lake Erie, Site 303 

In recent yean methods have been developed to allow the prediction of biological 

response (invertebrate assemblage) to 'dean' (or uncontaminated) sites using habitat and 

water quality parameters (Johnson & Wiederholm, 1989; Armitage et al., 1987: Corkum 

& Curie, 1987; Ormerod & Edwards, 1987; Wright et al.. 1984). Reynoldson and CO- 



workers (1998; 1995; 1993) have adopted such methods in an attempt to develop 

biological sediment guidelines based on invertebrate assemblages and benthic 

invertebrate laboratory tests. As a result of Reynoldson's work. a large database exias of 

biological and chemical parameten from 271 sites in Lake Ontario. Erie. Michigan. 

Superior and Huron. The reference sites were organised into groups with similar 

biological attributes based on the composition of their invertebrate fauna. These reference 

sites were selected to represent 'unpolluted' conditions, and were defined as sites located 

in areas that represented normal, minimally impaired conditions. This is based on the 

premise that sites least affected by human activity will exhibit biological conditions most 

similar to those at natural, pnstine, locations. These sites were located away (> 1 Okm) 

from known discharges (Ontario Ministry of the Environment, 1 WO), within 2km of the 

shore, and at a depth of less than 30m (with the exception of Lake Michigan). The sites 

were also known, or suspected to have, a fine-grained substrate (Reynoldson et al.. 1995). 

Four of these sites were sarnpled monthly, over a period of 2 yeaa in an attempt to 

determine the effects on both annual and seasond variation. 

Lake Erie site 303 was selected for use in this study from the Great Lakes reference 

database, and is located in Lake Erie, just off Long Point (42' latitude and 80' longitude) 

(Fig. 2.2). This site was designated as a reference site and was one of the four sites to be 

sampled monthly. It has silty sediment, with a low s u d  to çlay ratio, and a relativeiy 

simple community composition. The community is predominant in oligochaetes with few 

chironomids. The site's relatively simple community composition, dominated by species 

with completely aquatic life cycles, and their relatively sedentary nature, negates corne of 

the confounding factors that can arise from life-cycle changes, such as emergence. ïhe 

site's silty sediment composition allowed large numbea of samples to be processed 

relatively quickly. Monthly data on benthic community assemblages were also available, 

providing annual and seasonal data for the site. These characteristics, together with the 

site's relatively close proximity to the Canada Centre for Inland Waters (CC1 W) in 

Burlington, where the laboratory was located, enabled fiequent sampling, and made Site 

303 an ideal choice of sampling location for the study. 



CHAPTER 3 

Mairttenance of Communities under Laboratory 
Conditions: Evaluation of comm unity structure for the 
assessment of sediment toxicity. 

3.1 General Introdzcction 

A fundamental goal of ecotoxicology and environmental risk assessment is to determine 

the ecological effect of toxic chernicals on natural communities (Rand, 1993; Petersen. 

1985). Although single species toxicity tests show characteristic responses to 

contarninants (Buikema & Voshell, 1993) and direct effects of contaminants may be 

determined fiorn laboratory studies (Shaw & Manning, 1996), there are problems when 

extrapolating response data from single species tests to predict changes in community 

composition. In most laboratory tests relatively few species are considered and the data 

available are usually for single species (Maciorowski & Clarke, 1980). Caims (1 984) 

argued that there is insufficient knowledge to predict toxicological responses from one 

level of biological organisation on the basis of another. Sheehan (1984) summarised the 

pitfalls of extrapolating response data from isolated single species tests to predict changes 

in community and ecosystem functions. Multispecies tests, which can show interspecies 

effects that are not shown by single species tests (Taub et al., 1986; Cairns, 1985; 

Sheehan et al., 1985), seem to be the natural progression from the more traditional single 

species tests. The U.S. Envuonmental Protection Agency uses benthic community tests in 

the assessment of toxicant impacts on the estuarine environment. The results have greater 

environmental relevance, since they consider interspecific interactions and allow more 

species to be exposed than do single species toxicity tests (Shaw & Manning, 1996; Gray 

et al., 1988; Tagatz, 1986). 



The greatest realism is obtained when ecological studies are conducted on natural. whole 

ecosystems. Using the whole ecosystem. however. may present some pro blems; samp l ing 

and replication are dificult and experiments are subject to variability in natural 

conditions and, hence, are difficult to control. Such methods c m  also be expensive. 

Multispecies tests mitigate some of these problems (Buikema & Voshell, 1993). 

Sheehan and CO-workers (1986) have suggested that small aquatic mesocosms. containing 

natural communities, exhibit typical ecosystem propenies. The introduction of toxic 

substances should alter the cornmunity in a statistically significant and ecologically 

meaningful marner. Measures of the magnitude and duration of the system perturbation 

enable the potential effects of test chemicals to be evaluated. Mesocosm studies are 

ecologically more relevant than single species test, yet offer greater control than field 

studies (Shaw & Manning, 1996). They are as sensitive as single-species tests, and may 

provide insight not discemible ffom any combination of single test results (Sheehan. 

1984). 

The research described in this thesis was designed to determine whether the benthic 

macroinvertebrate community composition of intact box cores could be used to detect 

and diagnose the effects of sediment contamination. This chapter aims to investigate the 

capability of intact box cores, collected fiom the field and brought back to the laboratory 

as mesocosms, to assess sediment contamination. In doing this an attempt is made to 

answer the question: 

Can intact box cores be brought backfrom the field and maintained in the 

luboratory with little change in the resident benthic fana?  Intact boxes, taken 

nom the field and brought back to the laboratory, were compared to field data; 

this was done to establish whether there were any changes in the fauna as a 

result of collection and transportation back to the laboratory. The boxes were 

maintained in the laboratory and sampled reguiarly to address whether they 

could be maintained under laboratory conditions, and how long the 

communities codd be kept. Some of the boxes had nutrients added to them to 



detemine if the intact box core cornrnunities require feeding. The effect of 

different temperatures was also considered. 

3.2 Summary of Procedures Emp[oyed 

Two laboratory experiments were run during the summer field season of 1995. For the 

fint experiment, 9 intact boxes were collected in May; a second experiment used 9 boxes 

collected in September. 

3.2.1 Field procedwes 

The intact box cores were collected from Site 303, which is located just off Long Point in 

Lake Erie. The cores were collected using a box corer designed as a combined effort by 

Precision Enterprises and the Bedford Institute of Oceanography and built by Precision 

Enterprises in Nova Scotia (Fig. 3.1 a), and take a core 25cm by 25cm. The box corer was 

designed with a false bottom that could be inserted into the base of a detachable liner 

(Fig. 3.2a). Once the intact box cores were collected. a false bottom was inserted into the 

liner and the intact core removed from the main apparatus. The boxes were placed into 

custom-made plastic bins, (Fig. 3.2b), covered with black polythene, and placed in a 

temperature-controlled wdk-in chamber on board ship. The cores were maintained at 4OC 

and transported back to the laboratory at CCIW. 

Collection of the intact box cores was both labour-intensive and tirne-consuming. As a 

result field cores were collected from the site using a mini-box core (40cm x 40crn). This 

sarnpling apparatus (fig. 3.1 b) collects a larger core of sediment than the machinery used 

to collect the intact cores of sediment, but the overall dimensions of the apparatus is 

much smaller and can be reset easily to take additional samples. Thus, sediment samples 

can be collected relatively quickly. Perspex tubes, lOcm in length with an internal 

diameter of 6Scm were inserted into the sediment of the &-box core. Four cores of 

sediment were taken in the May sampling and five in September, matching the total 
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Fig. 3.1: Sampling equipment used ro CO f fect faboratory (a) and field (b) boxes. 

Fi'. 3.2: (a) Intact box coros. reinovabie fiom the main apparatus. (6) Labotatory 
boxes. placed Nuo curtorn-made piastic binr. To sample, tubes were placed into 
the sediment and the contents removed. 



number of cores to be removed from each of the laboratory boxes. The field boxes were 

taken to describe the field community with which the laboratory-maintained boxes could 

be compared. Field samples were collected monthly for the remainder of the field season 

(May to September). Each core tube was considered to be a replicate sarnple unit 

(Reynoldson et al., 1995). The contents of the tubes were placed in plastic bags and kept 

cool (4OC). These were subsequently sieved through a 250pm mesh sieve and fixed in 4% 

formalin. AAer 24-48 hours the formalin was replaced with 70% ethanol, and the sarnple 

stored pending identification and analysis. 

Oxygen, temperature and pH readings were recorded at I m from the sediment-water 

interface. Depth and sampling date (Julian dayj were also recorded as environmental 

parametes at the same time the field boxes and intact cores were collected. 

3.2.2 Laboratory procedures 

The intact boxes were placed in a temperature-controlled chamber upon retum to the 

laboratory at CCIW. The temperature of the chamber was set at 4.j°C, duplicating the 

temperature at which the cores were taken in May. The box cores collected in September 

were maintained at lO0C, a temperature higher than that found in the field at this time 

(7*C), to ensure that any stability noted in the community composition of the May boxes 

was not due solely to the low temperature. This temperature was chosen as one that 

would not encourage emergence of chironornids, but would promote reproduction of 

other macroinvertebrates. Based upon historical data (Reynoldson, Great Lakes 

database), it is a realistic temperature found at this site. The boxes were gently aerated 

using standard aquarium air-pumps for the duration of the experiment and topped up with 

distilled aerated tap water as needed (Reynoldson et al., 1994). The boxes were left for 

four days to settle before M e r  manipulation. Treatments and sampling strategies for 

both of the laboratory experiments are summarised in Table 3.1. 



Table 3.1: Summary of the sampling design for the bo-res collected in May and Seplenrber. Sampling rime is 
given as number of weeks afler set-zip the 60-res ivere sampled hence, 0, 2. 4; etc. represent imrnediately 
afrer set-up, nuo weeks crfter, 4 weekr, etc. Additions ro the sediment are also outlined. 

Treatment Additions to Month Boxes1 Temp Sampling #Cores Sampling 
Sediment Treatment ( O C )  Frequency /Box Times 

Control May 3 3.5 lcore 4 3-8 weeks 
fortnightly/ box 

Sept 3 10 1 core 5 0-8 weeks 
fortnightlyl box 

Sept 3 10 1 cote monthlyl 5 0-16 
box weeks 

Enriched 50ml. 5g/L YTC, May 3 4.5 1 core every 3 4 2-1 1 
weekIy weekd box weeks 
SOml, 2.5g/L Sept 3 10 lcoreevery3 5 0-12 
YTC, fortnightly weeksl box weeks 

A set of 3 boxes was enriched (fed) to investigate whether the resident macroinvertebrate 

communities required feeding. These boxes were enriched with 50ml of a 5@ mixture 

of a yeast extract, digested trout chow and cerophyll (YTC) (Reynoldson et al., 1994), 

added to the surface sediment weekly, for the duration of the experiment (Table 3.1). 

The control boxes were sampled fomiightly, while the enriched boxes were sampled 

every three weeks. In sampling the fed boxes less frequently than the control boxes, the 

duration of time the comrnunities could be maintained, with additional food being 

available, could also be investigated. The fmt cores collected frorn each of the laboratory 

boxes, from the May samples, were removed two weeks after the boxes had been set up 

(week 2). 

In September, 3 of the 9 boxes collected were fed with a reduced concentration of the 

YTC formula used in May, at less fiequent intervals (50mi of a 2.5g/L YTC formula, 

added fortnightly). Feeding commenced 5 days after the boxes were placed in the 

temperature-controlled chamber, once the boxes had 'settled'. A proliferation of algae 



was noted in the May boxes, suggesting overfeeding. The aim was to feed the Fauna 

rather than cause a response due to nutrient enrichment. Thus, the quantity of food was 

reduced and administered less frequently in the September boxes. in an attempt to more 

accurately reflect normal sedimentation. The remaining six boxes in September were 

unrnanipulated controls, unfed and unspiked. Three of these boxes were sampled at 

fortnightly intervals for a duration of eight weeks, The remainder were sampled monthly 

for a total of 16 weeks, to determine the length of time the boxes could be maintained in 

the laboratory without being fed. The fed boxes were sarnpled every three weeks, as with 

the boxes collected in May. Al1 of the 9 boxes were initially sarnpled immediately after 

they had been set up and allowed to settle (week O). 

Dissolved oxygen and pH levels at the sediment-water interface of the boses were 

recorded weekly throughout both of the experiments. The oxygen levels were maintained 

within the normal range found in the field at that temperature (Reynoldson. Great Lakes 

Database). 

The laboratory boxes for both May and September were sampled using 6.5cm diarneter 

Perspex tubes, 18cm in length, inserted into the sediment of each of the boxes. The 

overlying water within the tubes was siphoned off, and the top 1 Ocm of sediment was 

removed and placed into plastic bags. This sediment was sieved thmugh a 250pm mesh 

sieve, fixed and preserved in the samr manner as tlie tubes collected from the field. The 

sarnpling core tubes were lefi inserted into the sediment for the duration of the 

experiment, to maintain the integrity of the remaining sediment. 

The macroinvertebrates in the laboratory and field sarnples were sorted with the aid of a 

dissection microscope and identified to species or genus level where possible. For the 

Chironornidae and Oligochaeta samples, slide mounts were made using polyvinyl 

lactophenol, for high power rnicroscopic identification. Appropriate identification guides 

were used (Peckarsky et al., 1990, Brinkhurst, 1986; Memin & Cummins, 1 984; 

Wiederholm, 1983; Clarke, 198 1 ; Sawyer, 1972; Pennak, 1953). Identification was 

venfied using the Great Lakes reference collection at CCIW. 



3.7 3 Data Anabsis 

The Great Lakes database shows clear changes in the numbers of Dreissena in Lake Erie 

since the strut of the sarnpling program in 1990 (Reynoldson & Day. 1998; Crichton, 

unpublished). Dreissena were left in the intact box cores for the duration of the 

experiment in May. However. within the first week the Dreissenn had staried to migrate 

from the sediment to the sides of the metal box liners. Colonisation pattems of this 

organism, resulting in their patchy distribution, were considered a potential problem 

when analysing the community data. Discarding Drrissena numbers from the analysis 

was considered. However, Dreissena may have an effect on community composition 

(Dermott, 1993; Griffiths, 1993; Mackie. 199 1). It also has been suggested (Howell et ni.. 

1996; Stewart & Haynes, 1 994; Griffiths, 1993) that their presence may even be 

associated with physico-chemicai changes in the environment. In light of such 

confounding problems, Dreissena were removed from the September boxes at the 

begiming of the experiment and their nurnbers recorded for each of the boxes. These 

numbers were included with the environmental data. 

The relationship between numbea of Dreissena and the rest of the cornmunity was 

examined graphically, ploning Dreissena numben against number of taxa, mean density 

and a diversity measure for the monthly field data. Pearson correlation coefficients (r) 

were used to estimate the strength of the relationships between Dreissena and the 

divenity and nchness measures of the field data for each month. 

Multivariate ordination methods allow patterns in the species data to be graphicaily 

represented in two or more axis (Faith & Norris, 1989). Non-parametric Multi- 

Dimensional Scaling (NMDS) was used in the analysis of the effects collection and 

maintenance of the boxes using the cornputer software package PATN (Belbin, 1993). 

NMDS was used as it provides a robust portrayal of ecological distance (Faith et al., 

1995; Reynoldson et al.. 1995; Faith & Noms, 1989). The majority of ordination 

techniques assume linear relationships between variables. However, most ecologicd data 

behave in a non-linear fashion; NMDS does not assume linearïty (Jongman et al., 1995; 

Faith & Norris, 1989). NMDS calculates a matrix of dissirnilady values from the species 



composition data and uses this to create the ordination diagram (Jongman et ai.. 1995). 

This is done such that dissimilarities of the samples. analysed in terms of their species 

composition, are reflected in their distances in ordination space relative to one another. 

The Bray-Curtis association measure was used in the analysis to express the dissimilarity 

between the samples, and it is considered to be one of the most reliable coefficients (Faith 

et al., 1987; Clarke, 1993; Reynoldson et ai., 1995). The extent to which NMDS 

adequatel y represents the relationshi ps is measured in the stress value (Kruskal & W is h. 

1978). Stress values define the amount of scatter around the line of best fit through the 

NMDS distances and the actual distances (Clarke, 1993). As the number of dimensions 

increases, a sudden drop in the stress value indicates that a valid configuration has been 

found. Clarke (1993) suggests the following basic guidelines when selecting an 

appropriate stress level: 

Stress <O.OS, gives an excellent representation with no prospect of 

misinterpretation 

Stress <0.1, corresponds to a good ordination with no real risk of drawing false 

inferences. A higher dimensional plot is unlikely to add to the 

overall picture. 

Stress ~ 0 . 2 ,  can still lead to a useable picture. although the values at the upper 

part of this range c m  potentially be misleading, 

Stress >0.2, likely to yield plots which would be dangerous to interpret. 

A low stress value indicates that a configuration has been f o n d  that faithfully portrays 

the real distances. Two-dimensional ordination plots were produced using the average 

(centroid) values of the replicates taken on each of the sampling dates. 

Condation between the boxes (objects) and the species data (attributes) was established 

ushg the Principal Axis Correlation (PCC) option in PATN (Belbin, 1993). The 

procedure determines how well the attributes can be fitted in ordination space. This is 

achieved by running a senes of multiple regressions of the ordination values for each of 

the attributes. The direction in which each attribute influences the data in ordination 

space can then be visually interpreted in the form of ordination vecton. The significance, 



or magnitude, of the relationship between each attribute and the observed pattern is tested 

using a Monte-Carlo permutation procedure. By producing repeated simulations using 

random permutations of the data set (Faith & Noms, 1989), a list of randomised 

correlation coefficients is produced. From this, the statistical significance of the treatment 

effects on the species can be assessed in a non-parametric fashion. 

The data were not normalised for use in the multivariate analysis: the raw species scores 

were used as numeric differences as they are considered important community 

descriptors (Reynoldson et al., 1995). 

To detemine whether the macroinvertebrate composition of the box cores differed from 

that found in the field, the most abundant (cornmon) species in the field cores were fint 

identified, and these species were compared using i-tests to the initial cores taken from 

the laboratory boxes. The abundance data were transformed for the univariate analyses. 

using the log (x+l) of the species counts. This was done in order to reduce heterogeneity 

of variance and improve normality. The data were analysed univariately using the 

SYSTAT statistical software package (Wilkinson, 1997). 

As an index of the species composition in the field and intact boxes brought back to the 

laboratory, nchness and diversity measures were considered. Resh & Jackson (1993) 

consider richness to be the number of distinct. specified tavonomic units (e.g. families, 

species) in a collection or at a site. However, Hauer & Lamberti (1 996) and Mason 

(199 1) define richness as the mean density of individuals (Total number of individuah/ 

Nurnber of taxa) in a collection or at a site. Both the number of species and mean 

densities of taxa were used, and are generally expected to decrease with decreasing 

habitat quality . 

Divenity indices are used to measure stress in the environment; the combination of 

relative abundance and taxa richness summarised in a diveaity index gives an indication 

of the state of the community (Noms & Georges, 1993). It is assumed that an unstressed 

area is characterised by a large number of species, with no single species making up the 



majority of the community. When the community becomes stressed there will be a 

reduction in the sensitive species and an increase in the abundance of the more tolerant 

species. The taxa are usually separated at the species level, but the genus or family level 

are sometimes used (Hughes, 1978). The Shannon-Wiener (Shannon's) diversity index 

was chosen to measure community diversity as it is the most widely used in both lotic 

and Ientic systems (Resh & McElravy, 1993; Mason, 199 1 ), and was calculated as: 

The proportion of individuals in the ith species is given as pi. and the number of species 

observed by S. The immature tubificids were not included in the calculation of richness 

and diversity, but their abundance was considered when calculating mean density. 

The stability of the communities in the boxes was assessed using a repeated measures 

analysis of variance (RM-ANOVA). The analysis was run for each of the most abundant 

species initially identified, as well as for the diversity and richness measures. For both of 

the experimental runs, treatrnents were compared to each other and as a îünction of time. 

The emiched boxes and monthiy sampled boxes collected in September differed from the 

fortnightly controls in their sampling frequency. Therefore. a RM-ANOVA was nui on 

these treatments individually to determine whether there were any changes in abundance 

over time. If no time effects were identified for either the fortnightly controls or the 

treatments, the time series counts were pooled, and a one-way ANOVA was run to 

identiQ any significant differences as a result of treatment. A Dunnett's test was then 

used to identiQ which treatments differed fiom the contml boxes. 

A one-way analysis of variance (ANOVA) of the predominant species and divenity and 

richness measures was used to compare the field cores and boxes. If a significant 

difference was noted, apost-hoc paired cornparison was camied out usuig a two-sided 

Dwet t ' s  test to identiQ the boxes (either enrichment or one of the control groups) that 

differed significantly fiom the field data This test was chosen as it allowed a planned 



cornparison to be made using unequal sample sizes. comparing each of the boxes to the 

field data. These cornparisons were carried out for both collection dates. 

3.3 Results 

Dre issena 

Correlations between the nurnber of Dreissena in the field samples collected monthly 

during 1 995, and diversity or richness were mostly non-signi ficant and highly variable 

(Fig 3.3). No clear conclusions as to the relationship between Dreissena and cornmunity 

composition cm be drawn from these results, and because of their patchy distribution in 

the field and their tendency to migrate to the sides of the laboratory boxes. Dreissena 

counts were excluded from the invertebrate cornmunity data. 

:Maintenance of the intact box cores in the loborcctory - tnlrltivariure unalysis 

Multivariate analyses were perfomed using NMDS on both of the experiments started in 

May and September separately. The results of these analyses are presented in the form of 

ordination plots (Figs. 3.4 & 3.5) of the first and second axes of variation. Figure 3.4 

shows the May field data, with a 95% confidence ellipse plotted about their centroid, and 

the control and emiched laboratory data from the boxes collected at this time. With the 

exception of four points, which represent the one control box with lower species 

abundance, that was eliminated from the univariate analyses, the control and fed 

( e ~ c h e d )  boxes both lie close to, or within, the confidence ellipse ploned around the 

field data. Only the taxa identified through Monte-Carlo permutations as having a 

significant relationship with the ordination pattern have been plotted as species vectoa. 

Based on these results, the outlying control box had a marked reduction in the numbers of 

immature Tubificidae (Imm-chr, Imm-CO h), Po tamothrir moldmtiensis (Po t-moi) and P. 

vejdovskyi (Pot-vej). The remaining control boxes tend to have lower species abundances 

than the field samples. 
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Fig. 3.4: Field data and laboratory data for May. The ellipse represenrs a 95% conjidrnce ellipse plotted arotind the 
j k i d  dam (data not shown). Arro~vs indicate the direction in which the named species injlitence the data in ordination 
space. Fiilf species names are given in the t u t .  Cf3 to C/B) and FQ) to FII 1)  show the merage values of the cores 
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control averages e-icluded the outlying bo-r fJoirr cores). fStress=O. 099). 
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The points labelled C(2) to C(8), in figure 3.4 represent the average values for the 

remaining two laboratory control boxes. The four sampling tirnes of the cores are given 

in parentheses; C(2) being collected 2 weeks after the aart of the experiment and C(2)- 

C(8) at two-week intervals after the initial sample was taken. There is movement away 

fiom the field ellipse at week eight in the control data, and fluctuation dong Axis 2 is 

seen in the enriched boxes. 

The data for the September experiment are given in figure 3.5. Five taxa were identined 

fiom the Monte-Carlo analysis as having a significant influence on the position of the 

data in ordination space; immature tubificids, both with and without hair, Limnodrilus 

hopeisteri (Lim-hof), Potamothrix vejdovskyi, and the naid Vejdovskyella intermedia 

(Vej-int). Al1 laboratory cores lie outside of September's confidence ellipse. 
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Fig. 3.5: Field data collected in September and the average values for both the fortnightly(C) and monthly 
(C ') sampled controls and the enriched (0 boxes, sampfe iveeh are indicated in parentheses. .4 95% 
confidence ellipse h m  been plorted around theje id value (data not shown). The arrows indicate the 
direction in which the narned species infience the data in ordination space. Full species names are given 
in the tat. (Stress =O. f 53). 

Maintenance of intact box cores in the laborutory - univariate analysis 

A total of 36 taxa groups were identified and used in the mdtivariate analyses (Appendix 

A). Niae of these groups were present with suficient regularity and numbers to enable 

univariate anaiysis. It is these 9 taxa groups which are referred to as the mon abundant 

taxa in the text. The diversity and richess measures consider al1 of the organisms 

identified, regardless of rarity. 

One of the three control boxes collected in May had consistently low numbers of 

organisms in it. The mean numbers of organisms per core in the three control boxes were 

compared using MO-sample t-tests. The box containhg the reduced numbers of 

organimis dif'Tered significantly @=0.02L,0.011) nom the other two control boxes 

Q~0.332).  Considering the outlying box as part of the analyses masks any significant 



difference occuring between the boxes, leading to rnisinterpretation of changes in 

community composition o c c d n g  within the boxes. Thus, this outlying box was 

removed from firrther analyses. 

Table 3.2 provides ?-tests comparing total numbers of the most abundant taxa in the field 

data to the abundances in the first cores taken from the control boxes. Those taxa 

showing significant differences from the t-tests are illustrated in figures 3.6 and 3.7. Most 

of the tubiticids collected were immature and could not be identified beyond family, 

other than dividing them into those with and without hair setae. The initial cores taken 

frorn the boxes (week 2) were compared to the field data. For the May sarnples there 

were no significant differences among the field and Iaboratory boxes. for any of the 9 

most abundant taxa selected (immature tubificids without and without hair. the 

Tubificidae Limnodrilzis hoffmeisteri, L. profundicola, Poiamothrix mo/davienris, 

Potamoihrix vejdovskyi and Spirospermajerox, the naid Vejdovskyella intermedia, and 

the chironomid Procludius spp. ). In September, al1 of the immature tubi ficids and 

Potamoihrix vejdovskyi showed significant reductions in numbers in the monthly sampled 

controls @=0.003, 0.0 1 5,0.035). Limnodrilrrs profundicola and Procladizrs spp. were 

absent from the boxes collected in September. 

When initial cores from the control boxes were compared to the field data using diversity 

and richness scores (Tables 3.2,3.3), the Shannon-Wiener divenity index showed no 

significant changes for both collection dates. ïhe boxes collected in September tended to 

have fewer individuals, for al1 of the taxa, compared to the field sarnples. However, many 

of these reductions were not significant (p=0.051-0.793). No differences were noted in 

mean density or nurnber of taxa for either of the sample times. 

Of the most abundant species identified, only three showed statistically significant 

differences in their numbers (RMANOVA, p=0.005,0.008,0.049) with either treatment 

(fed/unfed) or the, or due to a time and treatment interaction (Table 3.4, Figs. 3 -6 & 

3.7). For May, the effect of nutrient enrichment was only significant for Vejdovsskyea 

intermedia @=-O . O Z ) .  



Table 3.2: Probabii@v values for t-lests comparzny.. Muy to Seprmbtrrfiefd datu: lLfq/icld dutu ru conrrol 
boxes (Con) at rheirfirsr sarnpling (2 iveekï); and Seprember field daru ro conrrol boxes sampkd at the srart 
of the rxperimenr (iveek O). for both rhe fortnight!~ and munrh!v sampled boxes (C und C ' respecrive!~). 
Confidence = 0.95, = vahes showing signrfcant dj#erences. ? = insu,tJicient dura for tes!, N/A = no 
individuals foundfor that sample season. 

Species May/Sept May/Con S e p K  SeptlC' 
(week 2) (week O) (weeko) 

immature tubificid: 
with hair setae 0.1 62 O. 137 0.289 0.05 1 

without hair setae 0.023" O. 147 0.764 0.006" 

P. vejdovskyi 0.079 0.559 0.037* 0.192 

Spirosperma ferox 0.494 0.500 0.26 1 0.236 

Vejdovskyellu Nitermedia 0.228 ? 0.793 0.432 

Proc(adius spp. 0.39 1 0.500 NIA NIA 

Shannon Index (H') 0.198 0.472 0.836 1 .O00 

Mean Density 0.215 0.073 0.420 0.063 

Total Number of Taxa 0.069 0.09 1 0.997 0.870 

Due to the different sarnple tirnes used for each of the treatment boxes coflected in 

September, the dixerent treatment boxes were first anaiysed individually over time. The 

only changes with time noted in the September boxes was the immature tubificidae 

without hair setae in the monthly sampled controls (p=0.005). 

Despite the movement of the field data in ordination space in the May ordination plot, no 

significant differences between the field boxes and the initial cores removed from the 

iaboratory boxes, or across time were observed by the univariate analyses of the most 

abundant taxa identified (Tables 3.2,3.3). Divenity and nchness measures both consider 

all of the taxa present, not just the most abundant, and may be more comparable to the 



results obtained fiom the ordination. Diversity and riclmess measures failed to show any 

signifiant changes in the cornmunity composition of the boxes compared to that of the 

field data. 

Table 3.3: Mean abundance of the ~bfay and September field data. the cores co/lected/or the May control 
boxes (Con) at theirjirst sampltng (2 iveeks), and the September control boxes sampled at the srart of the 
experimenr (week O), for 60th the fortnighrly and monthly sampled boxes ( C  und C ' respecriively). 

Mean Vaiues 

Species May September Con (May) C (Sept) C' (Sept) 
(week2) (weekO) (weekO) . . 

Immature tubificid: 
with hair setae 

without hair setae 

L imnodrilus hofieister i 

L. profindicola 

Potarnothrix rnoldaviensis 

P. vejdo vskyi 

Spirosperma ferox 

Vejdo vsky ellu intermedia 

Procladius spp. 

Shannon Index (H') 

Mean Density 

Total Nurnber of Taxa 



Table 3.4: Probabiiity values/rom repeated measures .MOVA,  comparing rrearmenrs againsr rime. * = 
values showing significanr dlgerences, fp<0.05), ? = no vuriarion in dependant variables, N/A = no 
individuals fotrnd for thar sarnpie semon. 

May samples September samples 

Species Timc x Time x 

Trratmrnt Tirnc Treamrnt T~auncnt Timc Treatmcn t 

Immature tubificid: 

with hair setae 

without hair setae 

Limnodrilus hoffmeisteri 

L. profiindicola 

Poramorhrix moldaviensis 

P. vejdo vskyi 

Spirosperma ferox 

Vejdovs@eila inter media 

Procladius spp. 

Shannon Index (H') 0.447 0.526 

Mean Density 0.080 0.714 

Total Number o f  Taxa 0.137 0.563 

0.074 

0.005 * 
? 

NIA 

0.08 1 

0.1 79 

0.80 1 

0.056 

NIA 

0.2 10 

0.1 1 1  

? 

NIA 

0.205 

0.364 

0.23 5 

0.672 

N/ A 
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Of the most abundant species used in the univariate analyses, the immature tubificids and 

Poramothrix vejdovskyi were the only taxa from the initial cores taken that differed 

significantly in numbers from the September field sarnples (table 3.2). Reductions in 

these taxa are clearly observed in relation to the position in ordination space of the initial 

cores taken from the monthly sarnpled controls and the enriched boxes (c'(O) and F(0) 

respectively) (fig. 3.5). Despite their position in ordination space, statistically significant 

changes over time were only noted for the immature tubificids without hair setae in the 

rnonthly smpled boxes. Fluctuations in the numbers of this organism were observed in 

the enriched boxes (fig. 3.7b). and can be observed by the movement of the cores in 

ordination space (fig. 3 S). The fortnightly sampled controls showed no significant 

changes with time from univariate analysis of the most abundant taxa, or the divenity 

and richness measures (Table 3.4). 

Maintenance of intact box cores in the laborutory 

n i e  average values in ordination space of the control boxes for both May and September 

lay, to varying degrees, outside of the confidence ellipse ploned around the field data. 

NMDS is designed to represent the distances between samples in two dimensions, 

positioning those boxes more similar closer together, and those less similar further apart. 

In doing this, the analysis has a tendency to exaggerate differences in the comrnunities in 

ordination space (Barry & Logan, 1998), portraying any differences that there are 

regardless of how small. The ordination plot suggests that the laboratory boxes are more 

sirnilar to each other than the field data, and vice versa. Univariate analysis of the rnost 

abundant taxa, and the diversity and richness measures indicate that, despite the 

differences in ordination space of the control and field data, very few statistically 

significant differences occurred between the control and field boxes. This indicates that 

NMDS tends to be more sensitive to changes in community composition than univariate 

techniques. Non-signincant ciifferences or trends may prove highly sigrifkant if analysed 

by a multivariate procedure (Norris & Noms, 1995). Smith and Moms (1 992) noted 



similar differences in their studies when they detected pollution effects on fish species 

using NMDS, which were not detectable using univariate methods. 

There are a number of possible explanations that rnay account for the differences between 

the field and laboratory boxes. Care was taken to disturb the boxes as little as possible 

during the collection and set-up of the intact boxes. However, disturbance at the sediment 

surface may have occurred as a resuit of water displacement from a 'bow wave', caused 

by the corer. It is possible that such a displacement rnay result in a loss of organisms from 

the sediment surface. The field data was collected using a mini-box corer. Although the 

dimensions of the actual core taken are larger, the ovenll size of this apparatus was 

smaller than the box corer used to collect the intact cores. Differences in sampling 

methods used for the collection of the laboratory boxes and field data. disturbances and 

stress as a result of storage and transportation, and the time Iapse between collection and 

the first sample taken, appeared to have a negative of effect on the community abundance 

of invertebrates in the intact laboratory boxes. Since no cores were collected and sampled 

on-board the sampling vesse1 with the larger apparatus used to collect the intact cores, no 

conclusive explanation can be given for the reductions in taxa abundance noted between 

the laboratory field and laboratory boxes. Reynoldson and Day (1998) sampled sites 

using both the box corer and the mini-box corer for a number of sample times. These data 

confirm that there is an ovenll reduction, although not statistically significant, in the 

number of individuals collected using different sized box corers. 

No change in comrnunity composition was observed over time in the control boxes. ï h e  

relative stability of the cores collected in May, and their greater similarity to the field 

cores compared to the September cores, may be due to the lower temperatures at which 

the boxes were collected and maintained. The boxes collected in September were 

collected at 7OC, kept at 4OC for transportation back to the laboratory, and maintained at 

10°C for the duration of the experiment. The increased temperature would have an effect 

on the growth and reproduction of the organisms, which may m e r  explain variation in 

the boxes kept at 10°C. 



The predominant species, and the diversity and richness measures. for the enriched (fed) 

boxes show little change over time or compared to the control boxes. The position of the 

fed cores in ordination space and the univariate analyses indicate that. although there is 

some movement toward the field data in May the enriched cores still have a similar 

community structure to the control cores. The reduced levels of YTC formula used in 

September show little change in community composition, suggeding that the addition of 

the YTC mixture to the boxes had little, if any effect on the boxes. Therefore, it can be 

concluded that feeding the boxes is not necessary. 

3.5 Conclusions 

The effects of contaminants on natural assemblages of organisms have been investigated 

by numerous techniques (Boyie & Fairchild, 1997; Porcella et al., 1985; Stay et al., 

1985) and the results provide usehl insights into the ecological mechanisms occumng in 

the presence of contminants (Landis et al.. 1997). In this study. intact box cores of 

undisturbed clean sediment were collected from the field and transported back to the 

laboratory for manipulation. It was impoktant to estabiish whether or not collection of the 

boxes and transportation back to the laboratory had an effect on the resident benthic 

fauna. Univariate analyses of the most abundant species showed that 3 of the 9 common 

taxa differed significantly between cores collected in the field and those maintained in the 

laboratory . 

In most work on ecological effects of contaminants in nature, the major difficulty is to 

detect contaminant effects over the normal 'noise' of the syaem (Giddings. 1986). A 

major limitation of ecosystem level bioassays is the inherent variability of multi-species 

biological systems (Barry & Logan, 1998). Indeed, highly variable data are cornmon in 

aquatic mesocosm studies (Shaw & Manning, 1996). This can be a problern when 

univariate statisticd procedures are used to analyse these data. Replicate variability 

among replicates can mask the signifcance of even large differences (Tagatz, 1986). The 



data in this study were transformed for the univariate analyses. to alleviate some of the 

problems caused by variation among the boxes. 

When the data were analysed by multivariate techniques, some separation in ordination 

space was noted beîween the controls and the treated boxes. Heterogeneity of the 

communities, together with the presence of mre species, contributed to the position of the 

cores and their movement in ordination space. The use of multivariate methods to analyse 

species abundance data, and to summarise their distribution in ordination space. is a 

usefùl method in assessing distribution patterns and can be useful in the prediction of 

anthropogenic disturbances. The main objective of this study was to establish whether 

intact boxes could be transported back to the laboratory and maintained with little change 

in the resident benthic fauna. The results from the univariate and multivariate analyses 

showed little change in the comrnunity assemblage within the laboratory boxes. 

indicating that the intact boxes can be kept in the Iaboratory for up to 8 weeks without 

need to feed them. 

The study suggests that intact box cores, as laboratory mesocosrns, may be useful in the 

analysis of sediment contamination. However, the results should be viewed with the 

caveat that only a subset of all of the possible species are represented and there is an 

inherent loss of abundance of sorne species due to collection and transportation. Care 

must be taken extrapolating data obtained from in vitro studies tu nahird communities. 



CHAPTER 4 

Capability and predictability of benthic macroinvertebrate 

community structure in the assessment of sediment 

contamination. 

4.1 Introduction 

Over the past few years, many advances have been made in applying rnultivariate 

statistical techniques in the analysis of ecosystems. Methods have been developed that 

allow biological and environmental data to be related in such a way that the relationships 

between large data matrices can be described and illustrated graphically. These 

multivariate statistical techniques have become widely used in biological assessrnent, 

both to characterize aquatic communities, and to describe changes in the condition of 

biological assemblages associated with anthropogenic stresses (Shaw and Manning, 

1996; Reynoldson et al., 1995; Wright et al., 1 994; Gray et al., 1988; Vollenweider, 

1987). 

One of the first studies to use such multivariate methods was the British Rivers Study 

(RIVPACS), where nvers throughout the United Kingdom were surveyed for their 

benthos (Moss et al., 1987; Wright et al., 1984). The communities identified where then 

related to the environmental variables recorded for those sites. SimiIar methods to those 

used by Wright and CO-worken (1984) in the RIVPACS study have been used in the 

analysis of the Great Lakes (Reynoldson et al., 1995). As a renilt, a large database exists 

for 271 reference sites throughout the Great Lakes. 

Using such multivariate techniques as cluster analysis and ordination, sites can be 

assigned to pdcular community groupings based on either their community composition 

or the environmental parameters of the site. A site can be placed into a community group 
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based upon predictions made From its environmental variables (Reynoldson et al., 1997; 

Reynoldson et al.. 1995; Wright, 1995). Should the community not fa11 within its 

predicted grouping, it is possible to infer from this that the site may be stressed or 

impacted in some way. When there is divergence from an expected state, even with 

extensive chemical data, causation cannot be proven. However, if the deviation were 

concordant with experirnental data, then inference would be stronger. 

Fundamental to bioassessment methods is the classification of aquatic systems so that 

cornparisons c m  be made between the reference areas and areas of concem. or test sites 

with similar characteristics (Reynoldson et al., 1997). The use of controls or control 

conditions against which the results of expenments can be compared is fundamental. In 

laboratory expenments, al1 of the variables are controlled except for the variables of 

interest. In field expenments, not al1 of the variables can be controlled, so an attempt is 

made to choose test and control conditions that are as similar as possible. Common 

approaches include choosing adjacent streams (Norris et al., 1982). dividing lakes into 

halves (Schindler, 1974), or by mesocosms (Shaw and Manning, 1996; Graney et al., 

1994, Warwick, 1988). Using such methods only allows one to determine whether a site 

is impacted (that it differs from the reference sites). If the impacts are complex, the most 

important impact cannot be directly determined. The use of intact box cores, collected 

from the field and manipulated in the laboratory, mitigate some of the problems arising 

From the use of either field experiments or laboratory microcosms. Intact cores are less 

expensive than field manipulation experiments, and enable nurnerous replicate 

experiments to be run simultaneously. Whole cornmunity tests c m  be conducted, while 

retaining some of the environmental reaiism lost in laboratory microcosm experiments. 

Divergence fiom a predicted state is due to changes in the abundance of species fiom the 

expected species composition, and it is reasonable to assume that the species within a 

community of organimis will have characteristic responses to certain stresson. 

Therefore, it is logical to conclude that the direction in which a site diverges fiom its 

expected state may provide usefid information as to the nature of the impact. 



The research presented here was designed to determine whether the community responses 

to different contaminants are consistent, such that the response can be used to identify the 

prirnary contaminant of impact. It has already been shown in the previous chapter that 

intact box cores can be collected from the field and successfully maintained in the 

laboratory, with little change in the resident benthic fauna. The diagnostic capability of 

benthic macroinvertebrate community structure for the assessrnent of sediment 

contamination will be addressed in this study using intact box cores taken from the field, 

brought back to the laboratory, maintained under laboratory conditions and subjected to 

different stressors. 

Three stresson were considered in this study; two different contaminants where used: 

cadmium and the pesticide Atrazine. Nutrient-enrichment was also applied, as it is 

perhaps the most common perturbation in the Great Lakes. 

Cadmium has no kno~vn biological use ( C h e  er al.. 1997) and is thought to be one of 

the most toxic rnetals (Dresssing et al.. 1982). Because of its severe toxic effects, 

cadmium has been widely used in toxicological studies of numerous organisms, including 

macroinvertebrates, and there is an extensive literature on its environmental toxicology. 

Atrazine (2-chloro-4-ethyl-amino-6-isopro-pylamino-ne is one of the most 

common herbicides (Solomon er al., 1996; DeLaune et al., 1977) applied worldwide to 

control weeds in both agricultural and non-agricultural land. In North Amenca, the 

greatest quantity is used on corn. In a study conducted by Frank et al. (1 99 1) between the 

years 1986 and 1990, atrazine and its metabolite desethylatrazine were the most 

fiequently found pesticides. They were present at 340 of the 474 (72%) sites sarnpled 

from the mouths of 3 major watersheds (Grand River, Saugeen River and Thames River) 

in the Canadian Great Lakes. The second most kquent pesticide was metolachlor, which 

was present in only 6.3% of the sites. Between 342 and 2959 Kg/annurn of atratine 

entered Lakes Erie and St. Clair during the penod studied. Atrazine is relatively soluble 

in water, and because of its wide use there is an abundance of literature as to the 

toxicological effects and degradation of this compound. 



The compositions of the benthic fauna in Ides  and rivers have long been considered to 

be good indicaton of water and sediment quality (Wiederholm. 1980: Hynes. 1960). The 

concept of biological indicators originated with the work of Kolkwitz and Manson 

(1908, 1909), who developed the idea of saprobity (the degree of pollution) in riven as a 

measure of the amount of contamination by organic matter. Organic contamination of 

Freshwaters was the first type of pollution to be recognized (Mason, 1991). Oligochaetes 

are considered a valuable group of organisms to use as indicators of pollution or trophic 

status (Lauritsen et al., 1985; Milbrink, 1973; Brinkhunt & Jarnieson. 1971 ; Hynes, 

1960). The site selected in Lake Erie for this study has a benthic fauna made up 

predominantly of oligochaetes. In light of the faunal composition of the site. the historical 

concems of eutrophication in the Iake, and literature avai lable, enrichment of the boxes 

with organic matter was aiso selected as a treatment. 

4.2 Summary of rnethods empfoyed 

4.2.1 Field procedires 

Intact box cores were collected from Lake Erie, site 303, as previously described. Boxes 

were collected on four separate collection dates over the sampling season of 1996: 22"d 

April; 19" June; 1 6'h August; and 25' October. Nine boxes were collected in A p d  and 

12 were collected for the remaihg  sampling dates. Upon collrction of the intact boxés, a 

mini-box core was also collected. The mini-box cores had five replicate benthic cores 

removed from them, as described in the previous chapter, which were sieved in the field 

and fixed in formalin. These were later transferred to ethanol, and the organisms in them 

were enwnerated and identified. The cores collected and sieved in the field were used as 

field controls, providing a reference community for the laboratory boxes. Additional 

sediment was collected to be sieved in the laboratory and spiked with either cadmium, 

atrazine or e ~ c h e d  before being added to the intact boxes. 



Upon collection of the intact boxes and field cores, environmental parameters such as 

depth, sediment-surface temperature, dissolved oxygen, and pH were measured. The date 

on which the samptes were collected (Julianday) was also recorded. 

4.2.2 Laborarory procedures 

The previous chapter examined the impact of the zebra mussel, Dreissenci spp. Previous 

studies (Howell et al., 1996; Stewart & Haynes. 1994; Dermott, 1993; Grifiths, 1993; 

Mackie, 1991) have indicated that the presence of Dreissena can have an effect on both 

community composition and physico-chemical conditions. As the results. from the 

previous chapter, failed to show any conclusive trends between Dreissena numbers and 

community composition, the Dreissena were removed from the intact boxes upon retum 

to the laboratory. Any effect Dreissena have on community composition were considered 

by recording Dreissena numbers in each of the boxes and incorporating them into the 

environmental data-set. 

Upon retuming to the laboratory, the intact boxes were maintained at 10°C in a 

temperature-controlled chamber. The overlying water in the boxes \vas aerated and water 

lost due to evaporation was replaced with aented distilled tap water. 

To prepare the contaminated sedimenr, the additional sediment collrcted from the field 

was sieved through a 250pm mesh sieve and lefl for 2 days. At this time the surface 

water was removed. Based upon the water content of the drained, clean sieved sediment, 

the volume of sediment required to cover the d a c e  of each box with a k m  layer of dry 

sediment was calculated. These volumes of sediment were then spiked with either 250mg 

Cadrnium/kg of dry sediment, in the form of CdCh, or 4g/L (4ppt) of the pesticide 

Atrazine. Using the equation outlined in Appendix C, the appropriate quantity of a 

5000mgL CdCh stock solution, suffcient to spike the intact boxes with 250mg Cd/Kg 

dry sediment, was added to three 4L acid-washed glas jars, each containhg 

predetermined quantities of sediment for 1 of the 3 boxes to be spiked. Farm-grade 

Atrazhe pellets were used to spike the sediment with Atrazine; 200mg of the pellets were 



dissolved in 50ml distilled water and mixed with enough sediment slurry to cover three of 

the intact boxes with a k m  layer of dry sediment. m e  sediment and contarninants were 

mixed in the 4L acid-washed jars by an electronic shaker at hi& speed for four hours: the 

time and speed used were considered adequate to achieve a homogeneous exposure of the 

contaminant, and allow it to adsorb to the sediments (Kirkby, CC1 W. pers. comm.). The 

concentrations of contarninants used were based on literature reviews of the LC so and 

Ioading values found locally (Appendix D). Those concentrations chosen were 

considered to affect the whole cornmunity and were considered environmentally realistic. 

An additional set of three boxes was organically enriched with a concentrated YTC 

formula (lOg/500ml of a mixture of yeast extract. digested trout-chow and cerophyll 

formula, as described in the previous chapter). 

Three boxes were randomly allocated for each of the treatments, together with a set of 3 

boxes, which were lefi unmanipulated as control boxes. In April. only 9 boxes were 

coIlected; the effects Atrazine were not considered at this time. 

Dissolved oxygen levels. pH, and temperature were al1 monitored biweekly. Oxygen 

levels within the boxes were maintained in the range of 10.4 and 8.9mgL. as close to 

lOmg/L as possible; within the normal range found in the field at a temperature of 10°C. 

The average readings of the parameters recorded were calculated for each box and used 

in the analysis. 

After a period of seven weeks, the overlying water was removed fiom the boxes. Five 

benthic cores, measuring 6.5cm in diameter, were randomly inserted into the each of the 

boxes, and the top 10- 15cm of sediment within each core removed. The contents of each 

core were sieved through a 2 5 0 ~  mesh sieve, fixed in formalin and preserved in 

ethanol. Identification and enmeration of the organisms was carried out as outlined in 

the previous chapter, slide mounts being made where necessary. 

A sample of the sedunent remaining in the boxes after the cores had been removed was 

collecteci, freeze-dried, and sent to Seprotech Laboratones in Ottawa for complete 



chernical analysis. Trace metals were determined by hot aqua-regia extraction followed 

by measurement with an Inductively Coupled Argon Plasma Atomic Emission 

Spectrometer (ICP-AES). Mercury was assessed by digestion with hot nitnc acid and 

hydrochloric acid, followed by rneasurement with a Cold Vapour Atomic Absorption 

Spectrometer. Boron (B) was determined by fusion with sodium hydroxide followed by 

measurement with a Direct Current Plasma Atornic Emission Spectrorneter. 

Determination of ten major oxides was achieved by mixing the sample with Spectroflux 

100 B (4: 1 lithium meta- and tetra- borate) in û graphite crucible. Fusion was then carried 

out and the molten mixture dissolved in nitric acid. Measurernents of elemental 

concentrations are made by ICP-AES with a multi-channel larrel-ash AtomComp 1 100 

and the contents of oxides are calculated. The Seprotech analyses resulted in 46 sediment 

parameters, and an additional 7 were measured either in the field or the laboratory. The 

total nurnber of environmental variables used in the analysis was reduced to 42 by 

eliminating those parameters which provided no additional information to the data set 

(for example, Al% was discarded as the concentration of Al was also provided). 

4.3 Data Analysis 

4.3.1 Variation among and within samples 

The field data for each sarnpling occasion are fiom 5 cores taken from one mini-box core. 

It is important to address the variation within and among boxes across seasons in order to 

establish that changes noted in the cornrnunity composition of the laboratory boxes are 

due to either season or treatrnent, rather than as a result of large differences between or 

within the boxes. The community descnptors used in the previous chapter; Shannon- 

Wiener diversity index, total abundance, average nurnber of species per core, and mean 

density measurements, and the most abundant taxa, were used in the analysis. The same 

descriptors were also used by Gray et al. (1988) as part of a study carrîed out to establish 

cause and effect relationships between measured levels of pollutants and community 

response in outdoor mesocosms. 



Variation seasonally, among boxes. and within the boxes was analysed using a nested 

ANOVA; season and treatment boxes nested within season. were selected as the 

independent factors. This analysis was run on the laboratory data only. To investigate the 

natural variation in the field one-way ANOVAs were run on the field data across season. 

AI1 analyses were run using the statistical package SYSTAT v.7.0 (Wilkinson. 1997) on 

the log (x+l) transformed counts of the most abundant species. the Shannon-Wiener 

divenity index, mean density. total abundance and the average number of species per 

core. In order to address the differences in seasonal variation of the field and the 

laboratory samples, an F-ratio was manually calculated by dividing the seasonal rnean 

square value by that given for the laboratory boxes. The same approach was applied to 

among- and within-box variation. 

43 .2  Responses to contamination 

Community response to the different contaminants was analysed by multivariate analysis. 

According to Clarke (1993), untransformed abundance data will typically Iead to a 

shailow interpretation in which only the pattern of a few very common species is 

represented. Transformation methods. which tend to make means and variances more 

similar, may allow a greater contribution from the rarer species. The data were 

transformed to prevent violation of the assumption of normality required for the 

univariate analysis techniques usrd. The untransformed data were used for the 

multivariate analysis (Reynoldson et al.. 1995). as the differences in abundance of each 

of the individual taxa are considered to be important descriptors of the community. 

Similarities between every pair of samples in the multivariate mdysis were compared 

using the Bray-Curtis association measure (Bray & Curtis, 1957) as it is a reliable 

measure of association (Clarke & Green, 1988; Gray et al., 1988; Faith et d. 1987). 

Ali ordination methods are a compromise, where data with an inherently hi& number of 

dimensions are viewed in lower diensional (ofien 2-dimensional) plots. Non-metric 

Multi-Dimensional Scaling (NMDS) is one of the moa robust ordination techniques 

available (Gray et al., 1988), and it has been claimed that that N M D S  makes the ben 



possible job of preserving the among-sample relationships accuntely in a lower 

dimensional plot (Clarke, 1993). The relative distance of the samples reflects the relative 

similaritiesl dissimilarities in species composition as measured by the Bray-Curtis metric. 

Stress values define the arnount of scatter around the line of best fit through the NMDS 

distances and the actual distances. A low stress value indicates that a valid configuration 

has been found. Where more than 2 axes were considered in the analysis. only the first 2 

axes have been presented. Since the first 2 axes account for the first and second most 

arnount of variation in the data set. and represent a major portion of the total variation, it 

was felt that directional patterns were adequately portrayed in these 2 axes. 

The environmentai information was linked to the biological analysis by superimposing 

the values of the abiotic variables ont0 the respective sample positions in the biotic 

NMDS (Field et al., 1982). This information was graphically plotted as environmental 

vectors on the NMDS ordination plot. Only the variables indicating a significant 

contribution to the observed pattern, tested through Monte-Cario permutations. were 

plotted. 

4.4 Results 

4.4.1 Variation among and ivithin samples 

Forty taxonomie groups were used in the analysis (Appendix A); the additionai 3 taxa; 

Porifera, Nematoda and Ostracoda, not considered in the 1995 sample season described 

in Chapter 3, were consistently present in large nurnbers and considered to represent 

important community descriptors. Oligochaete cocoons were also included as it was 

believed that their numbers reflected reproduction within the boxes. For the 10 most 

abundant taxa (Ponfera (Por), Vejdovskyella intermedia (Vej jn t ) ,  Immature tubi ficids 

with and without hair setae (Imm-ch, Immco h), Lirnnodrih hofheisteri (Lim-ho 0, 
Potmnothrïc vejdovskyi (Po t-vej), Spirospenna ferox (S pi-fer), Tubifex tubifex 

(Tub-tub), Nematoda (Nern), and Ostracoda (Oa)), as well as the oligochaete cocoons 

(Coc), variation seasonally is greater than within the boxes (Table 4.1 ). This is also true 



for diversity (Shannon-Wiener diversity index) and richness measures (mean density, 

total abundance, and number of species). Variation is greater within the boxes than 

seasonally if the F-ratio is less than 1. Al1 of the most abundant taxa identitïed, and the 

community descriptors, show greater variation seasonally among boxes than within the 

boxes. 

Analysis of the 10 most abundant taxa and oligochaete cocoons for the laboratory control 

boxes using nested ANOVAs (Table 4.2) show that. of the 1 1 analyses run. 8 indicate 

increasing variation from core to box. and from boxes to season. The remaining three 

taxa; the naid VejdovskyeZla infermedia. the tubificid Potamothrix vejdovskyi, and the 

immature tubificids without hair setae, al1 displayed a greater degree of variation between 

laboratory boxes than across season. These two tubificids (immature tubificids without 

hair and Potamothrix vejdovskyi) are two of the most abundant groups in the data set. 

One of the three control boxes frorn both August and October had reduced numbers of 

Potamothrix vejdovskyi, and for August reduced numbers of immature tubificids without 

hair setae. However, the immature tubificids have an F-ratio close to one (0.892), 

indicating that the variation between the boxes is only rnarginally greater than seasonal 

variation. With the exception of one box collected in October, which showed far greater 

numbers than the my of the other boxes, very few Vejdovskyella intermedia were 

observed in the control boxes. The diversity and richness measures also give mixed 

results for the laboratory boxes. The Shannon- Wiener diversity measure and mean 

density both indicate a greater degree of variation between the boxes than seasonally. 



Table 4.1: F-ratio values forfield data conzparing the umounr of wriation within rhe boxes ro 
seasonal variation. An F-ratio greater rhan I indicareci rhe seasonal variation is greuter rhan rhat 
wirhin the boxes. Mean square vahes are ulso provided 

Taxa, diversity & richness F-Ratio Mean Square 
(season vs. within-box Values (MS) scores variation) 

Pori f en  
Vejdovsk>teIIa intermedia 
Immature tubificidae 

Without hair 
With hair 

L imnodriltrs hoflmeisreri 
Poramothrir vejclovs&i 
Spirosperma ferox 
Trtbifi rub* 
Cocoon 
Nematoda 
Ostncoda 

Shannon-Wiener index, H 
Mean density 
Total abundance 
Average specieskore 



Table 4.2: F-rafios calcufated using a ttested A M  VA design. contparing variation within the 
laborutory boxes, umong the laboratory boxes, und clcross season. Valtres have been calculared 
for the most abtdanr tuw divers0 (Shannotl- Wiener divcrsity in&), and richness niemures 
(meun &.Y@, mtul abundance, and average nirmber ofspecies per core). * = minrion grealer 
beoveen bo-res than across seuson. rblecrn Sqtrure vcrlrres (bis) are ulso pro vided. 

Taxa. diversity & Within Box F-Ratio 

richness scores Variation 
(enor) Among Across 

Boxes (MS) season (MS) 

Pori fera 
Vejdovs@efI~~ intermedia 
Immature tubificidae 

Without hair 
With hair 

L imnodril us hogmeisreri 
Potamothri~ vejdovskr,i 
Sptrosperma ferm 
Tub fer rtrbifex 
Cocoon 
Nematoda 
Ostracoda 

Shannon- Wiener index, H 
Mean density 
Total abundance 
Average speciedcore 

4 - 4 2  Responses to contamination 

An ordination of the field data and corresponding laboratory controls is shown in Figure 

4. la. The laboratory control data are represented by 95% confidence ellipses plotted 

around centroids for each sarnpling occasion. The field and control data follow the same 

trajectory through time, and the seven-week lag in the laboratory data is evident; they are 

just displaced in tixne. Figure 4.1 b shows the species scores for the field and control data, 

indicating the direction in which the named taxa Muence the data in ordination space. 

Oniy those taxa identified using Monte-Carlo permutations as having a significant 

contribution to the position of the box cores in ordination space have been plotted. The 



field data differ from the labontory data by the presence of Platylielminthes and 

Hydridae (Hyd), although Platyhelminthes were not considered to be an important 

descriptor from the Monte-Carlo permutation test. The ordination is dominated by the 

oligochaetes, which are the predominant group of organisms at this site. Horizontal 

movement of the laboratory boxes along NMDS axis 1, away from the field data. towards 

the left, reflects a reduction in the numbers of these organisms. The vertical movement of 

the boxes, dong NMDS a i s  2, in ordination space results from changes in numben of 

cocoons, ostrocoda, and the gastropod Fossarin obmssa (Fosobr). 

Figure 4.2 (a-d) show ordinations of the treatments for each of the sample times. April. 

June, August and October (a, b, c, and d respectively). As in the previous ordination plot, 

95% confidence ellipses have been plotted around the means for each of the different 

treatments (control, cadmium, e ~ c h m e n t  and atrazine). Those species identified as 

contributing significantly to the ordination pattern have been plotted in the f o m  of 

vectors. The arrows indicate the direction to which that organisrn influences the data in 

ordination space. 

The boxes collected in June show little change as a result of the sedirnent contamination 

in relation to the controls. The remaining three sample times show similar movements in 

ordination space of the box scores away from the controi condition. as a result of the 

addition of the different stressors. The addition of cadmium results in an overail reduction 

in taxa, and move from the control condition in a direction opposite (with the esception 

of Porifera) to that indicated by the species vectors. Both the enriched and auazine-spiked 

treatments show consistent increases in the abundance of some taxa (the immature 

tubificids, Spirospermaferox, Potamothrix vejdovskyi, Nematoda, Ostracoda, and the 

oligochaete cocoons), and diverge fiom the control condition in the direction indicated by 

the species vectors. Aithough enrichment and atrazine treatments show similar effects, 

the enrichment boxes generally moved in a direction indicating an increase in the number 

of immature tubificids with hair setae and Spirosperma ferox. The atrazine treatment 

tends to result in an hcrease in the number of mature Limnodrilus spp. 



Fig. 4.1: (a) Ordii~ation plot ofleld data (Apr-Oct) and control boxes (ad). 95% corijiceticr ellipses have hreti piotted arocciid the 
mean of each of the four monthly control data. A rro ws (Apr-Oct) indicate nioventent of the field data itithin ordination 
space. The right hand ordination plot (b) denotes the directional influence of the sigriijcunt taxa as identijied by Mortte- 
Carlo analysis. Full species names ure given in the tut.  (Stress = 0.11 9). 





Treating the seasons separately makes it difficult to assess whether the treatment effects 

are consistent. Figure 4.3a shows the combined laboratory boxes seasonally. together 

with the corresponding field data. A consistent pattern of divergence from the control 

condition, as a result of the different stressors, is observed. Enrichment and atrazine 

additions cause a movement of the box scores toward the field data. The June data are 

different from the other months sampled and had a confounding effect, so were 

eliminated and the analysis was re-run. Upon removing the June boxes from the analysis 

(Fig. 4.3b) there is still the same directional separation of the treatrnents, although this 

separation is more pronounced. 

Figure 4.4a illustrates directional changes in the community composition of the 

laboratory boxes and field data in ordination space. The taxa and environmental variables 

identified through Monte-Carlo analysis are illustrated in Figure 4.4b. Forty-two 

environmental variables were measured. Of these, 13 were identified as being 

significantly correlated to the sample scores; 8 chemical parameters (cadmium (Cd), 

manganese (Mn), barium oxide (BaO), magnesium oxide (MgO), silicon dioxide (SiO?), 

total phosphorous (Ptot), nitrogen (TKN) and dissolved oxygen (O2), 4 physical 

parameters (Julian-day, sample week, sediment surface temperature (temp), and depth), 

and the Dreissena counts taken from the boxes (fig. 4.4b). The cadmium treated boxes 

are positively correlated in ordination space to the cadmium environmental vector and 

indicated an overall loss of species. The field data are separated from the laboratory data 

along temperature and 'sample week' gradients. Bo& these vectoa are related to each 

other, as the laboratory boxes were al1 held the same temperature (which was marginaily 

higher than that found in the field) and sampled 7 weeks after the r e m  of the boxes to 

the laboratory (the field samples were collected at 'week 0'). Collection date (Julian-day) 

is correlated to NMDS &s 1. which is reflected in the horizontal spread of the field data 

along this axis. MgO, Ba0 and Mn are aIso strongly associated with this axis, as well as 

total phosphorous (Ptot) and total nitrogen (TKN) in the opposing direction. No 

significant ciifferences between the treatments and the field data are observed for the 

MgO, BaO, or Mn rneasurements, although there are generally lower levels of Mg0  

found in the sediments of the enriched and atrazine treated boxes. LeveIs of Manganese 







(Mn) are lower in the atrazine boxes than in the eruiched boxes despite their similar 

positions in ordination space. Overall decreases in Ba0 and M g 0  are noted with season. 

although only those boxes collected in October differed significantly frorn the rest 

(ANOVA, p< 0.05). Total nitrogen levels are significantly higher in the enriched and 

atrazine treated boxes compared to the field and control boxes (p,,nchcd< 0.001 ; parnu,< 

0.05). Total phosphorous levels are significantly higher in the enriched boxes compared 

to the field and control boxes (p= 0.053,0.052). Both total nitrogen and total 

phosphorous reflect the position of these treatments in ordination space. 

The position of dissolved oxygen reflects the dissolved oxygen content recorded from the 

field. The average laboratory levels of this parameter are significantly lower than the 

average of those recorded seasonally from the field (p = 0.002), and is reflected in the 

separation the field data from the laboratory data in ordination space. 

Significant differences in the average number of Dreissena is observed between the 

laboratory and field boxes (p< 0.0 l3), no significant differences were observed 

seasonally. Treatment effects excluded these organisms, so these data reflect the variable 

distribution of these organisms between boxes and are related to NMDS axis 2, helping to 

account for the vertical separation in ordination space of the test boxes fiom the field 

boxes. 

Total phosphorous and nitrogen are correlated with nurnbers of the tubificids. immature 

and the mature Lhnodr ilus profundico fa, L. claparedeanz~s, Potamo thrix vejdovskyi and 

(to a lesser extent) Spirospernaferox, the gastropod Fossaria obrussa, as well as 

Porifera and cocoon counts. These fmdings are in agreement with the correlations found 

between species counts and treatrnent in the laboratory boxes (figs. 4.2a-d and 4.3). 



4.5 Discussion 

4.5.1 Variation within and among boxes 

Spatial and temporal variation in the distribution and abundances of organisms is an 

inherent property of ecological systerns (Anderson & Gribble, 1998). Results from 

univariate analyses show that variation seasonally is relatively large and is not masked by 

the variation obsewed between or within the boxes. 

Movement of the cornmunities of the laboratory control boxes in ordination space 

followed a similar pattern to that noted for the field data. As discussed in the previous 

chapter, differences between the laboratory boxes and the field boxes may be a result of 

sampling and collection differences. Disturbance of the overlying sediment. resulting 

from transponation back to the laboratory, rnay also be a contributing factor for these 

differences in the ovenll composition of the comrnunities. Despite movernent of the 

intact boxes away fiom the field data, a similar seasonal rnovement of the field and 

laboratory data in ordination space indicates that there is little change in the species 

composition within the boxes, despite the loss in benthic fauna as a result of the move 

from the field to the laboratory. 

4 5.2 Responses to contamination 

Cadmium caused changes in species composition, showing an overall reduction in the 

abundances of species. Wiederholm (1 988) suggests that cadmium rnay retard or inhibit 

growth, but does not usuaily affect survivorship over several months. However, there are 

differing opinions in the literature as to the tolerance of oligochaetes to metals 

(Wiederholm et al., 1987, Canfield et al., 1994, Poulton et al.. 1988). Brinkhurst and 

Jarnieson (1971) as well as Hynes (1960) and others have suggested that an absence or 

marked reduction in the nurnber of woms may indicate the presence of heavy metals. 

Later field studies by Cairns (1984) confirmed this coupling between high metal 

concentration in the sediment and low abundmces of oligochaetes. Chapman's (1 982) 

work indicates that Tub* tubrex are significantly more tolerant to cadmium that 



Limnodrilus hofieisferi.  This cannot be confirmed from the data. although reductions of 

both of these species were observed. 

The effects of atnune are contrary to the results expected. Previous researchers (Forget 

et al., 1998; Gruessner & Watzin. 1996; Sofomon et al., 1996: Huber, 1993) indicated 

that, although this herbicide does not pose a significant threat to the aquatic environment, 

higher concentrations of the herbicide (>20pg/L) caused a decline in aquatic organisms. 

Individual organisms were found to vary in their sensitivity to the compound. However, 

this study yielded different efFects than those expected: an increase in the abundance of 

the immature tubificids and Limnodrililr spp. is indicated by the ordination plots. and is 

confirmed by inspection of the abundance counts for these species. 

Work carried out by Pratt and CO-worken (1 997) using microcosms consisting of 

polyurethane artificial substrates to assess the ecological effects of herbicides. reported 

that atrazine caused significant increases in algal biomass. The concurrent enhancement 

of nutrient recycling, and increases in the detectable number of heterotrophic microbial 

species, were also observed. Such effects would result in increased food availability for 

the benthic fauna, and thus an increase in the aquatic organisms. Gruessner and Watzin 

(1 996) observed in their microcosm studies increases, though not significant, in 

oligochaete and gastropod numbers and decreases in Nematoda and Sphaenidae. They 

also observed significant increases in the emergence of insects. Although emergence was 

not considered in this study, there was a distinct increase in the numbers of identifiable 

mature oligochaetes. However, the results were only observed at low levels, 3-1 00pgL in 

Pratt's study, and 1-5pgL by Gruessner and Watzin. Higher levels produced a generai 

collapse of the laborator- ecosystem. The concentrations applied to the boxes in this 

study exceed the low concentrations sited by Pratt, Gruessner and Watzin. 

A-e degradation c m  occur via biotic and abiotic processes. Biotic degradation is 

mediated by microorganisms and results in N-dealkylation and cleavage of the nitrogen 

ring; chernical hydrolysis results in dechlorination of the compound and is primarily a 

soi1 catalysed process (Mersie et al., 1998). Degradation of a d n e  occurs readily in the 



presence of Manganese (Mn) II and ozone (Ma & Graham. 1997; Rodriguez & Harkin. 

1997), or in oxidized conditions (DeLaune et al., 1997). Under favourable conditions it 

can be degraded completely in a few weeks. The laboratory boxes were aerated for the 

duration of the experiments and sediment manganese levels are high enough to promote 

rapid degradation (Ma & Graham, 1977) providing the favourable conditions descnbed 

above. Atrazine has a low vapour pressure and low Henry's law constant; therefore. 

volatilization of the compound from the surface water was considrred negligible 

(Solomon et al., 1996). In light of the favourable conditions provided, together with the 

significantly higher levels of nitrogen found in the atrazine treated boxes. it is likely that 

degradation of atrazine occurred. However, unrecorded environmenial factors in the 

treatment boxes may CO-vary closely with the atrazinr signal, and may be themselves the 

cause of the observed change (Clarke. 1993). Failure to record al1 of the environmental 

variables affecting the community composition is inevitable. 

The abundance and species composition of oligochaetes have long been associated with 

the effects of enrichment (Hynes, 1960). The enrichment of sediments is expected to 

result in an increased abundance of certain oligochaetes, and species have been 

characterised by their relation to different trophic States (Lauritsen et ai.. 1985). As 

observed by others (Lang, 1997; Verdonschot, 1996; Wiederholm et al.. 1988; 1987; 

Lauritsen et al., 1985; Milbrink. 1983; Brinkhurst, 1967; Hynes. 1 960). nutrient 

enrichment o f  the sediment resulted in increased abundances of oligochaeetes. Many 

oligochaetes can only be identified in their mature form; enrichment of the sediment 

encourages maturation. The presence of immature tubificids and cocoons indicates 

reproduction is occming. 

Increases in oligochaete abundance were noted in both the enriched and Atrazine-spiked 

boxes. It was predominantly the tubificid woms that responded to the enriched boxes. Of 

the tubificids, the immature tubificids, Spirosperma ferox, Limnodrilrls claparedeanus, 

L-profindicola, and, to a lesser extent, L. hofieisteri were d l  identified as being 

signifïcantly afTected by the enrichment treatment. These species favour such conditions, 

and the& relationship to enrichment has been documented by other researchers 



(Brinkhurst, 1967; Milbrink, 1983; Lauritsen et al, 1985; Wiederholm el al.. 1987, 1988; 

Verdonschot, 1996; Lang, 1997). The observed relationship of Spirosperma ferox to 

enrichment rnay also be associated with changes in sediment structure (Brinkhurst & 

Jarnieson, 197 1). Unfortunately this cannot be confirmed. as sediment structure indices. 

such as particle size, were not recorded. Dissolved oxygen concentrations were correlated 

negatively to the presence of the pollutants in the ennched and atrazine spiked boxes, 

which is in keeping with findings from other researchers (Lauritsen et al.. 1985: Pratt et 

al., 1997) and the assertion that AtraUne acted to ' e ~ c h '  the microbial community. 

The June data was different from the other months; seasonally. observed from the field 

data, and upon the addition of contaminants to the laboratory boxes (Fig. 4.1 ). 

Stratification of Lake Erie occurs around this time (Schertzer et ai.. 1987) and may 

contribute to the anomaly noted here. The presence of the June data in the analysis 

masked some of the overall effects observed in the pooled seasonal data. Excluding these 

data fiom the analysis, the impacts of the contaminants were strong, and distinct from 

each other and from the seasonal changes. 

4.6 Conclusions 

This study set out to establish whether intact box cores could be used in the assessrnent of 

sediment toxicity. Benthic animals are not evenly distributed in benthic systems and 

"communities" c m  Vary a great deal over relatively short distances (Swift et al., 1 996). 

Nevertheless, the study design used, with only 3 sets of replicates for each treatment. was 

able to demonstrate treatment effects. The use of multivariate approaches and replicate 

samples showed that there was a consistent directional change in the comrnunity 

composition as a result of different stressors. Changes in species composition are 

comparable to those found in the literature for b o t .  single species and comrnunity 

toxicity tests, 



Spatial and temporal variation in the distribution and abundances of organisms is an 

inherent property of ecologica1 systems (Anderson & Gribble. 1998). Barton ( 1989) 

emphasises that the timing of fieldwork will reflect life-cycle events such as recruitment. 

migration and sexual maturation, al1 of which may influence apparent water quality. He 

suggests that, in the Great Lakes, sampling in May-June would tend to overestimate the 

importance of L. hoffmeisteri and Tubifex rzibifex. whereas more L. cervix and P. 

moldaviensis would be found later in the season. Combining the seasonal data of this 

study retained the directional patterns caused by sediment contamination: this indicates 

that changes in the comrnunity composition as a result of sedirnent contamination are not 

masked by seasonal changes in species composition. These directional trends can be 

compared to the environmental variables recorded. 

In summary, the methods descnbed here provide a promising use of multivariate methods 

to identiSing the effects of stressors on community composition. The study has shown 

that the use of intact box cores in the form of hboratory mesocosms show consistent and 

predictable responses to certain stressors. 



CHAPTER 5 

Uses as a Diagnostic Tool to Predict Sediment 

Contamination 

5.1 General Introduction 

It is dificult to predict the effects of contaminants on an ecosystem based on its 

individual components (Dewey, 1998; Landis et al., 1997). Indeed, Cairns (1 984) argues 

that there is insufficient knowledge to accurately rnake predictions of a toxicological 

response from one level of organisation to another. To be predictive, a test must be 

environmentally and ecologically realistic (Sheehan, 1 984; Buikema, 1993). Microcosm 

and mesocosm tests, conducted in conjunction with field calibration midies, could greatly 

enhance Our understanding of chemical stress on natural aquatic systems (Sheehan et ai., 

1986). Results fiom such tests would have environmental applicability, since they 

provide for interspecific interactions and allow more species to be exposed than single 

species tests (Tagatz, 1986). 

Numerous studies using multispecies data from microcosms, mesocosms, and field 

studies have successfully employed multivariate techniques (Kedwards et al., 1999; 

Sparks et al., 1999; Shaw & Manning, 1997; Reynoldson et al., 1995; Gray et al., 1988; 

Wright et ai., 1984), in an effort to identiQ the effects of contaminants at a cornmunity 

level. However, no muitispecies comrnunities have thus far been used in a standardized 

bioassay for sediment quality assessments in spite of their greater realism cornpared to 

single species tests (Clarke, 1999). An important question, in d e m g  community level 

responses to contaminants, is whether the type of community respouse detected by 

multivariate andysis is specific to particular poliutants, or whether it tends to reflect a 

general effect of the contaminant impact (Bailey et al., 1995). 



This thesis set out to establish whether community structure. observed in intact boxes 

collected from the field, could be used as a diagnostic tool to identib the principal 

stressor at sites of unknown contamination. Thus far, the thesis has established that 

collection of intact sediment cores, and the maintenance of the resident rnacroinvertebrate 

cornmunities is possible. To an extent. these communities can be compared to those 

found in the field, and used for mesocosm sediment bioassays. The diagnostic capacity of 

the communities within the intact boxes, to assess sediment contamination. will be 

considered in this chapter. 

5.2 Sumrnary of Methods Employed 

The data used and described in the previous two chapters were pooled and analysed, 

using the same multivariate ordination methods already described. As the cornmunities 

from the boxes collected in 1995 were considered to change negligibly over tirne. the 

taxa counts from al1 of the cores removed from each of the boxes (laboratory and field) 

from 1995 and 1996 were averaged. This resulted in an average value for each species 

identified in each of the boxes. The additional taxa enumerated in 1996 (Porifera, 

Nematoda, Ostracoda) as well as the cocoons were not considered, resulting in a total of 

forty taxa used in the analysis. 

The outlying control box identified in Chapter 3, and the data collected in June 1996 

described in Chapter 4, were excluded fiom the analysis as they were considered 

anomalous, and would be confounding to the analysis. A total of 58 boxes were 

considered; 50 laboratory boxes and 8 boxes collected fiom the field over the two-year 

sampling period. Of the 50 laboratory boxes, 17 were controls and had been lefi 

unmanipulated for the duration of the experiments, I 5 were enriched with varying 

quantities of a yeast, trout-chow and cerophyll formula. The remaining boxes dl had 

spiked sediment additions: 9 boxes had sediment spiked with 250pgL cadmium, in the 

form of CdCli; 6 boxes had sediment spiked with the pesticide Atrazine; and 3 had 



copper-spiked sedirnent applied. The methods used to spike sedirnent with cadmium were 

used for the copper-treated sediment (Appendix C); clean sieved sediment fkorn Lake 

Erie Site 303 was spiked with Ig copped Kg dry weight sediment. in the form of CuC12. 

nie  copper-spiked boxes were collected in May 1995, and rnaintained at 4.j°C. 

In setting guidelines for invertebrate community structure at a test site. Reynoldson and 

Day (1998) adopted a multivariate approach that would aid in defining the degree of 

impact. The algorithm used in this approach may be complex. but the output is relatively 

straightforward: the closer together two points are, the closer their comrnunity 

composition. The likelihood of sites being the same as the reference sites described by 

Reynoldson and Day (1 998) was qualified by constructing three probability ellipses 

(90%, 99% and 99.9%) around the reference data. Data falling within the bounds of the 

fiat (90%) ellipse represent those data that would be considered equivalent to the 

reference data, and therefore unstressed. Sites lying between this ellipse and the next 

largest (99% probability ellipse) would be given the designation of 'possibiy different'. 

and the sites between the 99% and 99.9% ellipses designated as 'different'. Anything 

outside of the outer (99.9%) ellipse would be considered very different from the reference 

data. A 90% probability ellipse was used, rather than the more typically used 95% 

interval, under the premise that a multivariate approach tends to result in noisier 

relationships than univariate methods (Reynoldson et al., 1998). 

Probability ellipses, as described by Reynoldson and Day (1 998), were constructed 

around the field data for 1995 and 1996. These ellipses are different fkom the confidence 

ellipses used in the previous chapters. The probability ellipses used here are larger than 

the confidence ellipses as they are constnicted for the total sample rather than for the 

centroid of the sample. The difference is analogous to the standard deviation verses the 

standard error of the mean. The effects of the different contaminants are described in 

relation to the directional movements of the laboratory boxes in ordination space. 

The species data (atîributes) were first correlated to the boxes (abjects) using the 

principal axis correlation (PCC) option in PATN (Belbin, 1993). This procedure is 



designed to interpret how well a set of attributes c m  be fitted to an ordination space. The 

prograrn produces a number of multiple regressions of the ordination vectors with each of 

the attributes. As part of the output, together with a set of ordination values for each 

object and attribute, multiple correlation coefficients (RI) are given which indicate how 

correlated a given attribute is with the variation in community structure as represented by 

the ordination. The direction in which each attribute influences the data in ordination 

space can be interpreted by plotting the ordination vecton. The environmental variables 

were also correlated to the species data using this method. 

Once the attributes (species or environmental data) were correlated to the data set. their 

statistical significance was identified using Monte-Carlo permutation procedures. 

5.3 Results 

The directional changes in community composition of the laboratory boxes. cornpared to 

the field boxes, are graphically illustrated in figure 5.1 a. There is a 1 in 10 (10%) chance 

of sites falling outside the 90% ellipses and a 1 in 100 (1%) chance of hem lying outside 

the 99% ellipses through natural variation (Wright et cd.,  1995: Clarke er cd., 1993). Of 

the 17 control boxes, 12 (71%) were found to lie within the 90% probability ellipse and 

be considered equivalent to the field data (Table 5.1). A fùrther 3 (1 7%) were considered 

to be only 'possibly different' for the field data, and the remaining 2 different. Copper- 

spiked sediment resulted in one of the three boxes (33%) lying within the 90% ellipse, 

and the remaining 2 boxes qualified as being 'possibly different' fiom reference 

condition (field data). The effects of cadmium additions to the sediment were observed as 

an overall movement away fiom the field sites; only 1 of the 9 boxes (1 1%) was 

considered to be equivalent to that of the field data, 1 (1 1%) were designated as being 

possibly different. The remaining boxes (78%) were considered to be different. 

Enrichment of the boxes resulted in an increase, compared to the control boxes, in the 

number of boxes considered to be equivalent to the field data (87%). AII of the boxes 

treated with Atrazine were considered to be equivaient to the field data. 
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Fig. 5.1: (a) Ordination plot of 1995 and 1996 data (June. 1996 excluded). 90%. 99% and 99.9% probability ellipses have been 
plotted around thejield data (points not show). (b) Ordination of species scores (* indicates those not identtjied as sign$cant 
through Monte-Carlo analysis) and the environmentu1 scores (plotted in the f o n  of vectors). Full species and environmental names 
given in text. 



The environmental and species attributes, which were considered important descriptors 

by the multivariate analysis, were plotted in the fom of bubble plots (figs. 5.2 & 5.3). 

The values of each of the attributes selected were ploned in ordination space for each of 

the boxes. Where necessary. these values were scaled down by dividing them by 2, 5. or 

10. The cadmium values were log@+ 1) transformed as the differences in concentrations 

of the spiked boxes were a factor of 10 greater than the other boxes. These plots show the 

relative attribute values rather than the absolute concentrations. The correlation 

coefficients calculated as part of the PCC analysis are also given. 

A total of 40 rneasured environmental variables were used in the analysis (Appendix B). 

Of these, 1 1 were identified as being significantly correlated to the sample scores: 8 

chemical parameters (cadmium (Cd), copper (Cu), potassium (K), barium oxide (BaO), 

phosphate (P20s), total phosphorous (TP), and total Kjeldahl nitrogen (TKN); 2 physical 

parameters (sediment surface temperature (temp), and depth), and the Dreissena counts 

taken fiom the boxes (fig. 5.1 b). Generally temperature separates the laboratory boxes 

(fig. 5.2), which were maintained (with the exception of the boxes collected in May 

1995) at temperatures higher than that found in the field, dong NMDS axis2. Depth, Cd, 

Pb, TP and TKN are also strongly associated with this mis, as well as PzOs and Ba0 in 

the opposing direction. No significant differences between the treatments and the field 

data are observed for the Ba0 or depth rneasurements (ANOVA, p> 0.05), although there 

are generally higher levels of Ba0 found in the samples collected in 1995 (Appendix A). 

Levels of P20 also tend to be higher in the boxes collected in 1995, and are significantly 

higher in the field boxes than in the laboratory boxes @< 0.00 l), contribution to the 

position of the boxes in ordination space in relation to thÎs vector. Cadmium and copper 

levels are both significantly greater in the boxes treated with these metais (p< 0.00 1) as 

was expected. The position of their vectoa indicates an overall loss of species; these 

trends are illustrated in figure 5.3. Concentrations of lead total Kjeldahl nitrogen (TKN) 

an'd total phosphorous (TP) are greater in the 1996 samples, and significant increases of 

TKN and TP were noted in the enriched and Atrazine treated boxes = 0.009mridi, 

0.002,d,,c; mP< 0.001) compared to the field boxes. Both TKN and TP reflect the spread 

of these treatment boxes dong NMDS axis2 in ordination space. 



Table 5.2: Sumrnary of the cornparison between laborutory boxes und the field data in ordination space 

using 90%, 99% and 99.9% probability ellipse criteria us defined by Reynufhon and Duy f l998). The 

percentages of boxes per trearrnent fafling inro each criterion are given in purentheses. 

Ellipse Definitions 
-- - - -- - - 

Treatment n ' Equivdent' ' Possibly Different' 'Different' 
- - - -- - 

Control 17 12 (71%) 3 (17%) 2 (12%) 

Copper 3 1 (33%) 2 (67%) 

Cadmium 9 1 (11%) 1 ( 1  1%) 7 (78%) 

Enrichment 15 13 (87%) 2 (13%) 

AtraPne 6 6 (100%) 

Potassium concentrations are correlated to NMDS axis 1 and reflect the position of the 

e ~ c h e d  boxes in ordination space. Although no significant differences are observed 

between the laboratory and field boxes (p>0.05). an overall increase is noted in the 

enriched boxes. 

Significant differences in the average number of Dreisscna are observed between the 

laboratory and field boxes (p< 0.006), while no significant differences were observed 

seasonaily. Treatment effects excluded these organisrns, so these data reflect the variable 

and patchy distribution of these organisrns between boxes. 

Those species marked with an asterisk in figure 5.3 were not identified as having a 

significant relationship to the boxes in ordination space. However, in the previous two 

chapters these species were considered important fiom both the multivariate and 

univariate analyses, and hence have been included on the plot. 
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Fi, .  5.3: Bubble plot of species abundance for each of the boxes in ordination space. The top lep-hmd graph represeuts the 
ordina~ion plot jor the field atid laborutory boxes. A = Field data, H = Control boxes, C= Copper spiRed boxes, D= Cadmium spiked 
boxes, LS= Enriched boxes, F= Airmine spiked boxes. Full species riames are giw in the texr. p= correlation coeflcients calculated 
fiom PCC. 



The naid Vkjdovskyella iniermedia (Vejjnt), the immature tubificids with hair setae 

(1 mm-c hr) and the mature tubi ficids Limnodriizis hoffmeisreri (L im-ho f) show increases 

in numbers unique to the enriched treatments (p= 0.039,0.00 1,0.00 1,0.04). The 

immature tubificids without hair setae (Irnm-coh), together with Spirospermufirox 

(Spi-fer) and Potamolhrix vejdovskyi (Pot-vej) also increase in numbers in the enriched 

boxes, although only S. ferox were significant (p= 0.00 1 ). These increases are more 

pronounced in the Atrazine treated boxes; the increases in the immature tubificids 

without hair setae and S. ferox were significant (p= 0.006.0.006) compared to the control 

boxes. An increase in the nurnber of LimnodriZzcsprofi~ndicoln is also observed in the 

Atrazine boxes. Potassium is strongly correlated with numbers of the immature tubificids 

without hair and the S. ferox, it is also correlated with the enriched treated boxes. These 

results agree with the relationships found between species counts and this treatment in the 

laboratory boxes described in chapter 4 (figs. 4.4.2~~-d). Where a significant reduction in 

the numbers of a species were observed between the control and field data, the enriched 

and Atrazine-treated boxes had comparable numbers to the field data. This is observed in 

the overall movement of these boxes toward the field data in ordination space (fig. 5.2, 

table 5.1). 

Both significant and non-significant decreases in species numbers are noted in the metal- 

treated boxes, as indicated by the relationship between these vectors and species in 

ordination space (fig. 5. l b). The immature tubificids (with and without hair setae) 

decreased significantly with both the copper and cadmium treatrnents (pc.= 0.00 1.0.004: 

p~d= 0 .O0 1,0.022). Poiumothrk vejdovskyi and Spirosperma ferox showed signi ficant 

decreases in the cadmium treated boxes @= 0.00 1,0.049) and non-significant reductions 

in the copper treatrnents @= 0.053,0.072). Slight decreases in numbers of Vejdovskyella 

intermedia and Potmothrik moldaviemis where obsewed only in the cadmium 

treatrnents, and Tubfex tubifex in the copper treatments. 



5.4 Conclusions 

The previous chapters have indicated an overall loss of organisms from the laboratory 

boxes compared to the field data. It was felt that these reductions could. in part. be due to 

the different sampling strategies used to collect the field and Iaboratory boxes. This is 

reflected in the overall percentage of control boxes falling outside of the confidence 

ellipses constructed around the field data, which exceeds the 10% expected to occur as a 

result of natural variation (Wright ei al., 1995). The effects of enrichment of the boxes 

and Atrazhe additions are different, both in regards to their cornmunity composition and 

divergences in ordination space (Chapter 4). However, both treatments result in increases 

in the number of organisms collected from the boxes and an ovenll movement of the 

boxes back towards the field data. This is reflected in the percentage of boxes considered 

'equivalent' to the field data. 

Distinct movements away fiom the field data are observed in the metal-treated boxes. 

The effects of cadmium additions are more pronounced that that of copper. Differences in 

the species effected by these two contaminants are reflected in their different rnovements 

in ordination space away from the field data. 

Of the forty species were used in the analysis. 10 of these were identified as having a 

significant relationship to the ordination plot. Only three of these, the most abundant taxa 

(the immature tubi ficids and Potumorhrk vejdovskyi), s ho wed any reasonable correlation, 

to the ordination pattern, from the principal a i s  correlation. A reasonable argument cm 

thus be made that using univariate statistical methods on these three species would be 

more appropriate. However, afthough these species are certainly important in regard to 

theù response to the contaminants and their effect on comrnunity composition, many of 

the other species identified through the Monte-Carlo analysis showed responses to the 

treatments. The changes in the abundance of these other species cause the more subtle 

dinerences between treatments in ordination space. For example, copper and cadmium 

treatments both resulted in an overall reduction in abundance; their separation in 

ordination space from each other was a result of changes in the abundance of different 

species. Although significant decreases in the numben of Potamothrix vejdovskyi and 



Spirospermaferox were observed in bot11 the cadmium and copper treatments. non- 

signi ficant decreases in Vejdovskyella intermedia and Poiamothrix moldaviensis were 

only observed in the cadmium treatments, and Tubi/ex iubifex in the copper treatments. 

The overall effects of the e ~ c h m e n t  and Atrazine treatrnents were very similar, with an 

overall increase in species abundance. Increases in the immature tubificids without hair 

setae, P. vejdovskyi and S. ferox were observed in both of these treatments. although the 

increases in these species were more pronounced in the Atrazine-treated boxes. 

Khtermedia and Limnodrilus hofieisreri also increased in the enriched boxes, whereas 

L. profirndicola increased with Atrazine-treatment. 

The changes in community composition of the boxes as a result of the different 

treatrnents can be related to changes in the sediment chemistry. Aithough there is some 

relationship between community composition and sediment chemistry, the correlation 

coefficients linking the environmental variables to the ordination plot are not strong. This 

indicates that the attributes identified only weakly explained the objects' position in 

ordination space. Bioturbation of the sediment, as well as the rernoval of the top 10-1 Scm 

of sedirnent from the laboratory boxes for sedirnent analysis resulted in a dilution of the 

original spiked sediment by a factor of about ten. Consideration of these factors negates 

sorne of the differences in sediment chemistry between the boxes. Despite this, patterns 

were seen in the concentrations of certain environmental parameters and the treatments. 

Tbese trends can ais0 be related changes of cornmunity composition within tliese boxes. 

From these analyses it is clear that changes in the cornmunity composition of benthic 

fauna can be related to changes in sediment chemistry, and other environmental 

parameten. The introduction of the contaminated sediment induced a consistent and 

observable response. This c m  be qualified using such descriptive techniques as those 

described by Reynoldson and Day (1998), in a way that the divergences in ordination 

space away fiom the expected community state (the field data) has a diagnostic capacity 

and can be used to suggest the nature of a stress. 



CHAPTER 6 

Surnmary and Recommendations 

6.1 Realisation of objectives 

This thesis set out to investigate the potential of benthic macroinvertebrate cornmunity 

structure to suggest the nature of an impact. Intact box cores were collected from the field 

for manipulation in the laboratory. To assess the diagnostic capability of the benthic 

community structure, fiom intact box cores, to predict sediment contamination it was 

necessary to consider whether the boxes could be collected from the field. transported 

back to the laboratory, and successfÙl1y maintained. This was achieved by addressing a 

number of hypotheses posed in Chapter 1. The next sep was then to consider whether the 

changes observed in the community composition upon the addition of contaminants was 

consistent and predictable. 

6.1. I Maintenance of box cores tinder laborutory conditions 

To overcome the inherent problems faced when working with naturd cornmunity 

assemblages, multiple intact cores were collected from one site in Lake Erie and 

transported back to the laboratory for M e r  manipulation. Before the effects of 

contaminants on the resident cornmunities codd be investigated, it had to be established 

that the intact boxes could in fact be collected and maintained with little change to the 

resident benthic f a n  The potential use of the methods proposed in açsessing sediment 

contamination were addressed through four hypotheses: 

Collection and transportution ofihe boxes to the laboratory do not signifcantiy alter 

the communiiy composition, compared to that found in the field 



An overall reduction in abundance of the taxa was observed in the laboratory boxes 

compared to the field boxes. This was evident at both a community and species level. and 

has been observed in other studies (Gruessner & Watzin, 1996). Reductions in the 

abundance of individual species were primarily seen in the immature tubificids and the 

smaller oligochaetes, which would tend to inhabit an area close to the sediment surface. 

One possible explanation for the observed trends may be the effect of bow wave 

displacernent due to different sized boxes used to collect the field and labontory boxes 

Transportation from the field and the set-up of the boxes in the laboratory inevitably 

result in some disturbance of the overlying sediment. This, together with the time lag 

between collecting the intact boxes and sampling them, may also contribute to the 

differences observed between the field and control boxes. However, despite these 

differences, univariate analysis of the predominant species showed that only the 

immature tubificids and Potamofhrix vejdovskyi varied significantly from the field data. 

Diversity and richness measures failed to show any significant differences from the field 

data. 

The communities within the laboratory boxes do not change signifcantiy over time. 

Multivariate analysis found littie change in ordination space of the laboratory 

communities compared to the field data. Of the 9 predominant species. and 3 diversity 

and richness measures anaiysed univariately, only the immature tubificids without hair 

setae in the monthly sarnpled boxes at lOCC showed any sigificant change ovvr time. 

Thus, the boxes can be maintained in the laboratory, with no extemal inputs, for up to 8 

weeks. 

The community does not require the addition of low Ievels of nutrients to sunive in 

the laboratoty. 

The additions of low levels of nuîrients to the intact boxes resulted in negligible changes 

in the community composition, either multivariatel y or univariately . Enrichment of the 

laboratory boxes was unnecessary. Diversity and richness measures indicated that 

ahhough there was some change in the communities over tirne, these changes were also 

not statisticdy significant either over tirne or compared to the field boxes. These data 



support the findings that the boxes can be maintained for as long as 8 weeks. With the 

exception of the immature tubificids without hair setae. which showed significant 

changes over time in the controls smpled rnonthly, there is little evidence to suggest that 

the boxes cannot be maintained for longer. 

There is no signrfcant change in the comtnunifies of the laborutory boxes compared 

to that found in the field ivhen held at elevated temperatures to those forrnd in the 

field. 

The communities kept at 4S°C were relatively more stable than those maintained at 

10°C; the communities held at higher tempentures tended to Vary more in their 

abundance. Despite this, the communities held at higher tempentures were not identified 

as changing significantly over time or compared to the field data. Thus. the increase in 

temperature was not considered to alter the community in a statiaically significant way. 

6.1.2 Cornmuniîy structure for rhe assessrnent of sediment contaminalion 

Based on the premise that different species will have different tolerances to the stresson, 

the benthic macroinvertebrate comrnunities should have characteristic responses to these 

stressors. These changes in community composition may be useful in the identification of 

an unknown stress. Using multivariate analysis, such as Non-metric Multi-Dimensional 

Scaling (NMDS), it is possible to illustrate these changes in the community graphically, 

in the form of ordination plots. Such plots would allow the changes in communities due 

to contamination to be reflected as a divergence away from an expected or predicted 

state. The direction in which these divergences occur can then be related to 

environmentai parameters, such that the effect of a contaminant on a community is 

consistent in the direction in which it moves the cornmunity in ordination space. It then 

stands to reason that changes in the community assemblage, specifically those species 

which are effected, can be used diagnostically to suggest a type of impact at a site where 

the nature of the con taminant is unknown. 



Changes in community composition. as a response to certain stressors (cadmium. atrazine 

and nutrient enrichment). and the consistency and predictability of such responses were 

evaluated through several hypotheses. 

Seasonal changes in the commtrnity composition of the intact boxes are greaîcr than 

the between- and within- box variation. 

.4 major limitation of ecosystem level bioassays includes the inherent variability of 

multispecies biological systerns (Barry & Logan, 1998). Indeed. highiy variable data are 

common in aquatic mesocosm studies (Shaw & Manning, 1996). This is a problem when 

using univariate statistical techniques to analyse these data. Replicate variability. which 

cm be due to specific and identifiable natural factors. could mask the significance of 

even large differences (Tagatz, 1986). Spatial and temporal variation in the distribution 

and abundances of organisms is an inherent property of ecological systems (Anderson & 

Gribble, 19%). 

Variation of the boxes seasonally was relatively large but was not masked by the 

variation within and between the boxes. Barton ( 1989) emphasises that the timing of the 

fieidwork will reflect characteristics of life-cycle events such as recruitment. migration 

and sexual maturation. Combining the seasonal data of this study retained the directional 

patterns caused by sediment contamination. Thus, changes in community structure were 

not masked by seasonal changes in species composition. 

There was an observed reduction in the numbers of organisms between the field and 

laboratory data. However, movement of the community scores for the field and 

laboratory data within ordination space followed a similar seasonal pattern. Although 

there is a Ioss of benthic fauna in the laboratory boxes there is linle loss in the species 

composition within these boxes. 

Changes in the communiîy composition caused by the addition of the stressors are 

greater than the beîween- and within-box variation. 



Spatial and temporal variation in the distribution and abundance of organisms is an 

inherent property of ecological systems. The results from both the univariate and 

multivariate analyses showed that although seasonal variation was large, it was not 

masked by any variation found between or within the boxes. 

Combining the seasonal data retained the directional pattern caused by the additions to 

the sediment, illustrating that divergences in ordination space of the treated boxes from 

the control data are not masked by any seasonal effects on community composition. The 

June data behaved differently from the other months, both seasonally and upon the 

addition of contarninants, possibly as a result of stratification occuning in the Iake when 

the samples were taken. Excluding these data showed that the impacts of the 

contarninants were strong, and distinct from each other and frorn the seasonal changes. 

A consistent pattern is observed in the changes in commirnip composition in 

ordination space as a resirlt of the dfferenr stressors. 

Observations recorded for each of the sampling times indicated that the addition of the 

different contaminants to the intact boxes produced distinct directional changes in 

ordination space; cadmium resulted in an overall reduction in species counts, and 

enrichment and Atrazine-treatments caused an increase in species counts. The boxes 

collected in June differed fiorn both the tield data and the laboratory data with respect to 

the comrnunity response to contaminants. Howrver, evrn when these data tvere included 

in the overall anaiysis of the effects of the contaminants, the multivariate approach and 

replicate samples showed a consistent directionai change in comrnunity composition as a 

result of the addition of different stressors. 

Directional changes in ordination space of the intact boxes can be related to changes 

in specjfc species. 

Generally, the changes in species composition were found to be sirnilar to those descnbed 

in the literanire, for both single species and comrnunity toxicity tests. 



Addition of cadmium to the laboratory boxes in this study caused consistent reductions in 

overall abundance, and as a result changes in the species assemblage. and therefore 

position in ordination space. of the laboratory boxes. Atrazine effects were unexpected 

and differed somewhat ta those recorded by previous researchers (Forget er al.. 1998; 

Gruessner & Watzin, 1 996; Solomon et al., 1996; Huber, 1993), who documented 

declines in aquatic organisms. An increase in emergence of insects has also been 

recorded as an affect of atrazine (Gruessner & Watzin, 1996). Although emergence was 

not assessed in this study, a consistent increase in the nurnbers of mature tubificids was 

observed As observed by others (Lang, 1997; Verdonschot, 1996; Wiederholm et al., 

1988; 1987; Launtsen et al., 1985; Milbrink. 1983; Brinkhurst, 1967; Hynes, 1960). 

nutrient enrichment of the sediment resulted in increased abundances of oligochaetes. 

Directional changes in ordination space of the conturnina~ed boxes con be relured to 

changes in sediment chernistry. 

Many of the environmental variables that were identified as having a significant 

relationship to the field and laboratory boxes in ordination space gave no significant 

results from univariate analysis. The physical parameters identified, together with 

Dreissena counts and dissolved oxygen. expiain some differences between the field and 

laboratory data. The remaining chemical parameters account for much of the movement 

in ordination space of the boxes as a result of the added contaminants. With the exception 

of the cadmium vector, these parameten are related to NMDS axisl. 

Total phosphorous and nitrogen could be correlated with numbers of the tubificids, 

immaîure and the mature Limnodrilus proF»dicola, L. clapuredeunus, Potamo thrk 

vejdovskyi and (to a lesser extent) Spirospermaferox, the gastropod Fossaria obrursa, as 

well as Porifera and cocoon counts. Cadmium was correlated to reductions in the 

numbers of ail of the species identified. Similar trends to cadmium have been noted by 

Shaw and Manning (1996) in their evaluation of community level effects of copper in 

outdoor mesocosrns. The findings are in agreement with the correlations found between 

species counts and treatment in the laboratory boxes. 



6.1.3 Uses as a diagnostic fool: 

Construction of probability ellipses. described by Reynoldson and Day (1  998) was 

successful as a descriptive tool to identiQ impacts on the intact boxes in reference to the 

field data. Directional changes were observed in the cadmium and copper treated boxes. 

and a movement back toward the fieid condition was observed in the enriched and 

Atrazine-treated boxes. Subtle changes between contaminants with similar overall effects 

could also be observed. These changes can be related to changes in sediment chemistry 

and species composition. 

6.2 Assessrnent of methods employed and recommendations 

6.2. I Sediment and Water Qzcality 

Ideally, sediment chemistry measurements should be taken before any addition to the 

boxes to identi6 the actual increase in concentration of contaminant to which the biota is 

subjected. Chernical analysis of the sediment at the end of each experiment, taking into 

account dilution effects resulting fiom bioturbation and sampling methods, would portray 

loss of contaminant to the water column or anoxic layer. 

Since only sediment chemistry was considered in the analysis, movernent of 

contaminants back into the water-column was not considered. Metals tend to be more 

toxic in solution than when cornbined to sediments (Giesy & Hoke. 1989) and should 

therefore be considered. 

6.2.2 Dreissena 

Over the past 8 years the Great Lakes have seen the invasion of both the zebra mussel 

(Dreissena polymorpha) and the "quagga" musse1 (D. bugensis), (Reynoldson & Day, 

1998; Reynoldson, 1995; Rosenberg & Ludyansliy, 1994; Dermon et al., 1993; Griffith, 

1993; Mackie, 199 1). Many researchen (Howell et al., 1996; Stewart & Haynes, 1994) 

have noted that the invasion of the Great Lakes by these European bivalves has been 



associated with subsequent physico-chernical changes in the environment and of the 

benthic community composition of some organisms. Correlations between the number of 

Dreissena in the field boxes and diversity and richness values were highly variable and 

mostly non-significant. Despite failure to identify any consistent correiation between 

Dreissena numbers and diversity and richness scores, rnultivariate analysis of the data 

and subsequent correiation of the environmental data to the taxa indicated that Dreissena 

numbers did have an initial influence on the species composition. 

Dreissena were removed from the laboratory boxes at the begiming of each experiment. 

thus their response to sediment contamination not considered. Since Dreissenn are 

considered important cornmunity descriptors (Reynoldson & Day, 1 998), their removal 

from the boxes poses a problem when extrapolating the laboratory data back to the field. 

6.1.3 Ta~onornic resoht ion 

There are conflicting views as to the level at which identification should be taken in the 

analysis of community composition. Some researchers (Resh & Unzicker, 1975) advocate 

species level identification, while others (Bowman & Bailey. 1997: Warwick, 1993; 

1988; Furse et al., 1 984) show that lower levels of identifications have been successful in 

detecting human impacts. Wanvick (1 988) and Furse ( 1 984) concluded that aggregation 

ro family level showrd no less information than species level data, and when considered 

in relation to the extra effort and costs involved in identification to higher levels. any loss 

in information was negligible. Indeed, hwnan perturbations may be more easily detected 

against a background of nahval variability in factors such as water depths and sediment 

sue  by looking at higher taxonornic levels (Bowman & Bailey, 1997; Warwick, 1993). 

Marchant (1990) found that when qualitative data were aggregated to a family level, or 

when fewer than four replicates were taken, disturbances in ordinations occurred. In the 

study described in this thesis, the site used has very few families. Exclusion of Dreissena 

nom the analyses described in this thesis, resulted in the data being dominated by only 

one family. Variation within this dominant family could be expressed in the nIst axis. and 



as a result no meaningful interpretation of the analysis could be achieved. Any 

advantages gained from using higher taxonornic levels can only be achieved when the 

data are diverse. with no single farnily being dominant. 

6.2. -1 Field validation 

Although bioassay tests c m  provide quantifiable relationships between contaminants and 

organisms, and can isolate contributing factors, most of these biological tests of sediment 

toxicity are performed using single species. There are several pitfalls when extrapolating 

response data €rom isolated single species tests to predict changes in the community and 

ecosystem (Sheehan, 1984). To be predictive. tests m u t  be environmentally realistic 

(Buikema & Voshella, 1993). The field data were collected simultaneously with the intact 

boxes. Various stmctural attributes among the laboratory and field communities were 

therefore considered similar. Data derived from the laboratory tests will therefore have 

good environmental applicability. The laboratory boxes, although not differing 

significantly from the field data, showed some reductions in species abundances. These 

diflerences were clearly illustrated by the separation of the lab data from the field data in 

ordination space. It was suggested that these differences could be the result of differing 

sampling equipment for the laboratory and field boxes. Extemal migration. recruitment, 

emergence and predation were not accounted for in the laboratory boxes. The effects of 

these extemal influences could be addressed by comparing the laboratory results to field 

sites that are contaminated with similar stressoa. However, there may be problems 

finding such sites, that have comparable physical, chernical and biological conditions to 

the site used. Transplant experirnents, whereby contaminated sediment is placed at clean 

sites and left to be colonised naturaily couid also be used. 

6.2.5 Multivariate techniques 

Ecological data, by its nature, are multivariate. Although univariate methods are often 

favoured, only those species present in suficient numbea and with adequate frequency 

can be analysed by these methods. Unless presence/ absence data are used rare species 



are not considered. There is an inherent loss of information when the data are analysed 

univariately. Diversity and the biotic indices reduce the information from the samples to a 

single value; however, multivariate techniques retain information on the taxonomie 

composition of a sample and display 'real' effects of water and sedirnent quality on the 

community. Muhivariate analysis of the communities using NMDS will reflect the slight 

reductions in taxa abundance observed in the univariate analyses. However. multivariate 

analysis tends to exaggerate differences in the communities in ordination space. Thus the 

ordination plots presented suggest that the laboratory boxes are more similar to each 

other than the field data, and vice versa. Data shouId therefore be viewed with the caveat 

that non-significant trends, identified through univariate analysis, rnay prove highly 

significant if analysed rnultivariately. If the significant attributes. identified through 

multivariate rneans, were to be re-analysed by univariate rnethods, this may alleviate 

some of the problems inherent in interpreting multivariate data. 

6.3 Conclusians 

Not al1 of the contaminants were identified as having an overall impact on the field data. 

but this study did succeed in estabiishing that intact box cores collected fiom the field c m  

be maintained as laboratory mesocosms with little change in the resident benthic fauna. 

Despite some unexpected results. the response of intact box cores to different 

contaminants showed consistent and predictable changes in community composition. 

These changes can also be related to environmental conditions. Intact box cores of 

naturally CO-adapted species show potentiai for use as a diagnostic tool and c m  provide a 

usefûl technique in the analysis and identification of sediment contamination. However, 

the results shouid be viewed with the caveat that only a subset of species is represented 

and there is an inevitable loss of some species due to collection and transportation. Care 

must be taken when extrapolation data obtained fiom in vin0 studies to n a d  

communities. 



Supplemented by field validation. using transplant experiments or by cornparing the 

laboratory data to sites of comparable loadings. the techniques described in this thesis 

have the potential to provide a usefùl diagnostic tool in the evaluation of sediment 

contamination, at sites where the nature of the impacts are unknown. Further 

identification of the effects of different contarninants, as well as cornplex stresson (e.g. 

pulp-mil1 eflluents) on cornrnunity composition c m  allow the prirnary source of impact to 

be identified. At sites exposed to multiple stresson, valuable information can be provided 

and clear statements made on which potential sources should be controlled. thus reducing 

the need for extensive and expensive chernical analyses. 
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Appendix A 

Table of species counts for field and labontory data 
May 1995-October 1996 
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Appendix B 

Table of measured environmental parameters for field and laboratory data 
May 1995-Qctober 1996 
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SampleID Ba0 Ca0 Fe= K20  Mg0 Mn0 Na20 P205 
May45 0.046 14.11 3.825 2075 3.88 0.115 1 27 OP 



Sampie ID Si02 Ti02 TKN Rat Whnday t e W  depth 02 Dreissena 
May-95 48.42 0.585 520 654 1 45 4.35 24 13.32 26 



Appendix C 

Equation to calculate the appropriate quantity of contaminant to spike the intact 
laboratory boxes. 

To make stock solution: 
i) Calculate the molecular weight of the compound used to spike the sediment and the 

molecular weight of the metal: 
e.g. c ~ c I ~ . ~ ' ~ H ~ o  = 228.35 

Cd = 112.40 

ii) Calculate the amount of compound required for a given Ig metal: 
e.g. 1 12.40 = 0.4922, 

228.35 

for 1 g Cd, V0.4922 = 2.03 l58g ~ d ~ 1 ~ . 2 ' 1 ~ ~ ~ 0  required. 

iii) Calculate the amount of compound required for a given stock solution? e.g. 5000ppm 
(5g Ca): 

To calculate the amount of stock solution required to spike 
i) Calculate the water content the sediment. 

the sedimen 

ii) Calculate the amount of wet sediment required to spike the desired 
sediment 

amount of dry 

iii) For the desired concentration of stock solution to spike the wet sediment: 
e.g. 5000rng Cd x desired concentration ( r n ~  CdL) 

lOOOml HzO ml stock solution required 



Appendix D 

LC50 concentrations and loading values for the contaminants used. 



Contaminant Concentration Response/Edpoin t Rcference 

Cadmium Sm-g (marine) 

O. 17- 12mgIL (LCd for 
sediment & no-sediment 
t a )  
0.17- 12mgL ( L C ~  for 
sediment & no-sediment 
t a )  
1Cra  
3.2cLgn. 

l.lcL&/L 

749-1088ppb 

Phytoplankton, bacteria, Shwhan et al. 1986 
zoophkton & benthic inverts. 
Cornmunity Imel response Kcnneây et al. 1995 

Community level response Pratt et al, 1988 

A l W  
Invertebrates 
Fish 

Mu1 tispeciks 

Multispecies 

Day, 1991 

Mult ispecies Pratt, 1997 

Natural d a c e  waters Solornon et al. 1996 

9 Oligochaete spp. Giesy & Hoke, 1989 

Community level Niederlchner ct al. 1985 

BuUr chernical concentrations Long et al. 1995 

3 benthic invertebrates Skei et al. 1996 

Oligochaete @es Chapman & Brinkhurst, 
1985 

Oligochaete species Chapman et al. 1982 

Borgman et al. 1989 

K. mteca Kemble et al. 1994 

Oiigochaete species Long & Long-Dobler, 
1979 

N a d  sediment Poulton et aL 1988 
concentration in Hamilton 
Harbour 

Tubifex iubiJex Reyoldson et al, 1996 

Tubi fm tubi(ex Brkovic-Popovic, 1977 

Tubifex tubifa Chapman et a l  1982 



Contaminant Concentraiion RespondEndpoint Re ference 

Enrichment 12mg C/Kg (marine) 3 bcnthic invcrîebrates Skci et ai. 1996 

1.1-12% ( L C e  for Oligochaete species Chapman et al. 1982 
sediment & no-sediment 
t-) 
1.73-2.36 % C Oligochatte species Long & Long-Dobler, 
862- 1 297 ppm totP 1979 




