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Abstract

In the context of the guarantee liability valuation, the sophisticated fund-of-funds

structure, of some Canadian segregated fund products, often requires us to model

multiple market indices simultaneously in order to benchmark the return of the un-

derlying fund. In this thesis, we apply multivariate GARCH models with Gaussian

and non-Gaussian noise to project the future investment scenarios of the fund. We

further conduct a simulation study to investigate the difference, among the pro-

posed multivariate models, in the valuation of the Guaranteed Minimum Maturity

Benefit (GMMB) option.

Based on the pre-data analysis, the proposed multivariate GARCH models are

data driven. The goodness-of-fit for the models is evaluated through formal sta-

tistical tests from univariate and multivariate perspectives. The estimation and

associated practical issues are discussed in details. The impact from the innova-

tion distributions is addressed. More importantly, we demonstrate an actuarial

approach to manage the guarantee liability for complex segregated fund products.
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Chapter 1

Introduction

Segregated fund products, offered by insurance companies, are very popular in

Canada. These equity-linked insurance products are similar to mutual funds, but

they offer additional protective features for investors. The main distinct advantages

include:

• down-side protection on principal,

• right to lock the current investment gain,

• and death benefit with guaranteed amount.

Under a typical segregated fund contract, the premium from an investor is used to

purchase mutual funds based on the investor’s risk preference, and the accumulated

value at maturity, normally in 10 years, is guaranteed to be at least the initial

principal. When the market value of the investment exceeds the principal, the

investor is provided the choice to put the capital gain into the principal and reset

the contract. In addition, as an insurance contract, a guaranteed benefit amount

will be paid in the event of the investor’s death.

Segregated fund products are attractive to Canadians who wish to enjoy the

unlimited up-side equity growth opportunity with a pre-fixed maximum loss. For

1



Introduction 2

Canadian insurers, managing the liabilities of these embedded insurance options

becomes a fairly challenging task, especially for the liability of the investment guar-

antee. Two quantitative approaches are widely used in practice to deal with the

guarantee liability. One is the hedging approach, which relies on creating a repli-

cating portfolio that will meet the liability at maturity. This approach from the fi-

nancial engineering has become increasingly popular in the industry. Alternatively,

there is an actuarial approach for coping with the same problem. This approach

tries to understand the underlying probability distribution of the guarantee lia-

bility through simulation. A “sufficient” amount of assets are reserved according

to the simulation results, and put aside in fixed income securities to accumulate.

At maturity, the accumulated amount is expected to maintain insurer’s solvency

on the guarantee liability with a high probability, say 97.5%. In this thesis, we

focus on the traditional actuarial approach, which sets aside a fraction of incoming

premium to build up a reserve that will be used to meet the liability in the event

the accumulated value of the investment is below the guarantee level at maturity.

We only consider the liability associated with the guaranteed minimum maturity

benefit (GMMB).

As mutual fund products continue to develop over the years, Canadian insur-

ance companies offer increasingly more innovative segregated fund products. For

instance, not all segregated funds are managed to trace the performance of a par-

ticular single index. To gain more diversification, funds under one contract may

consist of multiple sub-funds, such as Canadian equity fund, Canadian fixed income

fund, US equity fund, or international equity fund. These sub-funds are themselves

also segregated fund available to investors.

Offered by Manulife Financial, the MLI Fidelity True North GIF is a typical

single-indexed segregated fund. The underlying index, whose performance is being

traced, is S&P/TSX composite index. The single-indexed fund represents a class

of the segregated fund. The management expense is relatively low for these funds;
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however, the long-term performance is satisfactory1, as found in many empirical

studies.
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S&P/TSX Composite Index

Figure 1.1: Historical performance of Manulife Fidelity True North guaranteed

investment fund. The top plot shows the movement of the historical return, and

the bottom one gives the history of the market price for an initial investment of

one thousand. Overall, the segregated fund closely traces the performance of the

S&P/TSX composite index.

Simulating the future guarantee liability distribution requires modeling the re-

turn of the fund in the long term. For this single-indexed fund, it requires the

calibration of an appropriate univariate model to S&P/TSX composite index, and

then simulation based on the estimated model. In general, the variety of portfo-

1Compared with the actively managed fund, the indexed fund usually has lower costs and

turnovers, which result a smaller expense. On the other hand, empirical studies on persistence in

mutual fund performance have shown that the actively managed fund under-perform the market

(index). Hence, the indexed fund is likely to generate more return than the actively managed

fund in the long term.
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lio structures of segregated funds greatly increases the difficulty in modeling the

long-term return and further complicates the guarantee liability valuation. As an

illustration, we present another segregated fund also from Manulife Financial. The

MLI Fidelity Canadian Asset Allocation GIF is a fund whose asset is invested in

Canadian equity market, Canadian fixed income market, US equity market, in-

ternational equity market, and money market. The immediate issue in modeling

the return is that the available data of the fund is limited. One way to solve the

problem is to create a benchmark portfolio to proxy the performance of the fund,

and this may be in fact the only feasible solution for this complicated fund.
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Manulife Fidelity Canadian Asset Allocation GIF
60% S&P/TSX, 30% DEX Universe, 8% MSCI World, 2% S&P500

Figure 1.2: Historical performance of Manulife Fidelity Canadian Asset Allocation

guaranteed investment fund. The benchmark index is created from three equity

indices and one fixed income index based on the current fund structure. As shown

in the figure, the benchmark return is highly correlated with the fund return. This

further indicates the average change in the asset structure is relatively small during

the sample period, and the major event like the “Technology Bubble” has less

impact on the asset structure of the fund.
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In Figure 1.2, we notice that overall the created benchmark portfolio closely

trace the fund performance. In practice, such a sophisticated fund requires quan-

titative analysts; not only being able to model multiple currency-adjusted market

indices simultaneously but also creating an appropriate mapping between actual

fund return and index returns.

Empirical studies indicate the index return shows stylized facts, for instance,

the volatility of the return is clustering and the return distribution is fat-tailed.

Furthermore, some indices move together across markets. To account for all these

empirical features, we propose to use a multivariate GARCH model in the context

of the investment guarantee valuation.

In this thesis, our main goal is to demonstrate a practical actuarial approach,

which is based on the multivariate GARCH model, for managing the financial risk

associate with the GMMB option. In Chapter 2, we provide some useful market

indices, and perform a relevant statistical analysis of the data. In Chapter 3,

the multivariate GARCH models are presented, and their estimation methods are

discussed. In Chapter 4, the estimated dynamic of the models are further evaluated

through the fitted parameters. The goodness-of-fit is assessed for the estimated

models, and the model selection is briefly discussed. In Chapter 5, we present

our results in the guarantee liability valuation for the GMMB option based on the

simulation analysis.



Chapter 2

Data

2.1 Introduction

Before we introduce multivariate GARCH models, it is worth spending time for a

pre-analysis of the data. Such work can help verify the model assumptions and

identify the models that are truly data driven. This chapter is structured as fol-

lows. In Section 2.2, we first answer the question why we need to use index data

to create benchmark portfolios for modeling and describe in detail the indices used

throughout this thesis. Section 2.3 is devoted to basic statistical analysis of histor-

ical index returns. The widely used normality assumption for returns is examined

both in univariate and multivariate setting in Section 2.4. The autocorrelation of

the volatilities in the univariate setting and the autocorrelation of the conditional

covariance matrices in the multivariate setting are evaluated in Section 2.5.

2.2 Index Data

The available history of a segregated fund return is often too short to be applicable

for modeling purpose. Even if we have enough return data, which are calculated

from the past market price, using it to fit a model is not appropriate. The main

6
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reason for this is that return data of an underlying fund are fairly biased to the

investment objects established by fund managers, and these investment objects

will change in the future in order to adapt new market conditions. In the CIA’s

report (see Canadian Institute of Actuaries (CIA) 2001), the recommendation for

choosing modeling data is creating an appropriate benchmark portfolio to trace the

performance of the underlying fund. One type of possible benchmarks, mentioned

in the report, is a linear combination of recognized market indices, which should be

rich enough for modeling and inherit a sufficient amount of past market information.

In this thesis, we take our benchmark to be a linear combination of the following

market indices.

• S&P/TSX composite index measures the performance of Canadian equity

market. The index is a list of the largest companies traded on the Toronto

Stock Exchange.

• S&P500 includes the current 500 large-cap US corporations traded on New

York Stock Exchange and Nasdaq. The index is widely used as an indicator

of US equity market performance.

• MSCI World is an index for measuring the performance of the international

equity market. The index includes securities from 23 countries and maintained

by Morgan Stanley Capital International.

• DEX Universe is a bond index tracking the performance of Canadian fixed

income market.

Taken from Bloomberg, all indices are Canadian-dollar denominated and range

from 1/31/1980 to 12/31/2006. In addition, these are recorded on total return

level instead of price level; therefore, dividends should assume to be carried over

and reinvested when calculating the monthly returns from these indices.

In the following figure, the total return index, st, is a market-closing quote from

the last day of each month, and its value has been scaled by one thousand. In total,
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we have 324 historical observations for each index series, which implies there will

be 323 monthly returns available for modeling.

1980 1985 1990 1995 2000 2005
0

20

40
S&P/TSX

1980 1985 1990 1995 2000 2005
0

2

4
S&P500

1980 1985 1990 1995 2000 2005
0

5

10
MSIC World

1980 1985 1990 1995 2000 2005
0

0.5

1
DEX Universe

Figure 2.1: Month-end total return indices (in 103) from Jan. 1980 to Dec. 2006

From the figure above, we observe equity indices exhibit strong co-movement

with each other over time. US equity market is more likely to offer the largest

capital return up to 2001, before the Technology Bubble induces all equity markets

to start falling. On the other hand, Canadian fixed income market is progressively

growing when the equity markets experience changes; in other words, a negative

correlation between equity market and fixed income market appeared during the

period between 2001 and 2003. This observation implies the historical correlation

between markets is not constant. A data driven multivariate model should have a

dynamic interpretation for the market correlation.
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2.3 Empirical Return

In this section, we will analyze the historical index returns, on which our modeling

is based. First, we define the one-period single return from t− 1 to t as follows:

rt =
st

st−1

− 1 ∈ [−1, +∞). (2.1)

The maximum an investor can loss is everything invested at the beginning and

obtain a −100% return; theoretically any security available at the market can be

traded at any agreed price so there is no upper bound for rt. For modeling, this

is not a desirable property as many probability distributions have an unbounded

domain. One way to solve the problem is to make a logarithmic transformation.

Applying log function on 1 + rt gives a new measure xt that can take any value

from the real line.

xt = log(1 + rt) = log
( st

st−1

)
∈ R (2.2)

xt is commonly known as the log-return, and many interesting features of the log-

return series at daily and weekly frequency have been uncovered. The following

statement is a univariate version of the stylized facts. Many of these futures still

remain valid for monthly log-returns.

• Return series are not iid although they show little serial correlation.

• Series of squared returns show profound serial correlation.

• Conditional expected returns are close to zero.

• Volatility appears to vary over time.

• Return series are leptokurtic or heavy-tailed.

• Extreme returns appear in clusters.

In Figure 2.2, we do not observe strong evidence in flavor of the serial correlation

in returns. Most of time, an up-movement is likely followed by a down-movement
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Figure 2.2: Monthly log-returns from Jan. 1980 to Dec. 2006

in each series. Furthermore, the volatility of the returns seems to vary over time,

and the bond index exhibits stronger volatility-clustering than any equity index.

Besides these observation, we also find that the fluctuations of equity indices are

quite similar with each other, and extreme returns often appear at the same time.

Based on the historical movement, we believe the returns of equity funds1are more

positively correlated across markets for the same period.

The next figure shows the accumulation process for a thousand Canadian dol-

lars, invested at February 1, 1980. As expected, US equity fund greatly outperforms

its competitors. The accumulation value of the index fund, which traces the perfor-

mance of S&P500, reached $38,000 approximately in 2001. This is about 1.5 times

1Throughout this thesis, a fund is referred to either an indexed fund or a balanced fund,

wherever is appropriate.
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the value of international equity fund, and about 3.8 times the value of Canadian

equity fund or Canadian fixed income fund.
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Figure 2.3: Accumulation process of one thousand investment from Feb. 1980 to

Dec. 2006

Another observation from the figure is Canadian fixed income fund offers better

return than Canadian equity fund, which seems counterintuitive. One possible

explanation is that risk-free rates were quite high during the 80’s, as a result, the

return from fixed income market was pushed up by those high base rates.

We now turn our attention to the empirical distributions of the index returns.

In addition to sample mean and standard deviation, sample skewness and kurtosis

are statistics used to describe the empirical distributions. The skewness measures

symmetry of a distribution, whereas the kurtosis makes a comparison of the thick-

ness of the tail, between an empirical distribution and the normal distribution. Any

relatively large nonzero skewness reports evidence of asymmetry, and any kurto-
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sis larger than 3 implies that the empirical distribution has fatter tails than the

normal. Statistical definitions of these estimators are given next.

Let {x1, x2, ..., xT} be the observed log-returns for each index series over T

periods. The sample mean is

µ̂x =
1

T

T∑
t=1

xt, (2.3)

the sample standard deviation2 is

σ̂x =
( 1

T − 1

T∑
t=1

(xt − µ̂x)
2
)1/2

, (2.4)

the sample skewness is

Ŝ(x) =
1

(T − 1)σ̂3
x

T∑
t=1

(xt − µ̂x)
3, (2.5)

and the sample kurtosis3 is

K̂(x) =
1

(T − 1)σ̂4
x

T∑
t=1

(xt − µ̂x)
4. (2.6)

From Table 2.1, we find the international index fund offers the best diversifi-

cation among equity funds since it has the lowest sample volatility. The sample

percentiles indicate that the returns of US equity fund are more spread out com-

pared to the rest of funds. In addition, US equity fund also has the largest sample

mean. On the other hand, the underlying return distribution of Canadian equity

fund is slightly skewed to the left as indicated by the sample skewness. In contrast,

the rest of the three funds tend to have a symmetric return distribution. The tail

of each sample distribution is fatter than the tail of the normal. The US equity

fund has the thickest tail.

2In Finance, the term volatility refers to the standard deviation of the underlying random

variable, such as the asset return.
3The calculated kurtosis in Table 2.1 is actually the excess kurtosis.
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Sample Statistics

Index Min 1 Q Median 3 Q Max

S&P/TSX -25.52% -1.48% 1.17% 3.70% 13.71%
S&P500 -24.26% -1.39% 1.29% 3.82% 35.87%
MSIC World -18.02% -1.31% 1.10% 3.69% 10.72%
DEX Universe -6.89% -0.36% 0.86% 1.89% 8.91%

Sample Moments

Index Average Volatility Skewness Kurtosis

S&P/TSX 0.80% 4.70% -1.27 5.20
S&P500 1.07% 4.62% 0.67 11.64
MSIC World 0.95% 3.92% -0.57 1.52
DEX Universe 0.84% 1.97% 0.24 2.30

Table 2.1: Summary of the log-returns from Feb. 1980 to Dec. 2006

To get an idea of the annual performance of each index fund, we apply a simple

scaling rule on monthly returns to get annual return estimates. Table 2.2 is ob-

tained based on the following procedure: the sample average of monthly returns is

multiplied by 12, and the sample volatility is scaled up by the square root of 12.

According to the table, all markets approximately offer a 10% return on annual

basis, which is quite optimistic according to recent market performance.

Annualized Performance

Index Average Volatility Sharp Ratio

S&P/TSX 9.64% 16.29% 0.35
S&P500 12.86% 16.02% 0.55
MSIC World 11.40% 13.57% 0.55
DEX Universe 10.10% 6.84% 0.89

Table 2.2: Summary of the annualized log-returns from Feb. 1980 to Dec. 2006
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The Sharp ratio measures an investment’s excess return over a risk-free rate for

taking an extra unit of risk4, and it is defined as

Sharp Ratio =
µ̂x − rf

σ̂x

. (2.7)

The sharp ratio based on 4% annual risk-free rate indicates Canadian fixed income

fund has the highest risk premium.

To analyze the empirical correlation across markets, we need to compute the

sample correlation matrix Γ̂, which can be obtained through the sample covariance

matrix Σ̂. The column vector xt is formed by the log-returns of all indices observed

in period t, and µ̂ is the sample average of xt.

Γ̂ = Σ̂−1 · Σ̂ · Σ̂−1 (2.8)

Σ̂ =
1

T − 1

T∑
t=1

(xt − µ̂)(xt − µ̂)′ (2.9)

S&P/TSX S&P500 MSIC World DEX Universe

S&P/TSX 1.00 - - -
S&P500 0.67 1.00 - -
MSIC World 0.65 0.73 1.00 -
DEX Universe 0.26 0.22 0.16 1.00

Table 2.3: Empirical correlation of the log-returns from Feb. 1980 to Dec. 2006

In Table 2.3, all index funds were positively correlated throughout the period,

and the correlation is low between equity fund and fixed income fund.

For simplicity, we assume the expected monthly return is constant in long run;

however, we will not use the sample mean as our long run mean because it is not

conservative enough for guarantee liability valuation. Instead, we propose a set

4The risk is typically measured by the sample volatility.
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of lower return rates in Table 2.4, and our multivariate models will explore the

conditional dynamics of the excess return Yt|Ft−1, where

Yt|Ft−1 = Xt|Ft−1 − E(Xt|Ft−1) = Xt|Ft−1 −C. (2.10)

The vector C represents our view on the monthly return, which is based on the

market information available at the beginning of the month, and this adjustment

is consistent with the third stylized fact that conditional expected returns are close

to zero.

Cash S&P/TSX S&P500 MSIC World DEX Universe

4% 6.5% 7% 7% 5%

Table 2.4: Long-term view of the log-returns. The constant view is on the monthly

return, and it has been annualized by multiplying 12.

2.4 Normality Assessment

The classical multivariate GARCH models assume the excess return Yt follows

a multivariate Gaussian process. This assumption is often criticized by the em-

pirical evidences found in daily or weekly returns. In this section, we verify the

normality assumption for monthly returns from the perspective of univariate and

multivariate distributions. In univariate analysis, the diagnostic tools include QQ-

plot, histogram5, Jarque-Bera test, and Shapiro-Wilks test; whereas for multivariate

analysis, a chi-square QQ-plot is used to draw conclusion.

From the histogram, we observe the normal approximation of the true distribu-

tion of Yt,i
6 is overall reasonable, although there are two issues around this assump-

tion. The primary issue is that it does not adequately provide enough thickness

5Each overlayed bell curve in the histogram is the probability density function estimated from

the sample under the normality assumption.
6The Yt,i denotes the excess log-return of the ith component series at time t.
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for the tail, to accommodate the extreme historical observations. In Figure 2.4, all

equity markets have extreme values in the left tail. The second issue is a minor

amount of skewness. The histograms are slightly skewed to the left to cover the

observed low returns.
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Figure 2.4: Histograms of the excess log-returns

−2 0 2
−0.3

−0.2

−0.1

0

0.1

Standard Normal Quantiles

E
m

pi
ric

al
 Q

ua
nt

ile
s

S&P/TSX

−2 0 2

−0.2

0

0.2

Standard Normal Quantiles

E
m

pi
ric

al
 Q

ua
nt

ile
s

S&P500

−2 0 2
−0.2

−0.1

0

0.1

Standard Normal Quantiles

E
m

pi
ric

al
 Q

ua
nt

ile
s

MSIC World

−2 0 2

−0.05

0

0.05

Standard Normal Quantiles

E
m

pi
ric

al
 Q

ua
nt

ile
s

DEX Universe

Figure 2.5: QQ-plots of the excess log-returns

The quantile-to-quantile plots suggest the empirical distribution of the excess

log-returns corresponds to a normal distribution most of the time except in the tail
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area, which is consistent with the observation based on the histograms. Therefore,

rejecting the normality assumption in the univariate setting is expected in the

following statistical tests.

The Jarque-Bera statistic (see Jarque and Bera 1980, 1987), in equation 2.11, is

defined in terms of the sample skewness Ŝ and the sample kurtosis K̂. Under the

null hypothesis, the statistic is asymptotically chi-square with 2 degrees of freedom;

thus, a large value of the test statistic leads to reject normality assumption.

JB(y) =
n

6

(
Ŝ2(y) +

(K̂(y)− 3)2

4

)
(2.11)

The Shapiro-Wilks test (see Shapiro and Wilks 1965) is more involved in terms

of computing the statistics. In equation 2.12, y(i) is the ith ordered observation from

a sample of size n. M is the expected value of the order statistics from the standard

normal distribution, and V is the covariance matrix of these order statistics. The

Shapiro-Wilks test statistic is normally distributed, and a small value indicates

departures from normality.

SW (y) =

∑n
i=1 aiy(i)∑n

i=1(yi − ȳ)2
, (a1, ..., an)′ =

MV −1

(M ′V −1V −1M)1/2
(2.12)

Jarque-Bera Test

S&P/TSX S&P500 MSIC World DEX Universe

Test Statistics 456.81 1818.07 48.88 72.43
P Value 0.00 0.00 0.00 0.00

Shapiro-Wilks Test

S&P/TSX S&P500 MSIC World DEX Universe

Test Statistics 0.929 0.904 0.981 0.971
P Value 0.00 0.00 0.00 0.00

Table 2.5: Testing results for the normality of the excess log-returns
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Both tests reject null hypothesis that the true underlying distribution of the

excess log-return is normal; however, the normal approximation provides a overall

reasonable fit based on the previously visual analysis. Other distributions, such as

t or Hansen’s skewed t, may lead to a tail improvement.

We turn to our main interest, that is, to test whether or not the random vector

Yt follows Gaussian process. This is equivalent to asking if Yt is independently

and identically distributed as a d-dimensional multivariate normal, which can be

verified by a chi-square test. Given the null hypothesis, the test statistic ỹ′t · ỹt

should have a chi-square distribution with d degrees of freedom. In the chi-square
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Figure 2.6: Chi-square QQ-plot for multivariate excess log-returns

QQ-plot, we find the same issue as for the univariate series. The extreme Yt in

our history do not look like they are from a multivariate normal distribution. More

probably, it is from a multivariate distribution, which has a similar shape as the
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multivariate normal but with fatter tails. A good candidate may be a multivariate

t distribution.

2.5 Autocorrelation Analysis

We check if the return data exhibit heteroscedasticity in this section. The plot

of autocorrelation function (ACF) is given for analyzing the serial correlation in

the volatility7 of the component return series. We then provide the results of the

univariate portmanteau tests. The serial correlation between covariance matrices8

is also tested in a multivariate setting.

The Lag-l autocorrelation ρl is used to measure the strength of the underlying

correlation of a univariate return series. The sample estimator is in the following

form, where ȳ is the sample mean.

ρ̂l =

∑T
t=l+1(yt − ȳ)(yt−l − ȳ)∑T

t=1(yt − ȳ)2
, 0 ≤ l < T − 1 (2.13)

Asymptotically ρ̂l has a normal distribution with mean zero and variance 1/T

for any positive integer l, when (Yt)t∈Z is truly an iid random sequence satisfying

E(Y 2
t ) < ∞. This result is often used to test Ho: ρl=0 versus Ha: ρ 6= 0 with next

statistic.

t-ratio =
ρ̂l√

(1 + 2
∑l−1

i=1 ρ̂2
i )/T

(2.14)

If Yt is a covariance stationary9univariate Gaussian time series satisfying ρj=0

for j > l, then asymptotically the t-ratio has a standard normal distribution. There-

fore, if ρ̂l exceeds the upper or lower confidence band in an ACF plot, we find a sta-

tistical evidence to reject Ho at a certain confidence level. In practice, this graphical

7Strictly speaking, we want to analyze the serial correlation in the conditional variance.
8The covariance matrix refers to COV(Yt|Ft−1) in Section 3.2.
9The covariance stationary means that a time series has constant mean and variance.
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method based on the ACF plot is routinely applied to the autocorrelation in return

squares, which are sample observations for the underlying conditional variance of

the excess log-return; however, we should not entirely rely on this method since the

underlying series is often not a Gaussian series, on which the test is assumed.

Verifying the autocorrelation in volatility is critically important as the GARCH

models applied in later analysis directly specify a regression-type structure on

volatility, which assumes the volatility in next period is a function of the volatility

from previous period. In the ACF plots, we do not observe significant deviation

from either of the confidence bands, except for the returns from DEX Universe

index. This result was anticipated at the discussion of the empirical return.
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Figure 2.7: Autocorrelation plots of the excess log-return squares

We introduce Box-Pierce test and Ljung-Box test to formally verify the auto-

correlation in volatility. Box and Pierce (1970) propose a portmanteau statistic

QBP (m) to test the null hypothesis Ho: ρ1 = ... = ρm = 0 against the alter-
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native hypothesis Ha: not all ρis are zero, where ρi is the autocorrelation of the

volatility for a temporal separation i. Under the assumption that (Yt)t∈Z is an iid

sequence obeying some regularity conditions on moments, QBP (m) asymptotically

has chi-square distribution with m degrees of freedom. Later, Ljung and Box (1978)

modify the QLB(m) statistic to increase the power in small samples. The modified

test statistics QLB(m) follows the same asymptotic distribution.

QBP (m) = T

m∑

l=1

ρ̂2
l (2.15)

QLB(m) = T (T + 2)
m∑

l=1

ρ̂2l

T − l
(2.16)

The univariate portmanteau test is further generalized into multivariate setting

by Hosking (1980). For a multivariate series, the null hypothesis changes to Ho:

P(1) = ... = P(m) = 0, and the alternative hypothesis becomes Ha: not all P(i) are

zero matrices. The definition of P(i) is given in Section 3.2, and it is the correlation

matrix for Yt and Yt−i. The statistic is now applied to test the hypothesis that

there is no autocorrelation in the vector series (Y∗
t )t∈Z, where

Y∗
t = vech(Yt ·Y′

t). (2.17)

The “vech” stands for the vector half operator, which stacks the columns of

the lower triangle of a symmetric matrix in a single column vector. Here, Y∗
t is a

vector containing Yt,i · Yt,j where i ∈ {1, 2, ...d} and i ≤ j ≤ d. The realizations

of these products are sample observations for the variances and the covariances

in the conditional covariance matrix at time t. Applying Hosking’s multivariate

portmanteau test on (Y∗
t )t∈Z will help test whether or not there is any correlation

between the conditional covariance matrix of Yt and the conditional covariance

matrix of Ys.

Given the null hypothesis is true and some regularity conditions are satisfied,
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QH(m) is asymptotically a chi-square random variable with k2m degrees of freedom.

QH(m) = T 2

m∑

l=1

1

T − l
trace

(
Γ̂′l Γ̂−1

0 Γ̂l Γ̂−1
0

)
(2.18)

In Table 2.6, the univariate tests show no evidence in flavor of autocorrelations in

volatility for equity index returns, whereas there is a strong evidence found in bond

index returns. Moreover, the multivariate test indicates there are autocorrelations

in the conditional covariance matrices at 5% significance level.

Ljung-Box Univariate Test

S&P/TSX S&P500 MSIC World DEX Universe

Test Statistics 4.56 0.97 7.32 114.44
P Value 0.97 1.00 0.84 0.00

Box-Pierce Univariate Test

S&P/TSX S&P500 MSIC World DEX Universe

Test Statistics 4.45 0.94 7.13 111.83
P Value 0.97 1.00 0.85 0.00

Hosking Multivariate Test

Y∗
t

Test Statistics 230.49
P Value 0.03

Table 2.6: Testing results for the autocorrelations of the excess log-return squares

for 12 lags
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2.6 Summary

Before proceeding to next chapter, we make a summary of important observations

in the following list.

• All index return series have an empirical distribution whose tail is fatter than

normal, though the degree of thickness in tail is different.

• For individual return series, the autocorrelation in volatility is not statistically

significant, except for the DEX Universe index.

• In multivariate setting, the conditional covariances are serially correlated,

indicated by Hosking’s multivariate portmanteau test.



Chapter 3

Multivariate Models

3.1 Introduction

We begin this chapter by a statement taken in a recent survey of multivariate

GARCH models by Bauwens et al. (2006).

Understanding and predicting the temporal dependence in the second-

order moments of asset returns is important for many issues in financial

econometrics. It is now widely accepted that financial volatilities move

together over time across assets and markets. Recognizing this feature

through a multivariate modeling framework leads to more relevant em-

pirical models than working with separate univariate models. From a

financial point of view, it opens the door to better decision tools in

various areas, such as asset pricing, portfolio selection, option pricing,

hedging and risk management.

Applying multivariate GARCH models in the context of the investment guaran-

tee valuation provides a dynamic interpretation for the complicated movement of

volatilities and correlations of asset returns. To better understand these multivari-

ate models, we first introduce the relevant fundamentals from multivariate time

24
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series analysis in Section 3.2. We then present some of the most important mul-

tivariate GARCH models in Section 3.3. The emphasize of the presentation is on

the dynamic structure of Σt, known as the conditional covariance matrix at time

t. In Section 3.4, the innovation distributions, which may be potentially coupled

with the models, are explored with a focus on the tail. In Section 3.5, we introduce

the method of maximum likelihood estimation for fitting the multivariate GARCH

models, and briefly discuss the existing numerical issues.

3.2 Basic Definition

A multivariate time series is a stochastic vector process (Yt)t∈Z, indexed by the

integers. This process is well defined on a filtered probability space (Ω,F , P,F).

Typically, Ω is known as the sample space, F is a sigma algebra of the sample

space, P is a probability measure function, and F is the natural filtration (Ft)t∈Z

generated by the process, which represents the market information available at time

t.

The mean function µ(t) and the covariance matrix function Γ(t, s) of the process

are defined in terms of the mathematical expectation.

µ(t) = E(Yt) t ∈ Z (3.1)

Γ(t, s) = E
(
Yt − µ(t)

)(
Ys − µ(s)

)′
t, s ∈ Z (3.2)

Many multivariate time series models are stationary because the stationarity

assumption is needed in the mathematics of the models, and in most of cases

the assumption is valid from the empirical perspective. The multivariate GARCH

models applied in this thesis are stationary in one or both of the following senses:

a multivariate time series (Yt)t∈Z is strictly stationary if the next statement holds

for all t1,...,tn,k ∈ Z and for all n ∈ N

(Y
′
t1
, ...,Y

′
tn)

d
= (Y

′
t1+k, ...,Y

′
tn+k), (3.3)
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and a multivariate time series (Yt)t∈Z is covariance stationary if the first two mo-

ments exist and satisfy

µ(t) = µ t ∈ Z, (3.4)

Γ(t, s) = Γ(t + k, s + k) t, s, k ∈ Z. (3.5)

Strictly stationary implies covariance stationary if Γ(t, s) is finite for all t and s;

however, certain multivariate GARCH models, which have infinite-variance process,

are strictly stationary but not covariance stationary.

The covariance stationary assumption implies Γ(t, s) = Γ(t− s, 0) for all t and

s. In other words, the covariance matrix for Yt and Ys only depends on their

temporal separation t − s, known as lag. For a covariance-stationary process we

rewrite the covariance matrix function in terms of the temporal separation time h:

Γ(h) = Γ(h, 0), ∀h ∈ Z. One important observation is that Γ(0) = COV(Yt) for

all t; in other words, the unconditional covariance matrix of Yt remains unchanged

throughout the entire stochastic process.

In some cases, the correlation function between Yt and Ys is of more interest

than the covariance function. The following two operators are often applied on a

covariance matrix Σ to obtain the corresponding correlation matrix.

4(Σ) = diag(
√

σ11, ...,
√

σdd) (3.6)

℘(Σ) =
(
4(Σ)

)−1

· Σ ·
(
4(Σ)

)−1

(3.7)

The 4 operator extracts a diagonal volatility matrix from Σ, and the ℘ operator

extracts the required correlation matrix.

The correlation matrix function P(h) of a covariance-stationary multivariate

time series (Yt)t∈Z is defined by

P(h) = 4−1 Γ(h) 4−1 = ℘
(
Γ(h)

)
∀h ∈ Z. (3.8)

The diagonal entries of P(h) give autocorrelation functions of component series, and

the off-diagonal entries give cross-correlation between different component series at

different times.
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A class of important multivariate time series, known as the multivariate white

noise, is defined in term of the correlation matrix function. They often serve as the

building blocks for the multivariate GARCH models. A multivariate time series

(Yt)t∈Z is a multivariate white noise process if the process is covariance stationary

and the correlation matrix function has the following structure

P(h) =





P, h = 0

0, h 6= 0
(3.9)

for some positive-definite correlation matrix P. Except at lag zero, such a process

has no cross-correlation between component series. A simple sub-class is known as

multivariate strict white noise, which is a multivariate white noise series formed by

independent identically distributed random vectors. However, the independence is

not a requirement for the multivariate white noise in general.

Later the multivariate white noise with mean zero and covariance matrix Σ =

COV(Yt) will be denoted as WN(0, Σ). Correspondingly, the multivariate strict

white noise will be denoted as SWN(0, Σ).

We complete this section by providing multivariate martingale difference prop-

erty and its relation with multivariate white noise process. A multivariate time

series (Yt)t∈Z is said to have the multivariate martingale-difference1 property with

respect to the filtration (Ft)t∈Z if E|Yt| < ∞ and

E(Yt|Ft−1) = 0, ∀t ∈ Z. (3.10)

The unconditional expectation of the process (Yt)t∈Z is clearly zero. This further

1This definition is equivalent to the usual definition found in many books on advanced stochas-

tic process provided that the process (Xt)t∈Z is a martingale, which requires (Xt)t∈Z to be adapted

to a filtration (Ft)t∈Z, E(|Xt|) < ∞ for all t, and E(Xt|Fs) = Xs for all t > s. In the thesis, we

treat the process (Xt)t∈Z as a martingale.
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implies Γ(t, s) = 0 for t > s since from the definition we have

Γ(t, s) = E
(
Yt − µ(t)

)(
Ys − µ(s)

)′
= E

(
Yt − 0

)(
Ys − 0

)′

= E
(
E(YtY

′
s|Fs)

)
= E

(
E(Yt|Fs)Y

′
s

)

= E
(
0 ·Y′

s

)
= 0. (3.11)

Therefore, if the process has a constant COV(Yt) for all t, then it is a multivariate

white noise process. To sum up the relation, a multivariate process with martingale

difference property and constant COV(Yt) is automatically a multivariate white

noise process.

3.3 Multivariate GARCH Models

We start this section by defining the general structure of the multivariate GARCH

model at first. Let (Zt)t∈Z be SWN(0, Id), where Id is a d-dimensional identity ma-

trix. The noise series (Yt)t∈Z follows a multivariate GARCH process if it is strictly

stationary and satisfies the equation in the following form:

Yt = Σ
1/2
t Zt, t ∈ Z, (3.12)

where Σ
1/2
t is the Cholesky factor2 of a positive definite matrix Σt measurable with

respect to Ft−1 = σ(Yi : i ≤ t− 1).

By using the relation between martingale difference property and multivariate

white noise, we can verify that any covariance stationary multivariate process sat-

isfying the general structure is a multivariate while noise. First, it is easy to see a

covariance stationary process of this type has the multivariate martingale-difference

property:

E(Yt|Ft−1) = E(Σ
1/2
t Zt|Ft−1) = Σ

1/2
t E(Zt) = 0. (3.13)

2The Cholesky factor Σ1/2
t is the lower triangle matrix with positive diagonal element and

satisfies the equation Σt = (Σ1/2
t ) · (Σ1/2

t )′.
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Any covariance stationary process also has constant COV(Yt) as shown in the

previous section. Hence, a covariance stationary process following the general spec-

ification is a multivariate white noise process with mean zero and covariance matrix

Σ where

Σ = COV(Yt) = E
(
COV(Yt|Ft−1)

)
+ COV

(
E(Yt|Ft−1)

)

= E
(
COV(Yt|Ft−1)

)
+ 0 = E

(
E(YtY

′
t|Ft−1)

)

= E
(
Σ

1/2
t E(ZtZ

′
t)(Σ

1/2
t )′

)
= E

(
Σ

1/2
t (Σ

1/2
t )′

)
= E(Σt). (3.14)

Furthermore, each multivariate GARCH model, in essence, gives a deterministic

specification for COV(Xt|Ft−1) = Σt. There are two directions to give such a time-

varying structure. The clear direction is to specify the dynamics of Σt, and the

multivariate GARCH models developed at the early stage of the literature belong

to this family, such as DVEC and BEKK models introduced shortly. The alternative

is to specify the dynamics of Pt = ℘(Σt) with the component series following the

univariate GARCH. The CCC-GARCH and DCC-GARCH models defined later on

belong to this category.

The diagonal vector GARCH model, known as DVEC, should be considered

when the dimensionality of the modeling is low. It is a simplified version of the

most general vector GARCH model (see Bollerslev et al. 1988), which involves

too many parameters to be practically useful. The simplification is to restrict the

parameter matrices to be in a diagonal form.

The process (Yt)t∈Z is a DVEC process if it is a process with general structure,

and the dynamics of Σt is completely governed by the equation

Σt = A0 +

p∑
i=1

Ai ¯ (Yt−iY
′
t−i) +

q∑
j=1

Bj ¯ Σt−j t ∈ Z, (3.15)

where ¯ is the element-by-element Hadamard product, and parameter matrices

A0,Ai,Bj are all symmetric and lie in Rd×d. In addition, A0 must have positive

diagonal elements and Ai,Bj must all have non-negative diagonal elements.
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The specification on Σt does not guarantee that Σt will be positive definite for

all t. We need to further put restrictions on Ai and Bj to ensure the conditional

covariance matrices are well defined. A sufficient condition is each parameter matrix

having a Cholesky decomposition, which means we can re-parametrize the model in

terms of lower-triangular Cholesky factor matrices A
1/2
0 , A

1/2
i and B

1/2
j satisfying

A0 = A
1/2
0 (A

1/2
0 )′ Ai = A

1/2
i (A

1/2
i )′ Bj = B

1/2
j (B

1/2
j )′. (3.16)

It is also valid to consider two simpler parameterizations to preserve the positive

definite Σt. One is of the following form

A0 = A
1/2
0 (A

1/2
0 )′ Ai = ai · a′i Bj = bj · b′j, (3.17)

where ai and bj are both real-valued d-dimensional vectors. A much cruder parametriza-

tion would be

A0 = A
1/2
0 (A

1/2
0 )′ Ai = aiId Bj = bjId, (3.18)

where ai and bj are simply positive constants.

We select the DVEC(1,1) with the vector re-parametrization as one of the can-

didate models for our later analysis. To better understand the dynamic implication

of the DVEC(1,1), we rewrite such a bivariate model into a system of equations,

which governs the structure of time-varying volatilities and covariances.




σ2
t,1 = a0,11 + a1,11Y

2
t−1,1 + b11σ

2
t−1,1

σt,12 = a0,12 + a1,12Yt−1,1Yt−1,2 + b12σt−1,12

σ2
t,2 = a0,22 + a1,22Y

2
t−1,2 + b22σ

2
t−1,2

(3.19)

In equation 3.19, the volatilities of component series follow univariate GARCH(1,1),

whereas the evolution of the covariance is driven by lagged values Yt−1,1, Yt−1,2 and

previous covariance σt−1,12. This time-varying covariance structure is similar in

natural to the GARCH(1,1) specification for volatility.

Unlike the diagonal vector GARCH, the BEKK model (see Baba et al. 1989),

developed by Baba, Engle, Kroner and Kraft, has an almost surely positive definite

conditional covariance matrix Σt.
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The process (Yt)t∈Z is a BEKK process if it is a process with general structure,

and the dynamics of Σt is completely governed by

Σt = A0 +

p∑
i=1

A′
iYt−iY

′
t−iAi +

q∑
j=1

B′
jΣt−jBj t ∈ Z, (3.20)

where all parameter matrices Ai,Bj ∈ Rd×d, and A0 is symmetric and positive

definite.

The construction of the BEKK model ensures the positive definiteness since for

any nonzero d-dimensional vector v the following strict equality always holds due

to the strictly positive first term and two non-negative summation terms.

v′Σtv = v′A0v +

p∑
i=1

(v′A′
iYt−i)

2 +

q∑
j=1

(vBj)
′Σt−j(vBj) > 0 (3.21)

We again investigate the dynamic structures of individual volatility and covari-

ance for a simple bivariate BEKK(1,1). A bivariate BEKK(1,1) can be rewritten

as follows:



σ2
t,1 =a0,11 + a2

1,11Y
2
t−1,1 + 2a1,11a1,12Yt−1,1Yt−1,2 + a2

1,12Y
2
t−1,2

+ b2
11σ

2
t−1,1 + 2b11b12σt−1,12 + b2

12σ
2
t−1,2

σt,12 =a0,12 + (a1,11a1,22 + a1,12a1,21)Yt−1,1Yt−1,2

+ a1,11a1,21Y
2
t−1,1 + a1,22a1,12Y

2
t−1,2

+ (b11b22 + b12b21)σt−1,12 + b11b21σ
2
t−1,1 + b22b12σ

2
t−1,2

σ2
t,2 =a0,22 + a2

1,22Y
2
t−1,2 + 2a1,22a1,21Yt−1,1Yt−1,2 + a2

1,21Y
2
t−1,1

+ b2
22σ

2
t−1,2 + 2b22b21σt−1,21 + b2

21σ
2
t−1,1.

(3.22)

From the most simple BEKK model, we discover a property of “volatility-covariance

emission”. The volatility of a single component and the covariance between two

different components are now affected by the lagged values from all components.

Compared with the DVEC model, the dynamics in the BEKK model is richer, and

the interaction across markets is more intense.

However, we believe the interaction in the real world is only at moderate level

for monthly data, as a result, all off-diagonal entries of the BEKK(1,1) model are
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set to zero to eliminate any crossover effect in Σt. This modified BEKK(1,1) model

serves as the second candidate model.

For some segregated funds, the number of indices, which are required to be

modeled simultaneously, is fairly high. The multivariate models from DVEC or

BEKK family become impractical since the parameters need to be estimated grows

dramatically. Modeling conditional correlation with the component series following

univariate GARCH models becomes a popular recipe in high-dimensional situa-

tion. In rest of this section, we introduce the constant conditional correlation

(CCC) model proposed by Bollerslev (1990) and the dynamic conditional correla-

tion (DCC) model developed by Engle (2002).

The process (Yt)t∈Z is a CCC-GARCH process if it is a process with the

general structure, and its conditional covariance matrix function is of the form

Σt = 4tPc4t, where

(i) Pc is a constant and positive-definite correlation matrix,

(ii) 4t is a diagonal volatility matrix with each element σt,k following a univariate

GARCH specification

σ2
t,k = ak0 +

pk∑
i=1

akiy
2
t−i,k +

qk∑
j=1

bkjσ
2
t−j,k t ∈ Z, k = 1, ..., d (3.23)

where ak0 > 0, aki ≥ 0, i = 1, ..., pk, bkj ≥ 0, j = 1, ..., qk.

The CCC-GARCH model is well defined in the sense that Σt is almost surely

positive definite for all t. In addition, it is covariance stationary if and only if
∑pk

i=1 aki +
∑qk

j=1 bkj < 1 for k = 1, ..., d.

One criticism of the CCC-GARCH model is its assumption of a constant condi-

tional correlation, which is unrealistic in some settings since financial markets are

constantly driven by news and investor’s expectation. A more appropriate improve-

ment is to give a parsimonious time-vary structure on Pt, and this step is made in

DCC-GARCH model.
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The process (Yt)t∈Z is a DCC-GARCH process if it is a process with the general

structure, and its conditional covariance matrix is of the form Σt = 4tPt4t, where

(i) the conditional correlation matrices Pt satisfies the equation

Pt = ℘

((
1−

p∑
i=1

αi −
q∑

j=1

βj

)
Pc +

p∑
i=1

αi(4−1
t yt)(4−1

t yt)
′ +

q∑
j=1

βjPt−j

)
t ∈ Z

(3.24)

where Pc is a constant positive-definite correlation matrix, and αi ≥ 0, βj ≥
0,

∑p
i=1 αi −

∑q
j=1 βj < 1,

(ii) 4t is a diagonal volatility matrix with each element σt,k following univariate

GARCH specification

σ2
t,k = ak0 +

pk∑
i=1

akiy
2
t−i,k +

qk∑
j=1

bkjσ
2
t−j,k t ∈ Z, k = 1, ..., d

where ak0 > 0, aki ≥ 0, i = 1, ..., pk, bkj ≥ 0, j = 1, ..., qk.

The (4−1
t Yt)t∈Z is sometimes referred to as a devolatized process. It acts like a

“noise” term for time-varying Pt. The specification on conditional correlation is

GARCH-type, and Pc can be viewed as the long-term base correlation. In addition,

CCC-GARCH model is a special case of DCC-GARCH model.

The major benefit associated with both of these correlation models is that the

estimation can be done in an efficient manner even when the number of parameters

is high. There is a two-stage fitting method specially designed for these correlation

models. We will leave the model estimation for Section 3.5.

We select CCC-GARCH(1,1) and DCC(1,1)-GARCH(1,1) as our candidate mod-

els for the investment guarantee valuation.

3.4 Innovation Distributions

In econometric literature, Zt often denotes the innovation. Comparing the shape

of possible innovation distributions is important since different innovations have
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different degrees of thickness in the tail.

We first introduce the Hansen’s skewed student t and make a comparison with

standard normal and student t. These three univariate distributions are coupled

with the CCC-GARCH(1,1) and DCC(1,1)-GARCH(1,1) models in later analysis.

For the DVEC and BEKK models, we propose to use multivariate standard normal

and multivariate student t distributions as the underlying innovation.

The skewed student t distribution was introduced by Hansen (1994). It has the

following probability density function (pdf)

f(zt|ν, λ) =





bc
(
1 + 1

ν−2

(
bzt+a
1−λ

)2)−(ν+1)/2

zt < −a/b

bc
(
1 + 1

ν−2

(
bzt+a
1+λ

)2)−(ν+1)/2

zt ≥ −a/b
2 < ν < ∞,−1 < λ < 1

(3.25)

a = 4λc
(ν − 2

ν − 1

)
b2 = 1 + 3λ2 − a2 c =

Γ
(

ν+1
2

)

√
(ν − 2)πΓ

(
ν
2

) ,

where Γ(·) is the gamma function, ν is the degree of freedom controlling the thick-

ness of the tail, and λ is a parameter specifying the direction as well as the degree

of the skewness. If λ > 0, the distribution is skewed to the right, and vice-versa

when λ < 0.

The pdf of the standard normal and student t are respectively

f(zt) =
1√
2π

exp
(
− z2

t

2

)
zt ∈ R, (3.26)

and

f(zt|ν) =
Γ
(

ν+1
2

)

√
(ν − 2)πΓ

(
ν
2

)
(
1 +

z2
t

ν − 2

)−(ν+1)/2

zt ∈ R, 2 < ν < ∞. (3.27)

The normal distribution is the limiting distribution of the student t when ν goes

to infinity, and the tail of a student t distribution is thicker as ν becomes smaller.

In order to visualize the small difference in the tail, we plot the pdfs of these

distributions in the following figures. Zooming into the left tail in figure 3.2, we
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discover the student t or the Hansen’s skewed3 student t distribution is better at

providing extremely low returns compared to the normal distribution. We also

observe the Hansen’s skewed student t has more flexibility in modeling, and the

student t may be a good alternative innovation if the observed return is fat-tailed

and overall symmetric.
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Figure 3.1: Probability density functions of the univariate innovations
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Figure 3.2: Left tail of the probability density functions of the univariate innova-

tions

3We only focus on the one that is skewed to the left.



Multivariate Models 36

On the other hand, DVEC and BEKK models require a multivariate innovation

distribution. In practice, the choice is either multivariate normal or multivariate

student t. The densities are as follows:

f(zt) =
1

(2π)d/2
exp

(
−1

2
z′tzt

)
zt ∈ Rd, (3.28)

f(zt|ν) =
Γ
(

ν+d
2

)

(
(ν − 2)π

)d/2

Γ
(

ν
2

)
(
1 +

1

ν − 2
z′tzt

)−(ν+d)/2

zt ∈ Rd, 2 < ν < ∞.

(3.29)

Two comparable bivariate densities are provided in the figure below. The tail

surface of the bivariate student t is clearly above the tail surface of the bivariate

normal.
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Figure 3.3: Probability density functions of the bivariate innovations
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Although the multivariate student t has fatter tail, the degree of thickness in

the tail, which is controlled by the single parameter ν, is same for each component

series. This mathematical assumption is limiting from the empirical perspective

(see Bauwens and Laurent 2005). For instance, it is not clear why the return

distribution of a fixed income fund should have the same degree of thickness in

the tail as the return distribution of an equity fund. In contrast, the conditional

correlation models have the flexibility of incorporating student t innovation with

different degrees of freedom in each component.

3.5 Model Estimation

All the selected multivariate GARCH models are estimated via the method of max-

imum likelihood estimation (MLE). The likelihood function for a generic multivari-

ate GARCH model is the conditional joint density function valued at the observed

data y0, y1, ..., yT :

fY1 ,..., Yn|Y0,Σ0(y1 ,..., yn|y0, Σ0) =
T∏

t=1

fYt|Yt−1 ,..., Y0,Σ0(yt|yt−1 ,..., y0, Σ0) (3.30)

with

T∏
t=1

fYt|Yt−1 ,..., Y0,Σ0(yt|yt−1 ,..., y0, Σ0) =
T∏

t=1

|Σt|−1/2g(|Σt|−1/2yt), (3.31)

where |Σt|−1/2 is the jacobian from transforming the density, and g is the multi-

variate innovation density.

Hence, the log-likelihood is of the following form

l(Θ;y1, ...,yT ) =
T∑

t=1

log
(
|Σt|−1/2g(|Σt|−1/2yt)

)
. (3.32)

Maximum likelihood estimation involves finding the parameter values Θ which

maximize the log-likelihood function. However, the log-likelihood function for some

multivariate GARCH model is either difficult or time-consuming to maximize. For
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instance, the log-likelihood of a DVEC(1,1) model with multivariate student t inno-

vation is difficult to maximize. Bollerslev and Wooldridge (1992) propose another

method, called quasi-maximum likelihood (QML) estimation, for estimating the

parameters of a complex log-likelihood function. They have shown that the QML

estimator is a consistent estimator provided the conditional mean and the condi-

tional covariance are correctly specified. Simply speaking, the QML estimation is

equivalent to replacing the multivariate innovation density g with the multivariate

standard normal density. The hope is that with a large sample the loss in efficiency

will not matter.

This is equivalent to maximizing the following simpler function

l(Θ;y1, ...,yT ) = −1

2

T∑
t=1

log |Σt| − 1

2

T∑
t=1

y′tΣ
−1
t yt, (3.33)

which can be efficiently optimized if the number of the parameters is modest.

If the number of the parameters required to be estimated is high, this single

stage estimation is not practical. For our correlation models we need to maximize

the log-likelihood in two steps (see Engle and Sheppard 2001):

• First, estimate the volatility matrix 4t by fitting univariate GARCH models

to the component series. Then, obtain the realization of the devolatized pro-

cess by taking ẑt = 4̂−1
t yt. Estimate Pc by applying the sample correlation

function4 to the devolatized data.

• If the model is a DCC model, estimate the remaining parameters, which

specify the dynamic of the conditional correlation, by applying either MLE

or QMLE method to the devolatized data.

For the proposed multivariate GARCH models in this chapter, the models with

non-normal innovations are estimated via the QMLE method, and the rest of the

4Other statistical estimators can also be used to estimate the long-term correlation matrix Pc.
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models are fitted by the MLE method. Furthermore, the correlation models are

estimated in two steps given previously.

During the estimation, we observe the time required for fitting the correlation

models is much shorter than for the covariance models. Moreover, for the covariance

models, we need to specify an effective error tolerance level and smart initial values

in order to “successfully” complete the estimation. Further this indicates that the

log-likelihood surface associated with the covariance models are quite flat.



Chapter 4

Model Evaluation

4.1 Introduction

After fitting any stochastic model, it is crucial to evaluate each fitted model thor-

oughly. The most important task is to analyze the fitted residuals. A well fitted

model should have residuals that look like they are drawn from a normal distribu-

tion. Additionally, they should not have strong correlation since the multivariate

GARCH models are expected to explain the heteroscedasticity in the return series.

This chapter is structured as follows. In Section 4.2, all fitted parameters are

shown and analyzed for better understanding of the model dynamics. In Section

4.3, the standardized residuals are diagnosed for the goodness of fit. Model selection

information, which is based on likelihood, are provided in Section 4.4 to help identify

the superior models.

40
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4.2 Fitted Parameters

The parameters, which are fitted through the method of Maximum Likelihood,

need to be carefully checked because the log-likelihood surface1 of a multivariate

GARCH model is sometimes fairly flat, as a result, obtaining misleading parameters

becomes easier. Some fitted parameters may give a dynamics that is far from being

a good approximation of the true dynamics. In this section, we analyze the fitted

parameters for each proposed model. Our focuses are as follows:

• study the heteroscedasticity structure of the estimated models

• identify the potentially “problematic” models

The d-dimensional DVEC(1,1) model can be compactly written in the following

equation. It should be understood that σt,ij is the covariance between the ith and

the jth component of the series at time t:

σt,ij = a0,ij + a1,ijyt−1,iyt−1,j + b1,ijσt−1,ij ∀i, j ∈ {1, 2, ...d}. (4.1)

Under the DVEC(1,1) model, the volatilities and covariances in Σt will vary

based on the GARCH(1,1) structure. Each σt,ij is only affected by its own lagged

value and lagged noise from the previous period.

From the Table 4.1, we can observe that both fitted DVEC(1,1) models regress

Σt more toward to its lagged value than the lagged noise. Such a structure in-

dicates the noise effect2 is less apparent for the monthly log-returns in the long

term. In addition, the fat-tail improvement from the multivariate student t will be

small, since overall the noise effect in DVEC(1,1)-MVT model is smaller than in

DVEC(1,1)-MVN model.

1The log-likelihood surface is sometimes quite flat when it is valued at the observed excess

log-returns y0, y1, ..., yT .
2In the fitted DVEC(1,1) models, the average news impact from the last month is small from

the long-term perspective.
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The BEKK(1,1) model can also be characterized by a single indexed equation,

which gives a slightly different GARCH(1,1) structure for the volatilities and co-

variances:

σt,ij = a0,ij + a1,iia1,jjyt−1,iyt−1,j + b1,iib1,jjσt−1,ij ∀i, j ∈ {1, 2, ...d}. (4.2)

DVEC(1,1)-MVN DVEC(1,1)-MVT

Â0 0.00016 - - - 0.00008 - - -
0.00017 0.00029 - - 0.00004 0.00006 - -
0.00019 0.00024 0.00032 - 0.00005 0.00006 0.00006 -
0.00001 0.00000 0.00001 0.00000 0.00001 0.00000 0.00000 0.00000

Â1 0.04571 - - - 0.05371 - - -
0.09955 0.21681 - - 0.07089 0.09357 - -
0.08217 0.17896 0.14772 - 0.06883 0.09085 0.08820 -
0.03407 0.07420 0.06125 0.02539 0.04546 0.06001 0.05826 0.03848

B̂1 0.87519 - - - 0.90588 - - -
0.78675 0.70724 - - 0.89595 0.88613 - -
0.77375 0.69556 0.68407 - 0.89903 0.88918 0.89224 -
0.92142 0.82830 0.81462 0.97009 0.92628 0.91612 0.91927 0.94713

ν̂ 6.50

Table 4.1: Fitted parameters of the DVEC(1,1) models

BEKK(1,1)-MVN BEKK(1,1)-MVT

Â0 0.00138 - - - 0.00008 - - -
0.00137 0.00169 - - 0.00004 0.00006 - -
0.00085 0.00127 0.00108 - 0.00005 0.00005 0.00006 -
0.00004 0.00003 0.00002 0.00000 0.00001 0.00000 0.00000 0.00000

(â1,ii · â1,jj) 0.12986 - - - 0.05352 - - -
0.18894 0.27490 - - 0.06951 0.09028 - -
0.19741 0.28722 0.30010 - 0.06735 0.08747 0.08475 -
0.07503 0.10916 0.11405 0.04335 0.04277 0.05554 0.05382 0.03417

(̂b1,ii · b̂1,jj) 0.24772 - - - 0.90628 - - -
-0.11200 0.05064 - - 0.89879 0.89136 - -
0.16504 -0.07462 0.10996 - 0.90157 0.89412 0.89688 -
0.48429 -0.21896 0.32266 0.94681 0.93017 0.92248 0.92533 0.95469

ν̂ 6.68

Table 4.2: Fitted parameters of the BEKK(1,1) models
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In Table 4.2, we discover the estimated BEKK(1,1) model with multivariate

Gaussian noise tend to provide a quite different dynamic for Σt, in comparison

with DVEC(1,1) models and BEKK(1,1) model with multivariate student t noise.

There is a negative regression effect on covariances between returns on S&P500

and returns on other index, which is difficult to justify; however the estimated

BEKK(1,1) model with multivariate student t noise has a dynamic similar to the

fitted DVEC(1,1) models.

For the constant conditional correlation models, the fitted long-term correlation

matrix is close to the sample correlation matrix, and more of the heteroscedasticity

is explained by lagged volatility than by lagged noise.

CCC-GARCH(1,1)-N

â0 â1 b̂1 ν̂ λ̂ P̂c

0.00120 0.18750 0.29350 1.00 - - -
0.00190 0.00050 0.13090 0.66 1.00 - -
0.00080 0.07650 0.42460 0.66 0.74 1.00 -
0.00000 0.24090 0.75100 0.22 0.19 0.14 1.00

CCC-GARCH(1,1)-T

â0 â1 b̂1 ν̂ λ̂ P̂c

0.00070 0.11150 0.56070 4.77 1.00 - - -
0.00060 0.07040 0.64730 4.83 0.67 1.00 - -
0.00080 0.07800 0.42530 11.19 0.65 0.74 1.00 -
0.00000 0.19590 0.79120 9.05 0.22 0.19 0.14 1.00

CCC-GARCH(1,1)-SKT

â0 â1 b̂1 ν̂ λ̂ P̂c

0.00060 0.08210 0.62570 5.17 -0.214 1.00 - - -
0.00070 0.09210 0.59840 4.10 -0.205 0.66 1.00 - -
0.00100 0.08710 0.31510 11.66 -0.204 0.66 0.73 1.00 -
0.00000 0.14790 0.82100 11.39 -0.118 0.24 0.18 0.12 1.00

Table 4.3: Fitted parameters of the CCC-GARCH(1,1) models

From the CCC-GARCH(1,1)-N model and CCC-GARCH(1,1)-T model, we

should anticipate a fatter tail for the simulated distribution of the Canadian eq-

uity return, due to the enhanced noise effect observed from the fitted parameters.
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Moreover, the estimated skewness is to the left for each component series under

CCC-GARCH(1,1)-SKT model.

DCC(1,1)-GARCH(1,1)-N

â0 â1 b̂1 ν̂ λ̂ P̂c α̂1 β̂1

0.00120 0.18750 0.29350 1.00 - - - 0.01800 0.95220
0.00190 0.00050 0.13090 0.66 1.00 - -
0.00080 0.07650 0.42460 0.66 0.74 1.00 -
0.00000 0.24090 0.75100 0.22 0.19 0.14 1.00

DCC(1,1)-GARCH(1,1)-T

â0 â1 b̂1 ν̂ λ̂ P̂c α̂1 β̂1

0.00070 0.11150 0.56070 4.77 1.00 - - - 0.01810 0.95150
0.00060 0.07040 0.64730 4.83 0.67 1.00 - -
0.00080 0.07800 0.42530 11.19 0.65 0.74 1.00 -
0.00000 0.19590 0.79120 9.05 0.22 0.19 0.14 1.00

DCC(1,1)-GARCH(1,1)-SKT

â0 â1 b̂1 ν̂ λ̂ P̂c α̂1 β̂1

0.00060 0.08210 0.62570 5.17 -0.214 1.00 - - - 0.02150 0.94650
0.00070 0.09210 0.59840 4.10 -0.205 0.66 1.00 - -
0.00100 0.08710 0.31510 11.66 -0.204 0.66 0.73 1.00 -
0.00000 0.14790 0.82100 11.39 -0.118 0.24 0.18 0.12 1.00

Table 4.4: Fitted parameters of the DCC(1,1)-GARCH(1,1) models

The dynamic conditional correlation models give the same fitted parameters for

the univariate GARCH(1,1) process of the individual component, as well as the base

correlation matrix Pc. This is an expected result since both CCC and DCC models

have the identical first stage estimation. Furthermore, more heteroscedasticity in

correlation is explained by the previous correlation instead of the noise.

4.3 Residual Diagnostics

Two criteria are frequently used to rate the quality of fit for multivariate GARCH

models. Both of them are based on the standardized residual vector defined as
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follows:

z̃t = 4̂−1
t · yt = (z1, z2, ..., zd)

′, (4.3)

where 4̂−1
t is the inverse of the estimated diagonal volatility matrix, and yt is the

excess log-return vector.

The first criterion asserts that the standardized residual vector z̃t should mimic

a SWN(0,Id) process when the model has a good fit. One way to understand

this is: multivariate GARCH models are expected to provide enough thickness in

the tail to accommodate the extreme market returns, hence in a well fitted model

the standardized residuals should have a relatively “normal” tail. A chi-square test,

shown in Section 2.4, can be used to verify whether or not the standardized residual

vector are iid multivariate standard normal. Other statistical tests in the literature

include the Cox-Small test and Smith and Jain’s adaptation of the Friedman-Rafsky

test. If Zt indeed follows SWN(0,Id), each component of Zt should be a iid normal

random variable, so as a first attempt, we use QQ-plot to diagnose the normality

in the standardized residuals for each component series. According to the QQ-

plots in appendix, we observe for each proposed model the ordered statistics of

the standardized residuals tend to form a distribution that is similar to normal in

mid-range but are much fatter in both tails. This observation indicates there is a

margin for improvement with respect to the fitting in the tail.

The second criterion assesses the ability of explaining the heteroscedasticity

in the return vector process. The underlying principle is that the vector of the

standardized residual squares should not be serially correlated since the well fitted

model has explained most of the heteroscedasticity. We apply the univariate test

on z2
t,i and the multivariate test on z∗t to validate the second criterion.

z∗t = (z2
t,1, z

2
t,2, ..., z

2
t,d)

′ (4.4)
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Ljung-Box Univariate Test

Models S&P/TSX S&P500 MSIC World DEX Universe

DVEC-MVN 1.00 1.00 1.00 0.00
DVEC-MVT 1.00 1.00 1.00 1.00
BEKK-MVN 0.38 1.00 0.90 0.06
BEKK-MVT 0.94 1.00 1.00 0.39
CCC-GARCH-N 0.87 1.00 0.39 0.09
CCC-GARCH-T 0.75 1.00 0.46 0.11
CCC-GARCH-SKT 0.72 1.00 0.30 0.29
DCC-GARCH-N 0.86 1.00 0.62 0.08
DCC-GARCH-T 0.75 1.00 0.69 0.11
DCC-GARCH-SKT 0.63 1.00 0.70 0.14

Box-Pierce Univariate Test

Models S&P/TSX S&P500 MSIC World DEX Universe

DVEC-MVN 1.00 1.00 1.00 0.00
DVEC-MVT 1.00 1.00 1.00 1.00
BEKK-MVN 0.41 1.00 0.91 0.07
BEKK-MVT 0.95 1.00 1.00 0.41
CCC-GARCH-N 0.89 1.00 0.41 0.10
CCC-GARCH-T 0.77 1.00 0.49 0.13
CCC-GARCH-SKT 0.75 1.00 0.32 0.31
DCC-GARCH-N 0.88 1.00 0.65 0.09
DCC-GARCH-T 0.77 1.00 0.71 0.12
DCC-GARCH-SKT 0.66 1.00 0.72 0.15

Hosking Multivariate Test

Models z∗t

DVEC-MVN 0.91
DVEC-MVT 1.00
BEKK-MVN 0.97
BEKK-MVT 1.00
CCC-GARCH-N 0.87
CCC-GARCH-T 0.69
CCC-GARCH-SKT 0.90
DCC-GARCH-N 0.95
DCC-GARCH-T 0.87
DCC-GARCH-SKT 0.96

Table 4.5: Testing results for the autocorrelations of the fitted residual squares for

12 lags
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At 5% confidence level, all univariate tests lead to not reject null hypothesis Ho:

ρ1 = ... = ρ12 = 0, except for the case with bond index return under the DVEC(1,1)-

MVN model. Surprisingly, the null hypothesis, Ho: P(1) = ... = P(12) = 0,

is passed by the Hosking test under the same confidence level, which means all

proposed multivariate GARCH models have done a good job in explaining the

heteroscedasticity in the return vector series.

4.4 Likelihood-Based Model Selection

The Akaike Information Criterion (AIC) and the Schwartz Bayes Criterion (SBC)

are presented to provide relevant model selection information. The main idea be-

hind two criterions is to penalize the log-likelihood for increasing the number of

parameters in a model since extra parameters should only be worth adding if there

will be a large improvement in the log-likelihood.

The Akaike Information Criterion (see Akaike 1974) is defined below. The log-

likelihood is only improved where adding an extra parameter results at least an

unit increase in the log-likelihood.

AIC = Log-Likelihood− Num of Parameters (4.5)

The AIC penalizes the log-likelihood when increasing the number of the param-

eters, and the penalty is equal regardless of the sample size; however, adding an

extra parameter tends to improve the log-likelihood more for large samples. The

Schwartz Bayes Criterion (see Schwartz 1978) defined below takes account of this

issue. In SBC, extra parameters are penalized more heavily for large samples.

SBC = Log-Likelihood− 1

2
· Num of Parameters · ln(Sample Size) (4.6)

Although the correlation model has more parameters than the covariance model,

the log-likelihood has a reverse order. As a result, the values of AIC and SBC for

covariance models are larger than the values for correlation models.
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Multivariate Covariance Models

Models Parameters Log-Likelihood AIC SBC

DVEC-MVN 18 2754.53 2736.53 2702.53
DVEC-MVT 19 2890.42 2871.42 2835.53
BEKK-MVN 18 2757.84 2739.84 2705.84
BEKK-MVT 19 2890.99 2871.99 2836.10

Multivariate Correlation Models

Models Parameters Log-Likelihood AIC SBC

CCC-GARCH-N 18 2739.02 2721.02 2687.02
CCC-GARCH-T 22 2740.85 2718.85 2677.30
CCC-GARCH-SKT 26 2743.37 2717.37 2668.26
DCC-GARCH-N 20 2742.15 2722.15 2684.37
DCC-GARCH-T 24 2744.85 2720.85 2675.51
DCC-GARCH-SKT 28 2748.68 2720.68 2667.80

Table 4.6: Summary of the model selection information

Among all proposed models, the BEKK(1,1) model with multivariate student t

innovation has the largest log-likelihood, AIC, and SBC values. The DVEC model

with multivariate student t innovation is nearly indifferent with it in terms of the

model selection information. For multivariate correlation models, the discrepancy

under each ranking index is small between models. In other words, we do not see any

estimated correlation model that absolutely dominates the rest of the correlation

models. Therefore, the simplest CCC-GARCH-N or DCC-GARCH-N is the best

model in the family of the correlation models, due to fewer parameters.

In a high dimensional setting, we should not rely on the selection information

based on the likelihood because estimating a covariance model is not quite exe-

cutable in terms of the optimization, and also historically the component series

are more likely to differ with each other. In that case, the CCC-GARCH and

DCC-GARCH models are more flexible in choosing univariate volatility models for

component series, and the two-stage estimation is more efficient.



Chapter 5

Guarantee Liability Valuation

5.1 Introduction

Our primary purpose of creating multivariate GARCH models is using them to find

the answers of the following questions.

• What is the probability the segregated fund value will be below the guarantee

level at maturity?

• How much on average will the difference be if the fund value is below the

guarantee at maturity?

One way to provide answers to these important questions is through a simulation,

which is the subject of this chapter.

In Section 5.2, we create hypothetical benchmark portfolios served as our proxies

in tracing the performance of the actual mutual funds. In Section 5.3, we then

calculate the n-year accumulation factor S(n) of these benchmark portfolios based

on the simulated future investment scenarios, and compared them with the CIA’s

calibration table. In Section 5.4, the frequency and severity of the guarantee liability

are further quantified based on the simulation.

49
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5.2 Benchmark Portfolios

It is a difficult task to create a benchmark portfolio whose return is highly correlated

with the actual fund performance, since the asset mix of a fund will keep changing

according to the market condition. Nevertheless, in this thesis we assume the asset

mix will change, but on average the magnitude of such a change is small over the

period of 10 years. We further assume the fund is re-balanced at monthly frequency

to maintain a high degree of mean-variance efficiency for the portfolio. Under the

assumptions, we hope assigning constant weights to create benchmark portfolios is

appropriate to proxy the performance of the actual fund.

The monthly log-return for a benchmark portfolio is defined in the following

equation.

Ft = ωt,1 · xrisk-free +
n∑

i=2

ωt,i ·Xt,i

n∑
i=1

ωt,i = 1 (5.1)

The weight ωt,1 is 5% for risk-free asset, which has an annual rate of 4% compounded

continuously throughout the period of 10 years. The weights of other type of assets

in each benchmark portfolio are summarized in the table below.

Benchmark Portfolio of S&P/TSX S&P500 MSIC World DEX Universe

Canadian Equity Balanced 65% 12.5% 12.5% 5%
Canadian Fixed Income Balanced 12.5% 12.5% 12.5% 65%
Canadian Neutral Balanced 40% 12.5% 12.5% 30%
Global Equity Balanced 12.5% 12.5% 65% 5%
US Equity Balanced 12.5% 65% 12.5% 5%

Table 5.1: Composition of the benchmark portfolios

The listed five balanced mutual funds form the main types of the segregated

funds available at Manulife Financial. We will valuate the guarantee liability as-

sociated with these segregated funds via their benchmark portfolios. The return

of each benchmark portfolio will be calculated based on the simulated index re-
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turn, which is from the estimated multivariate GARCH model. The number of the

simulation used for the guarantee liability valuation is 10,000.

5.3 Accumulation Factor S(n)

The n-year accumulation factor measures the growing power for a dollar invested.

It is widely used by actuaries to value the actuarial liability in future under a

deterministic assumption on return. In valuating the guarantee liability, this ac-

cumulation factor S(n) becomes a random variable since the underlying return is

technically treated as a stochastic process. We define the S(n) as follows, where Ft

is the log-return of a benchmark portfolio.

S(n) = exp
{ 12·n∑

t=1

Ft

}
(5.2)

To avoid an overly optimistic valuation of the guarantee liability, the Segregated

Funds Task Force (SFTF) at CIA recommends a calibration table1 to assess the

adequacy of the fit in the tail of historical returns. The focus of this table is placed

on the degree of the thickness in the left tail, since low returns have crucial impact

on the accumulation factors as opposed to the high historical observations.

In addition to the quantile criterion listed in the table, SFTF also suggests that

the mean of 1-year accumulation factor should lie in the range of 1.10 to 1.12,

and its volatility should be at least 0.175. Among these recommended values, the

most important ones are the quantiles for 10-years accumulation factors, which are

directly used to compute the values of a benchmark portfolio at maturity.

1The calibration table is recommended by the SFTF only for the equity fund, such as a simple

single-indexed segregated fund; however, many complex segregated funds are neither pure equity

fund nor pure fixed income fund, and for the conservative reason any stochastic model applied to

project the future fund return is forced to be calibrated to Canadian equity index on which the

calibration table is based. In the later analysis, we find this recommendation is not appropriate

for the fixed income balanced fund because the conservative level defined by the history of the

Canadian equity index is really not suitable for the less risky fund.
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Accumulation 2.5th 5th 10th
Period Percentile Percentile Percentile

1-Year 0.76 0.82 0.90
5-Year 0.75 0.85 1.05
10-Year 0.85 1.05 1.35

Table 5.2: Calibration table from the CIA’s report

The corresponding quantiles, means and volatilities are calculated for the five

benchmark portfolios in the following tables. For the benchmark portfolio of Cana-

dian equity balanced fund, the covariance models in general have slightly higher

quantiles for the 1-year accumulation factor, and the means are not inside but close

to the required range whereas the volatilities are lower than expected. Therefore,

the simulated 1-year accumulation factors based on the covariance models are less

conservative than the calibration requirement. In contrast, the correlation models

all satisfy calibration requirements for the 1-year accumulation factor. For 5-year

and 10-year accumulation factors, all our models reach the conservative level as

suggested by the calibration table. The correlation models are even more conserva-

tive than the covariance models. We refer to the appendix for the entire simulated

distributions of the accumulation factors.

The left-tail quantiles associated with the other four benchmark portfolios are

generally higher than the calibration criterion. In most of the cases, we observe

that the correlation models provide more conservative accumulation factors than

the covariance models, which can also be seen from the distribution plots in the

appendix. The worst violation appears in the benchmark portfolio of Canadian

fixed income balanced fund. This is an expected result since the SFTF’s criteria is

recommended for pure equity fund, and our benchmark has 65% in (median yield

and less volatile) fixed income securities, which historically have smaller extreme

log-returns in the left tail. Based on our study, we believe the conservative level set

for different type of fund should differ, especially for fixed income balanced fund.
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One-Year Accumulation Factor

Models 2.5%-ile 5%-ile 10%-ile Mean Volatility

DVEC-MVN 0.80 0.84 0.89 1.08 0.159
DVEC-MVT 0.83 0.87 0.92 1.08 0.135
BEKK-MVN 0.79 0.83 0.88 1.08 0.171
BEKK-MVT 0.84 0.87 0.92 1.08 0.137
CCC-GARCH-N 0.74 0.79 0.85 1.10 0.221
CCC-GARCH-T 0.76 0.81 0.87 1.10 0.214
CCC-GARCH-SKT 0.76 0.82 0.88 1.10 0.194
DCC-GARCH-N 0.75 0.80 0.86 1.09 0.198
DCC-GARCH-T 0.77 0.82 0.87 1.09 0.190
DCC-GARCH-SKT 0.77 0.82 0.88 1.10 0.187

Five-Year Accumulation Factor

Models 2.5%-ile 5%-ile 10%-ile

DVEC-MVN 0.72 0.80 0.92
DVEC-MVT 0.77 0.86 0.96
BEKK-MVN 0.72 0.80 0.91
BEKK-MVT 0.78 0.87 0.97
CCC-GARCH-N 0.60 0.70 0.82
CCC-GARCH-T 0.63 0.73 0.85
CCC-GARCH-SKT 0.60 0.68 0.81
DCC-GARCH-N 0.63 0.73 0.85
DCC-GARCH-T 0.67 0.76 0.87
DCC-GARCH-SKT 0.65 0.75 0.87

Ten-Year Accumulation Factor

Models 2.5%-ile 5%-ile 10%-ile

DVEC-MVN 0.76 0.90 1.07
DVEC-MVT 0.84 0.97 1.13
BEKK-MVN 0.76 0.89 1.07
BEKK-MVT 0.84 0.98 1.17
CCC-GARCH-N 0.59 0.73 0.94
CCC-GARCH-T 0.64 0.79 0.98
CCC-GARCH-SKT 0.60 0.72 0.91
DCC-GARCH-N 0.65 0.78 0.98
DCC-GARCH-T 0.68 0.82 1.01
DCC-GARCH-SKT 0.70 0.83 1.02

Table 5.3: Quantiles of the accumulation factor of Canadian equity balanced fund
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One-Year Accumulation Factor

Models 2.5%-ile 5%-ile 10%-ile Mean Volatility

DVEC-MVN 0.99 1.00 1.01 1.06 0.038
DVEC-MVT 0.98 1.00 1.01 1.06 0.040
BEKK-MVN 0.98 0.99 1.01 1.06 0.041
BEKK-MVT 0.98 1.00 1.01 1.06 0.039
CCC-GARCH-N 0.96 0.98 1.00 1.06 0.051
CCC-GARCH-T 0.97 0.99 1.00 1.06 0.048
CCC-GARCH-SKT 0.97 0.99 1.01 1.06 0.047
DCC-GARCH-N 0.97 0.98 1.00 1.06 0.049
DCC-GARCH-T 0.97 0.99 1.00 1.06 0.048
DCC-GARCH-SKT 0.97 0.99 1.00 1.06 0.048

Five-Year Accumulation Factor

Models 2.5%-ile 5%-ile 10%-ile

DVEC-MVN 1.14 1.17 1.20
DVEC-MVT 1.12 1.15 1.19
BEKK-MVN 1.13 1.16 1.20
BEKK-MVT 1.13 1.16 1.19
CCC-GARCH-N 1.06 1.10 1.15
CCC-GARCH-T 1.07 1.11 1.16
CCC-GARCH-SKT 1.05 1.10 1.15
DCC-GARCH-N 1.05 1.10 1.15
DCC-GARCH-T 1.07 1.11 1.16
DCC-GARCH-SKT 1.07 1.12 1.16

Ten-Year Accumulation Factor

Models 2.5%-ile 5%-ile 10%-ile

DVEC-MVN 1.42 1.48 1.54
DVEC-MVT 1.38 1.44 1.51
BEKK-MVN 1.40 1.46 1.53
BEKK-MVT 1.38 1.44 1.52
CCC-GARCH-N 1.26 1.34 1.43
CCC-GARCH-T 1.27 1.36 1.46
CCC-GARCH-SKT 1.28 1.36 1.44
DCC-GARCH-N 1.24 1.33 1.42
DCC-GARCH-T 1.28 1.36 1.46
DCC-GARCH-SKT 1.30 1.37 1.46

Table 5.4: Quantiles of the accumulation factor of Canadian fixed income balanced

fund
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One-Year Accumulation Factor

Models 2.5%-ile 5%-ile 10%-ile Mean Volatility

DVEC-MVN 0.88 0.91 0.95 1.07 0.103
DVEC-MVT 0.90 0.93 0.96 1.07 0.090
BEKK-MVN 0.87 0.91 0.94 1.07 0.112
BEKK-MVT 0.91 0.93 0.96 1.07 0.090
CCC-GARCH-N 0.84 0.88 0.92 1.08 0.143
CCC-GARCH-T 0.85 0.89 0.93 1.08 0.137
CCC-GARCH-SKT 0.85 0.89 0.94 1.09 0.127
DCC-GARCH-N 0.85 0.88 0.92 1.08 0.130
DCC-GARCH-T 0.86 0.89 0.93 1.08 0.125
DCC-GARCH-SKT 0.86 0.90 0.94 1.08 0.123

Five-Year Accumulation Factor

Models 2.5%-ile 5%-ile 10%-ile

DVEC-MVN 0.90 0.97 1.05
DVEC-MVT 0.94 1.00 1.07
BEKK-MVN 0.89 0.96 1.04
BEKK-MVT 0.94 1.01 1.08
CCC-GARCH-N 0.79 0.88 0.98
CCC-GARCH-T 0.82 0.91 1.00
CCC-GARCH-SKT 0.80 0.86 0.96
DCC-GARCH-N 0.82 0.90 0.99
DCC-GARCH-T 0.85 0.92 1.01
DCC-GARCH-SKT 0.83 0.91 1.01

Ten-Year Accumulation Factor

Models 2.5%-ile 5%-ile 10%-ile

DVEC-MVN 1.03 1.15 1.29
DVEC-MVT 1.09 1.21 1.34
BEKK-MVN 1.03 1.14 1.29
BEKK-MVT 1.10 1.21 1.36
CCC-GARCH-N 0.88 1.01 1.19
CCC-GARCH-T 0.92 1.06 1.22
CCC-GARCH-SKT 0.88 0.99 1.15
DCC-GARCH-N 0.92 1.04 1.21
DCC-GARCH-T 0.96 1.08 1.24
DCC-GARCH-SKT 0.96 1.08 1.23

Table 5.5: Quantiles of the accumulation factor of Canadian neutral balanced fund
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One-Year Accumulation Factor

Models 2.5%-ile 5%-ile 10%-ile Mean Volatility

DVEC-MVN 0.93 0.95 0.97 1.08 0.082
DVEC-MVT 0.95 0.97 0.99 1.07 0.066
BEKK-MVN 0.92 0.94 0.97 1.08 0.084
BEKK-MVT 0.95 0.97 0.99 1.07 0.066
CCC-GARCH-N 0.90 0.93 0.96 1.08 0.098
CCC-GARCH-T 0.92 0.94 0.97 1.08 0.092
CCC-GARCH-SKT 0.91 0.94 0.96 1.08 0.090
DCC-GARCH-N 0.91 0.94 0.97 1.08 0.091
DCC-GARCH-T 0.91 0.94 0.97 1.08 0.089
DCC-GARCH-SKT 0.91 0.94 0.97 1.08 0.092

Five-Year Accumulation Factor

Models 2.5%-ile 5%-ile 10%-ile

DVEC-MVN 1.00 1.05 1.13
DVEC-MVT 1.05 1.10 1.16
BEKK-MVN 1.01 1.06 1.14
BEKK-MVT 1.05 1.11 1.17
CCC-GARCH-N 0.97 1.03 1.11
CCC-GARCH-T 0.98 1.05 1.13
CCC-GARCH-SKT 0.95 1.01 1.09
DCC-GARCH-N 0.96 1.02 1.10
DCC-GARCH-T 0.98 1.04 1.12
DCC-GARCH-SKT 0.94 1.02 1.10

Ten-Year Accumulation Factor

Models 2.5%-ile 5%-ile 10%-ile

DVEC-MVN 1.22 1.31 1.44
DVEC-MVT 1.29 1.38 1.50
BEKK-MVN 1.25 1.35 1.47
BEKK-MVT 1.29 1.40 1.52
CCC-GARCH-N 1.20 1.30 1.44
CCC-GARCH-T 1.23 1.33 1.46
CCC-GARCH-SKT 1.17 1.28 1.41
DCC-GARCH-N 1.15 1.27 1.41
DCC-GARCH-T 1.19 1.29 1.43
DCC-GARCH-SKT 1.15 1.26 1.41

Table 5.6: Quantiles of the accumulation factor of global equity balanced fund
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One-Year Accumulation Factor

Models 2.5%-ile 5%-ile 10%-ile Mean Volatility

DVEC-MVN 0.88 0.91 0.94 1.08 0.110
DVEC-MVT 0.88 0.91 0.95 1.08 0.108
BEKK-MVN 0.86 0.89 0.93 1.08 0.123
BEKK-MVT 0.88 0.91 0.95 1.08 0.107
CCC-GARCH-N 0.85 0.88 0.92 1.08 0.133
CCC-GARCH-T 0.87 0.90 0.94 1.08 0.121
CCC-GARCH-SKT 0.87 0.90 0.94 1.09 0.120
DCC-GARCH-N 0.85 0.88 0.92 1.08 0.134
DCC-GARCH-T 0.85 0.89 0.93 1.08 0.126
DCC-GARCH-SKT 0.84 0.88 0.92 1.09 0.134

Five-Year Accumulation Factor

Models 2.5%-ile 5%-ile 10%-ile

DVEC-MVN 0.87 0.95 1.04
DVEC-MVT 0.90 0.97 1.06
BEKK-MVN 0.86 0.93 1.02
BEKK-MVT 0.90 0.98 1.06
CCC-GARCH-N 0.84 0.91 1.01
CCC-GARCH-T 0.87 0.95 1.04
CCC-GARCH-SKT 0.84 0.91 1.01
DCC-GARCH-N 0.83 0.91 1.00
DCC-GARCH-T 0.86 0.94 1.03
DCC-GARCH-SKT 0.82 0.91 1.00

Ten-Year Accumulation Factor

Models 2.5%-ile 5%-ile 10%-ile

DVEC-MVN 0.99 1.12 1.28
DVEC-MVT 1.05 1.17 1.32
BEKK-MVN 1.00 1.13 1.29
BEKK-MVT 1.05 1.18 1.33
CCC-GARCH-N 0.97 1.08 1.25
CCC-GARCH-T 1.02 1.14 1.30
CCC-GARCH-SKT 0.94 1.06 1.25
DCC-GARCH-N 0.96 1.09 1.24
DCC-GARCH-T 1.00 1.11 1.28
DCC-GARCH-SKT 0.95 1.08 1.24

Table 5.7: Quantiles of the accumulation factor of US equity balanced fund
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5.4 VaR and CTE

In this section, we use value-at-risk (VaR) and conditional tail expectation (CTE)

to measure the investment risk associated with the single premium segregated fund

contract. For simplicity, we ignore mortality and lapsation, and we further assume

the policyholder will not reset and switch the underlying funds.

The liability for the maturity guarantee can be defined similarly to a European

style put option

L = Max(G− S(n)e−nm, 0), (5.3)

where G is the fixed guarantee level at maturity and S(n)e−nm is the accumulated

fund value net the annual management fee. The m is the continuously compounded

annual management expense ratio (MER), which is used to deduct the management

expense from the fund. The maturity guarantee in the contract is set to be the

100% of the initial premium, which is simply 1$ for our analysis, and the annual

management expense ratio (MER) is 3% compounded continuously.

The probability of having a non-zero guarantee liability is denoted by ξ. It can

be easily computed in the simulation since we only need to count the number of

simulated liabilities that are below the guarantee level at maturity date.

ξ = P (L > 0) = P (G > S(n)e−nm) (5.4)

The VaR is the most widely used risk measure among financial institutions. It

is defined as follows:

VaR(α) = inf{l ∈ R : P (L > l) 6 1− α} = inf{l ∈ R : FL(l) > α}. (5.5)

From the definition, the VaR(α) is the smallest number l such that the probability

that the random guarantee liability L exceeds l is no larger than (1-α).

VaR is essentially a quantile of the guarantee liability distribution. It has many

issues from the principle of coherent risk measure. The major criticism is VaR

violates the subadditivity property required by this principle. For example, for two
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risks X and Y , it is possible under the VaR measure that VaRX(α) + VaRY (α) <

VaRX+Y (α). In other words, VaR does not take account of the diversification.

CTE is a better risk measure under such principle. It is defined as the expected

value of the guarantee liability given that it falls into the upper (1-α) range of the

distribution.

CTE(α) = E(L|L > VaR(α)) (5.6)

Compared with VaR(α), CTE(α) is an improved measure since it takes account

of the entire tail that is beyond the α quantile. CTE with a conservative α, say

97.5%, is used to set up the actuarial reserve for the guarantee liability.

For the contract linked with the Canadian equity balanced fund, we firstly ob-

serve that ξ, VaR and CTE are lower under the covariance models than those under

the correlation models. Within the covariance models, the type of the innovation

distribution has impact on the liability distribution and its upper tail. The models

with multivariate Gaussian innovation generates more conservative risk measures,

compared with the models with multivariate t innovation. In the family of the

correlation models, the innovation distribution, however, does not make a big dif-

ference. The CCC-GARCH(1,1) gives slightly higher required values. For the rest

of benchmark portfolios, we have the similar observations.

Models ξ VaR90% CTE90% VaR95% CTE95% VaR97.5% CTE97.5%

DVEC-MVN 0.21 0.20 0.36 0.34 0.46 0.44 0.53
DVEC-MVT 0.19 0.16 0.31 0.28 0.41 0.38 0.50
BEKK-MVN 0.22 0.21 0.36 0.34 0.46 0.43 0.53
BEKK-MVT 0.18 0.14 0.30 0.27 0.40 0.37 0.48
CCC-GARCH-N 0.25 0.30 0.48 0.46 0.59 0.56 0.66
CCC-GARCH-T 0.23 0.27 0.44 0.41 0.55 0.53 0.63
CCC-GARCH-SKT 0.26 0.33 0.49 0.47 0.58 0.56 0.66
DCC-GARCH-N 0.24 0.28 0.44 0.42 0.54 0.52 0.61
DCC-GARCH-T 0.23 0.25 0.42 0.39 0.52 0.49 0.59
DCC-GARCH-SKT 0.22 0.25 0.41 0.39 0.50 0.48 0.58

Table 5.8: Risk measures of the investment guarantee in Canadian equity balanced

fund



Guarantee Liability Valuation 60

Models ξ VaR90% CTE90% VaR95% CTE95% VaR97.5% CTE97.5%

DVEC-MVN 0.01 0.00 0.04 0.00 0.04 0.00 0.04
DVEC-MVT 0.02 0.00 0.05 0.00 0.05 0.00 0.05
BEKK-MVN 0.01 0.00 0.04 0.00 0.04 0.00 0.04
BEKK-MVT 0.02 0.00 0.05 0.00 0.05 0.00 0.05
CCC-GARCH-N 0.05 0.00 0.09 0.01 0.10 0.07 0.17
CCC-GARCH-T 0.04 0.00 0.09 0.00 0.09 0.06 0.15
CCC-GARCH-SKT 0.05 0.00 0.08 0.00 0.08 0.05 0.13
DCC-GARCH-N 0.06 0.00 0.10 0.02 0.12 0.08 0.19
DCC-GARCH-T 0.04 0.00 0.09 0.00 0.09 0.05 0.14
DCC-GARCH-SKT 0.04 0.00 0.07 0.00 0.07 0.04 0.11

Table 5.9: Risk measures of the investment guarantee in Canadian fixed income

balanced fund

Models ξ VaR90% CTE90% VaR95% CTE95% VaR97.5% CTE97.5%

DVEC-MVN 0.13 0.04 0.17 0.15 0.26 0.24 0.33
DVEC-MVT 0.11 0.01 0.14 0.11 0.22 0.19 0.29
BEKK-MVN 0.13 0.05 0.18 0.15 0.26 0.24 0.33
BEKK-MVT 0.10 0.00 0.13 0.10 0.21 0.18 0.28
CCC-GARCH-N 0.17 0.12 0.28 0.25 0.37 0.35 0.45
CCC-GARCH-T 0.15 0.09 0.25 0.22 0.34 0.32 0.42
CCC-GARCH-SKT 0.18 0.15 0.29 0.27 0.37 0.35 0.45
DCC-GARCH-N 0.16 0.10 0.25 0.23 0.34 0.32 0.42
DCC-GARCH-T 0.15 0.08 0.23 0.20 0.32 0.29 0.39
DCC-GARCH-SKT 0.15 0.09 0.22 0.20 0.31 0.29 0.38

Table 5.10: Risk measures of the investment guarantee in Canadian neutral bal-

anced fund
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Models ξ VaR90% CTE90% VaR95% CTE95% VaR97.5% CTE97.5%

DVEC-MVN 0.06 0.00 0.10 0.03 0.12 0.10 0.18
DVEC-MVT 0.04 0.00 0.09 0.00 0.09 0.05 0.13
BEKK-MVN 0.05 0.00 0.10 0.00 0.10 0.07 0.16
BEKK-MVT 0.04 0.00 0.10 0.00 0.10 0.04 0.13
CCC-GARCH-N 0.07 0.00 0.11 0.04 0.15 0.11 0.22
CCC-GARCH-T 0.06 0.00 0.11 0.01 0.12 0.09 0.19
CCC-GARCH-SKT 0.08 0.00 0.11 0.05 0.16 0.13 0.24
DCC-GARCH-N 0.08 0.00 0.12 0.06 0.17 0.15 0.23
DCC-GARCH-T 0.07 0.00 0.11 0.04 0.14 0.12 0.21
DCC-GARCH-SKT 0.07 0.00 0.13 0.06 0.17 0.15 0.24

Table 5.11: Risk measures of the investment guarantee in global equity balanced

fund

Models ξ VaR90% CTE90% VaR95% CTE95% VaR97.5% CTE97.5%

DVEC-MVN 0.13 0.05 0.20 0.17 0.29 0.26 0.36
DVEC-MVT 0.11 0.02 0.16 0.13 0.25 0.22 0.33
BEKK-MVN 0.13 0.04 0.19 0.16 0.28 0.26 0.35
BEKK-MVT 0.11 0.01 0.16 0.13 0.24 0.22 0.32
CCC-GARCH-N 0.14 0.07 0.22 0.20 0.31 0.28 0.38
CCC-GARCH-T 0.12 0.04 0.18 0.15 0.26 0.24 0.34
CCC-GARCH-SKT 0.15 0.08 0.23 0.21 0.33 0.31 0.40
DCC-GARCH-N 0.14 0.08 0.23 0.20 0.32 0.29 0.39
DCC-GARCH-T 0.13 0.06 0.19 0.17 0.28 0.26 0.34
DCC-GARCH-SKT 0.15 0.08 0.23 0.20 0.32 0.30 0.39

Table 5.12: Risk measures of the investment guarantee in US equity balanced fund



Chapter 6

Conclusion

In this thesis, we apply multivariate GARCH models to analyze the guarantee

liability associated with the GMMA option. We first conduct a statistical analysis

for the historical index returns. We then fit the proposed multivariate models by the

method of maximum or quasi-maximum likelihood estimation. Via simulation, the

accumulation factor are computed. The values are further compared with the CIA’s

calibration table to analyze the conservative level provided from each multivariate

GARCH model. The actuarial reserve for the guarantee liability, linked with a single

premium segregated contract, is calculated by the conditional tail expectation.

During the analysis of the return series, we find the historical monthly returns

are non-normal, either from univariate or multivariate perspective, due to the ex-

treme observations from the left tail; however, using the normal distribution to

approximate the return distribution is generally reasonable based on the QQ-plots.

In the univariate setting, the autocorrelation of the volatilities in the return series

is insignificant for equity indices whereas there is a statistical evidence found in the

fixed income index. In contrast, the conditional covariance matrices of the return

vectors are serially correlated based on the Hosking’s multivariate test. Therefore,

a multivariate test should be applied for the vector return data before applying any

multivariate GARCH model.

62
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In studying the models in Chapter 3, we discover the dynamics of multivariate

GARCH models is fairly rich. For low-dimensional problems, the DVEC models

have GARCH specification in the volatility and the covariance. The BEKK mod-

els offers the flexible volatility-covariance emission structure. For high-dimensional

problems, the CCC-GARCH and DCC-GARCH models are efficient in the esti-

mation and provide more choices in modeling the returns of the component series.

Comparing with the normal and student t, the Hansen’s skewed student t is capable

of capturing the skewness and thickness of the empirical return distribution.

In analyzing the standardized residuals, we find multivariate GARCH models

have done a good job in explaining the heteroscedasticity in the return vector series,

although the fit in the tail still has some margin for improvement. In addition, the

widely used model selection criteria, AIC and SBC, are in flavor of the covariance

models, but we experienced that estimating covariance models correctly is not a

easy task since the log-likelihood surface sometimes is quite fat.

We also find that for Canadian equity balanced fund the CCC-GARCH and

DCC-GARCH models can provide accumulation factors comparable with the CIA’s

calibration table, which indicates that the conservative level set by the correlation

models may be sufficient for the purpose of the guarantee liability valuation. As

a result, the VaR and CTE calculated based on the correlation models are fairly

high for the benchmark portfolio of Canadian equity balanced fund. On the other

hand, the improvement of applying the student t, Hansen’s skewed student t, and

multivariate student t is small in terms of the VaR and CTE values.

Based on our research, we recommend the flexible CCC-GARCH and DCC-

GARCH models with the normal innovation for the guarantee liability valuation

of the complex segregated fund products. The direction of future research may be

extending the simulation setting to include the mortality and the lapsation, which

are important extra risk factors for the practical actuarial problem.
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Figure 1: QQ-plots of the fitted residuals of the DVEC(1,1)-MVN model
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Figure 2: QQ-plots of the fitted residuals of the DVEC(1,1)-MVT model
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Figure 3: QQ-plots of the fitted residuals of the BEKK(1,1)-MVN model
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Figure 4: QQ-plots of the fitted residuals of the BEKK(1,1)-MVT model
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Figure 5: QQ-plots of the fitted residuals of the CCC-GARCH(1,1)-N model
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Figure 6: QQ-plots of the fitted residuals of the CCC-GARCH(1,1)-T model
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Figure 7: QQ-plots of the fitted residuals of the CCC-GARCH(1,1)-SKT model
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Figure 8: QQ-plots of the fitted residuals of the DCC(1,1)-GARCH(1,1)-N model
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Figure 9: QQ-plots of the fitted residuals of the DCC(1,1)-GARCH(1,1)-T model
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Figure 10: QQ-plots of the fitted residuals of the DCC(1,1)-GARCH(1,1)-SKT

model
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Figure 11: Smoothed distributions of the 1-year accumulation factor of Canadian

equity balanced fund
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Figure 12: Left tail of the distributions of the 1-year accumulation factor of Cana-

dian equity balanced fund
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Figure 13: Smoothed distributions of the 5-year accumulation factor of Canadian

equity balanced fund
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Figure 14: Left tail of the distributions of the 5-year accumulation factor of Cana-

dian equity balanced fund
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Figure 15: Smoothed distributions of the 10-year accumulation factor of Canadian

equity balanced fund
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Figure 16: Left tail of the distributions of the 10-year accumulation factor of Cana-

dian equity balanced fund



Appendices 77

0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3
0

1

2

3

4

5

6

7

8

9

10

One−Year Accumulation Factor

P
D

F

 

 
DVEC−MVN
DVEC−MVT
BEKK−MVN
BEKK−MVT
CCC−GARCH−N
CCC−GARCH−T
CCC−GARCH−SKT
DCC−GARCH−N
DCC−GARCH−T
DCC−GARCH−SKT

Figure 17: Smoothed distributions of the 1-year accumulation factor of Canadian

fixed income balanced fund
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Figure 18: Left tail of the distributions of the 1-year accumulation factor of Cana-

dian fixed income balanced fund
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Figure 19: Smoothed distributions of the 5-year accumulation factor of Canadian

fixed income balanced fund
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Figure 20: Left tail of the distributions of the 5-year accumulation factor of Cana-

dian fixed income balanced fund
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Figure 21: Smoothed distributions of the 10-year accumulation factor of Canadian

fixed income balanced fund
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Figure 22: Left tail of the distributions of the 10-year accumulation factor of Cana-

dian fixed income balanced fund
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Figure 23: Smoothed distributions of the 1-year accumulation factor of Canadian

neutral balanced fund
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Figure 24: Left tail of the distributions of the 1-year accumulation factor of Cana-

dian neutral balanced fund
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Figure 25: Smoothed distributions of the 5-year accumulation factor of Canadian

neutral balanced fund
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Figure 26: Left tail of the distributions of the 5-year accumulation factor of Cana-

dian neutral balanced fund



Appendices 82

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ten−Year Accumulation Factor

P
D

F

 

 
DVEC−MVN
DVEC−MVT
BEKK−MVN
BEKK−MVT
CCC−GARCH−N
CCC−GARCH−T
CCC−GARCH−SKT
DCC−GARCH−N
DCC−GARCH−T
DCC−GARCH−SKT

Figure 27: Smoothed distributions of the 10-year accumulation factor of Canadian

neutral balanced fund
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Figure 28: Left tail of the distributions of the 10-year accumulation factor of Cana-

dian neutral balanced fund
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Figure 29: Smoothed distributions of the 1-year accumulation factor of global equity

balanced fund
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Figure 30: Left tail of the distributions of the 1-year accumulation factor of global

equity balanced fund
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Figure 31: Smoothed distributions of the 5-year accumulation factor of global equity

balanced fund
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Figure 32: Left tail of the distributions of the 5-year accumulation factor of global

equity balanced fund



Appendices 85

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ten−Year Accumulation Factor

P
D

F

 

 
DVEC−MVN
DVEC−MVT
BEKK−MVN
BEKK−MVT
CCC−GARCH−N
CCC−GARCH−T
CCC−GARCH−SKT
DCC−GARCH−N
DCC−GARCH−T
DCC−GARCH−SKT

Figure 33: Smoothed distributions of the 10-year accumulation factor of global

equity balanced fund
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Figure 34: Left tail of the distributions of the 10-year accumulation factor of global

equity balanced fund
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Figure 35: Smoothed distributions of the 1-year accumulation factor of US equity

balanced fund
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Figure 36: Left tail of the distributions of the 1-year accumulation factor of US

equity balanced fund
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Figure 37: Smoothed distributions of the 5-year accumulation factor of US equity

balanced fund
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Figure 38: Left tail of the distributions of the 5-year accumulation factor of US

equity balanced fund
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Figure 39: Smoothed distributions of the 10-year accumulation factor of US equity

balanced fund
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Figure 40: Left tail of the distributions of the 10-year accumulation factor of US

equity balanced fund
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Figure 41: CTE of the investment guarantee in Canadian equity balanced fund
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Figure 42: CTE of the investment guarantee in Canadian fixed income balanced

fund
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Figure 43: CTE of the investment guarantee in Canadian neutral balanced fund
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Figure 44: CTE of the investment guarantee in global equity balanced fund
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Figure 45: CTE of the investment guarantee in US equity balanced fund


