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Abstract

In applications, the true underlying model of an observed time series is typically un-

known or has a complicated structure. A common approach is to approximate the true

model by autoregressive (AR) equation whose orders are chosen by information criterions

such as AIC, BIC and Parsen’s CAT and whose parameters are estimated by the least

square (LS), the Yule Walker (YW) or other methods. However, as sample size increases,

it often implies that the model order has to be refined and the parameters need to be

recalculated. In order to avoid such shortcomings, we propose the Regularized AR (RAR)

approximation and illustrate its applications in frequency detection and long memory pro-

cess forecasting. The idea of the RAR approximation is to utilize a “long” AR model whose

order significantly exceeds the model order suggested by information criterions, and to es-

timate AR parameters by Regularized LS (RLS) method, which enables to estimate AR

parameters with different level of accuracy and the number of estimated parameters can

grow linearly with the sample size. Therefore, the repeated model selection and parameter

estimation are avoided as the observed sample increases.

We apply the RAR approach to estimate the unknown frequencies in periodic pro-

cesses by approximating their generalized spectral densities, which significantly reduces

the computational burden and improves accuracy of estimates. Our theoretical findings

indicate that the RAR estimates of unknown frequency are strongly consistent and nor-

mally distributed. In practice, we may encounter spurious frequency estimates due to the

high model order. Therefore, we further propose the robust trimming algorithm (RTA) of

RAR frequency estimation. Our simulation studies indicate that the RTA can effectively

eliminate the spurious roots and outliers, and therefore noticeably increase the accuracy.

Another application we discuss in this thesis is modeling and forecasting of long memory

processes using the RAR approximation. We demonstration that the RAR is useful in

long-range prediction of general ARFIMA(p, d, q) processes with p ≥ 1 and q ≥ 1 via

simulation studies.
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Chapter 1

Introduction

Wikipedia defines time series as “a sequence of data points, measured typically at succes-

sive time, spaced at (often uniform) time intervals”. Time series may be continuous or

discrete. Continuous time series are recorded instantaneously and steadily; while discrete

time series are taken at regular time intervals. In this thesis, we focus on discrete time

series observed at equal intervals.

1.1 Examples of Time Series

Time series is widely applied in many fields, such as:

• Economics (e.g., Unemployment Rate, GDP, NNP, Interest rate, inflation rate)

• Business (e.g., Inventory, Sales, Quality Indices, Stock Price)

• Ecology (e.g., Air Pollution, Water Pollution, Wildlife Population)

• Astronomy (e.g., Solar Activity, Sun Spots, Star Brightness)

• Meteorology (e.g., Rainfall, Humidity, Wind Speed)

• Sociology (e.g., Crime Rates, Divorce Rates)

1



Introduction 2

In fact, examples of time series can be found everywhere in our university life: a weekly

sequence of seminar attendance in the Math Faculty, a monthly series of blood donors in

the Student Life Center, a yearly set of employment rates of the co-op program at the

University of Waterloo, etc. Figure 1.1 shows the time series plot of real daily wages in

pounds in England from 1260 to 1994.
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Figure 1.1: Real daily wages in pounds, England. 1260 - 1994

1.2 Thesis Introduction

In applications, the true underlying model of an observed time series is typically unknown

or has a complicated structure. A common approach is to approximate the true model

of the observed process by an autoregressive (AR) equation. The AR model has a simple

polynomial form while its parameter estimation techniques and corresponding asymptotic

properties are well-investigated in statistical literature (for example, see Anderson, 1971;

Brockwell and Davis, 1987; Box et al., 1994). Therefore, AR models are very attractive

for various applications that involve adaptive (online) estimation and forecasting. The

main focus of this thesis is to study the statistical properties of Regularized version of AR
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approximation and its applications to frequency estimation and modeling of long memory

processes.

A common procedure of AR approximation is to select the model order by information

criterions such as AIC, BIC and Parzen’s CAT, and then to estimate model coefficients

by the Least Square (LS), the Yule-Walker (YW) or other methods. However, in practice,

the length of observed sample is frequently unknown a priori and may indefinitely increase

while the estimation is performed in real time (or online). Hence, the model order has to

be refined upon the arrival of every new observation and, thus, all the earlier estimated

model parameters need to be recalculated from scratch, which eventually increases the

computational costs.

In order to avoid such shortcomings, we consider an alternative approach, called regu-

larized AR (RAR) approximation (Gel and Fomin, 2001; Gel and Barabanov, 2007). The

idea is to utilize a “long” AR model whose order significantly exceeds the model order

suggested by information criterions, and to estimate AR parameters using Regularized LS

(RLS) method. The RLS estimation has a recursive form of the stationary Kalman fil-

ter with a regularizer added to the sample information matrix, which enables to estimate

AR parameters with different level of accuracy, i.e. the first few model parameters are

estimated more precisely than the tail ones and the number of estimated parameters can

grow linearly with the sample size. Therefore, the repeated model selection and parameter

estimation are avoided as the observed sample increases. The regularizer may be viewed as

the smoothing operator applied to the number of the AR coefficients being estimated, and

constitutes a link to the model selection criterion. We choose the regularizer by cross vali-

dation, and our procedure is similar to the approach of thresholding selection proposed by

Bickel and Levina (2007), but in a time series context. The theoretical results indicate that

the RLS estimates of an AR(∞) model with exponentially decaying coefficients converge

almost surely at a power law rate (Gel and Barabanov, 2007). In this thesis we extend

application of the RAR to periodic processes and long memory time series as discussed

below.

Many real life time series can be modeled as a sum of sinusoids and noise, and the

practical problem of interest lies in detecting the frequency hidden in the sinusoid. One

of the most popular approaches is to approximate the generalized spectral density of a
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periodic process by an AR model, due to its simple structure and well-studied estimation

properties (Tuft and Kumaresan, 1982; Mackisack and Poskitt, 1989, 1990; Li et al., 1994;

Hannan and Quinn, 2001). Such an AR approximation can be conducted in three steps.

In first, the order of the AR model is selected by information criterias such as AIC or

BIC. In second, the model parameters are obtained by the Least Squares (LS), the Yule-

Walker or other methods. Finally, the hidden frequency is estimated by determining the

zeros of the auxiliary polynomial of the AR model, and then taking the argument of the

zero with modulus closest to the unit circle. However, in many electrical engineering,

astronomical and biomedical applications, the length of the observations is unknown a

priori and therefore frequency detection has to be performed online. In order to avoid

the repeated model order selection and parameter estimation, we extend the existing AR

approximations and apply the RAR method to estimate the frequency, which significantly

reduce the computational burden and improve accuracy of estimates. Our theoretical

findings indicate that the RAR estimates of unknown frequency are strongly consistent,

i.e. converge almost surely, and asymptotically normally distributed.

In practice, we may encounter spurious frequency estimates when the model order is

high (Stoica et al., 1987). Some of the spurious roots of the auxiliary polynomial may have

sufficiently large moduli to be mistakenly considered as the true estimates. In order to

increase the accuracy of the estimates, we further propose the robust trimming algorithm

of RAR frequency estimation, which can be conducted as follows. Firstly, we take a sub-

sample from the observed data sample as a training set (usually the first 1/3 of the sample)

and apply the RAR frequency estimation to the training set using different regularizing

parameters. Then, we construct a confidence interval (CI) of estimated frequencies based on

different regularizers, as well as perform cross validation for selecting an optimal regularizer.

Finally, we apply the RAR frequency estimation to the entire observed data sample using

the optimal regularizing parameters but only taking into account the frequency estimates

falling within the pre-determined CI. Our simulation studies indicate that such a robust

trimming of frequency estimates can effectively eliminate the spurious roots and outliers,

and thus noticeably increase the accuracy of frequency estimates.

Another application we discuss in this thesis is modeling and forecasting of long mem-

ory processes using RAR. Long memory time series are characterized by the property that
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dependence between distant observations is small but non-negligible and decays polynomi-

ally. Hence, although the long memory process is still weakly stationary, its sum of serial

correlations diverges, and a more sophisticated modeling techniques are hence required.

Many different approaches are proposed to modeling of long range dependent (LRD) time

series (Beran, 1994; Bailie, 1996; Engle, 1995; Nelson, 1991). However, since this the-

sis is mainly devoted to linear stochastic models, we particularly focus on a linear class of

models for LRD, namely autoregressive fractionally integrated moving average (ARFIMA).

Forecasting from an ARFIMA model includes parameter estimation based on non-linear

optimization and a subsequent representation as a truncated AR model, which leads to

high computational burden. Alternatively one can approximate the ARFIMA model by

an AR model from the very beginning and, thus, skip the non-linear optimization param-

eter estimation step. The LRD property indicates that even far apart observations are

somewhat correlated, hence, the approximating AR model is usually to be of high order.

Most existing literature address modeling the subcases of ARFIMA(p, d, q), i.e. FI(0, d, 0),

ARFI(1, d, 0) and FIMA(0, d, 1), by “long” AR models (Ray, 1990; Ray, 1993; Ray and

Crato; 1996, Poskitt, 2006). We extend these results to the general ARFIMA(p, d, q) pro-

cesses with p ≥ 1 and q ≥ 1, and our simulation study prove the RAR approximation is

useful in long-range prediction.

1.3 Main Contributions

The main contributions of this thesis include:

1. application of the Regularized AR approximation to estimation of unknown frequen-

cies in periodic processes and, hence, extension of the results of Mackisack and Poskitt

(1991), i.e. in terms of the increasing maximum possible order for AR approxima-

tion, and the results of Gel and Barabanov (2007), i.e. in terms of weakening the

restriction on the decay of AR coefficients;

2. derivation of the almost sure convergence of RAR frequencies estimates to the true

unknown frequencies;
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3. investigation of asymptotic distributional properties of RAR frequency estimates,

i.e. show that RAR estimates are asymptotically normally distributed and the cor-

responding variance-covariance matrix is obtained.

4. a new robust trimming algorithm to eliminate spurious roots and outliers, which

noticeably increase the accuracy of the frequency estimates for processes with a low

signal-to-noise ratio.

5. application of the Regularized AR approximation to general ARFIMA(p, d, q) pro-

cesses with p ≥ 1 and q ≥ 1 and demonstration that RAR is useful in long-range

prediction via simulation studies.

1.4 Thesis Outline

This thesis is organized as follows. In Chapter 2, we introduce some fundamental defini-

tions and concepts in time series analysis that are essential for later discussions, such as

autocovariance, stationarity, invertibility and spectral density. Also, we take an overview

of the basic linear time series models, including the AR, the MA, and the ARMA, etc. At

the end of chapter, we discuss some of the most commonly applied model order selection

criterions and parameter estimation techniques.

In Chapter 3, we introduce the RAR approximation which fits an “long” AR model to

the process and estimates the AR parameters using the RLS method (Gel and Barabanov,

2007). We demonstrate the properties of such RAR approximation by its application in

ARMA model identification. Moreover, we discuss the almost sure convergence of the RLS

estimates of an AR(∞) model with exponentially decaying coefficients. The theoretical

results of this chapter serve as the motivation and foundation for the later chapters.

In Chapter 4, we apply the RAR method to approximate the generalized spectral den-

sity of a sinusoidal process in order to detect the hidden frequency. The strong consistency

and asymptotic normality are proved for the RAR frequency estimates. Moreover, we pro-

pose a robust trimming algorithm of RAR frequency estimation due to the spurious roots

and outliers that we encountered in the simulation studies. We show that the new robust

trimming algorithm noticeably increase the accuracy of the estimates, especially for cases
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with a low signal-to-noise ratio.

In Chapter 5, we briefly review some of the existing methods for the ARFIMA estima-

tion and discuss an alternative technique, in particular, modeling the ARFIMA process by

“long” AR models to approximate its long range dependence structure. We demonstrate

that such AR approximation is useful in long-range prediction by simulation studies.

We summarized the main results in Chapter 6 and conclude the thesis with a a outline

of future work.



Chapter 2

Linear Stochastic Models

In this chapter, we introduce some fundamental concepts in linear time series analysis that

are essential for our later discussions. We begin with an excursus to stochastic processes

and concepts of stationarity. After defining autocovariance, autocorrelation and partial

autocorrelation functions, we discuss elements of spectral analysis and take an overview of

the most commonly used linear models, including AR, MA, ARMA and ARIMA. Then,

we proceed with discussion of model order selection and parameter estimation techniques.

2.1 Stochastic Process and Stationarity

2.1.1 Stochastic Process

A stochastic process is a statistical phenomenon that evolves in time according to proba-

bilistic law, and the time series to be analyzed can be considered as a realization of such

a stochastic process. Formally, we define the two concepts as follows.

Definition 2.1.1 (Stochastic Process). Suppose T is an index set. A stochastic process is

a family of random variables {Xt(ω), t ∈ T, ω ∈ Ω} defined on a probability space (Ω,F ,P).

In time series analysis, the index set T is a set of time points. Usually, T = R, R+, Z or Z+.

In this thesis, we consider T = Z, where Z = {0,±1,±2, ...}. Since Xt is a random vari-

8



Linear Stochastic Models 9

able, for each fixed t ∈ T , Xt is a function Xt(·) on Ω; while for each fixed ω ∈ Ω, X.(ω)

is a function on T .

Definition 2.1.2 (Realization of a Stochastic Process). The function Xt(·) for fixed ω ∈ Ω

and t ∈ T is called a realization of the stochastic process {Xt(ω), t ∈ T, ω ∈ Ω}.

A realization {Xt, t ∈ T0} for T0 ⊆ T can be regarded as a sample from an infinite

population {Xt, t ∈ T}. In practice, we make inference about {Xt, t ∈ T} based only on a

single observed sample.

2.1.2 Stationarity

In time series modeling, a concept of stationarity plays an important practical and theo-

retical role. A (weakly) stationary process remains in equilibrium about a constant mean

level, while non-stationary processes may have nonconstant mean, time varying variability

or both of these properties. Thus, before deciding which model approach to take, one needs

to check stationarity of the observed process. In this section, we define concepts of strict

and weak stationarity.

Definition 2.1.3 (Strict Stationarity). The time series {Xt, t ∈ Z} is said to be strictly

stationary if (Xt1 , ..., Xtk) and (Xt1+h, ..., Xtk+h) have the same joint distribution for all

positive integers k and for all t1, ..., tk, h ∈ Z.

Strict Stationarity requires the joint distributions of any subset of {Xt, t ∈ Z} do not

change with time. Intuitively, the plots over two equal-length time intervals of a observed

time series need to display similar statistical features.

A very important quantity in time series analysis is the autocovariance function (ACVF),

which measures the dependence between different observations of process {Xt, t ∈ Z}.

Definition 2.1.4 (ACVF). If {Xt, t ∈ Z} is a process such that V ar(Xt) < ∞ for each

t ∈ Z, then the ACVF γ(·, ·) of {Xt} is defined by

γ(r, s) = Cov(Xr, Xs) = E[(Xr − EXr)(Xs − EXs)], r, s ∈ Z. (2.1)
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The definition of weak stationarity of a time series is based on the mean and ACVF of

a stochastic process.

Definition 2.1.5 (Weak Stationarity). The time series {Xt, t ∈ Z} is said to be weakly

stationary if

1. EX2
t < ∞, for all t ∈ Z,

2. EXt = µ < ∞, for all t ∈ Z, and

3. γX(r, s) = γX(r + t, s + t), for all r, s, t ∈ Z.

Strict stationarity, together with the assumption on finite first and second moments,

implies weak stationarity. However, the converse is not true in general, except for Gaussian

process. All the joint distributions of a Gaussian process are multivariate Gaussian, so weak

stationarity is equivalent to strict stationarity. In this thesis, we assume weak stationarity

for all stationary processes, unless specified otherwise.

If {Xt, t ∈ Z} is stationary, then γX(r, s) = γX(r−s, 0), for r, s ∈ Z. Usually, we reduce

the ACVF to a one-variable form if {Xt} is stationary. For all t, k ∈ Z, the ACVF at lag

k is defined as

γk = Cov(Xt+k, Xt) (2.2)

and the autocorrelation (ACF) at lag k is defined as

ρk = Corr(Xt, Xt+k) =
Cov(Xt, Xt+k)√

V ar(Xt)V ar(Xt+k)
=

γk

γ0

(2.3)

In addition to the autocorrelation between Xt and Xt+k, it is equally important to

investigate the correlation between Xt and Xt+k after removing their mutual linear depen-

dency on the intervening variables Xt+1, Xt+2, ..., Xt+k−1, which is indicated by the partial

ACF (PACF): Corr(Xt, Xt+k|Xt+1, Xt+2, ..., Xt+k−1). The idea is presented precisely in the

following definition.

Definition 2.1.6 (PACF). The PACF α. of a stationary time series {Xt, t ∈ Z} is defined

by

α1 = Corr(X1, X2) = ρ1 (2.4)
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and

αk = Corr(Xk+1 − Psp{1,X2,...,Xk}Xk+1, X1 − Psp{1,X2,...,Xk}X1), k ≥ 2, (2.5)

where

• sp{1, X2, . . . , Xk} is the closed span of any subset {1, X2, . . . , Xk} of a Hilbert space,

• define S = {0, 2, . . . , k}, X0 = 1. PSP{1,X2,...,Xk}Xk+1 =
∑

i∈S aiXi, where a0, a2, . . . , ak

satisfy 〈∑i∈S aiXi, Xj〉 = 〈Xk+1, Xj〉, j ∈ S, and PSP{1,X2,...,Xk}X1 =
∑

i∈S biXi,

where b0, b2, . . . , bk satisfy 〈∑i∈S biXi, Xj〉 = 〈X1, Xj〉, j ∈ S.

The theoretical values of ACVF, ACF and PACF can be calculated exactly if all possible

realizations of a stochastic process are known. Otherwise, they can be estimated if multiple

independent realizations are available. However, in most applications, we only have one

realization of the process to make inference from. Therefore, we analyze their sample

quantities in practice. The formulae used to calculate sample ACVF, ACF and PACF will

be stated in later chapters.

2.1.3 White Noise Processes

White noise is a basic building block of more complicated time series models. A process

{εt} is defined as white noise if it is stationary, and the εt’s are mutually uncorrelated, for

all t ∈ Z. We usually assume {εt} has zero mean.

Definition 2.1.7 (White Noise). The process {εt} is said to be white noise with mean 0

and variance σ2, written

{εt} ∼ WN(0, σ2) (2.6)

if and only if {εt} has zero mean and ACF

γk =





σ2 k = 0

0 k 6= 0
(2.7)

A white noise is a Gaussian process if its joint distribution is normal. White noise is not

linearly forecastable in the sense that the best linear forecast of εt+1 based on εt, εt−1, . . .

is zero and does not depend on the present and past observations.
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2.2 Spectral Density

The analysis of stationary time series {Xt, t ∈ Z} by means of its spectral representation

is often referred as frequency domain analysis. Frequency or spectral methods for time

series are especially popular in physics and engineering communities. Frequency domain

can be considered as a dual space to time domain, and all concepts from one domain have

a counterpart in another domain. Correspondingly, there is a spectral representation of

ACVF of {Xt}, in terms of spectral density. Therefore, the frequency domain analysis

of {Xt} based on the spectral density is equivalent to the time domain analysis based

on ACVF. Thus, typically a choice of frequency or time domain modeling techniques is

subjective to a data analyst and a particular application.

Suppose that {γh} is the ACVF sequence of the stationary process {Xt}, then {γh}
is nonnegative definite due to the following argument. Without loss of generality, assume

{Xt} has constant mean zero. Then for any sequence of constants a1, ..., an

0 ≤ V ar(
n∑

h=1

ahXt−h) = E[
n∑

h=1

ahXt−h]
2 = E[

n∑

h=1

ahXt−h

n∑
s=1

asXt−s] =
n∑

h,s=1

ahγh−sas.

Since {γh} is nonnegative definite, the Herglotz Theorem guarantees the existence of

a right-continuous, non-decreasing spectral distribution function F (ω) defined on [−π, π],

such that {γh} is the Fourier transform of the measure corresponding to F :

γk =

∫ π

−π

eikω dF (ω). (2.8)

Definition 2.2.1 (Spectral Density). If F (ω) is everywhere continuous and differentiable,

with F ′(ω) = f(ω), then f is called spectral density and

γk =

∫ π

−π

eikωf(ω) dω. (2.9)

If
∞∑

h=−∞
|γh| < ∞, the above Fourier transform can be inverted to give an explicit form

for spectral density:

f(λ) =
1

2π

∞∑

k=−∞
γke

−ikω. (2.10)
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2.3 Linear Models

In this section, we discuss a set of most commonly utilized linear models such as AR, MA,

ARMA and ARIMA. We begin with introducing the backward shift operator B and the

backward difference operator ∇, which appear extensively in the model definitions.

Definition 2.3.1 (Backward Shift Operator). The backward shift operator B is defined as

BkXt = Xt−k, k ∈ Z. (2.11)

In particular, IXt = B0Xt = Xt.

Definition 2.3.2 (Backward Difference Operator). The backward difference operator ∇ is

defined as

∇kXt = (1−B)kXt, k ∈ Z. (2.12)

In particular, ∇0Xt = Xt.

2.3.1 Stationary Models

Stationary models assume that the process remains in equilibrium about a constant mean

level. The AR and MA models are the two most fundamental stationary models in time

series analysis. The AR model is simply a linear regression of the current value of the

process against the previous values of the process, i.e, the variable Xt is regressed on the

past values of itself.

Definition 2.3.3 (AR Processes). An AR(p) process, p ∈ Z , is defined as

φ(B)Xt = εt (2.13)

where

• {εt} ∼ WN(0, σ2),
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• φ(λ) = 1− φ1λ− . . .− φpλ
p is a polynomial in B of degree p.

The ACF of a stationary AR(p) process tails off as a mixture of exponential decays,

and the PACF vanishes after lag p. Figure 2.1 shows a time series of length 1000 generated

by an AR(2) process Xt = 0.3Xt−1 + 0.2Xt−2 + εt, and corresponding sample ACF and

PACF. Due to its simplicity, the AR models are very attractive in various applications. In

particular, the main focus of this thesis is to use the AR model to approximate different

types of processes.

Theoretically, the MA model is a linear regression of current value of the series against

the random noise of the past values of the series.

Definition 2.3.4 (MA Processes). A MA(q) process, q ∈ Z, is defined as

Xt = θ(B)εt, (2.14)

where

• {εt} ∼ WN(0, σ2),

• θ(λ) = 1− θ1λ− . . .− θpλ
p is a polynomial in B of degree q.

The ACF of a MA(q) process cuts off after lag p, and the PACF tails off as a mixture

of exponential decays. Figure 2.2 shows a process of length 1000 generated by a MA(2)

process Xt = εt + 0.3εt−1 + 0.2εt−2, and corresponding sample ACF and PACF. In general,

the MA(q) process has a finite memory, in the sense that observations spaced more than

q time units apart are uncorrelated.

Wold (1938) proved a fundamental result in time series: any zero-mean purely nondeter-

ministic stationary process {Xt, t ∈ Z} possesses an infinite MA representation (MA(∞)).

Such processes are called causal AR processes.

Definition 2.3.5 (Causality). A time series Xt is causal if and only if it has an MA(∞)

representation of the form

Xt = εt + ψ1εt−1 + ψ2εt−2 + . . . =
∞∑

j=0

ψjεt−j (2.15)

where ψ0 = 1, {εt} ∼ WN(0, σ2), and
∑∞

j=0 ψ2
j < ∞.
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A simulated AR(2) process of length 1000 with coefficients (0.3, 0.2)
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Figure 2.1: An AR(2) process and its ACF, PACF plots

By Definition 2.3.5, an AR(p) process is causal if it can be represented in an MA(∞)

form, i.e.,

Xt =
1

φ(B)
εt = ψ(B)εt =

∞∑
j=0

ψjεt−j, (2.16)
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A simulated MA(2) process of length 1000 with coefficients (0.3, 0.2)
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Figure 2.2: A MA(2) process and its ACF, PACF plots

such that
∑∞

j=0 ψ2
j < ∞. To achieve this, all roots of φ(λ) = 0 must lie outside the unit

circle. Thus, a finite order causal AR process is equivalent to an infinite MA process.

Definition 2.3.6 (Invertibility). A time series Xt is invertible if and only if it has an
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infinite-order AR (AR(∞)) representation of the form

Xt = π1Xt−1 + π2Xt−2 + ... + εt =
∞∑

j=1

πjXt−j + εt, (2.17)

where πj are constants such that
∑∞

j=1 π2
j < ∞.

An MA(q) process is always causal, but invertible only if it can be re-written in an

AR(∞) representation, i.e.,

1

θ(B)
Xt = π(B)Xt =

∞∑
j=0

πjXt−j = εt (2.18)

such that
∑∞

j=1 π2
j < ∞ is satisfied. To achieve this, all roots of θ must lie outside the unit

circle. Thus, a finite order invertible MA process is equivalent to an infinite AR process.

In summary, there is a dual relationship between AR(p) and MA(q) processes. A finite

order causal AR(p) process corresponds to an infinite order MA process, and a finite order

invertible MA(q) process corresponds to an infinite order AR process. The duality also

exits in ACF and PACF. The AR(p) process has its ACF tailing off and PACF cutting off,

but the MA(q) process has its ACF cutting off and PACF tailing off.

Although a causal and invertible process can be represented in either AR or MA forms,

the number of model parameters may become large, which could possibly reduce the ef-

ficiency in estimation. Another alternative is to combine both AR and MA parts in one

model, in order to achieve great flexibility in fitting actual time series.

Definition 2.3.7 (ARMA Processes). An ARMA(p, q) process, p, q ∈ Z, is defined as

φ(B)Xt = θ(B)εt, (2.19)

where

• {εt} ∼ WN(0, σ2),

• φ(λ) and θ(λ) are polynomials in B of degree p and q respectively;
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• φ(λ) and θ(λ) have no common factors.

ACF of an ARMA(p, q) process tails off as a mixture of exponential decays after first

q − p lags. In particular, ACF has q − p + 1 initial values if p ≤ q. The PACF also

tails off after first p − q lags. It eventually behaves like the PACF of pure MA process.

Figure 2.3 shows a time series of length 1000 generated by an ARMA(2,1) process Xt =

0.2Xt−1 + 0.1Xt−2 + 0.3εt−1 + εt, and corresponding sample ACF and PACF.

Since AR(p) and MA(q) processes are the two basic building blocks of an ARMA(p, q)

process, their causality and invertibility conditions still hold in this general case. An ARMA

(p, q) process is causal if all roots of φ(λ) = 0 lie outside the unit circle, and is invertible if

all the roots of θ(λ) = 0 lie outside the unit circle. Note that the causality and invertibility

are properties not of the process {Xt} alone but rather of the relationship between the two

processes {Xt} and {εt} appearing in the ARMA equations. If an ARMA(p, q) process is

causal, then it can be represented in MA(∞) form as

Xt =
θ(B)

φ(B)
εt = ψ(B)εt =

∞∑
j=0

ψjεt−j, (2.20)

where
∑∞

j=0 ψ2
j < ∞. If an ARMA(p, q) process is invertible, then it can be represented

by AR(∞) form

φ(B)

θ(B)
Xt = π(B)Xt =

∞∑
j=0

πjXt−j = εt, (2.21)

where
∑∞

j=0 π2
j < ∞. The properties of AR, MA and ARMA processes are summarized in

Table 2.1.

2.3.2 Nonstationary Models

In reality, most time series exhibit non-stationary behavior and typically do not vary about

a constant mean. In such cases, we should consider non-stationary models. An ARIMA

model, a generalization of the ARMA model, incorporates a wide range of non-stationary

processes. The key idea of an ARIMA process is to difference a non-stationary process

finitely many times in order to achieve stationarity.
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A simulated ARMA(2, 1) process of length 1000 with coefficients ar=(0.2, 0.1), ma=0.3
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Figure 2.3: An ARMA(2,1) process and its ACF, PACF plots

Definition 2.3.8 (ARIMA Models). An ARIMA(p, d, q) process, p, d, q ∈ Z, is defined as

φ(B)∇dXt = θ(B)εt, (2.22)

where

• {εt} ∼ WN(0, σ2),
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AR(p) MA(q) ARMA(p, q)

Causality Condition Roots of φ(λ) = 0
lie outside the unit
circle

Always causal Roots of φ(λ) = 0
lie outside the unit
circle

Invertibility
Condition

Always invertible Roots of θ(λ) = 0
lie outside the unit
circle

Roots of θ(λ) = 0
lie outside the unit
circle

AR representation φ(B)Xt = εt,
finite

θ(B)−1Xt = εt,
infinite

θ(B)−1φ(B)Xt = εt,
infinite

MA representation Xt = φ(B)−1εt,
infinite

Xt = θ(B)εt,
finite

Xt = φ(B)−1θ(B)εt,
infinite

ACF tails off as a
mixture of
exponential decays

cuts off after lag q tails off as a
mixture of
exponential decays
after first q − p lags

PACF cuts off after lag p tails off as a
mixture of
exponential decays

tails off as a
mixture of
exponential decays
after first p− q lags

Table 2.1: Summary of Properties: AR, MA and ARMA processes

• d is differencing parameter,

• φ(λ) and θ(λ) are polynomials in B of degree p and q respectively,

• φ(λ) and θ(λ) have no common factor,

• φ(λ) 6= 0 for |λ| ≤ 1.

The ARIMA (p, d, q) process Xt is (weakly) stationary if and only if d = 0. In such

case Xt reduces to an ARMA(p, q) process. Figure 2.4 shows a time series of length 1000

generated by an ARIMA(2,1,1) process defined by (1 − B)(Xt − 0.2Xt−1 − 0.1Xt−2) =

0.3εt−1 + εt, and the corresponding series after single differencing. The original series
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exhibits non-stationary behavior, but becomes (weakly) stationary after being differenced

once.

A simulated ARIMA(2, 1, 1) process
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Figure 2.4: An ARIMA(2,1,1) process and its first differencing

2.4 Model Selection

A time series analysis should always begin with a preliminary plot of the data, as an indica-

tion of the statistical features that may guide our analysis. Through a careful examination
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of the plot, we can often obtain a good idea about whether the series contains a trend, sea-

sonality, nonconstant variance and other non-stationary phenomena. The mains tools for

preprocessing data are variance-stablizing transformations and differencing. If the variance

of the data is not constant, we may apply logarithmic or Box-Cox’s power transformations.

If the data displays trend and seasonality, which also can be indicated by slow decaying

and periodic ACF, we should consider differencing. In practice, we do not difference data

more than twice.

Once the transformed series can potentially be fitted to a causal invertible ARMA

model, we need to select appropriate model orders p and q. Using ACF and PACF, we can

follow the guidelines from section 2.3,

• An AR(p) process is identified from the property that all values of the PACF after

the p-th are negligible.

• A MA(q) process is identified from the property that all values of the ACF after the

q-th are negligible.

The sample ACF and PACF approximately have standard deviation 1/
√

n, where n

is the number of observations in the sample. If the sample ACF and PACF lie between

[−2/
√

n, 2/
√

n], they can be regarded as negligible. Intuitively, the PACF plot of an AR(p)

process has p initial spikes and then fall between the bounds [−2/
√

n, 2/
√

n]; while its ACF

plot tails off as a mixed exponential decay. Conversely, the ACF plot of an MA(q) process

has q initial spikes and then fall between the bounds [−2/
√

n, 2/
√

n]; while its PACF plot

tails off as a mixed exponential decay. We may identify the model order depending on the

characteristics of ACF and PACF plots. Table 2.1 summaries the important results for

selecting p and q using the ACF and the PACF.

However, ACF and PACF plots might suggest multiple adequate models. Based on

those candidate models, we need to take further into account the trade-off between bias

and variance in order to choose the best suited model. Thus, numerous criteria for model

comparison have been developed in the literature for model selection. Below we discuss

some of the most popular techniques.
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Akaike (1974) introduced Akaike Information Criterion (AIC), which is an asymptoti-

cally unbiased estimator of the Kullback-Leibler distance. AIC is defined as

AIC = −2 log(L) + 2k (2.23)

where L is the maximum likelihood function for the estimated model and k is the number

of parameters in the model. AIC attempts to find the model that best explains the data

with a minimum parameters. The two terms in AIC equation represent the goodness of

fit and number of parameters. AIC not only rewards goodness of fit, but also includes a

penalty for increasing model parameters. The optimal model is the one with minimum

AIC.

Shibata (1976) shows that AIC is asymptotically efficient in large samples, but it might

drastically overfit in small samples. Hurvich and Tsai (1989) prove that AIC can be very

biased as an estimate of the Kullback-Leibler distance when a sample size is small, and

propose a corrected version of AIC, namely AICc, defined as follows

AICc = AIC +
2k(k + 1)

T − k − 1
(2.24)

where T is the sample size. AICc converges to AIC as T → ∞, so it inherits the asymp-

totically efficiency property of AIC in large samples but significantly outperforms the AIC

in small samples, in the sense that AICc is an almost unbiased estimate of the Kullback-

Leibler distance.

Schwartz (1978) suggested a Bayesian Information Criterion (BIC), defined as

BIC = −2 log(L) + k log T (2.25)

where L is the maximum likelihood function for the estimated model, k is the number of

parameters in the model, and T is a sample size. BIC penalizes the increase of parameters

more strongly than AIC. The optimal model is the one with a minimal BIC.

Parzen (1977) proposed a model selection criterion CAT for AR(p) models, defined as

CAT (p) =




−(1 + 1

T
), p = 0,

1
T

∑p
j=1

1
σ̂2

j
− 1

σ̂2
p
, p = 1, 2, ...

(2.26)
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where T is a number of observations, σ̂2
j is the unbiased estimate of σ2 when an AR(j) is

fitted to the data. The optimal order p is chosen so that CAT(p) achieves its minimum.

Parzen’s CAT is asymptotically efficient.

We have discussed above only several most commonly used model selection criteria.

There are many other criteria in the literature, based on either residuals or forecasting

error, such as final prediction error (FPE) (Akaike, 1969), Mallows CP (Mallows, 1973),

Hannan and Quinn criterion (HQ) (Hannan and Quinn, 1979), PLS (Rissanen, 1984), KIC

(Cavanaugh, 1999) and others. See Wei (1992), McQuarrie and Tsai (1998), Burnham and

Anderson (2002) for more overview and detailed discussion.

2.5 AR Parameter Estimation

After identifying a tentative model, the next step is to estimate the model parameters.

The main focus of this thesis is on AR models, hence, so we discuss several most popular

AR parameter estimation approaches.

Suppose {Xt} is an AR(p) process:
∑p

k=0 φkXt−k = εt, and assume φ0 = 1. Our goal is

to estimate φ̃ = (φ1, ..., φp)
′.

Maximum Likelihood Estimation (MLE)

Assume that εt are independently and normally distributed random variables with E[εt] = 0

and E[ε2
t ] = σ2. Let X̃t = (Xt, ..., Xt−p+1)

′. Then the ML estimates of φ̃ are obtained by

maximizing the likelihood function

L(φ̃, σ) =
1

(2πσ2)T/2
exp

{
− 1

2σ2

T∑
t=1

(Xt + φ̃′X̃t−1)
2

}
. (2.27)

The MLE offers the best prospect of giving efficient parameter estimates, whose vari-

ances achieves Cramér-Rao lower bounds. The ML estimators are asymptotically consistent

and normally distributed. However, there are certain drawbacks. The ML method is based

on a non-linear optimization that requires good initial values. Such estimation is compu-

tationally very expensive, and poor choices of initial values might result in meaningless
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estimates. Also, the distribution of εt is often unknown a priori which implies that a func-

tional form of L is also unavailable. In practice, most existing methods do not use exact

maximum likelihood but various approximations thereto, such as quasi-MLE and Whit-

tle’s approximation. A detailed discussion can be found in Brockwell and Davis (1987),

Anderson (1971).

Yule-Walker (YW) Estimation

Assume that εt is WN(0, σ2). Let γp = (γ0, γ1, ..., γp)
′ be the autocovariances of the process

Xt. Then the Yule-Walker (YW) estimates of φ̃ are obtained by solving the YW system

of linear equations:

Rpφ̃ = γp

σ2 = γ0 − φ̃′γp

(2.28)

where Rp is the (p + 1)× (p + 1)-Toeplitz covariance matrix [γi−j]
p
i,j=1. In practice, Rp and

γp are replaced by sample estimates.

The YW estimation is distributional-free and has a simple computational procedure

since the model parameters are obtained by only solving p linear equations. Also, the

parameters estimated by the YW method provide the best linear forecast of Xt based

on Xt−1, ..., Xt−p, which yields the minimum mean square error of prediction. However,

the YW method, based on sample moments, is typically far less efficient than ML. In

asymptotics, the YW estimates possess approximately the same distribution properties as

the corresponding ML estimates.

Least Square (LS) Estimation

Assume that εt is WN(0, σ2). The Least Squares (LS) estimates of φ̃ are obtained by

minimizing a sum of square errors. The LS estimates can be obtained from the following

recursive equations and hence, can be viewed as a stationary Kalman filter (Abraham and

Ledolter, 2005):

φt+1 = φt + γtΦt(Xt+1 − Φ′
tφt)

γt+1 = γt − γtΦt+1(1 + Φ′
t+1γtΦt+1)

−1Φ′
t+1γt

(2.29)
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where Φt = (Xt, Xt−1, . . . , X1)
′.

A modification of the LS equations (2.29) for estimation of ARMA models is known

as the Extended Least Squares (ELS) method (Panuska, 1969; Young et al, 1970; Ljung,

1977) method. The iterative procedure significantly reduces the computational burden

and enables to utilize such recursive estimates for on-line modeling and forecasting, i.e.,

when the size of observations is unknown a priori. Generally, the LS estimates have larger

variances than the ML estimates but possess similar asymptotic properties, i.e., the LS

estimates are consistent and normally distributed when sample size is large. We will

discuss the regularized version of the LS estimation in the next chapter.



Chapter 3

Regularized AR approximation for

ARMA process

The assumption that an observed process follows a finite AR, MA or ARMA model is rarely

justified in practice. A common approach is to approximate the true model by finite AR

models whose orders are selected by information criterions such as AIC, BIC and whose

parameters are estimated by LS, YW or other methods (Akaike, 1969, 1970; Parzen, 1974).

However, as sample size increases, it often implies that the model order should be refined

and hence all the parameters need to be recalculated. In order to avoid such shortcomings,

we introduce an alternative approach: fitting a “long” AR model to the process and esti-

mating its parameters using the Regularized LS (RLS) method (Gel and Fomin, 2001, Gel

and Barabanov, 2007). Regularizer in the LS method enables to estimate AR parameters

with different level of accuracy. In particular, the first few model parameters are estimated

more precisely than the tail ones, and the number of estimated coefficients grows with

the sample size. Therefore, the repeated model selection and parameter estimation are

avoided as the observed sample increases. In this chapter we illustrate such an approach

in the context of identifying ARMA processes and sketch the proofs on almost sure con-

vergence of the RLS estimates for AR(∞) model with exponentially decaying coefficients,

as presented by the Gel and Barabanov (2007). The main contribution of this thesis is an

extension of the RLS method to a more general class of time series, i.e. periodic and long

memory processes, and thus the theoretical results of this chapter serve as motivation and

27
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foundation for main findings of the following two chapters.

3.1 Problem Statement

Consider an ARMA(p, q) process, p, q ∈ Z,

φ(B)yt = θ(B)εt, t ∈ T, (3.1)

where

• {εt} is the martingale difference E(εt|Ft−1) ≡ 0, and E(ε2
t |Ft−1) = σ2 a.s., where

Ft−1 is the σ-algebra generated by r.v. (ε1, ε2, . . . , εt−1), supt E(ε4
t ) < ∞;

• φ(λ) and θ(λ) are polynomials in B of degree p and q respectively;

• φ(λ) and θ(λ) have no common factor.

There exist various methods for parameter estimation of φ and θ that can be generally

classified to likelihood-based and sum-of-square-based techniques. The most commonly

used method is the Maximum Likelihood Estimation (MLE). As we discussed in the previ-

ous chapter, the ML estimates achieve the Cramér-Rao lower bound and are asymptotically

consistent and normally distributed (Brockwell and Davis, 1987). However, ML assumes

that {εt} are i.i.d. normal random variables, which is rarely justified in practice. Also,

maximizing the likelihood function is a non-linear optimization that requires good initial

values. Such estimation procedure is computationally very expensive and poor choices of

initial values might result in meaningless estimates. In the case of on-line estimation, i.e.,

when a size of observations is unknown a priori, the MLE re-estimates all model parameters

non-recursively upon arrival of every new observation, which is not feasible in practice due

to high computational routine and possible processing delays.

The Extended LS (ELS) method in a form of a stationary Kalman filter, discussed

in the previous chapter, has the advantages of computational efficiency, reduced storage

requirements and minimum processing delays, which make such estimation ideal for on-

line modeling. Agafanov et al.(1982), Fomin (1985), Ljung and Söderströn (1983) show

the almost sure convergence of the ELS method for an ARMA equation with exponentially
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decaying AR coefficients and the positive realness condition on the transfer function, i.e.,

|θ(λ)− 1| < 1 for |λ| = 1. Fomin (1995) extended the results to the case of weakly stable

ARMA equation, i.e. with roots of an AR polynomial along the unit circle, under the same

assumptions. However, the positive realness condition of the transfer function is difficult to

verify in practice, and hence there exists no assurance that ELS converge with probability

1, which can be important in many applications, e.g. electrical engineering.

Since causal invertible ARMA process can be transformed into an AR(∞) model, an

alternative approach for ARMA estimation is to obtain coefficients of the approximating

AR(p) model with sufficiently large p and then use the Pade method or stochastically

balanced truncation (SBT) to convert the AR parameters into ARMA parameters.

Assume the ARMA(p, q) process is causal invertible. Then ARMA(p, q) can be trans-

formed into an AR(∞) process as follows:

a(B)yt = εt, where a(B) =
φ(B)

θ(B)
=

∞∑
j=0

ajB
j. (3.2)

Such a class of models includes (but not limited to) all causal invertible ARMA(p, q)

models. In practice, we usually truncate AR(∞) and consider a finite AR(p) approx-

imation, where p is chosen by information criterions such as AIC (Akaike, 1974), BIC

(Schwartz, 1978), CAT (Parzen, 1977) or others. Typically the model order p is selected

as p ∼ ln T . After p is determined, the parameters of the AR(p) model are estimated

by LS, YW, the method of stochastic approximation (MSA), MLE, etc. The asymptotic

properties of approximating AR parameter estimates are well investigated and date back to

Mann and Wald (1943). (For detailed discussion and overview see, for example, Anderson

(1971), Said and Dickey (1984), Gel and Fomin (1998), Brockwell and Davis (1987), Wei

(1990) and Mari et al.(2000) and references therein.) However, as sample size increases, it

often implies that the model order is to be refined and, hence, all the parameters need to

be recalculated, which dramatically increases the computational burden.

In this chapter, we investigate the limiting case for approximating by finite AR(p)

model, namely an AR(∞) model. In the infinite dimensional case, the usual LS estimator

is not consistent in the sense that the loss function does not have a unique minimum.

Therefore, the Regularized LS (RLS) (Gel and Fomin, 2001, Gel and Barabanov, 2007)

method is applied to identifying AR(∞) models. The utilization of the regularizer in the
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LS estimation procedure guarantees the uniqueness of the minimum of the loss function in

`2 norm and ensures that the obtained vector of parameter estimate lies in `2 space. The

RLS estimates for AR(∞) models converges almost surely at a power law rate.

Based on the theoretical results of the RLS estimates of AR(∞) model, we propose

a regularized AR (RAR) approximation to identify causal invertible ARMA(p, q) models,

which includes the following two steps:

• Step 1: in practice, we approximate the AR(∞) model by a “long” AR model whose

order significantly exceeds the order suggested by information criterions, and may be

potentially equal to the number of observations. The parameters of such a “long”

AR model are estimated by the RLS method. The idea behind this approach is

that the model parameters are actually estimated with different level of accuracy

which is controlled by a specially chosen regularizer, and the selection of regularizer

is equivalent to the selection of model order using information criterions.

• Step 2: estimate the underlying ARMA parameters by the Pade method, which ap-

proximates a continuous function by ratio of two polynomials and determines the

numerator and denominator coefficients (Baker and Graves-Morris, 1996), or SBT,

which transforms a system to a balanced form and then applies the principal compo-

nent analysis to the partial correlation coefficients of the obtained balanced system

(Desai and Pal, 1984; Mari et al., 2000).

Hence, the RAR approximation enables to avoid repeated model selection and parame-

ter estimation when the observed sample increases and hence to reduce the computational

cost in online modeling and forecasting. The regularizer may be viewed as the smoothing

operator applied to the number of the AR coefficients being estimated, and constitutes a

link to the model selection criterion, such as AIC and BIC. We may choose the regularizer

by cross validation, which is similar to the approach of thresholding selection proposed by

Bickel and Levina (2007), but in a time series context. We discuss the RLS estimation in

detail in the next section.
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3.2 Regularized LS Estimation

Consider the AR(∞) model in (3.2)

a(B)yt = εt, t = 1, 2, ...

Our goal is to estimate the unknown parameters of the power series a(z) = 1 + a1z +

a2z
2 + . . ., where a(z) is assumed to be analytic and has no zeros in a certain neighborhood

of the unit circle. Initial conditions are assumed to be zeros. Equivalently, we may express

(3.2) in the form of a linear observation scheme

yt = Φ′
t−1τ T + εt. (3.3)

where Φt−1 = (yt−1, yt−2, . . . , y1, 0, . . .)
′ and τ T = −(a1, a2, . . .)

′ are infinite dimensional

vectors. Note that Φt has no more than t non-zero elements at time t due to zero initial

conditions.

The sequence of estimates ϑ of parameters τ T is determined from the minimum con-

dition for the loss function

JT (ϑ) =
1

T

T∑
t=1

(yt −Φ′
t−1ϑ)2 =

1

T

(
ϑ′ŘT ϑ− 2ϑ′řT +

T∑
t=1

y2
t

)

=
1

T

(
(τ T − ϑ)′ŘT (τ T − ϑ) + 2(τ T − ϑ)′řε

T +
T∑

t=1

ε2
t

)
,

(3.4)

where ŘT =
∑T

t=1 Φt−1Φ
′
t−1, řT =

∑T
t=1 Φt−1yt, řε

T =
∑T

t=1 Φt−1εt.

The LS estimates are defined as

τ̂ T = arg min
ϑ

JT (ϑ) = Ř
+

T řT = τ T + Ř
+

T řε
T , (3.5)

which is equivalent to

inf
ϑ

JT (ϑ) =
1

T

(
−[řT ]′Ř

+

T řT +
T∑

t=1

y2
t

)
=

1

T

(
−[řε

T ]′Ř
+

T řε
T +

T∑
t=1

ε2
t

)
. (3.6)



Regularized AR approximation for ARMA process 32

Here Ř
+

T denotes the pseudoinverse of the operator ŘT : `2(N) → `2(N),

Ř
+

T = P T Ř
−1

T P T + (I`2 − P T ), (3.7)

where P T is the orthogonal projector onto the subspace of the range of the operator ŘT ;

P T Ř
−1

T P T is the inversion of the operator P T ŘT P T in the invariant subspace P T `2(N).

Note that the operator Ř
+

T is unambiguously defined by the relation Ř
+

T ŘT = ŘT Ř
+

T =

P T . If the operator ŘT is invertible (P T = I`2), then Ř
+

T = Ř
−1

T .

If τ T has a finite number of nonzero elements, i.e, the AR model (3.2) is of finite order,

then it can be shown that Ř
+

T řε
T in (3.5) converges to zero with probability 1 as T →∞.

Hence, the LS estimate τ̂ T is strongly consistent (Kushner and Yin, 2003; Ljung, 1998;

Fomin 1999). However, if τ T has an infinite number of nonzero elements, i.e., the model

(3.2) does not degenerate to AR(p), then infϑ JT (ϑ) in (3.7) equals to zero for an arbitrary

T . Thus, the LS estimate can not be consistent in such a case. In order to achieve the

strong consistency in the infinite dimensional case, we introduce the Regularized LS (RLS)

estimates (Gel and Fomin, 2001):

τ̂ T = (ŘT + εΛ)−1řT , (3.8)

where ε > 0 is a fixed constant, and Λ is a regularizer, which is a positive definite operator

in the Hilbert space `2 under the inner product 〈., .〉, and Λ−δ is an operator of trace class

for a arbitrarily small δ > 0.

The regularizer Λ plays an crucial role for the accuracy of the estimate τ̂ T . In the

infinite dimensional `2(N), the non-regularized LS loss function may fail to have unique

minimum, i.e, the non-regularized LS estimates converge but not necessarily to the vector

of unknown parameters τ T . The utilization of the regularizer guarantees the uniqueness

of the minimum, given by τ T , of the LS loss function in `2(N). Moreover, the elements

in the regularizer grow at a certain rate to ensure that the obtained vector of parameter

estimates lies in `2(N).

The regularizer may take different forms. In this thesis, we consider the regularizer of
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an exponential form (Gel and Fomin, 2001),

Λ = diag{eµk}∞k=1 =




eµ 0 . . . 0 . . .

0 e2µ . . . 0 . . .
...

...
. . .

... . . .

0 0 . . . eµk . . .
...

...
...

...
. . .




(3.9)

Barabanov and Gel (2005) proposed the regularizer of a polynomial form ,

Λ = diag{kp}∞k=1, p > 3, (3.10)

which is viewed as a weakening of the regularizing procedure.

For the sake of implementation convenience, we adopt the recursive procedure of the

LS estimates (Abraham and Ledolter, 1983; Fomin, 1999). The RLS estimates satisfy the

iterative relations represented by the Kalman filter equations:

τ̂ T+1 = τ̂ T + γε
TΦT (1 + Φ′

T+1γ
ε
TΦT+1)

−1(yT+1 −Φ′
T τ̂ T )

γε
T+1 = γε

T − γε
TΦT+1(1 + Φ′

T+1γ
ε
TΦT+1)

−1Φ′
T+1γ

ε
T

(3.11)

with initial conditions τ̂ 0 = 0 and γε
0 = (εΛ)−1. The matrix γε

T is inverse to the sample

information matrix Ř
ε

T , i.e. γε
T = (Ř

ε

T )
−1

, where Ř
ε

T =
T∑

t=1

ΦtΦ
′
t + εΛ.

The main results of the RLS estimates in the infinite dimensional case are:

• The RLS estimates converges almost surely (a.s.) to the unknown vector τ T in terms

of `2 norm, i.e., they are strongly consistent.

• The RLS estimates have a power law rate of a.s. convergence to the unknown vector

τ T in terms of `2 norm.

3.3 Brief Overview of Regularization

The concept of regularization was first introduced by Tikhonov (1943), in the context of

solving an integral equation in a numerically stable manner. His germinating idea is es-

sentially the method of penalized regression in the statistical framework. After Tikhonov’s
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introduction of the concept, there have been numerous works dedicated to regularization

in statistical inference as diverse as variable selection, covariance estimation, and Efron’s

bootstrap. In general, regularization is a class of methods used to modify estimation pro-

cedures to produce reasonable solutions in unstable situations. In an asymptotic sense, a

generic regularization process includes two stages:

• Stage one: construct a sequence of approximating parameters θk converge to the

target parameter θ, and for each k a sequence of estimators θ̂k converges to θk,

• Stage two: choose a data dependent value k̂ for k.

It is often useful to decompose the difference

θ̂k − θ = (θ̂k − θk) + (θk − θ). (3.12)

The distance between θ̂k and θk is called estimation error (variance), and the distance be-

tween θk and θ is called approximation error (bias). Therefore, the choice of k is essentially

the choice of the best balance between bias and variance.

With the advent of information technology age, both size and complexity are the main

features of most data sets. The size allows us to analyze the data nonparametrically,

but usually in a unstable and discontinuous manner. The complexity often implies high

dimensionality and requires more advanced models with a large number of parameters

to be fitted to the data, which is inherently unstable (Breiman, 1996). In both cases,

regularization is an important tool to extract useful information from the data.

In the contexts of nonparametric regression, most of estimation problems are ill-posed

and thus regularization is intensively applied in order to turn ill-posed problems to well-

posed ones. In particular, when the number of predictor variables in the regression model

is larger than the sample size, i.e, in the case of “overfitting”, solutions to the LS equations

are not unique, and thus new observations become not uniquely predictable. Hoerl and

Kennard (1970) proposed ridge regression to guarantee the uniqueness of the solutions by

adding a penalty term to the residual sum of squares. Currently, the counterpart of ridge

regression, “Lasso” regression (Tibshirani, 1996; Meinshausen, 2005; Bunea et al., 2005,

2006) is attracting the greatest attention and is extensively investigated. Penalization is

definitely not the only form of regularization being used in statistics. In the contexts of
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density estimation, besides the oldest method to binning in histogram, Rosenblatt (1956)

and Parzen (1962) proposed kernel methods. These methods, in turn, led to the Nadaraya-

Watson estimation (Nadaraya, 1964; Watson 1964).

Other than applications in nonparametric regression contexts, regularization is also

widely used in estimation of covariance matrix. The most recent methods includes Ledoit

and Wolf approach (2003), which considers the Steinian shrinkage toward the identity.

Furrer and Bengtsson (2006) proposed the “tapering” the sample covariance matrix. Wu

and Pourahmadi (2003) suggested the Cholesky decomposition of the covariance ma-

trix to bound the inverse covariance matrix from below. dAspremont et al. (2007) ap-

plied `1 penalties directly to the entries of the covariance matrix, and Bickel and Levina

(2006) considered regularizing the covariance matrix by thresholding. The initial idea of

RAR approach comes from applying regularization to the sample information matrix, i.e.

(auto)covariance matrix in a time series context.

3.4 Strict Consistency and Rate of a.s. Convergence

of RLS in `2(N)

The proofs given in this section is a sketch of the convergence analysis of the RLS esti-

mates presented by Gel and Barabanov (2007). The following lemma forms a basis for the

subsequent results.

Lemma 3.4.1 Assume the stochastic variables ξt > 0 and ζt satisfy

1. ξ0 = 0, ∀t > 0, E(ξt+1|ξt, ..., ξ1) 6 ξt + ζt;

2.
∑∞

t=0 E|ζt| = C < ∞.

Then

∀α > 0 P

{
∀T > 0, ξT 6 C

α

}
> 1− α. (3.13)

Corollary 3.4.2 Let ψT = µT

∑T
t=1 εt−1ηt, where µT is a decreasing positive function, the

vector random process {ηt} is a martingale difference sequence with respect to σ-algebra
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Ft; εt is measurable with respect to Ft, and

∞∑
t=1

µ2E

(
ε2
t−1E

{
η2

t

∣∣Ft

})
6 C < ∞.

Then

∀α > 0 P

{
∀T > 0, ψ2

T 6 C

α

}
> 1− α.

Corollary 3.4.2 directly follows from Lemma 3.4.1 with ξt = ψ2
t and ζt = µ2

t ε
2
t−1E

{
η2

t

∣∣Ft

}
.

We will use Corollary 3.4.2 of the following form to analyze the rate of a.s convergence.

Let 0 < δ1 < δ2, φt = tδ2ψ2
t and α = βtδ10 . Then

∀β > 0, ∀t0 > 0, P

{
∀t > t0, φt 6 C

βtδ2−δ1

}
> 1− β

tδ10
, (3.14)

which implies that φt converge to zero almost surely with power law rate.

Now, we state the following result (Gel and Barabanov, 2007) on the rate of convergence

of the RLS estimates for the AR(∞) model.

Theorem 3.4.3 For any 0 < δ < 1 and α > 0, there exist positive constants T1, C1 such

that

∀T0 > T1, P

{
∀T > T0, |τ̂ T − τ T |2 6 C1

T 1−δ

}
> 1− α

T δ
0

. (3.15)

Theorem 3.4.3 states the power law rate of almost sure convergence to zero of the

estimation error for T δ
0 > α.

Corollary 3.4.4 (The power law rate of a.s. convergence). For any δ > 0

lim
T→0

T 1−δ|τ̂ T − τ T |2 = 0. (3.16)

with probability 1.

The proof of Theorem 3.4.3 follows directly by the following two theorems. Let δ > 0,

we define the standard quadratic form associated with the LS algorithm (Barabanov, 1983):

VT+1 = T−δ(τ̂ T+1 − τ T+1)
′Ř

ε

T (τ̂ T+1 − τ T+1), T = 1, 2, ... (3.17)
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Assume that all quantities with negative indices are 0, and N = N(T ) is a certain

deterministic function of T such that N < T . The vector Φt may be expressed in a state

space form as follows

Φt = ANΦt−N +
N−1∑
j=0

AjBεt−j, (3.18)

where

A =




−a1 −a2 −a3 . . .

1 0 0 . . .

0 1 0 . . .
...

...
. . .




, B =




1

0

0
...




Theorem 3.4.5 VT → 0 as T → ∞ with probability 1. Moreover, there exists a positive

constant C2 such that

∀α > 0, P

{
∀T > 0, VT+1 6 C2

α

}
> 1− α. (3.19)

The proof of Theorem 3.4.5 is essentially based on the inequalities

• E(VT+1|FT ) 6 VT + T−δσ2Φ′
T γε

TΦT ;

• ∑∞
t=1 t−δE(Φ′

tγ
ε
tΦt) < ∞.

as well as Lemma 3.4.1 and the auxiliary Lemma 3.4.6.

Lemma 3.4.6 Let c = (ck)
∞
k=0 be a sequence from `2 and a(z) be an analytical function

with no zeros in the neighborhood of the unit circle. Denote

c(z) =
∞∑

k=0

ckz
k,

1

a(z)
=

∞∑

k=0

γkz
k.

Then the sequence (c′AkB)∞k=0 contains the Taylor coefficients of c(z)/a(z):

c(z)

a(z)
=

∞∑

k=0

c′AkBzk
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and ∞∑

k=0

|c′AkB|2 =

∫

|z|=1

|c(z)|2
|a(z)|2dm(z) 6 M−2

a ‖ c ‖2,

where Ma = inf |z|=1 |a(z)| is positive and dm(z) = dz/(2πiz) means the normalized Lebesgue

measure on the unit circle.

The result in Theorem 3.4.3 would follow from Theorem 3.4.5 if the matrix T−δŘ
ε

T is

bounded away from 0 for T > 0. Below we derive and justify an estimate on the probability

that the regularized information matrix T−1Ř
ε

T is uniformly bounded from 0, where the

regularizer Λ plays a crucial role. In fact, Λ guarantees the uniqueness of the minimum

of the quadratic loss function and ensures the obtained estimates lying in `2 space. We

denote R̂
ε

T = T−1Ř
ε

T .

Theorem 3.4.7 For any δ ∈ (0, 1), and α > 0, there are positive constants C4 and T1

such that

∀T0 > T1, P

{
∀T > T0, R̂

ε

T > C4I

}
> 1− α

T δ
0

. (3.20)

The main idea of the proof of Theorem 3.4.7 is outlined as follows. The regularized infor-

mation matrix R̂
ε

T is divided into three parts such that every part is dominated either by

a non-zero observation data set or by the coefficients of the regularizer Λ. We derive the

estimate for every part respectively, based on the state space form of Φt in (3.18).

The infinite-dimensional matrix R̂
ε

T is divided into three terms

R̂
ε

T =
1

T

T∑
t=1

ΦtΦ
′
t +

ε

T
Λ = Q1,T + Q2,T + Q3,T , (3.21)

and each term is bounded from below as follows:

Q1,T =
1

T

T∑
t=1

ANΦt−NΦ′
t−NA∗N +

ε1

T
Λ > ε1

T
Λ,

Q2,T = 2Re

N−1∑
j=0

AN

(
1

T

T∑
t=1

Φt−Nεt−j

)
B′A∗j +

ε2

T
Λ > −q2,T I,

Q3,T =
N−1∑
j=0

N−1∑
i=0

AjB(
1

T

T∑
t=1

εt−jεt−i)B
′A∗i > σ2UN − q3,T I.

(3.22)
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where

• UN =
∑N−1

i=0 AiBB′A∗i;

• ε1, ε2 > 0 are chosen such that ε1 + ε2 = ε;

• ReX = (X ′ + X)/2 for any square matrix X;

• I is identity operator, A∗ is the complex conjugate transpose of A;

• q2,T and q3,T are defined in Lemma 3.4.8 and Lemma 3.4.9.

Lemma 3.4.8 There exist C5, C6 > 0 such that for any β > 0, λ ∈ (0, 1− δ) and T0 > 0

if N(T ) 6 C6βT (1−δ−λ)/2 for all T > T0, then

P

{
∀T > T0, q2,T 6 C5N

2(T )

βT (1−δ−λ)/2

}
> 1− β2

λT δ
0

. (3.23)

Lemma 3.4.9 1. There exist C7 > 0 such that for any β > 0, λ ∈ (0, 1−δ) and T0 > 0

P

{
∀T > T0, |q3,T | 6 C7N

2(T )

βT (1−δ−λ)/2

}
> 1− β2

λT δ
0

. (3.24)

2. There exist an integer K and real d > 0 such that for any N > K

P N−K

N−1∑
i=0

AiBB′A∗iPNK
> dP N−K , (3.25)

where P k is a projector, P kc = (c0, c1, . . . , ck−1, 0, 0, . . .) for c = (c0, c1, . . .).



Chapter 4

Regularized AR Frequency

Estimation

Many real life periodic time series can be modeled as a sum of sinusoids and noise. The

frequencies hidden in such periodic processes can be often detected by approximating the

generalized spectral density of the observed process by an autoregressive (AR) model. In

this chapter, we apply the Regularized AR (RAR) approximation method introduced in

Chapter 3 to the frequency detection problem. Due to the properties of the RAR method,

the repeated model selections and parameter estimations are avoided as the observed sam-

ple increases. We show that the RAR estimates of frequencies are strictly consistency

and asymptotic normally distributed. The presented numerical examples confirm validity

of RAR approximation. In addition, we propose a robust trimming algorithm for RAR

frequency estimation which aims to minimize the effect of outliers in frequency estimates.

Our simulation studies indicate that such robust trimming of frequency estimates can ef-

fectively eliminate the spurious and atypical frequency estimates, and therefore noticeably

increase the accuracy.

40
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4.1 Introduction

Consider a time series {yt, t ∈ T} observed from a periodic process

yt = xt + εt, and xt = ρ cos(tω0 + φ), (4.1)

where

• ρ and ω0 are constants with ρ > 0, ω0 ∈ (0, π);

• φ is a random variable with uniform distribution on [0, 2π);

• {εt} ∼ IID(0, σ2) and E(ε4
t ) = ησ4 < ∞, i.e., {εt} is a strictly stationary process

with continuous spectral density (equal to constant) and finite fourth moment;

• {εt} is independent of φ and hence of {xt}.

The structure of yt is often referred to as the “signal-plus-noise” model, and our interest

lies in estimating the frequency ω0 based on the observed sample {yt, t ∈ T}. The frequency

estimation problem is an important subject in both statistical signal processing and time

series analysis (Priestley, 1981; Kay, 1988). In the late 18th century, Prony (1795) devised a

procedure for fitting exponential models to chemical data to extract the sinusoidal signals;

Schuster (1898) was the first one who proposed periodogram in an attempt to find “hidden

periodicities” of sun-spot data. After these germinating approaches, substantial studies

are conducted on the frequency estimation problem. Most traditional approaches to this

problem are based on the Fourier transformation. Walker (1971) introduced periodogram

maximization (PM) method, which locates the local maxima in the periodogram as a

continuous function of a frequency variable; Hannan (1971, 1973), Rao and Zhao (1993)

discussed an approach called nonlinear least square (NLS), which fits a sum of sinusoids to

the process by minimizing the sum of squared errors with respect to ρ, ω0 and φ. Both of

the PM and NLS frequency estimates are strongly consistent with asymptotical standard

deviation O(T−3/2). Despite their high accuracy, the utilized non-linear estimation proce-

dures are very computationally intensive and require initial values of accuracy O(T−1) in

order to converge to the optimal solution (Rice and Roseblatt, 1988).
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In application, if the computational burden is not the primary concern, we may ap-

ply these classical approaches to acquire satisfactory frequency estimates with high accu-

racy. However, in real-time (online) frequency estimation, such computational intensive

approaches as PM and NLS are not feasible. Our objective is to develop frequency esti-

mation procedures with high accuracy but low computational burden, which is useful in

online applications.

The iterative filtering (IF) procedures that utilize AR filters (Kay, 1984; Dragošević and

Stanković, 1989; Nehorai, 1985; Stoica and Nehorai, 1988; Tichavský and Händel, 1995)

are widely applied in engineering applications due to its effectiveness and simplicity. Kay

(1984) proposes an iterative filtering algorithm (IFA) based on an all-pole (AR) filter which

is identified by Burg’s method. The IFA provides very good estimates even for relatively

low signal to noise ratio (SNR). However, since IFA uses a filter whose poles are on the

unit circle, the bandwidth is extremely narrow and the iterative procedure requires precise

initial values. In order to overcome such disadvantages, Dragošević and Stanković (1989)

propose the generalized least square (GLS) approach, which utilizes an all-pole filter with

an extra parameter to force the poles to be within the unit circle and applies iterative LS to

estimate its parameters. Both the IFA and GLS estimators are asymptotically inconsistent.

Kedem (1994) introduces a method of parametric filtering (PF) which unifies and extends

ideas of IFA and GLS, and shows that the inconsistency can be eliminated by using an

appropriate parameterized filter. Such filter can be chosen on the basis of the bias yielded

by the Prony estimator. The IF procedures usually require precise initial values, which is

not adequately addressed in current literature.

Other commonly used frequency estimation techniques include ARMA-based and eigen-

analysis methods. The ARMA based approach utilizes the fact that {yt} satisfies an

ARMA(2, 2) equation. Therefore, various existing ARMA estimation techniques can be

applied to detecting frequency (Cadzow, 1980, 1982). Among such widely accepted es-

timation procedures are, for example, the over-determined Yule-Walker (YW) estimator

(Friedlander, 1984) and high order YW estimator (Chan and Langford, 1982) which pro-

vide advantages of numerical simplicity and asymptotic properties (Stoica and Söderströn,

1989). The eigenanalysis methods, such as Pisarenko’s harmonic decomposition (Pisarenko,

1972) and the extended Prony method (Kay and Marple, 1981), obtain an eigenvector
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with the minimum eigenvalue of a suitably chosen matrix, and then identify the sinusoidal

frequency by taking the roots of the polynomial which has the components of the eigenvec-

tor as coefficients. However, the performance of the eigenanalysis estimator substantially

depends on SNR. A detailed review of frequency estimation methods can be found, for

example, in Kay and Marple (1981), Brillinger (1987), Kay(1988) as well as Quinn and

Hannan (2001).

In this thesis, we focus on the AR-based methods for frequency estimation. After Yule

(1927) proposed to fit an AR(2) model to periodic sunspot data, a considerable literature

is developed on using AR models for detection of unknown frequencies (Makhoul, 1975;

Kay and Marple, 1981, Stoica and Söderström, 1983, 1987; Truft and Kumaresan, 1982;

Mackisack and Poskitt, 1989, 1990; Li et al., 1994; Hannan and Quinn, 2001). Due to its

conceptual and numerical simplicity, the AR-based frequency estimation is widely accepted

and employed in applied data analysis.

A remarkable feature of {yt} is that the spectral distribution

F (θ) = σ2(θ + π)/(2π) + ρ2H(θ − ω0)/2, (4.2)

where θ ∈ [−π, π] and H(.) denotes the Heaviside function, has jump discontinuities of

height ρ2/2 at frequency θ = ω0. Therefore its derivative is called “generalized” spectral

density. The idea of the AR approach is to estimate the generalized spectral density of

{yt}, f(θ), using an AR equation

a(z) = 1 + a1z + . . . + akz
k, (4.3)

The frequency is then obtained by finding the location of the largest peak in the k-th order

AR approximation of the generalized spectral density fk(z), or equivalently, by taking the

phase angle of the zero of a(z) closest to the unit circle.

Properties of the AR-based frequency estimates are studied empirically and theoreti-

cally. For example, Sakai (1979) empirically shows that the variance of AR-based estimates

is inversely proportional to both data length and the square of SNR; Mackisack and Poskitt

(1989) illustrate via simulation studies that the standard deviation of the AR-based esti-

mates has a similar order as that of the periodogram estimates and the NLS estimates;

Stoica et al. (1989), Mackisack and Poskitt (1989, 1990) as well as Li et al.(1994) prove that

the AR-based estimates of frequency are strongly consistent and asymptotically normal.
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A common procedure of AR-based frequency estimation includes three steps (see Mack-

isack and Poskitt, 1991):

• Step 1: select the order k of an AR model (4.3) by information criterions such as

AIC, BIC, and PLS;

• Step 2: estimate the AR coefficients by YW, LS or other methods;

• Step 3: the frequency ω0 is estimated by finding the minimum of the transfer function

ĥk(θ) =
∣∣â(eiθ)

∣∣2 =

∣∣∣∣
∑k

j=0 âj(e
ijθ)

∣∣2 in (0, π), where

â(z) = 1 + â1z + . . . + âkz
k, (4.4)

and âj, j = 1, . . . , k, are the sample AR parameter estimates.

The corresponding spectral density estimate is f̂k(θ) = σ2/{2π2ĥk(θ)}. However, in

many electrical engineering, astronomical and biomedical applications the length of the

observations is not known a priori and may indefinitely increase while frequency detection

is performed in real-time (or online). Therefore, the Steps 1 and 2 have to be re-conducted

upon arrival of every new observation. In order to avoid the repeated model selection and

parameter estimation, we utilize the recursive Regularized Least Squares (RLS) method,

introduced in Chapter 3, for estimating AR parameters in (4.3) and name the resulting

procedure the Regularized AR-based (RAR) frequency detection. We validate our findings

by comparing to the results on AR-based frequency detection, presented by Mackisack and

Poskitt (1989).

The key idea of the RAR approach is the same as for the traditional AR-based frequency

estimation methods, but the implementation differs. Instead of using the YW method, the

RLS method is applied to estimate the AR coefficients and thus Step 1 of the traditional

procedure is omitted. As discussed in Chapter 3, the employment of the RLS method

enables to estimate the coefficients with different level of accuracy, which is controlled by

a regularizer. In particular, the first few model coefficients are estimated more precisely

than the tail ones, and the number of estimated parameters grow with the sample size.

Hence, the repeated model selection and parameter estimation are avoided as the observed

sample increases. In Step 3, we follow an alternative method of minimizing the transfer
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function (Stoica et al., 1989; Truft and Kumaresan, 1982). In particular, the estimated

frequency ω̂k is determined by the argument of zeros of â(z) with modulus closest to the

unit circle.

The RAR frequency estimation procedure is outlined as follows:

• Step 1: fit a “long” AR(k) model to the process {yt} and then apply the RLS to

estimate the AR coefficients. Note that the model order can be adjusted by changing

the RLS parameters ε and µ.

• Step 2: find all the roots of â(z) (4.4). The estimated frequency ω̂k is determined by

the argument of the pair of roots with modulus closest to the unit circle.

Our theoretical findings indicate that the RAR estimates of unknown frequency are

strongly consistent, i.e., converge almost surely, and asymptotically normally distributed,

as shown below.

4.2 Asymptotic Properties of the RAR Frequency

Estimate

As discussed in Chapter 3, let us rewrite an AR model in a state-space form

yt = Φ′
t−1τ T + εt. (4.5)

where Φt−1 = (yt−1, yt−2, . . . , y1, 0, . . .)
′ and τ T = −(a1, a2, . . .)

′ is an vector of unknown AR

parameters and possibly infinite dimensional. We estimate τ T by the recursive LS method

(Abraham and Ledolter, 1983; Fomin, 1999) which satisfy the Kalman filter equations

τ̂ T+1 = τ̂ T + γε
TΦT (1 + Φ′

T+1γ
ε
TΦT+1)

−1(yT+1 −Φ′
T τ̂ T )

γε
T+1 = γε

T − γε
TΦT+1(1 + Φ′

T+1γ
ε
TΦT+1)

−1Φ′
T+1γ

ε
T

(4.6)

with initial conditions τ̂ 0 = 0 and γε
0 = (εΛ)−1. The matrix γε

T is inverse to the sample

information matrix Ř
ε

T , i.e. γε
T = (Ř

ε

T )
−1

, where Ř
ε

T = ŘT + εΛ. Here ŘT =
∑T

t=1 ΦtΦ
′
t

and Λ = diag{eµk}∞k=1 is the regularizer.
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To prove strict consistency of the RAR frequency estimates, we follow a similar deriva-

tion plan as for the RLS estimates of AR(∞) models with exponentially decaying co-

efficients (Gel and Barabanov, 2007). (A particular case of such models includes ARMA

processes and is discussed in Chapter 3.) However, when the RAR approximation is applied

to estimation of ARMA models (see Chapter 3), the power series a(z) = 1+a1z+a2z
2 + . . .

is assumed to have no zeros in certain neighborhood of the unit circle, which is not valid

in frequency estimation problem. In order to analyze asymptotics of the RAR estimates of

unknown frequency, we need to update this assumption and revise the proofs from Chapter

3.

We start from an analogue to Theorem 3.4.5. Assume that a(z) may have a finite

number of zeros in a certain neighborhood of the unit circle. The quadratic function VT+1,

defined as

VT+1 = T−δ(τ̂ T+1 − τ T+1)
′Ř

ε

T (τ̂ T+1 − τ T+1), T = 1, 2, ... (4.7)

converges almost surely to zero under the new assumptions that some roots of a(z) are

located along the unit circle, as stated in the next theorem.

Theorem 4.2.1 Let a(z) have finite number of roots along the unit circle, then VT → 0

as T →∞ with probability 1. Moreover, there exists a positive constant C2 such that

∀α > 0, P

{
∀T ≥ 0, VT+1 6 C2

α

}
≥ 1− α. (4.8)

Proof We follow the same approach as the proof of Theorem 3.4.5, which is given in Gel

and Barabanov (2007).

Denote the estimation error ∆τ̂ T+1 = τ̂ T+1 − τ T+1, then

∆τ̂ T+1 = ∆τ̂ T + γε
TΦT (εT+1 −Φ′

T ∆τ̂ T ) = γε
T Ř

ε

T−1∆τ̂ T + γε
TΦT εT+1, (4.9)

which consists of two uncorrelated terms. Since γε
T decays as T increases, the conditional

expectation of VT+1 = T−δ∆τ̂ ′T+1Ř
ε

T ∆τ̂ T+1 has the following upper bound

E(VT+1|FT ) =
1

T δ
∆τ̂ ′T Ř

ε

T−1γ
ε
T Ř

ε

T−1∆τ̂ T +
σ

T δ
Φ′

T γε
TΦT 6 VT +

σ

T δ
Φ′

T γε
TΦT . (4.10)
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To apply Lemma 3.4.1, we need to show that
∑∞

t=1 t−δEΦ′
tγ

ε
TΦt < ∞. Denote

Φ̃t = (εΛ)−1/2Φt, R̃T =
T∑

t=1

Φ̃tΦ̃
′
t + I, γ̃T = R̃

−1

T . (4.11)

Extend the function Φ(t) of Φ(t) = Φt for integer t on the positive semi-axis as a step

function on every interval (t, t + 1]. Consequently, R̃(t) =
∫ t

0
Φ̃(s)Φ̃(s)′ds and γ̃(s) =

R̃(s)−1. Then

T∑
t=1

EΦ′
tγ

ε
tΦt =

T∑
t=1

EΦ̃
′
tγ̃tΦ̃t 6

∫ T

0

EΦ̃
′
(s)R̃

−1
(s)Φ̃(s)ds (1)

= TrE(ln R̃T − ln R̃0) 6 Tr(ln ER̃T − ln ER̃0) (2)

= Tr ln ER̃T

(4.12)

Here, inequality (1) follows from the condition that γ̃s > γ̃t, s 6 t; inequality (2) follows

from concavity of logarithm and the Jensen’s inequality. In addition, we take into account

that ln R̃0 = ln I = 0.

The matrix R̃T may be expressed as R̃T = diag{R̂T, I} where R̂T = (R̂ij)
n
1 is a

symmetric positive definite T × T matrix, and therefore detR̂T 6
∏T

i=1(R̂)ii holds:

detR̂T 6
T∏

i=1

(R̂)ii (4.13)

Substituting this inequality and the identities Tr ln ER̃T = Tr ln ER̂T and Tr ln X =

ln detX into (4.12), then

∞∑
t=1

EΦ̃
′
tγ̃tΦ̃t 6 ln det ER̃T 6

T∑
i=1

ln{ER̃T}ii

=
T∑

i=1

ln E

(
1 +

e−µi

ε

T+1−i∑

k=1

y2
k

)
6

T∑
i=1

ln(1 +
e−µi

ε

T+1−i∑

k=1

Ey2
k

)
.

(4.14)

Recall A and B defined in (3.18),

A =




−a1 −a2 −a3 . . .

1 0 0 . . .

0 1 0 . . .
...

...
. . .




, B =




1

0

0
...




,
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then

Ey2
k 6 σ2C

k∑
i=0

(AiB)2 = σ2C

k∑
i=0

‖Ai‖‖B‖ = σ2C

k∑
i=0

iρ−1

≈ σ2C

∫ k

0

xρ−1dx = σ2Cxρ

∣∣∣∣
k

0

= σ2Ckρ.

(4.15)

Thus

T∑

k=1

Ey2
k 6 Cσ2

T∑

k=1

kρ ≈ Cσ2

∫ T

1

xρdx = Cσ2xρ+1

∣∣∣∣
T

1

6 Cσ2T ρ+1 = C1T
ρ+1. (4.16)

Therefore

T∑
i=1

ln

(
1 +

e−µi

ε

T∑

k=1

Ey2
k

)
6

T∑
i=1

ln

(
1 +

e−µi

ε
C1T

ρ+1

)
6

∞∑
i=1

ln

(
1 +

e−µi

ε
C1T

ρ+1

)

6
∫ ∞

0

ln

(
1 +

e−µx

ε
C1T

ρ+1

)
dx.

(4.17)

Denote y = ε−1C1T
ρ+1e−µx, then

∫ ∞

0

ln

(
1 +

e−µx

ε
C1T

ρ+1

)
dx = µ−1

∫ ε−1C1T ρ+1

0

ln(1 + y)

y
dy

∼ µ−1(ln T ρ+1)2 = µ−1(ρ + 1)2 ln2 T

(4.18)

as T →∞. Hence, there exists C2 such that

T∑
t=1

EΦ′
tγ

ε
tΦt 6 C2 ln2 T, T = 1, 2, ... (4.19)

Finally, the convergence of the series under consideration is established using the Abel

transformation

T∑
t=1

1

tδ
EΦ′

tγ
ε
tΦt =

∞∑
t=1

(
1

tδ
− 1

(t + 1)δ

) t∑

k=1

EΦ′
kγ

ε
kΦk 6

∞∑
t=1

C2δ ln2 t

tδ+1
= C3 < ∞. (4.20)



Regularized Frequency Estimation 49

In the view of inequality (4.10) and the stochastic variable VT satisfy all the conditions of

Lemma 3.4.1. Thus,

∀α > 0 P

{
∀T ≥ 0, VT+1 6 C3

α

}
≥ 1− α.

The stochastic variables VT converges a.s. for all δ > 0. Hence, the limit must be 0. ¤

By the result of Theorem (4.2.1),

lim
T→∞

T−δ(τ̂ T − τ T )′Ř
ε

T (τ̂ T − τ T ) = 0 a.s. (4.21)

in order to complete the proof of strong consistency of the RLS estimates τ̂ T , we need to

show that with probability 1,

T−δŘ
ε

T > 0. (4.22)

The proof for the general case when τ T is of infinite dimension (τ T ∈ `2) is challenging

and we leave (4.23) as a conjecture for now. Instead, we prove an analogous result for

the truncated case. In particular, let P k be an orthogonal projector. Then, the truncated

vector of unknown coefficients is given by τ k,T = P kτ T and the corresponding sample RLS

estimates is τ̂ k,T = P kτ̂ T . Also, the truncated regularized information matrix is denoted

as Ř
ε

k,T = P kŘ
ε

T P ′
k. Therefore, we need to show that T−1Ř

ε

k,T is positive definite, i.e.,

T−1(Řk,T + εΛk) > 0, (4.23)

where

• Řk,T = P kŘT P ′
k,

• Λk = P kΛ =




eµ1 0 . . . 0

0 eµ2 . . . 0
...

...
. . .

...

0 0 . . . eµk




.

Let us introduce the following notations. Denote the theoretical autocovariance function

(ACVF) by

rj = E(ytyt+j), j = 0,±1, . . . , (4.24)
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which forms the covariance vectors

rk = (r1, . . . , rk)
′,

rk,0 = (r0, r1, . . . , rk)
′, (4.25)

and a k × k-Toeplitz covariance matrix

Rk,T =




r0 r1 . . . rk−1

r1 r0 . . . rk−2

...
...

. . .
...

rk−1 rk−2 . . . r0




. (4.26)

Denote the sample ACVF by

r̂j =
1

T

T−j∑
t=1

ytyt+j, j = 0, 1, . . . , k, where k ∈ Z and 0 ≤ k ≤ T − 1. (4.27)

Correspondingly, sample covariance vectors are given by

r̂k = (r̂1, . . . , r̂k)
′,

r̂k,0 = (r̂0, r̂1, . . . , r̂k)
′, (4.28)

and a sample k × k-Toeplitz covariance matrix is

R̂k,T = T−1Řk,T =




r̂0 r̂1 . . . r̂k−1

r̂1 r̂0 . . . r̂k−2

...
...

. . .
...

r̂k−1 r̂k−2 . . . r̂0




. (4.29)

Applying the above notations, the inequality (4.23) takes the following form

R̂k,T + T−1εΛk > 0, (4.30)

which is equivalent to

R̂k,T −Rk,T + T−1εΛk + Rk,T > 0. (4.31)

In the rest of this chapter, we suppress the dependence on T in Rk,T , R̂k,T , Ř
ε

k,T , τ k,T

and τ̂ k,T , which will be denoted respectively as Rk, R̂k, Ř
ε

k, τ k and τ̂ k for the sake of

compactness. Let us state the following result on strong consistency of the truncated RLS

estimates τ̂ k.
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Theorem 4.2.2 If T →∞ and k →∞ such that k
3
2 /T → 0, then τ̂ k → τ k almost surely.

Proof By definition, for j = 1, . . . , k,

rj = E(ytyt+j)

= ρ2E

(
cos(tω0 + φ) cos[(t + j)ω0 + φ]

)
+ E(εtεt+j)

= ρ2E

(
1

2
[cos(2tω0 + jω0 + 2φ) + cos(jω0)]

)
+ δj,0σ

2

=
ρ2

2
cos(jω0) +

ρ2

2

∫ 2π

0

cos(2tω0 + jω0 + 2φ)
1

2π
dφ + δj,0σ

2

=
ρ2

2
cos(jω0) + δj,0σ

2. (4.32)

and

r̂j =
1

T

T−j∑
t=1

ytyt+j

=
1

T

T−j∑
t=1

{
ρ2

2
cos[(j + 2t)ω0 + 2φ] +

ρ2

2
cos(jω0)

+ρ cos[(t + j)ω0 + φ]εt + ρ cos(tω0 + φ)εt+j + εtεt+j

}
. (4.33)

Consider an element of R̂k −Rk for some j = 0, 1, . . . , k:

r̂j − rj =
j

T

ρ2

2
cos(jω0) + ρ2 cos[(T − 1)ω0 + 2φ]

sin[(T − j)ω0]

2T sin ω0

+
1

T

T−j∑
t=1

εtεt+j

+
1

T

T−j∑
t=1

ρ cos[(t + j)ω0 + φ]εt +
1

T

T−j∑
t=1

ρ cos(tω0 + φ)εt+j − δj,0σ
2

=
1

T

T∑
t=1

2ρ cos(jω0) cos(tω0 + φ)εt +
1

T

T∑
t=1

{
εtεt−j − δj,0σ

2
}

− 1

T

j∑
t=1

ρ cos
{
(t− j)ω0 + φ

}
εt − 1

T

T∑
t=T−j+1

ρ cos
{
(t + j)ω0 + φ

}
εt

− 1

T

0∑
t=−j+1

εtεt+j + O
( j

N

)
. (4.34)
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Thus, we have

∣∣(r̂j − rj)− Sj,T

∣∣ 6 1

T

j∑
t=1

ρ
∣∣εt

∣∣ +
1

T

T∑
t=T−j+1

ρ
∣∣εt

∣∣ +
1

T

0∑
t=−j+1

ρ
∣∣εtεt+j

∣∣ + O
( j

N

)
, (4.35)

where

Sj,T =
1

T

T∑
t=1

{
2ρ cos(jω0) cos(tω0 + φ) + εt−j

}
εt − δj,0σ

2. (4.36)

Since ρ is a constant and {εt} is assumed to be white noise with finite fourth moment, the

four terms on the right-hand side of (4.35) are all O(j/N) a.s. Therefore, for j = 0, 1, . . . , k

r̂j − rj = Sj,T + O(j/N). (4.37)

Let ST be a matrix with elements Sl−j,T , j = 1, . . . , k and l = 1, . . . , k, i.e.,

ST =




S0,T S1,T . . . Sk−1,T

S1,T S0,T . . . Sk−2,T

...
...

. . .
...

Sk−1,T Sk−2,T . . . S0,T




. (4.38)

Also, let ET be a matrix with elements O
(
(j − l)/T

)
, j = 1, . . . , k and l = 1, . . . , k, i.e.,

ET =
1

T




0 1 . . . k − 1

1 0 . . . k − 2
...

...
. . .

...

k − 1 k − 2 . . . 0




. (4.39)

Thus, we have

R̂k −Rk = ST + ET . (4.40)

Firstly, let us investigate the asymptotic behavior of ST . By definition, TSi,T can be

expressed as

TSi,T =
T∑

s=1

Xi,s, (4.41)
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where Xi,s = {2ρ cos(iω0) cos(sω0 + φ) + εs−i}εs − δi,0σ
2. We can show that Xi,s’s are

uncorrelated and have finite variance.

E
[
Xi,s

]
= E

[{2ρ cos(iω0) cos(sω0 + φ) + εs−i}εs − δi,0σ
2
]

= E
[
2ρ cos(iw0) cos(sw0 + φ)εs

]
+ E

[
εs−iεs

]− δi,0σ
2

= E
[
2ρ cos(iw0) cos(sw0 + φ)

]
E

[
εs

]
+ E

[
εs−iεs

]− δi,0σ
2

= 0 + δj,0σ
2 − δj,0σ

2

= 0. (4.42)

Var
[
Xi,s

]
= E

[{[2ρ cos(iw0) cos(sw0 + φ) + εs−i]εs − δi,0σ
2}2

]

= 4ρ2E
[
cos2(iw0) cos2(sw0 + φ)ε2

s

]

+4ρE
[
cos(iw0) cos(sw0 + φ)εsεiεs−i

]

−4ρδi,0σ
2E

[
cos(iw0) cos(sw0 + φ)εs

]

+E
[
ε2
s−iε

2
s

]− 2δi,0σ
2E

[
εs−iεs

]
+ (δi,0σ

2)2. (4.43)

Here we consider two cases depending on i.

• Case a: let i = 0.

Var
[
Xi,s

]
= 4ρ2E

[
cos2(sw0 + φ)

]
E

[
ε2
s

]
+ 4ρE

[
cos(sw0 + φ)

]
E

[
ε0

]
E

[
ε2
s

]

−4ρσ2E
[
cos(sw0 + φ)

]
E

[
εs

]
+ E

[
ε4
s

]− 2σ2E
[
ε2
s

]
+ σ4

= 4ρ2E
[
cos2(sw0 + φ)

]
σ2 + E

[
ε4
s

]− σ4 < ∞. (4.44)

• Case b: let i 6= 0, i.e., i = 1, 2, . . . , k,

Var
[
Xi,s

]
= 4ρ2 cos2(iw0)E

[
cos2(sw0 + φ)

]
E

[
ε2
s

]

+4ρ cos(iw0)E
[
cos(sw0 + φ)

]
E

[
εsεiεs−i

]
+ E

[
ε2
s−iε

2
s

]

= 4ρ2 cos2(iw0)E
[
cos2(sw0 + φ)

]
σ2 + σ4 < ∞. (4.45)

By Cases (a) and (b), E[X2
i,s] < ∞, for any i = 0, . . . , k.
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For p 6= q and p, q = 1, . . . , T ,

Cov(Xi,p, Xi,q) = E
[
Xi,pXi,q

]

= E
[{[2ρ cos(iw0) cos(pw0 + φ) + εp−i]εp − δi,0σ

2}
{[2ρ cos(iw0) cos(qw0 + φ) + εq−i]εq − δi,0σ

2}]
= 4ρ2 cos2(iw0)E

[
cos(pw0 + φ) cos(qw0 + φ)

]
E

[
εp

]
E

[
εq

]

+2ρ cos(iw0)E
[
cos(qw0 + φ)

]
E

[
εpεqεp−i

]

−δi,0σ
22ρ cos(iw0)E

[
cos(qw0 + φ)

]
E

[
εq

]

+2ρ cos(iw0)E
[
cos(pw0 + φ)

]
E

[
εpεqεq−i

]

−δi,0σ
22ρ cos(iw0)E

[
cos(pw0 + φ)

]
E

[
εp

]
+ (δi,0σ

2)2

+E
[
εpεp−iεqεq−i

]− δi,0σ
2E

[
εqεq−i

]− δi,0σ
2E

[
εpεp−i

]

= E
[
εpεp−iεqεq−i

]− (δi,0σ
2)2 (4.46)

Here we consider two cases depending on i.

• Case a’: let i = 0.

E
[
εpεp−iεqεq−i

]− (δi,0σ
2)2 = σ4 − σ4 = 0. (4.47)

• Case b’: let i 6= 0. If q = p− i, then q − i = p− 2i, i.e., p 6= q − i,

E
[
εpεp−iεqεq−i

]
= E

[
εqεp−i

]
E

[
εp

]
E

[
εq−i

]
= 0. (4.48)

Similar arguments hold if p = q − i.

By Cases (a’) and (b’), Cov(Xi,p, Xi,q) = 0, for any i = 0, . . . , k. Therefore, Xi,s’s are

uncorrelated and have finite variances.

Let υ2
T = max

{
Var(Xi,1), . . . , Var(Xi,T)

}
and δ ∈ (0, 1/2). By Doob’s inequality,

P

{∣∣∣∣
1

T
1
2
+δ

T∑
s=1

Xi,s

∣∣∣∣ < ξ

}
> 1− {

T−2δ max
16s6T

Var(Xi,s)
}
/ξ2 = 1− υ2

T/(T2δξ2). (4.49)



Regularized Frequency Estimation 55

Our goal is to find such ξ that ξ → 0 and υ2
T /(T 2δξ2) → 0 simultaneously when T → ∞.

Let ξ = 1/log T , then

ξ → 0 and
υ2

T

T 2δξ2
=

υ2
T

T 2δ/log2 T
=

υ2
T log2 T

T 2δ
→ 0, as T →∞. (4.50)

Hence, the following statement holds with probability 1 when T →∞,

P

{∣∣∣∣
1

T
1
2
+δ

T∑
s=1

Xi,s

∣∣∣∣ <
1

log T

}
→ 1. (4.51)

which implies that ∣∣∣∣
1

T
1
2
+δ

T∑
s=1

Xi,s

∣∣∣∣ <
c

log T
, a.s. (4.52)

Since TSj−l,T =
∑T

s=1 Xj−l,s when T →∞, we get

Sj−l,T =
1

T

T∑
s=1

Xj−l,s = T− 1
2
+δ 1

T
1
2
+δ

T∑
s=1

Xj−l,s < T− 1
2
+δ c

log T
=

c

T
1
2
−δ log T

→ 0. (4.53)

Thus,

‖ST‖ =

√√√√
k∑

l=1

k∑
j=1

S2
j−l,T ≤

√(
k2c2

T 1−2δlog2 T

)
=

kc

T
1
2
−δ log T

, (4.54)

which implies that

‖ST‖ = O
{
k/(T

1
2
−δ log T )

}
, (4.55)

requiring k = T
1
2
−δ, for δ ∈ (0, 1/2).

Secondly, we investigate the asymptotic behavior of ET = O
{
(j − l)/T

}
, for j =

1, . . . , k, and l = 1, . . . , k.

ET =
1

T




0 1 . . . k − 1

1 0 . . . k − 2
...

...
. . .

...

k − 1 k − 2 . . . 0




=
1

T
(D + D′), (4.56)
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where D = 1
T




0 0 . . . 0

1 0 . . . 0
...

...
. . .

...

k − 1 k − 2 . . . 0




.

Since

‖D‖ =
√

λmax(D
∗D) =

√√√√
k∑

j=0

(k − j)2 = O(k3/2), (4.57)

where D∗ is the conjugate transpose of D and λmax is the largest eigenvalue of D∗D, we

obtain

‖ET‖ =
1

T
‖D + D′‖ = O

(
k

3
2 /T

)
, (4.58)

requiring k = T
2
3
−%, where % ∈ (

0, 2/3
)
.

By the Cauchy-Schwartz inequality, (4.40) can be re-written as

‖R̂k −Rk‖ ≤ ‖ST‖+ ‖ET‖. (4.59)

By results in (4.55) and (4.58), for %− 1/6 ≤ δ ≤ 1/2 and % ∈ (
0, 2/3

)
, the following

statement holds

‖R̂k −Rk‖ = O
(
k

3
2 /T

)
, (4.60)

which implies that R̂k −Rk > ck
3
2 /T .

Since T−1εΛk + Rk > 0 when T →∞, k →∞ and k
3
2 /T → 0, we obtain that

R̂k −Rk + T−1εΛk + Rk > 0 with probability 1,

or equivalently, T−1Ř
ε

k > 0 a.s., which implies that τ̂ k → τ a.s. ¤.

Next, we prove that the RLS estimates τ̂ k are asymptotically normally distributed. In

order to derive this result, we need to show that the regularized sample ACVF follows an

asymptotic normal distribution. Denote the regularized sample ACVF by

r̂ε
j =

1

T

{T−j∑
t=1

ytyt+j + δj,0εe
µ
}

(4.61)
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Correspondingly, the regularized sample covariance vectors are given by

r̂ε
k = (r̂ε

1, . . . , r̂
ε
k)
′,

r̂ε
k,0 = (r̂ε

0, r̂
ε
1, . . . , r̂

ε
k)
′, (4.62)

and regularized sample k × k-Toeplitz covariance matrix

R̂
ε

k =
1

T
Ř

ε

k = R̂k + εΛk =




r̂ε
0 r̂ε

1 . . . r̂ε
k−1

r̂ε
1 r̂ε

0 . . . r̂ε
k−2

...
...

. . .
...

r̂ε
k−1 r̂ε

k−2 . . . r̂ε
0




(4.63)

In fact, the utilization of regularizer only changes the diagonal entries of R̂k which is

r̂0, but the remaining entries are equal. Asymptotically, R̂
ε

k is equivalent to R̂k and r̂ε
k,0 is

equivalent to r̂k,0 by the following argument: the regularizer vanishes as T →∞, i.e.,

r̂ε
0 =

1

T

T∑
t=1

y2
t +

εeµ

T
→ 1

T

T∑
t=1

y2
t = r̂0 (4.64)

and therefore,

r̂ε
k,0 → r̂k,0, as T →∞. (4.65)

We now state the Central Limit Theorem (CLT) of r̂ε
k,0.

Theorem 4.2.3 Given {yt, t ∈ T}, under the assumptions stated above,
√

T (r̂ε
k,0−rk,0) →

N(0,Σ) in distribution. Here, Σ = [σε
ij]i,j=0,...,k and

σε
ij =





δi,jσ
4 + 2ρ2σ2 cos(iω0) cos(jω0), i, j 6= 0,

(η − 1)σ4 + 2ρ2σ2, i, j = 0.
(4.66)

Proof By (4.64) and (4.65), r̂ε
k,0 is equivalent to r̂k,0 as T → ∞. Also, the assumption

applied here on {εt}, which assumes {εt} ∼ IID(0, σ2) and E(ε4
t ) = ησ4 < ∞, is a special

case of the assumptions applied in Li et al (1994), which assumes {εt} is a linear process of

the form εt =
∑∞

j=−∞ ψjξt−j where {ξt} ∼ IID(0, σ2), and E(ξ4
t ) = ησ4 < ∞. Therefore,

we can adopt the results from Li et al (1994).
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By Li et al. (1994) Theorem 2 (the CLT for r̂k,0),
√

T (r̂ε
k,0 − rk,0) is asymptotically

normally distributed with mean zero and covariance matrix Σ, where Σ = [σε
ij]i,j=0,...,k and

σε
ij = lim

T→∞
E{T (r̂ε

i − ri)(r̂
ε
j − rj)}, i, j = 0, . . . , k. (4.67)

By (4.64), rj = ρ2

2
cos(jω0) + δj,0σ

2, and the regularized sample ACVF is:

r̂ε
j =

1

T

{T−j∑
t=1

ytyt+j + δj,0εe
µ
}

=
1

T

T−j∑
t=1

{
ρ2

2
cos[(j + 2t)ω0 + 2φ] +

ρ2

2
cos(jω0) + xt+jεt

+xtεt+j + εtεt+j

}
+

δj,0εe
µ

T
(4.68)

Thus, the estimation error of regularized sample ACVF estimate is given by:

r̂ε
j − rj =

1

T

T−j∑
t=1

{
ρ2

2
cos[(j + 2t)ω0 + 2φ] +

ρ2

2
cos(jω0) + xt+jεt

+xtεt+j + εtεt+j

}
+

δj,0εe
µ

T
− (ρ2

2
cos(jω0) + δj,0σ

2
)

=
j

T

ρ2

2
cos(jω0) + ρ2 cos[(T − 1)ω0 + 2φ]

sin[(T − j)ω0]

2T sin ω0

+
1

T

T−j∑
t=1

xt+jεt +
1

T

T−j∑
t=1

xtεt+j +
1

T

T−j∑
t=1

εtεt+j +
δj,0εe

µ

T
− δj,0σ

2

= A1j + A2j + A3j + A4j + A5j +
δj,0εe

µ

T
− δj,0σ

2, (4.69)

where A1j = j
T

ρ2

2
cos(jω0), A2j = ρ2 cos[(T − 1)ω0 + 2φ] sin[(T−j)ω0]

2T sin ω0
, A3j = 1

T

∑T−j
t=1 xt+jεt,

A4j = 1
T

∑T−j
t=1 xtεt+j, A5j = 1

T

∑T−j
t=1 εtεt+j.

Therefore,

σε
ij = lim

T→∞
E{T (r̂ε

i − ri)(r̂
ε
j − rj)}

= lim
T→∞

E
[
T (

5∑

l=1

Ali +
δi,0εe

µ

T
− δi,0σ

2)(
5∑

k=1

Akj +
δj,0εe

µ

T
− δj,0σ

2)
]
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Note that the first and second moments of xt are:

E(xt) = E[ρ cos(tω0 + φ)] = ρ

∫ 2π

0

cos(tω0 + φ)
1

2π
dφ = 0

E(x2
t ) = E[ρ2 cos2(tω0 + φ)] = ρ2E

{1

2
[1 + cos 2(tω0 + φ)]

}

=
ρ2

2
+

ρ2

2

∫ 2π

0

cos 2(tω0 + φ)
1

2π
dφ =

ρ2

2

(4.70)

Also,

E(εtεsεuεv) =





ησ4 if t = s = u = v

σ4, if t = s 6= u = v

0, if t 6= s, t 6= u, and t 6= v

(4.71)

Let us consider two cases depending on i and j.

Case 1: Let i, j 6= 0. Then σε
ij = limT→∞ E

[
T

∑5
l=1 Ali

∑5
k=1 Akj

]
, where

lim
T→∞

E
(
TA1iA1j

)
= lim

T→∞
ij

T

ρ4

4
cos(iω0) cos(jω0) = 0,

lim
T→∞

E
(
TA2iA2j

)
= lim

T→∞
1

T
E

{
ρ4 cos2[(T − 1)ω0 + 2φ]

sin[(T − i)ω0]

2 sin ω0

sin[(T − j)ω0]

2 sin ω0

}

= lim
T→∞

1

T
ρ4 sin[(T − i)ω0]

2 sin ω0

sin[(T − j)ω0]

2 sin ω0

E
{
cos2[(T − 1)ω0 + 2φ]

}

= lim
T→∞

1

T
ρ4 sin[(T − i)ω0]

2 sin ω0

sin[(T − j)ω0]

2 sin ω0

E
{1

2

(
1 + cos 2[(T − 1)ω0 + 2φ]

)}

= lim
T→∞

1

2T
ρ4 sin[(T − i)ω0]

2 sin ω0

sin[(T − j)ω0]

2 sin ω0

= 0,

lim
T→∞

E
(
TA3iA3j

)
= lim

T→∞
1

T
E

(T−i∑
t=1

xt+iεt

T−j∑
s=1

xs+jεs

)
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= lim
T→∞

1

T

T−max (i,j)∑
t=1

E[xt+ixt+j]E[ε2
t ]

= lim
T→∞

1

T

T−max (i,j)∑
t=1

ρ2E{cos[(t + i)ω0 + φ] cos[(t + j)ω0 + φ]}σ2

= lim
T→∞

1

T

T−max (i,j)∑
t=1

ρ2

2
E{cos[(2t + i + j)ω0 + 2φ] + cos[(i− j)ω0]}σ2

= lim
T→∞

T −max (i, j)

T

ρ2σ2

2
cos[(i− j)ω0]

=
ρ2σ2

2
cos[(i− j)ω0],

lim
T→∞

E
(
TA4iA4j

)
= lim

T→∞
1

T
E

(T−i∑
t=1

xtεt+i

T−j∑
s=1

xsεs+j

)

= lim
T→∞

1

T

T−max (i,j)∑
t=1

E[xtxt+i−j]E[ε2
t+i]

= lim
T→∞

1

T

T−max (i,j)∑
t=1

ρ2E{cos[tω0 + φ] cos[(t + i− j)ω0 + φ]}σ2

= lim
T→∞

1

T

T−max (i,j)∑
t=1

ρ2

2
E{cos[(2t + i− j)ω0 + 2φ] + cos[(i− j)ω0]}σ2

= lim
T→∞

T −max (i, j)

T

ρ2σ2

2
cos[(i− j)ω0]

=
ρ2σ2

2
cos[(i− j)ω0],

lim
T→∞

E
(
TA5iA5j

)
= lim

T→∞
1

T
E

(T−i∑
t=1

εtεt+i

T−j∑
s=1

εsεs+j

)
= lim

T→∞
T − i

T
δi,jσ

4 = δi,jσ
4,

lim
T→∞

E
(
TA1iA2j

)
= lim

T→∞
E

(
TA1jA2i

)

= lim
T→∞

i

T

ρ4

2
cos(iω0)

sin[(T − j)ω0]

2 sin ω0

E
{
cos[(T − 1)ω0 + 2φ]

}
= 0,
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lim
T→∞

E
(
TA1iA3j

)
= lim

T→∞
E

(
TA1jA3i

)

= lim
T→∞

i

T

ρ2

2
cos(iω0)

T−j∑
t=1

E(xt+j)E(εt) = 0,

lim
T→∞

E
(
TA1iA4j

)
= lim

T→∞
E

(
TA4iA1j

)

= lim
T→∞

i

T

ρ2

2
cos(iω0)

T−j∑
t=1

E(xt)E(εt+j) = 0,

lim
T→∞

E
(
TA1iA5j

)
= lim

T→∞
E

(
TA5iA1j

)

= lim
T→∞

i

T

ρ2

2
cos(iω0)

T−j∑
t=1

E
{
εtεt+j

}
= 0,

lim
T→∞

E
(
TA2iA3j

)
= lim

T→∞
E

(
TA3iA2j

)

= lim
T→∞

1

T
ρ2 sin[(T − i)ω0]

2 sin ω0

T−j∑
t=1

E
{
cos[(T − 1)ω0 + 2φ]xt+jεt

}
= 0,

lim
T→∞

E
(
TA2iA4j

)
= lim

T→∞
E

(
TA4iA2j

)

= lim
T→∞

1

T
ρ2 sin[(T − i)ω0]

2 sin ω0

T−j∑
t=1

E
{
cos[(T − 1)ω0 + 2φ]xtεt+j

}
= 0,

lim
T→∞

E
(
TA2iA5j

)
= lim

T→∞
E

(
TA5iA2j

)

= lim
T→∞

1

T
ρ2 sin[(T − i)ω0]

2 sin ω0

T−j∑
t=1

E
{
cos[(T − 1)ω0 + 2φ]εtεt+j

}
= 0,

lim
T→∞

E
(
TA3iA4j

)
= lim

T→∞
E

(
TA4iA3j

)

= lim
T→∞

1

T
E

(T−i∑
t=1

xt+iεt

T−j∑
s=1

xsεs+j

)
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= lim
T→∞

1

T

T−i∑
t=1

E[xt+i+jxt]E[ε2
t+j]

= lim
T→∞

1

T

T−i∑
t=1

ρ2E{cos[(t + i + j)ω0 + φ] cos[tω0 + φ]}σ2

= lim
T→∞

1

T

T−i∑
t=1

ρ2σ2

2
E{cos[(2t + i + j)ω0 + 2φ] + cos[(i + j)ω0]}

=
ρ2σ2

2
cos[(i + j)ω0],

lim
T→∞

E
(
TA3iA5j

)
= lim

T→∞
E

(
TA5iA3j

)
= lim

T→∞
1

T
E

(T−i∑
t=1

xt+iεt

T−j∑
s=1

εsεs+j

)
= 0,

lim
T→∞

E
(
TA4iA5j

)
= lim

T→∞
E

(
TA5iA4j

)
= lim

T→∞
1

T
E

(T−i∑
t=1

xtεt+i

T−j∑
s=1

εsεs+j

)
= 0.

Thus, when i, j 6= 0,

σε
ij = lim

T→∞

{
E

(
TA3iA3j

)
+ E

(
TA4iA4j

)
+ E

(
TA3iA4j

)
+ E

(
TA4iA3j

)
+ E

(
TA5iA5j

)}

= δi,jσ
4 + ρ2σ2 cos[(i− j)ω0] + ρ2σ2 cos[(i + j)ω0]

= δi,jσ
4 + 2ρ2σ2 cos(iω0) cos(jω0).

Case 2: Let i = j = 0. Then

σε
00 = lim

T→∞
Var

{
T1/2

5∑

l=1

Alj

}

= lim
T→∞

T
{
Var(A30) + Var(A40) + Var(A50) + 2Cov(A30, A40)

}
,

where

lim
T→∞

TVar(A30) = lim
T→∞

TVar(A40) = lim
T→∞

TCov(A30, A40) = (ρ2σ2)/2, (4.72)
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lim
T→∞

TVar(A50) = lim
T→∞

1

T

{ T∑
t=1

E(ε4
t )−

T∑
t=1

[E(ε2
t )]

2

}
= (η − 1)σ4. (4.73)

Thus, when i = j = 0,

σε
00 = (η − 1)σ4 + 2ρ2σ2. (4.74)

By Case 1 and 2, the result follows. ¤

Based on the result of Theorem 4.2.3, we now state the CLT for τ̂ k, which mirrors the

proof of Lau et al.(2002) on asymptotic normal distribution of the YW estimates.

Theorem 4.2.4 If ω0 ∈ (0, π), T →∞ and k →∞ such that k
3
2 /T → 0, then

√
T (τ̂ k − τ k) → N(0,R−1

k MΣM ′R−1
k ),

where τ̂ k = (â1, . . . , âk), τ k = (a1, . . . , ak), and

M =




a1 a2 a3 . . . ak 0

a2 a3 a4 . . . 0 0

a3 a4 a5 . . . 0 0
...

...
... . . .

...
...

ak−1 ak 0 . . . 0 0

ak 0 0 . . . 0 0




−




0 a0 0 . . . 0 0

0 a1 a0 . . . 0 0

0 a2 a1 . . . 0 0
...

...
... . . .

...
...

0 ak−2 ak−3 . . . a0 0

0 ak−1 ak−2 . . . a1 a0




. (4.75)

Proof Since
√

T (r̂ε
k,0 − rk,0) converges in distribution, as stated by Theorem 4.2.3, it

follows the result of Serfling (1980) that r̂ε
k,0 = rk,0 + O(1/

√
T ). Define the following

quantities:

• g(r̂ε
k,0) = (R̂

ε

k)
−1r̂ε

k = τ̂ k,

• g(rk,0) = (Rk)
−1rk = τ k,

• ∆k,i= (p× p)-matrix with ±ith off-diagonal elements equal to 1, and 0 otherwise,

• ϑk,i= (p× 1)-vector with ±ith element equal to 1, and 0 otherwise,
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Note in particular that ∆k,0 is the identity matrix and ∆k,k is a zero matrix. Then, for

i = 0, 1, . . . , k
∂(R̂

ε

k)
−1

∂r̂ε
i

= −(R̂
ε

k)
−1∆k,i(R̂

ε

k)
−1 and

∂r̂ε
k

∂r̂ε
i

= ϑk,i. (4.76)

Thus, by the chain rule,

∂g(r̂ε
k,0)

∂r̂ε
i

∣∣∣∣
r̂ε

k,0=rk,0

=

{[
∂(R̂

ε

k)
−1

∂r̂ε
i

]
r̂ε

k + (R̂
ε

k)
−1

[
∂r̂ε

k

∂r̂ε
i

]}∣∣∣∣
r̂ε

k,0=rk,0

= −(Rk)
−1∆k,i(Rk)

−1rk + (Rk)
−1ϑk,i

= −(Rk,T )−1(∆k,iτ k − ϑk,i).

Applying Taylor’s expansion,

√
T (τ̂ k − τ k) =

√
T

{
g(r̂ε

k,0)− g(rk,0)
}

=
√

T

k∑
i=0

∂g(r̂ε
k,0)

∂r̂ε
i

∣∣∣∣
r̂ε

k,0=rk,0

(r̂ε
i − ri) + o(1)

= −
k∑

i=0

(Rk)
−1(∆k,iτ k − ϑk,i)

√
T (r̂ε

i − ri) + o(1)

= −(Rk)
−1[τ k, (∆k,1τ k − ϑk,1), . . . , (∆k,kτ k − ϑk,k)]

√
T (r̂ε

i − ri) + o(1).

Let ai = 0 for i < 0 and i > k. Note that

∆k,iτ k − ϑk,i =




a1+i

a2+i

...

ak+i



−




a1−i

a2−i

...

ak−i




. (4.77)

Therefore, [τ k, (∆k,1τ k − ϑk,1), . . . , (∆k,kτ k − ϑk,k)] = M , and the result follows by The-

orem 4.2.3. ¤

Based on the results of Theorem 4.2.3 and Theorem 4.2.4, we now derive the asymptotic

properties of estimated frequency ω̂k. Let us introduce the following polynomial:

a∗(z) = 1 + a∗1z + . . . + a∗kz
k, (4.78)
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and parameter vector τ ∗k = (a∗1, . . . , a
∗
k), which is defined to be

τ ∗k = R+
k rk, (4.79)

where R+
k denotes the Moore-Penrose pseudoinverse of Rk. Stoica et al. (1989) shows that

a∗(z) = B∗(z)A(z), (4.80)

where A(z) = 1− 2 cos ω0z + z2 and B(z) is a monic polynomial of degree k − 2 uniquely

defined by

1

2π

∫ π

−π

∣∣B∗(eiω)
∣∣2∣∣A(eiω)

∣∣2dω = min
B

1

2π

∫ π

−π

∣∣B(eiω)
∣∣2∣∣A(eiω)

∣∣2dω. (4.81)

A(z) has its roots located on the unit circle at e±iω0 , and the remaining roots of a∗(z) are

the roots of B∗(z) which located outside the unit circle. As k increases, the roots of B∗(z)

tend to the unit circle.

Recall the polynomial a(z) of the AR(k) model corresponding to the unknown coefficient

vector τ k,

a(z) = 1 + a1z + . . . + akz
k. (4.82)

and the polynomial â(z) corresponding to the RLS coefficient estimates τ̂ k,

â(z) = 1 + â1z + . . . + âkz
k. (4.83)

Denote the complex roots of â(z) by β̂pe
±iω̂p , for p = 1, . . . , k. The estimated frequency

ω̂k is the phrase angle of complex roots β̂ke
±iω̂k that are closest to the unit circle. Recall

that fk(θ) = σ2/{2π|a(eiθ)|} is the k-th order AR approximation to the generalized spectral

density of {yt} and ω̂k estimates ω0k, the maximum of fk(θ). We state the following strong

consistency results of the frequency estimate ω̂k.

Corollary 4.2.5 If ω0 ∈ (0, π), T → ∞ and k → ∞ such that k
3
2 /T → 0, then for any

ε > 0 there exists T ′ such that

|ω̂k − ω0k| < ε, (4.84)

for all T > T ′ with probability 1.
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The proof of Corollary 4.2.5 follows from the result on a.s. convergence of τ̂ k using the

same derivation steps as that of Theorem 1 in Mackisack and Poskitt (1989).

Corollary 4.2.6 Under the same conditions as Corollary 4.2.5, ω̂k → ω0 almost surely.

Proof Note that ω̂k − ω0 = (ω̂k − ω0k) + (ω0k − ω0). Theorem 2 in Stoica et al. (1987)

states that (ω0k−ω0) = O(1/k3). Hence, by the results of Corollary 4.2.5 and for k3 →∞,

we get

ω̂k → ω0, a.s. (4.85)

¤.

Finally, we state the CLT of estimated frequency ω̂k, whose proof applies similar argu-

ments as Stoica et al. (1989) Theorem 5.1.

Theorem 4.2.7 If k
3
2 > cT 1−δ, for 0 < δ < 5/8 such that k

3
2 /T → 0, then

√
T (ω̂0 − ω0) → N(0,FGR−1

k,T MΣM ′R−1
k,T G′F ′)

in distribution, where

• F =
(

ψ/(θ2 + ψ2), −θ/(θ2 + ψ2)
)
, where θ = [cos ω0, 2 cos 2ω0, . . . , k cos kω0]τ ∗

and ψ = [sin ω0, 2 sin 2ω0, . . . , k sin kω0]τ
∗;

• G =
(

[cos ω0, cos 2ω0, . . . , cos kω0]; [sin ω0, sin 2ω0, . . . , sin kω0]
)′

;

Proof Using the same arguments as in the paper by Stoica et al. (1989) and taking into

account the results on asymptotic consistency and normality of τ̂ k and Corollary 4.2.6,

we obtain that for sufficiently large T , ω̂k is close to ω0 and β̂k is close to β0 = 1. Hence,

the following Taylor expansion holds under regularity conditions:

0 = Re{â(β̂ke
iω̂k)}

= Re{â(eiω0)}+
∂Re{â(βeiω)}

∂β

∣∣∣∣
β=1,ω=ω0

(β̂k − β0)

+
∂Re{â(βeiω)}

∂ω

∣∣∣∣
β=1,ω=ω0

(ω̂k − ω0) + O(1/T ),

(4.86)
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0 = Im{â(β̂ke
iω̂k)}

= Im{â(eiω0)}+
∂Im{â(βeiω)}

∂β

∣∣∣∣
β=1,ω=ω0

(β̂k − β0)

+
∂Im{â(βeiω)}

∂ω

∣∣∣∣
β=1,ω=ω0

(ω̂k − ω0) + O(1/T ),

(4.87)

where

∂Re{â(βeiω)}
∂β

∣∣∣∣
β=1,ω=ω0

= [cos ω0, 2 cos 2ω0, . . . , k cos kω0]τ̂ k,

∂Re{â(βeiω)}
∂ω

∣∣∣∣
β=1,ω=ω0

= −[sin ω0, 2 sin 2ω0, . . . , k sin kω0]τ̂ k,

∂Im{â(βeiω)}
∂β

∣∣∣∣
β=1,ω=ω0

= [sin ω0, 2 sin 2ω0, . . . , k sin kω0]τ̂ k,

∂Im{â(βeiω)}
∂ω

∣∣∣∣
β=1,ω=ω0

= [cos ω0, 2 cos 2ω0, . . . , k cos kω0]τ̂ k.

(4.88)

Let us introduce the following notations:

θ = [cos ω0, 2 cos 2ω0, . . . , k cos kω0]τ
∗
k, ψ = [sin ω0, 2 sin 2ω0, . . . , k sin kω0]τ

∗
k,

h = [cos ω0, cos 2ω0, . . . , cos kω0]
′, g = [sin ω0, sin 2ω0, . . . , sin kω0]

′,

F =
(

ψ/(θ2 + ψ2) −θ/(θ2 + ψ2)
)

,G =

(
h′

g′

)
.

(4.89)

By Theorem 4.2.4, as k →∞ and T →∞ such that k
3
2 /T → 0,

√
T (τ̂ k−τ k) converges

in distribution, and thus it follows the result of Serfling (1980) that (τ̂ k−τ k) = O(1/
√

T ).

Also, by the result of Theorem 1 in Stoica et al. (1987), (τ k − τ ∗k) = O(1/k2), thus

τ̂ k − τ ∗k = (τ̂ k − τ k) + (τ k − τ ∗k) = O(1/k2) + O(1/
√

T ). (4.90)
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Since k
3
2 > cT 1−δ, for 0 < δ < 5/8, the dominant term in (4.86) is not affected if we

replace τ̂ k by τ ∗k, which is

0 = Re{â(eiω0)}+ θ(β̂k − β0)− ψ(ω̂k − ω0) + O(1/T ),

0 = Im{â(eiω0)}+ ψ(β̂k − β0) + θ(ω̂k − ω0) + O(1/T ).
(4.91)

Since a∗(eiω) = 0,

Re{â(eiω0)} = Re{â(eiω0)− a∗(eiω0)} = h′(τ̂ k − τ ∗k),

Im{â(eiω0)} = Im{â(eiω0)− a∗(eiω0)} = g′(τ̂ T
k − τ ∗k).

(4.92)

Denote ∆τ = (τ̂ k − τ ∗k), ∆β = (β̂k − β0), and ∆ω = (ω̂k − ω0), then we have

0 = h′∆τ + θ∆β − ψ∆ω + O(1/T ), (1)

0 = g′∆τ + ψ∆β + θ∆ω + O(1/T ). (2)
(4.93)

Solve for ∆ω in terms of ∆τ , we get

∆ω =
ψh′ − θg′

ψ2 + θ2
∆τ + O(1/T ) = FG∆τ + O(1/T ),

which is

(ω̂k − ω0) = FG(τ̂ k − τ ∗k) + O(1/T ). (4.94)

Equivalently,

(ω̂k − ω0) = FG(τ̂ k − τ k) + FG(τ k − τ ∗k) + O(1/T ). (4.95)

We now consider FG(τ k − τ ∗k). By the result of Stoica et al. (1987) Theorem 1,

(τ k − τ ∗k) = O(1/k2), (4.96)

1

k
θ = − 2

k2
[cos ω0, 2 cos 2ω0, . . . , k cos kω0]G

′
(

1

0

)

+
1

k
[cos ω0, 2 cos 2ω0, . . . , k cos kω0]O(1/k2)

= −1

2
+ O(1/k),

(4.97)
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1

k
ψ = − 2

k2
[sin ω0, 2 sin 2ω0, . . . , k sin kω0]G

′
(

1

0

)

+
1

k
[sin ω0, 2 sin 2ω0, . . . , k sin kω0]O(1/k2)

= O(1/k).

(4.98)

Substituting (4.96) - (4.98) to FG(τ k − τ ∗k), we get

FG(τ k − τ ∗k) =
O(1) + kO(1)

O(1) + k2O(1)
O(1/k2) = O(1/k3). (4.99)

Therefore,

(ω̂k − ω0) = FG(τ̂ k − τ k) + O(1/k3) + O(1/T ). (4.100)

Multiplying both sides of (4.100) by
√

T , we get

√
T (ω̂k − ω0) =

√
TFG(τ̂ k − τ k) + O(T

1
2 /k3) + O(1/T

1
2 ). (4.101)

If k
3
2 > cT 1−δ, for 0 < δ < 3/4, then T

1
2 /k3 → 0, and O(T

1
2 /k3) → 0. Also, as T → ∞,

O(1/T
1
2 ) → 0, so we have

√
T (ω̂k − ω0) =

√
TFG(τ̂ k − τ k). (4.102)

By Theorem 4.2.4,
√

T (τ̂ k − τ k) → N(0,R−1
k MΣM ′R−1

k ), and thus, if k
3
2 > cT 1−δ,

for 0 < δ < 5/8 such that k
3
2 /T → 0,

√
T (ω̂k − ω0) → N(0, FGR−1

k MΣM ′R−1
k G′F ′). ¤ (4.103)

In this section, we have proved the strong consistency of the truncated RLS estimates

τ̂ k in the case where a has roots on the unit circle. Moreover, we have showed that the

estimated frequency ω̂k converges almost surely under the assumption that T → ∞ and

k →∞ such that k
3
2 /T → 0. Compared to the strong consistency results of the estimated

frequency in Mackisack and Poskitt (1989), which assumes that T →∞ and k →∞ such

that k2/T → 0, our result extends to higher order of approximating AR equations. In

practice, Mackisack and Poskitt (1989) apply AIC to select the model order, while the

order of our regularized AR approximation may be much higher than the order suggested

by AIC.
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4.3 Robust Trimming Algorithm

For sufficiently large T , the zeroes of â(z) are close to the zeros of a∗(z), or equivalently,

B∗(z)A(z). Stoica (1987) points out that as k increases, the zeros of B∗(z) tend to the

unit circle. Therefore, it is possible that the zeros of B∗(z) moves faster towards the unit

circle than those corresponding to A(z), which results in false frequency estimates. Such

situation was encountered in our simulation studies. In order to increase the accuracy of the

estimates, we propose the robust trimming algorithm (RTA) of RAR frequency estimation.

The RTA procedures are based on the result that the RAR frequency estimates are

normally distributed in large samples (see Theorem 4.2.7). We first take a training set from

the sample in order to choose an “optimal” combination of model order k and regularizing

parameter µ, and to construct a (1 − α)%-confidence interval (CI) based on the chosen

k and µ. Model order k should be significantly higher than the order suggested by the

information criterions. We select (empirically) a set of k and µ, and then apply the RLS

estimation with all the combinations of k and µ from this set. We choose such k and µ

that yield the minimum mean square error (MSE). This approach of selecting k and µ is

similar to the thresholding method suggested by Bickel and Levina (2006), and we will

investigate its theoretical justifications in our future research.

Since the sample distribution of frequency estimates is approximately normal, we can

construct a (1 − α)%-CI based under the assumption of normality. After k, µ and the

(1 − α)%-CI are obtained, we can apply the RLS estimation with the chosen k and µ to

the entire sample, and only take the frequency estimates falling into the (1 − α)% CI.

Our simulation studies indicate that such a robust trimming of frequency estimates can

effectively eliminate the spurious roots and outliers, and therefore noticeably increase the

accuracy.

To demonstrate the performance of the RTA method, we conduct the following simu-

lation study (see Mackisack and Poskitt, 1989). Consider a observed sample of size 1024

generated by the following process:

yt = 20 cos(1.24t + 0.01) + εt, (4.104)

where {εt} are iid N(0,1). Notice that the true frequency ω0 = 1.24.
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Mackisack and Poskitt (1989) (MPAR) utilize a three-step procedure:

1. select the order of AR(k) model by AIC; AIC suggests k = 44.

2. estimate the AR coefficients by the YW method.

3. the frequency ω̂k is estimated by finding the minimum of the transfer function ĥk(θ) =
∣∣â(eiθ)

∣∣2 =

∣∣∣∣
∑k

j=0 âj(e
ijθ)

∣∣2 in (0, π).

On the other hand, we conducted the RTA approach as follows:

1. From the observed data sample {yt}T
t=1, take a sub-sample of size T1, T1 << T .

2. Fit AR(k) models to the sub-sample {yt}T1
1 by the RLS estimation with various

regularizer parameter µj, µj ∈ (0.001, 0.015), j = 1, . . . , 15, and model order ki,

ki ∈ (45, 60), i = 1, . . . , 15.

3. Find the “optimal” µ∗ and corresponding k∗ providing the minimum of MSE. In

particular, we select µ∗ = 0.135 and k∗ = 55.

4. Construct a 95% CI using the sample distribution of ω̂T1(µ
∗, k∗), j, i = 1, . . . , 15.

5. Fit the AR(k) model to {yt}T
T1+1 by the RLS estimation with µ∗; take into account

only ω̂t falling within the (1− α)% CI.

Note that in step (4), the 95% CI is constructed by using the median absolute deviation

(MAD).

We denote MSE of the RTA and MPAR methods by MSERTA and MSEMPAR respec-

tively. In Figure 4.1, both MSERTA and MSEMPAR decay exponentially when SNR increases.

In particular, MSERTA is equivalent to MSEMPAR when SNR is high (> 22dB). However,

MSERTA is significantly lower than MSEMPAR when SNR is low (< 22dB). Low SNR means

that the signal is hidden in noise, so the frequency is more difficult to detect. Thus, RTA

can be a preferred method for detection of unknown frequency in noisy conditions of online

modeling.
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Figure 4.1: Comparison of MPAR and RTA in the plot SNR vs. MSE.



Chapter 5

AR Approximation to ARFIMA

Process

According to Hosking (1984), long memory is defined as “the significant dependence be-

tween observations a long time span apart”. Many time series, particularly from financial

and computer science applications, possess such properties. In general, there are two ma-

jor schools of analyzing long memory processes, namely, continuous models, such as the

fractional Gaussian noises (Mandelbrot and van Ness, 1968), and discrete models, such

as the Autoregressive Fractional Integrated Moving Average (ARFIMA) models (Granger

and Joyeux, 1980; Hosking, 1981). The main focus of this thesis is on discrete time series

and linear stochastic models. Hence, we are particularly interested in a class of ARFIMA

models that will be discussed in this chapter. The ARFIMA model is a generalization

of the ARIMA model but with fractional differencing parameter d and fits into the Box-

Jenkins framework. However, estimation of ARFIMA parameters is very computationally

expensive and raises issues on robustness to the choice of initial values. Therefore, we

discuss an alternative method of approximating the ARFIMA process by “long” AR mod-

els (Ray, 1993; Ray and Crato; 1996, Poskitt, 2007). We also apply the Regularized AR

(RAR) approximation to make long-range forecasting. We will prove the AR approxi-

mation, particularly the RAR approach, is useful in long-range prediction by simulation

studies.

73
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5.1 Introduction to the ARFIMA Process

A long memory process can be characterized in different ways (Hosking, 1984):

• the ACVF decays hyperbolically as oppose to exponentially as lag increases;

• the spectral density increases without limit as the frequency tends to zero;

• the rescaled adjusted range (Hurst, 1956) behaves as a function T h, h > 1
2

of the

sample size T , rather than as T 1/2 for short memory processes. Here, h is known as

Hurst exponent.

Remark. The re-scaled adjusted range is defined as follows. Given a realization of a time

series {yt, t ∈ T}, with sample mean ȳ and sample variance s2, the re-scaled adjusted range

is R = s−1{max(S1, ..., ST )−min(S1, ..., ST )}, where St =
∑t

i=1 yi− tȳ, t = 1, ..., T are the

adjusted partial sums.

The early stage of modeling long memory processes was motivated by the Hurst phe-

nomenon. In particular, Hurst (1951) observed the long range dependence of wet and

drought periods in the Nile stream flows. Mandelbrot and Van Ness (1968) show that such

dependence is compatible with stationarity by constructing fractional Brownian motion

(fBm), which essentially is a weakly stationary stochastic process with a hyperbolically

decaying autocorrelation function in continuous time. Mandelbrot and Wallis (1969) in-

dicate that fractional Gaussian noise (fGn), which is a discrete time analogue of fBm,

exhibits the long range dependence. Also, Mandelbrot and Wallis derive that the Hurst

exponent h is equal to d + 1/2, where d is a fractional differencing parameter.

Other studies suggest that the Hurst phenomenon may be represented as a short mem-

ory ARMA process (O’Connell, 1971, 1974; Hipel and McLeod, 1978). The reason is that

in finite samples the re-scaled adjusted range of an ARMA process does not necessarily

behave as T 1/2. Instead, it can exhibits Hurst exponent larger than 1/2. Therefore, ARMA

processes can capture long range dependence structure when a sample size is finite.

Granger and Joyeux (1980) and Hosking (1981) propose the long memory ARFIMA

process, which generalizes the ARIMA process (Box and Jenkins, 1976) by permitting

the differencing parameter d to take fractional values, in order to represent the hyperbol-

ically decaying correlation structure. Both theoretical and empirical results indicate that
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ARFIMA models are useful in modeling long memory processes. Compared with the fGn

model, the ARFIMA equation enables modeling of the short memory as well as the long

memory processes; while compared to the ARMA approach, the ARFIMA model takes

into account the degree of the long range dependence. We define the ARFIMA process as

follows.

Definition 5.1.1 (ARFIMA Process). An ARFIMA (p, d, q) process, p, q ∈ Z and d ∈ R
is defined as

φ(B)∇dXt = θ(B)εt, (5.1)

where

• {εt} ∼ WN(0, σ2),

• φ(λ) and θ(λ) are polynomials in B of degree p and q respectively,

• φ(λ) and θ(λ) have no common factor,

• φ(λ) 6= 0 for |λ| ≤ 1,

• the fractional differencing operator ∇d represents

(1−B)d =
∞∑

k=0

(
d

k

)
(−B)k =

∞∑

k=0

bkB
k, where bk =

Γ(−d + k)

Γ(−d)Γ(k + 1)
. (5.2)

When −1/2 < d < 1/2, all roots of φ(λ) and θ(λ) lie outside the unit circle. Hence, the

ARFIMA (p, d, q) process is causal and invertible. In particular, if 0 < d < 1/2, the process

exhibits significantly positive dependence between distant observations; with d = 0, the

ARFIMA process becomes a short memory ARMA process; if −1/2 < d < 0, the process

exhibits significantly negative dependence between distant observations. When p = q = 0

and d > −1
2

but not equal to zero, the ARFIMA (0, d, 0) process is called fractional noise

process, which can be considered as the result of applying fractional differencing to white

noise.

The long term behavior of an ARFIMA(p, d, q) process is similar to that of the fractional

noise process with the same value of d. The reason is that the effect of d on distant
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observations decays hyperbolically as the lag increases, while the effects of φ and θ decay

exponentially. For very distant observations, the effects of φ and θ are negligible.

Figure 5.1 presents a time series plot as well as ACF and PACF plots of 1000 observa-

tions generated from an ARFIMA(1, d, 1) model with φ1 = 0.7, d = 0.3, θ1 = 0.2. Note

that d indicates the degree of long range dependence in the process. As d increases, the

correlation between distant observations becomes more and more evident, and vice versa.

5.2 Estimation and Forecasting of the ARFIMA Pro-

cess

After the introduction of ARFIMA processes, a large number of studies have been con-

ducted on its estimation procedures, both in frequency and time domains. Generally,

the existing estimation methods can be divided into three categories: two-step estimation

procedure, simultaneous estimation (one-step) procedure and AR approximations.

The two-step estimation procedure is conducted as follows:

1. estimate the differencing parameter d alone;

2. estimate the remaining AR and MA parameters.

There are many different ways to perform the step 1. Since d = h − 1/2, where h is

the Hurst exponent, we may utilize the existing estimators of h to estimate d, for instance,

the Hurst’s (1951, 1956) K coefficient K = log R/(log T − log 2), and the Mandelbrot and

Wallis estimator (1969) which uses the slope of the regression of log R on log(series length)

with R calculated from subseries of various lengths. However, these estimators are proved

to be biased upward if h < 0.7 and biased downward if h > 0.7, while their sampling

variability is large (Wallis and Matalas, 1970).

A number of alternative estimators have been developed for estimating d. Geweke and

Porter-Hudak (1983) investigate behavior of spectral density of long memory processes

around zero and propose an estimator of d, based on a regression slope of log(periodogram).

Chen et al. (1994) proposed the lag window spectral density estimator to improve the

estimator in Geweke and Porter-Hudak (1983). In general, the existing methods can be
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A simulated ARFIMA(0.7, 0.3, 0.2) process of length 1000
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Figure 5.1: An ARFIMA(0.7,0.3,0.2) process and its ACF, PACF

grouped into the parametric and semiparametric methods. The discussions and examples

for the parametric method may be found in, for instance, Fox and Taqqu (1986), Dahlhaus

(1989) and Ludeña (2000); for the semiparametric method may be found in, for instance,

Geweke and Porter-Hudak (1983), Reisen(1993, 1994), Robinson (1995) and references

therein. Some recent simulation studies comparing different techniques for estimation d
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are presented in Reisen and Lopes (1999), Hurvich and Deo (1999).

In the second step, the estimated differencing parameter is used to transform the ob-

served series into a series that follows a standard ARMA(p, q) model, and then we can

identify and estimate the φ and θ parameters using Box-Jenkins modelling procedure.

We can also combine the two-step procedure into a simultaneous estimation of all

parameters, i.e. estimate d jointly with the ARMA parameters φ and θ. Both McLeod

and Hipel (1978) and Sowell (1992) apply the MLE method to estimate the ARFIMA

parameters d, φ and θ simultaneously. Tieslau et al. (1996) propose the minimum-distance

estimator based on estimated and theoretical autocorrelations of an ARFIMA (p, d, q)

process. Reisen et al. (2001) considered an iterative estimation procedure by Hosking

(1981) to estimate parameters. More detailed discussions on the simultaneous estimation

procedure can be found in Smith (1997), Lobato and Robinson (1996), and Cheung and

Dielbold (1994).

In fact, an ARFIMA process can be transformed into an AR(∞) process. A common

approach to make k-step-ahead prediction from an ARFIMA process is based on the trun-

cated AR(∞) model. After some literature research, we find that the exact procedure

on how to choose an “optimal” ARFIMA model and the order of truncation especially

for k-steps ahead forecasting remains unclear. Also, most current estimation methods are

likelihood based. The ML method offers the best prospect of giving efficient parameter

estimates, which achieves the Cramér-Rao lower bounds. However, ML is a non-linear op-

timization that requires good initial values. Therefore, such estimation is computationally

very expensive, and poor choices of initial values might result in meaningless estimates.

An alternative estimation approach is to skip the estimation of parameters d, φ, θ and

fit an “long” AR model to an ARFIMA process from the beginning (Ray, 1993; Ray and

Crato; 1996, Poskitt, 2006). AR models provide the advantage of estimation simplicity

and well-investigated theoretical properties. We discuss the AR modeling of the ARFIMA

process in the following section.
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5.3 AR approximation to the ARFIMA process

Theoretically, an ARFIMA (p, d, q) process can be converted to an AR(∞) process. Sub-

stituting (5.2) into (5.1), the ARFIMA (p, d, q) process becomes

φ(B)
∞∑

k=0

bkB
kXt = θ(B)εt (5.3)

where b0 = 1, b1 = −d, b2 = d(1− d)/2, bk = bk−1(k − 1− d)/k, for k ≥ 3.

Then, substituting φ(B) =
p∑

i=1

φiB
i, θ(B) =

q∑
j=1

θjB
j into (5.3), we obtain

p∑
i=1

φiB
i
∞∑

k=0

bkB
k

q∑
j=0

θjBj

Xt =

(
1−

∞∑
i=1

δiL
i

)
Xt = εt (5.4)

where δi = bi −
q∑

j=1

θjδi−j +
p∑

i=1

φjbi−j, and
∑

δ2
i < ∞, for |d| < 1/2. Note that (5.4) is a

AR(∞) process.

The AR model has a simple structure, and its estimation techniques as well as the

asymptotic properties are well-established. The estimation of AR parameters requires much

less effort compared to that of the ARFIMA parameters. In practice, an AR(∞) model

is truncated to finite AR(p) to approximate the ARFIMA process. Although AR(p) does

not possess long memory properties, we attempt to choose the model order p large enough

so that the tail of the AR(∞) is negligible. Such modeling is equivalent to approximating

a hyperbolically decaying correlation function by a sum of exponentials.

There exists a number of theoretical and empirical studies that verify feasibility of

using “long” AR models to approximate and forecast ARFIMA processes. Geweke and

Porter-Hudak (1983) indicate that the AR(50) model provides forecasts comparable to the

fractional noise models, based on three economic series. Ray (1993) show empirically and

theoretically that AR(p) models produce accurate long-range forecasts of the fractional

noise process. Ray (1993) also addresses the need for considering different model orders for

forecasting at different lead times. Moreover, Crato and Ray (1996) indicate that “long”
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AR models perform competitively or better for long-range forecasting than the subcases

of ARFIMA(p, d, q): FI(0, d, 0), ARFI(1, d, 0) and FIMA(0, d, 1).

Based on our simulation study, we find that

1. “long” AR approximation is also useful for the general ARFIMA(p, d, q) with p ≥ 1

and q ≥ 1,

2. the RAR approximation can potentially be a competitive method for producing fore-

casts of long memory processes,

3. “percentage increase in prediction error” keeps decreasing as model order p of the

AR(p) approximation. increases.

We present our numerical example in the following section.

5.4 Numerical Examples

We present two examples on application of the RAR approach to modeling and forecasting

of long memory processes.

Example (1). In this example, we illustrate that the AR approximation is useful

for prediction of the general ARFIMA(p, d, q) processes with p ≥ 1 and q ≥ 1, which

extends the results of Ray (1993) and Crato and Ray (1996) who consider only FI(0, d, 0),

ARFI(1, d, 0) and FIMA(0, d, 1). The simulation study is conducted as follows:

1. simulate 10000 observations from the long memory ARFIMA(1, 0.15, 1) process with

coefficients ar = 0.2, ma = −0.4.

2. fit {AR(1), AR(2),..., AR(80)} models into the first 9980 observations by the Yule-

Walker estimation method and make 20-step-ahead predictions using each AR model.

3. calculate the relative percentage increase (RPI) in mean square prediction errors

(MSPE) for each AR(p) approximation, p = 1, ..., 80. The RPI for k-step-ahead

prediction is define as

RPI(k) =
V ∗(k)− V (k)

V (k)
× 100 (5.5)
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where V ∗(k) is the k-step-ahead MSPE using AR(p) model, and V (k) is the k-step-

ahead MSPE using the true model.

Figure 5.2: An ARFIMA process approximated by “long” AR model

In Figure 5.2, RPI in MSPE decreases monotonically as the order p of the approximating

AR model increases, which has same pattern as the a special case of ARFIMA(p, d, q),

FI(0, d, 0), discussed in Ray (1993).

Example (2). An application of the RAR approximation in long memory daily tem-

perature data from Portland, Oregon, USA. We have 13140 daily observations that are

pre-processed, i.e. de-meaned. We take the first 10000 observations as our training sam-

ple, and observations [10001, . . . , 10010] as the verification sample.
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Figure 5.3: ACF plot of first 10000 observations of Portland data

In Figure 5.3, the acf plot of the sample exhibits long memory property, i.e. acf decays

hyperbolically. We model such long memory process using the ARFIMA model and the

RAR approximation. Our goal is to compare the two approaches in terms of 10-step-ahead

MSPE, which is implemented as follows:

• Approach (1). ARFIMA model.

We apply two-step-estimation procedure to fit an ARFIMA model to the sample.

Firstly, the fractional differecing parameter d is estimated by Geweke and Porter-

Hudak method, which gives d = 0.12. After we fractionally difference the sam-

ple data, we compare AIC values of the ARMA models of the differenced sample

data, and select an ARMA(10,2) model which achieves lowest AIC. Then, we cal-

culate the corresponding AR coefficients for ARFIMA(10, 0.12, 2) model. Based

on the truncated AR(80) model, we produce 10-step-ahead forecasts of observations

[10001, . . . , 10010].

• Approach (2). RAR approximation.
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We take a training set of 1000 observations from the sample in order to find an “op-

timal” model. Firstly, we apply the RAR approximation with various regularizing

parameters µ ∈ (0.05, 0.5) and model order p ∈ (30, 80) to the first 990 observations,

and then make 10-step-ahead predictions using the AR models with different combi-

nations of regularization parameters. The “optimal” model is selected in such way

that achieves minimum MSPE. In particular, we choose µ = 0.1 and p = 70. Then,

we apply the RAR approximation using the selected “optimal” model to the entire

sample, and produce 10-step-ahead forecasts.

We now compare the 10-step-ahead root mean square prediction errors (RMSPE) of

the two approaches:

RMSPE of 10-step prediction

ARFIMA(10, 0.12, 2) RAR approximation

using Truncated AR(80) with µ = 0.1 and p = 70

0.8522 0.414

Table 5.1: Comparison of RMSPE: ARFIMA model Vs RAR approximation

In Table 5.1, the 10-step-ahead RMSPE of RAR approximation has about 50% reduc-

tion from that of the ARFIMA. In this particular application, we conclude that the RAR

approximation performs better than the ARFIMA model. Though a more extended study

is needed to validate all properties of RAR, this initial analysis indicates that the RAR

approximation can be potentially a competitive method for producing forecasts of long

memory processes.
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Conclusion and Future Work

In this thesis, we discuss the Regularized AR (RAR) approximation for modeling and

forecasting of time series. The RAR idea is to fit a “long” autoregressive (AR) model to an

observed process and estimate AR coefficients by the Regularized LS (RLS) method, which

constitutes a version of the iterative stationary Kalman filter. RAR enables to avoid the

repeated model order selection and parameter estimation with an increase of a sample size.

Two applications of the RAR method are presented in details, i.e. frequency estimation

and long memory process forecasting.

In our frequency estimation study, we extend the results of Mackisack and Poskitt

(1989) and Gel and Barabanov (2007) and apply the RAR procedure for detection of

unknown frequency in periodic signals. Our theoretical findings indicate that the RAR

estimates of unknown frequency converge almost surely as the approximating AR model

order k increases at the rate k
3
2 /T → 0 when T →∞. We also show that RAR estimates

of unknown frequencies are asymptotically normally distributed and the corresponding

variance-covariance matrix is obtained. Moreover, a new robust trimming algorithm is

proposed to eliminate spurious roots and outliers, which noticeably increase the accuracy

of the frequency estimates for processes with a low signal-to-noise ratio. We can conclude

that the RAR frequency estimation along with the robust trimming algorithm noticeably

reduces the computational burden and improves accuracy of estimates.

The results of Ray (1993) and Crato and Ray (1996) indicate that “long” AR models

perform competitively or better in forecasting long memory processes when compared

84
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to the traditional ARFIMA-based methods, in particular, for such subcases of ARFIMA

as FI(0, d, 0), ARFI(1, d, 0) and FIMA(0, d, 1). We investigate this result via simulation

studies for more general ARFIMA(p, d, q) models with p ≥ 1 and q ≥ 1. We also apply

the Regularized AR (RAR) approximation to forecasting of long memory processes. In the

Portland temperature example, we show that the RAR approach yields a lower 10-step-

ahead root mean square prediction error (RMSE) than yielded by the ARFIMA model

chosen by AIC. Although a more extended validation study is need to assess performance

of RAR, we can conclude that the RAR approximation is potentially a competitive method

for modeling and forecasting of long memory processes.

In the future, we plan to investigate the following topics:

1. Analysis of consistency and distributional properties of the RLS and, hence, the RAR

estimates in infinite dimensional case.

2. Extension of the RAR approach to detection of multiple unknown frequencies.

3. Development of systematic procedures for selecting “optimal” regularizing parame-

ters µ and ε.

4. Analysis of linkage between the regularizer and AIC, BIC, CAT and other information

criterions, as well as with recent advances on regularization of covariance matrices in

other fields of statistics.

5. Investigation on how RLS is connected to shrinkage and “Lasso” regressions.

6. Asymptotic properties of RLS for AR(∞) with hyperbolically decaying coefficients,

i.e. long memory processes.
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Chapter 2

##R code##

******************************************************

Simulation of an AR(2) process of length 1000

with coefficient (0.3, 0.2) and its ACF, PACF

******************************************************

ar2=arima.sim(list(order = c(2, 0, 0), ar=c(0.3, 0.2)), n=1000)

par(mfrow=c(3,1))

ts.plot(ar2, main="A simulated AR(2) process of length 1000

with coefficients (0.3, 0.2)")

acf(ar2, main="ACF of a simulated AR(2) process of length

1000 with coefficients (0.3, 0.2)")

pacf(ar2, main="PACF of a simulated AR(2) process of length

1000 with coefficients (0.3, 0.2)")

********************************************************

Simulation of an MA(2) process of length 1000

with coefficient (0.3, 0.2) and its ACF, PACF

********************************************************

ma2=arima.sim(list(order = c(0, 0, 2), ma=c(0.3, 0.2)), n=1000)
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par(mfrow=c(3,1))

ts.plot(ma2, main="A simulated MA(2) process of length 1000

with coefficients (0.3, 0.2)")

acf(ma2, main="ACF of a simulated MA(2) process of length

1000 with coefficients (0.3, 0.2)")

pacf(ma2, main="PACF of a simulated MA(2) process of length

1000 with coefficients (0.3, 0.2)")

******************************************************************

Simulation of an ARMA(2,1) process of length 1000

with coefficient ar=(0.2, 0.1), ma=0.3 and its ACF, PACF

******************************************************************

arma=arima.sim(list(order = c(2, 0, 1), ar=c(0.2, 0.1), ma=0.3), n=1000)

par(mfrow=c(3,1))

ts.plot(arma, main="A simulated ARMA(2, 1) process of length 1000

with coefficients ar=(0.2, 0.1), ma=0.3")

acf(arma, main="ACF of a simulated ARMA(2, 1) process of length

1000 with coefficients ar=(0.2, 0.1), ma=0.3")

pacf(arma, main="PACF of a simulated ARMA(2, 1) process of length

1000 with coefficients ar=(0.2, 0.1), ma=0.3")

**************************************************************************

Simulation of an ARIMA(2,1,1) process of length 1000

with coefficient ar=(0.2, 0.1), ma=0.3 and its its first differencing

**************************************************************************

arima=arima.sim(list(order = c(2, 1, 1), ar=c(0.2, 0.1), ma=0.3), n=1000)

par(mfrow=c(2,1))

ts.plot(arima, main="A simulated ARIMA(2, 1, 1) process")

ts.plot(diff(arima), main="A simulated ARIMA(2, 1, 1) process,

after first difference")
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Chapter 4

##Matlab code##

*******************************************

Mackisack and Poskitt example:

*******************************************

noise=(14:-0.1:0.1);

snr=10*log10(0.5*400./noise.^2);

for i=1:140,

for j=1:1000,

arw1024(j)=arfreq(noise(i), 1024, 44, 1.24, 0.01);

end;

armse1024(i)=var(arw1024);

end;

function w=arfreq(noise,n,k,intial,fi)

y=20*cos(intial*[1:n]’+ fi ) + noise*randn(n,1);

bg=arburg(y, round(k));

n=roots(bg);

m=abs(roots(bg));

[maxval, maxindex]=max(m);

w=angle(n([maxindex]));

**********************************************

RAR example

**********************************************

for i=1:140,
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for j=1:1000,

rarw1024(j)=newlar(noise(i),1024,50,1.24, 0.01, 0.005);

end;

rarmse1024(i)=var(rarw1024);

end;

function w=newlar(noise,n,k,initial, fi, mu)

y=20*cos(initial*[1:n]’+ fi) + noise*randn(n,1);

t=MNK(y,k,n,mu);

a=[1,-t];

n=roots(a);

m=abs(n);

[minval, minindex]=min(abs(m-1));

w=angle(n([minindex]));

function tau=MNK(y, k, n, mu) ## RLS##

gamma=zeros(k,k);

for i=1:k,

gamma(i,i)=exp(mu*k);

tau(i)=0.1;

end;

for t=(k+1):(n-1),

for i=1:k,

F1(i)=y(t-i+1);

end;

F=F1’;

gamma=gamma-gamma*F*F’*gamma/(1+F’*gamma*F);

tau=tau+(gamma*F*(y(t+1)-F’*tau’)/(1+F’*gamma*F))’;

end;
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**********************************************

RAR robust trimming algorithm

**********************************************

data=20*cos(1.24*[1:1024]’+ 0.01) + randn(1024,1); ##training set##

sample=data(1:400);

for s=1:101

t=MNK(sample,55, 400, 0.005*(s-1));

a=[1,-t];

n=roots(a);

m=abs(n);

[minval, minindex]=min(abs(m-1));

o(s)=angle(n([minindex]));

end;

med=median(o);

for k=1:101

mo=abs(o(k)-median(o));

end;

sd=median(mo)*1.4826;

cl=med-2*sd; ##confidence inteval##

cu=med+2*sd;

for p=1:101

bias(p)=abs(o(p)-med);

end;

[minval, minindex]=min(bias);

mu=0.005*minindex;

ave=mean(o);

variance=var(o);
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cl=ave-sqrt(variance/100);

cu=ave+sqrt(variance/100);

for i=1:1000,

counter=0;

for j=1:1000,

freq=newlar(noise(i),1024,55,1.24, 0.01, mu);

if freq>cl & freq<cu

counter=counter+1;

rartrimw(counter)=freq;

end;

end;

if counter ==0,

rartrimmse(i)=0;

else

rartrimmse(i)= var(rartrimw);

end;

end;

##R code##

*************************************************

MP VS RAR

*************************************************

tt=seq(14,0.1,by=-0.1)

t=10*log10(200/tt^2)

la1024m=read.table("G:/BeiChen/numericalexample/

1000poskitt1024_1.24_44.txt",sep="")

lar1024m=as.numeric(la1024m)

las1024m=smooth.spline(lar1024m)
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robust1024w=read.table("G:/BeiChen/numericalexample/

1000robust1024_1.24_55_0.135.txt", sep="")

robustas1024w=as.numeric(robust1024w)

robostsmooth1024w=smooth.spline(robustas1024w)

plot(t,las1024m$y, type="n", xlab="Signal to Noise Ratio",

ylab="Mean Square Error", main="MP VS Robust Trimming Algorithm

Frequency Estimation of 1024 Simulated Processes with w=1.24")

lines(t,las1024m$y,lty=1)

lines(t,robostsmooth1024w$y,lty=2)

legend("topright", c("MP, k=44", "RTA, k=55"),lty=c(1,2), pch=-1)

Chpater 5

##R code##

*********************************************************************

Simulation of an ARFIMA(1,d,1) process of length 1000

with coefficienta ar=0.7, ma=0.2, d=0.3 and its ACF, PACF

*********************************************************************

arfima=farimaSim(n=1000, model=list(ar=0.7, d=0.3, ma=0.2),

method=c("time") )

ts.plot(arfima, main="A simulated ARFIMA(0.7, 0.3, 0.2)

process of length 1000")

acf(arfima, main="ACF of a simulated ARFIMA(0.7, 0.3, 0.2)

process of length 1000")

pacf(arfima, main="PACF of a ARFIMA(0.7, 0.3, 0.2)

process of length 1000")
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*****************

Example 1

*****************

rr=function(l){

rr=0

for( j in -p:p){

rr=rr+ru[abs(j)+1]*rx[abs(j+l)+1]

}

rr

}

d=0.15

q=rep(0,80)

for(s in 1:80){

vv=rep(0,1000)

for(u in 1:1000){

simdata=fracdiff.sim(10000,ar=c(0.2), ma=c(-0.4), d=0.15)

k=5

p=s

fit=ar.yw(test,FALSE,p)

ru=ARMAacf(ar=0, ma=da,p)

c=ARMAtoMA(ar=arcoef,ma=0,k+p)

rx=rep(0,k+p+1)

rx[1]=gamma(1-2*d)/(gamma(1-d))^2

for (i in 2:(k+p+1)){

rx[i]=(rx[i-1]*(i-1+d))/(i-d)

}

v=0

for (i in 0:(k-1)){
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for (j in 0:(k-1)){

v=v+c[i+1]*c[j+1]*rr(i-j)

}

}

vv[u]=v

}

q[s]=mean(vv)

}

*******************

Example 2

*******************

##Approach (1) by ARFIMA

##R code##

portland=read.table("G:/BeiChen/my master thesis/portland.txt", sep="")

sample=portland[1:10000]

verification=sample[10001:10010]

mGPH=fdGPH(sample)

mGPH$d

r=diffseries(sample, mGPH$d)

long=arima0(r, order=c(10, 0, 2))

## Matlab code##

load(’-ascii’,’portland.mat’);

subset=portland(1:10000);

sample=portland(1:fsize-10);
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fsize=10000;

numpred=10;

forward=sample;

nov=subset(9991:10000);

verification=portland(10001:10010);

pred=[];

d=0.12;

p=10;

q=2;

phi=[0.3132, -0.1087, 0.1373, -0.0075, 0.0155, -0.0030, 0.0023,

-0.0140, 0.0024, -0.0128]; ##result from R##

theta=[0.3662, 0.2383];

k=80;

for j=1: numpred

for i=1:numpred

t=arfimacoef(d,k,theta, phi, p, q);

train=forward(fsize-k+1:fsize);

new(i)=1 + t*train’;

forward=[forward(2:9990),new(i)];

end;

pred(j)=new(numpred);

forward=[sample(1+j : fsize), nov(2:j+1)];

end;

sum=0;

for i=1:numpred

sum=sum + (pred(i)-verification(i))^2;

end;

mse=sum/10;
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function coef=arfimacoef(d,k,theta,phi,p,q)

%negative

%first coef is not 1, should be added 1 when used

b(1)=-d;

b(2)=1/2*d*(1-d);

if k>=3

for t=3:k

b(t)= b(t-1)*(t-1-d)/t;

end;

end;

for i = 1:k

aa=0;

for j=1:q

if i-j>1

aa=aa+theta(j)*c(i-j);

else

aa=aa;

end;

end;

bb=0;

for h=1:p

if i-j>1

bb=bb+phi(j)*b(i-j);

else

bb=bb;

end;

end;
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c(i)=b(i)-aa+bb;

end;

coef = c;

##Approach (2) by RAR ##

*******************

training sample

*******************

fsize=1000; #####take a training set of 1000########

numpred=10; ####10-step-ahead##########

real=portland(991 :1000);

forward=portland(1:fsize-10);

for k= 1:50

for mu=1:50

mse=0;

for i=1:numpred

t=MNK(forward, k+30, fsize, mu/100);

for j=1:k+30

train(j)=forward(fsize+1-j);

end;

new(i)=1+t*train’;

fsize=fsize+1;

forward=portland(1:fsize);

end;

for p=1:10

mse= mse+(real(p)-new(p))^2;

end;
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pmse(mu)=mse/10;

end;

cmse(:,k)=pmse;

end;

******************

Entire sample

******************

load(’-ascii’,’portland.mat’);

subset=portland(1:10000);

sample=portland(1:fsize-10);

fsize=10000;

numpred=10;

forward=sample;

nov=subset(9991:10000);

verification=portland(10001:10010);

pred=[];

k=70;

mu=0.1;

for i=1:numpred

for j=1:numpred

t=MNK(forward, k, fsize, 0.1);

train=forward(fsize-k+1:fsize);

new(i)=1 + t*train’;

forward=[forward(2:9990),nov(2:j+1)];

end;

pred(j)=new(numpred);

forward=[sample(1+j : fsize), nov(2:j+1)];

end;
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sum=0;

for i=1:numpred

sum=sum + (pred(i)-verification(i))^2;

end;

mse=sum/10;
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Ljung, L and Söderströn, T. (1983). Theory and Practice of Recursive Identijcation. The

MIT press, London.

Li,T. H. and Kedem, B (1994). “Iterative filtering for multiple frequency estimation”.

IEEE Trans on Signal Processing. 42 (5). 1120-1130.

Ledoit, O. and Wolf, M. (2004). “A well-conditioned estimator for large-dimensional co-

variance matrices”. Journal of Multivariate Analysis. 88 (2), 365-411.

Lobato, I, and Robinson, P. M. (1996). “Averaged periodogram estimation of long mem-

ory”. Journal of Econometrics. 73, 303-324.

Ludeña, C. (2000). “Parametric estimation for Gaussian long-range dependent process

based on the log-peroidogram”. Bernoulli. 6, 709-728.

MacKisack, M. S. and Poskitt, D. S. (1989). “Autoregressive frequency estimation”.

Biometrika. 76 (3), 565-575.

MacKisack, M. S. and Poskitt, D. S. (1990). “Some properties of autoregressive esti-

mates for processes with mixed spectra”. Journal of Time Series Analysis. 11(4), 325-337.

Mackisack, M. S., Osborne, M. R. and Smyth, G.K. (1994). “A modified Prony algorithm

for estimating sinusoidal frequencies”. Journal of Statistical Computation and Simulation.



Bibliography 107

49. 111-124.

Makhoul, J. (1975). “Linear prediction: a tutorial review”. Proc.IEEE. 63, 561-580.

Mandelbrot, B. and Van Ness, J. W. (1969). “Fractional Brownian motions, fractional

noises and applications”. SIAM Review. 10, 422-437.

Mandelbrot, B. and Wallis, J. R. (1968). “Noah, Joseph and operational hydrology”.

Water Resources Research. 4, 909-918.

Mandelbrot, B. and Wallis, J. R. (1969). “Computer experiments with fractional Gaussian

noises”. Water Resour. Res., 5, 228-267.

Mallows, C. L. (1973). “Some comments on cp”. Technometrics. 15 (4), 661-675.

Mann, H. and Wald, A. (1943). “On statistical treatment of linear stochastic difference

equations”. Econornetrica. 11.

Mari, J., Dahlen, A. and Lindquist, A. (2000). “A covariance extension approach to

identification of time series”. Automatica J. IFAC 36 (3), 379-398.

Meinshausen, N. (2005). “Lasso with relaxation”. Unpublished.

McQuarrie, A. D. R. and Tsai, C. L. (1998). Regression and Time Series Model Selec-

tion. World Scientific.

Nadaraya, E. A. (1964). “On estimating regression”. Theory of Probability and Its Appli-

cations. 10, 186-190.

Nehorai, A. (1985). “A minimum parameter adaptive notch filter with constrained poles

and zeros”. IEEE Trans.Acoust. Speech Signal Process. 33, 983-996.



Bibliography 108

Nelson, D. B. (1991). “Conditional heteroskedasticity in asset returns: A new approach”.

Econometrica. 59, 347-370.

Osborne, M. R. (1975). “Some special nonlinear least squares problems”. SIAM Jour-

nal of Numerical Analysis. 12. 571-592.

O’Connell, P. E. (1971). “A simple stochastic modeling of Hurst’s law”. Mathematical

Models in Hydrology, Symposium. Warsaw. 1, 169-187.

O’Connell, P. E. (1974). “Stochastic modeling of long-term persistence in stream flow

sequences”, Ph.D. thesis, Eng. Dep., Imperial Coll., London.

Parzen, E. (1962). “On estimation of a probability density function and mode”. The

Annals of Mathematical Statistics. 33, 1065-1076.

Parzen, E. (1974). “Some recent advances in time series modeling”. Trans. Automat.

Control. AC-19, 723-730.

Parzen, E. (1977). “Multiple time series modeling: Determining the order of approxi-

mating autoregressive scheme”. Multivariate Analysis IV (Ed.P.Krishnaiah). 283-295.

North-Holland, Amsterdam.

Pisarenko, V. F.(1973). “The retrieval of harmonics from a covariance function Geo-

physics”. J. Roy. Astron. Soc.. 33, 347-366.

Poskitt, D. S. (2006). “Autoregressive approximation in nonstandard situations: the frac-

tionally integrated and non-invertible cases”. Annals of the Institute of Statistical Mathe-

matics. 59 (4), 697-725.

Priestley, M. B. (1981). Spectral Analysis and Time Series. Academic Press, London.



Bibliography 109
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