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Abstract

In machining complex dies, molds, aerospace and automotive parts, or biomedical
components, it is crucial to minimize the cycle time, which reduces costs, while preserving
the quality and tolerance integrity of the part being produced. To meet the demands for high
quality finishes and low production costs in machining parts with complex geometry,
computer numerical control (CNC) machine tools must be equipped with spline interpolation,
feedrate modulation, and feedrate optimization capabilities. This thesis presents the
development of novel trajectory generation algorithms for Non Uniform Rational B-Spline
(NURBS) toolpaths that can be implemented on new low-cost CNC's, as well as, in
conjunction with existing CNC's. In order to minimize feedrate fluctuations during the
interpolation of NURBS toolpaths, the concept of the feed correction polynomial is applied.
Feedrate fluctuations are reduced from around 40 % for natural interpolation to 0.1 % for
interpolation with feed correction. Excessive acceleration and jerk in the axes are also
avoided. To generate jerk-limited feed motion profiles for long segmented toolpaths, a
generalized framework for feedrate modulation, based on the S-curve function, is presented.
Kinematic compatibility conditions are derived to ensure that the position, velocity, and
acceleration profiles are continuous and that the jerk is limited in all axes. This framework
serves as the foundation for the proposed heuristic feedrate optimization strategy in this
thesis. Using analytically derived kinematic compatibility equations and an efficient
bisection search algorithm, the command feedrate for each segment is maximized. Feasible
solutions must satisfy the optimization constraints on the velocity, control signal (i.e.
actuation torque), and jerk in each axis throughout the trajectory. The maximized feedrates
are used to generate near-optimal feed profiles that have shorter cycle times, approximately
13-26% faster than the feed profiles obtained using the worst-case curvature approach, which
is widely used in industrial CNC interpolators. The effectiveness of the NURBS interpolation,
feedrate modulation and feedrate optimization techniques has been verified in 3-axis

machining experiments of a biomedical implant.
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Chapter 1

Introduction

1.1 Introduction

With the growing demands to machine complex dies, moulds, aerospace, automotive, and
biomedical parts in shorter cycle time, the utilization of Non Uniform Rational B-spline
(NURBS) toolpaths has become more important than ever before. NURBS curves and
surfaces have been accepted as standard modelling tools in computer-aided design (CAD)
systems and have also been incorporated into computer-aided manufacturing (CAM) systems
by industrial forerunners such as ESPRIT® and Siemens®. The advantages of NURBS
toolpaths over the conventional linear and circular toolpath definitions are that they achieve
faster feedrates, higher accuracy, and better surface finish in machining parts with complex

geometry.

Computer Numerical Control (CNC) machine tools that utilize NURBS interpolation
provide a significant competitive advantage to part manufacturers in terms of faster
production rates and shorter time-to-market. The objective of this research is to develop new
trajectory generation algorithms using NURBS toolpaths that reduce production cycle times
in order to provide significant cost savings to part manufacturers. However, CNC machines
are also a large investment, particularly for the small-to-medium sized enterprises. In order to
make this technology accessible, it is important to make it modular, portable and low cost.
Re-design of the CNC controller with new trajectory generation algorithms that incorporate
parametric curve interpolation, smooth feedrate modulation, and feedrate optimization
strategies is a practical approach to meet the high demands on part quality and fast
production time while reducing manufacturing costs. Moreover, as NURBS becomes more
widespread and mainstream, these algorithms can easily be implemented on low cost motion
controllers. Inexpensive controllers will be able to deliver higher performance results. It is
also desirable to integrate the new ideas with existing CNC's. One possibility could be to
generate the optimized trajectories offline then download them to the controller's hard drive

for real-time playback. Another is a semi-offline approach, wherein optimized feedrates for

1



Chapter 1. Introduction 2

S-curve profiles are determined offline, and then downloaded to the controller which is
generally equipped to handle S-curve feed profiles for real-time calculation of the trajectory

command positions.

There are several challenges associated with realizing a successful NURBS trajectory
generator. First of all, the toolpath interpolator should minimize unwanted feedrate
fluctuations while being numerically efficient and robust against accumulating round-off
errors. Feedrate fluctuations are artefacts of arc-length parameterization errors, caused by an
inaccurate mapping between the spline parameter and the arc displacement along the spline
toolpath during interpolation. Discontinuity in the feed profile results in unsmooth tool
motion, which causes visible feed marks on the machined part. Moreover, if the discontinuity
produces high acceleration and jerk, then motor torque saturation and excitation of the
machine tool's structural modes, which have the effect of degrading the positioning
performance, may be encountered. When axis servo errors become excessive, the part
geometry gets distorted and machining tolerances may be violated. For these reasons, it is
important to implement the interpolator such that the feedrate can be accurately controlled.
The feed modulation, on the other hand, needs to be able to continuously adjust the feedrate
along different segments of the toolpath while ensuring that the final trajectory is jerk limited
in all axes. Kinematic compatibility conditions between position, velocity, acceleration, and
jerk should never be violated. The ability to perform feedrate modulation allows feedrate
optimization strategies to be implemented, which ensure that high accuracy can be
maintained throughout the toolpath without compromising the speed in low curvature
segments. A look-ahead module is required in order to plan sufficient distance for
accelerations and decelerations and to resolve kinematically infeasible cases. Additionally, in
order to be practical for real-time implementation, the feed modulation must be

computationally efficient.

Finally, reduction in the cycle time is due in large part to the feedrate optimization
component. The minimum time feedrate optimization problem with jerk constraints is non-
linear and non-convex, and consequently, not easily solvable. In general, obtaining an

optimal feed profile requires a forward and backward traversal of the entire toolpath, which
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is impractical to perform in a real-time environment for very long toolpaths. To address this
limitation, the toolpath can be divided into multiple segments and local near-optimal
solutions can be computed. Unfortunately, there is no standard solution technique for this
type of problem, but a customized solution methodology can be formulated given specific
knowledge of the problem. Simplistic approaches tend to result in conservative feed profiles
while gradient-based optimization techniques tend to be computationally expensive. A
method that generates a feed profile with shorter cycle times than the simplistic solutions,
with significantly less computational load compared to the gradient-based techniques, is

sought.

In this thesis, a robust and numerically efficient NURBS interpolation strategy is
developed, and contains integrated feedrate modulation and feedrate optimization
functionalities. Unwanted feedrate fluctuations and sensitivity to round-off errors are avoided
by applying the feed correction polynomial concept to NURBS toolpaths. A numerically
efficient feedrate modulation strategy is developed, based on the trapezoidal acceleration
profile, which guarantees that the final trajectory is limited in jerk in all axes. Furthermore,
kinematic continuity is achieved by enforcing compatibility conditions between connecting
segments throughout long toolpaths. The feed modulation strategy can be integrated with
various feed optimization techniques as well. Specifically, a heuristic feedrate optimization
method, that is computationally efficient, is developed and tested alongside the NURBS
interpolation scheme. By utilizing insights into the physical constraints of the problem, the
solution converges quickly and infeasible solutions are resolved in an efficient manner.
Effectiveness of the overall NURBS trajectory generator is demonstrated in 3-axis machining
experiments of a benchmark contour toolpath and a complex sculptured surface, which was

derived from a biomedical implant.



Chapter 2

Literature Review

2.1 Introduction

Extensive work on motion planning and trajectory generation in both robotics and
machining fields has been undertaken in pursuance of increased productivity and reduced
costs for manufacturing processes. This chapter presents a review of literature and industrial
state-of-the-art in the areas of NURBS toolpath generation, feedrate generation, and feedrate
optimization. The tasks of toolpath generation are distributed over two systems - the
CAD/CAM system and the CNC controller. The distribution of these tasks, as in this thesis,
is illustrated in Figure 2-1. Computationally intensive tasks such as the toolpath
parameterization and integration of the segment arc-length are generally handled by the
CAM system in an offline environment, whereas feed generation and trajectory interpolation
are realized in the CNC controller in real-time. Feedrate generation and optimization are
interfaced subtasks of the trajectory generation module in the CNC controller. In the
following, Section 2.2 gives a brief introduction to NURBS curve representation for
toolpaths. A review of toolpath parameterization methods is presented in Section 2.3.
Various spline interpolation techniques for parametric curves are surveyed in Section 2.4.
Feed generation and optimization methods are explored in Sections 2.5 and 2.6, respectively.

Conclusions for the chapter are presented in Section 2.7.
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Figure 2-1. Overview of toolpath command generation as developed in this thesis. The

CAD/CAM system handles toolpath parameterization, arc length calculation and feed

correction polynomial fitting, while the CNC controller performs feed generation, feed
optimization and trajectory interpolation.

2.2 Non Uniform Rational B-Splines (NURBS) Toolpaths

Conventionally, curved toolpaths are described with small linear and circular segments
that are simple to interpolate. However, conventional methods are no longer sufficient to

meet the growing demands on productivity and part quality. Research has shown that
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parametric spline interpolation has proven to be superior to linear and circular interpolation
in terms of smoother and more continuous motion, which leads to better surface finish and
faster feedrates [1] [2] [3] [4]. CAD models have long been able to utilize splines to design
free-form contours and surfaces. However, only recently have splines started to become
incorporated into industry standards and integrated into commercially available CAM
systems and CNC controllers. Spline representation of curved toolpaths has two main
advantages. First, the amount of data required to define spline segments is much less than
that required to represent the same curve with linear and circular segments. Second, the
continuity between segments allows for smoother motion that doesn't incur high jerk.

Smoother motion improves the machine's positioning performance.

Non uniform rational B-spline (NURBS), which is a generalization of basis spline curves
such as Bézier and nonrational B-splines, is favorable for toolpath generation because it
offers a mathematically precise representation of freeform surfaces [5]. Most designers find
them geometrically intuitive. Furthermore, NURBS curves and surfaces developed in the
CAD model can be used for toolpath planning in the part program, which would mean no
loss of accuracy in the post processing routines. Loss in accuracy naturally happens when
lines and circles are used to approximate curves. However, even if the CAD model is not
defined using NURBS, toolpath parameterization can still be performed on standard CAD
output data comprising of small linear motion commands to realize the cycle time reduction

with spline interpolation.

NURBS curves are defined by degree, control points, a knot vector, and weights. The
degree of a cubic NURBS curve is three; for quintic, the degree is five. The order of a
NURBS curve is the degree plus one. The order is also equal to the minimum number of
control points that are required to define a p-degree NURBS curve. The number of control
points is denoted by n + 1. The knot vector is a set of monotonically increasing values in the
parametric space and it determines the realm of influence that each control point has on the
NURBS curve. The knot vector divides the parameter space into intervals known as knot
spans. As the spline parameter enters a new knot span, a new control point starts to exert its
influence on the curve and an old control point no longer has effect. Calculating a point on
the curve is done by taking a weighted sum of the control points where weighting factors are

determined by evaluating the B-spline basis functions at the spline parameter and multiplying



Chapter 2. Literature Review 7

C(u¥), point on %N,, AU WP,
-

NURBS curve C(u9)=
%N,yp(u*)w,-
P2 u* spline parameter
v p degrge offcurve I u* 4 u, Spline Parameter
n+1 number of control points H
ere, P starts to shape
_ _ . . . il 6
Po=(Xo¥0 “p N; p(1) B-spline basis function knot span | the curve and P, stops.
1 P; control point | L ! | L
X w; weight f 1 1 1 1 1
u; knot in knot vector U U = {u,-u, u, U Ug U;  Ug Ug-Ujq}

Figure 2-2. NURBS curve representation. [5]

them by the weights assigned to individual control points. An example of how a 2-D NURBS

curve (p = 3; n = 8) is constructed is illustrated in Figure 2-2.

Control points are the geometric parameters that define the shape of the curve. A change
in a control point's position results in a visible direct effect in shaping the curve locally.
Weights also characterize the extent of a control point's influence on the curve's shape.
Increasing the weight of a control point pulls the points on the curve affected by that control
point closer to it. When a weight approaches infinity the curve will pass through the
corresponding control point. On the other hand, decreasing the weight pushes the curve away
from the corresponding control point, where a weight of zero eliminates all influence. The

shape modification effects of control points and weights are illustrated in Figure 2-3.

2.3 Toolpath Parameterization

Toolpath parameterization is the task of obtaining a mathematical representation of a
toolpath such that the position coordinates of the tool tip can be computed in terms of an
independent variable called the spline parameter. This task takes place in the CAD/CAM
system as shown in Figure 2-1. The most important requirements of the toolpath
parameterization module are to generate splines that are geometrically continuous and to

accurately describe the machining geometry. Spline segments that have common boundary

positions are said to have G° continuity. If the unit tangent vectors at the segment boundary
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Effect of Control Points, P, Effect of Weights, w;

Figure 2-3. Shape modification of a NURBS curve using control points and weights. [5]

are equal, then the splines are G! continuous. Segments are G? continuous if they share a
common center of curvature at the boundary. At the least, G* continuity is required to

achieve smooth motion in CNC machining. Parametric derivative continuity, denoted as C"
continuity where #n is the order of the derivative, is a special case of geometric continuity
when the parameterization is with respect to the distance traveled along the toolpath, which is

also known as arc-length parameterization. In the case of arc-length parameterization for
toolpaths, c? continuity is necessary, however when the toolpath is not arc-length

parameterized, G? continuity is sufficient and is much more flexible than parametric

continuity constraints [6] [7].

Formulating a NURBS curve involves obtaining a knot vector, weights, and control
points, whereas for power basis polynomial representations, the only unknowns are the
algebraic coefficients. Cubic and quintic polynomial splines have been heavily investigated.
Wang and Yang [8] developed a spline curve fitting algorithm that starts by obtaining a

chordal-length parameterized cubic spline; then based on the cubic spline finds a nearly arc-
length parameterized quintic spline (NAPQS) with C 2 continuity. Wang et al. [9] furthered
this technique to produce approximately arc-length parameterized C 3 quintic interpolatory

splines (AAPC 3 QIS) by utilizing an iteration to optimize the parameterization and adding a

third derivative continuity condition. Later, Erkorkmaz and Altintas [10] formulated and
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solved an unconstrained minimization problem with an analytically integrable objective
function to yield optimally arc-length parameterized (OAP) quintic splines. On the other
hand, NURBS curve and surface fitting has been described in detail by Piegl and Tiller [5],

whose methodology has been the basis for most NURBS parameterization techniques.

In implementing the basic NURBS parameterization methods described in literature, the
main issue was achieving curvature (i.e. second derivative) continuity at segment
connections without introducing oscillations into the toolpath. The oscillations are
undesirable because they cause the toolpath to deviate from the desired geometry and also
cause unsmooth motion. To address this issue, Lee and Liang [11] modified the least squares
curve fitting objective function to include a strain energy minimizing term, based on the
integral of the squared curvature. Their rationale was to penalize high curvature, thereby
reducing the oscillatory behaviour in the curve. For the same purpose, Sencer [12] presented
a smoothening term which penalized high jerk values. In this thesis, beta-constraints, which
are mathematical relationships that determine if two parametric curves connect with

geometric derivative continuity [6] [7], are investigated.

Barsky and DeRose introduced beta-constraints for applications in computer graphics to
test the smoothness of two connected parametric curves, which may have different

parameterizations. Their definition of geometric continuity is as follows:

"Definition 1. Let q(u) and r(¢) be two regular C" parameterizations meeting at a point

J . They meet with nth-order geometric continuity, denoted G" , if there exists a
parameterization  equivalent to qsuch that q and r meet with C" continuity at the point
J."[6]

In other words, if it is possible to reparameterize one of the curves such that the two
curves meet with C? parametric continuity, then the two curves join smoothly. For example,

consider two parametric curves, q(u), v €[0,1], and r(¢), ¢ €[0,1] that meet with G?
continuity at the junction r(0) = q(1). Then there exists a scalar function, u(z), that maps
u €[uy,l]= u €[0,1] without changing the shape of q(u), such that q(u(uw))=q@) [6].

From Definition 1:
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r'0)=q'()

r!!(O) — al!(l) (2.1)

Using the chain rule, the first and second derivatives of q(#) = q(u(«)) can be written as:

q'(u) =q'(u))-u'(u)

~no~ " ~ 12 ' ~ "o~ (22)
q"(u)=q"(u@)) u'u)” +q' @) u'«)

Given that u(y =1)=1 from the mapping, the first and second derivatives of q

evaluated at u =1 are:

qM)=q'M)-u'(1)

23
Q' =q"M)-u'M)? +q'()-u"(1) ¢

In [6], u'(1) and u"(1) are substituted with beta values Bl and B2, where Bl must be
greater than zero to preserve the direction of the tangent vector, and B2 can be any real value.

Substituting in the beta values and Equation (2.3) into Equation (2.1) yields the beta-

constraints for first and second order geometric continuity.

r'(0)=pl-q'(D)

r'(0)=p1°-q"(1) +p2-q'() 4

Equation (2.4) is used in the NURBS toolpath parameterization to generate segmented

toolpaths, which have G? continuity. Rather than enforcing parametric continuity, geometric
derivative continuity constraints are imposed because they allow for further shaping of the
NURBS toolpath in order to eliminate oscillations, while ensuring continuity at segment

boundaries. In this thesis, Chapter 3 presents a NURBS toolpath parameterization that

utilizes beta-constraints to guarantee G? continuous toolpaths.

2.4 Spline Interpolation

In the CNC controller, trajectory interpolation of the spline toolpath is performed to
obtain a commanded position at each sample time step as shown in the "Trajectory
Interpolation” block in Figure 2-1. In this stage, the spline parameter is transformed into the

time domain and the toolpath is converted into a machining trajectory which takes into
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account machining conditions such as feed, acceleration, actuating torques, and jerk [8]. For

an arc-length parameterized spline C(s), where s is the arc-length, conversion to the time
domain only requires the calculation of arc-length positions s(¢), based on a feed generation
technique at each time step, ¢ = k7T, where T is the sampling period and & is an integer
value between zero and the total number of time steps, N,. Substituting those values directly

into the parametric curve equation yields position commands at each time step, i.e.

C(s(¢)) = C(¢). Toolpaths that are not parameterized according to their arc-length require an

additional transformation from the spline parametric space to the arc-length displacement
along the curve. Arc-length positions at each time step are converted to spline parameter

values with the mapping defined by u(s) and substituted into the parametric definition of the
curve such that C(u) — C(u(s(z)))=C(t) . The challenge in implementing a spline

interpolator is efficiently calculating the spline parameter accurately to achieve the desired
arc displacement increment along the toolpath at each time step. If the tool tip does not travel
the specified arc displacement, then feedrate fluctuations result and lend to high acceleration
and jerk values, which are detrimental to the part quality and the machine tool's life.
Erkorkmaz and Altintas [10] reported feed fluctuations on the order of 0.2% for the 88-
segment fan-shaped toolpath used by Wang et al. [8] [9], and up to 78% feed fluctuation for a
spline toolpath composed of ten random points. In the former case, although the feed
fluctuations may not seem high, the resulting oscillations it causes in the acceleration and
jerk profiles are still more significant and tie into the part quality and machine life. It is also
important to note that the mapping between the spline parameter and the arc-length needs to

be robust against numerical round-off and accumulation errors.

Natural interpolation assumes a proportional relationship between the spline parameter
u, and the arc-length s, as shown in Equation (2.5). Here, L is defined as the segment's arc-
length, 7 is the sampling period and N, is the total number of time steps. The domain of the

spline parameter, u, is assumed to be between zero and one.

= kT,

) =s@t)/L h
u() S() where k:O,l,...,N;

(2.5)
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Basically the curve is being interpolated at constant spline parameter increments. This
method is generally sufficient for approximately arc-length parameterized toolpaths.
However, when this relationship does not hold, better estimates of the spline parameter can

be computed with a Taylor series approximation as follows:

: 1.
U, =uy_y +u T +5ukTS2 +H.OT, where k=0,,...,N,
—_ LV
1st S———  higher (2.6)
order 2nd order
term order terms

term

Above, u; and u;_; are the spline parameter values at the current and previous time
steps, respectively; u; and i, are the first and second derivatives of the spline parameter

with respect to time, calculated at the current time step. Huang and Yang [13] presented a
first-order Taylor series approximation to realize the desired feedrate, which has been
successfully implemented in commercially available CNC systems [14]. Lin [15] proposed a
second-order approximation that was reported to achieve better accuracy, naturally at higher
computational cost, which further reduced the magnitude of the feedrate fluctuations. The
downfall of Taylor series approximations is the inevitable accumulation of numerical errors
due to the recursive addition and rounding. To eliminate these errors, Erkorkmaz and Altintas
[16] developed an iterative approach to solve for the spline parameter utilizing a high-order
polynomial relationship between the desired arc increment and parameter increment. Despite
the high-order, in general less than three iterations were required to converge on a solution.
Another technique proposed by Cheng et al. [17] is a predictor-corrector algorithm for better
feedrate control. Furthermore, Erkorkmaz and Altintas [10] introduced the use of a feed

correction polynomial. For example,

u= (xos7 +(x1s6 +a2s5 +--tags+ag (2.7)

Utilizing numerical evaluations of the arc-length at incremental spline parameter values,
a 7th order polynomial is obtained to express the spline parameter in terms of the derived arc-
length as shown in the "Feed Correction Polynomial" block in Figure 2-1. Lei et al. [18§]
developed a similar concept with cubic Hermite splines and called it the inverse length

function (ILF). In this thesis, feed correction is chosen to be investigated for NURBS
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interpolation because of its robustness against accumulating round-off errors, which is prone
to happen with a truncated Taylor series expansion. Also, the polynomial can be evaluated
more efficiently compared to iterative techniques, thereby leaving more resources for

feedrate optimization and other CNC functions.

The main challenge encountered when fitting a feed correction polynomial for NURBS
segments is capturing the relationship between the spline parameter and arc-length with a
single polynomial, when the toolpath geometry is significantly complex. In this thesis, a
method for fitting multiple 7th-order polynomial splines is developed based on the
complexity of the toolpath and a pre-specified mean square error (MSE) tolerance on the
fitting error. Chapter 3 explains the feed correction polynomial as applied to NURBS
toolpaths.

2.5 Feed Generation

Feed generation takes place in the CNC controller as shown in Figure 2-1 and

characterizes the motion along the toolpath in terms of the arc displacements(z), feeds(¢),
acceleration §(¢) , and jerks'(¢) in the tangential direction. To achieve smooth motion, the

displacement, feedrate and acceleration profiles must be continuous throughout the toolpath.
The feed generation must also limit the jerk, in order to achieve high performance tracking
and avoid exciting the structural modes of the machine tool. Several feed profiles have been
suggested in the literature. Erkorkmaz and Altintas [16] presented a jerk-limited feed profile
composed of piecewise constant jerk values. Acceleration transients demonstrate a
characteristic trapezoidal profile and the feedrate exhibits an S-curve profile which has
parabolic transitions. The formulation is simple and the computational load is small.
Macfarlane and Croft [19] proposed a jerk-bounded trajectory that employed an
approximation of a sine wave for the acceleration ramps. A jerk-continuous profile was also
introduced by Erkorkmaz [20] that utilized cubic acceleration transients which are obtained

by integrating quadratic jerk functions. In the same vein, Pritschow integrated a squared sine
jerk function, (sinz) [21]. The last three methods are favorable for better continuity. These

feed generation techniques are applied to a single toolpath segment and are scalable to longer

toolpaths, by considering the kinematic compatibility conditions between adjacent segments.
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Recently, methodologies that generate multiple segment profiles have started to be reported
in the literature. Lin et al. [22] proposed a method for scheduling S-shape feed profiles with
triangular acceleration/deceleration transients for multi-segmented toolpaths. Independently
from their research, the work in this thesis follows a similar approach but differs in

conceptualizing the implementation of the feed profiling.

There are two challenges related to successful feed generation. The first is implementing
the feed profiling with the desired feedrate and specified limits on the acceleration and jerk
such that kinematic compatibility is maintained. Kinematic compatibility is achieved if there
is enough travel distance to perform the desired feed motion. The second is modulating the
feed continuously for long toolpaths that have variable command feedrates for each segment.
To address the first challenge, kinematic compatibility conditions must be checked to ensure
that the desired motion can be physically carried out. For example, if a toolpath segment
lacks the travel length to accelerate to the desired feedrate and subsequently decelerate to the
specified end feedrate, then the desired feedrate must be modified to reflect an achievable
feed transition within the specified acceleration and jerk bounds. Erkorkmaz and Altintas [16]
derived four conditions on the jerk, acceleration, deceleration, and travel length for their
proposed jerk-limited feed profile. In this thesis, similar compatibility conditions are derived
for the proposed multi-segment framework. As for the second challenge, feed modulation has
generally been handled by a look-ahead module that adjusts the feedrate at high curvature
sections of the toolpath. According to the prescribed chord error tolerance, the feed is
decreased as necessary and a re-interpolation of the feed profile is performed to generate
acceleration and deceleration ramps that are jerk-limited considering the machine's dynamics
[23] [24]. This method is as also known as two-stage interpolation [25]. Lin et al. [22] also
consider the errors due to the servo control loop dynamics. However, there is a lack of
direction on what to do when the designed feed profile runs into compatibility issues. For
example, how to resolve the issue when the command feedrates cannot be realized smoothly,
especially when toolpaths have multiple segments. In this work, the proposed framework
performs feed modulation segment-by-segment concurrently with kinematic compatibility
checks prior to any interpolation, which eliminates the second interpolation step and

guarantees that the interpolated trajectory is smooth and continuous. Chapter 4 proposes a
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generalized framework for long toolpaths based on the jerk limited S-curve function, which

is widely utilized in existing CNC's.

2.6 Feed Optimization

In machining complex dies, molds, aerospace and automotive parts, or biomedical
components, it is crucial to minimize the cycle time while preserving the quality and
tolerance integrity of the part being produced. Optimization of the feed profile in machining
NURBS toolpaths, which are becoming more widespread for producing freeform parts [26]
[27] plays a major role in achieving this objective. Unfortunately, the feed optimization
problem does not lend itself to a straightforward solution, especially when jerk limits in the
individual axes need to be considered, in order to limit the amount of vibration and
contouring error induced during rapid tool movements. Hence, extensive research has been

dedicated to solving this problem.

A two-pass algorithm for minimum time trajectory planning of a robotic manipulator was
developed in the seminal paper by Bobrow et al. [28], which yields the optimal feed profile
subject to torque constraints. However, the resulting motion is jerky due to discontinuous
actuator torques. Constantinescu and Croft [29] addressed this issue by also limiting the first
derivative of actuator torques or the "torque rate," which produced smooth time-optimal
trajectories. In the machining literature, Bobrow's technique has recently been extended to
also incorporate jerk limits by Dong et al. [30]. Although theoretically successful, the
requirement to perform full forward and backward passes limits the practicality of this
approach, particularly for long toolpaths. A practical and highly effective look-ahead
technique was proposed by Weck et al. [31], which is based on setting the feed limit for each
segment by considering the local worst-case curvature. This method has a straightforward
formulation and requires minimal computation, allowing convenient implementation in CNC
interpolators. However, the cycle time reduction is mildly conservative, since the toolpath
sections where higher feedrates are feasible are not fully utilized. An alternative strategy was
proposed by Altintas and Erkorkmaz [32] that performs a gradient-based search among
possible minimized-jerk feed profiles, which leads to shorter cycle times, but at the expense
of significantly higher computational load. The latter approach may be more suitable for

semi-offline process planning.
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In general, the constraints for the feedrate optimization problem are based on the physical
capabilities of the machine and other factors that affect the final part quality and surface
finish. Cheng and Chin [33] investigated the causes of machining contour errors and in
particular developed a system model that incorporated errors due to the cutting process,
trajectory tracking, and the machine structure. The focus of this thesis is on the trajectory
generation process in which the feedrate, acceleration and jerk are significant factors that
affect the tracking performance. The feedrate is correlated to the cutting forces between the
tool and the workpiece. Erdim et al. [36] developed a feedrate maximizing strategy that
utilized a force-based model of the system cutting dynamics. As excessive cutting forces
degrade the part quality, the feedrate was maximized subject to a maximum allowable cutting
force. In this thesis, a maximum feed limit is incorporated to allow regulation of the cutting
forces. Additionally, the physical limits of the actuators' speed and torque must also be
respected. Actuator limitations can be expressed through constraints on the velocity and
acceleration, as shown in [28]. It is also possible to replace the acceleration constraints with
limits on the torque demand, which can be predicted by a dynamic model of the system, as
was done in [32]. Similarly, Butler et al. [35] presented a feedrate generation method that
yielded minimum travel time without actuator saturations, based on knowledge of the axis
dynamics. Avoiding actuator saturation is necessary. If the actuators are saturated, then the
system becomes non-linear, which can lead to instability. Lastly, it has been experimentally
verified that the jerk of the desired trajectory can adversely affect the tracking control
performance of robotic manipulators [34] and machine tools [16]. Limits on the jerk are
necessary to achieve smooth motion. Thus in this thesis, feedrate optimization is performed
subject to constraints on the feedrate, as well as, on the velocity, torque demand, and jerk in

each axis.

Chapter 5 presents a new heuristic technique which yields shorter cycle time compared to
the "worst-case" approach presented in [31], and converges to a feasible solution faster than
gradient-based methods [32], within a deterministic number of iterations. The essence of the
new technique is presented, along with benchmark experiments comparing the heuristic
method to other approaches proposed in CNC literature. The feed optimization technique

developed in this thesis is also in the process of being published in [37].
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2.7 Conclusions

This chapter has presented a survey of academic literature and industrial practice relevant
to NURBS toolpath planning, feedrate generation and optimization. To realize smooth and
continuous motion, the spline interpolator must realize the desired arc displacement required
by the commanded feed profile. Additionally, the feed generation method must ensure that
the feed profile demonstrates acceleration continuity throughout the toolpath, while
providing the capability to modulate the feed as necessary. To exploit the full potential of
NURBS toolpaths, a feedrate optimization method is required to generate time-optimal
trajectories subject to the dynamic constraints determined by the machine tool's physical and
control capabilities. All three components together make up a command trajectory generator
for a state-of-the-art CNC controller that meets the demands of high productivity and high
quality, without incurring large capital costs. Hence, there is a strong need to develop
NURBS trajectory generation algorithms to implement on existing and new low-cost
machine tools, in a practical and reliable manner. In the following, Chapter 3 presents
NURBS toolpath parameterization and interpolation methods. Chapter 4 describes the
proposed feed generation framework for multi-segment toolpaths. Finally, Chapter 5
develops a feedrate optimization method that can be successfully integrated into the CNC

controller with the aforementioned NURBS interpolation and feed generation components.



Chapter 3

NURBS Trajectory Generation

3.1 Introduction

In this chapter, a numerically robust and computationally efficient method for NURBS
trajectory generation is presented. In Section 3.2, a parameterization method is designed
which fits smooth and geometrically continuous NURBS curves to designated data points.
Interpolation of the NURBS curve is performed with a feed correction polynomial that maps
the distance traveled along the spline to the spline parameter. To obtain the feed correction
polynomial, a constrained optimization problem is constructed and solved in Section 3.3,
using the Lagrange Multipliers (LM) technique. Simulation results demonstrating the
effectiveness of the developed trajectory interpolation method are presented in Section 3.4.

The conclusions are presented in Section 3.5.

3.2 NURBS Toolpath Parameterization

Non uniform rational B-splines have been incorporated into state-of-the-art CAD/CAM
software packages such as Unigraphics NX3 and CATIA V5. However, the use of NURBS in
geometric modelling is much older than the use of NURBS in toolpath planning, which is
still at an early stage. Hence, much work still remains to create advanced algorithms for
NURBS to be practically used in trajectory generation. In order to test the trajectory
generation methods in this thesis, the NURBS toolpaths need to be segmented and
geometrically continuous up to the second derivative, which includes position, tangent and
curvature continuity. Using a CAD/CAM package such as Unigraphics, it was found that
only position continuity was maintained between segments in the toolpath generation. The
discontinuities in the derivative profiles pose several problems for the CNC controller in
terms of tracking performance. This served as the motivation for developing a curve fitting

algorithm that produces segmented, curvature continuous NURBS toolpaths.

The objective of the NURBS curve fitting algorithm is to optimally place the control

points, given assigned knots and weights, such that the error between the specified data

18
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Figure 3-1. Optimal placement of control points to fit multiple NURBS segments to data
points.

points and the curve is minimized, as shown in Figure 3-1. At the same time, maintaining

geometric continuity between the segments is desired to ensure that the toolpath is smooth.

Geometric continuity constraints for position (G0 ), tangent (Gl) and curvature (Gz) are
imposed to guarantee smoothness at each segment boundary. Beta-constraints, which were
developed by Barsky and DeRose [6] [7], are utilized here to impose these boundary
conditions. A constrained optimization problem that minimizes the errors, e, and e,, between
the specified data points and the segmented curve, while adhering to geometric constraints, is

constructed. The control points are solved for using the Lagrange Multipliers technique.

As illustrated in Figure 2-2, a NURBS curve is represented by a knot vector, U, a set of

control points, P;, and weights for each control point, w;. The degree of the curve is denoted

as p and the number of control points is # + 1. Defining the knot vector as shown in Equation

(3.1), B-spline basis functions, N; p» are evaluated recursively at the spline parameter, wu,

with Equation (3.2).

U= {uo,ul,...,um:n+p}= O,...,0,up+1,...,un_1,1,...,l 3.1
p+l p+l
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Figure 3-2. Evaluation of zero (p=0), first (p=1) and second (p=2) degree B-spline basis

functions.

1 if w; <u<u;,
Ni,O (u) = .

0 otherwise

" " (3.2)

Uu—u; i+p+l

Ni,p(u):—l N;p(u)+——————Nyy (1)
Uirp Ui Uirp+1 ~Uisl

The knots on the spline parameter axis are denoted by u; and the ith knot span is defined

as the spline parameter range between the ith and i+/th knot. Evaluation of the zero (p=0),
first (p=1), and second (p=2) degree B-spline functions at u* is demonstrated in Figure 3-2.

u* lies within the i+/th knot span. Thus, N; ((u*) is zero since u* is outside the ith knot

span, however N, ((u*) is one. First degree B-spline functions are simply a blend of the
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zero degree B-spline functions. N, ;(u*) is a linear combination of the zero degree B-spline
functions, N;jand N, evaluated at u*. The ratio of the ith span to the distance between
u* and the ith knot is the contribution of the N;,(u*) term, while the ratio of the i+/th span
to the distance between u* and the i+2th knot is the contribution of the N;,(u*) term.
Similarly, second degree B-spline functions are blends of the first degree functions.

Combining the B-spline basis functions with the weights into a single term, the points on
a NURBS curve are linear combinations of the control points, as shown in Equation (3.3).
This property allows the construction of a linear system of equations for the constrained

optimization problem used in determining the control point locations.

x(u) iNi,p (u)w; P;
C(u) =| y(u) | = =0 -
z(u) ;)Ni,p (w)w; :

M=

Ri!p @P;, 0<uc<l (3.3)
0

It is important to note that a p-degree NURBS curve must have at least p + 1 control
points, which gives the requirement that » > p since n + 1 is the number of control points. In
order to fit multiple NURBS segments to the designated data points, we must first arrange the
number of data points and the number of control points for each curve segment such that # is
greater than or equal to p. The number of control points is set to be equal to the number of

data points so that only one value needs to be selected, while still maintaining full rank for
the optimization problem. Given a set of data points Q; =[x; y; zi]T of size M + 1, and

the desired degree p and value for », the data points are segment such that each NURBS
segment has n + 1 data points, where the last data point of a segment is also the first data
point of the next adjacent segment, as shown in Figure 3-3. For example, if p =2 and n = 3,

each data point Q; is assigned to a placement holder, q; ;, which represents the ith data

point in the kth segment, as shown in Table 3-1.
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Figure 3-3. Division of data points and computation of spline parameter values for each
data point (p =3, n=4).

In some cases, the number of data points in the last segment will not be sufficient to fit a
p-degree NURBS curve. To resolve this issue, the data points are absorbed into the second
last segment. An example of this circumstance is illustrated in Figure 3-3, where the number
of data points is 18, p = 3 and n = 4. The last segment is assigned six control points, hence,

ny =5, where N is the total number of segments.

To construct the curve fitting optimization problem, a system of linear equations is
composed of predictions that correspond to the data points. First, each data point is assigned

a spline parameter value, u , based on the chord length parameterization method described by

Table 3-1. Segmentation of data points.

Segment, k i=0 i=1 =2 i=3=n
k=1 q10 =Qy q,; =Q q2=Q; q3=Q;
k=2 42,0 = Q3 4y, =Qy q,, = Qs a3 = Qg
k=3 30 = Qg q3; =Q; q3, = Qg q33 =Qy
k=4 q40 =Qo 44,1 = Qo 442 =Qy
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Figure 3-4. Sample calculation of the jth knot in a knot vector (p =3, n =5).
Piegl and Tiller [5], as illustrated in Figure 3-3. Let u; ; represent the spline parameter for
the ith data point in the kth segment. Here, || - ||, denotes the Euclidean distance between two
data points (i.e. chord length), and d is the sum of the chord lengths in the Ath segment.

Also, nj, +1 is the number of control points in the kth segment.

Ny
di =21k g1 Iz
i-1

upo=0 iy, =1 (3.4)

- Ik —bri-1 l2
ki = Uk
dy

, i=1,...,nk—1

Then using the u values in the chord length parameterization, knot vectors, U, , are

constructed for each segment based on an averaging method which is also described by Piegl
and Tiller [5], which reflects the distribution of data points in the segment. The first and last
p + 1 knots are assigned zero and one, respectively. There are m + 1 knots in total, where

m=n+ p . The interior knots are obtained by averaging u values with the formula in

Equation (3.5). An example of calculating the jth knot is illustrated in Figure 3-4.

Upo = =Upp =0y ==y, =1

& : (3.5)
Uk,j = Z”k,ia j=p+l..,n, -1
i=j-p
Additionally, weights can be assigned to the unknown control points. For simplicity all

weights are set to one, which reduces Equation (3.3) to a nonrational B-spline expression as

follows:
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x(u) .
Clu)=| y(u)|= Z N; ,(u)P; (3.6)
zw)| °

The final step is to determine the optimal locations of the control points such that the
Euclidean distances between the data points and the sample points on the NURBS curve are
minimized, subject to boundary conditions between segments. Using the computed knot

vectors, U, , B-spline basis functions are evaluated at each spline parameter, u; ; , and

substituted into Equation (3.6) to generate curve point predictions that correspond to the data
points. Since X, y, and z coordinates are independent of each other, a system of linear
equations is created for each coordinate axis. Then, minimizing the errors in each axis

minimizes the Euclidean distance between the predicted, qy ;, and actual, q ;, data points.

For illustration, the constrained optimization problem is formulated for the x-axis. Similar
formulations can be constructed for the y and z axes simply by replacing occurrences of x

with y and z, respectively.
Let q,; represent the x-axis coordinate predictions for the data points in the kth segment,

¢, 1s the regressor matrix composed of B-spline basis function evaluations, and p,; is a

vector of the unknown x-axis coordinates of the control points in the kth segment. Note that
the regressor matrix is the same for the y and z axes as well. Aggregating all of the x-axis

coordinate predictions in the first (k = 1) NURBS segment results in the following system of

equations:
dx1,0 Nop(g)  NypQug) -+ N, ,G00) | Pago
day | | NopGy)  Ny,Gag) - Ny @) || Py
5 ? 5 : : (3.7)
éxl,nl NO,p (1’71,111 ) Nl,p (L_‘l,nl ) e an,p (171,111 ) le,nl
o d L AL i
A1 [ Px1

For all other segments (k > 1), the first data point coincides with the last data point of the

previous segment. Equivalently, the first control point coincides with the last control point of

the previous segment, which naturally enforces G° continuity between the segments.
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Therefore, all subsequent segments can drop the first data point from the formulation as

follows:
9k Nop@g)  NypQg) - Ny ) | P
) - _ - _ (3.8)
ka,nk NO,p (uk,nk ) Nl,p (uk,nk ) e Nnk,p (uk,nk ) ka,nk
Uxk D Pxk

Aggregating the equations from all segments results in the following system of equations:

Q. o 0 - 0 |py
4,2 _ 0 ¢, - 0 |pp
. N N . . N (39)
(ixN 0 0 o On | Py
(— N —
Q. o P,

Since the total number of unique control points equals the number of data points, which
is M +1, the regressor matrix is a square block diagonal matrix with dimensions M +1 x M +1.
The error between the actual x-axis coordinates Q, and the predicted x-coordinates Q X

is:

e, =Q,-Q,=Q,-®P, (3.10)

The objective function to be minimized is:

Jo=5e e =(Q - ®P) (@, - ®P,) G

Next, the optimization problem is constrained by position, tangent and curvature

continuity constraints at the toolpath's start and end points as well as the segment junctions.

To achieve position G° continuity at NURBS segment boundaries, the first control point
must equal the last control point of the previous segment. Since this constraint has already
been incorporated into the formulation of the regressor matrix, it is not required to include

these equations in the constraints. However position constraints at the start and end of the
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toolpath must be imposed such that the first and last control points of the toolpath are equal

to the first and last data points, respectively.

dao | [1 0 - 0 0] P®
ANy | |0 0 - 0 1) (3.12)
— ‘ ‘pr

0) 10 Sl

X P

X

Tangent and curvature continuity require that the derivatives with respect to arc-length, s,

evaluated at the segment boundaries must be equal.

dCi | dC,|
ds |, ds |u=0
2o, dZCk| (3.13)
ds® |, ds? |

Since chord length parameterization was employed to obtain the # values and knots in
the knot vectors, the spline parameter, u, is generally not equal to the arc-length, s. Hence,
ds # du . Moreover, each segment has a different parameterization since the chord lengths
are not uniform throughout the entire toolpath. A general approach to satisty Equation (3.13)
is to use beta-constraints, which were derived in Section 2.3. Equation (2.4) serves as the
mathematical basis for formulating the tangent and curvature continuity constraints at the
junctions of segments with different parameterizations. First and second order beta-

constraints at the k-/th and kth segment boundary are expressed in Equation (3.14).

dC, :BI-de_l
du |,_, du |, G4
.1
d2Ck _ 12.d Ci +[32'de_1
du’ 1420 du’ el du |,
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Figure 3-5. Effect of tangent beta-constraint value, 1, on curve fitting.

Beta values, Bl and B2, are scalar shape parameters that influence how adjacent
segments join smoothly. Note that by setting 1 =1 and 2 =0, Equation (3.14) reduces to

first and second order parametric continuity constraints, which are normally used in arc-
length parameterization methods. However, since the parameterization is not with respect to
the arc-length, imposing pure parametric continuity constraints can result in unwanted
oscillations in the fitted curve, as illustrated in Figure 3-5. In comparison, imposing
geometric continuity constraints with varying beta values result in a smooth curve without

oscillations. Beta values are chosen such that segments join smoothly without oscillations.

Each segment is assigned its own shape parameters. For G! continuity, the first derivative

vector evaluated at the start point of the kth NURBS segment must be a positive multiple, B,

of the first derivative vector evaluated at the end point of the previous segment. Let Cg) (u)

represent the first parametric derivative of the kth segment. Then the first derivative beta

constraint can be written as:

0=pl,,C 1)-CcL), Pl >0 (3.15)

Similarly, the beta constraint for G?* continuity states that a linear combination of the

second derivative vectors evaluated at the boundary point of the &-/th and Ath segments is a

multiple, B2, of the first derivative vector of the k-/th segment. Let Cf) (u) represent the
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Figure 3-6. Rule of thumb to calculate tangent beta value, p1.

second parametric derivative of the kth segment. The second derivative beta constraint can

then be expressed with the following equation:

0= B2, CV (1) + Bl CP, (1) - CP(0) (3.16)

Satisfying these constraints ensures that the segments are geometrically continuous at
segment boundaries, despite differences in the parameterizations between adjacent segments.
A rule of thumb that works well in selecting beta parameters is to use the ratios of the

summed chord lengths, which was denoted as d; in Equation (3.4), for f1 and then setting

B2 to zero. That is,

d
Bl =—, B24 =0 (3.17)
dk—l

As illustrated in Figure 3-6, if data points are clustered close together, then the tangent
vector should be correspondingly shorter, and if data points are spread out, then the tangent
vector should be correspondingly longer. However, some trial and error may be necessary to
reduce oscillatory behaviour in the fitted spline. Using a ratio of knot spans is another option,
but the results are not always predictable because the parameterizations are normalized to be
between zero and one. In general, a ratio based on the chord lengths is used in this thesis, and

manually adjusted as necessary.

To construct the linear equations for the tangent and curvature boundary conditions, first

and second order beta-constraints are generated for each segment boundary. First, the /th
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Figure 3-7. Evaluation of the first derivative B-spline basis function (p = 3).

derivative of the kth segment can be obtained by computing the derivatives of the B-spline
basis functions recursively with Equation (3.18). The first derivative B-spline basis functions,

N/ 5, are illustrated in Figure 3-7.

- -1
N @) NG @)

i,p—1
N (u) = p| —22 (3.18)
ui+p —U; ”i+p+1 Uiy
"y Pio
CPw) = Y NP = [N @) - NP @) (3.19)
i=0 Pk
9nk

The parametric derivative vectors are thus calculated as a linear combination of the
control points, as show in Equation (3.19). Using Equations (3.15) and (3.19), the tangent
continuity constraint between the A-/th and kth segment can be expressed with Equation

(3.20). Note that for all subsequent constraint equations that involve the k-/th and kth

segments, if Nl-(’lg 1s evaluated at one, then it is computed with the &-/th knot vector, U, _; . If

N, 1(1;)7 is evaluated at zero, then it is computed with the kth knot vector U .

@) (O] )
0:[ BleaNg, () Bl Ny - BL N, O Pt

Blk_lethp(l)—N(()g(O) -ND@©) —Nf;?_l’p(O) —N}%{p(()) ][pxk} (3.20)

1
Ly
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If the toolpath is closed, then it may be desirable to also include a tangent continuity

constraint at the start and end of the toolpath. In this case, the B-spline basis functions,
Ni(’ll)) (0), are evaluated with the first segment's knot vector, while Ni(,ll)7 (1) are evaluated with

that of the last segment. The following equation can be inserted into the constraints:

Px1
N ) 0 - 0 BIyNGL D) - BIyND ] F L 321

”1 p ny,p
1) Pxnv

closed

N,y (0)

Aggregating all the tangent G! continuity constraints into one matrix gives:

- -
[L(z)]lx2n+l 01><M—2n r N
(1) Pl
len. [L3 ].l><2n+l 01><{\/[—3n P
0, L] 0
x(k—=2)n k dix2n+1 IxM —kn Pi-1
[ON—1(+1)X1]= . : : 3.22
T pxk ( ' )
’ Otxn(n—=3) LY Tannn Ot rt —n(N—-1)
1 P.n—
O1><n(N—4) [L( )]1><2n+l N
0 _pr i
L ( [L closed ]1><M+1 ) _T/

L0

There are N —1 segment boundaries. Hence there are N —1 tangent constraints and one

optional constraint for closed toolpaths, which is marked with the curved brackets.

Similarly, the curvature continuity constraint matrix is formulated with Equations (3.16)
and (3.19). The curvature continuity constraint at the £-/th and kth segment boundary can be
expressed with the following equation:

[ BlZ i N (D +B2 g N (1) BIEy Ny (1) + B2,y N{) (1) {pxkq
2 1 2 2 2
BN, OB Ny (H=NZ©) -N2© - -NZ (© JLPx ] (3.23)

2
Lk

For a closed curve, the curvature continuity constraint at the start and end points yields

the equation:
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(2) (2)
O_No’p(o) an’p(()) 0 --- 0 p.xI

2 1 2 2 1 :
—BIA Noy ) =B2y Ny, () - —BIRNY ()=p2y N (Of, | (24

(2)

closed

Aggregating all the curvature continuity constraints and the optional closed loop

constraint into one matrix gives:

- .
[L(2 )]lx2n+l 01><M—2n r b
len. [L5 11><2n+1 le.]\/[—3n P
2
01 (k-2)n L2 st Oers ko Pt
[ON—1(+1)X1] = . . .
- 7 Pk
) @) . (3.25)
Opev—3yn (LN _1lixanst Oemr—(N-1yn
2 Paxn-—
Otxn(N—4) (LY Tzt N
) _pr i
L ( [Lclosed ]1><M+1 ) | P,
LD
The resultant constraint equations are:
0 0
3% | SR P P
M || o :
Sy (L Iv s (3.26)

2 2
e | L i iprst [Py
< , S
& L P

Hence, the x-axis coordinates of the unknown control points, P, , are obtained by

solving the following constrained linear quadratic optimization problem:

minJ, = min%(QX ~®P ) (Q, -®P,) Subjectto: L-P_=§, (3.27)
Px Px

For an N-segment toolpath, there are 2 position constraints, N —1 tangent constraints

and N —1 curvature constraints, and an optional 2 more constraints if the toolpath is closed.
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The total number of constraints is thus 2N(+2), where the number in parentheses represents

the  additional closed toolpath  constraints.  Using Lagrange  multipliers,

A=[hg A -0 Ao +2)]T , the augmented objective function is constructed as:
o 1
min /. =min—(Q, —®P,)" (Q, ~®P,) + A" (L-P, ~E,) (3.28)

Differentiating Equation (3.28) with respect to P, and A, then setting the partial

derivatives to zero yields the linear system of equations:

oo 1Tr] [ol0, 329
Loolal e (3.29)

Solving the linear system in Equation (3.29) yields the x-axis coordinates of the

unknown control points. Y and z coordinates are obtained by replacing the values of P,, Q,,
and &, , accordingly. The optimally placed control points, along with the computed knot

vectors and weights, define an N-segment NURBS toolpath which is subsequently
interpolated at the control loop sampling frequency to generate the toolpath reference

trajectory.
3.3 NURBS Toolpath Interpolation

3.3.1 Segment Arc-length Calculation

For the interpolator to realize the motion smoothly, it is important to calculate the arc-
length of each segment accurately. An inaccurate estimate for the arc-length will result in
either under- or over-shooting the desired end point, thus causing trajectory discontinuities
between segments. The total segment arc-length is an integration of infinitesimally small arc-

lengths, L = f ds . Using Pythagoras' theorem, ds is the hypotenuse of infinitesimally small

displacements in the x, y and z directions. Differentiating with respect to the spline parameter,

u, the arc-length differential can be expressed as follows:

ds dx? a’y2 dz? 2 2 2
— =4 +— +— =X W) +y W) +z'(u (3.30)
du \/du du  du \/ W) +y') )
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Thus, the total arc-length is formulated as follows:

b b
L= j\/x'(u)2 er'(u)2 +z'(u)2du = jf(u)du, a<u<b (3.31)

There currently exists no analytical solution for Equation (3.31). However, using
Simpson's rule with an adaptive bisection technique, the arc-length can be calculated
numerically within a specific tolerance of its true value. This procedure was also employed
by Lei et al. [18]. First, an approximation of the arc-length is performed by evaluating the

integrand, f(u), at both end points of the spline parameter interval, which is denoted as
[a,b], and its midpoint (¢ ), and applying Simpson's rule to obtain the arc-length estimate

[(a,b) . The midpoint is calculated as ¢ =(a+b)/2. The step sizeis h=(b—a)/2.

Simpson's  Rule: [(a,b) = g(f(a) +4f(c)+ f(b)) (3.32)

Next, the interval [a,b] is split into two equal sized intervals, denoted as [a;,);] and
[a,,b,], and Simpson's rule is applied on both subintervals to obtain the lengths /(a;,b,) and
l(ay,b,) . Given a specified tolerance, ¢, if the condition in Equation (3.33) is satisfied, then

the approximation is within the given tolerance of the true arc-length.

| I(ay,by) +1(ay, b))~ 1(a,b) | /10 <& (3.33)

A proof of this statement is provided by Mathews and Fink in [38]. If the condition is
not satisfied, then the subintervals are further refined by dividing them into two, halving the
tolerance value, and reapplying Simpson's rule. This procedure iterates until all subintervals

satisfy the tolerance, which is guaranteed to occur in a finite number of subdivisions,
assuming that the fourth derivative of the integrand, f (4)(u), is continuous over the interval
[a,b] [38]. Each refinement reduces the error by approximately a factor of 1/16, as shown in

[38]. The total arc-length is calculated by summing up the subinterval lengths. Moreover, a
cumulative summation of the subinterval lengths is also performed, in order to produce the

spline parameter and arc-length pairs (u;,s;). In this notation, i is an integer value between

zero and the total number of subintervals, s; is the sum of the arc-lengths up to and including
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Figure 3-8. a) Feed correction polynomial fitting and comparison of its analytical and
numerical derivatives. There are 8 polynomials. b) Mean squared error (MSE) of curve
fit for each polynomial.

subinterval i, and u; is the corresponding spline parameter value. Ny is the number of

points used to numerically integrate the segment's arc-length. These points are used in fitting

the feed correction polynomials.

3.3.2 Feed Correction Polynomial

In general, NURBS toolpath parameterization does not yield a perfectly arc-length
parameterized curve, which results in unwanted fluctuations in the feedrate, (i.e. tangential
velocity), when the spline parameter is interpolated at constant increments. Feedrate
fluctuations cause unsmooth tool motion, which causes visible feed marks on the machined
part. Moreover, small discontinuities in the tangential velocity are magnified in the
acceleration and jerk profiles. High acceleration and jerk may result in saturation of the
motor actuators and excitation of the machine tool's structural modes, which have the effect
of degrading the tracking performance. Therefore, feedrate fluctuations should be avoided. In
order to correct this problem, a scalar valued function, u = f(s), is employed to map the
desired arc displacement s to the correct spline parameter u . In this work, this function is

referred to as the feed correction polynomial. Lei et al. [18] employed a similar

reparameterization scheme using cubic Hermite splines. Here, a 7th order polynomial is used
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to approximate the (u;,s;) data, as proposed in [10]. A 7th order polynomial is chosen such

that boundary conditions on the position, and first and second derivatives at the start and end
points of the function can be imposed, which requires at the least a 5th order polynomial. The
extra two degrees of freedom are to better approximate the data without introducing
polynomial "wiggle". However, in certain cases it was found that a single 7th order
polynomial was insufficient to capture the relationship between the spline parameter and the
arc displacement, and results were sometimes completely erroneous. It was noticed that, in
general, when large changes in the spline parameter only result in small changes in the arc
displacement, the curve fitting would run into numerical instability issues. Rather than
increasing the order of the polynomial, it was found that multiple feed correction
polynomials could approximate the relationship better. As an extension to the earlier work in
[10], this chapter presents a procedure to connect multiple 7th order polynomials while
maintaining first and second derivative continuity throughout the curve fitting, as illustrated
in Figure 3-8. Segment ®'s polynomial is used to calculate the spline parameter for arc

displacements in the interval [0,s,,]; segment @'s polynomial is used to obtain the spline
parameter for arc displacements in the interval [s,,s,,], and so on. When a single curve

fails to achieve an acceptable value for the mean squared error (MSE) of approximation, then
the data points are split in half and two curves are fitted. It was found that splitting the point

data and fitting multiple curves to them reduced this error.

To start, a single curve is approximated to the (u;,s;) data in a least squares sense. The

feed correction polynomial has the form:

UA = f(S) = A0S7 + A1S6 +A2S5 + A3S4 +A4S3 +A5S2 +A6S + A7 (334)

In order to avoid ill-conditioning, the arc-length data s =[sy,...,sy, ] is normalized to

be between 0 and 1, by defining o; =(s; —s0)/(sy, —5¢) for i=0,...,N5 , thus
o=[0,0,...,0 Nyl ,1]. Hence, the feed correction polynomial and its derivatives, in terms of

normalized variables and coefficients, are obtained as follows:
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u=f(s)= (1007 +(x166 +a205 +(x304 +(14G3 +a502 + 060 + 0Ly
u, =f'(s)= 7(1006 + 6(11(55 +50L204 +40L3(53 +3a4(52 + 2056 + 0 (3.35)

ly = f"(s) = 42a00° +30a;0” + 200,67 + 120367 + 6046 + 205

The spline parameter predictions of U =[uy,...,uy, ], calculated with the feed correction

polynomial, are stacked together in matrix form, as shown in Equation (3.36). Here, ®

denotes the regressor matrix, and 0 is the vector of coefficients.

(4,61 O 0 0 0 0 0 0 1fag]

i o/ o o} of of of o 1|aq

- 7 6 5 4 3 2

u, |=|lc, o, ©, ©, ©C GC; G, 1 (3.36)

: : : : : : : :oiog
luy | |11 1 1 1 1 1 1]oq]

—
a () 0

Zero, first, and second order boundary conditions are imposed on the feed correction
polynomial, in order to preserve continuity between the connecting segments. The first and

second order derivatives are evaluated at the boundary points with the expressions of u, and

u,, , obtained by applying the chain rule:

du L d’u 1 —
uy=—=[gw]2 , uy=—7=-=[g)]g'@)
ds ds 2
’ 2 ’ 2 ' 2 (337)
gu) = x'(u)” + y'(u)” +z'(u)
g'(w) = 2[x'()x"(w) + y'(w)y" () + 2 (w)z"(w)]
Denoting the /st and 2nd derivatives evaluated at the start and end points (u™" and

init init

final final final _
u s o Ug s uy,and ug™, and As =5y —sg, the

) using Equation (3.37) as u

resulting zero, first, and second order derivative constraints can be written in matrix form as:
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i 0 0 0 0 000 1] -

As-u | |0 0 0 0 00 1 0

.us (x
AsZy | {0 0 0 0 020 0f )

gl 1 1 1 1111 (3.38)
Asufml | |7 6 5 4 321 0 °

S U o
As®-ufmel | 14230 20 12 6 2 0 0)—/=
L . . v - 0

:

Using the method of Lagrange multipliers, it can be shown that the constrained
optimization problem, which minimizes the squared error eTe=(u—(I)G)T(u—(I)0) , such
that £ = L0, results in the system of linear equations in Equation (3.39). This result was

previously derived in Equations (3.27)-(3.29):

o’® 1'|6]| |®u
Loo|alT] ¢ (3.39)

Above, A = [XO,...,kS]T is the vector of Lagrange multipliers. Solving Equation (3.39)
for @ yields the normalized coefficients o;, which minimize the error between the predicted

and true spline parameter values. If sy = 0, then the original coefficients 4; in Equation (3.34)
are solved by de-normalizing the a; coefficients, resulting in A4, =0/ As” |

A =0,/ AsS, A; =a5. Otherwise the original coefficients are obtained by substituting

c= (S —%0 ] into the normalized feed correction polynomial in Equation (3.35), as follows:

As
so ) s—s0 ) s—sp ) s—s8
0 0 0 0
+a +--+a +a +a 3.40
S j 1( As j 5( As j 6[ As ] 7 ( )

Expanding Equation (3.40) and grouping like terms yields the following expressions for

f(S)=0to(S;

the coefficient of each power term:
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7 0o
S :AO = —F
As’
6 0 O
S :Al = _7S0
As® As’
5 ) 0 2 O
S :Az = _6S0 +21S0—
As® As® As’
sy =255, “25 #1553 L —35s(3)°‘—°7
As As As As (3.41)
3 Oy '
s 1Ay = —4s +10s7 ——20 +35s
! As® 0 As 0 As® 0 As 0 As
2 05 Oy 2 03 5 0o
S :ASZ _3S0 +6S0 _100 +15 0—_21
As? As® As? As As® As7
Og 2 Oy 3 O3 4 Uy 5 04 6 %o
R) A6 :——ZSO +3SO —450 +5S0 —6S0—+7S0—
As As? As As? As As® As’
Og 2 Os 3 Oy 4 O3 5 0) 6 O 7 Go
1 A7—(X7—S0_+SO ASZ_SOAS3 +SO AS4—SO AS5'|‘S0 AS6—SO AS7

It can be seen that the numerical values in front of the normalized coefficients are in fact
entries of Pascal's triangle with alternating signs, which is a result of the binomial expansions
of (s—so)" for n=12,...,7. A generalized formula for the de-normalized coefficients, 4;,

is derived and written in Equation (3.42). Here, n is the degree of the polynomial and r is
the coefficient subscript.
4 1 (n—1i)!

- As"" g(:)(l’—i)!(n—r)!(_s()) 0 r<n (3.42)

After obtaining the de-normalized feed correction polynomial, the mean squared error

(MSE) between the true and predicted spline parameter values (i.e. #; and ;) is calculated
using Equation (3.43) and checked against a specified tolerance €;,qz . If the tolerance is
violated, then the (u;,s;) points are split into two sets of the same size and a spline is fit to

each set with the aforementioned approach and checked against the MSE condition. Ny is

the number of points used in the curve fitting process for each polynomial, which decreases

as the data points are subdivided.
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Figure 3-9. 17-segment NURBS toolpath
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The division of the point data terminates when the feed correction polynomials satisty
Equation (3.43), or when the number of points in the fitting set is equal to the order of the
polynomial. The resulting polynomials can then be embedded into the NC code for real-time

feed correction during NURBS interpolation.

3.4 Simulation Results

To demonstrate the effectiveness of the NURBS toolpath parameterization and
interpolation scheme, two example toolpaths are used. Toolpath 1 is generated from the fan-

shaped spline data points, obtained from [9] with 150% scaling. Cubic NURBS segments (p

= 3) with 6 control points (n = 5) are fitted to the data points with G? continuity including
the closed loop constraints, as illustrated in Figure 3-9. The last segment has 9 control points.
The data points and beta parameters used in the curve fitting and tangent and curvature
continuity constraint equations are listed in Appendix A, along with the resulting knot

vectors and control points from the toolpath parameterization.
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The fan-shaped toolpath is interpolated at a sampling frequency of 1000 Hz with a jerk
limited constant feedrate profile of 50 mm/s. Feed generation will be explained in Chapter 4.
The arc-length of each segment is calculated with a tolerance of € =1e—12. The required
number of feed corrections polynomials per segment, to achieve an MSE tolerance of

eyse = le—10, varies between five and twelve.

Interpolation with the feed correction polynomial is compared to natural interpolation in
Figure 3-10 to show that the parameterization method generally doesn't produce arc-length
parameterized curves and that reparameterization with the feed correction polynomial

successfully minimizes unwanted feedrate fluctuations.

The resultant feedrate, §k , 1s calculated with the numerical derivatives of the interpolated
x-and y-axis position commands, x and )T/k, respectively, using Equation (3.44). T is the
sampling period and k& is the sample index between 2 and the number of samples, N, minus

one.

2 X, — X _ o — Vi— 2 22 82
xk:(k+12Tk1)’ yk:% 3Sk=1/xk + 2<k<N,-1 (344

S S

The feed profile of the natural interpolation exhibits a maximum feed of 68.98 mm/s and
a minimum of 33.79 mm/s during constant feedrate command. This translates to
approximately 32 % to 37 % feed fluctuation. The maximum feed in the interpolated profile
with feed correction is 50.046 mm/s, and the minimum is 49.942 mm/s. By applying the feed

correction polynomial, maximum feed fluctuation is reduced to between 0.09 % and 0.11 %.

Acceleration and jerk profiles are also computed by numerical differentiation, similar to
Equation (3.44), which reveals discontinuities that occur in the final axis position commands.
The minimum and maximum acceleration and jerk values that occur in the interpolated
profiles are listed in Table 3-2. Natural interpolation yields acceleration values that are
approximately an order of magnitude higher than the interpolation with feed correction. Jerk

values are two orders of magnitude greater.
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Figure 3-10. Toolpath 1 - comparison of NURBS interpolation without and with feed

correction.

Table 3-2. Toolpath 1 - comparison of min/max axis acceleration and jerk values.

Acceleration [mm/s] Jerk [mm/s’]
X Axis Y Axis X Axis Y Axis
Natural -1.429 x 10* -1.562 x 10* -7.194 x 10° -7.867 x 10°
Interpolation 0.9083 x 10* 1.029 x 10* 6.946 x 10° 7.391 x 10°
With Feed -0.1088 x 10* -0.1199 x 10* -5.742 x 10* -3.363 x 10°
Correction 0.1202 x 10* 0.1005 x 10* 3.602 x 10* 5.624x 10*
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Toolpath 2 is generated from CAD data of a tibial-plateau (lower knee joint) implant
model with 200% scaling and ball end tool offset compensation applied. The closed toolpath
consists of 67 cubic NURBS segments (p = 3) with seven control points each (n = 6). The
command feedrate is 20 mm/s. Figure 3-11 shows the NURBS toolpath as well as the
resultant feedrate along the toolpath for interpolation with and without the feed correction
polynomial. In comparing the feedrate profiles, it is clear that feed correction plays a

significant role in ensuring that the motion along the toolpath is smooth.

The minimum feed encountered in the feed profile with feed correction is 19.32 mm/s.
However, this is due to the fact that the feed is too high to track the given geometry, which is

labeled as a sharp corner in the vicinity of x =10 mm and y = -25 mm in Figure 3-11, and

occurs during the time interval of 3.389 s to 3.395 s. Omitting this interval from the analysis,
the minimum feed becomes 19.92 mm/s, which is a 0.41% decrease from the desired
command feed, which is 20 mm/s. The maximum feed of the interpolated profile with feed
correction is 20.066 mm/s, which is only a 0.33 % feed fluctuation. On the other hand, the
maximum value in the feed profile, interpolated with uniform parameter increments, is 28.43
mm/s, which is approximately 42% greater than the command feed. Moreover, the minimum

feed that was encountered is 16.45 mm/s, which is 18 % less.

A comparison of the minimum and maximum acceleration and jerk values is also
provided in Table 3-3. The feed correction reduces the worst-case acceleration values by
approximately half. Consequently, the jerk magnitudes are an order of magnitude lower,

compared to interpolation without the feed correction polynomial.

Table 3-3. Toolpath 2 - comparison of min/max axis acceleration and jerk values.

Acceleration [mm/s’] Jerk [mm/s’]
X Axis Y Axis X Axis Y Axis
Natural -3.022 x 10° -4.105 x 10° -1.518 x 10° -2.167 x 10°
Interpolation 2.716 x 10° 4.285x 10° 1.592 x 10° 2273 x 10°
With Feed -1.420 x 10° -1.152 x 10° -0.7955 x 10° -0.2808 x 10°
Correction 0.9491 x 10° 1.455 x 10° 0.1866 x 10° 0.7361 x 10°
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3.5 Conclusions

This chapter has provided a basic mathematical framework for NURBS toolpath
parameterization and interpolation. It has presented two problem formulations and solutions
which utilize Lagrange Multipliers for solving two constrained curve fitting problems - the

first to solve for NURBS control points, and the latter to obtain the coefficients of feed
correction polynomials. The toolpath parameterization method guarantees that position G,

tangent G', and curvature G° continuity is preserved at segment boundaries by utilizing
beta-constraints. However, in general the toolpath parameterization presented here does not
generate arc-length parameterized curves, which results in large feedrate fluctuations if the
splines are interpolated with uniform parameter increments. In order to address this problem,
the NURBS toolpaths are reparameterized with respect to arc-length with the feed correction
polynomial prior to interpolation. This strategy minimizes unwanted feedrate fluctuations,
regardless of the parameterization of the NURBS segment. The resultant feed profile of the
interpolated trajectory with feed correction shows a significant reduction in feedrate

fluctuations compared to the feed profile where feed correction was not applied.

One major advantage of spline toolpaths over conventional linear and circular toolpaths is
the achievable continuity between segments which enables smooth continuous motion
throughout the toolpath without having to come to a complete stop between segments. Rather,
the feedrate can be continuously increased or decreased as deemed necessary by the toolpath
geometry and dynamics of the machine tool, without incurring large acceleration or jerk in

the axis feed drives.

The practicality and effectiveness of the proposed interpolation scheme has been
demonstrated in simulation results. Experimental results will be presented in the following
chapters. In Chapter 4, a generalized framework for continuous feedrate modulation is
presented, which will be followed by the incorporation of a heuristic feed optimization

strategy for overall NURBS trajectory generation in Chapter 5.



Chapter 4

Jerk Limited Feedrate Modulation

4.1 Introduction

In this chapter, a continuous feedrate modulation strategy for an N-segment toolpath is
presented. Here, the proposed strategy seamlessly stitches multiple S-curve type feed
transitions together as shown in Figure 4-1, to describe smooth motion along the toolpath.
The strategy assumes that the toolpath is comprised of two or more segments. Jerk limited

feed profiling for a single segment was presented by Erkorkmaz and Altintas [16].
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Figure 4-1. Feed modulation demonstrated with a 7-segment spline toolpath example.
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Considering that the jerk profile is comprised of piecewise constant values, the acceleration
profile is composed of linear and constant (zero and non-zero) functions which exhibit a
characteristic trapezoidal profile. When the acceleration is zero, feed is held constant and the
displacement increases linearly. When the acceleration is constant at a non-zero value, the
feedrate is either linearly increasing or decreasing, and the displacement function is parabolic.
When the acceleration function is linear, with a slope prescribed by the jerk value, the

feedrate is then parabolic and the displacement is cubic.

The formulation of the kinematic equations is presented in Section 4.2. To ensure
smooth transitions between piecewise functions within a segment and across segment
boundaries, kinematic compatibility conditions are derived and presented in Section 4.3. In
Section 4.4, implementation details of the feed modulation strategy are discussed.
Experimental results are illustrated in Section 4.5 and conclusions are presented in Section

4.6.

4.2 Feed Profile Formulation

The ability to modify the feed on the fly allows the machining process to slow down for
high curvature segments whilst maintaining high speeds throughout the rest of the toolpath.
Here, the initial (/st), middle (kth), and final (Nth) segment profiles are defined in order to
establish a generalized framework for N segments, as shown in Figure 4-2, Figure 4-3, and
Figure 4-4. The initial segment is defined at the start of the toolpath where the initial feedrate
equals zero. As shown in Figure 4-2, a full acceleration transient is required to achieve the

desired feedrate ( F|), which is realized in sub-segments ©®, @, and ®. Throughout the feed

motion, the acceleration transients from the desired feed of one segment to that of the next
are evenly distributed between consecutive segments. Therefore the initial segment also
consists of a second partial acceleration transient that achieves half of the feed transition to
the next segment's feed, in sub-segments @ and ®. This results in the boundary feed to be
the average of the desired feed values between two consecutive segments, as is the case for

the final feed value f, = (F; + F,)/2 at the end of the /st feed segment. This mathematical

relationship will be verified in the following section.
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A middle segment, which is illustrated in Figure 4-3, is defined by non-zero start and end
feeds, and consists of two partial acceleration transients: the end of the feed transition from
the previous segment, and the start of the feed transition into the next one. The final segment,

shown in Figure 4-4, concludes the motion along the toolpath with a final feed (i.e. tangential
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velocity) value of zero. Its first acceleration transient is partial (sub-segments @-®), while
its second acceleration transient is a full trapezoid that brings the motion to a full stop (sub-
segments @-®). Based on the illustrated piecewise constant jerk profiles, the acceleration,
feed, and displacement profiles can be obtained by performing integration with respect to

time.
Mathematically, given the initial conditions at time ¢, (i =0,1,...,5N +1), the tangential

acceleration §(¢) , feedrate s(¢) , and displacement s(¢) profiles can be obtained by

integrating the tangential jerk profile 5°(¢) as follows:

§(t)=5(t;)+ jlé'(r)dr, s(t)=s(t;) + }S’(I)dr, s(t)=s(t;)+ }j(t)dt 4.1
t.

f; f;

1

Above, 1 is the integration variable that represents time. In the following, kinematic
equations are formulated with piecewise functions for the initial (/st), middle (kth), and final

( Nth) segments.

The jerk profiles in Figure 4-2, Figure 4-3, and Figure 4-4 can be written as follows:

Ji, 0<t<y
0, f<i<t,
=-J|, 1 St<lky
5 (1) = 42
1) 0, 13<t<1y, (4.2)
Jy, <t <ts
0, ts<1<tg

—Jks tsp3 St <Isp
§,.(¢) =10, tspn <t<tsp (4.3)
Jhs1> tspg SE<Is;

0, Isp SU<Isgy
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0, tsy—4 SU<Ilsy_3

—Jn,  tsy3 SE<Usy

<
§0 (1) = 0, Isyp ST<Isy (4.4)
Insts  Isno SE<Usy

0, Isy ST <Isyi

—JIni1s sy SESIsyio

Above, tdenotes absolute time and ¢#,7,,...,t55,, are time boundaries for each phase

(i.e. sub-segment) in the entire profile. The initial and final segments have six phases of
motion while the mid-segments only have five. Each segment has two acceleration transients

in its motion profile that are either full or half trapezoids. J;, and J,, are the jerk values for

the first and second acceleration transients, respectively, in spline segment k for

k=12,...,N. If the acceleration transient produces a change in feedrate to a higher speed,
then J, is positive. Otherwise, J; is negative.
Integrating Equations (4.2)-(4.4) with respect to time, the acceleration profiles can be

obtained as shown in Equations (4.5)-(4.7). The constant acceleration values for the first and

second acceleration transients of the kth segment are denoted as A4, and A, respectively,
Here, 7, is a relative time parameter that starts at the beginning of the dth phase, where

d=12,...,6 for the first and Nth segments, while d =1,2,...,5 for all middle segments

(2<k<N-1).
JlTl, 0St<tl
Ay, H<t<t,
Al—J1T3, t2£t<t3
§1(t) = 4.5
1) 0, ty<t<t, (4.5)
J2T5, t4£t<t5
4y, ts <1<t
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Ay, Isk—4 ST <Isp3
Ay —Jpty, 53 St<I5
5, () =10, tsp_n St<ts;y (4.6)
174> lsgy St <Isy
gy Isp ST <Ispy
Ay Isy4 SE<Isy3
Ay —JI N1y, Isy3 St<Isy
S (0) = 0, tsn_o <t <tsy_ @
INi1T4s Isy-1 SE<tsy
Ans Isy St<Isyy
Ay —InnTer Isni SESIsyo

The feedrate profiles are obtained by integrating Equations (4.5)-(4.7) with respect to
time as shown in Equations (4.8)-(4.10). f, denotes the start feed, £}, is the desired feed of

the kth segment to be achieved by the end of the first acceleration transient, and f,, is the
feedrate reached at the end of the dth phase. T ;, T, ;, and T ; are the time durations of

specific motion phases. The first subscript identifies the type of motion in the phase. For

example, T'; refers to a non-zero jerk phase, T, refers to a phase with constant non-zero
acceleration, and 7', refers to the time duration of a constant feed phase. The second

subscript identifies the segment to which the acceleration transient duration corresponds. For
example, considering the kth segment, if the subscript is also k, this represents the /st
acceleration transient. Otherwise, if the subscript is k+/, then this corresponds to the 2nd

acceleration transient.
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|
fS+EJ1T1, Ogt<t1, fSZO
1 2
Jie T 4172, h<t<ty, fie=/; +5J1Tj,1
|
' f2e+A1T3—5J1T3a Iy St <ty, fro=rret AT,
51(1) = 1, (4.8)
S3es 13 St <y, f3e=f2e+A1Tj,1_5J1Tj,l
|
f4e+5J2T59 14 St<ts, fao= [
1 2
Sse +Ar76, s <t <tg, fs =f4e+EJ2Tj,2
Ss + Ay tse_q St<tsp_3. [y =(Fr+F)/2
1, 1
Sie + AT, _EJkTZ Isk_3 SE<Isp_n, Jie = Js +5AkTa,k
1 2
§.(0) = 12 sk SU<Isits J2e = Sre AT =5 Jiljk (4.9)
2
Sre t = J k4174 Isk—) ST <Isp,  [30 = [2
1 2
Jae + ApTs Isp St<tspi1s  Jae = f3e +5Jk+1Tj,k+1
Sfs+AnT Isn_g St <Isy_3,
2
Jie tAnTy == JINT; Isy_3 St <tsy_y,
S2e Isn_p St <Isy_p,
sy() = 1 2
S3e +5JN+1T4 tsnyo1 St <Ilsy,
Sae + Ani1Ts tsy St <tsyyp,
2
Sse + An11T6 IN#1Te tsys1 SESIsyio,
(4.10)

1
Sae = f3e +EJN+1Tj2,N+1

fSe = f4e +AN+1Ta,N+1
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Finally, integrating Equations (4.8)-(4.10) with respect to time results in the following

displacement profiles in Equations (4.11)-(4.13), where s, is the start displacement, s, is

the displacement reached at the end of the dth phase, and 7 ; is the time duration of the

constant feed phase for the 4 th segment.

Ss"‘fsTl"‘%Jle to St <ty,
1 2
Sie T J1eT2 + 5 AT H<t<t,,
R
51(1) = S2e + [2.T3 "'514173_8*]173 ty <t <t
S3¢ + f3eT4 ty <t <ty,
Se +f4eT5+%J2Tg ty <t<ts,
[
Sse + fseTe + 5 AaTs ts <t <tg,
ss =0 (4.11)

1 3
Ste =85 + ST +EJ1TJ',1

| )
S2e = S1e +fleTa,1 +E AlTa,l

1 > 1 3
S3¢ = S20 T S2.T ) +EA1Tj,1 —glej,l

S4e = 53¢ +f3eTf,1

1 3
Sse = S4e + fa4cTj 0 +gJ2Tj,2
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1 2
sg + [T +5Akf1 lsp_g St<Usp_j3
1 1 3
Ste T f1eT2 +5Akfz —ngfz Lsg_3 St<UIs5p_p,
Sp(0)=9520 + [2e73 lsp_p St<tsp_y,
1 3
S30 + 3,74 +ng+1T4 Lsp_1 St<ts,
1 2
Sge + f4eT5 +5Ak+1T5 Lsp St <Isp1,
4.12
s, =0 (4.12)
1 1,
S1e = S5 +_fsTa,k +_AkTa,k
2 8
1 2 1 3
= 152¢ =S1e + J1Tj i +5Aij,k _ngTj,k
S3¢ =520 + [2.T 1 i
1 3
Ste =53¢ + [3¢Tj k41 +ng+lTj,k+1
1 2
sg + [T +5ANT19 tsny_g4 StE<Its5y_3
1 ) 1 3
Ste + f1eT2 +EANTZ _EJNtza tsy_3 St<tsy_s,
S20 + [20T35 tsy_p St<tsy_p,
sy(1) = 1 3
$30 + [3.T4 +EJN+1T4> tsy_1 St<tsy,
1 2
Sae T f14.7T5 +5AN+1T57 tsy St<tsy,p,
1 ) 1 3
Sse + [5.T6 +EAN+1T6 _EJN+1T6’ tsyi1 SESEsyi,
5. =0 (4.13)

S2¢ = Ste
—

S3¢ = 82¢

S4e = 53¢

S50 = S4ge

1 .
Sle =S5 +5fsTa,N +§ANTa,N

1, 1
+ f1el) n +EANTj,N —gJN

+f26‘Tf,N

+ f3.T L
S3eTj N+ o/ veljn

1 2
+ faelgne + EAN+1Ta,N+l

3
Tin
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Using the formulated kinematic equations, it is possible to derive expressions for the time

durations during each phase based on the given values of jerk J,, acceleration 4, feed Fj,

and segment displacement length L,. The expressions for 7, , T,

ak » and Ty, are

summarized here. From the trapezoidal nature of the acceleration transient, the acceleration
value A4, is equal to the area under the jerk block, which is equal to the jerk value J,

multiplied by the time duration of the jerk phase 7, . Hence, the time duration of the

constant non-zero jerk phases can be written as follows:

_ A

T., =
k 7,

7, (4.14)

The time duration of the constant non-zero acceleration phases, which are split in half
where two adjacent segments connect (see Figure 4-1), can be obtained by integrating the
area under the full trapezoidal acceleration transient. The area under the acceleration profile
must be equal to the desired change in the feed profile. The feed at the start of the kth

acceleration transient is Fj_; and the desired feed to be reached by the end of the
acceleration transient is F},. Using Equation (4.9), the feed at the end of phase @, f,, is set
to F). Hence, solving for the constant acceleration time duration yields the following
expression:

Fy —F A4

T =
ok Ay i

(4.15)

Using Equations (4.14) and (4.15), it can be verified that the final feed value at the end
of the /st segment is indeed f, = (F] + F;)/2. Using Equation (4.8), the feed at the end of

phase ® in Figure 4-2, can be expressed as:

1
fe :Fl+EA2(Tj,2+Ta,2) (416)
Substituting in expressions for 7, and T, , yields:

1 (4, F,-F A4
fe=F +5A2[J—§+—2A2 l—fj (4.17)
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Simplifying Equation (4.17) gives f, = (F] + F,)/2. The same process can be done for
the kth segment. In general, the final feed of the kth segment is f, = (F, + F;,)/2.

Finally, the time durations of the constant non-zero feed phases for the initial (/st),
middle (kth) and final (Nth) segments are listed in Equations (4.18), (4.19), and (4.20). These
equations are obtained by expressing the total travel distance in the /st, kth and Nth segments

using Equations (4.11), (4.12), (4.13) and setting them equal to the segment arc-lengths, L;,
L;, and Ly, respectively. Equations (4.8), (4.9), (4.10) are used to substitute in expressions
for the end feeds of each phase. Lastly, expressions for 7, ; and T, ; from Equations (4.14)

and (4.15), respectively, are substituted in to express the constant feed time duration in terms

of given feedrates, accelerations, jerks and segment arc-lengths. In these equations, A, is

definedas A, = F; —Fj,_;.
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Detailed mathematical derivations for the above expressions are provided in Appendix B.
These derived expressions are used to assess the kinematic feasibility of the motion defined

by the given jerk, acceleration, feedrate, and displacement values.
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4.3 Kinematic Compatibility Conditions

Kinematic compatibility conditions are derived based on the analytical expressions for
the displacement, feedrate, acceleration, and jerk profiles, provided in the previous section.
In this section, the resulting conditions are summarized. The maximum tangential
acceleration and jerk limits are set by the process designer and are based on the machine's
acceleration capabilities. Kinematic compatibility is defined as sufficient travel length to
change the feedrate within the specified acceleration and jerk limits of the machine. If
kinematic compatibility is possible, then the displacement, feedrate and acceleration profiles

will be continuous, and the jerk profile will be limited.

Given specified values for the control loop sampling period T, the desired segment
feedrates Fj,, where Fy and F), are the initial and final feeds of the whole toolpath, and the
acceleration and jerk magnitude limits, 4., and J,,, respectively, the acceleration values
A, are calculated. Then, feed transitions are checked against compatibility conditions, based
on the segment travel length L, . If a condition is not satisfied, the violating feedrate value is

modified to yield a kinematically compatible profile. The specified maximum jerk should not
be larger than that which is achievable within the sampling period, given a maximum

acceleration magnitude. Hence, the sign and magnitude of the jerk J, is calculated as:

Jk = Sgn(Fk - Fk—l)' min(‘]max > Amax /Tv ) (421)

To achieve smooth feed transients, the appropriate acceleration magnitudes must be
determined. The feed reached at the end of the first acceleration transient must equal the
desired feed Fj . The maximum allowable acceleration to transition from Fj_; to Fj,
assuming no constant acceleration phase, is found by setting the constant acceleration

duration (7, ) to zero in Equation (4.15). Capped by a specified maximum acceleration

magnitude 4 the acceleration A4, is determined with the following equation:

max >

Ay = sgn(Fy _Fk—l)'min(AmaX’ (Fy = Fy_1 s ) (4.22)
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The feed compatibility condition determines whether there is sufficient travel length in a
segment to carry out the desired motion specified by the feedrates of three consecutive

segments, Fy_;, F;, and Fj_, their corresponding transition acceleration values, 4, , 4,1,
and jerk values Ji , Jy,;. The distance available for constant feed motion is denoted as L, ;

and can be found by subtracting the distance traveled during the first and second acceleration

transients from the total segment length, L, =L, , must be greater than or equal to zero. The

resulting feed compatibility conditions for the initial (/st), middle (kth), and final (Nth)

segments are summarized in Equation (4.23).

2 2 3
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As defined earlier, A, = F}, —Fj,_;.

4.4 Implementation Details

As feed transitions are spread across segment boundaries, kinematic compatibility in a
segment is affected by its adjacent segments. In order to ascertain whether kinematic
compatibility is satisfied across the segment boundaries, the previous and next segments also
need to be tested against the feed compatibility conditions stated in Equation (4.23). Smooth
and continuous motion is achievable if all three consecutive segments satisfy these conditions.
A forward traversal through the toolpath checks the compatibility of the desired feedrates,
which can be provided by the NC programmer, or obtained through a feed optimization

routine such as the one that is presented in Chapter 5. Under certain situations, a



Chapter 4. Jerk Limited Feedrate Modulation 58

AL AR A Y s I N
— MIFE I [ H | | —
o] Al Pl 1 o
g2 aiV e AR I I A -
%‘E - r/ LN = r_]\
o) A R HoA —
o= ! (\[ L‘\
S (R [\—wa_ﬂ W v—
2 MR
ISR time
vivivi v | v VM Feedrate modulation look-ahead window t [sec]
FiFoFsFs | Fs Febffs - .
L | Spline segment boundary
v'feedrates to be sent to buffer — Commanded feedrate (eg. from feed optimizer)
in the feed generator — Kinematically compatible feed profile

Figure 4-5. Implementation of feed modulation strategy with a look-ahead window.

kinematically compatible solution may not be achievable by simply modulating the
commanded feed, acceleration, or jerk wvalues. In such circumstances, the real-time
interpolator needs to back-track through the planned feed values and perform adjustment to
the earlier NC blocks, in order to yield a kinematically compatible feed profile for the current
trajectory segment. Hence, a look-ahead buffer is implemented for this purpose as shown in

Figure 4-5.

When the desired feedrate of a segment provided by the NC programmer or an
optimization routine is incompatible, a bisection search method finds a kinematically feasible
feed efficiently. The feeds of the previous and next segment are either fixed or free, where
free means that it is set equal to the feed of the current segment. In forward planning, the feed
of the previous segment is fixed and the feed of the next segment is generally free. The

exception is when the desired feed of the next segment is lower than the test feed f,,;;, in
which case the feed of the next segment is fixed at its desired level, F;. Similar rules apply

for backward planning in reverse. The range of the search space is bounded by zero at the

bottom, and the desired feedrate F; at the top. The search algorithm bisects the feed search

space iteratively, as shown in Figure 4-6, until a feasible solution is found within a specified

tolerance F;,;. The number of iterations required to find the new compatible feed within the

specified tolerance can be found with Equation (4.24).

n = round[log,(F; / F,,;)]+1 (4.24)
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Figure 4-6. Bisection search algorithm for a feasible feed.

At each iteration, the test feed value is the bisected value, f,,,,, of the search space
defined by a low bound f;,,, and high bound fjq). f,a 1s tested against the kinematic

compatibility conditions in Equation (4.23). If there is a violation, then f,,;; becomes the

high bound of the next iteration's search space and the previous low bound remains the same.

Otherwise, f,,;; becomes the new low bound. On the last iteration, if the last tested feed is
feasible, then it becomes the new command feedrate, £} ,,,, . On the other hand, if it is not

feasible, then the new feedrate is the last feasible feed found in previous iterations. It is
assumed that the search tolerance is smaller than the smallest feasible feed such that the new

command feedrate is always greater than zero.

The kinematically compatible feeds are passed through the feed generator to obtain arc-
length position commands at each control sample. These can be subsequently transferred to
the real-time interpolator to generate individual axis motion commands using the NURBS

interpolation strategy explained in Chapter 3.

4.4.1 Look-ahead for Long Toolpaths
A look-ahead window is sufficiently long if there is enough travel length to decelerate
from the largest possible feed to zero, by using a series of trapezoidal acceleration transients

as defined in Sections 4.2 and 4.3. An estimate for the number of segments that may be

required can be obtained, given a maximum feed F,,,, acceleration and jerk magnitudes,

ax»
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Figure 4-7. Deceleration from maximum feed to rest.
and by assuming that each segment has a specified path length that is larger than a minimum
value, L_. . The feed modulation framework facilitates a large deceleration in S-curve steps.

Maximal feed change is realized by eliminating every other acceleration transient such that

maximum acceleration occurs at every other segment boundary and zero acceleration occurs
otherwise. An illustration of the deceleration process from F},,, to zero is provided in Figure
4-7.

The resulting sequence of acceleration values is {a,,,0,a,,:.0,...,a3,0,a,,0,a;}, and the
command feedrate sequence is {f,,, f,_1> fr—1--->f2. f2, f1, f1. fo}. For example, a,, is the
acceleration transition value to decelerate from f,, to f,,_;. The total number of segments in

the look-ahead window is denoted as N,, and defined as N, =2w—1.
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In order to estimate the number of required segments for the look-ahead window, the
feed steps in the deceleration profile shown in Figure 4-7 are computed iteratively until a
value that is greater than the maximum feedrate is reached. Essentially the deceleration
profile is calculated in reverse, starting at the right-most segment in the figure, which is

denoted as segment @®. To start, a counter variable w is initialized to zero and f,, is
initialized to zero. The maximum allowable feed step, denoted as 6,, = f,, — f,,_1, 1S

calculated. By considering the first three phases of the initial segment type illustrated in
Figure 4-2, Equations (4.8) and (4.11) can be reduced to calculate the maximum reachable
feed within a given path length constraint. Considering that the time duration of the constant

acceleration phase is zero, the travel length by the end of the third phase (s;,) can be
expressed in terms of the initial feed value f,,_;, the acceleration transition value a,, and

time duration of the jerk phase, 7.

2
S3e = fw—lTj + aW]} (425)

Given a maximum jerk value J,,,, and substituting 7; = a,,/Jy, , from Equation (4.14),

max

into the above equation, yields a cubic equation in a,,:

0= afv + frv-1d max@ —S3eJ2

ax-'w max

(4.26)

From the above equation, a,, can be solved using the Newton-Raphson method with
A as an initial guess. If w =1, then s5, is set to L, . Otherwise, s3, 1s L,;, multiplied
by two (i.e. 2L;,) to reflect that the acceleration transient occurs over two segment lengths.
Then, rearranging Equation (4.15) as f,, — f,,._1 = a,I, +av2VJmaIX with 7, set to zero, the
maximum feed step J,, in terms of the computed acceleration value and maximum jerk value

can be obtained with the following equation:

i — (4.27)
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Finally, if the feed reached is greater than the maximum specified feed, that is if

Sf—1 +90,, = F.« » then the value of the counter variable is used to calculate the window size,
which is N, =2w-1. Otherwise, the counter variable is incremented by one and the

procedure to calculate the next feed step is repeated with Equations (4.25), (4.26), and (4.27).

The number of segments required to decelerate from a maximum feed of 150 mm/s
within acceleration and jerk limits of 500 mm/s® and 10,000 mm/s’, respectively, assuming a

minimum travel length in each segment of 0.1 mm, is 22,501 segments.

4.5 Experimental Results

To demonstrate the effectiveness of the NURBS interpolation and continuous feed
modulation strategy, surface machining tests were performed on a 3-axis router experimental
setup illustrated in Figure 4-8. Drive parameter identification tests [39] were performed on
the router to obtain control signal equivalent inertia, viscous damping, and Coulomb friction
values for all three axes, which are listed in Table 4-1. The gantry design results in two axes
in the x-direction which are labeled "Right" and "Left". Separate parameters were identified
by assuming an independent relationship between the two axes, despite the fact that the
identification data of the X axes were obtained simultaneously. The left X-axis appears to
have lower control signal equivalent inertia and damping, and higher Coulomb friction
compared to the right X-axis. The reason for this dissimilarity is perhaps due to the weight of
the Z-axis which tended to operate closer to the right side of the gantry, simply because it is
closer to the home position of (0,0,0). Thus, the perceived inertia would be greater on the

right side rather than on the left.
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Figure 4-8. Experimental setup (4' x 8' router table).

Table 4-1. Identified control signal equivalent parameters of the experimental setup.

i Inertia, m | Damping, b Coulomb Friction, d.ou [V]
[VI/s?)] | [VA/S)] | Positive | Negative
X (right) | 2.0409 39.9446 0.3270 -0.3206
X (left) 1.6060 38.3927 0.4599 -0.4356
Y 1.0803 30.7299 | 1.9078e-004 | -3.3471e-004
Z 2.5810 83.8100 0.2172 -0.2031
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Figure 4-9. Biomedical implant model to machined part.

The controller design was implemented in MATLAB Simulink, and subsequently
downloaded to the real-time dSPACE controller, as shown in Figure 4-8. The router is
controlled with adaptive sliding mode control [40] at a bandwidth of 16 Hz. The tuned
sliding mode control parameters are listed in Table 4-2. The dSPACE controller sends
control signals to the router's driver board through a control interface after a pulse-width
modulator converts the analog signals to digital signals. The dSPACE captures encoder
counts directly from the motors' rotary encoders to close the feedback loop. The encoder
resolution for the X and Y axes is 1/384 mm (2.6 um) and for the Z axis is 1/960 mm (1.04
um). The loop closure (interpolation) period was 1 ms. Also, to counteract the force of

gravity, a constant 1 V signal is applied to the Z-axis.

Table 4-2. Tuned sliding mode control (SMC) parameters for the experimental setup.

Axis 4 ks ) P
[rad/s] | [V/(rad/s")] | [V/(rad/s)]
X (right) | 100 1 100
X (left) | 100 1 100
Y 100 1 100
Z 100 1 80

A tibial-plateau (lower knee joint) implant model was machined out of wax with 200%
scaling as shown in Figure 4-9. MasterCAM was initially used to generate the tool center

points (TCPs), which define linear toolpath segments that are within the specified machining
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tolerance of 25 um. A contour machining strategy was employed, which means that the
toolpath consisted of X-Y contours at varying depths, for which the step down was specified
as 0.5 mm. The NURBS toolpaths were generated from the CAD data in MasterCAM with
ball end tool offset compensation, using the parameterization method presented in Chapter 3.
A long length two-flute 3mm ball nose mill was used to machine the part. Given the axis
velocity (150 mm/s), jerk (25,000 mm/s®) and control signal (5 V) limits, selection of the
commanded feed values was realized using the heuristic feed optimization technique

presented in [37], which is the predecessor of the method presented in Chapter 5.

The feed motion profiles are shown in Figure 4-10. The velocity, acceleration and jerk
profiles were calculated by taking the numerical derivatives of the position trajectory using
Equation (4.28). Their smoothness indicates that the position trajectory was generated

correctly without any unanticipated flaws or discontinuities. 7 is the sampling period, and k&

is the time step index, such that ¢t = k7, for 1<k < N, 1.

Vo =ag=Jjo=0, Vy =ay, =jy, =0,
b = Sk+1 ~ Sk-1 G, = Vil = Vi1 jk _ Gyt — Ajy (4.28)
2T, 2T, 2T,
As can be seen in Figure 4-10, the kinematic profiles are smooth and limited in jerk in all
axes, as originally planned. As a result the servo errors, defined as the difference between the

reference position and the actual measured position (i.e. X,or — X,,04, ), In the two axes do not
exceed 15 um, which is only in the order of 6 encoder counts while operating the router at its

top speeds and acceleration. Smooth feed motion ensures that the machine is able to track the

given reference trajectories.
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Figure 4-10. Kinematic profiles and controlled contouring results for the sample
NURBS toolpath.
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4.6 Conclusions

A generalized framework for feed modulation of an N-segment toolpath was developed
and presented in this chapter. This framework is used to perform NURBS toolpath
interpolation with continuous feedrate modulation. Smooth feed motion is ensured by the
feedrate modulator, which utilizes analytically derived feed compatibility conditions to
guarantee continuity in position, velocity, and acceleration profiles between neighboring
segments. If the desired feedrate for a segment is kinematically infeasible, then a bisection
search algorithm lowers the command feed to the highest feasible feedrate. Long toolpaths
are handled by employing a look-ahead function in the feed modulator such that enough
travel distance is available to bring the feed motion to a stop when needed. Hence, feedrate
generation and trajectory interpolation are uninterrupted in the real-time CNC controller. The

effectiveness of the proposed method has been demonstrated in machining a complex surface.



Chapter 5

Feedrate Optimization

5.1 Introduction

In this chapter, a computationally efficient feedrate optimization strategy is developed for
spline toolpaths with jerk-limited feed profiling. The technique combines analytically derived
compatibility equations from Section 4.3, with a heuristic search method, which helps
generate feed profiles with reduced cycle time while adhering to axis velocity, acceleration,
torque, and jerk constraints. The feed optimization is integrated with the feed modulation
strategy presented in the previous chapter. Using the S-curve function allows the optimized
feed profiles to be implemented on most existing CNC’s. The proposed strategy yields
shorter cycle time compared to the worst-case curvature approach [31], which is frequently
used in industry, and converges faster than more elaborate gradient-based optimization
techniques [32]. In the following, Section 5.2 presents the feedrate optimization problem and
Section 5.3 presents the solution methodology of the newly developed optimization
technique. The effectiveness of the new strategy is demonstrated in contour machining

experiments in Section 5.4. The conclusions are summarized in Section 5.5.

5.2 Problem Formulation

The objective of feedrate optimization is to minimize the cycle time to machine a part,
while preserving the desired contouring accuracy. In other words, the aim is to maximize the
feedrate along the toolpath without compromising the quality of the final product.
Considering an N-segment toolpath, where 7}, represents the cycle time of the kth segment,
the objective function can be expressed as a minimization of the total cycle time, as shown in

Equation (5.1).

N
min ). 7, =min(7} + T, +---+Ty) (5.1
k=1

68
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Conversely, the objective function can also be written as a maximization of the feedrate

for the kth segment, F} , where the feedrate of each segment is maximized individually as in

Equation (5.2).

maxFy, 1<k<N (5.2)

The latter objective function means that if the tool is traveling at the maximum allowable

feedrate for each segment, then the total cycle time is minimized.

The optimization constraints are chosen to ensure that the machine performs within the
physical and control limits of its components and that the desired contouring accuracy during
machining is maintained. For these reasons, constraints are imposed on the feedrate, and the
velocities, motor torques, and jerks of all axes. Considering the machining process in general,
the cutting forces are proportional to the feedrate. Excessive cutting forces are undesired as
they can premature tool wear or breakage, which can either damage the part or the machine.
Hence, the feedrate is limited by a maximum value to indirectly limit the resulting cutting
forces. Naturally, the feedrate must also be greater than zero to avoid reverse motion along

the toolpath. Thus,

0< F, <F . (5.3)

Axis velocity is constrained based on the physical limits of the axis drive. Ensuring that
the drive doesn't exceed this limit also helps to prolong the life of the drive components, for
example, the motor, ball screw and bearings. Thus, each axis velocity is bounded by a

minimum and a maximum value, and compacted into matrix form as,

Vx min < Vx < Yy max

Yy min < Vy < Y} max = Vmin svs Vmax (54)

V2 min < v, < V2 max

The demanded torque must not exceed the amount of torque that the motor can produce.
Excessive torque demands results in saturation of the motor's actuators and excessive
tracking error. The system may also become non-linear during actuator saturation and go into
instability if there is integral action in the controller. In order to describe the torque demand,

a dynamic model of the axis drives is required. In the case that a dynamic model is
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unavailable, process designers can impose limits on the commanded acceleration, which is

correlated to the torque demand, such that:

A min < ay < A max

a5 min < a, < a5 max = Anin sas Amax (55)

A min < a, < a7 max

A better way to express torque demand is through the control signal which is
proportional to the actuation torque in torque or current controlled drives. A simple open
loop model of the drive system can be constructed with the identified control signal

equivalent inertia (m), viscous damping (b) and Coulomb friction (d,,,;) parameters, from

Section 4.5, to describe the control signal (u,) .

Up = Mya, + bxvx + dcoulx Sgn(vx)
Uy = Mya, +byvy, + degyy sgn(vy) r = U, = Ma+Bv + D, sgn(v) (5.6)

Uy, =mya, + bzvz + dcoulz Sgn(vz)

Then, bounds are imposed on the control signal such that actuator saturation is avoided,

as in the following equation:

Usx min < Up < Uk max

Uty min < Uy < U max = W min < u; < U max (57)

<u, <

Utz min Utz max

Lastly, axis jerk must be limited for several reasons. Excessive jerk affects the tracking
performance of the axis drives as high frequency motion commands result in poor tracking.
Poor tracking can translate into inaccurate contouring, especially if the bandwidths of the
drives are different and significantly lower than necessary. Furthermore, the jerk represents
the frequency content of the commanded acceleration. High frequency content in the
acceleration can excite vibrations in the machine tool structure which also degrades the total
positioning. Finally, limits on the jerk help to ensure smooth motion. Hence, the jerk of each

axis is bounded by a minimum and maximum value.
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jxmin ij ijmax
jymingjygjymax :jminsjsjmax (5-8)

Jz min S]z S]zmax

Overall the optimization problem that is solved in this thesis is expressed with the

mathematical formulation in Equation (5.9). Here, ¢, is the absolute time boundary between

the kth and £+ /th segments.

Objective Function: maxFj,, 1<k<N

Subject to :
0 < Fz = Fmax (5 9)
Vmin < V(t) < V max for tk—l Sl‘Sl‘k .
U min < ut(t) < U max
jmin < J(t) < jmax

The solution methodologies of the worst-case optimization technique and the new

heuristic optimization strategy are presented in the next section.
5.3 Solution Methodology

5.3.1 Worst-case Technique

In the worst-case optimization technique which was presented by Weck et al. [31], the
maximum allowable feedrate for each segment is computed using the worst-case curvature of
the given toolpath geometry, and worst case assumptions for unknown variables. Here, this

method is briefly reviewed to allow comparison with the proposed heuristic technique. For a
spline toolpath described with the parametric function, C(u) =[x y z]", and a feed

motion spline, s(¢), the axis velocities C(t) , accelerations C(), and jerks C(t) can be
expressed in terms of the geometric derivatives, and derivatives of the feed motion spline by
applying the chain rule. The geometric derivatives, which are the derivatives with respect to
the arc-length, are defined in Equation (5.10), and can be solved for in terms of the spline's

parametric derivatives, and the derivatives of the feed correction polynomial, u(s), which

was presented in Section 3.3.
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de Xg d2C X d3C Xsss
gzcs =1 Vs | dS2 :Css = Vss |5 F:Csss = Vsss
Zg Zg Zsss
dC d
c, - dcdu
du ds (5.10)

SS

dC d*u dzc(dujz
=t — —
du ds®>  du* \ ds
dC d*u _d*C d*u du d3C(du f
=— +3 —+ —
du ds® du® ds* ds  du’ \ ds

SSS

Axis velocities v = C, accelerationa = C, and jerks j = C are thus:

E=C (5.11)
€ =C,i+Cys? ¢.12)
C = CS:S"' + 3Css§5v + Csss‘s“3 (5. 13)

Using Equation (5.11), the maximum feed due to the limits on the axis velocities can be
derived. The maximum allowable feedrate due to velocity limits is found by substituting in
the maximum velocity bounds, solving for the feed for each axis limit, and finally taking the
minimum value of the feeds determined by all three axes, as in Equation (5.14). It is assumed

that the bounds are symmetric, hence only the maximum velocity value and absolute values
of the geometric tangent are required. Note that [x, y, z, ]T is the unit tangent vector and

is evaluated at several points along the toolpath segment to obtain a feed limit profile. If any
of the components of the unit tangent vector is equal to zero, then a feed limit is not imposed

by the corresponding axis.

14 v

. A%
fvel < min| —Xmax , zmax , zmax (5'14)
|xs Vs Zs|

The feed limit due to the acceleration constraints is derived using Equation (5.12).

Tangential acceleration is substituted with a worst-case (highest) value, 4., and axis
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acceleration is replaced with the specified axis acceleration limits. Hence solving for the feed,

the feed limit due to the acceleration constraints is found as follows:

. d x max _|xs|AmaX @ ymax _|yS|Amax Azmax ~
facc < min ) >
|xss| |yss|

| (5.15)

Note that [x, V, Zg 17 is the curvature vector and is also evaluated at several points

along the toolpath. If any component of the curvature vector is zero, then the corresponding
axis does not limit the feedrate due to acceleration constraints. Otherwise, in order to obtain a
real positive solution for the feed, it is assumed that the axis acceleration limits are greater
> A

than the tangential acceleration limit, for example, a since the unit tangent

Xmax max ?

vector components are less than or equal to one.

If a dynamic model of the drive system is available, the axis acceleration limits can be
calculated based on axis torque limits. Considering the open loop model described in
Equation (5.6), the maximum command acceleration can be obtained by replacing the
actuation torque by the maximum torque limit and by assuming the maximum value for the

axis velocity term. Solving for the axis acceleration yields:

Axmax = (utxmax _bxvxmax _dcoulx)/mx
Aymax = (utymax _byvymax _dcouly)/my (5.16)

Azmax = (utzmax _bzvzmax _dcoulz)/mz

The axis acceleration limits based on the torque limits can then be substituted into
Equation (5.15) to obtain the feed limit due to the torque constraints. Here, the control signal
limits must yield acceleration limits that are greater than the tangential acceleration limit in

order to obtain a real positive solution.

Finally, the feed limit due to the jerk constraints is derived using Equation (5.13). Jerk

and acceleration in the feed direction are substituted with worst-case values, 4 and J

max max >
and the axis jerk term is replaced with the maximum axis jerk bound. A cubic equation
results for each axis, as shown in Equation (5.17). Solving for the roots will yield a feed limit
for each axis. The lowest feed among the three axes is the overall feed limit due to the jerk

constraints.
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0= |xsss|f)ijerk + 3|xss|Arnaxfx,jerk + (|xs|Jrnax - jx rnax)
0= |ysss|fy3,jerk + 3|yss|Amaxfy,jerk + (|ys|Jmax - jymax)

' (5.17)
0= |Zsss|f23,jerk + 3|Zss|Amaxfz,jerk + (|Zs|Jmax - szax)

fjerk < min(fx,jerk ’ fy,jerk ’ fz,jerk)

Similarly, it is assumed that the axis jerk limits are greater than the tangential jerk limit,

for example j, . >/ in order to obtain a real positive feed. Non-real solutions are

max ?
discarded and in the case that there exist three real solutions, the smallest positive value is

taken as the feed limit.

The feed limit profile consists of the lowest feed limit among all of the velocity,

acceleration or torque, and jerk constraints.

flim = min(fvel > facc > fjerk) (5.18)

Then considering each segment, the smallest feed limit to occur in the length of a

segment is the final command feed, F} . Using the optimized command feed values, the feed

profile can be generated using the feed modulation strategy that was presented in Chapter 4.
An example of the worst-case feed profile is illustrated in Figure 5-1. The worst-case feed
optimization technique is simple and computationally inexpensive. However, the resulting
feed profile is more conservative than necessary because of the assumption of worst-case

values for unknown variables such as the tangential acceleration and jerk.

The proposed strategy in this thesis aims to create feed profiles with shorter cycle times
compared to the worst-case technique, with an efficient search method that finds higher
feedrates. Assumed worst-case values are replaced with the actual values of the feed motion
profile. An example of an optimized feed profile obtained with the proposed heuristic
strategy, which is explained in the following section, is also illustrated in Figure 5-1, and

shows that the heuristic feed is generally higher than the worst-case feed.
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Figure 5-1. Comparison of worst-case feed optimization [31] to the proposed heuristic
strategy.

5.3.2 Heuristic Strategy

The developed heuristic strategy, like the worst case technique, is general and can be
applied to NURBS [26], [27] as well as other parametric toolpaths [2] [3] [9]. To solve the
feed optimization problem presented in Section 5.2, the algorithm first narrows the search
space to kinematically compatible feeds. Then, a rough scan of that range is performed to
find a feasible solution. A feasible solution is defined as a command feedrate which results in
a feed profile that satisfies all of the optimization constraints, listed in Equation (5.9),
throughout the segment. Once a feasible feed is found, a bisection search method finds the
highest feasible feed, which is defined as the optimized feed. In general, the algorithm

consists of the following two parts, which are iterated one after another:
1. Selecting kinematically compatible feed candidates;

2. Checking for constraint violations along the trajectory.

Feed Selection
The algorithm assumes that the feed profile is generated using piecewise constant jerk
values, leading to S-curve type feed transitions. Denoting the nominal feeds of the prior and

current segments as Fj_; and Fj, the feed value at the segment boundary is (F),_; + F,)/2.
The feed increment, A, is defined as A, = F, — F)_;. The feed, tangential acceleration and
jerk values are also bounded (|s < F,,

ax > | S Apax and | 5'|€ J 0 » Where s is the arc
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displacement). Considering the kth segment with an arc-length of L, , from Equation (4.23),
the distance traveled at constant feed (Ly ;) in that segment is written again in Equation

(5.19).

2 2 3

Lflle_
’ 24, 2J, 84, 24J} 2J, 24,

>0
38, A4 R4 Foa, ]
+ +—

84, 2442 2J, 24,
3%, Ak Fedin | FraBrn

841 2407,  2Jkn 24; 4y

(5.19)

4 A2 3
84y 24J% 2y 24y

Lf,N = LN - )
_ AN+1 _AN+1AN+1
24y 2Jyn

The above kinematic compatibility conditions are used to determine the minimum and
maximum reachable feeds between adjacent segments, and therefore, they dictate the
heuristic search space. Given this range of kinematically compatible solutions, a set of rules
are followed to obtain an optimized feedrate that satisfies the optimization constraints. In the
following, the feed selection rules are explained with a 5-segment example, as illustrated in

Figure 5-2.

At the start of the toolpath (Figure 5-2a), the search space is bounded with an initial
feasible slow feed (e.g. 10 mm/s) and the maximum feed is found with a bisection search
algorithm, which is illustrated in Figure 4-6, that utilizes Equation (5.19) to determine
kinematic compatibility. After the search space has been defined by the upper and lower

bounds Fj iy and Fj > the algorithm iteratively tries out feed values to find the highest
feedrate possible Fy ., , which satisfies all of the optimization constraints. A bisection

method - similar to the one used to find the kinematically compatible feeds - iteratively
refines the search space and generates candidate feeds which bisect the refined search space,

Jomia » as shown in Figure 5-3. Each candidate, which is inherently higher than the latest
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Figure 5-2. Proposed heuristic feed optimization technique (demonstrated with an
example).
feasible solution, is tested against the optimization constraints, in Equation (5.9), to
determine feasibility. If it does not violate them, it is stored as the latest feasible solution.

The latest feasible solution at the end of the nth iteration is the optimized command feedrate.

Moving to the next segment, if a feasible solution that satisfies the optimization
constraints in the search space cannot be found, as is the case in Figure 5-2b, then backward
planning is performed to adjust the earlier feed values. The new search space, shown in
Figure 5-2c, is bounded from below by the worst-case feed computed using Equations (5.14)-

(5.18), considering the highest curvature in that segment, and maximum possible magnitudes

for tangential acceleration and jerk (|s| = A..x and |s| = J hax )- The upper bound is set as the

minimum feed reachable from the previous segment. The end conditions are freed such that
the actual tangential acceleration and jerk profiles are zero (i.e. §=0 and s=0) and a
constant feed profile is tested against the optimization constraints. A bisection search method
is used to find the highest feasible feed candidate, and backward planning continues into
earlier segment(s), as shown in Figure 5-2d, until a seamless connection can be made with

the feed profile that was planned earlier in the forward pass.

It can be seen that the search space in the /st segment has been reduced, compared to the

one in Figure 5-2a, and is bounded by the new fixed feedrate from below, and the maximum
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Figure 5-3. Bisection search algorithm to find an optimized feasible feed.

feed reachable from the 2nd segment from above. Since the new fixed feedrate is lower than
the previously found optimized feed for the /st segment, the feed, tangential acceleration and
tangential jerk profiles will also be generally lower in absolute terms than the originally

planned feed motion profiles from the forward planning stage. That is,

if jnew < ‘§old s then |§new| < |§old ’ |.S.new| < |:S.'.old| (520)

In general, the lower feed is also a solution that satisfies all the optimization constraints
of the previous segment. Considering Equations (5.11)-(5.13), the axis velocity, acceleration
and jerk will also be lower if the component geometric derivatives are either both positive or
both negative. For example, if the x-axis geometric derivatives and the feed motion
derivatives are all positive, then the overall velocity, acceleration and jerk in the x-direction

will also be less than the maximum x-axis limit.

Given: x,x,5,5,5 >0

Vymax = szold > xs‘s;new

Aymax 2 xs‘.s:old + xsss‘gld > xs‘.s:new + xssjrzzew (-2
jxmax 2 xs:sz;)ld + 3xss§old‘§old + xsss‘s:gld > xs:s;.new + 3xss “new‘énew + xsss‘éfzew

However, if the geometric and feed motion derivatives are not all in the same direction
then it is not guaranteed that the optimization constraints will remain satisfied. In the rare
circumstance that a lower feed does not satisfy the optimization constraints due to the non-

convexity of the problem, the segment is flagged. As yet there is no heuristic rule to mediate
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this situation, so the fixed feed of the adjacent segment is set as the command feed despite
the optimization constraint violations and backward planning continues. Backward planning
ends when the forward feed profile and the backward feed profile are kinematically
compatible. When backward planning is complete, forward planning resumes again from the

foremost segment (Figure 5-2¢).

The algorithm steps through each segment one by one, (Figure 5-2f-g), fixing the solution
found in the previous segments and constructing the search space by solving for a
kinematically compatible upper feed bound and a feasible lower bound that satisfies the
kinematic compatibility conditions and optimization constraints. The use of the kinematic
compatibility conditions effectively narrows down the set of possible solutions and with the
set of heuristic rules an initial feasible feed is determined. For the Ath segment, it is first
determined whether a constant feed profile, where the feed of the previous segment is held
the same through to the next segment, satisfies the optimization constraints. If it does not,
then a scan of the kinematically compatible feed range at equal increments is performed to
find a feasible feed. The scan can be performed in sequential or random order where the
number of feeds to test depends on the resolution of the scan. For a kinematically compatible

feed range defined by the bounds f,,, and f};.;,, and a resolution (df), the number of feeds

to test (N4, ), and the feeds (f;) are determined with the following equations:

Nscan = rOund[(fhigh - flow)/df]

) ) (5.22)
fi :fhigh _l(fhigh _flow)/Nscan lzo’l""’Nscan

Either the interval size or the number of intervals can be specified arbitrarily. In general,
a feed resolution of 10 mm/s would be used. Then the number of feeds to test would be no
more than 15 for a maximum range of zero to 150 mm/s. Once a feasible feed is found, it

becomes the lower bound of the heuristic search space (Fj i, ) Which is then used in the
bisection search method in Figure 5-3, to find an optimized solution. If none of the test feeds
prove to be feasible, then backward planning would be initiated.

In the last segment (k = N, f, = 0), both initial and final conditions are fixed, as shown

in Figure 5-3g, and the search space is bounded by the maximum reachable feed that can be

decreased smoothly to zero by the end of the segment. That is, the feed compatibility
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condition for the final (Nth) segment in Equation (5.19) is used, which already considers that
the feed motion must come to a stop. Kinematically compatible feeds are those that leave

enough travel length in the segment to decelerate to zero.

Constraint Evaluations

For the NURBS toolpaths developed in Chapter 3, constraint evaluations are performed
using the NURBS formulation, kinematic equations, and the drives’ dynamic model. If
required, process-based bounds on the feedrate, which limit the cutting forces in the
machining operation, can also be included. It follows from Equation (5.19) that the feed
profile in the current segment is affected only by the preceding and next adjacent segments,
thus making the feed planning in three consecutive segments independent from the rest of the
toolpath. Hence, the constraints are checked only within a 3 segment window at a time (i.e.

segments k-1, k, k+1). The NURBS toolpath position can be obtained as:

) =[xy =] = Z=0Ne@P
?:o Ni,p (u)w;

IA
—

(5.23)

Recalling that, P; are the control points, w; are the weights, n+1 is the number of
control points, p is the degree of the NURBS, and N; , (1) denotes a basis function over the

span i in the knot vector, U ={uq,...,u,,} [5] [26] [27]. A 7th order feed correction
polynomial (i.e. u = f(s)) is used for mapping the spline parameter (u ) to the arc-length (s )

with 2nd order continuity at the connection boundaries, which mitigates unwanted feed
fluctuations during interpolation and ensures acceleration continuous profiles to be generated,
as explained in Chapter 3. Denoting the geometric derivatives with respect to the arc-length
(Equation (5.10)) and applying the chain rule, the axis velocity, acceleration, and jerk
profiles are derived as in Equations (5.11)-(5.13). The optimization constraints considered
are the limits for axis velocity v, control signal (i.e. actuation torque) u,, and jerk j, which
are expressed in Equation (5.9). Substituting in Equations (5.11)-(5.13) into the optimization
constraints and normalizing them with respect to the limits yields the following 20

expressions in Equation (5.24).
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S/ Fpax —1<0
1=Xx8/Vimin <0
l—ysé/vymin <0
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1= (X5 + 3%, 55 + X052 )/ Jomin <O
1= (1§ +3 85+ Y 8°) ymin <O

1= (2,8 + 32,88 + 2 §°)/ f i <O (5.24)
(X5 + 3%, 55+ X 05°)  Jomax —1< 0
(155 +3Y5588 + Y508 ymax —1<0
(2,8 +32, 55 + 23 §°)/ . max —1<0
1= [ (8 + X, 8°) b, 28+ d gy SO g i <O
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[, (755 + 9568°) +D, 58+ d gty SENY )] Uy max =10

[m, (2,8 +2,§2)+b. 2,8 +d g, SEN(Z )/ Uy, gy —1<0

Thus, in order to evaluate the constraints, the geometric derivatives at pre-selected points
along the toolpath are obtained, and the feed, tangential acceleration and jerk values in the
feed motion trajectory that occur at those points are also computed as required. Constraint
evaluation check points are selected according to the variations in the toolpath segment as
shown in Figure 5-4. Portions of the segments with large variations (i.e. high curvature)
should contain more evaluation points than the portions with small variations (i.e. low

curvature), to ensure acceptable enforcement of the constraints throughout the whole toolpath.
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Figure 5-4. Constraint evaluation points based on the variation of the toolpath
geometry.

The constraint evaluation points can be a subset of the points resulting from the adaptive
integration of the segment length, determined during the application of Simpson's Rule in
Section 3.3.1, where a large subset corresponds to tighter constraints and a small subset
translates into relaxed constraints. They can also be selected based on the knot distribution in
the NURBS segment, as the knots and their positions in the parametric space relate to the
number and influence of the control points that shape the curve. In general the more control
points there are, the more curvature variation occurs in the curve, thus resulting in more

knots to act as constraint evaluation points. Geometric derivatives, C,, C, and C,,, of

each constraint evaluation point are calculated prior to the feed optimization. In this thesis, a

subset of the integration data points is used.

Feed s, acceleration §, and jerk § values at each constraint evaluation point are
obtained during the feed optimization by solving for the relative time value that corresponds
to the arc displacement of each point. Given a proposed feed profile, from the feed selection
step, and the arc displacement (s) of a constraint evaluation point in a given segment, using
Equations (4.11)-(4.13), the phase in which the arc displacement occurs is determined by
comparing the given s value to the arc displacement reached at the end of each phase. For

example, if 54, < s <s5,, then the constraint evaluation point lies within phase ® of the feed

motion profile of a segment. Then, the corresponding displacement equation is used to solve

for the relative time value, 1, as shown in Equations (5.25)-(5.27) for the initial (/st), middle
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(kth) and final (Nth) segments. The displacement equations for constant feed phases are
linear and can therefore be rearranged to solve for the relative time variable. Quadratic
functions, which describe the trajectory during constant acceleration phases are solved with
the numerically stable quadratic formula, while cubic equations are solved using the Newton
Raphson method, where the time duration of the constant jerk phase serves as the initial

guess, T, for the relative time parameter. Finally, using Equations (4.2)-(4.10), the feed,

tangential acceleration and jerk values are computed at the calculated relative time values.
Then the axis velocity, acceleration and jerk values that occur at the given constraint

evaluation points are then calculated with Equations (5.11)-(5.13).

If any of the constraints are violated in a segment, the proposed feedrate is determined to
be infeasible and becomes the upper bound of the refined search space for the next iteration.
On the other hand, if all of the constraints are satisfied, then the proposed feed is stored as the
latest feasible feed and becomes the lower bound of the refined search space.

1. 3
0<s<s,=0 =EJ11: + fyt—s, 19 =T},

1
S1e <8 <89, :>O=EA11:2+flet+sle—s

1 1
Syp <8 <83, = Oz—ngt3 +EA11:2 + f2.T+ 89, =8, To =T

1
(1st) ’ (5.25)
§3, <S84, > 0= f3,T+83, -5
1
s4e<s£s56:>0=gJ2r3+f4et+s4e—s
1, 2
SSe<SSS6e:>0=EA2T + fseT+S5e =5, T9=T;,
1, 2
0<SSS162>0=EAkT + fiT1—58
13 1,5
sle<sﬁsze:>O=—ngT +5Akr + fleT+S1e =8, To =T
(kth) <55, <5<53, > 0= f5,T+5,,—5 (5.26)
1 3
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1 2
S4e < S <S5, :>O=5Ak+1r + 40T+ S84, =
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Iterations

When processing each segment, the candidate feed generation and constraint evaluation
steps are iterated one after another, which helps to refine the results. During each iteration, a
new candidate feed value is generated by bisecting the lower and higher bound of the refined
search space. If the candidate feed does not violate the optimization constraints in Equation
(5.24), then it becomes the new lower bound of the search space. Conversely, if it violates
any constraint, then the candidate feed replaces the higher bound. This allows the algorithm
to zone in on a possibly better solution, if there is one, without wasting valuable
computational time. However, this is subject to the underlying assumption that the solution

space is convex. For example, if there are two feasible feeds, f; and f, such that f; < f5,
then there exists a third feed in between the two feeds, such that f; < f3 < f,, that is also

feasible. The iteration stops when the refined feasible feed is within a given tolerance, Fj,;,

of the next feed candidate, as shown in Figure 5-3. In the implementation, it was found that
using a search tolerance of 1 mm/s, for the experimental setup where the maximum axis
velocity is 150 mm/s, led to successful cycle time reduction, without becoming
overburdening in terms of computational load. The resulting number of bisection operations

in solving for the best solution with a range defined by F ., and Fj ,,, can be calculated

with the following equation:

Niter = round[log, ((Fk,max ~ F min ) Fig)]+1 (5.28)
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Sample calculations using Equation (5.28) are listed in Table 5-1.

Table 5-1. Sample calculation of the number of bisection operations for a range defined
by Fimin=0 and Fy =100 mm/s.

Search Tolerance, F,,, [mm/s] Number of Bisection Operations, N,
2 7
1 8
0.1 11
0.01 14

One of the principal advantages of the proposed technique is that the duration required to
process each segment can be deterministically specified, by setting the feed scanning

resolution (df’), search tolerance (F,, ), and the number of constraint evaluations to be

performed for each segment. This makes the algorithm highly suitable for real-time
implementation in comparison to gradient search-based methods [32]. The heuristic rules
ensure that a feasible feed is computed, within the allowed computational window. A look-
ahead buffer is still required in order to plan sufficient distance for accelerations and
decelerations, which also holds for other feed optimization techniques as well [30], [31], [32].
Although the computational duration becomes nondeterministic when backward planning is
invoked, an upper bound on the number of blocks that may need to be processed in one cycle
can be computed by considering the smallest possible segment size and the kinematic
properties of the feed profile as shown in Section 4.4. By setting the look-ahead buffer to be
sufficiently large and utilizing a fast enough CPU, the problem of NC instruction overrun can

be avoided, as is done in current CNC interpolators.
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Figure 5-5. Benchmark contour - 88-segment quintic spline toolpath [9].

5.4 Experimental Results

The heuristic feed optimization strategy has been validated experimentally on the 3-axis
router that was introduced in Section 4.5. Adaptive sliding mode control is used for closing
the servo loop. The loop closure (interpolation) period was 1 ms. The maximum velocity,
jerk, and control signal (i.e. actuation torque) limits that were used are 150 mm/s, 25,000
mm/s’, and 5 V (50% actuation torque), respectively. The first benchmark is realized by
comparing the heuristic strategy with the worst-case [31] and gradient-based [32] solutions,

using a fan-shaped quintic spline toolpath from [9] with 150% scaling (Figure 5-5).

The kinematic profiles obtained with all three methods are summarized in Figure 5-6.
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Benchmark Comparison of Feed Optimization Strategies
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Figure 5-6. Optimized feedrate profiles using worst-case [31], gradient-based [32], and
heuristic (proposed) optimization strategies

While implementing the worst-case method, jerk constraints were incorporated using
Equation (5.17) and assuming maximum possible magnitudes for tangential acceleration and
jerk. All three methods were applied subject to the same constraints on the feedrate, axis
velocity, torque demand, and jerk, as defined in the feed optimization problem formulation in
Equation (5.9). Each method satisfies the feedrate and axis velocity constraints. However, in
the case of the axis jerk constraint there are instances where the proposed heuristic method
violates the prescribed limit by small amounts. This was observed to occur because the
number of constraint evaluation points used in the heuristic method was less than the number
of evaluation points in the gradient method. This resulted in a slight relaxation of the limits,
allowing for minor violations to occur. The violations were found to be tolerable as they did
not adversely affect the tracking performance of the controlled system, as seen in Figure 5-7.
Additionally, the real-time control signal, which directly represents the actuation torque, also

slightly exceeds the prescribed limits because of the dynamic nature of the closed-loop



Chapter 5. Feedrate Optimization 88

Benchmark Contour Toolpath Tracking Results
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Figure 5-7. Comparison of tracking performance for different optimization strategies.

feedback servo controller which was not considered in the dynamic model for torque demand.
The problem formulation for all three methods used an open loop dynamic model to predict
the torque demand. For this reason the control signal limit was set rather conservatively (50%
of actuation torque) so that the amplifier limit which occurs at 10 [V] is never invoked as
seen in Figure 5-7. Alternatively, the limits could be modified according to the variance of

the closed-loop control signal, which was reported in [41].

Table 5-2. Computational time for benchmark toolpath feed optimization.

Opgi?;izzgon Computation Time [s]
Worst-case 1.555
Heuristic 6.761

Gradient-based 69.415

The proposed heuristic method exhibits a 13.73% decrease in cycle time compared to the
worst-case method from 6.975 s to 6.017 s and maintains a comparable tracking accuracy.
The computational time used by each optimization technique is summarized in Table 5-2.
The implementation was made on a Pentium IV 3 GHz computer using MATLAB. The

computational time is an order of magnitude less, compared to the gradient-based feed
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Figure 5-8. Optimized feedrate profiles of a sample NURBS toolpath.

optimization, and about four times longer compared to the worst-case feed optimization. The
heuristic feed optimization strategy provides a good compromise between the worst-case and
gradient based methods. On the one hand, the computational load is comparable to the worst-
case technique and the cycle time is shorter. On the other hand, the cycle time is longer than
the gradient-based solution, because there is less restriction on the shape of the feed profile in
the latter approach. The gradient-based technique doesn't require zeroed acceleration and jerk
boundary conditions between segments, as the jerk-limited S-curve profile does. However,
the simplified feed motion profile contributes to the reduction in the computational load,

which is observed to be approximately a factor of ten.

The heuristic and worst-case techniques were also compared in surface machining the
tibial-plateau (lower knee joint) bone implant, which was scaled by 200% for machining
convenience. The CAD model was converted into contour NURBS after applying ball end
tool offset compensation (Figure 5-8) as explained in Chapter 4, and subsequently machined

out of wax using both optimization techniques. In order to accelerate the experiment, a
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Sculptured Surface Contour Toolpath Tracking Results
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Figure 5-9. Tracking performance of contour machining for a biomedical implant.

relatively coarse toolpath tolerance (25 um) was used, which can be made tighter if a
smoother surface is required. Additionally, the step down, that is the height between contour

levels, was set to 0.5 mm.

Experimental results comparing the proposed heuristic strategy with the worst-case
technique for the highlighted contour are shown in Figure 5-9 and a cycle time comparison
for the representative contour and the complete toolpath is given in Table 5-3. Note that the
duration of the total NURBS cycle time excludes linear tool movements. As seen, 26.36%
time reduction is observed for the highlighted contour and an overall 21.62% cycle time
reduction is realized for all of the NURBS toolpaths combined, compared to worst-case feed
planning. The tracking error in both cases is less than 15 um, indicating that the cycle time

reduction does not come at the expense of the drives’ dynamic accuracy.

Table 5-3. Cycle time comparison for implant surface.

Optimization Sample All NURBS
Strategy NURBS Toolpaths [s]
Toolpath [s]
Worst-case 6.891 601.009
Heuristic 5.074 469.341
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Hence, the heuristic feed optimization strategy yields shorter cycle times compared to the

worst-case technique, while also preserving the desired machining tolerance.

5.5 Conclusions

This chapter has presented a new feedrate optimization strategy that can be applied to
trajectory generation using spline toolpaths. The proposed strategy intelligently uses heuristic
rules, alongside analytically derived feasibility conditions, to achieve lower cycle times
compared to the widely accepted worst-case approach in NURBS toolpath feed planning.
Cycle time reductions are shown to be as high as 26% from the worst-case solution. The
computational load is approximately ten times less compared to gradient-based methods
while being just four times longer than the worst-case implementation. The heuristic
approach offers a compromise between the simplistic worst-case approaches, which are
generally conservative, and the complex gradient-based techniques, which can be
computationally expensive. Practically, the cycle time reductions are obtained at low
computational cost, and the utilization of the S-curve as the basis feed function allows the
heuristic technique to be implemented inside, or in conjunction with, existing CNC
interpolators. Contour and surface machining experiments were performed to validate the
proposed strategy. Experimental results show that the tracking error is maintained at less than
25 um, which indicates that the achieved cycle time reductions do not adversely affect the
tracking performance of the drive system. The heuristic feed optimization strategy effectively
minimizes the cycle time while maintaining the desired contouring accuracy of the machined

part.
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Conclusions and Future Work

Overall, this thesis has presented a NURBS toolpath interpolation scheme with
continuous feedrate modulation and feedrate optimization for CNC machining. The proposed
techniques result in coordinated axis motion that is smooth and time-optimal within the

constraints of the drives' dynamic limits.

NURBS toolpaths were parameterized with geometric curvature continuity using beta-
constraints, which allowed for additional flexibility that parametric continuity constraints do
not afford in shaping the curve to avoid oscillations. The beta shape parameters are a useful
design tool, but as of yet there is no automatic way of assigning their values such that the
parameterization always generates the desired smooth toolpath. It was found that smooth
toolpaths could always be found, but sometimes required designer intervention in the
toolpath planning, which is unfortunately time consuming. Several methods to improve the
automation of the NURBS toolpath parameterization may include the addition of a jerk
penalizing term into the curve fitting objective function, better heuristics for setting the
values of beta parameters, and segmenting the data points adaptively according to favorable
conditions for generating smooth non-oscillatory splines. Furthermore, the weights in the
NURBS equation were underutilized in the NURBS curve fitting method, in this work as
well as in the literature. Further research into the effect of weights and how they can be

assigned values other than one to parameterize a better behaving spline is recommended.

For NURBS interpolation, the arc-lengths of the NURBS segments were integrated
numerically with Simpson's adaptive quadrature method. When the quadrature data of each
segment is summed cumulatively, it provided a discrete mapping of the spline parameter to
the arc displacement along the spline segment. An inverse relationship which expresses the
spline parameter in terms of arc displacement was obtained by solving a constrained least
squares optimization problem with the Lagrange Multipliers technique. This function is
known as the feed correction polynomial. Interpolation using the feed correction polynomial

was shown to reduce unwanted feedrate fluctuations while being numerically efficient and
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robust against numerical errors. Feedrate fluctuations are reduced from around 40 % for
natural interpolation to 0.1 % for interpolation with feed correction. Excessive acceleration
and jerk in the axes are also avoided. However, the main challenge encountered in this work
was ensuring that the feed correction polynomial accurately reflected the spline parameter
and arc displacement relationship. This issue was addressed by evaluating the mean squared
error (i.e. variance) between the actual data and its estimates and if the error was above a
specified tolerance, dividing the data into two sets and using multiple splines. Most
numerical instability which caused inaccurate fitting happened when a large change in the
spline parameter resulted in only a very small change in arc displacement. Although using
multiple splines was presented in this work, further investigation into possible numerical

instabilities encountered is suggested for future work.

A generalized framework for feed modulation over multiple toolpath segments using the
S-curve function was developed in this thesis. The feed modulation technique used
analytically derived kinematic compatibility conditions to ensure that the displacement,
feedrate and acceleration profiles were continuous and jerk-limited in all axes. The feed is
modulated using a bisection search method that is simple and numerically efficient. With the
use of a look-ahead window, the feed modulation method is well suited to support real-time
interpolation. Moreover, the framework can be interfaced with different feed optimization
techniques such as the worst-case curvature method [31]. It served as the foundation for the
new heuristic feed optimization strategy developed in this thesis. Using analytically derived
kinematic compatibility conditions and an efficient bisection search algorithm with
optimization constraints to test the feasibility, the segment feed is maximized. It was shown
that the new strategy reduced the cycle time by approximately 13% - 26% compared to the
worst-case curvature approach and is only slightly more computationally intensive. The
heuristic strategy has less computational load compared to a gradient-based solution [32]

making it very practical to implement on a CNC controller.

The overall NURBS trajectory generator has been validated in machining experiments
conducted on a 3-axis router. By ensuring that the toolpath trajectory has continuous
acceleration and is jerk limited in all axes, it is demonstrated that the coordinated motion is
smooth and continuous. Cycle time reductions are obtained and axis tracking errors do not

exceed 25 um. Contouring accuracy is not sacrificed for faster feedrates. Therefore, the
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NURBS trajectory generator can be practically and economically integrated into, or in
conjunction with, existing CNC controllers to meet higher demands for high precision in

faster cycle times.

Suggestions for future work include implementing the algorithms developed in this thesis
in a real-time environment on the dSPACE controller, testing the algorithms with NURBS
toolpaths that are parameterized by standard CAD/CAM packages or derived directly from
the CAD geometry rather than from linear toolpaths, and investigating numerical instabilities

in the feed correction polynomial curve fitting.
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Appendix A

Non Uniform Rational B-Spline (NURBS) Format

The data points used to generate the NURBS fan-shaped toolpath are from [8] scaled by
150%. There are 89 data points.

Fan-shaped Toolpath Data Points

q. =[-16.0688, -0.0562, 7.8712, 13.5113, 15.0488, 13.5863, 9.1125, 8.2125,
8.4150, 9.2025, 10.5413, 12.0825, 13.5825, 15.1650, 18.1950, 25.5900, 31.6463,
34.3387, 37.6013, 41.3325, 45.1275, 49.6200, 56.9850, 57.1575, 54.1838, 48.1388,
39.2062, 30.1613, 15.1537, 11.8650, 10.4175, 9.0300, 8.3963, 8.3438, 8.5313,
9.0975, 10.6463, 18.3188, 27.3038, 30.2400, 32.4675, 33.5887, 33.2400, 30.2137,
16.0688, 0.0562, -7.8712, -13.5113, -15.0488, -13.5863, -9.1125, -8.2125, -8.4150,
-9.2025, -10.5413, -12.0825, -13.5825, -15.1650, -18.1950, -25.5900, -31.6463,
-34.3387, -37.6013, -41.3325, -45.1275, -49.6200, -56.9850, -57.1575, -54.1838,
-48.1388, -39.2062, -30.1613, -15.1537, -11.8650, -10.4175, -9.0300, -8.3963, -8.3438,
-8.5313, -9.0975, -10.6463, -18.3188, -27.3038, -30.2400, -32.4675, -33.5887, -33.2400,
-30.2137, -16.0688]

q = [ -56.9850, -57.1575, -54.1838, -48.1388, -39.2062, -30.1613, -15.1537,
- 11.8650, -10.4175, -9.0300, -8.3963, -8.3438, -8.5313, -9.0975, -10.6463, -18.3188,
-27.3038, -30.2400, -32.4675, -33.5887, -33.2400, -30.2137, -16.0688, -0.0562, 7.8712,
13.5113, 15.0488, 13.5863, 9.1125, 8.2125, 8.4150, 9.2025, 10.5413, 12.0825,
13.5825, 15.1650, 18.1950, 25.5900, 31.6463, 34.3387, 37.6013, 41.3325, 45.1275,
49.6200, 56.9850, 57.1575, 54.1838, 48.1388, 39.2062, 30.1613, 15.1537, 11.8650,
10.4175, 9.0300, 8.3963, 8.3438, 8.5313, 9.0975, 10.6463, 18.3188, 27.3038,
30.2400, 32.4675, 33.5887, 3.2400, 30.2137, 16.0688, 0.0562, -7.8712, -13.5113,
-15.0488, -13.5863, -9.1125, -8.2125, -8.4150, -9.2025, -10.5413, -12.0825, -13.5825,
-15.1650, -18.1950, -25.5900, -31.6463, -34.3387, -37.6013, -41.3325, -45.1275,
-49.6200, -56.9850]
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The beta shape parameters, 1 and 2, used in the NURBS toolpath parameterization of
the fan-shaped toolpath are listed here. Note that a start (*) means that the beta value Bl was

manually modified to reduce oscillations in the curve.

Segment, k& B1 B2
1 0.4516 0
2 0.7761 0
3 1.2829 0

4* 1.0000 0
5 0.6761 0
6* 0.4000 0
7* 2.0000 0
8 1.7025 0
9 1.8791 0
10* 0.4000 0
11 2.4056 0
12* 1.0000 0
13* 1.5000 0
14 0.4544 0
15 0.3781 0
16* 4.0000 0
17 0.7434 0




Appendix A. Non Uniform Rational B-Spline (NURBS) Format 101

The NURBS format consists of the degree p, the number of control points » + 1, a knot
vector U, control points P;, and weights w;, The NURBS parameterization generated 17
segment each with degree of three and six control points, except the 17th segment, which has

nine control points. All weights are equal to one.

In the following table, the knot vector and control points are listed sequentially for each
segment. Only the unique values of the knot vectors are listed, however the full knot vector
would include 3 more zeros at the beginning and 3 more zeros at the end. Since the first
control point of a segment is the same as the last control point of the previous segment, it is

omitted in the entries for all but the first segment.

Segment Knots Control Points (x,y)
k UL ptls woe s Ulmp Pio, ..., Pin
1 0, 0.4789, 0.6476, 1 (-16.0694, -56.9551)

(-8.3336, -58.5969)
(4.1621, -58.7056)
(16.7467, -45.7588)
(15.1264, -36.0089)
(13.5246, -30.0387)

k uk,p-i—l, seey uk,m—p Pk,la eeey Pk,n

0, 0.7803, 0.8716, 1 (11.9228, -24.0685)
(9.5683, -18.0956)
(7.9234, -9.9527)
(9.5652, -8.6741)
(10.5648, -8.3924)

3 0, 0.1655, 0.2825, 1 (11.5644, -8.1106)
(13.3390, -8.4241)
(19.3847, -10.6097)
(22.8611, -14.3091)
(25.5827, -18.3011)
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Ukp+1s «oes Ukm-p

Pii, ... P

0, 0.5593,0.7082, 1

(28.3042, -22.2932)
(31.4117, -28.3756)
(38.3488, -33.0681)
(42.5078, -34.7395)
(45.6878, -33.0119)

0, 0.3952, 0.6443, 1

(49.9954, -30.6717)
(58.2932, -18.3800)
(58.6229, -1.0776)
(53.8510, 10.7472)
(48.1719, 13.4772)

0, 0.5261, 0.7690, 1

(42.4928, 16.2073)
(29.9952, 14.0217)
(21.1425, 11.0262)
(12.6160, 8.0204)
(10.5200, 8.3398)

0, 0.3965, 0.5900, 1

(9.0812, 8.5591)
(8.3854, 10.1370)
(8.3008, 12.4714)
(8.4844, 14.1095)
(9.1682, 15.5321)

0, 0.4301, 0.6887, 1

(10.6028, 18.5165)
(16.8407, 25.4791)
(25.8525, 29.9687)
(31.0562, 34.7591)
(32.4800, 37.5026)

0, 0.1828, 0.3690, 1

(33.9038, 40.2461)
(33.9155, 46.0398)
(23.2687, 57.4627)
(8.2387, 58.5978)
(0.4939, 57.3339)

10

0,0.3358,0.5103, 1

(-7.2510, 56.0700)
(-13.1514, 50.8971)
(-16.7405, 34.6472)
(-10.8161, 20.7484)
(-9.0215, 15.4369)
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Ukp+1s «oes Ukm-p

Pii, ... P

0,0.5180,0.6774, 1

(-8.2622, 13.1895)
(-7.8718, 11.4062)
(-9.3412, 8.5122)
(-10.9515, 8.1901)
(-12.1249, 8.2972)

12

0,0.1341, 0.3209, 1

(-13.2983, 8.4044)
(-16.3351, 9.4330)
(-23.8354, 13.9873)
(-28.3362, 22.9256)
(-31.6135, 27.2606)

13

0, 0.3759, 0.5604, 1

(-33.4276, 29.6603)
(-36.0170, 32.0157)
(-43.2263, 34.5107)
(-47.1266, 33.0694)
(-49.8786, 29.8837)

14

0, 0.5098, 0.6988, 1

(-54.6663, 24.3416)
(-61.2492, 7.7404)
(-53.8494, -10.4212)
(-45.7185, -15.4743)
(-39.2635, -15.2976)

15

0, 0.6628, 0.8815, 1

(-32.8085, -15.1208)
(-22.2832, -10.5213)
(-13.8906, -8.5210)
(-9.8434, -8.3416)
(-9.0839, -9.0280)

16

0,0.3133,0.4773, 1

(-8.3243, -9.7144)

(-8.1762, -11.9022)

(-8.7961, -14.5951)

(-9.5323, -16.6295)
(-10.7083, -18.2904)
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uk’pﬂ, ..

s Ukm-p

Pii, ... P

17

0,0.3284, 0.4353,
0.5027, 0.5691, 0.6439,

1

(-13.6634, -22.4642)
(-22.7358, -28.9401)
(-29.7394, -33.1950)
(-32.5702, -37.6368)
(-34.2249, -41.3847)
(-31.3445, -51.4373)
(-23.8052, -55.3133)
(-16.0694, -56.9551)
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Kinematic Compatibility Derivations

In this appendix, expressions for the time duration of each phase (constant jerk, constant
acceleration, and constant feedrate) are derived for an N-segment toolpath. Using these

expressions, the kinematic compatibility conditions are also derived.

Constant Jerk Phase Time Duration

From the trapezoidal nature of the acceleration profile, the acceleration value reached in
the time duration 7; ; (1<k <N +1) is:
Ay

Ak:Jij,k—)Tj,k:z (B.1)

Constant Acceleration Phase Time Duration

Considering that the desired feed of the initial segment (/) must be reached by the end

of the first acceleration transient, let f;, = F|. From Equation (4.8),

fs =0
|
fle :fs +5J1Tj,1
fZe :fle +A1Ta,l (B2)

1
S3e = foe + AT} _EJlsz,l

To obtain an explicit expression for f3,, substitute the expression for the end feed of the

previous phase into the next equation recursively. That is:

105
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S =0
| Q)
Jie :0+§J1Tj,l
1 D) B.3
Se :EJITj,l + 4T, (B3)

1.2 1.2
S3e =F = EJITj,l + AT, + AT, _EJITj,l
Therefore after simplification:

Fy=AT,,+ AT},

(B.4)
Substitute Equation (B.1) into Equation (B.4) to get:
A 2
F= AT,y +—— (B.5)
1
Solving for the constant acceleration time duration of the initial segment yields:
v o=fi A4
a,l Al J1 (B6)

Now solving for the kth constant acceleration time duration 7, , the desired feed (F})

must be reached by the end of the kth acceleration transient. Thus, let f,, = F} . From

Equation (4.9),

fi =(F + F))2
1
Sie = fs +EAkTa,k

1 2
Jre = fre + AT _EJij,k

(B.7)

Then by recursively substituting the previous expression into the next gives:
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fs :(Fk—l+Fk)/2

1
fre =(Fry + F)J2 +§AkTa,k

(B.8)
1 1 .,
fre = F =(Fey +Fy )/2+EAkTa,k AT =5k
Substitute Equation (B.1) into Equation (B.8) and simplify.
1 4 1 (4Y
F,=(F,  +F)24+=A, T, + 4, ——J, | =&
i = (Fia + F)/ 5 Alak ka ) i{JkJ
1 1 A}
Fe =(Feo + F )2 = S 44Ty + 5
2 2J,
| 2 (B.9)
F,—-F,_)2==AT,, +-——~
(Fe = Fe)/ 5 Aklak 27,
T,\ = Fy —Fa A4
Ay Jk

Equation (B.9) is also generalizable to the initial segment (k =1) by setting £, = 0.

Constant Feedrate Phase Time Duration

Initial (1st) Segment
Considering that the total travel length by the end of the motion must be equal to the

segment arc-length (L), the constant feedrate time duration (7 ;) can be obtained by

equating the segment arc-length to the total length traveled. A different expression results for

each type of segment. To start, let us consider the initial segment and define s, as the total

length traveled. From Equations (4.8) and (4.11),
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sg =0
1.3
fS:O S1€:SS+-](:S‘Tj,1+gJ1Tj,1
fio = f L 12
le 2 il S2e :S16+fleTa,l+5AlTa,l
Se :fle"'AlTa,l 7 1 1 3
= T, +—AT?* ——J,T;
1 ., S3¢ =820 T J2el 1 1451 141 B.10
S3e = fre + AT _EJlTj,l 2 6 58
S4e =53¢ + [3.1 71
f4e :f3e 1 3
S, =84, + fa,T:90+—JT;
fSe:f4e+%J2Tj2,2 se =S4e T JacT )2 6 212
Ta,2 1 2
S6e = Sse +f5e—2 +§A2Ta,2

Also, recall that the feed reached at the end of the third phase is equal to the desired

feedrate, i.e. f3, = F].

To obtain an explicit equation for s¢,, expressions for the end feed are substituted into

the equations for the length traveled by the end of each phase.

Jfs=Fy=0
fie =Fo +%J1Tj2,l
J2e = Fo +1J1T'21+A1Tal
2 ) — (B.11)
Jf3e = F
Jae = F

1 2
Sse =F +EJ2Tj,2
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s. =0

1,73
S1e = Sy +F0Tj,1 +gJ1Tj,1

1 1,
SZe:SIe+(FO+§J1 1) 1t AIT,I

1.2 | S
$3¢ = S0 + (£ 2T + AT, )T, to AT =T

S4e =830 T F1Ty

S5¢ = S4e

1 3
+ FITM +EJ2TJ’2

1 T,z 1 2
S6e = S50 + (F +§J2T]~2,2)a7+§AzTa,2

Then expressions for the length traveled in the previous phase are substituted into the

next phase equations recursively to yield:

1 1 1 1,
F0T11+6J1 S+ (Fy +— J1 ST+ Al o1+ (Fy +§J1Tj,1+AlTa,l)Tj,1
B.12)
TP R 1 1 T, 1 .,
+—AT: ——J,T; +FT +FT +—=JT5, +(Fy+—=J,T; T
SATj = I+ ATy + Blp + o JoT; 2+ (F 57215 e a2

Substituting in J; = A /T;; and grouping terms in Equation (B.12) results in the

following equation:

2 3 1 >
Se = FO[sz,l +Ta’1]+ A1|:Tj’1 +5Tj,1Ta,l +5Ta’1i|
+F{QJ+Q2+A%}+A{EQ 4@2Q gng

Substitute 7, T,;, and T, ; , Equations (B.1), (B.6) and (B.9), respectively, into

Equation (B.13).
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_F 24, Fl o 4
L 4 Ji

i 2
4 4° 3/11[1:1 F, A1j+l(Fl—Fo_ﬁj
Al

[y

le 2.]1 ‘]l 2 Al .]1
- (B.14)
4, F, —-F A
FAN T 1_2.12}
L 2 2 2
2
1A VA (B-R 4)) I(R-F 4
6,2 4, 4 Jy) 8l 4,

Expand and simplify Equation (B.14).

Fody | Fo(F —Fy)

S =
6e J1 Al
+A1 VAFE-FR) 34 (F-FR)' 24(F-F)
Jl 2 Jl 2J12 2A1 2]1 2J2
_ (B.15)

+Fle.,1+F1A2+Fl(Fz 5) R4

’ J2 2A2 2]2
14 1 4HFR-R) 4 (F-F) 24(F-F)
6J; 4 J, 4J3 84, 8J, 8J2

Thus,

2
_fody  Fo(B—Fy) AW —Fy) (i —Fy)

S, =
A 4, 2J, 24,

3 > B.16

vFT, 0, A R R) (B -R) (310
P10, 042 24, 84,

Define A, as Ay = F, —F,_;. Then, F,_; = F;, — A, . Substituting the former relation

into Equation (B.16) yields,

*

Fid, 4 FA, A
+ Rl + 2212 2 (B.17)

2
S, = Fody  FoAy  AA A - 4102, 22
2 24J5 2 2

R 4 2J, 24
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Here we will substitute F| = F, —A, into the starred (*) term of Equation (B.17).

3 \ 2
F4, N A3 +(F2—A2)A2 +A2
2J,  24J3 24, 84,

! (B.18)

R4y , 45 +F2A2_3A22
2J, 24J7 24, 84,

2
_Fody | FoAy | ABy A

S6
Ji 4, 2J, 24

e

+Fle,1 +

2

S
T 4 2, 24

+ FleJ +

Then letting s¢, = L; and solving for Ty, results in the following expression for the
constant feedrate time duration:
L 1| FA4 FA A° 4A, 3A,2 4  F4, FEA
1 o4 Fodr A1 AL P8 A Midy 1A

T, =24 _ -
TYURCOR| L A4 24 20y 84y 2493 2, 24 (B.19)

Note that by definition of the initial segment, the start feed F|, is equal to zero. It is still

included here for completeness.

Middle (kth) Segment
Considering the kth (2 <k < N —1) constant feed phase, ss, is the total distance traveled.

From Equations (4.9) and (4.12), the feeds and travel lengths at the end of each phase are

listed below:

=0
S
fy =(Fiy +F)/2 1 1,
1 S1e = Sy +Ef:vTa,k +§AkTa,k

fle :fs +5AkTa,k 1 1
2 3

1 S2e =S1e + N1eT i +EAij,k _g']ij,k

fre = fie + 4T, == I T}y
e S S3¢ =820 + f2eT
f3€=f26 1

3
1 Ste =3¢ 3L ki1 ¥ —J Tt
Jae = fae +5Jk+1Tj2,k+l 6

(B.20)

I 1 )
S5¢ = S4e +§f4eTa,k+1 +§Ak+1Ta,k+l
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Recall that the desired feedrate (£} )1is reached by the end of the second phase for mid-
segments, that is f,, = F} . Recursively solving for the end feeds of each phase and

substituting them into the travel length equations results in the following algebraic steps:

=0

I 1,
S1e = S +Z(Fk—l +F )T, i 3 Alak

_ F, +F 1

fv _(Fk—1+Fk)/2 Sze :Sle—l-(—k_l k +EAkTa,k)Tj,k
1
fre =(Fr + F )2+ = 4T, 1 1
, 2 3

P 2 +§Aij,k —ngTj,k

= -
fze_Fk S3e :S2€+Fka,k (B21)

3e — 1k
1
1 2 =53, +F T oy +—Jo T3

fao =Fp +_Jk+1Tj’k+1 Sq4e = 3¢ T L j 11 6 k+114 jk+1

1 2
S50 = S4e +E(Fk +5Jk+1Tj,k+1)Ta,k+1

1 2
+ 3 ATy

To obtain an explicit equation for ss,, travel length equations are recursively substituted

into the expression for ss, which results in the following equation:

Fo +F 1 1 1

1 1 2 2 3
S5e :Z(Fk—l + E )T,k +§AkTa,k +( +5AkTa,k)Tj,k +§Aij,k _ngTj,k

3 1 2 1 2
+F T g + BT +ng+1Tj,k+1 +E(Fk +5Jk+1Tj,k+1 T, k1 +§Ak+1Ta,k+1

Substituting in J; =4, /T;; and grouping terms in Equation (B.22) results in the

following equation:
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1 1
S50 = Fk—1|:5Tj,k +ZTa,kj|

1., 1 1.5

| | } (B.23)

1
+F,{ETM +ZTa’k +T 5 +T)pn +5Ta,k+1

1 2 1 1 2
+ Ay |:gTj,k+1 +ZTj,k+lTa,k+1 +§Ta,k+l:|

Substitute 7} ; and T, ;, Equations (B.1) and (B.9), respectively, into Equation (B.23).

2
1A_,§+ 1 Ak£Fk—Fk_1 Ak}rl(Fk—Fk_l _ﬂj

SRR [ R & R Sl = B 3
372 20, 4 I ) 8L 4 Uy
- (B.24)
i F, lﬂJrl(Fk —Fj _Q]JrTf’k L Ain +1£Fk+1 —Fy Agn H
2J 40 4 Ji Ji 20 A a1
2 2
g | YA VA (B =B A | U B =5 Ajn
TS T A T ) 8 4 J
Je+1 k+1 k+1 k+1 k+1 k+1

Expand and simplify Equation (B.24).
oo B —Fy) By
> 44, 4J,
A ECFR A A (B-F)? 2R -F)A A

3J7 2J; 2J7 84, 8J 8J7
e B -RD) BA g B B —F)  Fden (B.25)

wTr ok
2Jy 44y 4J J i1 24; 4 2Jkn
3 3 2 3

A Fen —F) A A B —F)° 20 —F) A | A

6J 41 4J 4T 7 84y 8 k41 8J7.,

Thus,
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_FBa (B —Fy)  BF -F) | (B - F)’ L Fede _ 4

S5e

44, 44, 84, 20y 24J7
3 2 (B.26)
VET,, + Frdin Ak+21 L F (Fra — ) N (Fra1 —F3)
‘ 2Dk 24044 244 84y.41

Substituting the A, = F), — F;_; into Equation (B.26) yields:

]
— 2 3
_Babe B Ax A Fidy  Ap
44, 44, 84 20, 24J2
2 (B.27)
3 - 2
Fedin | Ain Bl Ay
2 2407 24k 84k

S5

+F Ty +

Here we will substitute Fj, =F;_;+A; into the first starred term (*1) and

F, = F;.,; — A4, into the second starred term (*2) of Equation (B.27).

f—L
2 3
_ P (B HA)A A Fedy A

Ky T
44, 44, 84, 2J, 2452 TF
%)
3 — 2
N Fi Ay N Ai N (F1 = A1) ks +Ak+1
2Jk+1 24J13+1 2Ak+l 8Akﬂ
B.28)
1 (

F, A, 3A,° F. A A4
I o Bt S 2 k2_|_Fka’k

S5
24, 84, 2J; 24J;

e

3 2
Fi A A Fr 1A 3A
+ kTk+1 + k+1 + k+12k+1 k+1

2J/’c+1 24J]§+1 2Ak+1 8Ak+1

Then letting s5, = L; and solving for 7, ; results in the following expression for the

constant feedrate time duration for the kth segment (2<k < N -1):
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30,2 4 CFid | By
B Lk 1 8Ak 24‘]/? 2Jk 2Ak

2 3
Fe Bl 38" | Ain | Fedia | FraBDea
- + + +

841 2497, 2kn 24; 4y

Final (Nth) Segment
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(B.29)

Lastly, considering the final segment (k = N), the constant feed time duration is found

similarly. The total travel distance of the final segment is denoted as s¢,. From Equations

(4.10) and (4.13), the feed and distance traveled at the end of each phase are listed below:

[y =(Fy_ +Fy)/2
1
fle = fs +§ANTa,N

1 2
Jre =frie +ANTj N _EJNT]',N

f3e :fZe
1 2
Jae = f3e +EJN+1Tj,N+1

Sse = Jae + AvaTonn
=0
1 1,
S1e = Ss +EfsTa,N +§ANT(1,N

1 > 1 3
$2¢ =Sie + frelj N + EANTj,N - EJNTj,N

830 =S T fzeTf,N
1 3
S4e =830 + f3eLj N4l T+ gJN+1Tj,N+1

1 2
Sse =Sae + JacTy N1 t+ EANHTa,N

1 2 1 3
See =Sse + fselj N1 + EAN-HT]',N-H - EJN+1Tj,N+1

(B.30)

The desired feedrate of the final segment (F)y )is reached by the end of the second phase

as in the mid-segment, that is f,, = F;. Recursively solving for the end feeds of each phase

and substituting them into the travel length equations results in the following equations:
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fy =(Fy, +Fy))2

1
fre =(Fy_ +Fy )/2+EANTa,N

fZe = FN
S3e =Fy
1 2
Jae =Fy +EJN+1Tj,N+1
1 2
Sse =Fy +EJN+1Tj,N+1 + Ay Ty v
J
S5 =0 (B.31)

1 1,
S1e =S +Z(FN—1 +EN)T, Ny +§ANTa,N

FN—I +FN 1 1 2 1 3
$2¢ = S1e +(—+EANTa,N)Tj,N +EANT]',N _gJNTj,N
830 =820 +FnTr n
1 3
S4e =83 T ENTj Nt +gJN+1Tj,N+1
1 2 1 2
Sse = S4e +(Fy +5']N+1Tj,N+1 o N+ +EAN+1Ta,N

1 2 1 2 1 3
See =S50 + (Fy + EJN+1Tj,N+1 + Ay Ty Ne)T v + EAN+1Tj,N+1 _gJN+1Tj,N+1

To obtain an explicit equation for s¢,, travel length equations are recursively substituted

into the expression for s¢, which results in the following equation:

Fy_ +Fy 1

1 1 2 1 2
S6e :Z(FN—I +FN)Ta,N +§ANTa,N +( +EANTG,N)TLN +EANTLN

1 3 1 3 1 2
_EJNTj,N +ENT N+ ENT Ny +EJN+1Tj,N+1 +(Fy +§JN+1Tj,N+1)Ta,N+1
| , . , . , (B.32)
+5 Ayl n +(Fy +EJN+1Tj,N+1 + Ay Ty veDT ) N+ +EAN+1Tj,N+1

1 3
_EJN+1Tj,N+1

Substituting in J; =4, /T;; and grouping terms in Equation (B.32) results in the

following equation:
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1 1
S6e = FN—I[ZTa,N +5Tj,N}

1, 1 1,
+AN|:§Ta,N +5Ta,NTj)N +§Tj,N:|
) 1 (B.33)
v Tan * 3TN + T n + 20 v + Ta v
1 2 3 2
+ Ay g ETa,N +5Tj,N+1Ta,N+1 +Tj N

Substitute 7} ; and T, ;, Equations (B.1) and (B.9), respectively, into Equation (B.33).

Fy - F A A
seo = Fy_i I hEy=Fyy Ay | 1Ay
A\ Ay Ty ) 2y

2
1(Fy—Fy, Ay 1(Fy—Fyy Ay A4y 143
+Ay| = — +— — +—
8\ Ay Jyv ) 20 Ay Iy Iy 3J3
- (B.34)
L Fy l(FN —Fy ANJ+1AN VT, Lo AN +[FN+1 —Fy  Ayu H
_4 AN JN 2 JN JN+1 AN+1 JN+1
2 2
ny l(FNH —Fy AN+1J L3 Avn (FNH —Fy AN+1J+ Ay
N+1 2
2 Ay Ina 2Jnn Ay I N+ JINn

Expand and simplify Equation (B.34).

_ vy —Fyy) Fyady  Fyody

S6e

44y 47y 2y
N (Fy —Fy_1) 2(Fy —Fy_ Ay N Ay N (Fy —Fy_ DAy Ay N Ay
84y 8.y 8J2 20y 2y 3%
Iy —Fy) Fydy | Fydy I 2Ey Ay FyFya —Fy)
44y 4y 2Jy ’ Iy Ay (B.35)
2 3
_EnAya  Eya—Fy)" 2Eva —Fy)Ava | Ava | 3Eyva = Fy)Avag
JN+1 2AN+1 2JN+1 2J]2\7+1 2JN+1

3 3
_ 3AN+1 + AN+1
2 2
2JNw1 Iy

Thus,
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_ vy —Fy)  Fydy  (Fy —Fyo)? Ay LEvEN = Fy)

S
6e 44y 2Jy 84y 2472 44y
) (B.36)
CELT Fy(Fya —Fy) | (Fyy —Fy)”  FyAyyg | Ava(Fya —Fy)
vy + + + +
N+l 2AN+1 JN+1 2JN+1
Substituting the A, = F), — F;_; into Equation (B.36) yields:
#1
Fyaby  FyAy AV Fydy 43
Sge = —— + + + - +FEnTr N
44y 44y 84y 2y 24J%
Y - (B.37)

2

A A
FyA A Fy A
+ N2 N+ + N+l + N “IN+1 + N+I2 N+l

AN+1 2AN+1 JN+1 2JN+1
Here we will substitute Fy =Fy_;+Ay into the first starred term (*1) and
Fy = Fy, — Ay, into the second and third starred terms (*2) of Equation (B.37).
*]
’ \ 2 3
_FnaAy  EnatAn)AY  ANT  Fydy Ay

44, 44, 8y 2y 24J%
*2 *2

S6€ + FNTf’N

N (Fyy —Ans)A N N Ay N (Fys —Any) Ay N AN Ay
AN+1 2AN+1 JN+1 2JN+1
L (B.38)

2 3
24y 84y  2Jy  24J%

S6e +FNTf,N

2
FN+1AN+1 _ AN+1 + FN+1AN+1 _ AN+1AN+1
AN+1 2AN+1 JN+1 2JN+1

+

Then setting the total distance traveled equal to the segment arc-length (s¢, = L)) and
solving for 7y » results in the following expression for the constant feedrate time duration

for the Nth segment:
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2 3

Ly 1|84y 24J% 2Jy 24y
US > (B.39)
NN EvaBya  Ana | Fyadva  AvaAna

AN+1 2AN+1 JN+1 2JN+1

Note that by definition of the final segment, the end feed F . is equal to zero. It is still

included here for completeness.

Kinematic Compatibility Conditions

Jerk Condition
The maximum jerk is limited by the sampling frequency of the CNC controller. Using
Equation (B.1), the maximum allowable jerk magnitude is based on the specified maximum

acceleration (4,,,,)and sample period (7, ). The specified jerk (J; ) must be less than the

maximum allowable jerk as follows:
_ Amax

max
Ts

Jy <J

(B.40)

Acceleration Condition

If the magnitude of acceleration for the constant acceleration phase is larger than what is

required to change the feed from F;_; to F}, then the acceleration value is incompatible

with the desired feed transition. For the acceleration value to be compatible, the time duration

of the constant acceleration phase must be non-negative, that is 7, , > 0. Using Equation
(B.9), the condition on the acceleration magnitude (4, ) based on the specified jerk (J;)

and desired feedrates (F)_;,F} ) is derived in the following manner:
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0<T,,
o<t~ Fi _Ar
Ay Ji
A Fy = Fi
Jk Ay

2
A" < T (Fy = Fiy)

Ay | S \Ji (Fp = Fiy)

Travel Length Condition (Feed Compatibility)
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(B.41)

In order to have feed compatibility, the motion described by the specified values of

acceleration (A4, Ay,), jerk (J;,J;4) and feed (Fy_y, F}, Fy,y) must be achievable within

the available travel length. Therefore, after subtracting the distance required for the

acceleration transients from the segment arc-length (L, ), the remaining travel length for the

constant feedrate phase must be greater than or equal to zero, that is (7 ; £} 2 0). Using

Equations (B.19), (B.29), and (B.39), the initial (/st), middle (kth), and final (Nth) segments'

feed compatibility equations are stated as follows:

(Fod, FoA, A2 A4A,
o4 Tod1 A A
Ji A 24, 2J;
LY N 4, +FlAz +F2A2
| 84, 24J7 2, 24, |
-, X -
3Ak _ Ak +FkAk +Fk—1Ak
84,  24J7 2J, 24,
Ty b =L - 5 3
C3Bkn” L Aen | Fden BB
8Ak+1 24J]§+1 2Jk+l 2Ak+1
i 2 3
3An" __An  FnAy | FyaAw
84y 24J%  2Jy 24y
Tf,NFN =Ly - )
+ FN+1AN+1 _ AN+1 + FN+1AN+1 _ AN+1AN+1
L AN+1 2AN+1 JN+1 2JN+1

(B.42)

(B.43)

(B.44)
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This section has derived expressions for the time durations of each type of phase
(constant non-zero jerk, constant non-zero acceleration, and constant non-zero feedrate) and
expressions for the kinematic compatibility conditions (jerk, acceleration, and travel length).
These equations are used in implementing a continuous feedrate modulation strategy for an

N-segment toolpath which was discussed in Chapter 4.



