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Abstract 

Nonhomogeneous Poisson Process (NHPP) models are commonly used to model 

recurrent events (failures or repairs) in repairable systems which fad or break down 

rrlany times during their lifetime. NHPP models having an intensity of the form 

X(t: q )  = v Xo(t;p), for scalar v > 0 and each component of the vector p positive- 

valued, are widely used in modelling the times of occurrences of failures in the de- 

bugging phase of software development. In software system reliability applications. 

these models are used to predict future behaviour of the occurrence of failures a11d 

to provide information for making decisions on when to stop testing. In this the- 

sis, we have addressed statis tical issues pertaining to parameter estimation, model 

verification, and interval prediction for NHPP models having an intensity of the 

above form. In Chapter 2, we assess the maximum likelihood estimation procedure 

iised to obtain estimates for v and p for specific models belonging to the above 

general f a d y  of NHPP models. In particular, we study conditions under which 

x finite. positive-valued maximum likelihood estimate for v is obtained. consider 

choices of parameterization to facilitate estimation, and consider the effects of total 

test time on these matters. In Chapter 3, we propose a new approach for testing the 

goodness of fit of NHPP models of the above general form. We also suggest two al- 

ternative models that include specific software reliability models of interest. These 

models are of use for testing the goodness of fit of their submodels. In Chapter 4, 

we propose a fkequentist approach for providing approximate i n t d  predictors of 

N2 = N(T1,  T21, the number of events in the future t h e  interval (TI, T2], based 

on the observed data up to time TI. We also use this method to assess the effect 



of data accumulation on prediction of N3 = N ( T 1 ,  oo], the number of remaining 

events to be eventually observed given data has been observed up to time T 1. We 

also discuss how to obtain Bayesian prediction intervals and compare them with 

the frequentist-based prediction intervals for N3 = N(Tl ,  oo] in some examples. 

111 Chapter 5, we discuss research areas to be investigated further. The problems 

presented here are not unique to the software reliability context. In fact, the results 

of this thesis may be extended to various reliability applications in which NHPP 

ruodels of the above form are of use. 
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Chapter 1 

Data, model, and thesis 

informat ion 

1.1 Introduction 

Nonhomogeneous Poisson Process (NHPP) models are commonly used to model 

recurrent events (failures or repairs) in repairable systems which fail or break down 

many times during their lifetime. Such models are justified when a system has 

many components that may fail and repairing a failed component has little effect 

on the overall system reliability. Many examples and references are given in 181, [35], 

[27], [30], and (261. The most widely used and discussed MFPP model is the power 

law process (also known as the "Weibull process" [36]). Its popularity is not only 

due to its usefulness for modelling systems which are either deteriorating (times 

between events are getting shorter) o r  improving (times between events are getting 

longer), but for the simplicity of statistical inferences associated with the model 
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relative to other NHPP models. In particular. a combination of the existence of a 

closed form maximum likelihood estimation (m. 1. e.) solution for this model and the 

inherent form of its intensity function has lead to nice distributional results for its 

csti~rlated parameters and their functionals. Constructing confidence intervals and 

tests of hypotheses for the model's parameters ([9], [28], [29], [39], [42], (701, [79]), 

prediction intervals ([38]), and goodness of fit tests ([lo], [11], [63], 1691, [$TI, [92], 

[03]) have been discussed at length in the literature. Although it is appropriate for 

many reliability applications. the power law process may be an inadequate NHPP 

11rode1 in other situations, such as software system reliability. 

There has been a rising interest in modelling software system reliability over 

the last twenty-five yexs (e. g. of review papers include [16], [47], [85], [96]. [g8]. 

[09]. [loo] ). A vast literature exists on the modelling strategies used in the various 

phases of software system development and management. We focus on the testing 

a d  repair (debugging) phases of software program development. During this phase, 

the fundamental objective of assessing the software system's reliability is to predict 

future behaviour of the occurrence of failures and to provide information for making 

decisions on when to stop testing. It is during this phase that General Order 

Statistics (GOS) and NHPP families of models are often used to model the times 

of occurrences of failures. Although the GOS family has been the most widely used 

throughout the years, the NHPP family of models has gained popularity in the last 

ten years, due in part to the existence of an equivalence relationship between the 

two models and the relative ease of application of the NEIPP models compared to 

those of their GOS counterparts. Regardless of the reasons for choosing the NHPP 
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farnily over the GOS family, the increased usage of NHPP models in modelling 

failures in the debugging phase of software development provides an incentive for 

obtaining information about how well these models perform in terms of predicting 

future behaviour of events and providing information for making decisions on when 

to stop testing. 

In this chapter, we first discuss briefly the nature of software reliability data. 

Secondly, we introduce the GOS and NHPP families of models often used in the 

analysis of this data followed by a brief discussion on their equivalence. Next. we 

tliscuss the ways in which these models are used to predict future behaviour of 

the occurrence of failures and to provide information for making decisions on when 

to stop testing. Lastly, we motivate and provide an outline of the research areas 

covered in this thesis. 

1.2 Software reliability data 

A brief overview of the basic software reliability modelling definitions and concepts 

is given in this section. A thorough discussion may be found in [83] and [96]. In this 

context, a program refers to a particular block (unit) or structure of blocks (module) 

of software code. Each block or structure of blocks is modeled separately. Although 

software failures in the program may not be generated at random, it is assumed 

that the underlying testing process that detects the failures is random. A random 

testing strategy is one whereby inputs are chosen from the set of all possible inputs 

in a random manner. The specification of input variables used to test the program 

and their relative frequencies is c d e d  the program's operational profile. A program 
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test run maps the input variables from the operational profile to a set of output 

variables in a certain amount of time. One or more failures occur in a run when 

output variables do not conform to prespecified requirements. Time is often given 

in units of execution (operation) or calendar time. The former measure of time is 

generally considered (e. g. [83]) to be the most accurate reflection of software stress 

and reliability; however, calendar time is used by some to avoid the difficulties in 

measuring execution time. Numerous methods of measuring execution time exist. 

Few authors provide detailed remarks on the procedures used to measure execution 

time. 

As mentioned earlier, the GOS and NHPP models are commonly used for mod- 

elling the occurrence of failures in the debugging phase of software program devel- 

opment. Although they are not highly realistic in this context, these models have 

their uses. In Chapter 5, we discuss further improvements to modelling. These 

models are justified when a software system has many components that may fail 

and repairing a failed component has little effect on the overall system reliability. 

The program failures are assumed to be of a similar type and the interaction of 

software and hardware failures in the computer system is ignored in these models. 

The data is given in the form of a list of software program failure or interfailure 

detection times (ungrouped data) or as the number of failures in a given interval 

(grouped data). There are numerous grouped and ungrouped data sets a d a b l e  in 

the literature, few of which include supplementary information to the failure times. 

Both time-tmncated and failure-truncated data sets are also available. In time- 

truncated data sets, the data is collected over a prespecified time interval, whereas 
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Figure 1.1: Plots of cumulative number of failures versus time for DS1-4. 
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in failure-truncated data sets, the data is collected until a prespecified number of 

events have been observed. A description of four typical (ungrouped) data sets that 

we consider throughout the thesis is given below. Plots of the cumulative number 

of failures versus time for each of the data sets considered is given in Figure 1.1. 

This thesis will focus on the ungrouped data case for the most part. 

1.2.1 Specific datasets 

The first data set. henceforth denoted as DS1. consists of interfailure tirue data 

collected over the complete system test and operational phases of a real-time corrr- 

mand and control software system. This well-known data set, originally collected 

and discussed in [81. system 11. consists of a set of 136 interfailure times, each 

Listed with the corresponding number of working days from the start of the system 

test until that particular failure. The interfailure times are in seconds, measured in 

running clock time. which is proportional to execution time. This time-truncated 

data set was observed until time TI = 91208 seconds. It is aIso known that nine 

programmers worked on the 21,700 delivered object instructions of code. This data 

set has been analyzed and discussed by many other authors, including [2] and [21]. 

The second data set, DS2, consists of interfailure data collected over part of the 

operational phase of a word processing sofiware system. This phase of the system 

was still underway at the time of the report originally made by [81, sub-system 
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31. The interfailure times are in seconds, measured in execution time. This time- 

truncated data set was observed until time TI = 54.93336 x lo6 seconds. As far 

as we know, subsequent failure data on this system has not been released. DS2 

co~lsists of a set of 278 interfailure times, also listed with the corresponding number 

of working days from the start of the operating phase until that particular failure. 

An unknown number of programmers have worked on the hundreds of thousands 

of delivered object instructions of code in this system, and it is noted in [81] that 

the system was subjected to s n d  design changes throughout the period the data 

was collected. Regardless of these design changes, the system was noted to be 

more st able than other similar sys terns considered in that report. Nurnerous other 

authors have considered this data. including [21j and [22]. 

DS3 and DS4 

We also considered two lesser-known data sets, DS3 and DS4, both analyzed and 

discussed in 121. DS3 consists of 86 interfailure times, measured in seconds of exe- 

cution time, whereas DS4 consists of 207 interfailure times, measured in operating 

time (no units given). These failure-truncated data sets were observed until time 

T1 = 103,334 seconds and TI = 16648 units, respectively. The unique feature in 

DS4 is that its failures are due to software faults and hardware design faults. DS4 

was also analyzed in (551. 
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1.3 Software model information 

1.3.1 GOS family 

The original software reliability models that modelled failure or interfailure times 

(e. g. Jelinski-Moranda [54], Littlewood [73] and [74], Musa [go]) belong to the GOS 

family of models. Under this family, the initial number of failures in the software is 

assumed to be an unknown fixed integer N. It is supposed further that the times 

to detecting each software failnre are considered order statistics from a sample of 

N independent failure times that belong to a parametric family, p ( t ;  +), where + 
is a parameter vector. 

We start with N software failure times and we observe the n smallest over (0. T 11 

at times t l  < t2  < ... < t,. With n out of N bugs detected by time T I ,  we can 

consider the software system as having n "failures" and N - n "survivors" by time 

T1. It then follows from general results on order statistics or on censored samples 

that the joint probability distribution function (and hence likelihood function) of n 

and these first n failure times is 

where S(T 1; $) = JE p(y; +)dy is the survival function corresponding to ~ ( t ;  $) 

and N(") = N( N - 1) (N - n + 1) denotes the possible number of ordered 

samples of size n from N. Since it is usually more convenient to work with the 

log-likelihood, we can take logs (here, log = fog,, unless otherwise noted) on both 
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sides of the above equation to obtain 

Note that N > n and + are to be estimated here. 

1.3.2 NHPP family 

The NHPP family of models (e. g. Goel-Okumoto (461, Musa-Okumoto (841, Schnei- 

dewind [94]. Yamada et. al. [102]) have recently become more popular in modelling 

software reliability. Let { N ( t ) ;  t  2 0) be a NHPP with intensity function X ( t :  7 )  

that represents the cumulative number of software failures found by time t .  We 

observe a single sample path of the process over (O,Tl], with n error detections 

(events) occurring at times tl < t2 < . . . < tn.  The probability of observing no 

events in ( O , t l ) ,  one event in ( t l ? t l  + 6tl),  no events in (tl + 6 t l , t 2 ) ,  one event in 

( t 2 , t 2  +6 t2 ) .  and so on up to no events in (t,+dt,,TI) is for small b t l , d t r , .  . .,st,, 

Dividing through by dt &, . . . , dt, and letting 6ti + 0 gives us, 
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Since we know that the mean value function is simply E { N ( t ) )  = A(t ;  7 )  = 

Ji A(y; q ) d y ,  we can substitute this into the above to obtain the following log- 

Likelihood, 

Note that the vector of parameters q is to be estimated here. 

1.3.3 Equivalence of GOS and NHPP models 

Although there are fundamental underlying differences in the motivation behind 

each of the two families, an equivalence relationship exists between the GOS and 

NHPP models, as shown in general in 1771. For every specified GOS family, one 

can obtain an "equivalent" NHPP family by relaxing the assumption that N is 

fixed and assuming further that it is a Poisson random vmiable with finite mean. 

For instance, under an exponential order statistics (EOS) model, N is an unknown 

fixed constant and p( t  ; +) = P exp(-P t ) .  If we assume further that N is distributed 

as a Poisson random variate with finite mean v ,  we obtain the equivalent EOSN 

(my notation) NHPP model with intensity function A(t; $) = u p  exp(-Pt).  On 

the other hand, for any NHPP model that has A(=; q) < oo, one can obtain an 

"equivalent" GOS family by conditioning on the value of N = N(oo).  In fact, for 

a specified NHPP model with intensity function A(t;  q), the corresponding GOS 

model wil l  have 
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Table 1.1: A list of NHPP models used in modelling software reliability. 

Model I X(t; 7 )  I A(t; 91 
A(m) finite 

For instance. if we assume a NHPP model with X ( t ;  qb) = vP1P2 th-' exp(-P1 t h ) ,  

the corresponding GOS model will have p ( t i ; q )  = Plp2ta-' exp(-pith). This 

is simply the Weibull order statistics (WOS) model. At this point, we want to 

stress that it is not possible to distinguish between a family of NHPP models and 

their related family of GOS models without proper replication of a recurrent event 

process. A thorough discussion on this matter is given in [77]. 

EOSN 
GAMN 
WOSN 

. , -  

1.3.4 Specific models 

LOGN 
POWN 

Table 1.1 gives a list of the most popular NHPP models used in modelling the times 

v p  exp(-P t ) ,  v , P  > 0 
vP2t exp(-Pt), v J > O  
V & P ~  ta-l exP(-& ta), v ,  PI, ,4 > 0 

of occurrences of failures in the debugging phase of software development. As noted 

in [83], the NHPP models widely used in software reliability belong to a family of 

NHPP models having intensity functions of the particular form, A(t; r)) = v Xo ( t  ; P )  , 

for scalar v > 0 and each component of the vector /3 positive-valned (henceforth 

denoted /3 > 0). This family is split huther into two subfamilies based on the 

limiting behaviour of a model's mean value function v &(t;p) ,  where &(t;P)  = 

- e x ~ ( - p t ) ]  
v[l - (1 + p t )  exp(--Pt)] 
v[1- exp(-P1 th)] 

,;:, , v , p  > 0 
vptfl- ' ,  v , P  > 0 

v log(1 + P t )  
v tfi 
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,[: Xu(.*: P )  ds.  The finite subfamily consists of those models which have a mean 

value function with a finite limit when t  + oo. In particular, for these models, 

as t + oo, A ( t ; v , P )  -t v because A o ( t ; P )  + 1. For this to occur, we note that 

Au ( t  ; P )  has a probability density functional form with corresponding cumulative 

distribution functional form Ao(TI;P). Referring to Table 1.1, we note that the 

finite NHPP models are named according to the probability density functional 

form ho( t ;  P ) .  In other words, the models are named according to the particular 

p(t :  q )  that would be assumed in its GOS counterpart. The parameter v in these 

11lode1s represents the expected number of errors to be eventually detected. Since 

the fundamental objective of assessing the software system's reliability during the 

debugging phase is to predict the future behaviour of the occurrence of failures 

and to provide information for making decisions on when to stop testing, this 

parameter is of special practical interest. In contrast, the infinite subfamily is one 

which has a mean value function with infinite limit when T1 + oo. The POWN and 

LOGN infinite NHPP models denote power law and logarithmic Poisson processes, 

respectively. Although it is rarely appropriate in this context, the POWN model 

is included because of its popularity in general reliability applications. In software 

reliability literature, the EOSN model with the parameterization given in Table 1.1 

is widely referred to as the Goel-Okumoto [46] model, and with parameterization 

p = up  and p = /3 is known as the Schneidewind [94] model. The GAMN model is 

widely known as the "delayed s-shaped" model by Yamada et . al. [102], whereas 

the LOGN model is widely known as the Musa-Okumoto [84] model. The POSN 

model is the NHPP equivalent of the Littlewood [73] POS model. 
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1.4 Software reliability quantities of interest 

Recall that the fundament a1 reason for assessing a software system's reliability 

during the debugging phases of software program development is to predict future 

behaviour of the failures and to provide information about when to stop testing 

or to release the software. An immediate question arises as to what particular 

quantities are of interest. For repairable systems, such as a software system, it 

is appropriate to assess the number and pattern of successive failures rather than 

to consider the time to any particular failure. In other words, it is of interest to 

assess the behaviour of the entire process as a whole, as opposed to assessing the 

distribution of time to any particular failure. For a thorough argument on this 

issue. please refer to [s]. With this in mind, we believe that appropriate measures 

of interest for predicting future behaviour of the failure process and for providing 

information about when to stop testing are a) N2 = N ( T 1 ,  T21, the number of 

events in the future time interval (TI, 2'21, and; b) N3 = N(T1,  oo], the number of 

remaining events to be eventually observed, both measures predicted from observed 

data up to time TI.  

Also recall that for the finite subfamily of NHPP models, v represents the ex- 

pected number of errors to be eventually detected. This quantity is also of special 

interest because it can provide information about when to stop testing. An illus- 

trative plot of A(t) versus t is given in Figure 1.2. The data in (0, To] generally 

will not lead to a very precise estimate of v ,  whereas that in (0, TI] wiU. In other 

words, the amount of informatiou on v depends on what fraction of the eventual 

faults has been observed. Since a "good" (defined 8s having low variability and 
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Figure 1.2: Illustrative plot of A ( t )  versus t .  

Time (t) 
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low bias) estimate for v is needed to accurately predict N2 and N3, an important 

design issue is to ensure that T1 is large enough to obtain good predictions of these 

quantities. 

1.5 Thesis motivation and outline 

As mentioned earlier, the main reason for assessing a software system's reliability 

during the debugging phases of software program development is to predict future 

behaviour of the failures and to provide information about when to stop testing. 

Since NHPP models are used to model the occurrence of failures during this phase 

of development, it is of particular interest to a) ensure there are adequate methods 

available for using NHPP models to perform these tasks, and; b) determine how 

well NHPP models perform these tasks. In this section, we will motivate the areas 

of interest in this thesis and mention how they relate to the above objective in 

software reliability. We follow with an outline of the thesis. 

We argue that since NHPP models are used to predict future behaviour of the 

failure process to provide information about when to stop testing, it is of prime 

interest to ensure that there is an adequate method for predicting quantities of 

interest under an assumed NHPP model. As pointed out in Section 1.4, we are 

particularly interested in obtaining interval predictors for N2 = N(Tl,TS],  the 

number of events in the future time interval (T l ,T2] ,  based on the observed data 

up to time TI. Since there is not an %xactn pivotal available for predicting such 

quantities in the NHPP scenario, we examined an approach based on approximate 

pivotals that may be used for alI NHPP models. We also used this method to assess 
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the effect of data accumulation on prediction of N3 = N(T1, oo], the number of 

remaining events to be eventually observed given data has been observed up to 

time TI. We also obtained Bayesian prediction intervals and compared them with 

the frequentist-based prediction intervals for N3 = N(T1, oo] in some examples. 

With a method available for predictive purposes, it is of interest to assess and 

reduce the sources of error in prediction. In general, there are three sources of error 

involved when predicting an unknown quantity of interest. First, there will always 

be inherent variation in the true process. In other words, even if we assume that the 

process { N ( t  ); t 2 0) is an NHPP with known intensity function A(t; 7 )  = v A o ( t ;  P ) .  

for scalar v > 0 and each component of the vector /3 is finite valued (henceforth 

denoted P > 0): we can not predict exactly the quantity of interest simply due to 

random variability in the NHPP itself. Essentially, this is an uncontrollable source 

of variability. Second, another source of error in predictions is due to sampling 

variation. This arises from having to estimate the parameters in the assumed model 

based on the observed process. As a result, it is important to be able to assess how 

well the chosen estimation method performs. In our sitnation, we estimate t l  and 

p in the intensity X ( t ;  7 )  = v A&$) using maximum likelihood estimation. It 

is important to assess how well this estimation procedure performs and to make 

improvements on the estimation process, if necessary. Lastly, the largest potential 

source of error in predictions is due to model bias. This may arise in two ways. For 

one thing, we may have assumed an incorrect model in making the predictions. As 

a consequence, it is very important to be able to adequately assess the goodness of 

fit of the assumed model. In our situation, we are particularly interested in having 
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adequate measures of goodness of fit of NHPP models having an intensity of the 

form X ( t  : 9) = v Xo ( t  : P )  . Even though the assumed model does fit the observed 

data well, another source of model bias may arise when the same model may not 

hold for the future unobserved process. Unfortunately, there is not much we can 

do to control this source of error. 

A brief outline of the thesis is as follows. In Chapter 2, we assess the maximum 

likelihood estimation procedure used to obtain estimates for v and P for specific 

models belonging to the general family of NHPP models with intensity X ( t :  7 )  = 

v Xo( t : p). In particular, we study conditions under which a finite, positive-valued 

trmximurn Likelihood estimate for v is obtained, consider choices of parameterization 

to facilitate estimation, and consider the effects of total test time on these matters. 

In Chapter 3, we propose a new approach for testing the goodness of fit of NHPP 

models of the above general form. We also suggest two alternative models that 

include specific software reliability models of interest. These models are of use for 

testing the goodness of fit of their submodels. In Chapter 4, we propose a frequentis t 

approach for providing interval predictors of N2 = N(T1, T2], the number of events 

in the future time interval ( T l ,  T2], based on the observed data up to time TI. We 

also use this method to assess the effect of data accumulation on prediction of N3 = 

N(T1, oo] the number of remaining events to be eventually observed given data has 

been observed up to time T1. We also discuss how to obtain Bayesian prediction 

intervals and compare them with the frequentist-based prediction intervals for N3 in 

some examples. In Chapter 5, we discuss research areas to be investigated further. 



Chapter 2 

Maximum likelihood estimation 

2.1 Introduction 

To make inferences about the true underlying failure process based on the observed 

data in (O.Tl], we need to estimate the parameters in a chosen NHPP model 

based on the available data. Although other methods are available (such as the 

method of least squares), maximum likelihood estimation (m. 1. e.) is often used 

for this purpose. As mentioned in Section 1.5. we want to x s e s s  how well (m. 1. e .  ) 

performs as well as improve the estimation method. In particular, we are interested 

in a) determining conditions for a positive, finite 8 = &GO), and; b) determining 

the choice of model parameterization for estimation. In this section, we motivate 

our interest in the above topics. We follow with a chapter outline. 
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2.1.1 Determining conditions for positive, finite A(m) 

Estimating the parameter v = A(oo) in firrite mean value function models is of 

particular interest because it represents the total number of expected failures to be 

eventually discovered. For the infinite POWN model in Table 1.1, a closed jonn 

solution for v and /3 always exists in the ungouped data case. In particular, in the 
L 

time-truncated scenario, the m. 1. e.'s for this model are /3 = > 0 and 

6 = ( n l ~ i b )  > 0 .  In contrast, a closed-form solution for v and P does not exist for 

the other NHPP models given in Table 1.1. Furthermore, a finite, positive-valued 

unrestricted solution for v does not always exist for the finite NHPP models. 

As an example, let us consider the DS2 data set. A plot of the citmulative 

number of failures versus cumulative time for this data set is shown in Figure 

1.1. For illustrative purposes. we arbitrarily truncate the data at T = 0.84 ( x  

loG) seconds to obtain a subset of the complete data set. If we model both the 

truncated (n = 22) and complete data sets (n = 278) using the EOSN model, we 

need to estimate the model parameters. Using maximum likelihood estimation and 

the log-linear parameterization of the model (to be discussed in Section ?.a), we 

obtain unrestricted /.? = -1.84 with a 95% confidence i n t end  (-3.67, -0.01) for the 

truncated data set, and ,d = 0.02 with 95% confidence interval (0.01,0.03) for the 

entire data set. The corresponding unrestricted estimates of v (and 95% confidence 

intends) for the truncated and entire data sets are 8 = -6.00 (-17.03, -2.11) 

and d = 402.05 (326,494), respectively. Neither set of confidence intervals indude 

zero, which imply that there is no strong evidence a t  level a = 0.05 that P > 0 

(and v > 0 )  using the truncated data, or that /3 < 0 (and v < 0 )  using the entire 
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data. We note that when /3 < 0, v < 0 and v no longer represents A(oo). In fact. 

i(oo) = oo here. To see this, recall that for v = A(oo) we need Ao(t ;P)  to be a 

probability density function integrating to one. The negative estimate for v here is 

due to the fact that testing has not gone long enough to provide much information 

about A(oo). 

To make some decisions in advance on how long one must test to obtain a 

reliable estimate of v, it is of interest to obtain conditions for which G = A(=) 
is positive and finite for the models given in Table 1.1. Although work has been 

published on the conditions under wluch the m. 1. e. does not yield finite positive- 

valued estimates for N for particular GOS models (EOS:[43], [56], [75]; WOS:[55]: 

and. POS:[l2], [78]), comparatively less work has been done for obtaining finite 

positive-valued estimates for v in the corresponding NHPP models (EOSN:[78]. 

[lo511 WOSN:[55]; and, GAMN:[53jl [105]). With the exception of [53]. no one has 

obtained appropriate conditions under a grouped data situation. 

2.1.2 Choice of parameterization for estimation 

To motivate the need for considering different parameterizations of a model, we 

first provide a brief discussion on the nature of asymptotics applicable to NHPP 

(and GOS) farmlies of models and then we discuss how this relates to the problem 

on hand. A thorough treatment of the nature of the asymptotics applicable in 

this case is given in 1551, 1721, and 1971. Our emphasis is on the results provided 

in [97]. As mentioned on [97, page 2361, situations arise when it does not make 

practical sense to have the time variable or the sample size increased in order to 
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use asymptotic results. To accommodate situations when it makes sense to do 

so. van Pul ([97]) developed a new asymptotic approach that involves looking at 

the case when one of the model parameters, rather than time or sample size, is 

considered large. The asymptotics are in a sense artificial but they do allow the 

possibility of using standard asymptotic properties (e. g. consistency, asymptotic 

normality, efficiency) of maximum likelihood estimation to provide standard error 

approximations for the parameters. For a general class of parametric counting 

process models, he derived conditions on the intensity function that are sufficient 

for these asymptotic properties to hold. 

To begin with, counting processes are assumed to have an intensity function of 

the form X ( t ;  v,p), for scalar parameter v and vector of parameters 0. Interest is 

in estimating the true parameters vo and p, as vo -t oo. v is assumed to represent 

the "scale or size of the problem". Next, to consider parameter estimation when 

vo is large, a reparameterized series of counting processes N,( t ) ,  for K = 1 ,2 . .  . . 
is introduced with associated intensity functions given by h,(t; 7, P )  = X ( t ;  K 7, P )  . 

With u = v, = li 7, we now consider the estimation of 7 and P as K + oo. 

If' the associated intensities are assumed further to have the form A,,(t; r,P) = 

li A& -y,/3), for an arbitrary non-negative function Xo, it is then shown in 1971 

that these conditions on the intensity are sufficient for the standard asymptotic 

properties of m. 1. e. to hold. It is easily seen that all of the models in Table 1.1 

satisfy these conditions, with v = tc -y and A&; 7, P )  = tc 7 X o ( t ;  P ) .  
With standard asymptotic properties of m.1.e. at our disposal when v is con- 

sidered large, one can then obtain likelihood-ratio (LR), Wald or score-based ap- 
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proximate asymptotic confidence intervals for the parameters. Nevertheless, it is 

always desirable to check the adequacy of these approximations for small to medium 

sample sizes. Plotting constant Likelihood ratio contours may be of use here. Com- 

parisons may also be made with appropriate plots of Wald and scorebased contours. 

Non-elliptical (in the extreme case, banana-shaped) Likelihood contours reflect in- 

adequacy of quadratic approximations. This implies that the shape of the contoim 

may alert one to problems with the performance of the likelihood maximization 

algorithm to be used and the accuracy of asymptotic likelihood inference. Since 

the most used opt irnization algorithms are adapt ations of the classical Newt on 

method, it makes sense that they would work best on approximately quadratic 

functions. Similarly? because the normal approximation is achieved by ignoring the 

cubic and higher order terms in a Taylor's series expansion of the log-likelihood 

at the maximum likelihood estimate, its accuracy relies on the size of the cubic or 

higher terms relative to the quadratic term. When the contours of constant like- 

lihood are roughly elliptical and centered at the m. 1. e, the normal approximation 

is sufficiently accurate. As well, al l  of the information concerning the parameters 

is summarized accurately in the point estimate and its measure of precision, the 

observed or expected Fisher information matrix (to be discussed later). On the 

other hand, if the likelihood contour plots are not roughly elliptical, approximate 

inferences based on the asymptotic normality of the estimates, including confidence 

intervals, will be misleading. 

Although likelihood functions are invariant under one-bone parameter trans- 

formations their normal approximations are not invariant. For this reason, it  may be 
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possible to obtairi greater accuracy of the normal approximation by reparametriz- 

ing the model before taking approximations [58, page 431. At the same time, there 

may be a noticeable improvement in the performance of the likelihood maximiza- 

tion algorithm used (95, page 951. We can then recover approximate confidence 

intervals for the old parameters by making use of the invariance property in trans- 

forming those obtained for the new parameters. It then follows that it is beneficial 

to transfor~n the parameters in the model if the LR- or score-based contours are 

not elliptical under the current parametrization. 

As an example, we obtained contour plots based on constant relative LR and 

Wald test values (variance estimates based on the expected information matrix) 

under the EOSN model for data sets DS 1.3. The contour plots are given in Figure 

2.1. The m. 1. e. is denoted by an asterisk. Similar plots based on the score statistic 

were also obtained but are not provided, as they are similar to those based on the 

Wald statistic. The "banana-shaped" curves in the LR plot for DS3 indicate clearly 

that approximate inferences based on the asymptotic normality of the parameters 

will be misleading for that data set; hence, it is of interest to reparameterize the 

original EOSN model in order to improve the accuracy of a normal approximation. 

In addition, we calculated the LR- and Wald-based confidence intervals for the 

parameters v and /3 and u3 = E ( N 3 )  = E(N(T1 ,  oo)) for DS1 and DS3. The 

results are given in Table 2.1. Although they are equal for P in both data sets, 

the LR- and Wald-based confidence intenmls for v (and the resulting u3) differ in 

DS3. This difference in the two confidence intervals reflects further the difference 

in the shapes of the LR and Wald contous for DS3. If the shape of the LR 
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Table 2.1: LR and Wald confidence intervals for /3, v, and 2 ~ 3  under the EOSN 
ruodel and DS1,3. 

contours were more elliptical (as is the case for DSl) ,  then the Wald and LR-based 

parameter \ CI I LR Wald 
DS1: P = 0.12, 6 = 142, T1 = 25.34 

confidence intervals would be the same. It is also of interest to examine LR plots 

P 
v 

u3 

of other models given in Table 1.1 for similar plots. If so, we would be interested 

in proposing and assessing Merent  pararneterizations of these models to be used 

(0.09,O. 16) (0.09,0.16) 
(115,178) (115,172) 
(3,121 (3.12) 

for estimation purposes. 

DS3: = 0.05. 6 = 109, 2'1 = 28.70 

2.1.3 Outline of chapter 

In Sections 2.2 and 2.3, we discuss an approach used to obtain m. I. e.'s for the 

general class of NHPP software models under the nngrouped and grouped scenarios, 

respectively. For the ungrouped case, we have provided the appropriate m. 1. e. 

equations for the models given in Table 1.1. For the EOSN, GAMN and LOGN 

models, we have determined necessary and snfficient conditions for which the m. 1. e. 

solution for v is positive and finite-valued. In addition, we have provided results on 

simulation studies conducted to obt a h  probability st qt ement s on how oft en these 
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Figure 2.1: Likelihood ratio and Wald contour plots for EOSN and DS1.3. 

LR contour plot - DS1 LR contour plot - DS3 

beta 

Wald contour plot - DS1 

0.08 0,lO 0.12 0.14 0.16 
beta 

beta 
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-- 
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conditions do not hold. Although not essential, we have also obtained bounds on 

the m. 1.e. solution for p (and hence, v ) .  They are an asset when one needs an 

initial first estimate a t  a solution in the numerical routine used for optimization. 

We have not been able to  obtain complete conditions for the WOSN and POSN 

models, but we give some partial results for these two models. For the grouped 

case, we have determined necessary and sufficient conditions for which the m. l. e. 

solution for v is positive and finite-valued for the EOSN and POWN models. In 

Section 2.4, we suggest two reparameterizations of the models in Table 1.1 that are 

useful for estimation purposes. Our conclusions are given in Section 2.5. 

Conditions for positive, finite un- 

grouped case 

2.2.1 General case 

The log-likelihood function for a single realization (ungrouped) of a time-truncated 

NHPP with a geueral iutcusity fuuncction X(t;  7 )  was derived in Section 1.3.2. With 

an intensity function of the form A ( t ;  9) = v Ao(t; P )  and corresponding mean value 

for scalar v > 0 and vector p > 0, (1.2) becomes 
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Differentiating the above with respect to paxameters ( T J , ~ )  yields the following set 

of J + 1 (score) equations to be solved for the maximum likelihood estimators: 

Solving for v in the first equation yields 

a n 
v = 

~ o ( ~ 1 ;  P )  ' (2.2) 

This expression for f can then be substituted into the other J score functions to 

obtain 

' a for f = - f, j = 1, . . . , J .  With v eliminated, we can solve the above equation(s) 
BP j 

for p and then substitute into the expression for ir. Since a closed form solution for 

f i  rarely exists, numerical procedures are used to obtain the solution to the above 

equations for p.  Of the models we have considered (c. f. Table 1.1) a dosed form 

solution is available only for the POWN (power law) model. If the expected total 

number of events is large and appropriate conditions on the model hold, we know 

that i j  is asymptotically normally distributed with mean q and covariance matrix 
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[(I))-'. The Fisher (or expected) information matrix I ( Q )  has entries 

We can estimate the above with I ( q ) ,  or with the observed information matrix lo, 

which has entries 

In some cases, equation (2.3) will not have an "admissible" solution B > 0, but 

there may be an "unrestricted" solution with some parameter estimates negative. 

This corresponds to i (q)  being maximized at a boundary point for the restricted 

parameter space with /3 > 0 and v > 0. For the models we consider, it is possible 

to extend the parameter space for p and v and discuss the solution of equation 

(3.3). We do this below. 

2.2.2 Specific cases 

EOSN 

Introduction 

A necessary and sufficient condition for obtaining an unique positive, finite-valued 

m.1.e. solution under the ungrouped EOSN (God-Okumoto) model is derived in 

a slightly more difEicult manner in [78]. Rather than solving for ) and then sub- 

stituting in for +, [78] numerically solves an equation for 6 and then substitutes in 

its rn. 1. e. to obtain that for b. It may seem like a slight difference, but it turns 
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out that the function of d to be solved is more complicated than our function of 

P :  hence, finding the necessary and sufficient conditions is more tedious in that 

situation. In addition, our approach may be applied to all NHPP models, whereas 

their approach may not. Although upper and lower bounds on the solution are also 

given in that paper, we have determined a tighter interval in which the solution lies. 

We also conducted a small simulation study to give some probability statements on 

how often the necessary and sufficient condition is not obtained. Some comparisons 

with the results for the EOS model are also given. 

Necessary and suficient condition for a positive ,6 

For the EOSN model, X(t; I)) = vp exp(-pt) with corresponding A(T1; I)) = v [ l  - 

exp(-?TI)]. In this case. (2.2) is 4 = n 
1-exp(-4 T I )  ' Clearly, i is finite and positive 

if and only if > 0. After substituting the required derivatives into (2.3). and 

rearranging some of the terms. we obtain 

If we let g ( P )  denote the left-hand side of (2.4), a Taylor expansion of the function 

exp(P TI) shows that limp+a g ( P )  = 112 and L i q , ,  g ( P )  = 0. Furthermore, since 

c 0, for all /3 > 0, g ( P )  is monotonically decreasing. Since the right-hand 

side of (2.4) is always greater than zero, a sufficient condition for the existence of 

a positive root for (2.4) is 
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In addition, since g ( P )  is monotonically decreasing, condition (2.5) is also necessary 

for (2.4) to have an unique finite positive root. 

Bounds on solution 

An ad hoc approach was 

look for an upper bound 

taken to obtain bounds on the solution. Let us first 

on the rn. 1. e. p ,  the value of p such that ( 2 . 4 )  holds. 

Figure 2.2 illustrates that & > g ( P  T I ) ,  for all x = /3 T I ,  and that both functions 

are monotonicdy decreasing. For a particular value of TIAvE = EL1 t i /T1, it 

follows that & = TIAvE will occur at a value of p > 4. Hence, this value of p, say 

flu. will be an upper bound. Since 8 = n 
1 -exp(-6 TI) 

is a monotonically decreasing 

n fiiuction of p, a lower bound on 6 will be vr, = I -exp where Prr = *. 
8 - 1  

To obtain a lower bound on p. we found a monotonically decreasing function 

h ( z )  that is always smaller than g ( x ) .  The function was obtained by f i s t  taking 

a Taylor series expansion of exp(x) in the denominator of the second term of g(x) 

and then ignoring the fourth order and higher terms. It can be expressed as 

Figure 2.2 shows that h(P T1) < g ( P  Tl), for all x = P T1 and that both functions 

are monotonically decreasing in PT1. We also see that h(P 7') = TAvE will occur 

at a value of p < 6. Hence, the lower bound on f i  is the value of pL > 0 that solves 

the quadratic equation h(PL T) = TAVB Substituting this lower bound for /? into 

n the equation for 8 yields the upper bound on d, vu = l-up(-BL Our bounds 

n n 
for ' 9  ( 1--p(-&r TI) 9 I-~xp(- /3~  2'1) 1' are tighter than those found in [78], which are 
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Figure 2.2: Maximum likelihood estimation plots for EOSN and GAMN. 

EOSN: Plot of g(x), l lx ,  h(x) vs x 

GAMN: Plot of g(x), 2/x, h(x) vs x 
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Simulation study 

A small simulation study was performed to determine how often a positive, finite- 

valued m. 1. e. solution is not available for the EOSN and EOS models. We generated 

samples from the EOSN model with /3 = 1, v = 15,25,50,100,200. and for two 

different values of TI. The T1 were chosen such that roughly 50% and 90% of the 

expected number of errors to be eventually detected are in fact discovered by T 1. In 

other words, T1 is determined such that E{N(O,Tl)) = v(1  - exp(-PT1)) = av, 

for a = 0.5,O.g and given P.  This implies that T1 = y. In fact, T1 = 

0.6931,2.3026 for P = 1 and a = 0.5.0.9. respectively. 

I11 particular, 2000 samples were obtained for each combination of v and TI in the 

following manner: 

1. Simulate N, a Poisson random variable with mean v = E{N(O, 00)). 

2. Simulate N standard exponential random variables. Keep those simulated 

values that are 5 T 1. Sort these remaining N 1 values in ascending order. 

This now constitutes a sample of N1 ordered failures times t i ,  . tbl for 

given TI and 2;. 

For each sample generated, we calculated (2.5), the condition for which an 

unique, finite, positivevalued m. 1. e. solution is available for the EOSN model. The 

percentages of the ten sets of simulated data which did not satisfy condition (2.5) 

for the EOSN model are given in Table 2.2, which is a subset of the results given 

later in Table 2.3. We clearly see that as v increases, these percentages decrease. 

In addition, we see that these percentages are substantially lower when we have 

already observed a large percentage of the expected errors. 
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Table 2.2: Percentages of the ten sets of simulated data that did not satisfy condi- 
tion (2.5). 

In addition, for each of the above simulated samples, we calculated the condition 

for which an unique, finite, positive-valued m. 1. e. solution is available for the EOS 

model. This condition, derived by [78], is given by 

n* (TI - t , )  + Cy==l(i - l ) x i  n - 1 
TI > TT  

where z; is the i th interfailure time; that is, xi is the time between the (i - 1 )  th and 

ith failure. The results for the entire study are given in Table 2.3. As expected. the 

residts improve as a and v increases. The percentage of the simulated data which 

did not satisfy condition ( 2 . 6 )  for the EOS model is lower than that for the EOSN 

model when a = 0.5 for all values of v. This indicates that there is a larger chance 

of obtaining an infinite estimate for 6 using the EOSN model than obtaining an 

infinite estimate for N using its equivalent EOS model when a = 0.5. 

We can show further that since C;='=, ti = Cn=, (n - i + l)xi, we can rewrite 

equation (2.6) as 

Comparing the above equation with equation (2.5), we see that if (2.5) holds, (2.6) 
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Table 2.3: Classification of the B = 2000 simulations according to the finiteness of 
G in the EOSN model and N in the EOS model. 

Model attributes a = 0.5 
EOS I 

finite infinite totals 
v = 15 finite 1422 0 1 1422 1 

EOSN k f i n i t e  351 227 1 578 1 totals 1773 227 2000 
v = 25 finite 1477 0 

EOSN k f i n i t e  287 236 1 523 1 
totals 1764 236 2000 

v = 50 finite 1666 0 1 1666 1 
EOSN h f i n i t e  143 191 1 334 1 

totals 1809 191 2000 
v = 100 finite 1842 0 1 1842 1 

EOSN k f i n i t e  52 106 I 158 1 
totals 1894 106 2000 

v = 200 finite 1957 0 
EOSN 'infinite 9 34 43 

totals 1966 34 2000 

a = 0.9 
EOS 

finite infinite 
1976 0 

totals 
1976 
24 
2000 
1996 
4 
2000 
2000 
0 
2000 
0 
0 
2000 
0 
0 
2000 

also holds. but not vice versa. We note further that a comparison of these equations 

i~~dicates that as the observed sample size n increases, the second term in the above 

equation goes to zero and the two conditions become equal. The simulation results 

in Table 2.3 confirm further these mathematical results. 

GAMN 

Introduction 

A necessary and s&cient condition for obtaining an unique positive finite-valued 

m. 1. e. solution under the GAMN (Yamada et. al. S-shaped) model as well as bounds 

on the solution were obtained in a similar manner to that done for the EOSN model. 

Although [53] derived the same conditions, bounds on the solution were not given. 
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We also conducted a small simulation study to give some probability statements on 

how often the necessary and sufficient condition is not obtained. 

Necessary and suficient condition for a positive p 

For the GAMN model X(t ;  q) = v p2 t exp( -P t ) with corresponding A(T1; p) = 

v [ l  - (1 + ,f3 2'1) exp(-/3 TI)]. In this case, (2.2) is 8 = n 
1-(i+8 TI) exp(-8 TI) ' Clearly, 

i is finite and positive ifp > 0. W h e n p T l  = -1, i, = n is also finite and positive; 

however, this event occurs with probability zero. 

After substituting the required derivatives into the equation for P ,  and rear- 

rmging some of the terms, we obtain: 

If we let g ( P )  denote the left-hand side of (2.8), a Taylor expansion of the function 

exp(P TI) shows that limp,o g ( P )  = 213 and limo,, g(P) = 0. Furthermore, since 

< 0, for all p > 0. g ( P )  is monotonically decreasing. Since the right-hand 

side of (2.8) is always greater than zero, a sufficient condition for the existence of 

a positive root for (2.8) is 

In addition, since g ( P )  is rnonotonicdy decreasing, condition (2.9) is also necessary 

for (2.8) to have an unique finite positive root. 

Bounds on solution 

A similar approach to that taken for the EOSN model was taken to obtain bounds 
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on this solution. Figure 2.2 shows that & > g ( P T l ) ,  for all x = P T1. and 

that both functions are rnonotodcdy decreasing in ,kl TI. For a particular value 

of TIAvs = 7& t i /T1,  it follows that & = TIAvs will occur at a value of 

13 > b. Hence, this value of p, say pv, will be an upper bound. Since it = 

n 
1-(l+flTl) cxp(-@TI) 

is a monotonically decreasing function of b, a lower bound on i 

n 
be vL = 1-(1+& Tl)  cxp(-pv TI)' where,&= 

2n 

C:,,. 
Similarly, to obtain a lower bound on b, we found a rnonotonicdy decreasing 

function h(x) that is always smaller than g(z). This function was also obtained by 

first taking a Taylor series expansion of exp(x) in the denominator of the secox~d 

term of g(z). this time ignoring the fifth order and higher terms. It can be expressed 

as 

Figure 2.2 shows that h(PT1) < g(/3T1), for all z = PT1 and that both functions 

are rnonotonicdy decreasing in /3 T I .  We also see that h(P T I )  = Tlavs will occur 

at a value of ,L3 < 8. Hence, the lower bound on ,d is the value of HL > i) that solves 

the quadratic equation h(PL TI) = Tlavs. Substituting this lower bound for p 
n into the equation for f yields the upper bound on f, vv = l-(l+BL 

UP(+L 

Simulation study 

A small simulation study was also performed to determine how often a finite, 

positive-valued m. 1. e. solution is not a d a b l e  for the GAMN model. As for the 

EOSN model, we generated GAMN samples with P = 1, v = 15,25,50,100,200, 

and for two different d u e s  of TI. In this particular case, T1 was determined such 
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that E{N(O, T I ) )  = v ( l  - ( 1  - PTl)  exp(-PT1)) = av, for a = O.5,O.g. Although 

T1 and a are one-to-one functions, an analytical expression for TI as a function 

of n is unavailable. A simple r~urnerical method, such as the bisection or Newton- 

Raphson methods, may be used to obtain TI. We used the bisection method to 

obtain T1 = O.6931,2.3026 for a = 0.5,0.9, respectively. In particular, 2000 samples 

were obtained for each combination of v and T1 in the following manner: 

1. Simulate N, a Poisson random variable with mean v = E{N(O, m)). 

2. Sirnulate N uniform ( 0 , l )  random variables, ui7s. A bisection method was 

used to obtain the ti for each i l i ,  where ui = 1 - (1 - /3 t i )  exp(-P t i) .  Then. 

keep those simulated t i ' s  that are 5 T I .  Sort these remaining N1 values in 

ascending order. This now constitutes a sample of N1 ordered failures times 

t i ?  , t N 1  for given T1 and r. 

The percentages of the ten set of simulated data which did not satisfy condition 

(2.9) are given in Table 2.4. The results are similar to those obtained for the EOSN 

model. The only difference is that these percentages are smaller than for the EOSN 

model. That is, givelr the same v and a? there is less chance of obtaining negative- 

valued or infinite rn.1.e.'~ under the GAMN model than there is for the EOSN 

model. 

LOGN 

Introduction 

As far as we know, results on the conditions for which a m. 1. e. solution is unique, 

positive and finite-valued for the LOGN (Musa-0 kumoto) model have not been 
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Table 2.4: Percentages of the ten sets of simulated data that did not satisfy condi- 
tion (2.9). 

published. We have derived such a condition. We also conducted a small simulation 

study to give some probability statements on how often the necessary and sufficient 

condition is not obtained. 

Necessaq and suficient condition for a positive P 

For the LOGN model. h(t ;  r)) = v/3/(1 + /3 t )  and A(T1; V )  = v log(l + /3 TI). 111 
n this case. (2.2) is i = lag(1 +4T1). After substituting the required derivatives into 

(2.3),  and rearranging some of the terms, we obtain 

Let I ( / ? )  and T ( P )  denote the left-hand and right-hand sides of the above equation. 

Simple calculations show that both I(P)  and +(P)  are monotonically decreasing 

functions because < 0 and < 0. Furthermore. their derivatives are 

a2t 0 a21 0 decreasing at an increasing rate since + > 0 and ,* > 0. This implies that 

both functions will always be concave up. 

At this point, it is useful to obtain some information on the behaviour of these 

functions for large and small values of P. First, let's consider the case when P is 

small. Simple calculations show that limfl,o I ( / ? )  = 1 and lima+o~(p) = 1. This 
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implies that both functions l ( P )  and r (P)  "start off together"; hence, P = 0 is 

always a solution to these equations. In addition, lima,o = -0.5 T 1 and 

lima+o = -+ Cy=l t i .  Since 1; C:='=, til < T1, we know further that 0 < 

I 1 < T 1. Next, let's consider the case when P is large. Simple cal- 

culations show that lime,, l ( P )  = 0 and limp,, r ( P )  = 0. In addition, when 0 is 

luge, 

Since log( l  + p T1) < P ,  it then follows that 

for large P.  

We are now ready to put the above information together. As mentioned earlier, 

we know that both functions I ( @ )  and r(P) "start off together", since lime+o l ( P )  = 

l i m p , a ~ ( P )  = 1 .  We know further that these functions will initially proceed at 

different slopes because 1 lime j o  ag = 0.57'1 and 0 < I limsjo yl < TI. In 

particular, one of the following two situations may arise: 

W P )  I lim = 0.5 Tl and 0.5 T1 < I lim -1 < 1.0 2'1. 
B+O ap I340 ap 
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In the first case, the slope of r(P)  will initially be greater than that of I ( P ) ,  whereas 

in the second case, r (P)  will initially be less than that of 1(/3). This implies that 

r ( P )  > l (P)  for small p in the &st case, whereas r (P)  < l(P) for s m d  p in the 

latter case. Regardless of the differences in the initial slopes of these functions, we 

know that for large P ,  l(P) > r(P). It then follows that r (P)  > l(P) for small P and 

r(i?) < l (P) for largep in the first scenario, while r (P)  < l(P) for both s m d P  and 

large /3' in the second scenario. Since I(/?) and r (P)  are always concave up, they will 

cross one another at most once. As shown above, these functions only cross under 

the first scenario listed above. Since = -; ELl ti, it follows that a 

necessary and sufficient condition for an unique, positive, finite root is 

Simulation study 

A small simulation study was performed to determine how often condition (2.11) 

does not hold. We generated samples from the LOGN model with ,8 = 1, v = 

15,25,50,100,200, and for two different values of T1. For this infinite mean value 

model, we are not able to simulate samples whereby T1 is chosen such that a 

certain percentage of the total expected errors are observed because a w = co. An 

alternative would be to choose T1 such that roughly a certain percentage of the 

total expected errors under the EOSN model is obtained. The reason for using the 

EOSN model in this manner is because, for small P,  these models are approximately 

equal. We can easily see this if we compare the intensities for these two models, as 



CHAPTER 2. MAXIMUM LIKELIHOOD ESTIMATION 

Table 2.5: Percentages of the ten sets of simulated data that did not satisfy con&- 
tion (2.11) 

is done below. 

In particular, 2000 samples were obtained for each combination of v and T1 in the 

following manner: 

1. Simulate n, a Poisson random variable with mean v log(1 + PT1). 

2. Simulate n d o r m  ( 0 , l )  random variables, ui's, and sort them. The corre- 

sponding ti's are obtained based on the formula 

10g(1+ P t i )  
ui = log(1 + P T l ) '  

The percentages of the ten sets of simulated data which did not satisfy (2.11) are 

given in Table 2.5. As expected, these percentages are comparable to those given 

for the EOSN model. 
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WOSN 

Introduction 

It was stated in [55, page 14881 that there is a possibility that the likelihood under 

this model "may be maximized at v = oo", but no proof was given to substantiate 

tlus claim. At this time, we have not been able to obtain conditions for obtaining 

a positive, finite-valued m. 1. e. solution for this model; however, we have worked on 

bounds to the solution which we anticipate w d  lead to the required conditions. 

Maximum likehood estimation equations 

For the WOS model, A(t; q) = v P2 PI th-I exp(-pl  ta) and A(T1;  g) = v [ l  - 

e x p ( - P I T l h ) ] .  In this case, (2 .2)  is 8 = n 1-c~p(-6t TI&) After substituting the 

required derivatives into the equations for 0, and rearranging some of the terms. 

we obtain the following equations: 

1 1 1 "  log t;  
(2.13) 

ex~(B T I R )  - 1 

Since both of these equations share a term we can subtract one from the other to 

obtain: 

1 - 1 1 1 "  log ti log ti 

PI TIa PI TIa (p2 logT 1) = { 74 T I A  ( 1 -  LogTl + & 20gTl } .  
After multiplying both sides by PI T l a  and rearranging some of the terms, we 
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obtain an expression for a, 

Equations (2.12) and (2.14) can then be used to solve for the m. 1. e.'s of PI and P2. 

Lover  bounds on solution 

To obtain bounds on the solution, it is useful to scale the failure times so that 

TI  1 1. We can then write equation (2.12) as 

and equation (2.14) as 

The argument for obtaining preliminary bounds on the solution is as follows. First, 

note that the left-hand side of (2.15) is the same as that in (2.4) with T1 I 1. The 

same reasoning used in obtaining a sufficient condition for the existence of a positive 

root for (2.4) can then be used to obtain a boundary condition for a positive root 

for (2.15). Since the left-hand side of (2.15) is largest at 0.5, we know that 

After expanding the right-hand side of the inequality using tfh = ezp(Pa log(ti)), 

disregarding second-order and higher terms, and rearranging the inequality, we 
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obtain 

Another bound on a solution is obtained by considering (2.16). We note that for 

pl > 0, the numerator in (2.16) needs to be positive. This occurs when 

Since the right-hand side of (2.17) is always smaller than that of (2.18), the lower 

bound on p2 is given by (2.17); however, for P1 > 0, we require (2.18) to hold. 111 

other words, (2.18) is the lower bound on p2. 

POSN 

Introduction 

As far as we know, result s on the condition ,s for which a positive, finit e-valued 

unique m. 1. e. solution is obtained for the POSN model have not been piihlishod. 

Just as multiple roots have been observed in some instances for the equivalent POS 

(Littlewood) model [12], we have observed multiple roots for some data sets under 

the POSN model. At this time, we have not been able to obtain conditions for 

obtaining finite rn. 1. e. solution(s) for this model. We have provided some results 

for obtaining bounds on the solution. 

Mazimum likelihood estimation equations 

v& B" For the POSN model, X(t;q) = ,e and A(T1; q) = u[l - (&)&I. After 
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substituting the required derivatives into the equations for P,  and rearranging some 

of the terms, we obtain the following equations: 

Since the denominator of the expression on each of the right-hand sides is shared 

by both equations, we can eliminate this term by rearranging each equation and 

t l~en subtracting one from the other. We then obtain 

Rearranging the above equation yields an expression for P2, 

Equations (2.19) and (2.21) can then be used to solve for the m. 1. e.'s of a and P2. 

Bounds on solution 

Once again, we found it useful to scale the failure times so that TI 1. We can 
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then write equation (2.19) as 

and equation (2.21) as 

The argument for obtaining preliminary bounds on the solution is as follows. 

If we let g(z, d), for x = p2 and d = log(1 + i), denote the right-hand side of 

(2.22), a Taylor expansion of the function exp(+) shows that l im, ,og(x ,  d) = d/2 

and lim.,, g ( x ,  d) = 0. Since the lefbhand side is always greater than zero, a 

sufficient condition for a positive root for (2.22) is 

If (2.24) does not hold, there will not be a solution to (2.15). If this condition does 

hold, a solution may exist. Setting ti = t l  for all i yields the lowest value for the 

left-hand side of (2.24). If we let g(z, d), for x = a and d  = t l ,  denote the left-hand 

side, we can easily show that lim,,o g(x, d )  = 1,  lim,,, g(z, d)  = d and g ( x ,  d )  is 

monotonically decreasing in I. A lower bound for can be obtained if d < 0.5. In 

this case, we set g ( x , d )  = 0.5 and solve for the positive root for z. 

Another bound on a solution is obtained by looking at (2.23). Note that for 
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/j2 > 0, the numerator in (2.23) needs to be positive. This occurs when 

Setting ti = t l  for all i yields the largest value for the left-hand side of (2.25). 

Similarly, setting ti = t ,  yields the smallest value. If we let g(z, d), for z = PI and 
d = t, or t l ,  denote the left-hand side, we can easily show that Lim,,o g(x, d )  = 0 

and lirn.,, g(x, d)  = 1, regardless of the value of d. Unfortunately, g(x, d) is not 

monotonically increasing in x for all values of d. 

2.3 Conditions for positive, finite A(w) - grouped 

case 

2.3.1 General case 

The log-likelihood function for a grouped realization of a time- truncated NHPP 

with the intensity function of the form X(t; q) = v &( t ;  p)  and corresponding mean 

value function A(T1; 9) = v A. (T 1; P )  , for scalar v > 0 and vector /3 > 0, is 

where nl, . . . , nk are the numbers of failures in time intervals (tk-1, tk ) ,  k = 1,. . . , K 
and 0 = to < tl < . . . < tk = TI. Differentiating the above with respect to 

parameters (v, P )  yields f he following set of J + 1 (score) equations to be solved for 
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the maximum likelihood estimators: 

l n k = n  ca 

We first note that solving for v in the first equation yields the same m.1. e. as 

that given by (2.2) for the ungrouped scenario. This expression for .ir can then be 

siibstituted into the other J score functions to obtain 

' a for f = f, j = 1, . . . , J. With v eliminated, we can solve the above equation(s) 

for 6 and then substitute into the expression for 6. Since a closed form solution for 

p does not exist, numerical procedures are used to obtain the solution to the above 

equations for p .  Note that a cludaJ furu  solutiolr is uot available for the POWX 

model in this scenario. As in the ungrouped case, if the expected total number of 

events is large and appropriate conditions on the model hold, we know that i j  is 

asymptotically normally distributed with mean q and covariance matrix 1(7))-l. 

As in the earlier case, the Fisher (or expected) information matrix i (q)  has entries 
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We can estimate the above with I (*) ,  or with the observed informati011 rrlatrix 10. 

which has entries 

As in the ungouped case, in some cases, equation (2.27) will not have an "ad- 

~uissible" solution fi > 0, but there may be an b*unrestricted" solution with sorue 

parameter estimates negative. This corresponds to Z(q) being maximized at a 

boundary point for the restricted parameter space with @ > 0 ant1 v > 0. For the 

~rioclals we consider. it is possible to extend the parameter space for P and v and 

cliscuss the solution of equation (2.3). We do this below. 

2.3.2 Specific cases 

EOSN 

Ir~troduction 

As far as we know. a necessary and silfficient condition for which a m. 1. e. soliltion 

is unique, positive and finite-valued for the grouped EOSN model has not been 

published. We have derived such a condition, along with bounds on the solution. 

We also conducted a small simulation study to give some probability statements on 

how often the necessary and sufficient condition is not obtained. 

Necessary and suflcient condition for a positive f i  
For the EOSN model, A ( t ;  9) = up  exp(-@t) with corresponding A(t;  9) = v[l - 
exp( -a t )I.  After substitute the required derivatives into (2.27), and rearranging 
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some of the terms, we obtain 

We let g ( P )  denote the bracketed term on the right-hand side of ( 2 . 2 8 ) .  Using 

L'HBpital's rule, we see that limp,, g ( P )  = ~ f = = ,  n k ( - t k - 1 )  < 0. A Taylor expan- 

sion of the function e x p ( * )  shows that lirns,o g ( P )  = i[nT1 - ~ f = = ,  n& + t k - l ) ] .  

Furthermore. g ( P )  is nionotonicdy decreasing because we can show that 

for p > 0. Since the function is monotonically decreasing and its lower limit is 

negative. it follows that a necessary and sufficient condition for a positive finite 

solution to (2 .28)  is for the upper limit to be positive. This occurs when 

Note that if we substitute nk = 1 for all k, we obtain K = n and this condition 

reduces to that given for the ungrouped EOSN model, given by (2.5). 

Simulation study 

A small simulation study was performed to determine haw often a finite positive- 
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Table 2.6: Percentages of the thirty sets of 2000 simulated data sets that did not 
satisfy condition (2.29). 

valued m. 1. e. solution is not available for grouped data under the EOSN model. 

We generated samples from the EOSN model with P = 1, v = 15,25,50,100,200. 

K = 5.10.15. and for 2'1 = 0.693l.2.3026. In particular. 2000 samples were 

obtained for each combination of v and TI in the following manner: 

1. Simulate K - 1 uniform (0, TI) random variables. The sorted values are the 

interval endpoints, t l , .  . . .tL. I have set to = 0 and t~ = TI. 

2. Simulate nr Poisson random variables with mean given by v(exp(-B t k - l )  - 

exp(-p t k ) ) ,  for is = 1 , .  . . , K. 

The percentages of the thirty sets of simulated data which did not satisfy condi- 

tion (2.29) are given in Table 2.6. The results are similar to those obtained for the 

ungrouped case. The only difference is that these percentages are slightly larger in 

size. 
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POWN 

As indicated in the introduction to this chapter, a finite, positive-valued closed 

form solution for p (and hence, v )  always exists in the ungrouped case. Since a 

closed form solution is not available for the grouped case, it is of interest to obtain 

a necessary and sufficient condition for which a finite, positive-valued solution for 

,O exists for the grouped POWN model. We have shown that an unique, positive 

solution for p a l w a p  exists for this model. We have also obtained bounds on the 

solution. 
I. 

Necessanj and suficient condition for a positive ,d 

For the POWN model, h( t :  7 )  = vptfl-' with corresponding A(t; q )  = vto. After 

substit utiny the required derivatives into (2.27). and rearranging some of the terms. 

we obtain 

A Taylor expansion of the right-hand side, g ( P ) ,  shows that limb,og(P) = m 

and lirns,, g ( p )  = ~ r = ,  nklog(tk/T1) < 0. In addition, g ( P )  is monotonically 

decreasing because we can easily show that 

for all p. Since the function is monotonically decreasing and its upper and lower 

limit is negative and then positive, respectively, it follows that there will always be 
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an iiniqiie positive solution to (2.30). 

Bounds on solution 

An ad hoc approach was taken to obtain bounds on the solution. First, we will 

obtain a lower bound on the solution. For convenience, we set T 1 1 1. After setting 

Tl  s 1, (2.30) becomes 

t k - t k - I  Then. rewriting '-' = I+(-- 
t k  t k  

), we expand (?)@ using a binomial expansion. 

Ignoring the third order and higher terms of this expansion, and rearranging (2.31) 

yields 

After re-writing and expanding ( Y)O once again, we obtain 

A simple rearrangement of the above equation yields a lower bound for b, 

An upper bound is obtained in a similar manner. In this case, we rewrite (2.31) as 
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Then. rewriting & = 1 + (- ), we expand (A)fl. Ignoring the third order 
tk-1 

and higher terms of this expansion, and rearranging (2.32) yields 

After re-writing and expanding ( k ) B  once again, we obtain 

A simple rearrangerrlent of the above equation yields an upper bound for 6. 

2.4 Alternative parameterizations 

If there is some evidence that the approximate asymptotic inferences based on an 

original parameterization of a model may be misleading, it is of interest to consider 

a reparameterization of the model. We examined a pair of parameterizations as 

alternatives to those in Table 1.1. We &st considered the EOSN model. We 

compared X(t; 9) = p e x p ( - a t ) ,  for p = u p  > 0 ,  with A ( t ;  q) = exp(al + uz t ) ,  

for -00 < a1 = l og (vp )  < m and a2 = -P < 0. We denote the f i s t  one a 

"Rafkery" parameterization because it was first used by him in [ g o ] ,  whereas we 

denote the latter the Ulog-linear" parameterization because it is of loglinear form 

[27]. Preliminary likelihood ratio (LR) plots based on all three parameterizations of 

the EOSN model for DS1 and DS3 indicate that there is a noticeable improvement 
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Table 2.7: A list of the intensity functions of common software reliability NHPP 
models under three different parameterizations. 

Model 1 original I log-linear 1 

in the shape of the contours under the Raftery and the log-linear pararnet erizatiotis 

for DS3. 

We can obtain similar "Raftery" and -nodinear'' reparameterizations for the 

other models listed in Table 1.1. Table 2.7 provides a list of the intensity functions 

for these NHPP models under all three parameterizations. Likelihood ratio contour 

plots based on the above three parameterizations of the EOSN, GAMN. LOGN. 

and POWN models are given in Figures 2.3 - 2.6, respectively. Since the WOSN 

model has three parameters, profile likelihood ratio contour plots were obtained 

and given in Figures 2.7 and 2.8. For instance, the profile Iikeiihood contour plot 

for pl was found by 1) setting Pl = 81, where A was obtained from maximizing 

the log-likelihood over all parameters; 2) maximizing the log-likelihood over the 

other two parameters, and; 3) substituting the particular value for and the 

madmized values for the other parameters into the log-Likelihood. A noticeable 

improvement under the two alternative parameterbations is shown in the plotted 

A(=) infinite 

POWN 

P 
P t+r 

t B - I  
P Z I  

v4tP-' 
e ( a l  - l o g ( a z  t + 1 ) )  

e ( a ~  + a 2  l ~ u ( t )  I 
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Figure 2.3: LR contour plots using three parameterizations for EOSN and DS1.3. 
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Figure 2.4: LR contour plots using three parameterizations for GAMN and DS1,3. 
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Figure 2.5: LR contour plots using three parameterizations for LOGN and DS1.3. 
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Figure 2.6: LR contour plots using three parameterizations for POWN and DS1.3. 
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Figure 2.7: Profile LR contour plots using three parameterizations for WOSN and 
DS1. 
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Figure 2.8: Profile LR contour plots using three parameterizations for WOSN and 
DS3. 
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likelihood contours for DS3 for the EOSN, LOGN, POWN and WOSN models. 

Raftery's reparameterization seems better under the LOGN and WOSN models, but 

the loglinear reparameterization seems better for the EOSN and POWN models. 

The original parameterization is best for the GAMN model. 

2.5 Conclusions 

With the exception of the POWN model, the maximum likelihood estimation so- 

lution for the models given in Table 1.1 is not of closed form. This implies that 

nrimericd methods. such as the Newton-Raphson or bisection methods, are needed 

to obtain the m.1.e.'~. Obtaining the rn.1.e.'~ is not difficult for these models. 

with the exception of the POSN model. Further investigation into the possibility 

of multiple roots is required for this model. 

We have determined conditions for which 8 = A(m) is finite and positive-valued 

for the EOSN. GAMN and LOGN models under the ungrouped data scenario. and 

for the EOSN model under the grouped data scenario. We have shown that an 

unique. positive solution for /3 always exists for the POWN model under the grouped 

data case. In general, the probability statements on how often these conditions do 

not hold for the EOSN, GAMN and LOGN models will depend on P and TI only 

through the combination P T1 because /3 is a scale parameter in these models. The 

simulation studies for these models indicate that when only roughly 50% of the 

total expected number of failures have been observed by time T1 (for given P ) ,  

there is a substantial probability that we do not obtain positive, finite estimates 

for v.  This implies that, in some situations, there is a substantial probability that 
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there will be insufficient data available to make any valid inferential state~nents 

about a finite v .  Without good estimates for v ,  we can not obtain good predictions 

of quantities of interest that depend on v ,  such as N2 and N3.  Consequently, for 

those situations whereby we do not obtain finite, positive-valued estimates for v 

based on data observed over (0, TI], it is best to continue observing the process for 

a longer ~ e r i o d  of time before making any inferences about the process. 

In order to improve the adequacy of the asymptotic approximations for obtain- 

ing confidence (and prediction) intervals of the quantities of interest, we suggest 

using either the log-linear or Raftery parameterizations of the model of interest for 

estimation purposes. There is clearly a noticeable improvement in the shape of the 

likelihood ratio contours under these parameterizations, with the exception of the 

G AMN model. Maximum likelihood estimates are easier to obtain iteratively when 

the pararneterizations giving approximately quadratic log-likelihoods are used. and 

Wald- type confidence interval procedures are more accurate. When there is only a 

single ,O parameter. we need only one-dimensional iteration to maximize l ( ir(p) .  P ) .  

so this point about normal approximations is less important for these models. Of 

course, the plots in this chapter are based on two specific data sets, but they illas- 

trate general features. In practice, we recommend that loglikelihood contours be 

routinely plotted and examined in order to select good parameterizations. 



Chapter 3 

Goodness of Fit 

Introduction 

There are a variety of goodness of fit methods for assessing the adequacy of a 

particular NHPP family of models based on one observed realization of a recurrent 

event process. In this section. we address separately each met hod and motivate the 

need for our proposed goodness of fit technique. We follow with a chapter outline. 

There are various methods available for testing the validity of the homogeneous 

(intensity constant over time) Poisson process or renewal process (a nonterminating 

sequence of independent, identically distributed interarrival times) against specific 

nonhomogeneous alternatives. Informal methods include an "eye-ball analysis" 

of an index plot of the interfailure times and a lag one plot of the interfailure 

times under a log or square root transformation to check for dependence among the 

interfailure times. For example, Figure 3.1 indicates that there is a gradual increase 

in the length of the interfailure times over time for DS1-4. The nonhomogeneity 
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in tlie interfailure times implies that an HPP or renewal assumption would be 

inappropriate. Formal methods include the tests for a monotone trend discussed in 

[8* chapter 31, [ lo] ,  and [27, chapter 51, such as the Laplace test optimal against the 

EOSN model and the U test (same notation used in [8, page 791) optimal against 

the POWN model. The point process model, considered by [68], that incorporates 

both renewal and time trends may also be used to test renewal behaviour against 

specific forms of time nonhomogeneity. Although they are useful for many reliability 

applications, the above methods are of limited use in other situations where there 

is no question of time nonhornogeneity in the process, such as software system 

reliability. In the situation where we anticipate other patterns of behaviour iu 

addition to time nonhomogeneity in the process. it may be of interest to cornpare 

NHPP models with other nonhomogeneous point process models. such as cluster 

or change-point processes. This can be done by model expansion or nesting (e. g. 

[68]). Further discussion on change-point processes is given in Chapter 5. 

The most common technique used to check the validity of the form of any para- 

metric NWP model is to "eyeball" the plot of the cumulative number of failures 

and the estimated model-based mean value function against time. Such plots are 

given in Figure 3.2. These plots indicate clearly that the estimated mean value 

functions based on the P O W  and GAMN models do not fit the observed cumu- 

lative number of failures in DS1-4. In addition, the plots indicate that all of the 

EOSN, WOSN, and LOGN models seem to fit DS3-4 well. In contrast, there is an 

apparent lack of fit between the EOSN, WOSN and LOGN models and the observed 

data sets DS1,2 due to the presence of change-points in the failure behaviour over 
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Figure 3.1: Plots of the ordered interfailure times for DS 1-4. 
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Figure 3.2: A(t; f i )  versus t for specific models in Table 1.1 and DS1-4. Time is 
measured in hours. 
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time. Another informal method that is useful is to graph the generalized residuals. 

e; = X(u; 9) du, for i = 1,. . . , n. 

If the assumed NHPP model is satisfactory, the residuals should roughly look like a 

sample of i. i. d. standard exponential random variables. Common graphical checks 

include exponential probability plots of the & and plots of 4 vs. i or log Gi vs. i. 

A formal technique that may be used for testing the goodness of fit of any para- 

metric NHPP model is to split the interval (0. Tl] into a number of nonoverlapping 

intervals Ak = at ]  in order to check the assumption that N ( A r )  is distributed 

as a Poisson random variable with mean [A(aa; q )  - A(ak-1; q ) ]  using an appropri- 

ate LR-based or Pearson's x2 test. Unfortunately, choosing the most appropriate 

Aks is problematic. In addition. this type of test does not use all of the information 

when ungouped data is available. 

Another set of formal techniques available for testing the parametric form of dl 

NHPP models involves transforming the original data t l  < t 2  < . . . < t, before ap- 

plying an empirical cumulative distribution function (e. c. d. f.)-type statistic, such 

as the Kolmogorov-Smirnov, Cram&-von Mises, and Anderson-Darling, to test the 

goodness of fit of the specified model against a general alternative. For instance, 

one type involves transforming the original data into u; = ** (assuming p is 

known for now). If the model is correct, the u:s are order statistics Born an uniform 

(0: 1) distribution. This transformation was used in [Ill, (281, [87], [92], and [93] to 

test the POWN model. The second type involves transforming further the uf s into 

wis, where wi = v. If the model is correct, the uis are order statistics from 
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an exponential distribution with parameter ,B. This transformation was used in 

[63]. (711, [79], [92], and [93] to test the POWN model, and in [17] to test a general 

NHPP model. Since P is unknown and must be estimated, the above transformed 

variables are modified by replacing P with an estimate, such as its m. 1. e. or its 

u~tbiased estimator (available for POWN model). In general, when the parameter 

values are replaced by their estimates, the distribution of the resulting statistic 

still depends on the population values; however, for the POWN model, the nature 

of the closed form m. I. e. solution for the parameters enables one to obtain exact 

clistributional results on the estimates. For other NHPP models, we are not able to 

determine exact distributional results on the parameters because we lack a closed 

form solution under these models. Consequently, we are unable to obtain exact 

tests even though we are still able to transform the data. 

Since dl NHPP models satisfy Aalen's n~ultiplicative intensity model of the 

form X ( t )  = a(t ) Y ( t ) ,  for a deterministic function a(t)  and an observable indicator 

process Y ( t )  = f ( t  5 TI), informal and formal asymptotically distribution-fiee 

goodness of fit methods available for testing the parametric form of this general 

model may also b e  considered for use in the NHPP special case. Many of these 

methods are discussed in [5, chapter VI]. For instance, we may use the total time 

on test (TTT) plot and related cumdative TTT statistic defined as N(T) times the 

area under the TTT plot. The TTT plot was introduced to failure time data by [14] 

and extensions were made to Aalen's multiplicative intensity counting processes 

by [I] and [45]. An application of this method to the POWN model is given in 

[63]. Another possibility is to consider goodness-of-fit statistics based on a distance 
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r t ~ e u ~ n e  bctween the  Nelson-Aden estimator ~ ( t  ) = J i { ~ ( s )  I Y (s)) d N ( 3 )  and 

the estimated parametric function A m ( t ; 8 )  = J,' J ( s ) a ( s ;  8) ds, for the indicator 

function . I ( t )  = I (Y( t )  > 0). First considered by [52], these goodness of fit statistics 

are of the form 

In addition, we may use an idea by [59] and 1601 to transform the above goodness 

of fit process into a process having a nice limiting distribution, such as the process 

obtained by asymptotically replacing the process with the process minus its mean 

value function (compensator). This idea was used to test the Jelinski-Moranda 

(EOS) model by 1441. 

Another formal goodness of fit technique that is useful in some situations is 

to nest the model of interest in a larger parametric family an.d use any of the 

three asymptotically equivalent test statistics (LR, score or Wald) to check the 

significance of the reduction to the actual model of interest. For instance. the 

WOSN model may be used to test the EOSN model, because the EOSN model is 

nested within the WOSN model when p2 = 1. Similarly, the "inflection s-shaped" 

(SEOSN, my notation) model proposed by [103], with 

w; 7 )  = 
u P I P  + A) exp(-PI t )  
(1 + P2 exp(-& t))' 

' 

for v, &, p2 > 0 may also be used to test the EOSN model (when f12 = 0). Although 

we have not seen it used in the software reliability literature, another model that 
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may be useful in this situation is the one introduced by [69] (LEEN, my notation). 

with 

X( t ;  q) = a1 a2 ta2-' exp(-as t) ,  

for al, a2 > 0 and -oo < a3 < oc. The LEEN model reduces to the EOSN (when 

a2 = I) ,  GAMN (when crz = 2),  and POWN (when a3 = 0). In contrast, the 

"k-stage Erlangian" model proposed by [61] with 

for v.0 > 0 and k a small integer, can not be used to test the EOSN and GAMN 

~nodels in this manner. even though the model reduces to EOSN (when it = 0) 

and the GAMN (when L = 1). This is due to the fact that k is assumed known 

before estimation begins ([61],[62],[105]). In the software reliability context, either 

of the WOSN, SEOSN or LEEN models may be used to test s m d e r  models. One 

concern is that  they may he too restrictive in that dl three models nest only one 

model (EOSN) that seems to fit software reliability data overall. Although the 

GAMN model is an adequate fit in some situations, the POWN model is generally 

inadequate in the software reliability context. Consequently, it is of interest to ob- 

tain an MIPP model that would nest more potential models applicable in sof'tware 

reliability applications. 

In this chapter, we propose two new methods for testing the goodness of fit 

of various NHPP models. In Section 3.2, we propose a goodness of fit approach 
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applicable for testing any NHPP model having an intensity of the form A ( t ;  7 )  = 

v & ( t ;  p )  As an example, we conducted a small simulation study using the EOSN 

inode1 to calculate upper tail critical values. In Section 3.3, we propose a four- 

parameter NHPP model that nests a larger subset of models - the WOSN, LEEN 

and EOSN models. We discuss model characteristics and maximum likelihood 

estimation based on the model. We applied both goodness of fit approaches to 

DSlJ.4 and compared the results. Our conclusions are given in Section 3.4. 

3.2 Proposed general goodness of fit method 

In our situation, recall that {N(t): t 2 0) is assumed to be an NHPP with intensity 

function X ( t :  q). We observe a single sample path of the process over (0, T 11 with n 

error detections (events) occurring at times t l  < t2  < . . . < t,. We assume further 

that the intensity is of the form X(t;  q) = v Ao(t; p) ,  for scalar v > 0 and vector p > 

0. The corresponding mean value function is defined as A(T 1; I)) = v Ao(T1; P ) .  In 

the spirit of 1521, we are specifically interested in the goodness of fit measure of the 

form 

where, in general, Hnd depends on n and b; hence, the notation. As well, KNA(t) 

is the Nelson-Aden estimator [5], which is just i\NA(t) = N ( t )  for NHPP 

In other words, we can write ANr(t )  = n F,(t) ,  where F,(t) denotes the 

, for 0 2 t 5 TI. Combining this information with the fact that 8 = 

models . 
e. c. d. f, 

n - 
A, m P ,  
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for these models, we can rewrite equation (3.1) as 

Recall that the quantity Fo(t;/3) = a is a cumulative distribution function 

defined over (0, TI]. With this information, we can rewrite further the above eqlla- 

tion to obtain 

The above expression implies that essentially Hng is an e. c. d. f. -type goodness of 

fit statistic for the distribution &( t :  /3) that is defined over (0. T 11, except that 

there is one complication. In particular, for the NHPP time-truncated observed 

process. 2'1 is fixed and n is a random variable rather than a fixed sample size. 

Consequently. to interpret (3.2) in the usual way as an e. c. d. f. test of Fo(t: p) .  we 

must condition on N ( T  1) = n. This implies that the size or power of this test may 

be calculated conditionally for values of n in the usual way, or unconditionally by 

averaging over the distribution of n = N(T 1). Furthermore, H,,J = n2 W:,@, where 

WiVB is a Cram&-von Mises e. c. d. f. -type goodness of fit statistic. For evaluation 

of W:,j, we can use the well-known expression 
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The null hypothesis is rejected in favour of the alternative for large values of w:,~. 

3.2.1 An application 

Model and data information 

We simulated critical values of W:,q and W& (where we have used the assumed 

value for /3) for the EOSN model. We calculated both expressions in order to obtain 

an estimate of the effect of estimating P .  First, we conducted a simulation study 

to determine how the critical values of W:,@ and Wiqj change for increasing values 

of n. /3. and a ,  the proportion of the expected number of errors to be eventually 

detected that are in fact discovered by TI. In particular. we generated samples 

from the EOSN model with 7~ = 10,20.40.80,100 and T 1 determined such that 

E{N(O. T l ) }  = v(1 - exp{-PTl}) = av. for o = 0.5.0.9 and /3 = 0.2,0.5,1. This 

iruplies that TI = -log( P l a .  For example. T1 = 3.4657.11.5129, when ,8 = 0.2 

and a = 0.5.0.9, respectively. Similarly, T1 = 0.6931,2.3026, when /3 = 1 and 

a = 0.5.0.9. respectively. The simulation study was conducted in the following 

manner with B = 2000: 

1. Repeat the following process B = 2000 times: 

(a) Simulate a sample of n uniform (0 , l )  random variables, u;, and sort 

them. 

(b) Obtain the ordered ti using ti = - l ~ g ( l - ~ i - ( t - ~ ( - f i = ~ ~ ) ~  B 

(c) Obtain the rn. 1. e. 4 based on this simulated sample. Note that negative 

d u e s  for are not to be discarded. 
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(d)  Obtain the 4 ' s  using b. 

(e) Calculate W:,@ using the oi's and W:,6 using the ic i 's .  

2. Sort separately the sets of B W! and W! values obtained above. Obtai~l the 

SO%, 85%, 90%, 95%, 98%, 99% empirical percentiles of their e. c. d.f. 

We then repeated the entire process ten times to obtain the mean and standard de- 

viation of each of the above critical values, as was done in [87]. Next, we conducted 

sirrdar simulation studies to determine the critical values of W& for a given conl- 

hination of 6 and T 1 values corresponding to those observed for data sets DS 1-4. 

We then calculated the observed value for W:,B and compared it to t h e  appropriate 

critical values to determine whether the EOSN model fits that particular data set. 

Results 

First. we discuss the results for the larger silndation study. The 0.20. 0.15. 0.10. 

0.05. 0.02. and 0.01 upper critical values of W:,j and W:,@ were obtained for each 

combination of n, p, and a (and hence. TI). The same critical values were generated 

for a given combination of n and a (and hence. p T1 combination). The calculated 

mean critical values of the ten sets of simulations are given in Table 3.1. The 

calculated standard deviation for each set of simulations are not given, but the 

approximate range of values is 0.0004 - 0.0035 for the estimated critical values 

based on W:,d, and 0.0013 - 0.0155 for those based on W&. Referring to the table, 

we note that the corresponding critical values for W:,d and W;,@ differ snbst antially. 

It is obvious that we can not ignore the effect of estimating /3. We also note that, 

for given a, the critical values for W:J only differ in the third decimal place as 
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Table 3.1: Upper critical values of W,lg and W:,p based on EOSN. 

Dataattributes 0.20 0.15 0.10 0.05 0.02 0.01 

W . D  
for all a 

n increases. In other words, to two decimal places, the critical values are roughly 

the same for n > 20. A similar result was found for the calculated Cram&-von 

Mises e.d.f-type goodness fit statistic for the POWN model obtained in [87]. It 

also appears that, as a increases from 0.5 to 0.90, the 0.20 critical value increases 

slightly, whereas the 0.0 1 critical value increases relatively more. 

Next, we calculated the observed W:,j d u e s  based on the estimated p and T1 
values for the EOSN model for DS1-4 and compared these values to the simulated 
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Table 3.2: Critical values of W:,d and W:,@ based on EOSN using p and TI from 

critical values based on the same values for and T I .  The simulated critical values 

of W:,B are given in Table 3.2 and the observed values for W:,b are given in Table 

3.3. We reject the null hypothesis that the EOSN model is an appropriate model 

at the a level if' the observed statistic is greater than the simulated 1 - a critical 

value. For example. the observed value for W;,j is 0.423 for DS1. Since this value 

is greater than the 95% simulated critical value, 0.185, we have strong evidence 

to reject the null hypothesis that the EOSN model is an adequate model. After 

performing the same tests for the other data sets, we observe that we also reject 

the EOSN model for DS2, but we do not have evidence to reject the EOSN model 

for DS3 and DS4. 

Overall, we believe the W:,8 statistic is useful for testing the goodness of fit of 

the EOSN model. The parameter P is a scale parameter and it may be shown that 

the critical values of the distribution of W:,b depend on /3 and T1 only through the 

combination of PT1 (and hence, a). Our results indicate that the difference for 

varying P TI (or a) is in the first decimal place - even for large n. Consequently, 

it seems that the asymptotic distribution of the W:,B statistic depends slightly on 

the p TI combination. Although we chose to calculate the critical d u e s  of Wit6 



CHAPTER 3. GOODNESS OF FIT 

Table 3.3: Observed values of W:,b based on EOSN for DS1-4. 

DSl DS2 DS3 DS4 
0.423 0.318 0.055 0.050 

conditional on N(T1) = n, unconditional results may be obtained by averaging 

over the distribution of n = N ( T 1 ) .  Since our results indicate that the criticd 

values are essentially the same (up to two decimal places) for n > 20, we believe 

that the averaged unconditional results will be similar to the conditional results. 

Further discussion is provided in Section 3.4. 

3.3 Nestedmodels 

To obtain an NHPP model that nests the LEEN and WOSN models, we compared 

their corresponding intensity functions. R e d  that for the WOSN model, X(t; 7 )  = 

vljlP2 th-I exp(-@I t h ) ,  and, for the LEEN model X(t; 9) = a1 a 2  tal-' exp( -a ,  t). 

Note that the essential difference is in the exponents. The WOSN model has t raised 

to a power in the exponent, while the LEEN model does not. Thus, we propose an 

NHPP model with intensity A(t; g) = at a2 ta2-' e q ( - a a  ta4) ,  for al1a2,a3,a4 > 0. 

The corresponding mean value function is 

First, we notice that when a3 R 0, regardless of the value of a, the exponent term in 

A(t; I)) is essentially equal to one; hence, we obtain the POWN model. Furthermore, 
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this uew general model "NEWN" reduces to the LEEN model when a4 = 1. to the 

WOSN model when a2 = a4, and to the EOSN model when a2 = a4 = 1. 

Next, we note that the above model is not of the form A( t ; r ) )  = v h o ( t : a )  

with corresponding mean value function A(T1; 9) = v Ao(T 1 :  P ) :  for scalar v > 0 

and vector p > 0. To obtain a reparameterization of the model that will have an 

intensity of this form we altered the mean value function, and then obtained the 

corresponding intensity from that. In particular, we note that, when a3 # 0. we 

can write A( t ;  q) = al -y a;T(7) I G(aJ t a 4 ,  7). where 7 = and I G(x. d) = 

- S'ud-' 
r(4 e-" du is the incomplete gamma function. Since the IG(-) function 

is of the form of a truncated cumulative distribution function, we need to set 

o = a, 7 a;? r(7) to obtain A(t :  T ) )  = v I G(a3  tad .  7). The resulting mean vdue 

furlction is of the form A( t ;  7 )  = v AO(t; P ) .  The corresponding intensity is then 

for v. y. aa. a4 > 0. Under this new parameterization. A(t ;  T ) )  looks Like v times the 

c. J. f. fur a lifetime model whme T"' is JistriLuted as a two paramatar G a ~ u u a  

with shape parameter 7 and scale parameter a;'. When 7 = 1, the NEWN model 

reduces to the WOSN model. In this case, Ta4 is distributed as a two parameter 

Gamma with shape parameter one and scale parameter a:'. When a4 = 1, the 

NEWN model reduces to the LEEN model. In this case, A(t;  7 )  looks like v times 

the c. d. f. for a lifetime model where T is distributed as a two parameter Gamma 

with shape parameter 7 and scale parameter a;'. When 7 + oo, the shape of 

the p. d. f. for this distribution (and hence, the shape of &(t;  q)) becomes similar 
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to the normal p. d. f. As the p. d. f. tends to that of the normal, the resulting c. d. f. 

(and hence, A o ( t ;  7 ) )  will become s-shaped. When -y t oo and a;' ---+ oo, the 

p. d. f. becomes similar to a very spread out normal density. When 7 = a4 = 1, the 

NEWN model reduces to the EOSN model. 

3.3.1 Maximum likelihood estimation 

v a 4  a: For this model, we have A( t  ; 9) = r(7) tTu4- '  exp(-aa t a d ) .  In this case (2 .2)  is G = 

n 
I G(as t 0 4  ,r) ' After plugging in the required derivatives into (XI) ,  and rearranging 

sorue of the terms, we obtain 

Since the left-hand side of the two latter equations are equal, we can equate and 

rearrange these equations to obtain 

Equation (3.4) and any two equations in (3 .3)  can then be used to solve for the 

m. 1. e.'s of 7, a ~ ,  and CQ. 
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Figure 3.3: Profile LR contour plots of al, crz, at, and a4 for the NEWN model 
and DS1. 
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Figure 3.4: Profile LR contour plots of al, a,, a3, and a4 for the NEWN model 
tlllder the original parameterization and DS4. 
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Fignre 3.5: Profile LR contour plots of v ,  7, as, and a4 for the NEWN model and 
DS1. 
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Figure 3.6: Profile LR contour plots of v ,  7, a3, and a4 for the NEWN model and 
DS4. 
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Figure 3.8: Profile likelihood plots of a4 and 7 for DS2,DS3. 
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It is also of interest to determine which parameterization is best to use for the 

NEWN model. We fitted the NEWN model to DS1-4 using both parameterizations. 

We were not able to obtain m. 1. e.'s for DS3 (see discussion below). Profile likeli- 

hood ratio contour plots of a,, aa, art and a4 under the original parameterization 

for DS1,4 are given in Figures 3.3 and 3.4, respectively. The corresponding plots 

of v,  7, c r ~ ,  and a4 under the reparameterized model are given in Figures 3.5 and 

3.6. A comparison of the plots shows that the reparameterized model is preferable 

because the two-by-two contours arc less banana-shaped than that for the original 

parameterization. Profile likelihood plots of a4 and 7 for DS1-4 are given in Figures 

3.7 and 3.8. For instance, the profile likelihood for a4 was found by 1) setting a 

particular value for a4 and maximizing the log-likelihood over the other parame- 

ters. and; 2)  plugging in the particular value for ad and the maximized values for 

the other parameters into the log-likelihood. The process is repeated for various 

values of a+ These plots indicate that there is only one maximum for a4 and 7. as 

a function of the other parameters. Unfortunately, in some situations (such as for 

DS3), a4 is maximized at zero. This implies further that 7 + oo because 7 = 2 
in this parameterization. The fact that these plots indicate that one parameter is 

tending to zero and another parameter is tending to infinity for this data set may 

explain the reason we were not able to obtain a m. 1. e. for the NEWN model for 

DS3. In general, further investigation is needed to obtain a good feel for the case 

where we can not obtain m. I. e.'s. 
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3.3.2 An application to goodness of fit 

We fitted the WOSN, SEOSN, LEEN and NEWN models to DS1-4 and tested their 

submodels using the generalized likelihood ratio test statistic, L Rg = -2 [ Z R ( f j )  - 

I u ( i ) ] / r ,  where ZR refers to the restricted likelihood under the null hypothesis, iv 

refers to the unrestricted likelihood under the alternative hypothesis, and r is the 

rlu~riber of restrictions made on the parameters. Under the null hypothesis, the L R, 

statistic is asymptotically distributed as a x j  random variable. For comparative 

purposes. we also calculated the Akaike information criterion (AIC) for each data 

set. Although it has been used in many other fields, this model selection criterion 

has only been recently used for selecting NHPP models by (621. It is defined to be 

2 i(6) - 2 ( J  + 1). where I ( - )  is the log-likelihood evaluated at its m. 1. e. and J + 1 

are the number of parameters in q. An advantage of using the AIC is that the 

models do not need to be subsets of one another, whereas for the generalized LR 

statistic, the model under the null hypothesis must be a subset of the model given 

under the alternative. 

Results 

The observed generalized LR statistic and corresponding p-value (given in paren- 

theses) are given in Table 3.4. The starred values are statistically significant at  

a = 0.05. No results are available for testing the NEWN model with its subsets for 

DS3 because we were not able to obtain m.1. e's in this case. In other words, we 

reject the null hypothesis that the nested (restricted) model is appropriate when 

the observed pvalue is less than a = 0.05. Similar results were obtained for test- 
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Fignre 3.9: A( t ;  i ) )  versus t for the NEWN, LEEN, and WOSN models and DS1-4. 

Execution time13600 

0 0 5 10 15 20 25 
Execution time13600 

- newn 

Execution time/3600000 

0 1 2 3 4 
Execution time13600 



CHAPTER 3. GOODNESS OF FIT 90 

Table 3.4: A comparison of the NEWN, LEEN and WOSN models with their 
subsets for DSl-4. 

LEEN vs EOSN 
LEEN vs POWN 
LEEN vs GAMN 
NEWN vs WOSN 
NEWN vs LEEN 
NEWN vs EOSN 
NEWN vs GAMN 

ing the EOSN model against the alternative WOSN. SEOSN. LEEN and NEWN 

models. Although we can reject it for DS1, we can not reject the EOSN model 

in favour of the alternative model (WOSN? SEOSN, LEEN or NEWN) for DS2-4. 

As indicated by Figure 3.2, the GAMN model is rejected clearly in favour of the 

LEEN and NEWN alternatives for all data sets. Although it is rejected clearly 

for DS1 and DS4, we have some reservations about rejecting the POWN model in 

favour of the LEEX model for DS2 a d  DS3 since the observed p-value, 0.05. is 

on the borderline. This result is unexpected because Figure 3.2 indicates that the 

POWN model does not fit DS2 and DS3. Neither the WOSN nor the LEEN model 

was rejected in favour of the N E W  model for DSl  and DS4. On the other hand, 

there is slight evidence for rejecting the WOSN model and slight evidence for not 

rejecting the LEEN model in favour of the NEWN model for DS2. These results 

verify those indicated by Figure 3.9, a plot of the cumulative number of failures 

and the estimated model-based mean value function against time for the NEWN, 
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Table 3.5: AIC values for various models fitted to DS1-4. 

Model 
EOSN 
GAMN 
WOSN 
POWN 
LOGN 
LEEN 
NEWN 
SEOSN 

LEEN and WOSN models. Although the fit is very similar for DS1 and DS4, there 

is a slight difference among the fit d the NEWN, LEEN and WOSN models to 

DS2. The generalized LR test picked up this slight difference. 

The observed AIC values are given in Table 3.5. The starred values denote the 

model with the highest AIC and hence the *best1' model for the data set according to 

this criterion. The table indicates that the LOGN and EOSN models are considered 

*'best" for DS3 and DS4, whereas the LEEN and N E W  models are considered 

-best" for DS1 and DS2. respectively. Both the generalized LR. statistic and the 

AIC criterion indicate a slight difference among the fit of the NEWN, LEEN and 

WOSN models in DS2. Although the generalized LR statistic was not able to do 

so, the AIC indicates a slight difference in the LEEN and WOSN models for DS1. 

In addition, the AIC indicates a slight differences in the LOGN and EOSN models 

for DS3. 
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3.4 Conclusions 

We believe that the easiest, if not the best, informal technique for checking the 

vddity of the parametric form of any NHPP model is to "eyeball" the plot of the 

cimulative number of failures and the estimated model-based mean value function 

against time. Any departures in the model may be detected easily from this plot. 

As for formal techniques of goodness of fit, we believe Wi,q is useful for testing 

any NHPP model having an intensity of the general form A ( t ;  q) = v &( t ;  p ) .  

In general, the critical values of its distribution will depend on the vector n. P 

and TI. Simulation of these critical values for given n, P and 2'1 is relatively 

easy to implement. Although we chose to calculate the critical values of W:,g 

conditional on N ( T 1 )  = n, unconditional results may be obtained by averaging 

over the distribution of n = N(T1). Since our results under the EOSN model 

indicate that the critical values are essentially the same (up to two decimal places) 

for n > 20. we believe that the averaged unconditional results will be similar to 

the conditional results. For those models which have a single P scale parameter, 

such as the GAMN and EOSN model. the critical values will clepznrl on P a d  TI 

only through the combination of /3 T1 (and hence, a). Our results for the EOSN 

model indicate that the difference for varying PTI is in the first decimal place - 
even for large n. Consequently, it seems that the asymptotic distribution of the 

WiVj statistic depends slightly on this combination P T 1. We expect that for NHPP 

models with unknown shape parameters (such as the WOSN, POSN, LEEN and 

NEWN models), the distribution of the W:,B statistic wiU depend on the underlying 

true values of these parameters (even in the asymptotic case). This makes sense 
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given the known e. c .  d. f. goodness of fit results with unknown shape parameters 

for the censored and uncensored data situations, as discussed at length in [31]. We 

also believe that the above conditional results will  hold for testing the goodness of 

fit of truncated data from a particular distribution. 

We also suggest nesting specific models of incerest within larger families in order 

to test whether the submodel is an appropriate model. The WOSN, SEOSN, and 

the LEEN models are useful in these situations. The NEWN model may also be 

~lseful. though we do not yet have a good feel for the case where we can not obtain 

111.1. e.'s. In addition, since the NEWN   nod el is a four-parameter model. we expect 

that a large amount of data is required to differentiate among it, the LEEN. and 

the WOSN models. For these models. we expect further that T 1 must also be large 

ellough so that a substantial amount of the total expected number of failures will 

have already been observed by TI. 



Chapter 4 

Predict ion 

Introduction 

As we argued in Section 1.4. we are specifically interested in obtaining interval 

predictors for N2 = N ( T l , T 2 ] ,  the number of events in the future time interval 

(7'1. T2] based on the observed data up to time TI, for the general NHPP model 

under the time-truncated sampling scheme. In addition, for the finite subfamily 

of NHPP models, we are interested in assessing the effect of data accumulation on 

the prediction of the number of remaining events to be eventually observed given 

data has been observed up to time TI. This quantity is N3 = N ( T 1 ,  oo], where 

N3 is N2 with T2 r oc. In general, there are Bayesian and fiequentist approaches 

to prediction. In this section, we address separately each approach. We argue that 

there is a need for our frequentist-based approach to predicting N2 and N3 for the 

general NKPP family of models. We follow with a chapter outline. 
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4.1.1 Bayesian approach 

In principle. the Bayesian approach to prediction, regardless of whether an un- 

derlying NHPP model is used, is well-defined and relatively straightforward. To 

obtain the appropriate predictive distribution for N2 and N3 we need to make 

soule assumptions about the prior density of the paranleters as well as about the 

model. First, as in the frequentist scenario, we assurr.e a particular NHPP fam- 

ily model for the data. We denote the general likelihood given by equation (1.1) 

as L(DoBTl lq), where the data set DO,T1 consists of the data observed in (0. TI]. 

Second, we formulate a joint prior density for the parameters. p ( t ) ) .  Once the 

Likelihood and the prior have been specified, the posterior density, p ( q  (DO,T1). is 

defined as being proportional to the product of the likelihood and the joint prior. 

Furthermore. since our focus is on predicting the number of events in a future time 

interval, as opposed to drawing inferences about the parameters, we also need to 

specify p(N2lr)) .  In the NHPP scenario, it turns out that once the model has been 

chosen, p( NPlr)) is automatically defined to be the Poisson distribution with mean 

q = J':~' A(t ;  r))dt. It immediately follows that p(N3117) is the Poisson dxstri- 

bution with mean u(q) = 5; A(t ;  q )dt .  With all this information on hand, the 

resulting predictive distribution 

p(N2 = ~ ~ D o , T I )  

for N2 is given by 

for r = 0, 1, . . . , m, and integration is over the parameter vector 9. It follows 

that p(N3 = T ~ D ~ , ~ ~ )  is similarly defined with N2 replaced with N3 in the above 

equation. Point estimates of either N2 or N3 may be obtained &om (4.1) by 
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combining it with an appropriate loss function. Interval estimates of N2 or N3, 

such as highest density regions or one-sided intervals may also be obtained from 

(4.1). 

Since the method of prediction under the Bayesian framework is relatively 

straightforward once a model for the data and a prior for the model parameters 

have been chosen, it makes sense that the Bayesian approach to prediction has been 

considered by many authors in the software reliability literature ([2], [l3], [2 11, (221, 

[23], [24], [25], [48], [51], [64], [65], [66], [go], [91]). With the exception of (21, [21], 

and (221, the above authors have considered the NHPP framework. While most 

have looked at one NHPP family in particular (LOGN: [24], [25]; and, POWN:[13], 

(231. [48], [!XI, [66]), a few have looked at approaches for the general NHPP ([64], 

[65], [go]. [gl]). The main focus in most of the above work is on the prediction of 

T,+kl the time until the kth future event, based on the n events observed under 

an event-truncated sampling scheme. The exceptions are [24], (251, (131 and [66], 

who have also considered prediction of N2 and N3. Since the Bayesian approach to 

prediction has been considered by many authors, we are not particularly interested 

in developing any new methodology in this situation. Instead, we provide some 

general comments about the choice of prior and numerical integration techniques 

for evaluating the integrals of interest. 

Choosing a prior 

There are many approaches a d a b l e  for choosing a prior density for the param- 

eters, as discussed in introductory texts in Bayesian analysis (e. g. [19], [86]). 

Within the NHPP model framework where the intensity function is of the form 
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A ( t ;  11) = v Au(t; P ) ,  for scalar v > 0 and vector p > 0, most authors have asslimed 

the parameters v and p are jointly independent apriori and have selected marginal 

priors for each of the model parameters. The priors are often chosen for mat hemat- 

ical convenience. In fact, the uniform, gamma, or a combination of both families 

is often chosen for the marginal priors. The joint prior for the parameters is then 

simply the product of the marginal priors. The exceptions are ([24], [25]), who 

consider elicitation of expert opinion to obtain the joint prior, and ([89], [90], [91]). 

who consider a joint conjugate prior under the "Raftery" parameterization. 

The likelihood based on the original parameterization of the NHPP models given 

in Table 1.1 is not of exponential family form; however, reparameterizing the model 

using either the Raftery or log-linear parame t erizations given in Table 2.7 mag yield 

a likelihood of exponential family form. In fact, this occurs for the EOSN, POWN. 

and GAMN models. For these models, a natural family of conjugate prior densities 

exists. In contrast, the likelihoods based on these parameterizations for the WOSN 

and POSN models may be considered "conditionally" exponential in that they are 

of exponential family form given a3 is known. In these cases, a natural family of 

conjugate prior densities exists for the joint density of the parameters al and a* 

given as. At this point, for mathematical convenience, one may assume that the 

joint prior for a1 and a2 is independent of the marginal prior for as; however, this 

may not be appropriate, as suggested by the plots given in Figure 2.8 on page 61. 

Choosing a numerical integration technique 

There are many techniques and approaches available for numerically approximating 

integrals, and it is often diflicult to choose which ones are the best to use in any 
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given situation (e. g. [40], [41], [49]). Since the choice of the technique is dependent 

on the form of the integral to be evaluated, using only one particular technique for 

evaluating all of the required integrals is often not possible. In our situation, it so 

happens that we do not have too many integrals to evaluate numerically. In partic- 

ular. to obtain the constant of proportionality for the posterior density p(r1l Do,TI)  

and to obtain the predictive distribution p(N31Da,Tt),  we need to integrate over the 

parameter vector q. It turns out that integrating over the scale parameter v (p and 

a1 in the Raftery and loglinear parameterizations, respectively) may usually be 

done analytically, so the above two multiple integrals of dimension J + 1 is reduced 

by one. For those models given in Table 1.1, the above implies that we will have 

at ~ u o s  t a two-dimensional integral to approximate numerically. As recorunlended 

iu 1401 and [41], asymptotic methods, importance (adaptive) sampling, rnultiple 

quadrature, and subregion adaptive integration are methods of choice for lower- 

dimensional integrals. Simdation methods, such as Markov chain Monte Carlo 

(MCMC) methods, may also be used (e.g. 1641 and [65]). An illustration of the 

Baycsia~~ ayproaclr is give11 in Section 4.3. 

4.1.2 Fkequentist approach 

In general, based on an observed random vector Y, a frequentist 100(1 - a)% 

prediction internal is defined to be a random set (L, U) = { L ( Y ) ,  U ( Y ) )  which 

covers a value of an as yet unobserved random scalar Y' with coverage probability 

C P ( L ,  U) = P T { L  5 Y* < U) = 1 - a, for prespecified nominal probability a. 

The distribution of Y' is assumed to be related to that of Y in the sense that 
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both depend on an unknown parameter vector r). There are numerous methods of 

constructing prediction intervals, many of which are discussed in the review papers 

(501 and [88]. The most common approach involves inverting pivotal quantities. 

The pivotal Q(Y,  Y') is defined to be a function of statistics based on the past and 

future samples whose distribution does not depend on the parameter vector 7 .  

There is limited statis tical literature a d a b l e  on the frequentist approach to 

precliction in the NHPP framework ([38], [YO], [94]). While [38] and 1701 consider 

the POWN model, [94] considers the EOSN model. With the exception of 1941, the 

main focus it1 their work is on the prediction of Tn+r, the time until the kth future 

evexlt, based on the n events observed under an event-truncated sampling scheme. 

We consider here some useful methods for predicting N2. 

4.1.3 Outline of chapter 

In Section 4.2. we discuss our strategy for constructing and assessing fiequentist- 

based interval predictors for N2 (and hence. N3). In particular. we have obtained 

a set of five interval prehctors based on ad hoc appronmate pivotals obtained 

from well-known NHPP results. In Section 4.3, we discuss both the Bayesian and 

frequentist strategy for assessing the effect of data accumulation on N3. We follow 

each section with an application using the EOSN model. Our conclusions are given 

in Section 4.4. 
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4.2 Proposed frequentist interval predictors 

Recall that, in our situation, {N(t); t 2 0) is assumed to be an NHPP with intensity 

function X ( t ;  r ) ) .  We observe a single sample path of the process over (0, TI, with 7& 

error detections (events) occurring at times t l  < t 2  < . . . < t,. We are interested 

in obtaining prediction intervals for the future value of N2 applicable to the entire 

fa~nily of MIPP models. Since we have not found any exact pivot als, we use some 

ad hoc approximate pivotals obtained from well-known NHPP results to construct 

the predictors to be considered. Fkst . we consider pivot als based on the distribution 

of N2. Since the counts in non-overlapping intervals are independent in a NHPP. 

we know that N2 will be independent of N1 = N(0.  TI]. We know further that 

N2 is Poisson distributed with mean u(7)  = ST. X(t; q)dt. If q was known, the 

distribution of N2 would be known. For convenience, the approximate pivotals 

based on this distribution can easily be found. For instance, for large mean u(r)), it 

is well-known that [N2 - u(r))]/[Ju(u(rl)] is approximately distributed as a standard 

normal random variable. We can then simply kvert this pivotal into a prediction 

Limit for N2. The crux is that u(rl will not be known in practice. One will need to 

obtain i j  based on the observed data, and then use it somehow to estimate N2. 

The simplest method of incorporating the observed data would b e  to assume 

that N2 is Poisson distributed with mean (and hence, variance) u(ij). One could 

then obtain prediction limits for N2 by simply inverting the standardized approx- 

imate pivotal [N2 - u( i ) ] / [ dz ) ] .  Unfortunately, using u(4) as the estimated 

variance for N2 - u(6) would underestimate the variation in the process. Note that 
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we can write 

Since the two bracketed quantities are independent for NHPP models, we obtain 

the exact result 

It then follows that one way of capturing the added uncertainty in estimating 71 

would be to ?mprove" the estimated variance by estimating the above quantity 

with 

Note that an exact expression for Va~q-[u(i))] may be difficult to obtain in prac- 

tice and approximations to its value may be more feasible. For instance, one may 

consider using the well-known delta method (e. g. [67, appendix C]). A reasonable 

standardized approximate pivotal that incorporates this "improved" estimated vari- 

ance formula would then be 



CHAPTER 4. PREDICTION 102 

A one-sided upper (1 - a) 100% prediction interval generated from R1 is of the form 

where ri,, is the (1 - a) quantile of the distribution of R1. 

For comparative purposes, we next considered approximate pivotals based on 

well-known variance stabilizing and normalizing transformations of the Poisson fml- 

ily. Although there are many available (57, page 1621, only those that can be easily 

inverted into prediction intervals for N2 are suitable for our purposes. Two weP 

krmwn variance stabilizers for the Poisson family, first given in [15], are a and 

4 ~ 2  + 1/2. They are both known to be approximately normally distributed with 

variance 1/4 and mean JG and d w ,  respectively. Although they are 

very similar, the latter transformation is often preferable because u(g )  need not 

be large for this transformed variable to be approximately normally distributed. A 

better variance stabilizer, originally given in [6], is the transformation \ l ~ 2  + 3/8. 

Regardless of the size of u(q),  it is known to be approximately normally distributed 

with variance 114 and mean \lu(~7) + 3/73. Note that all of the above variance trans- 

formations are of the form J w c ,  for c = 0,3/8,1/2, respectively. 

As  suggested earlier, one could simply consider using a set of standardized ap- 

proximate pivotals based on "plugged-inn estimates of 9. These would be of the 

form 2{~N2+e- 

sons given earlier, it 

+q into the variance 

JG} , for each c considered above. For the same rea- 

would make sense to incorporate the uncertainty of estimating 

estimator. In this case, the set of "improved" standardized 
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pivotals would be of the form, 

for each c = 0,3/8,1/2. As in the earlier case, v a r i [ J w 1  will need to be 

approximated. The one-sided upper (1 - a) * 100% prediction interval generated 

from Rz will be of the form 

where r;,, is the (1 - a) quantile of the distribution of R2. 

An excellent normalizer for the Poisson family, originally given in [?I, is [N2I2/? 

It is shown to be approximately normally distributed with mean [u(q)]*I3 and 

variance [u(q)]  'I3. An approximate pivotal that incorporates the uncertainty of 

estimating r) is 

Once again, V a ~ ~ { [ u ( i j ) ] ~ / ~ )  will need to be approximated. The one-sided upper 



CHAPTER 4. PREDICTION 

(1 - a) * 100% prediction interval generated from R3 is of the form 

where ri,, is the (1 - a) quantile of the distribution of Ra. 

4.2.1 Approximating the distributions of 7Zi 

As indicated in the previous section, one needs to determine the appropriate a (and 

possibly 1 - a) quantiles of the distribution for each R, in order to calculate the 

prediction intervals. Ideally one would like to obtain exact distributioris for each 7Z,; 

liowever. realistically this is not possible. In fact, there is no single distribution in 

general because these will depend on r). It seems more reasonable to approximate 

their distributions for given q. The required quantiles are then obtained from 

this approximated distribution. We consider two methods of approximating these 

distributions. 

First. we consider the standard normal distribution as an approximation to 

those of the Ris. It seems reasonable to do this because of the way the 72:s were 

generated. We indicated in the previous section that if 9 were completely known 

and certain specific conditions were met (depending on the 7& considered, u(q)  

large or n large), then the dstribution of that particular would be approximately 

standard normal. 

Next, we consider the parametric bootstrapt (some prefer, bootstrap critical 

value) method (e. g. (331, [34]), to obtain a bootstrap distribution of each 7Q. The 
empirical quantiles of this distribution are then used in obtaining the required 
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prediction intervals. Note that B, the number of independent parametric bootstrap 

samples to be generated, is to be at least 1000, and possibly more like 2000, as 

xrrentioned in 1331 and [34, section 12.51. We found B = 1000 adequate for the 

simulation study discussed below. In particular, the following algorithm may be 

used: 

1. Calculate the maximum likelihood estimates, 6,  based on the data set of 

interest . 

2. Repeat the following process B times: 

(a) Simulate Nl', a Poisson random variable with mean A(T1: i j ) .  

(b) Simulate N2', a Poisson random variable with mean u( i j ) .  

(c) Simulate N1' random variables with p. d. f. f (t;  6 )  = A ( t ;  ij)/A(Tl; q) ,  

for O 5 t 5 TI .  Sort these values in ascending order. This now consti- 

tutes a new simulated sample of N1' ordered failure times t ; ,  . . . , tkl.. 

(d) Calculate the maximum likelihood estimates, ij', based on this new sim- 

ulated sample (keep those parameter estimates which are outside allow- 

able range). 

(e) Calculate 7Zr, for each i, based on N2' and the 6' for this new simulated 

sample. 

3. Sort the B 'R,r values in ascending order, for each i .  

4. Obtain the empirical quantile r:,, based on this ordered set of Rr values. 
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4.2.2 Assessing interval predictors 

The conditional coverage probability of a prediction interval (L,  U) for the random 

quantity Y',  based on the observed random vector Y, is defined as CPc(L ,  U) = 

Pr{L 5 Y' 5 U I Y ) .  As defined earlier, the corresponding coverage probability 

of the prediction interval is defined as C P ( L ,  U) = P r ( L  5 Y' 5 U). Although 

some authors consider both (e. g. (181, [20]), we will focus on the latter measure 

of interval coverage. In general, to assess the accuracy of interval predictors, var- 

ious summary measures of the closeness of the observed coverage probabilities to 

the prespecifietl norninai level a are calculated and comparisons are made of their 

expected values for different predictors of interest. The mean. standard deviation 

and mean square error of these coverage probabilities are examples of measures 

considered. Since many interval predictors may have close-to-nominal coverage, a 

comparison of the narrowness of the interval lengths is also important. Various 

rneasures of this narrowness can be used. such as average length. When exact ex- 

pressions are difficult to obtain, approximate estimates of these measures, such as 

those based on asymptotic or simulation results, are compared. In our particular 

case, we will obtain approximate coverage probabilities and average lengths of the 

intervals based on  simulation results for the five predictors discussed earlier. Nom- 

inal levels will b e  set at a = 0.05,0.10. Comparisons of the approximate coverage 

probabilities to the nominal levels and the average lengths will be made among the 

five interval predictors of Y ' = N2 for each NHPP model given in Table 1.1. 
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4.2.3 A n  application 

Model and data information 

We obtained one- and two-sided prediction intervals for N2 under the EOSN 

model. Rather than maximizing the log-likelihood based on the original param- 

eterization, we maximized the log-likelihood based on the log-linear reparameter- 

ization given in Table 2.7, for reasons given in Section 2.4. We clid not ignore 

those cases for which a2 > 0 (and hence, p , v  < 0). Under this parameterization, 

~ ( q )  = [exp(02 ~ 2 )  - exp(a2 TI)]. The variance estimates for the param- 

eters a1 and a2 were obtained using the expected information matrix under this 

parameterization and Var j [ ~ ( i ) ]  was obtained using the delta method. 

First. we obtained one- and two-sided 95% prediction intervals based on the 

EOSN model for DS3 and DS4. We chose these particular data sets as examples 

because the EOSN model fits well for both models based on evidence gathered in 

Chapter 3. We split the two data sets at T1 = 15.00 (hours) and T1 = 2.50 (hours), 

respectively. We then used the observed data over (0, T 1) to obtain predictions of 

N2 over ( T I ,  T2], where T2 is the actual truncation time for these data sets. In 

particular, T2 = 28.71 (hours) and 2'2 = 4.62 (hours) for the respective data sets. 

The resulting prediction intervals are given in Table 4.1. The actual N2 for both 

truncated data sets is included in all the prediction intervals. For both data sets, 

we see that Vz,, q,, and 'D;, are the same and that they differ slightly &om 'D; 

and Di. Overall, the normal-based prediction intervals are shorter than those based 

on the bootstrap distribution. We believe that bigger differences in the prediction 

intenmls might be seen if u(ij)  were smaller. 

Next, we obtained prediction intervals for twelve simulated data sets. We gener- 
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Table 4.1: One- and two-sided 95% prediction intervals of N2 based on EOSN for 
DS3-4. Time is measured in hours. 

Data I D 1  D 2 1  '022 '023 '03 
DS3 
rl = 15.00 T 2  = 28.71, N2 = 26, u ( i )  = 19 

two -sided 
bootstrap 
normal 

one-s ided 
bootstrap 

l"1 = 2.50 T 2  = 4.62. N2 = 6 0 , u ( i )  = 45 
two-s ided 

bootstrap 
normal 

one-s ided 
bootstrap 
normal 

ated samples from the EOSN model with /3 = 1, v = 50,100,200. and for two differ- 

ent values of T1 and T2. The T 1  were chosen such that roughly 50% and 90% of the 

expected number of errors to be eventually detected are in fact discovered by T I .  In 

other words, TI is determined such that E{N(O, T l ) )  = v(1-  exp{-PT1)) = av,  

for a = 0.5,O.g. Two values of T2, T2 = 22'1 and T 2  = 5 TI, were also chosen. In 

general, the results will depend on the product P T1 and P T2. h this case, since 

T2 is a function of TI and T1 is a function of a and we chose P = 1, the results 

wdl hold for P = 1 and the two values of a. The twelve samples were simulated for 

each combination of 2'1, T2 and v similar to that that done in Section (2 .2 .2) .  In 

particular, we did the following: 

1. Simulate N, a Poisson random variable with mean v  = E{N(O, 00)). 
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2. Simulate N standard exponential random variables. Keep those simulated 

values that are 5 T 1. Sort these remaining N1 values in ascending order. 

This now constitutes the sample of N1 ordered failures times t i ,  , t N l  for 

given T1 and v .  

3. The number of left-over simulated values that are 5 T2 constitute the sample 

of N2 failure times. 

Results  of simulation s tudy  

Irttroduction 

For each of the twelve samples that were generated, we obtained two-sided 90% 

and 05% prediction intervals for N2 based on the vasious R:s. Both the normal 

distribution and the parametric bootstrap-t distribution (with B = 1000) were used 

as approximates to the distributions of the Ris. The above process was repeated 

1000 times to obtain coverage probabilities (CP's) and average lengths ( AL's) of 

the prediction intervals. That is. prediction intervals were calculated for 1000 sets 

of twelve samples, and coverage probabilities and average lengths were calculated 

using these 1W.j prehction intervals. 

Comparison of the 'R,t 

We first compared the distributions of the simulated parametric bootstrap samples 

for each of the five 'R,', based on B = 1000 and various sets of values for v ,  T 1 

and T2. The sample mean (i), variance (b2) ,  skewness and kurtosis (5) 
coefficients calculated for each sample in one set of simulations are given in Table 

4.2. Interaction plots for these quantities are also given in Figores 4.1-4.4. Normal 

probability plots were also obtained but are not provided in the interest of space. 

To begin with, the table values and plots indicate that the generated bootstrap 
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Figure 4.1: Plots of the sample mean (z) as T2 increases from 2 * T1 to 5 * T1 and 
v increases from 50 to 200 for one set of bootstrap distributions based on EOSN. 
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Figure 4.2: Plots of the sample variance ( B 2 )  as 2'2 increases from 2 * T1 to 5 * T1 
and v increases from 50 to 200 for one set of bootstrap distributions based on 
EOSN. 
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Figure 4.3: Plots of the sample skewness ( jl ) as T2 increases from 2 * T1 to 5 * T1 
and v increases from 50 to 200 for one set of bootstrap distributions based on 
EOSN. 
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Figure 4.4: Plots of the sample kurtosis (Tz) as T2 increases from 2*Tl to 5*T1 and 
v increases from 50 to 200 for one set of bootstrap distributions based on EOSN. 
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Table 4.3: Two-sided 95% prediction intervals of N2 - for one set of twelve simulated 
samples from the EOSN model. 

Data I Dl 2 1  v22 9 2 3  D3 

norm a1 
T2=5T1, N2=22, u(6) = 16 

boot 
normal 

T1=2.30 T2=2T1, N2=5, u(6) = 8 
boot 
normal 

T2=5T1, N2=5, u(+) = 9 
boot 
normal 

,u = 100 
T1=0.69 T2=2T1, Z=24, u(6) = 25 

root 
normal 

T2=5T1, N2 = 45, u(+) = 43 
boot 
normal 

T1=2.30 T2=2T1, N2=9, u(6) = 10 
boot 
nor ma1 

T2=5T11 N2=10, u(4) = 12 
bootstrap 
normal 

normal 
T2=5T1, N2=92, u(6) = 75 

boot 
normal 

I'k2.30 T2=2T1, N2=17, u ( i )  = 32 
bootstrap 
normal 

T2=5T1, N2=19, u(6) = 38 
boot 
normal 
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Table 4.4: Coverage probabilities and average lengths of two-sided 95% prediction 
intervals of N2 based on EOSN. 

Data I Dl p2 1 D22 v 2 3  v3 

boot 
normal 

T2=5T1 
boot 
normal 

T1=2.30 T2=2T1 
boot 
normal 

T2=5Tl 
boot 
normal 

boot 
normal 

T3=5T1 
boot 
normal 

T1=2.30 T2=2T1 
boot 
normal 

T2=5T1 
boot 
normal 

boot 
normal 

T2=5T1 
boot 
normal 

T1=2.30 T2=2T1 
boot 
normal 

T2=5Tl 
boot 
normal 
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Figure 4.5: Plots of the coverage probabilities of the 95% prediction intervals as T2 
increases from 2 * TI to 5 * TI and v increases from 50 to 200. 
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Figure 4.6: Plots of the average lengths of the 95% prediction intervals as T2 
increases from 2 * T1 to 5 * T1 and v increases fiom 50 to 200. 
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Table 4.5: Coverage probabilities and average lengths of two-sided 90% prediction 
intervals of N2 based on EOSN. 

Data I Dl D21 D22 v23 D3 

boot 
normal 

T2=5T1 
boot 
normal 

T1=2.30 T2=2T1 
boot 
normal 

T2=5T1 
boot 
nor ma1 

v = 100 
T1=0.69 T2=2T1 

boot 
normal 

T2=5T1 
boot 
normal 

T1=2.30 T2=2T1 
boot 
normal 

T2=5Tl 
boot 
normal 

boot 
normal 

T2=5T1 
boot 
normal 

T1=2.30 T2=2Tl 
boot 
normal 

T2=5TI 
boot 
normal 
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exx~pirical distributions for all the Ri's are positively skewed (TI >> O), thick-tailed 

(42 >> 0)  and non-normal when v = 50 and T2 = 5T1. For the larger values 

of v and same T2, the distributions seem approximately normal, except for those 

based on the Ri. We also see that as v increases, the distributions within each 

set of 7Z;'s become closer to normally distributed. The samples based on R; are 

relatively more positively skewed, thick-tded and non-standard normal than those 

based on the other Ri 's, regardless of the values of v ,  T 1 and T2. Similar behaviour 

occurs for Rj, but not as pronounced as that for 72;. As for the samples based on 

the Ri's,  the ones for 125, and R;, within each sample have almost identical table 

values and plots. Overall, the samples based on these two Rl's are approximately 

normal, with the exceptions cited earlier. Lastly, the distributions based on R;, 

exhibit similar behaviour to those of the other R;'s when v is large, but are slightly 

less normal when v = 50. 

Comparison of the 

We next compared the 95% predictiou intervals for various sets of twelve simulated 

samples. The results for one set of simulations are given in Table 4.3. W h e n  

T1 = 0.6931 and T2 = 5 TI, regardless of the size of v, the prediction intervals 

for all the 72:'s are extremely long. This behaviour makes sense because if one has 

only observed roughly 50% of the total expected failures, one would anticipate that 

there would be more uncertainty attached to predicting the expected number in a 

rather large future time intend.  Regardless of the size of v ,  we see that D;,, 'D;,, 

and 'D;, are virtually the same, except that the limits may differ by one or two 

when v = 50. This is not surprising, given the results for their respective 'R,"s. 

The Vi's also agree well with those given by the above three DT's. There are some 

slight differences, but none that are appreciably large. Overall, the normal-based 

prediction intervals are shorter than those based on the bootstrap distribution. In 
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those situations for which the Rl's are non-normal in shape, there are relatively 

large differences in the prediction limits of the bootstrap intervals compared to 

those based on the normal-based ones. One would not want to obtain prediction 

intervals based on the normal approximation to the Rr's in these situations. 

Comparison of the CP and AL 

Both 95% and 90% prediction intervals were calculated for 1000 sets of twelve sam- 

ples, and coverage probabilities and average lengths were calculated using these 

prediction intervals. The results are given in Tables 4.4 and 4.5. The CP are 

recorded in percentages and the AL are given in parentheses in both tables. Inter- 

action plots for the CP and AL of the 95% prediction intervals are also given in 

Figures 4.5-4.6. The relatively large difference in the AL's between the 95% and 

90% prediction intervals indicate that the distribution of the approximate pivotals 

has a long tail. Since the results are similar for both, the remaining discussion is 

based on those for the 95% prediction intervals. When 2'1 = 0.6931 and T2 = 5 TI, 

regardless of the value of v and approximation used, the calculated CP's for all the 

VT's are slightly smaller than the nominal value and the AL's are extremely long. 

This agrees with the results given above for the respective Rt's and 27;'s for one set 

of simulations. For a given sample and approximation, the CP's and AL's for all 

the V2's are equal. The CP's and AL's obtained using the normal approximation 

appear smaller than those based on the bootstrap. 

Overall, for the EOSN model, both the normal- and the bootstrap-based predic- 

tion intervals have coverage probabilities close to the nominal values (either 0.95 or 

0.90). The exception is when roughly 50% of the total number of expected failures 

v have been observed by TI. The normal-based prediction intervals are relatively 

shorter and have smaller coverage probabilities than those based on the bootstrap 

I, regardless of which is used. A conservative, but more computer-intensive, 
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approach would be to use the bootstrap approximation alI the time, or at least 

when v is expected to be small. Nonetheless, for v known to be large, the quick and 

easy normal-based approximation seems appropriate for those prediction intervals 

based on any of the Rzls and possibly the R3. We do not recommend using the 

normal-based approximation for those based on R1, unless v is known to be very 

large. Regardless of the 72, used and the value of v ,  there is a lot of uncertainty 

observed for predicting N2 for large T2 when roughly 50% of the total number 

of expected failures v have been observed by 2'1. This behaviour is reflected in 

the extreme average lengths and the less-than-nominal coverage probabilities of all 

the prediction intervals for N2 based on both approximations to the 72,'s. Further 

cliscassion is provided in Section 4.4. 

4.3 Prediction with the accumulation of data 

4.3.1 Introduction 

As more information becomes availabIe - that is, as T1 increases - N3 decreases 

and prediction of N3 = N ( T 1 ,  m] becomes more precise. This information may be 

useful for design purposes and for determining when to stop testing. In this section, 

we f i s t  discuss the fiequentist and Bayesian approaches to repeated predictions. 

We follow with an application using the EOSN model. 

4.3.2 Bayesian approach 

To assess the effect of data accumulation on prediction, it may be easiest to think in 

terms of the Bayesian framework. Updating the appropriate predictive distribution 

is usually relatively easy to implement. Since we are interested particularly in 
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assessing the effect of data accumulation on prediction of N3,  we need to update the 

predictive distribution as more data becomes available. For illustrative purposes, 

let us assume that we observe another time-truncated sample DTlPTZ over the time 

interval (Tl, T2] ,  where 0 < T1 < T2 < oo. 

Note that p ( q  I DovTI)  effectively becomes the new prior density. It follows that the 

updated predictive distribution for N3 is given by 

for r = 0.1, . . . , oo. The updated point and interval estimates are then obtained 

using this updated predictive distribution. In the example below, we calculate 95% 

one- and two-sided highest density regions (HDR's) for the predictive distribution 

for N3. In this situation, the 100a% HDR for N3 is defined to be I = ( N 3  : 

p(NtlD[.)) >_ c) ,  where c is chosen such that CIp(N31  D(.)) = a. 

4.3.3 Frequentist approach 

In addition to the Bayesian approach, we consider a fiequentist approach to assess 

the effect of data accumulation on the prediction of N3 = N(T1,oo) .  Although 

probability calculations are dear, there is no straightforward approach to assessing 

joint confidence levels in the fiequentist scenario. Our approach is to simply give re 

peated 95% (say) prediction intervals. The hequentist prediction intervals are then 



CHAPTER 4. PREDICTION 

Figure 4.7: A plot of A(T1; i ' j )  vs. 2'1 overlaid with a plot of J V a r [ ~ 3  - u(+)] vs. 
T I  for the EOSN model and simulated data. 
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cotnpared to the appropriate Bayesian HDR's as 7'1 increases. We also consider 

plots that show how J v ~ ~ [ N J  - ~ ( i ) ) ]  changes as more data becomes available. 

For example, we may look at a plot of A(T1; 6) versus T1 overlaid with a plot of 

, / v a r [ ~ 3  - u(i)) ]  versus T 1  to see how these curves relate to one another as T1 

increases. As an illustration, we generated some data from the EOSN model with 

/3 = 1 and v = 50. We calculated and plotted the relevant quantities. The plot is 

given in Figure 4.7. We notice immediately that in the region where there is not 

much information about v = A(oo) (as discussed in Section 1.4), \ l ~ a r [ ~ 2  - a(+)] 
is relatively large. As more information becomes available, the asymptotic standard 

error decreases to zero. 

4.3.4 An application 

Model and data information 

We obtained Bayesian and frequentist prediction intervals for the EOSN model. 

For reasons given in Section 2.4, we used the log-linear parameterization of the 

model. Under this parameterization, u3(r)) = F [ e x p ( a 2  TI)]. The frequentist 

prediction intervals for N3 were calculated in the same manner as those for N2. 

as described in Section 4.2. The relevant quantities used to calculate the Bayesian 

HDR's are given below. 

Bayesian model information 

For the loglinear parameterization, 

where S = xy=l t i ,  -00 < a1 < ml and a* < 0. We chose to use a joint conjugate 
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prior. In particular, w e  used the natural family of conjugate joint priors of the form 

p(al, oz) a exp {kl a1 + k2 or + 83 k x p ( a ,  TI) - l]} . 
a2 

where kl. k2 and k3 are the hyper parameters that need to be specified. In partic- 

dar,  we chose an improper prior of the form 

p(al, a2) cc exp {kl al) , for kl 5 0, 

by setting k3 z 0 because we want the prior to be independent of the stopping 

time TI .  and k2 r 0 because this was done in (901 and [91]. For the comparative 

sttidy, we preassigned k l  = 0, -1. We chose k l  = -1 because it corresponds to the 

noninformative conjugate prior under the "Raftery" parameterization used by [go] 

and 1911 in their analysis. This prior is not invariant to changes in the time variable 

because both a1 and a2 are scale parameters under this parameterization. We also 

considered the time invariant conjugate prior with kl = 0. 

Multiplying equations (4.2) and (4.3) yields the following posterior density 

where the constant c is obtained by integrating the above equation with respect to 

both parameters. In particular, 

Evaluation of the above integral requires numerical approximation methods. Since 

it is not a multiple integral, simple quadrature integration techniques, such as the 
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trapezoidal rule, may be implemented to approximate the integral with a high 

degree of accuracy. Before implementing the numerical integration met hod, it is 

useful to plot the integrand for the specific case on hand. Since the integrand is 

bell-shaped with rapidly decreasing tails in most cases, we can integrate over a 

closed region, say ( c L ,  cv), instead of integrating over (0,oo). The values for c~ and 

cv are chosen such that area under the curve is essentially zero outside this closed 

region. Trial and error is wually needed to ensure that you have picked appropriate 

values for c~ and cu. 

With a 3 ( r ) )  given above, the predictive distribution for N3 is given by 

where the constant of proportionality c is given above, and r = 0.1, . . . : w. Nu- 

merical evaluation of integrals is not required in this case. In fact, numerically 

integrating the integral for c is not required as long as the calculated values for 

p ( N 3  = rlDotT1) are scaled so that zzO p(N3 = T ( D ~ , ~ ~ )  = 1. We verified for 

specific cases that the infinite series xzO p(N3 = rlDotT1) converges for k l  5 0 

using the integral test for the region of the series for which p(N3 = rlDoVT1) is a 

decreasing sequence of values as r increases. 

Data infomation 

First, we calculated one- and two-sided 95% fiequentist and Bayesian prediction 

intervals for N3 for DS3-4. These data sets were chosen for the same reasons given 

in the k s t  section. As was done in the last section, we split the two data sets at 
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T1 = 15.00 and T 1 = 2.50, respectively. T 2  was chosen to be the actual truncation 

times for the data sets. We then used the observed data over ( 0 , T l )  to obtain 

estimates of N3 over ( T I ,  oo) and then used the entire data set (O,T2)  to obtain 

estimates of N3 over (T2,oo). 

Next. we calculated one- and two-sided 95% frequentist and Bayesian prediction 

intervals for N3 for a set of three simulated samples from the EOSN model. Three 

samples fiom the EOSN model were generated for P = 1 and v = 50,100,200. 

The updated truncated times T 1  and T 2  were determined such that roughly 50% 

and 90% of the expected number of errors to be eventually detected are in fact 

discovered by these times. respectively. An outline of the simulation study is as 

follows: 

1. Simulate N ,  a Poisson random variable with mean v = E{N(O.  00)). 

2. Simulate N standard exponential random variables and sort them. 

3. Segment the data set into two separate sections. In particular, Dorl con- 

sists of the data in (0 .  T I ]  with corresponding N3 given by the number of 

remaining simulated values: and, DTl,TZ consists of the data in (TI, T2] ,  with 

corresponding N3 gwen by the number of left-over simulated values. 

4. Obtain the Bayesian and fiequentist prediction intervals of N3 based on DT1 

and D T ~  = D T ~  U D T ~ . T ~ -  

Results 

First, we discuss the results for DS3-4. Plots of the Bayesian predictive distributions 

for N3 based on the two prior densities are given in Figures 4.8 and 4.9. Regardless 

of the prior used, the predictive distributions are skewed. As T1 is increased, 
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Figure 4.8: Plots of the predictive distribution with k l  = -1 for N3, DS3,4 and 
two values of T1. 



CHAPTER 4. PREDICTION 

Figure 4.9: Plots of the predictive distribution with kl = 0 for N3, DS3,4 and two 
values of T 1. 

DS3 (TI =15.0) 



CHAPTER 4. PREDICTION 

Table 4.6: Two-sided 95% prediction intervals of N3 based on EOSN for DS3-4 and 
two values of TI. Time is measured in hours. 

Data attributes I prediction intervah 
DS9 - 

T l  = 15.0 u(6) = 30, V(3) = 459.30 
frequentist 

bootstrap 
normal 

Bayesian 
kl = -1,122 = O  
bl = 11.2 = 0 

rl = 28.70 u(+) = 23, v(i) = 140.32 
bequentist 

bootstrap 
normal 

Bayesian 
11-1 = -1,122 = O  
k1 = k2 = 0 

bootstrap 
normal 

Bayesian 
It1 = -1,k2=O 
k1 = k2 = 0 

Tl = 4.62 u(+) = 50, p(4) = 263.45 

bootstrap 

Bayesian 
kl= -1,k2 = O  
kl = k2 = 0 
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Table 4.7: One-sided 95% prediction intervals of N3 based on EOSN for DS3-4 and 
two values of T I .  Time is measured in hours. 

Data attributes I prediction interuals 
DS3 

frequentist 
bootstrap 
normal 

Bayesian 
11.1 = -1, k2 = 0 
11.1 = 122 = 0 

Tl = 28.70 u($) = 23, P(6) = 140.32 
frequentist 

bootstrap 
normal 

Bayesian 
k l  = -1J2 = 0 
k l = k 2 = O  

0% 
T1 = 2.50 u(6 )  = 75. V ( i )  = 1140.17 

bequent is t  
bootstrap 
normal 

Bayesian 
Izl= -1,k2 = 0 
k1 = k2 = 0 

T1 = 4.62 u ( i )  = 50, V(C) = 263.45 
fnquentist 

bootstrap 
normal 

Bayesian 
k l =  -1,k2 = O  
k l = k = O  
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they become less skewed and the median. mean and mode decrease. The calculated 

Bayesian and frequent ist two- and one-sided 95% prediction intervals, u(6) and v(ir) 
are given in Tables 4.6 and 4.7, respectively. As expected, v(i) decreases when T1 

is increased. For the most part, similar results hold for the one-sided as for the two- 

sided 95% prediction intervals. The exception is that, although they are slightly 

wider overall, the bootstrap-based one-sided prediction intervals are comparable to 

the Bayesian intervals based on the prior density with kl = 0, while the two-sided 

bootstrap-based prediction intervals are comparable to the Bayesian intervals based 

on the prior with it1 = -1. As expected, the normal-based prediction intervals are 

liarrower than the bootstrap-based prediction intervals. The Bayesian intervals 

based on the prior with kl = 0 arc slightly narrower than those based on the prior 

with 11.1 = -1. 

Next, we discuss the results for the simulation study. Plots of the Bayesian 

predictive distributions for N3 based on the two prior densities are given in Figures 

4.10 and 4.1 1. The plots are similar to those observed for DS3-4. Regardless of the 

prior used, the predictive distributions are skewed. As 2'1 is increased, they become 

less skewed and the median, mean and mode decrease a substantial amount. The 

calculated Bayesian and frequentist two- and one-sided 95% prediction intervals. 

I ' ( + ) ,  and P(i) are given in Tables 4.8 and 4.9, respectively. Similar results to those 

found for DS3-4 were obtained, with two noticeable exceptions. For one thing, 

regardless of the size of v, S(G) decreased substantially when TI was increased to 

reflect a change fiom 50% to 90% of the expected total number of failures to have 

been observed by TI. Secondly, the upper limits for the bootstrap-based prediction 

intervals are infinite for v = 50 (for one- and two-sided intervals) and v = 100 (for 

two-sided intervals only). This occurs because we have not ignored those cases 

for which we did not obtain a finite, positive-valued m. 1. e. for v. Recall that for 
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Figure 4.10: Plots of the predictive distribution with kl = - 1 for N3 and the three 
si~~iulated samples from EOSN. 
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Figure 4.11: Plots of the predictive distribution with kl = 0 for N3 and the three 
si~nulateci samples from EOSN. 



CHAPTER 4. PREDICTION 136 

Table 4.8: Two-sided 95% prediction intervals of N3 - for three simulated samples 
from the EOSN model. 

Data attributes I prediction intervals 
v = 50 

= 0.69 N3 = 34, u($) = 16,V(i) = 351.76 
frequentrst 

boot 
normal 

T1 = 0.69 N 3  = 51*, u(+) = 45,~(i) = 1459.55 
freguentzst 

boot 
normal 

B q e s i a n  12. = -1, k2 = 0 
$1 = $2 = p 

T l = 2 . 3 0  N3=14,u(i j )=11,V(G)=27.03 
frequentrst 

boot 
normal 

Bayesian kl = -1.k2 = 0 
kl = k2 = 0 

TI = 0.69 N3 = 11.1 u(i) = 78?~(4) = 2429.06 
frequentlsi 

boot 
normal 

Bayesian = -1,k2 = 0 
$1 = k2 = P 

T1 = 2.30 3 = 17., u(i) = 38,V(il) = 157.13 
equentzst P 

boot 
normal 

Bayesian kl = - l , 4  = 0 
kl = 122 = 0 
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Table 4.9: One-sided 95% prediction intervals of N3 - for three simulated samples 
from the EOSN model. 

Data attributes I prediction intervals 

rl = 0.69 fl3 = 30., u(+)  = 1 6 , ~ ( i )  = 351.76 
requentzst 

boot 
normal 

Bayesian kl = - I , @  = 0 
kl = k2 =$ 

r1 = 2.30 N3 = 5 . u ( i )  = 9, V ( i )  = 36.05 
f requenh t  

boot 
normal 

Bayesian k l  = -1,k2 = 0 
k l  = k2 = 0 

Z'l = 0.69 N 3  = 51, u(6)  = 45,i/(u) = 1459.55 
frequentist 

boot 
normal 

Bayesian k1 = -1,k2 = 0 
kl = k 2 = P  

T1 = 2.30 N 3  = 10.: u(6) = l11V(4)  = 27.03 
frequentzst 

boot 
normal 

Bayesian 1;1 - - -1, k2 = 0 
b l = E 2 = O  

v = 200 
n = 0.69 N3 = 111 u ( f )  = 78,V(Q) = 2429.06 

fietpentzsi 
boot 
normal 

Bayesian kl  = - 1 , k 2  = 0 
kl = k 2 = P  

l'1 = 2.30 f41equ=e2&t u(6) = 38,V(ii) = 157.13 

boot 
normal 

Bayesian E l  = -1,k2 = 0 
kl = k2 = 0 
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the original parameterization of the model, u3(q)  = u p  ezp(-P TI). From this 

expression, we see that when i is infinite, u3(i j)  is also infinite. If we refer back 

to Table 2.2, we note that when only 50% of v = 50,100 have not occurred by 

time T I ,  approximately 16.70% and 7.90% of the estimated values for v will not be 

finite and positive-valued. With these results in mind, one can easily see why the 

upper limits of the bootstrap distribution for N3 are infinite for these cases. These 

calculated prediction intervals simply reflect the fact that insufficient information 

is available for making adequate inferences about N3. 

4.4 Conclusions 

The proposed frequentist-based interval predictors for N2 = N ( T 1 ,  T 2 ] ,  the number 

of events in the future time interval ( T I ,  T 2 ]  based on the observed data up to time 

T I .  may be used for any NHPP model observed under the time-truncated sampling 

scheme. For the general NHPP model, the critical values of the distribution for any 

of the approximate pivotals 7Z,'s used to obtain the prediction intervals will depend 

on the values for p,  T 1  and T2. For those models which have a single P scale 

parameter, suck as the GAhIN and EOSN model, the critical values will depend on 

p, T1 and T 2  only through the combination of P T 1  and /3 T2. 

For the EOSN model, both the normal- and the bootstrap-based prediction 

intervals for N2 have coverage probabilities close to the nominal values (either 0.95 

or 0.90). The exception is when roughly 50% of the total number of expected 

failures v have been observed by TI. The normal-based prediction intenmls for N2 

are relatively shorter and have smaller coverage probabilities than those based on 

the bootstrap-t, regardless of which 7ZT is used. A conservative, but more compnter- 

intensive, approach would be to use the bootstrap approximation all the time, or 
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at least when v is expected to be small. Nonetheless, for v known to be large. the 

quick and easy normal-based approximation seems appropriate for those prediction 

intervals based on any of the Rlls  and possibly the R3. We do not recommend 

using the normal-based approximation for those based on R1, unless v is known to 

be very large. 

Regardless of the 7Z, used and the value of v,  there is a lot of uncertainty 

observed for predicting N2 for large T2 when roughly 50% of the total number 

of expected failures v have been observed by TI. This behaviour is reflected in 

the extreme average lengths and the less-than-nominal coverage probabilities of all 

the prediction intervals for N2 based on both approximations to the %'s. Similar 

behaviour was observed for predicting N3 in the same context. This makes sense 

because we have inadequate data available to provide good predictions of v (and 

hence, N2 and N3) in these situations. As discussed in Chapter 2, more data is 

required in order to obtain good predictions. 

Similar results hold for the one-sided as for the two-sided 95% prediction in- 

tervals, with one noticeable exception. It was observed for DS3-4 that, although 

they are slightly wider overall, the bootstrap-based one-sided prediction intervals 

fur N3 we cumparable to the Bayesiau intervds based on the prior density with 

kl = 0, while the two-sided bootstrap-based prediction intervals are comparable 

to the Bayesian intervals based on the prior with E l  = -1. Even though we did 

not obtain Bayesian prediction intends for N2, we anticipate similar comparative 

results between the Bayesian and bootstrapbased prediction intends.  



Chapter 5 

Further work 

5.1 Continuation of current research 

In Chapter 2, we determined conditions for a positive, finite C = &m) for specific 

models belonging to the general family of NHPP models with intensity X(t; q) = 

v &( t ;  P ) .  For NHPP models (other than the EOS model) which have an equivalent 

GOS model, it is of interest to compare the conditions needed to obtain positive, 

finite-valued rn. 1. e. solutions. In particular, if the likelihood under the NHPP model 

is maximized at v = 00, does this imply that the equivalent GOS likelihood is dso 

maximized at N = m? Our results comparing the EOSN and EOS models indicate 

that there is a greater probability of obtaining v = o~ using the EOSN model, than 

obtaining N = CP using the EOS model in certain situations. I t  would be nice to 

know if this holds for the other models. 

In Chapter 3, we proposed a new approach for testing the goodness of fit of 

NHPP models having the above general form. We obtained conditional (on n) crit- 

ical d u e s  of the W:,q statistic, it is also of interest to examine the conditional and 

unconditional power of the test for various models. In addition, we also proposed 
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a four-parameter NEWN model that nests the EOSN, GAMN. WOSN and LEEN 

models. We want to investigate further the differences in the NEWN, WOSN and 

LEEN models by looking at their respective intensities and the extent to which we 

can discriminate among them with typical data. 

In Chapter 4, we proposed a fkequentist approach for providing approximate 

interval predictors of N2 = N(T1, T2], the number of events in the future time 

interval (TI, T2], based on the observed data up to time TI .  We also used this 

method to assess the effect of data accumulation on prediction of N3 = N(T 1, oc], 

the number of remaiuing events to be eventually observed given data has been 

observed up to time TI .  We also discussed how to obtain Bayesian prediction 

intervals and compared them with frequentist-based prediction intervals in some 

examples with the EOSN model. In addition, it would be of interest to conduct 

similar simulation studies for the other models in Table 1.1. Some preliminary 

results (not given) on the prediction intervals constructed using the bootstrap-t 

and normal approximations to the 7&'s for the real data sets Dl-4 indicate that the 

results will be similar for the other models. Lastly, we are interested in assessing 

how the predictions of N2 and N3 based on various models will differ for specific 

data sets. 

5.2 Additional research of interest 

As mentioned in Section 1.2, both the GOS and NHPP families of models are not 

highly realistic models for modelling the occurrence of failures in the debugging 

phase of sofiware program development. If more reported information about the 

underlying failure detection process were available, more ambitious models could 

be used to incorporate this information. In addition, a thorough understanding of 
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the underlying failure detection process could be used to evaluate the underlying 

assumptions of the GOS and NHPP models in this context. 

As shown in Figure 3.2, there is an apparent lack of fit between the estimated 

mean value functions based on the models in Table 1.1 to the cumulative number of 

failures of DS1-2. This lack of fit is due mainly to the presence of change-points in 

the failure time behaviour over time. In order to reduce the model bias for predictive 

purposes, it is of interest to formulate tractable models that a) incorporate one or 

more change-point effects, and; b) can be used to test the statistical significance of 

these effects against an appropriate NHPP model alternative. 

A change-point in the intensity A ( t ;  q) of a NHPP can be generally defined as 

the point at which X(t ;  7 )  changes its trend or its functional form. Usually the 

change-point is unknown. Poisson models which take into account a change-point 

in the process have been investigated by some authors ([3], [76], [89], [102], (1031). 

It is of interest to develop and compare models that take into account change-point 

behaviour in the intensity function. For those models with an intensity function 

that is a function of the change-point T ,  we will  initially assume T to be known, 

but we anticipate relaxing this assumption. When r is considered unknown, it 

is of interest to test for the presence of the change-point. Complications arise in 

that under the null hypothesis, r is meaningless and the m. 1. e. i does not satisfy 

regularity conditions required for standard asymptotic theory (the parameter space 

under the null is on the boundary), as discussed in [3], [76], and [89]. 

Within the software reliability context, [I021 and (1031 attributed change-point 

behaviour to learning and skill improvements made by the programmers during the 

debugging phase of the failure process. They developed the "s-shapedn (GAMN) 

and "inflection s-shapedn (SEOSN) NHPP models to model change-point behavior. 

The intensity for the SEOSN model is given in Section 3. A partidar feature shared 
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Figure 5.1: A(t ;  7 )  versus t for the EOSN, SEOSN, and GAMN models and DS1-4. 
Time is measured in hours. 
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by both models is that their intensity is not a function of T .  The SEOSN model is 

more flexible than the GAMN model in that it is not forced to be "s-shaped". The 

,d2 inflection parameter adds flexibility to the model. Plots of the estimated mean 

value functions under the EOSN, GAMN and SEOSN models and the cumulative 

ruimber of failures versus time for DS1-4 are given in Figure 5.1. While GAMN does 

not fit the data, the SEOSN model fits well overall. In fact, the SEOSN and EOSN 

nrodels give very similar fits. Since the EOSN model is a subset of the SEOSN 

model, a LR test may be performed to test the null hypothesis that the EOSN 

rriodel is appropriate. At the a = 0.5 level, we can not reject the n d  for DS2-4, 

but we can reject the null hypothesis for DS1. The observed AIC value was also 

obtained for the SEOSN model and given in Table 3.5. The SEOSN model is not 

the preferred model for any of the data sets, including DS1. In fact, the WOSN, 

LOGN. LEEN and NEWN models perform better than the EOSN model for DS1. 

Non-Bayesian and Bayesian approaches to inference under a change-point HPP 

model that has an intensity that changes from A1 to X2 at r is considered by [3] and 

[89], respectively. The change-point T is considered unknown. as are A1 and A2. A 

loglinear NHPP change-point model with intensity 

e x p ( ~  + a2 t )  for O l t  S T  

e x p ( a l + 6 1 + a 2 t )  f o r r < t I T l ,  

for unknown parameters al, as, dl and change-point r ,  is considered by [76]. We 

are also interested in developing similar rodependent models in our context. Note 

that the above model used by [76] is a special case of the model given by 

A(t;r))  f o r 0 5 t s ~  

d A(t ;  9) for T < t  5 TI, 
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where X(t; q)  = exp(al + n2 t),  = exp(b) and T unknown. This intensity is simply 

that of the loglinear reparameterized EO SN model. 

It is of interest to compare the models given by equation (5.1) to their appro- 

priate counterparts given by 

h(t; q)  for 0 5 t 5 T 

a, i (a t iq )  forr < t 5 TI 

Our motivation for considering such models arises from a possible change-point 

effect due to a change in the testing compression factor, as discussed in detail in 

[82] and [83]. It is mentioned in both papers that stress (inputs) placed upon the 

software system during testing is often accelerated? as is done in hardware testing. 

The resultant effect is that the time-scale is multiplied by the testing compression 

factor. Although it seems more reasonable to anticipate the stress load placed 

on the software system to change often, we will only consider the case when it is 

assumed to change once; hence, the model given in equation (5.2). In addition to 

that of the EOSN model, it would be of interest to use the LOGN and POWN 

intensities in equations (5.1) and (5.2). Since the GAMN model akeady accounts 

for change-point behaviour, it does not seem reasonable to consider it. The WOSN 

and POWN models akeady have three parameters, so a fourth could make them 

more intractable. As discussed earlier, it seems reasonable to first assume that the 

change-point T is known for models given by equations (5.1) and (5.2) in order to 

check the possibility of using these models under this situation. One may then 

relax this assumption and then check on their feasibility again. 
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