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Abstract 

There are two big challenges which restrict the extensive application of fully coupled 

geomechanics-reservoir modeling.  The first challenge is computational effort.  Consider a 3-D 

simulation combining pressure and heat diffusion, elastoplastic mechanical response, and 

saturation changes; each node has at least 5 degrees of freedom, each leading to a separate 

equation.  Furthermore, regions of large p, T and σ′ gradients require small-scale discretization 

for accurate solutions, greatly increasing the number of equations.  When the rock mass 

surrounding the reservoir region is included, it is represented by many elements or nodes.  

These factors mean that accurate analysis of realistic 3-D problems is challenging, and will so 

remain as we seek to solve larger and larger coupled problems involving nonlinear responses. 

To overcome the first challenge, the displacement discontinuity method is introduced 

wherein a large-scale 3-D case is divided into a reservoir region where Δp, ΔT and non-linear 

effects are critical and analyzed using FEM, and an outside region in which the reservoir is 

encased where Δp and ΔT effects are inconsequential and the rock may be treated as elastic, 

analyzed with a 3D displacement discontinuity formulation.  This scheme leads to a 

tremendous reduction in the degrees of freedom, yet allows for reasonably rigorous 

incorporation of the reactions of the surrounding rock.   

The second challenge arises from some forms of numerical instability. There are 

actually two types of sharp gradients implied in the transient advection-diffusion problem: one 

is caused by the high Peclet numbers, the other by the sharp gradient which appears during the 

small time steps due to the transient solution.   The way to eliminate the spurious oscillations is 

different when the sharp gradients are induced by the transient evolution than when they are 
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produced by the advective terms, and existing literature focuses mainly on eliminating the 

spurious spatial temperature oscillations caused by advection-dominated flow. 

To overcome the second challenge, numerical instability sources are addressed by 

introducing a new stabilized finite element method, the subgrid scale/gradient subgrid scale 

(SGS/GSGS) method.  
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Nomenclature 

 
Subscripts: f = fluids, g = gas, m=rock matrix, n = non wetting phase, o = oil, p = fluid 
pressure, s = solids, T = temperature, w = water/wetting phase 

 

B  strain matrix relating strain and displacement (m-1) 

Cr   bulk compressibility of the reservoir (Pa−1) 

Co  bulk compressibility of the surrounding strata (Pa−1) 

Cm   compressibility of solid matrix (Pa−1) 

Cf   compressibility of the fluid (Pa−1) 

c π  specific heat of material π (J kg−1 K−1) 

D   elastic stiffness matrix relating stress and strain (Pa) 

Di displacement discontinuity of component i (m) 

DK Damkӧhler number (–) 

E   Young’s modulus (Pa) 

f  external force or flow/heat source/sink vector 

G Lamé elastic constant (Pa) 

h reservoir thickness (m) 

 finite element size (m) 

k  absolute permeability tensor (m2) 

k  absolute permeability (m2) 

k r π  relative permeability of phase π (–) 

K bulk modulus of the material (Pa) 

K π   bulk modulus of material (Pa−1) 



 ix

N  shape functions for the finite element (–) 

Pe  Peclet number (–) 

p  average pressure (Pa) 

P atm  atmospheric pressure (Pa) 

P b  bubbling pressure(Pa) 

P c  capillary pressure (Pa) 

P π  pressure of phase π (Pa) 

Pcgw   the capillary pressure between the gas and water phases (Pa) 

Pcow   the capillary pressure between the oil and the water phases (Pa) 

Pcgo   the capillary pressure between the gas and oil phases (Pa) 

Q   production rate (m3/s) 

S π  saturation of phase π 

t  time(s) 

T  temperature (K) 

u  displacement vector of solid matrix (m) 

 convective velocity vector (m s−1) 

u   convective velocity (m s−1) 

 v π   velocity vector of phase π  (m s−1) 

 

Greek letters  

α  Biot's constant (–) 

β reservoir-fluid coupling coefficient 

β π  thermal expansion coefficient of phase π (K−1) 

Δt  time step (s) 



 x

Δp pressure drawdown (Pa) 

θ   time integration coefficient (–) 

κ   the diffusion coefficient (m2 s-1) 

λ  Lamé elastic constant (Pa) 

λ T  thermal conductivity of solid (W m-1 K-1) 

χ  reservoir-overburden coupling coefficient (–) 

μ π    viscosity of phase π (Pa⋅s) 

ν   Poisson’s ratio (–) 

νr   Poisson’s ratio for the reservoir (–) 

νo  Poisson’s ratio for reservoir surrounding strata (–) 

ρ π  density of phase π (kg m−3) 

σ   total stress, Pa 
 
σ′  effective stress, Pa 

τ  stabilized finite element parameter (–) 

φ  dependent variable in advection-diffusion-reaction equation 

ϕ  porosity of porous media (–) 
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Chapter 1  
Introduction 

 

1.1 Geomechanics and Petroleum Engineering   

Petroleum reservoir engineering involves at least four disciplines: geology, transport, 

thermodynamics and geomechanics. The latter has suffered benign neglect for decades, but 

large-scale development of viscous oils, high-porosity offshore reservoirs, HPHT cases, and 

fractured carbonates with severe stress sensitivity are raising awareness that geomechanics is a 

vital aspect of reservoir management. Because 60% of the world’s liquid fossil fuel is in the 

form of viscous oil in weak sandstones (IEA 2005), geomechanics analysis has become an 

indispensable consideration in oil field development from oil exploration to production and 

monitoring, and the role of geomechanics will still increase sharply in decades to come 

(Dusseault et al. 2007).   

1.1.1 Massive Compaction and Subsidence in Production 

In petroleum engineering, large-scale reservoir compaction due to oil and gas withdrawal can 

lead to surface damage (Wilmington oil field, California; Lago de Maracaibo, Venezuela; 

Niigata, Japan; Ravenna, Italy), casing damage, and even well failure (Bruno 1992).  While 

reservoir compaction itself has been widely recognized as an additional driving mechanism for 

increasing oil and gas recovery, its side effects are undesirable. The most obvious one is 

surface or seafloor settlement, which may create environmental problems and cause damage to 

oil field structures and seabed pipelines. The North Sea offshore oil field Ekofisk, developed in 

the early 1970’s, experienced massive subsidence (4.3 m by 1988) so that all five platforms 

had to be raised in 1988-1990 at a cost of US$485,000,000, and fully redeveloped with two 
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new platforms replacing the original five in the late 1990’s at an additional cost in excess of 

US$3,000,000,000.  Currently, reservoir compaction at Ekofisk appears to be ~12 m, and sea 

floor subsidence has passed 10 m.  Knowing the relationship between the fluid withdrawal and 

the ground surface movement by appropriate geomechanical modeling, we can mitigate the 

losses by taking the prevention measures like water injection or CO2 injection, maintaining the 

pressure inside the reservoir.  

1.1.2 Extensive Casing Shear and Well Damage 

A problem associated with massive subsidence and compaction is extensive casing damage. 

Reservoir compaction and associated bedding plane slip and overburden shear have induced 

damage to hundreds of wells in oil and gas fields throughout the world. Well casing damage 

can be caused by compaction in the reservoir or by overburden formation faulting and bedding 

plane slip. Casing damage types can include compression and buckling, shearing deformations, 

and tensile parting. Compression and buckling damage is most often found within compaction 

zones near perforations, while shear damage is most often found within the overburden and at 

the top of compacting or dilating formations. Shearing damage in overburden and at top of the 

producing interval has been noted in Gulf of Mexico, North Sea, California, and Southeast 

Asia. Knowing the stresses distribution, especially the shear concentration zones, we can 

reduce losses by avoiding placing wells through those zones. 

1.1.3 Cap-Rock Integrity Maintenance in CO2– Enhanced Oil Recovery 

As much of the easy-to-produce oil has already been recovered from oil fields, producers have 

attempted tertiary, or enhanced oil recovery (EOR), techniques that offer prospects for 

ultimately producing 30 to 60 percent, or more, of the reservoir’s original oil in place. CO2-

EOR is one of those attracting the most market interest. Basically, CO2-EOR is the injection of 
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CO2 into depleted oil reservoirs to recover additional oil beyond what would have been 

recovered by conventional drilling. Currently, there is increasing interest in injecting CO2 from 

industrial plants into either depleted reservoirs or aquifers for large-scale sequestration, thereby 

reducing greenhouse gas emissions. Safety studies for such storage of CO2 are extremely 

important since they need to consider the evolution of natural systems over timeframes 

considerably in excess of those considered in ordinary industrial or engineering projects. And 

the key to the success of long-term CO2 storage in depleted oil or gas fields is the hydraulic 

integrity of both the cap-rock and the wellbores that penetrate it. During injection, the pore 

pressure increase induces reservoir expansion, which results in shear stresses at the reservoir 

and cap-rock boundary. Local pressure increase in a fault plane during injection may reactivate 

faults within the reservoir or in those bounding the reservoir as well. Also, high injection 

pressures combined with low injection fluid temperatures can induce hydraulic fracturing 

which can affect the cap-rock. Analysis of these phenomena demands geomechanical 

modeling. Once the state of pressure and stresses was determined by the geomechanical model, 

safe injection pressures can be stipulated to achieve the maximum injectivity as well as 

maintaining the integrity of the cap-rock, and therefore achieving the best benefits. 

1.1.4 Sand Production in Cold Heavy Oil Production 

As oil producers’ attention turned to heavy oil, cold heavy oil production with sands (CHOPS) 

has become a major recovery technique in primary production. In the process of CHOPS, 

continuous production of sand can improve the recovery of heavy oil from the reservoir by a 

factor of 4-10.  With the initiation of sand production from well, the confining stress on the oil 

sands drops and the strength of oil sands thus declines as well. These result in yield and 

dilation, and also make the sands more ductile, susceptible to continuous extrusion, and more 
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easily entrained in flowing slurry (Dusseault 1993). Continuous sand production generates a 

growing zone of high permeability around the wellbore via the creation of a system of 

wormholes. As the oil production rate is substantially related to the sand production, it’s 

meaningful to incorporate the geomechanical model to analyze the sand fluidization and 

production and to predict the increased permeability, and finally to estimate the performance of 

the reservoir production. 

1.1.5 Shear Dilation in Thermally Enhanced Recovery 

After primary production has reached the economic limit, oil producers turn to thermally 

enhanced recovery. Steam assisted gravity drainage (SAGD) is an important thermal recovery 

technique that has been applied extensively in the heavy oil and bitumen reservoirs in Canada 

and has been generally successful, particularly in the very viscous Athabasca oil sands 

deposits.  These deeply buried oil sands usually have a very densely interlocked structure but 

little cementation; once the oil sands are disturbed, the sands grains will easily rotate and 

translate. This will increase the porosity substantially, and the associated permeability 

enhancement could be perhaps a factor of 3-4. The bulk volume increase in this process is 

called dilation.  In SAGD process, when hot, high-pressured steam is injected into the oil 

sands, the effective stresses are greatly reduced, and this results in the reduction of oil sands 

strength and stiffness, which leads to the shear failure of the oil sands. Dilation increases 

significantly at shear failure, therefore SAGD projects should induce oil sands failure for 

optimal geomechanical performance. Knowing the oil sands stresses and strength properties, 

based on the geomechanical analysis, the injection pressures that lead to the shear failure can 

be obtained. This is meaningful in maximizing the enhancement of the thermal recovery 

process. 
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1.2 Coupled Processes in Petroleum Geomechanics 

Different scenarios of the geomechanics effects in petroleum engineering have forced us to 

incorporate geomechanics factor into petroleum engineering analyses, leading to coupled 

geomechanics-reservoir modeling of the stress, pressure and temperature changes in one 

framework. As pointed out by Dusseault (2003), coupling in geomechanics arises in various 

natural and man-made systems, but seems ubiquitous in petroleum geomechanics because of 

large changes in pressures, temperatures, stresses, rates and even chemistry. 

1.2.1 Early Mathematical Solutions to Solid-Fluid Coupling Problems 

Solid-to-fluid coupling problems involve the process in which a change in applied stress on the 

solid produces a change in fluid pressure, and meanwhile the change in fluid pressure produces 

a change in the volume of the solid, which is also called coupled deformation-flow problems.  

The earliest theory addressing the fluid-solid coupling is the consolidation theory by Terzaghi 

in 1923 (Terzaghi 1923). He is recognized for introducing the important concept of effective 

stress, which for soils is well approximated to be the difference between the applied stress and 

pore pressure. Terzaghi’s theory was based on his one-dimensional laboratory experiments. 

Biot (1941) established the general theory of three-dimensional consolidation, which was later 

called the theory of poroelasticity (Geertsma 1966). Biot showed that Terzaghi’s one-

dimensional consolidation theory is a special case of his three dimensional theory. Biot 

subsequently (Biot 1955, 1956a, 1956b, 1962, 1973) extended the poroelastic theory to wave 

propagation, anisotropic and nonlinear materials. McNamee and Gibson (1960) used Biot’s 

theory to obtain analytical solutions for consolidation of a half space due to a strip or circular 

load. Geertsma (1966) applied Biot’s theory to subsidence problems in petroleum engineering.  

Haimson and Fairhurst (1969) applied Biot’s theory to hydraulic fracturing problems. Verruijt 
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(1969) applied Biot’s theory to groundwater hydrology. Rice and Cleary (1976) reformulated 

Biot’s theory and applied it to geophysical problems. Zimmerman (1991) defined a new set of 

compressibilities and consititutive equations based on poroelasticity theory which are widely 

used in petroleum engineering. Detournay and Cheng (1993) also applied Biot’s theory to 

borehole problems and hydraulic fracture problems. Rothenburg et al. (1994) developed an 

analytical poroelastic solution for transient fluid flow into a well considering the overburden 

effects, based on Biot’s theory. Later on, Biot’s equations were extended to multiphase flow 

and for non-isothermal problems (Tortike and Farouq Ali 1987; Lewis and Schrefer 1998; Li 

and Zienkiewicz 1992; Coussy 1995; Charlez 1995; Pao and Lewis 2002).  

1.2.2 Fully Coupled Geomechanics-Reservoir Modeling 

The Theory of Poroelasticity was initially applied in petroleum engineering mainly to 

understand subsidence, estimate stress, and predict production. With the development of 

computer techniques, numerical models started to be used more widely than analytical 

solutions. Most commonly in the petroleum industry, “one-way coupling” or “partial coupling” 

between the reservoir simulation and the geomechanics model was used, but this can lead to 

substantial misestimates because in standard simulators it is implicitly assumed that Δp = -Δσ′, 

so that stress redistribution effects on fluid flow due to the reaction of the elastic surrounding 

rocks are not accounted for.  From a petroleum geomechanics perspective, however, Δσ′ 

affects the pore volume, leading to influx or outflow, which means that the p and T solutions 

given by the reservoir simulator must be “corrected” or “coupled” with the stress changes.  

“Two-way full coupling” between the reservoir simulation and geomechanics model is an 

improvement.  The fully coupled geomechanics-reservoir models mainly fall in two categories: 

iteratively coupled and tightly coupled schemes (Settari and Walters 2001, Dean et al. 2003).  
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Iteratively fully coupled models can be found in (Settari and Mourtis 1994 and 2001, 

Fung et al. 1994, Chin et al. 2002, Minkoff et al. 2003, Wan and Wang 2003, Gai et al. 2003). 

Tightly (fully) coupled models have also been described (Tortike and Farouq Ali 1992, 

Li and Zienkiewicz 1992, Prevost 1997, Lewis and Schrefler 1998, Gutierrez and Lewis 1998, 

Chin et al. 1998, Osorio et al. 1999, Pao and Lewis 2001, Wan 2002, Dean et al. 2003)  

1.2.3 Challenges in Ever-Larger Discretized Reservoir Outer Domain 

In an analytical solution presented by Rothenburg et al. (1994) for transient two-dimensional 

radial flow of a compressible fluid into a line well, it is shown that the stiffness of the 

overburden is an essential coupling element which must be taken into account, e.g. in Figure 

1.1, the stresses redistribution is significantly dependent on the stiffness of the reservoir 

surroundings. Settari (2002) and Osorio et al. (1999) also suggest that the domain should 

include overburdens, sideburdens and underburdens for a better representation of the changing 

reservoir boundary conditions, e.g. in Figure 1.2, a larger outer domain was included, and a 

better prediction was obtained. Hettema et al. (2002) show that depletion-induced subsidence 

modeling requires incorporating the surrounding strata mechanical response, as well.   
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Figure 1.1. Profiles of stresses changes corresponding to different reservoir surroundings 
(After Rothenburg et al. 1994) 

In mining simulations, there is an active and efficient computing technique, the 

displacement discontinuity method, which is an indirect boundary element method for solving 

problems in solid mechanics.  This method is especially useful for simulating large scale 

mining (Salomon et al. 1963) activity tabular ore bodies (which extend at most a few meters in 

one direction and hundreds or thousands of meters in the other two).  It is also usually used for 

analyzing other geomechanical cases involving displacements along faults or joints, and in 

fracture mechanics. An advantage of the displacement discontinuity method for problems in 

geomechanics, like any boundary method, is that the boundary conditions at infinity are 

automatically satisfied.  Hence, full domain discretization and stipulation of boundary 

conditions on non-infinite boundaries can be avoided.   
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Figure 1.2. Boundary effects on the precision of the reservoir performance prediction 
(After Settari 2002) 

Inspired by the similarities between a tabular ore body and the typical tabular reservoir 

in an oil field, comparing the shape and size of a reservoir to the whole domain, we may 
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consider applying this highly efficient method to the area outside the reservoir, and the 

reservoir may be considered as a fault in a half space (Rothenburg et al. 1994; Charlez 1997). 

Therefore, we can use the displacement discontinuity method to replace the boundary element 

method, and to some extent address this challenge. Actually, based on this thought, some 

rapidly executable models have been built to perform high-precision deformation monitoring 

and inversion for reservoir processes (e.g. Dusseault and Rothenburg, 2002). 

1.2.4 Challenges in Convection Issues in Thermal Reservoir Simulation    

Thermal oil recovery processes involve high pressures and temperatures, leading to large 

volume changes and induced stresses. To identify these deformation and stresses, we need to 

address the challenges in thermal reservoir simulations. Challenges in the thermal reservoir 

simulation mainly arise from some forms of numerical instability when solved by finite 

element methods. One is the instability in the temperature field under thermal-advection-

dominant circumstances, and the other is the instability in early time steps in the unsteady 

advection-diffusion problems.  As pointed out by Idelsohn et al. (1996), there are actually two 

types of sharp gradients implied in the transient advection-diffusion problem: one is caused by 

the high Peclet numbers, the other by the sharp gradient which appears during the small time 

steps due to the transient solution.  This sharp gradient, analogous to a shock front in a fluid 

mechanics problem, disappears after a few time steps if the problem is diffusion-dominated, 

but remains as the solution approaches the stationary state if the problem is advection-

dominated.  The way to eliminate the spurious oscillations is different when the sharp gradients 

are induced by the transient evolution than when they are produced by the advective terms, and 

existing literature focuses mainly on eliminating the spurious spatial temperature oscillations 

caused by advection-dominated flow. 



 10

  It’s well known that the standard Galerkin finite element method presents global 

spurious oscillations in advection-dominated problems. Different stabilized finite element 

methods have been proposed to tackle the advection-term-induced numerical oscillations.  

Streamline-upwind/Petrov-Galerkin (SUPG) (Brooks and Hughes 1982) and Galerkin/least-

squares (GLS) (Hughes et al.  1989) are most popular ones. These methods stabilize the 

solution by adding perturbation terms to the variational formulation and tuning the stabilization 

parameters in those terms. These perturbations are proportional to the gradient of the standard 

interpolation functions. The dimensionless Peclet number gives an accurate measure of the 

magnitude of the perturbation to be incorporated. 

  However, when it comes to transient problems, additional difficulties arise associated 

with the occurrence of local oscillations normally associated with sharp transient loads (Wood 

and Lewis 1975). To overcome this difficulty, Tezduyar and Park (1986) introduce a concept 

that employs two types of perturbation terms, one for the advection factor and the other for the 

transient factor. Similarly, Idelsohn et al. (1996) introduce another type of perturbation term to 

specifically incorporate the transient terms, in addition to the perturbation terms mentioned 

above. Nevertheless, both these methods are difficult in implementation for ordinary 

researchers in engineering.  

Recently, Harari (2004) introduced the concept of semidiscrete formulation in time 

integration and incorporated a novel stabilized method, the subgrid scale/gradient subgrid scale 

method (SGS/GSGS), in order to solve the transient advection-diffusion-reaction problem. 

This approach includes the advection term and transient term naturally in a concise way by 

transforming the transient advection-diffusion-reaction problem into a steady advection-

diffusion-reaction problem, which reduces the difficulty in implementation substantially.  To 

take advantage of this approach, we can consider our transient advection-diffusion problem as 
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a special case of the transient advection-diffusion-reaction problem, and finally address this 

challenge. 

1.3 Goals of the Thesis 

In this work, we will consider in a full-field domain the solution of the single-phase and the 

multiphase (water, oil and gas) flow equations in deformable porous media. We attempt to 

exploit the advantage of the displacement discontinuity method in solving the problems in 

infinite and semi-infinite domains, combined with finite element methods for its excellence in 

solving the flow-deformation systems, to present an improved method for the joint simulation 

of the reservoir and the surroundings. We will use an iterative coupling technique to deal with 

these two calculations. The attraction of this method lies in the computational ease in coupling 

a basic FEM reservoir deformation-flow simulator with a basic displacement discontinuity 

simulator.   

  To overcome spurious spatial temperature oscillations in the convection-dominated 

thermal advection-diffusion problem, we place the transient problem into an advection-

diffusion-reaction problem framework, which is then efficiently addressed by a stabilized finite 

element approach, the subgrid scale/gradient subgrid scale (SGS/GSGS). 

  In the following chapters, mathematical fundamentals for the fully coupled 

geomechanics-reservoir simulation are reviewed in Chapter 2; the corresponding FEM 

formulations are given in Chapter 3, where the stabilized FEM scheme is introduced in detail 

as well; the displacement discontinuity method is introduced in Chapter 4, and links with the 

FEM are analyzed, leading to the hybrid DDFEM models; verifications are given in Chapter 5; 

numerical examples are given in Chapter 6; and, conclusions and recommendations are made 

in Chapter 7. 
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Chapter 2  
Poromechanics in Fully Coupled  

Geomechanics-Reservoir Modeling 
 
 

Poromechanics is a term apparently coined by Younane Abousleiman, Alex Cheng, Emmanuel 

Detournay, Jean-Francois Thimus and Olivier Coussy, at the first Biot Conference on the 

Mechanics of Porous Media in 1998, referring to the study of porous materials whose 

mechanical behaviour is significantly influenced by the pore fluid. Poromechanics is then 

relevant to disciplines as varied as petroleum geomechanics, geophysics, geotechnics, 

biomechanics, physical chemistry, agricultural engineering or materials science, as well as new 

frontiers related to various thermo/hydro/chemo/mechanical couplings (Coussy 2004). 

Poromechanics provides the theoretical and mathematical basis for the fully coupled 

geomechanics-reservoir modeling in the following chapters. For example, the theory of 

poroelasticity is the basis for the simulation and prediction of reservoir compaction and the 

induced surface subsidence. 

2.1 Theory of Poroelasticity 

The term poroelasticity was apparently first coined by Geertsma (1966), in reference to to 

Biot’s (1941) theory of three-dimensional consolidation. The earliest theory to account for the 

influence of pore fluid on the quasi-static deformation of soils was developed by Terzaghi 

(1923) who proposed a model of one-dimensional consolidation, which was shown by Biot to 

be a special case of his theory. Later, Biot (1941) generalized the theory to the three-

dimensional case. Biot's consolidation equations (used for the subsidence problem for 
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example) consist of equilibrium equations for an element of the solid frame, stress-strain 

relations for the solid skeleton, and a continuity equation for the pore fluid. 

Whereas Biot's original theory assumes linear behavior for the solid matrix, it may 

easily be generalized to complex models dealing with nonlinear problems and thermal effects 

(Small et al. 1976, Coussy 1989, Lewis and Schrefer 1998).   

Based on Biot’s theory of poroelasticity and Darcy’s law (Biot 1941), with a 

compressible fluid flowing through a saturated porous medium, the governing equations for the 

problem of oil flow in deforming reservoir rock can be described as (the body force is 

ignored):  

2 ( ) div (1 ) 0λ∇ + + ∇ − − ∇ =
m

KG G p
K

u u                                    (2.1) 

   
T 2

2

1 - 1(1 ) div i D i 0
(3 )

φ φ
μ

⎛ ⎞
− + + − + ∇ =⎜ ⎟⎜ ⎟

⎝ ⎠
t t

m m f m

K kp p
K K K K

u   (2.2) 

where G and λ  are Lamé constants. k is the permeability of the porous medium, μ  is the 

viscosity of the fluid, u and p denote the displacement of the porous medium and the pore 

pressure respectively, the subscript t denotes time derivative, φ  is the porosity of the porous 

medium (for simplicity assumed constant hereafter), K, Kf and Km are the bulk modulus of the 

skeleton, fluid and matrix, respectively. Furthermore, [1, 1, 1, 0, 0, 0]T =i , and D is the elastic 

stiffness matrix expressed using Young’s modulus E and Poisson’s ratio ν:  
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2.2 Multiphase Poroelasticity 

To mathematically describe multiphase fluid flow through a deformable porous medium, it is 

necessary to determine functional expressions that best define the relationship among the 

hydraulic properties of the porous medium, i.e. saturation, relative permeability and capillary 

pressure. The capillary pressure relationship is required to couple phase pressure, and relative 

permeability values are required to evaluate phase velocity. The porous medium voids are 

assumed to be filled with water, gas and oil, and thus the sum of their saturations will be unity, 

i.e. 

1+ + =o w gS S S                                             (2.4) 

where Sπ is the saturation of the fluid phase π, with o,w and g representing oil, water and gas 

phases, respectively. When more than one fluid exists in a porous medium, the pressure exerted 

by the fluids may be evaluated using the effective average pore pressure, p , which is 

calculated from 

o o w w g gp = S P + S P +S P                                                  (2.5) 
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The water pressure Pw, gas pressure Pg and oil pressure Po are related through the capillary 

pressure, and the three capillary terms are defined as 

cow o w o wP (S ,S )= P - P                                                  (2.6) 

cgo g o g oP (S ,S )= P - P                                                  (2.7) 

cgw g w g wP (S ,S )= P - P                                                (2.8) 

where Pcgw is the capillary pressure between the gas and water phases, Pcow is the capillary 

pressure between the oil and the water phases and Pcgo is the capillary pressure between the gas 

and oil phases. In general, for a multiphase system, the saturation of any of the three phases is a 

function of three capillary pressure relationships, i.e. oil-water, gas-oil and gas-water, 

respectively, 

p cgw cow cgoS = f(P ,P ,P )                                                   (2.9) 

The gas-water capillary pressure, expressed in terms of the other two capillary pressures, yields 

the following: 

cgo cgw cowP = P - P                                                        (2.10) 

and we can rewrite the equation as  

( , )π = cgw cowS f P P                                                       (2.11) 

In a multiphase flow model for a porous medium, the simultaneous flow of the fluid 

phases: water, oil, and gas,, depends primarily on the pressure gradient, the gravitational force 

and the capillary pressures between the multiphase fluids. The fluid pressures and the 

displacement values are used as the primary dependent variables. 

A general equilibrium equation, incorporating the concept of effective stress, can be 

written as follows:  
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2 ( ) div (1 ) 0λ∇ + + ∇ − − ∇ =
m

KG G p
K

u u                                          (2.12) 

 

A general form of continuity equation for each flowing phase π, incorporating the 

Darcy’s Law, can be expressed as follows: 

( )

( )
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π π π π
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T r

m m m m

kk SP gh
B t B

S c p Q
B K t K K tK

i D i D i Dii
(2.13) 

 

where Qπ represents external sinks and sources, k is the absolute permeability, krπ is the relative 

permeability, and Bπ is the formation volume factor. 

Equations 2.12 and 2.13 represent a set of highly nonlinear partial differential equations 

for three-phase flow coupled with the consolidation behavior occurring in a deformable 

petroleum reservoir. The major non-linearities, i.e. the phase saturation Sπ, relative 

permeability krπ, and the formation volume factor Bπ, are strongly dependent on the primary 

unknowns and therefore should be updated at appropriate time intervals.  

2.3 Thermoporoelasticity 

In many cases it is necessary to take into account the effects of heat flow together with fluid 

flow through porous media. For example, this allows for the investigation of land subsidence in 

connection with geothermal energy production for a given geothermal system. Analyses of this 

type can also be applied to the design of hydraulic fracturing stimulation of oil reservoirs and 

for more accurate interpretation of well tests when thermal effects are taken into account.  For 
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example, Aktan and Farouq Ali (1978) studied the thermal stresses induced by hot water 

injection using thermoelastic stress-strain relationships.  

 Thermoporoelasticity extends the theory of thermoelasticity to porous continua. This 

extension is achieved by considering an underlying thermoelastic skeleton. The dissipation 

related to the skeleton is zero and there are no internal variables. The constitutive equations 

reduce to state equations. Their operational formulation needs an explicit expression for the 

skeleton-free energy. This expression is not restricted by any particular constraint and the 

determination of the thermoporoelastic properties involved by the state equations is finally left 

to experiments.  

 For the compressible fluid flowing through the saturated non-isothermal deformable 

porous medium, in the form of displacements, pressure and temperature as unknowns, the 

governing equations can be described as( the body force is ignored):  

s
2 ( ) div (1 ) 0λ β∇ + + ∇ − − ∇ − ∇ =

m

KG G p K T
K

u u                          (2.14) 

T
t 2

2 T

1 - 1(1 ) div
(3 )

(1 ) 0
9

t
m m f m

s
f s t

s

K p
K K K K

k p T
K

φ φ

βφβ φ β
μ

⎛ ⎞
− + + − +⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

∇ − + − + =⎜ ⎟
⎝ ⎠

u i D i

i D i
  (2.15) 

( ) 2

(1 )

(1 ) (1 ) 0

ρρφ φ

φ ρ φρ φ ρ β φρ β λ

⎛ ⎞
− + +⎜ ⎟⎜ ⎟

⎝ ⎠

− + − − − + ∇ =

f fs s
t

s f

s s f f s s s f f f t T

ccT p
K K

c c T c T c T T
 (2.16) 

where λT  is the thermal conductivity matrix of the porous media, T is the temperature, ρscs is 

the heat capacity of the solid phase, ρfcf is the heat capacity of the fluid phase, βs is the thermal 

expansion coefficient of the matrix, and βf is the thermal expansion coefficient of the fluid. 
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2.4 Multiphase Thermoporoelasiticty 

In many processes the porous space in the porous material becomes filled by several fluids so 

that the porous material is said to be unsaturated with regard to the reference fluid of principal 

concern. In most cases two fluids coexist within the porous space, for instance oil and water in 

petroleum engineering. The unsaturated context introduces new thermo/hydro/mechanical 

couplings mainly associated with the surface tension or the energy related to each fluid-fluid or 

fluid-solid interface. Under non-isothermal circumstances, multiphase thermoporoelasticity 

(Coussy 1995, Charlez 1995) is a powerful tool addressing situations with strong coupling 

between heat flow, multiphase fluid flow, and the deforming porous media.  

Based on the theory of thermoporoelasticity for multiphase flow through a deformable 

reservoir in a non-isothermal state, a general equilibrium equation incorporating the concept of 

effective stress can be written as follows (for simplicity, two immiscible wetting and non-

wetting phases are considered here, and body force is ignored as well):  

0)1(div)(2
s =∇−∇−−∇++∇ TKp

K
KGG

m

βλ uu                                (2.17) 

where G and λ are the Lamé elastic constants, u, p and T denote displacement, pore pressure 

and temperature respectively, and p = SnPn + SwPw where Sn, Sw, Pn, and Pw are the saturation 

and pore pressure with respect to non-wetting and wetting phases respectively.  βs is the 

thermal expansion coefficient of the skeleton, whereas K and Km are bulk moduli for the 

skeleton and matrix (mineral), respectively.  In this version of the general equilibrium 

equation, issues such as non-isotropic elastic properties or non-linearities are not addressed 
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explicitly, but could be handled through writing a more general tensorial statement, or using 

iterative solutions. 

Equations representing mass conservation and energy conservation are expressed below 

(Tortike 1995, Pao et al. 2001). 

The general form of the continuity equation for the wetting phase, incorporating 

Darcy’s Law, can be expressed as follows:  
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where α is Biot’s coefficient, which relates the bulk modulus of the skeleton and matrix as 

follows:  

1α = −
m

K
K

                                                              (2.19) 

Next, the general form of the continuity equation for the non-wetting phase, 

incorporating Darcy’s Law, can be expressed as follows:  

( ) 01)(

)(

1)(

=
∂
∂

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+−−
∂
∂

⎭
⎬
⎫

⎩
⎨
⎧

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−+

∂
∂

+
∂

∂
⎥
⎦

⎤
⎢
⎣

⎡

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+

∂
∂

⎥
⎦

⎤
⎢
⎣

⎡

∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+⎥

⎦

⎤
⎢
⎣

⎡
∇∇

t
T

BT
S

B
S

T
S

PP
KB

S
B

tB
S

t
P

P
S

BP
S

PPS
KB

S

t
P

P
S

BBP
S

P
S

PPS
KB

S
P

B
kk

n
ns

n

nw
wn

mn

n

n

n

nw

c

w

nc

w
wnw

mn

n

n

c

w

nnn
n

c

w
wnn

mn

n
n

nn

rnT

φβφαφαφ

εαφφα

φφφα
μ

(2.20) 

Finally, the general form of the energy balance equation, including thermal convection 

and thermal conduction terms, can be expressed as follows:  
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In the above equations, φ is porosity, k is the porous medium permeability, krπ is the 

relative permeability with respect to phase π (π = w, n for wetting and non wetting phases 

respectively), μπ is viscosity, qπ represents external sinks and sources, Bπ is the formation 

volume factor, Kπ is bulk modulus, λT is the porous medium thermal conductivity, c is the 

specific heat capacity, ρπ is the density, Q is external sink or source, and vπ is the velocity. 

Details about relative permeability, capillary pressure and saturations relationships can be 

found elsewhere (Aziz and Settari 1979). 
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Chapter 3 
 Finite Element Formulation  
 and Stabilized FEM Scheme  

 

In traditional reservoir simulation, in order to solve the differential system, the finite difference 

method (FDM) is the most commonly used technique because the finite difference method is 

simple and easy to implement. Finite difference methods are conceptually straightforward. The 

fundamental concepts are readily understood and do not generally require advanced training in 

applied mathematics. Moreover, due to their extensive history, they boast a firm theoretical 

foundation. In addition, most sophisticated commercial reservoir simulators are based on finite 

difference methods. Classic monographs on the application of finite difference theory to 

petroleum reservoir engineering can be seen in publications by Aziz and Settari (1979) and 

Peaceman (1977).  

  The finite element method (FEM) appears to have been introduced into petroleum 

reservoir engineering literature via the classic paper of Price et al. (1968) and FEM approaches 

have shown great potential.  The methods were later applied to two-phase flow waterflooding 

problems (Douglas et al. 1969, McMichael and Thomas 1973, Settari et al. 1977). Whereas 

finite element methods have been considered noncompetitive with finite difference methods in 

computational efficiency, it is advocated that finite element methods are capable of achieving 

solutions with higher accuracy and solving coupled problems including multi-physical 

processes (Zienkiewicz and Heinrich 1978, Huyakorn and Pinder 1983, Zienkiewicz and 

Taylor 1991). With the development of more advanced computer facilities including computer 
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clusters, finite element methods are experiencing more applications in petroleum reservoir 

engineering. 

  Nowadays, the finite element method (FEM) is becoming more and more popular in 

implementing fully coupled geomechanics-reservoir simulation (Chin et al. 1998; Gutierrez 

and Lewis 1998; Dean et al. 2003; Wan et al. 2003; Yin et al. 2006, 2007, 2008). 

3.1 FEM for Poroelasticity 

Due to the complexity of the coupled set of partial differential equations, most of the analytical 

solutions of Biot’s model are limited to specialized load and boundary conditions (McNamee et 

al. 1960a, 1960b; Cleary 1977; Rudnicki 1981). Numerical techniques can be applied to more 

complex situations, and Sandhu et al. (1969) first applied the finite element method to 

poroelasticity. Over the years, numerous refinements and extensions have been made 

(Gambolati et al. 1973, 2001; Zienkiewicz 1976; Reed 1984; Lewis et al.1986, 1991, 1998; 

Borja 1986; Li et al. 1992; Gutierrez et al. 1994, Sukirman et al. 1993; Pao et al. 2001, 2002). 

The Galerkin finite element method is chosen here to approximate the governing 

equations (Zienkiewicz and Taylor 1991, Smith et al. 1999). The final form of the FEM 

solution to the poroelastic equations is as follows: 

u

T p

0 0
0
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+ =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭

t

t

uM C u f
pH p C S f                                          (3.1) 

where M, H, S and C are the elastic stiffness, the flow stiffness, the flow capacity and coupling 

matrices, respectively.  
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 are the vectors of unknown variables u and p and corresponding time 

derivatives. 
u

p
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f
f

 is the vector for the nodal loads and flow sources. 

  The explicit expressions of the above matrices are as follows. 
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  To integrate the above equations with respect to time there are many methods available, 

but the generalized trapezoidal method (θ method) is adopted here and then the equations 

become: 
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3.2 FEM for Multiphase Poroelasticity 

Simulation of petroleum recovery or groundwater contamination in subsurface systems by 

nonaqueous phase liquids, such as petroleum hydrocarbons and immiscible industrial 

chemicals, requires a solution of the multiphase flow equations for deforming porous media. In 

this section, the governing equations describing the displacement of matrix and two phase fluid 
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pressures are coupled and the nonlinear partial differential equations are solved by the finite 

element method. 

The final form of the FE solution to the coupled multiphase poroelastic equations can 

be expressed as follows: 
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where [u, pw, pn]Tand [ut, pwt, pnt]T are the vectors of unknown variables u, pw and pn and 

corresponding time derivatives. [fu, fw, fn]T is the vector for the nodal loads, flow source of the 

wetting phase and flow source of the non-wetting phase. The explicit expressions of the above 

matrices are as follows. 

T d= ∫ VM B DB
V

                                                    (3.8) 

T T -  ( ) d
3

⎛ ⎞ ⎛ ⎞
= + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫ w

sw w n wV
m c

dSS P P V
K dP
iC B i B D N                 (3.9) 

T T -  ( ) d
3

⎛ ⎞ ⎛ ⎞
= − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫ w

sa n n wV
m c

dSS P P V
K dP
iC B i B D N               (3.10) 

    
T( ) ( ) dρ

μ
= ∇ ∇∫ w rw

ww p
w w

k k V
B

H N N
V                                (3.11) 

T
T -  d

3
ρ ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

∫ w w
ws V

w m

S V
B K

i DC N i B                                (3.12) 



 25

T T
2

1 

1- 1 ( ) d
(3 )

φρ φ ρ φρ

ρ φ

⎡ ⎛ ⎞ ⎛ ⎞
= − + +⎢ ⎜ ⎟ ⎜ ⎟

⎢ ⎝ ⎠ ⎝ ⎠⎣
⎤⎛ ⎞ ⎛ ⎞

+ − + − ⎥⎜ ⎟ ⎜ ⎟
⎥⎝ ⎠ ⎝ ⎠ ⎦

∫ w w w w
w w w w

w c w w w wV

w w w
w n w

w m m c

dS S d dS
B dP B dP dP B

S dSS P P V
B K K dP

R N

i D i N
(3.13) 

T T
2

1 1 ( ) d
(3 )

φρ

ρ φ

⎡
= ⎢

⎣
⎤⎛ ⎞ ⎛ ⎞−

+ − − − ⎥⎜ ⎟ ⎜ ⎟
⎥⎝ ⎠ ⎝ ⎠ ⎦

∫ w w
w n

w cV

w w w
n n w

w m m c

dS
B dP

S dSS P P V
B K K dP

C N

i D i N
(3.14) 

T
T d

3
ρ ⎛ ⎞

= −⎜ ⎟
⎝ ⎠

∫ n n
ns V

n m

S V
B K

i DC N i B                             (3.15) 

T T
2

1 1 ( ) d
(3 )

φρ

ρ φ

⎡
= ⎢

⎣
⎤⎛ ⎞ ⎛ ⎞−

+ − + − ⎥⎜ ⎟ ⎜ ⎟
⎥⎝ ⎠ ⎝ ⎠ ⎦

∫ n w
nw

n cV

n n w
w n w

n m m c

dS
B dP

S dSS P P V
B K K dP

C N

i D i N
 (3.16) 

T T
2

1

1 1 ( ) d
(3 )

φρ φ ρ φρ

ρ φ

⎡ ⎛ ⎞ ⎛ ⎞
= − + +⎢ ⎜ ⎟ ⎜ ⎟

⎢ ⎝ ⎠ ⎝ ⎠⎣
⎤⎛ ⎞ ⎛ ⎞−

+ − − − ⎥⎜ ⎟ ⎜ ⎟
⎥⎝ ⎠ ⎝ ⎠ ⎦

∫ n w n n
nn n n

n c n n n nV

n n w
n n w

n m m c

dS S d dS
B dP B dP dP B

S dSS P P V
B K K dP

R N

i D i N
  (3.17) 

T( ) ( ) dρ
μ

= ∇ ∇∫ n rn
nn p

n n

k k V
B

H N N
V                                            (3.18) 

  To integrate the above equations with respect to time, we use the θ method, and then 

the equations become: 
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This is a nonlinear equation system because those coefficients which contain capillary 

pressure, relative permeability and saturations are dependent on the primary unknowns;there 

are at least three approaches to deal with this. The first is the simple iteration method, i.e. using 

the value in the last time step to evaluate the coefficient in the current time step. The second 

approach is the direct iteration method, also called the fixed-point method. By this approach, 

within each time step, the values of unknowns in the last iteration are used to evaluate the 

coefficients in the current iteration, and convergence is achieved when the error between two 

successive iterations becomes less than the tolerance. The third method is the well known 

Newton-Raphson method, which is similar to the second method, but with more rapid 

convergence. For convenience, the direct iteration is used in the following simulation. 

The major parametric non-linearities, i.e. the phase saturation Sπ, relative permeability 

krπ, and formation volume factor Bπ, are updated at each time step.  Pore pressures are 

evaluated at each node of an element, and then the average pressure is obtained, representing 

the entire element. The difference of the average pressures of the wetting phase and the non-

wetting phase leads to the capillary pressure of the element, and thus leads to an update of the 

saturations of each phase within the element based on the saturation-capillary pressure curve. 

Finally, the updated relative permeability of each phase within the element is obtained based 

on the relative permeability-saturation curve. Then the updated parametric non-linearities are 

brought forward to the next time step. 
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3.3 FEM for Thermoporoelasiticty 

Lewis (1985) used FE simulation to study thermal recovery processes and heat losses problems 

to surrounding strata. Aboustit et al. (1985) used a general variational principle to investigate 

thermo-elastic consolidation problems, and Vaziri (1992) also presented a fully coupled 

thermo-hydro-mechanical FE model.  

 The final form of the FE solution to the thermoporoelastic equations can be expressed 

as follows: 
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where [u, p, T]Tand [ut, pt, Tt] T are the vectors of unknown variables and corresponding time 

derivatives. [fu, fp, fT] T is the vector for the nodal loads, flow sources and heat sources. The 

explicit expressions of the above matrices are as follows. 
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To integrate the above equations with respect to time, the θ method is adopted and then 

the equations become: 
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(3.30) 

3.4 FEM for Multiphase Thermoporoelasiticty 

  Shrefler et al. (1993) and Pao et al. (2001) extended the problem to multiphase 

thermoporoelasticity. By this method, for the above equations, the final matrix form of the 

solution after FE discretisation is expressed as follows: 
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where [u, Pw, Pn, T] T and [ut, Pwt, Pnt, Tt] T are the vectors of unknown variables and 

corresponding time derivatives. [f u, f w, f n, f T] T is the vector for the nodal loads, the flow 

source of the wetting phase, the flow source of the non-wetting phase, and the heat source. The 

explicit expressions of the above matrices are as follows. 
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  To integrate the above equations with respect to time, the linear interpolation in time 

using finite differences methods (θ method) is used, and then the equations can be written as:  



 32

1

1

1

10

( 1) (1 ) (1 ) (1 )
( 1)

θ θ θ θ
θ

θ
θ

θ θ θ θ
θ

− − − ⎧ ⎫⎡ ⎤ Δ⎧ ⎫
⎪ ⎪⎢ ⎥ ⎪ ⎪+ Δ Δ⎪ ⎪ ⎪ ⎪⎢ ⎥ = +⎨ ⎬ ⎨ ⎬⎢ ⎥+ Δ Δ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪+ Δ Δ⎩ ⎭⎣ ⎦ ⎩ ⎭

− − − −
+ − Δ

u
sw sn sT

w
ws ww ww wn wT w

n
ns nw nn nn nT n

T
Tw Tn TT TT

sw sn sT

ws ww ww wn wT

ns nw

t
t t

t t
t t

t

M C C C u f
C R H C C p f
C C R H C p f

C C R H T f

M C C C
C R H C C
C C R

0

0

0

0

( 1)
0 ( 1)

θ
θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥+ − Δ
⎢ ⎥+ − Δ⎣ ⎦
⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

nn nn nT

Tw Tn TT TT

w

n

t
t

H C
C C R H

u
p
p
T

  (3.40) 

where [u1, Pw1, Pn1, T1] T and [u0, Pw0, Pn0, T1] T represent the solution at the current and the 

last time step respectively. 

3.5 Stabilized FE methods 

Standard FE approximations are based upon the Galerkin formulation of the method of 

weighted residuals. This formulation has proven eminently successful in application to 

problems in solid/structural mechanics and in other situations, such as heat conduction, 

governed by diffusion-type equations. The reason for this success is that, when applied to 

problems governed by self-adjoint elliptic or parabolic partial differential equations, the 

Galerkin FE method leads to symmetric stiffness matrices. In this case the difference between 

the FE solution and the exact solution is minimized with respect to the energy norm (e.g. 

Strang and Fix 1973).  

 The success of the Galerkin finite element method in solid/structural mechanics and 

heat conduction problems is not replicated successfully in the case of fluid flow simulations, 
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especially with regard to modeling convection-dominated transport phenomena. The main 

difficulty is due to the presence of convection operators in the formulation of flow problems 

based on kinematical descriptions other than Lagrangian. Convection operators are in fact non-

symmetric and thus the best approximation property in the energy norm of the Galerkin 

method, which is the basis for success in symmetric cases, is lost when convection dominates 

the transport process (Donea and Huerta 2003). 

 The energy conservation equation mentioned above essentially is a transient advection-

diffusion equation. When the equation is diffusion-dominated, the traditional Galerkin FE 

mentioned above is adequate to handle it. However, in advection-dominated cases, application 

of FEM usually leads to spurious oscillations.  

These features are in common with central-difference-type finite difference methods. In 

the finite difference field, upstream weighting has been employed which successfully mitigates 

the oscillations but may also severely degrade accuracy due to excessive numerical diffusion 

(Hughes 1979). 

Solving the steady-state advection-diffusion problem by FE methods has been 

extensively studied, and many stabilized method such as streamline upwind Petrov-Galerkin 

(SUPG) method, Galerkin/least-squares (GLS) method have provided a major break through in 

FE modeling of flow problems. Basically, these methods stabilize the numerical scheme by 

adding an additional stabilizing term to the original Galerkin formulation. The magnitude of 

the stabilization parameters in the additional term can be determined by the dimensionless 

Peclet number (Pe) which is an important parameter relating the rate of advection of a flux to 

its rate of diffusion.  When it comes to the unsteady advection-diffusion problem, additional 

numerical oscillations take place at the small time steps, making the problem much more 

complicated.  
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In time-dependent advection-diffusion equations, after the approximation by the FE 

method, a mass matrix containing the time derivative terms is formed. If the mass matrix were 

diagonal (or diagonalized), one could consider the use of explicit techniques for integrating the 

system in time, whereas the consistent mass (non-diagonal) matrix essentially demands the use 

of implicit methods. The relative speed and simplicity of explicit methods has led to the 

sometimes compromising and always ad hoc concept of ‘mass lumping’ wherein the mass 

matrix is converted to a diagonal form. Mass lumping is known to add significant numerical 

diffusion. If mass lumping is employed, the FE method accuracy can be severely compromised, 

although the FEM solution to the advection-diffusion equation can be much more accurate than 

solutions generated via conventional finite difference methods (Gresho et al. 1978). Therefore, 

the mass lumping technique is not an ideal technique in FE modeling of the advection-

diffusion flow problems. 

  Next, the performance of different FE methods in dealing with the transient advection-

diffusion problem will be discussed through some examples.  

First let us observe the performance of the traditional Galerkin finite element method. 

Consider a 1-D problem seeking numerical solution for the equation: 

, , , 0

(0, ) 1, ( ,0) 0
t x xxu

t x

ϕ ϕ κϕ

ϕ ϕ

+ − =

= =
                                                (3.41)  

where u is the convective velocity and κ is the diffusion coefficient. While φ can refer to 

temperature, concentration, saturation, etc. in different physical processes and industries, we 

can specifically consider it temperature hereafter. We use 100 equal size linear elements for 

spatial discretization between x = 0 and x = 5, where it is adiabatic at x = 5, and use the 

generalized trapezoidal method (or θ method) in direct time-integration scheme. 
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We assume κ = 1, and u = 60, noting that the spurious oscillations appear at small time 

steps and disappear at later larger time steps (see Figure 3.1). 

In multidimensional cases, suppose a 2-D problem seeking the numerical solution for 

the equation: 

( ), 0

(0,0, ) 1, ( , ,0) 0
t

t x y

ϕ ϕ κ ϕ

ϕ ϕ

+ ⋅ − ⋅ =

= =

u ∇ ∇ ∇
                                         (3.42) 

where u is the convective velocity vector and κ is the diffusion coefficient. We assume κ = 1, 

u = 60 at direction of (cos45º, sin 45º). We can find phenomena similar (see Figure 3.2) to 

those observed in the 1-D case. 
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Figure 3.1. 1D advection-diffusion problem solved by classic Galerkin method 
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         Figure 3.2. 2D advection-diffusion problem solved by classic Galerkin method 

In the following, different stabilized finite element methods such as SUPG, GLS, and 

SGS/GSGS methods are applied and the results are analyzed respectively, in the expectation of 

producing oscillation-free solutions.  

3.5.1. Streamline upwind Petrov-Galerkin (SUPG) method 

The streamline upwind Petrov-Galerkin method (SUPG) is one of the streamline diffusion 

algorithms in which the weighting functions are modified in an unsymmetrical way in the 

upwind direction, with the additional function proportional to the gradient of the weighting 

function.  
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  The introduction of the SUPG scheme was originally inspired by the upstream 

weighting technique used in the finite difference method (FDM) in order to elimination 

numerical oscillations. Initially, it was also named as upstream weighted finite element, 

upwind finite element or Petrov-Galerkin finite element method. Now it has become a standard 

technique for solving steady sate advection-diffusion problems. However, when it comes to 

transient problems, additional difficulties arise, associated with the occurrence of local 

oscillations normally associated with sharp transient loads (Wood and Lewis 1975). 

As to the problem expressed as equation (3.41), we consider a partition of the spatial 

domain Ω in nel elements Ωe of size h. Let S  h be the associated finite element solution space 

and V  h  be the weighting space. The weak form of the semi-discrete temporal integration 

method is defined as follows: find h hϕ ∈ S  such that for all h hw ∈V :   

( ) ( )
el

, , , , adv , , ,
1

d d 0
n

h h h h h h h h h h
t x x x t x xx

e
w w u w w u

εΩ Ω
ϕ ϕ κϕ Ω τ ϕ ϕ κϕ Ω

=

+ + + + − =∑∫ ∫ L          (3.43) 

where 

adv , .h h
xw v w= ⋅L                                                           (3.44) 

In the above, the first term is the Galerkin contribution, and the second term is the 

SUPG stabilization term. The stabilization parameter τ is defined as follows: 

,
2

h
u

ατ =                                                               (3.45) 

where 

 1(Pe) coth(Pe) , Pe = .
Pe 2

uhα
κ

= −                                         (3.46) 

  In equation (3.46), Pe is the Peclet number. The Peclet number is a dimensionless 

number which expresses the ratio of convective to diffusive transport; it is a measure of the 

relative importance of advection to diffusion. The higher the Peclet number, the more 
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important is advection. It is equivalent to the product of the Reynolds number with the Prandtl 

number in the case of thermal diffusion.  

The numerical solution of the SUPG method is shown in Figure 3.1. We can find that 

the oscillations at small time steps persist (see Figure 3.3). 

In the 2-D case, the oscillations at small time steps persist, as well (see Figure 3.4). 
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Figure 3.3. 1D advection-diffusion problem solved by SUPG method 
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Figure 3.4. 2D advection-diffusion problem solved by SUPG method 

3.5.2. Galerkin/least-squares (GLS) method 

Similar to the SUPG method based on perturbing the original velocity test function of the 

Galerkin method with a term proportional to the gradient of the test function, the 

Galerkin/least-squares (GLS) method is developed by appending residuals of the Euler-

Lagrange equation in least-squares form to the standard Galerkin formulation (Hughes et al. 

1989).  

Focusing on the problem expressed as equation (3.41), we consider a partition of the 

spatial domain Ω in nel elements Ωe of size h. Let S  h be the associated finite element solution 
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space and V  h  be the weighting space. The weak form of the semi-discrete temporal integration 

method is defined as follows: find h hϕ ∈ S  such that for all h hw ∈V :   

( ) ( )
el

, , , , GLS , , ,
1

d d 0
n

h h h h h h h h h h
t x x x t x xx

e
w w u w w u

εΩ Ω
ϕ ϕ κϕ Ω τ ϕ ϕ κϕ Ω

=

+ + + + − =∑∫ ∫ L          (3.46) 

where 

GLS , , .h h h
x xxw v w wκ= ⋅ − ⋅L                                                           (3.47) 

In the above, the first term is the standard Galerkin term, and the second term is the 

GLS stabilizing term. The stabilizing parameter τ is chosen (from Shakib and Hughes 1991) 

as follows: 

1
2 2 2 2

2

2 2 49 ,u
t h h

κτ
−

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟Δ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
                                              (3.48) 

where Δt is the time step. 

The numerical solution of the GLS method is shown in Figure 3.5. We find that the 

oscillations at small time steps persist. 

In the 2-D case, the oscillations at small time steps persist as well (see Figure 3.6). 

Note that the performance of the SUPG method and the GLS method is very close, but 

neither of them can circumvent the oscillation phenomenon at small time steps. 
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Figure 3.5. 1D advection-diffusion problem solved by GLS method 
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Figure 3.6. 2D advection-diffusion problem solved by GLS method 

3.5.3. Subgrid scale/gradient subgrid scale (SGS/GSGS) method 

From these studies we conclude that SUPG and GLS methods can not circumvent the spurious 

oscillations that arise in numerical transient advection-diffusion problems.  This indicates that 

the determination of parameters in the stabilization method must take into account a time-

dependent factor, and that the transition between the advection-dominant situation, the 

diffusion-dominant situation and the small-time-dominant situation must be natural.  Harari 

(2005) gives a solution that can incorporate the time-dependent factor naturally into the 

determination of the stabilizing parameters.  He suggests that one may transform the transient 

term into the reaction term by discretizing the time first, instead of the conventional method of 

first discretizing the spatial domain.  For example, a transient diffusion problem can thus be 

converted to a steady diffusion-reaction problem.  This suggested the conversion of the 

transient advection-diffusion problem to a steady advection-diffusion-reaction problem. 

After the transient diffusion-convection problem is converted to a steady diffusion-

convection-reaction problem, then the latter can be addressed by the subgrid scale/gradient 

subgrid scale (SGS/GSGS) method (Hauke and Doweidar 2006). The SGS/GSGS method 
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combines two types of stabilization integrals and presents appealing traits for solving 

accurately the steady diffusion-convection-reaction equation. For instance, it is nodally exact 

for one-dimensional solutions and any combination of dimensionless parameters, for multi-

dimensional solutions it has superior local stability properties than other stabilized methods, 

and for linear elements the advective-diffusive limit recovers the SUPG method. 

  For a steady diffusion-convection-reaction equation such as 

( ) 0 ,
,

u s in
g on

ϕ κ ϕ ϕ
ϕ

⋅ − ⋅ − = Ω

= Γ

∇ ∇ ∇
                                              (3.49) 

where u is the velocity field, κ is the diffusion coefficient which is not less than zero, and s is 

the source parameter where s > 0 for production and s < 0 for dissipation or absorption. The 

function g is the Dirichlet datum on the boundary. Of particular interest for this problem are the 

advective-diffusive-reactive operator and its adjoint, which are, respectively, 

( )
( )

,

.

u s

u s

ϕ ϕ κ ϕ ϕ

ϕ ϕ κ ϕ ϕ∗

= ⋅ − ⋅ −

= − ⋅ − ⋅ −

L

L

∇ ∇ ∇

∇ ∇ ∇
                                                (3.50) 

  Now apply the combined SGS/GSGS method. Consider a mesh formed by nel non-

overlapping elements Ωe, so that 1
eln e

e=Ω = Ω∪ . Let S  h be the associated finite element solution 

space and V  h  be the weighting space. The integral form of stabilized finite element method is 

defined as follows:  find h hϕ ∈ S  such that for all h hw ∈V : 

( )( )

( )

*
00

1

*
11

1
0,

el

e

el

e

h h h h h h

n
h e h

e
n

h e h

e

w u w w s d

w d

w d

ϕ κ ϕ ϕ

τ ϕ

τ ϕ

Ω

Ω
=

Ω
=

⋅∇ + ∇ ⋅ ∇ − Ω

+ − Ω

+ ∇ − ⋅ ∇ Ω =

∫

∑∫

∑∫

L L

L L

                                        (3.51) 

where the stabilization parameters are defined as 
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12

00

3
2

11 3

2

sinh( )2 ,
cosh( ) cosh( ) sinh( )

33
6

3 cosh( ) ( 3 )sinh( )
,

2cosh( ) 2cosh( ) sinh( )

e K
K

K

e K
K

K

K K K

K

D Peh D
u Pe D Pe

Dh D
uD Pe

D D D Pe
Pe D Pe

τ
γ

τ

γ

γ

−
⎛ ⎞

= − +⎜ ⎟− + +⎝ ⎠

⎧= − − +⎨
⎩

⎫⎡ ⎤+ − + ⎪⎣ ⎦+ ⎬− + + ⎪⎭

                      (3.52) 

in which 

( )

/ 2 ,
/     ,

2 .
K

K

Pe uh Peclet number
D sh u Damk hler number

D Pe

κ

γ α

=
=

= − +

ö                                               (3.53) 

For the transient advection-diffusion equation (3.41), in terms of the Rothe method 

(Harari 2005), we discretize it in time first. The generalized trapezoidal method (θ method) is 

adopted for time-integration. 

( ) ( )
, , , ,

1 1 1( 1) (1 ) (1 )
x xx x xx

n n n n n ntu t tu tθ ϕ θ κ ϕ ϕ θ ϕ θ κϕ ϕ+ + +Δ − Δ − − = − − Δ + − Δ + , (3.54) 

where the superscripts n and n+1 represent the evaluation at nth and n+1th time step, 

respectively. 

Now the link between the semi-discretized equation (3.54) and the equation (3.49) can 

be seen to be as follows: 

.(3.49) ~ .(3.41)
.(3.49) ~ .(3.41)
.(3.49) ~ 1 .(3.41)

in Eq t in Eq
u in Eq tu in Eq
s in Eq in Eq

κ γ κ
γ

Δ
Δ

−
,                                  (3.55) 

and the stabilizing parameters can be calculated according to equation (3.52), the following 

procedures can just follow the equation (3.51) to incorporate the stabilizing terms. Now the 

transient advection-diffusion problem as been converted to a steady advection-diffusion-

reaction problem framework, while the time factor is taken into account naturally for 
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determining the stabilizing parameters, and the transition between the advection-dominant, 

diffusion-dominant, and small time steps-dominant situations is determined naturally through 

the stabilizing parameters as well. 

The numerical solution of the SGS/GSGS method is shown in Figure 3.7; the spurious 

oscillations at small time are circumvented successfully. To compare the accuracy of the 

SGS/GSGS method, a comparison of the results with the analytical solution is also provided 

(see Figure 3.7). The analytical solution (Carslaw and Jaeger 1959) for the specific problem is 

as follows: 

/
1/ 2 1/ 2

1
2 2( ) 2( )

uxx ut x uterfc e erfc
t t

κϕ
κ κ

⎡ ⎤− +
= +⎢ ⎥

⎣ ⎦
                                (3.56) 

It is interesting that at the larger timesteps (e.g. t = 0.01), the SUPG method and GLS 

method (see Figures 3.3 and 3.5) have much less numerical dispersion than the SGS/GSGS 

method (see Figures 3.7). This is the price paid for getting a smooth solution. 

In the 2-D case, the spurious oscillations at small time steps are also circumvented 

successfully (see Figure 3.8). 
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Figure3.7. 1D advection-diffusion problem solved by SGS/GSGS method 
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Figure 3.8. 2D advection-diffusion problem solved by SGS/GSGS method 
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Comparing our energy conservation equation (2.21) after first time discretization, we 

can find the following links to equation (3.49) to calculate the stabilization parameters for our 

problem:  

( )

( )

( )

( ) ( )

( )

,
2

1

1 1 ( )
.

w w w n n n

T

w w
w w w w n n n n w w n n s s

w w w n n n

s w
w w w n n n s s s s n w

s

w w w n n n

c v c v h

S SS c S c c c c T
T T

c v c v t

SS c S c c T c P P T
K T

c v c v t

ρ ρ
α

λ

φ ρ β φ ρ β φ ρ φ ρ φ ρ
σ

ρ ρ

ρφρ φρ φ ρ β φ

ρ ρ

+
←

∂ ∂⎛ ⎞− − + − −⎜ ⎟∂ ∂⎝ ⎠←
+ Δ

∂
+ − − + − −

∂
+

+ Δ

(3.57) 

After the stabilizing parameters are determined by equation (3.52), and procedure is 

just to follow equation (3.51) to append the stabilizing terms. 

3.6 Iterative GMRES solver  

The Generalized Minimum Residual Method (GMRES) is developed by Saad and Schultz 

(1986) for solving large sparse nonsymmetric linear systems.  

The GMRES algorithm uses the Arnoldi process (Arnoldi 1951) to construct 

orthonormal basis vectors of the Krylov subspace, and is guaranteed not to break down even 

for problems with indefinite symmetric parts (unless the algorithm has converged anyway). 

The Arnoldi process uses all the previous orthonormal basis vectors to calculate the next vector 

at each iteration. The algorithm is arranged such that only one matrix vector multiplication is 

required per iteration, compared to the two matrix vector multiplications required for most 

other iterative solvers such as the Bi-Conjugate Gradient and Bi-CGSTAB algorithms which 

also converge for non-symmetric matrices. 

The standard non-restarted GMRES algorithm is shown below.  
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For a system of equations 

 Ax b=  

1. Start:  

Choose x0 and a dimension m of the Krylov subspaces. 

2. Arnoldi process: 

Compute 0 0r b Ax= − , 

0rβ = .  

Set  1 0 /rυ β=  

For j = 1, 2, …m 

 ( , ), 1, 2,...,ij j ih A i jυ υ= = , 

 1
1

j

j j ij i
i

A hω υ υ+
=

= − ∑ , 

 1, 1j j jh ω+ += , 

 1 1 1,/j j j jhυ ω+ + +=  

3. Form the approximate solution: 

Compute 0m m mx x V y= + , where 

     ym minimizes 1m m mH y eβ− , and 

     1 [1,0,...,0]Te =  

In the above, mH  is the upper Hessenberg matrix consisting of the components hij. The 

minimization of the term 1m m mH y eβ−  to find the vector ym is a least-squares problem, and can 

be achieved by factorizing the mH  matrix into QkRk using plane rotations.  
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The dimension, m, is chosen so that the approximate solution xm is sufficiently accurate, 

but small enough so as not to be prohibitive in terms of storage required. If after m iterations 

the approximate solution has not converged then it is possible to restart the algorithm using the 

current estimate of x as the new initial guess. This method is denoted by GMRES(m). 

The GMRES(m) algorithm is shown below.  

For a system of equations 

 Ax b=  

1. Start:  

Choose x0 and a dimension m of the Krylov subspaces (Saad 1996). 

2. Arnoldi process: 

Compute 0 0r b Ax= − , 

0rβ = .  

Set  1 0 /rυ β=  

For j = 1, 2, …m 

 ( , ), 1, 2,...,ij j ih A i jυ υ= = , 

 1
1

j

j j ij i
i

A hω υ υ+
=

= − ∑ , 

 1, 1j j jh ω+ += , 

 1 1 1,/j j j jhυ ω+ + +=  

3. Form the approximate solution: 

Compute 0m m mx x V y= + , where 

     ym minimizes 1m m mH y eβ− , and 
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     1 [1,0,...,0]Te =  

4. Restart: 

If converged then stop, otherwise set 0 mx x= , and GOTO 2. 

Traditionally, computer programs have been based on the assembly techniques. For 

static equilibrium problems, all the element stiffness matrices would be assembled to form a 

general system matrix. Then the linear algebraic system would be solved, typically by some 

form of Gaussian elimination, a strategy demanding huge storage requirements when the 

problem size becomes large.  

  Element-by-element (EBE) strategies can reduce the storage requirements substantially. 

In this process, the product can be carried out element by element without even assembling the 

general system stiffness matrix. The basic idea is to convert calculation of the vector product of 

a global matrix into that of the vector product of a group of element stiffness matrices. During 

computation in the EBE strategy, the global stiffness matrix and global force vector will not be 

integrated. All the computation occurs at the element level.  

The element by element (EBE) strategy was first introduced and applied in the finite 

element analysis of heat conduction problems by Hughes et al. (1983). Later on in 1987, 

Hughes  implemented the EBE method on a parallel system (Hughes et al. 1987). 
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Chapter 4  
Displacement Discontinuity Analysis  

and Hybrid DDFEM Model 
 

It is well known that the finite element method (FEM) is the most developed for solving 

nonlinear problems and multi-field problems involving many different types of equations, 

whereas the boundary element method (BEM) has the advantage of reducing the dimension of 

the problem by one as only the boundaries are discretized. The ideal approach would be to 

combine both methods to form a hybrid method. The BEM handles the open regions and linear 

solution while the FEM handles the nonlinear regions and locations of multi-field problems. 

For example, as to the problem of fully coupled gemechanics-reservoir simulation considering 

the strata surrounding the reservoir, we can use FEM to handle the reservoir area while using 

BEM to account for the strata surrounding the reservoir. 

4.1 Displacement Discontinuity Method 

The displacement discontinuity method is a boundary element method designed to solve 

problems in solid mechanics involving bodies containing thin, slit-like openings or cracks. 

Physically, one may imagine a displacement discontinuity as a crack whose opposing surfaces 

have been displaced relative to one another. The displacement discontinuity method is based 

on the notion that one can make a discrete approximation to a continuous distribution of 

displacement discontinuities along a crack, finding numerical solutions to distributed loading 

problems for an elastic half-space. That is, we divide the crack into a series of N elements and 

take the displacement discontinuity to be constant over each one. Knowing the analytical 
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solution for a single, constant elemental displacement discontinuity, we find a numerical 

solution to the problem by summing the effects of all N elements (Crouch and Starfield 1983). 

In mining problems, the displacement discontinuity has been defined as the relative 

displacement between the roof and floor of a small area of a seam-like deposit. Similarly, for 

the behavior of a producing petroleum reservoir, the displacement discontinuity components 

can be defined as the relative displacement components between the top and bottom of a small 

area of a tabular reservoir.  

Consider a displacement discontinuity as a plane crack with a normal in the x3 

direction; its two faces can be distinguished by specifying one in the positive side (x3= 0+) and 

the other is in the negative side (x3= 0-). In crossing from one side to the other, the 

displacements undergo a specified change in value Di = (D1, D2, D3) given by 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )+−

+−

+−

−=

−=

−=

0,x,xu0,x,xu0,x,xD

0,x,xu0,x,xu0,x,xD

0,x,xu0,x,xu0,x,xD

213213213

212212212

211211211

                                        (4.1) 

  The general form solution for a displacement discontinuity element can be expressed 

as(Crouch et al. 1983; Salamon et al.1963): 

( ) ( ){ }1 1,2 3 1,13 3 2,12 3,1 3 1,132 1 1 2u v x x v xφ φ φ φ φ⎡ ⎤ ⎡ ⎤= − − − − − +⎣ ⎦ ⎣ ⎦                              (4.2) 

( ) ( ){ }2 2,3 3 2,22 3 1,12 3,2 3 3,232 1 1 2u v x x v xφ φ φ φ φ⎡ ⎤ ⎡ ⎤= − − − − − +⎣ ⎦ ⎣ ⎦                            (4.3) 

( ) ( ) ( ){ }3 3,3 3 3,33 1,1 3 1,13 2,2 3 2,232 1 1 2 1 2u v x v x v xφ φ φ φ φ φ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − − + − − − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦                 (4.4) 

( ){ }11 1,13 3 1,111 2,23 3 2,112 3,33 3,22 3 3,1132 2 2 1 2G x v x v xσ φ φ φ φ φ φ φ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − + − + + − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦            (4.5) 

( ){ }22 1,13 3 1,122 2,23 3 2,222 3,33 3,11 3 3,2232 2 2 1 2G v x x v xσ φ φ φ φ φ φ φ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − + − + + − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦            (4.6) 

{ }33 3 1,133 3 2,233 2,33 3 2,3332G x x xσ φ φ φ φ⎡ ⎤= − − + −⎣ ⎦                                   (4.7) 
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( ) ( ) ( ){ }12 1,23 3 1,112 2,13 3 2,122 3,12 3 3,1232 1 1 1 2G v x v x v xσ φ φ φ φ φ φ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − − + − − − − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦         (4.8) 

{ }23 1,12 3 1,123 2,23 2,11 3 2,223 3 3,1232G v x v x xσ φ φ φ φ φ φ⎡ ⎤ ⎡ ⎤= − − + + − −⎣ ⎦ ⎣ ⎦                      (4.9) 

{ }13 1,33 1,22 3 1,113 2,12 3 2,123 3 3,1332G v x v x xσ φ φ φ φ φ φ⎡ ⎤ ⎡ ⎤= + − + − − −⎣ ⎦ ⎣ ⎦                    (4.10) 

where ( )3,2,1,,,, ,,, =lkjjklijkiji φφφ , are the derivatives of the kernel function 

( ) ( ) ( ) ( )[ ] ηξηξ
π

φ ddxxxD
v

xxx ii

2/12
3

2
2

2
1321 18

1,,
−

ℜ

+−+−
−

= ∫∫               (4.11) 

in which ℜ is the area of the element, Di (i = 1, 2, 3) are the displacement discontinuities, (x1, 

x2, x3) is the coordinate system originated at the element, and ( , , 0ξ η ) are the coordinates of 

the loading point. For the most common constant displacement discontinuity element, the 

displacement discontinuities can be taken out of the integration formula. The last equation is in 

terms of the basic kernel function 

( ) ( ) ( )
1/ 22 2 2

1 2 3 1 2 3, ,I x x x x x x d dξ η ξ η
−

ℜ

⎡ ⎤= − + − +⎣ ⎦∫∫                           (4.12) 

which depends on the geometry of the element. The kernel functions were derived for the 

rectangular element by Salamon (1963).  

4.2 Link between DD and FE element 

The relationship between the DD element and the FE element is shown in Figure 4.1. From 

experience in mining problems, the interface shear stress is of lower order of importance 

compared to the normal stresses, and is always ignored. Therefore, in the present reservoir 

problem, we provide only the continuity of vertical displacements and do not match other 

components. 

  An exchange of information between the reservoir model and the DD model is 

necessary. The information that the FEM model provides is the deformation of the reservoir, 
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which is then converted into a displacement discontinuity provided to the DD model; the 

information that the DD model provides is the stress state of the reservoir, which is then 

converted into overburden loads provided to the FEM model. 

 

Figure 4.1. Sketch of relationship between Finite Element and Displacement Discontinuity 
Element 
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The process of coupling between the reservoir model and the DD model is repeated until 

convergence is achieved.   

4.3 DDFEM Model 

In this section, we combine a FEM method for the reservoir with a DD formulation for the 

surrounding strata, to address the compaction-induced surface subsidence problem numerically 

in a half-space domain. It should be noted that, although the displacement discontinuity method 

itself can not deal with the sideburden, this problem could be overcome when it is coupled with 

the FE reservoir model. Meanwhile, the underburden is to be dealt with in a similar way to the 

overburden; however, for simplification, it is not taken into account separately in this 

formulation.   

We use the iteration method to implement data exchange between the DD and FEM 

models; the procedure is as follows (shown in Figure 4.2): 

1. Start with the FEM (reservoir) model to calculate the displacement and pressure 

under prescribed external loads and fluid discharge conditions within a specified time period.  

2. Convert displacements obtained from the FEM model into the displacement 

discontinuity which is needed to apply to the DD elements defining surrounding strata. 

3. Execute the DD model, from which the local stresses can be computed. 

4. Apply the induced stresses calculated from the DD model, along with the difference 

between the stresses in FEM and DDM, into the external loadings to be applied to the FEM 

model in the next iteration.  The purpose of doing this is to make sure the stresses retain 

continuity. 

 ( 1) ( ) ( ) ( )
33( )k k k k

vq q σ σ+ = + −                                                         (4.13) 
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where k denotes the number of iteration, ( )
33

kσ  is the vertical stress calculated from DD model 

in last step, ( )k
vσ  is the vertical  total stress calculated from the FE model by  

( ) ' ( ) ( )k k k
v v pσ σ= −                                                               (4.14) 

where ' ( )k
vσ  is the effective stress(sign convention: compression as negative in FE model), p is 

the pore water pressure. 

Based on our experience, to accelerate the convergence, we introduce a constant, χ , to 

multiply the stress difference between the two models  

( 1) ( ) ( ) ( )
33( )k k k k

vq q c σ σ+ = + −                                                      (4.15) 

 And the formulation for χ  is recommended as 

r

r o

E
E E

χ =
+

                                                                   (4.16) 

where Er represents the Elastic modulus of the reservoir, and Eo represents the Elastic modulus 

of the surroundings. 
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Figure 4.2. Flowchart of the iteration calculation between DD and FEM Model 

 

5. The first iteration in the first time step ends, and this iteration is now repeated until 

the difference of the displacement discontinuity between successive iterations is less than the 

error tolerance.  (There is also a criterion for maximum number of iterations.) 

6. Now, the first time step is complete, and we return to step (1) above to undertake the 

second time step, repeating the process until the desired time is reached.  Intermediate stresses 

and displacements are stored for examination of time-dependent, diffusion-controlled factors.  

(Note that temperature effects can be included easily.) 

4.4 Non-isothermal DDFEM Model 

Conventional thermal reservoir simulation does not account rigorously for ΔT, Δp and 

Δσ′ in surrounding strata. For example, heat losses are addressed with empirical coefficients 

determined from thermal conductivity data and closed-form or semi-analytical heat flux 

calculations. Temperature distributions in bounding strata are usually calculated separately, 

often with a one-dimensional thermal conduction model. 

To address these limitations, we developed the “three zones” concept (Dusseault et al. 

2007). Besides the reservoir zone, we appropriately define a volume adjacent to and 

surrounding the reservoir zone.  In this zone we will account for heat and fluid diffusion, and 

refer to this as the T-p influence zone (See Figure 4.3). Trial and error leads quickly to a 

reasonable estimate for the size of this T-p influence zone. Thus, we partition a 3D problem 

into three zones: the reservoir zone, the T-p influence zone and the surrounding strata zone.  
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Figure 4.3. Schematic for the “Three zones” concept 

For the reservoir and T-p influence zones, we discretize into FEM “bricks”, then 

account for the existence of the surrounding domain through the nodal reactions of the DD 

surface elements placed on the outside of the FEM model.  Providing the T-p zone dimensions 

are chosen realistically, heat flux and pressure diffusion are dealt with naturally and rigorously, 

and p- and T-induced ΔV around the reservoir is accounted for as well.  

In the coupled DDFEM approach, DD elements bound the FEM domain, providing the 

realistic mixed stress-displacement boundary that accounts for the reservoir surroundings.  This 

means that we need to execute flow and stress calculations only within the FEM-discretized 

reservoir and T-p influence zones.  The displacement discontinuity components can be viewed 

as the relative displacement components between the top and bottom of the T-p influence zone 

around a tabular reservoir.  The correspondence between the DD element and the FE element is 

shown in Figure 4.4, where it is indicated that a DD element of an area corresponding to the 

surface area of the subjacent FEM isoparametric brick is defined.  Of course, in this simple 

cartoon, only one FEM brick is shown; in reality, there are many layers of elements between 

the upper and lower surfaces where the DD elements are found. 
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Figure 4.4. Sketch of relationship between finite elements and DD elements 

The coupling is developed as follows: FEM provides DDM with {σ, ε}, used for 

updating and to satisfy continuity; then, DDM provides FEM with boundary reactions, used to 

update the boundary load vector.  The flow chart of the iteration process is shown in Figure 

4.5. 
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Figure 4.5. Flowchart of the iterative calculation scheme in the DDFEM model 

In the implementation of the current model, a 20-node isoparametric brick element 

(Figure 4.6) is employed for the FEM, and a rectangular element is employed for the DD 

model. 

 

Figure 4.6. 20-node brick element of FEM 
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Chapter 5 
Model Verification 

 
Numerical models mentioned in the previous chapters, including the finite element models and 

boundary element models, are verified in this chapter.  

5.1 One Dimensional Consolidation 

Consider a one-dimensional consolidation case (Figure 5.1).  Isoparametric 20-node brick 

elements are employed, and the domain is discretized into 4 elements with 56 nodes. The 

material properties used are as follows.  

 

Figure 5.1. One-dimensional Consolidation Model  

 Young’s modulus  E  1 MPa 

 Poisson’s ratio   ν  0.3 

 Hydraulic conductivity k/μ  100 M m4/N·s 
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 Initial porosity   φ  0.28 

 Fluid bulk modulus  Kf  100 MPa 

Boundary conditions and initial conditions are as follows: an external surface load of q 

= 0.10 MPa was applied at the top surface of the model, the fluid is allowed to drain through 

both the top and the bottom surfaces, and no-lateral-strain is imposed on horizontal 

displacements.  The following figures (5.2, 5.3) and table (5.1) compares initial and final 

values from the FEM model (after 50 iterations) and the closed-form poroelastic solutions (in 

solid lines); high precisions are reported for purposes of comparison only. 
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Figure 5.2. Deformation evolution  
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Pressure Profile(Mpa) Development with Time
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Figure 5.3. Pressure evolution 

 

Table 5.1 Comparison between the solution from FEM and analytical solution 

Parameter FEM Solution Analytical Solution 

Initial pressure 0.09962456 MPa 0.0996245 MPa 

Initial displacement 0.27894361×10-3 m 0.2789429×10-3 m 

Final pressure 0.000224 MPa 0 (at t = ∞) 

Final displacement 0.7418612 m 0.74285 m 
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5.2 Mandel’s Problem 

Mandel’s problem has been used as a benchmark problem for testing the validity of the 

numerical codes of poroelasticity (Christian et al. 1970; Cheng et al. 1988). Mandel’s problem 

involves an infinitely long rectangular specimen sandwiched at the top and the bottom by two 

rigid frictionless and impermeable plates. The lateral sides are free from normal and shear 

stress, and pore pressure (See Figure 5.4).  

 

Figure 5.4. Mandel’s Problem geometry 

At += 0t  a force of 2F per unit thickness of the specimen is applied at the top and 

bottom. As predicted by the Skempton effect (Skempton 1954), a uniform pressure rise will be 

generated inside the specimen. As time goes on, pore pressure near the side boundaries will 

dissipate due to the drainage. Later the pressure depletion region will propagate into the center 

of the specimen. Fluid drainage will finally stop once the initial pressure rise totally vanishes 
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over the entire domain. The analytical solution for the pore pressure is given as (Mandel 1953; 

Abousleiman et al. 1996):  

( )22

1
/expcoscos

cossin
sin

3
)1(2

act
aa

vFB
p ii

i

i iii

iu ββ
β

βββ
β

−⎟
⎠
⎞

⎜
⎝
⎛ −

−
+

= ∑
∞

=
      (5.1) 

where iβ  satisfies 

i
u

i vv
v ββ

−
−

=
1tan                                                    (5.2) 

  To simulate this problem by our 3D FEM model, we set the dimensions of the 

specimen and material properties as follows: 100ma = , 10mb = , 81.0 10 NF = × , 0 0.0Pap = , 

81.0 10 PaE = × , 2.0=v , 0.1=α , 141.0 10 PafK = × , 141.0 10 PamK = × , 2.0=φ , 0.1Dk = , 

1.0cPfμ = . 

Figure 5.5 shows the comparison of the numerical and analytical results for pore 

pressure at different time.  The non-monotonic pore pressure response under the centre of the 

strip (first rising, then falling), known as the Mandel-Cryer effect (Cryer 1963), can be 

observed.  This is because the initial presence of the pore pressure adds to the apparent 

compressive stiffness of the specimen, and the specimen becomes more compliant near the side 

with the reduction of the pore pressure. By the compatibility requirement, there is a load 

transfer of compressive total stress towards the effectively stiffer (as-yet undrained) center 

region. This transferring works as a pore pressure generation mechanism such that the pressure 

in the centre region continues to rise after its initial creation (Abousleiman et al. 1996). As 

mentioned, this is a strain and stiffness effect, and can only be addressed by methods that 

afford correct coupling of displacements and pressures.  The faithful replication by the FEM 

model is part of the demonstration of verification. 
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Mandel's Problem Pore Pressure Distribution Along X axis
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Figure 5.5. Mandel’s Problem pore pressure distribution along the x-axis (normalized pore 
pressure = ap/F) 

 

5.3 Partially Saturated Elastic Consolidation 

In order to correctly illustrate the governing equations and constitutive relationships upon 

which the numerical model is based, the numerical model is validated through a partially 

saturated elastic consolidation problem initially solved by Dakshanamurthy and Fredlund 

(1981), and later on by Schrefler et al. (1995), Lewis et al. (1998), and Rahman et al. (1999). 

Geometry and FE discretization are shown in Figure 5.6. 

The soil column was assumed to be unsaturated with an initial water saturation of 0.52. 

The initial pore water pressure boundary was -280 kPa. The boundary condition is as follows: 

the lateral surface and bottom surface are not supposed to move horizontally and vertically 

respectively, and are not permeable to both fluids. The prescribed pressure at the top surface is, 

Pw = -420kPa, Pa = Patm.  The following data were assumed: Column height L = 1.0m, E = 
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6000 kPa, Kf = 2 × 106 kPa, Km= 1.4 × 106 kPa, ν = 0.4, k = 4.6 × 10-12 m2, μw = 1.0cP, μa = 

0.018cP, Pb = 225.0kPa,  λ = 3.0, Swc = 0.3966, ϕ = 0.3. 

 

Figure 5.6. Partially Saturated Elastic Consolidation Model  

  Figures representing the final results are as follows: Figure 5.7 shows the vertical 

displacements for selected points in consolidation process; and, Figure 5.8 shows the pore 

water pressure distribution throughout the soil layer at different time steps. The model 

describes the behavior of partially saturated soil systems under environmental changes and the 

results agree well with the results obtained by previous researchers (Lewis et al. 1998, Rahman 

et al. 1999).  
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Figure 5.7. Vertical displacement profile  
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Figure 5.8. Pore pressure profile 
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5.4 Thermal Consolidation 

We now do verification through a thermo-elastic one-dimensional consolidation problem 

solved previously by Aboustit et al. (1985). Geometry and FE discretization are shown in 

Figure 5.9. 

A column of linear elastic material is subjected to a unit surface pressure (q = 1.0 kPa) 

and a constant surface temperature T = 50oC. The following data were assumed: Column 

height L = 7m, E = 6000kPa, Kf  = Km = 1012kPa, v = 0.4, ϕ = 0.5, ρfcf = 0.0, k/μ = 4×10-6m4 kN-

1 s-1, λT = 0.2 kCal m-1 s-1 ºC-1, βs = 0.9×10-6 ºC-1, βf = 0.63×10-5 ºC-1, ρscs = 40kCal m-3 ºC-1.  

Only the top of the column is permeable.  

 

Figure 5.9. One-dimensional Consolidation Model  

The Figures that represent the final results are as follows: Figure 5.10 shows the temperature 

change with time, Figure 5.11 shows the pressure change with time, and Figure 5.12 shows the 

displacement change with time. All of these curves have a good agreement with the results 

presented by Aboustit (1985) and Lewis (1998). 
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Figure 5.10. Temperature (oC) vs. time (s) at mid column node  

 

 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

0.01 0.1 1 10 100 1000

Time (s)

Pr
es

su
re

(k
Pa

)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

0.01 0.1 1 10 100 1000

Time (s)

Pr
es

su
re

(k
Pa

)

 

Figure 5.11. Pressure vs. time at mid column node 
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Figure 5.12. Deformation (m) vs. time (s) at top surface  

 

5.5 Partially Saturated Thermal Consolidation 

This verification deals with a thermoelastic consolidation of partially saturated clay for which 

previous solutions are known (Dakshanamurthy and Frelund 1981, Schrefler et al.1995).  In 

the former, a constant permeability and thermal properties case was studied; in the latter, the 

problem was solved for the relationships between relative permeabilities of water and air, using 

the Sw - capillary pressure relationship of Brooks and Corey (1966).  

A 100 mm layer of partially saturated clay (Sw = 0.89), initially in a state of 

equilibrium, is subjected to a sudden environmental change.  A surface temperature jump of 15 

K and a capillary pressure jump of 140 kPa cause simultaneous heat and mass transfer 

(corresponding to a drying process caused by warm dry-air flux).  Parameters are E = 60×103 

kPa, v = 0.4, φ = 0.5, Km = 1.4×106 kPa, Kw = 1.0×106 kPa, k = 10.0 D, µw = 1 cP, µair = 1 cP, 
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ρs = 1.8×103 kg/m3, ρw = 1.0×103 kg/m3, ρair = 1.22 kg/m3, B0
w =1.0, and air is considered to 

be an ideal gas.  Also, βs = 1.0×10-6 K-1, βw = 0.63×10-5 K-1, cs = 30.0 kCal/kg-K, cw = 50.0 

kCal/kg-K, cair = 0.0, and the thermal conductivity λT = 0.4574 cal/m-s-K.  The relationships in 

Brooks & Corey’s formulation for relative permeabilities of water and gas, as well as for Sw-

capillary pressure, were assumed as follows: 

(2 3 ) /c c
rw ek S λ λ+=                                                          (5.3) 

( ) ( )c c(2 λ )/λ2
rg e ek 1 S 1 S += − −                                (5.4) 

c1 /λ
c b eP P S −=                                                        (5.5) 

w wc
e

wc

S S
S

1 S
−

=
−

                                                              (5.6) 

Here, Se is effective saturation, bubble-point pressure Pb = 316.6 kPa, irreversible saturation 

Swc = 0.2114, and the constant λc = 0.80, which corresponds to the given saturation-capillary 

pressure values for consolidation in Dakshanamurthy et al.’s case.  The initial conditions were: 

T = 283.15 K, Pg = 102 kPa, Pw = -280 kPa. 

The boundary conditions were the following: for the lateral surface, qT = 0, qw = 0, qg = 

0, uh = 0; for the top surface, T = 298.15 K, Pg = 102 kPa, Pw = -420 kPa; and, for the bottom 

surface, qT = 0, qw = 0, qg = 0, and uv = 0. 

Figures 5.13 to 5.15 show the temperature, water pressure, and air pressure during 

consolidation calculated by our FEM model (shown in colored lines) and along with the results 

by Dakshanamurthy et al. (1981) (shown in black lines) for comparison. It can be seen that 

results obtained by our FEM model largely agree well with those obtained by Dakshanamurthy 

et al., which were calculated through separate analytical equations. It should be noted that the 

time needed for pressure dissipation in our results is longer than that by Dakshanamurthy et al. 
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because they used a constant relative permeability value, and based on the given relative 

permeability curve and capillary curve, the water saturation profile during consolidation is 

shown in Figure 5.16. Furthermore, because the equilibrium equation is not considered in the 

Dakshanamurthy et al.’ case, pore air pressure buildup is observed. This is not the case when 

the equilibrium equation is coupled, because the total stress should remain constant as no 

external load is enforced on the clay. Based on the given modulus, the vertical deformation 

profile is shown in Figure 5.17. 
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Figure5.13. Profile of temperature during consolidation 
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Figure 5.14. Profile of water pressure during consolidation 
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Figure 5.15. Profile of air pressure during consolidation 
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Figure 5.16. Profile of water saturation during consolidation 
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Figure 5.17. Profile of vertical displacement during consolidation 

 

5.6 Underground excavation 

To verify the DD model based on rectangular elements with a constant displacement 

discontinuity variation, we use the 3-D boundary element model (BEM) (Figure 5.18) to 

compute a sample problem, and compare the results from it with those from the DD model. 

3D DDM 

• Domain: Semi-Infinite.  

• 20.0m 20.0m 2.0m× × Excavation and the ground surface. 

• 30m deep underground. 

• mDDz 1=  is prescribed on the excavation.  

• 1GPa, 0.333E v= = . 

• Discretized with rectangular elements. 
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• 2025(= 2599 ×× ) elements. 

3D BEM 

DD elements representing the excavation

Boundary elements on 
the ground surface and 
excavation surfaces

DD elements representing the excavation

Boundary elements on 
the ground surface and 
excavation surfaces

 

Figure 5.18. 3-D Semi-infinite domain excavation problem solved by DDM and BEM 
 

• Domain: Semi-Infinite.  

• 20.0m 20.0m 2.0m× × Excavation and the ground surface. 

• 30m deep underground. 

• 0.5427m, 0.4573mZ ZU U= − =  are prescribed on top and bottom surface, 

respectively.  

• Traction free surface is prescribed. 

• 1.0GPa, 0.333E v= = . 

• Discretized with 4-node rectangular elements. 

• 1199 nodes (plus 121 interior nodes). 

• 1166 elements. 
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Figure 5.19 shows the vertically induced stress calculated from DDM and BEM; Figure 5.20 

shows surface subsidence calculated from DDM and BEM.  These results show the satisfactory 

accuracy of the DD method. 

Stress ZZ along X axis on the top surface of an excavation
 at depth of 30m (discretized with 1166 elements)
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Figure 5.19 Vertically induced stress calculated from DDM and BEM 
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Subsidence bowl (due to excavation of 20X20X2 at 30m depth)

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0
-55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55

Distance from center in X axis direction(m)

di
sp

la
ce

m
en

t(m
)

BEM
DD

 

Figure 5.20. Surface subsidence calculated from DDM and BEM 

 

 

5.7 Geertsma’s Solution 

To verify the DDFEM model, we consider a m4m20m20 ××  reservoir at depth of 300m (in 

reality, it could be much deeper) with the following basic parameters (see Figure 5.21): 

41 10 kPaE = × , v = 0.3, ϕ = 0.28, 61 10 kPafK = × , kPaK m
6101×= , k = 1.0D, µ = 1.0cP.  
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Figure 5.21. Mesh of the reservoir FEM model  
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Figure 5.22. Convergence of the Displacement Discontinuity 

The reservoir has an impermeable boundary, and is supposed to be under a production 

rate Q = 0.5m3/min with uniform pumping. The purpose of this is to obtain a uniform pressure 

decline inside the reservoir. The advantage is that we can substitute the uniform pressure into 

Geertsma’s analytical solution later on. In the present problem, the time step is set as Δt = 

120minutes.  

  In the FEM mesh, the domain is discretized into 50 elements, 360 nodes; in DDM 

mesh, the domain is discretized into 25 DD elements. 
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  Convergence is shown in Figure 5.22, continuity of stress is demonstrated by the 

consistency of the stresses from both the FEM model and DD model (Figure 5.23), and the 

subsidence profile at different time steps is shown in Figure 5.24.  

  We select Geertsma’s solution in particular case, which is close to our case.  We will 

compare the result of the FEM-DDM model with Geertsma’s analytical solution in the 

following: Geertsma (1966) came up with the analytical solution to the subsidence caused by  

Vertical stress profile
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Figure 5.23. Continuity of stresses 
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Figure 5.24. Subsidence profile at different times 

 

a uniform pressure decline in a fluid saturated reservoir as follows: for 0=r  and a pΔ which is 

constant throughout the reservoir, the vertical displacement can be expressed as: 
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   (5.7) 

 

where Z = z/c, C = c/R and 1−=ε  for z > c, and 1+=ε  for z < c, respectively. Thus the elastic 

surface subsidence above the centre of a disc-shaped depleted reservoir amounts to 
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Cphcvu mz                                            (5.8) 
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The calculation based on the DDFEM model and Geertsma’s solution is done by computer and 

by spreadsheet respectively. The comparison is shown in Table 5.2. The result from this hybrid 

method shows high consistency with that by Geertsma (1966). 

Table 5.2 Comparison between the Geertsma’s Solution and DDFEM model 

subsidence at the centre 

Time E(kPa) v Thick(h) ~Radius(m) Depth(m) Drawdown(kPa) Ratio(D/R) Geertsma(m) DDFEM(m) Rel. Err. 

2hrs 10000 0.3 4 11.283 300 -314.103 26.586808 -9.23E-05 -9.30E-05 0.68% 

4hrs 10000 0.3 4 11.283 300 -635.232 26.586808 -1.87E-04 -1.86E-04 -0.35% 

6hrs 10000 0.3 4 11.283 300 -957.137 26.586808 -2.81E-04 -2.79E-04 -0.77% 

8hrs 10000 0.3 4 11.283 300 -1278.716 26.586808 -3.76E-04 -3.72E-04 -0.97% 

 

   

5.8 Rothenburg’s Solution 

Another verification of the DDFEM model is through the comparison with Rothenburg et al.’s 

analytical solution. It has been more and more recognized that the stiffness of the interbeds is 

an essential coupling element which must be taken into account. In a semi-analytical solution 

to single phase flow into a single well in an infinite reservoir developed by Rothenburg et al. 

(see Rothenburg et al. 1994; Charlez 1997), coupling of reservoir deformation with overburden 

effects is achieved through stress-strain (σ-ε) coupling to pressure changes, referred to by some 

as stress-deformation analysis.  Coupling is introduced through two dimensionless coefficients, 

χ and β, which address relative stiffness and relative thickness issues between the extremes of 

“infinitely soft” (fluid) or “infinitely stiff” (totally rigid) conditions for the overburden strata.  

2

1 21
1 1 4

or r

o r o

C h
C R

ννχ
ν ν

−+
=

− −
                                                         (5.9) 
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Here, Cr and Co are the bulk compressibility of the reservoir and surrounding strata 

respectively, Cm is the compressibility of solid matrix, Cf is the compressibility of the fluid, νr 

and νo are the Poisson’s ratios for the reservoir and surrounding strata respectively, and φ is the 

porosity.  Also, h and R are the thickness and radius of the circular reservoir. 

The coefficient χ expresses the ratio of the stiffness (Cr/Co) of the reservoir and 

overburden and the aspect ratio (h/R) of the reservoir.  For thin reservoirs (h/R → 0) and 

extremely soft overburden (Co >> Cr), χ ≈ 0, the solution is decoupled, and pressure changes 

are governed only by the oedometric compressibility (one-dimensional compression with no 

lateral strain), and the compaction induces no redistribution in the vertical stress, σv.  In 

contrast, for thick reservoirs and extremely “rigid” interbeds (Co << Cr), χ >> 1, no compaction 

occurs in the case of a single well because of perfect stress arching (the overburden is so rigid 

that it accommodates all stress changes without deformation).  These χ limits are decoupled 

cases that are not attained in practice; any oilfield subjected to drawdown will evidence some 

compaction, and interbeds always have some stiffness, usually within a factor of 0.5 to 2 of the 

reservoir itself.   

β, unlike χ, depends only on the reservoir properties; it describes the ratio of the 

reservoir rock matrix compressibility (Cr) to the bulk compressibility of the reservoir-fluid 

system (a combination of Cf, Cm and Cr).  When Cf << Cr, β ≈ 1, and stress redistribution 

effects are the most pronounced.  When Cf is very large, for example when the pore fluid 

contains large amounts of compressible gas, β ≈ 0, and stress redistribution effects are 

negligible.  For highly compressible fluids (e.g. gas reservoirs), the pressure term becomes 
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dominant in the diffusion equation compared with the compaction term, which re-decouples 

the solution.   

For a pressure drawdown problem in a poroelastic reservoir subjected to pumping, the 

problem is formulated in a poroelastic context so that the solution fully accounts for stress 

redistribution effects around the well, as well as for the effects of stress changes on fluid flow.  

Note that this has nothing to do with any non-linearity in the system; it is merely the elastic 

overburden response to reservoir volume changes caused by the pressure changes. The 

poroelastic, fluid-saturated reservoir is considered to be planar and surrounded by an 

impermeable elastic material of infinite extent.  The governing equation for fluid pressure was 

derived using a general elastic axisymmetric approach while assuring compatibility of 

displacement and stresses at the interface between the reservoir and the surrounding material.  

The resulting second-order integro-differential equation is solved using the Hankel transform, 

so that the given solution for pressure change due to a flow rate Q is as follows: 
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∫                                     (5.11) 

where k is permeability, μ is the viscosity, rw is the well radius, ξ is a transformed variable for 

the Hankel transform, and J0 is the Bessel function of the first kind, zeroth order.  

5.8.1 Reservoir Scale Problem 

In this section, we attempt to investigate the problem of the vertical stress changes as a result 

of pressure depletion which has been solved by Rothenburg solution (Rothenburg et al. 1994). 

The model is still based on basically the same parameters of the reservoir we used in last 

section’s verification, except that we change the stiffness of the overburden, in order to show 
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that changes in effective stress (leading to compaction) are strongly related to a relative 

stiffness Rχ .  Firstly, we need to defined a relative stiffness χR  as follows, 

     2

1 21
1 1 4

or r
R

o r o r r

vC v h
C v v R R

χχ −+
= =

− −
                                                (5.4) 

The correspondence between the stiffness of the overburden and the relative stiffness is as 

follows: 

 

 

 

 

Figure 5.25. Change in effective stress with reservoir depletion (After Rothenburg  et al. 1994) 

χR 0.0 0.2 0.5 1.0 2.0 6.0 

Eo(kPa) 0.0 27,640 69,110 138,220 276,430 829,300 
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Figure 5.26. Change in effective stress with reservoir depletion 

 

The comparison between the numerical results (Figure 5.26) and analytical results (Figure 

5.25) shows good agreement in the centre of the reservoir. Some gap between the two results in 

edge of the reservoir is due to the shape effects (analytical model is in an axisymmetric shape, 

numerical model is in 3D brick shape), but the tendency of curves is consistent. 

 

5.8.2 Single Producing Well 

Based on the above analytical solution, an interesting phenomenon about a single producing 

well, which is similar to Mandel-Cryer effect, can be observed. This can be observed only 

when coupled reservoir and surroundings are correctly considered in simulation.  
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In this section, we want to investigate this problem using the numerical model.  We 

consider a m4m21m21 ××  reservoir at depth of 300m with the following basic parameters 

(see Figure 5.27): 41 10 kPaE = × , v = 0.3, ϕ = 0.28, 61 10 kPafK = × , 61 10 kPamK = × , k = 

1.0D, µ = 1.0 cP. 

 

 

Producing wellProducing well

 

Figure 5.27. Geometry and mesh of the reservoir model 

The reservoir is subjected to a zero pressure boundary, and is supposed to be under a 

production rate Q = 0.5m3/min (i.e. 720 m3/day) from a single well at the center of the 

reservoir. 

  In the FEM mesh, the domain is discretized into 72 elements, 497 nodes; in the DDM 

mesh, the domain is discretized into 36 DD elements. 
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Figure 5.28. Pressure changes at different time 
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Figure 5.29. Pressure evolution in a node adjacent to the producing well 
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In Figures 5.28 and 5.29, the non-monotonic pore pressure response adjacent to the 

centre of the strip (first rising, then falling), similar to the Mandel-Cryer effect, is observed.  

This is because the initial sharp removal of the fluid from the single well at the centre of the 

reservoir considerably softens the center reservoir region. By the compatibility requirement, 

there is a load transfer of compressive total stress towards the effectively stiffer region adjacent 

to the center. This transferring works as a pore pressure generation mechanism such that the 

pressure in the region adjacent to the centre rises for a while before its dissipation later on. The 

faithful replication by the DDFEM model is part of the demonstration of verification.  
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Chapter 6 
  Numerical Experiments 

 
Based on the models described in the previous chapters, some numerical experiments are 

conducted in analyzing the petroleum reservoir compaction/expansion, ground surface 

subsidence/heave, pressure drawdown/buildup, stress changes, and temperature distributions in 

some scenarios. 

6.1 Ground subsidence in a half-space  

In this example, we want to look into the computational efficiency of the DDFEM method. It 

only took 2 minutes for the program to finish the problem. However, when the finite element 

method alone is employed to solve the problem, the outer boundary of the domain must be 

extended reasonably far from the reservoir, and it needs to be meshed inside the entire domain 

(Figure 6.1). 

  We consider a 25m 25m 4m× ×  reservoir at depth of 300m with the following basic 

parameters (see Figure 6.1): 42.0 10 kPaE = × , v = 0.25, ϕ = 0.30, 61 10 kPafK = × , 

81 10 kPamK = × , k = 1.0D, µ = 22.0cP.  

  The parameter for the surrounding rock is as follows: 52.0 10 kPaE = × , v = 0.25. 

The reservoir has an impermeable boundary, and is supposed to be under a production 

rate Q = 720.0m3/day with uniform pumping. The time step is set as Δt = 0.1 days. We want to 

predict the subsidence with time. 
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  Firstly we use the DDFEM model to solve this problem. In the FEM mesh, the domain 

is discretized into 50 elements, 360 nodes; in DDM mesh, the domain is discretized into 25 DD 

elements. 

 

 

Ground surface

Reservoir

Ground surface

Reservoir

 

Figure 6.1. Fine finite element discretization of the reservoir and surroundings 

It only took 2 minutes for the program to finish the problem. The ground surface 

subsidence evolution curves produced by DDFEM model along the diagonal direction are 

shown in Figure 6.2. The lateral ground surface movement curves produced by DDFEM model 

along the diagonal direction are shown in Figure 6.3. It should be noted that we did not put the 
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complete solution provided by the DDFEM model into these two figures. They are 

approaching to zero with distance from the center. 

However, when the finite element method is employed to solve the problem, the outer 

boundary of the domain must be extended to be reasonably far from the reservoir, and it needs 

to be meshed inside the entire domain. 

When we still use 5×5×2 finite elements accounting for the reservoir domain, there are 

totally 35×35×14 finite elements for the reservoir and its surroundings (Figure 6.1). The 

reservoir is in layers 5 and 6 in the vertical direction, and from gridblocks 16 to 20 in the 

horizontal directions. The sideburden, underburden and overburden are obtained by extending 

75m, 40m and 300m from the side, bottom and top of the reservoir, respectively, discretized 

uniformly  in each zone. To solve the same problem, the full finite element model took 241 

minutes, which is 120 times as long as the DDFEM model.  

The ground surface subsidence evolution curves produced by FEM model along the 

diagonal direction are shown in Figure 6.2. The lateral ground surface movement curves 

produced by FEM model along the diagonal direction are shown in Figure 6.3. 

This shows that the DDFEM model is excellent in computing efficiency compared to 

the full FEM model. 
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Figure 6.2. Comparison of ground surface subsidence profiles predicted by DDFEM model and 
FEM model 
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Figure 6.3. Comparison of lateral ground surface movements predicted by DDFEM model and 
FEM model 
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We can see the significant differences between the outcomes of the two models from 

Figures 6.2 and 6.3. It was calculated that the subsidence ‘volume’ taken place at the ground 

surface produced by the DDFEM model and FEM model are close. Obviously, the limited 

reservoir outer domain included in the FEM model caused the inaccuracy and even led to 

wrong “predictions”. However if the outer domain of the FEM model is extremely large to 

account for the right predictions, the computing efforts will be accordingly huge. 

 

6.2 Noordbergum effects  

 

In this section, we will revisit Theis’ solution as well as the aforementioned Rothenburg et al.’s 

analytical solution (referred to as RBD model later on) and the numerical DDFEM model to 

investigate the effects of the stiffness of the surroundings on the pressure drawdown in a 

poroelastic reservoir due to pumping. 

The Theis solution gives the pressure drawdown within a pumping reservoir at a radial 

distance, r, and at time, t, as  

2

4 4
Q c rp Ei

kh kt
μ μ φ

π
⎛ ⎞

Δ = − −⎜ ⎟
⎝ ⎠

                                              (6.1) 

where Q is the pumping rate at the reservoir center, k is the permeability, μ is viscosity, φ is 

porosity, c is the compressibility of the reservoir, h is the thickness of the reservoir, and Ei is 

the exponential integral function. 

It may be useful here to note that the Theis solution (Theis 1935) and all other 

subsequent well behavior solutions have been derived with the implicit assumption that the 
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overburden strata are infinitely soft; therefore, these solutions cannot accommodate stress 

redistribution effects, so there is no coupling within them.   

Suppose a reservoir of dimensions 1000 m × 1000 m × 20 m with a pumping well at the 

center extracting 1000 m3/day.  The pressure at the lateral boundaries is maintained the same as 

that at the initial state.  The bottom of the reservoir is fixed both vertically and horizontally, the 

four sides are fixed horizontally, and the top is free to move.  Physical parameters of the 

reservoir are set as follows. Er = 9.0×102 MPa, νr = 0.3, φ = 0.25, Kf = 2.25×103 MPa, Km = 

1.0×104 MPa, k = 58.633 D, μ = 1.0 cP.  The physical parameters of the reservoir surroundings 

are: Eo = 9.0×103 MPa, νo = 0.3.  Finite element discretization of the reservoir zone is as shown 

in Figure 6.4. 

Using the DDFEM model and RBD model respectively, we investigated the pressure 

drawdown at a distance of 250 m from the well; Figures 6.5 and 6.6 show the pressure 

drawdown curve at times of 0.0025 days and 0.005 days respectively.  The pressure drawdown 

curve obtained through Theis’s solution for identical parameters is displayed in Figure 6.7.  

The short time scales here are deliberately chosen to clearly show the Noordbergum 

effect (Verruijt 1969), which describes the increase of pore pressure at some distance away 

from the pumping well in a reservoir or aquifer, while usually  a monotonic pressure 

drawdown is expected in this case if only Theis-type equations are used. Indeed, in comparing 

Figures 6.5 and 6.6 to Figure 6.7, we can clearly see the Noordbergum effects in the fully 

coupled model DDFEM and RBD, but not in the Theis-type solution results. 

Next we investigate the complete overburden effects on pressure drawdown.  Keeping 

the basic parameters above unchanged, we only change the stiffness of the reservoir 

surroundings from Eo = 9.0×103 MPa to Eo = 1.8×104 MPa (a doubling of the overburden 

stiffness).  Figure 6.8 shows the results from these two cases, and we note that the 
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Noordbergum effect is more pronounced with a stiffer surrounding rock, and the pressure is 

also higher.  

 

Figure 6.4. FEM mesh for a 1000m ×1000m × 20m reservoir. 
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Figure 6.5. Pressure drawdown till 0.0025days solved by RBD model and DDFEM model. 
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Figure 6.6. Pressure drawdown till 0.005days solved by RBD model and DDFEM model 
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Figure 6.7.  Pressure drawdown till 0.0025days obtained by Theis’ solution 
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Figure 6.8.  Comparison of pressure drawdown with a softer and stiffer reservoir surrounding 
solved by DDFEM 

 

6.3 Pressure drawdown and stresses changes 

In this case, two-phase flow is considered in a production-induced compaction/subsidence 

problem to study overburden effects on pressure and saturation over time. Assume a 20 m × 20 

m × 4 m reservoir at z = 300 m with E = 6.0×103 kPa, v = 0.4, ϕ = 0.3, Km = 1.4×106 kPa, k = 

1.0D, µw = 1.0 cP, µoil = 1.0 cP. Formation volume factor Bo = Bw = 1.0. The relative 

permeability-saturation function and capillary pressure-saturation function are taken after 

Brook’s formula (Brooks and Corey 1966) with Pb = 16 kPa, λc = 3.0, Swc = 0.25.  The 

reservoir is subjected to a single production well in the center with the initial condition:  Soil = 

0.70, Poil = 11.8378 kPa, and Pw = -27.6216 kPa. 

  First, we assume E = 12.0×103 kPa and v = 0.4 for the reservoir surroundings.  Pressure 

and saturation changes at the center of the reservoir calculated by the DDFEM model are 
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shown in Figures 6.9 and 6.10, and curves obtained by a FEM model without considering 

reservoir surroundings are also shown to highlight the significant effects on pressure and 

saturation change during depletion.  Figure 6.11 shows subsidence (Δz) at different times; Δz at 

x = ± 300m is still significant compared to the center, showing that the discretized domain has 

to be large to obtain a local accurate solution. With the DDFEM model, this is handled 

naturally.  
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Figure 6.9. Poil vs Time with/without overburden (E = 12 MPa) 
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Figure 6.10. Soil vs Time with/without overburden (E = 12 MPa) 
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Figure 6.11. Subsidence profile with overburden (E = 12 MPa) 
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Second, we change the stiffness of the reservoir surroundings to E = 60.0×103 kPa and 

v = 0.4.  Pressure and saturation changes calculated by our model are shown in Figures 6.12 

and 6.13, curves obtained without considering the surroundings are still included for 

comparison.  Clearly, a stiffer overburden corresponds to a larger pressure drawdown and oil 

saturation decrease. 

  Figure 6.14 shows slower subsidence, compared with Figure 6.11, thus stiffer 

overburden retards compaction appearance. 
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Figure 6.12. Poil vs Time with/without overburden (E = 60 MPa) 
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Figure 6.13. Soil vs Time with/without overburden (E = 60 MPa) 
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Figure 6.14. Subsidence profile at different time with overburden (E = 60 MPa) 

6.4 Hot water flooding and ground surface uplift  

In this example, we deal with a simple hot water injection problem. Suppose a 240 m × 240 m 

× 20 m reservoir, 300 m deep, with E = 5.0×105 kPa, v = 0.3, φ = 0.35, Km= 1.4×108 kPa, k = 

1.0 D, µw = 1 cP, µ0
oil = 22.0 cP, ρs = 2.5×103 kg/m3, ρw = 1.0×103 kg/m3, ρo = 1.0×103 kg/m3 , 

Bo
0 =1.0, Bw

0 = 1.0, βs = 2.0×10-6 K-1, βw = 1.0×10-5 K-1, βo = 1.0×10-5 K-1, cs = 0.4 kJ/kg-K , cw 

= 3.0 kJ /kg-K, coil = 2.0 kJ/kg-K, and λT = 2.3 J/m-s-K. Suppose a coordinate system where 

the top and bottom of the reservoir are normal to the z axis, and the sides are all vertical and 

normal to the X-Y plane.  

Extending 12 m from the outer reservoir boundary in vertical directions is assumed to 

be the T-p influence zone. In this zone, the following properties apply: E = 5.0×105 kPa, v = 

0.30, φ = 0.30, k = 1.0 mD, µw = 1.0 cP, βs = 2.0×10-6 K-1, ρs = 2.5×103 kg/m3, cs = 0.4 kJ/kg-K, 

and λT = 2.3 J/m-s-K.  The remaining elastic part representing surrounding strata has E = 

2.0×106 kPa and v = 0.3.  

  We use a number of empirical formulae to specify certain types of behavior. The 

relative permeability-saturation functions are simply defined as:  

21.0 (1.0 )rw wk S= − −                                                           (6.2) 

( )21.0ro wk S= −                                                              (6.3) 

The capillary pressure curve is given as: 

⎟
⎠
⎞

⎜
⎝
⎛ −

=
S'

S'10.016lnPc                                                             (6.4) 

orwc

wcw

SS1
SSS
−−

−
='                                                               (6.5) 
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The units of Pc in (28) are MPa, and Swc = 0.10 and Sor = 0.20 are assumed as residual 

water and oil saturation limits.  

Initially, the average p = 0.0 kPa and T = 303.15 K; then, water at 573.15 K is centrally 

injected at a rate of 800 m3/day, and a mixture of oil and water is produced at a rate of 80 

m3/day from each of the four corners of the reservoir zone.  The outer boundary of the T-p 

influence zone is a no heat or mass flux boundary, therefore we are “over-injecting” by 480 

m3/day. The reservoir pressure should rise, generating expansion and an increase in the vertical 

total stress on the reservoir. A few typical results are presented here. 

Figure 6.15 shows the water pressure increase across the middle layer of the reservoir 

at 30 days and 100 days respectively due to hot water injection. Figure 6.16 shows the oil 

pressure increase across the middle layer of the reservoir at 30 days and 100 days respectively 

due to hot water injection. 

Figure 6.17 shows the vertical strain across the middle layer of the reservoir at 30 days 

and 100 days respectively. Figure 6.18 shows the X-direction strain across the middle layer of 

the reservoir at 30 days and 100 days respectively. Figure 6.19 shows the Y-direction strain 

across the middle layer of the reservoir at 30 days and 100 days respectively. 

Figure 6.20 shows the vertical effective stress change across the middle layer of the 

reservoir at 30 days and 100 days respectively. Figure 6.21 shows the X-direction effective 

stress change across the middle layer of the reservoir at 30 days and 100 days respectively. 

Figure 6.22 shows the Y-direction effective stress change across the middle layer of the 

reservoir at 30 days and 100 days respectively. 

Figure 6.23 shows the vertical total stress change across the middle layer of the 

reservoir at 30 days and 100 days respectively. Figure 6.24 shows the X-direction total stress 

change across the middle layer of the reservoir at 30 days and 100 days respectively. Figure 
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6.25 shows the Y-direction total stress change across the middle layer of the reservoir at 30 

days and 100 days respectively.  

Figure 6.26 shows the vertical displacement across the top of the reservoir at 30 days 

and 100 days respectively. Figure 6.27 shows the ground surface uplift at 30 days. Figure 6.31 

show the ground surface uplift at 100 days.  Figure 6.32 shows the X-direction displacement 

on the ground surface at 30 days and 100 days respectively. Figure 6.33 shows the Y-direction 

displacement on the ground surface at 30 days and 100 days respectively. We can see that 

within the range of several times the reservoir area, the displacements are still significant. 

Figure 6.27 shows the temperature across the reservoir at 30 days and 100 days 

respectively, showing advection-dominated features. Figure 6.28 shows the temperature above 

the central well at 30 days and 100 days respectively, showing a clear diffusion-dominated 

process. Both the ΔT within the reservoir and the ΔT above and below the reservoir contribute 

to volume changes and therefore to stress changes everywhere in the system. 

Figure 6.29 show the saturation of water across the reservoir at 30 days and 100 days 

respectively. 

 

  

Figure 6.15. Water pressure contour across the reservoir at 30 days and 100 days 
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Figure 6.16. Oil pressure contour across the reservoir at 30 days and 100 days 

 

  

Figure 6.17. Contour of vertical strain across the reservoir at 30 days and 100 days 
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Figure 6.18. Contour of X-direction strain across the reservoir at 30 days and 100 days 

 

  

Figure 6.19. Contour of Y-direction strain across the reservoir at 30 days and 100 days 
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Figure 6.20. Contour of effective vertical stress decrease across the reservoir at 30 days and 
100 days 

 

  

Figure 6.21. Contour of X-direction effective stress increase across the reservoir at 30 days and 
100 days  
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Figure 6.22. Contour of Y-direction effective stress increase across the reservoir at 30 days and 
100 days  

 

   

Figure 6.23. Contour of total vertical stress increase across the reservoir at 30 days and 100 
days 

 

  

Figure 6.24. Contour of X-direction total stress increase across the reservoir at 30 days and 100 
days 
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Figure 6.25. Contour of Y-direction total stress increase across the reservoir at 30 days and 100 
days 

 
 

  

Figure 6.26. Vertical displacements across the top of reservoir at 30 days and at 100 days 
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Figure 6.27. Temperature contour across the middle of reservoir at 30 days and 100 days 

 

 

  

Figure 6.28. Temperature contour in the T-p influence zone above the reservoir at 30 days and 
100 days 
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Figure 6.29. Saturation of water across the middle of the reservoir at 30 days and 100 days 

 

 

Figure 6.30. Ground surface uplift at 30 days 

 

  

Figure 6.31. Ground surface uplift at 100 days 
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Figure 6.32. X-direction displacement on the ground surface at 30 days and 100 days 
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Figure 6.33. Y-direction displacement on the ground surface at 30 days and 100 days 
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To see the overburden effects more clearly in the thermal process, we change the 

Young’s modulus of the surrounding zone from 2.0×106 kPa to 1.0×106 kPa, while keeping all 

the other conditions unchanged. With the softer surrounding strata, we get the results described 

in the net set of figures. 

Figure 6.34 shows the oil pressure and the water pressure increase across the middle 

layer of the reservoir at 30 days respectively. Compared with results shown in Figure 6.15 with 

stiffer surrounding strata, the water pressure becomes smaller with current softer surrounding 

strata. 

Figure 6.35 shows the vertical total stress and X-direction total stress changes 

respectively across the middle layer of the reservoir at 30 days. Compared with results shown 

in Figure 6.23 with stiffer surrounding strata, the vertical total stress increase gets a bit smaller 

in the area adjacent to the injecting well while in the remaining area it gets much larger with 

current softer surrounding strata.  Compared with results shown in Figure 6.24 with stiffer 

surrounding strata, the X-direction total stress increase gets larger across the reservoir area 

with current softer surrounding strata.  

Figure 6.36 shows the vertical effective stress and X-direction effective stress changes 

respectively across the middle layer of the reservoir at 30 days. Compared with results shown 

in Figure 6.20 with stiffer surrounding strata, the vertical effective stress decrease gets larger in 

magnitude with current softer surrounding strata.  Compared with results shown in Figure 6.21 

with stiffer surrounding strata, the X-direction effective stress decrease gets larger in 

magnitude as well with current softer surrounding strata.  

Figure 6.37 shows the vertical strain and X-direction strain respectively across the 

middle layer of the reservoir at 30 days. Compared with results shown in Figure 6.17 with 

stiffer surrounding strata, the vertical strain gets larger with current softer surrounding strata.  
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Compared with results shown in Figure 6.18 with stiffer surrounding strata, the X-direction 

strain increase gets larger in magnitude when X approaches the boundary value, and the strain 

decrease gets larger in magnitude as well in the remaining area with current softer surrounding 

strata. 

Figure 6.38 shows the temperature in the T-p influence zone and the temperature across 

the reservoir at 30 days respectively. Compared with results shown in Figure 6.28 with stiffer 

surrounding strata, the temperature in the T-p influence zone increases a little bit; this is 

insignificant, and again results show a diffusion-dominated process. Compared with results 

shown in Figure 6.27 with stiffer surrounding strata, it shows no difference between these two 

cases. This clearly indicates that these specific thermal transfer processes are advection-

dominated due to the same prescribed flow rate boundary condition.  The evolution of the oil 

pressure difference between two points 4 m and 8 m away from the reservoir center with stiffer 

and softer surrounding strata also shows overlap (Figure 6.39), which indirectly reflects the 

same prescribed flow velocity. 

Figure 6.40 shows the vertical displacement across the top of the reservoir at 30 days. 

Compared with results shown in Figure 6.26 with stiffer surrounding strata, the vertical 

displacement across the top of the reservoir gets larger with the softer surrounding strata. 

Figure 6.41 shows the ground surface uplift at 30 days. Compared with results shown in 

Figures 6.30 with stiffer surrounding strata, the ground surface uplift gets larger with softer 

surrounding strata. 

Figure 6.42 shows the horizontal movement of the ground surface at 30 days. 

Compared with results shown in Figures 6.32 and 6.33 with stiffer surrounding strata, both the 

displacements in X-direction and the displacements in Y-direction get larger in the magnitude 

with the softer surrounding strata. 
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From the above, we can find that, with the softer surrounding strata, the reservoir has 

less resistance to its expansion due to the hot water injection, and this leads to larger vertical 

and horizontal displacements at the ground surface. The process of pressure buildup is slowed 

down compared to the situation with the stiffer surrounding strata. The total stresses across the 

reservoir are getting smaller compared to the situation with the stiffer surrounding strata, while 

changes in effective stresses are not so significant. The temperatures across the reservoir and in 

the T-p influence zone seem uninfluenced. This is because, in the reservoir zone where thermal 

convection is dominant, the velocity of the fluids flow is comparable due to the constant rates 

of injection and production boundary condition in this specific problem, while in the T-p 

influence zone where thermal conduction is dominant, the major influence factor thermal 

conductivity coefficient is constant by nature. 

Overall, the reservoir surrounding effect is an essential element to be considered in the 

thermal reservoir modeling because it has impact on pressure and temperature changes in the 

reservoir zone and displacements and stresses changes in the whole domain. 

 

  
Figure 6.34. Oil pressure and water pressure at 30 days with softer surrounding strata  
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Figure 6.35. Vertical total stress and X-direction total stress at 30 days with softer surrounding 

strata 
 

  
Figure 6.36. Vertical effective stress and X-direction effective stress at 30 days with softer 

surrounding strata 
 

  
Figure 6.37. Vertical strain and X-direction strain at 30 days with softer surrounding strata 
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Figure 6.38. Temperature contour in the T-p influence zone above the reservoir and 
temperature contour across the reservoir at 30 days with softer surrounding strata 
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Figure 6.39. Oil pressure gradient evolution with stiffer and softer surrounding strata 
 
 

 
Figure 6.40. Vertical displacements across the top of reservoir at 30 days with softer 

surrounding strata 
 

 

Figure 6.41. Ground surface uplift at 30 days with softer surrounding strata 
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Figure 6.42. X-direction displacement and Y-direction displacement on the ground surface at 

30 days with softer surrounding strata 
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Chapter 7 
 Conclusions and Recommendations 

 
7.1 Conclusions 

In this work, a hybrid method that combines the advantages of both FEM and DD models is 

presented to develop a coupled numerical simulation of a compacting reservoir within a semi-

infinite or infinite domain.  Some of these advantages are:  

1. It has advantages over analytical methods which are restricted to simple geometries, 

linear elastic rock behavior in the reservoir, uniform drawdown, etc. 

2. It has advantages over the FEM method alone which must introduce proximal 

boundaries (not a true half-space) and leads to a much larger number of degrees of freedom for 

the discretization of the surrounding strata.  

3. It has the advantage over the DD method alone, which cannot account for the flow-

deformation coupling within the reservoir zone.  

4. It has the advantage of higher accuracy with a reduced number of degrees of freedom 

through considering the reservoir compaction as one part of the problem, and its influence on 

the surrounding impermeable half-space domain as the second part of the problem.  This seems 

to be a relatively natural way of addressing a large number of realistic problems.  

Finally, through comparison with other methods and analytical solutions, we have 

shown that the DDFEM method leads to correct solutions.    

The key contribution of current work can be concluded as follows: 
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1. It introduced a boundary element method (BEM), the displacement discontinuity 

method (DD), into the 3-D fully coupled geomechanics-reservoir modeling, considering 

reservoir surrounding effects.  

2. It contributes to stabilized finite element method (FEM), so that the subgrid 

scale/gradient subgrid scale method (SGS/GSGS) canbe naturally introduced into thermal 

reservoir simulations in petroleum geomechanics while overcoming the numerical oscillations 

at small steps. 

7.2 Recommendations 

Possible future work or issues for further study are as follows:  

1. Extend the current linear geomechanics constitutive model to a moe complex level 

involving elastoplasticity, and even visoelastoplasicity. 

2. Take into account the dependence of permeability and porosity on pressure, stresses 

and temperature. 

3. Incorporate the petroleum rock physics model, leading to an integrated fully coupled 

geomechanics-seismic modeling, which is meaningful for seismic monitoring analysis and 

interpretation, especially in time-lapse seismic monitoring. 

4. Extend the current isothermal and nonisothermal black oil model to multiphase and 

multicomponent model. 
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