
Key establishment — security
models, protocols and usage

by

Berkant Ustaoğlu

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2008

c© Berkant Ustaoğlu 2008



I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Key establishment is the process whereby two or more parties derive a shared
secret, typically used for subsequent confidential communication. However, iden-
tifying the exact security requirements for key establishment protocols is a non-
trivial task. This thesis compares, extends and merges existing security definitions
and models for key establishment protocols.

The primary focus is on two-party key agreement schemes in the public-key
setting. On one hand new protocols are proposed and analyzed in the existing
Canetti-Krawzcyk model. On the other hand the thesis develops a security model
and novel definition that capture the essential security attributes of the standard-
ized Unified Model key agreement protocol. These analyses lead to the develop-
ment of a new security model and related definitions that combine and extend the
Canetti-Krawzcyk pre- and post- specified peer models in terms of provided secu-
rity assurances.

The thesis also provides a complete analysis of a one-pass key establishment
scheme. There are security goals that no one-pass key establishment scheme can
achieve, and hence the two-pass security models and definitions need to be
adapted for one-pass protocols. The analysis provided here includes the descrip-
tion of the required modification to the underlying security model. Finally, a com-
plete security argument meeting these altered conditions is presented as evidence
supporting the security of the one-pass scheme.

Lastly, validation and reusing short lived key pairs are related to efficiency,
which is a major objective in practice. The thesis considers the formal implication
of omitting validation steps and reusing short lived key pairs. The conclusions
reached support the generally accepted cryptographic conventions that incoming
messages should not be blindly trusted and extra care should be taken when key
pairs are reused.

iii



Acknowledgements

It is my pleasure to say a very special “thank you” to Alfred Menezes. Without
your support, guidance, help and encouragement this would have been an impos-
sible task for me. Thank you!

During my degree I spent many enjoyable moments with people from my de-
partment to you guys “thanks for all you did for me”. Alison, Aşan, Burkay, Emre
Karakoç, Gülay, Irene, Jeff Wong, John Taranu, Koray — you helped me fully live
my days, you let me see and try and live things I would have missed without you,
for that I thank you once more.

Elodie, the first time you told me “hi” was my luckiest moment in Waterloo.
The moment I met the friend who would, from the very beginning of this journey,
be always there to help me. Merci beaucoup, mon cher amie!

To CACR members — you were always ready to engage in fruitful discussions.
I am grateful for all the comments and helps you gave me. I would also like to
thank my committee members for carefully examining my thesis and providing
me with their comments and suggestions.

And last but not least I would like to thank NSERC and MITACS for the vital
financial support they provided.

iv



Feride ve Mürsel Ustaoğlu

sevgilerimle, sizin için

v



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Goals of key establishment . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Number of messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Notation, terminology and assumptions . . . . . . . . . . . . . . . . . 9

2 Extended Canetti-Krawzcyk model 12

2.1 Earlier work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Canetti-Krawzcyk model . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 CK01 description . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Modeling security goals . . . . . . . . . . . . . . . . . . . . . . 15

2.3 A CK01-secure protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Protocol description . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Security argument . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Critique of the CK01 model . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Extended Canetti-Krawzcyk security model . . . . . . . . . . . . . . . 24

3 The CMQV protocol 27

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 The MQV protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

vi



3.4 Two-pass CMQV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Protocol description . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.2 Design rationale . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.3 Efficiency comparison . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.4 Security argument . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 One-pass CMQV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5.1 Protocol description . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5.2 Model modifications . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5.3 Security argument . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 The UM protocol 50

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Security model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Protocol description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Security argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5.1 Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5.2 No ephemeral public keys in the KDF . . . . . . . . . . . . . . 67

4.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Combined model 69

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 The CK02 model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 CK01 and CK02 differences . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3.1 A CK01 to CK02 non-adaptable example . . . . . . . . . . . . 71

5.3.2 A CK01 to CK02 adaptable example . . . . . . . . . . . . . . . 72

5.3.3 A CK02 to CK01 example . . . . . . . . . . . . . . . . . . . . . 73

5.4 Combining and extending CK01 and CK02 . . . . . . . . . . . . . . . 76

5.4.1 Modifiable protocols . . . . . . . . . . . . . . . . . . . . . . . . 76

vii



5.4.2 Hybrid protocols . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4.3 Combined security model . . . . . . . . . . . . . . . . . . . . . 77

5.5 A hybrid example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5.1 NAXOS-C description . . . . . . . . . . . . . . . . . . . . . . . 81

5.5.2 Security arguments for NAXOS-C . . . . . . . . . . . . . . . . 83

5.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Efficiency considerations 92

6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2.1 Terminology and notation . . . . . . . . . . . . . . . . . . . . . 93

6.2.2 Small subgroup attacks . . . . . . . . . . . . . . . . . . . . . . 93

6.2.3 DSA-type groups . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2.4 Safe prime groups . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2.5 Elliptic curve groups . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3 MQV and HMQV review . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3.1 HMQV description . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3.2 MQV description . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.4 Reusing ephemeral keys . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.4.1 S/MIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.4.2 HMQV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.4.3 Standards’ requirements . . . . . . . . . . . . . . . . . . . . . . 100

6.5 On public-key validation . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.6 Validation and ephemeral private-key leakage . . . . . . . . . . . . . 101

6.7 Validation and no ephemeral private-key leakage . . . . . . . . . . . 102

6.7.1 A new attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.7.2 Supporting examples . . . . . . . . . . . . . . . . . . . . . . . . 103

6.7.3 Flaw in the HMQV proof . . . . . . . . . . . . . . . . . . . . . 103

6.8 No static public-key validation . . . . . . . . . . . . . . . . . . . . . . 105

viii



6.8.1 In DSA-type groups . . . . . . . . . . . . . . . . . . . . . . . . 105

6.8.2 In elliptic curve groups . . . . . . . . . . . . . . . . . . . . . . 105

6.9 No ephemeral public-key validation . . . . . . . . . . . . . . . . . . . 108

6.10 Partial validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.11 Almost validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.12 Validation summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.13 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7 Conclusions and future work 112

Bibliography 122

List of notation 124

ix



List of Tables

3.1 Protocol comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Efficiency comparison in terms of group exponentiations . . . . . . . 33

6.1 Summary of attacks on HMQV and MQV without validation . . . . . 111

x



List of Figures

1.1 Ephemeral Diffie-Hellman . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Static Diffie-Hellman . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Nonce Diffie-Hellman . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Signed Diffie-Hellman . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Basic Unified Model Protocol . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Basic MTI protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.7 Combined basicUM/MTI protocol . . . . . . . . . . . . . . . . . . . . 8

2.1 µ-protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Two-pass CMQV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Protocol 1 — the UM variant analyzed in [13]. . . . . . . . . . . . . . 51

4.2 Protocol 2 — the UM variant analyzed in [37]. . . . . . . . . . . . . . 52

xi



Chapter 1

Introduction

1.1 Motivation

The main objective of cryptography is to provide means for confidential communi-
cation [72, §1.1]. In a face-to-face environment, two parties Alice and Bob achieve
confidentiality by actively guarding themselves against eavesdroppers. By con-
trast, over a public communication channel like the Internet, neither Alice nor Bob
can prevent eavesdroppers from reading their messages. Therefore, over a public
channel confidentiality is harder to achieve.

Symmetric-key cryptography offers means to arrange confidential communication
over a public connection. Even though Alice cannot control who is reading her out-
going messages, by encrypting her messages with symmetric-key algorithms she is
assured that only Bob can extract the confidential information from her messages.
The main idea in symmetric-key cryptography is having Alice and Bob agree on a
shared secret key κ before the communication takes place. The key κ is subsequently
used by Alice and Bob to encrypt and decrypt their messages. The shared key must
not be revealed to any other entity Eve. If Eve learns κ, then she is able to extract
the secret information from the messages encrypted with κ, in which case Alice
and Bob do not have confidentiality.

The one-time pad is a classic example of symmetric-key cryptography. The idea,
attributed to Gilbert Vernam, was analysed by Shannon [68] who concluded that
the one-time pad provides unconditional security. However, for security the shared
secret key κ should not be reused and κ has to be as long as the communicated
message. As a result, the one-time pad is an inefficient way to achieve confiden-
tiality.

1



Efficiency can be improved at the expense of security assurances. Parties that
share a relatively short key κ can use either a stream or a block cipher to achieve con-
fidential communication. With stream ciphers messages are encrypted by adding
them bitwise modulo two with a pseudo-random string that is derived from κ.
With block ciphers the message is encrypted one block at a time, where a block is
a sub-message of a predefined bit length. A classical example of a stream cipher is
RC4, whereas DES is a typical example of a block cipher; see [55, Chapters 6 and 7]
for further discussion on stream and block ciphers. Even though stream and block
ciphers do not provide unconditional security, they provide an acceptable trade-off
between security and efficiency.

If parties possess shared secret keys, symmetric-key ciphers provide efficient
means for confidential communication. However managing shared keys is not an
easy task. First of all, a large number of potential communicating peers implies
at least the same number of shared keys a party must manage. Secondly, in cases
where parties are unable to frequently update their shared keys, the possibility of
an adversary learning a secret key increases over time. Last but not least, meeting
face-to-face to agree on a shared key may not be possible at all, for example when
the first contact is made over a public channel but the parties are geographically
separated. Hence, shared key management is not a solution that scales well and in
cases where parties cannot meet, confidentiality cannot be achieved.

Diffie and Hellman [24] proposed the idea of public-key cryptography. Their idea
can be used to address the shared key management problem. Unlike symmetric-
key cryptography, where the encryption and decryption algorithms are closely re-
lated, in public-key cryptography the decryption and encryption algorithms are
different. In fact, the ability to encrypt messages, does not necessarily imply the
ability to decrypt messages. Rivest, Shamir and Adleman [65] and ElGamal [28]
presented examples of public-key cryptosystems. With public-key cryptography
Alice and Bob can establish a new shared secret key without meeting in person,
and as a result, avoid the problems related to shared key management.

Building a confidential and authentic communication channel between two
parties is broadly divided into two stages. At the first stage public-key cryptog-
raphy is used to obtain an authenticated shared secret key κ. At the second stage κ

is used with a symmetric-key cipher to simulate a confidential channel. Key estab-
lishment is a cryptographic primitive that allows Alice and Bob to establish a shared
secret key at the first stage of building the communication channel. The process of
key establishment can be divided into two classes: key transport and key agreement.

In a key transport protocol Alice selects a secret key κ and securely transmits

2



κ to Bob. A typical use of key transport is encrypted emails. Alice picks κ and
encrypts her message m to Bob with κ using symmetric-key techniques. She also
encrypts κ using public-key cryptography, so that only Bob can decrypt and ob-
tain κ. Alice then sends the encrypted κ and m to Bob. Bob first decrypts κ and
thereafter obtains the rest of Alice’s message.

In a key agreement protocol both Alice and Bob contribute to the shared key.
This scenario is more common in an environment where both parties actively ex-
change messages. With key agreement protocols both parties can achieve a wider
range of security goals than with key transport protocols.

1.2 Goals of key establishment

The goal of two party key establishment is to provide communicating partners
with a shared key κ, that is secret and authentic. In other words, κ should resist
derivation attempts from entities other than the two participants and furthermore
each participant should be assured that only a specified party could also obtain κ.

In the ephemeral Diffie-Hellman (eDH) [24] key agreement protocol depicted
in Figure 1.1, Alice and Bob pick ephemeral (short-term) private keys x and y re-
spectively, and exchange ephemeral public keys X = gx and Y = gy. Both X and
Y belong to a publicly known group G = 〈g〉 of prime order q and x, y are ele-
ments of the integers modulo q. With the knowledge of Y and x, Alice computes
the ephemeral shared secret σe = Y x = gxy, and similarly, using X and y, Bob
computes the same ephemeral shared secret σe = Xy = gxy. Thereafter, Alice and
Bob derive the shared secret key κ using a suitable key derivation functionH.

Alice

x,X = gx

σe = Y x

X −→

←− Y

Bob

y, Y = gy

σe = Xy

κ = H(σe)

Figure 1.1: Ephemeral Diffie-Hellman

An adversary that only observes the exchanged messages is said to be passive.
An adversary who modifies, replays, injects or reroutes messages is called active.
Under the CDH assumption (see §1.5) the eDH protocol is secure against passive
adversaries, but insecure against active adversaries. In particular, eDH succumbs

3



to the well known person-in-the-middle attack, where an active adversary Oscar sub-
stitutes X and Y with an ephemeral public key Z = gz of Oscar’s choice. As
a result, Alice derives a session key κx = H(Zx) and Bob derives a session key
κy = H(Zy). Oscar can derive both κx = H(Xz) and κy = H(Y z), and subse-
quently he can read and control the information exchanged between Alice and Bob.
The problem with eDH is lack of authentication of the exchanged ephemeral public
keys.

Digital signatures are public-key algorithms that can be used to authenticate
data. By using digital signatures, trusted third parties can issue certificates that bind
public information to Alice’s identity. Typically certificates bind a static (long-term)
public key A = ga to Alice, where a is Alice’s static private key. Similarly, Bob can
obtain a certificate for his static public key B = gb. Any party that has an authentic
copy of the trusted third party’s public key can verify that a certificate is authentic.

In the static Diffie-Hellman (sDH) key agreement protocol Alice and Bob ex-
change static public keys and certificates instead of ephemeral public keys. As in
the ephemeral Diffie-Hellman protocol, Alice and Bob compute the same shared
secret σs = gab and thereafter obtain a session key κ = H(σs). Unlike in the
ephemeral Diffie-Hellman protocol, where Alice has no assurance that the incom-
ing public key Y was selected by Bob, in the static Diffie-Hellman protocol Alice is
assured via certificate verification that the public key B belongs to Bob.

Alice

a,A = ga

σs = Ba

A −→

←− B

Bob

b, B = gb

σs = Ab

κ = H(σs)

Figure 1.2: Static Diffie-Hellman

A session is an execution of the key establishment protocol. Known key security
(KKS) considers the security of a session key in the event that session keys of other
sessions were compromised. Session keys agreed between Alice and Bob may be
used in different applications. These applications may have different levels of secu-
rity and an application with a low security level may leak a particular session key
κ. The problem with sDH is that the session key does not change, and therefore the
leakage of κ compromises all protocol runs between Alice and Bob.

To prevent KKS attacks Alice needs a fresh session key for each protocol run.

4



Consider augmenting the static Diffie-Hellman protocol by adding nonces (freshly
generated ephemeral values) to the key derivation function to obtain the nonce
Diffie-Hellman (nDH) key agreement protocol depicted in Figure 1.3. The nonce
NA, generated by Alice, assures Alice that the session keys she computes are inde-
pendent from each other. Bob obtains similar assurances via NB . For alternatives
to nonces see [16, §1.5].

Alice

a,NA

σs = Ba

A,NA −→

←− B,NB

Bob

b, NB

σs = Ab

κ = H(σs, NA, NB)

Figure 1.3: Nonce Diffie-Hellman

Forward secrecy (FS) considers the security of previously established session
keys in the event that static private keys of communicating partners are compro-
mised. FS is important in scenarios where the secrecy of the information exchanged
between Alice and Bob has to be maintained for a long period of time, during which
the probability that the adversary learns Alice’s or Bob’s static private key may in-
crease. In nDH an adversary Oscar may record nonces NA and NB . In the future
if Oscar learns the static private key of either Alice or Bob, Oscar could decrypt
all communication encrypted with κ = H(σs, NA, NB). Therefore, nDH does not
provide forward secrecy.

In the eDH protocol Alice and Bob do not have static key pairs, hence for-
ward secrecy is trivially provided. Furthermore, session keys from different ses-
sions are independent from each other, providing resilience to KKS attacks. To
prevent the person-in-the-middle attack against eDH, Alice and Bob could authen-
ticate their ephemeral public keys using digital signatures. The resulting protocol,
called the signed Diffie-Hellman (signedDH) key agreement protocol, is depicted
in Figure 1.4.

Typically, a static private key is chosen before any protocol run. Hence Alice
can invest sufficient resources to ensure that her static key pair is cryptographi-
cally strong. On the other hand, ephemeral keys are often chosen during the proto-
col run. In some situations Alice may lack access to a sufficiently strong source of
randomness and as a result an adversary, Oscar, may be able to guess or compute
the private key x corresponding to Alice’s ephemeral public key X . By record-
ing the signature sigA(X) Oscar could impersonate Alice to Bob by replaying the

5



Alice

A, x

σe = Y x

X, sigA(X) −→

←− Y, sigB(Y )

Bob

B, y

σe = Xy

κ = H(σe)

Figure 1.4: Signed Diffie-Hellman

message X, sigA(X) in the future. Therefore, signedDH is not resilient to leakage
of ephemeral private keys (LEP) and the compromise of Alice’s ephemeral private
key used in one session compromises future protocol runs with Bob.

Instead of using signatures to authenticate ephemeral public keys, Alice and
Bob could use both σe and σs from eDH and sDH, respectively, to derive a session
key. The resulting protocol depicted in Figure 1.5 is called the basic Unified Model
(basicUM) protocol (see also [13]). The basicUM protocol can be specialized to both
eDH and sDH. For example, if static keys are used instead of ephemeral keys, then
the basicUM protocol is the sDH protocol. Hence basicUM achieves the same secu-
rity goals as eDH and as sDH. Furthermore, basicUM resists the above mentioned
LEP attack against signedDH.

Alice

a,A, σs = Ba

x,X, σe = Y x

X −→

←− Y

Bob

b, B, σs = Ab

y, Y, σe = Xy

κ = H(σe, σs)

Figure 1.5: Basic Unified Model Protocol

Key compromise impersonation (KCI) resilience [38] refers to the ability of an ad-
versary Oscar who learns Alice’s static private key a to impersonate other parties
to Alice. If Oscar knows a, then he can certainly masquerade as Alice to Bob. How-
ever, in some cases, using a Oscar’s goal could be impersonating Bob to Alice. In
the basicUM protocol with the knowledge of a Oscar can compute σs = Ba = gab.
By selecting an ephemeral key pair (y, Y ) on behalf of Bob, Oscar can compute
σe = Xy = gxy. Consequently, the basicUM protocol is not KCI resilient.

The KCI attack against the basicUM protocol assumes that Oscar knows Alice’s

6



ephemeral public key X . Alice could blind her ephemeral public key X to prevent
the KCI attack. Matsumoto, Takashima and Imai [50] proposed a class of protocols,
now known as the MTI protocols, based on the idea of blinding ephemeral public
keys. In the basic MTI protocol in Figure 1.6, Alice sends X = Bx to Bob instead of
X = gx. Bob responds by sending Y = Ay. Alice computes the ephemeral shared
secret σe = gxy by computing Y

a−1x. Similarly, Bob computes X
b−1y to obtain σe.

Thereafter both Alice and Bob derive the session key κ = H(σe). The KCI attack
against the basicUM protocol cannot be launched against the basic MTI protocol.

Alice

x, a,X = Bx

σe = Y
a−1x

X −→

←− Y

Bob

y, b, Y = Ay

σe = X
b−1y

κ = H(σe)

Figure 1.6: Basic MTI protocol

Unknown key share (UKS) attacks [25], sometimes called identity misbinding at-
tacks, refer to the ability of an adversary Oscar to coerce Bob into sharing a session
key with Alice without Bob’s knowledge. In other words Alice and Bob compute
the same session key, but while Alice correctly believes she is talking to Bob, Bob
thinks he is talking to Oscar. Consider the basic MTI protocol and assume that the
certification authority does not require a party to prove possession of the private
key that corresponds to the public key the party certifies. In that case Oscar can
obtain a certificate binding the static public key E = Ae to Oscar; as usual A is Al-
ice’s static public key. Suppose Alice starts a session with Bob by sending X = Bx

to Bob. Oscar could intercept her message and forward X to Bob pretending the
sender is Oscar. In accordance with the basic MTI protocol, Bob responds to Os-
car with outgoing ephemeral public key Ỹ = E

y. After receiving Bob’s response,
Oscar computes Y = Ỹ e−1

= gay and sends Y to Alice. As a result both Alice and
Bob compute the same shared secret σe = gxy (which Oscar cannot compute) and
hence derive the same session key κ = H(σe). But while Alice correctly believes
she shares a key with Bob, Bob incorrectly thinks he shares κ with Oscar. Hence
Oscar has successfully launched a UKS attack against the basic MTI protocol.

There are many examples of protocols that fall to UKS attacks, but in each case
including the identities of the communicating parties in the key derivation pre-
vents the attacks. Even though not a necessary condition, including the identities
in the key derivation function appears to be a generic measure that prevents UKS

7



attacks without affecting other security properties of the protocol under consider-
ation. Naturally, one asks whether there are other generic measures that are suffi-
cient to prevent certain kinds of attacks without affecting other security goals.

Intuition may suggest that an MTI-like ephemeral public key exchange pre-
vents KCI attacks. Consider a combination of the basicUM and the MTI protocols,
depicted in Figure 1.7 where the ephemeral keys are exchanged as in the MTI proto-
col, but the session key is derived as in the basicUM protocol. Suppose Alice starts
two simultaneous sessions S1 and S2 with Bob using the combined basicUM/MTI
protocol. Suppose also that the adversary Oscar has learned Alice’s static private
key a. Let X1 and X2 denote Alice’s outgoing ephemeral public keys for sessions S1

and S2, respectively. Oscar can intercept both messages and compute Y 1 = X
a
1 and

Y 2 = X
a
2. Next Oscar can reply to S1 with Y 2 and to S2 with Y 1, pretending that the

replies originated from Bob. As a result, Oscar succeeds in forcing the sessions S1

and S2 within Alice to share the same session key κ = H(gx1x2b, gab). Afterwards,
by obtaining the session key from S1, Oscar is able to violate the security of session
S2, thus succeeding in a KKS attack.

Alice

x, a,X = Bx

σe = Y
a−1x

σs = Ba

X −→

←− Y

Bob

y, b, Y = Ay

σe = X
b−1y

σs = Ab

κ = H(σe, σs)

Figure 1.7: Combined basicUM/MTI protocol

Overall, the leakage of private information can have implications for more than
one security property. UKS and KKS attacks show that considering only two par-
ties is not sufficient to capture realistic attacks in scenarios where multiple parties
can engage in many concurrent sessions with each other. Carefully devised secu-
rity models can capture multi-party, multi-session environments and at the same
time simultaneously cover several security requirements. Models and associated
security definitions provide an attractive approach for formal analysis of key es-
tablishment security. However, the old fashioned “try to break” approach should
not be discarded and furthermore one should be aware that there may be desirable
properties of key establishment protocols not captured by the models.

8



1.3 Number of messages

A single message from Alice to Bob is called a pass. The terms round and protocol
flow are used with the same meaning here, even though in the literature the term
round describes a message sent by Alice and a response sent by Bob.

In all protocol examples in the previous section Alice and Bob exchange exactly
two messages. In practice there are protocols where the number of messages is
more than two. Some important scenarios, such as email, require protocols that
consist of a single message from Alice to Bob.

The number of protocol passes has implications on the security attributes. For
example, no one-pass protocol can provide forward secrecy, whereas two-pass pro-
tocols can achieve a weaker variant of forward secrecy, see §3.3 for details. There
are protocols with three passes that attain forward secrecy. This thesis focuses on
protocols with at most three flows.

1.4 Thesis outline

The next section introduces the notation used in subsequent chapters. Existing
models for key establishment protocols are reviewed in Chapter 2. Chapter 3 anal-
yses the one-pass and the two-pass CMQV protocols. Chapter 4 develops a security
model that captures security assurances of the Unified Model protocol and pro-
vides a security argument for the Unified Model protocol in the developed model.
A new ‘combined’ security model is presented in Chapter 5. Chapter 6 considers
some practical aspects of key agreement protocols and lastly, Chapter 7 suggests
future research directions.

1.5 Notation, terminology and assumptions

Let q be a prime, and let Zq denote the integers modulo q. The symbol G denotes a
multiplicatively-written cyclic group of order q generated by a fixed element g. The
set of non-identity elements in G is denoted by G∗. For group elements A,B, . . .

the corresponding lowercase letters will denote the discrete logarithms in base g;
for example a = logg A, where a ∈ Zq. A function f(n) is said to be negligible if for
every integer d, there is an integer N such that for all integers n > N , f(n) < 1

nd .
Finally, the symbol “∈R” means “is selected uniformly at random from”.

9



Key establishment protocols take place between two parties, from among a set
of n parties, denoted by Â, B̂ and so on. Party Â’s static public key is A ∈ G
and its corresponding static private key is a = logg A. In general, lower case letters
represent secret information, whereas upper case letters are publicly known values.
By convention X denotes Â’s ephemeral public key and Y denotes B̂’s ephemeral
public key.

Introduced by Bellare and Rogaway [10], the random oracle is an idealized hash
functionH that maps elements from its domain to its image. The functionH is not
explicitly described. Instead, there is an oracle that on input x returns the value y =
H(x) and the only way to learn y is to query the oracle with x. As a consequence
the result H(x̃) reveals no information about H(x) if x 6= x̃. Random oracles are
denoted byH,H1 andH2.

The discrete logarithm problem (DLP) in G is defined as follows.

Instance: X ∈ G = 〈g〉.

Solution: x ∈ Zq such that gx = X .

The solution for a DLP instance X is denoted by logg X .

The computational Diffie-Hellman problem (CDH) in G is defined as follows.

Instance: U, V ∈ G.

Solution: W ∈ G such that W = glogg V logg U = U logg V = V logg U .

The solution for a CDH instance (U, V ) is denoted by CDH(U, V ).

The decisional Diffie-Hellman problem (DDH) in G is defined as follows.

Instance: (U, V,W ) ∈ G3.

Solution: If logg U × logg V = logg W mod q, then the result is 1, else the result
is 0.

The result of a DDH instance (U, V,W ) is denoted by DDH(U, V,W ).

The computational square problem (CSP) in G is defined as follows.

Instance: X ∈ G.

Solution: Y ∈ G such that logg Y = (logg X)2 mod q.

10



The solution for a CSP instance X is denoted by CSP(X).

Pointcheval and Okamoto [60] introduced the computational gap problems. The
gap Diffie-Hellman problem (GDH) in G is the CDH problem in G, where the input
also includes an oracle that solves the DDH problem in the same group. Similarly,
the gap square problem (GSP) in G is CSP in G, where the input also includes a
DDH oracle for G.

In a group G, the CDH assumption holds if there exists no polynomially
bounded algorithm that can solve an arbitrary instance of the CDH problem. The
GDH, DDH, CSP and GSP assumptions are defined in a similar manner.

A reductionR from Π to Π′ is an algorithm for solving Π that uses as a subrou-
tine a hypothetical oracle for solving Π′. If R and the Π′ oracle are efficient (run
in polynomial time), then the reduction is called an efficient (polynomial time) re-
duction. If there is an efficient (polynomial time) reduction from Π to Π′, then Π
is said to (polynomial-time) reduce to Π′. If Π′ also polynomial-time reduces to Π
then Π and Π′ are said to be polynomially equivalent. For example, any (efficient)
algorithm that solves the CDH problem also solves the GDH problem, hence the
GDH problem reduces to the CDH problem. Similarly, the DDH problem reduces
to the CDH problem. The CSP and the CDH problems are known to be polynomi-
ally equivalent [51], and it is therefore reasonable to conjecture that the GSP and
the GDH problems are also polynomially equivalent.

11



Chapter 2

Extended Canetti-Krawzcyk model

2.1 Earlier work

The Bellare-Rogaway (BR) [9, 11] and Blake-Wilson, Johnson, Menezes (BJM) [13]
models were among the first security models for key establishment protocols. Un-
like the BR model, which considers the symmetric-key setting, the BJM model con-
siders the public-key setting. Except for this difference the BJM and the BR model
are essentially the same. The remainder of this section gives an outline of the BR
model.

The BR model considers a set of entities I , a random shared secret generator,
and a security parameter. On input the security parameter the random secret gen-
erator outputs shared secrets for every pair in I . A special entity, called the adver-
sary who is not in the set I , interacts with a collection of oracles Πs

i,j , where i, j ∈ I

and s is a natural number. The oracle Πs
i,j represents the s’th session that entity i at-

tempts to execute with entity j. The adversary controls all communication and can
present an oracle with an incoming message; in return the adversary obtains the
oracle response, which can be an outgoing message as described by the protocol,
or acceptance or rejection of a session key.

The BR model uses the idea of matching conversations to decide which two ora-
cles produce the same session key. A conversation for oracle Πs

i,j is the ordered con-
catenation of incoming and outgoing messages. Two oracles Πs

i,j and Πt
j,i are said

to have matching conversations if (i) Πt
j,i’s outgoing messages constitute Πs

i,j ’s in-
coming messages; and (ii) Πs

i,j ’s outgoing messages constitute Πt
j,i’s incoming mes-

sages. A protocol round is either an incoming or an outgoing message as viewed
by an entity. A protocol consisting of at least three rounds is called secure mutual
authentication protocol if the following conditions hold: (i) if two oracles complete

12



matching conversations, then they both accept; and (ii) the probability that an ora-
cle accepts without a matching oracle is negligible in the security parameter.

Even though in the BR model the adversary controls the message exchange
between oracles, the adversary is not granted access to the session keys accepted
by the oracles or to secrets shared between entities. To model leakage of session
keys, the adversary is equipped with a Reveal query, that takes as input an oracle
that accepted a session key κ and returns κ to the adversary. Leaking long-term
secret information is modeled by equipping the adversary with a Corrupt query
that takes as input i ∈ I and allows the adversary to take over that entity. With this
an oracle Πs

i,j is said to be fresh if (i) the oracle computes and accepts a session key;
(ii) the adversary does not issue the Reveal query against Πs

i,j ; (iii) the adversary
does not issue the Reveal query against the oracle matching to Πs

i,j ; and (iv) the
adversary does not issue Corrupt(i) or Corrupt(j).

Upon completing the interaction with the oracles the adversary picks a fresh
oracle called the test oracle. In response a bit γ ∈R {0, 1} is chosen. If γ = 1, then
adversary is given the session key computed by the test oracle, otherwise a random
key. The key establishment protocol is said to be BR-secure if (i) in the presence of
a benign adversary, that is an adversary who faithfully delivers messages, the pro-
tocol works as specified; and (ii) no polynomially bounded adversary can guess γ

with probability greater than 1
2 plus a term that is negligible in the security param-

eter.

2.2 Canetti-Krawzcyk model

The Canetti-Krawzcyk (CK01) model [20] was developed in the public key setting.
This section describes the CK01 model and the associated security implications.

2.2.1 CK01 description

An execution of a key establishment protocol is an invocation of a collection of
n message driven protocols, where each protocol is initiated within a probabilistic
polynomial time machine called a party. Parties are activated via an action request or
incoming message. Once activated a party either creates a separate subroutine within
the same party called a session, or updates an existing session S within the party by
submitting the incoming messages to S for further processing. In response to an
activation or an incoming message a party creates an outgoing message or another

13



action request. Key establishment protocols are message driven protocols where
sessions play a role similar to the role of oracles in the BR model.

Each party in the CK01 model possesses a certificate that binds its static public
keys to the party. A party Â can be activated to create a session via an action request
Create(Â, B̂,Ψ, role) where B̂ is another party; Ψ is a unique within Â string that
is used to identify the created session within Â; and role is either initiator I or
responder R. Upon receiving Create(Â, B̂,Ψ, role), Â verifies that no session was
previously created with (Â, B̂,Ψ, role) for some role not necessarily equal to role.
For a session S = (Â, B̂,Ψ, role), Â is the owner and B̂ is the peer of S; together
Â and B̂ are called partners of S. Every session S owned by Â has an associated
session state that contains only session-specific information related to S, portions
of which are labeled secret. A session produces output of the form (Â, B̂,Ψ, κ),
where a null value for κ indicates that an error occurred and the session is aborted.
A non-null value κ is labeled secret and is called the session key. Once a session
produces local output its corresponding session state is erased from the memory
of the session owner. If an execution of the key establishment protocol has two
sessions S1 = (Â, B̂,Ψ1, role) and S2 = (B̂, Â,Ψ2, role) such that Ψ1 = Ψ2, then S1

and S2 are called matching. A party Â could also receive an action request Expire(S),
where the session S produced a session key κ. Upon receiving Expire(S), Â deletes
from its memory the session key κ produced by S and S is labeled expired.

In the CK01 model the adversary controls all communications. Parties sub-
mit outgoing messages and action requests to the adversary, who makes decisions
about their delivery. The adversary presents parties with incoming messages and
action requests, thereby controlling the creation of sessions. The adversary does
not have immediate access to a party’s private information, however in order to
capture possible leakage of private information the adversary is allowed the fol-
lowing queries:

• SessionStateReveal(S) — The adversary obtains the information labeled se-
cret in the session state associated with S. A special note is appended to the
session and S produces no further output.

• SessionKeyReveal (S) — The adversary obtains the session key for a session
S, provided that the session holds a session key.

• Corrupt (party) — The adversary takes complete control over a party identi-
fied via this query and learns all information that is currently in the party’s
memory. The party produces no further output. Parties against whom the ad-
versary issued this query are called corrupt, otherwise they are called honest

14



or uncorrupted.

The adversary’s goal is to distinguish a session key from a random key. Let
S = (Â, B̂,Ψ, ∗) denote a session owned by Â. If the adversary issues SessionState-
Reveal(S) or SessionKeyReveal (S), or Corrupt (Â) before Expire(S), including the
case in which Â is corrupted before S is even created, then S is said to be locally
exposed. If neither S nor its matching session are locally exposed, then S is said to
be fresh. At any stage during its execution the adversary is allowed to make one
special query Test (S), where S is a session that produced a session key, is unexpired
and is fresh. In response the adversary is then given with equal probability either
the session key held by S or a random key. Provided that S remains fresh through-
out the adversary’s execution, the adversary is said to win the distinguishing game
if the adversary guesses correctly whether the key is random or not. Formally (see
also [20, Definition 4]), a protocol is called CK01-secure if it satisfies the following
conditions:

1. if two uncorrupted parties complete matching sessions, then they both out-
put the same key; and

2. the probability that the adversary’s guess is correct is no larger that 1
2 + ε(λ),

where ε is a function that is negligible in the security parameter λ.

2.2.2 Modeling security goals

CK01-secure protocols achieve many of the desirable security goals that were in-
troduced in §1.2.

Since in the CK01 model the adversary controls all communications the ad-
versary observes all messages exchanged between parties. If an adversary could
compute a session key for a session S by only observing messages, then that ad-
versary can win the distinguishing game with probability one by selecting S as the
test session and comparing the response to the test query with the computed key.
Hence a CK01-secure protocol guarantees security against eavesdroppers.

The CK01 model allows the adversary to learn the session keys held by sessions
other than the test session and its matching session. If S1 and S2 form the same
session key and are non-matching, by comparing the responses to SessionKeyRe-
veal (S2) and to Test (S1) an adversary can win the distinguishing game against S1.
Hence KKS attacks, whereby an adversary induces two sessions S1 = (Â, B̂,Ψ1,

role) and S2 = (Â, B̂,Ψ2, role) to form the same key, where Ψ1 6= Ψ2, are thwarted

15



by a CK01-secure protocol. Note that in this scenario issuing a SessionKeyRe-
veal (S2) query does not destroy freshness of S1.

Suppose that an adversary can induce sessions S1 = (Â, B̂,Ψ, role) and S2 =
(B̂, Ĉ, Ψ, role) to output the same session key κ, where Â 6= Ĉ; that is the adversary
has successfully launched a UKS attack. These sessions are non matching, therefore
by issuing SessionKeyReveal (S2) the adversary can win the distinguishing game
against S1. Hence a CK01-secure protocol is UKS resilient.

Recall the replay attack against the signed Diffie-Hellman protocol. The attack
can be modeled in the following way: an adversary creates S1 = (Â, B̂,Ψ1, role)
within Â and records Â’s response. Afterwards, the adversary issues SessionState-
Reveal(S1) to obtain the secret information in the session state of S1. Thereafter,
the adversary can create a session S2 = (B̂, Â,Ψ2, role) and present B̂ with the
incoming message recorded from S1. If the adversary can compute the session
key output by S2 by using SessionStateReveal(S1)’s response, then the adversary
can win the distinguishing game against S2. Hence, if a protocol is CK01-secure,
then leakage of session-specific ephemeral information does not compromise other
sessions.

Suppose that an adversary could perform the following sequence of actions.
First the adversary creates a session S = (Â, B̂,Ψ, role) within Â, and S produces
a session key κ. Then the adversary issues Test (S), Expire(S) and Corrupt (Â) in
that order. If at the end the adversary is able to compute κ, then the adversary can
win the distinguishing game against S. Therefore, a CK01-secure protocol provides
forward secrecy.

2.3 A CK01-secure protocol

The µ-protocol, informally depicted in Figure 2.1, was first presented in [54], with-
out a formal security argument. It is an example of a Diffie-Hellman type protocol
and its formal description, given in Definition 2.3.1, fits into the CK01 model.

2.3.1 Protocol description

Let λ denote the security parameter. In the protocol description, H : {0, 1}∗ →
{0, 1}λ and H2 : {0, 1}∗ → {0, 1}λ are random oracles and Â and B̂ are two parties
with valid public-private key pairs (A, a) and (B, b), respectively. The µ-protocol is
formally given in the following definition:

16



Â, a, A

Ψ : x,X, TA

σs = Ba

σe = Y x

X, TA −→

←− Y, TB

B̂, b, B

Ψ : y, Y, TB

σs = Ab

σe = Xy

TA = H2(σs,Ψ, X, Â, B̂, I) TB = H2(σs,Ψ, Y, B̂, Â,R)

κ = H(σe, X, Y )

Figure 2.1: µ-protocol

Definition 2.3.1 (µ-protocol) The protocol proceeds as follows:

1. Upon activation (Â, B̂,Ψ, I), Â (the initiator) performs the steps:

(a) Create a session with identifier (Â, B̂,Ψ, I), provided that no session with iden-
tifier (Â, B̂,Ψ, ∗) exists.

(b) Select an ephemeral private key x ∈R Z∗q and compute the corresponding
ephemeral public key X = gx.

(c) Compute σs = Ba and commitment for X , TA = H2(σs,Ψ, X, Â, B̂, I).

(d) Destroy σs and send (B̂, Â,Ψ,R, X, TA) to B̂.

2. Upon activation (B̂, Â,Ψ,R, X, TA), B̂ (the responder) performs the steps:

(a) Create a session with identifier (B̂, Â,Ψ,R), provided that no session with
identifier (B̂, Â,Ψ, ∗) exists.

(b) Verify that X ∈ G∗.

(c) Compute σs = Ab and verify that TA = H2(σs,Ψ, X, Â, B̂, I).

(d) Select an ephemeral private key y ∈R Z∗q and compute the corresponding
ephemeral public key Y = gy.

(e) Compute commitment for Y , TB = H2(σs,Ψ, Y, B̂, Â,R).

(f) Compute the session key κ = H(Xy, X, Y ).

(g) Destroy σs and y, and send (Â, B̂,Ψ, I, Y, TB) to Â.

(h) Complete the session (B̂, Â,Ψ,R) with output (B̂, Â,Ψ, κ)

3. Upon activation (Â, B̂,Ψ, I, Y, TB), Â performs the steps:

17



(a) Verify that (Â, B̂,Ψ, I) exists and Y ∈ G∗.

(b) Compute σs = Ba and verify that TB = H2(σs,Ψ, Y, B̂, Â,R).

(c) Compute the session key κ = H(Y x, X, Y ).

(d) Destroy σs and x.

(e) Complete session (Â, B̂,Ψ, I) with output (Â, B̂,Ψ, κ).

If any of the verifications fail, the party erases all session-specific information, which in-
cludes the identities Â and B̂, and the corresponding ephemeral private key.

Henceforth, it is assumed that the adversary cannot issue a SessionStateReveal ,
SessionKeyReveal or Corrupt query while a party is executing one of the three
main steps of the protocol. That is, the adversary can only issue one of these queries
at the end of Steps 1, 2 or 3.

2.3.2 Security argument

The security of the µ-protocol is established by the following theorem:

Theorem 2.3.1 If H and H2 are modeled as random oracles, and G is a group where the
GDH assumption holds, then the µ-protocol is CK01-secure.

Proof: Let λ denote the security parameter and M be a polynomially (in λ)
bounded adversary. Hence q = Θ(2λ). The adversary M is said to be success-
ful (event M ) with non-negligible probability ifM wins the distinguishing game
with probability 1/2 + p(λ), where p(λ) is a non-negligible term. Assume further
that M succeeds in an environment with n(λ) parties, activates at most s(λ) ses-
sions within each party, makes at most h2(λ) and h(λ) queries to the oraclesH2 and
H respectively, and terminates after time at most TM(λ). Following the standard
approach, such a µ-protocol adversaryM is used to construct a GDH solver S, that
succeeds with non-negligible probability. Let ξ : G × G → G be a random function
known only to S such that ξ(X, Y ) = ξ(Y, X). The algorithm S will use ξ to simu-
late CDH(X, Y ) when S may not know logg(X) or logg(Y ). Let (U, V ) be the input
to the GDH challenge and consider the following complementary events:

ME: The test session has a matching session.

ME: No session is matching to the test session.

18



Simulation in event ME. In this scenario S establishes n(λ) parties, who are
assigned random static key pairs and selects s1, s2 ∈R [1, . . . ,ns]. The s1’th and the
s2’th sessions created will be called SU and SV , respectively. The simulation ofM’s
environment proceeds as follows:

1. Create(Â, B̂,Ψ, I): S executes Step 1 of the protocol. However, if the session
being created is the s1’th or the s2’th session, then S deviates from the pro-
tocol by setting the ephemeral public key X to be U or V , respectively; note
that S does not possess the corresponding ephemeral private key in this case.

2. Create(B̂, Â,Ψ,R, X, TA): S executes Step 2 of the protocol. However, if the
session being created is the s1’th or the s2’th session, then S deviates from
the protocol by setting the ephemeral public key Y to be U or V , respectively
and setting σe = ξ(X, Y ); note that S does not possess the corresponding
ephemeral private key in this case.

3. Message(Â, B̂,Ψ, I, Y, TB): S executes Step 3 of the protocol. However, if
(Â, B̂,Ψ, I) ∈ {SU , SV }, then S deviates by setting σe = ξ(X, Y ), where X is
Â’s ephemeral public key.

4. SessionStateReveal(S): If S ∈ {SU , SV }, then S aborts, otherwise S answers
the query faithfully.

5. SessionKeyReveal (S): If S ∈ {SU , SV }, then S aborts with failure, otherwise S
answers the query faithfully.

6. Corrupt(Â): If Â owns either SU or SV and that session is not yet expired,
then S aborts with failure, otherwise; S answers the query faithfully.

7. Expire(S): S answers the query faithfully.

8. H2(∗): S simulates a random oracle in the usual way by returning random
values for new queries and replaying answers if the queries were previously
made.

9. H(σe, X, Y ):

(a) If X ∈ {U, V } and σe 6= ξ(X, Y ), then S obtains τ = DDH(X, Y, σe).

i. If τ = 0, then S simulates a random oracle in the usual way.

ii. If τ = 1 and Y ∈ {U, V } and Y 6= X , then S aborts with success and
outputs CDH(U, V ) = σe. Otherwise, if either Y 6∈ {U, V } or Y = X ,
then S returnsH(ξ(X, Y ), X, Y )

19



(b) If Y ∈ {U, V } and σe 6= ξ(X, Y ), then S obtains τ = DDH(X, Y, σe).

i. If τ = 0, then S simulates a random oracle in the usual way.

ii. If τ = 1, then S returnsH(ξ(X, Y ), X, Y )

(c) S simulates a random oracle in the usual way.

10. Test (St): If St 6∈ {SU , SV } or if SU and SV are not matching, then S aborts with
failure; otherwise S answers the query faithfully.

11. M outputs a guess: S aborts with failure.

Analysis of event M∧ME. Suppose that event M∧ME occurs. With probability
at least 2/(sn)2, S correctly guesses the test session and its matching, in which
case S does not abort as in Step 10. Without loss of generality, let St = SU =
(Â, B̂,Ψ, I). Event M implies that the test session remains fresh throughout the
experiment and hence S does not abort as described in Steps 4, 5 and 6. Let H

be the event that M queries H(CDH(U, V ), U, V ) and let H be the complement
of H . The only way the adversary M can obtain from the parties the input or
the output of the query H(CDH(U, V ), U, V ) is to issue SessionStateReveal (S) or
SessionKeyReveal (S) for S ∈ {SU , SV }, or to issue Corrupt (Â) or Corrupt (B̂) before
expiring SU or SV . Therefore, if event ME ∧ H occurs, thenM is successful with
probability at most 1

2 . If event M ∧ME ∧H occurs, then S succeeds as described
in Step 9a and does not fail as described in Step 11. Consequently,

P(M ∧ME) = P(M |ME ∧H)P(ME ∧H) + P(M ∧ME ∧H)

≤ 1
2
P(ME ∧H) + P(M ∧ME ∧H). (2.1)

Simulation in event ME. In this scenario S establishes n(λ) parties. Two of these
parties, denoted by Û and V̂ , are selected at random and assigned static public keys
U and V respectively. The remaining parties are assigned random static key pairs.
Note that S does not know the static private keys of Û and V̂ . The simulation of
M’s environment proceeds as follows:

1. Create(Â, B̂,Ψ, I): S executes Step 1 of the protocol. However, if Â ∈ {Û , V̂ },
then S deviates from the protocol by setting σs = ξ(A,B).

2. Create(B̂, Â,Ψ,R, X, TA): S executes Step 2 of the protocol. However, if B̂ ∈
{Û , V̂ }, then S deviates from the protocol by setting σs = ξ(A,B).

20



3. Message(Â, B̂,Ψ, I, Y, TB): S executes Step 3 of the protocol. However, if
Â ∈ {Û , V̂ }, then S deviates from the protocol by setting σs = ξ(A,B).

4. SessionStateReveal(S): S answers the query faithfully.

5. SessionKeyReveal (S): S answers the query faithfully.

6. Corrupt(Â): If Â ∈ {Û , V̂ }, then S aborts with failure; otherwise S answers
the query faithfully.

7. Expire(S): S answers the query faithfully.

8. H2(σs,Ψ, X, Â, B̂, role)

(a) If Â ∈ {Û , V̂ } and σe 6= ξ(A,B), then S obtains τ = DDH(A,B, σs).

i. If τ = 0, then S simulates a random oracle in the usual way.

ii. If τ = 1 and Â ∈ {Û , V̂ } and Â 6= B̂, then S abortsM and outputs
CDH(U, V ) = σe. Otherwise, if either B̂ 6∈ {Û , V̂ } or Â = B̂, then S
returnsH2(ξ(A,B),Ψ, X, Â, B̂, role)

(b) If B̂ ∈ {Û , V̂ } and σs 6= ξ(A,B), then S obtains τ = DDH(A,B, σs).

i. If τ = 0, then S simulates a random oracle in the usual way.

ii. If τ = 1, then S returnsH2(ξ(A,B),Ψ, X, Â, B̂, role)

(c) S simulates a random oracle in the usual way.

9. H(∗): S simulates a random oracle in the usual way.

10. Test (St): If the communicating partners of St are not Û and V̂ , then S aborts
with failure; otherwise S answers the query faithfully.

11. M outputs a guess: S aborts with failure.

Analysis of event M∧ME. Suppose that event M∧ME occurs. With probability
at least 2/n2, M selects a test session with communicating partners Û and V̂ , in
which case S does not abort as in Step 10. Without loss of generality let St =
(Û , V̂ ,Ψ, I) and let X and Y denote St’s outgoing and incoming ephemeral public
keys, respectively. Under event M∧ME the test session St outputs a session key κt.
Before κt is output within Û , Û receives TV that passes the verification procedures
described by the protocol. Since the string Ψ is unique within Û and since St has no
matching session, no honest party could have generated TV . Hence, except with
the negligible probability of guessing ξ(U, V ), a successful adversary must query
H2(CDH(U, V ),Ψ, Y, V̂ , Û ,R) (event H2) in which case S is successful as described

21



in Step 8a and does not abort as described in Steps 6 and 11. Therefore, if event
ME ∧ H2 occurs, thenM is successful with at most negligible probability, which
can be bounded by 1

2 . Consequently,

P(M ∧ME) = P(M |ME ∧H2)P(ME ∧H2) + P(M ∧ME ∧H2)

≤ 1
2
P(ME ∧H2) + P(M ∧ME ∧H2). (2.2)

Analysis of event M . Let S denote the event that S outputs a solution to the
GDH instance (U, V ) and let pME = P(M ∧ME∧H) and pM̃E = P(M ∧ME∧H2).
Suppose that event M occurs with non-negligible probability. From the analysis
of event M ∧ME it follows that S occurs with probability at least 1

(sn)2
pME and

from the analysis of event M ∧ME it follows that S occurs with probability at least
1
n2 pM̃E . Since events ME and ME are complementary it follows that

P(S) ≥ min
{

1
(sn)2

pME ,
1
n2

pM̃E

}
. (2.3)

During the simulation S performs group exponentiations, accesses the DDH ora-
cle, and simulates random oracles. A group exponentiation takes polynomial time
TG(λ). Assume that a DDH oracle call and response to a random oracle query take
polynomial time TDDH (λ) and TH(λ), respectively. The running time TS of S is
therefore bounded by

TS ≤ (2TG + TDDH + TH) TM. (2.4)

Equations 2.1 and 2.2 imply

P(M) = P(M ∧ME) + P(M ∧ME)

≤ pME + pM̃E +
1
2

(
P(ME ∧H) + P(ME ∧H2)

)
.

From P(ME ∧H) ≤ P(ME) and P(ME ∧H2) ≤ P(ME) it follows that

P(M) ≤ pME + pM̃E +
1
2

(
P(ME) + P(ME)

)
= pME + pM̃E +

1
2
,

which implies p ≤ pME + pM̃E . Therefore, if p is non-negligible, then either pME or
pM̃E is non-negligible, and hence by Equations 2.3 and 2.4 it follows that S is a poly-
nomially bounded GDH solver contradicting the GDH assumption in G. Therefore,
the µ-protocol is a CK01-secure protocol, concluding the proof of Theorem 2.3.1. �

The following numbers illustrate the non-tightness of the above argument. Sup-
pose that the desired security level is 80 bits. Suppose also n = 215 and s = 220.
Assume that the best algorithm to solve GDH problem in G takes approximately
√

q steps and that pME ≈ pM̃E . To achieve λ = 80, then q ≈ 2300.

22



2.4 Critique of the CK01 model

This section outlines shortcomings of the CK01 model.

Modeling KCI attacks requires that the adversary be given the ability to create
a new session within Â after obtaining Â’s static private key a. In the CK01 model
the adversary obtains a via Corrupt (Â), at which stage Â becomes corrupted and
does not produce further output. In particular, the adversary cannot create a new
session within Â. Thus the CK01 model does not cover KCI attacks.

In some scenarios, a party Â may desire to establish a shared secret key with
itself (reflections). In the CK01 language Â owns S1 = (Â, Â,Ψ, I) and S2 =
(Â, Â,Ψ,R). However, if S1 is created, then the CK01 model prohibits the creation
of S2. Thus the CK01 model does not capture reflection attacks.

The CK01 model does not allow malicious insiders. In particular the malicious
insider UKS attack described in §1.2 against the basic MTI protocol is not covered.
Indeed the attack in §1.2 relies on the fact that the adversary is able to establish a
new static public key for an entity, which is not allowed by the CK01 model.

Nowadays a typical Diffie-Hellman key agreement protocol combines the ses-
sion partners’ ephemeral and static key pairs to derive a shared secret key. Let Â

and B̂ be partners of a session S. Let x and a denote the ephemeral and static pri-
vate keys of Â, respectively, and let y and b denote the ephemeral and static private
keys of B̂. Via SessionStateReveal the CK01 model captures the security implica-
tions of leaking ephemeral private keys of sessions different from S. However, a
session S of the basicUM protocol appears to be secure even if the adversary ob-
tains x and y used in S itself. Ideally, any subset of (x, a, y, b) that does not contain
either (x, a) or (y, b) should not be sufficient to compute the corresponding session
key. In the CK01 model the adversary is only allowed to obtain the pair (a, b) after S

and its matching session are expired.

Choo, Boyd and Hitchcock [23] compared the most commonly used security
models for key agreement [9, 8, 20]. Their conclusion was that none of the models
as defined provides a significant advantage over the rest of the models. Further-
more, these models fail to capture some desirable properties of key agreement.
Most significantly, the adversary is not allowed to obtain certain secret informa-
tion about the session that is being attacked. Krawczyk [41] addressed many of
these concerns by providing a stronger version of the Canetti-Krawczyk model [20]
that captures additional security properties. These desirable properties include re-
sistance to KCI attacks, resilience to LEP attacks, and malicious insiders. More
recently LaMacchia, Lauter and Mityagin [45] provided a single definition that si-

23



multaneously captures all these security properties. Their security model will hence-
forth be called the extended Canetti-Krawczyk (eCK) model.

2.5 Extended Canetti-Krawzcyk security model

In the eCK model there are n parties each modeled by a probabilistic Turing ma-
chine. Each party has a static public-private key pair together with a certificate
that binds the public key to that party. The certifying authority (CA) does not re-
quire parties to prove possession of their static private keys, but the CA verifies
that the static public key of a party belongs to G∗. For simplicity, the model is de-
scribed only for two-pass Diffie-Hellman protocols that exchange ephemeral and
static public keys. More precisely, two parties Â, B̂ exchange static public keys
A,B ∈ G∗ and ephemeral public keys X, Y ∈ G∗; the session key is obtained by
combining A,B, X, Y and possibly the identities Â, B̂.

A party Â can be activated to execute an instance of the protocol called a session.
Activation is made via an incoming message that has one of the following forms:
(i) (Â, B̂) or (ii) (Â, B̂, Y ). If Â was activated with (Â, B̂), then Â is the session
initiator, otherwise the session responder. If Â is the responder of a session, then
Â prepares an ephemeral public key X and creates a separate session state where
all session-specific ephemeral information is stored. The session is identified via
a session identifier (Â, B̂,X, Y ). If Â is the initiator of a session, then Â prepares
an ephemeral public key X and creates a session state as in the responder case.
At the onset of the protocol the initiator does not know the incoming ephemeral
public key. Since ephemeral keys are selected at random on a per-session basis,
the probability that an ephemeral public key X is chosen twice by Â is negligible;
hence the session can be uniquely identified with (Â, B̂,X,×), and consequently
this string can be used as the (temporary and incomplete) session identifier. When
Â receives the corresponding ephemeral public key Y , the session identifier is up-
dated to (Â, B̂,X, Y ). A session (B̂, Â, Y,X) (if it exists) is said to be matching to
the session (Â, B̂,X,×). On the other hand, the session matching to (Â, B̂,X, Y )
can be any session identified by (B̂, Â, Y,×) or (B̂, Â, Y,X). Since it is not possi-
ble (except with negligible probability) to simultaneously have two different ses-
sions with identifiers (B̂, Â, Y,×) and (B̂, Â, Y,X), a session (Â, B̂,X, Y ) can have
at most one matching session. For a session (Â, B̂, ∗, ∗), Â is the session owner and
B̂ is the session peer.

The adversaryM is modeled as a probabilistic Turing machine and controls all
communications. Parties submit outgoing messages to the adversary, who makes

24



decisions about their delivery. The adversary presents parties with incoming mes-
sages via Send (message), thereby controlling the activation of sessions. The adver-
sary does not have immediate access to a party’s private information, however in
order to capture possible leakage of private information the adversary is allowed
the following queries:

• EphemeralKeyReveal (S) — The adversary obtains the ephemeral private key
held by the session S.

• SessionKeyReveal (S) — The adversary obtains the session key for a session
S, provided that the session holds a session key.

• StaticKeyReveal (party) — The adversary learns the static private key of the
party.

• Establish (party) — This query allows the adversary to register a static public
key on behalf of a party. In this way the adversary totally controls that party.
Parties against whom the adversary did not issue this query are called honest.

The aim of the adversary M is to distinguish a session key from a random
key. Formally, the adversary is allowed to make one special query Test (S). The
adversary is then given with equal probability either the session key held by S or a
random key. The adversary wins the game if he guesses correctly whether the key
is random or not. The eCK security notion requires the following.

Definition 2.5.1 (fresh session) Let S be the session identifier of a completed session,
owned by an honest party Â with peer B̂, who is also honest. Let S∗ be the session identifier
of the matching session of S, if it exists. Define S to be fresh if none of the following
conditions hold:

(i) M issues a SessionKeyReveal(S) query or a SessionKeyReveal(S∗) query (if S∗

exists);

(ii) S∗ exists andM makes either of the following queries:

– both StaticKeyReveal(Â) and EphemeralKeyReveal(S), or

– both StaticKeyReveal(B̂) and EphemeralKeyReveal(S∗);

(iii) S∗ does not exist andM makes either of the following queries:

– both StaticKeyReveal(Â) and EphemeralKeyReveal(S), or

25



– StaticKeyReveal(B̂).

The eCK security notion is given in the following definition:

Definition 2.5.2 (eCK security) A key agreement protocol is eCK-secure if the follow-
ing conditions hold:

1. If two honest parties complete matching sessions, then, except with negligible proba-
bility, they both compute the same session key (or both output indication of protocol
failure).

2. No polynomially bounded adversary M can distinguish the session key of a fresh
session from a randomly chosen session key, with probability greater than 1/2 plus a
negligible fraction.

The adversaryM is allowed to continue interacting with the parties even after
issuing the Test query. However, the test session must remain fresh throughout
the experiment. This security definition is very strong in the sense that it simul-
taneously captures most of the desirable security properties for authenticated key
agreement that have been identified in the literature including resistance to key-
compromise impersonation attacks, weak perfect forward secrecy, and resilience
to the leakage of ephemeral private keys. Unlike in the CK01 model [20], the ad-
versary in the eCK model is not equipped with a SessionStateReveal query which
enables it to learn the entire session state of a particular session. This does not rep-
resent a deficiency in the eCK model since protocols such as HMQV [41] proven
secure in the CK01 model typically specify that the ephemeral private key is the
only private information stored in the session state in which case the Ephemer-
alKeyReveal query is functionally equivalent to the SessionStateReveal query. In
general, by specifying that the session specific private information (the session
state) is part of the ephemeral private key, the SessionStateReveal and Ephemer-
alKeyReveal queries can be made functionally equivalent.

26



Chapter 3

The CMQV protocol

3.1 Motivation

The previous chapter recounted the extended Canetti-Krawzcyk security model. It
is natural to look for efficient protocols that are secure in eCK. Even though two-
pass protocols are usually in the core of a given family of protocols, one-pass pro-
tocols are important in scenarios where one of the parties is not on-line. Typically,
security arguments are presented for two-pass protocols. Extending these argu-
ments to variants with three or more rounds may be an easy task, but considering
security of the one-pass variant is not as straightforward. In particular there are se-
curity properties that no one-pass protocol can provide. This chapter introduces a
“combined” MQV protocol — the CMQV key establishment scheme and provides
reductionist security arguments for the one-pass and two-pass CMQV protocols in
the eCK model.

3.2 The MQV protocol

The MQV [47] protocol has been standardized in the NIST special publication 800-
56A [71] as one of the next generation key establishment schemes to be adopted by
the US government. For simplicity, the SP800-56A MQV variant will be referred
to as the MQV protocol. In the two-pass MQV protocol two parties Â and B̂, that
wish to agree on a session key, exchange static and ephemeral public keys. Party Â

computes σ = (Y BE)
x+Da

and party B̂ computes σ = (XAD)
y+Eb

. Here the public
exponents D and E are derived from X and Y , respectively and have bitlengths
that are half the bitlength of q. Thereafter, Â and B̂ compute the session key κ =
H(σ, Â, B̂).

27



The MQV protocol requires 2.5 exponentiations per party, which is almost the
eDH efficiency of 2 exponentiations per party. Not only is MQV efficient, but it also
provides most of the desirable key establishment attributes. For example, MQV has
a natural one-pass variant, it is UKS resilient, and the leakage of any non-trivial pair
(a trivial pair is a pair of ephemeral and static private key of the same party) from
(x, a, y, b) is not sufficient to compute κ. Even though the CDH assumption is nec-
essary for MQV security, it is not known whether it is also sufficient. Kunz-Jacques
and Pointcheval [44] showed that MQV security is equivalent to a modification
of the CDH assumption called the f -RCDH assumption, but f -RCDH may poten-
tially be weaker than the CDH assumption, in the sense that an efficient reduction
is known from f -RCDH to CDH, but not from CDH to f -RCDH. Furthermore, the
reductionist security argument by Kunz-Jacques and Pointcheval is in a restricted
model where, for example, there are only two parties. It remains an open problem
to provide a formal security argument for MQV using the CDH assumption in a
full security model such as the eCK model.

3.3 Related work

Researchers from IBM and Microsoft have recently proposed two-pass Diffie-
Hellman authenticated key agreement protocols called KEA+ [46], NAXOS [45]
and HMQV [41]. In these protocols the two communicating parties Â and B̂ ex-
change static and ephemeral public key pairs, and thereafter combine them to ob-
tain a session key. The papers [41, 46, 45] highlight certain security issues with
previous related key agreement protocols and propose solutions to address those
issues.

The KEA+ protocol is derived from the KEA [58] protocol developed by the
National Security Agency (see also [13, Protocol 4]). In KEA+, Â and B̂ compute
σ1 = gay and σ2 = gxb, and thereafter compute a session key κ = H(σ1, σ2, Â, B̂).
Lauter and Mityagin [46] provide a security argument for KEA+ in a model that is
weaker than eCK; for example the adversary is not allowed to obtain the static pri-
vate keys of both communicating parties. However, the KEA+ security argument
requires only the GDH and RO assumptions, and guarantees KCI resilience.

In a typical Diffie-Hellman ephemeral key exchange a party selects an ephem-
eral private key that equals the discrete logarithm of the corresponding ephemeral
public key. In the NAXOS protocol, Â selects ephemeral private key x̃ and com-
putes the corresponding ephemeral public key X = gH1(x̃,a). This method of com-
puting ephemeral private-public key pairs will henceforth be called the NAXOS

28



trick. Modulo the ephemeral public key computation, the NAXOS protocol can be
viewed as a KEA+ extension. In addition to σ1 and σ2, Â and B̂ also compute
σe = gH1(x̃,a)H1(ỹ,b); the session key is κ = H(σ1, σ2, σe, Â, B̂). The NAXOS trick al-
lows for a relatively simple security argument for the NAXOS protocol in the eCK
model. However, NAXOS requires 4 exponentiations per party, and hence it is less
efficient than the MQV and KEA+ protocols.

The HMQV protocol, see §6.3.1 for a detailed description, is a hashed MQV vari-
ant. In HMQV the public exponents are E = H2(Y, Â) and D = H2(X, B̂), and like
the MQV protocol the public exponents have bitlength that are half the bitlength
of q. Unlike MQV, HMQV does not include the identities of the communicating
partners in the key derivation function. But most importantly, the HMQV protocol
does not mandate public key validation (i.e., verification that public keys belong to
G∗); thereby, in groups where validation requires a group exponentiation HMQV is
more efficient than MQV. Furthermore, the HMQV protocol has a formal security
proof [41] in the CK01 model. Krawzcyk [41] argued that no two-pass protocol can
provide FS, but only a weaker version of FS called weak forward secrecy (wFS) [8].
A protocol provides wFS if an adversary who only observes an execution of the
protocol cannot compute the session key even if the adversary learns the static pri-
vate keys of the communicating partners after the session completes. In addition
to CK01 security, the HMQV security argument in [41] guarantees KCI and LEP
resilience, and also wFS, but it is extremely long and complicated, and some signif-
icant (but fixable) flaws [52, 53] have been discovered.

Protocol Efficiency Security Assumptions
MQV 2.5 unproven ?
KEA+ 3 CK01, KCI GDH, RO

NAXOS 4 eCK GDH, RO
HMQV 2.5 CK01, wFS, KCI, LEP KEA1, GDH, RO

Table 3.1: Protocol comparison

Currently only NAXOS is shown secure in the eCK model. NAXOS is less effi-
cient in that it requires 4 exponentiations per party compared to 2.5 exponentiations
for MQV and HMQV. In addition there is no natural modification of NAXOS to a
one-pass protocol. Table 3.1 compares MQV, HMQV, KEA+ and NAXOS in terms
of efficiency (number of exponentiations per party), security and underlying as-
sumptions. KEA1 stands for the knowledge of exponent [7] assumption. It is natural
to ask if there is any protocol that combines the ideas from KEA+, NAXOS, MQV
and HMQV, and achieves the best of all worlds.

29



3.4 Two-pass CMQV

The two-pass CMQV protocol, informally depicted in Figure 3.1, achieves the fol-
lowing objectives: (i) intuitive design principles; (ii) the efficiency of MQV and
HMQV; (iii) a relatively straightforward security proof with minimal assumptions
in the eCK model; and (iv) a natural one-pass variant. The security proof was
inspired by the HMQV argument [41], however the NAXOS trick is essential to
show eCK security. Moreover, unlike the HMQV proof, the CMQV security argu-
ment does not need the KEA1 assumption in order to demonstrate resilience to the
leakage of ephemeral private keys. On the negative side, the security reduction of
CMQV is not tight. As in the case of HMQV, the reduction uses the Forking Lemma
of Pointcheval and Stern [61, 62], which results in a highly non-tight reduction.

Â, a, A = ga

S : x̃,X, Â, B̂

x = H1(x̃, a)

X = gx

σ = (Y BE)
x+Da

(B̂, Â,X) −→

←− (Â, B̂,X, Y )

B̂, b, B = gb

S : ỹ, Y, Â, B̂

y = H1(ỹ, b)

Y = gy

σ = (XAD)
y+Eb

E = H2(Y, Â, B̂) D = H2(X, Â, B̂)

κ = H(σ,X, Y, Â, B̂)

Figure 3.1: Two-pass CMQV

3.4.1 Protocol description

In the protocol description, λ is the security parameter; H1 : {0, 1}λ × Z∗q → Z∗q ,
H2 : {0, 1}∗ → Zq and H : {0, 1}∗ → {0, 1}λ are random oracles; and Â and B̂ are
two parties with valid public-private key pairs (A, a) and (B, b), respectively. The
two-pass CMQV protocol is formally given in the following definition:

Definition 3.4.1 (two-pass CMQV protocol) The protocol proceeds as follows:

1. Upon activation (Â, B̂), party Â (the initiator) performs the steps:

(a) Select an ephemeral private key x̃ ∈R {0, 1}λ.

(b) Compute the ephemeral public key X = gH1(x̃,a) .

(c) Initiate session S = (Â, B̂,X, ∗) and send (B̂, Â,X) to B̂ .

30



2. Upon activation (B̂, Â,X), party B̂ (the responder) performs the steps:

(a) Verify that X ∈ G∗.

(b) Select an ephemeral private key ỹ ∈R {0, 1}λ.

(c) Compute the ephemeral public key Y = gH1(ỹ,b).

(d) Compute E = H2(Y, Â, B̂) and D = H2(X, Â, B̂).

(e) Compute σ = (XAD)
H1(ỹ,b)+Eb

and κ = H(σ,X, Y, Â, B̂).

(f) Destroy ỹ and σ.

(g) Complete session S = (B̂, Â,X, Y ) with session key κ and send (Â, B̂,X, Y )
to Â.

3. Upon activation (Â, B̂,X, Y ), party Â performs the steps:

(a) Verify that a session with identifier (Â, B̂,X,×) exists.

(b) Verify that Y ∈ G∗.

(c) Compute E = H2(Y, Â, B̂) and D = H2(X, Â, B̂).

(d) Compute σ = (Y BE)
H1(x̃,a)+Da

and κ = H(σ,X, Y, Â, B̂).

(e) Destroy x̃ and σ.

(f) Complete session S = (Â, B̂,X, Y ) with session key κ.

If any verification fails the party erases all session specific information, which includes the
ephemeral private key, from its memory and aborts the session.

It is straightforward to verify that both parties compute the same shared secret
σ, and therefore also the same session key.

3.4.2 Design rationale

This section explains the underlying principles behind the CMQV design.

Public-key validation. Public-key validation (i.e. checking that static and ephem-
eral public keys belong to G∗) prevents potential invalid-curve [4] and small sub-
group attacks [49] (see also [53]). In other words, with validation a party obtains
some assurance that computations involving its static private key do not reveal any
information about the static private key itself, as long as the underlying group is
cryptographically strong.

31



Hashing ephemeral and static private keys. In Definition 3.4.1 the value x =
H1(x̃, a) is never stored. Whenever H1(x̃, a) is needed, it is computed. This im-
plies that the session state does not store x. The idea is that without knowing both
the ephemeral private key x̃ and the static private key a, no entity is able to com-
pute the discrete logarithm x of an ephemeral public key X . This elegant idea,
first described in [45], allows the protocol to attain resistance to ephemeral pri-
vate key leakage without resorting to new assumptions like KEA1 (as needed for
HMQV [41]).

Rationale for public exponents. Given a computational Diffie-Hellman chal-
lenge with inputs U, V ∈R G, knowledge of either of the discrete logarithms of U

or V is enough to solve the CDH instance. If an adversaryM, given a static public
key B, is able to find a group element Y such thatM knows the discrete logarithm
of T = Y BE, then that M can impersonate B̂ to other parties by computing the
shared secret σ = (XAD)

t
where t = logg T , thereby impersonating B̂ to Â. Defin-

ing E to depend on Y ensures that the adversary is not able to compute the discrete
logarithm of Y BE. Moreover, including the identity of the intended peer in the
derivation of E prevents the adversary from potentially benefiting from the replay
of Y to two distinct parties Â and Ĉ. Arguably, B̂’s identity in the derivation of E is
not needed since σ in any case depends on B̂’s static public key B. However, since
the CA does not require parties to prove possession of their static private keys,M
may establish a new party with static public key B. Hence B̂ is included in E’s
derivation.

A very similar definition of E was used in HMQV [41]. For both HMQV and
CMQV, the public exponents definition is crucial for the security proof, but in both
cases the reduction is non-tight. It is worth investigating if the requirements on E

and D can be modified to attain a tight security reduction.

Session key derivation. The session key is κ = H(σ,X, Y, Â, B̂). The secrecy of
σ guarantees that only the intended parties can possibly compute κ. Including
identities in the key derivation is a generic way to prevent unknown-key share
attacks (see [14]). Furthermore, inclusion of X and Y in the key derivation allows
for a simple argument that non-matching sessions have different session keys.

3.4.3 Efficiency comparison

The efficiency comparison in Table 3.1 is simplified; in particular, it does not take
into account validation and various speedups that may be applicable. Consider the

32



following groups of practical interest: (i) DSA-type groups (order-q subgroups of
the multiplicative group of prime fields Fp); and (ii) elliptic curves of prime order q

or nearly prime order hq. Validation for DSA-type groups requires a full exponen-
tiation; by contrast validating points on elliptic curves of prime order is essentially
free. For nearly prime order curves, rather than verifying that the order of a pub-
lic key is q, parties could use the corresponding public keys raised by the cofactor
h. If the two public keys Y and B are validated, then computing (Y BE)H1(x̃,a)+Da

is equivalent to computing Y s1Bs2 , where s1 = H1(x̃, a) + Da mod q and s2 =
E(H1(x̃, a) + Da) mod q. Therefore, CMQV computations can be speedup using
Shamir’s trick [55, Algorithm 14.88], reducing the cost by 0.75 exponentiations on
average.

DSA groups Elliptic curves Elliptic curves of
of prime order nearly prime order

CMQV 3.25 (4) 2.25 (3) 2.25 (3)
MQV 3.25 (3.5) 2.25 (2.5) 2.25 (2.5)

HMQV-P1363 2.5 / 3.5 2.25 2.25

Table 3.2: Efficiency comparison in terms of group exponentiations

Table 3.2 compares CMQV with HMQV as described in [42], accounting for
the validation and Shamir’s speedup. The numbers in parentheses for MQV and
CMQV represent the naive count of group exponentiations without accounting for
possible improvements in the computations. The numbers for HMQV correspond
to the two versions of HMQV as described in [42]. For HMQV, the difference is
significant only in DSA-type groups as the more efficient version avoids full val-
idation. However, the security proof in the case where validation is not required
assumes that no ephemeral private keys are leaked to the adversary.

3.4.4 Security argument

This section presents a formal security argument for two-pass CMQV. For simplic-
ity, the reduction assumes that the protocol does not allow reflections. This condi-
tion can be relaxed by using the GSP assumption instead of the GDH assumption

Theorem 3.4.1 If H1,H2 and H are random oracles, and G is a group where the GDH
assumption holds, then two-pass CMQV is eCK secure.

33



Proof: Verifying condition 1 of Definition 2.5.2 is straightforward; it remains to
verify condition 2.

Let λ denote the security parameter, whence q = |G| = Θ(2λ). Let M be a
polynomially (in λ) bounded CMQV adversary. The adversary M is said to be
successful (event M ) with non-negligible probability ifM wins the distinguishing
game described in §2.5 with probability 1

2 + p(λ), where p(λ) is non-negligible.
Assume that M operates in an environment that involves at most n(λ) parties,
M activates at most s(λ) sessions within a party, and makes at most h1(λ), h2(λ)
and h(λ) queries to oracles H1,H2 and H, respectively; and terminates after time
at most TM. Let the test session be St = (Â, B̂,X, Y ) and let H denote the event
thatM queries H with (σ,X, Y, Â, B̂), where σ = CDH(XAD, Y BE). Let H be the
complement of H and S∗ be any completed session owned by an honest party, such
that St and S∗ are non-matching. Since St and S∗ are non-matching, the input to
the key derivation function H are different for St and S∗. And since H is a random
oracle it follows thatM cannot obtain any information about the test session key
from the session key of non-matching sessions. Hence P(M ∧H) ≤ 1

2 and

P(M) = P(M ∧H) + P(M ∧H) ≤ 1
2

+ P(M ∧H),

whence P(M ∧H) ≥ p; henceforth the event M ∧H is denoted by M∗.

Following the standard approach such an adversaryM is used to construct a
GDH solver S that succeeds with non-negligible probability. Let ξ : G × G → G be
a random function known only to S, such that ξ(X, Y ) = ξ(Y, X). The algorithm S
will use ξ to simulate CDH(X, Y ) when S may not know logg(X) or logg(Y ). Let the
input to the GDH challenge be (U, V ) and consider the following complementary
events:

DL. There exists an honest party B̂ such thatM, during its execution, queriesH1

with (∗, b), before issuing a StaticKeyReveal (B̂) query. (Note thatM does not
necessarily make a StaticKeyReveal (B̂) query.)

DL. During its execution, for every honest party B̂ for whichM queries H1 with
(∗, b),M issued StaticKeyReveal (B̂) before the first (∗, b) query toH1.

If M succeeds with non-negligible probability, and hence P(M∗) ≥ p, it must be
the case that either event DL ∧M∗ or event DL ∧M∗ occurs with non-negligible
probability. These events are considered separately.

34



Simulation in event DL. Suppose that event DL∧M∗ occurs with non-negligible
probability. In this case S prepares n parties. One party, called V̂ , is selected at
random and assigned static public key V ; S represents V̂ ’s static private key by
ν ∈R Zq. The remaining n−1 parties are assigned random static key pairs. The ad-
versaryM is initiated on this set of parties and the simulation ofM’s environment
proceeds as follows:

1. Send(Â, B̂): S executes Step 1 of the protocol.

2. Send(B̂, Â,X): S executes Step 2 of the protocol. However, if B̂ = V̂ , then S
sets σ = ξ(XAD, Y BE).

3. Send(Â, B̂,X, Y ): S executes Step 3 of the protocol. However, if Â = V̂ , then
S sets σ = ξ(XAD, Y BE).

4. EphemeralKeyReveal (S): S responds to the query faithfully.

5. SessionKeyReveal (S): S responds to the query faithfully.

6. StaticKeyReveal (Â): S responds to the query faithfully, unless Â = V̂ in
which case S aborts with failure.

7. Establish (M̂ ): S responds to the query faithfully.

8. H1(s, c): S checks if gc = V ; if the equation holds, then S stopsM and com-
putes CDH(U, V ) = U c. In all other cases S simulates a random oracle in the
usual way.

9. H2(∗): S simulates a random oracle in the usual way.

10. H(σ,X, Y, Â, B̂):

(a) If V̂ ∈ {Â, B̂} and σ 6= ξ(XAD, Y BE), then S obtains τ = DDH(XAD,

Y BE, σ).

i. If τ = 1, then S returnsH
(
ξ(XAD, Y BE), X, Y, Â, B̂

)
.

ii. If τ = 0, then S simulates a random oracle in the usual way.

(b) S simulates a random oracle in the usual way.

11. Test (S): S responds to the query faithfully.

12. M outputs a guess: S aborts with failure.

35



Analysis of event DL∧M∗. S’s simulation ofM’s environment is perfect except
with negligible probability. With probability at least 1

n , S assigns the public key
V to an honest party B̂ for whom M will query H1(∗, b) without first issuing a
StaticKeyReveal (B̂) query. In this case S is successful as described in Step 6 and
the abortions as in Steps 7 and 12 do not occur. Hence if event DL∧M∗ occurs with
probability pDL, then S is successful with probability P(S) that is bounded by

P(S) ≥ 1
n

pDL. (3.1)

Event DL Let TM be the event “the test session has a matching session owned
by an honest party”. Event DL∧M∗ is further subdivided into the following com-
plementary events: (i) Tm = (DL∧M∗ ∧ TM) and (ii) Tm = (DL∧M∗ ∧ TM). Let
pD̃L = P(DL ∧M∗), pm = P(Tm), and pm̃ = P(Tm). Since Tm and Tm are comple-
mentary pD̃L = pm + pm̃. Therefore, if event DL ∧M∗ occurs with non-negligible
probability, then either Tm or Tm occurs with non-negligible probability. Events Tm

and Tm are next considered separately.

Simulation in event Tm Suppose that event Tm occurs with non-negligible prob-
ability. In this case S establishes n honest parties that are assigned random static
key pairs, and randomly selects two integers i, j ∈R [1, . . . ,ns]. The i’th and the
j’th sessions created will be called SU and SV , respectively. The ephemeral private
key of SU is denoted by ũ and the ephemeral private keys of SV is denoted by ṽ.
The simulation ofM’s environment proceeds as follows:

1. Send(Â, B̂): S executes Step 1 of the protocol. However, if the session being
created is SU or SV , then S deviates by setting the ephemeral public key X

to be U or V , respectively, thereby defining H1(ũ, a) = logg U or H1(ṽ, a) =
logg V . Note that in this case S cannot respond to either H1(ũ, a) = logg U or
H1(ṽ, a) = logg V .

2. Send(B̂, Â,X): S executes Step 2 of the protocol. However, if the session
being created is SU or SV , S deviates by setting the ephemeral public key Y

to be U or V , respectively, and setting σ = ξ(XAD, Y BE).

3. Send(Â, B̂,X, Y ): S executes Step 3 of the protocol. However, if X ∈ {U, V }
then S deviates by setting σ = ξ(XAD, Y BE).

4. EphemeralKeyReveal (S): S responds to the query faithfully.

5. SessionKeyReveal (S): S responds to the query faithfully.

36



6. StaticKeyReveal (Â): S responds to the query faithfully.

7. Establish (M̂ ): S responds to the query faithfully.

8. H1(x̃, a): S simulates a random oracle in the usual way except if Â owns SU

and x̃ = ũ or if Â owns SV and x̃ = ṽ, in which case S aborts with failure.

9. H2(∗): S simulates a random oracle in the usual way.

10. H(σ,X, Y, Â, B̂):

(a) If {X, Y } = {U, V } and DDH(XAD, Y BE, σ) = 1, then S abortsM and
outputs CDH(U, V ) = σg−abEDX−bEY −aD.

(b) If X ∈ {U, V } and σ 6= ξ(XAD, Y BE), then S obtains τ = DDH(XAD,

Y BE, σ).

i. If τ = 1, then S returnsH
(
ξ(XAD, Y BE), X, Y, Â, B̂

)
.

ii. If τ = 0, then S simulates a random oracle in the usual way.

(c) If Y ∈ {U, V } and σ 6= ξ(XAD, Y BE), then S obtains τ = DDH(XAD,

Y BE, σ).

i. If τ = 1, then S returnsH
(
ξ(XAD, Y BE), X, Y, Â, B̂

)
.

ii. If τ = 0, then S simulates a random oracle in the usual way.

(d) S simulates a random oracle in the usual way.

11. Test (St): If SU and SV are non-matching or if St is neither SU nor SV , then S
aborts; otherwise responds to the query faithfully.

12. M outputs a guess: S aborts with failure.

Analysis of event Tm ∧DL ∧M∗. S’s simulation ofM’s environment is perfect
except with negligible probability. The probability thatM selects SU and SV as the
test session and its matching is at least 2

(ns)2
. Suppose that this is the case, so S

does not abort as in Step 11, and suppose that event Tm occurs. Without loss of
generality, let St = SU = (Â, B̂, U, V ). Since ũ is used only in the test session, M
must obtain it via an EphemeralKeyReveal query before making an H1 query that
includes ũ. Similarly,Mmust obtain ṽ from the matching session via an Ephemer-
alKeyReveal query before making an H1 query that includes ṽ. Under event DL,
the adversary first issues a StaticKeyReveal query to a party before making an H1

query that includes that party’s static private key. Since the test session is fresh,M
can query for at most one value in each of the pairs (ũ, a) and (ṽ, b); hence S does

37



not abort as described in Step 8. Under event M∗, except with negligible probabil-
ity of guessing ξ(UAD, V BE), S is successful as described in Step 10(a) and does
not abort as in Step 12. Therefore if event Tm occurs, then the success probability
of S is bounded by

P(S) ≥ 2
(ns)2

pm. (3.2)

Simulation in event Tm. Suppose that event Tm occurs with non-negligible prob-
ability. Recall that event Tm implies that no honest party owns a session matching
to the test session. In this case S prepares n parties. One party, called V̂ , is selected
at random and assigned static public key V and S represents V̂ ’s static private key
by ν ∈R Zq. The remaining n − 1 parties are assigned random static key pairs.
Furthermore, S randomly selects an integer i ∈R [1, . . . ,ns]. The i’th session cre-
ated will be called SU and SU ’s ephemeral private key will be denoted by ũ. The
simulation ofM’s environment proceeds as follows:

1. Send(Â, B̂): S executes Step 1 of the protocol. However, if the session being
created is SU , then S deviates by setting the ephemeral public key X to be U .

2. Send(B̂, Â,X): S executes Step 2 of the protocol. However, if the session
being created is SU , S deviates by setting the ephemeral public key Y to be U .
In addition if B̂ = V̂ or Y = V , then S sets σ = ξ(XAD, Y BE).

3. Send(Â, B̂,X, Y ): S executes Step 3 of the protocol. However, if Â = V̂ or
X = U , then S deviates by setting σ = ξ(XAD, Y BE).

4. EphemeralKeyReveal (S): S responds to the query faithfully.

5. SessionKeyReveal (S): S responds to the query faithfully.

6. StaticKeyReveal (Â): S responds to the query faithfully, unless Â = V̂ in
which case S aborts with failure.

7. Establish (M̂ ): S responds to the query faithfully.

8. H1(x̃, a): S simulates a random oracle in the usual way except if Â owns SU

and x̃ = ũ, in which case S aborts with failure.

9. H2(∗): S simulates a random oracle in the usual way.

10. H(σ,X, Y, Â, B̂):

(a) If X = U and B̂ = V̂ , then S obtains τ = DDH(XAD, Y BE, σ).

38



i. If τ = 1, then S computes Π = σY −aDV −aDE = guvE+uy.

ii. If τ = 0, then S simulates a random oracle in the usual way.

(b) If Y = U and Â = V̂ , then S obtains τ = DDH(XAD, Y BE, σ)

i. If τ = 1, then S computes Π = σX−bEV −bDE = guvD+uy.

ii. If τ = 0, then S simulates a random oracle in the usual way.

(c) If σ 6= ξ(XAD, Y BE) and either U ∈ {X, Y } or V̂ ∈ {Â, B̂}, then S
obtains τ = DDH(XAD, Y BE, σ).

i. If τ = 1, then S returnsH
(
ξ(XAD, Y BE), X, Y, Â, B̂

)
.

ii. If τ = 0, then S simulates a random oracle in the usual way.

(d) S simulates a random oracle in the usual way.

11. Test (St): If St 6= SU or the peer of St is not V̂ , then S aborts with failure;
otherwise responds to the query faithfully.

12. M outputs a guess: S aborts with failure.

Analysis of event Tm ∧DL ∧M∗. The simulation ofM’s environment is perfect
except with negligible probability. The probability that the test session has peer V̂

and outgoing ephemeral public key U is at least 1
n2s

. Suppose that this is indeed the
case, so S does not abort as in Step 11, and suppose that event Tm occurs. Since ũ is
used only in the test session,Mmust obtain it via an EphemeralKeyReveal query
before making an H1 query that includes ũ. Under event DL, the adversary first
issues a StaticKeyReveal query to a party before making anH1 query that includes
that party’s static private key. Since the test session is fresh, and St has no matching
session a successfulM does not query for x̃; hence S does not abort as described
in Steps 6 and 8.

Without loss of generality let Y denote the incoming ephemeral public key se-
lected byM for the test session St = (Â, V̂ , U, Y ). Under event M∗,M queries H
with (σ,U, Y, Â, V̂ ) where DDH(UAD, Y V E, σ) = 1, in which case as described in
Step 10(a) S computes

Π = σY −aDV −aDE = guvE+uy.

Without the knowledge of y = logg Y , S is unable to compute CDH(U, V ). Fol-
lowing the Forking Lemma [61, Lemma 2] approach1, S runsM on the same input

1The Forking Lemma was introduced by Pointcheval and Stern to analyze the security of ElGamal-
like signature schemes in the random oracle model. In that setting it is assumed that a forgerM can,

39



and the same coin flips but with carefully modified answers to theH2 queries. Note
thatM must have queried H2 with (Y, Â, B̂) in its first run, because otherwiseM
would be unable to compute σ except with negligible probability. For the second
run of M, S responds to H2(Y, Â, B̂) with a value E′ 6= E selected uniformly at
random. Another way of describing the second run is: M is rewound to the point
whereM queriesH2 with (Y, Â, B̂) and the query is answered with a random value
E′ different from E. IfM succeeds in the second run, in Step 10(a) S computes

Π′ = σ′Y −aD′
V −aD′E′

= guvE′+uy

and thereafter obtains

CDH(U, V ) =
(

Π
Π′

)(E−E′)
−1

.

The forking is at the expense of introducing a wider gap in the reduction. The
success probability of S, excluding negligible terms, is

P(S) ≥ 1
s

1
n2

C

h2
pm̃ (3.3)

where C is a constant arising from the use of the Forking Lemma2

Overall analysis. Suppose that event M occurs. Combining Equations (3.1), (3.2)
and (3.3), the success probability of S is

P(S) ≥ max
{

1
n(λ)

pDL(λ),
2

(n(λ)s(λ))2
pm(λ),

C

s(λ)n(λ)2h2(λ)
pm̃(λ)

}
, (3.4)

which is non-negligible in λ.

The simulation requires S to perform group exponentiations, access the DDH
oracle, and simulate random oracles. Since q = Θ(2λ), a group exponentiation
takes time TG = O(λ) group multiplications. Assume that a DDH oracle call takes
time TDDH = O(λ). Responding to an H query takes time TH = O(λ); similarly,
responding to H1 andH2 queries takes time TH1(λ) and TH2(λ). Taking the largest

with non-negligible probability, create a signature on a message m thatM did not previously give to
the signing oracle. The lemma states that if the forger is replayed with the same input and coin flips,
and the same responses to its signing and random oracle queries up to the point when m is queried
to the random oracle (in which case a different random hash value is returned), then the forger will
succeed in creating a forgery for that same message m with non-negligible probability. The Forking
Lemma approach has been used to prove security of different kinds of protocols. Here it is used
essentially the same way as in Krawcyzk’s [41, §4.2] proof of the XCR signature scheme.

2The constant C in Pointcheval and Stern’s version of the lemma is 84480−1. Its value has not
been worked out in Theorem 3.4.1’s (and Krawzcyk’s) use of the Forking Lemma.

40



times from among all simulations for answeringM’s queries, the running time of
S is bounded by

TS ≤ (T3G + (TDDH + 2TG + TH) + (TG + TH1) + TH2)TM. (3.5)

Thus, if M is polynomially bounded, then there is an algorithm S that succeeds
in solving the GDH problem in G with non-negligible probability. Furthermore S
runs in polynomial time, contradicting the GDH assumption in G. This concludes
the proof of Theorem 3.4.1. �

3.5 One-pass CMQV

In a nutshell, one-pass CMQV is two-pass CMQV, where the responder’s ephem-
eral public key Y is the identity element in the group. To that end there is no need
to include Y in the key derivation.

3.5.1 Protocol description

As before, in the protocol description, λ is the security parameter; H1 : {0, 1}λ ×
Z∗q → Z∗q , H2 : {0, 1}∗ → Zq and H : {0, 1}∗ → {0, 1}λ are random oracles; and Â

and B̂ are two parties with valid public-private key pairs (A, a) and (B, b), respec-
tively. The one-pass CMQV protocol is formally given in the following definition:

Definition 3.5.1 (one-pass CMQV) The protocol proceeds as follows:

1. Upon activation (Â, B̂), party Â (the initiator) performs the steps:

(a) Select an ephemeral private key x̃ ∈R {0, 1}λ.

(b) Compute the ephemeral public key X = gH1(x̃,a) .

(c) Compute D = H2(X, Â, B̂) and σ = BH1(x̃,a)+Da.

(d) Compute κ = H(σ,X, Â, B̂) and destroy x̃ and σ.

(e) Send (B̂, Â,X) to B̂ and complete session S = (Â, B̂,X) with session key κ.

2. Upon activation (B̂, Â,X), party B̂ (the responder) performs the steps:

(a) Verify that X ∈ G∗.

(b) Compute D = H2(X, Â, B̂) and σ = (XAD)
b
.

(c) Compute κ = H(σ,X, Â, B̂) and destroy σ.

41



(d) Complete session S = (B̂, Â,X) with session key κ.

If any verification fails, then the party erases all session specific information from its mem-
ory and aborts the session.

3.5.2 Model modifications

Even though the definition of a secure protocol (Definition 2.5.2) does not depend
on the number of protocol flows, the fresh session definition has to be modified
to fit the needs of a one-pass protocol. In particular, one-pass protocols cannot
achieve wFS since an adversary can compute the test session key by learning the
static private key of the responder.

Definition 3.5.2 (one-pass fresh session) Let S be the session identifier of a completed
session, owned by an honest party Â with intended peer B̂, who is also honest. Let S∗ be
the session identifier of the matching session of S, if it exists. Define S to be fresh if none of
the following conditions hold:

(i) M issues a SessionKeyReveal(S) query or a SessionKeyReveal(S∗) query (if S∗

exists);

(ii) if Â is the initiator, thenM makes either of the following queries:

– both StaticKeyReveal(Â) and EphemeralKeyReveal(S), or

– StaticKeyReveal(B̂);

(iii) if Â is the responder, thenM makes either of the following queries

– StaticKeyReveal(Â) or

– StaticKeyReveal(B̂).

By replaying messages from Â to B̂ an adversaryM could force multiple ses-
sions owned by B̂ sharing the same session key κ. Let Sκ be the set of sessions
owned by B̂ with the same session key κ. Since all sessions in Sκ have the same
session identifiers,M cannot compromise a single session in Sκ without compro-
mising all sessions in Sκ. Therefore, the definition of session identifier accounts for
replay attacks.

42



3.5.3 Security argument

The security argument for one-pass CMQV is very similar to the security argument
for two-pass CMQV (§3.4.4).

Theorem 3.5.1 If H1,H2 and H are random oracles, and G is a group where the GDH
assumption holds, then one-pass CMQV is eCK secure.

Proof: Verifying condition 1 of Definition 2.5.2 is straightforward; it remains to
verify condition 2.

Let λ denote the security parameter, whence q = |G| = Θ(2λ). LetM be a poly-
nomially (in λ) bounded one-pass CMQV adversary. The adversaryM is said to
be successful (event M ) with non-negligible probability ifMwins the distinguish-
ing game described in §2.5 with probability 1

2 + p(λ), where p(λ) is non-negligible.
Assume thatM operates in an environment that involves at most n(λ) parties, and
within a partyM activates at most s(λ) sessions as the initiator within a party, and
makes at most h1(λ), h2(λ) and h(λ) queries to oracles H1,H2 and H, respectively;
and terminates after time at most TM. Let the test session be St = (Â, B̂,X) and let
H denote the event thatM queriesHwith (σ,X, Â, B̂), where σ = CDH(XAD, B).
Let H be the complement of H and S∗ be any completed session owned by an hon-
est party, such that St and S∗ are non-matching. Since St and S∗ are non-matching,
the input to the key derivation function H are different for St and S∗. And since H
is a random oracle it follows thatM cannot obtain any information about the test
session key from the session key of non-matching sessions. Hence P(M ∧H) ≤ 1

2

and
P(M) = P(M ∧H) + P(M ∧H) ≤ 1

2
+ P(M ∧H),

whence P(M ∧H) ≥ p; henceforth the event M ∧H is denoted by M∗.

Following the standard approach, such an adversaryM is used to construct a
GDH solver S that succeeds with non-negligible probability. Let ξ : G × G → G be
a random function known only to S, such that ξ(X, Y ) = ξ(Y, X). The algorithm S
will use ξ to simulate CDH(X, Y ) when S may not know logg(X) or logg(Y ). Let the
input to the GDH challenge be (U, V ) and consider the following complementary
events:

DL. There exists an honest party B̂ such thatM, during its execution, queriesH1

with (∗, b), before issuing a StaticKeyReveal (B̂) query. (Note thatM does not
necessarily make a StaticKeyReveal (B̂) query.)

43



DL. During its execution, for every honest party B̂ for whichM queries H1 with
(∗, b),M issued StaticKeyReveal (B̂) before the first (∗, b) query toH1.

If M succeeds with non-negligible probability, and hence P(M∗) ≥ p, it must be
the case that either event DL ∧M∗ or event DL ∧M∗ occurs with non-negligible
probability. These events are considered separately.

Simulation in event DL Suppose that event DL∧M∗ occurs with non-negligible
probability. In this case S prepares n parties. One party, called V̂ , is selected at
random and assigned static public key V ; S represents V̂ ’s static private key by
ν ∈R Zq. The remaining n−1 parties are assigned random static key pairs. The ad-
versaryM is initiated on this set of parties and the simulation ofM’s environment
proceeds as follows:

1. Send(Â, B̂): S executes Step 1 of the protocol. However, if Â = V̂ , then S
deviates by setting σ = ξ(XAD, B).

2. Send(B̂, Â,X): S executes Step 2 of the protocol. However, if B̂ = V̂ , then S
sets σ = ξ(XAD, B).

3. EphemeralKeyReveal (S): S responds to the query faithfully.

4. SessionKeyReveal (S): S responds to the query faithfully.

5. StaticKeyReveal (Â): S responds to the query faithfully, unless Â = V̂ in
which case S aborts with failure.

6. Establish (M̂ ): S responds to the query faithfully.

7. H1(s, c): S checks if gc = V ; if the equation holds, then S stopsM and out-
puts GDH(U, V ) = V c. In all other cases S simulates a random oracle in the
usual way.

8. H2(∗): S simulates a random oracle in the usual way.

9. H(σ,X, Â, B̂):

(a) If V̂ ∈ {Â, B̂} and σ 6= ξ(XAD, B), then S obtains τ = DDH(XAD, B, σ).

i. If τ = 1, then S returnsH
(
ξ(XAD, B), X, Â, B̂

)
.

ii. If τ = 0, then S simulates a random oracle in the usual way.

(b) S simulates a random oracle in the usual way.

44



10. Test (S): S responds to the query faithfully.

11. M outputs a guess: S aborts with failure.

Analysis of event DL∧M∗. S’s simulation ofM’s environment is perfect except
with negligible probability. With probability at least 1

n , S assigns the public key
V to an honest party B̂ for whom M will query H1(∗, b) without first issuing a
StaticKeyReveal (B̂) query. In this case S is successful as described in Step 6 and
the abortions as in Steps 7 and 12 do not occur. Hence if event DL∧M∗ occurs with
probability pDL, then S is successful with probability P(S) that is bounded by

P(S) ≥ 1
n

pDL. (3.6)

Event DL Let Tm be the event “the test session has a matching session owned by
an honest party or the test session owner is also the session initiator”. Event DL ∧
M∗ is further subdivided into the following complementary events: (i) Tm = (DL∧
M∗∧Tm) and (ii) Tm = (DL∧M∗∧TM). Let pD̃L = P(DL∧M∗), pm = P(Tm), and
pm̃ = P(Tm). Since Tm and Tm are complementary, pD̃L = pm + pm̃. Therefore, if
event DL∧M∗ occurs with non-negligible probability, then either Tm or Tm occurs
with non-negligible probability. Events Tm and Tm are next considered separately.

Simulation in event Tm. Suppose that event Tm occurs with non-negligible prob-
ability. In this case S establishes n parties. One party, called V̂ , is selected at
random and assigned static public key V ; S represents V̂ ’s static private key by
ν ∈R Zq. The remaining n − 1 parties are assigned random static key pairs. Fur-
thermore, S randomly selects an integer i ∈R [1, . . . ,ns]. The i’th session created
will be called SU and SU ’s ephemeral private key will be denoted by ũ. The simu-
lation ofM’s environment proceeds as follows:

1. Send(Â, B̂): S executes Step 1 of the protocol. However, if the session being
created is SU , S deviates by setting the ephemeral public key X to be U . In
addition, if X = U or Â = V̂ , then S sets σ = ξ(XAD, B).

2. Send(B̂, Â,X): S executes Step 2 of the protocol. However, if B̂ = V̂ , then S
deviates by setting σ = ξ(XAD, B).

3. EphemeralKeyReveal(S): S responds to the query faithfully.

4. SessionKeyReveal(S): S responds to the query faithfully.

45



5. StaticKeyReveal(Â): S responds to the query faithfully, unless Â = V̂ , in
which case S aborts with failure.

6. Establish(M̂): S responds to the query faithfully.

7. H1(x̃, a): S simulates a random oracle in the usual way except if Â owns SU

and x̃ = ũ or if Â owns SV and x̃ = ṽ, in which case S aborts with failure.

8. H2(∗): S simulates a random oracle in the usual way.

9. H(σ,X, Â, B̂):

(a) If X = U , B̂ = V̂ and DDH(XAD, B, σ) = 1, then S aborts M and
outputs CDH(V ) = σV −aD.

(b) If σ 6= ξ(XAD, Y ) and either V̂ ∈ {Â, B̂} or X = U , then S obtains
τ = DDH(XAD, B, σ).

i. If τ = 1, then S returnsH
(
ξ(XAD, Y ), X, Â, B̂

)
.

ii. If τ = 0, then S simulates a random oracle in the usual way.

(c) S simulates a random oracle in the usual way.

10. Test(St): If the peer of SU is not V̂ or if St is neither SU nor the session matching
to SU , then S aborts; otherwise responds to the query faithfully.

11. M outputs a guess: S aborts with failure.

Analysis of event Tm ∧DL ∧M∗. S’s simulation ofM’s environment is perfect
except with negligible probability. The probability that M selects V̂ as SU ’s peer
and St is either SU or its matching session is at least 2

ns2
. Suppose that this is the

case, so S does not abort as in Step 10, and suppose that event Tm occurs. Without
loss of generality, let SU = (Â, V̂ , U). Since ũ is used only in SU ,Mmust obtain ũ via
an EphemeralKeyReveal query before making anH1 query that includes ũ. Under
event DL, the adversary first issues a StaticKeyReveal(Â) query before making
an H1 query that includes x̃. Since the test session is fresh, S does not abort as
described in Step 6 and 7. Under event M∗, except with negligible probability of
guessing ξ(UAD, V ), S is successful as described in Step 10(a) and does not abort
as in Step 11. Therefore if event Tm occurs, then the success probability of S is

P(S) ≥ 2
ns2

pm. (3.7)

46



Simulation in event Tm. Suppose that event Tm occurs with non-negligible prob-
ability, in which case no honest party owns a session matching to the test session
and the test session owner is also the responder. In this case S prepares n parties.
Two of these parties, denoted by Û and V̂ , are selected uniformly at random and
assigned static public keys U and V , respectively. The remaining n − 2 parties are
assigned random static key pairs. The algorithm S will use υ ∈R Zq and ν ∈R Zq,
to represent the static private keys of Û and V̂ , respectively. The simulation ofM’s
environment proceeds as follows:

1. Send(Â, B̂): S executes Step 1 of the protocol. However, if Â ∈ {Û , V̂ }, then
S sets σ = ξ(XAD, B).

2. Send(B̂, Â,X): S executes Step 2 of the protocol. However, if B̂ ∈ {Û , V̂ },
then S sets σ = ξ(XAD, B).

3. EphemeralKeyReveal(S): S responds to the query faithfully.

4. SessionKeyReveal(S): S responds to the query faithfully.

5. StaticKeyReveal(Â): S responds to the query faithfully, unless Â ∈ {Û , V̂ } in
which case S aborts with failure.

6. Establish(M̂): S responds to the query faithfully.

7. H1(∗): S simulates a random oracle in the usual way.

8. H2(∗): S simulates a random oracle in the usual way.

9. H(σ,X, Â, B̂):

(a) If {Â, B̂} = {Û , V̂ } and DDH(XAD, B, σ) = 1, then S records σ.

(b) If σ 6= ξ(XAD, B) and either Û ∈ {Â, B̂} or V̂ ∈ {Â, B̂}, then S obtains
τ = DDH(XAD, B).

i. If τ = 1, then S returnsH
(
ξ(XAD, B), X, Â, B̂

)
.

ii. If τ = 0, then S simulates a random oracle in the usual way.

(c) S simulates a random oracle in the usual way.

10. Test(St): If the communicating partners of St are not Û and V̂ , then S aborts
with failure; otherwise responds to the query faithfully.

11. M outputs a guess: S aborts with failure.

47



Analysis of event Tm ∧DL ∧M∗. The simulation ofM’s environment is perfect
except with negligible probability. The probability that Û and V̂ are the test ses-
sion’s communicating partners is at least 2

n2 . Suppose that this is indeed the case,
so S does not abort as in Step 10, and suppose that event Tm occurs. Since the test
session is fresh, and St has no matching session, then S does not abort as described
in Steps 6 and 8.

Without loss of generality, let St = (Û , V̂ , Y ), where Y denotes St’s incom-
ing ephemeral public key selected by M. Under event M∗, except with negli-
gible probability of guessing ξ(Y U D, V ), M queries H with (σ, Y, Û , V̂ ), where
DDH(Y U D, V, σ) = 1, in which case as described in Step 10(a), S obtains

σ = guvD+vy.

Without knowledge of y = logg Y , S is unable to compute CDH(U, V ). Following
the Forking Lemma [61] approach, S runsM on the same input and the same coin
flips but with carefully modified answers to theH2 queries. Note thatMmust have
queriedH2 with (Y, Â, B̂) in its first run, because otherwiseMwould be unable to
compute σ except with negligible probability. For the second run ofM, S responds
to H2(Y, Â, B̂) with a value D′ 6= D selected uniformly at random. Another way of
describing the second run is:M is rewound to the point whereM queriesH2 with
(Y, Â, B̂) and the query is answered with a random value D′ different from D. IfM
succeeds in the second run, in Step 10(a) S obtains

σ′ = guvD′+vy

and thereafter obtains

CDH(U, V ) =
(

σ

σ′

)(D−D′)
−1

.

The forking is at the expense of introducing a wider gap in the reduction. The
success probability of S, excluding negligible terms, is

P(S) ≥ 1
n2

C

h2
pm̃, (3.8)

where C is a constant arising from the Forking Lemma.

Overall analysis. Suppose that event M occurs. Combining Equations (3.6), (3.7)
and (3.8), the success probability of S is

P(S) ≥ max
{

1
n(λ)

pDL(λ),
2

n(λ)s(λ)2
pm(λ),

C

n(λ)2h2(λ)
pm̃(λ)

}
, (3.9)

48



which is non-negligible in λ.

The simulation requires S to perform group exponentiations, access the DDH
oracle, and simulate random oracles. Since q = Θ(2λ), a group exponentiation
takes time TG = O(λ) group multiplications. Assume that a DDH oracle call takes
time TDDH = O(λ). Responding to an H query takes time TH = O(λ); similarly re-
sponding toH1 andH2 queries takes time TH1(λ) and TH2(λ), respectively. Taking
the largest times from among all simulations for answeringM’s query, the running
time of S is bounded by

TS ≤ (T2G + (TDDH + TG + TH) + (TG + TH1) + TH2)TM. (3.10)

Thus, if M is polynomially bounded, then there is an algorithm S that succeeds
in solving the GDH problem in G with non-negligible probability. Furthermore S
runs in polynomial time, contradicting the GDH assumption in G. This concludes
the proof of Theorem 3.5.1. �

3.6 Concluding remarks

On the positive side, the CMQV protocol is secure in the eCK model. Moreover
it achieves the performance of the original MQV protocol, and has intuitive de-
sign principles and a relatively simple security proof. On the negative side, the
reduction argument is not tight, in particular the Forking Lemma appears to be es-
sential for the security argument. It remains to be seen if there exists a protocol that
achieves the performance of MQV and at the same time enjoys a security reduction
that is as tight as the security reduction for NAXOS.

49



Chapter 4

The UM protocol

4.1 Motivation

The Unified Model (UM) is a family of two-party Diffie-Hellman key agreement
protocols that has been standardized in ANSI X9.42 [2], ANSI X9.63 [3], and more
recently in the NIST SP800-56A [71]. The core protocol in the family is a two-pass
protocol where each party contributes a static key pair and an ephemeral key pair
which are then used to derive the secret session key. The family of protocols is
called the ‘unified model’ because there are natural variants of the core protocol
that are suitable in certain scenarios, for example in email where the receiver only
contributes a static key pair. The UM protocol is believed to possess all important
security attributes including key authentication and secrecy, resistance to unknown
key-share attacks, forward secrecy, resistance to known-session key attacks, and
resistance to leakage of ephemeral private keys, but is known to succumb to key-
compromise impersonation attacks.

This chapter shall only consider the security of the core protocol which is called
‘dhHybrid1’ when the underlying group is a DSA-type group, and ‘Full unified
model’ when the underlying group is an elliptic curve group [71]. More precisely,
the focus will be on a three-pass variant that consists of the core protocol aug-
mented with key confirmation as specified in the SP800-56A standard [71]. This
variant is worthy of study because it possesses more security attributes than the
other protocols in the unified model family and therefore is most likely to be de-
ployed in applications that wish to be compliant with SP800-56A. Henceforth for
simplicity, this protocol will be referred as the Unified Model (UM) protocol.

50



4.2 Previous work

Two previous papers [13] and [37] offered security proofs for variants of the UM
protocol. A discussion of limitations of these results follows. For the remainder of
this chapter it is assumed that parties can obtain authentic copies of each other’s
static public keys by exchanging certificates that have been issued by a trusted cer-
tifying authority (CA). Let MAC denote a message authentication code algorithm,
andH andH2 denote independent hash functions.

The basic two-pass protocol upon which the UM protocol is built, is depicted
in Figure 1.5. The communicating parties exchange static and ephemeral public
keys and thereafter compute the session key κ = H(gxy, gab) by hashing the con-
catenation of the ephemeral Diffie-Hellman shared secret σe = gxy and the static
Diffie-Hellman shared secret σs = gab. In [13] it was observed that this protocol is
insecure under known-session key attacks. The attack highlights the importance of
authenticating the exchanged ephemeral public keys. This led to Protocol 1, shown
in Figure 4.1, and analyzed by Blake-Wilson, Johnson and Menezes [13].

Â, a, A

x,X, σe = Y x

σs = Ba

κm = H2(σe, σs)

TA = MACκm(2, Â, B̂,X, Y )

X −→

←− Y, TB

TA −→

B̂, b, B

y, Y, σe = Xy

σs = Ab

κm = H2(σe, σs)

TB = MACκm(3, B̂, Â, Y,X)

κ = H(σe, σs)

Figure 4.1: Protocol 1 — the UM variant analyzed in [13].

In Protocol 1, the communicating parties also exchange key confirmation tags
TA, TB computed using the MAC key κm = H2(gxy, gab). If the tags verify, then
the parties compute the session key κ = H(gxy, gab). Protocol 1 succumbs to a KCI
attack since an adversary who learns Â’s static private key a can thereafter imper-
sonate B̂ (without knowing b) in a run of the protocol with Â. While KCI resilience
is certainly desirable in practice, it is arguably not a fundamental security require-
ment of key agreement and a key agreement protocol should not be considered ‘in-
secure’ merely because it fails to be KCI resilient. Nevertheless, Protocol 1 appears
to possess all the other desirable security attributes including key authentication
and secrecy, resistance to unknown key-share attacks, forward secrecy, resistance

51



to known-session key attacks, and resistance to leakage of ephemeral private keys.
In [13], the security model and definition developed by Bellare and Rogaway [9] for
key agreement in the symmetric-key setting was adapted to the public-key setting.
Protocol 1 was proven to meet this security definition in the random oracle model
assuming that the CDH problem in G is intractable and that the MAC scheme is
secure. However, the security model and result in [13] have the following short-
comings:

(i) The security model does not incorporate forward secrecy.

(ii) While the adversary is allowed to learn a party’s static private key and there-
after impersonate the party, the security proof does not permit the adversary
to replace that party’s key pair with a key pair of its own choosing. Hence the
security proof does not rule out ‘malicious insider’ attacks such as Kaliski’s
on-line attack [18]. (However, the security proof in [13] can be modified to
rule out malicious insider attacks by invoking the stronger GDH assump-
tion.)

(iii) The adversary is not allowed to learn any ephemeral private keys. More
generally, the adversary is not allowed to learn any session-specific secret
information (with the exception of session keys).

(iv) As observed by Rackoff (cf. [69]), a deficiency of the Bellare-Rogaway model
is that the adversary is not allowed to make any queries once it has issued
the ‘Test’ query (where it is given either a session key or a randomly selected
key).

More recently, Jeong, Katz and Lee [37] proposed and analyzed a variant of
the UM protocol depicted in Figure 4.2 whereby the ephemeral public keys and
identities of the communicating parties are included in the key derivation function
H.

Â, a, A

σs = Ba

x,X, σe = Y x

X −→

←− Y

B̂, b, B

σs = Ab

y, Y, σe = Xy

κ = H(σe, σs, Â, B̂,X, Y )

Figure 4.2: Protocol 2 — the UM variant analyzed in [37].

52



In [37], the BR security model was strengthened to incorporate weak forward
secrecy, and to allow the adversary to issue queries even after making a Test query.
Protocol 2 was proven secure in the random oracle under the CDH assumption.
However, the security model and result in [37] still have the shortcomings (ii) and
(iii) described above. The next section strengthens the security model to incorpo-
rate forward secrecy, resistance to malicious insider attacks, and leakage of session-
specific secret information.

4.3 Security model

This section presents strengthening of the CK01 model. The definition aims to
capture all essential security properties of key agreement with the exception of KCI
resilience. The new definition can also be viewed as a weakening of the eCK model
by the exclusion of KCI resilience. Exclusion of KCI resilience can mean that there
are other security properties that are captured by the eCK definition but not in the
new definition. For example, unlike the eCK definition, the new definition does
not provide any assurances if the adversary learns a party’s static private key and
her communicating partner’s ephemeral private key. However, the new definition
appears to be the ‘right’ one for capturing all the essential security properties of the
UM protocol.

The definition has been crafted specifically to allow a reductionist security proof
to be given for the UM protocol. It is not expected that the definition will be useful
to assess the security of other key agreement protocols. Nonetheless, the exercise of
devising an appropriately strong security definition and providing a reductionist
security proof for the UM protocol with respect to this definition is worthwhile
given the importance of the UM protocol.

Preliminaries. In the model there are n parties each modeled by a probabilistic
Turing machine. Each party has a static key pair together with a certificate that
binds the public key to that party. The CA does not require parties to prove pos-
session of their static private keys, but the CA verifies that the static public key of a
party belongs to G∗. Since the primary interest is to analyze the security of the UM
protocol, the model is described for three-round key agreement protocols where
the initiator Â sends B̂ an ephemeral public key X in the first round, B̂ responds
with an ephemeral public key Y and key confirmation tag TB in the second round,
and Â sends its confirmation tag TA in the third round. The session key is obtained
by combining A, B, X , Y and possibly the identifiers Â, B̂.

53



Notation. In the following, it is assumed that all communicated messages are rep-
resented as binary strings. The symbol × denotes a special element not in {0, 1}∗.
Two elements m1,m2 ∈ {0, 1}∗ ∪ {×} are said to be matched, written m1 ∼ m2, if
either m1 = × or m2 = ×, or if m1 = m2 as binary strings. Two equal-length vec-
tors over {0, 1}∗ ∪ {×} are said to be matched if their corresponding components
are matched.

Sessions. A party Â can be activated to create an instance of the protocol called a
session. A session is created via an incoming message that has one of the following
forms: (i) (Â, B̂) or (ii) (Â, B̂, Y ). If Â is activated with (Â, B̂), then Â is the session
initiator, otherwise the session responder. If Â is the session initiator, then Â creates
a separate session state where all session-specific short-lived information is stored,
and prepares an ephemeral public key X . The session is labeled active and identi-
fied via a (temporary and incomplete) session identifier S = (Â, B̂,X,×,×,×). The
outgoing message prepared by Â is (B̂, Â,X). If Â is the session responder, then Â

creates a separate session state and prepares an ephemeral public key X and key
confirmation tag TA. The session is labeled active and identified via a (temporary
and incomplete) session identifier S = (Â, B̂, Y, X, TA,×). The outgoing message is
(Â, B̂, Y, X, TA).

Since ephemeral keys are selected at random on a per-session basis, the proba-
bility that an ephemeral public key X is chosen twice by Â is negligible. Hence
session identifiers are unique except with negligible probability. For a session
(Â, B̂,CommA), Â is the session owner and B̂ is the session peer; together, Â and
B̂ are referred to as the communicating parties. Here, CommA denotes the string
that comes after Â, B̂ in the session identifier. The owner of a session associates
a label with the session to identify whether the owner is the session’s initiator or
responder.

A party Â can be activated to update an active session via an incoming mes-
sage of the form (i) (Â, B̂,X, Y, TB) or (ii) (Â, B̂, Y, X, TA, TB). If the message is
(Â, B̂,X, Y, TB), then Â first checks that it owns an active session with identi-
fier S = (Â, B̂,X,×,×,×); if not, then the message is rejected. If the session
exists, then Â prepares a key confirmation tag TA, updates the identifier to S =
(Â, B̂,X, Y, TB, TA), and completes the session by accepting a session key. The out-
going message is (B̂, Â,X, Y, TB, TA). If the incoming message is (Â, B̂, Y, X, TA,

TB), then Â first checks that it owns an active session with identifier S = (Â, B̂, Y, X,

TA,×); if not, then the message is rejected. If the session exists, then Â updates the
identifier to S = (Â, B̂, Y, X, TA, TB), and completes the session by accepting a ses-
sion key. Whenever a session S completes, all information stored in its session state

54



is erased. Note that since the session key is not short-lived, it is not considered to
be part of the session state.

Let S = (Â, B̂,CommA) be a session owned by Â. A session S∗ = (Ĉ, D̂,

CommC) is said to be matching to S if D̂ = Â, Ĉ = B̂ and CommC ∼ CommA. The
session S can have more than one matching session if CommA = (X,×,×,×). If
CommA 6= (X,×,×,×), then S can have at most one matching session (except with
negligible probability) since ephemeral keys are chosen at random on a per-session
basis.

A protocol may require parties to perform some checks on incoming messages.
For example, if Â receives the message (Â, B̂,X, Y, TB), then Â may need to verify
that Y ∈ G∗ and that TB satisfies some authentication condition. If a party is acti-
vated to create a session with an incoming message that does not meet the protocol
specifications, then that message is rejected and no session is created. If a party is
activated to update an active session with an incoming message that does not meet
the protocol specifications, then the party deletes all information specific to that
session (including the session state and the session key if it has been computed)
and aborts the session.

At any point of time a session is in exactly one of the following states: active,
completed, aborted.

Adversary. The adversary M is modeled as a probabilistic Turing machine and
controls all communications. Parties submit outgoing messages toM, who makes
decisions about their delivery. The adversary presents parties with incoming mes-
sages via Send (message), thereby controlling the activation of parties. The adver-
sary does not have immediate access to a party’s private information, however in
order to capture possible leakage of private informationM is allowed to make the
following queries:

• SessionStateReveal (S):M obtains all the information available in the session
state of S. Henceforth it is assumed thatM issues this query only if there is
some secret information in the session state of S. Since the session key is not
considered to be part of the session state,M cannot obtain a session key with
a SessionStateReveal query.

• Expire(S): If S has completed, then the session key held by S is deleted.
Henceforth it is assumed thatM issues this query only to sessions that have
completed and have not yet been expired.

55



• SessionKeyReveal (S): If S has completed and has not been expired, thenM
obtains the session key held by S. Henceforth it is assumed thatM issues this
query only to sessions that have completed and have not yet been expired.

• Corrupt (party): M gains complete control over the party and is given all the
information held by that party including its static private key, the contents of
all active-session states, and all session keys (but not session keys that were
deleted via an Expire query). In addition, M is able to select a new static
key pair for that party. Parties against whomM issued a Corrupt query are
called corrupt or adversary controlled. If a party is not corrupt, then it is said to
be honest.

Adversary’s goal. M’s goal is to distinguish the session key held by a ‘fresh’ ses-
sion from a random key. Informally, a session S is said to be fresh if M cannot
determine the session key held by S by trivial means, for example by requesting it
with a SessionKeyReveal (S) query, or by requesting it from the matching session
of S should that session exists. In order to capture forward secrecy,M is allowed
to learn the static private key of a fresh session’s owner via a Corrupt query, but
this query can be issued only after S has expired (and the session key deleted).
However, to avoid capturing KCI resilience,M cannot obtain the static private key
of a fresh session’s owner and the ephemeral private key provided by the other
communicating party (whichM could have chosen herself, or obtained via a Ses-
sionStateReveal query). Formally, fresh sessions are given in the following.

Definition 4.3.1 Let S be the identifier of a completed session, owned by party Â with peer
B̂. Let S∗ be the identifier of the matching session of S, if it exists. Define S to be fresh if
none of the following conditions hold:

1. M issued SessionKeyReveal(S).

2. M issued Corrupt(Â) before Expire(S).

3. M issued SessionStateReveal(S) and either Corrupt(Â) or Corrupt(B̂).

4. S∗ exists andM issued one of the following:

(a) SessionKeyReveal(S∗).

(b) Corrupt(B̂) before Expire(S∗).

(c) SessionStateReveal(S∗) and either Corrupt(Â) or Corrupt(B̂).

5. S∗ does not exist andM issued Corrupt(B̂) before Expire(S).

56



As usual, the adversaryM is allowed to make a special query Test (S) to a fresh
session S. In response, M is given with equal probability either the session key
held by S or a random key.Mmeets its goal if it guesses correctly whether the key
is random or not. Note thatM can continue interacting with parties after issuing
the Test query, but must ensure that the test session remains fresh throughoutM’s
experiment.

Definition 4.3.2 A key agreement protocol is secure if the following conditions hold:

1. If two honest parties complete matching sessions, then, except with negligible proba-
bility, they both compute the same session key.

2. No polynomially bounded adversary M can distinguish the session key of a fresh
session from a randomly chosen session key, with probability greater than 1

2 plus a
negligible fraction.

Definition 4.3.2 overcomes the four shortcomings listed in §4.2. Although this
new definition is not as strong as the eCK security definition, a reductionist secu-
rity proof that a protocol satisfies Definition 4.3.2 can provide meaningful practical
assurances. In particular, Definition 4.3.2 captures all elements of the CK defini-
tion, which has been accepted as a strong definition. In addition, it is stronger than
the CK definition in the following ways:

1. The SessionStateReveal query can be issued to the test session and also to its
matching session.

2. The adversary can select its own static key pair for a corrupted party, thereby
allowing the modeling of malicious insider attacks.

3. The test session does not have to be unexpired at the time when the Test
query is issued.

4. A party is allowed to execute the protocol with itself.

4.4 Protocol description

This section gives a complete description of the UM protocol, as described in SP800-
56A [71]. In the following, Λ denotes optional public information that can be in-
cluded in the key derivation function H; R is the fixed string “KC 2 U”, and I is
the fixed string “KC 2 V”; Â and B̂ are two parties with valid public-private key
pairs (A, a) and (B, b), respectively.

57



Definition 4.4.1 (UM protocol) The protocol proceeds as follows:

1. Upon activation (Â, B̂), party Â (the initiator) performs the steps:

(a) Select an ephemeral private key x ∈R [1, q − 1] and compute the ephemeral
public key X = gx.

(b) Initialize the session identifier to (Â, B̂,X,×,×,×).

(c) Send (B̂, Â,X) to B̂.

2. Upon activation (B̂, Â,X), party B̂ (the responder) performs the steps:

(a) Verify that X ∈ G∗.

(b) Select an ephemeral private key y ∈R [1, q − 1] and compute the ephemeral
public key Y = gy.

(c) Compute σe = Xy and σs = Ab. Compute (κm, κ) = H(σe, σs, Â, B̂,Λ).

(d) Destroy σe, σs and y.

(e) Compute TB = MACκm(R, B̂, Â, Y,X).

(f) Initialize the session identifier to (B̂, Â,X, Y, TB).

(g) Send (Â, B̂,X, Y, TB) to Â.

3. Upon activation (Â, B̂,X, Y, TB), Â performs the following steps:

(a) Verify that an active session with identifier (Â, B̂,X,×,×,×) exists.

(b) Verify that Y ∈ G∗.

(c) Compute σe = Y x and σs = Ba. Compute (κm, κ) = H(σe, σs, Â, B̂,Λ).

(d) Destroy σe, σs and x.

(e) Verify that TB = MACκm(R, B̂, Â, Y,X).

(f) Compute TA = MACκm(I, Â, B̂,X, Y ).

(g) Destroy κm.

(h) Send (B̂, Â,X, Y, TB, TA) to B̂.

(i) Update the session identifier to (Â, B̂,X, Y, TB, TA) and complete the session
by accepting κ as the session key.

4. Upon activation (B̂, Â,X, Y, TB, TA), B̂ performs the steps:

(a) Verify that an active session with identifier (B̂, Â,X, Y, TB,×) exists.

(b) Verify that TA = MACκm(I, Â, B̂,X, Y ).

58



(c) Destroy κm.

(d) Update the session identifier to (B̂, Â,X, Y, TB, TA) and complete the session
by accepting κ as the session key.

Henceforth, it is assumed that the adversary cannot issue a SessionStateReveal ,
Expire , SessionKeyReveal or Corrupt query while a party is executing one of the
four main steps of the protocol. That is, the adversary can only issue one of these
queries at the end of Steps 1, 2, 3 or 4. This means that a SessionStateReveal query
can yield x (at the end of Step 1) or κm (at the end of Step 2), but not y. In order to
account for possible loss of y to the adversary via a side-channel attack or the use
of a weak pseudorandom number generator, henceforth the adversary can learn
y by issuing a SessionStateReveal query at the end of Step 2 even though Step 2
stipulates that y be deleted.

4.5 Security argument

For simplicity, the case Λ = (X, Y ), where X and Y are the exchanged ephemeral
public keys, will be considered first. Furthermore, the security argument assumes
that a party does not initiate a session with itself. These restrictions will be relaxed
in §4.5.1 and §4.5.2.

Theorem 4.5.1 Suppose that G is a group where the GDH assumption holds, that the
MAC scheme is secure, and that H is modeled as a random oracle. Then the UM protocol
(Definition 4.4.1) is secure in the sense of Definition 4.3.2.

Proof: Verifying condition 1 of Definition 4.3.2 is straightforward; it remains to
verify condition 2 of Definition 4.3.2. Let λ denote the security parameter, and let
M be a polynomially (in λ) bounded UM adversary. Assume that M succeeds
in an environment with n parties, activates a party to create a session at most s
times, and terminates after time TM. Here, n and s are bounded by polynomials in
λ. Let M denote the event thatM succeeds, and suppose that Pr(M) = 1

2 + p(λ)
where p(λ) is non-negligible. Following the standard approach such an adversary
M is used to construct a polynomial-time algorithm S that, with non-negligible
probability of success, solves a CDH instance (U, V ) or breaks the MAC scheme.

Since H is a random function, M has two possible strategies for winning its
distinguishing game with probability significantly greater than 1

2 :

59



(i) induce a non-matching session S
′

to establish the same session key as the test
session S, and thereafter issue a SessionKeyReveal (S

′
) query; or

(ii) query the random oracle H with (gxy, gab, Â, B̂,X, Y ) where S = (Â, B̂,X, Y,

TB, TA) is the test session or its matching session.

Now, two sessions (Â, B̂,X, Y, TB, TA) and (B̂, Â,X, Y, T ′B, T ′A) cannot both be
initiators or responders except with negligible probability. It follows that TB = T ′B
and TA = T ′A, and so the sessions are matching. Hence, since the input to the
key derivation function includes the identities of the communicating parties and
the exchanged ephemeral public keys, non-matching completed sessions produce
different session keys except with negligible probability of H collisions. This rules
out strategy (i). Now, let H∗ denote the event that M queries the random oracle
H with (gxy, gab, Â, B̂,X, Y ) where S = (Â, B̂,X, Y, TB, TA) is the test session or its
matching session. SinceH is a random function, it follows that

Pr(M |H∗) =
1
2

where negligible terms are ignored. Hence

Pr(M) = Pr(M ∧H∗) + Pr(M |H∗) Pr(H∗)

≤ Pr(M ∧H∗) +
1
2
,

whence Pr(M ∧H∗) ≥ p(λ). We will henceforth denote the event M ∧H∗ by M∗.

Let St denote the test session selected by M, and let Sm denote its matching
session (if it exists). Consider the following complementary events:

E1. Sm exists, and M issues neither SessionStateReveal (St) nor SessionStateRe-
veal (Sm).

E2. Either Sm does not exist, or M issues SessionStateReveal (St), or M issues
SessionStateReveal (Sm).

Since Pr(M∗) is non-negligible, it must be the case that either p1(λ) = Pr(M∗ ∧
E1) or p2(λ) = Pr(M∗∧E2) is non-negligible. The events E1 and E2 are considered
separately.

The following conventions will be used in the remainder of this section: ξ :
G × G → G is a random function known only to S and such that ξ(X, Y ) = ξ(Y, X)
for all X, Y ∈ G. The algorithm S, which simulates M’s environment, will use
ξ(U,Z) to represent CDH(U,Z) in situations where S does not know logg U . Except
with negligible probability,M will not detect that ξ(U,Z) is being used instead of
CDH(U,Z).

60



Simulation in event E1. In this scenario, S establishes n parties, who are assigned
random static key pairs, and selects s1, s2 ∈R [1, . . . ,ns]. The s1’th and s2’th ses-
sions created will be called SU and SV , respectively. The adversaryM is activated
on this set of n parties and the simulation ofM’s environment proceeds as follows.

1. Send(Â, B̂): S executes Step 1 of the protocol. However, if the session being
created is the s1’th or s2’th session, then S deviates from the protocol descrip-
tion by setting the ephemeral public key X to be U or V , respectively; note
that S does not possess the corresponding ephemeral private key in this case.

2. Send(B̂, Â,X): S executes Step 2 of the protocol. However, if the session
being created is the s1’th or s2’th session, then S deviates from the protocol
description by setting the ephemeral public key Y to be U or V , respectively,
and setting σe = ξ(Y, X); note that S does not possess the corresponding
ephemeral private key in this case.

3. Send(Â, B̂,X, Y, TB): S executes Step 3 of the protocol. However, if X ∈
{U, V }, then S deviates from the protocol description by setting σe = ξ(X, Y ).

4. Send(B̂, Â,X, Y, TB, TA): S executes Step 4 of the protocol.

5. SessionStateReveal(S): S answers the query faithfully except if S ∈ {SU , SV }
in which case S aborts with failure.

6. Expire(S): S answers the query faithfully.

7. SessionKeyReveal(S): S answers the query faithfully except if S ∈ {SU , SV } in
which case S aborts with failure.

8. Corrupt(Â): If Â owns session SU or SV , and that session is not expired, then
S aborts with failure. Otherwise, S answers the query faithfully.

9. H(σe, σs, Â, B̂,X, Y ):

(a) If X ∈ {U, V } and σe 6= ξ(X, Y ), then S obtains τ = DDH(X, Y, σe).

i. If τ = 0, then S simulates a random oracle in the usual way.

ii. If τ = 1 and Y ∈ {U, V } and Y 6= X , then S aborts with success and
outputs CDH(U, V ) = σe.

iii. Otherwise, if either Y 6∈ {U, V } or Y = X , then S returnsH(ξ(X, Y ),
σs, Â, B̂,X, Y ).

(b) If Y ∈ {U, V } and σe 6= ξ(X, Y ), then S obtains τ = DDH(X, Y, σe).

i. If τ = 0, then S simulates a random oracle in the usual way.

61



ii. If τ = 1, then S returnsH(ξ(X, Y ), σs, Â, B̂,X, Y ).

(c) S simulates a random oracle in the usual way.

10. Test(S): If S 6∈ {SU , SV } or if SU and SV are non-matching, then S aborts with
failure. Otherwise, S answers the query faithfully.

Analysis of event E1 ∧M∗. S’s simulation ofM’s environment is perfect except
with negligible probability. The probability thatM selects one of SU , SV as the test
session and the other as its matching session is least 2/(ns)2. Suppose that this is
indeed the case, and suppose that event M∗ ∧ E1 occurs. Then S does not abort as
described in Steps 5 and 10. Furthermore, since the test session is fresh, S does not
abort as described in Steps 7 and 8.

Except with negligible probability of guessing ξ(U, V ), a successful M must
query H with (CDH(U, V ),CDH(X, Y ), Â, B̂,X, Y ) where {X, Y } = {U, V }, in
which case S is successful as described in Step 9(a). The probability that S is suc-
cessful is bounded by

P(S) ≥ 2
(ns)2

p1(λ), (4.1)

where negligible terms are ignored.

Event E2. Let F be the event “Sm does not exist and M does not issue Session-
StateReveal(St)”. Event E2 is further subdivided into the following complementary
events:

E2a. E2 ∧ F .

E2b. E2 ∧ F .

Let p2a(λ) = P(M∗ ∧ E2a) and p2b(λ) = P(M∗ ∧ E2b), whence p2 = p2a + p2b. If
event M∗∧E2 occurs with non-negligible probability, then either M∗∧E2a or M∗∧
E2b occurs with non-negligible probability. The events E2a and E2b are considered
separately. In both cases, S establishes n parties. Two of these parties, denoted Û

and V̂ , are randomly selected and assigned static public keys U and V , respectively.
Note that S does not know the corresponding static private keys. The other n − 2
parties are assigned random static key pairs.

62



Simulation in event E2a. The adversary M is activated on the set of n parties
and the simulation ofM’s environment proceeds as follows.

1. Send(Â, B̂): S executes Step 1 of the protocol.

2. Send(B̂, Â,X): S executes Step 2 of the protocol. However, if B̂ ∈ {Û , V̂ },
then S deviates from the protocol description by setting σ = ξ(X, Y ).

3. Send(Â, B̂,X, Y, TB): S executes Step 3 of the protocol. However, if Â ∈
{Û , V̂ }, then S deviates from the protocol description by setting σs = ξ(X, Y ).

4. Send(B̂, Â,X, Y, TB, TA): S executes Step 4 of the protocol.

5. SessionStateReveal(S): S answers the query faithfully.

6. Expire(S): S answers the query faithfully.

7. SessionKeyReveal(S): S answers the query faithfully.

8. Corrupt(Â): If Â ∈ {Û , V̂ }, then S aborts with failure. Otherwise, S answers
the query faithfully.

9. H(σe, σs, Â, B̂,X, Y ):

a If Â ∈ {Û , V̂ } and σs 6= ξ(X, Y ), then S obtains τ = DDH(A,B, σs).

i. If τ = 0, then S simulates a random oracle in the usual way.

ii. If τ = 1 and B̂ ∈ {Û , V̂ } and B̂ 6= Â, then S aborts with success and
outputs CDH(U, V ) = σs.

iii. Otherwise, if B̂ 6∈ {Û , V̂ } or B̂ = Â, then S returns H(σe, ξ(A,B),
Â, B̂,X, Y ).

(b) If B̂ ∈ {Û , V̂ } and σs 6= ξ(A,B), then S obtains τ = DDH(A,B, σs).

i. If τ = 0, then S simulates a random oracle in the usual way.

ii. If τ = 1, then S returnsH(σe, ξ(A,B), Â, B̂,X, Y ).

(c) S simulates a random oracle in the usual way.

10. Test(S): If the communicating parties of S are not Û and V̂ , then S aborts with
failure. Otherwise, S answers the query faithfully.

63



Analysis of event E2a ∧M∗. S’s simulation ofM’s environment is perfect except
with negligible probability. The probability that Û and V̂ are the communicating
parties of the test session selected byM is at least 2/n2. Suppose that this is indeed
the case, so S does not abort in Step 10, and suppose that event M∗ ∧ E2a occurs.
Now, ifM issued a SessionStateReveal(St) query, then, by definition of a fresh ses-
sion, M cannot have corrupted Û or V̂ . On the other hand, if M did not issue a
SessionStateReveal(St) query, then, by definition of event F , Sm must exist. Conse-
quently, by definition of event E2, M must have issued a SessionStateReveal(Sm)
query, and hence cannot have corrupted Û or V̂ . Hence, S does not abort as de-
scribed in Step 8.

Except with negligible probability of guessing ξ(U, V ), a successful M must
query H with (CDH(X, Y ),CDH(U, V ), Â, B̂,X, Y ) where {Â, B̂} = {Û , V̂ }, in
which case S is successful as described in Step 9(a). The probability that S is suc-
cessful is therefore bounded by

P(S) ≥ 2
n2

p2a(λ), (4.2)

where negligible terms are ignored.

Simulation in event E2b. S is given a MAC oracle with key κ̃m that is unknown
to S. S selects r ∈R [1, . . . ,ns] and activates M. The rth session created will be
called Sr. The adversaryM is activated on this set of parties and the simulation of
M’s environment proceeds as follows.

1. Send(Â, B̂): S executes Step 1 of the protocol. If the session created is the rth
session and {Â, B̂} 6= {Û , V̂ }, then S aborts with failure.

2. Send(B̂, Â,X): S executes Step 2 of the protocol. However, if B̂ ∈ {Û , V̂ },
then S deviates from the protocol description by setting σs = ξ(A,B).

If the created session is the rth session, then S deviates from the protocol
description as follows. If {Â, B̂} 6= {Û , V̂ }, then S aborts with failure. Oth-
erwise, S selects a random session key κ and sets the MAC key κm equal to
the (unknown) key κ̃m of the MAC oracle. S queries the MAC oracle with
(R, B̂, Â, Y,X) and sets TB equal to the oracle response.

3. Send(Â, B̂,X, Y, TB): S executes Step 3 of the protocol. However, if Â ∈
{Û , V̂ }, then S deviates from the protocol description by setting σs = ξ(A,B).
If Â was activated to update Sr, then S selects a random session key κ and
sets the MAC key κm equal to the (unknown) key κ̃m of the MAC oracle. S

64



queries the MAC oracle with (I, Â, B̂,X, Y ) and sets TA equal to the oracle
response.

4. Send(B̂, Â,X, Y, TB, TA): S executes Step 4 of the protocol. If B̂ was activated
to update Sr, then S completes the session without verifying the received TA.

5. SessionStateReveal(S): S answers the query faithfully. However, if S = Sr

and the owner of Sr is the session responder, then S aborts with failure.

6. Expire(S): S answers the query faithfully. However, if S = Sr and Sr does not
have a matching session, then S aborts with success and outputs as its MAC
forgery the key confirmation tag received by S (and the associated message).
If S = Sr and Sr has a matching session, then S aborts with failure.

7. SessionKeyReveal(S): S answers the query faithfully.

8. Corrupt(Â): If Â ∈ {Û , V̂ }, then S aborts with failure. Otherwise, S answers
the query faithfully.

9. H(σe, σs, Â, B̂,X, Y ):

(a) If Â ∈ {Û , V̂ } and σs 6= ξ(A,B), then S obtains τ = DDH(A,B, σs).

i. If τ = 0, then S simulates a random oracle in the usual way.

ii. If τ = 1 and B̂ ∈ {Û , V̂ } and B̂ 6= Â, then S aborts with success and
outputs CDH(U, V ) = σs.

iii. Otherwise, if B̂ 6∈ {Û , V̂ } or B̂ = Â, then S returns H(σe, ξ(A,B),
Â, B̂,X, Y ).

(b) If B̂ ∈ {Û , V̂ } and σs 6= ξ(A,B), then S obtains τ = DDH(A,B, σs).

i. If τ = 0, then S simulates a random oracle in the usual way.

ii. If τ = 1, then S returnsH(σe, ξ(A,B), Â, B̂,X, Y ).

(c) S simulates a random oracle in the usual way.

10. Test(S): If S 6= Sr or if Sr has a matching session, then S aborts with failure.
Otherwise, S answers the query faithfully.

Analysis of Event E2b∧M∗. S’s simulation ofM’s environment is perfect except
with negligible probability. The probability that the test session is the rth session,
and Û and V̂ are its communicating parties, is at least 2/(n3s). Suppose that this
is indeed the case so S does not abort in Steps 1 and 2, and suppose that event
M∗ ∧E2b occurs so S does not abort in Step 6. By definition of event F , S does not

65



abort in Steps 5 and 10. Also by definition of a fresh session,M is only allowed to
corrupt either Û or V̂ after expiring the test session. Therefore before aborting as
in Step 8, S is successful as in Step 6.

Except with negligible probability of guessing ξ(U, V ), a successful M must
query H with (CDH(X, Y ),CDH(U, V ), Â, B̂,X, Y ) where {Â, B̂} = {Û , V̂ }, in
which case S is successful as described in Step 9(a). The probability that S is suc-
cessful is bounded by

P(S) ≥ 2
n3s

p2b(λ), (4.3)

where negligible terms are ignored.

Overall analysis. Suppose event M occurs. Combining Equations 4.1, 4.2 and
4.3, for every adversaryM there is an algorithm S that solves the GDH problem or
breaks the MAC scheme with success probability P(S), where

P(S) ≥ max
{

2
(ns)2

p1(λ),
2
n2

p2a(λ),
2

n3s
p2b(λ)

}
. (4.4)

During the simulations, S performs group exponentiations and MAC compu-
tations, accesses the DDH oracle, and simulates a random oracle. Let q = Θ(2λ).
Then a group exponentiation takes time TG = O(λ) group multiplications. Assume
that a MAC computation, a DDH oracle call, and a response to an H query take
polynomial time, TMAC(λ), TDDH(λ), and TH(λ), respectively. The running time TS
of S is therefore bounded by

TS ≤ (2TG + 2TMAC + TDDH + TH) TM. (4.5)

Thus, ifM is polynomially bounded, then there is an algorithm S that succeeds
in solving the GDH problem in G or breaks the MAC scheme with non-negligible
probability. Furthermore, S runs in polynomial time contradicting the assumptions
of Theorem 4.5.1. This concludes the argument. �

4.5.1 Reflections

In the simulations of E2a and E2b it was implicitly assumed (in Step 9(a)) that Û

and V̂ are distinct parties. More precisely, if a party is allowed to initiate a session
with itself, then S may fail as M may produce CDH(U,U) or CDH(V, V ) instead
of CDH(U, V ). The case Û = V̂ can be encompassed by a reduction from the Gap
Square Problem (GSP). S’s actions are modified as follows. Given U = gu, S selects
v ∈R [1 . . . q − 1] and computes V = Uv. The output produced by S in event E1 is

66



σv−1

e . In events E2a and E2b, S’s output is σv−1

s if the communicating parties are Û

and V̂ , σs if Û is both the owner and peer of the test session, and σv−2

s if V̂ is both
the owner and peer of the test session.

4.5.2 No ephemeral public keys in the KDF

If ephemeral public keys are not included in the key derivation function (i.e., if Λ
is the empty string), then the following attack on the UM protocol can be launched
byM.

1. M induces two sessions S1 = (Â, B̂,X, Y, TB, TA) and S2 = (B̂, Â,X, Y,

TB, TA) to complete, where Â is the initiator and B̂ is the responder. Note that
(κm, κ) = H(gxy, gab, Â, B̂). During the protocol run,M learns the ephemeral
private keys x, y and the MAC key κm via SessionStateReveal queries to S1

and S2.

2. M issues Test(S1).

3. M issues Send(Â, B̂). In response, Â selects ephemeral key pair (x∗, X∗)
where X∗ = gx∗ , initiates session S = (Â, B̂,X∗,×,×,×), and sends
(B̂, Â,X∗).

4. M issues SessionStateReveal(S) to learn x∗, and computes y∗ = xy(x∗)−1,
Y ∗ = gy∗ , and the MAC tag T ∗B = MACκm(R, B̂, Â, Y ∗, X∗).

5. M issues Send(Â, B̂,X∗, Y ∗, T ∗B). Since gx∗y∗ = gxy, Â computes the same
(κm, κ) pair as she computed for session S1. Thus the tag T ∗B is valid, and Â

completes session S with session key κ.

6. M now obtains κ by issuing SessionKeyReveal(S), and thereafter correctly
answers the Test query (note that session S1 is still fresh).

The attack relies on the ability of the adversary to obtain (temporary) MAC
keys κm via a SessionStateReveal query. If MAC keys are deemed to be at risk,
then the ephemeral public keys X and Y should be included in the key derivation
function, thus thwarting attacks like the one described above. Such attacks can
also be prevented if the responder B̂ computes TA and deletes κm in Step 2 of the
protocol, and then uses the stored copy of TA to verify Â’s tag in Step 4. In this way
the attacker does not learn κm via a SessionStateReveal query. Suppose now that
the adversary is unable to obtain MAC keys. The security proof can be modified

67



for the case where the ephemeral public keys are not included in the key derivation
function. A short description of the required changes follows.

A potential problem is that the adversary M could force two non-matching
sessions to compute the same session key, issue the Test query to one session, and
learn the session key from the other session. Now, the test session completes only
after obtaining the correct key confirmation tag. Since this tag contains the identi-
fiers of the communicating parties, the exchanged ephemeral public keys, and the
string R or I identifying whether the tag was created by an initiator or responder,
M cannot fool the test session owner into completing a session by reusing a MAC
tag from a non-matching session. Since the MAC algorithm is assumed to be se-
cure, it must be the case thatM computed the MAC key itself by queryingH with
(CDH(U, V ),CDH(A,B), Â, B̂) in case E1 and with (CDH(X, Y ),CDH(U, V ), Â, B̂)
in cases E2a and E2b. To complete the proof the simulation in event E1 has to be
modified as follows: wheneverM queries H with (σe, σs, Â, B̂), S checks whether
Â or B̂ owns either of SU or SV . If so, then S uses the DDH oracle to test if
CDH(U, V ) = σe, in which case S is successful.

4.6 Concluding remarks

This chapter provided a reductionist security argument for the UM protocol with
respect to a strengthened version of the CK01 model. The reduction is not tight,
but that is perhaps unavoidable given that there can be many parties and sessions.
Furthermore, given a desired security level, it is not clear how to use the reduction
in Theorem 4.5.1 to derive concrete recommendations for the parameters of the
cryptographic ingredients.

68



Chapter 5

Combined model

5.1 Motivation

In the CK01 model, the BR model, the BJM model and the eCK models, and associ-
ated definitions, key agreement protocols are analyzed in the so-called pre-specified
peer model wherein it is assumed that a party knows the identifier of its intended
communicating peer when it commences a run of the protocol. That is, it is as-
sumed that the exchange of identifiers, and possibly also the static public keys of
the communicating parties, is handled by the application that invokes a run of the
protocol.

On the other hand, a party in the post-specified peer model for key agreement
does not know the identifier of its communicating peer at the outset, but learns the
identifier during the protocol run. In 2002, Canetti and Krawczyk [21] introduced
the post-specified peer model (also abbreviated CK02) wherein a party is activated to
establish a session key knowing only a destination address (such as the IP address
of a server) of the communicating peer, and only learns the peer’s identifier during
the execution of the protocol. According to [21], this scenario is common in prac-
tical settings where the peer’s identifier is simply unavailable at the outset, or if
one party wishes to conceal its identity from eavesdroppers or active adversaries.
The IKE protocols [31, 27] (see also [40]) are important examples of key agreement
protocols that provide the option of identity concealment.

In the remainder of this chapter the identity concealment attribute of key agree-
ment protocols will not be considered. Furthermore, ‘pre-specified peer model’ will
be shortened to ‘pre model’, and ‘post-specified peer model’ will be shortened to
‘post model’.

69



A key agreement protocol designed for one of the pre or post models is exe-
cutable in the other model if it can be run in the second model without requiring
any additional message flows (and without making any fundamental changes to
the protocol description). Any key agreement protocol designed for the post model
is executable in the pre model. Indeed, if the peer’s identifier and static public key
is not needed at the start of the protocol, then the protocol can also be executed
given the peer’s identifier. Canetti and Krawczyk observed that the Σ0 key agree-
ment protocol is secure in the post model with respect to the security definition
given in [21], but not secure in the pre model with respect to the security definition
given in [20]. Hence, even though any protocol designed for the post model can
be executed in the pre model, security in the post model of [21] does not guarantee
security in the pre model of [20]; further details are given in §5.3.3.

This chapter explores the executability and security in the post model of key
agreement protocols that have been designed for and analyzed in the pre model. Of
course any protocol designed for the pre model can be modified for the post model
by adding message flows which include the identifiers and static public keys of
the communicating parties; however such a modification does not conform to the
“executable” notion here because of the additional message flows. An example of
a key agreement protocol that is secure in the pre model but is not executable in the
post model is given. Furthermore, the HMQV protocol [41], which has been proven
to be secure in the pre model, is executable in the post model without additional
message flows but is not secure. These examples illustrate the essential differences
between the two models, and highlight the danger of running in the post model a
protocol that has only been analyzed in the pre model.

It is natural then to ask when a protocol secure in one model is executable
and secure in the other model. §5.4.1 identifies a class of modifiable key agree-
ment protocols that have been designed for the pre model but can be executed
with minimal modifications in the post model. This class includes many of the
protocols that have been proposed in the literature including station-to-station [25],
UM [71], MQV [47], Boyd-Mao-Paterson [15], HMQV [41], KEA+ [46], NAXOS [45],
CMQV [73] and Okamoto [59]. (See [16] for an extensive list of key establishment
protocols.) Such protocols have a hybrid description that combine the specification
for the pre model and the specification of the modified protocol suitable for the
post model. A combined model and associated security definition developed in this
chapter aim to simultaneously capture the security assurances (and more) of the ex-
tended Canetti-Krawczyk pre-specified peer model [45] and the Canetti-Krawczyk
post-specified peer model [21]. The combined model has the feature that if a hybrid
key agreement protocol is proven secure in that model, then its specializations are

70



guaranteed to be secure when run in the pre and post models.

5.2 The CK02 model

The Canetti-Krawczyk pre-specified peer model (CK01) is outlined in §2.2.1. The
Canetti-Krawczyk post-specified peer model (CK02) and associated security defini-
tion [21] are essentially the same as in the CK01 model, but there are two important
differences.

First, a session at Â is created via a message containing (at least) three param-
eters (Â, d̃, Ψ), where d̃ is a destination address to which outgoing messages should
be delivered. That is, party Â does not know the identifier of its peer when it starts
the session. During the course of the protocol run, Â learns the (alleged) identifier
B̂ of the communicating party; this party is referred to as Â’s peer for that session.

Second, the definition of a matching session is different. Let (Â,Ψ) be a session
that has completed with peer B̂. Then a session (B̂,Ψ) is said to be matching to
(Â,Ψ) if either (i) (B̂,Ψ) has not yet completed; or (ii) (B̂,Ψ) has completed and
its peer is Â. Condition (i) is necessary because the incomplete session (B̂,Ψ) may
not yet have determined its peer and hence could have been communicating with
(Â,Ψ), in which case exposure of (B̂,Ψ) could possibly reveal non-trivial informa-
tion about the session key held by (Â,Ψ).

5.3 CK01 and CK02 differences

This section presents three examples to illustrate the differences between the
Canetti-Krawczyk security definitions for key agreement in the pre- and post- spec-
ified peer models.

5.3.1 A CK01 to CK02 non-adaptable example

As argued above, any protocol designed for the CK02 model can be trivially
adapted for the CK01 model. However, the converse is not true.

Recall the µ-protocol from §2.3, which according to Theorem 2.3.1 is secure in
the pre model. Observe that in the µ-protocol the initiator Â cannot prepare the first
outgoing message without knowledge of the peer’s identifier B̂ and static public
key B. Hence, unless protocol µ is modified in a fundamental way, it cannot be
executed in the post-specified peer model without additional message flows to ex-
change identifiers and static public keys.

71



5.3.2 A CK01 to CK02 adaptable example

HMQV [41], which was informally described in §3.3, is an efficient two-pass Diffie-
Hellman key agreement protocol that has been proven to be secure in the pre-
specified peer model under the CDH and KEA1 assumptions and where the hash
functions employed are modeled as random functions. The security definition used
in [41] is stronger than the security definition outlined in §2.2.1 in the sense that the
adversary is granted certain additional capabilities. For example, the adversary
is allowed to register a static key pair at any time thus allowing the modeling of
attacks by malicious insiders.

Unlike protocol µ, HMQV can be readily adapted to run in the post-specified
peer model. Indeed, the initiator can prepare the first message (which essentially
consists of the ephemeral public key X) without knowledge of the peer’s identifier
B̂ or static public key Y . It is natural then to ask whether HMQV is secure in the
post model. This is also important because the version of HMQV that is being con-
sidered for standardization by the P1363 working group [42] does not mandate that
the protocol be executed in the pre model, in other words there is no requirement
that the communicating parties possess each other’s identifiers and static public
keys prior to a run of the protocol. Consequently, HMQV may in fact be executed
in the post model in applications where the responder’s identifier is not available
to the initiator at the beginning of the protocol run.

The attack described next demonstrates that HMQV, without further modifica-
tions such as the addition of message flows to exchange identifiers and static public
keys, is not secure in the post model. The attack makes the following plausible as-
sumptions: (i) the group order q is a 160-bit prime and so the outputs of H2 have
bitlength 80; (ii) the best attack on the CDH problem in G takes approximately 280

steps; (iii) there are at least 220 honest (uncorrupted) parties; (iv) a party can se-
lect its own identifier; and (v) the certification authority does not require parties to
prove knowledge of the static private keys corresponding to their static public keys
during registration. In [41] it is noted that the HMQV security proof does not de-
pend on the CA performing any proof-of-possession checks. The attack proceeds
as follows.

1. The adversaryM induces Â to create a session with a destination address d̂

controlled byM. In response, Â selects ephemeral key pair (x,X) and sends
(d̂, Â,X).

2. M intercepts (d̂, Â,X) and does the following:

72



(a) Compute S = {(Ĉ,H2(X, Ĉ)) | Ĉ is an honest party}.
(b) Select an identifier M̂ (not the same as the identifier of an honest party)

such that (B̂,H2(X, M̂)) ∈ S for some B̂.

(c) Select M = B as M̂ ’s static public key (note thatM does not know the
corresponding private key).

(d) Send (B̂, Â,X) to B̂.

3. M intercepts B̂’s reply (Â, B̂, Y ) and sends (Â, M̂ , Y ) to Â.

Party Â computes the session key κ = H(σA), where σA = (Y M E)x+Ea and E =
H2(X, M̂) and D = H2(Y, Â). Party B̂ computes the session key κ′ = H(σB), where
σB = (XAD′

)y+E′b and E′ = H2(X, B̂) and D′ = H2(Y, Â). Since E′ = E, D′ = D,
and M = B, it follows that σA = σB and hence κ′ = κ. The problem is that while
B̂ correctly believes that κ is shared with Â, party Â mistakenly believes that κ is
shared with M̂ . ThusM has successfully launched a UKS attack on HMQV in the
post model. The expected running time of the attack is about 260 (for step 2b). Since
most of the work has to be done on-line, the attack cannot be considered practical.
Nevertheless it demonstrates that HMQV does not attain an 80-bit security level in
the post model as it presumably does in the pre model.

The mechanisms of the attack were outlined in Remark 7.2 of [41]. However, the
adversary considered in [41] operates in a different setting, namely the pre model
where party Â precomputes and stores her ephemeral public keys X which are then
inadvertently leaked toM before Â uses them in a session. Three countermeasures
were proposed in [41] for foiling this attack: (i) increase the output length of H2

to 160 bits; (ii) include the identifiers Â, B̂ in the key derivation function whereby
the session key is computed as κ = H(σ, Â, B̂); and (iii) include random nonces
(which are not precomputed and stored) in the derivation of exponents E and D,
whereby the exponents are computed as E = H2(X, B̂, νA) and D = H(Y, Â, νB)
where νA and νB are Â’s and B̂’s nonces, respectively. Countermeasures (i) and
(ii) are successful in thwarting the attack described above on HMQV in the post
model. However, it can easily be seen that countermeasure (iii) does not prevent
the attack in the post model, thus demonstrating that the two attacks are indeed
different. The reason countermeasure (iii) fails is that, unlike in the pre model, the
peer’s identifier is not known to Â when Â creates the session in the post model.

5.3.3 A CK02 to CK01 example

The Σ0 protocol [21] is a simplified version of one of the IKE key agreement pro-
tocols. In the protocol description below, PRF is a pseudorandom function family,

73



MAC is a message authentication code algorithm, and sigA and sigB are the signing
algorithms for Â and B̂, respectively.

1. Party Â (the initiator) selects an ephemeral key pair (x,X), initializes the ses-
sion identifier to (Â,Ψ), and sends (d̂B, d̂A,Ψ, X). Here d̂A and d̂B are desti-
nation addresses for Â and B̂, respectively.

2. Upon receipt of (d̂B, d̂A,Ψ, X), B̂ (the responder) selects an ephemeral key
pair (y, Y ), and computes σe = Xb, κ = PRFσe(0), and κm = PRFσe(1). B̂

then destroys y and σe, initializes the session identifier to (B̂,Ψ), and sends
m1 = (d̂A, B̂,Ψ, Y, sigB(R,Ψ, X, Y ),MACκm(R,Ψ, B̂)).

3. Upon receiving m1, Â computes σe = Y a, κ = PRFσe(0), and κm = PRFσe(1).
Â then verifies the signature and MAC tag in m1, and sends m2, where

m2 = (B̂, Â,Ψ, sigA(I,Ψ, Y,X),MACκm(I,Ψ, Â)).

Finally, Â accepts the session key κ with peer B̂, and erases the session state.

4. Upon receiving m2, B̂ verifies the signature and MAC tag in m2, accepts the
session κ with peer Â, and erases the session state.

In [21], the Σ0 protocol is proven secure in the post-specified peer model pro-
vided that the DDH assumption holds in G and that the PRF, MAC, and sig prim-
itives are secure. However, the following attack described in [21] shows that Σ0 is
not secure in the pre-specified peer model.

1. Create a session (Â, B̂,Ψ) at Â.

2. Intercept Â’s outgoing message (B̂, Â,Ψ, X) and send (B̂, M̂ , Ψ, X) to B̂.

3. Intercept B̂’s response (M̂, B̂,Ψ, Y, SB, TB), where SB = sigB(R,Ψ, X, Y )
and TB = MACκm(R,Ψ, B̂), and send (Â, B̂,Ψ, Y, SB, TB) to Â.

4. The session (Â, B̂,Ψ) at Â completes and accepts κ as the session key.

5. Intercept and delete Â’s final message, and issue a SessionStateReveal query
to the session (B̂, M̂ , Ψ) thus learning κ and κm.

6. Issue the Test query to the session (Â, B̂,Ψ) and use knowledge of κ to win
the distinguishing game.

74



Notice that the attack is legitimate in the pre-specified peer model since the ex-
posed session (B̂, M̂ , Ψ) is not matching to the test session (Â, B̂,Ψ). On the other
hand, such an attack is not permitted in the post-specified peer model because in
Step 5 of the attack the session (B̂,Ψ) is still incomplete and therefore matching to
the Test session (and thus cannot be exposed). This is all rather counterintuitive
since one would expect that if a protocol is secure when the initiator does not have
a priori knowledge of the peer’s identifier, then it should remain secure when the
peer’s identifier is known at the outset.

One feature of both the pre and post models is that an exposed session does not
produce any further output. In practice, however, one might desire the assurance
that a particular session is secure even if the adversary learns some secret state
information (such as an ephemeral private key) associated with that session or its
matching session. For this reason, the security models in recent papers such as [41],
[45] and [73] permit exposed sessions to continue producing output, and further-
more allow the adversary to issue a SessionStateReveal query (or its equivalent) to
the Test session and its matching session (cf. §5.4.3). However, if the adversaryM
is equipped with these extra capabilities, then the Σ0 protocol would be insecure in
both the pre and the post models sinceM could issue SessionStateReveal query to
(Â,Ψ) after Step 1 to learn x and thereafter compute the session key. The attack is
a little more realistic than the attack described above in the pre model because the
new attack assumes that the SessionStateReveal query does not yield the session
key κ (which may be stored in secure memory).M’s actions are the following:

1. Create a session (Â,Ψ) at Â with peer destination address d̂B .

2. Intercept Â’s outgoing message (d̂B, d̂A,Ψ, X) and send (d̂B, d̂M ,Ψ, X) to B̂.

3. Intercept B̂’s response (d̂M , B̂,Ψ, Y, SB, TB), where SB = sigB(R,Ψ, X, Y )
and TB = MACκm(R,Ψ, B̂), and send (d̂A, B̂,Ψ, Y, SB, TB) to Â.

4. Intercept Â’s final message and delete it. The session (Â,Ψ) completes with
peer B̂ and session key κ.

5. Issue a SessionStateReveal query to the incomplete session (B̂,Ψ) and learn
the MAC key κm.

6. Compute SM = sigM (I,Ψ, Y,X) and TM = MACκm(I,Ψ, M̂), and send
(B̂, M̂ , Ψ, SM , TM ) to B̂.

The session (B̂,Ψ) completes with peer M̂ and session key κ. ThusM has suc-
cessfully launched a UKS attack on Σ0 in the post model. The last attack demon-

75



strates that a protocol proven secure in the post-specified peer model of [21] may
no longer be secure if exposed sessions are allowed to continue producing output.

5.4 Combining and extending CK01 and CK02

This section introduces the notion of a modifiable key agreement protocol — proto-
cols, with two or more flows, designed for the pre-specified peer model but which
can be adapted with minor changes to be executable in the post-specified peer
model. This leads to the notion of a hybrid key agreement protocol, which simul-
taneously describes a modifiable protocol and its modification suitable for the post
model. Following that the section develops a security definition that, if satisfied
by a hybrid protocol, guarantees that the associated protocols are secure in the pre
and post models.

5.4.1 Modifiable protocols

Consider a key agreement protocol Π designed for the pre model where the first
outgoing message prepared by the initiator Â is of the form (B̂, Â, RoundOne).
Then Π is said to be modifiable if RoundOne can be computed before the session
is created at Â; in particular, this means that RoundOne does not depend on B̂’s
identifier or static public key.

A modifiable protocol Π can be easily adapted for the post-specified peer model
by incorporating identity establishment into the protocol flows. The required
changes are the following. The initiator Â, who is activated to create a session
with a destination address d̂ (and without knowledge of the recipient’s identifier or
static public key), sends (d̂, Â, RoundOne) as Â’s first outgoing message. Since this
message contains the identifier Â, the responder has all the information he needs
to prepare his first outgoing message as specified by Π. The responder appends
his identifier to this outgoing message (if the message does not already contain the
identifier). After Â receives this reply, both Â and the responder can proceed with
Π without any further modifications. Notice that the modified protocol Π′ has the
same number of message flows as the original protocol Π.

As mentioned in §5.1, the class of modifiable key agreement protocols includes
many of the protocols that have been proposed in the literature. However, not all
key agreement protocols are modifiable; for example, protocol µ defined in §2.3 is
not modifiable. Furthermore, as demonstrated by the attack on HMQV in §5.3.2,

76



security of a modifiable protocol Π in the pre model does not imply security of the
modified protocol Π′ in the post model.

5.4.2 Hybrid protocols

Suppose that Π is a modifiable key agreement protocol, and Π′ its modification
suitable for the post model. The specification of Π and Π′ can be combined as
described below, resulting in a protocol Π̃ called a hybrid protocol.

Let Ã denote either an identifier Â or a destination address d̂ that can be used to
send messages to some party Â whose identifier is not known to the sender; note
that the address d̂ may not necessarily be under Â’s control. In the description of Π̃,
a session is created at initiator Â via a message containing (Â, B̃). The first outgoing
message from Â is (B̃, Â, RoundOne). The responder B̂ includes the identifiers Â

and B̂ in his response, and the remainder of the protocol description is the same as
for Π.

A hybrid protocol Π̃ can be specialized for the pre model by using an identifier
B̂ for B̃. Protocol Π̃ can also be specialized for the post model by using a destina-
tion address for B̃. An example of a hybrid protocol is given in §5.5.

5.4.3 Combined security model

The combined model and associated security definition aim to simultaneously cap-
ture the security assurances of the pre- and post-specified peer models. That is, if
a hybrid protocol Π̃ is proven secure with respect to the new definition, then its
specializations Π and Π′ are guaranteed to be secure when run in the pre and post
models, respectively. More precisely, the eCK model can be obtained by restrict-
ing the queries in the combined model, and hence, when run in the pre model,
Π satisfies the eCK definition suitably enhanced to capture attacks where an ad-
versary is able to learn ephemeral public keys of parties before they are actually
used in a protocol session. As discussed in [41], such attacks may be possible in
situations where a party precomputes ephemeral public keys in order to improve
on-line performance. Such attacks were considered by Krawczyk [41], but were not
incorporated into his security model.

When run in the post model, the modified protocol Π′ satisfies a strengthened
version of the CK02 definition, suitably enhanced to offer security assurances simi-
lar to the eCK definition (including resistance to attacks where the adversary learns

77



ephemeral private keys of the session being attacked) and to capture attacks where
the adversary learns ephemeral public keys before they are actually used.

Instead of using pre-determined session numbers Ψ to identify sessions
(cf. §2.2.1), the session identifiers will consist of the identities of the communicating
parties together with a concatenation of the messages exchanged during a protocol
run. As shown in [23], this notion of session identifier yields a security model for
key agreement that is at least as strong as other security models.

Notation and terminology. Assume that messages are represented as binary
strings. If m is a vector, then #m denotes the number of its components. Two vec-
tors m1 and m2 are matched, written m1 ∼ m2, if the first t = min{#m1,#m2} com-
ponents of the vectors are pairwise equal as binary strings. Furthermore, Â ≡ D̃ if
either D̃ = Â or if D̃ is a destination address that can be used to send messages to
Â.

Session creation. A party Â can be activated via an incoming message to cre-
ate a session. The incoming message has one of the following forms: (i) (Â, B̃) or
(ii) (Ã, B̂, In). If Â was activated with (Â, B̃), then Â is the session initiator; other-
wise Â is the session responder.

Session initiator. If Â is the session initiator, then Â creates a separate session
state where session-specific short-lived data is stored, and prepares a reply Out that
includes an ephemeral public key X . The session is labeled active and identified
via a (temporary and incomplete) session identifier S = (Â, B̃, I,Comm) where
Comm is initialized to Out . The outgoing message is (B̃, Â, Out).

Session responder. If Â is the session responder, then Â creates a separate ses-
sion state and prepares a reply Out that includes an ephemeral public key X . The
session is labeled active and identified via a (temporary and incomplete) session
identifier S = (Â, B̂,R,Comm) where Comm = (In, Out). The outgoing message is
(B̂, Â, I, In, Out).

Session update. A party Â can be activated to update a session via an incom-
ing message of the form (Â, B̂, role, Comm, In), where role ∈ {I,R}. Upon re-
ceipt of this message, Â checks that she owns an active session with identifier
S = (Â, B̂, role, Comm) or S = (Â, d̂, role, Comm) where d̂ is a destination address;

78



except with negligible probability, Â can own at most one such session. If no such
session exists, then the message is rejected. If a session S = (Â, d̂, role, Comm)
or S = (Â, B̂, role, Comm) exists, then in the former case Â updates the session
identifier to S = (Â, B̂, role, Comm); in either case, Â updates S by appending In
to Comm. If the protocol requires a response by Â, then Â prepares the required
response Out ; the outgoing message is (B̂, Â, role,Comm, Out) where role is B̂’s
role as perceived by Â, and the session identifier is updated by appending Out to
Comm. If the protocol specifies that no further messages will be received, then the
session completes and accepts a session key.

Matching sessions. Since ephemeral public keys are selected at random on a
per-session basis, session identifiers are unique except with negligible probability.
Party Â is said to be the owner of a session (Â, B̃, ∗, ∗). For a session (Â, B̂, ∗, ∗) we
call B̂ the session peer; together Â and B̂ are referred to as the communicating parties.
Let S = (Â, B̃, roleA,CommA) be a session owned by Â, where roleA ∈ {I,R}. A
session S∗ = (Ĉ, D̃, roleC ,CommC), where roleC ∈ {I,R}, is said to be matching
to S if Ĉ ≡ B̃, Â ≡ D̃, roleA 6= roleC , and CommC ∼ CommA. It can be seen that
the session S, except with negligible probability, can have more than one matching
session if and only if CommA has exactly one component, i.e., is comprised of a
single outgoing message.

Aborted sessions. A protocol may require parties to perform some checks on in-
coming messages. For example, a party may be required to perform some form of
public key validation or verify a signature. If a party is activated to create a ses-
sion with an incoming message that does not meet the protocol specifications, then
that message is rejected and no session is created. If a party is activated to update
an active session with an incoming message that does not meet the protocol spec-
ifications, then the party deletes all information specific to that session (including
the session state and the session key if it has been computed) and aborts the ses-
sion; such an abortion occurs before the session identifier can be updated. At any
point in time a session is in exactly one of the following states: active, completed,
aborted.

Adversary. The adversary M is modeled as a probabilistic Turing machine and
controls all communications. In particular, this means that Â ≡ d̂ for all parties
Â and all destination addresses d̂. Parties submit outgoing messages to M, who
makes decisions about their delivery. The adversary presents parties with incom-
ing messages via Send (message), thereby controlling the activation of parties. The

79



adversary does not have immediate access to a party’s private information, how-
ever in order to capture possible leakage of private information M is allowed to
make the following queries:

• StaticKeyReveal (Â):M obtains Â’s static private key.

• EphemeralKeyReveal (S): M obtains the ephemeral private key held by ses-
sion S. Henceforth, it is assumed that M issues this query only to sessions
that hold an ephemeral private key.

• SessionKeyReveal (S): If S has completed, thenM obtains the session key held
by S. Henceforth, it is assumed thatM issues this query only to sessions that
have completed.

• EphemeralPublicKeyReveal (Â): M obtains the ephemeral public key that Â

will use the next time a session is created within Â.

• Establish (M̂ ,M ): This query allowsM to register an identifier M̂ and a static
public key M on behalf of a party. The adversary totally controls that party,
thus permitting the modeling of attacks by malicious insiders. Parties that
were established byM using Establish are called corrupted or adversary con-
trolled. If a party is not corrupted it is said to be honest.

Adversary’s goal. To capture the indistinguishability requirement,M is allowed
to make a special query Test (S) to a ‘fresh’ session S. In response,M is given with
equal probability either the session key held by S or a random key. M meets its
goal if it guesses correctly whether the key is random or not. Note that M can
continue interacting with the parties after issuing the Test query, but must ensure
that the test session remains fresh throughoutM’s experiment.

Definition 5.4.1 Let S be the identifier of a completed session, owned by an honest party
Â with peer B̂, who is also honest. Let S∗ be the identifier of the matching session of S, if it
exists. Define S to be fresh if none of the following conditions hold:

1. M issued SessionKeyReveal(S) or SessionKeyReveal(S∗) (if S∗ exists).

2. S∗ exists andM issued one of the following:

(a) Both StaticKeyReveal(Â) and EphemeralKeyReveal(S).

(b) Both StaticKeyReveal(B̂) and EphemeralKeyReveal(S∗).

80



3. S∗ does not exist andM issued one of the following:

(a) Both StaticKeyReveal(Â) and EphemeralKeyReveal(S).

(b) StaticKeyReveal(B̂).

Definition 5.4.2 A key agreement protocol is secure if the following conditions hold:

1. If two honest parties complete matching sessions, then, except with negligible proba-
bility, they both compute the same session key.

2. No polynomially bounded adversary M can distinguish the session key of a fresh
session from a randomly chosen session key, with probability greater than 1

2 plus a
negligible fraction.

5.5 A hybrid example

The hybrid version of the NAXOS-C key agreement protocol is essentially the
NAXOS protocol (see [45]) augmented with key confirmation. NAXOS-C can be
specialized to run in either the pre or the post model. Moreover, it is secure in
the combined model of §5.4.3 provided that the GDH assumption holds in G and
that the hash functions H, H1 and H2 are modeled as random functions. Hence
NAXOS-C is secure in both the pre- and post-specified peer models.

The purpose of presenting the NAXOS-C protocol is to demonstrate that the
security definition of §5.4.3 is useful (and not too restrictive) in the sense that there
exist practical protocols that meet the definition under reasonable assumptions.
The protocol was designed to allow a straightforward (albeit tedious) reductionist
security argument, and has not been optimized. In particular, not all the inputs to
the hash functions H, H1 and H2 may be necessary for security, and in practice H2

would be implemented as a MAC algorithm (with secret key κm).

5.5.1 NAXOS-C description

In the protocol description, λ is the security parameters, andH : {0, 1}∗ → {0, 1}λ×
{0, 1}λ,H1 : {0, 1}∗ → [1, q − 1], andH2 : {0, 1}∗ → {0, 1}λ are hash functions.

Definition 5.5.1 (NAXOS-C protocol) The protocol proceeds as follows:

1. Upon activation (Â, B̃), party Â (the initiator) performs the steps:

81



(a) Select an ephemeral private key x̃ ∈R {0, 1}λ, and compute x = H1(a, x̃) and
X = gx.

(b) Destroy x.

(c) Initialize the session identifier to (Â, B̃, I, X).

(d) Send (B̃, Â,X) to B̃.

2. Upon activation (B̃, Â,X), party B̂ (the responder) performs the steps:

(a) Verify that X ∈ G∗.

(b) Select an ephemeral private key ỹ ∈R {0, 1}λ, and compute y = H1(b, ỹ) and
Y = gb.

(c) Compute σ1 = Ay, σ2 = Xb and σe = Xy.

(d) Compute (κ, κm) = H(Â, B̂, A, B, σ1, σ2, σe) and TB = H2(κm,R, B̂, Â,

Y, X).

(e) Destroy ỹ, y, σ1, σ2 and σe.

(f) Initialize the session identifier to (B̂, Â,R, X, Y, TB).

(g) Send (Â, B̂, I, X, Y, TB) to Â.

3. Upon activation (Â, B̂, I, X, Y, TB), Â performs the steps:

(a) Verify that an active session with identifier (Â, B̃, I, X) exists.

(b) Verify that Y ∈ G∗.

(c) Compute x = H1(a, x̃), σ1 = Y a, σ2 = Bx and σe = Y x.

(d) Compute (κ, κm) = H(Â, B̂, A, B, σ1, σ2, σe).

(e) Destroy x̃, x, σ1, σ2 and σe.

(f) Verify that TB = H2(κm,R, B̂, Â, Y,X).

(g) Compute TA = H2(κm, I, Â, B̂,X, Y ).

(h) Destroy κm.

(i) Send (B̂, Â,R, X, Y, TB, TA) to B̂.

(j) Update the session identifier to (Â, B̂, I, X, Y, TB, TA) and complete the ses-
sion by accepting κ as the session key.

4. Upon activation (B̂, Â,R, X, Y, TB, TA), B̂ performs the steps:

(a) Verify that an active session with identifier (B̂, Â,R, X, Y, TB) exists.

(b) Verify that TA = H2(κm, I, Â, B̂,X, Y ).

82



(c) Destroy κm.

(d) Update the session identifier to (B̂, Â,R, X, Y, TB, TA) and complete the ses-
sion by accepting κ as the session key.

If any of the verification steps fail the party erases all session specific information and aborts
the session.

Henceforth, it is assumed that the adversary cannot issue a StaticKeyReveal ,
EphemeralKeyReveal , SessionKeyReveal , EphemeralPublicKeyReveal or Estab-
lish query while a party is executing one of the four main steps of the protocol.
That is, the adversary can only issue one of these queries at the end of Steps 1, 2, 3
or 4.

5.5.2 Security arguments for NAXOS-C

The security of NAXOS-C is established in the following theorem:

Theorem 5.5.1 If H, H1 and H2 are modeled as random oracles, and G is a group where
the GDH assumption holds, then NAXOS-C is secure in the combined model.

Proof: Verifying that NAXOS-C satisfies condition 1 of Definition 5.4.2 is straight-
forward. It remains to verify that condition 2 of Definition 5.4.2 is satisfied – that
no polynomially bounded adversary can distinguish the session key of a fresh ses-
sion from a randomly chosen session key. Let λ denote the security parameter, and
letM be a polynomially (in λ) bounded adversary. The adversaryM is said to be
successful with non-negligible probability ifMwins the distinguishing game with
probability 1

2 + p(λ), where p(λ) is non-negligible. The event thatM is successful
is denoted by M . Following the standard approach such an adversaryM will be
used to construct an algorithm S that with non-negligible probability of success
solves a CDH instance (U, V ) in G.

Let the test session be S = (Â, B̂, I, X, Y, TB, TA) or S = (B̂, Â,R, X, Y, TB, TA),
and let H∗ be the event thatM queriesHwith (Â, B̂,X, Y, σ1, σ2, σe). Let H∗ be the
complement of event H∗, and let S∗ be any completed session owned by an honest
party such that S∗ 6= S and S∗ is non-matching to S. Since S∗ and S are distinct
and non-matching, it can be seen that the inputs to the key derivation function
H are different for S and S∗. And, since H is a random oracle, it follows that M

83



cannot obtain any information about the test session key from the session keys of
non-matching sessions. Hence Pr(M ∧H∗) ≤ 1

2 and

Pr(M) = Pr(M ∧H∗) + Pr(M ∧H∗) ≤ Pr(M ∧H∗) +
1
2
,

whence Pr(M ∧H∗) ≥ p(λ). Henceforth, event M ∧H∗ will be denoted by M∗.

Assume further thatM succeeds in an environment with n parties, activates at
most s sessions within a party, makes at most h, h1, h2 queries to oraclesH,H1 and
H2 respectively, and terminates after time at most TM(λ).

The following conventions will be used for the remainder of the security argu-
ment: ξ : G × G → G is a random function known only to S, such that ξ(X, Y ) =
ξ(Y, X) for all X, Y ∈ G. The algorithm S, which simulatesM’s environment, will
use ξ(X, Y ) to “represent” CDH(X, Y ) in situations where S may not know logg X

or logg Y . Except with negligible probability,Mwill not detect that ξ(X, Y ) is being
used instead of CDH(X, Y ).

Consider the following complementary events:

E1: There exists an honest party B̂ such thatM, during its execution, queriesH1

with (b, ∗) before issuing a StaticKeyReveal (B̂) query. (Note thatM does not
necessarily make a StaticKeyReveal (B̂) query.)

E2: During its execution, for every party B̂ for whichM queries H1 with (b, ∗),
M issued StaticKeyReveal (B̂) before the first (b, ∗) query toH1.

Since Pr(M∗) is non-negligible, it must be the case that either event E1 ∧M∗ or
E2 ∧M∗ occurs with non-negligible probability. These possibilities are considered
separately.

Simulation in event E1 ∧ M∗. Suppose that event E1 ∧ M∗ occurs with non-
negligible probability. S begins by establishing n parties. One of these parties,
denoted V̂ , is selected at random and assigned the static public key V , and ν ∈R

[1, q − 1] is used to represent the corresponding static private key. The remaining
parties are assigned random static key pairs. For each honest party Â, S maintains
a list of at most s ephemeral key pairs, and two markers – a party marker and an
adversary marker. The list is initially empty, and the markers initially point to the
first entry of the list. Whenever Â is activated to create a new session, S checks if
the party marker points to an empty entry. If so then S selects a new ephemeral
key pair on behalf of Â as described in Step 1 or 2 of the NAXOS-C protocol. If

84



the list entry is not empty, then S uses the ephemeral key pair in that list entry
for the newly created session. In either case the party marker is updated to point
to the next list entry, and the adversary marker is also advanced if it points to an
earlier entry. If M issues an EphemeralPublicKeyReveal query, then S selects a
new ephemeral key pair on behalf of Â as described in Step 1 or 2 of the NAXOS-C
protocol. S stores the key pair in the entry pointed to by the adversary marker,
returns the public key as the query response, and advances the adversary marker.

With this setup S activates the adversary M on this set of parties and awaits
the actions ofM. The simulation ofM’s environment proceeds as follows.

1. Send(Â, B̃): S executes Step 1 of the protocol.

2. Send(B̃, Â,X) issued to B̂: S executes Step 2 of the protocol. However, if
B̂ = V̂ , then S sets σ2 = ξ(V,X).

3. Send(Â, B̂, I, X, Y, TB): S executes Step 3 of the protocol. However, if Â = V̂ ,
then S sets σ1 = ξ(V, Y ).

4. Send(B̂, Â,R, X, Y, TB, TA): S executes Step 4 of the protocol.

5. H2(∗): S simulates a random oracle in the usual way.

6. H1(z, ∗): For every new query, S computes Z = gz . If Z = V , then S aborts
and outputs CDH(U, V ) = U z ; otherwise S simulates a random oracle in the
usual way.

7. H(Â, B̂,X, Y, σ1, σ2, σe):

(a) If Â = V̂ and σ1 6= ξ(V, Y ), then S obtains τ1 = DDH(V, Y, σ1).

i. If τ1 = 1, S returnsH(Â, B̂,X, Y, ξ(V, Y ), σ2, σe).

ii. If τ1 = 0, S simulates a random oracle in the usual way.

(b) If B̂ = V̂ and σ2 6= ξ(V,X), then S obtains τ2 = DDH(V,X, σ2).

i. If τ2 = 1, S returnsH(Â, B̂,X, Y, σ1, ξ(V,X), σe).

ii. If τ2 = 0, S simulates a random oracle in the usual way.

(c) S simulates a random oracle in the usual way.

8. EphemeralPublicKeyReveal(Â): S responds to the query faithfully.

9. EphemeralKeyReveal(S): S responds to the query faithfully.

10. SessionKeyReveal(S): S responds to the query faithfully.

85



11. StaticKeyReveal(Â): If Â = V̂ , then S aborts with failure. Otherwise S re-
sponds to the query faithfully.

12. Establish(M̂, M): S responds to the query faithfully.

13. Test(S): S responds to the query faithfully.

14. M outputs a guess γ: S aborts with failure.

Analysis of event E1 ∧M∗. S’s simulation ofM’s environment is perfect except
with negligible probability. If S assigns V to an honest party B̂ for whomM will
query H1(v, ∗) without first issuing a StaticKeyReveal (B̂) query, then S is success-
ful as described in Step 6 and abortions as in Steps 11 and 14 do not occur. Hence,
if event E1 ∧M∗ occurs with probability p1, then S is successful with probability
Pr(S) that is bounded by

Pr(S) ≥ 1
n

p1. (5.1)

Event E2∧M∗. Let Tm be the event “the test session has a matching session owned
by an honest party”. Event E2 ∧M∗ is further subdivided into the following com-
plementary events: (i) E2a = E2 ∧ M∗ ∧ Tm and (ii) E2b = E2 ∧ M∗ ∧ Tm. Let
p2 = Pr(E2 ∧M∗), p2a = Pr(E2a), and p2b = Pr(E2b). Since E2a and E2b are com-
plementary events it follows that p2 = p2a + p2b. Therefore, if event E2 ∧M∗ occurs
with non-negligible probability, then either E2a or E2b occurs with non-negligible
probability. The two events are considered separately.

Simulation in event E2a ∧M∗. Suppose that event E2a ∧M∗ occurs with non-
negligible probability. S establishes n parties that are assigned random static key
pairs. S randomly selects two parties Ĉ, D̂ and two integers i, j ∈R [1, s] subject
to the condition that (Ĉ, i) 6= (D̂, j). S selects ephemeral key pairs on behalf of
honest parties as described in the simulation in event E1 ∧M∗, with the following
exceptions. The ith ephemeral public key selected on behalf of Ĉ is chosen to be
U and the corresponding ephemeral private key is ũ ∈R {0, 1}λ; note that S does
not know u = logg U = H1(c, ũ). Similarly, the jth ephemeral public key selected
on behalf of D̂ is V and the corresponding ephemeral private key is ṽ ∈R {0, 1}λ; S
does not know v = logg V = H1(d, ṽ). The sessions that are subsequently activated
with ephemeral public keys U and V are denoted by SU and SV , respectively. The
simulation ofM’s environment proceeds as follows.

1. Send(Â, B̃): S executes Step 1 of the protocol.

86



2. Send(B̃, Â,X) issued to B̂: S executes Step 2 of the protocol. If the session
created is SU or SV , then S deviates from the protocol description by setting
σ1 = ξ(A, Y ) and σe = ξ(X, Y ) where Y ∈ {U, V } is the ephemeral public key
of the created session.

3. Send(Â, B̂, I, X, Y, TB): S executes Step 3 of the protocol. However, if X ∈
{U, V }, then S deviates by not computing x = H1(a, x̃) in Step 3(b) and by
setting σ2 = ξ(B,X) and σe = ξ(X, Y ).

4. Send(B̂, Â,R, X, Y, TB, TA): S executes Step 4 of the protocol.

5. H2(∗): S simulates a random oracle in the usual way.

6. H1(a, x̃): S simulates a random oracle in the usual way except if X̃ = ũ and
Â (the party whose static public key is ga) is the owner of SU , or if ã = ṽ and
Â is the owner of SV , in which case S aborts with failure.

7. H(Â, B̂,X, Y, σ1, σ2, σe):

(a) If {X, Y } = {U, V } and DDH(X, Y, σe) = 1, then S abortsM and out-
puts σe = CDH(U, V ).

(b) If X ∈ {U, V } and either σ 6= ξ(B,X) or σe 6= ξ(X, Y ), then S does the
following. Using the DDH oracle, set τ2 = 1 if either DDH(B,X, σ2) = 1
or σ2 = ξ(B,X); otherwise set τ1 = 0. Similarly, set τe = 1 if either
DDH(X, Y, σe) = 1 or σe = ξ(X, Y ), and τe = 0 otherwise.

i. If τ2 = 1 and τe = 1, S returnsH(Â, B̂,X, Y, σ1, ξ(B,X), ξ(X, Y ).

ii. If τ2 6= 1 or τe 6= 1, S simulates a random oracle in the usual way.

(c) If Y ∈ {U, V } and either σ1 6= ξ(A, Y ) or σe 6= ξ(X, Y ), then S does the
following. Using the DDH oracle, set τ1 = 1 if either DDH(A, Y, σ1) = 1
or σ1 = ξ(A, Y ); otherwise set τ1 = 0. Similarly, set τe = 1 if either
DDH(X, Y, σe) = 1 or σe = ξ(X, Y ), and τe = 0 otherwise.

i. If τ1 = 1 and τe = 1, S returnsH(Â, B̂,X, Y, ξ(A, Y ), σ2, ξ(X, Y )).

ii. If τ1 6= 1 or τe 6= 1, S simulates a random oracle in the usual way.

(d) S simulates a random oracle in the usual way.

8. EphemeralPublicKeyReveal(Â): S responds to the query faithfully.

9. EphemeralKeyReveal(S): S responds to the query faithfully.

10. SessionKeyReveal(S): S responds to the query faithfully.

87



11. StaticKeyReveal(Â): S responds to the query faithfully.

12. Establish(M̂, M): S responds to the query faithfully.

13. Test(S): If the ephemeral public keys used in S are not {U, V }, then S aborts
with failure. Otherwise S responds to the query faithfully.

14. M outputs a guess γ: S aborts with failure.

Analysis of event E2a ∧M∗. S’s simulation ofM’s environment is perfect except
with negligible probability. The probability thatM selects SU or SV as the test ses-
sion and the other as its matching session is at least 2/(ns)2. Suppose that this is
indeed the case (so S does not abort in Step 13), and also suppose that event E2a oc-
curs. Let Â and B̂ denote the communicating parties for the test session and, with-
out loss of generality, let Â be the test session owner and U her ephemeral public
key. Since ũ is used only in the test session, M must obtain it via an Ephemer-
alKeyReveal query before making anH1 query that includes ũ. Similarly,Mmust
obtain ṽ from the matching session via an EphemeralKeyReveal query before mak-
ing an H1 query that includes ṽ. Under event E2, the adversary first issues a Stat-
icKeyReveal query to a party before making anH1 query that includes that party’s
static private key. Since the test session is fresh,M can query for at most one value
in each of the pairs (a, ũ) and (b, ṽ); hence S does not abort as described in Step 6.
Under event M∗, except with negligible probability of guessing ξ(U, V ), S is suc-
cessful as described in Step 7(a) and does not fail as described in Step 14. The
success probability of S is bounded by

Pr(S) ≥ 2
(ns)2

p2a. (5.2)

Simulation in event E2b ∧M∗. Suppose that event E2b ∧M∗ occurs with non-
negligible probability. S establishes n parties. One of these parties, denoted V̂ ,
is selected at random and assigned the static public key V , and ν ∈R [1, q − 1]
is used to represent the corresponding static private key. The remaining parties
are assigned random static key pairs. Furthermore, S randomly selects a party Ĉ

and integer i ∈R [1, s]. S selects ephemeral key pairs on behalf of honest parties
as described in the simulation in event E1 ∧ M∗, with the following exception.
The ith ephemeral public key selected on behalf of Ĉ is chosen to be U and the
corresponding ephemeral private key is ũ ∈R {0, 1}λ; note that S does not know
u = logg U = H1(c, ũ). The session that is subsequently activated with ephemeral
public key U is denoted by SU . The simulation of M’s environment proceeds as
follows.

88



1. Send(Â, B̃): S executes Step 1 of the protocol.

2. Send(B̃, Â,X) issued to B̂: S executes Step 2 of the protocol. However, if
B̂ = V̂ , then S deviates from the protocol description by setting σ2 = ξ(V,X).
Also, if the session created is SU , then S sets σ1 = ξ(A,B) and σe = ξ(X, Y )
where Y = U is the ephemeral public key of the created session.

3. Send(Â, B̂, I, X, Y, TB): S executes Step 3 of the protocol. However, if Â = V̂ ,
then S deviates by setting σ1 = ξ(A, Y ). Also, if X = U , then S deviates by
not computing x = H1(a, ã) in Step 3(b) and sets σ2 = ξ(B,X) and σe =
ξ(X, Y ).

4. Send(B̂, Â,R, X, Y, TB, TA): S executes Step 4 of the protocol.

5. H2(∗) : S simulates a random oracle in the usual way.

6. H1(a, x̃): S simulates a random oracle in the usual way except if x̃ = ũ and
Â (the party whose static public key is ga) is the owner of SU , in which case S
aborts with failure.

7. H(Â, B̂,X, Y, σ1, σ2, σe):

(a) If Â = V̂ and σ1 6= ξ(V, Y ), S obtains τ1 = DDH(V, Y, σ1).

i. If τ1 = 1 and Y = U , S abortsM and outputs CDH(U, V ) = σ1.

ii. If τ1 = 1 and Y 6= U , S returnsH(Â, B̂,X, Y, ξ(V, Y ), σ2, σe)

iii. If τ1 = 0, S simulates a random oracle in the usual way.

(b) If B̂ = V̂ and σ2 6= ξ(V,X), S obtains τ2 = DDH(V,X, σ2).

i. If τ2 = 1 and X = U , S abortsM and outputs CDH(U, V ) = σ2.

ii. If τ2 = 1 and X 6= U , S returnsH(Â, B̂,X, Y, σ1, ξ(V,X), σe).

iii. If τ2 = 0, S simulates a random oracle in the usual way.

(c) S simulates a random oracle in the usual way.

8. EphemeralPublicKeyReveal(Â): S responds to the query faithfully.

9. EphemeralKeyReveal(S): S responds to the query faithfully.

10. SessionKeyReveal(S): S responds to the query faithfully.

11. StaticKeyReveal(Â): S responds to the query faithfully unless Â = V̂ in
which case S aborts with failure.

12. Establish(M̂, M): S responds to the query faithfully.

89



13. Test(S): If the peer of S is not V̂ or the outgoing ephemeral public key is not
U , then S aborts with failure. Otherwise S responds to the query faithfully.

14. M outputs a guess γ: S aborts with failure.

Analysis of event E2b ∧M∗. The probability that the test session has peer V̂ and
outgoing ephemeral public key U is at least 1/(n2s). Suppose that this is indeed
the case (so S does not abort in Step 13), and suppose that event E2b occurs. Let Â

be the owner of the test session SU . The experiment may fail ifM queries H1 with
(a, ũ). Since ũ is used only in the test session, M must obtain it via an Ephemer-
alKeyReveal query before making an H1 query that includes ũ. Under event E2,
the adversary first issues a StaticKeyReveal query to a party before making an H1

query that includes that party’s static private key. Since the test session is fresh,
M can query for at most one value in the pair (a, ũ); hence S does not abort as
described in Step 6. Since the test session is fresh, M is not allowed to issue a
StaticKeyReveal query to V̂ ; hence S does not abort as described in Step 11.

Now, Â receives an incoming tag TV before the test session completes. In event
Tm the test session has no matching session. Since key confirmation tags are not
repeated except with negligible probability,Mmust have computed tag TV . Since
TV is an output of a random oracle H2, M must have obtained the input κm by
queryingHwith CDH(U, V ). In this case, S is successful as described in Step 7 and
does not abort in Step 14.

The success probability of S is bounded by

Pr(S) ≥ 1
(n2s)

p2b. (5.3)

Overall analysis. Suppose that event M occurs and hence Pr(M∗) ≥ p(λ). Com-
bining the results from Equations 5.1, 5.2 and 5.3 the success probability of S is

Pr(S) ≥ max
{

1
n

p1,
2

(ns)2
p2a,

1
n2s

p2b

}
, (5.4)

which is non-negligible in λ.

The simulation requires S to perform group exponentiations, access the DDH
oracle, and simulate random oracles. Since q = Θ(2λ), a group exponentiation
takes time TG = O(λ) group multiplications and assume that a DDH oracle call
takes time TDDH = O(λ). Responding to an H query takes time TH = O(λ); simi-
larly responding to H1 and H2 queries takes time TH1(λ) and TH2(λ), respectively.

90



Taking the largest times from among all simulations for answeringM’s query, the
running time of S is bounded by

TS ≤ (5TG + 3TDDH + TH + TH1 + TH2) TM. (5.5)

Thus, if M is polynomially bounded, then there is an algorithm S that succeeds
in solving the GDH problem in G with non-negligible probability. Furthermore S
runs in polynomial time, contradicting the GDH assumption in G. This concludes
the proof of Theorem 5.5.1. �

5.6 Concluding remarks

By comparing the CK01 and the CK02 models for key agreement, this chapter
demonstrates that security in one model does not guarantee security or even ex-
ecutability in the other model. §5.4.3 presented a combined security model and
definition, that simultaneously encompasses strengthened versions of the Canetti-
Krawczyk definitions. The new definition is stronger in that it permits the ad-
versary to learn ephemeral public keys before they are used, and to learn secret
information from the session being attacked. Useful directions for future research
would be the development of an optimized protocol that satisfies the new security
definition, perhaps modified to allow for identity concealment and the extension
of the definition to capture a wider class of key agreement protocols.

91



Chapter 6

Efficiency considerations

6.1 Motivation

Until now in all the protocols and security arguments that were presented, two
important assumptions were not highlighted. Both assumptions have impact on
efficiency, which is an important key establishment attribute.

The first assumption concerns the lifetime of ephemeral public keys. Until now,
an ephemeral public key is used in only one session. However, selecting an ephem-
eral private key and computing the corresponding ephemeral public key requires
a group exponentiation. A party that is under heavy load may be inclined to reuse
an ephemeral public key across multiple sessions, to improve performance. This
is especially likely to occur if the protocol specifications do not explicitly require
ephemeral keys to be used only in one session.

The second assumption relates to public-key validation. Public key validation
is the process whereby a party verifies that an incoming message satisfies certain
properties. The main focus will be on validating that ephemeral public keys belong
to the underlying group G where the protocol is supposed to be executed. Depend-
ing on G, public-key validation may be an essentially free operation or it may be
equivalent to a full group exponentiation. Thus, in some important practical sce-
narios, public-key validation has impact on the efficiency of the key agreement
protocol.

The motives and reasons behind these assumptions are analysed in this chapter.

92



6.2 Review

Public-key validation is a sound cryptographic practice. In [49], small-subgroup at-
tacks demonstrated the importance of public-key validation in Diffie-Hellman type
key agreement protocols. In [12, 4], invalid-curve attacks were designed that are ef-
fective on some elliptic curve protocols if the receiver of a point does not verify
that the point indeed lies on the chosen elliptic curve. Kunz-Jacques et al. [43]
showed that the zero-knowledge proof proposed in [5] for proving possession of
discrete logarithms in groups of unknown order can be broken if a dishonest veri-
fier selects invalid parameters during its interaction with the prover. More recently,
Chen, Cheng and Smart [22] illustrated the importance of public-key validation in
identity-based key agreement protocols that use bilinear pairings.

6.2.1 Terminology and notation

Assume that there is an algebraic structure R (e.g., a field, ring, or group) such that:

1. The elements of R are represented in the same format as elements of G (e.g.,
bitstrings of the same length).

2. The group operation for G is defined on elements of R.

3. There is a subset G′ of R such that G′ is a cyclic group of order t, with respect
to the operation defined on G; typically γ will denote the generator of G′.

For the remainder of this chapter, t will be 2r for some small r (e.g., r = 4) or t

will be small enough so that an adversary can feasibly perform t operations (e.g.,
t < 240).

6.2.2 Small subgroup attacks

Suppose that in sDH (see Figure 1.2), neither Â nor the certification authority ver-
ify that static public keys are non-identity elements of G. Following the notation
in §6.2.1 the adversary who controls party M̂ , selects an invalid static public key
M = γ. Upon receiving M , party Â computes κ = H(σs) where σs = Ma = γa.
Suppose now that Â subsequently sends M̂ an authenticated message (mesg, TA)
where TA = MACκ(mesg). Then M iteratively computes κ′ = H(γc) and T ′A =
MACκ′(mesg) for c = 0, 1, 2, . . . until T ′A = TA, in which case c = a mod t with high
probability. By repeating this procedure for several values of t that are pairwise

93



relatively prime (and possibly different groups G′), the adversary can efficiently
determine Â’s static private key a by the Chinese Remainder Theorem.

6.2.3 DSA-type groups

A DSA-type group G is the subgroup of prime order q of the multiplicative group
G′ of a prime field Zp. The bitlength of q is substantially smaller than that of p. For
example, the bitlengths of q and p may be 160 and 1024 respectively, or 256 and
3072 respectively. Since the group parameters are typically generated by randomly
selecting a prime q, and then randomly selecting even integers k of the appropriate
bitlength until p = 1 + kq is prime, then with non-negligible probability (see [6]),
(p − 1)/q will have a smooth divisor greater than q. Hence DSA-type groups are
vulnerable to small-subgroup attacks if the recipient of a public key M does not
verify that M ∈ G \ {1}; this validation can be accomplished by checking that M

is an integer in the interval [2, p − 1] and that M q = 1. Another countermeasure
against these attacks is to select domain parameters p and q so that (p − 1)/q does
not have any small odd prime factor.

6.2.4 Safe prime groups

In these groups, G is the subgroup of prime order q of the multiplicative group
of a prime field Zp, where p = 2q + 1. If Â checks that the public key M is an
integer in the interval [2, p− 2], then, since the multiplicative group of Zp has order
2q, attacks like the ones described above can reveal at most a single bit of a. Thus
the small-subgroup attacks, described in §6.2.2, are not effective in the case of safe
prime groups.

6.2.5 Elliptic curve groups

Let E : V 2 = U3 + αU + β be an elliptic curve of prime order q defined over a
prime field Fp, and let G = E(Fp). In [12] (see also [4] and §6.8.2) it was observed
that the usual formulae for adding points in E(Fp) do not explicitly depend on the
coefficient β. Hence M could launch invalid curve attacks similar to the small-
subgroup attack described above by selecting M ∈ G′ = E′(Fp), where E′ : V 2 =
U3 +αU +β′ is an elliptic curve whose order is divisible by a relatively small prime
factor t. Party Â can easily thwart the attack by checking that M is a point in E(Fp)
(and is not the point at infinity) or employing point compression techniques.

94



6.3 MQV and HMQV review

The MQV protocols [47] are a family of authenticated Diffie-Hellman protocols
that have been widely standardized [2, 3, 35, 71]. In the two-pass and three-pass
versions of the protocol, the communicating parties Â and B̂ exchange static and
ephemeral public keys, and thereafter derive a secret key from these values. In
the one-pass version, only one party contributes an ephemeral public key. In 2005,
Krawczyk [41] presented the HMQV protocols, which are hashed variants of the
MQV protocols. The primary advantages of HMQV over MQV are better perfor-
mance and a rigorous security proof. The improved performance of HMQV is a
direct consequence of not requiring the validation of ephemeral and static public
keys — unlike with MQV where these operations are mandated. Despite the omis-
sion of public-key validation, Krawczyk was able to devise proofs that the HMQV
protocols are secure in the random oracle model assuming the intractability of the
computational Diffie-Hellman problem (and some variants thereof) in the under-
lying group.

6.3.1 HMQV description

In the followingH2 is an l-bit hash function where l = (blog2 qc+ 1)/2.

In the two-pass HMQV protocol as presented in [41], parties Â and B̂ establish
a secret session key as follows:

1. Â selects an ephemeral private key x ∈R [0, q − 1] and computes her ephem-
eral public key X = gx. Â then sends (Â, B̂,X) to B̂.

2. Upon receiving (Â, B̂,X), B̂ checks that X 6= 0. Note that 0 6∈ G. The check
X 6= 0 and Y 6= 0 makes sense in some settings, e.g., when G is a multi-
plicative subgroup of a finite field; in this case 0 is the additive identity of the
field.

Party B̂ selects an ephemeral key pair (y, Y ), and sends (B̂, Â, Y ) to Â. B̂ pro-
ceeds to compute sB = y + Eb mod q and σ = (XAD)

sB where D = H2(X, B̂)
and E = H2(Y, Â). The HMQV paper [41] does not explicitly state that sA

and sB should be computed modulo q. The attacks described later can still
be launched if sA and sB are not reduced modulo q.

3. Upon receiving (B̂, Â, Y ), Â checks that Y 6= 0, and computes sA = x +
Da mod q and σ = (Y BE)

sA where again D = H2(X, B̂) and E = H2(Y, Â).

95



4. The secret session key is κ = H(σ) = H(gsAsB ).

The messages transmitted in Steps (1) and (2) may include certificates for the
static public keys A and B, respectively. Note that HMQV does not mandate that
static and ephemeral public keys be validated, i.e., verified as being non-identity
elements of G. Krawczyk [41] provided a very extensive analysis of HMQV. He
proved that the protocol is CK01-secure under the assumptions that H and H2 are
random oracles and that the CDH problem in G is intractable. Krawczyk also
proved that the protocol is resistant to attacks when the adversary is permitted to
learn the ephemeral private keys of sessions; for this property the GDH and KEA1
assumptions in G are needed.

6.3.2 MQV description

The three essential differences between the MQV protocol (as standardized in [71])
and the HMQV protocol are the following:

1. Static and ephemeral public keys must be validated in MQV. Actually ‘em-
bedded’ validation may be performed on ephemeral public keys; the details
are not relevant to the attacks presented in this chapter.

2. In MQV, the integers D and E are derived from the group elements X and Y ,
respectively. For example, if G is a group of elliptic curve points, then D and
E are derived from the l least significant bits of the x-coordinates of X and Y

respectively.

3. The secret session key is κ = H(σ, Â, B̂). The identities Â, B̂ are included in
the derivation of κ from σ in order to thwart Kaliski’s unknown-key share
attack [18].

6.4 Reusing ephemeral keys

A party may choose to reuse ephemeral public keys in a Diffie-Hellman key agree-
ment protocol in order to reduce its computational workload or to mitigate against
denial-of-service attacks. As shown next, reusing ephemeral keys if domain pa-
rameters are not appropriately selected or public keys are not appropriately vali-
dated may affect the security of the underlying protocol.

Some Diffie-Hellman protocols implicitly or explicitly require that an ephem-
eral key pair can be used in only one session. For example, the ANSI X9.42 [2]

96



standard which specifies several Diffie-Hellman protocols states that an ephemeral
key is a “private or public key that is unique for each execution of a cryptographic
scheme. An ephemeral private key is to be destroyed as soon as computational
need for it is complete.” Other protocols do not place any restrictions on the reuse
of ephemeral keys. For example, the SIGMA protocol [40], which is the basis for
the signature-based modes of the IKE (versions 1 and 2) protocols, allows for the
reuse of an ephemeral public key “by the same party across different sessions”, and
this advice is followed in the IKEv2 standard [27, §2.12].

The primary reason for reusing ephemeral public keys is to increase efficiency
by reducing the number of costly exponentiations a party has to perform. Another
reason is to mitigate against denial-of-service (DoS) attacks. For example the JFKi
protocol [1] allows a responder to reuse an ephemeral public key, whereby the re-
sponder does not have to do any expensive computations in its first response and
only performs costly exponentiations after receiving the second message from the
session’s initiator. Since the initiator has to perform costly cryptographic opera-
tions when preparing the second message, this protocol offers the responder some
resistance to DoS attacks. The authors of [1] go on to say that it is inadvisable not
to reuse ephemeral public keys “in times of high load (or attack).”

6.4.1 S/MIME

S/MIME (version 3.1) is an IETF standard for securing email [26, 34, 33]. S/MIME
can be used to provide several security services including confidentiality, data in-
tegrity, data origin authentication, and non-repudiation, and allows the use of vari-
ous public-key cryptographic algorithms including RSA, DSA and Diffie-Hellman.
This section examines the vulnerability to small-subgroup attacks of an encryption-
only mode in S/MIME (called “Enveloped-only” in [26]) when ephemeral-static
Diffie-Hellman (as described in [64]) is used for key agreement.

The following describes the S/MIME encryption-only mode. Let G be a DSA-
type group. Let Enc and Dec denote the encryption and decryption functions for
a symmetric-key encryption scheme such as Triple-DES. Party Â encrypts an email
msg for B̂ as follows:

1. Obtain an authentic copy of B̂’s static public key B.

2. Select an ephemeral private key x ∈R [1, q − 1] and compute the ephemeral
public key X and the session key κ = H(σ) where σ = Bx = gbx.

97



3. Select at random a content-encryption key κce for the symmetric-key encryp-
tion scheme.

4. Compute a 64-bit checksum v for κce, and compute c1 = Encκ(κce | v).
More precisely, the checksum v consists of the 64 most significant bits of
SHA-1(κce), and κce | v is encrypted twice in succession using the CBC mode
of encryption [32].

5. Compute c2 = Encκce(msg).

6. Send (X, c1, c2) to B̂.

Upon receiving (X, c1, c2), party B̂ computes κ = H(Xb), decrypts c1, and veri-
fies that the checksum for the recovered key κce is correct. If so, then B̂ decrypts c2

to obtain msg.

The S/MIME standards allow a party Â to reuse an ephemeral key pair (x,X)
for an unspecified period of time. For example, [64, §2.3] (see also [33, §4.1.1])
advises that some additional data, such as a counter, be appended to σ prior to
hashing to ensure that a different session key is generated even if the ephemeral
key is being reused: “If, however, the same ephemeral sender key is used for mul-
tiple messages (e.g. it is cached as a performance optimization) then a separate
partyAInfo MUST be used for each message.” However, while [64] recommends
that the recipient B̂ validate the received public key X in order to protect against
small-subgroup attacks that aim to learn its static private key b, there is no require-
ment that the sender Â validate the recipient’s static public key B; [75, §2.1] ex-
plains that this protection is not necessary because a dishonest party B̂ who learns
x via a small-subgroup attack isn’t able to mount any interesting attacks because
“the key is ephemeral and only associated with a message that the recipient can
already decrypt...”

Observe that an interesting small-subgroup attack can be mounted in the situ-
ation where Â reuses (x,X) to encrypt different messages to more than one party.
A dishonest party M̂ chooses its static public key M = γ to be an element of small
order t in Z∗p. Upon receiving (X, c1, c2), M̂ iteratively computes κ′ = H(γc) and
decrypts c1 using κ′ for c = 0, 1, 2, . . . until the checksum verifies. Party M̂ then
learns that c = x mod t, and can repeat this procedure for pairwise relatively prime
t to recover x. Hereafter, M̂ is able to decrypt messages that Â encrypts using x

for other (honest) parties.

As mentioned in §6.2.3 such attacks can be thwarted by validating static public
keys, or by selecting DSA parameters p, q so that (p− 1)/q does not have any small
odd prime factors.

98



6.4.2 HMQV

The HMQV security proof assumes that ephemeral keys are used only once, and
that ephemeral private keys are securely destroyed after they have been used.
However, in practice it may be tempting (in the absence of explicit warnings) for an
implementer to allow for the reuse of ephemeral public keys in order to improve
performance. If party Â decides to reuse an ephemeral key pair (x,X), then an
adversaryM who controls party M̂ may be able to mount a devastating attack —
one that reveals Â’s static private key a.

The attack assumes DSA-type groups where (p−1)/q has several small (e.g. less
than 240) pairwise relatively prime factors whose product is greater than q; let t be
one such factor. The adversary obtains a certificate for M̂ ’s valid static public key
M = gm. Upon receiving (A,X) from Â, the attacker selects an ephemeral public
key Z ∈ G′ of order t, and sends (M,Z) to Â. The public keys M and Z satisfy the
HMQV checks, so Â computes σ = (ZM E)s and κ = H(σ) where s = x+Da mod q,
D = H2(X, M̂), and E = H2(Z, Â). Suppose now that Â sends M̂ an authenticated
message (msg, TA = MACκ(msg)). Note that

σ = (ZM E)s = ZsM Es = Zs(gs)Em = Zs(XAD)Em.

Hence M iteratively computes κ′ = H(Zc(XAD)Em) and T ′A = MACκ′(msg)
for c = 0, 1, 2, . . . until T ′A = TA in which case c = s mod t. After repeating this
procedure for several pairwise relatively prime orders t, M̂ can determine s by the
Chinese Remainder Theorem.

The adversary now repeats the attack using a different identifier M̂ ′ (or perhaps
by colluding with a third party Ĉ). Consequently adversary learns s′ = x+D′a mod
q, where D′ = H2(X, M̂ ′). Since D′ 6= D with very high probability, the adversary
can then compute a = (s− s′)(D − D′)−1 mod q.

The attack is possible because Â is not required to validate public keys. Omis-
sion of validation is intentional in HMQV in order to improve performance — the
only checks required on B and Y are that they belong to G′ \ {1}. However, the at-
tack cannot be mounted on the version of HMQV as described in [42], since that ver-
sion of the protocol assumes that ephemeral public keys are never reused. Rather,
the attack highlights the danger of reusing ephemeral public keys in a key agree-
ment protocol for which the security analysis assumed that ephemeral public keys
are never reused.

99



6.4.3 Standards’ requirements

As mentioned in §6.4, the IKEv2 protocol [27] allows for the reuse of ephemeral
private keys. However, the protocol is immune to the small-subgroup attack de-
scribed in §6.4.1 because IKEv2 requires the use of safe prime groups [66]. More
recently, elliptic curve groups have been proposed for IKE and IKEv2 [30, 17]. To
prevent invalid-curve attacks analogous to the small-subgroup attack described in
§6.4.1, a sender who reuses an ephemeral key pair to encrypt different messages
for more than one party should validate the recipients’ static public keys.

The recent NIST SP800-56A [71] standard for key agreement explicitly disal-
lows the reuse of ephemeral keys with one exception — a sender may reuse an
ephemeral key if the resulting session key is used to transport the same keying ma-
terial, and if all these transactions occur “simultaneously” (or within a short period
of time). Since SP 800-56A mandates that all public keys be validated, this reuse of
ephemeral public keys appears to be sound. It would be a useful exercise to for-
mally verify the belief that reusing ephemeral keys as allowed in SP800-56A does
not introduce any security weaknesses.

6.5 On public-key validation

Menezes [52] identified some flaws in the HMQV security proofs and presented
small-subgroup attacks on the protocols. The attacks exploit the omission of val-
idation for both ephemeral and static public keys, and allow an adversary to re-
cover the victim’s static private key. The attacks on the one-pass protocol are the
most realistic, while the attacks on the two-pass and three-pass protocols are harder
to mount in practice because the adversary needs to learn some of the victim’s
ephemeral private keys.

Subsequently, §6.6–§6.11 further investigate the effects of omitting public-key
validation in HMQV and MQV, by focusing on the two-pass HMQV protocol
(called the HMQV protocol from here on), which is the core member of the HMQV
family. §6.7.3 identifies a subtle flaw in the HMQV security proof which leads
to an attack that does not require knowledge of ephemeral private keys, thereby
contradicting the claim made in [41] that the HMQV protocol (without public-key
validation) is provably secure if the adversary never learns any ephemeral private
keys. The vulnerability of HMQV and MQV if only static public keys are vali-
dated, or if only ephemeral public keys are validated are considered separately.
These hypothetical scenarios are worth investigating because the reasons for omit-

100



ting public-key validation can be different for ephemeral and static keys — vali-
dation of ephemeral public keys may be omitted for performance reasons, while
validation of static public keys may be omitted because the certification authority
may not be configured to perform such tests [41].

Many of the attacks described later cannot be mounted in realistic settings. For
example, the aforementioned attack on HMQV that does not require knowledge of
ephemeral private keys is described in certain underlying groups that have never
been proposed for practical use. Moreover, this attack fails if the underlying group
is a DSA-like group or a prime-order subgroup of an elliptic curve group as pro-
posed for standardization in [42]. The attacks based on validation omission do not
necessarily imply that (fully) validated public keys are a must in all Diffie-Hellman
key agreement protocols. For example, the version of HMQV proposed in [42]
only requires that a few simple and efficient checks be performed on static and
ephemeral public keys. Moreover, even in the situation where one is concerned
that ephemeral private keys might be leaked, [42] only requires that ephemeral
and static public keys be jointly validated, thus saving a potentially expensive val-
idation step (cf. §6.10).

6.6 Validation and ephemeral private-key leakage

The following attack on HMQV was presented in [52]. The attack exploits the omis-
sion of public-key validation for ephemeral and static public keys, and also the
ability of the adversary to learn the victim’s ephemeral private keys.

Under the conditions in §6.2.1 the attack proceeds as follows. The adversaryM,
who controls M̂ , chooses an element γ ∈ G′ of order t = 2r, selects m, z ∈ [1, t− 1],
computes M = γm and Z = γz , and sends (M̂, B̂, Z) to B̂. While B̂ is computing
the session key κ = H((ZM D)

sB ), the adversary learns B̂’s ephemeral private key
y. Let β = ZM D = γz+Dm, so κ = H(βsB ). The adversary then learns the session
key κ. Suppose, for example, that B̂ sends Â an authenticated message (mesg, TB =
MACκ(mesg)). Then M can learn κ by computing T ′B = MACκ′(mesg) where
κ′ = H(βc) for c = 0, 1, 2, . . . , t− 1 until T ′B = TB , in which case M̂ has determined
sB mod t. After repeating this procedure a few times, M̂ can use the Leadbitter-
Smart lattice attack [48] to find the l most significant bits of b. The remaining l bits of
b can thereafter be determined in O(q1/4) time using Pollard’s lambda method [63].

101



6.7 Validation and no ephemeral private-key leakage

The adversary in the attack of §6.6 requires knowledge of the victim’s ephemeral
private keys. While resistance to ephemeral private key leakage is a desirable at-
tribute of a key establishment protocol — in [41] resistance of Diffie-Hellman pro-
tocols to damage from the disclosure of ephemeral private keys is described as a
‘prime security concern’ — it is arguably not a fundamental security requirement.
In [41] it is claimed that the HMQV protocol is provably secure if the adversary does
not learn any ephemeral private keys. The following subsection presents an attack
refuting that claim.

6.7.1 A new attack

Extending the terminology from §6.2.1, suppose that the CDH problem in G is
intractable and that R is a ring such that:

1. The elements of R are represented in the same format as elements of G (e.g.,
bitstrings of the same length).

2. The multiplication operation for R is defined in the same way as the oper-
ation for G. In particular, G is a subgroup of the group of units U(R) of
R.

3. There exists an element Z ∈ R, Z 6= 0, such that Z2 = 0 (where “0” denotes
the additive identity element in R).

The new attack on HMQV assumes that parties do not validate ephemeral pub-
lic keys. The adversaryM intercepts the message (Â, B̂,X) sent by Â and replaces
it with (Â, B̂, Z). Similarly, M intercepts B̂’s response (B̂, Â, Y ) and forwards
(B̂, Â, Z) to Â. If R is commutative, then, assuming that sA ≥ 2 and sB ≥ 2, it
is easy to see that both Â and B̂ compute the session key κ = H(0). Of course,M
can also compute this key.

If R is not commutative, then the value of the session key depends on the par-
ticular exponentiation method used by the parties. Suppose that Â determines the
session key by first calculating tA = esA mod q and then using simultaneous mul-
tiple exponentiation [55, Algorithm 14.88] to compute σ = ZsABtA and κ = H(σ).
This algorithm first computes ZB and initializes an accumulator to 1. It then re-
peatedly examines the bits of sA and tA from left to right. During each iteration,
either 1, Z, B or ZB is multiplied into the accumulator which is then squared.

102



Now, if the most significant bits of sA and tA are 1 and 0, respectively, then the
accumulator takes on the values 1, Z, Z2, . . .. Hence Â computes σ = 0. Similarly,
B̂ may compute σ = 0, in which caseM also learns the session key κ = H(0).

6.7.2 Supporting examples

The following two examples are of groups that satisfy the conditions of §6.7.1.
These examples do not have any immediate practical relevance since such groups
are not being deployed in practice. Nonetheless, they serve to refute the claim
made in [41] that HMQV is provably secure regardless of the representation used
for the elements of the G (subject to the constraint that the CDH problem in G be
intractable).

A commutative example. Let p be a 1024-bit prime such that p − 1 has a 160-bit
prime divisor q. Consider the commutative ring R = Zp2 . Then U(R) is cyclic and
#U(R) = p(p−1). Let G be the order-q cyclic subgroup of U(R). The CDH problem
in G is believed to be intractable. The element Z = p ∈ Zp2 satisfies Z 6= 0 and
Z2 = 0.

A non-commutative example. Again, let p be a 1024-bit prime such that p−1 has
a 160-bit prime divisor q. Consider the non-commutative ring R of 2 × 2 matrices
over Fp. Then #U(R) = (p2 − 1)(p2 − p). Let g ∈ U(R) be an element of order q,
and let G = 〈g〉. The CDH problem in G is equivalent to the CDH problem in the
order-q subgroup of F∗p (see [56]) and is therefore believed to be intractable. The
element

Z =

[
0 0
1 0

]
satisfies Z 6= 0 and Z2 = 0.

6.7.3 Flaw in the HMQV proof

The HMQV security proof in [41] has two main steps. First, an ‘exponential
challenge-response’ signature scheme XCR is defined and proven secure in the ran-
dom oracle model under the assumption that the CDH problem in G is intractable.
Second, the security of XCR (actually a ‘dual’ version of XCR) is proven to imply
the security of HMQV.

103



In the XCR signature scheme, a verifier Â selects x ∈R [0, q − 1] and sends
the challenge X = gx and a message m to the signer B̂. B̂ responds by selecting
y ∈R [0, q − 1] and sending the signature (Y = gb, σ = XsB ) to Â where sB =
y+Eb mod q, E = H2(Y, m), and b, B is B̂’s static key pair. The signature is accepted
by Â provided that Y 6= 0 and σ = (Y BE)x. XCR signatures are different from
ordinary digital signatures — Â cannot convince a third party that B̂ generated a
signature (Y, σ) for message m and challenge X because Â could have generated
this signature herself.

The XCR security proof in [41] uses the forking lemma of Pointcheval and
Stern [62]. The proof hypothesizes the existence of a forger who, on input B,X0 ∈R

G and a signing oracle for B̂, produces a message m0 and a valid signature (Y0, σ)
for m0, so that Y0 6= 0 and σ = (Y0B

E)a0 where E = H2(Y0,m0) and X0 = ga0 . There
is also the requirement that (m0, Y0) did not appear in any of B̂’s responses to the
forger’s signature queries. The XCR security definition in [41] incorrectly states
that the forger’s output (m0, Y0, σ) should satisfy Y0 6= 0 and σ = Xy0+Eb

0 where
Y = gy0 . The latter condition is not equivalent to the condition σ = (Y0B

E)a0 in the
case where Y0 6∈ G — indeed y0 is not even defined when Y0 6∈ G. Now, in order to
compute CDH(B,X0), the forger is run twice with input B,X0. The forger’s hash
function and signature queries are suitably answered so that the two invocations
of the forger eventually produce valid forgeries (m0, Y0, σ) and (m0, Y0, σ

′) where
E = H2(Y0,m0), E′ = H′2(Y0,m0), and E 6≡ E′ (mod q). To conclude the argument,
one notes that

σ

σ′
=

(Y0B
E)x0

(Y0BE′
)x0

= (Bx0)E−E′
(6.1)

whence CDH(B,X0) = (σ/σ′)(E−E′)−1
can be efficiently computed.

The flaw in this argument is the assumption that the Y0 terms in (6.1) can be
cancelled under the sole condition that Y0 6= 0. While the cancellation in (6.1) is
valid if Y0 ∈ G (which is the case if Y0 has been validated), in general one needs
to make additional assumptions including that Y0 is invertible. Thus, since the
description of XCR does not mandate that the verifier validate Y , the XCR security
proof in [41] is incorrect.

This flaw in the XCR security proof accounts for the following attack on XCR.
Let R and Z be as defined in §6.7.1, and suppose for the sake of concreteness that
R is commutative. A forger can respond to Â’s challenge (X, m) with the signature
(Y = Z, σ = 0). The signature is accepted by Â since Z 6= 0 and (ZBE)x = 0. This
attack on XCR in turn explains why the attack described in §6.7.1 can be launched
on HMQV.

104



6.8 No static public-key validation

Consider the hypothetical situation where ephemeral public keys are validated but
static public keys are not validated. As mentioned, this situation is worth inves-
tigating because validation for static public keys may be omitted if a certification
authority is not configured to perform such tests. The attacks can be mounted in
the realistic setting where G is a DSA-type group or an elliptic curve group.

6.8.1 In DSA-type groups

Suppose that G is the order-q subgroup of F∗p, and that t = 2r is a divisor of (p−1)/q.
Let γ ∈ F∗p be an element of order t. Using the notation introduced in §6.2.1, R = Fp

and G′ = 〈γ〉.

The adversary M, who controls M̂ , selects a valid Z ∈ G, computes D =
H2(Z, B̂) mod q and M = γZ−D−1 mod q. The adversary certifies M as M̂ ’s (invalid)
static public key and sends Z to B̂ who computes β = ZM D = γD and κ = H(βsB ).
As in the attack described in §6.6,M learns y, κ, and sB mod t; repeating this pro-
cedure yields half the bits of b. The remaining bits of b can thereafter be determined
in O(q1/4) time using Pollard’s lambda method [63].

6.8.2 In elliptic curve groups

Suppose that G = E(Fp) where E : V 2 = U3 + αU + β is an elliptic curve of prime
order defined over the prime field Fp. Let P1 = (u1, v1) and P2 = (u2, v2) be two
finite points in E(Fp) with P1 6= −P2, and let P3 = (u3, v3) = P1 + P2. The usual
formulae for computing P3 are:

u3 = λ2 − u1 − u2, (6.2)

v3 = λ(u1 − u3)− v1, (6.3)

where

λ =
v2 − v1

u2 − u1
or λ =

3u2
1 + α

2v1
,

depending on whether P1 6= P2 or P1 = P2. Note that the formulae do not (explic-
itly) depend on the coefficient β.

The adversaryM’s goal is to select two points M,Z ∈ Fp × Fp such that (i) Z is
valid, i.e., Z ∈ E(Fp), Z 6= ∞; and (ii) T = Z + DM is a point of order 16 on some
curve E′ : V 2 = U3 + αU + β′ defined over Fp, where D = H2(Z, B̂) and Z + DM

105



is computed using the formulae for E(Fp). Using the notation introduced in §6.6,
R = E′(Fp), G′ = 〈T 〉, and t = 16. The adversary then certifies M as the (invalid)
static public key M̂ and sends Z to B̂, who computes κ = H(sBT ). As in the attack
described in §6.6,M learns y, κ, and sB mod t; repeating this procedure yields half
the bits of b. The remaining bits of b can thereafter be determined in O(q1/4) time
using Pollard’s lambda method [63].

The adversaryM can proceed to determine M and Z as follows:M first selects
an arbitrary finite point Z = (u2, v2) ∈ E(Fp) such that D = H2(Z, B̂) is odd. Now
let M = (z, 0), where z ∈ Fp is an indeterminate whose value will be specified later.
Since D is odd, application of the group law for E yields DM = M . The coordinates
(u3, v3) of T = Z + DM are then derived using (6.2) and (6.3):

u3 =
(

v2

u2 − z

)2

− z − u2 and v3 =
v2

u2 − z
(z − u3). (6.4)

Define
β′ = v2

3 − u3
3 − αu3, (6.5)

so that T = (u3, v3) is an Fp-point on the elliptic curve

E′ : V 2 = U3 + αU + β′. (6.6)

The adversary can use division polynomials to select z ∈ Fp so that T has order 16.
The following result is well known (e.g., see [67]).

Theorem 6.8.1 Consider the division polynomials Ψk(U, V ) ∈ Fp[U, V ] associated with
an elliptic curve E/Fp : V 2 = U3 + αU + β and defined recursively as follows:

Ψ1(U, V ) = 1

Ψ2(U, V ) = 2V

Ψ3(U, V ) = 3U4 + 6αU2 + 12βU − α2

Ψ4(U, V ) = 4V (U6 + 5αU4 + 20βU3 − 5α2U2 − 4αβU − 8β2 − α3)

Ψ2k+1(U, V ) = Ψk+2Ψ3
k −Ψ3

k+1Ψk−1 for k ≥ 2

Ψ2k(U, V ) = Ψk(Ψk+2Ψ2
k−1 −Ψk−2Ψ2

k+1)/2V for k ≥ 3.

Let Ψ′
k be the polynomial obtained by repeatedly replacing occurrences of V 2 in Ψk by

U3 + αU + β, and define

fk =

{
Ψ′

k(U, V ), if k is odd,

Ψ′
k(U, V )/V, if k is even.

Then in fact fk ∈ Fp[U ]. Moreover, if P = (u, v) ∈ E(Fp) such that 2P 6= ∞, then
kP =∞ if and only if fk(u) = 0.

106



It follows from Theorem 6.8.1 that the roots of the polynomial

g(U) =
f16(U)
f8(U)

are precisely the U -coordinates of points of order 16 in E(Fp), and hence deg(g) =
96.

Now to determine T , the adversary computes h(z) = g(u3), where g(U ) is asso-
ciated with E′ : V 2 = U3 + αU + β′, and where u3 and β′ are defined in (6.4) and
(6.5). It can be seen that h(z) = h1(z)/h2(z), where h1, h2 ∈ Fp[z] and deg(h1) = 288.
More generally, if t = 2r, then deg(g) = 3 ·22r−3 and deg(h1) = 9 ·22r−3. If the poly-
nomial h1 has a root z in Fp, then the associated point T is guaranteed to have order
16 in E′(Fp). Since Z can be chosen uniformly at random from E(Fp), it is reason-
able to make the heuristic assumption that h1 is a “random” degree-288 polynomial
over Fp. The following result ensures that there is a very good chance that h1 will
indeed have a root in Fp. The result is well known (e.g., see [39, §4.6.2, Excercise 1]).
The proof is included for the sake of completeness.

Theorem 6.8.2 For p � n ≥ 10, the proportion of degree-n polynomials over Fp that
have at least one root in Fp is approximately (1− 1

e ) ≈ 0.632.

Proof: It suffices to consider monic polynomials over Fp.

The generating function for the number of monic polynomials over Fp with
respect to degree is

Φ(x) =
∑
i≥0

pixi =
1

1− px
. (6.7)

Let L(n, p) denote the number of degree-n monic irreducible polynomials over Fp.
Since every monic polynomial can be written as a product of monic irreducible
polynomials, the generating function Φ(x) can be written as

Φ(x) =
∏
i≥1

(
1

1− xi

)L(i,p)

. (6.8)

Now, the generating function for monic polynomials with no linear factors (i.e., no
roots in Fp) is

Φ̃(x) =
∏
i≥2

(
1

1− xi

)L(i,p)

. (6.9)

Multiplying (6.8) by (1− x)L(1,p) = (1− x)p yields

Φ̃(x) =
(1− x)p

1− px
. (6.10)

107



Letting [·] denote the coefficient operator, it follows from (6.10) that the number
R(n, p) of monic polynomials of degree n over Fp that have at least one root in Fp

is

R(n, p) = pn − [xn]Φ̃(x) = pn −
n∑

i=0

(
p

i

)
(−1)ipn−i.

Therefore, for p� n ≥ 10

R(n, p) ≈ pn
n∑

i=1

(−1)i−1

i!
≈ pn

∑
i≥1

(−1)i−1

i!
= pn

(
1− 1

e

)
,

which completes the argument. �

Example. Determination of M , Z, T and E′: Consider the NIST-recommended
elliptic curve [29] defined by the equation E : V 2 = U3 − 3U + β over Fp, where
p = 2192 − 264 − 1 and

β = 2455155546008943817740293915197451784769108058161191238065.

Suppose thatM selects Z

Z = (602046282375688656758213480587526111916698976636884684818,

174050332293622031404857552280219410364023488927386650641)

in E(Fp), and

M = (2664590514587922359853612565516270937783866981812798250851, 0).

Then the point T = Z + M computed using the group law for E(Fp) is

T = (5350077178842604929587851454217201721791103389533004256989,

4170329249603673452251890924513609385018269372344921771517).

T is a point of order 16 on E′ : y2 = x3 − 3x + β′, where

β′ = 2271835836669632292423953498680460143165540922751246538627.

6.9 No ephemeral public-key validation

Consider the hypothetical situation where static public keys are validated but
ephemeral public keys are not validated. No attacks on HMQV are known in the
case where the underlying group G is a DSA-type group or an elliptic curve group.

108



In particular, it is not clear how to extend the attacks described in §6.8.1 and §6.8.2
to this setting. The difficulty is in part because of the complicated relationship be-
tween A and D = H2(X, B̂) whereby D is not determined until X has been fixed.

However, the attacks similar to ones described in §6.8.1 and §6.8.2 can be
launched on MQV if ephemeral public keys are not validated. Suppose that G =
E(Fp) where E/Fp : V 2 = U3+αU+β is an elliptic curve of prime order. The adver-
saryM, who wishes to impersonate Â to B̂, selects u1 ∈R Fp and sets Z = (u1, z)
where z is an indeterminate. Since in MQV the exponent D depends only on u1,
M can then compute M = DA, where A is Â’s (valid) static public key. Using the
method of §6.8.2,M can use the t-th division polynomial (for some small t) to de-
termine z, β′ ∈ Fp so that T = Z + M has order t on E′ : V 2 = U3 + αU + β′. The
adversary sends Z to B̂ who computes the session key κ = H(sBT, Â, B̂). Now
M can guess the session key with non-negligible success probability 1

t . Alterna-
tively, if M can learn B̂’s ephemeral private key y, then M can determine B̂’s
static private key b as in §6.6.

6.10 Partial validation

It may be possible to circumvent the attacks described in the preceding sections
without performing (full) public-key validation on static and ephemeral public
keys. For example, consider the version of HMQV that has recently been proposed
for standardization by the IEEE 1363 standards group [42]. This proposal specifies
HMQV in the concrete setting of a DSA-type group G. The only checks required
on ephemeral and static public keys is that they be integers in the interval [2, p−1].
In [42] it is claimed that this instantiation of HMQV is provably secure (under the
assumptions that CDH in G is intractable, and that the employed hash functions are
random functions) as long as ephemeral private keys are never leaked. Moreover,
in order to resist attacks that may be mounted in the face of ephemeral private key
leakage, the recipient of an ephemeral key X and static key A only needs to ver-
ify that T q = 1 and T 6= 1 where T = XAD. Such a check is more efficient that
separately verifying that Aq = 1 and Xq = 1. Again, [42] claims that this version
of HMQV is provably secure even if the adversary is able to learn some ephemeral
private keys.

109



6.11 Almost validation

A public key X is said to have been almost validated if it has been verified that X ∈ G
but not necessarily that X 6= 1. Protocol descriptions sometimes inadvertently omit
the condition X 6= 1 (see ‘ G-tests’ in [41]). Performing almost validation instead of
full validation of public keys may lead to new vulnerabilities. An example of this
likelihood follows.

In the one-pass HMQV protocol [41], only the initiator contributes an ephem-
eral public key. The initiator Â sends (Â, B̂,X) to B̂ and computes the session key
κ = H(BsA) where sA = x+Da mod q and D = H2(X, Â, B̂). The receiver B̂ verifies
that X 6= 0 and computes κ = H((XAD)b).

In [52] Menezes showed that the one-pass HMQV protocol succumbs to a
Kaliski-style unknown-key share attack [18] even if public keys are (fully) vali-
dated. The attack is ‘on-line’ in the sense that the adversary needs to have her
static public key certified during the attack. The next attack is an ‘off-line’ Kaliski-
style attack on the one-pass HMQV protocol which succeeds if ephemeral public
keys are (fully) validated but static public keys are only almost validated.

The adversary M, who controls M̂ , registers in advance the static public key
M = 1 with the certification authority. Now, when Â sends (Â, B̂,X),M replaces
this message with (Â, M̂ , Z) where Z = XAD and D = H2(X, Â, B̂). Note that
Z is valid, whereas M is only partially valid. The recipient B̂ computes D′ =
H2(Z, M̂, B̂) and

κ = H((ZM D′
)b) = H(Zb) = H((XAD)b).

Thus Â and B̂ have computed the same session key, but B̂ mistakenly believes that
the key is shared with M̂ .

6.12 Validation summary

The attacks on HMQV presented in §6.6, §6.7.1 and §6.8 are also effective on MQV
if validation of static or ephemeral public keys is omitted. The attacks are summa-
rized in Table 6.1. While these attacks are not necessarily practical and may not be a
threat in real-world settings, they nonetheless illustrate the importance of perform-
ing some form of validation for static and ephemeral public keys in Diffie-Hellman
type key agreement protocols. Furthermore, the attacks highlight the danger of
relying on security proofs for discrete-logarithm protocols where a concrete repre-
sentation for the underlying group is not specified. In particular, since public keys

110



in HMQV are not necessarily valid, the security of HMQV depends on several as-
pects of the representation for the underlying group G including the manner in
which the group operation is performed, and the particular algorithm chosen for
computing (XAD)sB and (Y BE)sA . For other examples of the pitfalls when relying
on security proofs where a concrete representation of the underlying group is not
specified, see [57] and [70].

Static Ephemeral Ephemeral
public keys public keys private keys Attacks
validated? validated? secure?
√ √ √

No attack known
√ √

× No attack known
×

√ √
No attack known

√
×

√
§6.7.1, §6.9†

√
× × §6.7.1, §6.9†

× ×
√

§6.7.1, §6.9†

×
√

× §6.8.1, §6.8.2
× × × §6.6, §6.7.1, §6.8.1, §6.8.2, §6.9†

Table 6.1: Summary of attacks on HMQV (and MQV without validation).
† The attack of §6.9 applies to MQV only.

6.13 Concluding remarks

Even though efficiency is highly demanded, the examples presented here show that
employing speedups without careful considerations may lead to security breaches.
A natural question that arises is to look for efficient validation techniques and de-
velop protocols that allow for reusing ephemeral key pairs.

111



Chapter 7

Conclusions and future work

The main research topic of this thesis was key establishment schemes focusing on
the security models and assurances provided by security definitions. Different
models and protocols were presented, compared and analysed. The following is
an outline of questions and issues addressed in the previous chapters:

– Relationship between models and security attributes. Given a set of security
attributes, does a model encompass that set of attributes? Given a security
model, what security guarantees are provided?

– Model enhancement. There are known examples of security attributes that
are not captured by existing definitions. New models were developed that
can account for a wider range of possible attacks.

– Protocol design. The ability to combine previous knowledge to develop new
efficient protocols that meet a wider range of security goals is essential for
further development of key agreement.

– Security arguments. Both creating new arguments and critically reading ex-
isting arguments are important for the acceptance and understanding of pro-
tocols.

Chapter 6 presented an issue related to key establishment schemes that is not
addressed in the models. In particular efficiency considerations are an important
aspect in the deployment of a given key establishment scheme. Reusing ephemeral
public keys appears to be a simple way to increase the efficiency of key agreement
protocols. Naturally, the next step is to design protocols that allow reusing the same
ephemeral key. The static key pair of a party is reused in multiple sessions. Hence

112



it should be possible to reuse ephemeral keys in multiple sessions without affecting
security attributes. However, if key independence is important, then the protocol
description should provide means for introducing session specific freshness.

It is common to have a multitude of key establishment schemes to choose from
— for example SP800-56A [71] allows parties to choose either the MQV or the UM
protocol. It is generally accepted that using the same private key for more than
one protocol is not sound cryptographic practice. Hence a party that wishes to be
fully SP800-56A compliant, which does not prevent static public keys to be used
in different protocols, and at the same time follow sound cryptographic practices
should have two different static key pairs — one for use with MQV, and one for use
with UM. However, if the underlying groups are the same, for simplicity a party
may establish only one static key pair. A natural question to ask is if the same static
key can be used with two different protocols and formally argue the soundness
of this use. Key agreement models are independent from protocol descriptions,
and therefore the existing models could potentially be used to validate that static
private information used in one protocol can be safely used in another protocol.
Furthermore, if the two protocols provide different assurances (e.g., one protocol
is KCI resilient and the other is not), what are the implications for the party? In
particular does the KCI resilient protocol achieve less if the static public key is
used in a protocol that does not provide KCI resilience.

The above idea of sharing static key pairs among different protocols decreases
the amount of work a party must invest in static key pair management — both
in terms of number of the keys the party owns and in terms of the number of
certificates the party receives from its peers. If on-line efficiency is an issue, then
just like sharing static key pairs among different protocols, sharing ephemeral key
pairs among different protocols should be considered. Potentially this could have
a great impact on efficiency, hence it is an issue worth considering. This type of
work can further be considered for reusing ephemeral key pairs among different
protocols and among different sessions, improving performance even further.

It is plausible to assume that with the correct set of cryptographic assumptions,
the above questions have affirmative answers. Since the protocols considered here
were Diffie-Hellman type key agreement protocols, it is interesting to pursue the
above questions based on the CDH or the GDH assumptions, possibly using the
random oracle assumption.

Denial-of-Services (DoS) is an important practical aspect that is related to effi-
ciency. Countermeasures against DoS attacks are incorporated on top of existing
key agreement protocols. The analysed key agreement models and definitions do

113



not take into account DoS attacks. Furthermore, the design principles of key agree-
ment protocols do not attempt to make use of the DoS measures that are employed
by the parties. However, it may be possible to combine the key agreement protocols
with DoS countermeasures to improve existing protocols. Until now these issues
were considered separately — largely due to the fact that defining DoS formally
is a non-trivial task — but combining the analysis of protocols and DoS counter-
measures could lead to simpler protocols, security arguments and improved DoS
resilience.

The main assurances of the existing models are geared towards security. But
in many cases there are alternative requirements that are no less important than
security. For example the CK02 model and the combined model in §5.4 appear to
open venues for anonymity considerations. However, in the models the adversary
controls all communication. Hence the adversary is aware where messages origi-
nate and where messages are delivered. It is not immediately clear how anonymity
can be added.

Much of the focus until now was on security of key agreement protocols. But
how is a session key supposed to be used in subsequent communications? A key
agreement protocol provides certain assurances but can those assurances contra-
dict the intended use of the key agreement protocol? Different cryptographic prim-
itives have different security definitions. If a session key is going to be an input to
a cryptographic primitive how are the security notions related? Should the key
agreement and the subsequent protocol be considered at once or there is a way to
establish that the definitions are independent from each other? An even more inter-
esting question is if the session key already guarantees a certain security property,
that the next protocol Π requires, is it possible to simplify Π’s security definition.
This is a desirable approach since it could simplify the definitions and hence in-
crease acceptance of new cryptographic algorithms, as their analysis will be more
elementary. Some of these questions have been addressed by the research on “Uni-
versal Composability”; for example see [20], [21] and [19].

114



Bibliography

[1] William Aiello, Steven M. Bellovin, Matt Blaze, Ran Canetti, John Ioannidis,
Angelos D. Keromytis, and Omer Reingold, Just fast keying: Key agreement
in a hostile Internet, ACM Transactions on Information and System Security
7 (2004), no. 2, 242–273.

[2] ANSI X9.42, Public key cryptography for the financial services industry: Agreement
of symmetric keys using discrete logarithm cryptography, American National Stan-
dards Institute, 2003.

[3] ANSI X9.63, Public key cryptography for the financial services industry: Key agree-
ment and key transport using elliptic curve cryptography, American National Stan-
dards Institute, 2001.

[4] Adrian Antipa, Daniel Brown, Alfred Menezes, René Struik, and Scott Van-
stone, Validation of elliptic curve public keys, Public Key Cryptography –
PKC 2003 (Miami, FL, USA), Lecture Notes of Computer Science, vol. 2567,
Springer Verlag, 2003, pp. 211–223.

[5] Endre Bangerter, Jan Camenisch, and Ueli Maurer, Efficient proofs of knowl-
edge of discrete logarithms and representations in groups with hidden order, Public
Key Cryptography – PKC 2005 (Les Diablerets, Switzerland), Lecture Notes of
Computer Science, vol. 3386, Springer Verlag, 2005, pp. 154–171.

[6] William D. Banks and Igor Shparlinski, Integers with a large smooth divisor, In-
tegers: Electronic Journal of Combinatorial Number Theory 7 (2007), no. A17,
1–11.

[7] Mihir Bellare and Adriana Palacio, The knowledge-of-exponent assumptions and
3-round zero-knowledge protocols, Advances in Cryptology – CRYPTO 2004
(Santa Barbara, CA, USA), Lecture Notes of Computer Science, vol. 3152,
Springer Verlag, 2004, pp. 273–289.

115



[8] Mihir Bellare, David Pointcheval, and Phillip Rogaway, Authenticated key
exchange secure against dictionary attacks, Advances in Cryptology – EURO-
CRYPT 2000 (Bruges, Belgium), Lecture Notes of Computer Science, vol. 1807,
Springer Verlag, 2000, pp. 139–155.

[9] Mihir Bellare and Phillip Rogaway, Entity authentication and key distribution,
Advances in Cryptology – CRYPTO’93 (Santa Barbara, CA, USA), Lecture
Notes of Computer Science, vol. 773, Springer Verlag, 1993, Full version avail-
able at http://www.cs.ucdavis.edu/∼rogaway/papers/eakd-abstract.html,
pp. 232–249.

[10] , Random oracles are practical: a paradigm for designing efficient protocols,
CCS’93: Proceedings of the 1st ACM Conference on Computer and Commu-
nications Security (New York, NY, USA), ACM, 1993, pp. 62–73.

[11] , Provably secure session key distribution: the three party case, STOC’95:
Proceedings of the 27th annual ACM Symposium on Theory of Computing
(Las Vegas, NE, USA), ACM, 1995, pp. 57–66.

[12] Ingrid Biehl, Bernd Meyer, and Volker Müller, Differential fault attacks on ellip-
tic curve cryptosystems, Advances in Cryptology – CRYPTO 2000 (Santa Bar-
bara, CA, USA), Lecture Notes of Computer Science, vol. 1880, Springer Ver-
lag, 2000, pp. 131–146.

[13] Simon Blake-Wilson, Don Johnson, and Alfred Menezes, Key agreement proto-
cols and their security analysis, Cryptography and Coding: 6th IMA Interna-
tional Conference (Cirencester, UK), Lecture Notes of Computer Science, vol.
1355, Springer Verlag, 1997, pp. 30–45.

[14] Simon Blake-Wilson and Alfred Menezes, Unknown key-share attacks on the
station-to-station (STS) protocol, Public Key Cryptography – PKC’99 (Ka-
makura, Japan), Lecture Notes of Computer Science, vol. 1560, Springer Ver-
lag, 1999, pp. 154–170.

[15] Colin Boyd, Wenbo Mao, and Kenneth G. Paterson, Key agreement using stati-
cally keyed authenticators, in Jakobsson et al. [36], pp. 248–262.

[16] Colin Boyd and Anish Mathuria, Protocols for authentication and key establish-
ment, Springer Verlag, Germany, 2003.

[17] Daniel Brown, Additional ECC groups for IKE and IKEv2, Internet Engineering
Task Force, October 2006, Internet draft.

116

http://www.cs.ucdavis.edu/~rogaway/papers/eakd-abstract.html


[18] Jr. Burton S. Kaliski, An unknown key-share attack on the MQV key agreement
protocol, ACM Transaction on Information and System Security 4 (2001), no. 3,
275–288.

[19] Ran Canetti, Universally composable security: A new paradigm for crypto-
graphic protocols, 42nd IEEE symposium on Foundations of Computer Science
(FOCS’01) (Los Alamitos, CA, USA), IEEE Computer Society, 2001, pp. 136–
147.

[20] Ran Canetti and Hugo Krawczyk, Analysis of key-exchange protocols and their
use for building secure channels, Advances in Cryptology – EUROCRYPT
2001 (Aarhus, Denmark), Lecture Notes of Computer Science, vol. 2045,
Springer Verlag, 2001, Full version available at http://eprint.iacr.org/2001/
040/, pp. 453–474.

[21] , Security analysis of IKE’s signature-based key-exchange protocol, Advances
in Cryptology – CRYPTO 2002 (Moti Yung, ed.), Lecture Notes of Computer
Science, vol. 2442, Springer, 2002, Full version available at http://eprint.iacr.
org/2002/120/, pp. 143–161.

[22] Liqun Chen, Zhaohui Cheng, and Nigel P. Smart, Identity-based key agreement
protocols from pairings, International Journal of Information Security 6 (2007),
no. 4, 213–241.

[23] Kim-Kwang Raymond Choo, Colin Boyd, and Yvonne Hitchcock, Examining
indistinguishability-based proof models for key establishment protocols, Advances in
Cryptology – ASIACRYPT 2005 (Chennai, India), Lecture Notes of Computer
Science, vol. 3788, Springer Verlag, 2005, pp. 585–604.

[24] Whitfield Diffie and Martin E. Hellman, New directions in cryptography, IEEE
Transactions on Information Theory IT-22 (1976), no. 6, 644–654.

[25] Whitfield Diffie, Paul C. van Oorschot, and Michael J. Wiener, Authentica-
tion and authenticated key exchange, Designs, Codes and Cryptography 2 (1992),
no. 2, 107–125.

[26] Blake Ramsdell (editor), Secure/multipurpose internet mail extensions (S/MIME)
version 3.1 message specification, Internet Engineering Task Force, 2004, RFC
3851.

[27] Charlie Kaufman (editor), Internet key exchange (IKEv2) protocol, Internet Engi-
neering Task Force, 2005, RFC 4306.

117

http://eprint.iacr.org/2001/040/
http://eprint.iacr.org/2001/040/
http://eprint.iacr.org/2002/120/
http://eprint.iacr.org/2002/120/


[28] Tahir ElGamal, A public key cryptosystem and a signature scheme based on discrete
logarithms, IEEE Transactions on Information Theory IT-31 (1985), no. 4, 469–
472.

[29] FIPS186-2, Federal information processing standards publication 186-2, digital sig-
nature standard (DSS), National Institute of Standards and Technology, January
2000.

[30] David Fu and Jerry Solinas, ECP groups for IKE and IKEv2, Internet Engineering
Task Force, January 2007, RFC 4753.

[31] Dan Harkins and Dave Carrel, The Internet key exchange (IKE), Internet Engi-
neering Task Force, 1998, RFC 2409.

[32] Russell Housley, Triple-DES and RC2 key wrapping, Internet Engineering Task
Force, 2001, RFC 3217.

[33] , Cryptographic message syntax (CMS) algorithms, Internet Engineering
Task Force, 2002, RFC 3370.

[34] , Cryptographic message syntax (CMS), Internet Engineering Task Force,
2004, RFC 3852.

[35] IEEE Std 1363-2000, IEEE standard specifications for public-key cryptography,
2000.

[36] Markus Jakobsson, Moti Yung, and Jianying Zhou (eds.), Applied cryptogra-
phy and network security, second international conference, ACNS 2004, Proceed-
ings, Lecture Notes of Computer Science, vol. 3089, Yellow Mountain, China,
Springer Verlag, 2004.

[37] Ik Rae Jeong, Jonathan Katz, and Dong Hoon Lee, One-round protocols for two-
party authenticated key exchange, in Jakobsson et al. [36], pp. 220–232.

[38] Mike Just and Serge Vaudenay, Authenticated multi-party key agreement, Ad-
vances in Cryptology – ASIACRYPT’96 (Kyongju, Korea), Lecture Notes of
Computer Science, vol. 1163, Springer Verlag, 1996, pp. 36–49.

[39] Donald E. Knuth, Seminumerical algorithms, 3 ed., vol. 2, Addison-Wesley,
Reading, MA, USA, 1997.

[40] Hugo Krawczyk, SIGMA: The ‘SIGn-and-MAc’ approach to authenticated Diffie-
Hellman and its use in the IKE-protocols, Advances in Cryptology – CRYPTO
2003 (Dan Boneh, ed.), Lecture Notes of Computer Science, vol. 2729, Springer,
2003, pp. 400–425.

118



[41] , HMQV: A high-performance secure Diffie-Hellman protocol, Advances
in Cryptology – CRYPTO 2005 (Santa Barbara, CA, USA), Lecture Notes of
Computer Science, vol. 3621, Springer Verlag, 2005, Full version available at
http://eprint.iacr.org/2005/176, pp. 546–566.

[42] , HMQV in IEEE P1263, July 2006, submission to the IEEE P1263
working group http://grouper.ieee.org/groups/1363/P1363-Reaffirm/
submissions/krawczyk-hmqv-spec.pdf.

[43] Sébastien Kunz-Jacques, Gwenaëlle Martinet, Guillaume Poupard, and
Jacques Stern, Cryptanalysis of an efficient proof of knowledge of discrete logarithm,
in Yung [74], pp. 27–43.

[44] Sébastien Kunz-Jacques and David Pointcheval, About the security of MTI/C0
and MQV, Security and Cryptography for Networks – SCN 2006 (Maiori,
Italy), Lecture Notes of Computer Science, vol. 4116, Springer Verlag, 2006,
pp. 156–172.

[45] Brian LaMacchia, Kristin Lauter, and Anton Mityagin, Stronger security of
authenticated key exchange, Provable Security: First International Conference,
ProvSec 2007 (Wollongong, Australia), Lecture Notes of Computer Science,
vol. 4784, Springer Verlag, 2007, pp. 1–16.

[46] Kristin Lauter and Anton Mityagin, Security analysis of KEA authenticated key
exchange protocol, in Yung [74], pp. 378–394.

[47] Laurie Law, Alfred Menezes, Minghua Qu, Jerry Solinas, and Scott Vanstone,
An efficient protocol for authenticated key agreement, Designs, Codes and Cryp-
tography 28 (2003), no. 2, 119–134.

[48] Peter J. Leadbitter and Nigel P. Smart, Analysis of the insecurity of ECMQV with
partially known nonces, International Security Conference – ISC 2003 (Bristol,
UK), Lecture Notes of Computer Science, vol. 2851, Springer Verlag, 2003,
pp. 240–251.

[49] Chae Hoon Lim and Pil Joong Lee, A key recovery attack on discrete log-based
schemes using a prime order subgroup, Advances in Cryptology – CRYPTO’97
(Santa Barbara, CA, USA), Lecture Notes of Computer Science, vol. 1294,
Springer Verlag, 1997, pp. 249–263.

[50] Tsutomu Matsumoto, Youichi Takashima, and Hideki Imai, On seeking smart
public-key-distribution systems, Transactions of the IEICE of Japan E69 (1986),
no. 2, 99–106.

119

http://eprint.iacr.org/2005/176
http://grouper.ieee.org/groups/1363/P1363-Reaffirm/submissions/krawczyk-hmqv-spec.pdf
http://grouper.ieee.org/groups/1363/P1363-Reaffirm/submissions/krawczyk-hmqv-spec.pdf


[51] Ueli Maurer and Stefan Wolf, Diffie-Hellman oracles, Advances in Cryptology
– CRYPTO’96 (Santa Barbara, CA, USA), Lecture Notes of Computer Science,
vol. 1109, Springer Verlag, 1996, pp. 268–282.

[52] Alfred Menezes, Another look at HMQV, Journal of Mathematical Cryptology
1 (2007), no. 1, 47–64.

[53] Alfred Menezes and Berkant Ustaoglu, On the importance of public-key valida-
tion in the MQV and HMQV key agreement protocols, Progress in Cryptology –
INDOCRYPT 2006 (Kolkata, India), Lecture Notes of Computer Science, vol.
4329, Springer Verlag, 2006, pp. 133–147.

[54] , Comparing the pre- and post-specified peer models for key agreement, Infor-
mation Security and Privacy – ACISP 2008 (Yi Mu, Willy Susilo, and Jennifer
Seberry, eds.), Lecture Notes of Computer Science, vol. 5107, Springer, 2008,
pp. 53–68.

[55] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone, Handbook of
applied cryptography, CRC Press, Boca Raton, FL, USA, 1997.

[56] Alfred Menezes and Yi-Hong Wu, The discrete logarithm problem in GL(n, q),
Ars Combinatoria 47 (1998), 23–32.

[57] David Naccache, Nigel P. Smart, and Jacques Stern, Projective coordinates leak,
Advances in Cryptology – EUROCRYPT 2004 (Interlaken, Switzerland), Lec-
ture Notes of Computer Science, vol. 3027, Springer Verlag, 2004, pp. 257–267.

[58] NIST, SKIPJACK and KEA algorithm specifications, National Institute of Stan-
dards and Technology, May 1998, Available via http://csrc.nist.gov/groups/
STM/documents/skipjack/skipjack.pdf.

[59] Tatsuaki Okamoto, Authenticated key exchange and key encapsulation in the stan-
dard model, Advances in Cryptology – ASIACRYPT 2007 (Kaoru Kurosawa,
ed.), Lecture Notes of Computer Science, vol. 4833, Springer, 2007, pp. 474–
484.

[60] Tatsuaki Okamoto and David Pointcheval, The gap-problems: a new class of prob-
lems for the security of cryptographic schemes, Public Key Cryptography – PKC
2001 (Cheju Island, Korea), Lecture Notes of Computer Science, vol. 1992,
Springer Verlag, 2001, pp. 104–118.

[61] David Pointcheval and Jacques Stern, Security proofs for signature schemes, Ad-
vances in Cryptology – EUROCRYPT’96 (Saragossa, Spain) (Ueli Maurer, ed.),
LNCS, vol. 1070, Springer Verlag, 1996, pp. 387–398.

120

http://csrc.nist.gov/groups/STM/documents/skipjack/skipjack.pdf
http://csrc.nist.gov/groups/STM/documents/skipjack/skipjack.pdf


[62] , Security arguments for digital signatures and blind signatures, Journal of
Cryptology 13 (2000), no. 3, 361–396.

[63] John M. Pollard, Monte Carlo methods for index computation mod p, Mathemat-
ics of Computation 32 (1978), no. 143, 918–924.

[64] Eric Rescorla, Diffie-Hellman key agreement method, Internet Engineering Task
Force, 1999, RFC 2631.

[65] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman, A method for obtaining
digital signatures and public-key cryptosystems, Communications of the ACM 21
(1978), no. 2, 120–126.

[66] Jeffrey I. Schiller, Cryptographic algorithms for use in the internet key exchange
version 2 (IKEv2), Internet Engineering Task Force, 2005, RFC 4307.

[67] René Schoof, Elliptic curves over finite fields and the computation of square roots
mod p, Mathematics of Computation 44 (1985), no. 170, 483–494.

[68] Claude E. Shannon, The mathematical theory of communication, The Bell System
Technical Journal 27 (1938), 379–423, 623–656.

[69] Victor Shoup, On formal models for secure key exchange, Available at http://
www.shoup.net/papers/, 1999.

[70] Nigel P. Smart, The exact security of ECIES in the generic group model, Cryptogra-
phy and Coding: 8th IMA International Conference (Cirencester, UK), Lecture
Notes of Computer Science, vol. 2260, Springer Verlag, 2001, pp. 73–84.

[71] SP 800-56A, Special publication 800-56A, Recommendation for pair-wise key estab-
lishment schemes using discrete logarithm cryptography, National Institute of Stan-
dards and Technology, March 2006.

[72] Douglas R. Stinson, Cryptography theory and practice, CRC Press, Boca Raton,
FL, USA, 1995.

[73] Berkant Ustaoglu, Obtaining a secure and efficient key agreement protocol from
(H)MQV and NAXOS, Designs, Codes and Cryptography 46 (2008), no. 3, 329–
342.

[74] Moti Yung (ed.), 9th international conference on theory and practice in public-key
cryptography, PKC 2004, Proceedings, Lecture Notes of Computer Science, vol.
3958, New York, NY, USA, Springer Verlag, 2006.

121

http://www.shoup.net/papers/
http://www.shoup.net/papers/


[75] Robert Zuccherato, Methods for avoiding the ”small-subgroup” attacks on the
Diffie-Hellman key agreement method for S/MIME, Internet Engineering Task
Force, 2000, RFC 2785.

122



List of notation

G multiplicatively written group
A,B,M ,U ,V ,X ,Y , T ,Z group elements
G∗ non-identity elements in a group
g generator of G
q group order, typically a prime number
Fp finite field of order p

Zp integers modulo p

CDH Computational Diffie-Hellman problem
GDH Gap Diffie-Hellman problem
DDH Decision Diffie-Hellman problem
CSP Computational Square Diffie-Hellman problem
Â,B̂,Ĉ,D̂ honest parties
X Â’s ephemeral public key
x,x̃ Â’s ephemeral private key
A Â’s static public key
a Â’s static private key
NA Â’s nonce
TA Â’s tag
Y B̂’s ephemeral public key
y,ỹ B̂’s ephemeral private key
B B̂’s static public key
b B̂’s static private key
NB B̂’s nonce
TB B̂’s tag
I initiator
R responder
role party’s role — responder or initiator
H,H1,H2 hash functions, random oracles

123



M adversary
M̂ adversary controlled party
Z M̂ ’s ephemeral public key
z M̂ ’s ephemeral private key
M M̂ ’s static public key
m M̂ ’s static private key
λ global security parameter
S solver
n bound on honest parties in a system
s bound on sessions activated within an honest party
S session identifier
D,E public exponents
σ session shared secret
κ session secret key

124


	Introduction
	Motivation
	Goals of key establishment
	Number of messages
	Thesis outline
	Notation, terminology and assumptions

	Extended Canetti-Krawzcyk model
	Earlier work
	Canetti-Krawzcyk model
	CK01 description
	Modeling security goals

	A CK01-secure protocol
	Protocol description
	Security argument

	Critique of the CK01 model
	Extended Canetti-Krawzcyk security model

	The CMQV protocol
	Motivation
	The MQV protocol
	Related work
	Two-pass CMQV
	Protocol description
	Design rationale
	Efficiency comparison
	Security argument

	One-pass CMQV
	Protocol description
	Model modifications
	Security argument

	Concluding remarks

	The UM protocol
	Motivation
	Previous work
	Security model
	Protocol description
	Security argument
	Reflections
	No ephemeral public keys in the KDF

	Concluding remarks

	Combined model
	Motivation
	The CK02 model
	CK01 and CK02 differences
	A CK01 to CK02 non-adaptable example
	A CK01 to CK02 adaptable example
	A CK02 to CK01 example

	Combining and extending CK01 and CK02
	Modifiable protocols
	Hybrid protocols
	Combined security model

	A hybrid example
	NAXOS-C description
	Security arguments for NAXOS-C

	Concluding remarks

	Efficiency considerations
	Motivation
	Review
	Terminology and notation
	Small subgroup attacks
	DSA-type groups
	Safe prime groups
	Elliptic curve groups

	MQV and HMQV review
	HMQV description
	MQV description

	Reusing ephemeral keys
	S/MIME
	HMQV
	Standards' requirements

	On public-key validation
	Validation and ephemeral private-key leakage
	Validation and no ephemeral private-key leakage
	A new attack
	Supporting examples
	Flaw in the HMQV proof

	No static public-key validation
	In DSA-type groups
	In elliptic curve groups

	No ephemeral public-key validation
	Partial validation
	Almost validation
	Validation summary
	Concluding remarks

	Conclusions and future work
	Bibliography
	List of notation

