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Abstract

This dissertation addresses the issue of noise in quantum information processing de-

vices. It is common knowledge that quantum states are particularly fragile to the effects

of noise. In order to perform scalable quantum computation, it is necessary to suppress

effective noise to levels which depend on the size of the computation. Various theoreti-

cal proposals have discussed how this can be achieved, under various assumptions about

properties of the noise and the availability of qubits. We discuss new approaches to the

suppression of noise, and propose experimental protocols characterizing the noise.

In the first part of the dissertation, we discuss a number of applications of telepor-

tation to fault-tolerant quantum computation. We demonstrate how measurement-based

quantum computation can be made inherently fault-tolerant by exploiting its relationship

to teleportation. We also demonstrate how continuous variable quantum systems can be

used as ancillas for computation with qubits, and how information can be reliably tele-

ported between these different systems. Building on these ideas, we discuss how the

necessary resource states for teleportation can be prepared by allowing quantum parti-

cles to be scattered by qubits, and investigate the feasibility of an implementation using

superconducting circuits.

In the second part of the dissertation, we propose scalable experimental protocols

for extracting information about the noise. We concentrate on information which has

direct practical relevance to methods of noise suppression. In particular, we demonstrate

how standard assumptions about properties of the noise can be tested in a scalable man-

ner. The experimental protocols we propose rely on symmetrizing the noise by random

application of unitary operations. Depending on the symmetry group use, different infor-

mation about the noise can be extracted. We demonstrate, in particular, how to estimate

the probability of a small number of qubits being corrupted, as well as how to test for a

necessary condition for noise correlations. We conclude by demonstrating how, without

relying on assumptions about the noise, the information obtained by symmetrization can

also be used to construct protective encodings for quantum states.
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Preface

Overview

All physical realizations of quantum information processing devices are faced with the

problem of noise and decoherence. While it is clear that improvements in the control-

lability and observability of such devices are necessary before a large scale quantum

computer can be built, technological advancements alone are not sufficient to address

this problem. In order to implement longer and longer sequences of quantum opera-

tions reliably, the probability of error for each quantum operation must be lower and

lower. Therefore the rate at which errors occur places a fundamental bound on the size

of the computation that can be performed reliably. For this reason, scalable quantum

computation is only possible if the error rate can be adjusted according to the size of the

computation to be carried out. The general aim of this dissertation is to investigate tech-

niques for suppressing noise and decoherence, and to propose methods to characterize

noise in an efficient manner in order to evaluate and improve these techniques.

The first part of the dissertation is focused on noise suppression. The first major theo-

retical breakthrough on the path towards scalability was the construction of protective en-

codings for quantum information [Sho95, Ste96a, CS96]. Operations which act directly

on the encoded data can be designed carefully enough so that the data is protected from

small errors that occur before as well as during these operation [Sho96, ZL96, Got98a,

GC99, ZLC00] – this is what is generally known as fault-tolerant quantum computation.

Error correction performed after each operation then guarantees that the effective error

rate on the encoded data is lower. If these encodings are nested, the effective error rate

can be lowered to ensure that computation of any size can be carried out reliably with

an efficient use of resources, given enough nesting levels. However, improved error rates

are only possible if the physical error rate is low enough – this is what is known as the

threshold theorem [KLZ98, Pre98, ABO99, AGP06]. The exact value of this threshold
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is dependent on details of how the data is encoded, as well as how error correction is

performed [AGP06, Kni05a, CDT07]. While early estimates for the threshold error rate

where on the order of 10−5 per operation, extensive optimizations have demonstrated

that this value can be significantly larger, closer to 10−2. This higher noise tolerance is

achieved by combining the encoded operations with the error correction operations in

a single step, via teleportation of quantum states [Kni05a, Kni05b]. Teleportation also

allows quantum operations to be reduced to the preparation of resource states, which can

be verified to be sufficiently noiseless and stored until needed in the computation, which

further improves the reliability of fault-tolerant computation [GC99, ZLC00].

The reduction of quantum operations to state preparation and measurements has been

used to demonstrate that quantum computation can be performed via measurements of

single qubits prepared in a large entangled state, in what is known as the one-way model

of quantum computation [RB01]. It is natural to ask whether error correction via telepor-

tation can be combined with the one-way model to yield a direct path to fault-tolerance.

This is the first question addressed by this dissertation. In Chapter 1 we demonstrate that

the one-way model can be tailored to the limitations of encoded operations, so that it

can be implemented directly using encoded states and measurements. Information about

the errors in the data is obtained as a by-product of teleportation, following earlier pro-

posals [Kni05a, Kni05b]. This allows for both post-selection in the preparation of the

encoded resource states needed for computation, as well as for tracking errors without

the need for explicit corrections to be applied.

Teleportation has applications that go beyond enabling different models of computa-

tion and optimizing error correction. It can be used to create effective interactions be-

tween systems, such as photons, which are otherwise difficult to interact [KLM01]. More

generally, it can enable universal computation and fault-tolerance in systems which are

difficult to manipulate otherwise. In Chapter 2 we consider the particular case of en-

coding qubits in superpositions of coherent states of a quantum communication bus, or

qubus. Such states are easily generated and measured – for example, they can be taken

to be the states of a laser pulse – and thus can be highly useful as ancillas during error

correction and other fault-tolerant error suppressions tasks. While these states have been

considered as mediators for interactions between qubits [NM04, MNS05, SNB+06], here

we illustrate how to use weak interactions between the qubus and qubits in order to per-

form teleportation. This, in turn, enables universal quantum computation on qubus states.

The teleportation protocols we consider also herald information about the fidelity of the
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output states to the desired states. This information can be exploited for enhancing the

fidelity of prepared states by post-selection. This is relevant not only in the case of one-

way quantum computation, as described earlier, but also for fault-tolerance in general, as

it is crucial that ancillas be largely error-free before they can be used in the computation.

We illustrate the application to fault-tolerance by demonstrating how error correction can

be performed on qubits by using qubus states as ancillas.

The ideas of weak interactions and post-selection can be applied to other quantum

systems as well. In Chapter 3, we consider the weak interaction between a qubit and

a free quantum particle. In particular we demonstrate how two qubits can be entan-

gled by post-selecting on position measurements of a particle that has been scattered

by the qubits. As entanglement is an essential resource for teleportation, the prepara-

tion of such states enables a host of potential applications, ranging from communica-

tion to fault-tolerant quantum computation, as discussed earlier. With these applica-

tions in mind, we investigate the feasibility of using superconducting qubits and soli-

tons in a non-linear transmission line to implement this protocol. The solitons are non-

dispersive localized excitations in the transmission line which correspond to a trapped

quantum of magnetic flux, and naturally interact with the flux-based superconducting

qubits [ARS06, FSSKS07]. While quantum tunneling of these solitons has been demon-

strated [Wal00, WLL+03], the coherent superposition of different soliton states has yet

to be observed. The entanglement creation protocol proposed here acts as a method for

indirect observation of these superpositions, provided dissipation in the non-linear trans-

mission lines can be reduced significantly.

The second part of this dissertation focuses on proposals for the characterization

of noise in quantum devices. Experimental progress in the implementation of quan-

tum information processors challenges us with a major theoretical question: how do we

evaluate the precision and accuracy with which operations are implemented? The com-

plexity of recent experiments demonstrating control over systems of approximately ten

qubits was considerable [WHE+04, LKS+05, HHR+05, NMR+06, RKS+06] – in each

instance, the number of experiments and the amount of classical post-processing required

to analyze the data were formidable. This is because the number of parameters needed

to describe general quantum operations grows exponentially with the number of qubits

involved [CN97, Leu03, ML06]. It is thus clear that the full characterization of quan-

tum operations on even moderately large systems is simply untenable. This has direct

relevance in evaluating the progress and feasibility of proposals for the implementation

3



of quantum computers. The threshold theorem provides targets for the error rate in a

quantum computer, but experimental techniques must be devised to estimate error rates

efficiently. Moreover, the standard techniques for error correction are developed under

various assumptions about the properties of noise – such as, for example, the indepen-

dence of error locations – which also need to be verified experimentally.

As complete characterization is infeasible, it becomes clear that a coarse-grained de-

scription of the evolution of quantum systems is necessary. The challenge is to identify

efficient methods of coarse-grained characterization that yield information about features

of practical interest. In Chapter 4 we propose a general method for coarse-graining based

on the symmetrization of noise. The noise symmetrization protocol is based on random

application of unitaries – a process commonly referred to as twirling [EAZ05, DHCB05,

DCEL06, LLEC07]. We focus on a particular symmetry group which naturally leads to

an intuitive description of the symmetrized noise in terms of probabilities of different

types of errors. We can efficiently estimate the probability of no errors occurring, as well

as the probability of only a few errors occurring. The symmetry group we consider has

the advantage that it consists of only local unitaries on individual qubits, avoiding the

difficulty of applying interactions between qubits. The main limitations of this protocol

are due to uncertainties in the experimental estimates of certain parameters. However,

even within these limitations, we are able to demonstrate how a number of important

assumptions about the noise can be tested. In particular, the parameters which can be ef-

ficiently estimated naturally lead to sufficient conditions for the presence of correlations

in the error locations. As common approaches to fault-tolerance routinely assume that

error locations are independent, these protocols are of direct practical relevance.

We conclude by discussing in Chapter 5 how protective encodings for quantum in-

formation can be constructed based on the coarse-grained description of noise. Various

approaches have been proposed to find protective encodings based on complete informa-

tion about noise affecting a quantum computer [Kri03, HKL04, RW05, FSW07, KSL07].

All these techniques require the manipulation of exponentially large matrices describ-

ing both the noise as well as the encoding procedures. Even if complete information

about the noise can be obtained efficiently, it becomes infeasible to consider systems

with more than a handful of qubits. This can be avoided by considering noise sym-

metrization. We demonstrate that encodings which protect information from the action

of symmetrized noise also protect information from the action of the “raw” noise, with-

out the symmetrization operations applied. This is discussed in detail for a particular
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symmetry group, which allows both efficient experimental characterization, as well as

simple data post-processing without the need for manipulating exponentially large ma-

trices. The performance of the protective encoding can also be shown to depend weakly

on the uncertainty of the experimental estimation of noise parameters, demonstrating that

the construction proposed here is robust.

Notation

We briefly review some basic notation used throughout this dissertation. Other notation

is introduced in the body of the text as needed.

The group P1 of Pauli operators acting on a single qubit is generated by the operators

12 =

(
1 0

0 1

)
, X = σX =

(
0 1

1 0

)
,

Y = σY =

(
0 −i
i 0

)
, Z = σZ =

(
1 0

0 −1

)
.

All matrix representations discussed here are given in the eigenbasis of σZ , which is

also known as the computational basis, consisting of the states |0〉 = σZ |0〉 and |1〉 =

−σZ |1〉. Another basis which is commonly used is the eigenbasis of σX , |±〉 = 1√
2
(|0〉±

|1〉), with the sign corresponding to the eigenvalue. In the chapters focusing on fault-

tolerance and error correction, the symbols X , Y and Z will be used, while in the other

chapters the symbols σX , σY and σZ will be used instead.

The n qubit Pauli group Pn is given by all n-fold tensor products of the matrices in

P1. For example, an element of P2 is the operator X ⊗ Y . For brevity, the symbol “⊗”

will be omitted whenever the context makes its presence clear, so that X ⊗ Y will be

written XY .

Other common unitaries used are

H =
1√
2

(
1 1

1 −1

)
,

∧X =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 , ∧Z =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 ,
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which are known as the Hadamard gate, controlled-NOT or CNOT, and controlled-sign

or CSIGN.

The n qubit Clifford group Cn is the group of unitaries that map Pn to itself under

conjugation. In other words,

Cn = {C|CPC† ∈ Pn given P ∈ Pn, C ∈ U(2n)}. (1)

This group is generated by tensor products of the Hadamard gate, CNOT and the unitary

exp(−iπ
4
σZ).

In quantum circuit diagrams, we use the standard notation, with thick grey lines cor-

responding to the qubits. Hollow grey lines correspond to classical information about the

outcome of a projective measurement, which can be fed-forward to decide whether other

unitaries are applied or not. Vertical dark lines connecting different qubits represent the

CSIGN unitary. The depiction of these two elements, which may be unfamiliar to the

reader, is given in Figure 1.

Figure 1: Circuit diagrams depicting (a) projective measurement of a qubit onto the

eigenbasis of X with the outcome controlling the application of a unitary U , and (b) the

interaction of two qubits via the unitary ∧Z.

Additional information for the examiners of this thesis

Each chapter in this dissertation essentially corresponds to a different research project.

Chapter 1 is based on the paper “A direct approach to fault-tolerance in measurement-

based quantum computation via teleportation” [SDKO07] written in collaboration with

V. Danos, E. Kashefi, and H. Ollivier, available as a preprint at arXiv:quant-ph/0611273

and published in New J. of Phys. 9, 192 (2007). The Pauli measurement model of com-

putation was developed by V. Danos and E. Kashefi as an extension to earlier work by the
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same authors along with other collaborators [DKP05]. The fault-tolerance application of

these ideas in connection with teleportation were developed jointly by the present author

and H. Ollivier after discussions with E. Kashefi and V. Danos.

Chapter 2 is based on parts of “Stabilizer quantum error correction with quantum

bus computations” [MSNM07] written in collaboration with C. R. Myers, K. Nemoto

and W. J. Munro, available as a preprint at arXiv:quant-ph/0612097 and published in

Phys. Rev. A 76, 012303 (2007), and the paper “Computation with Coherent States via

Teleportations to and from a Quantum Bus” [SM08] written in collaboration with C. R.

Myers, available as a preprint at arXiv:0804.4344 and submitted for publication. The

initial objective of [MSNM07] was to generalize earlier work which was restricted to

a particular stabilizer code [YNM06]. C. R. Myers and the present author developed

different approaches independently and then collaborated to publish the work jointly

under the guidance of K. Nemoto and W. J. Munro. The present author’s approach was

focused on fault-tolerant techniques, and this corresponds to the material presented at

the end of the chapter, in Section 2.6. Upon realizing the connection with teleportation,

techniques for general computation and state preparation were further developed and

presented in Sections 2.3 through 2.5. All the mathematical work in these sections was

carried out jointly by the present author and C. R. Myers.

Chapter 3 is based on unpublished work done under the supervision of F. Wilhem.

The main initial motivation of this work was to demonstrate the quantum superpositions

of solitons in long Josephson junctions in a manner that was experimentally accessible.

This work is presented here from the perspective of developing entanglement creation

protocols for the purposes of quantum communication between well separated qubits.

All the calculations and feasibility studies were carried out by the present author.

Chapter 4 is based on the present author’s contributions to “Symmetrized characteri-

zation of noisy quantum processes” [ESM+07], written in collaboration with J. Emerson,

O. Moussa, C. Ryan, M. Laforest, J. Baugh, D. Cory and R. Laflamme, available as a

preprint at arXiv:0707.0685 and published in Science 317, pp. 1893-1896 (2007). The

idea of characterizing noise via symmetrization was proposed by J. Emerson building

on his earlier work. The largest portion of the mathematical work presented in the sec-

tion starting with Sections 4.3 was carried out by the present author after discussion

principally with J. Emerson, but also with O. Moussa and M. Laforest. The work de-

scribing how twirling can be used to distinguish collective and independent relaxation,

in Section 4.5.1, was carried out by the present author during an extended visit with M.

7

http://arxiv.org/abs/quant-ph/0612097
http://arxiv.org/abs/0804.4344
http://arxiv.org/abs/0707.0685


Rötteler at NEC Laboratories American Inc. as a concrete example of an application

listed in [ESM+07], and is based on unpublished work.

Finally, Chapter 5 is based on “Experimentally scalable protocol for identification of

correctable codes” [SMKE07], written in collaboration with E. Magesan, D. W. Kribs

and J. Emerson, available as a preprint at arXiv:0710.1900 and accepted for publication

in Phys. Rev. A. This work was initiated by the present author as a natural extension

to his contribution in [ESM+07]. All mathematical work was carried out by the present

author, with the notable exception of the Theorem in Section 5.7, which was proven by E.

Magesan. Some additional material, in particular Section 5.6, the examples in Section 5.7

and Appendix D, are not present in the published version due to space constraints but are

presented here from completeness and clarity. The calculations in Appendix E were also

performed by the present author, with Section E.2 being joint work with O. Moussa.
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Part I

Fault-tolerance and quantum error
correction
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Chapter 1

Fault-tolerant computation via
measurements

1.1 Introduction

The construction of a scalable quantum computer hinges on the ability to actively sup-

press noise [Sho96, KLZ98, AGP06]. One approach to achieve this is to encode quantum

states, so that it is possible to perform error correction from time to time. However, it

is also important to be able to perform operations in these quantum states in a manner

that does not disturb the encoding – this is what is known as fault-tolerant quantum

computation. While early proposals demonstrated how to construct fault-tolerant en-

coded operations for a wide class of quantum error correcting codes [Sho96, Got98b],

the concept of teleportation [BBC+93] leads to a significant conceptual simplification of

the problem. Instead of applying unitaries directly to a state, unitaries can be applied

indirectly in a procedure known as gate teleportation [GC99, ZLC00]. This presents a

significant advantage for encoded operations, since it reduces the problem of applying

an encoded unitary, which may be very complex, to the problem of preparing a particular

quantum state, which can be stored and used as a resource.

Building on the idea of gate teleportation, the one-way quantum computation (1WQC)

model was developed, demonstrating that universal quantum computation is possible

simply by performing single-qubit measurements on a large entangled state [RB01]. One

particular issue that has attracted attention is how to perform fault-tolerant quantum com-

putation in such a model [Rau03, ND05, AL05, RHG06, RH07]. While fault-tolerant
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quantum computation can be performed through such a model by simulation of circuits

via 1WQC [ND05, AL05], fault-tolerance can also be achieved directly through the use

of topological error correction techniques [RHG06, RH07]. The focus of this chapter

is to illustrate another direct approach, building on insights into the measurement cal-

culus [DKP05, DKP07] and generalizations of 1WQC, as well as teleportation-based

approaches to error correction [Kni05a, Kni05b].

We consider a model where measurements along all directions in the XY -plane

of the Bloch sphere are traded off for more complex preparations of the entangled re-

source state. This model, which we call the Pauli measurement model (PMM), uses

only measurements along the X and the Y directions of the Bloch sphere, while the

entangled resource state is obtained via initialization of individual qubits into the state

|+〉 = 1√
2
(|0〉+ |1〉) or |+π

4
〉 = 1√

2
(|0〉+ ei

π
4 |1〉), followed by application of the unitary

interaction ∧Z = diag(1, 1, 1,−1) between certain pairs of qubits. We show that the

PMM model is fault-tolerant in the usual simulation sense [ND05, AL05]. Moreover,

through the use of encoded or nested graph states [Dan05a], and the careful selection of

quantum codes, all necessary operations for computation can be performed transversally

on encoded information, so that the graph state computation itself is made fault-tolerant

if the error rate is low enough.

The reason why we believe this new model to be of practical interest is that physical

implementations of the two measurements this new model requires should be simpler in

comparison to implementations of the 1WQC model, which allows for measurement of

any observable of the form X cos θ + Y sin θ for the continuous parameter θ ∈ [0, π].

These simpler measurements are also significantly easier to implement as encoded mea-

surements, which allows us to take the approach of directly encoding the PMM.

This chapter is organized as follows. First, in Section 1.2 we review the protocols

for teleportation of quantum states, and their connection to 1WQC and fault-tolerance

in quantum systems. Then in Section 1.3 we investigate how to extend the main prop-

erties of the 1WQC model using these modified resource states, while still maintain-

ing the properties one needs for convenient error correction. We finally demonstrate

in Section 1.4 that this modified model naturally provides the resources necessary for

fault-tolerant extraction of information about the errors, and illustrate how any PMM

computation can be transformed into a larger one that has a lower effective error rate if

the error rate per operation is below some threshold, achieving fault-tolerance.
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1.2 Teleportation and one-way quantum computation

Since the early days of quantum mechanics it has been known that entangled quantum

states have properties which have no natural counterparts in classical theories [EPR35,

Sch35, Boh35, Bel64]. One of the most surprising applications of entanglement is the

teleportation of a quantum state from one subsystem to another [BBC+93]. Teleportation

consists of a protocol where one party, Alice, would like to send an undisturbed quantum

state |ψ〉 to another party, Bob. Alice and Bob also share a maximally entangled state

of the form |Φ+〉 = (|00〉 + |11〉)/
√

2, where the first qubit is Alice’s, and the second

is Bob’s. Alice can teleport the state |ψ〉 to Bob by simply jointly measuring |ψ〉 and

her half of the entangle state in a particular basis, and informing Bob of the outcome

of her measurement. The basis which Alice must measure on is determined by which

maximally entangled state she shares with Bob, and in the particular case described here,

the basis is known as the Bell basis consisting of the states

|Φ+〉 = |B00〉 =
1√
2
(|00〉+ |11〉), (1.1)

|Φ−〉 = |B01〉 =
1√
2
(|00〉 − |11〉), (1.2)

|Ψ+〉 = |B10〉 =
1√
2
(|01〉+ |10〉), (1.3)

|Ψ−〉 = |B11〉 =
1√
2
(|01〉 − |10〉). (1.4)

Depending on which outcomes Alice has obtained, Bob will perform a correction on

his qubit. In particular, by direct computation we find that the relationship between the

measurement outcomes and the necessary corrections to Bob’s state is

|B00〉 → 12 (1.5)

|B01〉 → Z (1.6)

|B10〉 → X (1.7)

|B11〉 → ZX. (1.8)

If Alice send the bits ab corresponding to the subscripts of her measurement outcome,

then Bob applies the correction ZbXa. After these corrections, Bob’s qubit is in the state

|ψ〉. The quantum circuit implementing this protocol is depicted in Figure 1.1. As the

qubits that Alice and Bob own never interact, they can be, in principle, separated by

arbitrarily large distances. Notice also that no information about the state |ψ〉 is learned

by either Alice or Bob during this protocol – the state is left completely undisturbed.
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Figure 1.1: Circuit diagram for the teleportation protocol.

The teleportation protocol demonstrates that, in some sense, the ability of communi-

cating a quantum state is equivalent to sharing a resource state and being able to com-

municate measurement outcomes, which are just classical bits. This equivalence can be

taken one step further: by modifying his half of the resource state and his correction

operations, Bob can obtain the result of applying some unitary U to the state |ψ〉. This is

what is known as gate teleportation [GC99].

In order to obtain the the protocol for gate teleportation, consider teleporting a state,

and then performing a unitary U immediately after the teleportation corrections have

been applied. If we insert the UU † = 12 before the corrections are applied, it becomes

clear that teleportation with the state 12⊗U |Ψ+〉 and corrections UZbXaU † is equivalent

to teleportation followed by the application of U . The main practical application of gate

teleportation is that in some cases it may be difficult to apply the unitary U directly to an

arbitrary state, but it may be possible to prepare the state 12⊗U |Ψ+〉 in a reliable manner,

either by verification of the state and post-selection, or by state purification procedures.

If teleportation is used simply for the purposes of decomposing complex operations

into simpler operations and resource states, the requirement that Alice’s and Bob’s quan-

tum states may not interact is unnecessary. In particular, the teleportation protocol can be

simplified to obtain what are known as one bit teleportations [ZLC00], where “one-bit”

refers to the amount of information Alice must send to Bob in order for him to know

which correction to apply to his state. These one-bit teleportation protocols are depicted

in Figure 1.2. They are named after the corrections which must be applied at the end of

the protocol.

Building on one-bit teleportations, it is possible to demonstrate that universal quan-

tum computation can be performed by starting with a large entangled resource state and

then measuring individual qubits in bases which may depend on previous measurement

outcomes [RB01]. This is what is known as one-way quantum computation (1WQC), as

the state of qubits is repeatedly transferred from one qubit to another, before the qubit is
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Figure 1.2: Circuit diagrams for one-bit teleportation protocols (a) Z teleportation and

(b) X teleportation.

measured and taken to be destroyed.

The simplest way to demonstrate the 1WQC model is to consider the Z teleportation

of the Hadamard unitary H , as depicted in Figure 1.3. The result of conjugating the

CNOT by a H on the target qubit is the CSIGN unitary ∧Z = diag(1, 1, 1,−1), depicted

by a dark line connecting the two qubits. Conjugating a rotation of angle α about Z

by Hadarmards results in a rotation about X , as H exp(−iα
2
Z)H = exp(−iα

2
X). By

employing the conjugation relations of Pauli operators with the interaction ∧Z, it is

possible to demonstrate that this can be implemented by a sequence of H teleportations

and a Z rotation which simplified to the circuit depicted in Figure 1.4, where Mβ is an

observable which depends both on α as well as the outcome of the measurement of the

first qubit (the exact form of this observable will be given in the next section). Similarly,

applyingH to two qubits, followed by interaction via ∧Z can be rearranged to the circuit

depicted in Figure 1.5. From these circuits it is clear that 1WQC is universal, as both

single qubit unitaries and two qubit interactions can be performed.

Note that all these circuits consist of preparing qubits in the state |+〉, entangling

them, and then performing a sequence of measurements (the corrections correspond to

measurements in bases that depend on previous measurement outcomes, so they are not

taken to be additional operations). This requires some rearrangement of the operations in

the teleportation protocol, which can get quite cumbersome for larger circuits. However,

as we will see in the next section, this rearrangement can be done in a systematic manner

which guarantees that state preparation, entanglement and measurement can alway be

performed in this order.

In order to implement arbitrary unitaries using 1WQC, one must be able to measure

along arbitrary directions of the XY plane of the Bloch sphere. If the basic operations

are replaced by encoded operations, in order to increase tolerance to errors and noise,

such measurements are in general hard to perform, and only measurements along the
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Figure 1.3: One-bit teleportation of the unitary H.

Figure 1.4: Implementation of an arbitrary rotation about X in 1WQC.

Figure 1.5: Implementation of a the unitary (∧Z)(H ⊗H) in 1WQC.

16



encoded Pauli eigenbases are easily implemented. For this reason, we consider a slight

modification of this model.

1.3 One-way quantum computation with phase prepara-

tion

The modifications of the circuit diagrams as described in the previous section can be

abbreviated by using the measurement calculus [DKP07]. In this calculus, a sequence

of operations, such as state preparation, interactions, measurements and measurement-

dependent state corrections are each symbolized by a command. Such a sequence, along

with the qubits they operate on, is what we call a measurement pattern. In essence, there

is a one-to-one correspondence between a quantum circuit and a measurement pattern.

Formally, a measurement pattern, or simply a pattern, is defined by a sequence of

quantum operations over a finite set of qubits V , along with two subsets I ⊆ V and O ⊆
V representing the pattern inputs and outputs respectively (I and O may intersect). The

allowed operations are: (a)Nα
i , preparation of qubit i in the state |+α〉 = 1√

2
(|0〉+eiα|1〉);

(b) Eij , unitary interaction between qubits i, j of the form ∧Z; (c) Mα
i , measurement

of qubit i 6∈ O in the |±α〉 = 1√
2
(|0〉 ± eiα|1〉) eigenbasis, with outcome si ∈ {0, 1}

corresponding to collapse into the state |+α〉 or |−α〉, respectively; (d) Xj and Zj(α) =

e−i
α
2
Zj , local unitaries on qubit j. In addition, local unitaries and measurement basis

may depend on the outcome of measurements of other qubits, which is denoted in the

natural way, e.g. Xsk
j indicating a unitary which acts if sk = 1, or Mα−skβ

j indicating

a measurement in a basis which depends on the measurement outcome sk. Temporal

ordering is right to left – that is, rightmost operations are performed first. The circuits

corresponding to each of these operations are depicted in Figure 1.6.

Measurements are considered to be destructive, and we require that no operations

be performed on measured qubits. We also only consider patterns where no operations

depend on the outcome of measurements that have not yet been performed. Both 1WQC

and PMM are particular cases of this more general model: to obtain the 1WQC model

set α = 0 in clause (a) and (d); to obtain the PMM, set α = 0, π/4 in clause (a), and

α = nπ/2 in clauses (c) and (d).

Patterns, denoted by gothic letters, e.g. A and B, can be combined to create a new

pattern via parallel concatenation A‖B, or serial concatenation B ◦ A. Parallel concate-
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Figure 1.6: Measurement pattern operations, indexed by which qubit they operate on,

and their corresponding quantum circuits.

nation means the qubits are relabeled in such a way that all operations in A commute

with all the operations in B – if A implements the unitary UA, and B implements UB,

then A‖B implements UA ⊗ UB. Serial concatenation means the output of A is fed into

the input of B – that is, B ◦ A implements the unitary UBUA.

As an example, consider the pattern

Jα = Xs1
2 M

−α
1 E12N

0
2 , (1.9)

with (V, I, O) = ({1, 2}, {1}, {2}). Given an arbitrary state ρ on qubit 1, this sequence

of operations implements Jα = HZ(α) on the input state and places the resulting state

JαρJ
†
α on qubit 2. This is one of the fundamental building blocks for 1WQC [DKP07],

since it allows for arbitrary one qubit rotations. Any of the local unitaries considered can

be merged with a (destructive) measurement as follows:

Mα
i Zi(β) = Mα−β

i (1.10)

Mα
i Xi = M−α

i (1.11)

and it is readily seen that the Jα pattern above is the serial concatenation of a Z(α)

rotation with a modified one-bit teleportation (implementing H) – a well known result

for 1WQC [RB01, ZLC00, Nie05]. Patterns which lie outside 1WQC model can also be

expressed in this extended model, such as

Xα = Xs2
3 Z

s1
3 M

−(−1)s1α+π
4

2 M0
1E23E12N

π
4

2 N
0
3 (1.12)

with (V, I, O) = ({1, 2, 3}, {1}, {3}), which implements the unitaryHZ(α)H = e−i
α
2
X =

JαJ0. It follows from the equations above, that this pattern is equivalent to a Z(α) con-

jugated by a one-qubit teleportation. The importance of writing the pattern in this form,

using the N
π
4

2 preparation, becomes clear when measurements are restricted to the X or

Y eigenbasis, as will be discussed later.
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Other patterns which play an important role are ∧Z, N and M, defined as follows:

∧Z = E12, with (V, I, O) = ({1, 2}, {1, 2}, {1, 2}), implements the unitary ∧Z; N =

N0
i implements initialization of qubit i into the state |+〉; and, M = M0

i implements the

measurement of qubit i in the |±〉 X eigenbasis.

The usual protocol for 1WQC requires computation to be performed in three steps:

(i) individual qubit state preparation, (ii) entangling operations between qubits, and (iii)

measurement of individual qubits with feed-forward of outcomes. Patterns in which op-

erations are performed in this order are said to be in standard form. Any given pattern

in the 1WQC model can be put in this form [RB02, DKP07]. Patterns in the generalized

model just described can also be placed in the standard form, as will be discussed later.

Note that the steps of the protocol do not include the application of single qubit unitaries,

but adaptive measurements can be used to address this absence, since all quantum com-

putations must end with the measurement of the qubits in order for information to be

extracted. Once a pattern is in standard form, it is convenient to consider the entangled

state that is prepared for the computation. Such a state can be described by an entan-

glement graph, with vertices V and edges (i, j) for every command Eij in the pattern,

where the vertices are labeled with the initial state in which the qubit is prepared. The

states which can be described in this manner are also known as graph states.

The process of turning a given pattern into a pattern in standard form is called

standardization. The rewrite rules needed for this procedure are simply (1.10) and

(1.11), along with conjugation relation between unitaries, E12X1 = X1Z2E12, and

E12Z1(α) = Z1(α)E12, as well as all the free commutation relations between opera-

tions on different qubits. Simple rewriting theory arguments show that by applying the

conjugation relations to move all the local unitaries towards the left in the pattern, and

then by applying (1.10) and (1.11), any pattern can be put in standard form [DKP07].

As mentioned previously, PMM is obtained by setting (A) state preparation angles to

0 or π
4
, (B) measurement angles to nπ

2
, and (C) local unitaries to X and Z(nπ

2
). Two sim-

ple facts follow from this: first, PMM is closed under standardization and concatenation,

as can be readily seen from the merging and conjugation relations above; second, PMM

contains the patterns ∧Z, Jα, Xβ , N and M, where α = nπ
2

and β = nπ
2

+ π
4
, as well as

their concatenations. In particular, Xπ
4

allows for an operation outside the Clifford group

while requiring only Pauli measurements.

Given that Xπ
4

implements the unitary e−i
α
8
X , and J0 implements H , concatenations

of these patterns allow for efficient approximation of arbitrary single qubit rotations due
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to the Solovay-Kitaev theorem [Kit97]. Thus, given interactions can be implemented

with the ∧Z pattern, it follows that the PMM can perform universal quantum compu-

tation. The other single qubit patterns in the PMM are not needed for universality, but

allow for a reduction of the number of commands needed to implement some unitaries.

This construction of a universal gate set is equivalent to the construction of fault-

tolerant universal gate sets via teleportation [GC99, ZLC00], as described earlier.

1.4 Fault-tolerance

In reality, physical implementations of any computational model are susceptible to noise.

The noise model that is usually considered, and which we restrict ourselves to in this

work, is the model of independent random failure of each of the operations during com-

putation. We would like to perform useful computation on a quantum computer regard-

less of how long the computation is, or how many qubits are involved, simply because

we would like to solve many different types of problems, of different complexities, with

different input sizes. If one expects the error rate of a quantum computer to be naturally

low enough so that errors are unlikely to occur during computation, one find that the ac-

ceptable error rates are dependent on the size of the computation. Thus we would like a

means to perform any useful quantum computation even in the presence of a fixed prob-

ability of error for each gate. This is what is generally meant by fault-tolerant quantum

computation.

Encoding the data to resist errors is not enough to reach this objective; it is also

important to perform operation directly of the encoded data, without decoding it. These

encoded operations must be constructed carefully, so that error do not propagate in a

catastrophic way. Consider, for example, a controlled operation such as a CNOT. If there

is an error on the control qubit, the wrong operation is applied to the target qubit. Thus,

an error on a single qubit is translated to errors on two qubits. If the encoding being used

can only protect against a single error in a block of qubits, performing such an operation

between qubits within a single block can lead to an unrecoverable error. The general rule

that can be extracted from this is that we should not allow for qubits within the same

code block to interact. This, essentially, translates to the requirement that encoded gate

operations be transversal – that they operate qubit-wise on a code block [Sho96, ZL96].

Once the data is protected by an error correcting code, the effective error rate on the
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encoded data may still be unacceptably high. One way to get around this problem is to

perform concatenated or nested coding – that is, encode the encoded data. If we have

a code C(1) with parameters [[n, 1, d]], this means that the code uses n qubits to encode

1, and that it can tolerate
⌊
d−1
2

⌋
qubits to be corrupted without destroying the encoded

information. From simplicity, we consider d = 3, so that only one error per block of n

can be tolerated. Assuming that errors occur independently on each qubit, the probability

ε(1) of obtaining an uncorrectable error for C(1) is

ε(1) =
n∑
i=2

(
n

i

)
εi(1− ε)n−i < cε2, (1.13)

where ε is the probability that an error will occur at a given qubit, and the c is a combi-

natorial coefficient which depends only on the error correction code. Clearly, if ε < 1/c,

we have that ε(1) < ε. Nesting the encoding L times leads to the the code C(L) with

parameters [[nL, 1, dL]] and effective error rate

ε(L) <
(cε)2L

c
, (1.14)

which is doubly exponentially small in L, as long as cε < 1. The error probability

1/c is known as the error threshold, below which encoding and error correction leads

to improved effective error rates. This, in essence, is what is known as the threshold

theorem [Kit97, KLZ98, Pre98, ABO99, AGP06].

An underlying assumption of this theorem is that any state introduced into computa-

tion at concatenation level L will have errors at an effective rate O(ε(L)). For example,

if we consider a single level of encoding, only encoded states with an effective error rate

of O(ε2) can be introduced into the computation in order to ensure that the threshold

theorem holds. If one were to prepare some unencoded state, which has an error rate

O(ε), encoded it and introduce it into the computation, the error rate for this state would

be O(ε), which would violate this requirement. Therefore it is important that the state be

verified to be sufficiently noiseless before it is used. This verification must be designed

to fail due to independent errors during the verification procedure with probability O(ε),

so that the probability of having an output with an error which the verifier claims is

error-free is O(ε2) – the product of the probabilities that the input has an error and that a

failure during verification leads to the conclusion that the input is error free. The effect

of a verifier which satisfies this condition is to modify the threshold due to additional

failure modes, but the overall scaling is unchanged since the effective error rate is of the

same order.
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Transversal operations between different block of encoded qubits guarantee that en-

coded failures will only be introduced at a rate O(ε(L)), so no additional care is required.

As in the case of state verification, the value of the threshold will be affected, but the

scaling due to concatenation remains the same.

1.4.1 Simulation approach

One approach to achieve fault-tolerance in 1WQC is to use fault-tolerance in the cir-

cuit model as a stepping stone. The construction of fault-tolerant circuits is well under-

stood [GC99, ZLC00], and it is now well known that the implementation of such circuits

via 1WQC can lead to fault-tolerant quantum computation [AL05, ND05] – that is, each

operation in the fault-tolerant circuit is implemented as a sequence of teleportations in

1WQC. This can be most simply understood and demonstrated through composable sim-

ulations [CLN05, AL05], which revolve around the idea that the teleportation of a unitary

can be though of as a simulation of that unitary. Each one of these simulations consists of

classical information (corresponding to the measurement outcomes) as well as quantum

information (the states of the system). Both the classical and the quantum information

are passed from one gate simulation to the next. In principle noise leads to errors on

both the classical data as well as in the quantum data. However, as classical data is only

used to perform Pauli corrections on the quantum data, one can simply take the classical

data to be error free, at the cost of having a higher effective error rate in the quantum

data. Thus these noisy simulations via teleportation just correspond to noisy quantum

computers, and the usual results for fault-tolerance of quantum computers apply.

The same idea carries through to the PMM with minor modifications. The main

distinction is that in the PMM, the change of measurement bases dependent on measure-

ment outcomes corresponds to a local Clifford correction, as opposed to a local Pauli

correction. Thus the noisy simulations through the PMM will have an error model which

consists of random application of local Clifford operators. However, because of the

linearity of quantum mechanics and the fact that the Pauli group forms a basis for all sin-

gle qubit operators, the errors are still correctable as in simulations through the 1WQC

model. Thus, simulating fault-tolerant quantum circuits through the PMM model is also

fault-tolerant.

22



1.4.2 Intrinsic fault-tolerance

We now turn our attention to the possibility of making any PMM computation directly

fault-tolerant, instead of simulating fault-tolerant quantum circuits within 1WQC.

1WQC relies on frequent measurement to implement a desired state evolution, but

none of this information is used towards fault-tolerance in simulation-based approaches.

The opportunity for improved performance becomes evident once one considers the well

known link between teleportation and 1WQC [CLN05, Nie05], and the fact that fault-

tolerant quantum computation in the circuit model can achieve very high thresholds via

extensive use of teleportation for simultaneous error syndrome extraction and state evo-

lution [Kni05a].

Encoded Computation

Before we consider how error syndrome information is to be extracted, we must consider

encoded computation in the PMM. The basic elements of the PMM are: preparation of

qubits in either |+〉 or |+π
4
〉, pair-wise entanglement via ∧Z, and measurement in the

X or Y eigenbases depending on the outcomes of previous measurements. Given some

quantum code, we can consider these same elements, but in the subspace corresponding

to the code chosen – that is, preparation of a block of qubits in the encoded states above,

encoded entangling operations, and collective measurements in the encoded eigenbases

X and Y . The use of the 7 qubit self-orthogonal doubly-even CSS codes [Ste96b] simpli-

fies the problem considerably if the generators of the encoded Pauli operators are chosen

to beZ = Z⊗7 andX = X⊗7. In that case, the encoded entangling operation∧Z is given

by the transversal application of ∧Z gates between respective qubits in two blocks – in

the PMM, it is the parallel concatenation of the pattern ∧Z. Moreover, measurement in

the encodedX and encoded Y eigenbases are performed by measuring each of the qubits

within the code block in the same basis individually, followed by classical decoding of

the outcomes to determine the encoded outcome. If we consider concatenated encod-

ing using this 7 qubit code, i.e. X
(j)

=
(
X

(j−1)
)⊗7

for the jth level of encoding with

X
(0) ≡ X and similar relations for Z

(j)
, these transversality properties are preserved.

The encoding procedure of any given stabilizer code over qubits is known to cor-

respond to a pattern in 1WQC which allows for arbitrary input and requires only mea-

surements along the eigenbases of the Pauli operators X and Y [SW02, GKR02]. In
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essence, this is just the translation of the encoding circuit into a measurement pattern

and the associated graph state. If we restrict the inputs to be either |+〉 or |+π
4
〉, we

can obtain the encoded states |+〉 or |+π
4
〉 strictly within the PMM. The entanglement

graph corresponding to the encoding circuit for the 7 qubit code is depicted in Figure 1.7.

Concatenated encoding proceeds in the obvious way, by serial concatenation of the mea-

surement pattern corresponding to the encoding procedure.

≡

Figure 1.7: Entanglement graph corresponding to the encoding of a single qubit into the

7 qubit CSS code. The boxed node corresponds to an arbitrary input qubit. All but the

white qubits (corresponding to the encoding output) are measured in the X basis (up to

feed-forward-based corrections).

However, for the purpose of fault-tolerant quantum computation, encoding requires

verification of the encoded states in order to ensure that these state do not contain errors

that are too correlated [Sho96, AGP06]. This can be performed naturally in the PMM via

state encoding at some given level of concatenation, followed by syndrome extracting

teleportation of the lower levels of encoding [Kni05a], which we will describe shortly.

If errors are detected at any concatenation level, the state is discarded and the procedure

starts again. There are purification protocols for the entangled state corresponding to the

encoding procedure of any CSS code [DAB03, MR06] – such as the 7 qubit code, as

depicted in Figure 1.7 – which may also be employed to reduce errors and error corre-

lations. We consider only the encoded states that have been successfully verified after

preparation as part of the computation. In this manner, encoded computation in the PMM

is akin to computation with nested graph states [Dan05a], where the entanglement graph

for encoding is nested within the computation entanglement graph.

It is important to note that the entire concatenated graph state must not be purified

directly, since the maximum vertex degree of the resulting graph grows linearly with the

level of concatenation, and the purification protocol performance degrades with higher
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vertex degrees [DAB03]. This is a general feature of purification protocols, including

more recent protocols with improved efficiency [MR06]. In order to avoid this problem,

one may perform purification of each encoded qubit (or encoded entangled pair) per

level of concatenation separately, followed by syndrome extraction teleportation with

post-selection of the states which have a clean syndrome, as described in [Kni05a].

Previous proposals for fault-tolerance in the 1WQC model make use of what is called

the one-buffered implementation of cluster states [ND05]. In such implementations,

which are based on the simulation of quantum circuits, the entanglement subgraph cor-

responding to the first two time steps in the circuit model is prepared. The measurements

corresponding to the first time step are performed, followed by the state preparation and

entangling operations corresponding to the third time step of the circuit model. After

that, the measurements for the second time step are performed, and computation proceeds

keeping a one time step “buffer” of qubits, so that the entire entanglement graph need

not be prepared in one shot. However, it has been demonstrated that the 1WQC model,

as well as the PMM, allow for greater parallelism in the computation [DKP05, DKP07].

In particular, some sequences of operations which lie in multiple time steps in the cir-

cuit model can be performed in a single time step in these measurement models (a large

class of such operations are unitaries in the Clifford group). Thus, one may prepare

states corresponding to larger subgraphs of the entanglement graph where all non-output

qubits will be measured simultaneously [DKP05, DKP07]. To see how these subgraphs

are defined, consider the following. First, group all qubits with measurements that do

not depend on previous measurements, as well as any qubits which interact with them

directly (or which are directly connected to them in the entanglement graph). The sub-

graph made up of these qubits, along with any edges between them in the original entan-

glement graph, is the subgraph corresponding to the first round of measurements. Then,

consider all qubits which depend only on the outcomes of measuring these qubits, along

with any qubits connected to them. This is the subgraph corresponding to the second

round of measurements. Continuing in this fashion, by looking for dependence only on

previous measurement outcomes, one can partition the entire entanglement graph. There

is a clear temporal order in which each measurement round must be performed, as well

as a temporal order in which each subgraph must be prepared and entangled with the

output of previous rounds.

In the case of the PMM, as mentioned before, Pauli measurements and final correc-

tions may depend on outcomes of previously measured qubits. This is because measure-
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ment of a vertex prepared in the |+π
4
〉 introduces a local Clifford correction to qubits

connected to it in the entanglement graph, and thus such vertices will always be on the

boundary of the subgraphs. However, patterns implementing Clifford operations have

measurements which are independent of each other’s outcome, and thus the insertion

of Clifford operations in a pattern does not increase the number of such subgraphs, or

equivalently, the minimal number of time steps in which measurements can be performed

in parallel. This is particularly relevant for fault-tolerance, as encoding and syndrome

extraction operations for stabilizer codes are Clifford operations. In principle such op-

erations can be performed in the same time step, if the entire corresponding subgraph is

available for measurement. The preparation of the subgraph itself will require multiple

time steps, due to verification, error correction and purification at different levels of en-

coding, but since these operations are independent of the rest of the computation, they

may be performed offline.

Clearly, it is not required that maximal parallelism – corresponding to the largest

subgraph – be implemented. There is a trade-off between the overhead introduced by

more complex offline preparation and verification of such larger subgraphs, and the lower

effective error rate which may be achieved. Implementations may range from the one-

buffered approach, to the fully parallel approach, which ensures that all measurements

without dependencies can be performed simultaneously.

Syndrome extraction

In order to perform fault-tolerant quantum computation, one must be able to extract

information about the errors in the data in order to ensure that only sufficiently noiseless

states are introduced into the computation, as described in the previous section, but also

to obtain information about which errors are likely to have occurred in order to correct

them. This error syndrome extraction can be performed via teleportation, as recently

described in [Kni05a, Kni05b]. In essence, the idea is to start with a maximally entangled

pair of encoded qubits |Ω〉1,2 = ∧Z12|+〉1|+〉2 which is prepared offline. Given some

encoded state ρ, the error syndrome can be extracted in the following manner. Measure

each transversal pair of physical qubits from ρ and the first half of |Ω〉1,2 in a basis of

maximally entangled states. The state ρ is then teleported into the second half of the

entangled pair, up to a tensor product P of local Pauli operators which is inferred from

the outcomes of the pair measurements. The error syndrome can in turn be inferred from
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these corrections by considering the commutator of P with each of the generators of the

stabilizer group of the code. This protocol can be seen as the transversal teleportation of

all the physical qubits where the n maximally entangled pairs have been projected into

the codespace being used. Note that this is different from an encoded teleportation –

an encoded maximally entangled state is used, but the measurements are performed on

physical qubits, not encoded qubits. The information about the errors in ρ are extracted

because the target states of teleportation (the second half of |Ω〉1,2) is taken to be, to

first order, an error free encoded state. In order to teleport ρ faithfully, the errors must

be teleported as well. These errors can be inferred from P , since which local Pauli

operations correspond to encoded operations are well known properties of the code. If P

is not one of these operations, then it is taken to be a product of a valid encoded operation

and some Pauli error. Whichever Pauli error is most likely, given that the errors on each

qubit are taken to be independent, is taken to be the error on ρ.

This teleportation-based technique for fault-tolerant quantum computation has been

rigorously proven to have an error threshold [AGP08], and extensive numerical evidence

supports the claim that the error threshold for this technique is significantly higher than

for other techniques [Kni05a].

Although the usual teleportation protocol [BBC+93] is performed with Bell pairs

and measurement in the Bell basis, teleportation can be performed with any measure-

ment in a basis of maximally entangled states, and this choice of basis fixes which

maximally entangled states can be used as a resource. In fact, teleportation can be per-

formed by the standard form of the serial concatenation J0 ◦ J0 – that is, the pattern

Xs2
3 Z

s1
3 M

0
2M

0
1E23E12N

0
3N

0
2 , which may be understood as a teleportation using the basis

obtained by applying a Hadamard gate to one of the qubits of a Bell basis. If we allow for

modified preparation of the entangled resource state, the pattern, stripped of the entan-

glement preparation, simply becomes T = Xs2
3 Z

s1
3 M

0
2M

0
1E12, which, for completeness,

must be concatenated with the pattern for the modified entangled state preparation (i.e.

the pattern that prepares the encoded entangled state).

Thus, in the PMM, syndrome extraction of some encoded state ρ is performed by: (I)

preparing and verifying the encoded state |Ω〉12, (II) teleporting all qubits in ρ individu-

ally using the resource state |Ω〉12, and (III) performing classical post-processing to infer

the syndrome information from the teleportation measurement outcomes. As discussed,

step (I) can be performed by hierarchical teleportation and post-selection [Kni05a, Kni05b],

while step (II) can be performed by parallel concatenation of the pattern T above, and
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Figure 1.8: Entanglement graphs for the fault-tolerant implementation of J0. The boxed

nodes correspond to input qubits, and all but the white nodes (corresponding to output

qubits) are measured in the X eigenbasis (up to feed-forward-based corrections).

step (III) is merely classical post-processing which affects the bases of subsequent mea-

surements. Partial syndrome information can be extracted in a similar fashion, as in the

case of the Jα pattern with α = nπ
2

, where, depending on α, one can obtain information

about Pauli errors which anti-commute with X or Y .

Performing the computation

Given any measurement pattern in the PMM, one may make it fault-tolerant by first

translating each of the commands to a larger pattern representing its encoded form, then

inserting instances of the syndrome extracting teleportation between each operation, and

standardizing the resulting pattern.

As a simple example, consider the pattern fragment Xs1
2 M

0
1E12 that implements the

unitary J0 = H , with entanglement graph depicted by Figure 1.8(a). Using a single

level of encoding under the 7 qubit CSS code, the resulting pattern is already long and

omitted for brevity, but its entanglement graph in Figure 1.8(b) demonstrates the sim-

plicity of the transformation. With the data protected by an error correction code and

offline preparation of encoded qubits, one inserts the syndrome extracting teleportation

to obtain the final fault-tolerant pattern with corresponding entanglement graph depicted

in Figure 1.8(c). The subgraph enclosed in the shaded triangle corresponds to the en-

coded state that must be prepared and verified before the remaining operations can be

performed, in what can be seen as an extension of the one-buffered implementation of

the unencoded case [ND05]. The subgraph inside the irregular pentagon (corresponding
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to the preparation of the encoded maximally entangled pair) is to be prepared and verified

before the qubits within it interact with the remainder of the graph. This demonstrates

the fact that only three subgraphs need to be prepared and verified offline: the smaller

subgraphs corresponding to the encoded states |+〉 and |+π
4
〉, and the larger subgraph

corresponding to the encoded state |Ω〉. This procedure for implementing fault-tolerance

works for any linear graph. Other graphs, such as the one corresponding to a ∧Z pattern

interacting between two linear chains, can be handled in a similar fashion, by simply

inserting syndrome extracting teleportations before and after the ∧Z pattern.

It is important to note that the qubits, interactions and measurements added to the

computation in order to extract syndrome information correspond to Clifford operations

on the quantum states. As pointed out earlier in the chapter, the measurements associated

with a sequence of Clifford operations can be performed in any order, even simultane-

ously and immediately after the qubits are made available for measurement, and thus

they do not increase the depth complexity of the computation [Rau03, DKP07]. More-

over, this also allows for the offline preparation of subgraphs corresponding to Clifford

operations, along with measurement of parts of the subgraph, which allows for the elim-

ination of some types of error via post-selection – as pointed out in [DHN06], for the

case of repeated syndrome extraction, one can post-select on subgraphs which will yield

agreeing syndromes.

1.5 Summary

We have described a measurement-based model of computation called the Pauli Mea-

surement Model (PMM) with the notable feature that measurements are restricted to the

eigenbases of the Pauli operatorsX and Y , and qubit state preparation is extended to both

|+〉 and |+π
4
〉. With the appropriate choice of quantum codes, any measurement pattern

in this model can be directly modified into another pattern within the same model, which

will have a lower effective error rate as long as the failure rate per operation is below a

threshold. The approach described here opens the door for further optimizations based

on the inherent parallelism of the operations in the PMM [DKP05, DKP07], generalizing

ideas about buffered computation in [ND05].
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Chapter 2

Teleportation to and from a quantum
bus

2.1 Introduction

The question of which physical system is best suited for quantum information processing

is still open, each implementation proposal having strengths and weaknesses. Due to the

technical challenges of building qubit systems, it may be practical to use other quantum

systems that do not fit naturally into the qubit paradigm to accomplish some limited tasks.

A concrete example of this is the use of laser pulses in the implementation of quantum

key distribution systems instead of single photons [BHK+98], as single photons are dif-

ficult to produce reliably on demand. Various other proposals have also taken a mixed

approach to the implementation of more general quantum information processors, using

a physical realization of a qubit for operations, and transferring to another physical re-

alization for storage, exploiting the fact that some of these systems interact easily. One

example of this is the use of electron spins for fast operations, and nuclear spins for long

coherence times [Kan98, DCJ+07]. This is not limited to naturally occurring quantum

systems, as in some implementations of superconducting qubits a harmonic mode in a

transmission line is used to store the state of the qubit more reliably when operations are

not being performed [KKM+06, BDKS08]. The flexibility that such mixed implementa-

tion provides is a great practical advantage because it allows different properties of the

different physical systems to be exploited to maximal potential.

More abstractly, coherent states of a quantum oscillator with large amplitude, such
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as a laser pulse or a voltage pulse, have been proposed as replacements for ancillary

qubits in quantum computers [MNS05, SNB+06]. In these systems, the oscillator can be

used as a quantum communication bus (also referred to as a qubus), which can act as a

mediator for interactions between distant qubits. The essential building block for these

proposals is weak interaction between qubits and the qubus. The effective interaction

between the qubits is then achieved by rounds of communication via the qubus, and for

this reason these proposals are described as quantum computation by communication.

In this work, we consider the possibility of encoding a qubit directly into superposi-

tions of coherent states of the quantum bus. Such a possibility has been considered pre-

viously, but the main difficulty of earlier proposals was the need for strong interactions

between qubits and the qubus, which is hard to achieve in practice [RGM+03, GNM+04].

Our approach is to exploit the strong points of the qubus, such as simple entanglement

generation, along with the strong points of qubits, such as simple individual system ma-

nipulation, and to join them together via teleportation. This can be achieved by using

only weak interactions between qubits and the qubus, in a manner similar to the propos-

als of computation via communication, thereby avoiding the main technical challenge of

the earlier proposals of quantum computation with coherent states.

The techniques we present here also have features that go beyond universal quantum

computations. In particular, the teleportation protocols we propose herald the fidelity of

the resulting state to the desired outcome. In a setting where this fidelity is on average

lower than some desirable threshold due to technological limitations, the protocols can

still be used to prepare useful resource states with high fidelity, albeit in a probabilistic

manner. In principle this fidelity can be brought arbitrarily close to one, at the cost super-

exponentially small probability of success. In a more realistic setting, significant gains

in fidelity are still achievable with only moderate losses in the probability of success.

As concrete demonstration of the power and flexibility of this teleportation based

approach, we describe how to perform error correction fault-tolerantly for a large class

of quantum codes. This extends earlier work which demonstrated how to perform error

correction for repetition codes [YNM06].

The chapter is organised as follows. First, in Section 2.2 we briefly describe the

qubus and its properties, along with how we encode information in the qubus states. In

Section 2.3 we describe the fundamental building block of our proposal: one bit tele-

portations between a qubus and a qubit. This allows us to perform universal quantum

computation, as described in Section 2.4. In Section 2.5 we also describe how the same
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teleportation protocols, along with beam-splitters, can be exploited to prepare large en-

tangled states, or to encode states into the quantum repetition code. Finally, in Section 2.6

we describe how all these proposals for gates and state preparations can be used to per-

form fault-tolerant error correction on qubits using qubus states as ancillas.

2.2 Quantum communication bus

Although quantum information proposals usually focus on finite dimensional systems

represented by qubits, there are many continuous variable systems available with inter-

esting quantum properties. A prime example of such a continuous variable system is the

quantum harmonic oscillator, and a common physical realization is a mode of the elec-

tromagnetic field [WM94]. Recent proposals have demonstrated how such systems can

be used for quantum communication or as well as mediators for interactions between the

qubits [MNS05, SNB+06], so that this continuous variable mode is referred to as a quan-

tum communication bus, or simply a qubus. The basic element used in these proposals is

a weak interaction between a qubit and qubus. The interaction we consider has the form

H = ~χ|1〉〈1| ⊗ n̂, (2.1)

where χ is the interaction strength, |1〉〈1| acts on the qubit state, n̂ is the number operator

acting on the qubus. This type of interaction can be implemented by a large number

of physical systems [SNB+06], ranging from a superconducting qubit interacting with

the electromagnetic field in a cavity resonator [BHW+04], to photon-photon interactions

mediated by non-linear media [NM04, MNS05, MNBS05, FEF+08], or even interactions

between vibrational modes of ions in an ion trap [RMK+08].

While previous investigations have focused on building qubit interactions by using

geometric phases accumulated during communication [SNB+06], here we will take a

more direct approach, by encoding a qubit on states of the qubus. If we allow the inter-

action to act for a time t resulting in a unitary evolution U(t), the action of U(t) on basis

states of the qubit and the qubus is

U(t)|0〉|α〉 = |0〉|α〉 (2.2)

U(t)|1〉|α〉 = |1〉|αeiθ〉 (2.3)

where θ = χt, and |α〉/|αeiθ〉 are coherent states [WM94]. It is clear than that the

interaction can be taken as a controlled rotation by θ of the state of the qubus in phase
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space [Sch00]. Rotations by a negative angle can also be implemented, simply by acting

with the Pauli operation Z on the qubit before and after the interaction. The symbols we

will be using to denote this controlled phase space rotation are depicted in Figure 2.1.

The weakness of the interaction manifests itself on the magnitude of θ. Recent optical

experiments have θ on the order of 0.1 rad, but such large values can be hard to achieve,

and tend to be much lower. For this reason, we take θ to be fixed by the implementation,

but we allow for the possibility of varying α.

Figure 2.1: Circuits representing phase-space rotations of the qubus (red line) controlled

by the state of the qubit (grey line).

There is a close analogy between these controlled rotations and the CNOT opera-

tion common in quantum information. If we make the identification |0〉 → |α〉 and

|1〉 → |αe±iθ〉 – what we will call qubus logic from here on – we see that the action of

the controlled rotation resembles the action of the CNOT, with the qubit controlling the

operation on the qubus. Moreover, a quadrature measurement along x is able to distin-

guish between |α〉 and |αe±iθ〉 (if αθ2 is large enough). If we have a superposition of

the states |α〉 and |αe−iθ〉 and we apply the interaction, then we obtain a superposition of

the states |α〉 and |αe+iθ〉. This analogy breaks down when we consider multiple appli-

cations of the controlled rotations to qubit states which are in superpositions, as this will

lead to potentially applying a rotation by θ to the state |αeiθ〉, resulting in a state outside

the qubus logic space (namely, the superpositions of |α〉 and |αe±iθ〉).

In order to avoid this problem, we can restrict the application of controlled rotations

to superpositions of |α〉 and only one of |αe±iθ〉. This can be enforced by allowing

controlled rotations to be applied only twice between starting with the state |α〉 and

measuring the qubus state. Although this may appear overly restrictive at first, a number

of useful quantum information processing tasks can be performed in this manner. The

first example of this is the parity gate, depicted in Figure 2.2 [YNM06]. It can be seen

that this circuit is a parity gate when we consider its effect on the input state |ψin〉 =(
c0|00〉 + c1|01〉 + c2|10〉 + c3|11〉

)
|α〉. After the interactions, the state of the system is
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Figure 2.2: Parity gate implemented using controlled phase space rotations.

(
c0|00〉 + c3|11〉

)
|α〉 + c1|01〉|αe−iθ〉 + c2|10〉|αeiθ〉. Due to the entanglement between

the qubits and the qubus, it is possible to distinguish between c0|00〉+c3|11〉 and c1|01〉+
c2|10〉 by measuring the x-quadrature of the qubus, since the projection 〈x|α〉 is peaked

around 2α for |α〉, and 2α cos θ for |αe±iθ〉. For small θ, in order to distinguish the two

states with high fidelity, we require that αθ2 � 1.

This parity gate is capable of preparing entangled pairs of qubits via post-selection.

Preparing the qubits in the states |+ +〉, projection onto the even parity subspace yields
1√
2
(|00〉 + |11〉), while projection onto the odd parity subspace yields 1√

2
(|01〉 + |10〉)

– regardless of the parity measurement outcome, the result is a maximally entangled

state. It also possible to demonstrate how these two-qubit parity measurements can

be used directly to perform error correction in some very specific types of quantum

codes [YNM06], which we will discuss in more detail in Section 2.6, along with gener-

alizations we have developed to more general codes. In order to perform more general

quantum operations, we must consider teleportation.

2.3 One-bit teleportations between a qubit and a bus

For states encoded in qubus logic, most unitary operations are difficult to implement,

precisely because the coherent states have a finite overlap. Given a superposition of

qubus states, however, entanglement can be created relatively easily. Sending the state

|
√

2α〉 through balanced two port beam-splitter, with the vacuum as the other input,

results in the state |α〉|α〉. If we send the state |
√

2α〉 + |
√

2αe±iθ〉 instead, known as a

Schrödinger cat state (or simply a cat state) one obtains [RGM+03, GNM+04]

|α〉|α〉+ |αe±iθ〉|αe±iθ〉, (2.4)

which is clearly entangled. This is depicted in Figure 2.3.
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Figure 2.3: Creation of entanglement through the use of a balanced beam-splitter.

Single qubits, on the other hand, are usually relatively easy to manipulate, while

interactions between them can be challenging. As we have discussed in the previous

chapter, the teleportation of quantum states is powerful tool which can be used not only

for communication, but also to implement unitary operations on quantum states. For this

reason, we consider one-bit teleportation between states of a qubit and states of the qubus.

The two types of one-bit teleportations for qubus computation are shown in Figure 2.4,

based on similar constructions proposed for qubits [ZLC00].

Figure 2.4: Approximate one-bit teleportation protocols between a qubit (grey) and a

qubus (red) using controlled rotations.

The one-bit teleportation of the qubit state c0|0〉+ c1|1〉 into a state of qubus logic is

depicted in Figure 2.4(a). The initial state, before any operation, is
(
c0|0〉 + c1|1〉

)
|α〉.

After the controlled rotation by θ the state becomes c0|0〉|α〉+ c1|1〉|αeiθ〉. Representing

the qubit state in the X eigenbasis, this is |+〉
(
c0|α〉 + c1|αeiθ〉

)
/
√

2 + |−〉
(
c0|α〉 −

c1|αeiθ〉
)
/
√

2. When we detect |+〉 we have successfully teleported the qubit state into

the qubus. When we detect |−〉 we have the state c0|α〉− c1|αeiθ〉 (up normalization, due

to the finite overlap between the coherent states). The relative phase discrepancy can be

corrected by the operation Z̃, which approximates the Pauli Z operation in qubus logic.

This correction can be delayed until the state is teleported back to a qubit, where it is

more easily implemented.

The one-bit teleportation of the qubus state c0|α〉+ c1|αeiθ〉 to a state of the qubit can

be performed by the circuit depicted in Figure 2.4(b). Starting with
(
c0|α〉+c1|αeiθ〉

)
(|0〉+

|1〉)/
√

2, after the controlled rotation by −θ, the state becomes |α〉
(
c0|0〉+ c1|1〉

)
/
√

2 +
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(
c1|αeiθ〉|0〉+ c0|αe−iθ〉|1〉

)
/
√

2. Projecting the qubus state into the x-quadrature eigen-

state |x〉 via homodyne detection, which is the measurement we depict as Z̃ (to evoke

the idea of measuring the the Z eigenbasis), results in the conditional unnormalized state

|ψ(x)〉

|ψ(x)〉 =
f(x, α)√

2
(c0|0〉+ c1|1〉) +

f(x, α cos θ)√
2

(eiφ(x)c1|0〉+ e−iφ(x)c0|1〉) (2.5)

where

f(x, β) =
1

(2π)4
exp

(
−(x− 2β)2

4

)
(2.6)

φ(x) = αx sin(θ)− α2 sin(2θ), (2.7)

since 〈x|αe±iθ〉 = e±iφ(x)f(x, α cos θ) and 〈x|α〉 = f(x, α) for real α [WM94, NM04].

The weights f(x, α) and f(x, α cos θ) are Gaussian functions with the same variance

but different means, given by 2α and 2α cos θ, respectively. Given x0 = α(1 + cos θ),

the midpoint between f(x, α) and f(x, α cos θ), one can maximize the fidelity of ob-

taining the desired state c0|0〉 + c1|1〉 (averaged over all possible values of x) by simply

doing nothing when x > x0 (where f(x, α) > f(x, α cos θ)), or applying Z(φ(x)) =

exp(−iφ(x)Z), a Z rotation by φ(x), followed by a Pauli X operator, when x ≤ x0. For

simplicity, these teleportation corrections are not depicted in the circuit diagrams in the

sections to follow, and it is left implicit that they must be performed when the state is

transferred to a qubit.

2.3.1 Average fidelities

In order to quantify the performance of the protocols just described, we use the process

fidelity [HHH99, GLN05]. The process fidelity between two quantum operations is ob-

tained by computing the fidelity between states isomorphic to the processes under the

Choi-Jamiołkowski isomorphism [Jam72, Cho75]. For example, in order to compare a

quantum process E acting on a D dimensional system to another quantum process F
acting on the same system, we compute the fidelity between the states

ρE = 1D ⊗ E

(
1√
D

D∑
i=1

|ii〉

)
(2.8)

ρF = 1D ⊗F

(
1√
D

D∑
i=1

|ii〉

)
. (2.9)
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In the case of single qubit processes, we just need to consider the action of the process

on one of the qubits of the state 1√
2
(|00〉+ |11〉). The operational meaning of the process

fidelity is given by considering the projection of the first qubit into a particular state

a|0〉 + b|1〉. In this case the second qubit collapses into the state corresponding to the

output of the process acting on the state a|0〉+ b|1〉. Thus a high fidelity between ρE and

ρF implies a high fidelity between the outputs of the E and F .

Consider the state resulting from the teleportation of half of 1√
2
(|00〉 + |11〉) using

the circuit in Figure 2.4(a). This state is

|ψ±〉 =
1√
2
(|0, α〉 ± |1, αeiθ〉), (2.10)

where the sign depends on the qubit measurement outcome. As the relative phase is

known, and the correction can be performed after the state is teleported back to a qubit,

for each of the outcomes we can compare this state with the ideal state expected from

the definition of the basis states for the qubus. This results in the process fidelity of 1 for

one-bit teleportation into the qubus.

For the case where we teleport the state from the qubus back into the qubit, using

the circuit in Figure 2.4(b), we consider the action of the process on the second half of

the state |ψ+〉 from (2.10). This is not, strictly speaking, the Choi-Jamiołkowski isomor-

phism, but it gives the same operational meaning for the process fidelity as a precursor to

the fidelity between the outputs of the different processes being compared, as any qubus

logic state can be prepared from |ψ+〉 by projecting the qubit into some desired state. We

expect the output state to be 1√
2
(|00〉+ |11〉) from the definition of the basis states, but

we instead obtain the unnormalized states

|ψE(x > x0)〉 =
f(x, α)√

2

(
|00〉+ |11〉√

2

)
+

f(x, α cos θ)√
2

(
e−iφ(x)|01〉+ eiφ(x)|10〉√

2

)
, (2.11)

|ψE(x < x0)〉 =
f(x, α)√

2

(
e−iφ(x)|01〉+ eiφ(x)|10〉√

2

)
+

f(x, α cos θ)√
2

(
|00〉+ |11〉√

2

)
. (2.12)

The normalized output state, averaged over all x outcomes, is

ρ =

∫ ∞

x0

|ψE(x > x0)〉〈ψE(x > x0)| dx+

∫ x0

−∞
|ψE(x < x0)〉〈ψE(x < x0)| dx, (2.13)
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so that the average process fidelity for one-bit teleportation into a qubit is

Fp =
1

2
+

1

2
erf

(
xd

2
√

2

)
, (2.14)

where xd = 2α(1 − cos θ) ≈ αθ2 for small θ. Teleportation from the qubus into the

qubit is not perfect, even in the ideal setting we consider, because the states |α〉 and

|αe±iθ〉 cannot be distinguished perfectly. However, Fp can be made arbitrarily close to

one by letting xd → ∞, or αθ2 → ∞ if θ � 1, as seen in Figure 2.5. This corresponds

to increasing the distinguishability of the coherent states |α〉 and |αeiθ〉. For fixed θ

both these limits correspond to making α large. If θ is exceedingly small, this can be

problematic in an experimental setting – in the optical case, a large α corresponds to

using high power lasers, which may have detrimental effects on the material used to

implement the interaction. Thus the strength of the interaction will impose limits on how

well these teleportations can be performed deterministically.
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Figure 2.5: Fidelity Fp of one-bit teleportation from the qubus to a qubit, as a function of

xd.

2.3.2 Post-selected teleportation

In order to improve the average fidelity of the teleportations without changing the phys-

ical parameters α and θ of the basis states, one can post-select the outcomes of the x-

quadrature measurements when teleporting states from the qubus to a qubit, as these

outcomes essentially herald the fidelity of the output state with the desired state. Dis-

carding the states with fidelity below a certain threshold allows for the average fidelity to

be boosted, even in the case where αθ2 6� 1, at the cost of a certain probability of failure.

This is particularly useful for the preparation of special quantum states which are used
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as resources for some quantum information processing tasks, as we have discussed in

Chapter 1.

Instead of accepting all states corresponding to all x outcomes of the homodyne mea-

surement which implements Z̃, we only accept states corresponding to outcomes which

are far enough away from the midpoint x0, since the state at x0 has the lowest fidelity

with the desired state. More explicitly, we only accept states corresponding to measure-

ment outcomes which are smaller than x0 − y or larger than x0 + y. This post-selection

can only be performed for one-bit teleportation from the qubus to the qubit, yielding a

probability of success given by

Pr(|x− x0| > y) =
1

2

[
erfc

(
2y − xd

2
√

2

)
+ erfc

(
2y + xd

2
√

2

)]
, (2.15)

and process fidelity conditioned on the successful outcome given by

Fp,y =
erfc

(
2y−xd

2
√

2

)
erfc

(
2y−xd

2
√

2

)
+ erfc

(
2y+xd

2
√

2

) . (2.16)

The effect of discarding some of the states depending on the measurement outcome for

the teleportation in Figure 2.4(b) is depicted in Figure 2.6. In particular, we see that

the process fidelity can be made arbitrarily close to 1 at the cost of lower probability of

success, while α and θ are unchanged, since

lim
y→∞

Fp,y = 1. (2.17)

As the probability mass is highly concentrated due to the Gaussian shape of the dis-

tribution of quadrature measurement outcomes, the probability of success drops super-

exponentially fast as a function of y. This is because for z > 0 we have [Wei08]

2√
π

e−z
2

z +
√
z2 + 2

< erfc(z) <
2√
π

e−z
2

z +
√
z2 + 4

π

. (2.18)

This fast decay corresponds to the contour lines for decreasing probability of success

getting closer and closer in Figure 2.6. Thus, while the fidelity can be increased arbitrar-

ily via post-selection (by increasing y), this leads to a drop in the probability of obtaining

the successful post-selection outcome. Note that, despite this scaling, significant gains in

fidelity can be obtained by post-selection while maintaining the physical resources such

as α and θ fixed, and while maintaining a reasonable probability of success. In particu-

lar, if xd = 2.5, increasing y from 0 to 1.25 takes the fidelity from 0.9 to 0.99 while the

probability of success only drops from 1 to 0.5.

40



If the probability of success is to be maintained constant, a linear increase in xd

can bring the fidelity exponentially closer to unity, as is evident in Figure 2.6. As xd
is proportional to the amplitude α of the coherence state, this can be achieved while

maintaining θ constant. Since θ is usually the parameter which is hard to increase in

an experimental setting, this ability to improve the fidelity without changing θ is highly

advantageous.
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Figure 2.6: Contour lines for post-selected fidelity Fp,y of one-bit teleportation from the

qubus to a qubit (blue), and success probability for post-selection (red), as a functions

of xd and y.

Instead of discarding the outputs with unacceptable fidelity, one can also use the

information that the failure is heralded to recover and continue the computation. In

the case of the one-bit teleportations described here, such an approach would require

active quantum error correction or quantum erasure codes – the type of codes necessary

for heralded errors – which have much higher thresholds than general quantum error

correcting codes [Kni05a, Kni05b]. We will not discuss such a possibility further in this

paper, and will focus instead on post-selection for quantum gate construction and state

preparation.
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2.4 Universal quantum computation

As we have demonstrated, a quantum state can be transferred between a qubit and a qubus

relatively easily. In order to demonstrate universal quantum computation, it is necessary

to demonstrate both arbitrary single qubit unitaries, as well as entangling operations

between two quantum systems. For illustration purposes, we will focus on implementing

universal quantum operations on states of the qubus, as at first glance it is not clear how

unitary operations can be performed in such systems.

It is important to note that there is little flexibility regarding the measurement of

the qubus. The measurement of the x-quadrature is tailored to distinguish between |α〉
and its rotated versions. It is not clear whether it would be possible to make measure-

ments which can distinguish between particular superpositions of these states while at

the same time not distinguishing between |αeiθ〉 and |αe−iθ〉. While in principle such a

measurement can be implemented by applying a unitary in qubus logic using technique

we will describe later, for simplicity we will not consider this possibility. This pre-

cludes, for example, a direct implementation of 1WQC or the Pauli measurement model,

as these computational models require the ability to perform projective measurements

of the qubus state into superposition of the qubus logic basis states. However, it is still

possible to use teleportation to implement universal quantum computation, as we now

describe.

2.4.1 Single qubit gates

In the special case of applying the Pauli operator X on the state c0|α〉+ c1|αeiθ〉, we can

simply apply the phase shifter e−iθn̂ to obtain c0|αe−iθ〉 + c1|α〉, similarly to the bit flip

gate in [RGM+03].

An arbitrary single qubit unitary gate U can be applied to the state c0|α〉 + c1|αeiθ〉
by the circuit shown in Figure 2.7. We first teleport this state to the qubit using the circuit

in Figure 2.4(b) and then perform the desired unitary U on the qubit, giving U
(
c0|0〉 +

c1|1〉
)
. We can teleport this state back to the qubus with Figure 2.4(a), while the Z̃

correction can be delayed until the next single qubit gate, where it can be implemented

by applying a Z in addition to the desired unitary. If it happens that this single qubit

rotation is the last step of an algorithm, we know that this Z̃ error will not effect the
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outcome of a homodyne measurement (which is equivalent to a measurement in the Pauli

Z eigenbasis), so that this correction may be ignored.

Figure 2.7: A local gate U applied to the qubus via teleportations.

Since arbitrary single qubit gates are implemented directly in the two level system,

the only degradation in the performance comes from the teleportation of the state from

the qubus to the qubit, resulting in the fidelity given in (2.14).

Post-selected implementation of single qubit gates

The fidelity of single qubit gates in qubus logic can be improved simply by using post-

selected teleportations. For simplicity, if we disregard the second one-bit teleportation

which transfers the state back to qubus logic, we obtain the probability of success given

in (2.15) and the conditional process fidelity given in (2.16).

2.4.2 Entangling gates

The entangling gate we consider is ∧Z, which, as discussed in Chapter 1, can be imple-

mented by one-bit teleportations. The resource state necessary is

1

2

(
|00〉+ |01〉+ |10〉 − |11〉

)
= (1⊗H)(|00〉+ |11〉)/

√
2, (2.19)

which can be produced offline by any method that generates a maximally entangled pair

of qubits. One possible approach for preparing maximally entangled pairs of qubits is the

parity measurement we have already discussed [YNM06]. However, this maximally en-

tangled pair of qubits can also be generated by teleporting the qubit state (|0〉+ |1〉)/
√

2

onto a qubus using Figure 2.4(a), as this results in the cat state |
√

2α〉+ |
√

2αeiθ〉. Send-

ing the cat state through a symmetric beam splitter yields |α, α〉+ |αeiθ, αeiθ〉 [RGM+03,

GNM+04]. If we now teleport this state to a qubit with Figure 2.4(b) we have, to a good
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approximation, the Bell state
(
|00〉 + |11〉

)
/
√

2, and with a local Hadamard gate we

finally obtain 1
2

(
|00〉 + |01〉 + |10〉 − |11〉

)
. Since we are only concerned with prepar-

ing a resource state which in principle can be stored, we can perform post-selection at

the teleportations to ensure the state preparation is of high fidelity, as described in Sec-

tion 2.3.2. After the necessary corrections the state is teleported back to the qubus. The

overall circuit is shown in Figure 2.8. As with the single qubit gates, Z̃ corrections may

be necessary after the final teleportations, but these corrections can also be delayed until

the next single qubit gate.

Figure 2.8: The entangling gate CSIGN performed via teleportation of qubus states.

We can see what affect the condition αθ2 6� 1 has on the function of the gate in

Figure 2.8 by looking at the process fidelity. As this gate operates on two qubits, the

input state to the process we want to compare is

1

2

(
|0, 0〉|α, α〉+ |0, 1〉|α, αeiθ〉+ |1, 0〉|αeiθ, α〉+ |1, 1〉|αeiθ, αeiθ〉

)
. (2.20)

From the basis states we have defined, we expect the output

|ψ2〉 =
1

2

(
|0, 0〉|α, α〉+ |0, 1〉|α, αeiθ〉+ |1, 0〉|αeiθ, α〉 − |1, 1〉|αeiθ, αeiθ〉

)
. (2.21)

The unnormalized state output from Figure 2.8 is

|ψ2,o〉 =
1

4

{
f(x, α)f(x′, α) [|00〉|00〉+ |01〉|01〉+ |10〉|10〉 − |11〉|11〉]

+ f(x, α)f(x′, α cos θ)
[
e−iφ(x′)(|00〉|01〉+ |10〉|11〉) + eiφ(x′)(|01〉|00〉 − |11〉|10〉)

]
+ f(x, α cos θ)f(x′, α)

[
e−iφ(x)(|00〉|10〉+ |01〉|11〉) + eiφ(x)(|10〉|00〉 − |11〉|01〉)

]
+f(x, α cos θ)f(x′, α cos θ)

[
e−i(φ(x)+φ(x′))|00〉|11〉+ ei(φ(x′)−φ(x))|01〉|10〉+

ei(φ(x)−φ(x′))|10〉|01〉 − ei(φ(x)+φ(x′))|11〉|00〉
]}
, (2.22)

where x and x′ are the outcomes of the Z̃ measurements (top and bottom in Figure 2.8,

respectively). For simplicity, we disregard the final teleportations back to qubus modes,
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as we have already discussed how they affect the average fidelity of the state in Sec-

tion 2.3. Since we have two homodyne measurements to consider, we need to look at

the four cases: (i) x greater than x0 and x′ greater than x0; (ii) x greater than x0 and x′

less than x0; (iii) x greater than x0 and x′ less than x0; (iv) x less than x0 and x′ less

than x0. The necessary corrections for each of these cases are (i) 1⊗ 1 (ii) 1⊗XZφ(x′)

(iii) XZφ(x)⊗ 1 (iv) XZφ(x)⊗XZφ(x′). Integrating over x and x′ for these four different

regions, one finds the process fidelity to be

FCSIGN =
1

4

(
1 + erf

(
xd

2
√

2

))2

, (2.23)

which just corresponds to the square of the process fidelity for a one-bit teleportation into

qubits, as the only source of failure is the indistinguishability of the basis states for qubus

logic. A plot showing how this fidelity scales as a function of xd is shown in Figure 2.9.
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Figure 2.9: Fidelity FCSIGN due to CSIGN teleportation, as a function of xd.

Post-selected implementation of the entangling gate

We can counteract the reduction in fidelity shown in Figure 2.9 in a similar way to the

single qubit gate case, by only accepting measurement outcomes less than x0 − y and

greater than x0 + y. We find the success probability and conditional fidelity to be

PCSIGN =
1

4

(
erfc

(
2y − xd

2
√

2

)
+ erfc

(
2y + xd

2
√

2

))2

(2.24)

FCSIGN,y =

 erfc
(

2y−xd

2
√

2

)
erfc

(
2y−xd

2
√

2

)
+ erfc

(
2y+xd

2
√

2

)
2

, (2.25)
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respectively. As before, we see that the process fidelity can be made arbitrarily close to

1 at the cost of lower probability of success. It should also be immediately clear that as

y → 0, we have PCSIGN → 1 and FCSIGN,y → FCSIGN.

We see how discarding some of the teleportation outcomes improves the the perfor-

mance in Figure 2.10. Even though there is some degradation due to the use of two

approximate teleportations instead of one, the general scalings of the fidelity and prob-

ability of success with respect to y and xd are similar to the one-bit teleportation. In

particular, we see that the fidelity can be increased by increasing xd (or equivalently, α)

or by increasing y.
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Figure 2.10: Contour lines for post-selected fidelity FCSIGN,y of CSIGN teleportation

(green), and success probability for post-selection (gold), as a functions of xd and y.

2.5 Preparation of entangled states

The technique we have describe for the preparation of the maximally entangled qubit

pair 1√
2
(|00〉 + |11〉) can be generalized to prepare entangled states known as GHZ

states [GHZ89], which have the general form

1√
2
(|0〉⊗N + |1〉⊗N). (2.26)
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Such states are locally equivalent to a star-shaped graph states [HDE+06], which in turn

can be used in the preparation of the large entangled states used in the one-way model of

computation [RB01, BR05].

We first start with the state (|0〉 + |1〉)/
√

2 and teleport it to a qubus initially in the

larger amplitude |
√
Nα〉, resulting in |

√
Nα〉+ |

√
Nαeiθ〉. Sending this state through an

N port beam splitter withN−1 vacuum states in the other ports yields |α〉⊗N+|αeiθ〉⊗N ,

by the same linearity arguments as before. Each of these modes can then be teleported

back to qubits, yielding (|0〉⊗N + |1〉⊗N)/
√

2.

Beyond preparing GHZ states, this same circuits can be used to encode quantum

states into a quantum repetition code [Sho96]. An n qubit repetition code makes the

correspondence

c0|0〉+ c1|1〉 → c0|0〉⊗N + c1|1〉⊗N , (2.27)

so that it is possible to correct X errors on up to
⌊
n
2

⌋
qubits. Such an encoding can be

performed by simply preparing the input of the teleportation in the state c0|0〉 + c1|1〉
and obtain an approximation to c0|0〉⊗N + c1|1〉⊗N . In order to evaluate the performance

of this process, we once again calculate the process fidelity by using the input state
1√
2
(|00〉+ |11〉) and acting on the second subsystem. Using a generalization of (2.22) we

calculate the effect of αθ2 6� 1 on the production of a GHZ state of size N to be

FREP =
1

2N

(
1 + erf

(
xd

2
√

2

))N
. (2.28)

Again, this corresponds to the N th power of the process fidelity of a single one-bit tele-

portation. The fidelity of preparing repetition encoded states drops exponentially with

N . In Figure 2.11 we show the fidelity as a function of xd for N = 3 and for N = 9.
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Figure 2.11: Process fidelity FREP of repetition encoding as a function of xd.
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2.5.1 Post-selected preparation of entangled states

The reduction in fidelity due to αθ2 6� 1 in (2.28) can be counteracted, as before, by

simply performing post-selection during the one-bit teleportations into the qubits.

As each teleportation has independent quadrature measurement outcomes, we find

the success probability and conditional fidelity to be

PREP =
1

2N

(
erfc

(
2y − xd

2
√

2

)
+ erfc

(
2y + xd

2
√

2

))N
(2.29)

FREP,y =

 erfc
(

2y−xd

2
√

2

)
erfc

(
2y−xd

2
√

2

)
+ erfc

(
2y+xd

2
√

2

)
N

(2.30)

As y → 0 we see that PREP → 1 and FREP,y → FREP.

The effect of discarding some of states corresponding to undesired homodyne mea-

surement outcomes can be seen in Figures 2.12 and 2.13. One can prepare a state encoded

in the repetition code with an arbitrarily high process fidelity, regardless of what θ and α

are. The expected degradation in performance due to the additional teleportations is also

evident in the faster decay of the probability of success with larger y. In reality, due to

the exponential dependence in N , this approach is only practical for a small number of

qubits.

2.6 Error correction

In order to perform quantum error correction, it is necessary not only to prepare encoded

states, but to also detect errors without collapsing quantum superpositions. In the case

of the repetition code, this is done by measuring the parity of multiple pairs of qubits

in the encoded state [Sho96]. Intuitively, this is because any two qubits in the encoded

basis states will be in the state state, and thus measuring the parity will not be able to

distinguish between the basis encoded basis state – any two qubits of an encoded state

will always have even parity (either |00〉 or |11〉). If an X error acts on a particular qubit,

it will cause some subset of parities become odd, and the location of the error can then

be inferred.

As we have discussed previously in Section 2.2, the parity of two qubits can be ob-

tained by rotating the qubus state twice depending on the state of each qubit, each time in
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Figure 2.12: Contour lines for post-selected process fidelity FREP,y of 3-fold repetition

encoding (blue), and success probability for post-selection (red), as a functions of xd and

y.

a different direction, as first demonstrated in [YNM06]. Quantum mechanically, the mea-

surement of the parity of two qubits corresponds to the measurement of the Pauli operator

ZZ. With two parity gates we can measure the Pauli operators ZZI and IZZ. That is,

one parity gate is applied to qubits 1 and 2 to measure ZZI while the second parity gate

is applied to qubits 2 and 3 to measure IZZ. There are four subspaces to consider: no

error, spanned by |000〉 and |111〉 ; an error on qubit 1, spanned by |100〉 and |011〉; an

error on qubit 2, spanned by |010〉 and |101〉; or an error on qubit 3, spanned by |001〉 and

|110〉. We can see what the effect of a bit flip error on each of the modes is by consider-

ing the state |b1b2b3〉|α〉|α〉, where bi ∈ {0, 1}. Directly before the measurement of the

qubus state in Figure 2.14 the joint state of the system is |b1b2b3〉|αei(b1−b2)θ〉|αei(b3−b2)θ〉.
When we measure the probe states to be |αe±imθ〉|αe±inθ〉, where m,n ∈ {0,±1}, we

know whether there was no error (m,n = 0) or a one bit flip error, the location of the bit

flip also being identified by the values of m and n.

There are many different codes that are more powerful and more efficient than the

repetition code. The class usually considered for the purposes of fault-tolerant quantum

computation is the class of stabilizer codes [Got97]. In order to perform error correc-

tion with stabilizer codes, it is sufficient to be able to measure the parity of m different

qubits, for some number m which depends on the code. These observables that must be
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encoding (green), and success probability for post-selection (gold), as a functions of xd
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Figure 2.14: Two parity gates combined to measure the Pauli operators ZZI and IZZ.

measured are the generators of a group, called the stabilizer group, which is the origin

of the name for this class of codes. In general, however, m > 2, and the techniques

we have described above cannot be applied without modification. As we have discussed

earlier, if we simply apply a longer sequence of controlled rotations, the resulting qubus

states will lie outside the logical space we have defined, and will also disturb the quan-

tum superpositions of encoded states. As a concrete example, consider the [[7, 1, 3]]

stabilizer code [Ste96b], which we have discussed in Chapter 1. This code can correct a

single arbitrary quantum error in any of the 7 qubits, and it has been used extensively in

studies of fault-tolerance in quantum computers due to the fact that it allows for simple

constructions of fault-tolerant encoded gates [Got98a]. In order to detect which error
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has corrupted the data, one must measure six multi-qubit Pauli operators which, up to

qubit permutations and local unitaries, are equivalent to the Pauli operator ZZZZ, or

the measurement of only the parity of 4 qubits. For an arbitrary stabilizer code, vari-

ous multi-qubit Pauli operator must be measured, each of which is always equivalent to

a measurement of only the parity of a subset of qubits, thus it is sufficient to consider

only multi-qubit parity measurements in order to perform quantum error correction with

stabilizer codes.

2.6.1 Fault-tolerance

The measurement of the parity of two qubits using a single probe mode also has the

problem that it is not fault-tolerant. If there is an error on the coherent probe mode

during one of the controlled rotations, say photon loss, it would be transferred to a phase

error in each of the physical qubits it interacts with afterwards – that is, a single fault can

cause a number of errors which is greater than the number of errors the code can correct.

For this reason we now look at measuring the syndromes of stabilizers fault-tolerantly.

Shor [Sho96] first described how to fault-tolerantly measure the generators of the

stabilizer group of a quantum error correcting code using ancilla GHZ states
(
|0〉⊗m +

|1〉⊗m
)
/
√

2, CNOTs and Hadamards. For example, in order to measure the Pauli operator

ZZZZ, we would use the circuit shown in Figure 2.15(a). The main feature of this circuit

that enables fault-tolerance is the fact that all operations are transversal – each qubit in

the computation (the bottom four lines) interacts with only once ancilla.

In order to see how this circuit measures the parity of m qubits, consider the follow-

ing. ApplyingH⊗m to the ancilla in the GHZ state results in an equal superposition of all

binary string of even weight. The CNOTs will cause the ancilla bits to flip depending on

the input state. For states of even parity, an even number of bit flips occur, and odd parity

will cause an odd number of bits to flip. By inspecting the parity of the measurement

outcomes, it is possible to infer the parity of the input state. The fact that the ancillas are

prepared in a superposition of all possible even states parity ensures that we learn noth-

ing but the parity of the input state, guaranteeing that we do not disturb superpositions of

states with the same parity. This circuit generalizes in the obvious way in the case of m

qubits.

Using qubus logic and the correspondence between controlled rotations and CNOTs,

as introduced in Section 2.2, the interactions can be directly translated to interactions be-
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Figure 2.15: (a) Circuit for the measurement of the parity of four qubits [Sho96]. (b)

Same circuit modified to use coherent states and controlled rotations.

tween qubits and qubuses, while the measurements are simply quadrature measurements

of the qubits. The GHZ state can be prepared by the use of teleportations and beam-

splitters, as outlined in Section 2.5. The Hadamard unitaries can be implemented by

teleportation, along with unitaries acting on qubits, as described in Section 2.3. Therefore

Shor’s fault-tolerant parity measurement circuit can be translated with little modification.

The resulting abbreviated circuit is depicted in Figure 2.15(b).

2.6.2 Noisy ancillas

If the probability of error at each gate is bounded by ε, transversal operations and en-

coding can ensure that the probability of an uncorrectable error is O(ε2) instead of O(ε).

We consider two possible errors in qubus logic: X-like errors, where the probabilities

of the states |α〉 and |αe±iθ〉 are randomized, and Z-like errors, where the relative phase

between superpositions is randomized.

Z-like errors in the cat state (including dephasing of coherent superpositions, one

of the consequences of photon loss in the controlled rotations) do not lead to errors in

the encoded data, just errors in the outcome of the Pauli operator measurement. This is

because the Hadamard gate will map Z-like errors to X-like errors. If error correction is

to be performed on the data, instead of just error detection, the parity measurement must

be repeated three times, and a majority vote of the outcomes taken, in order to ensure

that the measurement outcome is reliable [Pre97].

An error during cat state preparation may lead to correlated X-like errors in the cat

state with probability O(ε), which can lead to uncorrectable errors in the encoded data

during the measurement of the Pauli operator, thus defeating the purpose of encoding the

data for fault-tolerant quantum computation. In order to avoid this, one can verify the
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integrity of the cat state via non-destructive state measurement [Pre97, AGP06]. When

using controlled rotations and coherent beam probes, this translates to preparing an extra

copy of the cat state, which remains in coherent state logic, interacting with the qubit

GHZ state transversally with controlled−θ rotations, and Z̃ measuring each mode of the

redundant cat state. As the basis states in an error free GHZ state correspond to strings

encoded in a repetition code, by performing classical error correction on the measure-

ment outcomes one can deduce the locations of X-like errors in either the GHZ state or

the redundant cat state just measured. Repeating this procedure with yet another redun-

dant cat state allows for the inference of which locations in the qubit GHZ state have X

errors with high enough probability to ensure uncorrectable errors are only introduced

into the data with probability O(ε2) [Pre97], so that parity measurements with a verified

ancilla can be used for fault-tolerant quantum computation.

Some of the systematic errors in the probe beams, such as phase rotation or attenua-

tion, can be partially compensated for by additional phase space rotations and by adjust-

ing the threshold x0 of the Z̃ measurements individually to minimize additional X-like

errors. Moreover, errors in the transversal operations during the preparation of the cat

state are independent, and thus do not need special consideration during this verification

stage – they do contribute to ε, however, and are thus crucial for fault-tolerance threshold

calculations.

2.7 Summary

We have described in detail various applications for one-bit teleportations between a

qubit and a qubus. Using these teleportations, we proposed a scheme for universal quan-

tum computation, called qubus logic, which is a significant improvement over other pro-

posals for quantum computation using coherent states, as it requires only weak interac-

tions. This scheme also allows for the use of post-selection to arbitrarily increase the

fidelity of the gates given any interaction strength at the cost of lowering the probability

of obtaining the desired outcome. We also demonstrate how fault-tolerant error correc-

tion in qubits can be performed by using qubus states as ancillas, allowing for greater

flexibility in the construction of quantum information processing devices.

The one-bit teleportations also allow for the preparation of highly entangled N party

states known as GHZ states, which can be used as building blocks in the preparation
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Figure 2.16: Process fidelity as a function of xd for (a) the qubus logic single qubit gate

(Fp); (b) the CSIGN teleportation (FCSIGN); (c) repetition encoding with N = 3 shown in

blue (FREP); (d) repetition encoding with N = 9 (FREP).

of the entangled states discussed in Chapter 1. Moreover, the same circuitry can be

used to encode states in the repetition code. In these cases, where we are interested in

preparing resource states, the power and flexibility of post-selected teleportations can

be fully exploited, as the achievable fidelity of the state preparation is independent of

the interaction strength available, as long as it is finite. The fact that the coherent state

measurements essentially herald the fidelity of the operations opens the possibility for

the use of post-selection in conjunction with error heralding to optimize resource usage.

The main property of the qubus which is exploited in the schemes described here

is the fact that entanglement can be easily created in the qubus through the use of a

beam splitter. Local operations, on the other hand, are easier to perform on a qubit. The

controlled rotations allow for information to be transferred from one system to the other,

allowing for each physical system to be exploited to maximal advantage.

Given the strength of interaction and coherent state amplitude, both the fidelity and

the probability of success suffer as the operations become more complex, as can be seen

in Figures 2.16 and 2.17. This is because multiple instances of the imperfect one-bit

teleportation from qubus to qubit are used. This only imposes serious restrictions on

the size of GHZ states prepared, as all other operations use a fixed number of one-bit

teleportations.

We also demonstrated how all these different applications of one-bit teleportations

can be combined to allow for fault-tolerant quantum error correction, which is essential

for the implementation of scalable quantum computers. The use of qubus states as an-
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Figure 2.17: Curves of constant conditional process fidelity (solid) and the probability of

post-selection success (dashed) as functions of xd and y. In all cases, the fidelity is set

to 0.9 and the probability of success to 0.5.

cillas, instead of qubits, can be used to allow for greater flexibility in the construction of

quantum information processing devices.

While the scheme presented has been abstracted from particular physical implemen-

tations, any physical realizations of a qubit and a harmonic oscillator would suffice.

The only requirements are controlled rotations, along with fast single qubit gates and

x-quadrature measurements, which are necessary to enable feed-forward of results for

the implementation of the relevant corrections.
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Chapter 3

Entanglement mediated by a ballistic
particle

3.1 Introduction

We have discussed how interactions between a qubit and a harmonic oscillator can aid

the implementation of quantum information processing tasks. This idea can be adapted,

to a large extent, to work with different interactions, such as controlled phase-space

displacements instead of controlled phase-space rotations [SNB+06]. In this chapter we

consider not only modifying the interaction, but also the the ancillary system. We replace

the harmonic oscillator with the position and momentum state of a free quantum particle,

and the replace the controlled phase space rotation with the scattering of the quantum

particle by a potential which depends on the qubit state.

Similar ideas have been proposed to perform high-fidelity measurement of flux-type

qubits by scattering solitons in a non-linear transmission line [ARS06, FSSKS07]. The

vortices trapped in the transmission line behave as localized particles, and thus are re-

ferred to as fluxons. These fluxons have a magnetic moment which interacts with the

magnetic moment of the flux qubit. If the interaction is weak with respect to the strength

of the qubit Hamiltonian, and if the particles have a well defined momentum, then the

effect of this interaction is to either slow down or speed up the fluxons, depending on the

state of the qubit. The state of the qubit can then be inferred by monitoring the time of

arrivals of the fluxons after interaction with the qubit.

Fluxons are predicted to behave as quantum particles at sufficiently low tempera-
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tures [KI96, SBJM97]. This behavior has been demonstrated by investigating the escape

rate of fluxons from a well [Wal00]. At low temperatures, where thermal activation is

exponentially suppressed, macroscopic quantum tunneling of these particles has been ob-

served [WLL+03]. Energy level quantization in the well was demonstrated by inducing

excitations with microwave radiation and observing enhancement of the tunneling rate.

However, the coherent superposition of different state of fluxons has not been demon-

strated. This is because the approach of populating the ground state of a double well

and distorting the well so that interference fringes between the wave functions can be

observed leads to a breakdown of the interpretation of fluxons as particles [MS78].

Here we propose a protocol for entangling two qubits via the scattering of a quantum

particle, as depicted in Figure 3.1. Just as in Chapter 2, this can also be exploited for

quantum information processing tasks. In particular, this enables the preparation of en-

tanglement between distant qubits mediated by the fluxon. This entanglement can then be

used for tasks such as teleportation [BBC+93] and distributed computation [CEHM99].

The protocol can also be used as an indirect demonstration of superpositions of fluxon

states by using the fluxon as the quantum particle interacting with superconducting flux

qubits. Each qubit is initially prepared in a superposition of the pointer states of the inter-

action. After scattering of the fluxon wave packet, data is collected only when no delay

is observed in the time of arrival of the fluxon. This corresponds to the fluxon having

being delayed by one qubit, but advanced by the other. As the qubits are in a superpo-

sition of states that cause delay and advancement, which-path information is lost, and

the corresponding state of the qubit is an entangled state. This requires the presence of

coherent superpositions of different path alternatives for the fluxon. If decoherence pre-

cludes this, then the corresponding state of the qubits will be a highly mixed state with

no entanglement. Thus, through the use of post-selection and entanglement verification,

it is possible to infer that the fluxons were in a coherent superposition. We find, however,

that such an experiment would be difficult with present day technology, as it requires

energy dissipation rates significantly lower than what has been observed to date.

This chapter is organized as follows. First, in Section 3.2 we review properties of a

free particle in the quantum setting, and in Section 3.3 we illustrate how the scattering

of quantum particles by qubits can be used to create entanglement between the qubits

in a probabilistic manner. In Section 3.4 we consider the effects of dissipation in the

free-particle by estimating the distance it can travel before decohering significantly. We

describe a possible physical implementation of the protocol in Section 3.5, and investi-
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Figure 3.1: The probability distribution for the position of a particle (a) before and (b)

after it has been scattered by (c) a potential which depends on the state of the qubits.

gate the feasibility of an experiment using present-day technology.

3.2 Time evolution of a free particle

Consider a point-like quantum particle in one spatial dimension and in the absence of

any potentials. We take the particle to have mass m, and ignore any internal degrees of

freedom. In this case, the Hamiltonian governing the evolution of such a particle only

has a contribution due to the kinetic energy of the particle, or

HF =
p2

2m
, (3.1)

where p is the momentum operator. It is immediatelly clear then that the momentum

eigenbasis |p〉 diagonalizes this Hamiltonian, and the time evolution operator from time

t0 to time t1 is

U(t1, t0) = exp

[
− i

~
HF (t1 − t0)

]
(3.2)

=

∫ +∞

−∞
dp |p〉〈p| exp

[
− i

~
p2

2m
(t1 − t0)

]
. (3.3)

If one is interested in position measurements, it is convenient to consider the representa-

tion of this operator in the position eigenbasis |x〉, or

〈x|U(t1, t0)|x′〉 =

∫ +∞

−∞
dp 〈x|p〉〈p|x′〉 exp

[
− i

~
p2

2m
(t1 − t0)

]
, (3.4)

=
1

2π~

∫ +∞

−∞
dp exp

[
i
p(x− x′)

~

]
exp

[
− i

~
p2

2m
(t1 − t0)

]
, (3.5)

=

√
m

2π~i(t1 − t0)
exp

[
i
m(x− x′)2

2~(t1 − t0)

]
. (3.6)
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Given any initial pure state |ψ(t = 0)〉 with position representation

|ψ(t = 0)〉 =

∫ +∞

−∞
dx ψ(x; t = 0)|x〉, (3.7)

it is possible to compute the state at time t from the time evolution operator by using

|ψ(t)〉 = U(t)|ψ(0)〉 (3.8)

=

∫ +∞

−∞
dx

∫ +∞

−∞
dx′ 〈x|U(t, 0)|x′〉 ψ(x′; t = 0)|x〉, (3.9)

so that it becomes clear that the wavefunction at time t is given by

ψ(x; t) =

∫ +∞

−∞
dx′ 〈x|U(t, 0)|x′〉 ψ(x′; t = 0). (3.10)

In the extreme case where the initial state has a wavefunction ψ(x; 0) = δ(x − a), the

integral is easily evaluated and we find that ψ(x; t) = 〈x|U(t, 0)|a〉. Initially the wave

packet has no spread and is perfectly localized, but as it evolves under the action of the

free Hamiltonian it spreads to a Gaussian of finite width, as given by (3.6). Similarly,

any initial Gaussian wavefunction of the form

ψ(x, t = 0) =
1

(2πσ2)1/4
exp

(
i
p0x

~

)
exp

(
− x2

4σ2

)
(3.11)

will lead to

ψ(x, t) =
1

(2π)1/4

√
σ + i ~t

2mσ

exp

[
i
p0

(
x− p0t

2m

)
~

]
exp

[
−

(
x− p0t

m

)2
4σ2

(
1 + i ~t

2mσ2

)] , (3.12)

which is a Gaussian wave packet with mean x − p0t
m

, and the corresponding probability

distribution has variance

σ(t)2 = σ2

(
1 +

~2t2

4m2σ4

)
. (3.13)

The time dependence of the mean leads to the interpretation of p0 as the average momen-

tum of the wavefunction. The fact that the variance increases with time is what is known

as dispersion, and is a consequence of the free particle Hamiltonian being quadratic in p,

so that different momentum eigenstates propagate at different speeds.

3.3 Particle scattering by a qubit-dependent potential

Consider a particle which is only free to move along one spatial dimension, as before,

but that now interacts with a qubit via the Hamiltonian

HI = g σZ ⊗ U(x), (3.14)
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where the first tensor factor corresponds to the qubit, and the second tensor factor corre-

sponds to the particle degrees of freedom, and g is the strength of the interaction. We re-

strict ourselves to the case where the potential U(x) is a smooth positive function peaked

around a, where the qubit is located, with maxx |U(x)| = 1, and which vanishes with

growing |x−a|. The particle Hamiltonian is just the free-particle Hamiltonian, while the

qubit is assumed to have a Hamiltonian which commutes with HI , for simplicity, so that

in the rotating frame of the qubit the interaction and the free-particle Hamiltonian are

unchanged. For the remainder of this section the implied frame of interest is the rotating

frame of the qubit. The total Hamiltonian for this system is then

H = HF +HI . (3.15)

Physically, what are are describing is a localized potential with a sign which depends

on the projection of state of the qubit on to the eigenbasis of σZ . If the particle and the

qubit are prepared in some initial state |ψ(0)〉, then the joint state of the after interaction

is |ψ(t)〉 = e−
i
~Ht|ψ(0)〉. Even if |ψ(0)〉 is initially a product state between the particle

and qubit subsystem, the state after the particle and the qubit interact will, in general, be

entangled. The simplest way to see how entanglement comes about is by considering the

evolution of the quantum particle in the WKB or semi-classical approximation [LL03].

For the regions far from the center of the potential U(x), the fluxon evolves un-

der the action of the free-particle Hamiltonian. The plane-wave solutions for the time-

independent Schrödinger equation under the free-particle Hamiltonian are

ψ(k) = eikx, (3.16)

with momentum pk = ~k. For any given potential U(x), the scattering matrix can be

computed to determine what is the ratio between the incoming amplitude and outgoing

amplitude of the plane wave ψ(k) that impinges on the potential. For plane waves with

kinetic energy Ek = −~2k
2m

which is significantly higher than the g, the magnitude of

this ratio is close to one. Close to the center of the potential, however, kinetic energy is

converted to potential energy, and thus the momentum of the particle will change. This

induces a phase shift χ(k) between the plane wave before and after interaction with the

potential so that the scattered plane wave has the form

ψ(k) = eikx+iχ(k). (3.17)
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In the case where U(x) varies slowly compared to the wavelength λ = 2π
k

, and under the

assumption that g � Ek, this phase shift is given by [ARS06]

χ(k) ≈ k(x1 − x0)−
∫ x1

x0

dx

√
2m[Ek − gU(x)]

~
(3.18)

= k(x1 − x0)−
∫ x1

x0

dx

√
2mEk
~

√
1− g

Ek
U(x) (3.19)

= k(x1 − x0)−
√

2mEk
~

∫ x1

x0

dx

√
1− g

Ek
U(x) (3.20)

≈ k(x1 − x0)−
√

2mEk
~

∫ x1

x0

dx

[
1− g

2Ek
U(x)

]
(3.21)

= −
√

2mEk
~

∫ x1

x0

dx
g

2Ek
U(x) (3.22)

= − 1

~uk

∫ x1

x0

dx U(x) (3.23)

where have defined uk = pk/m to be the velocity of the plane wave, and where x0,1 are

on opposite sides of the potential and far from the center. This can be approximated by

χ(k) ≈ − 1

~uk

∫ +∞

−∞
dx U(x). (3.24)

For a wave packet which is well localized in momentum, one may linearize χ around the

average wave number 〈k〉 so that we may write

χ(k) ≈ χ(〈k〉) + (k − 〈k〉) dχ
dk

∣∣∣∣
〈k〉
, (3.25)

and the phase shift experienced by the wave packet is proportional to the wave number

of each of the components. Due to the fact that momentum and position representa-

tions of the wave packet are related by Fourier transforms, this k-proportional phase

shift in momentum representation corresponds to a spatial shift in the position repre-

sentation [AW95]. In other words, after interacting with the potential, the wave packet

discussed above will be shifted in space by some amount

dχ

dk

∣∣∣∣
〈k〉

= − 1

2E〈k〉

∫ +∞

−∞
dx U(x). (3.26)

with respect to an identical wave packet that has not interacted with the potential, where

〈u〉 = ~〈k〉/m is the mean velocity of the packet. Similar argument apply to the case

where the potential has its sign flipped. Thus, we may say that, far from the qubit, the
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spatial difference between a wave packet that has interacted with the qubit in state |0〉
and a wave packet that has not is

∆x

2
=

∫ +∞

−∞
dx

g

2E〈k〉
U(x), (3.27)

where E〈k〉 is the average kinetic energy of the packet.

Abstractly, the effect of the wave packet being scattered by the qubit can be described

by the unitary corresponding to a controlled spatial displacement, or

|0〉〈0| ⊗D(−∆x/2) + |1〉〈1| ⊗D(∆x/2), (3.28)

which is depicted in Figure 3.2. As spatial displacements are generated by the momen-

tum operators, this unitary commutes with the free particle unitary.

Figure 3.2: Circuit depicting the spatial displacement of a free particle (red line) con-

trolled by the state of a qubit (grey line).

If we take the state of the particle, in the absence of interactions, to be |ψ(t)〉, then

after interacting with a qubit in the state

1√
2
(|0〉+ eiθ|1〉), (3.29)

the joint state of the system will be well approximated by

1√
2
(|0〉 ⊗D(−∆x/2)|ψ(t)〉+ eiθ|1〉 ⊗D(∆x/2)|ψ(t)〉), (3.30)

which is clearly entangled.

3.3.1 Coherent superpositions and interference

A superposition of different displaced states of the particle wave packet can be prepared

by measuring the qubit in the σX eigenbasis, as depicted in Figure 3.3, resulting in the

unnormalized particle state

D(−∆x/2)|ψ(t)〉 ± eiθD(∆x/2)|ψ(t)〉, (3.31)
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where the sign depends on the outcome of the σX measurement. This is analogous to

the one-bit teleportation described in Section 2.3. If we now project into the position

eigenbasis, we obtain the amplitude

ψ(x−∆x/2; t)± eiθψ(x+ ∆x/2; t), (3.32)

where

ψ(x±∆x/2; t) = 〈x|D(±∆x/2)|ψ(t)〉. (3.33)

This yields the probability density

ρ(x; t) = |ψ(x−∆x/2; t)|2 + |ψ(x+ ∆x/2; t)|2

± 2 Re eiθψ∗(x−∆x/2; t)ψ(x+ ∆x/2; t), (3.34)

where the last term corresponds to the interference between the two displaced wave pack-

ets. If we had instead a probabilistic mixture of different displaced states, this term would

be absent, therefore it can be taken as a signature of quantum behavior.

Figure 3.3: Protocol for the preparation of coherence superpositions of displaced wave-

functions of a particle (red line) by interacting with a qubit (grey line).

In order to see how interference manifests itself, consider once again a Gaussian wave

packet, as described in Section 3.2. For simplicity, we let t = 0 correspond to the time at

which the the particle is measures. This leads to the probability density

ρ(x) =
1√
2πσ

exp

[
−(x−∆x/2)2

2σ2

]
+

1√
2πσ

exp

[
−(x+ ∆x/2)2

2σ2

]
+

± 2
1√
2πσ

exp

(
− x2

4σ2

)
exp

(
−∆x2

16σ2

)
cos

(
p0∆x

2~
+ θ

)
. (3.35)

By adjusting θ, it is possible to enhance or diminish the effect of the interference term,

so that the probability density ρ(x = 0) at the center can be made smaller or greater

than what it would be if the state was simply an incoherent mixture of two wave packets

centered at x−∆x/2 and x+ ∆x/2.
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It is important to note that p0∆x
~ occurs in the argument of the cosine in the interfer-

ence term. This can be re-written as 2π∆x
λ

where λ = 2π~
p0

is the deBroglie wavelength of

the particle. Therefore this protocol requires the error in ∆x to be significantly smaller

than λ so as to ensure the reliable observation of the interference term. This can pose a

significant experimental challenge for experiments employing sufficiently massive parti-

cles.

3.3.2 Particle-mediated entanglement of qubits

It is possible to demonstrate quantum behavior by a different approach, which is more

directly related to properties which are associated with non-classical behavior in quantum

systems. Imagine two well-separated qubits prepared in the unentangled state

|+〉|+〉 =
1

2
(|00〉+ |01〉+ |10〉+ |11〉). (3.36)

If a particle wave packet is scattered by the two qubits, the result at some time t after

scattering will be the entangled state

|s(t)〉 =
1

2
[|00〉 ⊗D(−∆x)|ψ(t)〉+ (|01〉+ |10〉)⊗ |ψ(t)〉+ |11〉 ⊗D(∆x)|ψ(t)〉].

(3.37)

This sequence of steps in depicted in Figure 3.4. We can interpret this as four different

alternative interactions: the particle being slowed down twice, the particle being slowed

then advanced, the particle being advanced then slowed, and finally the particle being

advanced twice. If we measure the position of the particle at time t, we expect to find

a distribution that is multi-modal, as depicted in Figure 3.5. It should be immediatelly

clear, however, that x outcomes around the peak of ψ(x; t) should yield correspond-

ing qubit state that is close to the maximally entangled state |Ψ+〉 = 1√
2
(|01〉 + |10〉).

This state can be used to demonstrate the violation of Bell’s inequalities, ruling out the

possibilities of local hidden variable theories that match the predictions of quantum me-

chanics. In this sense, the state |Ψ+〉 has no classical probability theory counterpart, and

thus its observation can be seen a signature of quantum behavior. Moreover, the prepa-

ration of such a state is only possible if the states of the qubit as well as the state of the

quantum particle are coherent. Thus, the preparation of entanglement between qubits

using this protocol corresponds to the indirect observation of coherent superpositions of

quantum particle states.
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Figure 3.4: Protocol for the entanglement of two qubits (grey lines) via interaction with

a particle (red line).

Figure 3.5: Distribution of position measurement outcomes for the state |s(t)〉, with

regions of the distribution labeled by the qubit states they are correlated with.

In order to quantify how close we get to the state |Ψ+〉 by post-selecting on the x

measurement outcome, we compute the exact expressions for the fidelity. The condi-

tional state of the qubits, depending of the outcome x of the position measurement, is

given by

|q(x)〉 =
1

2
[ψ(x+ ∆x; t) |00〉+ ψ(x; t) (|01〉+ |10〉) + ψ(x−∆x; t) |11〉], (3.38)

This unnormalized state has norm
√
〈q(x)|q(x)〉 which in turn leads to

ρ(x) = 〈q(x)|q(x)〉 =
1

4
[|ψ(x+ ∆x; t)|2 + 2|ψ(x; t)|2 + |ψ(x−∆x; t)|2], (3.39)

which is the probability density for the outcome x in the position measurement. The

normalized conditional state, for some range of outcomes between x ∈ [a, b] is

ρa,b =
1

Pr(x ∈ [a, b])

∫ b

a

dx |q(x)〉〈q(x)|. (3.40)

where

Pr(x ∈ [a, b]) =

∫ b

a

dx ρ(x), (3.41)

is the probability of success, or the probability of obtaining the desired post-selected

outcome.
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All these quantities can be readily computed for Gaussian wave packets. Taking

t = 0 to be the time of measurement, the free particle wavefunction (3.12) yields

ψ(x; t) =
1

(2πσ2)1/4
exp

(
i
p0x

~

)
exp

(
− x2

4σ2

)
, (3.42)

and the probability density ρ(x) for the wavefunction after it has interacted with the

qubits is

ρ(x) =
1

4
√

2πσ
e−

(x+∆x)2

2σ2 +
1

2
√

2πσ
e−

x2

2σ2 +
1

4
√

2πσ
e−

(x−∆x)2

2σ2 . (3.43)

As this probability density is the weighted sum of normalized Gaussian distributions,

it is immediatelly clear that ρ(x) is normalized. Considering only symmetric intervals

[a, b] = [−w,w] because of the symmetry of the wavefunction, this leads to

Pr(x ∈ [−w,w]) =
1

4

[
erf

(
∆x+ w√

2σ

)
+2 erf

(
w√
2σ

)
+ erf

(
w −∆x√

2σ

)]
, (3.44)

where erf is the usual error function erf(x) = 2√
π

∫ x
0
dx exp

(
− x2

2σ2

)
. It becomes clear

then that σ sets the length scale for the problem. Due to dispersion in the free particle

Hamiltonian, σ depends both on the initial width of the packet as well as the time of

propagation.

The fidelity F between ρ−w,w and |Ψ+〉 is given by

F = 〈Ψ+|ρ−w,w|Ψ+〉, (3.45)

=
1

2 Pr(x ∈ [−w,w])

∫ w

−w
dx |ψ(x; t)|2, (3.46)

=
1

2 Pr(x ∈ [−w,w])
erf

(
w√
2σ

)
. (3.47)

Contour plots for the fidelity and probability of success as a function of w/σ and ∆x/σ

is given in Figure 3.6. Cross-sections of the fidelities are given in Figure 3.7, and of the

probability of success are given in Figure 3.8.

Intuitively, if we want to maximize the fidelity with |Ψ+〉, we need to single out

regions which maximize the contribution of the wave function ψ(x, t) while minimizing

the contribution of the displaced wave functions. This leads to the region around x = 0.

Taking the limit of F as w → 0, we have

Fmax(∆x, σ) = lim
w→0

F =

(
1 + e−

∆x2

2σ2

)−1

. (3.48)
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This corresponds to the maximal fidelity which may be obtained for a given separation

of the wave packets, assuming that the position measurements can be made to arbitrary

precision. Note that unlike the wave function in Chapter 2, the contribution from the

unwanted wave functions cannot be made arbitrarily small. For any given desired fidelity,

initial wave packet width σ(0), and separation of the packets 2∆x, this effectively sets

an upper bound to the separation between the two qubits. Rearranging (3.48) leads to

σmax =
∆x√

2 ln Fmax

1−Fmax

. (3.49)

For example, if the desired fidelity to be achieved is Fmax = .9, this translates to

∆x/σmax ≈ 2.09 – that is, the separation between the centers of wave packets must

be roughly 4.18 times their width at the time of measurement.

The time required for σ(0) to increase to σmax can be solved from (3.13) to yield

tmax =
2mσ(0)

~
√
σ2

max − σ(0)2, (3.50)

which can be related to distance by the average momentum p0 of the wave packets, finally

yielding

dmax =
2p0σ(0)

~
√
σ2

max − σ(0)2. (3.51)

All these expressions can be adjusted to take into account finite w simply by using (3.45)

instead of Fmax. However, this cannot be done analytically and requires numerical com-

putation.

The integrals of the matrix elements 〈i|q(x)〉〈q(x)|j〉 can be computed by evaluating

Gaussian integrals of the form

fµ1,µ2 =

∫ w

−w
dx ψ(x− µ1; t)ψ

∗(x− µ2; t) (3.52)

=
1√
2πσ

∫ w

−w
exp

[
−(x− µ1)

2

4σ2
− (x− µ2)

2

4σ2

]
(3.53)

=
1

2
ei

p(µ2−µ1)
~ e

−(µ1−µ2)2

8σ2

[
erf

(
µ1 + µ2 + 2w

2
√

2σ

)
− erf

(
µ1 + µ2 − 2w

2
√

2σ

)]
(3.54)

This leads to

ρ−w,w =
1

4 Pr(x ∈ [−w,w])


f−∆x,−∆x f0,−∆x f0,−∆x f∆x,−∆x

f−∆x,0 f0,0 f0,0 f∆x,0

f−∆x,0 f0,0 f0,0 f∆x,0

f−∆x,∆x f0,∆x f0,∆x f∆x,∆x

 . (3.55)
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Figure 3.6: Contour plot for (a) the fidelity between the post-selected state ρ−w,w and

the maximally entangled state |Ψ+〉 and for (b) the corresponding probability of obtaining

the desired range of x measurement outcomes.
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Figure 3.7: Cross sections of the fidelity F (a) as a function of w/σ for various ∆x/σ

and (b) as a function of ∆x/σ for various w/σ.
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Figure 3.8: Cross sections of the probability of success Pr([−w,w]) (a) as a function of

w/σ for various ∆x/σ and (b) as a function of ∆x/σ for various w/σ.
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As |Ψ+〉 is a maximally entangled state, the performance of the protocol can also be

quantified by considering measures of entanglement of the post-selected state ρ−w,w

(More details about these measures can be found in Appendix B).

Entanglement witnesses are observables which have negative expectation value only

for states which are entangled. We consider the entanglement witness W tailored to the

state |Ψ+〉. This observable is

W =
1

2
14 − |Ψ+〉〈Ψ+| (3.56)

=
1

4
(14 − σX ⊗ σX + σZ ⊗ σZ − σY ⊗ σY ). (3.57)

The expectation value 〈W 〉 = trWρ−w,w can be simplified to

〈W 〉 =
1

2
− 〈Ψ+|ρ−w,w|Ψ+〉 =

1

2
− F, (3.58)

where F is the fidelity between ρ−w,w and |Ψ+〉. If 〈W 〉 < 0, then ρ−w,w is an entangled

state. As F = 1
2

only when ∆x = 0, we have that ρ−w,w is entangled for all w and

for all non-zero ∆x, so that the proposed protocol can produce entanglement for all

experimental parameters, in the ideal case.

A lower bound for the generalized robustness of entanglement ER can be computed

directly from the expectation value of the entanglement witness, which in turn can be

computed from the fidelity to the state |Ψ+〉 [EBA07]. This implies that, for 〈W 〉 < 0,

ER(ρ−w,w) ≥ 2|〈W 〉| = 2F − 1, (3.59)

which matches the intuition that the greater the fidelity to the state |Ψ+〉, the more entan-

gled the state is. We find that ER > 0 as long as ∆x > 0, which is consistent with the

finding that all states in that region are entangled.

The logarithmic negativity EN(ρ−w,w) can also be computed numerically. The loga-

rithmic negativity of a state gives an upper bound to the efficiency with which maximally

entangled Bell pairs which can be distilled from many copies of that state, as well as an

upper bound on the teleportation capacity of the state [VW02, PV07]. As the negativity

is based on properties of the spectrum of ρ−w,w, it is difficult to give succinct analytical

results of its dependence on w or ∆x. However, numerical calculations of this measure

are consistent with the conclusion drawn form the entanglement witness in the sense that

they appear to be non-zero for all w and for all non-zero ∆x. The logarithmic negativity

for ρ−w,w is plotted for various values of w/σ and ∆x/σ in Figure 3.9.
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Figure 3.9: The logarithmic negativity EN of ρ−w,w (a) as a function of ∆x/σ and w/σ,

(b) as a function of w/σ for various ∆x/σ and (c) as a function of ∆x/σ for various w/σ.

3.3.3 Protocol for entanglement verification

We have described a protocol for creation of entanglement between two qubits. In or-

der to verify that the qubits are indeed entangled, an experimenter can simply measure

the appropriate entanglement witness. This is an approach that has been used to ver-

ify entanglement in ion trap systems [LKS+05, HHR+05] as well as in photonic sys-

tems [KSW+05, LZG+07].

The entanglement witness can be estimated by repeating the experiment a number of

times, and measuring each qubit individually but on the same eigenbasis. The eigenbasis

that must be measured are σX , σY and σZ . From the measurement record it is then

possible to estimate the expectations 〈σX ⊗ σX〉, 〈σY ⊗ σY 〉 and 〈σZ ⊗ σZ〉, so that the

expectation of the witness is

〈W 〉 =
1

4
(1− 〈σX ⊗ σX〉+ 〈σZ ⊗ σZ〉 − 〈σY ⊗ σY 〉). (3.60)

If 〈W 〉 < 0 with high confidence, then the state of the qubits can be said to be entangled
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with high confidence.

While we have demonstrated that ρ−w,w is essentially always entangled, in order to

increase tolerance to noise and statistical uncertainty in the measurements it is important

to design an experiment where ∆x/σ andw/σ yield a state ρ−w,w with fidelity reasonably

larger than 1/2. How much larger than 1/2 it must be depends on the amount of noise in

the system and on the number of experiments to be performed.

3.4 Coherence length for free particles with dissipation

A fundamental assumption of the protocol just described is that there is a high level

of coherence in the evolution of the quantum particle between the interaction with the

first particle and the measurement of the position of the particle. More explicitly, if

one were to perform the previous calculation with a classical probability distribution for

the position of the particle, one would find that the state of qubits would approximate
1
2
(|01〉〈01|+ |10〉〈10|) instead of the desired

|Ψ+〉〈Ψ+| = 1

2
(|01〉〈01|+ |10〉〈10|+ |01〉〈10|+ |10〉〈01|) (3.61)

Similarly, if the qubits dephase to 1
2
(|0〉〈0| + |1〉〈1|) in the time necessary to scatter the

particle and perform the measurement, then one would obtain a similar unentangled state.

In order to evaluate the feasibility of the protocol as a practical approach to entangling

distant qubits, it is important to estimate how far the particle can travel before either the

state of the qubit or the state of the particle dephases significantly.

The dephasing time T2 for the qubit is defined as the characteristic time it takes for

the off-diagonal elements of a single qubit density matrix to decay [Blu96]. Taking the

velocity of the particle to be v, the distance traveled by the particle in the time it takes

for the qubit to dephase significantly is

dmax ,Q = v T2. (3.62)

This can be taken as a constraint on the maximal separation between the qubits, as for

distances comparable with dmax ,Q the qubits will decohere significantly before the posi-

tion of the particle is measured.

In analogy to the definition of dephasing time for the state of the qubit, we will

define the dephasing time of the state of the particle to be the time it takes for the off-

diagonal terms in the density matrix to decay significantly. However, the calculation
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of the evolution of a free particle under the action of dissipation at low temperatures

poses a number of different challenges. At low temperatures it is not possible to derive a

Markovian master equation for a damped free particle – in other words, it is not possible

to derive a differential equation which is local in time and independent of the initial

state preparation. While it is possible to solve this model of dissipation exactly [vK04,

Amb06], the objective here is to obtain a rough estimate of the coherence length in order

to check the feasibility of the proposed experiment.

A simple approach to estimate the coherence length is to consider the effect of dissi-

pation in the simple harmonic oscillator. The free particle Hamiltonian can be seen as a

limit of the simple harmonic oscillator Hamiltonian,

HHO =
p2

2m
+

1

2
mω2

0x
2 (3.63)

where ω0 → 0. If a force F is applied to compensate dissipation, then the HHO can still

be used, but with coordinates shifted so that we have

HHO =
p2

2m
+

1

2
mω2

0(x+ δ)2. (3.64)

Taking the limit of large δ and small ω0, so that δ = − F
mω2

0
remains constant, yields the

Hamiltonian

HF =
p2

2m
− Fx, (3.65)

where the constant term has been neglected as it is not observable. Thus, both Hamilto-

nians of interest can be seen as limiting cases of the simple harmonic oscillator.

Energy dissipation in the motion of a particle can be modeled by taking the particle

to interact with a bath of harmonic oscillators [CL83]. In the case of a harmonic oscil-

lator undergoing dissipation at zero temperature, the corresponding Markovian master

equation can be solved exactly, as described in Appendix C. We define the decoherence

time tD to be the time scale of exponential decay for the off-diagonal terms in the den-

sity matrix. The energy relaxation time tR is given by the time scale at which the total

energy decays. In the case of the damped harmonic oscillator, we find that the ratio of

these quantities depends only on the initial overlap of the wave functions that make up

the superposition. By analogy, starting with a superposition of the form (3.31) as the

initial state of the free particle, the ratio of the decoherence time to the relaxation time is

estimated to be
tD
tR

=

(
ln

1

|〈ψ(0)|D(∆x)|ψ(0)〉|

)−1

, (3.66)

73



where 〈ψ(0)|D(∆x)|ψ(0)〉 is the overlap between the displaced wave functions that

make the up superposition. The smaller the overlap between the states is, the shorter

the decoherence time relative to the relaxation time.

The physical picture behind this is that, in essence, the bath randomly perturbs the

position of the particle in the oscillator. Equivalently, information about the particle’s

position is imprinted into the bath. If the overlap is small, it is easier for the environment

to distinguish the two possible states that make up the superposition, and thus the state

decoheres faster. From this physical picture, we expect that tD depends more strongly

on the overlap between the states than on details of the wave function. This is important

for our estimates because in the free particle limit, the wave function we are interested

in have finite position variances, and thus correspond to squeezed states. The overlap

between the different states that make up the superposition is still finite, however. For

our purposes, we will take the decoherence time for superpositions of coherent states as

an upper bound to the decoherence time of squeezed superposition.

We therefore estimate the characteristic length for decoherence in a damped free-

particle system to be

dmax ,sol = v tD =
v tR

ln 1
|〈ψ(0)|D(∆x)|ψ(0)〉|

. (3.67)

It is important to note that this definition of the decoherence time scale is only applicable

for time much shorter than the energy relaxation time scale, as discussed in Appendix C.

For time comparable to tR, the system will have decohered to its steady state value.

These estimates for decoherence and relaxation times are based on the assumption of

weak damping with respect to the frequency of the harmonic oscillator. While such an

assumption does not hold in the free-particle limit, we expect the results for the harmonic

oscillator to be representative of the results for the free-particle, or, at worst, to be some-

what optimistic. A more involved analysis of the problem can be carried out to avoid

these assumptions [vK04, Amb06], but we leave such considerations for future work.

3.5 Physical realization with superconducting circuits

Superconducting circuits are natural candidates for the implementation of the protocol

above. There are many well established qubit implementations using superconduct-

ing circuits [MSS01, DWM04, YN05], and one of the most successful is known as a
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persistent-current or flux qubit [MOL+99, OMT+99]. Such qubits consist of a ∼ 5µm

loop of superconducting material interrupted by a small Josephson junction. One pos-

sible basis for the states of the qubit consists of a persistent current flowing clockwise,

which we denote |0̃〉, or anti-clockwise, which we denote |1̃〉.

The finite inductance of the loop leads to a Hamiltonian term proportional to σ̃Z (the

tilde emphasizes we are in the persistent current basis). The Josephson junction allows

for the qubit to tunnel between these two current states, so in this persistent current basis

it leads to a Hamiltonian term proportional to σ̃X . The full Hamiltonian is then written

as

Hq = − ε
2
σ̃Z −

δ

2
σ̃X , (3.68)

where ε is the energy bias between the qubit states, controlled by the a magnetic flux

applied externally, and δ is the tunnel splitting, which is set the circuit fabrication. The

energy eigenvalues are separated by
√
ε2 + δ2.

Low frequency noise is one of the dominant sources of noise in superconducting

qubit, and in flux qubits this low frequency noise manifests itself as flux noise, randomly

varying the parameters ε over time [YHN+06]. This can lead to rapid dephasing of the

qubits, on time scales much shorter than the time scale for energy relaxation. However,

an important property of flux qubits is that they can operate in what is known as the op-

timal (biasing) point, which minimizes this additional sources of dephasing noise. This

optimal point is a flux biasing point at which the separation of the energy eigenvalues

are insensitive to flux variations (to first order). This corresponds to ε = 0, so that the

energy eigenstates |0〉 = 1√
2
(|0̃〉 + |1̃〉) and |1〉 = 1√

2
(|0̃〉 − |1̃〉) have the same current

expectation values. In this energy eigenbasis, the Hamiltonian is given by

Hq = −δ
2
σZ . (3.69)

Typical experimental parameters for these qubits are listed in Table 3.1. These are the

values which will be used in the following section to estimate the feasibility of imple-

menting the protocol just described using superconducting circuits.

3.5.1 Solitons as quantum particles

Although small Josephson junctions have been widely used for the implementation of

qubits, long and narrow Josephson junctions have many interesting properties that have
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Quantity Approximate value Meaning

δ/h 5.5 GHz Qubit energy level splitting

T2 4 µs Time scale for dephasing

Table 3.1: Typical experimental parameters for a persistent current qubit [YHN+06]

Figure 3.10: Lumped element model of an infinitesimal section of a long Josephson

junction.

been investigated as potential building blocks for qubits [Wal00, WLL+03, KU04]. In

particular, there are stable non-linear excitations along these Josephson transmission

lines, as they are often called, which are particle-like. These non-linear excitations are

called solitons, and comprise of current vortices tunneling across the junction to trap flux

quanta, and therefore these solitons are also known as fluxons.

Consider a standard lumped element model of an infinitesimal section of the junc-

tion, as depicted in Figure 3.10. It becomes then clear that these long junctions can be

simulated by a ladder network of superconducting tunnel junctions arranged precisely

in the manner of this lumped element model. This will be the model we will focus on

here in order to leverage previous research into the interaction between fluxons and flux

qubits [ARS06, FSSKS07].

Taking the continuous limit of the equations describing current conservation in this

lumped element model allows for a compact description of the system which is more

amenable to analytical treatment. The evolution of the phase difference φ(x, t) of the

superconducting condensate at position x along the transmission line is governed by the
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equation [OD91]

φxx − φtt − sinφ = − j

jc
+ αφt − βφxxt (3.70)

where each subscript of φ denotes partial derivative with respect to the corresponding

variable, jc is the critical current density, j is the bias current density, and α and β are

positive valued scalars corresponding to the strength of different sources of dissipation.

Position x is given in units of the Josephson length λj and time is given in units inverse

to the plasma frequency ωP , which are set by fabrication parameters of the junction, such

as the critical current density jc, the inductance per unit length L, and the capacitance per

unit lengthC. The parameters α and β are similarly given by these fabrication parameters

along with the quasi-particle resistance R and surface impedance of the superconductor

Rs – in essence, they are the ratios of the appropriate RC and RL frequencies to the

plasma frequency. Typical values for these parameters are given in Table 3.2.

Each of the terms in this equation can be given a more familiar physical interpreta-

tion: from the Josephson relations [Tin04], the density of current tunneling across the

junction at position x is given by jc sinφ(x, t) and the voltage is given by Φ0

2π
φt, while

flux quantization implies the magnetic field density is given by Φ0

4πλJ
φx – where Φ0 is the

flux quantum Φ0 = h
2e

.

Neglecting the current bias and the dissipative terms, we obtain

φxx − φtt = sinφ (3.71)

which is known as the sine-Gordon equation. If we assume the the junction extends to

infinity, for simplicity, the Hamiltonian corresponding to (3.71) is proportional to

H =

∫ +∞

−∞
dx

1

2
φt

2 +
1

2
φx

2 + 1− cosφ, (3.72)

which can be interpreted as a dimensionless integral over the electric field energy, the

magnetic field energy and the Josephson coupling energy.

The sine-Gordon equation is clearly Lorentz covariant if we take the “speed of light”

to be

c0 = λJωP , (3.73)

known as the Swihart velocity, which is typically a few percent of the speed of light

in vacuum. Although highly non-linear, this equation can be solved exactly, and all its

solutions are known [Raj82, DP06]. In particular, it can be shown that a topologically
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stable solution is

φ(x, t) = 4 arctan

[
exp

(
−x− vt− x0√

1− v2

)]
. (3.74)

Here, and for the remainder of the discussion about Josephson transmission lines, the

speed v is given in units of c0 (and therefore it is at most 1). This solution is depicted

in Figure 3.11. Inserting φ(x, t) in the Hamiltonian (3.72) leads to the energy E(v) of a

soliton as a function of its velocity

E(v) =
8√

1− v2
, (3.75)

which is analogous to the energy of a relativistic particle with normalized mass 8. In

the non-relativistic limit v � 1, all standard results which can be obtained by Taylor

expanding
√

1− v2 follow, further strengthening the interpretation of a fluxon as a par-

ticle. Formally, sophisticated mathematical methods can be used to show that the highly

non-linear equation (3.71) is equivalent to a linear equation describing the motion of

relativistic particles [Raj82].

A remarkable feature of the fluxon solution is that its shape does not change in time –

only its center will move with uniform velocity v. Because of this and other properties1,

these solutions are known as solitons. Another general features of these fluxons is that

the current and magnetic flux are exponentially concentrated around λJ from the center,

as d
dz

arctan z = 1√
1+z2

and sin arctan z = z√
1+z2

. Note, however, that regardless of the

velocity, the total flux trapped in the junction is Φ0, and that is why these solutions are

known as fluxons.

When j/jc, α and β are much smaller than 1, the effect of the bias and dissipation

terms on the fluxon can be taken into account by perturbation theory [MS78]. To first

order, the effect of these perturbation terms is to change the dynamics of the center of

mass of the soliton, without disturbing its shape – in particular, the velocity v becomes

a function of time. Perturbation theory also allows the translation of small local pertur-

bations to potential barriers for the equivalent relativistic particles. Thus, it is natural to

think of fluxons are particle-like excitations in these transmission lines.

Fluxons can be reliably injected into the transmission line by applying a strong lo-

calized current density j > jc into the junction [KU04, Kem06]. This causes supercon-

ducivity to break down locally, and for a flux quantum to slip into the junction with high
1These other properties relate to the collision of solitons. As we will not be dealing with multiple

solitons, they are not relevant to our discussion.
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Figure 3.11: Distribution of the phase difference φ, current density sinφ and magnetic

flux density φx for a fluxon. The blue line corresponds to a fluxon with v = 0, and the

purple line to a fluxon with v = 0.8

probability. The detection of the fluxon can be carried out by measuring the magnetic flux

at some localized portion of the junction. One approach that has been implemented is

the use of fast digital flux-based electronics for the detectors [KU04], which can achieve

a timing resolution on the order of 3 ps [FSSKS07].

3.5.2 Interaction between particle and qubit

The interaction between a flux qubit and a fluxon has been investigated as a possible

approach to fast and reliable measurement of the qubit state [ARS06, FSSKS07]. The

inductive coupling between the qubit and the transmission line will perturb the overall

Hamiltonian, especially when the fluxon is nearby the qubit. In the limit of weak cou-

pling between the fluxon and the qubit, the qubit remains in the optimal point at all times,

which is important as the protocol described in Section 3.3.2 relies on the coherence of

the qubit.

If the fluxon velocity is low enough, the adiabatic approximation can be invoked to

show that the interaction commutes with the qubit Hamiltonian at the optimal point, to a

good approximation, and just perturbs its eigenvalues. For the fabrication parameters of
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Quantity Approximate value Meaning

ωp/2π 50 GHz plasma frequency

λJ 12 µm Josephson length

c0 3.77× 106m/s Swihart velocity

α 10−2 tunneling dissipation strength

β 10−2 surface dissipation strength

m me

500
effective rest mass of a fluxon

tres 3ps ≈ 1
ωP

timing resolution for detection

Table 3.2: Typical experimental parameters for a Josephson transmission line [Wal00,

KU04, FSSKS07]

the qubit and transmission line we have considered, this translates to the requirement that

v < 0.05 for a probability of transition between the states which is negligible [FSSKS07].

The effect of the qubit on the transmission line, on the other hand, is that it will

locally modulate the effective inductance of the transmission line, and it will lead to an

additional perturbation to the right-hand side of (3.70). In the limit where the size of the

qubit is smaller than one cell of the discrete transmission line, this term can be shown to

be of the form [MS78, ARS06, FSSKS07]

±ξ ∂
∂x

(δ(x)φx) , (3.76)

where the sign is given by the eigenstate of the qubit (the positive sign for the excited

states, and the negative sign for the ground state), and ξ is the dimensionless perturbation

strength. Typical values of this interaction strength are on the order of 10−4, and to

estimate the performance of the protocol we will take ξ ≈ 3 × 10−4 [FSSKS07]. From

perturbation theory the variation of the fluxon velocity around the qubit can be computed,

leading to a delay between fluxon arrival time depending on the eigenstate of the qubit.

In the non-relativistic limit of v � 1, this time delay can be shown to be [FSSKS07]

tdelay &
ξ

v3
, (3.77)

as long as v >
√

ξ
2
≈ 0.0123, which is a minimal speed requirement to avoid pinning or

reflection of the fluxon by the interaction.
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3.5.3 Constraints on maximal qubit separation due to dispersion

In order to investigate the feasibility of implementing the proposed protocol with super-

conducting circuits, we must investigate what is the maximal qubit separation that can

be achieved while still allowing for the observation of entanglement between the qubits.

The measure of entanglement we use is the entanglement robustness ER, which was

shown to be simply related to the fidelity of the final states with the state |Φ+〉. The

displacement ∆x that can be applied to the wave packets after an interactions is given by

the time delay caused by each interaction and the speed at which they are traveling

∆x = tdelayvc0 (3.78)

=
ξ

v2
λJ . (3.79)

Assuming that the wave packet can be prepared with a spread that is no smaller than λJ ,

the approximate size of the fluxon, combining (3.51) with (3.79) leads to

dmax =
2mc0λ

2
J

v~

√(σmax

∆x

)2

4ξ2 − v4 (3.80)

= d0

√(σmax

∆x

)2

4ξ2 − v4. (3.81)

It is clear then that, in order to obtain a positive distance between the qubits, the speed of

the soliton is bounded by

v ≤
√

2ξ
σmax

∆x
. (3.82)

In the previous section, we have a lower bound on the velocity, given by
√
ξ/2, which

implies that ∆x
σmax

< 4 in order to have any velocity which can satisfy both equation

simultaneously. Choosing ∆x
σmax

≈ 1.53 for a fidelity of F ≈ 0.76 and entanglement

robustness ER > 0.53, we have that

0.0122474 < v < 0.019803. (3.83)

Given the fluxon experimental parameters in Table 3.2, if we choose v = 0.0145 to

accommodate fabrication variations in the experimental parameters, we have that the

maximal separation between the qubits is dmax ≈ 425µm. The corresponding time it

takes the soliton to travel this distance is tmax ≈ 7.8ns.

In order to resolve the different peaks in the position distribution of the fluxons, we

require that the separation between the peaks be greater than the spatial resolution of the
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detector. As the detector is fixed in space, this translates to a constraint on the timing

resolution of the detector and time delay corresponding to the displacement ∆x for a

soliton traveling at v. We find that, for the experimental parameters given

2tdelay

tres
≈ 2

ξ

v3
≈ 196, (3.84)

confirming that the detector is able to distinguish the displaced wave functions with very

high accuracy.

The above calculations rely on Fmax , which in turn assumes that the detector reso-

lution is much smaller than the spread of the wave function – in other words w/σ � 1.

The ratio of the spatial resolution of the detector to the spread of the wave function at the

time of detection is given by

tresvc0
σmax

≈ tresvc0
0.65∆x

(3.85)

≈ 1.56× 10−2. (3.86)

Taking this minimal spatial resolution to be the window size for the measurement clearly

guarantees that we are in the assumed limit which allows for Fmax to be met. Given that

this resolution is so high compared to the width of the packet at the time of measurement,

the probability of success can be boosted by taking the window to larger than the minimal

resolution. From Figures 3.6 it is clear that the probability of success can be made as

large as 0.1 by making w/σ = 0.2 without significant impact on the fidelity.

In summary, neglecting decoherence, the experimental parameters indicate that the

achievable separation between the qubits for a target fidelity of 0.76 is on the order of

0.425mm, which is significantly larger than the size of the qubits. With a normalized ve-

locity of v = 0.0145, the time it takes the soliton to travel this distance is approximately

7.8ns. Thus, dispersion of the wave function does not pose significant constraints on the

implementation of this protocol.

3.5.4 Coherence length as constrained by the qubit

Recent experiments have demonstrated flux qubit with relaxation time T1 = 2µs [YHN+06].

The measurement was performed at the optimal point, where the dephasing time T2 is

saturated at T2 = 2T1. The distance dmax ,Q that the soliton can travel in this characteristic

time is

dmax ,Q = vT2 ≈ 0.21m, (3.87)
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so clearly the dephasing of the qubit does not impose serious constraints to the separation

of the qubits.

3.5.5 Coherence length of perturbed solitons

In order to estimate the relaxation length for sine-Gordon solitons, we must consider the

effects of dissipation and current bias in (3.70). In the case where all of α, β and j/jc
are small, perturbation theory allows for a simple description of the time evolution of the

soliton [MS78]. In this limit, corrections to the shape of the soliton are neglected, and

only changes in the center of mass coordinates of the soliton are considered. The time

dependence of the velocity can then be describe by taking a power balance approach.

First, we have the velocity dependence of the energy of a soliton from (3.75), so that the

change in energy as a function of time can be described as a function of the change in

velocity as
dH
dt

= 8
v

(1− v2)3/2

dv

dt
. (3.88)

Taking the time derivative of the Hamiltonian as a function of φ leads to

dH
dt

= −
∫ +∞

−∞
dx φt(φxx − φtt − sinφ), (3.89)

and from (3.70) we conclude that

dH
dt

=

∫ +∞

−∞
dx (−αφ2

t − βφ2
xt +

j

jc
φt), (3.90)

by integration by parts of the middle term. Inserting the fluxon solutions with a variable

velocity into (3.90) and equating it to (3.88) leads to

dv

dt
= −αv(1− v2)− 1

3
βv − 1

4
π
j

jc
(1− v2)3/2. (3.91)

In the limit of v � 1, this gives

dv

dt
≈ −(α+

1

3
β)v − 1

4
π
j

jc
, (3.92)

which can be immediatelly solved to yield

v(t) =

[
v(0) +

π j
jc

4
(
α+ 1

3
β
)] e−(α+ 1

3
β)t −

π j
jc

4
(
α+ 1

3
β
) , (3.93)
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and therefore the can define the energy relaxation time for the soliton to be

tR =
1

α+ 1
3
β
. (3.94)

Taking into consideration the time and length scales of the sine-Gordon problem, we

arrive at the soliton relaxation length scale

dmax ,R = v tR. (3.95)

Given the typical fabrication parameters, the fluxon relaxation time is tR ≈ 0.24ns, and

the fluxon relaxation length scale is dmax ,R ≈ 13µm.

Following the discussion in Section 3.4, the corresponding decoherence scales are

by definition much shorter than the relaxation lengths. We estimate that fluxon super-

positions decohere over a length scale much shorter than the size of the qubit, which is

approximately 5µm, or the size of the fluxon itself, which is approximately 12µm. It

is then evident that the length constraints imposed by decoherence are severe, making

experimental implementations of the protocol using present day technology quite chal-

lenging, as they would require significant reduction of the dissipation parameters α and

β.

3.6 Summary

In this chapter we have described a probabilistic protocol for entangling two distant

qubits via the scattering of a quantum particle. The notable feature of this protocol is

that, in the absence of decoherence, it is possible to entangle the qubits for any non-

negligible interaction strength between the particle and the qubit.

We also evaluated the feasibility of implementing this protocol using superconduct-

ing circuits, with a fluxon in a Josephson transmission line as the particle interacting with

a flux qubit. The figure of merit used was the maximal separation of the qubits which can

be achieved with present day circuit fabrication parameters. If decoherence is neglected,

the maximal separation between the qubits is bounded by the desired fidelity between the

final qubit state and the maximally entangled states |Φ+〉. This fidelity decreases with

separation because the fluxon wave-packets disperse and become harder to distinguish.

We find that the strength of interaction between the qubits and the fluxon places an upper

bound on the fidelity which can be achieved. In particular, we find that in this ideal case,
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a fidelity of 0.76 can be achieved with the qubits separated by almost half a millimeter.

Thus, we find that dispersion does not impose stringent limits in the separation of the

qubits.

In order to estimate how decoherence affects the performance of the protocol, we es-

timated the distance the fluxons can travel before either the qubits or the superpositions

of fluxon wave packets decohere significantly. It was found that the decoherence of the

qubits do not impose significant constraints on the separation of qubits, as in principle

the fluxon can travel a distance on the order of centimeters before the qubit decoheres

significantly. The effect of decoherence on the fluxon, on the other hand, was found to

be significant. In particular, given current experimental values for dissipation, superpo-

sition of fluxon wave packets would decohere on length scales smaller than the qubit

size. It would thus appear that an experimental implementation of such a protocol using

superconducting circuits would be very challenging with present day technology.
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Part II

Characterization of noise
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Chapter 4

Efficient partial characterization of
noise

4.1 Introduction

Experimental implementation of quantum information processing devices, even of mod-

est size, is a challenge in and of itself. Quantum systems are inherently fragile due to

unwanted interactions with surrounding degrees of freedom, leading to what is known

as decoherence. As we have described in previous chapters, it is necessary to actively

pursue methods to suppress noise by adding redundancy and removing entropy through

fault-tolerant quantum computation and related approaches [Sho96, KLZ98, ABO99,

AGP06]. In order to apply these techniques effectively, a detailed understanding of how

the noise acts on the system is necessary. Thus, aside from the technical barriers to the

implementation of quantum devices, the question of how noise can be characterized is

another significant challenge. While it is possible to fully characterize these quantum

operations through a procedure known as quantum process tomography, the number of

parameters necessary for this complete characterization grows exponentially with the

number of subsystems [CN97, Leu03, ML06]. Tasks that cost a number of resources,

such as time or energy, that grow exponentially with the size of the system, usually given

in number of qubits, are considered infeasible even for moderately large systems. There-

fore it is clear that such a fine grained description is not realistic as an experimental

protocol for noise characterization.

A significant effort has been made in recent years to find alternative methods to quan-
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tify noise in a quantum system without complete characterization [EAZ05, DHCB05,

DCEL06, ML06, LLEC07, LSB+07, KLR+08]. In this chapter we propose a method

of systematically coarse-graining the description of noise. This is done by operationally

symmetrizing the noise to yield an effective map with a reduced number of independent

parameters reflecting properties of interest. This symmetrization is achieved by conjugat-

ing the noise with a unitary operator drawn randomly from the relevant symmetry group

and then averaging over these random trials [EAZ05, DHCB05, DCEL06, LLEC07].

This averaging is known as a twirl. Different choices of symmetry group can give access

to different properties of the noise. We give rigorous statistical bounds which guarantee

that the number of experimental trials required is independent of the dimensions of the

symmetry group.

The main advantage of this protocol is that it provides a natural path towards sys-

tematically obtaining partial information for other uses, as will be explored in Chapter 5.

Our randomization method leads to efficient partial characterization of the noise map

whenever the group elements admit efficient circuit decompositions, and as long as an

appropriate parameterization of the map is used. We demonstrate how the natural param-

eterization used in the proposed experiments can be used to test important assumptions

about noise which are routinely used in the estimation of error threshold for efficient

quantum computation [KLZ98, AGP06].

This chapter is organized as follows. First, in Section 4.2 we give some background

about the mathematical description of quantum operations, as well as some background

about how to quantify noise in these operations. Then in Section 4.3 we describe exper-

imental protocols which allow for partial information about noise to be extracted. The

scaling of the uncertainties in estimates of these parameters from the experimental data

is detailed in Section 4.4. Beyond the quantification of noise, the partial information ob-

tained via these twirling protocols can also be used to test for the independence of noise

in different subsystems, which we describe in Section 4.5.

4.2 Background

According to the postulates of quantum mechanics, the state of a quantum system is

described by a vector |ψ〉 in a Hilbert space H. This state evolves in time as described

by the Schrödinger equation, which implies that this evolution is unitary. In other words,
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there is an unitary operator U(t) such that |ψ(t)〉 = U(t)|ψ(t = 0)〉.

As alluded to previously, not all degrees of freedom can be controlled or observed

easily. These unobserved degrees of freedom are usually called the environment, so

that the total Hilbert space is naturally divided into system and environment, or H =

HS ⊗HE . In general there will be interactions between system and environment, so that

they will be entangled, and the state of the system cannot be describe by a vector in HS .

Instead, the state is described by a density operator ρS ∈ B(HS), where B(HS) denotes

the set of bounded operators acting onHS (i.e. operators with bounded eigenvalues). For

the remainder of this work, we will only consider density operators such that tr ρ = 1.

Given the state |ψ〉 ∈ H, one has that ρS = trE |ψ〉〈ψ|, where trE is the partial trace

with respect to the environment. If one attempts to describe the evolution of the system

alone, without describing the evolution of the environment, one has

ρS(t) = trE U(t)ρ(t = 0)U †(t) (4.1)

=
∑
k

〈ek|U(t)ρS(t = 0)⊗ |ψE〉〈ψE|U †(t)|ek〉 (4.2)

=
∑
k

〈ek|U(t)|ψE〉 ρS(t = 0) 〈ψE|U †(t)|ek〉 (4.3)

=
∑
k

Ek(t)ρS(t = 0)Ek(t)
†, (4.4)

= E(t)ρS(t = 0) (4.5)

where we have assumed that the environment is in the state |ψE〉 which is initially un-

entangled with the system, and that the {|ek〉} form an orthonormal basis for HE . The

operators Ek(t) = 〈ek|U(t)|ψE〉 are known as the Kraus operators, and (4.4) is known as

the Kraus sum representation of the superoperator E(t) [Kra83]. These superoperators

are also referred to as completely positive (CP) maps, because they preserved the posi-

tivity of density operators even when they act only on subsystems [Cho75, Kra83]. In

the discussion to follow, we will denote CP maps by capital Greek letters such as Λ, or

capital calligraphic letters such as A, B, etc. For many of the physical settings usually

considered, CP maps are general enough to describe all observed forms of noise, espe-

cially in systems such as NMR and ion traps [AL87, ALZ06]. For this reason we will

restrict ourselves consider noise described by CP maps. Superoperators are also referred

to as quantum channels, and we will use the terms superoperator, channel and CP map

interchangeably.

In the case that there is no interaction with the environment, the evolution of the
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system is given by a unitary U(t) acting on the system alone. The corresponding super-

operator will be denoted U such that UρS = UρsU
†. In an ideal setting the state of a

system is taken to be a pure state, and the operations performed by a quantum informa-

tion processor on the system are taken to be unitaries. Realistically, it is unavoidable that

the system interact with the environment, so that these noisy operations implemented by

an experiment will be CP maps.

While in principle the environment can be arbitrarily large, it is possible to describe

a CP map without describing all degrees of freedom in the environment. The simplest

way to see how this comes about is by considering the representation of ρS in a particular

orthonormal basis, such as

ρ =
∑
ij

[ρ]ij|i〉〈j|, (4.6)

where [ρ]ij denotes the entry in the ith row of the jth column of the matrix representation

of ρ in this particular basis (we will omit the subscript S from here on for brevity). Since

the density operator ρ can be represented in this manner by a matrix, we use the terms

‘density operator’ and ‘density matrix’ interchangeably. It is clear from the Kraus repre-

sentation that CP maps are linear operations, so that if we represent the Kraus operators

in the same basis as above we obtain

[ρ(t)]ij =
∑
klm

[Ek]il[Ek]
∗
jm[ρ]lm. (4.7)

Rearranging the entries of the density matrix ρ into a column vector |ρ〉〉 by stacking the

columns, such that a two dimensional density matrix can be written as

|ρ〉〉 =


ρ00

ρ10

ρ01

ρ11

 , (4.8)

allows us to rewrite (4.7) in the more compact form

|ρ(t)〉〉 =
∑
k

E∗
k(t)⊗ Ek(t)|ρ〉〉, (4.9)

= Ê |ρ〉〉. (4.10)

Ê is what we call the natural or Liouville representation of E [Blu96]. This representation

can also be derived directly from Roth’s lemma [HJ91], which states

|ABC〉〉 = CT ⊗ A|B〉〉, (4.11)
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where A, B and C are matrices of the appropriate dimensions. Since the natural rep-

resentation describes a CP in full generality, it is clear that for a d dimensional Hilbert

space, one requires at most d4 different complex parameters to describe Ê , regardless of

how many degrees of freedom are in the environment. It can be shown that in fact at

most d4 real parameters are necessary, as the elements of Â can be rearranged to form a

positive d2×d2 known as the Choi matrix [Cho75]. Imposing the additional requirement

that E preserve the trace of ρ translates to∑
i

E†
iEi = 1d, (4.12)

which leads to d2 constraints on the parameters of Ê , and therefore in reality we need

d4 − d2 real parameters.

While the Kraus sum representation is not unique (it depends on which basis is used

to trace over the environment), Ê is a unique representation for E . Another way to de-

scribe E in a unique manner is to decompose the Kraus operators in a particular operator

basis. This is possible by defining the Hilbert-Schmidt inner product between two oper-

ators Q and R acting on a d dimensional space as trQ†R. Note that

trQ†R = 〈〈Q|R〉〉, (4.13)

so that we may write the Hilbert-Schmidt inner product as 〈〈Q|R〉〉.

If we are dealing with a system consisting of qubits, one such basis is the n qubit

Pauli group Pn, consisting of all n fold tensor products of the Pauli operators 12, σX , σY
and σZ . After normalizing the Pauli group, we can decompose each of the Ei as

Ei =
∑
Pj∈Pn

1

d
〈〈Pj|Ei〉〉Pj, (4.14)

=
∑
Pj∈Pn

eijPj, (4.15)

to arrive at

Eρ =
∑

Pi,Pj∈Pn

[χ]ijPiρPj (4.16)

where [χ]ij =
∑

k ekie
∗
kj . This is what we call the χ representation of E . This rep-

resentation has many attractive features. In particular trace-preservation implies that

trχ = 1, while Hermiticity-preservation implies [χ]ij = [χ]∗ji. The fact that E is CP

also implies χ ≥ 0, which follows from the fact that Choi matrix is positive for CP
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Figure 4.1: Circuit diagram representing the action of the ideal unitary U , and the im-

perfect implementation Ũ .

maps [Cho75, Kra83]. Thus it can be concluded that all entries in the diagonal of χ are

positive, and since trace preservation requires trχ = 1, the diagonal elements [χ]ii can

be interpreted as probabilities. As we will see later in this chapter, this allows us to use

these diagonal entries as a measure of probability of different errors occurring.

In order to describe any given CP map, it is sufficient to describe the parameters of

any of the representations above. Due to the linearity of the maps we have described,

this can be reduced to solving a linear set of equations for Ê by considering its action on

d2 linearly independent density operators. This procedure is known as process tomog-

raphy [CN97, Leu03, ML06]. Because these density operator have unit trace, there are

d4 − d2 free parameters, so that there is a unique solution to this linear problem.

It is important to note that the number of parameters needed to completely describe

such maps grows exponentially with the number of subsystems. In particular case of a

system consisting of n qubits, which will be our focus for the remainder of the thesis, one

has d = 2n, and a CP map acting on such a system requires 24n − 22n real parameters to

be described [CN97]. This in turn implies an exponential number of experiments need to

be performed [ML06], which is infeasible even for modestly large collections of qubits.

In order to characterize noise in quantum operations via scalable experiments, a different

strategy must be taken.

4.2.1 Average gate fidelity

A measure of how closely Ũ approximates U is how close the results of applying U and

Ũ to the same pure state are. As we have mentioned in the previous chapters, a good

measure of how alike two states are is the fidelity. When comparing a pure state |ψ〉 with

94



a mixed state ρ, the fidelity is defined as

F (|ψ〉, ρ) = 〈ψ|ρ|ψ〉. (4.17)

In particular, F (|ψ〉, ρ) ∈ [0, 1] for all states |ψ〉 ∈ H and all density matrices ρ ∈ B(H).

We then define the fidelity between two superoperators U and Ũ with respect to the state

|ψ〉 to be

F|ψ〉(U , Ũ) = 〈ψ|U †Ũ(|ψ〉〈ψ|)U |ψ〉, (4.18)

= 〈ψ|U † ◦ Ũ(|ψ〉〈ψ|)|ψ〉. (4.19)

This is what we call the gate fidelity between Ũ and U with respect to |ψ〉. Here we

have used ◦ to symbolized the composition of superoperators, and U † to represent the

Heisenberg dual of the superoperator U . This dual is defined by

tr[B E(ρ)] = tr[E†(B) ρ] (4.20)

for all quantum observables B. In terms of the Kraus operator decomposition of E(ρ) =∑
k EkρE

†
k, we have that E†(ρ) =

∑
k E

†
kρEk. In the case of unitaries, the superoperator

dual corresponds to the inverse superoperator, so that in essence (4.19) measures how

close U and Ũ are by measuring how close U † ◦ Ũ is to the identity map.

In order to make this measure independent of the particular choice of input state, one

can compute the average fidelity for a uniform or unitarily invariant distribution of pure

states, to obtain the average fidelity between U and Ũ

F (U , Ũ) =

∫
dµ(ψ) 〈ψ|U † ◦ Ũ(|ψ〉〈ψ|)|ψ〉, (4.21)

where dµ(ψ) is the unitarily invariant distribution of states known as the Fubini-Study

measure [EAZ05, BZ06]. The most attractive feature of this measure of distance between

quantum processes is that it can be interpreted as an lower bound to the probability of

successfully applying U [GLN05].

As we are only interested in characterizing the noisy part of Ũ , it is convenient to

define

Ũ = Λ ◦ U , (4.22)

where Λ is the undesired part of the evolution. Equivalently, one defines Λ = Ũ ◦ U †.
The average fidelity then reduces to

F (U , Ũ) =

∫
dµ(ψ) 〈ψ|U † Λ( U |ψ〉〈ψ|U † ) U |ψ〉, (4.23)

=

∫
dµ(ψ) 〈ψ| Λ(|ψ〉〈ψ|) |ψ〉, (4.24)
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due to the fact that the distribution is unitarily invariant. This demonstrates that the

average fidelity depends only on the noisy part of Ũ [EAZ05].

In an experimental setting, one does not have access to a perfect implementation of a

unitary U to be composed with the imperfect implementation Ũ . As an alternative, one

can consider the implementation of some sequence of unitaries which, when composed,

is intended to implement the identity gate over the qubits involved, in essence setting

U = 12n . In that case Ũ = Λ, and (4.24) makes no requirement for ideal resources,

so that it may be used to estimate strength of Λ. In order to simplify the expressions to

follow, we take the average gate fidelity to be

F =

∫
dµ(ψ) 〈ψ| Λ(|ψ〉〈ψ|) |ψ〉, (4.25)

so that it is implicit that U = 12n [Nie02, EAZ05].

A random state can be generated from a fixed state by applying a random unitary

operator. In order to obtain a unitarily invariant distribution of states, one must chose the

distribution for random unitaries to also be unitarily invariant under conjugation. This

leads to the Haar measure over unitaries [EAZ05], so that F can be rewritten as

F =

∫
dµ(V ) 〈ψ| V† ◦ Λ ◦ V(|ψ〉〈ψ|) |ψ〉, (4.26)

where V(ρ) = V ρV †, V ∈ U(2n) and dµ(V ) is the Haar measure over U(2n). Thus, in

order to evaluate the average gate fidelity, one can consider the averaged channel

Λ =

∫
dµ(V ) V† ◦ Λ ◦ V , (4.27)

and the fidelity between the output state of Λ and the corresponding pure input state. This

averaging of a channel composed with a unitary and its inverse is known as a twirl, and

is depicted in Figure 4.2. In this case, it is known as a Haar twirl as the average is taken

over the Haar measure. Because of the unitary invariance of the Haar measure, Λ is a

symmetrized version of Λ, such that the fidelity 〈ψ|Λ(|ψ〉〈ψ|)|ψ〉 is independent of |ψ〉.
In essence, twirling over the Haar measure makes the noise isotropic across the Hilbert

space of possible states.

Due to this isotropy, the twirled channel can be shown to have the form [HHH99,

Nie02, EAZ05]

Dn[p](ρ) ≡ p ρ+ (1− p)
12n

2n
, (4.28)
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Figure 4.2: Circuit diagram for twirling the quantum operation Λ.

known as a depolarizing channel. In the case where Λ(ρ) =
∑

k AkρA
†
k for some set of

Kraus operators {Ak}k, the parameter p can be shown to reduce to

p =

∑
k | trAk|2 − 1

4n − 1
=

tr Λ̂− 1

4n − 1
, (4.29)

where Λ̂ is the Liouville representation of Λ. The average gate fidelity is then

F = p〈ψ|ψ〉〈ψ|ψ〉+
1− p

2n
〈ψ|12n|ψ〉 (4.30)

= p+
1− p

2n
(4.31)

=
tr Λ̂ + 2n

4n + 2n
. (4.32)

At first glance, this requires a complete description of Λ in terms of its Kraus operators,

and as we have discussed, estimating the parameters of a full description of Λ, in any

representation, requires an number of experiments which is exponential in n [CN97,

Leu03, ML06].

However, as the Haar measure for U(2n) is exponentially concentrated, only a few

random unitary samples are necessary to estimate F to some desired accuracy [EAZ05].

In order to estimate the average fidelity, one simply takes the following steps:

1. prepare a state |ψ〉 which is both easy to prepare and easy to project into.

2. chooses a unitary V according to the Haar measure, and apply it to |ψ〉.

3. let Λ act on the state.

4. apply V † to the state.
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5. detect whether the result is |ψ〉 (F = 1) or its complement subspace |ψ⊥〉 (F = 0).

While the number of experiments is greatly reduced, the main drawback of this pro-

posal is that the implementation of a unitary picked at random from the Haar distribution

requires, in general, a number of elementary gates that is exponential in n.

4.2.2 Clifford twirl

A solution to the problem of sampling from the Haar measure is to sample from a distri-

bution of more easily implementable operations which still lead to the same average fi-

delity [DCEL06]. A set of unitaries {Vi}i, coupled with a probability distribution Pr(Vi)

with the property

F =

∫
dµ(V ) 〈ψ| V† ◦ Λ ◦ V(|ψ〉〈ψ|) |ψ〉, (4.33)

=
∑
i

Pr(Vi)〈ψ| V†i ◦ Λ ◦ Vi(|ψ〉〈ψ|) |ψ〉, (4.34)

is sufficient. Such mathematical objects are known as unitary 2-designs, because the

quantity being computed is a second-order polynomial in the matrix elements of V as

well as in the matrix elements of V †.

One example of a unitary 2-design is the Clifford group [BDSW96, DLT02, Cha05,

DCEL06]. In order to see how the Clifford twirl greatly simplifies the description of the

twirled channel Λ, first recall the χ representation of Λ

Λ(ρ) =
∑
ij

[χ]ijPiρPj, (4.35)

for all Pi,j ∈ Pn. By convention, we let P0 = 1⊗n. From the definition of the Clifford

group, it is clear that Pn ⊂ Cn, so that if we twirl uniformly over the Pauli group, and

then twirl uniformly over the full Clifford group, the effect is the same as only twirling

over the Clifford group1. Twirling Λ over Pn yields [Dan05b, DCEL06]

ΛPn(ρ) =
∑
Pi∈Pn

[χ]iiPiρPi, (4.36)

1The usual approach is to decompose a Cn twirl into a Pn twirl composed with what is called a sym-

plectic twirl [DCEL06]. However, for our purposes it suffices to consider the composition of Pn and Cn

twirl, thus avoiding the introduction of another group.
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that is, the off-diagonal entries of χ are set to zero. Due to properties of the χ repre-

sentation of a CP map discussed earlier, we can interpret ΛPn as a map where Pi ∈ Pn

is applied with probability [χ]ii. From the definition of the Clifford group, twirling ΛPn

over the Cn distributes the probability mass evenly over the non-identity Pauli operators,

yielding

ΛCn(ρ) = [χ]00ρ+
1− [χ]00
4n − 1

∑
Pi∈Pn\{12n}

PiρPi. (4.37)

Given that for any density matrix ρ

1

4n

∑
Pi∈Pn

PiρPi =
12n

2n
(4.38)

it follows that

ΛCn(ρ) = pρ+ (1− p)
12n

2n
, (4.39)

where p = 4n[χ]00−1
4n−1

. Note that because Pauli operators are traceless, we have that tr Λ̂ =

4n[χ]00 and so (4.32) implies

ΛCn = Λ. (4.40)

Therefore the average fidelity estimated by averaging over Cn is identical to the average

fidelity estimated by averaging over unitaries distributed according to the Haar mea-

sure [Dan05b, DCEL06], as claimed.

The main advantage of this approach is that it is possible to sample Cn to estimate the

average fidelity in an efficient manner, as each unitary in Cn can be implemented using

O(n2/ log n) instances of the generator unitaries [AG04]. The protocol for estimating

the fidelity then becomes

1. prepare a state |ψ〉 which is both easy to prepare and easy to project into.

2. chooses a unitary V ∈ Cn uniformly, and apply it to |ψ〉.

3. let Λ act on the state.

4. apply V † to the state.

5. detect whether the result is |ψ〉 (F = 1) or its complement subspace |ψ⊥〉 (F = 0).

For simplicity, we can let |ψ〉 = |0〉⊗n, and then the final measurement can simply be

the measurement of each qubit into the σZ eigenbasis. After repeating the experiment K

times, the Chernoff bound states that

Pr(|F − F̃ | > δ) ≤ 2 exp(−δ2K), (4.41)
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where the F̃ is the mean of the K samples taken from the experiments. In other words,

the probability of the average fidelity estimate being farther than δ away from the true

average F decreases exponentially with the K. Inverting this relationship leads to

K ≤ 1

δ2
ln

2

Pr(|F − F̃ | > δ)
, (4.42)

which implies that, given a fixed probability of being within δ of the true mean, the

number of experiments is independent of the number of qubits in the system being char-

acterized.

Other methods can be used to approximate Cn twirling withO(n log 1
ε
) gates arranged

in O(log n log 1
ε
) time steps, where ε is how accurately one would like to approximate an

exact Cn twirl [Dan05b, DCEL06]. However, it is clear from the previous arguments that,

even without optimizations, the average fidelity can be estimated through experiments

that scale well with the number of qubits.

4.3 Weight distribution of errors

The decomposition of a Cn twirl into a Pn twirl composed with a Cn twirl highlights the

fact that characterization of the twirled channel can be interpreted as partial characteriza-

tion of the original channel. Twirling over Pn discards information about the off-diagonal

entries of χ, and twirling over Cn places errors in different equivalence classes – i.e. triv-

ial or non-trivial – and we only learn about the probability that an error belongs to each

equivalence class. From this perspective, we can consider twirling over different sets of

operations that will not leads to 2-designs, but that will still provide different kinds of

partial information about the noise, such as classifying errors into different equivalence

classes.

Instead of twirling over Cn, consider twirling over the local Clifford group C1
⊗n ,

which consists of tensor products of single qubit Clifford group operations. From an

experimental perspective, the main attraction of considering C1
⊗n is that it lacks inter-

actions between the qubits, and interactions are often more difficult to implement than

single qubit operations. Once again we find that Pn ⊂ C1
⊗n, so we may take twirling

over C1
⊗n to be a Pn twirl composed with a C1

⊗n twirl. Under conjugation, any op-

eration C ∈ C1 will map the set {σX , σY , σz} onto itself, given the definition of the

Clifford group and the fact that any unitary will map 12 to itself under conjugation. This
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implies that conjugating any P ∈ Pn by an operation in C1
⊗n will preserve the num-

ber of non-identity elements in the tensor factor decomposition, and it will also preserve

the locations of the Pauli errors. In other words, the weight wt(P ) of a Pauli operator

P is preserved under conjugation by local Clifford operations. However, because the

error locations are also preserved, this would imply that a super-polynomial number of

parameters is needed to describe a channel twirled over this group. In order to discard

information about the error locations, one can twirl over Πn, the group of permutations

of n qubits. The group C1Π generated by composition of Πn and C1
⊗n is also a subgroup

of Cn. Interestingly, it is not necessary to apply the unitaries in Πn to implement the Πn

twirl – one can simply discard error location information when performing the parame-

ter estimation, as we will show later. We still call an C1Π twirl a local Clifford twirl, in

order to emphasize that only the C1
⊗n operations are explicitly applied, and that the Πn

operations are implicitly applied by marginalization of data.

Composing a C1Π twirl with a Pn twirl will uniformly distributes the probability

mass over n-qubit Pauli operators of the same weight. Thus we may write

ΛC1Π(ρ) =
n∑

w=0

Pr(w)Mp
w(ρ), (4.43)

Mp
w(ρ) =

1

3w
(
n
w

) ∑
wt(Pi∈Pn)=w

PiρPi, (4.44)

where Pr(w) is the probability that a Pauli error of weight w will occur. The CP maps

Mp
w correspond to random application of one of the 3w

(
n
w

)
Pauli errors of weight w with

uniform probability, so that we can make the identification

Pr(w) =
∑

wt(Pi∈Pn)=w

[χ]ii. (4.45)

On the other hand, Cn twirled channels have the form

Λ(ρ)Cn = Pr(0)ρ+ (1− Pr(0))
1

4n − 1

∑
wt(Pi∈Pn) 6=0

PiρPi. (4.46)

While Cn twirling leads to a channel with a single parameters Pr(0), C1Π twirling leads

to a channel with n+1 parameters {Pr(w)}nw=0. In either case, estimating the parameter

Pr(0) = [χ]00 is sufficient to estimate the average fidelity of the channel Λ. The same

experimental protocol used for estimating F using a Cn twirl can be be used to estimate

F using a C1Π twirl. However, in order to estimate the Pr(w) the collected data must be

post-processed in a different way.
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Figure 4.3: Circuit diagram for the characterization of a ΛC1Π twirled channel.

4.3.1 Weight monitoring protocol for estimating Pr(w)

Instead of simply checking whether the state after ΛC1Π acted is |0〉⊗n or not, one ap-

proach to estimate the Pr(w) is to estimate the probability distribution qw of the weights

of the binary strings observed in the experiment – in other words, w is the number of

qubit measurement outcomes with eigenvalues -1. The circuit diagram for the protocol

is depicted in Figure 4.3. Since the initial state as well as the measurements are qubit per-

mutation invariant, there is no need for the explicit application of the qubit permutations.

Gathering only information about the weight of the measurement outcomes ensures that

all information about the error locations is discarded. This is why the circuit diagram in

Figure 4.3 depicts a ΛC1
⊗n twirled channel when we are in fact estimating the parameters

of ΛC1Π.

Given that the input state |0〉⊗n is an eigenstate of σZ acting on any of the qubits,

errors of this type will not lead to observable change is the string weight distribution.

However the structure of the C1Π twirled channel implies that the probability of a Pauli

error depends only on its weight, and σX and σY errors leads to observable changes in the

weight distribution. Given the error weight distribution Pr(w), it is possible to infer what

is the distribution of the strings weights through by a simple argument. The probability

qw that a binary string of weight w is observed is given by sum of the probability that

an error of weight w′ ≥ w has occurred times the probability that this error has w errors

which are either σX or σY (as these are independent events). Formally we write

qw =
n∑

w′≥w

Rw,w′ Pr(w′), (4.47)

Rw,w′ =
2w
(
w′

w

)
3w′

, (4.48)
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whereRw,w′ is the conditional probability that a string of weight w is observed given that

an error of weight w′ has occurred.

If we arrange the {qw} and the {Pr(w)} as vectors, Rw,w′ can be seen as an upper

triangular matrix. Since its diagonal entries are all non-zero, its determinant is also non-

zero, and therefore Rw,w′ is invertible [HJ85]. The estimates of the {Pr(w)} can be

obtained from the estimates of the {qw} by back-substitution, given the upper-triangular

form of Rw,w′ .

4.3.2 Parity monitoring protocol for estimating Pr(w)

Instead of describing ΛC1Π in terms of how it transforms states, it is possible to describe

this twirled channel in terms of how it transforms observables by considering the dual

channel in the Heisenberg picture. C1Π twirled channels have Kraus operators which are

Hermitian, and therefore their are self-dual, or

ΛC1Π = Λ
†
C1Π. (4.49)

As pointed out earlier, the Pauli group Pn forms an operator basis. Since these operators

are Hermitian, we can get a complete description of ΛC1Π by considering its action on

the observables that make up Pn.

Elements of Pn have the important property that they either commute or anti-commute

with each other. In other words, we have that for Pi, Pj ∈ Pn either PiPj = PjPi or

PiPj = −PjPi. This is easily verified for single qubits, and extended to n qubits due to

properties of the tensor product. If we consider the action of ΛC1Π on an element P ∈ Pn

we find that

ΛC1Π(P ) =
∑
Pi∈Pn

Pr(Pi) PiPPi (4.50)

=
∑

PiP=PPi

Pr(Pi) PiPiP −
∑

PiP=−PPi

Pr(Pi) PiPiP (4.51)

=
∑

PiP=PPi

Pr(Pi) P −
∑

PiP=−PPi

Pr(Pi) P (4.52)

= λ(P )P, (4.53)

or, in other words, the action of ΛC1Π is to scale a Pauli observable P by λ(P ) ∈ [−1, 1].

Due to the group structure of C1Π, we find that ΛC1Π is invariant under the action of any
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unitary in C1Π, thus the scaling factors λ(P ) can only depend on wt(P ). We can label

these scaling factors by the weight of the Pauli operators instead, i.e. λw = λ(P ) for

wt(P ) = w. This translates to the fact that there are only n + 1 different scaling factors

to be estimated, just as there are only n+ 1 different Pr(w) to be estimated.

As the scaling factors depend only on the weight, it is possible to estimate λw by

focusing on how the observables σ⊗wZ ⊗ 1n−w2 are scaled. These observables can be

measured by first measuring each qubit in the σZ eigenbasis, and then computing the

parity of the outcomes on w different qubits – recall that in order to discard error location

information, these qubits must be chosen randomly. It then becomes clear that the the

same circuit depicted in Figure 4.3 can be used to estimate these scaling factors.

An important feature of this protocol is that it is robust against certain types of im-

perfections during input state preparation and measurement. If these imperfections are

well described by channels which have a diagonal χ representation, then this just corre-

sponds to additional scaling factors for any Pauli observable sent through the channel, as

it is clear from (4.53). These scaling factors due to the imperfections can be estimated

separately by running the protocol without letting Λ act on the system – which can be

done if the error being characterized corresponds to a sequence of unitaries intended

to approximated 12n , for example. The ratio of the scaling factors for the full protocol

with Λ and this calibration step correspond to the scaling factors of ΛC1Π. As long as

the expectation values of the observables can be estimated to high enough precision, the

parameters of the twirled channel can be estimated despite these imperfections. This

is particularly relevant in the case of solid-state and liquid-state nuclear magnetic res-

onance based quantum information processing devices [BCC+07, ESM+07], where the

initial state is a highly mixed state with only a small bias towards the state |00 . . . 0〉, but

where the detectors are highly sensitive.

In order to prove that there is a one-to-one relationship between λw and Pr(w), we

must consider different parameterizations of the Liouville representation of the twirled

channel ΛC1Π. Given the Kraus presentation of ΛC1Π as depicted in (4.43), it follows that

ΛC1Π =
n∑

w=0

Pr(w)Mp
w, (4.54)

M̂p
w =

1

3w
(
n
w

) ∑
wt(Pi∈Pn)=w

P ∗
i ⊗ Pi, (4.55)

is a parameterization in terms of the Pr(w). The description in terms of the scaling

factors λw also leads to a parameterization precisely because Pn is an orthogonal basis
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of operators. This leads to the parameterization

ΛC1Π =
n∑

w=0

λwMλ
w, (4.56)

M̂c
w =

∑
wt(Pi∈Pn)=w

1

2n
|Pi〉〉〈〈Pi|, (4.57)

which can be interpreted as a projection into each of the subspaces of the same weight w

followed by scaling according λw.

Orthogonality between the M̂p
w and the M̂λ

w can be established by computing the

Hilbert-Schmidt inner product in the Liouville representation, so that

〈M̂p
i ,M̂

p
j〉 = tr(M̂p

i )
†M̂p

j (4.58)

=
1

3i+j
(
n
i

)(
n
j

) ∑
wt(Pk)=i

∑
wt(Pl)=j

tr(P T
k ⊗ Pk)(P

∗
l ⊗ Pl) (4.59)

=
1

3i+j
(
n
i

)(
n
j

) ∑
wt(Pk)=i

∑
wt(Pl)=j

(trP T
k P

∗
l )(trPkPl) (4.60)

= 4n
1

3i
(
n
i

)δij, (4.61)

and

〈M̂λ
i ,M̂λ

j 〉 = tr(M̂λ
i )
†M̂λ

j (4.62)

=
1

4n

∑
wt(Pk)=i

∑
wt(Pl)=j

tr |Pk〉〉〈〈Pk|†|Pl〉〉〈〈Pl| (4.63)

=
1

4n

∑
wt(Pk)=i

∑
wt(Pl)=j

|〈〈Pk|Pl〉〉|2 (4.64)

=
1

4n

∑
wt(Pk)=i

∑
wt(Pl)=j

| trPkPl|2 (4.65)

= 3i
(
n

i

)
δij. (4.66)

Equating the Liouville representations of (4.54) and (4.56), and computing the Hilbert-

Schmidt inner product with each of the operators M̂λ
w and M̂p

w, we reach the relation-

ships

λw =
∑
w′

[Ω]w,w′ Pr(w′), (4.67)

Pr(w) =
∑
w′

[Ω−1]w,w′λw′ (4.68)
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where

[Ω]w,w′ =
〈M̂λ

w,M̂
p
w′〉

〈M̂λ
w,M̂λ

w〉
(4.69)

[Ω−1]w,w′ =
〈M̂p

w,M̂λ
w′〉

〈M̂p
w,M̂p

w〉
. (4.70)

Thus the relationship between λw and Pr(w) is invertible, and it is explicitly given by

the matrices Ω and Ω−1.

The problem of computing the matrix elements of Ω and Ω explicitly appears daunt-

ing at first, as they are defined by inner products of the exponentially large matrices

M̂λ
w and M̂p

w. However, as this relationship is linear, one can choose convenient chan-

nels to infer the entries on the rows of Ω, and use (4.70) to compute the entries of Ω−1.

More explicitly, consider an C1Π twirled channel with Pr(w′) = 1. For this channel

λw = [Ω]w,w′ , and λw can be computed by straightforwardly counting commutation and

anti-commutations, as described in detail in Appendix E. One then finds the compact

expressions

[Ω]w,w′ =

[
n∑

L=0

(
n−w
w′−L

)(
w
L

)(
n
w′

) 3L + (−1)L

3L

]
− 1 (4.71)

[Ω−1]w,w′ =
3w+w′

(
n
w

)(
n
w′

)
4n

[Ω]w,w′ . (4.72)

This demonstrates that given the λw for any channel, it is possible to compute the Pr(w)

efficiently.

4.4 Propagation of uncertainties

Using the same arguments from Section 4.2.2, the Chernoff bound can be applied to

demonstrate that, for any given w, qw and λw can be estimated with a number of samples

which grows quadratically with the desired accuracy. Taking each experiment to be

independent, the number of experimental trials necessary to estimate all n + 1 different

parameters is in the worse case linear in the number of qubits and quadratic in the error

δ. This can be improved by considering the union bound. This bound states that the

probability that any of the n + 1 estimates are more than δ away from the true value is

bounded above by the sum of the probabilities of each of the estimates being more than

δ away from the true value. Using the union bound and the Chernoff bound together
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allows us to finally conclude that the number of trials K necessary to estimate all the

n+ 1 parameters to some desired accuracy is K = O(δ−2 log(2n+ 1)).

It is natural to ask with what confidence the Pr(w) can be estimated. For any given

confidence interval for the parameters qw or λw, the confidence interval for Pr(w) can

be computed from the corresponding linear transformations. The scaling of the volume

of this confidence interval under the action of the linear transformation can be used as a

measure of how the uncertainties propagate. This scaling can be computed by the corre-

sponding Jacobian of the transformation, which are just the determinant of the matrices

R−1 and Ω−1. The dependence of these determinants on the number of qubits n can then

be used as a measure of the efficiency with which the Pr(w) can be estimated. Recall

that confidence intervals are given as functions of the standard deviation of the estimates

– so that the length of the confidence interval along one parameter scales as O(1/
√
K).

As R is upper triangular, its determinant is just the product of its diagonal ele-

ments [HJ85]. From the definition of R, we know that

[R]w,w =

(
2

3

)w
, (4.73)

and therefore

|R−1| = |R|−1 =

(
3

2

)n(n+1)/2

. (4.74)

Thus it is clear that any confidence region for {qw} with finite volume will lead to a

confidence region of volume which is super-exponentially larger. In order to better un-

derstand the consequences of this scaling, take the uncertainty region to be hyper-cubic.

In that case the ratio of the length of the sides of the corresponding hyper-cubes would be(
3
2

)n/2, which scales exponentially with n. This is an indication that not all of the Pr(w)

can be estimated from the qw without requiring an exponential number of experiments.

It is not clear if a closed form for |Ω−1| can be obtained, but numerical calculations show

that it also scales as O(2n
2
), and therefore the λw do not lead to fundamentally better

estimates of the Pr(w).

However, it is important to note thatR−1 and Ω−1 do not preserve the shape of hyper-

cubic regions. These linear transformation distort the parameter space differently along

different directions. In order to estimate how the uncertainty propagates along each each

coordinate, we consider the scaling of the variance σ2
Pr(w) of the estimates of Pr(w) as a

function of n. Taking the estimates for the λw to have covariance Cov(λi, λj) we have
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that

σ2
Pr(w) =

∑
i,j

[Ω−1]w,i[Ω
−1]w,jCov(λi, λj). (4.75)

Note that the magnitude of the covariance between different estimates is bounded by the

product of their standard deviations. If we then take the sign of the covariance to be the

same as the sign of the product of the matrix elements, we arrive at the upper bound

σ2
Pr(w) ≤ σ2

λ

∑
i,j

|[Ω−1]w,i[Ω
−1]w,j|, (4.76)

where we have taken all the λw estimates to have the same variance σ2
λ. From the defini-

tion of the matrix elements, we have that |[Ω]w,i| ≤ 1, so that

σPr(w) ≤ σλ
3w

4n

(
n

w

)√√√√∑
i,j

(
n

i

)(
n

j

)
3i+j, (4.77)

= σλ 3w
(
n

w

)
, (4.78)

≤ σλ

(
3

w

)w
nwew (4.79)

For fixed w, the scaling between the lengths of the confidence intervals is just a polyno-

mial in n, of order w. However, for any given n, the scaling grows at most exponentially

with w. While we have not been able to evaluate useful lower bounds for this quantity,

numerical calculation indicate that the true scaling also grows as O(nw), as depicted in

Figure 4.4. Similar results for the scaling of confidence intervals when the qw are used to

estimate the Pr(w).

While it is possible to estimate all the qw and the λw of an n qubit channel efficiently,

the precision necessary to infer the Pr(w) from these estimates would be exponential

in w. This is not a barrier for the estimate of Pr(0), which can be used to estimate the

average fidelity of the channel with the identity, as described in Section 4.2.2. In fact, it

follows from the previous arguments that the variance of the estimate of Pr(0) is exactly

the same as the variance of the λw, which is consistent with previous findings about the

scalability of estimating the average fidelity.

The probability of other low weight error can also be estimated efficiently, for any

maximal error weight which is independent of n. For quantum error correction codes that

only correct a small number of errors, these probabilities can be used directly to estimate

the probability of an uncorrectable error under the action of the twirled channel.
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Figure 4.4: Bounds and numerical values for the scaling factor σPr(w)/σλ as a function

of the number n of qubits and the weight w of the errors.

4.4.1 Use of ancillary channels

In principle, it is possible to estimate the probabilities of different Pauli error directly,

instead of attempting to infer them from different observables as we have done here.

Given the Bell state

|Ψ+〉 =
1√
2
(|01〉+ |10〉), (4.80)

it is well known that the other Bell states can be obtained by local transformation

|Ψ−〉 =
1√
2
(|01〉 − |10〉) = 12 ⊗ σz|Ψ+〉 (4.81)

|Φ+〉 =
1√
2
(|00〉+ |11〉) = 12 ⊗ σX |Ψ+〉 (4.82)

|Φ−〉 =
1√
2
(|00〉 − |11〉) = 12 ⊗ σY |Ψ+〉, (4.83)

where we have neglected unobservable global phases. Thus, if we let a twirled channel

act on half of |Ψ+〉, and then measure the two qubits in the Bell basis, we can obtain a

direct estimate of the different Pauli errors. If the channel acts on multiple qubits, one

can simply send half a Bell pair for each qubit input, and measure each pair separately.

In fact, it can be shown that twirling is unnecessary in this scheme, and the diagonal

elements of the χ matrix can be obtained by sending halves of the state |Ψ+〉 across the

channel, and measuring the pairs in the Bell basis [ML06]. The diagonal entries in the

χ matrix may also be measured by using a single coherent ancilla which can interact

with the system in a controlled fashion [BPP08]. Both these approaches allow for the

Pr(w) to be estimated efficiently by sampling, but only under strong assumptions about
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the noise in the ancillas. This is because in these approaches the protocol is not able

to distinguish between errors in the ancilla or errors in the channel being characterized.

When certain errors occur on both the ancillas and the system being characterized, the

protocol can incorrectly infer that no error occurred. One would have to assume that the

ancillary system is perfectly noiseless, and ascribe all observed errors to the system being

characterized. The twirling protocol, on the other hand, requires no such assumptions.

4.5 Test for noise correlations

While there are limitations to which of the Pr(w) can be estimated efficiently, the other

parameters such as λm can still provide valuable information. Although the familiar

interpretation of probabilities is attractive, the λm can also provide information about

correlations in the noise, without the explicit estimation of the Pr(w). In particular, the

λw can be applied directly to test some of the assumptions that affect estimates of the

fault-tolerance threshold [KLZ98, AGP06].

A noise model which is often assumed in these estimates is one in which the error

locations are uncorrelated, but otherwise arbitrary – in other words, the environment is

allowed to “choose” the types of errors which maximize the damage in the system, but

not which qubits are affected by these errors. Under an C1Π twirl, such a noise model

is mapped to a n qubit depolarizing channel Dn, which consists of identical single qubit

depolarizing D1 channels acting on each qubit independently. Given the scaling λ1 of a

single qubit observable, the scaling of an observable of weight w is

λw = λw1 . (4.84)

Hence, observed deviations from this scaling imply a violation of the above assumptions.

Namely, violations of (4.84) can be taken as a sufficient condition for the presence of

noise correlations. However, there are correlated distributions which also give rise to this

scaling, so the converse implication does not hold.

In the case where the noise models acts with different intensity on each qubit, but still

independently, a similar result holds. The main difference then would be that each qubit

scales the Pauli observable differently, so that the overall scaling would be the product of

the scaling of each qubit. The individual scaling for each qubit can then be measured and

compared against the scaling for observables of weight two, and then weight three, and
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so forth. This leads to an exponential number of conditions similar to (4.84), and while

it would be inefficient to check all of them, they can still be individually used to test the

assumptions of fault-tolerant quantum computation.

4.5.1 Collective versus independent relaxation of identical qubits

As a concrete example of noise correlations and how they can be distinguished by looking

at the C1Π twirled channel parameters, consider the problem of energy relaxation. This

type of noise corresponds the energy of the system leaking out into the environment,

which is usually modeled as a bath or harmonic oscillators weakly coupled to the qubit.

Phenomenologically, it is known that the dominant source of noise in many physical

implementations of quantum computers. In the eigenbasis of the qubit HamiltonianH0 =

− δ
2
σZ , relaxation is characterized by a coupling of the form σX xi, where σX acting on

the qubit and xi acts on the ith bath degree of freedom. This leads to bit-flip errors on the

qubit in a manner such that the population of the excited state is depleted and the state

converges to the ground state (assuming that the bath is at a zero temperature). In the

interaction picture the state ρI(t) of a single qubit undergoing relaxation can be described

by the master equation [Blu96, BP02]

∂

∂t
ρI(t) = Γ

(
σ−ρI(t)σ

+ − 1

2
σ+σ−ρI(t)−

1

2
ρ(t)Iσ

+σ−
)

(4.85)

where σ± are the usual spin raising and lowering operators, and Γ is the rate at which

energy is depleted. This master equation can be integrated to yield the time dependent

superoperator E(t) with Kraus representation

E(t)[ρI ] = E0(t)ρIE0(t)
† + E1(t)ρIE1(t)

† (4.86)

where, in the energy eigenbasis,

E0(t) =

(
1 0

0
√
e−Γt

)
(4.87)

E1(t) =

(
1
√

1− e−Γt

0 0

)
. (4.88)

Given this error model, one can estimate Γ by simply preparing the state in the excited

states, allowing the system to relax for some time t, and then measuring the state of the
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system to determine what is the probability of being in either the ground state or the

excited state. We have that

Pr(excited state) = e−Γt (4.89)

Pr(ground state) = 1− e−Γt. (4.90)

Similarly, one can twirl this relaxation superoperator and obtain the probabilities of error

Pr(w = 0) =
1

4

(
1 + 2e−

Γt
2 + e−Γt

)
(4.91)

Pr(w = 1) =
1

4

(
3− 2e−

Γt
2 − e−Γt

)
. (4.92)

If we consider now two qubits undergoing relaxation independently, this implies that if

one were to twirl the relaxation superoperator over the C1Π group, one would obtain the

scaling parameters

λ0 = 1 (4.93)

λ1 =
1

3

(
2e−

Γ1t
2 + e−Γ1t

)
(4.94)

λ2 =
1

9

(
2e−

Γ1t
2 + e−Γ1t

)2

. (4.95)

Clearly, there parameters satisfy the condition given by (4.84).

In the case of multiple qubits, relaxation can be significantly different. This is due

to the possibility of correlations, which may be caused by multiple qubits being coupled

the same mode of the environment through which energy leaks out. This is the case if

identical qubits (with the same energy splitting) are coupled to the same bath. One of the

consequences of collective relaxation is the presence of sub-radiance [Dic53], meaning

that some states have an extended lifetime due to quantum interference. To see how this

comes about, consider the master equation for collective relaxation of two qubits [DG98]

∂

∂t
ρI(t) = Γ

[(
σ−1 + σ−2

)
ρI(t)

(
σ+

1 + σ+
2

)
+

−1

2

(
σ+

1 + σ+
2

) (
σ−1 + σ−2

)
ρI(t)−

1

2
ρI(t)

(
σ+

1 + σ+
2

) (
σ−1 + σ−2

)]
(4.96)

where σ±i are the pseudo-spin raising and lowering operators for qubit i (for simplicity

we have assumed that both qubits relax at the same rate). In other words, we have that

∂

∂t
ρI(t) = LρI(t), (4.97)
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with linear operator L defined implicitly by (4.96). Integrating this differential equation

by considering the Liouville representation, we obtain

ρI(t) = eLtρI(0). (4.98)

Note however, that the singlet state |01〉 − |10〉 is such that(
σ−1 + σ−2

)
(|01〉 − |10〉) = 0. (4.99)

In other words this states is unaffected collective relaxation even though it is an excited

state. This is an example of a sub-radiant state.

The parameters of the corresponding C1Π twirled channel can be extracted from eLt

is the usual manner, and one obtains the scaling parameters

λ0 = 1 (4.100)

λ1 =
1

6

(
1 + 5e−Γt + Γte−2Γt

)
(4.101)

λ2 =
1

9

(
2 + 3e−Γt + 4e−2Γt − Γte−Γt

)
(4.102)

It is immediately clear that these eigenvalues violate the condition for independence since

λ2 6= λ2
1. Another notable feature is the fact that the eigenvalues do not vanish in the limit

of infinite time. In particular, we have that

lim
t→∞

λ1 =
1

6
(4.103)

lim
t→∞

λ2 =
2

9
. (4.104)

This corresponds to the fact that not all states decay under collective relaxation. In par-

ticular, the populations of the singlet state does not decay at all, even though it is an

excited state.

In order to visualize how the independence condition (4.84) is violated, consider all

the possible values of λw for the independent and collective relaxation as depicted in

Figure 4.5. In the case of collective relaxation, λ2 is consistently higher than λ2
1. The

qualitative distinction between the two cases is best visualized by considering the time

dependence of this parameters, as depicted in Figures 4.6 and 4.7. In the independent

case, λ2 < λ1 at all times, while for the collective case, λ2 crosses over λ1 for long

enough times, indicating that at least some two qubit Pauli observables are better pre-

served due to the correlations of the noise.
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Figure 4.5: Twirled channel parameters for collective and independent relaxation.

4.6 Summary

In this chapter we have discussed the problem of characterization of noise in quantum

devices, and presented an efficient protocol for the partial characterization of noise. In

particular, we gave a detailed mathematical description of two experimental protocols

that can be used to estimate the distribution of weights of Pauli errors affecting a quantum

system.

While it was found that uncertainties in the estimates greatly limits how well this

probability distribution can be estimated, we have demonstrated that the probabilities of

error with low weight can always be estimated with a number of experiments which is

only polynomial in the number of qubits. In particular, this allows for the estimation of

the average fidelity of quantum states under the action of noise, but also for the estimate

of the performance of certain error correcting codes.

Describing the noise by a different set of parameters, we also demonstrated that it is

possible to test for a sufficient condition for the presence of correlations in the distribution

of error locations. As the independence of error locations is a standard assumption in the

construction of fault-tolerant quantum devices, this test is of direct practical relevance.

Using these same ideas, we demonstrated how independent and collective relaxation can

be distinguished by looking only at the parameters of the twirled channel.
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Figure 4.6: Time dependence of the twirled channel parameters for independent relax-

ation.

Figure 4.7: Time dependence of the twirled channel parameters for collective relaxation.
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Chapter 5

Finding correctable encodings from
experimental data

5.1 Introduction

The coherent experimental manipulation of quantum systems, and their application to

various quantum information tasks, confronts significant limitations in the presence of

noise, and in particular, decoherence. The discovery of quantum error correction codes

enables methods for overcoming these limitations whenever the decoherence satisfies

various well-defined sets of conditions. Specifically, the applicability of particular codes

depends crucially on the details of the physical noise model affecting a particular sys-

tem. The standard approach for experimentally characterizing the full noise model and

then assessing the usefulness of a given code are costly procedures. Indeed, full quan-

tum process tomography requires a number of experiments [CN97, Leu03, ML06] that

grows exponentially with the number of subsystems, and the dimension growth of ma-

trices involved in classical post-processing [Kri03, HKL04, RW05, FSW07, KSL07] is

also exponential. These limitations make the standard approach infeasible for the kinds

of quantum information systems required in practical applications. In this chapter we

describe a general method that can be used to overcome these issues, and we apply the

approach to an experimentally relevant class of noise models.

We focus on a particular type of twirl, the Pauli twirl, which has a number of special

features that make finding noiseless and unitarily correctable encodings more tractable

than the general case. First, in Section 5.2 we demonstrate how the partial information
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obtained via a Pauli twirl can be accessed with only a polynomial number of experiments,

making such experimental characterization strictly scalable. In Sections 5.3 and 5.4 we

describe the types of encodings we are considering, as well as how they relate to the

parameters of Pauli twirled channels. Then, in Section 5.5 we discuss how this partial

information lends itself to an algebraic algorithm for finding correctable encodings. This

new approach does not require the manipulation of exponentially large matrices. We also

discuss in Section 5.6 how these encodings are robust against experimental uncertainties,

and how their performance can be can be verified experimentally in an efficient manner

by using the techniques described in the previous chapter. We conclude in Section 5.7 by

showing how, in general, partial information about the noise, obtained via unitary twirls,

can be sufficient to construct correctable encodings. This result is independent of the

details of the unitary twirl, and is motivated by the fact that valuable partial information

about the noise can efficiently be extracted by twirling a quantum channel [BDSW96,

DLT02, Cha05, DCEL06, ESM+07], as discussed in the previous chapter.

5.2 Pauli Twirl

Quantum operations require O(24n) parameters to be fully described, and thus require

an exponential number of experiments to be fully characterized [CN97, Leu03, ML06].

Due to this exponential cost, it is impractical to obtain a complete description about

noise and decoherence acting on even a moderately large system of qubits. In the

previous chapter, we demonstrated how useful partial information about the noise can

be obtained by averaging the action of the quantum operation under the composition

U ◦ Λ ◦ U † for unitary operations U(ρ) = UρU † randomly chosen according to some

distribution [DCEL06, ESM+07]. This averaging is known as a “twirl”, and the aver-

aged channel Λ(ρ) =
∫
dµ(U)U ◦Λ ◦U †(ρ) is known as the “twirled channel”. The case

where the distribution over unitaries is discrete is of particular interest. In that case, the

twirled channel is given by Λ(ρ) =
∑

Pr(Ui)Ui◦Λ◦U †i (ρ), where Pr(Ui) is a probability

distribution over the Ui.

We also have seen that twirling a channel Λ by the Pauli group Pn yields the effective

channel Λ of the form

ΛPn(ρ) =
1

4n

∑
Pi∈Pn

PiΛ(PiρPi)Pi =
∑
i

[χ]iiPiρPi. (5.1)
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In other words, the off-diagonal elements of χ are eliminated. Channels of this form

are known as Pauli channels. Pauli channels have a number of useful properties which

facilitate the search for some types of correctable codes. However, the description of

a general Pauli channel still requires an exponential number of parameters, as there are

4n different Pauli operators acting on n qubits. Such parameters are not realistically

accessible due to this exponential overhead. Instead, one can consider an additional

twirl by the group Πn consisting of all qubit permutations. This uniformly distributed

probability mass across all Pauli operators which are equivalent up to permutation. The

channel ΛPnΠ resulting from a combination of a Pn twirl and a Πn twirl is what we call

a permutation invariant Pauli (PIP) channel. Such channels can be written in terms of

Choi-Kraus operators

ΛPnΠ(ρ) =
∑
w

pw
1

Kν
w

∑
νw

1

K i
νw

∑
iw

Pw,νw,iwρPw,νw,iw , (5.2)

where w = (wx, wy, wz) labels the number of the σX , σY and σZ Pauli operators in

the tensor decomposition of Pw,νw,iw , νw labels the wx + wy + wz qubits over which

Pw,νw,iw acts non-trivially, and iw labels which single qubit Pauli operator act on each of

the qubits.

The number Kn of different labels w is computed in Appendix D to be

Kn =
1

6
n3 + n2 +

11

6
n+ 1 (5.3)

demonstrating that the number of parameters needed to describe an n qubit PIP channel

scales well with n.

For a fixed w there are Kν
w =

(
n

wx+wy+wz

)
different νw, and for fixed w and νw, there

are K i
νw =

(
wx+wy+wz

wx

)(
wy+wz

wz

)
different iw. These parameters need not be estimated in

the experiment, as they are fixed for all PIP channels, and thus their abundance has no

bearing on the efficiency of experimental characterization of such channels.

Two equivalent descriptions of the channel (with the same number of parameters) are

the Choi-Kraus decomposition and the diagonal representation. The Choi-Kraus decom-

position (5.2) can be rewritten as

ΛPnΠ(ρ) =
∑
w

pwMp
w(ρ), (5.4)

where Mp
w are the superoperators

Mp
w(ρ) =

1

Kν
w

∑
νw

1

K i
νw

∑
iw

Pw,νw,iwρPw,νw,iw . (5.5)
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The Mp
w are trace-preserving channels which apply each of the Pw,νw,iw for a given w

with the same probability. The Mp
w form a basis for PIP channels.

Recall that, given some n-fold tensor product of Pauli operators Pw,νw,iw , we have

ΛPnΠ(Pw,νw,iw) = λwPw,νw,iw for some real constant λw ∈ [−1, 1], since Pauli operators

either commute or anti-commute. Moreover ΛPnΠ is self-dual; i.e. ΛPnΠ = Λ
†
PnΠ, a

fact that follows directly from the fact that Pauli operators are Hermitian. Since the

{Pw,νw,iw} form an operator basis, it follows that the scaling factors λw are in fact the

the eigenvalues of ΛPnΠ, with high degeneracy, as they depend only on w. Thus, Pauli

channels are diagonalizable and Hermitian.

Just as we did with C1Π twirled channels, we can describe a PIP channel in terms of

its eigenoperators as

ΛPnΠ(ρ) =
n∑

w=0

λwMλ
w(ρ), (5.6)

where Mλ
w are the superoperators with Liouville representation

M̂λ
w(ρ) =

1

2n

∑
νw

∑
iw

|Pw,νw,iw〉〉〈〈Pw,νw,iw |ρ. (5.7)

This diagonal description of ΛPnΠ allows for straightforward description of the com-

position of channels. For example, suppose two PIP channels ΛPnΠ
(1)

and ΛPnΠ
(2)

are

composed to yield ΛPnΠ
(1) ◦ ΛPnΠ

(2)
. This simply translates to the multiplication of

the corresponding eigenvalues for each of the two channels because all Pauli channels

commute.

It is crucial to note that, because there is at most a polynomial number of different

eigenvalues, they can be estimated efficiently by determining how a Pauli observable in

a w class is scaled under the action of the twirled channel. This is done in a manner

closely related to the characterization of C1Π twirled channels using the parity monitor-

ing protocol described in Section 4.3.2. Due to the degeneracy of C1Π twirled channels,

the equivalence classes of Pauli observables are distinguished only by the weight of the

operators they contain. For this reason, when characterizing C1Π twirled channels it is

sufficient to measure only tensor products of σZ operators acting on n different qubits,

which corresponds to measuring the parity of n different qubits. It is also sufficient to

prepare the state |0〉⊗n, which has maximal expectation for any tensor product of σZ . In

the case of PIP channels, it is necessary to measure observables which act with σX on wx
different qubits, σY on wy different qubits and σZ on wz different qubits. Moreover, it is
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Figure 5.1: Circuit diagram for the characterization of a PIP channel, where Ci ∈ C1.

also necessary to prepare a state which is guaranteed to have non-zero expectation value

for these observables. These observables are equivalent to a tensor product of σZ under

conjugation by unitaries in C1
⊗n, and thus the necessary state which maximizes the ex-

pectation value is equivalent to |0〉⊗n up to the action of the same unitary. By choosing a

random subset of qubits, the local Clifford operations determine which Pauli observable

are measured, and the parity of the binary measurement outcomes determines whether

the result is a + or − eigenvalue of the observable. The circuit necessary to perform

this characterization is depicted in Figure 5.1. Once again, it is not necessary to apply

random qubit permutations as long as information about the qubit positions is discarded.

Notice that, in effect, we end up applying exactly the same operations as if we were

characterizing an C1Π twirled channel. The only difference is how the data is post-

processed: for C1Π twirled channels we average the data over C1Π operations, while for

PIP channels we distinguish outcomes based on what C1
⊗n operation is applied.

5.3 Unitarily Correctable Codes

We use the general definition for a quantum error correcting subsystem code [KLP05]:

If A and B are subsystems of a Hilbert space H = HA ⊗HB ⊕HK , and we have some

channel Λ : B(H) → B(H), thenHA is correctable for Λ if there is a recovery operation

R acting on B(H) such that ∀ρA ∈ B(HA) and ∀ρB ∈ B(HB) there exists a τB ∈ B(HB)

for which (R ◦ Λ)(ρA ⊗ ρB) = ρA ⊗ τB. Using these definitions, we can state a general

fact about error correction codes.

Fact — If R is a operation recovering HA from the action of Λ(ρ) =
∑

k AkρA
†
k,

then R also recovers HA from the action of any channel with Kraus operators in the
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linear span of {Ak} [NC00, KLP05, NP07].

Corollary 1 — A correctable subsystem HA for the PIP channel ΛΠ with recovery

R is also a correctable subsystem for the original channel Λ with the same recovery

operation.

This follows immediately from the fact that the Pauli operators Pn form an operator

basis, and so the Kraus operators {Ak} of Λ are in the linear span of the Kraus operators

of ΛΠ. This result will be generalized in Section 5.7.

A special type of code we consider is one for which a unitary recovery operationR =

U can be found. That is, HA defines a correctable encoding for Λ that can be returned

to its initial location within the system Hilbert space with a single unitary operation.

The problem of finding such unitarily correctable codes (UCC) for a unital channel is

equivalent to finding the structure of the commutant of the noise algebra of Λ†◦Λ [KS06].

In terms of the Choi-Kraus operators {Ak} for Λ, this “noise commutant” is defined as

the set of operators that commute with the operators {A†
kAj}. If Λ is unital and trace

preserving, this commutant coincides with the fixed point set of Λ†◦Λ (the set of operators

which are invariant under the action of this composed channel) [HKL04] – in essence, Λ†

can act as the recovery operation. This result can be refined somewhat for diagonalizable

channels.

Proposition 1 — Let Λ be a unital, diagonalizable and trace preserving channel with

eigenvalues λi and eigenoperators Li. Then, the noise commutant of Λ† ◦ Λ is the space

spanned by eigenoperators Li with eigenvalues |λi| = 1.

Proof: Λ is unital and trace preserving, thus so is Λ† ◦ Λ. Moreover, Λ is diago-

nalizable, so Λ† ◦ Λ has eigenoperators Li with eigenvalues λ∗iλi = |λi|2, where the λi
are the eigenvalues of Λ. Since Λ† ◦ Λ is unital, its fixed point set and its noise com-

mutant coincide, and both are given by the space spanned by the eigenoperators Li with

|λi|2 = 1.

This result allows us to relate the parameters of a channel Λ that can be characterized

by experiments, to the parameters of the formal construct Λ† ◦ Λ which can be used to

find correctable encodings.

Pauli channels are unital channels, and since they are diagonalizable and Hermitian,

these channels have a particularly simple fixed-point set structure. In particular, we im-

mediately obtain the following result.
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Corollary 2 — Let Λ be a Pauli channel. Then the noise commutant of Λ† ◦ Λ is the

space spanned by the eigenoperators of Λ with eigenvalues ±1.

We say that a UCC code is unitarily noiseless (UNC) for Λ if it is a UCC of Λn

for all n ≥ 1, where Λn is the channel Λ composed with itself n times [BKNPV07].

This includes, for instance, codes for which the recovery operation has the special form

U = UA ⊗ RB; that is, a unitary acting only on the subsystem in which information is

preserved, and an arbitrary quantum channel on subsystem B. Interestingly, the sets of

UCC and UNC codes coincide for Pauli channels.

Corollary 3 — A UCC of a Pauli channel Λ is also a UNC.

Proof: As Λ is a Pauli channel, it commutes with its dual Λ† = Λ which is also a

Pauli channel, and thus we have that (Λn)† ◦Λn = (Λ† ◦Λ)n. Since the eigenvalues of Λ

are real, this implies that the fixed point set of Λ† ◦ Λ is identical to the fixed point set of

(Λn)† ◦ Λn.

5.4 PIP channel parameter space

Considering the Liouville representation of the superoperators {Mp
w} and {Mλ

w}

M̂p
w =

1

Kν
w

∑
νw

1

K i
νw

∑
iw

P ∗
w,νw,iw ⊗ Pw,νw,iw , (5.8)

M̂λ
w =

∑
νw

∑
iw

|Pw,νw,iw〉〉〈〈Pw,νw,iw |. (5.9)

Following the techniques described in the previous chapter, it is clear that there is a linear

invertible map Ω taking the pw to the λw. More explicitly, we have that

λw =
∑
v

[Ω]w,vpv [Ω]w,v =
〈M̂λ

w,M̂p
v〉

〈M̂λ
w,M̂λ

w〉
, (5.10)

where 〈·, ·〉 is the Hilbert-Schmidt inner product in the Liouville representation. This

follows directly from the fact that each Pauli belongs to a single weight class w, and the

set Pn is orthonormal under the Hilbert-Schmidt inner product. Therefore, 〈M̂λ
w,M̂λ

v〉 =

δw,v〈M̂λ
w,M̂λ

w〉. Similarly, because 〈M̂p
w,M̂p

v〉 = δw,v〈M̂p
w,M̂p

w〉, we have

pw =
∑
v

[Ω−1]w,vλv [Ω−1]w,v =
〈M̂p

w,M̂λ
v〉

〈M̂p
w,M̂p

w〉
. (5.11)
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As the set of all probability distributions is convex, with vertices at pw = 1 for each

of the w, the set of valid {pw} forms a Kn − 1 standard simplex called the probability

simplex. As the eigenvalues {λw} are related to the probabilities {pw} by a simple linear

transformation, the set of valid eigenvalues also forms a Kn − 1 simplex, which we call

the eigenvalue simplex. The set of all possible different fixed-point sets for a PIP channel

can be computed directly from this fact, by investigating the points in the eigenvalue

simplex which have coordinates of magnitude 1.

5.4.1 The map between probabilities and eigenvalues

As in the case of C1Π twirled channels, direct computation of the entries of Ω from the

matrix elements of a Liouville representation for a superoperator is inefficient, as these

representations have dimensions exponentially large in n. However, as before, one can

consider a set of extremal channels corresponding to the distribution pv = 1 for each

of the weight classes v, and compute how a particular operator for each of the weight

classes w gets scales. This leads to

[Ω]v,w =
Nc(v,w)−Na(v,w)

Nc(v,w) +Na(v,w)
= 2

Nc(v,w)

4n
− 1, (5.12)

where Nc(v,w) is the number of operators of weight class v which commute with any

given operator of weight class w (and Na(v,w) is similarly defined, but counting oper-

ators which anti-commute). The complete expression is given in Appendix E.

5.5 Finding Correctable Codes

The fixed points of ΛPnΠ can be thought of as the observables that are conserved under

the action of ΛPnΠ in the Heisenberg picture, as ΛPnΠ is self-dual. Once the fixed points

of these channels are determined, in order to determine possible encodings one needs

to compute the possible operator algebras generated by these fixed points. Note that,

because of the degeneracy of the eigenvalues of a PIP channel, the existence of a single

weight class with eigenvalue 1 corresponds to a large number of Pauli operators which

are fixed points of the channel. More explicitly, for a weight class w = (wx, wy, wz) over

n qubits, there are (
n

wx + wy + wz

)(
wx + wy + wz

wx

)(
wy + wz
wy

)
(5.13)
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different Pauli operators.

The identification of the fixed point set of a unital channel can be used to find a UCC

using the general algorithms described in Refs. [HKL04, Kri03, KS06]. However, these

algorithms requires the manipulation of exponentially large matrices, a problem shared

with numerical algorithms used to search for more general codes in a broader class of

channels [RW05, FSW07, KSL07]. Since the Pauli operators form an eigenbasis for PIP

channels, the task of computing the algebra of conserved observables is relatively simpler

than in the general case. One simply has to group the conserved Pauli observables into

triplets of observables which satisfy the commutation relations

[σj, σk] = 2iεjklσl, (5.14)

for the Lie algebra su(2), as these can be taken as the generators of the Pauli group.

These commutation relations can be computed without writing the observables ex-

plicitly in a particular representation. Instead, one observes that any two of {1, σX , σY , σZ}
either commute or anti-commute. Tensor products of these operators will commute if

they anti-commute at an even number of different locations, thus it is sufficient to inves-

tigate the tensor product decomposition of the Pauli operators in order to determine their

commutation relations. A set S of mutually exclusive triplets which commute with each

other implicitly describes how to encode a noiseless Hilbert space of dimension 2|S|.

Another way to think about about this problem is to consider the fact that Pauli opera-

tors form a basis for operators. The description of what the basis elements get mapped to

under a unitary is nothing but the description of a concrete representation of this unitary.

As we are only concerned with constraining how a few of the elements gets mapped –

i.e. how the Pauli operators acting on |S| qubits get mapped to Pauli operators in the

fixed-point set of the channel – we have some freedom in choosing how the remaining

operators are transformed. The search can be restricted to the generators of the Pauli

group because the group structure is preserved under unitary transformation. That is,

PiPj = Pk if and only if UPiU †UPjU
† = UPkU

† for any unitary U .

The search for triplets can be simplified by noting the following result, which can be

obtained by direct computation.

Proposition 2 — Given Pauli operators {Pj, Pk, Pl} satisfying the commutation re-

lations [Pj, Pk] = 2i
∑

l ε̃jklPl, where ε̃jkl = εjkl
sl

sjsk
, εjkl is the Levi-Civita symbol and

sj, sk, sl ∈ {±1,±i}, then {sjPj, skPk, slPl} obey the su(2) commutation relations.
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It is clear that {sjPj, skPk, slPl} are unitarily related to {σX , σY , σZ}, as all Pauli

operators have the same spectrum and Proposition 2 guarantees they have the same com-

mutation relations. The unitary which performs the encoding is guaranteed to be in the

Clifford group, since it maps a set of Pauli operators to another set of Pauli operators

with the same commutation relations. Using the techniques in [Got98a, AG04], this

mapping of the generator set of the Pauli group can be used to obtain an explicit gate

decomposition of the encoding unitary in terms the generators of the Clifford group. The

length of this gate sequence, as well as the number of time steps necessary to obtain it,

is polynomial in the number of qubits.

This leads to the following algorithm for finding a correctable encoding given the

eigenvalues of the PIP channel ΛPnΠ: (i) Enumerate the Pauli operators with eigenvalues

1 under the action of ΛPnΠ, and call this set F . (ii) Choose a triplet of Pauli operators

in F satisfying the commutation relations in Proposition 2 – if none can be found, the

search is over. (iii) Remove this triplet from F , and add them to S. Also remove from F

all operators that do not commute with the operators in this triplet, and go back to step

(ii). The number of mutually exclusive triplets found in this manner corresponds to an

allowable number of encoded qubits which can be protected from the action of ΛPnΠ.

Finding unitarily correctable codes is similarly simple. One can easily compute the

observables preserved by the action of the channel Λ
†
PnΠ◦ΛPnΠ [KS06]. In the case of PIP

channels, this corresponds to finding observables with eigenvalue ±1 for the channels

ΛPnΠ, so that these observables have eigenvalue 1 for Λ
†
PnΠ ◦ ΛPnΠ = Λ

2

PnΠ. The same

procedure described above can be applied to the ±1 eigenspace to find a correctable

encoding.

Example 1 — Consider the 2 qubit PIP channel with Kraus operators proportional

to {1212, σZσZ}. The Pauli operators with eigenvalue 1 are {1212, σXσX , σY σY , σZσZ ,

σXσY , σY σX , 12σZ , σZ12}. Out of this set, {σXσX , σXσY , 12σZ} satisfy the commuta-

tion relations, and no other triplets which commute with these can be found, so a single

qubit can be encoded noiselessly through this channel.

Example 2 — Consider the 2 qubit PIP channel with Kraus operators proportional

to {1212, σY σX , σXσY }. The eigenoperators with eigenvalue 1 are {1212, σXσY , σY σX ,

σZσZ}. There are no triplets with the right commutation relations. The eigenoperators

with eigenvalues −1 are {1σZ , σZ12, σXσX , σY σY }. If we consider the ±1 eigenspace,

we obtain the same eigenoperators with eigenvalue 1 as the previous example, and thus

there exists a UCC consisting of a single qubit.
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In the case of the previous examples, we want to map the generating set of Pauli

operators {12σX , 12σZ} to the generating set {σXσX , 12σZ}, which can be done by a

CNOT gate, where the second qubit is the control, and the first qubit is the target.

While it is possible to consider all the possible fixed-point sets for PIP channels

by investigating the structure of the eigenvalues simplex, the question as to whether

this algorithm can find all unitarily correctable encodings for an arbitrary PIP channel

remains open.

5.6 Verification and Robustness of UCC

All experimental data contains some degree of uncertainty, due to either a finite number

of sample or the finite precision of instruments – one can never conclude with certainty

that a true fixed point has been observed, as the estimated eigenvalue will always have

some associated uncertainty. The conditions for error correction are known to be robust

against perturbations [SW01, Kle07], and a similar result applies to the scheme presented

here. Formally, we can say that the eigenvalues λ2
w for the channel Λ

2

PnΠ = Λ
†
PnΠ ◦ΛPnΠ

are such that

λ2
w ∈ [λ̃2

w − δw, λ̃
2
w + δw] (5.15)

where λ̃w are the experimental estimates, and δw corresponds to the uncertainty for some

desired confidence level. We focus on the eigenvalues of Λ
2

PnΠ because these are the

quantities used to find a larger class of codes, as discussed in the previous section. Under

the constraints of the parameters space discussed in Section 5.4, we can then find a valid

PIP channel ΛPnΠ with eigenvalues λw inside the interval given by (5.15).

Say that the generator for the encoded Pauli group over m qubits can then be found

from the fixed-point sets for Λ
2

PnΠ – in other words, we have m triplets of Pauli operators

which are taken to be Pauli operators for m different encoded qubits. As the λ2
w are only

estimates, we have that the eigenvalues for these generators have a lower bound

λ2
w ≥ 1− ε, (5.16)

which is given by the confidence intervals. Consider now a product of any two of these

generators, which we label Q and R. The eigenvalue corresponding to the product of

these two operators can be computed from the probability that a Pauli error in Λ
2

PnΠ

commutes with either Q or R. More formally, if we write the probability that an error in
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Λ
2

PnΠ commutes with Q as Pr([Q,E]), and similarly for anti-commutation, then we have

that

λ2(QR) = Pr([QR,E])− Pr({QR,E}), (5.17)

Pr([QR,E]) = Pr([R,E] and [Q,E]) + Pr({R,E} and {Q,E}), (5.18)

Pr({QR,E}) = Pr([R,E] and {Q,E}) + Pr({R,E} and [Q,E]). (5.19)

It is then possible to compute a lower bound for λ2(QR) by placing a lower bound on

Pr([QR,E]) and an upper bound on Pr({QR,E}). As the eigenvalue of Q is

λ2(Q) = Pr([Q,E])− Pr({Q,E}) > 1− ε, (5.20)

we have that

Pr([Q,E]) > 1− ε

2
, (5.21)

Pr({Q,E}) < ε

2
, (5.22)

and similarly for R. We then find that

Pr([R,E] and [Q,E]) > 1− ε

2
(5.23)

Pr({R,E} and {Q,E}) < ε

2
(5.24)

Pr([R,E] and {Q,E}) < ε

2
(5.25)

Pr({R,E} and [Q,E]) <
ε

2
(5.26)

and therefore we obtain the lower bound

λ2(QR) > 1− 3

2
ε > 1− 2ε. (5.27)

In order to obtain a similar bound on all elements of the Pauli group, we can apply this

bound to any product of two elements in the group. As we have m encoded qubits,

we need to multiply at most m different Pauli operators which act on different encoded

qubits, each with eigenvalues bounded below by 1− ε. Applying the bound pair-wise to

products of generators, then to products of products of generators and so forth, we arrive

at

λ2 > 1− 2lgmε, (5.28)

= 1−mε (5.29)
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Figure 5.2: Circuit diagram corresponding to the composition of quantum operations

U†E ◦ Λ2
PnΠ ◦ UE .

where lg is the base 2 logarithm. That is, given that the generators have eigenvalues at

least 1 − ε, then all elements of the encoded Pauli group will have eigenvalues at least

1−mε.

This can be translated to a bound on the fidelity of encoded states transmitted through

the squared channel. Consider an m qubit pure state ρ, along with an n−m qubit ancilla

ρB. The ideal encoding operation UE maps the Pauli operators over the m qubits into

Pauli operators over the n qubits which are guaranteed to have eigenvalue at least 1−mε
under the action of Λ

2

PnΠ. The output state after encoding, transmission through the

squared channel, and decoding and discarding of the ancilla is

ρout = trB U †enc ◦ Λ
2

PnΠ ◦ Uenc(ρ⊗ ρB). (5.30)

The circuit diagram corresponding to this is depicted in Figure 5.2. Decomposing the

pure state ρ into the Pauli basis we obtain

ρout =
∑
Pi∈Pm

ρiλ
2(Pi)Pi (5.31)

where the ρi are real numbers. As ρ is a pure state, the fidelity between ρ and ρout is

tr ρρout =
∑

ρ2
iλ

2(Pi)2
m (5.32)

> (1−mε)
∑

ρ2
i 2
m (5.33)

= (1−mε), (5.34)

as tr ρ2 =
∑
ρ2
i 2
m = 1. Since the fidelity is a concave function, this demonstrates that

any encoded state transmitted though the channel will have a fidelity of at least 1−mε.

It should be noted that this is useful not only in the context where the eigenvalues are

estimated with finite precision, but also in the case where no exact UCCs can be found
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for a twirled channel – these bounds can then be used to find encodings for quantum data

which merely improve the fidelity under the action of noise.

Bounds on the fidelity of the encoded states under the action of Λ, instead of ΛPnΠ,

can be computed given complete information about the channel. However, as argued

earlier, complete information about the channel cannot be obtained in a scalable manner.

For this reasons it is important to check experimentally what the fidelity of the encoding

constructed for ΛPnΠ is under the action of Λ. This can be done by twirling the effective

encoded channel Ũ †E ◦R◦Λ◦ŨE and estimating its average gate fidelity with the identity

channel. The estimate can be done efficiently, as described in the previous chapter. In

the event that the average performance of the code under the action of Λ is worse, one

can simply use the twirled channel instead. Thus the average performance of the code

under the action of twirled channel can always be taken as a lower bound.

5.7 General unitary twirls

In the previous sections we have restricted ourselves to considering PIP channels simply

because it was clear an algorithm for finding UCCs could be devised. However, we can

generalize Corollary 1 in Section 5.3 to include all channels resulting from any twirl over

a set of unitaries.

Theorem — Any correctable code for a unitarily twirled channel Λ is a correctable

code for the original channel Λ up to an additional unitary correction.

Proof: Without loss of generality, consider Λ(ρ) =
∑

k AkρA
†
k and a twirl with

unitaries {Uj} where U1 = 1. Any unitary twirl is unitarily equivalent to a twirl that

includes the identity, and this unitary equivalence leads to the additional unitary correc-

tion. A set of Choi-Kraus operators for Λ is then {U †
jAkUj}. As shown in [KLP05],

the existence of a correctable code HA under the action of Λ, with recovery operations

R(ρ) =
∑

mRmρR
†
m, corresponds to the projector P onto the subspaceHA⊗HB satis-

fying PRmU
†
jAkUjP = RmU

†
jAkUjP and RmU

†
jAkUj|P ∈ 1A ⊗B(HB) for all j, k,m.

Since U1 = 1, this implies PRmAkP = RmAkP and RmAk|P ∈ 1A ⊗ B(HB) for all

k,m. Thus it follows that HA is also correctable under the action of Λ with the same

recovery operation R.

While some correctable codes from Λ may not be correctable for the Pauli twirled

channel Λ, there may be other unitary twirls of Λ for which they are. In some sense
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twirling adds noise, and the unitaries in the twirl must be chosen carefully, or they may

break symmetries which can be used to store information. These other unitary twirls

may preserve these symmetries while still allowing for the efficient experimental char-

acterization of this new twirled channel, even thought the resulting channel may not be

as simple as a PIP channel. This theorem shows that any correctable code found in this

manner will always yield correctable codes for the original channel.

As a concrete example, consider the case of collective unitary noise over n qubits,

represented by the CP map

Λµ(ρ) =

∫
dµ(U) U⊗nρU †⊗n =

∫
dµ(U) U⊗n(ρ), (5.35)

for some measure dµ(U) over single qubit unitaries U . Λµ is, by construction, invariant

under permutations of the qubits, as it acts on all qubits in the same manner. The earliest

known examples of decoherence-free subspaces are correctable codes for this type of

noise [ZR97]. In particular, these decoherence-free subspaces allow for the ratio between

the number of encoded qubits and n to approach 1 asymptotically, demonstrating that

these can be extremely efficient encodings [KBLW01, BRS07].

For any given U in the integral above, twirling over Pn results in n identical Pauli

channels acting independently on each qubit. If each of these Pauli channels have eigen-

values |λw| < 1, then the Pn twirled channel will only have the trivial fixed-point 12n . No

exact correctable encodings for Λµ would be found, even though such a channel supports

very large noiseless encodings [KBLW01, BRS07].

If one were to twirl collective unitary noise uniformly only over the group of all

possible qubit permutations Πn instead of the group generated by Pn and Πn, the chan-

nel would be unchanged, and thus these decoherence-free subspaces would also be cor-

rectable codes from the Πn twirled channel. Surprisingly, an arbitrary permutation in-

variant channel requires only a polynomial number of parameters to be described.

Proposition 3 — An n-qubit CP map which is invariant under qubit permutations

requires O(n15) parameters to be described.

Proof: Given Λ(ρ) =
∑

ij[χ]ijPiρPj is invariant under qubit permutations, we have
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that, for any qubit permutation π,

Λ(ρ) =
∑
ij

[χ]ijPiρPj (5.36)

=
∑
ij

[χ]ijπPiπ
†ρπPjπ

† (5.37)

=
∑
ij

[χ]ijPπ(i)ρPπ(j) (5.38)

=
∑
ij

[χ]π−1(i),π−1(j)PiρPj, (5.39)

where, in a slight abuse of notation, we have used π(i) to denote the index map which

corresponds to quit permutation, i.e. Pπ(i) = πPiπ
†. This implies that, for any permuta-

tion π, [χ]π(i),π(j) = [χ]ij , so we only need to count the number of equivalence classes of

pairs of n-qubit Pauli operators. In Appendix D this is computed to be

1

1307674368000
(n15 + 120n14 + 6580n13 + 218400n12 + 4899622n11 + 78558480n10

+928095740n9+8207628000n8+54631129553n7+272803210680n6+1009672107080n5

+ 2706813345600n4 + 5056995703824n3 + 6165817614720n2 + 4339163001600n

+ 1307674368000) (5.40)

and thus the number of different real parameters needed to describe a general permutation

invariant CP map is O(n15).

While we have emphasized the applications of twirling over the Pauli and Clifford

groups, this result demonstrates that there may be much to be gained by investigating

other types of twirls. In particular, it may be possible to efficiently extract much more

information about the channel, potentially opening the door for the search of broader

classes of noiseless encodings using experimental data.

5.8 Concluding remarks

In this chapter we have shown that correctable encodings for a quantum operation can be

found by searching for correctable encodings using the twirled version of that quantum

operation. We investigated in detail the case of channels twirled by Pauli operators and

qubit permutations, and demonstrated a simple scheme for identifying encodings with
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unitary recovery operations. Such twirled channels are important because they are de-

scribed by a polynomial number of parameters which are experimentally accessible via

a scalable protocol.

The scheme does not require the manipulation of exponentially large matrices, and

the performance of the constructed correctable code can be estimated experimentally in

an efficient manner. Further work is needed to determine whether all unitarily correctable

codes for PIP channels can be found through the scheme we described.

We have also demonstrated that twirling over different sets of unitaries, such as qubit

permutations alone, can yield a larger number of correctable codes. It would be interest-

ing to investigate other unitarily twirled channels that can be efficiently characterized in

an experiment, as well as a generalization of the algorithm presented here for channels

which are not Pauli channels.
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Appendix A

Experimental status of superconducting
circuit implementations

Some of the most promising physical systems for the implementation of scalable quan-

tum computers are based on superconducting circuits [MSS01, DWM04, YN05, CW08].

Here we outline the major experimental milestones achieved to date.

A.1 Decoherence

The main source of noise in superconducting circuits is low-frequency noise known as

1/f noise [CW08]. The main effect that 1/f noise can have on superconducting circuits

is to drastically reduce the characteristic dephasing time of quantum superpositions. This

is because this low-frequency noise randomly disturbs the parameters of Hamiltonian of

the qubit, causing the relative phases between superpositions of eigenstates to average

out.

Most designs of qubits based on superconducting circuits have been adapted to re-

duce the effects of low-frequency noise. This is done by setting the parameters of the

Hamiltonian so that they are largely insensitive to the perturbations induced by the noise.

This is known as the optimal bias point, as it can be used to greatly increase the de-

phasing times of charge and flux qubits. Phase qubits are the notable exception, as these

circuits do not have an optimal bias point.

To date [CW08], the highest relaxation times reported are 2µs for charge qubits,
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4.5µs for flux qubits, and 0.5µs for phase qubits. The highest dephasing times are 2µs

for charge qubits, 1.2µs for flux qubits and 0.3µs for phase qubits.

A.2 Measurement

The reliable measurement of quantum systems is necessary for the implementation of

quantum information processing devices. While early implementations based on super-

conducting circuits had low fidelity measurements which were also non-repeatable, all

proposed implementations have non-destructive high fidelity measurement schemes now.

Fast measurement approaching the quantum non-demolition limit have been demon-

strated using Josephson bifurcation amplifiers [SVP+05], and fast dispersive readout of

flux qubits has also been demonstrate [LSP+07]. In the case of flux qubits, the fidelity of

the repeated measurement of the same qubit has been reported to be over 85%. Similarly,

fast measurements of phase qubits have also been demonstrated, allowing the state to be

measured in approximately 5ns [CSM+04] with a fidelity which was later improved to

approximately 98% [LHA+08].

A.3 Single qubit operations

High fidelity single qubit operations have been demonstrated for all superconducting

circuit implementations. Although the methods used for these demonstrations are not

strictly compatible, the error rates per single qubit operation are on the order of 2 −
4% [LHA+08, Gam08].

A.4 Interactions

Fixed coupling interactions have been demonstrated for all forms of superconducting

qubits [PYA+03, BXR+03, MSS+05, MPtH+05], as such interactions can be imple-

mented by capacitive or inductive coupling between circuits. Using these types of fixed

coupling, the entanglement between two qubits has been demonstrated by state tomog-

raphy [SAB+06].
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One of the main motivations for the use superconducting circuits is the potential for in

situ tunable couplings. Tunable couplings have been demonstrated for flux qubits [HRP+06,

NHY+07], and simple gate operations have also been demonstrate [YPA+03, NHY+07,

PdGHM07], although with relatively low fidelity.

A.5 Outlook

Given the range of values of the error threshold mentioned in Chapter 1, it is clear that

the fidelities listed here, although high, are not sufficient and therefore these devices are

not yet suitable for scalable quantum computation. However, given the steady progress

in these experiments over the last decade, there is reason to be optimistic that in the near

future superconducting circuits will yield qubit with much better control and much lower

error rates, opening the door for physical implementations of many of the experiments

proposed in this thesis.

A first step in better evaluating these different technologies would be to put them

on equal footing before comparison. This is one of the motivations for the experiments

proposed in Chapter 4 of this thesis, which can be used to benchmark the performance

of the various operations used in a quantum information processor.
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Appendix B

Quantification of entanglement

B.1 Entanglement Witnesses

An observable W is called an entanglement witness [HHH96, Ter00] if and only if

• for all separable state ρS we have that 〈W 〉 = trWρS ≥ 0,

• there exists a state ρ such that 〈W 〉 = trWρ < 0.

Such a definition is possible because the set of separable states is convex and com-

pact [LBHC01].

From this definition it is clear that there are entangled states such that 〈W 〉 ≥ 0, and

thus the observable W must be tailored to the state which is being tested for entangle-

ment. In the case that interests us, the state which is being prepared is the Bell state

|Ψ+〉 =
1√
2
(|01〉+ |10〉). (B.1)

Consider then the density matrix (represented in the computational basis)

ρΦ− =
1

2


1 0 0 −1

0 0 0 0

0 0 0 0

−1 0 0 1

 (B.2)

corresponding to the state

|Φ−〉 =
1√
2
(|00〉 − |11〉). (B.3)
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Applying the linear map TA known as partial transpose of subsystem A, defined by

|i〉|j〉〈k|〈l|TA = |k〉|j〉〈i|〈l|, (B.4)

we obtain the operator

W = ρTA

Φ− =
1

2


1 0 0 0

0 0 −1 0

0 −1 0 0

0 0 0 1

 (B.5)

which does not correspond to a density matrix, as it is not positive. Note that for any

product state ρA ⊗ ρB we have

trWρA ⊗ ρB = tr ρTA

Φ− ρA ⊗ ρB (B.6)

= tr ρΦ− (ρA ⊗ ρB)TA (B.7)

= tr ρΦ− ρ∗A ⊗ ρB (B.8)

= 〈Φ−|ρ∗A ⊗ ρB|Φ−〉. (B.9)

As ρ∗A⊗ρB is a positive operator, 〈W 〉 ≥ 0 for all separable states, since they are convex

combinations of product states. Moreover, we have that

W =
1

2
14 − |Ψ+〉〈Ψ+| (B.10)

so that the expectation of the witness for a state ρ is

〈W 〉 =
1

2
− 〈Ψ+|ρ|Ψ+〉 (B.11)

and for ρ = |Ψ+〉〈Ψ+| we have

〈W 〉 = −1

2
. (B.12)

Therefore W is an entanglement witness for the state |Ψ+〉.

Entanglement witnesses were originally created only to detect entanglement, and not

to quantify it. However, it has been recently demonstrated that they can be used to place

bounds on entanglement measures, as discussed below.

B.2 Entanglement monotones

An entanglement monotone is a function mapping states to positive real numbers, and

which can be used to quantify the amount of entanglement in a state. These functions
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satisfy a number of properties to ensure that this operational meaning is valid. However,

for our purposes, we will simply describe two convenient entanglement monotones, and

we refer the interested reader review papers such as [PV07] for a more detailed discussion

of their properties.

The generalized entanglement robustness ER(ρ) of a state ρ [VT99, Ste03] is the

defined as the smallest positive s such that the state

1

1 + s
(ρ+ sρnoise) (B.13)

is separable, where ρnoise is another arbitrary state. As the notation implies, the robustness

can be interpreted as the minimal amount of noise that unentangles an entangled state.

Moreover, it has been show that ER(ρ) can be used to quantify how useful the state ρ is

as an ancilla in teleportation protocols [Bra07].

It has been shown that ER can be bounded by the negativity of any entanglement

witness [EBA07]. In particular, it was shown that if trWρ = c < 0, then

ER(ρ) ≥ |c|/λmax (W ), (B.14)

where λmax (W ) is the largest eigenvalue of W . For the entanglement witness described

above, we have that λmax (W ) = 1/2, so that

ER(ρ) ≥ 2F − 1, (B.15)

demonstrating that the fidelity can be used to compute a bound for the entanglement

monotone ER.

Another useful entanglement monotone is the logarithmic negativity EN(ρ) [Ple05],

which is defined as

EN(ρ) = log2 ‖ρTA‖, (B.16)

where ‖ρ‖ = tr
√
ρ†ρ is the trace norm. The logarithmic negativity is an upper bound on

the amount of entanglement which can be distilled from the state ρ, as well as an upper

bound on the teleportation capacity of ρ (ı.e. how well states can be teleported by using

the state ρ) [VW02].
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Appendix C

Damped Harmonic Oscillator

C.1 Solution at zero temperature

Here we review the solution to the damped harmonic oscillator as presented in [BP02].

The zero temperature master equation for the damped harmonic oscillator is given

by [GZ00]

d

dt
ρHO =

(
−iω0 −

γ0

2

)
a†aρHO +

(
iω0 −

γ0

2

)
ρHOa

†a+ γa†ρHOa. (C.1)

An assumption for the derivation of this equation is that γ0 � ω0, which demonstrates

why the free particle limit cannot be obtained straightforwardly from this equation for

finite dissipation rate γ0.

If we interpret the harmonic oscillator as a mode of the electromagnetic field, this

master equation can be seen as the continuous limit of sending the state through a series

of beam splitters which cause photons to leak at a rate γ0. As beam splitter maps coherent

states to coherent states, it is natural to take the operator

f(t)|α(t)〉〈β(t)| (C.2)

where |α(t)〉 and |β(t)〉 are coherent states with time dependent amplitudes, and f(t) is

a complex valued function, as an ansatz to (C.1).

Noting that, from the decomposition of coherent states into the energy eigenbasis, we
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have

d

dt
|α(t)〉 =

d

dt
e−

|α(t)|2
2

∞∑
n=0

α(t)n√
n!
|n〉, (C.3)

= −1

2

(
d

dt
|α(t)|2

)
e−

|α(t)|2
2

∞∑
n=0

α(t)n√
n!
|n〉+ e−

|α(t)|2
2

∞∑
n=1

α̇(t)
nα(t)n−1

√
n!

|n〉,

(C.4)

= −1

2

(
d

dt
|α(t)|2

)
e−

|α(t)|2
2

∞∑
n=0

α(t)n√
n!
|n〉+

α̇(t)

α(t)
e−

|α(t)|2
2

∞∑
n=0

α(t)n√
n!
a†a|n〉,

(C.5)

=

(
α̇(t)

α(t)
a†a− 1

2

d

dt
|α(t)|2

)
|α(t)〉, (C.6)

and thus the left side of (C.1) yields

d

dt
f(t)|α(t)〉〈β(t)| = ḟ(t)|α(t)〉〈β(t)|+ f(t)

(
α̇(t)

α(t)
a†a− 1

2

d

dt
|α(t)|2

)
|α(t)〉〈β(t)|

+ f(t)|α(t)〉〈β(t)|

(
β̇(t)∗

β(t)∗
a†a− 1

2

d

dt
|β(t)|2

)
. (C.7)

As the coherent state |α(t)〉 is an eigenstate of a, we find that the right side of (C.1) yields

f(t)
(
−iω0 −

γ0

2

)
a†a|α(t)〉〈β(t)|+ f(t)

(
iω0 −

γ0

2

)
|α(t)〉〈β(t)|a†a

+ γ0f(t)α(t)β(t)∗|α(t)〉〈β(t)|. (C.8)

Matching the coefficients of a†a|α(t)〉〈β(t)|, |α(t)〉〈β(t)|a†a and |α(t)〉〈β(t)| on both

sides yields

α̇(t)

α(t)
= −iω0 −

γ0

2
, (C.9)(

β̇(t)

β(t)

)∗

= iω0 −
γ0

2
, (C.10)

ḟ(t)− f(t)
1

2

d

dt

(
|α(t)|2 + |β(t)|2

)
= γ0α(t)β(t)∗ f(t). (C.11)

The first two equations are immediatelly solved yielding

α(t) = α(0)e−iω0− γ0
2
t (C.12)

β(t) = β(0)e−iω0− γ0
2
t. (C.13)
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Back substitution into the equation for f(t) yields

ḟ(t)

f(t)
= γ0e

−γ0t
(
−1

2
|α(0)|2 − 1

2
|β(0)|2 + α(0)β(0)∗

)
, (C.14)

= γ0e
−γ0t〈β(0)|α(0)〉, (C.15)

which is readily integrated, resulting in

f(t) = 〈β(0)|α(0)〉(1−e−γ0t). (C.16)

Thus, we if take the initial states to be

|α〉+ |β〉, (C.17)

the density matrix at time t will be

|α(t)〉〈α(t)|+ |β(t)〉〈β(t)|+ f(t)|α(t)〉〈β(t)|+ f(t)∗|β(t)〉〈α(t)|. (C.18)

The decay rate of the off-diagonal terms in the density matrix if thus given by

ln |f(t)| =
(
1− e−γ0t

)
ln |〈β|α〉|. (C.19)

For γ0t� 1 we have

ln |f(t)| ≈ ln |〈β|α〉|, (C.20)

For γ0t� 1 we have

ln |f(t)| ≈ −γ0t ln |〈β|α〉|, (C.21)

So we can define the characteristic time of decoherence to be

1

γ0 ln
(

1
|〈β|α〉|

) . (C.22)

As energy is proportional to the number of photons in a harmonic oscillator, (C.12)

makes it clear that the energy relaxation rate is γ0, and thus the characteristic energy

relaxation time is 1/γ0. This leads to the ratio of decoherence time tD to relaxation time

tR
tD
tR

=
1

ln
(

1
|〈β|α〉|

) , (C.23)

as claimed.
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Appendix D

Number of parameters to describe
twirled channels

D.1 A direct approach

Say we have an alphabet of size M and we want to form string of length n with M

different letters, allowing repetition. In the case of PIP channels the strings correspond

to Kraus operators, each given by the tensor product of n Pauli operators, so M = 4. In

the case of permutation-invariant channels, the string represent the left and right Pauli

operator from the description of the CP in the Pauli operator basis, so M = 16, as for

each qubit location there is a pair of Pauli operators – one acting from the left and one

acting from the right.

As in both cases the channels are permutation-invariant, we consider two string that

are related by a permutation to be in the same equivalence class, we want to simply count

the number of equivalence classes in order to count the number K(M)
n of parameters

needed to describe each channels. The equivalence classes can be labeled by the number

of times wi each of the different letters i appear in the strings in that class, under the

constraint that the total number of letters be equal to n. Thus, the number of equivalence

classes is simply the number of non-negative integer solutions to the equation
M∑
i=1

wi = n. (D.1)

This can be done by fixing w1 and counting the solutions for each remaining wi. The

number of solutions for each wi can in turn be calculated by fixing wi and counting the
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number of solutions to the smaller equation, and so forth. This results in

K(M)
n =

n∑
w1=0

K
(M−1)
n−w1

(D.2)

K(1)
n = 1, (D.3)

which can be computed explicitly using computer packages such as Mathematica [Mat05].

In the case of M = 4, for PIP channels, this leads to

K(4)
n =

n∑
w1=0

n−w1∑
w2=0

n−w1−w2∑
w3=0

1 =
1

6
n3 + n2 +

11

6
n+ 1. (D.4)

Evaluating K(4)
n for the first few n ≥ 1 we obtain

4, 10, 20, 35, 56, . . . (D.5)

which is sequence A000292 in the on-line encyclopedia of integer sequences [Slo08a].

In the case of M = 16, for permutation-invariant channels, this leads to

K(16)
n =

n∑
w1=0

n−w1∑
w2=0

· · ·
n−

P1
i=1 4wi∑

w15=0

1

=
1

1307674368000
(n15 +120n14 +6580n13 +218400n12 +4899622n11 +78558480n10

+928095740n9+8207628000n8+54631129553n7+272803210680n6+1009672107080n5

+ 2706813345600n4 + 5056995703824n3 + 6165817614720n2 + 4339163001600n

+ 1307674368000). (D.6)

Evaluating K(16)
n for the first few n ≥ 1 we obtain

16, 136, 816, 3876, 15504, . . . (D.7)

which is sequence A010968 in the on-line encyclopedia of integer sequences [Slo08b].

D.2 A combinatorial approach

K
(M)
n can be computed more directly by considering an equivalent problem which lends

itself to combinatorial counting. Consider n different items, depicted as black dots in
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Figure D.1: Computing the number K
(M)
n is equivalent to counting the number of ways

M−1 separators can be placed amongst n items. These are the possible configurations

for 1 item and 3 separators (corresponding to 4 categories)

Figure D.1, which we want to separate into M different categories, potentially leaving

some categories empty. We do not care exactly which items go into which category,

as the items are indistinguishable, we only care about how many go into each category.

One way to do this would be to put a separator (depicted by a vertical bar in Figure D.1)

between different categories, so that all items from the left to the first separator are in the

first category, all items from the first separator to the second are in the second category,

and so forth, so that all items from the last separator to the right are in the last category.

K
(M)
n is the number of different ways to arrange the separators between the items.

One way to computeK(M)
n is to then consider n+M−1 different slots, and count the

ways to place M − 1 separators in the slots, leaving the remaining slots to be occupied

by items. This immediatelly leads to the straightforward formula

K(M)
n =

(
n+M − 1

M − 1

)
. (D.8)
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Appendix E

Efficient computation of Ω by counting

E.1 Pauli twirl

In order to efficiently describe the linear transformation Ω relating the probabilities which

parameterize a PIP channel and the eigenvalues of a channel, one must compute the

number Nc(v,w) of operators P1 of weight class v which commute with any given

operator P2 of weight class w.

First, we know that Pauli operators either commute or anti-commute. Most impor-

tantly, we note that, for σi,j ∈ Pn, then σiσjσk = −σj if {σi, σj} = 0, and σiσjσk = σj

if [σi, σj] = 0. Thus two operators P1, P2 ∈ Pn will commute if the respective Pauli

operators at an even number of locations anti-commute, so that the negative signs cancel

and P1P2 = P2P1.

Moreover, the set given by any weight class is invariant over qubit permutations, so

we can choose any convenient operator from the weight class w in order to count the

operators from v which commute with it. Let v = (a, b, c) and let w = (x, y, z). In

order to count Nc(v,w), one simply needs to count the number of operators in v which

commute with σ⊗xx ⊗ σ⊗yY ⊗ σ⊗zZ ⊗ 1⊗n−x−y−z.

First, we count the number of operators which commute in the trivial way, i.e. the

number of ways which we can distribute the σX operators of P1 such that the corre-

sponding position of P2 has either σX or 1 and so forth. Choose i locations in the σX
region, then j locations in the σY region and then k locations in the σZ region. There

are a + b + c − i − j − k non-trivial Pauli operators in P1 remaining to be placed and
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these will be placed in the remaining n− x− y − z qubits. Of these, we are constrained

to choose a − i locations for σX operators, b − j locations for σY operators and c − k

locations for σZ operators. Thus, the number of operators in v which trivially commute

with any given operators in w is

F (n, x, y, z, a, b, c) =

min(x,a)∑
i=0

min(y,b)∑
j=0

min(z,c)∑
k=0

(
x

i

)(
y

j

)(
z

k

)
×(

n− x− y − z

a+ b+ c− i− j − k

)(
a+ b+ c− i− j − k

a− i

)(
b+ c− j − k

b− j

)
. (E.1)

Now we can compute the total number of commuting Pauli operators by first choos-

ing an even number of locating for the Pauli operators to anti-commute, and then simply

using F as defined above to count the number of locations where the Pauli operators

trivially commute. Choose axy + axz locations in the σX region to place axy σY opera-

tors and axz σZ operators, and define similar parameters for the different Pauli operators.

The remaining locations and Pauli operators are left to commute trivially, and thus their

number can be computer by F . We finally obtain

Nc(n, x, y, z, a, b, c) =

x−axz∑
axy=0

x∑
axz=0

y−ayz∑
ayx=0

y∑
ayz=0

z−azx∑
azx=0

z∑
azy=0(

x

axy + axz

)(
axy + axz
axy

)(
y

ayx + ayz

)(
ayx + ayz
ayx

)(
z

azx + azy

)(
azx + azy
azx

)
×

F (n− axy − axz − ayx − ayz − azx − azy,

x− axy − axz, y − ayx − ayz, z − azx − azy,

a− ayx − azx, b− axy − azy, c− axz − ayz)×

Even(axy + axz + ayx + ayz + azx + azy), (E.2)

where Even(x) is a function which returns 1 if x is even, and 0 if x is odd.

Using the computer algebra package Mathematica [Mat05], one can simplify the

overall expression for Nc down to a sum over seven different variables. However, the

expression is not any more elucidating then the expression above. As this function can

be computed quite quickly in a computer, no attempts to further simplify it have been

made.
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Thus, the entries [Ω]w,v are given by

[Ω]w,v = 2
Nc(n, x, y, z, a, b, c)

4n
− 1. (E.3)

Direct computation of Ω for n = 1, 2 yields

Ω1 =


1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

 (E.4)

Ω2 =



1 1 1 1 1 1 1 1 1 1

1 1 1 0 0 −1 0 0 −1 −1

1 1 1 −1 −1 1 −1 −1 1 1

1 0 −1 1 0 1 0 −1 0 1

1 0 −1 0 1 −1 −1 0 0 1

1 −1 1 1 −1 1 −1 1 −1 1

1 0 −1 0 −1 −1 1 0 0 1

1 0 −1 −1 0 1 0 1 0 −1

1 −1 1 0 0 −1 0 0 1 −1

1 −1 1 −1 1 1 1 −1 −1 1



(E.5)

E.2 Clifford twirl

Similar arguments can be made for the case of a Clifford twirl, as Clifford twirls also

yield Pauli channels. In that case the final expression is significantly simpler, yielding

[Ω]w,v =
n∑
l=0

3l + (−1)l

3l

(
n−w
v−l

)(
w
l

)(
n
v

) − 1. (E.6)

This expression was computed in collaboration with Osama Moussa.
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Direct computation of Ω for n = 2, 3, 4 yields

Ω2 =


1 1 1

1 1
3
−1

3

1 −1
3

1
9

 (E.7)

Ω3 =


1 1 1 1

1 5
9

1
9

−1
3

1 1
9
− 5

27
1
9

1 −1
3

1
9
− 1

27

 (E.8)

Ω4 =



1 1 1 1 1

1 2
3

1
3

0 −1
3

1 1
3
− 1

27
−1

9
1
9

1 0 −1
9

2
27

− 1
27

1 −1
3

1
9
− 1

27
1
81


(E.9)
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