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Abstract

If we fix an integer a # —1, which is not a perfect square, we are interested in
estimating the quantity N, (z) representing the number of prime integers p up to x
such that a is a generator of the cyclic group (Z/pZ)*. We will first show how to
obtain an asymptotic formula for N,(x) under the assumption of the generalized
Riemann hypothesis. We then investigate the average behaviour of N,(x). More

precisely, we study the quantity

1
N Z Ny(x).

1<a<N

Finally, we discuss how to generalize the problem over (Z/mZ)*, where m > 0 is
not necessarily prime. We present an average result in this setting and prove the

existence of oscillation.
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Chapter 1

Introduction

Given a positive prime integer p, we can consider the set of invertible residue
classes modulo p, denoted by (Z/pZ)*. 1t is straightforward to show that under
multiplication, this set is a cyclic group of order p — 1 with ¢(p — 1) generators,
where ¢ is the Euleur totient function. A generator of (Z/pZ)* is called a primitive
root modulo p. Given an integer a, we are interested in determining whether or
not a generates (Z/pZ)* for infinitely many primes. A necessary condition for this
to hold is that a does not equal —1 or a perfect square, but are these conditions
sufficient? In 1927 Emil Artin [2 p.viii-x] conjectured that these conditions were
indeed sufficient. Furthermore, letting N,(z) denote the number of primes p up to

x for which a is a primitive root, he conjectured that

T

Na(z) ~ Aa)

log x

as x — oo and where A(a) > 0 is a constant depending on a. Let us now discuss
briefly and informally how one may arrive to such a conclusion. Since (a,p) = 1
for all but a finite number of primes p, we may assume that (a,p) = 1. The first
step is to classify the primes p for which a is not a primitive root modulo p. Notice
that a is not a primitive root modulo p if and only if there exists a prime ¢ such
that the equation v? = a(modp) has exactly ¢ distinct roots modulo p. By a
famous theorem of Dedekind, assuming that the polynomial u? — a is irreducible
over Q[u], the previous condition is equivalent to the fact that p { ¢ and that p
splits completely over the Galois extension Q(a, V1 ) as a product of distinct linear
prime ideals. With the above assumption, the degree of Q(/a, ¥/1) over Q can be
shown to be g(¢ —1). From the Chebotarev density theorem, the density of primes
splitting completely over Q(/a, ¥/1) is 1/q(q — 1). Therefore the probability that a



given prime p does not split completely over Q(/a, ¥/1) is equal to 1 — 1/q(q — 1).
It thus follows that for a to be a primitive root modulo p, we need that p does
not split completely over Q(/a, v/1) for any prime ¢ such that p { ¢. Hence, the

probability that a is a primitive root modulo p should be

IOt

leading one to believe that

Note) ~ 11 (1_Q(q1—1)) lozx

q : prime

as r — 00. Observe that the above argument may fail since the polynomial u? — a
may be reducible over Q[u] for certain values of a and ¢. This leads one to suspect
that the asymptotic constant A(a) should depend on a in possibly different subtle
ways. Concerns about the value of A(a) were first brought up by D. H. Lehmer
whose work revealed that the original formula did not appear to predict values
for N,(z) that were in accord with the numerical evidence. In the light of this
knowledge Heilbronn then suggested a revised form of the formula (see [27]). In
1967 Christopher Hooley [10] showed that Artin’s primive root conjecture holds true
under the assumption of the generalized Riemann hypothesis for certain Galois
extensions. He also provided a complete description of the asymptotic constant
A(a). This is the subject of study of the second chapter of this thesis. Coming
back to the polynomial u? — a, it is straightforward to show that it is irreducible

over Qu| for all primes ¢ for almost all integers a. This leads one to believe that

I ()

q : prime

should be the right asymptotic constant on average. This is the subject of study
of the third chapter where the work of P. J. Stephens [26] is presented. In the final
chapter, a portion of the work by Shuguang Li [I4] is presented on the extension
of Artin’s conjecture to composite moduli. An average result is demonstrated and

the presence of oscillation is exhibited.



Chapter 2

Artin’s Primitive Root Conjecture
and the Generalized Riemann

Hypothesis

Let
No(z) = #{p <z |(a) = (Z/pZ)"},

where (a) denotes the subgroup of (Z/pZ)* generated by a. In this chapter, our goal
is to prove both Artin’s primitive root conjecture and provide an asymptotic formula
for N, (z) subject to the assumption that the generalized Riemann hypothesis holds
over a certain class of Galois extensions. The value of the constant A(a) we obtain
in the asymptotic formula for NV,(x) agrees with the one conjectured by Heilbronn.
Finally, we wish to mention that throughout this section the condition p t a remains
always implicit, the reason being that any fixed integer a posesses only finitely many

distinct prime divisors.

2.1 Notation

The letter a is a given non-zero integer that is not equal to 1,—1, or a perfect
square. p and ¢ are positive prime numbers. [, m and r are positive integers. v is

an integer and k is a square-free integer.

x is a continuous real variable to be regarded as tending to infinity. All the in-

equalities given are valid for sufficiently large values of x. The function w(l) is the



number of distinct prime factors of [. We let (h, k) denote the greatest common
divisor of h and k. (IE’) denotes the standard Jacobi symbol.

2.2 Formulation of the Method

We first observe the following equivalent statement for what it means for a to be a

primitive root modulo p:

a is a primitive root modulo p if, and only if, p { a and there is no prime divi-

sor ¢ of p — 1 for which there exists an integer v such that v = a (mod p).

For a prime ¢, we let R(q,p) denote the simultaneous conditions:
q|p— 1 and there exists an integer v such that v = a (mod p).

We also denote by V' the logical valuation operator. Hence given a sentence, say
S, we have that V(S) = T if the sentence S is true and V' (S) = L if the sentence
S is false.

In order to study the sum N,(z) and to isolate the main contribution, we have
to partition the interval [1,z] into subintervals and we need to introduce several
auxiliary sums. Let us first do the later. Although it may not be completely clear
at first why we need to define such auxiliary sums, it will become apparent once we
observe their properties and the different relationships that exist among them. Let
us first define, given a set of conditions C, the index function of C in the following
way

1. — 1, if every condition in C is satisfied
“lo , otherwise.

Using the above definition, we define the following three auxiliary sums:

Nu(z,n) :=> 1-{V(R(q,p)) = L Vprimeg <n},

p<z

M (z,m1,1m9) == Z 1-{V(R(q,p)) = T for at least one prime ¢ such thatn, < ¢ <mn,},

p<w



P,(z,k) = Z 1-{V(R(q,p)) =T Vprimegq|k}, for any square-free integer k.

p<z

It should be clear that N,(z) = Ny(z,z — 1) since V(R(q,p)) = L for any prime
number ¢ > p — 1 and that if £k = 1, then P,(z, k) = 7(z) where 7(x) is the prime

counting function.

The partition of the interval [1,z] is given by the following subintervals: [1,&],
[€1,&2), [€2,€3] and [€3, x], where

1
& = élogx, & = wlog™?x and & :=/rlogz.

We now present a series of inequalities and equalities between N,(z) and the aux-
iliary sums defined above. Each such relation can be deduced from definition and
the equivalence mentioned at the beginning of this section. On the one hand, we
have that

No() < Na(z,&1),

while on the other hand

No(x) 2 No(2,&1) — Ma(z, &2 — 1)
Combining these two inequalities implies that

Nu(z) = No(z,&) + O(My(z, &, 2 — 1)).
Moreover
Ma('xaflax - 1) S Ma(xvflvéé) + Ma($7£27£3) + Ma(l’,fg,l' - 1)

and we therefore obtain the fundamental equation

No(x) = No(z, &) + O(Ma(x7£17§2)) + O(Ma(x,§2,§3))
‘l‘O(Ma([L',fg,ZIZ — 1)) .



2.3 Applications of Algebraic Number Theory

Let h be the largest positive integer such that a is a perfect h-th power. Since a is
not a perfect square, h is odd. Also, by the unique factorization in Z, a is also a

perfect r-th power if and only if r | h. For any square-free integer k, we define

Since h is odd, then k and k; are either both even or both odd. Furthermore, the
primes contributing to P,(z, k) are those primes p, relatively prime to a, for which

the simultaneous conditions
v? = a(modp) has a solution v € Z, and p = 1 (mod q)

hold for every prime divisor ¢ of k. Since we can always find a solution v to
the congruence v? = a (mod p) when ¢|h, we obtain the equivalent simultaneous

conditions

k1

V™ = a (modp) has a solution v € Z, and p = 1 (mod k). (2.2)

The proof of this equivalence only requires the knowledge that the group (Z/pZ)*

is a cyclic group of order p — 1 and if @ = ¢" (mod p) where ¢ is a generator of

o p—1
Z/pZ)*, then the order of a is —.
B (=D
We now let Q denote the field of rational numbers and for any algebraic exten-
sion M over a field L, we indicate the degree of M over L by [M : L]. Consider the
polynomial

k1

U —a.

Over Q, u* — a factorizes as

ki1—1

H (u — Cglal/kl) , (2.3)

=0

e?™/k1_ Since k is square-free and (ki, h) = 1, we see that the constant

where (j, =
term in any combination of linear factors from ([2.3|) cannot be a rational number,

thus u* — @ is irreducible over Q. This shows that the field

Fr, =Q(Wa)



has degree k; over Q. Moreover, the prime factors of the discriminant of Fj, divide
cither a or k; [19 p.45-47]. Similarly, if we let v/1 denote a primitive k-th root of
unity, then the cyclotomic extension

Z, = Q(V1)

has degree ¢(k) and its discriminant is composed entirely of prime divisors of k
[19, p.52]. We now want to state a lemma having as a goal to help us provide an

equivalent, but more useful formulation of condition (2.2)).

Lemma 2.3.1. If there exists an integer v € 7 such that v* = a(modp) and

kl:

p = 1(modky), then the congruence y a (modp) has exactly ky distinct solutions

in (Z/pZ)*.

Proof. Since p = 1 (mod k1) and (Z/pZ)* is cyclic, there exists a unique subgroup
Hy, < (Z/pZ)* of size ki. Then the set vHy, provides k; distinct solutions to
the congruence y*' = a (modp). Since Z/pZ is field, vHy, is the complete set of

solutions. O

Then, by a famous principle due to Dedekind, the condition

k1

V™ = a (mod p) having exactly k; distinct roots

is equivalent to the assertion that both p t k; and p factorizes in Fy as a product

of k; distinct linear prime ideals. Similarly, the statement
p =1 (mod k)

is equivalent to the condition that p 1 k and p factorizes in Z; as a product of
¢(k) distinct linear prime ideals. From the above and Lemma [2.3.1} we obtain the
following theorem.

Theorem 2.3.1. (Dedekind) Let p be a positive prime integer. Then p satisfies
condition if and only if p1k and p factorizes totally in the Galois extension

as a product of distinct linear prime ideals. Observe that Ly is Galois over Q since
it is the splitting field of the polynomial (u** —a)(u* — 1) € Q[u] and Q is a field of

characteristic zero.



We now wish to prove Theorem by presenting the main steps of the proof
of Dedekind’s principle quoted above. We refer to Appendiz A and to [19] for any

omitted details in the following discussion.

Preliminary Results

Theorem 2.3.2. Let K be an algebraic number field of degree n over Q. Suppose
that there exists an element 0 € K such that Ox = 7Z[0]. Let f(x) be the minimal

polynomial of 6 over Z|x]. Let p be a rational prime, and suppose

flx) = file)? - fox)™ (modp),

where each fi(x) is irreducible in Fy[x]. Then pOx = o5+~ 04’ where p; = (p, fi(0))

are prime ideals, with norm |p;| = p?e/:.

Proof. See Appendiz A. n

Theorem 2.3.3. If in the previous theorem, given 0 € K, we do not assume that
Ok = Z[0] but instead that p 1 [Ok : Z[0]] and [Q(0) : Q] = [K : Q] = n, then the
same result holds.

Proof. See Appendiz A. n

Theorem 2.3.4. Let K be Galois extension of degree n over Q with Galois group
Gal(K/Q). Let p be a rational prime. Then Gal(K/Q) acts transitively on the set
of prime ideals of Ok lying above p. As a corollary, any two prime ideals of Ok

lying above p have the same ramification index and inertial degree.

Proof. This is a straightforward application of the Chinese remainder theorem. For

complete details, see [21], p.54]. O

Proof of Theorem (2.3.1

We are now in a position to prove Theorem m Recall that Z, = Q(%) and
assuming p = 1 (mod k) implies that the polynomial z¥ —1 splits completely modulo
p into a product of distinct linear factors. Moreover, it can be shown that the ring
of integers of Zj, denoted by Oy, , is equal to Z[+/1]. Thus applying Theorem m
yields the desired result in this case. In the other case, we consider Fj, = Q( /a)
and from and Lemma we have that fi(z) := 2 — a splits completely
modulo p into a product of distinct linear factors. Before proceeding any further,

we need the following definitions.



Definition 2.3.1. Let K be an algebraic number field of degree n over Q and
01,09, ...,0, be the embeddings of K into C. We define the discriminant of K over
Q as

drcjg = det(o;(w;))?,

where wy, wa, ...,w, s an integral basis for K over Q. We can generalize the notion

of a discriminant for arbitrary elements of K. If we let a € K, we define
drjg(a) = det(o;(a?1))?.

For more details, see [19, p.45].

If we let my, = [Op, : Z] %W/a]] and (;’s be the distinct roots of fi(z), then it can
be shown that (see [19] p.210])

dp, jo( ¥/a) = midg, g,

but
kq(ky—1) k1
dpo(Wa) = (1) = [ #(&)
i=1

k1
ky(k1—1) _
S | O
=1

ky(ky—1)

= ()M (o

_ k1 ki—1
= =£ki'a .

Since p does not divide ky nor a by assumption, this implies that p ¥ my. Applying
Theorem yields the desired result.

We can now show that p splits completely over L;. Let @ be one of the prime

k1 _ @ factors into k; distinct linear polynomials

ideals of Z; lying above p. Since x
modulo p, it follows that the same holds true modulo @. It is then possible to
show that p does not divide dy, 7, ( ¥/a) and hence that the same is true for p. We
are now in a similar situation as the one where we proved that p splits completely
over Fy. From an analogous argument, we conclude that @ splits completely in
Ly. Therefore p possesses at least one linear prime factor in Ly, but L is a Galois

extension and so from Theorem [2.3.4] p splits completely over Ly.

Conversely, we assume that p 1 k£ and that p splits completely in the Galois enten-

9



sion Li. Our goal is to show that this implies the conditions in are satisfied.
Using the fact that the ramification index and the inertial degree are both multi-
plicative in towers of field extensions, we can see that p splits completely over both
Zy and F}. Since p splits completely over Fj, it follows from Theorem that
the polynomial z¥* — a factors as a product of distinct linear polynomials modulo

M = g (mod p) is indeed solvable. It remains

p. This proves that the congruence v
to show that p = 1 (mod k). To do this we need to consider the number field Zj.
We first recall that
b — 1= H D4(x)
d|k

where ®4(x) is the d-th cyclotomic polynomial. If we let (; be a primitive d-th root
of unity for any divisor d of k, then Z; = Q((x) and Q((y) is a subfield of Z for
any d | k. Knowing that p splits completely over Q({,) for any d |k, Theorem [2.3.3]
implies that ®4(x) factors into a product of distinct linear polynomials modulo p
for any d|k. We thus conclude that the congruence z* = 1 (mod p) has exactly k

solutions modulo p. This we know implies that p = 1 (mod k), hence completing

the proof.
0
In order to make use of the Theorem [2.3.1] we need to determine the degree
ny = Ly : Q] (2.4)
of Ly over Q. To accomlish this task, it is enough to compute [Ly : Zj| because
[Ly 2 Q] = [Ly : Zi][Zk - Q) = [Li : Zi] o(k) - (2.5)

The following theorem is crucial in determining [Ly, : Zy].

Theorem 2.3.5. Keeping the above setup and notation, we have that [Ly : Zy|| k1.
Proof. See Appendiz A. n

We now let

Then, if ¢ is a prime factor of my,, we have that [Z,(¥/a) : Z;] € {1, ¢} and that

Z(¥a): 2| - =L s 2]

10



since Zy, C Zy(/a) C Ly. As (k1/my,q) = 1, because k; is square-free, it implies
that [Z,(¥/a) : Zy] = 1 therefore /a € Z,. Our next goal is to show that my, €
{1,2}, but we need the following two lemmas first.

Lemma 2.3.2. Let L and K be Galois extensions of finite degree over Q such that
K C L. If L/Q is an abelian extension, so is K/Q.

Proof. See [3, p.558-559]. O

Lemma 2.3.3. Let q be an odd prime, and let a be an integer which is not a q-th
power. Let K be a splitting field of the polynomial u? — a over Q. Let a denote
any q-th root of a and ¢ be a primitive q-th root of unity. Then K = Q(«, () and
[K : Q] =q(q—1). Furthermore, we have that

b ¢

Gal(K/Q) ~ { [ 01

} : be (Z/pZ)r, CGZ/pZ} .

This isomorphism implies that Gal(K/Q) is not an abelian group.
Proof. See [3, p.565-568, 582]. H

Let us now assume that there exists and odd prime ¢ such that ¢ |my. Then as
we proved above, this implies that ¢/a € Z;. Thus we have Q C Q(¥a, V1) C Z.
Since Z;,/Q is a Galois and abelian extension, applying Lemma shows that
Q(a, \q/I), being a Galois extension over QQ, is also abelian. On the other hand,
Lemma implies that Q(a, ¥/1) is not an abelian extension over Q. This is a
contradiction. Hence, mj does not possess any odd prime divisors and since it is
square-free it must be true that my; € {1,2}. Observe also that m; may equal 2

only when k; and k are both even. Furthermore, the fact that
Ly = Zy("Wa, Va)

is a direct consequence of the Euclidean algorithm. This is because k; is square-free
and thus implies that ¢ and k1 /q are coprime. It thus follows from this observation
and the above discussion that my = 2 if and only if \/a € Z;. To reformulate this
condition in a more appropriate fashion, let

11



where a is the square-free part of a and possibly negative. Let also D be a positive
odd divisor of k£ other than 1. Then, from the theory of cyclotomic fields (see [3,
p.567]), the only quadratic subfields of Z are of the form

—1
— D
o(|(5)7).
we obtain that my = 2 if and only if alk, |a| > 1, and a is an odd integer with the

same sign as the Legendre symbol
(—1) B 1, ifla] =1 (mod4)
al ) | -1, if|a] =3 (mod4).

Moreover, a # 1 since a is not a square. Thus the above conditions are equivalent

to alk ,a =1 (mod4). We therefore reach the conclusion from ({2.4)), (2.5 and (£2.6))
that

k19 (k)
= 2-
where ¢(k) is given by
2, if2alk and a=1 d4
(k) = , if 2a| 'an a (mod 4) (2.8)
1, otherwise.

2.4 Estimation of the Remainder Terms

In this section, we wish to estimate the remainder terms in equation (2.1). We first
obtain upper bounds for the last two terms. To estimate the first one we observe
that

Ma<x7£27£3) S Z Pa(xa Q>7

§2<q<¢&s
which can be seen by interchanging the order of summation from the sum on the

right-hand side of the inequality.

Keeping only the condition ¢|p — 1 in R(q,p), we obtain directly the following
inequality

P,(z,q) < Z 1

p<z
p=1 (mod q)

12



To bound the right-hand side above we need the following important theorem and

elementary lemma.

Theorem 2.4.1. (Brun-Titchmarsh Theorem) Let a and k be positive coprime
integers and let x be a positive real number such that k < x° for some 0 < 1. Then,

for any € > 0, there exists xg = xo(€) > 0 such that

(2+¢e)z
21 = G g
pEa?mod k)

for all x > xo where ¢ is the Euler totient function.

Proof. See [0, p.125]. O
Lemma 2.4.1. .

Z 8P _ logz + O(1).

p<z p
Proof. See [0, p.9]. O

From Theorem 2.4.7] we have

My(z,86,&) < Z Zl < Z (q—l)fog(:c/q)'

£2<q<{ p<z £2<q<&s
p=1 (mod q)

Then, since & < q < &3, we have

x x 1 x log q
< - <K .
2 (¢ — 1) log(x/q) logx 2 2

§2<q<&3 §2<q<&3

Finally Lemma [2.4.1] yields that

T lo T zloglog x
— > 2« 2 (logéJrl) < BT
log"w , “Ze, 4 log™x &2

the last inequality following from our choice of & and &s.

Therefore we can see that

Mo(2,62,65) = O (M) -

2.9
log? x (2:9)

13



Our next task is to provide an upper bound for M, (x, &3,z — 1). We first observe
that the condition R(q,p) implies that

p—1

a ¢ =1(modp),

thus
2(p—1)
a q

1 (mod p).

Hence, since ¢ > & = /xlogx and p < x, the prime numbers p counted by
M, (z,&3, 2 — 1) must divide the positive product

H (a®™ —1).

VT
m< log @

Since p > 2, we have
2Ma(z7£3vx_1) < H a2m ,

m<%
SO 91 | |
og |a xz
My(z,&,0—1) < =0 . 2.10
o) < R X m= o) e
m<10g:c

It now remains to evaluate M,(z,&;,&). As in the derivation of the inequality for
M, (z,&,&3), we have

Ma($7€17£2) S Z Pa(l',Q)-

£1<g<éa

The sum P,(x, k) can now be expressed in terms of the familiar prime ideals count-

m(x, k) = Z 1.
pCOL,

p: prime ideal
Np<z

ing function

We can write

m(x, k) = Wi(x, k) + W'(x, k), (2.11)

where W (z, k) is the contribution to m(x, k) coming from linear prime ideals that
do not divide ak, and W'(x, k) is the remaining contribution. Since Ly is a Galois
extension over Q, each rational prime p relatively prime to ak either has n, linear

prime ideal factors or has no such factor in L. In the latter case, for a prime ideal

14



p lying above p, we have that Np > p?. Thus

Wz, k) = niP,(x, k) (2.12)
and
W'(x, k) < ngw(ak) + ng Z 1. (2.13)
p?<z

By [@11), @12) and (213), we have
nPy(z, k) = m(z, k) + O (npw(k)) + O (nev/z) (2.14)
Theorem 2.4.2. Assuming the generalized Riemann hypothesis for the field exten-

< dt
ons L d defining li(x) := —
sions Ly /Q and defining li(z) /2 o1

, we have that
m(z, k) = li(z) + O (ngv/xlog kx) (2.15)

and combining this with yields that

P,(x,k) = nikli(x) + O (Vzlogkz) . (2.16)

Proof. See [11]. O

It thus follows from Theorem [2.4.2] and our choice of & that

Mr6.6) < 3 (“(1‘) +ﬁ10gx)

g
§1<q<é&

< > (M(w) +\/Elogx)

oSt \ala—1)

< ’ Zq%—l—\/floga:Zl

|
ng‘]>§1 q<&2

T

§1logx
x

+ Vzlogx &

<
log &,

<

. 2.17
log? x ( )

We gather from (2.1)), (2.9)), (2.10) and (2.17]) that

xloglog :L‘)

2.18
log? z ( )

Na(a) = Nl &) + 0(

15



2.5 GRH Implies Artin’s Primitive Root Conjec-

ture

In this section, we estimate the main term in . This leads us to conclude that
assuming the generalized Riemann hypothesis allows us to solve completely Artin’s
primitive root conjecture. We begin by expressing N,(x,&;) in terms of P,(z, k).
The reason is that it is possible to characterize the prime integers p counted in
the sum P,(z,k) in terms of conditions formulated in the language of algebraic
number theory. Now, we can see from a direct application of the inclusion-exclusion

principle that
Na(z, &) = > p(k)Pa(a, k) (2.19)

k>1, square-free
Vprime ¢, ¢|k=q¢<&

where p denotes the standard Mobius function. We now wish to give an upper

bound for k, but in order to do so we need the following lemma.

Lemma 2.5.1. If we let

0(z) := Z log p

p<w
for any real number x > 2, then 0(z) < 2xlog2.
Proof. See [19, p.248]. O

Then, from Lemma we have that

k< H g =€) < o2log2) < 21 3 (2.20)
q<&

It then follows from (2.19) and (£2.16) that

Ny(x, &) = Z p(k) (nill(x) + O (Vzlog (xk:))) . (2.21)
k>1, square-free k

V prime ¢, q¢|I' = ¢<&

Moreover, from ([2.20f), we have

Z Vrzlogr < Z Vrzlogr < L2 (2.22)
log” x

k>1, square-free

1
. <z3
V prime ¢, q|k=q< &1 ke

16



Combining (2.21)) and ([2.22)) yields

No(z,&) = li(z) Y k) 0< - ) (2.23)

Ny log? z

k>1, square-free
V prime ¢, ¢| k=¢ <&

Lemma 2.5.2. Let ¢ be the Fuler totient function. Then there exist positive con-
stants A, B such that

Z L = Alogx+B+O(10gI> .
x

()

Proof. See [5, p.109]. ]

Corollary 2.5.1. From partial summation, we have

1 logy
chb(n) STy

n>y
Now, since all square-free integers k < &; satisfy the condition:
Vprimeq, ¢[k = ¢ < &,

we obtain from ([2.7)) and Corollary that

Nu(z,6) = li(@)Y % +0 (li(x) #kﬂ + 0( ”5233)

- B o (E) o ()
)

since li(z) = z/logz + O (z/log* ) .

1
Since & = 6 log x ,

No(z,&) = Ala) 102 -+ 0 (%) , (2.24)
= e(k)u(k
where A(a) = ; % .

17



We now verify the positivity of A(a) and we break our analysis into two cases.
Case 1: a # 1 (mod4).

It follows from ([2.8)) that (k) is always equal to 1. Expanding A(a) into its Euler
product form, we have that

= k) (h k) 1 1
Ala) = ; ko(k) [l (1 N F) 11 (1 qlg— 1)) (2:25)
= C(h), say.
It thus follows that A(a) > 0 when a # 1 (mod 4).
Case 2: a =1 (mod4).

We firts obtain from ([2.8)) that

Aa) = Y k) 3 k)
k0 (mod 2|a|) k=0 (mod 2|al)

= (k) (k) (h, k)

= Trow * L2, KK

k=0 (mod 2|a|)

k)(h, k
= C(h) + M%};Q'&)%. (2.26)

For a square-free integer k as in (2.26)), letting k = 2|a|k’ with (K, 2|a|) = 1, the
remaining sum in ([2.26) is equal to

p(2lalk’)(h,2]alk’)  w(2]al)(h,2al) WK (h, k')
2 2 ¢(

2lalk'o(2alk’)  2lale(2]al)

(K 2)al)= (k' 2)a))= )

Observe that the right-hand sum over £’ can be written as a product that is very
similar to C'(h) except that it is lacking the factors corresponding to the prime

divisors of 2|al.

18



Thus, since 1/6(2lal) = [T,z0 1/(a — 1),

A@ o p@abt 2 s L N e, 1\
oy~ T e H(l q—l) H(l q(q—n)

qlh qth
ql2a ql2a
p(2lal)(h, 2lal) (q—l ( q(g—1)
SEEE [ Sl VAN
2|alo(2|al) g q—2 1} ¢?—q-—1

_ p(2laf)(h, 2al) 1
s (

2|al
qlh

q|2a ql2a

1
Now, since h and |a| are odd and Hq . H - Hq = 1, we have

qlh qla qth
qla qla
Ala 5 1 1 1
cin = veunta o T, T 25 Moo= I
qlh qla ¢ qlh q qth q q ath
qla ql2a qla qla
. 1 1
= 1—ula) [[— 1] = : (2.27)
q q q
qlh ath
qla qla

Observing that
1 1
. <1
[, 1= =
alh 1 qth ¢

qla qla

and that this product can possibly be equal to 1 only if |a|] = 3, in which case
p(lal) = —1, shows that A(a) > 0 when a = 1 (mod4). Hence, the value of A(a) is
always strictly positive.

Combining (2.18)), (2.24), (2.25) and (2.27)), we obtain our main theorem.

Theorem 2.5.1. If the generalized Riemann hypothesis holds for the class of Dedekind
zeta functions over Galois extensions of the type Q( /b, /1), where b is an integer,

k is a square-free integer and ky | k, then we have:

Let a be a non-zero integer that is not equal to 1, —1, or to a perfect square.
Let N,(x) be the number of primes p up to x for which a is a primitive root

modulo p. We denote by a the square-free part of a and h the largest integer

19



such that a is a perfect h-th power. Let

=11 <1_61—L1) p (1_ Q(ql—l)) '

Then, if a # 1 (mod 4), we have

Ny(z) = C(h)—"— + 0 (M) |

log x log® x

while if a = 1 (mod 4), we have

Now) = C(h) | 1= u0aD IT (ﬁ) 11 <q2 L 1> 40 (M) |

2
qlh qth q log™x

qla qla

Corollary 2.5.2. If a is a non-zero integer not equal to 1, —1, or to a perfect
square, then there are infinitely many prime integers p such that a is a primitive
root modulo p.

2.6 Numerical Evidence

The following table, where we set = to be the 50 000" prime, provides numerical
support for Theorem [2.5.1]

Value of a N,(x) A(a)-li(x) |Error|

2 18 701 18 724 23
3 18 761 18 724 37
) 19 699 19 709 10
7 18 687 18 724 37
8 11 225 11 235 10
11 18 772 18 724 48
13 18 863 18 845 18
17 18 796 18 793 3
53 . 26 11 844 11 826 18

20



Chapter 3

An Average Result for Artin’s

Primitive Root Conjecture

3.1 Introduction

In this chapter, we present the work of P. J. Stephens on average results for Artin’s
primitive root conjecture. It is to be noted that in this case, the results obtained
are unconditional. As before, we denote by N,(x) the number of primes p < z for

which a is a primitive root modulo p and we let
1
T ().
p:prime p(p - 1)
Our goal is to prove, in order, the following two theorems and corollary.

Theorem 3.1.1. If

N > exp (4(log z log log x)%) : (3.1)
then .
, T
~ > Na(x) = Ali(z) + O ((logx)D) : (3.2)
1<a<N

where D is an arbitrary constant greater than 1.

Theorem 3.1.2. If
N > exp (6(log zloglog x)%) : (3.3)

then
72

(logz)®’

% S (Na(x)—Alz'(x)>2<<

1<a<N

21



where E is an arbitrary constant greater than 2.

As a consequence of Theorem [3.1.2] we have

Corollary 3.1.1. Let E be the set of integers a < N for which
|No(z) — Ali(z)| > eli(z),

for a given € > 0. Assuming that N > exp (6(loga:10g log x)%), then

4F = O(L)F) — o),

e2(logx

where F' is an arbitrary positive constant.

3.2 Preliminary Lemmas
If we define M,(N) in the following way:
My(N) :=#{l <a < N|(a) = (Z/pZ)"},

then, by reordering any of the two given summations, we see that

3 M@= M.

1<a<N p<z

(3.5)

Furthermore, since there are precisely ¢(p — 1) integers which are primitive roots

mod p in any interval of length p, we see that

M) = 6= 1) (5 o)

Hence, it follows from the above equality, (3.5)) and the prime number theorem that

%1§NNQ($) - %; <¢(p —1) (% + O(l)))
= ;@+O(Nigx)'

22
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To evaluate the main term of (3.6)), we need the following theorems and lemma.

Theorem 3.2.1. )
Z — = loglogx + O(1).
p

p<z

Proof. See [0, p.10]. O
Theorem 3.2.2. (Merten’s Theorem)

() = i (o)

p<z

as r — oo and where 7y is Euler’s constant.

Proof. See [0, p.65]. O

Theorem 3.2.3. (Siegel-Walfisz) Letting w(x,l,d) = #{p < x|p = [ (modd)},

we have li(a)
i(x x
m(x,l,d) = +O( >, 3.7
@b D= 5@ O\ gy 0
provided that (I,d) = 1 and d < (logz)? where B and C are arbitrary positive
constants.
Proof. See [24]. O
Lemma 3.2.1. oy — 1)
p— . T
—— = Ali(x —i—O(—) 3.8
I; p ) (log )" 59

where D is an arbitrary constant greater than 1.

Proof. We first write

—1 1 1
T Z% =201 (p—l_p(p—l))

p<w p<z

B o(p—1) 1 /o(p—1)
= 2 p—1 +Zp( p—1 )

p<z p<z

- xelio(xl). 39

p<z p<z

23



Now, by reordering the following summation, we obtain

P =22“§7 > D e 1.a)

p<z p<z d|p—1 d<z
u m(z,1,d)
= 1,d 0 ——= (3.1
> m(x,1,d) + >, ] (3.10)
d<(logz)B (log z)B<d<z

where B > 0 is an arbitrary constant.

We first estimate

m(x,1,d) 1 1 /x
) 2ot 2 ()

(logz)B<d<wz d>(logz)B

IN

(3.11)

Setting [ = 1 in Theorem we see from Theorem (13-9]), (3.10) and (3.11))

that

T >@<Z¢E_d>) + () + 0 ()

d<(log
= li( >d<(102gx)3 o) + O (log z)C UKUOng)B 7] 0 ((logx)B>
e ald) : L B —
= li(z) ; do(d) + O | li(z) d>(lozgx)3 ao(d) + 0 <(log m)C—l)

0 <<logx>3> | e

Moreover,

— A(d) ( 1 )

2 de(d) 1;[ p(p—1)

To estimate the second sum in (3.12), we use Theorem to get

_d

= H(l—l)l < H(l—l)l _ logd (1+0(L))1 < logd
¢(d) pld D N <d D e log d 8¢
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Then

1 log d log log x
2w < 2 E < an?

d>(logz)B d>(logz)B

Hence

. 1 T
@ L @ < g

d>(log

Finally, choosing B and C' sufficiently large we have that

&:AM@+O(—E—J,

(log z)P

where D is an arbitrary constant greater than 1. This completes the proof. O

We now wish to observe that if we were to take N > z'*¢ for any given € > 0, then
combining (3.6) and Lemma would give us a proof of equation (3.2]). This is

unsatisfactory since we wish to average over 1 to N for as small an N as possible.

A finer analysis is therefore required.

Theorem 3.2.4. (The Large Sieve Inequality) For each character x modulo k, we

let
M+N

S = Y anx(n),

n=M+1

where a,, is any complex number, M € Z and N € Z*. Then

M+N

S SIS0 < (K24N) Y Jaaf?

k<K x modk n=M+1

where Y. denotes summation over primitive characters, K € Z* and k > 1.
Proof. See Appendiz B. n

Let us now define 7/ (a) to be the number of r-ordered tuples such that the product
over all entries is equal to a and each entry does not exceed N and may possibly be
equal to 1. We now wish to prove the following two lemmas, which provide upper

bounds for the first and second moment of 7/(a).
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Lemma 3.2.2. With the above definition, we have

Z 7i(a) < Nr(log(eNT_l))r_l.

a<NT

(3.13)

Proof. We proceed to prove the lemma by induction on r. If r = 1, then 7/(a) = 1
for all a, and the result follows. We now suppose the lemma holds for r = k£ > 1.
Then

Yo miale) <Y Y T = Y omd Y 1

a<NFk+1 a<Nk+l d|a d<NFk a<Nk+1
d<NFk dla
/
7i,(d)
k+1 k
< NEYC - (3.14)
d<NF

Observe that (3.14]) implies the result when r = 2 since 7{(d) = 1 for all d. We may
therefore assume that k£ > 2. Our goal is now to find an upper bound for (3.14]).

From (3.14]), we may write

o Y Al < 3 D (3.15)

a<Nk+1 d<NF

for k > 1. Then, from partial summation and (3.15)), we have that

S (T X ([ 80

d<NF d<Nk d<Nk—1 5<d

1 / 1 /
= szk(d)+ Z (m)ZTk@

0<d

Tr_1(t) 1 ,
2 Tt 2 (d(d+1))Z 2 Thalt).

5<d  t|s
tSN}c—l

IA

Since

6<d  t|s t<Nk—1 6<d t<Nk-1
t<Nk-1 tld
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then

Z# < Z —Tktl(t) 1+ Z d—%l—l < log (eN*) Z Tktl(t).

d<NF t<Nk—1 d<Nk—1 t<Nk—1

Thus

Z Tl::C(ld) < log(eNk) Z 771 (1)

t
d< Nk t<Nk—1

holds for k£ > 2. Applying this inequality recursively shows that

Z Té(gd) < (log(eNk))k.

d<Nk

By (3.15)), it follows that

3" () < NH(log (eN®)"

aSNkJrl
which concludes the proof of the lemma. O
Lemma 3.2.3. We have that
r2—1

Y (7/(a)* < N (log(eN"™))

a<NT

(3.16)

Proof. We prove the result by induction on r. If r = 1, the lemma follows since both
sides of ([3.16]) are equal to N. We now suppose the lemma is true for r =k > 1.

2

First, Z (Tlé—i-l(a))Q < Z Z TI::((D
a<Nk+1 a<Nk+1 dla
d<N*
< T Y ) Y1
d<N¥k I<NF a<Nk+1

dla,l|a

[d, 1]

IA
=
—~
&
=l
=
Ea
+
—

- NHLY T’;;d) D T’il(l) (d,1). (3.17)



Since n =3, , #(d) and 7 (mt) < 7,(m)7;(t), we have

Z Tél(l) (d7 l) -

IN

By (3.17) and (3.18]), we have

Y (Ha@)? <

aSNkJrl

IA
=2
a
pa

However,

> 2056

I<NF t||<l1
> oy 20
t<Nk I<NFk
t|d t|l

Tr.(mt)
t§k¢<t> ZN o
td ms

.(m) T (t)
ZNj o(t) Z; —
tld mETe

d<NF t<N* m<NF

t|d -t

/ /
7i(d) : 7 (m)
T(1)
d m

d<Nk t<NF m<Nk

tld

IA
??‘\]\
=
??‘\]\
—~
S
|
=

<Nk t k
t<N nSNT
. v WO - )
- t n
t<Nk n<Nk

28

(3.18)



Therefore

S Gha@)? < N | Y E) s GHOT

a<Nk+1 u< Nk t<Nk

From the proof of Lemma [3.2.2] we have that

2

Z rgiu) < (log (eNk))%

u<Nk

and combining the induction hypothesis with partial summation yields that

/

Z —(Tkit» < (log (eNk))k2 )

t<NFk
Hence
Z (TléJrl(a))z < NF+L (10g (eNk))(k—H) -1 7
aSNkJrl
which completes the proof. O
Lemma 3.2.4.
2r
! 2 r T r—1y\ 721
YYD oxle)| < (K*+ N")N"(log (eN™1)" (3.19)
k<K xmodk |[a<N

where Z/ denotes summation over primitive characters, K € Z* and k > 1.

Proof.

2

> X

k<K xmodk

> xla)

a<N

. = (5 )

a<N

Applying Lemma [3.2.1| and |3.2.3] we ontain

> X

k<K xmodk

2

< (K*+N7) ) (@)

a<N"

< (K4 N")N"(log (eN""1))" "

> 7i(a)x(a)

a<NT"
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This completes the proof. O]

3.3 Proof of Theorem [3.1.1l

In this section, we prove an asymptotic formula for the quantity

1
~ D N(z).

1<a<N

For a prime p, we define the following function:

(a) 1, ifais a primitive root mod p
a) =
i 0, otherwise.

Then we can see that

My(N) =Y ty(a). (3.20)

a<N

The following lemma enables us to rewrite ¢,(a) in a more effective way.
Lemma 3.3.1. For any character x modulo p, if we define c(x) by

1 "
c(x) = 1 > x(b) (3.21)

1<b<p

where Z" means that we are summing over primitive roots b modulo p, then we
have that

t(a) = > c(x)x(a). (3.22)

X modp
Proof.
1 " 1 "
> cboxta) = Y == > x0) | xla) = —= > " > x(ba),
x mod p x mod p p 1<b<p p 1<b<p x modp

but from the orthogonality relation for characters, we know that

Z x(ba) = {pg’l, if ba = 1 (mod p)

otherwise.
x mod p

Since b is by assumption a primitive root modulo p, if @ = b~ (mod p), then a is

also a primitive root modulo p.
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Hence

Z Z { 1, if ais a primitive root mod p

1<b<p x mod p 0, otherwise.
This completes the proof. O

It is also clear that if o denotes the principal character modulo p, then

op—1)

- (3.23)

c(xo0) =

If x # xo we may express the sum in (3.21]) in terms of Ramanujan sums (see [20,

p.6-7]) to obtain
1

ord(x)’

lc(X)] < (3.24)

where ord(x) is the smallest positive integer d such that x? = yo. As a final remark,
note that if y is a non-principal character modulo p, then it is automatically a
primitive character modulo p. Thus, from (3.5)), (3.20)) and (3.22)), we have

TYNE = 2 XYY dn@ = XY @0 @

a<N p<z a<N xmod p p<z xymod p a<N
1 1
S S DN CEED DD IR T
p<x X=X0 a<N p<x xmod p a<N
XFX0

Then, by (3.23), (3.24) and since 1/(p —1) =1/p+1/p(p — 1),

3 T ) - %z%%”( -2 J)w(Nz > i

a<N p<x p<z x mod p
B P(p o(p Sy
- LSO mo@
¢(p—1) qb 1 |N S
- LA <p w13 o(3)

where

ZZ ord

p<z x mod p

31
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Then,

s [) - S (A ()
st

Therefore

1 ¢ — 1 X SQ
— ol —=1. 3.25
vI e = Do) vo(R) . e
a<N p<zx

Lemma 3.3.2. Let m be a positive integer. The group of multiplicative characters
X : (Z/mZ)* — C* is isomorphic to (Z/mZ)*. As a consequence, if m = p is a
prime number, then for any divisor d of p— 1, there are exactly ¢(d) characters of
order d.

Proof. See [0, p.29]. O]

We now wish to evaluate Ss. In order to do so, we apply Holder’s inequality, Lemma
[3.2.4] and Lemma [3.3.2] to obtain

) 2 /(2r—1) 2r—1 ) 2r
2 (LY ) ) TE [T
p<x x mod p p<x xmod p [a<N
2r/(2r—1) 2r=1 2,
< Z Z (ord ) ) (x2+N’")N’ﬂ(log(eNr*1))T_
p<x x mod p
2r—1
d 2
< Z Z % (z* + N")N"(log (eN" 1)) !
p<z d|p—1
2r—1
< Z Z @ (z* + N")N" (log (eNT_l))TQ_l. (3.26)
p<z d|p—1

Before we can proceed with our evaluation of S;, we need to state the following
result.

Lemma 3.3.3. (Titchmarsh)
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If we let T(n) denote the number of positive divisors of n € Z*, then we have that

ZT(p—l) <caz,

p<z

where c3 is some positive real constant.

Proof. See [20, p.413]. O

Corollary 3.3.1.

YY1 =Y 1) < e

p<z d|p—1 p<z d|p—1 p<z

We see from Corollary that

S < (csx)? " (22 + N")N" (log (eN"1))" " (3.27)
Dividing the above inequality by N?" and then taking the 2r-th root yields
S2 1o [ i r—1y\(r?=1)/2r
N < 'Y N +1 (log (eN"™1)) : (3.28)

Our next objective is to choose a value of r that minimizes the right-hand side of

the above inequality. If N is very large with respect to z, then the term

r2—1)/2r

(log (eN"’l))(

becomes problematic and so we must require r to be equal to 1 in this case. On

the other hand, if N is relatively small compared to z, then the term

IQ 1/2r
1
()

is now problematic and so we must require r to be larger and at least greater than

2. From this argument, we now let

2logx
= 1.
" LogNJ+

It follows directly that N™~! < 2?2 < N”. With this choice of r, we obtain from
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(B28) that
S
ﬁ < 277 (log (ex?))

(r2—1)/2r

If N > 2% then r = 1 and by (3.29) we obtain

%2 ¢ o
e T2 .
N

We now assume that N < 22, hence

First, we notice that

r?—1 r 1]2logw 1 log x
< L == 4 <
2r T 2 2 -

assuming that logz/log N > 1.

1
If i < 1, then we must have that
log
1< 2log x <9
log N

since > 2. This actually implies that » = 2 and

3 3
< <
4 — 2 -

and so

in this case as well.

34
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Assuming that (3.1]) holds, this implies that

% <« & (log (ea?)) OB/ R1EN)

1 1
< :L,l—l/QT (log (61,2))(3(104‘%1)7)/(8(10’%10%1)7) )

Now, since

1 3 1 2 1 3 1
—2—T10g3:+ 3 <log0iz:c) log log (ex?) < —ZlogN+ Z(logxloglog:c)f,

we obtain that

S 3

1
= o« xe—%logNeZ(logxloglog:c)?

N
1
_1 3 . 3
< xNTINT6, since ¢logrloglosz)?

= aN 1, (3.31)

Finally, combining (3.30) and (3.31]) yields

% < °
N 7 (logz)P’

(3.32)

for any arbitrary D > 1 provided (3.1]) holds. Substituting (3.32) and the result of
Lemma into (3.25) completes the proof of Theorem [3.1.1]

3.4 Proof of Theorem [3.1.2.
In this section, we provide an upper bound for the quantity

% 3 (Na@)—Au(x))Q.

1<a<N

We let p and ¢ denote positive prime integers and we define

M, (N):=#{a < N| <a>= (Z/pZ)" and <a>= (Z/qZ)" }.
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With the above definition and by Theorem [3.1.1] we can write

T = NZ — Ali( ))

— (Z > M, —2Ali(x) Y " M,(N) + NA® (u(:@)?)
1 . . . x 2 (7, 2
= 5 Ig qux M, ,(N)—2Ali(x) <A li(x)+ O (W)) + A® (li(x))
1 9 /1 9 z?
= ¥ Iéq;]\/[p,q(]\f) — A* (li(z))"+ O (—(loga:)E) ; (3.33)
where FF =D + 1.
Write
ZZMP,Q(N) = ZMP(N) ‘I'ZZMp,q(N) : (3.34)
p<z q<z p<z p<z g;g

Since (3.3) holds, we can apply Theorem to obtain

> M,(N) < Nli(z). (3.35)

p<z

Also, by (3.22)),
YD M (N) = DD D ty(a)ty(a)

p<z g<z p<z g<z a<N
a#p a#p
= E E E E c(x1)c(xz) g x1(a)xa(a
p<z g<z x1 mod p x2 mod g a<N
a#p
= Tl + 2T2 + T3 )
where
E E E § c(x1)e(xz) E x1(a
p<z q<z x1 mod p x2 mod ¢ a<N
g#p X1=X0 X2=X0
E E E E c(x1)e(xz) E x1(a
p<z q<z x1 mod p x2 mod ¢ a<N
q#p X1=X0  X2#Xo0
and

ZZ Z Z c(x1)e(xz) ZXI a)xa(a

p<z ¢q<z x1 mod p x2 mod ¢ a<N
g#P X1#X0  X2#X0
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Therefore
Z Z Mpo(N) < Nli(z) + T + 2T, + T (3.36)

p<z q<z

Applying the result of Lemma [3.2.1] we obtain

n- L ;:1” (=[5 -5+ 1))

P,q<x
P#q
—1 —1 —1
_ Z Qb qq_ : ) (N(p ]iéq ) + 0<1))
paze ¥
N o(p—1) (g — 1) a?
- N Y 0 (o)
g
_ o(p . 2
= (; > + O(N li(x)) + O ((log x)2>
, Nz? x?
— ONA2(li(2)?+ O (W) 40 ( (ng)Q) | (3.37)
Also, since
) xela), ifpta
xo(a) = { 0. ifpla
we see that ¢
T = Z c(x2)
p<z g% X27X0 aﬁgf

Let us recall that

ZZ ord

p<z x mod p

Then

L <<Zzzord

p<z ¢<T X2#X0

)+ XX Y sis 2.1

p<z ¢<T X2#X0
p|a

= Sy L+ > Y )y Ord ﬂ (3.38)

p<z p<z q<T X2#X0 p
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Now, from Corollary and Lemma |[3.3.3] we have that

SN N ey iy s

p<z ¢<T X2#X0 p<z ° q<z d|q—1

Finally, by (3.32)), (3.38), (3.39) and Theorem [3.2.1, we obtain that

Nz?
T: ———— + Nzlogl :
2 K (log 2)F + Nzloglogx

(3.39)

(3.40)

Before we can proceed to estimate T3, we need to make the following remarks.

First, if p # g and x1, X2 are non-principal characters modulo p and ¢ respectively,

then yix2 is a primitive character modulo pqg. Furthermore,

ord(x1x2) = [ord(x1), ord(x2)] < ord(x1)ord(x2),

where [m,n| denotes the least common multiple of m and n. Thus

<3 ¥ o

p,q<z x mod pq
psﬁq

Applying Holder’s inequality to T3 and using Lemma yields

2r—1
) 2r/(2r—1) ,
o< | SY (07‘ ey ) S Y
p,q<zx mod pg p,q<zx x mod pq
p#q P#q
2r—1
2r
d
DD DD SRR
P,q<w d| ¢(pq) p,q<z x mod pg |a<N
P#q P#q
2r—1
2r
< [ e | D Y Y@
p;géﬁqx k<z?2xmod k [a<N
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a<N

2r
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Applying Lemma to (3.41)) yields

2r—1

7 < | S roa) | @+ NN (log (e )

P,q<z
p#£q

2r—1

IN

Z T(p—1D)71(q¢—1) (z* + N")N" (log (eN’"*l))TQ_1 ;

pq<z
p#£q

where we have also used the fact that ¢(pqg) = (p—1)(¢—1) and 7(mn) < 7(m)7(n).

Since

Y rlp—Dr(g—1) < (Z T(p — 1)) 7

D,q<T
p#q

we see from Lemma B.3.3] that

2(2r—1)
Ty < (Z T(p— 1)) (# 4+ NN (log (eN"1))"

p<z

r2—1

< (c3)*® D (z* + N")N" (log (eN"1))

Following the same steps as in the proof of Theorem we let

4logx
= 1
' LogNJ T

hence N"~! < 2* < N”. With this choice of 7, we obtain directly that
T: r2— r
~ < a?7/" (log (exty) "V (3.42)

If N > 2% then r = 1 and we have from (3.42)) that

T
WP’ <Lz (3.43)
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If N < 2%, then r > 2 and again from (3.42))

13
N

< m2—1/7’ (log (61‘4))(310gx)/10gN

< P2 NUB2

l’2

(logz)*#

(3.44)

for an arbitrary positive constant E provided (3.3)) holds. The proof of the two
inequalities preceeding ((3.44)) is essentially the same as the one which was provided
in the proof of Theorem while determining a proper upper bound for Sy/N.

Assuming holds, we conclude from (3.27)), (3.34)), (3.35)), (3.36]), (3.37)), (3.43)

and (3.44) that

ZEQ

(log z)”
for any arbitrary constant E greater than 2. This completes the proof of Theorem

0. 1.2

T«

3.5 Proof of Corollary [3.1.1]

In this section, assuming N > exp(6(log:c log log ;1:)%), we provide an upper bound
for the set
E= {1 <a <N :|Ny(z)— Ali(z)] > 5li(:v)} ,

for a given £ > 0. First note that for a € E, we have

(Na(z) — Ali(2))* > €2 (li(x))*

Thus E
X Z ~ Ali2)) > #Wg?(u(@)?.

a<N

On the other hand, Theorem yields

—Z — Ali( )) ’

a<N (1Og JZ)

Hence
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Therefore
#E <

e2(logz)F’

where F' (= E — 2) is an arbitrary positive constant.

As an example of Corollary [3.1.1], if we take

1
(log )P °

where Dy is an arbitrary positive constant, then we obtain that

T

INu() = Ali@)] < o

for all positive integers a < N with at most

=0

exceptions, where D, is a positive constant depending on Dy, provided (3.3)) holds.
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Chapter 4

An Average Result for Composite
Moduli

4.1 Introduction

The concept of a primitive root modulo a prime can be generalized. This was done
by R. D. Carmichael [4]. Since the multiplicative group (Z/nZ)* is not necessarily
cyclic for a given positive integer n, he defined a primitive A-root modulo n as any
integer coprime to n having maximal multiplicative order. Therefore a primitive
root for a prime p is a primitive A-root modulo p. In analogy with the previous
two chapters, we denote by NV, (x) the number of positive integers up to = for which
a is a primitive A-root. Our goal in this chapter will be to demonstrate that the

average of N,(z) oscillates. More precisely, we will prove the following theorem.

Theorem 4.1.1. [T]], Li] If we let
Ny(z) :={1 <n < zx|ais a primitive A\-root modulon } ,
then

1 1
limsup — 5 No(r) > 0 and liminf — E Ny(z) = 0.
z—oo L r—00 I

1<a<z 1<a<z

Our strategy will be to obtain information about the behaviour of the distribution
function of r(n), the density of primitive A-roots modulo n. It does not seem
possible to do so directly hence we will introduce an auxiliary function f (n) and

study this function instead. The reason f(n) is useful is because we are able to find
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the correct order of magnitude for its average order. Moreover, we can relate the
first and second moment of f(n) in a very nice way. This will allow us to extract
information about the distribution function of r(n). We will also use the very nice
properties of the distribution function of ¢(n)/n, where ¢ is the Euler phi function.
Finally, we will combine our knowledge of 7(n), f(n) and ¢(n)/n to show that the

average of N, (z) exhibits extreme behaviour.

4.2 Preliminary Results and Definitions

Definition 4.2.1. Let k be a positive integer and x a positive real number. We let
log, x denote the k-fold iteration of the natural logarithm of x whenever this makes

sense, and zero otherwise.

Definition 4.2.2. Given x € R, we define the floor and ceiling of x by
2] :=max{n e Z|n < x}

and
[] :=min{n € Z|n > z}.

Proposition 4.2.1. Let l,(n) denote the multiplicative order of a modulo n when

gcd(a,n) = 1. We define the Carmichael function in the following way:
A(n) :=max {l,(n)]| ged(a,n) =1 anda € Z } .

Moreover, if we use the notation p°||n to mean that p°|n while p°™ { n, then we
have
A(n) = lem{A(p)}

pe|In
where A(p®) = ¢(p®) for all prime powers p®, with the exception A(2°) = 36(2°) for
e> 3.
Proof. See [20], p.23-24]. O

Definition 4.2.3. Let a and n be coprime integers. If l,(n) = A(n), we say that a

18 a primitive A-root modulo n.

Theorem 4.2.1. From the structure theorem for finitely generated abelian groups,

we can write

Aq(n)
(z/mz) = P @quq P =,

q|A(n)
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where Cyea 15 a cyclic group of order ¢®¢ and H, is a direct sum of cyclic groups
having order some power of q strictly less than e,. Hence Ay (n) represents the

number of direct summands whose order is ¢°¢. Define

1
r(n) ;= —#{1 <m < n|mis a primitive A\-root modulon } .

¢(n)

Then we have

) =TT (1- ) (4.1

a|A(n)

Proof. Let us first consider a single prime ¢ so that ¢|A(n). Since Cueq is cyclic,
it possesses ¢(q°?) generators and hence ¢ — ¢(¢°) elements not having maximal

order. This implies that
Ag(n)
B e | B,
j=1

contains exactly (g% — ¢(¢%))2«™|H,| elements not having maximal order. This

implies that

— L quq(")H — (g% — €q Aq(”)H
r(n) ¢<n>q|ll)<q [H| = (4% — 6(g"))> | H,))

1 1 : e o _ ea—
= o(n) H | Hylgea®at™ (1 - m) , since ¢(g°) = ¢°* — ¢~
a| A(n)
— LH ’H|64Aq(”) H 1_;
— o(n) o gham )
| X(n) | X(n)
Since .
eqAg(n
o TL i = 1.
a| X(n)
this completes the proof. O

Theorem 4.2.2. (Linnik’s Theorem) There exists an absolute constant C such

that, if ged(a, q)=1, there is always a prime p = a(modq) satisfying p < q°.

Proof. See [10]. O

(5:))

Theorem 4.2.3. (Merten’s Theorem)

() (0

p<z
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as z — oo and where v s Fuler’s constant.

Proof. See [0, p.67]. O

Theorem 4.2.4. (Prime Number Theorem) If we denote by mw(x) the number of

positive prime integers less than or equal to x, then

T T
m(x) = Tog s + 0 <log2:v) :

Proof. See [20, p.35-62] O

Lemma 4.2.1. For any t € (0,1) the limit

lim #%gﬂ@gt} — w(t)

T—00 I

exists.  Moreover, the function w(t) is continuous and strictly increasing in the
interval (0,1) with
lim w(t) =0 and lim w(t)=1.

t—0t t—1—

Proof. See [25, Theorem 1]. O

4.3 Applications of Sieve Theory

We now wish to present a few results that will be essential for our applications in
the following sections. The reader may refer to [5] or [9] for more details. Let us
first introduce some notation. Let A be the set of positive integers up to z > 1.

Throughout the remaining of this chapter the set A will always be of this type. Let

P(z) = Hp

p<z
pEP

oI

p<z
peEP

P be a set of primes. Define

and

for any z < z. We are interested in estimating the counting function defined by

SAP.2) = > 1.

neA
ged(n,P(z))=1
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Lemma 4.3.1. (See [14, p.105]) For any integer k > 2 and any x > 2, we have

1 log, <1og k;>

- = + 0 )
2 5~ am oG
p=1(modk)

where the implied constant is uniform and effectively computable.

Theorem 4.3.1. (See [9, Theorem 7.2]) Let P be a set of primes and assume that
2<2z<t. Letu=logt/logz. Then we have

Z 1 = tW(z) <1 + O(exp(—l/Q . ulogu)) + O(exp(—@))) ,

n<t
ged(n,P(z))=1

where W (z) is defined as above and the implied constants are absolute.
Lemma 4.3.2. Let P be a set of primes and assume that € > 0 is a number

1 €
Z §§ log w

w<plew
peEP

depending on P such that

for all w > wy, wo depending on P. Then if = = exp(logt/logit) > wy and
e > exp(—log; tlogs ), we have

Yoo =W+ O(atlogg(t)W(2)> + 0( - ) )

2
— logs t

ged(m,P(t))=1

where the implied constants are absolute and W (z) is defined as above.

Proof. First, we have the equality

> 1= > 140 o1 (4.2)

m<t m<t m<t

gcd(m,lg(t))zl ged(m,P(z))=1 ged(m,P(z))=1
ged(m,P(t))>1

Recalling our choice of z, we see that the error term in (4.2)) is bounded above by

Sy 1+ Y oot

2<p<t/z m<t/p t/2<p<t m<t/p
pEP  ged(m,P(z))=1 pEP  ged(m,P(z))=1
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Since t/p < z, the above sum is bounded by F; + Fy where

E, = Z Z 1 and Fy= Z Z 1.

2<p<t/z m<t/p t/2<p<t m<t/p
pEP  ged(m,P(z))=1 pEP  ged(m,P(t/p))=1
Note that in E; we have ¢/p > 2. The inner sum of E; is S(A, P, z) where A =
{n|n <t/p}. Applying Theorem to the inner sum of F; and using a trivial
estimate for the inner sum of E, , we can rewrite (4.2)) as

Z 1 = Z 1+OW(Z)ZE+O sz

m<t m<t 2<p<t/z p t/z<p<t
ged(m,P(t))=1 ged(m,P(z))=1 pEP pEP

where the implied constants are absolute. We now wish to show that the two error
terms are equal to the ones appearing in the statement of the lemma. Because
2z > wy, by the conditions of the lemma, and choosing k € Z* such that e*z <
t/z < etz yields

Zl< e
p — logz logz+1 logz + k

z2<p<t/z
logt/z 1
< 5/ —du
log z—1 u

peEP
log2t\ '
= clog <(log§t—1) (1— 082 ) > < clogst.

logt

The same method applies to the other error term, which yields

t

E 1 = E 1+ O(5t10g3(t)W(z)> + 0( 82 ) : (4.3)
m<t m<t IOth

ged(m,P(t))=1 ged(m,P(z))=1

By Theorem [4.3.1] the main term in (4.3)) is equal to

tW(z) (1 + O(exp(—logj t log, t))) ,

where the implied constant is absolute. Since we assumed that & > exp(— logj ¢ logs t),
the above error can be taken in the first error in (4.3). This completes the proof of
Lemma [4.3.2] [
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For our purpose, we are interested in investigating the set P of primes in an arith-

metic progression since this is where our applications of Lemma lie.

Lemma 4.3.3. Let m > 2 be an integer. For all w > m'2, we have

2.

w<plew
p=1(modm)

6
d(m)logw

D=

Proof. By the Montgomery-Vaughan version of the Brun-Titchmarsh inequality in

[18] and since w > m'?, we have

1 1
< = 1
w<plew w<plew
p=1(mod m) p=1(mod m)
1 2ew
< —
— we(m)log (ew/m)
12 2e
< e —
11 ¢(m) logw
- 5
d(m)logw

4.4 Prime Factorization of \(n)

Let ¢ be a prime integer and m be a positive integer. Then v,(m) denotes the

exponent of ¢ in the prime factorization of m, that is ¢%(™|{|m.

Theorem 4.4.1. Let € be a number in the interval (0,1) and let ¢ < logg/2 x be a

loggz | x
“Tlogq } N O(logSl“) ’

logs x
logq ’

prime integer. Then for x > 16, we have

logg
log q

vg(A(n))

#{ngx:

where the O-constant depends only on €.

Proof. We prove the theorem in two parts. Letting K = ¢ we first wish to

show that

1 e
# {ngx s ug(A(n)) < %—K} = O(xexp(—logQ/Qa:)) :
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Let K; = Pl‘f’Ti”; — K—‘. Since g < logg/2 x, we have that K > 2 and K; > 1 when

x is sufficiently large. Then, since v,(A(n)) < K; implies that ¢"' { p — 1 for any

p|n, we have

IN

#{ngx : Uq()\(n))<10g—3x—K} #{n<z:v,\(n) <K}

log q
< #{n<z:p#£1(modg™)foralp|n}

S(Aa Pqu ) x) )

where A= {n <z} and Py, ={p : ¢"'[p—1}.
By Theorem and Lemma [£.3.1] we see that

1
S(A Pyrz) < = [] (1—->
p<zT p
q"1|p—-1
e |- X oY YL
p<x p p<z  j=2 JP’
q"1lp—1 q%1[p—1
1 1
= xexp | — Z ——I—O( 1)
— p 2K
qf1ip—1
log, (Kﬂogq))
= zexp| ——x + O —7F+
( ¢(g") o(g")

< ze < log, >
zexp | —————m— | ,
P\ -1/

where the last inequality follows from the fact that

Kilogq
¢(¢")

< 1.
Moreover, since K1 — 1 <logsz/logq — K and K > 2, we have

T exp (_log—2x> T exp (_log2 :1:)
"1 (1—1/q) g

T exp (—qK_l)
T ex <—1 £/ )
p 08y T

0< a ) .
log5 x

IN A

IN
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This concludes the first part of the proof.

We now wish to show that

#{ngx:vq()\(n))>1og—3x—i—[(} - o( - )

log ¢q log5 x

Let Ky = HETS; + KJ . Since v,(A(n)) > K, implies that ¢%2*%|n or that ¢®>™!|p—1

for some p|n, we have

#{ngx:vq()\(n))>lfog;;+f(} < #A{n <z v (An)) > Ky}
< #{ngx:qK2+2|n}

+ # {n<z: ¢ p—1for somepln} .

From our choice of K5 the first term above is bounded by

giet2 = gKFllogyx 7 \logyz )

By Lemma |4.3.1the second term above is bounded by

T log, x Ky logq
Z p L (qK2+1(1_ 1/9) + 0( press :

p<z
g%zt p—1
Moreover, since Ko +1 > (1 + E)Iffg?’;, we see that
log, logobx 1
¢k (1 — 1/q) qu’fg;(us) logs z

Finally, provided that x is sufficiently large, our choice of K and K, yields

Kslogq < (1+4¢)logsx < 1
gfett = loghttx T logja

The above two remarks show that

p<z
g2t p-1

which concludes the proof. O]
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4.5 First Moment of f

In this section, we consider the first moment of f where given n € Z*, we let

fy= 3 2

g<logy n
alA(n)
Ag(n)=1

when log, n is defined and f (n) := 0 otherwise. Our goal is to prove the following
theorem.

Lemma 4.5.1. Let € € (0,1/4]. There exists an xy such that for x > x,

Sim=e ¥ L% e ()0 (5.

n<lx q<log, x k>1
’k— 1?g3 x < logz x
ogq |=" loggq

Proof. Tt follows from the definition of f(n) that

) 1 1 x
IOEDISY i > . oo +0<1Og4$) (4.4)

nlx n<z g<logy n q<log, x nlx
Aq(n)zl Aq(n):l

as the difference between the two sums in the second equality is bounded above by

)SEED DEEEIED DI DI DU DR

n<zx log, n<g<log, n<g!/2 logy n<q<logy = 21/2<n<g logy n<q<log, =
1
< E loggz + E
log, x
n<gl/2 xzl/2<n<z
x

< x1/? logs x + < .
log, x log,

Applying Theorem to the inner sum on the right-hand side of (4.4)) yields

d ftm) = > E S+ O(ﬁi(;§6xx>+o(b;x), (4.5)

n<x g<log, x n<lx
Ag(n)=1
1 1
|va(A(n)) — o2 | <epE2 >

where € € (0,1) will be determined later.
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We now wish to show that the following equality holds for the inner sum of (4.5)):

1 - Y X % 1io(pEr)

l1—e
lo x
n<z |k_10g393 <gloggr pogl/4 m<z/p 82

N\ logq | =" logq ~;—
Ag(m=1 q* || p—1 ged (m, Pk (z/p) )=1
|va(A(n)— 282 | <elptia
q log g log q

where

Py (z/p) = H D.
p<z/p
" |51

To accomplish this, we begin by rearranging the left-hand side. Observe that the
condition ¢*||A\(n) implies that ¢*||p — 1 for some prime p|n or ¢***|n and these two

conditions are exclusive since A,(n) = 1. This implies that

SREREEID SHD o

n<x ’k_loggz <glogzz  n<z
Aql(n)=1 1 loga 177 logd gk || A(n)
ogg T ogg T —
|vq()\(n))f 1o§q Ss% Ag(n)=1
_ E E 1 + E E 1. (4.6)
|k_log3a: < logs x n<x ’k_loggx < logs x n<x
logg [—" loggq qk Hp—lfor some p\n logg |—" loggq qk+1 |n
Ag(n)=1,¢" || A(n) Aq(n)=1,4" || A(n)

Let us show that the second sum in (4.6]) falls into the error term:

SIS SEN I S

|k— logg = <£log3x n<x |k‘— logg x <€log3 T
logq =" logq qk+1 ‘n logg |—" logaq

Aq(n)=1,4" || A(n)

< gV 3 1
|k_10g3a: <Elog3x
logg |=" loggq
X
- logs ¢z Z !
2 ’k_loggz < logs =
logg |—" loggq
x log; x
S 1—¢ 2e &
log, ©x log q
xlogs x
< 98T
log, “ x

We now rewrite the first sum in (4.6)) in a more appropriate form. First, instead

of summing over n < x , if we sum over primes p < x satisfying the required
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conditions, we obtain

D

n<x

q"* || p—1for some p|n

Aq(n)=1,4" | A(n)

L=

p<z r>1 m<z/p"
" | p—1 ged(m, Py (z/p"))=1

x
1+ o)

where the error term on the right-hand side appears because the triple sum counts

the number of n < x taking into account every required condition, except that it

allows for the possibility that ¢*™!|n, which violates the condition A,(n) = 1. Since

there are at most z/q

2.

|k‘7 logg x ISE

log q

2.

‘k‘— logg =

logg |=" logg qk||p—1

k+1

such n’s, the error term is justified. This implies

> 1

logg x ngx
loga gk || p—1 for some p|n
Aq(n)=1,¢" | A(n)

2.2 X

p<z  r>1 m<x/p"
ged(m, Pk (z/p") ) =1

Lot
logy

logg x

Sy + 5, + S5 + O(M) ,

logl “x

where 57, Sy and S3 represent the contributions of the quadruple sum corresponding

to the conditions p < 2% and r =1, p > 2'/* and r = 1, and 7 > 2 respectively.

Note that

IN

IN

<

<

IN

DD ID D D

’k— logs x logs = p<x r>2 mSz/pT
I !
P ISR Kol g (m Py (/7)) =1

> oYy

|k_10g3x|§€10§3$ p<z r>2

log g log q qk Hp—l
1
2D DD D
|k‘7 logg x logg x pgx p
loggq |—" loggqg qk ” pfl
1
D D
k logg x logg x
| " Togg |="Toggq
logg = 10 €T
xq2(sfl)% 9e g3
log q
xlogs @ xlogs
2(1— l—e .7
log2 ™ & log, "
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which again falls into the error term.

From Lemma

s- Y Y ¥ o

b <o ST s
g*[lp—1 ged(m, P,k (x/p))=1

DR DR

1 1 p
‘k_wkew /4 <p<z
R g p

log, © — log, 2'/* log ¢*
-2 ( ¢(q") PO

|k710g3z < logg z
logg |—" loggq

1 logg®
<o 3 (FE

‘k— logg = <e logg x

IN

loggqg |=" loggq
xlogs x log ¢*
L ——/—— +
1Og%—€ T Z q*

1 1
|k‘— og3 T < og3 T
loggq |—" logq

Moreover, we have

log ¢* 1\*
x Z - = xlogq Z k(—)

_loggzx logg = | _loggx logg x q
|k log g se log q k logq < log q

logs x 1\"
zlogq(l+ 6)@ Z (—)

‘k— logg x <e logg =
logg |—" logaq

IA

logg =
< zlogyx (q(sfl) Tos 7 )
xlogs

logy “

Therefore we conclude that

)SEEEEEED SED SEED DR ] = R

1—¢
lo x
n<z |k710g3z < logg = p<:1?1/4 me/p g2

= logg |—" loggq —
Aql(on) xl logg x qk ”pil ng(m7qu (ac/p)):l
vg(A(n))— T2 | <epos
q log q log q

Substituting this into (4.5]) yields

Sim= Y 2 Y % Y1+ B@), @7

n<x g<log,z |k7';§§: < 71;’55; p<zl/4 m<z/p
q* || p—1 ged(m, Pk (x/p) ) =1
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where

1 1 1
E(x) = 0O xogs;ﬁx L0 xog3191:70g6x Lol *
log5 x log; logy x
< -
log,

when x > =z, for some z..

Let t = x/p with p < 2'/4. Then 23/* <t < x. If we let ¢ < 1/2, we can see that ¢
and k satisfy log2 r < ¢* <log, 3/2 . Thus we have log;/Zt << log%t when z is
sufficiently large. If we let P = {p:p=1(mod¢*)} and ask that e > 6/¢(¢"), we
see that with the above conditions and Lemma [4.3.3] all the conditions of Lemma

are satisfied, which enables us to conclude that

log3t 1 )
1 = t{W()+0 W () + , 48
gcd(m,]s(t))zl

where z = exp(logt/logst). Using Lemma and the fact that logy/>z < ¢* <

3/2

logy’” x and log, t = log, = + O(1), we may write W (z) in a more effective way:

ogW(z) = 3 log (1—-) — Y g (1_%)

p<z p<z

pEP p=1 (mod ¢*)
1

B ; p ; Z < jp?

p=1 (mod ¢¥) p=1 (mod ¢* )

log, 2 (log qk)
= — + 0 — —

o) O\ S L

p=1 (mod ¢ )

and

1 log ¢*
Z ij] - 2k =0 e :
p<z

p=1(mod ¢¥)

Thus, since z = exp(logt/log3t) and log, t = log,  + O(1),

o (25505

log, = <log3 x) <log qk) >
= e - + 0 + 0 .
P ( ¢(q") q* q*
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Finally, since log; z < log¢* and using the series expansion of the exponential
y &3 g4 g p

function, we have

o - (25 o5
- (o) (54)

The first application of this formula is to simplify the expression within the big-O
term in (4.8]) as follows:

Since log, t = log, x + O(1) and

log, x) 7"
exp| ———= | € —5—, (4.9)
( o(q¥) log} «
then
log,t 1 log, x
W)+ —— <K W(z) + ————
S logs ¢ T logs
log, x ( long) 1
<K exp | — +
¢* ¢(d*))  ¢*loga
logzz ¢** 1
< k' 1oo? kloo2
¢" logyx  q*logyx
¥log,
< LT
logs x

Secondly, from (4.9) and since log ¢* < log; =, we can write W (z) as

log, q"logs
Wi(z) = exp(——) +O<— :
) 3 log} @
Thus, by (4.8), we have
x log, ¢ log; ©
T exp(_ >+0(— |
Z p ( o(d¥) logs

m<z/p
ged(m, P i (z/p))=1

When we put this formula in (4.7), by Lemma and since log ¢* < log, , the
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error generated is bounded by

Z 1 Z Z zq 10g3x

qS]0g4m ’k 0g33¢| logg p<$1/4 p 10g2
Togq |=%Togq kH

<o) . Y 4y

logy /) Lomrs |h- 10822 | < loma® p,fxw
q" [lp—1
logs © 1 k(g
< (1 5 ) Z q Z ! *
82T/ y<logyx D\ tosaw | togza !
= 4 |k_ log q *Em
logs x 1
o Loy
Og2 X ¢<log, x q logg logg
<log, |k_W S Togq
loo2 1
< @ ( = ) qlogq’
log, = qlogq

However, since

the error term is bounded by

Therefore we can rewrite (4.7)) as

STl F e

n<z g<log, x |/i‘ logg x < logg p<w 1/4
log q log q k”

Applying Lemma to the sum

1
>
p§11/4

g | p—1

we obtain the main term exactly as in Lemma |4.5.1| while we can put the generated
error term in O(x/log, x). This completes the proof of Lemma [4.5.1]

]
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4.6 Second Moment of f

In this section, we consider the second moment of f and we will prove the following

theorem.

Lemma 4.6.1. Let € € (0,1/5]. There exists an xy such that for x > x,

SrEm=a Y Y kfi?iﬂ exp (—Z 082 ¢ ) + 0(x),

J
n<w g1, <logy vk ke >1 11 =12 9(q;")

where Y_' means that the sum is taken over ky and ky with |k; — logs x/log q;| <
elogyx/logq; fori=1,2.

Proof. By definition of f and the fact that A,(n) = 1 implies ¢ | A(n), we have

DM =) >

n<lz n<z g;<logyn qqu
Ag; (n)=1
1
D R DI D DD D,
qi<log, = qlq n<zx n<lz q1<log, x N9
Ag; (n)=1 log, n<g2<logy x
= Y an X o)
gi<logy @ q q2 n<e log, =
Ag; (n)=1

Observe that the last equality follows by partial summation in the following way:

DD BED SI

n<z q1<log, log, n<g2<log, x e

)OS

n<x q1<log, x
logy n<g2<log, =

< Z logg @ (logg © — logg n)

Ql

n<x
= (loggz)* Y1 — loggz - logen
n<lx asn<z
g t] dt
1 °NT1 -1 1)1 - L r
< (logg ) ; og6x<<; ) 0gg T /a 1og5tlog4t-"10gtt>
SOl /z at
0g: T
86 o logstlog,t---logt

“d t xlogg x
1 — | —— | dt
< OgGI/a dt (log4t> < log,z
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where o > 0 is some sufficiently large positive constant so that the above integrals

are well-defined.

When ¢; = g9, we have

> SY1 = o),

q<log, x n<x

SEm = Y — Y 1+ o). (4.10)

n<z qi<log, x Nd2 n<lz
q1742 Ag;(n)=1

hence

In the remaining part of this section, our goal will be to show that for x > z¢ > 0
the inner sum of (4.10]) satisfies the equality

B 1 logi x log, x
A (‘Z ¢<qfi>> r () 6

ki ko
n<z k1, ko q1 42 i=1,2
Aqi(n)ZI

where ¢ € (0,1/4] is fixed and Z/ indicates that k; and ky are subject to the

k1,k2
condition | |
P — 83 % §€0g3x,fori:1,2.
log g; log ¢;

Lemma will then follow immediately from (4.10) and (4.11)).

Before we proceed to prove (4.11]) in a series of steps, let us define

Bty = 1] »

p<t
p=1(mod qfi )

Step 1. An explicit formula for Z 1.

n<x

Ag; (n)=1
Let us denote by H (g1, q2) the following condition:

log, x
log ¢;

log, x

€

v (A(n) < e

,fori=1,2.
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By Theorem , since log, x < logg/ ? 2 for z sufficiently large and ¢; < log, =,

o= Y 1+ Y 1

n<lx n<lx nlx
Aqi (n)zl Aqi (n):1 Aqi (n):1
H(q1,q2) —H(q1,92)

= #{n<z:A,n) =1 and H(ql,qQ)}+0(

) . (412)

log5

where the number € € (0,1/2) will be chosen later. By analyzing the main term in

(4.12)), we will prove how

Yo=Y Y X 2. !

n<x k1,k2 %,pzﬁx r1,r2>1 m<z/p|' py?
Ba;(n)=1 g || pi1 ged(m, Py (2 /p}Lp32) Pa(/p} 1 ps?) ) =1
/ T
+ E E E 1 + 0 5 . (4.13)
log5 x
ki,ka  p<z m<z/p

gt || p—1 ged(m, Py (z/p) Pa(x/p))=1

The second triple sum on the right of counts the numbers of n < z, subject to
H(q1,q2), such that p; = ps = p where p|| n. Let g be a prime and let k£ = v,(A(n)).
By definition of A,(n), if A,(n) = 1, then either ¢"*!|n or n contains only one
prime factor p such that ¢*|p — 1. Conversely, if n contains only one prime fac-
tor p such that ¢* | p—1, then either A (n) =1 or A (n) > 2, in which case ¢" 1 | n.

For ¢; fixed, since we assumed that € € (0,1/2), then

#{n<z:¢"n and |k —logyz/logq| < elogyz/logqi}
= O(z/(qlogy " x)) = O(z/log;x).

The same bound holds if we reverse the role of ¢; and ¢o. The number of n < x
such that n has only one prime p; with vg, (p1 — 1) = vg, (A(n)) and only one prime
P2 With vy, (p2 — 1) = vy, (A(n)), where both v, (A(n)) are subject to the condition
Vg, (A(n)) — logs x/ log ¢;| < elogs x/log q;, is counted by the four-fold sum and the
three-fold sum in . The numbers n counted by the above two cases exhaust
all the numbers n counted by the main term of . This shows that equation

(4.13)) is indeed valid.

We are going to simplify the four-fold sum and the three-fold sum in a few steps

while always keeping track of the error terms arising in the process. Recall that the
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integers k; fall in the range [(1 — ¢)logs x/log ¢;, (1 + €) logs x/ log g;].

Step 2. The three-fold sum in (4.13) is equal to O (%) .
I log, " x

By Lemma [4.3.7], the three-fold sum is

)SED SENEED DRI Db Ol

ki,ka  p<z m<zx/p ki1,ko  p<z
@' || p—1 ged(m,Pi(z/p) Pa(2/p))=1 ¢t | p—1
— Z’ logy x + O(k11og g1 + kzlog g2)
- k1 K
k1,ko ¢(Q11Q22)
ro 1
SO 10g2 xr Z m
k1 ko QI QZ
1 1
< zlogyw > & > =
wza-ofme ) \eza-opme
e_1 logz z 1 logg =
< zlogyx (qi )“’“1) (qés = ‘”)
< T
logé_28 T

Step 3. The contribution from the terms with 7, > 1 or r; > 1 in (4.13) is
T
O ——— |-
(logﬁgsx)

To simplify what follows, let us use Z:n to denote the sum over m subject to the
condition ged (m, Py(z/py ps?) Pa(z/pi'ps?)) = 1. Write

S oY 1= Y1 Y Y

1,722 1 m < /p]t po? m<zx/p1p2 r1+7223 m<z/p;t py?

If we let E denote the second sum on the right-hand side, then

X x €T
E S Z 71,72 < 2 + 2 .
r4r2>3 P1 D2 pipy  Pip2
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Applying Lemma yields

/ 1 1
DS - RELD DEND Dl -
kiks p1p2<c 2 ki, ka2 pi<z p2<a 2
a1 || pi—1 p1=1(modgi!)  pa=1(modgs?)
1 (logy 1 1 log, @
< xz ( k1 )( 2/€2> - mz k1, 2k2
ke N 1 q2 ke 102

< zl L L _r
zlog, x —

25 log%_ax logQ % . 10g2 3,
This shows that

/ " T
2 2 2 2 1= 0(mw )
logs > x
k1 ko p17p2<06 T1+7223 m<a/p)t py? 2
ZHpL_l

By Steps 2 and 3 and choosing ¢ < 1/3, (4.13]) can be written as

Yo1= Z > Y (1o§§x>' (4.14)

n<w ki pi<z m<x/pip2
Ag;(n)=1 S lpi—1

Step 4. The contribution from the terms in (4.14) with p; > /% or p, > x'/* is
bounded above by O (%)

log;
By Lemma [4.3.],
" /
Z > 2 = > > —
ki gl/t<p) <g¢ m<z/pip2 k; 1/4<p1<x
p2<:17 p2<x
4\ | pi—1 @ || pi—1

IN
8
(]

> ol X .
ki ;171/4<p1§;p pl pQSfE A p2
p1=1 (mod q]fl) p2=1(mod ¢,?)

! 1 log, ©
<X ()
" gy <o b1 ds

pi=1 (mod 1)
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Applying Lemma to the other sum and choosing o > 0 satisfying e*z'/* <

r < e*tlg/4 we obtain
1 1 1 1
O D S ST SEUC D M
eV 4i<p <z 1 24 <pr<exl/4 D1 eaxl/A<p; <e2g1/4 D1 agl/4 cpy <eotlgl/a D
p1=1(mod g;) p1=1(mod g;?) p1=1(mod g;") p1=1(mod ;)
6 1
< ;
et 25 Toga v
24 1 =
< (o)X
¢(q1 ) ng j=0
< 1
q
Thus, it follows that
/ " / 1
Do 2 1< (wlogyn) y ) o
ki gl/4<p <z m<z/p1p2 ki T 92
p2<z
@ || pi—1
1 T
< (rlog, x =
(7 log, )1Og§72€$ logl 2% .

Observe that the same bound holds if we reverse the role of p; and p,. Substituting

the estimate in yields
Y o1= Z > Z 1+ O<10g2x>‘ (4.15)

n<z k; pi <z!/* m<z/pip2
Aqi(")zl z lefl

Step 5. Simplification of the main term in (4.15)).

Let t = x/p1py with p; < 24, so we have /2 <t < 2. Let us choose ¢ € (0,1/5]
so that log;%x < qfi < logg/5 x and so logg/St < qf” < 2logg/5t if x is sufficiently

1
large. Moreover, if we take ¢ < Z —, then we may use Lemma 4.3.3| to show
i—12 %
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that the conditions of Lemma are satisfied, which implies that

Z” 1 = tW(z)+O(at(10g3t)W<Z))+O< : )

2
m<z/p1p2 log2 t
1 t 1
= tW(2)+ O tlogs )W (2) > — | + O —5 =,
i=1,2 Q7, ’ 10g2 13 i=1,2 (]@ '
1
where z = exp(logt/log2t) and W(z) = (1——).
(logt/log3t) (2) 11 ;

p<z
k k
a;tlp—1or g3 |p—1

From the above setup, we can see that

S a1 0 < tozg @ W(z>> o (;) . (4.16)

l1—¢ 3—e
lo T lo T
m<zx/p1p2 82 82

We now wish to evaluate W (z).

logW(z) = ; log (1 _ %)

k k
q;* [p—1or gy |p—1
o0

> >y
- _ - —.
p<z p p<z Jj=2 Jp

k k k k

q;* [p—1or ¢y |p—1 gy lp—1Lor gy |p—1

By Lemma [4.3.],

1 1 1 1

_ E = E — E -+ 0] E _

. pézk p kpSz p kpSZ p . I;CSz p
qll\p—lor ‘I22|p_1 ‘hl |p_1 QQ2 |p—1 Q11‘I22 |p—1

. log, z + O(log ¢ iy (loggz + 0(10gqf16£2))
= A(q)) o) ¢5*)

We now wish to collect all the error terms into a single term. First, since

log;;E z < qfi,
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then

> ;W > Y

2
X p<z kpgz kp<z p
@ p—1or gh2|p—1 a ' |lp—1 a52 |p—1
1 1 1
K 551t 2, < log2—% 7
q1 qs 0g9

Second, since log, z = log, z + O(logz x) and log ¢ = O(log, ), then

1 O(log ¢ 1 ]
3 08y 2 + k(_ogql) S ogi{EJrO( o%,gx)
i=1,2 gb(qZZ) (b(qu) Z

i=1,2 10g2
and
log, 2 + 0(10g 0" %) < 087 1
A" 45°) logy @ logy °

The above estimates allow us to conclude that

I log, 1
me e p( Sl ))
I log, 1
- p( i;,m(qfi)) (1+0<10g1 % ))

Combining (4.16)) and (4.17) yields

" log, t
i=1,2 gb(‘]zz) lOg

m<x/p1p2

(4.17)

(4.18)

Put (4.18]) into (4.15)). The first term in (4.18]) provides the main term for Z 1,

which 1s
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Ag; (n)=1

(4.19)



Then, we have

S|l =l 2

pi <t/ DP1p2 1/ 14 b2

k; k k
q; |lpi—1 @t llpi—-1 a2 |p2—1

p1<T pa<zx

- zp%—zp% Yot X

1/4 1/4 po<zl/4 1/4

p2<x
k “+1
22 |p2—1

p1<z
k +1 k
P p— 452 |p2—1

p1<zT
k
at |p1—1

From Lemma it follows that

1 1 log, log qf log, log qk it
Z o Z P Y By oes el O Tt 1
¢ o(q;") Plq;")

pi<z!/4 pi<al/t T i 4
a;* | pi—1 g pi—1
1 1 log ;"
¢ g —1)  q(q—1) qr
log, x log g%
= g,f, +0 gf’ .
4" q;"
Thus
Z 1 H logy « + O(log ;") logs = + O(log2 xlog a;)
 — . _
pi<al/4 P1p2 i=1,2 4 a4 b
a || pi-1

Therefore we have that

Y Y e (-3 )

3 pi<s 14 P1P2 =
”pz_l
/ logg x log, 1 log, xlogs
= x exp | — — |+ 0| = —_—
zk; a0 g5? ( ;2 (g;") zk: a0 gb?
/ log2 r log, x ( zlogy x )
=z - — |t O —=— ) - (4.20)
Z CI1 (]2 ( izm ¢(qu) 10g1 ?

What is left to estimate is the accumulation of the error of (4.18)) into (4.15]). From
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our previous calculations, we see that it is bounded above by

12
(= )Z T < o) S < e

i/ pip2 0 log,™

” pzfl

Assuming ¢ € (0, 1/5], the above estimate and (4.20) yields that

. /log2 B log, © x
S () ()

n<x ki ql q2 i=1,2
Aqi (n)=1

Lemma then follows by substituting (4.21)) into (4.10)).

4.7 Extreme Behavior of D(z,u)

In this section, with the help of Lemma and Lemma [4.6.1} we will prove the

following theorem where given z € RT and 0 < u < 1, we define

1

n<zx
r(n)<u

Theorem 4.7.1.
lim sup D(z,logs ' z) = 1

r—00

for some constant ¢; > 0.
We first observe that Theorem is equivalent to
liminf #{n <z |r(n) >logs* } =
Tr—00

Moreover, since the function 1/z + log (1 — 1/x) is negative for = € [2,00), com-

bining it with (4.1) yields
1 -
r(n) = exp Z log e < exp (—f(n)) :
g| A(n)
An important fact about the function f is that we can get control of the upper
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order of its first and second moments as we shall see below. This allows us to

extract information related to r(n).
Lemma 4.7.1. For all x > 1, we have

S P = 1(2 f<n>> +0lw).

n<lx n<x

Proof. Taking ¢ = 1/5 in Lemma we have

Sio - 3 A e () o)

n<x g<log, x k>1

where >~" means that the sum is taken over all k£ > 1 in the interval [451fg3 = 61°g3x] :
ogq ’ Slogq

Now, observe that

log, x ( log, 93) log, x ( log, 93)
exp | — < exp | —
> o) S 2y o

k>1 k>1

log, log, x log, x log,

k>logs x/log g

k<logs x/logq

The choice of partition is justified by the fact that

log, log, x
— <1l <—= k> owg
q g4

Considering the second term, since g > 2, we see that

log, log, log,
M G VR

q q k>logs z/logq

k>logs z/logq
—logs a:/logq)

q
< (logy ) (1_—(11
1

o S 2

Before we can provide a bound for the first term, we need to make the following

two observations. First,

1 1 1 1 1
oggw __ logyr logyx _ ogQI(l__> .
q

1
gr 1 q* 2 9

1
q

k<
~ loggq q*

Second, the function te~* is strictly decreasing in the interval [1, 00) and is bounded
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by 1. Interpreting the first term as a Riemann sum, we can see that

1 1 o
Z Og}z a exp (— Ogi x) < 2 (/ te_tdt> +1
q q 1

k<logs z/logq

Therefore we conclude that

1 1 4
S e (g5 ) <8
= 4 ¢(q") e

which holds independently of x and ¢ for any allowed values of x and ¢. This implies
that

loggx _IOng _ l = 0L T
> an (i) - o ) - ovmn

q<log4x k>1 g<log, x

Using this fact and squaring (4.22)) yields

2
1 . ! ! !
HSin) =0 $ 5 o (5 ) o (ke

n<z q1,92<log, x k1,k2>1 T

where ' carries similar meaning as above. The main term above is the same as
that of > _, f2(n) given in Lemma with the corresponding ¢ = 1/5. This
completes the proof of Lemma 4.7.1 n

Corollary 4.7.1. There is an unbounded set of numbers x for which we have
- 2
> (fn) = esloggz) = o(wlogia)
n<x

for some constant c5 > 0, depending on the unbounded set of x’s.

Proof. By [12 Theorem 5.1] there exists an unbounded set .S of numbers x such
that on the set S,

Z f(”) > bxloggx

n<x
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for some constant 2 > b > 0. On the other hand, for n < z and z sufficiently large,

1
f(n) < Z - < loggz+ O(1) < 2loggz.
g<log, =
Thus
Zf(n) < 2xloggx.

n<x

It therefore follows that for any given sufficiently large z € S,

Y f(n) = by(zloggz)

n<x

for some b, € [b,2]. By compactness of the interval [b, 2] the sequence { b, |z € S}
has an accumulation point c5 in the interval. Without loss of generality we can
assume that

lim bx = Cs.
TES
T—00

Then when x € S, by Lemma 4.7.1] we have

S (F) —cslogg) = 32 ) — (csloggm)2 Y Fn) + ales ogg a)?

n<lx n<x n<x
1
= - (ba(z logg x))2 + O(x) — 2(cs logg ) (b (z logg x)) + z(cs5 logg z)?
= (b, —cs5)*xlogs x 4+ O(x) = o(zlogi x) .

This completes the proof. n

Proof. (of Theorem |.7.1) As we noted at the beginning of the section, Theorem
is equivalent to the following statement:

#{n<z|r(n) > loggc5/2$} = o(x)

on an unbounded set of numbers x. Let S be the unbounded set of numbers x in

Corollary 4.7.1] Then by Corollary we have

1 .
lim —#{n§x|f(n)§6—510g6x} = 0.
vy 2
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Since r(n) < exp (—f(n)),

{n<elr) > 1oz} € {n<alfn) < Tlogga ).

Theorem follows from the above argument and by letting ¢; = ¢5/2. O

4.8 Average Order of N,(z)

If we let R(n) be the number of primitive A\-roots modulo 7 in the interval [1, n],
then we notice that R(n) = r(n)¢(n) and it follows from the definition of N,(x)
that

D Nuw) = 3 D 1=D3 )

a<ly aly n<z n<z a<ly

la(n)=A(n) la(n)=A(n)

=DM D DI (429
n<z n<z 1<a<{y/n}n
la(n)=A(n)

where {y} denotes the fractional part of y. It is then easy to see that for any
y > x > 1, we have

> = |2 2 4 20

a<ly n<x

and

ZNa(x) < Z [%W R(n) < QyZ @

a<ly n<x n<x

We therefore have just proved the following lemma.

Lemma 4.8.1. For any y > x, we have

;Z < ZN <22¥

nlx a<y n<lx

Observe that from (4.23]) we have

> Nu(w) :y2@+ O<ZR(n)) .

a<ly n<lz n<lz
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Since

ZR(n)szy,

n<x n<x
we have . R
—E:NJ@::(L+O<E)>§:—QQ.
Yy a<y Yy n<x n
Hence, if
lim Lo 0,
r—00 y
then ) R(n)
n
=Y No(x)~ > ——=.
Yy a<ly n<x n

It would be preferable to let a run over a smaller interval, say y < /x, in analogy

with P. J. Stephen’s average result discussed in the previous chapter.

Theorem 4.8.1. [1], Li/(Extreme orders of R(n)/n.)

(1) B
lim sup ﬂ =1
n—00 n

(i)

lim inf

n—o0

(logyn)? = e
where v is Euler’s constant.

Proof. (i) Since R(n)/n < 1, we only need to find a sequence of positive integers

n, such that lim, . n, = oo and lim,_,., R(n,)/n, = 1. Let
B:={p<az|p=3(mod4) and ged (p — 1, P(z'/%)) =1}

where

P(z) := H p.
2<p<z
Then, applying [0, Theorem 7.4] to sieve the set A :={ p—1|p < z and p =
3(mod4) } with the set of primes P := { p|2 < p < 2'/° }, taking k = 1 and
a = 1/2 yields ;

4B >

log? x
for some constant § > 0 and for all z > 3. Let p € B. If ¢ is an odd prime factor
of p — 1 then ¢ > z/°. Since p < x, it follows that p — 1 has at most 5 odd
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prime factors, counting multiplicity. Choose |logz| such primes {p;}!°6") c B,

p1 < p2 < ..., and let
[logz]

no= [ v
i=1

Then we have
A(ng) = lemy {X(pi) } = lemy, {pi — 1}

and
|log x| |log |
(Z/n. )" ~ P (Z/piZ)" ~ P Cpa-
i=1 i=1

Now, since p = 3(mod 4), then C),_1 ~ Cy @ H,, where H,, is a direct sum of cyclic
groups with odd orders. This implies that Ay(n,) = [logz|. Moreover, since p; — 1
has at most 5 odd prime factors, we see that \(n,) has at most 5|logz| distinct
odd prime factors. Finally, if ¢ is an odd prime factor of A(n,), then ¢ > 2'/°> and
so ¢~a("e) > 21/5 Thus, by the definition of n, and , we have

1 1 1 5(log x|
rin) = ] (1 - qu(na) = (1 - gtlogzj) (1 - W) ’

q| AM(ne)
while loge]
log x |log x]
z 1 1
¢(n):H(1__>Z(1_1_5> '
Ny i=1 Di x /
Note that
. 1 1 5|log z|
Jm (1 B —2tloga:J> (1 B m) =1
and

1 |log x|
s (1 B m) =1

Since r(n) < 1 and ¢(n)/n <1 for all n > 1, then

=1.

lim r(n,) =1 and lim ¢(n)

T—00 Tr—00 nx

Since R(n)/n = r(n)¢(n)/n for all n > 1, we conclude that

lim R(nx)

T—00 Ny

=1.

This concludes the proof of (7).
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(i1) If we let

then

From Theorem [£.2.4] we get
N(n) = (1+ o(1))log A(n) < (14 o(1)) logn.
From Theorem [£.2.3] it follows that

e 7+ o(1)
logon

r(n) >

Moreover, Theorems [4.2.3| and |4.2.4] yield

o(n) _ e+ o(1)

n —  logyn
e R _ o) | (e + o))" _ e (1 +o(1)
- ) n - ( log, n ) - (logyn)®
Hence
hﬁi{}f n) (logyn)® > e 7.

We now need to show that this is best possible.

For each prime ¢ < logz, let a, be the least integer such that ¢% > logz and

let
m = H q* .

g<logx
Then, for z sufficiently large, we have from the definition of m and the prime

number theorem that
Y2 < (logx)ﬂ(log:r) <m< (log2 x)fr(logr) < b

Moreover, we know from Theorem that there exists a prime py such that
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m < po < m and py = 1(modm) where c3 is an absolute constant. If we let

né = DPo ]jI b,

p<logz
then, since
12 < H p<z? and z'? < py < 23
p<logz
we have
r < nl < it

Let ¢ < logx. If ¢ is a prime factor of p — 1 and p < log z, then its maximal power
in p— 1 is less than that in py — 1 (by the definitions of m and py). Thus, it follows
that A,(nl) =1 for all ¢ <logz. Observing that ¢ < logaz = ¢ | A(n,), we see that

-1 )1 ()

q<logx

and

WeI(-5)= 0-5)

p|nk p<logz

Finally, noticing that log, z = log, n/, + O(1) yields

I1 (1 _ 1) _e7(14o) e 7(1+o0(1))

. =

/
pllosa log, log, n!.

which implies that
!/
lim inf R(n;)

T— 00
n[l‘

(log, n;)2 <e .

This completes the proof. O

Using Theorem |4.8.1} one can obtain a lower bound of the form

_Z > T

1<a<g (logy z)?
However, this can be improved as in the next theorem.

Theorem 4.8.2. For a positive constant xq, we have

T Z Na loggm

1<a<x
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for all x > xy.

Proof. By Lemma [4.8.1],

and by (1),
1 1
=T (=)= T (1-3).
a1 A(m) g ) ¢

Let S be the set of integers n > 1 such that ¢(n) has at most (log,n)? distinct
prime factors. By [7, 22], S has density 1 and by Theorem |4.2.3, we have

r(n) >

logs n

uniformly for all n € § and n > ng for some ng > 0. On the other hand, if we let

o~ {ol223),

then S’ has density greater than zero by Lemma Therefore we have

1 1
= N,
x Z (x) > Z logsn > lo

)
T
1<a<lz no<n<zx &3
nesSNs’

X

since the density of SNS’ is equal to 1 —w(1/2) > 0. This completes the proof. [

Lemma 4.8.2. There exists a positive constant ¢4 and an unbounded set of numbers

S such that if z € S, then
Cy

( 7u>_|1()gU|
fOT' all w with 0 < u < 1.

Proof. See [12, Corollary 5.2]. O
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4.9 Proof of Theorem 4.1.1]

We now have everything in place to prove our main result.

Let u,t € (0,1) be constants to be fixed later. We have from Lemma and
that, for z € S sufficiently large,

DR ST SR S

n<x n<x n<x n<x
r(n)>u r(n)>u
$(n)/n>t

> ut L:L‘j—Zl— Zl

n<lz n<lz
r(n)<u ¢(n)/n<t
CyT
> ut - — 2w(t i
>t (o oy ~ 20t
By Lemma |4.2.1, we know that
li t)=0
A, w() =0,

thus we can choose v and t small enough to ensure that

cy = ut <1 c 2w(t)) >0.

2 |logu|

Lemma implies that for z € S sufficiently large,
1
— Z Ny(z) > cox.
L 1<a<lz

Therefore )
lim sup = Z Ny(z) > 0.

r—=0oo 1<a<z
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By Theorem {4.7.1, on an unbounded set of numbers x, we have

SO = Tt < S

n<lx n<lx n<lx
S e S
n<lx n<lx
r(n)<log; ' z r(n)>logs 'z
1
< — 1
n<x n<x
r(n)<log; ! z r(n)>logs ' z
T
< 1
— logsl i ;
r(n)>lgggcl T
T
< + x(1—D(z,log:*x
S logiz ( ( 85 ))

= o(x).

We thus conclude from Lemma [£.8.1] that
.1
h;rig)lf = Z Ny(z)=0.
1<a<lz

This completes the proof.

4.10 Related Results and Recent Developments

In this chaper, we averaged N,(z) over a in the interval [1,z]. Our main result was
the proof of Theorem [£.1.1] but can we do better? Namely, can we average N,(z)
over a in the interval [1,y] where y is less than z in order of magnitude? The best
result up to date was obtained by S. Li [15], who was inspired by P. J. Stephens
[26]. The result states that if y > exp((log x)3/4), then

1 1
limsup — E Ny(z) > 0 and liminf — E Ny(z) = 0.
z—00 LY

vooo TY 2y 1<a<y

Interesting results have also been obtained concerning individual N,(z)’s. In anal-
ogy to Artin’s primitive root conjecture, one is tempted to guess that if a is not in

some exceptional set, then there exists a positive constant B(a) such that
Ny(x) ~ B(a)x.
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As we will now see, this is not the case. In [I3], S. Li showed that for any integer
a,
liminf N,(x)/z =0.

Tr—00
Conversely, if we denote by &€ the set of integers which are a power with an exponent
larger than 1, or a square times either —1 or £2, then S. Li and C. Pomerance [23]

were able to demonstrate the following theorem.

Theorem 4.10.1. On assumption of the GRH, there is a positive number C' such
that if a is an integer with a & £, then

limsup No(z)/2 > Co(lal)/la].

Tr—00

Moreover, there is an unbounded set D of positive real numbers such that for any
agé,
lim inf N, (2)/ > C(Jal)/Jal

z€D

The set £ is the analogue of the exceptional set in Artin’s primitive root conjecture.

To conclude, we wish to mention that for some a € Z, it is possible to prove
unconditionally that a is a primitive A-root for infinitely many integers n. For
example, if a is a primitive A\-root for p?, where p is an odd prime, then a is also
a primitive A-root for p’ for every j > 2 (see [I, p.209]). This is an important
distinction from Artin’s primitive root conjecture since in this case, we still cannot
prove unconditionally that any given a is a primitive root modulo p for infinitely

many primes p.
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Appendices
Appendix A

Results From Algebraic Number
Theory

Proof. (Theorem [2.3.2) From the above congruence, we automatically have that
(p, f1(8)) - - - (p, £4(0))® C pOk. Now, since fi(x) is irreducible in F,[z], then
F,[z]/(fi(x)) is a field. Moreover,

Zlx]/(p) = Fplx] = Zl[z]/(p, fix)) ~ Fylz]/(fi(x)),

and so Z[z]|/(p, fi(x)) is a field.

Let us now consider the map ¢; : Zlz] — Z[0]/(p, fi(d)). Our goal now is to
show that ker(y;) = (p, fi(z)). Clearly

(p, fi(x)) € ker(pi) = { h(x) | h(0) € (p, fi(0)) }
If h(z) € ker(p;), we can divide by f;(x) to yield
h(z) = q(x) fi(x) + ri(z) , deg(r;) < deg(f;).

If r;(x) is the zero polynomial, then h(z) € (p, fi(z)) and we are done. Thus,
we assume that r;(x) is not the zero polynomial. Since h(f) € (p, fi(f)), then
ri(0) € (p, fi(0)), so r;(0) = pa(0) + fi(0)b(#). Here we have used the fact that
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Ok = Z[]. Now define the polynomial H(z) := r;(z) — pa(x) — fi(x)b(x). Since

H(9) = 0 and f(x) is the minimal polynomial of 6, then H(z) = G(x)f(z) for

some polynomial G(x) € Z[z]. We conclude that r;(z) = pa(z) + f;(x)b(z) for some
b )

a(z),b(x) € Z[z]. Therefore r;(x) € (p, fi(x)) and so ker(¢;) = (p, fi(z)). The first

isomorphism theorem yields

Z[6)/ (p, £:(0)) = Zlz]/(p, fi(x)) =~ Fpz]/ (fi(x))

and is therefore a field. This proves that (p, f;(0)) is a maximal ideal of Z[0] = Ok,
but a maximal ideal is necessarily prime, hence (p, f;(6)) is a prime ideal of Ok.
We now let p; = (p, fi(#)) and as was previously observed at the beginning of the
proof, we have that ©f' - - - ps C pOf. This implies that pOx = pf/l e p;;’ where
0 < e} < e; is the ramification index of g;, since for ideals to contain is to divide.
Moreover, let d; be the inertial degree of ;. Then d; = [Ok/p; : Z/(p)] and it is
clear from the above isomorphisms that d; is the degree of the polynomial f;(x).

Furthermore, we know that

Zeidi:deg(f) =n=[K:Q] :Zegdi

1<g 1<g

hence e; = ¢} for all 1 <14 < g. Therefore pOx = ' - - - pg’, which completes the
proof. O]

Proof. (Theorem Given that Z[f] and O are both Z-modules, we define
[Ok : Z[0]] to be the number of elements in the quotient module Ok /Z[0]. As we
will show, this is finite since the degree of 6 over Q is equal to n by assumption.

Let wy, ...,w, be an integral basis for Ok and observe that we can write
Z[0) = Z+ZO+---+Z0" " = Zoy +Zoy + -+ + Zay,

where

n
Oéizzaijwj for 1 <i<n and a;; €Z for 1 <4,5<n.
=1

This implies that

Z[0] = (anZw + anZwy + -+ apiZwr) + - -+ + (@1pZwy + asnZwpn, + - -+ + appZwy,)

= ged(ain, azt, -y Gp1)Zwy + - - - + ged (@i, Gan, - Qpn) Zwy,
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and since
OK:ZLU1+ZWQ+"'—|—an,

we obtain that

m =[Ok : Z[0]] = chd(alj,an, ey ) < 00

j=1

We see from this that given any a € Ok, ma € Z[f]. More precisely, given any

a € Ok, we can write ma = by 4+ b10 + - - - + b,_10" 1. Consider this expression
modulo p. Since m is coprime to p there exists an m’ such that mm’ = 1 (mod p).
Then

a = bym' +bym'0+ -+ b,_ym'6"! (modp) .

Since o was arbitrary, this implies that Ok = Z[f] (mod p). Recall now that in the
proof of the previous theorem, we only used the fact that Ok = Z[f] at one point.
This was when we wrote that r;(0) = pa(0) + f:(0)b(#), but we simply need that
ri(0) = pa(8) + f:(6)b(#) (mod p) since

Ok = Z[0] (modp) = Ox/(p) ~Z[0]/(p),

thus
Ok /(p, fi(0)) = Z[0]/(p, f:(9)) -

The rest of the argument is now identical to the one given in the demonstration of

the previous theorem. This completes the proof. O

Proof. (Theorem [2.3.5) Let us first recall that given a finite group H acting on a
set B, for b € B, the orbit of b is defined by

On(b) :=={h(b)[h e H}
and the stabilizer of b is defined by
Su(b) :={he H|h(b)=0b}.

It is a well-known fact from group theory that |H| = |Og(b)| Sk (b)| for any b € B.
We first have that

n = |Gal(Ly/Q)| = |Ocar,/o)( Va)| |Scar, o) Va)l
= ki |Sca(w, o) ( ¥a)

Y
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where the last equality follows since the element %/a has exactly ki conjugates in

L;.. Moreover, since Z;, is Galois over Q, we have
ng = |Gal(Ly/Q)| = |Gal(Zy/Q)| |Gal(Lg/Zy)| .
It follows that

n, = |Gal(Z,/Q)| |Ocaireze)( Va)| |Scary/z)( Va)l
= |Gal(Z,/Q)| |Ocair,z)( Va)

9

since T € SGal(Lk/Zk)( ’“\1/5) — T = 1Lk-
Thus,

|Gal(Zi /Q)| |Ocair/z0( V)| = ki |Scar. o Va)l -

We now wish to show that Sga(r,/0)( "/a) is isomorphic to a subgroup S of
Gal(Zy/Q). Consider the isomorphism given by

® ¢ Sgaro)( Va) — S < Gal(Z,/Q)
where
(1) = 7|z, is the restriction of 7 to Zj for any 7 € Sgau(r,/0)( Va).

This implies that |[Sga(z, ) ( 4/a)| divides |Gal(Z,/Q)], thus we see that

|Gal(Z,/Q)|
| Sz, /) ( Va)l

‘OGal(Lk/Zk)( g’ (I)‘ =k = }OGal(Lk/Zk)( ’“\1/5)\ divides k; .

Therefore [Ly, : Zy|| k1 since [Ly @ Zy] = ‘OGal(G/Z)( ’“\1/5)’ This completes the
proof. ]
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Appendix B

A Proof of the Large Sieve
Inequality

Definition B.1. Let x be a character modulo k. We say that x s primitive if

there is no positive integer m < k such that m |k and x(n) = x(n modm).

Definition B.2. Let x be a character modulo k. Then the Gauss sum 7(x) is
defined by

00 = 32 mie (%) -

m=1
where e(t) = >,
Lemma B.1. Let x be a character modulo k. If (n,k) =1, then
k
Kr(0) = 3 x(m)e (57) -

Proof. Letting h = mn~! (mod k), which we can do since (n, k) = 1, we have

x(m)r(x) = Zk:ic(m)x(n)e (5) = Xk:x(h)e (%)
UJ

Lemma B.2. If x is a primitive, nonprincipal character modulo k and (n,k) > 1,
then



Proof. Let us write

where (nq,k1) = 1 and ky | k, ky < k. If n is a multiple of &, the left-hand side is

zero, and so is the right-hand side, since

Write k = kiky and put m = aky; + b, where 0 < a < kg, 1 < b < ky. The above

sum can then be rewritten as
S (M) S ek +0)
3 X 1 .
1<b<kr 0<a<ks

It therefore suffices to prove that the inner sum is zero. Let us write

S() = Y x(aki +10).

0<a<kz

A straightforward reordering argument shows that S(b+ ki) = S(b). Moreover, if

c is any integer satisfying
(¢,k)=1 and ¢ =1 (mod k),
then, since S(b+ ki) = S(b),

X(©S0) = > xX(caky+cb) = Y x(aki +cb).

0<a<ka 0<a<ks

Now, dividing bc by k; yields bc = gky + r where 0 < r < k;. Looking at this
equation modulo ki, we see that 7 = 0 and b = k;, or r = b, since ¢ = 1 (mod k)
and 1 < b < k;. This shows that

> Xlaki+cb) = Y xlaki+b) = S(b).

0<a<kz 0<a<kz
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Therefore,
x(c)S(b) = S(b).

Since y is a primitive character modulo k, there are integers ¢; and ¢y such that
(c1,k) = (co, k) =1 and ¢ = o (mod ky) ,

where x(c1) # x(cz). Hence, there exists ¢ = c;c, ! (mod k;) such that (c, k) = 1
and x(c) # 1. This in turns imply that S(b) = 0, which completes the proof. [

Theorem B.1. If x is a primitive character modulo k, then |7(x)| = Vk.

Proof. Take any integer n such that (n,k) = 1. Then, from Lemma B.2, we have
that

00l = Il = 3 xme ()
= | X xme ()
= Ix(n)7(0)]
= [Tl
hence |7(x)| = |7(x)|- From this equality and Lemma B.2, we see that
PP = 373 im (w)

Summing over n for 1 < n < k, we obtain from the left-hand side

(k) [T (O -

The right-hand side yields

g¢(k)+zk: > X(ml)X(mz)e(M)

n=11<mj;,ma<k

miF#ma
= o)+ S xlmntm Yoo (M)
1<my,ma<k n=1
mi1£ma
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but
() -

whenever m # mso. Therefore, we have that

o(k) [r()* = ko(k),
which implies that |7(x)| = Vk, as required. O

Theorem B.2. (The Large Sieve Inequality) For each character x modulo k, we

let
M+N

S) = > anx(n),

n=M+1

where a,, is any complex number, M € Z and N € Z*. Then

M+N
> ISP < (K24 N) 3 e,
k<K x modk n=M+1

where Y. denotes summation over primitive characters, K € Z* and k > 1.

Proof. We first let

M+N M+N
S(t) = Z ape(nt) and Z = Z ||
n=M+1 n=M+1

To prove the theorem, we proceed in two steps.
Step 1.

From Lemma B.1 and lemma B.2, we know that for each integer n,
k mn
= X xme ()

for any primitive character x modulo k. Multiplying this by @, and summing over
n from M + 1 to M + N, we get

- > wms ()

m=1
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for any primitive character y modulo k.

Now, using the fact that |7(x)| = vk for any primitive character y modulo k,

we see that
EYIS0OP < S xlm)s (F)| = e S s
xmod k x mod k |m=1 (172?:)1:1
We thus have .
R SN S () PR

Step 2.

Let F' : R — C be any complex-valued function with continuous derivative and
period 1. Then

/ " AF(B) = Fla)— F(m/k)

m/k
and
[F(a)] = [F(a) = F(m/k) + F(m/k)|
= |F(m/k) — (F(m/k) — F(a))|
> |F(m/k)| = |F(m/k) — F(a)| .
Thus

[E(m/E)l < [F(a)| + |F(a) = F(m/k)]

/ /k dF(ﬁ)‘
< P+ [ POl

m/k

= |F(o)] +

Averaging the above inequality over the interval I(m/k) of length 1/K? centered
at m/k yields that

1
P <[ F@pda s 5 [ P@s.
k 16m/K) 2 Jrtmyp)
Observe that the intervals I(m/k) with 1 <m <k, (m,k) =1, and k < K do not
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overlap, modulo 1.

Hence
k

> 2 \F(%ﬂ < K2/01|F(oz)|doz + %/01|F’(6)|d6. (B.2)

m=1
(m,k)=1

Now let F' = S?. Then the first integral on the right of (B.2) is Z. Applying
Holder’s inequality to the second integral on the right of (B.2) yields

3| Fows = [ 1s@s@a

< ( / 1 !bw%w)é ( / 1 !S’(ﬁ)\zdﬁ)é |

The first integral on the right is again equal to Z. Before estimating the second
integral, we may first multiply S(«) by e(—ma) for a suitalbe choice of m € Z so
that the range of n becomes |n| < 1N. This leaves |S(a)| and Z unchanged and is

therefore legitimate. The second integral can then be evaluated to be
Z 12mina,|” < (7N)*Z.
In|<3N
Finally, combining the above implies that

S i ‘S(%)‘Q < (K2+7N)Z. (B.3)

k<K m=1
(m,k)=1

Combining (B.1) and (B.3), we see that

> sl < XY (%)

k<K xmodk k<K m=1

< (K*+N)Z.

This completes the proof.
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