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Abstract

We apply branched covering techniques to construct minimal simply-connected symplectic
4-manifolds with small χh values. We also use these constructions to provide an alternate proof
that for each s ≥ 0, there exists a positive integer λ(s) such that each pair (j, 8j+s) with j ≥ λ(s)
is realized as (χh(M), c2

1(M)) for some minimal simply-connected symplectic M . The smallest
values of λ(s) currently known to the author are also explicitly computed for 0 ≤ s ≤ 99. Our
computations in these cases populate 19 952 points in the (χ, c)-plane not previously realized in
the existing literature.
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Chapter 1

Introduction

The two main integer topological invariants used in the study of 4-dimensional manifolds are
the signature σ and the well-known Euler characteristic e. For closed 4-manifolds which admit
either complex or symplectic structures, we can also define the integer valued holomorphic Euler
characteristic χh and the square of the first Chern class c2

1 by

χh =
e+ σ

4
c2

1 = 2e+ 3σ.

We can ask which combinations of these invariants are realizable by 4-manifolds of a given
type. These questions are typically referred to as geography problems. For example, the complex
geography problem from algebraic geometry has been well studied, and asks which integer pairs
are realizable as (χh(M), c2

1(M)) for a minimal complex surface (a real 4-dimensional manifold)
M of general type. In recent years, the question has been again posed, with the restriction of M
admitting a complex structure relaxed to only requiring that M admit a symplectic structure.
The symplectic geography problem asks which integer pairs are realizable as (χh(M), c2

1(M)) for
some minimal simply-connected symplectic M . The symplectic geography problem has been
completely resolved in the case of integer pairs (χ, c) with 0 ≤ c < 8χ; all such points have
been shown to correspond to (χh, c2

1) for minimal simply-connected symplectic 4-manifolds. The
solution of the problem in the case of points with c ≥ 8χ has progressed at a slower pace however.
While infinite families of minimal simply-connected symplectic manifolds with c2

1 ≥ 8χh have
been constructed, examples of such manifolds are comparatively rare, and typically have large χh
values. Until recently, examples of such manifolds with c2

1 ≥ 8χh and χh < 61 have been absent
from the literature.

Recent work by A. Akhmedov and B.D. Park generalized constructions by A. Stipsicz to
present examples of minimal simply-connected symplectic 4-manifolds with c2

1 ≥ 8χh and χh

values as small as 24. These examples can then be used as “base points” to construct examples
realizing large wedge-shaped regions of the (χ, c)-plane. These techniques realize a large num-
ber of integer pairs as (χh(M), c2

1(M)) (for minimal simply-connected symplectic M) that were
unrealized by previous constructions.
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The purpose of this thesis is to construct infinite families, following [3], of those examples
introduced by Akhmedov and B.D. Park. It is now well-known (see [2, 27, 5]) that for any s ≥ 0,
there exists an integer λ(s) such that that (j, 8j + s) is realized as (χh(M), c2

1(M)) by a minimal
simply-connected symplectic manifold M for every j ≥ λ(s). In this thesis we use Akhmedov
and B.D. Park’s constructions to provide an alternate proof of this result, as well as to explicitly
formulate the smallest possible λ(s) values presently known to the author for 0 ≤ s ≤ 99 (see
Table 7.1 and Theorem 7.2.3). In terms of the symplectic geography problem, we populate 7082
new points in (χ, c)-plane with 8χ ≤ c ≤ 8χ+ 99.

1.1 Outline

This thesis will be presented as follows: Chapter 2 will contain a brief review of many of the
definitions and results needed later on. No attempt is made to develop the material in generality
beyond what will be needed in later chapters. The reader is recommended to consult the listed
references for additional details or a more in-depth development of the subject matter. Chapter 2
begins with Section 2.1 by stating briefly the definitions of some important 4-manifold invari-
ants, as well as stating some basic results regarding them. This includes a brief discussion (see
Section 2.1.2) on the classification of simply-connected 4-manifolds by their intersection forms.
Sections 2.2 introduces symplectic 4-manifolds and other important related items, while Sec-
tion 2.3 outlines certain topological properties of symplectic 4-manifolds. This includes reviewing
Gompf’s symplectic sum operation, as well as briefly discussing the relation between symplectic
manifolds and Lefschetz fibrations and pencils. The symplectic geography problem is discussed
in Chapter 3, along with the current status of attempts at achieving a solution to this problem.
In Chapter 4 we construct two infinite families of symplectic 4-manifolds following Akhmedov
and B.D. Park’s constructions in [5]. Chapter 5 begins with a discussion in Section 5.1.2 about
a particular surgery along Lagrangian tori embedded in symplectic 4-manifolds which yields new
symplectic 4-manifolds. This surgery operation is used in Section 5.2 to construct manifolds
from [4], which are then used in Chapter 6 as building blocks to construct infinite families of
irreducible simply-connected symplectic 4-manifolds with positive signature (see Sections 6.2 and
6.3). Explicit examples from these families are computed in Chapter 7, allowing us to prove our
main result, Theorem 7.2.3.

Throughout the discussion that follows, all manifolds will be assumed to be closed, connected,
orientable, and compact unless otherwise stated.
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Chapter 2

Background Material

2.1 The topology of 4-dimensional manifolds

2.1.1 4-manifold invariants

We begin by recalling the definitions of some important 4-manifold invariants. The following
invariants will be defined for manifolds with empty boundary, though they naturally generalize to
manifolds M with ∂M 6= ∅. We begin with the well-known Euler characteristic, which is defined
for an m-dimensional manifold M as

e(M) =
m∑
i=0

(−1)ibi(M),

where bi(M) denotes the ith betti number of M , i.e. the rank of the ith homology group Hi(M ; Z).

Now let M denote a compact, oriented topological 4-manifold. Given such a manifold M , we
can define a map

QM : H2(M ; Z)×H2(M ; Z)→ Z

by
QM (α, β) = 〈α ∪ β, [M ]〉,

where α, β ∈ H2(M ; Z), and [M ] ∈ H4(M ; Z) ∼= Z is the fundamental class of M associated
with its given orientation. The form QM is called the intersection form of M , and the value
QM (α, β) is called the intersection product of α and β. QM is both symmetric and bilinear. Note
that since QM is bilinear, it vanishes on all torsion elements of H2(M ; Z); hence we can think
of QM as being defined on the free part of H2(M ; Z). Furthermore, since by Poincaré duality
H2(M ; Z) ∼= H2(M ; Z), QM can also be thought of as a pairing on H2(M ; Z) modulo its torsion
subgroup. Note that if we take the 4-manifold M with the opposite orientation (which we denote
by M), then QM = −QM .

Although we have chosen to define the intersection form QM of a 4-manifold algebraically
using the cup and Kronecker products, there is an equivalent, more intuitive geometric definition
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which will be of use to us later. Let α, β ∈ H2(M ; Z) be two cohomology classes with Poincaré
duals a = PD(α) and b = PD(β). Let Σa and Σb be oriented 2-dimensional submanifolds
of M which represent a and b respectively. In other words, Σa is an oriented surface with
fundamental class [Σa] and embedding ia : Σa ↪→ M such that (ia)∗ [Σa] = a ∈ H2(M ; Z).
Likewise (ib)∗ [Σb] = b, where ib : Σb ↪→ M is the embedding of Σb in M (note that every
homology class of a smooth 4-manifold can be represented by some embedded submanifold). Σa

and Σb can be chosen generically so that they intersect transversely in a finite number of points.
At each of these intersection points p, we choose positively oriented bases for TpΣa and TpΣb.
Concatenating these two bases yields either a positively or negatively oriented basis for TpM .
Assign the point p a value of +1 if the orientation is positive, and −1 if it is negative. Summing
these values over all p ∈ Σa ∩ Σb yields an integer value which we denote by a · b.

Proposition 2.1.1. For a smooth 4-manifold M with α, β ∈ H2(M ; Z), a = PD(α) and b =
PD(β), QM (α, β) = a · b.

There are thus two equivalent ways to think about and compute intersection products in
smooth 4-manifold M ; one algebraic and one geometric. Both will be of use to us later on.

2.1.2 Integral unimodular symmetric bilinear forms and 4-manifolds

We find it useful to make a few important definitions regarding integral bilinear forms in general.
Let Q be a symmetric bilinear form over a finitely generated free abelian group G. Choosing a
basis of G, we can write Q as a matrix Q′. If det(Q′) = ±1, then Q is said to be unimodular .
The rank of Q, denoted by rank(Q), is defined as the rank of the group G. The signature of
Q, σ(Q), is defined as the number of positive eigenvalues of Q′ minus the number of negative
eigenvalues of Q′ (where Q′ is extended and diagonalized over R). Q is said to be positive definite
if rank(Q) = σ(Q), negative definite if rank(Q) = −σ(Q), and indefinite otherwise. Finally, Q is
said to be even if Q(α, α) ≡ 0 (mod 2) for all α ∈ G, and is odd otherwise.

Our primary concern will be with integral symmetric bilinear forms which arise as QM for
some 4-manifold M . We define the signature σ(M) of 4-manifold M to be the signature of QM .
As a result of Poincaré duality, we have the following lemma:

Lemma 2.1.2. The intersection form of a closed 4-manifold is unimodular.

Because of Lemma 2.1.2 the study of integral unimodular forms plays an important role in the
study of 4-manifolds. We might also ask to what extent the converse of Lemma 2.1.2 holds. In
other words, which symmetric integral bilinear unimodular forms are realized as the intersection
forms of 4-manifolds? The following theorem, due to M. Freedman, provides an answer to this
question:

Theorem 2.1.3 (Freedman’s Classification Theorem). For any integral symmetric unimodular
form Q, there is a closed simply-connected topological 4-manifold M such that Q ∼= QM . If Q is
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even, then this manifold is unique up to homeomorphism. If Q is odd, then there are exactly two
distinct homeomorphism types with intersection form Q, at least one of which will not admit any
smooth structure.

It follows from this classification that simply-connected smooth 4-dimensional manifolds are
uniquely determined by their intersection form (up to homeomorphism). We can take take this
classification even further, by applying J.-P. Serre’s classification of indefinite forms.

Theorem 2.1.4 (Serre’s Classification Theorem). Let Q1 and Q2 be two indefinite symmetric
bilinear integral unimodular forms. Then Q1 and Q2 are isomorphic if and only if they have the
same rank, signature and parity.

By Freedman’s classification, this implies that smooth simply-connected manifolds with in-
definite intersection forms are uniquely determined by the rank, signature and parity of their
intersection forms. Followings Serre’s theorem, we might hope to find a similar classification
of definite unimodular forms. Unfortunately no such classification exists. While the number of
definite forms of a given rank is finite, it grows unwieldily large very quickly. For instance, for
even definite forms of rank 8, 16 and 24, we have only 1, 2, and 24 forms respectively of each rank,
while we have over 107 and 1051 even definite forms of rank 32 and 40 respectively (note that the
rank of even unimodular forms is always divisible by 8).

Abandoning attempts to classify all definite unimodular forms, we might at least hope for
some classification of which such forms correspond to manifolds admitting smooth structures.
Donaldson proved the following theorem answering this question:

Theorem 2.1.5 (Donaldson’s Theorem). Suppose that the intersection form QM of a simply-
connected smooth 4-manifold M is positive definite, and rank(QM ) = m. Then

QM ∼=
⊕

m [+1] .

If QM is negative definite, then
QM ∼=

⊕
m [−1] .

These are the only two definite forms realizable as the intersection forms of simply-connected
smooth 4-manifolds.

Theorem 2.1.5, along with the fact that QM = −QM , implies that simply-connected smooth 4-
manifolds with definite intersection form are uniquely determined (up to homeomorphism) by the
rank of their intersection forms. Combining both Donaldson’s theorem and Serre’s classification
of indefinite forms with Freedman’s theorem, we have that the homeomorphism classes of simply-
connected smooth 4-manifolds are uniquely determined by the signature, rank and parity of their
intersection forms.

Not all combinations of these invariants occur in smooth 4-manifolds however. For example,
we have the following restriction on the signature of even intersection forms corresponding to
smooth 4-manifolds:
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Theorem 2.1.6 (Rohlin [29]). If M is an oriented, closed, simply-connected smooth 4-manifold
with even intersection form, then σ(M) ≡ 0 (mod 16).

Note that no such restrictions arise in the case of manifolds with odd intersection forms. This
can be seen by noting that for a, b ≥ 0, the manifolds aCP2#bCP2 are simply-connected smooth
4-manifolds with odd intersection forms Qa,b ' a[+1]⊕ b[−1]. It follows that rank(Qa,b) = a+ b

and σ(Qa,b) = a− b, and for appropriate choices of a and b we can realize all integer pairs (r, s)
with r ≡ s (mod 2), r ≥ s, and r ≥ 1, by r = rank(Qa,b) and s = σ(Qa,b).

We make one final definition before ending this section:

Definition 2.1.7 (Irreducibility). A 4-manifold M is said to be irreducible if for every smooth
decomposition M = M1#M2 (i.e. M is diffeomorphic to M1#M2), either M1 or M2 is homeo-
morphic (but not necessarily diffeomorphic) to S4.

It is important that the definition of irreducibility require that the decomposition of M into
the connect sum be smooth. By Freedman’s theorem, any smooth manifold M with odd inter-
section form is homeomorphic to aCP2#bCP2, for some nonnegative integers a and b. If M were
only required to be homeomorphic to M1#M2, it would imply that the only irreducible smooth
manifolds with odd intersection forms would be CP2 and CP2. Similarly, we would not have
any irreducible smooth manifolds with even intersection form. The only homeomorphism types
of irreducible smooth 4-manifolds would thus be CP2, S2 × S2 and S4; not a very interesting
situation.

2.1.3 Blow-ups and blow-downs

We begin this section by recalling the definitions of the blow-up and blow-down operations on
smooth oriented 4-manifolds. These definitions are contained in the following lemma:

Lemma 2.1.8. Let M be a smooth 4-manifold and let p ∈ M\∂M be any point. Then there
exists a smooth 4-manifold M ′ (called the blow-up of M at p), and a smooth map π : M ′ → M ,
such that π−1(p) = E ⊂ M ′ is an embedded sphere with [E]2 = −1, and the restriction π|M ′\E :
M ′\E →M\{p} is a diffeomorphism.

Conversely, suppose that M ′ is a smooth manifold with an embedded sphere E satisfying
[E]2 = −1. Then there exists a smooth manifold M (called the blow-down of M ′) and map
π : M ′ → M which contracts E to a point and, as above, restricts to a diffeomorphism between
the complement M ′\E and M\{p}.

The embedded −1-sphere E ⊂ M ′ is called the exceptional sphere. Topologically, the blow
up M ′ of a 4-manifold M is just the connect sum M ′ = M#CP2, where the exceptional sphere
E corresponds to a copy of CP1 in the CP2 summand. Suppose that Σ ⊂ M is a surface with
p ∈ Σ. Let M ′ be the blow up of M at p with map π : M ′ →M . Then the preimage π−1(Σ) will
consist of the union of the exceptional sphere E and a surface Σ′ which is diffeomorphic to Σ and
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which intersects E transversely in a single point. This subset of M ′ fails to be a manifold, and is
referred to as the total transform of Σ. Taking the preimage of Σ\{p} under π yields a punctured
surface disjoint from E. The topological closure of this preimage π−1(Σ\{p}) is a 2-dimensional
submanifold Σ̃ of M ′, which is diffeomorphic to the original surface Σ ⊂M and which intersects
E transversely in a single point. The surface Σ̃ is defined to be the proper transform of Σ.

The importance of the blow-up and blow-down operations lies in the fact that they allow us to
resolve positive intersection points between transversely intersecting 2-dimensional submanifolds.
The blow-up operation on M at p can be thought of as replacing p with the exceptional sphere
E = CP1, which can itself be interpreted as the set of all complex lines passing through the origin
of C2. All of complex lines that were passing through p in M are now passing through their
corresponding direction in CP1, and are thus disjoint in M ′. If Σ1 and Σ2 are two transversely
intersecting surfaces with positive intersection at p (and only at p), then their proper transforms
Σ̃1 and Σ̃2 in M ′ will be disjoint.

Since by Lemma 2.1.8 any manifold containing a −1-sphere can be blown down, we make the
following definition:

Definition 2.1.9 (Minimality). A 4-manifold M is called minimal if it does not contain an
embedded 2-sphere E with [E]2 = −1.

Note that any manifold with such a sphere E can be blown-down to a minimal manifold.
This minimal manifold is not always unique however. For example, blowing up CP2 twice and
CP1 × CP1 once can produce the same complex surface (cf. pg. 46 of [16]), while both CP2 and
CP1 × CP1 are minimal.

2.2 Symplectic manifolds

2.2.1 Definitions and examples

Let V be an m-dimensional vector space. A skew-symmetric bilinear form on V is a map

ω : V × V → R

which is linear in both arguments and which satisfies ω(v, w) = −ω(w, v) for all v, w ∈ V . Note
that this later condition implies that ω(v, v) = 0 for all v ∈ V . We say that ω is nondegenerate
if for each vector v ∈ V , there exists a vector w ∈ V such that ω(v, w) 6= 0. If the vector space
V admits a nondegenerate skew-symmetric bilinear form ω, then an easy argument shows that
m = dim(V ) must be even. In this case we call the pair (V, ω) a symplectic vector space, while ω
is called a linear symplectic structure on V . We will often stray from this notation when referring
to (V, ω) by omitting the symplectic structure ω and referring to the symplectic vector space
simply as V . Given such a vector space, it is always possible to find a basis {e1, . . . , en, f1, . . . fn}
(where m = 2n) which satisfies

ω(ei, ej) = ω(fi, fj) = 0
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and
ω(ei, fj) = δji

for all 1 ≤ i, j ≤ n. Such a basis is called a symplectic basis.

Example 2.2.1. Given any basis B = {a1, . . . an, b1, . . . bn} of a 2n-dimensional vector space V ,
the form

ω =
n∑
i=1

a∗i ∧ b∗i

(where {a∗1, . . . a∗n, b∗1, . . . , b∗n} is the dual basis to B) is a linear symplectic structure, making (V, ω)
into a symplectic vector space with symplectic basis B.

We wish to extend the notion of symplectic structures smoothly to the tangent bundle of a
differentiable manifold M . To this end, we recall that a differential p-form on M is a smooth
section of the pth exterior power of the cotangent bundle T ∗M . In particular, a differential 2-form
ω is a map which assigns to each point x ∈M a skew-symmetric bilinear form ωx : TxM×TxM →
R which varies smoothly with x. We say that ω is nondegenerate if ωx is nondegenerate for each
x ∈M . Furthermore, ω is said to be closed if the exterior derivative of ω is zero, i.e. dω ≡ 0.

Definition 2.2.2. A differential 2-form ω on a a smooth manifold M is called a symplectic
structure if it is both closed and nondegenerate. In this case the pair (M,ω) is called a symplectic
manifold.

Note that the nondegeneracy condition implies that dim(TxM) is even for each x ∈ M , and
hence that m = dim(M) is also even. Furthermore, if m = 2n, then ω is nondegenerate on M if
and only if the nth wedge power ωn = ω∧· · ·∧ω is nowhere vanishing on M . Since in this case ωn

is a nowhere vanishing m-form on an m-dimensional manifold, it follows that M is orientable. In
fact, a symplectic structure defines a choice of orientation on a symplectic manifold. Under this
orientation, a choice of basis {X1, . . . , X2n} of TpM is positively oriented if ωn(X1, . . . , X2n) > 0.
Since ωn is nonvanishing, this defines a consistent orientation on M .

Example 2.2.3. Our first example of a symplectic manifold is the Euclidean space R2n with
symplectic structure

ωo =
n∑
i=1

dxi ∧ dxn+i

where {x1, . . . , x2n} are the standard coordinates on R2n. For each p ∈M{(
∂

∂x1

)
p

, . . . ,

(
∂

∂x2n

)
p

}

is a symplectic basis of TpM under the symplectic structure ωo.

As we will discuss later, all symplectic manifolds are locally modeled after (R2n, ωo). Our
next examples are likewise straightforward but will be included as they will be needed later on:
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Example 2.2.4. Given any smooth manifold M , the cotangent bundle can be seen to be a
symplectic manifold, with canonical symplectic structure. Let (x1, . . . , xn) be a local coordinate
chart on some subset U ⊂M . Recall that at any p ∈ U , the set {(dx1)p, . . . , (dxn)p} forms a basis
for T ∗pM . Let (ζ1, . . . , ζn) be the corresponding coordinate functions for this basis. In other words,
the ζi are maps ζi : T ∗pU → R such that given any ζ ∈ T ∗pU , we can write ζ =

∑n
i=1 ζi(dxi)p.

Define the 2-form ω on T ∗U as

ω =
n∑
i=1

dxi ∧ dζi.

It can be shown that thus defined, ω is independent of the coordinate chart used, and hence is
intrinsic to the manifold T ∗M itself. It is likewise easy to see that ω is a symplectic form, thus
making (T ∗M,ω) a symplectic manifold for any smooth M .

Example 2.2.5. A volume form on a closed surface (real 2-dimensional manifold) is a symplectic
form, and hence all oriented closed surfaces admit symplectic forms. Let (Σ, ω) and (Σ′, ω′) be
two such surfaces with symplectic forms ω and ω′. Let π1 : Σ×Σ′ → Σ and π2 : Σ×Σ′ → Σ′ be
the natural projections onto the first and second factors. Then (π1)∗ω + (π2)∗ω′ is a symplectic
structure on Σ×Σ′. This symplectic structure is called the product symplectic structure on Σ×Σ′.

Now that we have given a few examples of symplectic manifolds, we proceed to make a few
more definitions which will be needed later on:

Definition 2.2.6. A symplectomorphism is a diffeomorphism φ : M1 → M2 between two sym-
plectic manifolds (M1, ω1) and (M2, ω2) such that φ∗ω2 = ω1. In this case, M1 and M2 are said
to be symplectomorphic.

An important result by Darboux shows that locally, every 2n-dimensional symplectic manifold
is symplectomorphic to (R2n, ωo):

Theorem 2.2.7 (Darboux). If (M,ω) is a symplectic manifold with p ∈ M , then there is an
open set U ⊂M with p ∈ U and coordinates (x1, . . . xn, y1, . . . , yn) centered at p such that

ω =
n∑
i=1

dxi ∧ dyi

on U .

This implies that unlike the local structure of a Riemannian manifold, the symplectic form
provides no interesting local invariants. Everything looks locally like (R2n, ωo).

We conclude this section by discussing briefly two classes of submanifolds of a symplectic
manifold (M,ω). Let N be such a submanifold, and let i : N ↪→M be its embedding.

Definition 2.2.8. N is said to be a symplectic submanifold of M if (N, i∗ω) is itself a symplectic
manifold. N is said to be a Lagrangian submanifold of M if dim(N) = 1

2dim(M) and i∗ω ≡ 0.
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Example 2.2.9. The surfaces Σ × {pt} and {pt} × Σ′ are both symplectic submanifolds of
(Σ×Σ′, (π1)∗ω+(π2)∗ω′), while for simple closed curves α ⊂ Σ and α′ ⊂ Σ′ the torus α×α′ ⊂ Σ×Σ′

is a Lagrangian submanifold.

The following theorem of Gompf allows us change a given symplectic structure on 4-manifold
an arbitrarily small amount so that a given Lagrangian submanifold becomes symplectic. In
other words, we can perturb the symplectic structure on a 4-manifold in such a way that a given
Lagrangian submanifold becomes symplectic under the new symplectic form.

Theorem 2.2.10 (Gompf [14]). Let (M,ω) be a closed, symplectic 4-manifold with Σ ⊂ M a
closed, connected, oriented, Lagrangian submanifold with [Σ] 6= 0 ∈ H2(M ; Z). Then there is
an arbitrarily small perturbation ω′ of ω such that (M,ω′) is symplectic and Σ is a symplectic
submanifold of M .

2.3 The topology of symplectic 4-manifolds

2.3.1 Symplectic blow-ups and minimality

Let (M,ω) be a symplectic 4-manifold, and let p ∈M be any point. As discussed in Section 2.1.3,
M can be blown-up at p to obtain the blow-up M ′ = M#CP2. Let π : M ′ → M be the
corresponding blow-down map. It can be shown then that M ′ admits a symplectic form which,
away from E, is equal to the pull-back π∗ω. Furthermore, the form ω′ can be chosen so that the
exceptional sphere E is a symplectic submanifold of M ′. Conversely, any symplectic 4-manifold
M ′ with a symplectic sphere E satisfying [E]2 = −1 can be blown-down to obtain a symplectic
manifold M . We can therefore use the blow-up and blow-down operations in the symplectic
setting as in the smooth case. We thus restate the following definition for symplectic manifolds:

Definition 2.3.1. A symplectic manifold (M,ω) is said to be minimal if it does not contain a
symplectic sphere E of self-intersection −1.

It can be shown that the homology class of any smoothly embedded sphere E ⊂ M with
[E]2 = −1 can be represented by a symplectic −1-sphere. Definition 2.3.1 is thus equivalent to
Definition 2.1.9 in the symplectic category.

As in the smooth case, any symplectic manifold can be blown down to obtain a minimal
symplectic manifold. Again however, this minimal manifold may not be unique. Note that for a
smooth manifold M ′ the condition of being minimal implies that M ′ cannot be decomposed as
M ′ = M#CP2 for some smooth manifold M . In the symplectic setting, minimality implies more:

Theorem 2.3.2 (Taubes [19, 34]). A simply-connected, minimal symplectic 4-manifold X is
irreducible.

Thus not only can a minimal symplectic 4-manifold M ′ not be expressed as M ′ = M#CP2

for any M , it cannot be written as M ′ = M1#M2 for any M1, M2 not homeomorphic to S4.
Theorem 2.3.2 implies that in the symplectic setting, minimality and irreducibility are equivalent.
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2.3.2 Almost-complex structures and Chern characteristic classes

Definition 2.3.3 (Almost-Complex Structure). Let M be a 2n-manifold, and let π : TM → M

be the natural projection. A smooth, fiberwise linear map J : TM → TM satisfying π ◦ J = π

and J2 = −idTM is called an almost-complex structure on M .

Note that the existence of an almost-complex structure on a manifold organizes the tangent
bundle TM as a complex bundle, where the map J corresponds to multiplication by the imaginary
unit i. We restrict our attention to almost-complex structures whose induced orientation on each
tangent space is the same as the orientation from M .

Definition 2.3.4. Given a symplectic manifold (M,ω) and an almost-complex structure J on
M , we say that J and ω are compatible if ω(Jx, Jy) = ω(x, y) and ω(x, Jx) > 0 for all nonzero
x, y ∈ TM .

It turns out that for symplectic manifolds, we can always find such a compatible almost-
complex structure. In fact, even more can be said:

Proposition 2.3.5. Any symplectic manifold (M,ω) admits an almost-complex structure com-
patible with ω. Furthermore, the space of all such compatible structures is contractible.

Thus for any symplectic manifold M , we can organize TM as a complex vector bundle by
choosing an almost-complex structure J compatible with the symplectic form on M . Using the
complex bundle structure induced by J , we can define Chern classes ci(M,J) ∈ H2i(M ; Z) for
the tangent bundle TM of M . Recall that if E → X is a complex vector bundle of rank n, then
there exists a unique c(E) = c0(E) + c1(E) + · · · + cn(E) ∈ H∗(X; Z), where ci(E) ∈ H2i(X; Z)
for each i, which satisfies the following axioms:

AI. c0(E) = 1 is the unity of H∗(X; Z).

AII. f∗(ci(E)) = ci(f∗E) for each i and all continuous maps f : Y → X.

AIII. c(E1 ⊕ E2) = c(E1) ∪ c(E2) for any two bundles E1 → X and E2 → X.

AIV. If τ → CPn is the tautological line bundle and h ∈ H2n−2(CPn; Z) is the class representing
the hypersurface H = {[x1, . . . , xn+1] | xn+1 = 0} with its natural orientation, then c(τ) =
1 + PD(h).

The class ci(E) ∈ H2i(X; Z) is called the ith Chern class of the bundle E → X, while c(E)
is called the total Chern class. See [18] for a proof of the existence and uniqueness of these
classes. The class ci(E) can be thought of as describing the obstruction to finding a (complex)
codimension i− 1 trivial subbundle over the restriction of E to the 2i skeleton of X (see Section
5.6 of [16]).

In the case that our bundle E is the tangent bundle TM → M for some manifold M with
complex vector space structure induced by J , we denote these classes by ci(M,J) ∈ H2i(M ; Z). In
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general, the Chern classes of the tangent bundle of a manifold will depend on our choice of J ; for
a symplectic manifold (M,ω) however, by choosing an almost-complex structure compatible with
ω, we get well-defined Chern classes. This follows from the fact that the space of almost-complex
structures compatible with ω is contractible. We may thus omit the almost-complex structure
from the notation, and instead denote the Chern classes of a symplectic manifold (M,ω) by
ci(M,ω), or when the symplectic form is understood, simply by ci(M). Having well-defined
Chern classes on symplectic manifolds, we can adapt many familiar results to the symplectic
setting. In particular the following result, known as the adjunction formula, which relates the
self-intersection and Euler characteristic of a symplectic submanifold, will be used frequently in
the following discussion:

Theorem 2.3.6 (Adjunction Formula). Let (M,ω) be a symplectic 4-manifold, with symplectic
submanifold Σ ⊂M . Then

〈c1(M,ω), [Σ]〉 = [Σ]2 + e(Σ).

2.3.3 Symplectic fiber sums

We will often be interested in taking two symplectic 4-manifolds M1 and M2 and gluing them
together in such a way that the resulting manifold admits a symplectic structure uniquely deter-
mined by the symplectic structures on M1 and M2. Gompf described such a construction in [14].
Let M1 and M2 be symplectic 4-manifolds with smooth, closed, connected 2-dimensional symplec-
tic (or Lagrangian) submanifolds Fi ⊂Mi of the same genus. Suppose further that [F1]2 = −[F2]2.
Then the normal bundles νFi of Fi ⊂Mi are isomorphic under a fiber orientation-reversing diffeo-
morphism Ψ : νF1 → νF2. Restricting Ψ to ∂(νF1) gives an orientation-reversing diffeomorphism
Ψ̃ : ∂(νF1)→ ∂(νF2).

Definition 2.3.7. In the above situation, the symplectic fiber sum M1#eΨM2 is the quotient
space of M1\νF1 and M2\νF2 formed by identifying ∂(νF1) and ∂(νF2) under the gluing map Ψ̃.

The usefulness of this construction is demonstrated by the following theorems due to Gompf
and Usher:

Theorem 2.3.8 (Gompf [14]). Given the above situation, the symplectic fiber sum M1#eΨM2 ad-
mits a symplectic structure which can be chosen so that the symplectic (Lagrangian) submanifolds
of Mi\νFi are symplectic (respectively Lagrangian) in M1#eΨM2.

Theorem 2.3.9 (Usher [35]). Let M = X1#eΨX2 be the symplectic fiber sum of two 4-manifolds
along symplectic surfaces Fi ⊂ Xi of positive genus g. Then

(i) if either X1\F1 or X2\F2 contains an embedded symplectic −1-sphere, then M is not min-
imal;
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(ii) if one of the summands Xi (say X1) admits the structure of an S2-bundle over a surface of
genus g such that F1 is a section of this fiber bundle, then M is minimal if and only if X2

is minimal;

(iii) in all other cases, M is minimal.

Theorem 2.3.8 allows us to choose the symplectic structure on the fiber sum of two manifolds
so that it agrees with the symplectic structures of the summands in terms of their symplectic and
Lagrangian submanifolds. Theorem 2.3.9 gives us, among other things, that the symplectic fiber
sum of two minimal symplectic manifolds is minimal.

2.3.4 Lefschetz fibrations and symplectic manifolds

We want to better understand how the existence of a symplectic structure affects the topology
of a 4-manifold. In particular, we would like to find a topological characterization of manifolds
which admit symplectic structures. Such a characterization was given by Donaldson. He showed
that any 4-manifold which admits a symplectic structure also admits, after the removal of a finite
number of singular points, a particular fibration structure. Furthermore, the singular points of
this fibration are limited to a certain type. These structures, called Lefschetz pencils, were first
considered by Solomon Lefschetz in relation to his study of algebraic varieties in [20].

Definition 2.3.10. Let M be a closed, connected, oriented, smooth 4-manifold. A Lefschetz
pencil on M is a nonempty finite set B ⊂M (called the base locus), and a map f : M\B → CP1

such that

1. for each b ∈ B there are orientation-preserving local complex coordinates centered at b
under which f is given by f(u, v) = [u, v] (projectivization of C2 − {0} → CP1), and

2. for each critical point p of f there are orientation-preserving local complex coordinates
around p, under which f is given by f(u, v) = u2 + v2 (for suitable smooth coordinates on
CP1).

For each t ∈ CP1, we call the set Ft = f−1(t) ∪B ⊂M the fiber over t.

Definition 2.3.11. Let M be a compact, connected, oriented, smooth 4-manifold, and let Σ
be a compact, connected, oriented surface. A Lefschetz fibration on M is a map f : M → Σ
with f−1(∂Σ) = ∂M , which is modeled around each critical point in orientation-preserving local
complex coordinates by f(u, v) = u2 + v2 (again relative to some smooth local coordinates on Σ).

We make a few brief observations. Blowing up a Lefschetz pencil at each point of the base locus
yields a Lefschetz fibration over CP1. The generic fibers of a Lefschetz fibration will all be smooth,
closed surfaces of the same diffeomorphism type. Furthermore, we can perturb the fibration f so
that is is injective on its set of critical points. In other words, each singular fiber will have a unique
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singularity. Around each critical point, by writing f in complex coordinates as f(u, v) = u2 + v2,
we have that f−1(0) is given by the planes {(u, v) | u = iv} and {(u, v) | u = −iv}, which intersect
transversely at (u, v) = (0, 0). Thus each singular fiber is a smoothly immersed surface, where
the critical point corresponds to a transverse self-intersection. In this coordinate chart nearby
fibers Fε will be given locally by u2 + v2 = ε for small ε ∈ C. Considering some such fiber Fε
near the singular fiber F0, we obtain F0 from Fε by shrinking a loop in Fε to a single point, thus
creating the transverse self-intersection in F0. The cycle we collapse to obtain the transverse
self-intersection is called the vanishing cycle of the singular fiber F0. More explicitly, we can take
a nearby fiber Ft corresponding to some t ∈ R+ ⊂ C (any fiber can be made to correspond to
such a t by multiplying f by a unit complex number). Intersecting Ft with R2 ⊂ C2 yields a circle
(R(u))2 + (R(v))2 = t in Ft (where R(z) denoted the real part of z). This circle is the vanishing
cycle of the critical point. Taking t to zero along the positive real axis will correspond to the
shrinking of the vanishing cycle in fibers progressively closer to F0. We can in fact obtain a tubular
neighborhood νF0 of the singular fiber F0 by taking a tubular neighborhood νFt of a nearby fiber
and attaching a 2-handle to ∂(νFt). This 2-handle is attached along the vanishing cycle in a fiber
Fs ∈ ∂(νFt) with 0 < s < t. It thus follows that the vanishing cycles are nullhomotopic in M

(see Section 8.2 of [16]).

Finally, it is easy to see that if M admits a Lefschetz fibration f : M → Σ and we blow-up a
point p ∈ M , the resulting manifold M#CP2 will also admit a Lefschetz fibration over Σ. The
fibration is obtained by composing the corresponding blow-down map M#CP2 →M with f . The
fibers in the new fibration will remain unchanged except for the fiber containing p, which will have
the point p replaced with the exceptional sphere. We call a Lefschetz fibration relatively minimal
if no fiber contains a sphere of self-intersection −1. It is well-known that any Lefschetz fibration
can be blown down to obtain a relatively minimal one. Stipsicz proved the following result,
showing the equivalence of minimality and relative minimality for most Lefschetz fibrations:

Theorem 2.3.12 (Stipsicz [33]). A genus g Lefschetz fibration f : M → Σ with g > 0 is minimal
if and only if it is relatively minimal.

As mentioned above, our interest in Lefschetz fibrations lies in their connection to symplectic
manifolds. The following theorem due to Gompf establishes half of this important relationship:

Theorem 2.3.13 (Gompf [15]). Let M be a closed 4-manifold which admits a Lefschetz fibration
f : M → Σ with fiber F . Then M admits a symplectic structure ω with symplectic fibers if and
only if the homology class [F ] of F is nonzero in H2(M ; R). Furthermore if s1, . . . , sn is a finite
set of sections of f , then ω can be chosen so that each of the si are symplectic.

Note that by Remark 10.2.22(a) and Exercise 8.4.15(b) in [16] the requirement of [F ] 6= 0 ∈
H2(M ; R) is satisfied automatically for any fibration of genus greater than 1. In other words, a 4-
manifold M which admits a genus g Lefschetz fibration with g ≥ 2 will always admit a symplectic
structure with symplectic fiber, and can be chosen so that a given set of sections as above will
also be symplectic.
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Corollary 2.3.14. Any 4-manifold which admits a Lefschetz pencil admits a symplectic structure.

Proof. Let M admit a Lefschetz pencil with base locus B. Recall that by Definition 2.3.10
B 6= ∅. Blowing up at each point of B gives us a Lefschetz fibration f : M#kCP2 → CP1, where
k = |B|. Note that each of the k exceptional spheres E1, . . . , Ek will intersect each of the fibers of f
transversely in a single point, and are thus the images of sections of f . Thus [F ] · [Ei] = ±1, where
[F ] is the class in H2(M#kCP2; Z) represented by a fiber, whence [F ] 6= 0 ∈ H2(M#kCP2; Z).
By Theorem 2.3.13, we can equip M#kCP2 with a symplectic structure such that each of the
exceptional spheres is a symplectic manifold. Since the blow-up and blow-down processes can be
carried out symplectically, we can blow-downM#kCP2 to recover the manifoldM with symplectic
structure inherited from the structure on M#kCP2.

The converse of this result, namely that all symplectic 4-manifolds admit Lefschetz pencils,
was proved by Donaldson (see [11]). Combining these results yields:

Theorem 2.3.15. A 4-manifold M admits a symplectic structure if and only if it admits a
Lefschetz pencil.

We thus have a completely topological characterization of the manifolds which admit sym-
plectic structures as desired. This relationship will prove vital in the discussion which follows.

We state briefly one final result which will be needed in later chapters as we compute the
fundamental groups of manifolds which admit Lefschetz fibrations.

Proposition 2.3.16. Let f : M → Σ be a Lefschetz fibration with connected fiber F . Then the
maps F ↪→M → Σ induce an exact sequence π1(F )→ π1(M)→ π1(Σ)→ 1.
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Chapter 3

The Symplectic Geography Problem

3.1 Geography problems

Recall that for a symplectic 4-manifold (M,ω) the Chern classes c1(M,ω) and c2(M,ω) are well-
defined elements of H2(M ; Z) and H4(M ; Z) respectively. From these two classes we can construct
integer topological invariants of M :

c2(M) = 〈c2(M,ω), [M ]〉

c2
1(M) = PD(c1(M,ω)) · PD(c1(M,ω)) = 〈c1(M,ω) ∪ c1(M,ω), [M ]〉.

Note that despite the similarity in notation between the Chern cohomology classes and the integer-
valued invariants defined above, little confusion arises in practice. Although the Chern classes
of (M,ω) depend upon our choice of ω (as they depend on our choice of almost-complex struc-
ture), the integers defined above do not. They depend only on the homeomorphism type of M .
Furthermore, since the top Chern class of a complex vector bundle is equal to its Euler class, we
have that c2(M) is in fact equal to e(M), the well-known Euler characteristic of M .

Recall that for a complex surface S, the holomorphic Euler characteristic χh(S) is defined
as χh(S) = 1

12(c2
1(S) + c2(S)) = 1

4(e(S) + σ(S)). Since all closed symplectic 4-manifolds satisfy
1− b1(M) + b+2 (M) ≡ 0 (mod 2) (see Corollary 10.1.10 of [16]), we have that

e(M) + σ(M) = (2− b1(M) + b2(M)− b3(M)) + (b+2 (M)− b−2 (M))

= 2− 2b1(M) + 2b+2 (M)

is divisible by 4 (where we used that fact that b1(N) = b3(N) for all 4-manifolds N). Thus for a
symplectic 4-manifold M , the expression 1

4(e(M) + σ(M)) always takes values in Z, and we can
extend the definition of the holomorphic Euler characteristic to the symplectic category. Finally,
by the Hirzebruch signature theorem (see Theorem 1.4.12 of [16]), we have that the signature
σ(M) of M can be expressed as

σ(M) =
1
3

(c2
1(M)− 2c2(M)) =

1
3

(c2
1(M)− 2e(M)),
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whence c2
1(M) = 3σ(M) + 2e(M).

For any symplectic 4-manifold M we thus have four integer-valued topological invariants e(M),
σ(M), c2

1(M) and χh(M), any two of which determine the values of the other two. For example,
given c2

1(M) and χh(M) we can compute

σ(M) = c2
1(M)− 8χh(M) and e(M) = 12χh(M)− c2

1(M).

It is a very natural question to ask which combinations of these invariants are actually realized by
symplectic 4-manifolds. For instance, we can ask for what ordered pairs (χ, c) ∈ Z×Z does there
exist a symplectic manifold M such that χh(M) = χ and c2

1(M) = c? Questions of this nature
are commonly referred to as geography problems, as they concern which lattice points in the plane
are realized as given characteristic numbers for some manifold M with desired properties.

For example, the classical complex geography problem, first posed by Persson in [28], asks
which ordered pairs of positive integers (χ, c) are realized as the pair (χh(S), c2

1(S)) for some
minimal complex surface S of general type. In this paper, we will be concerned with an analogous
question in the symplectic category. In [14] Gompf proved that every finitely presentable group
is realized as the fundamental groups of an infinite family of symplectic 4-manifolds. Given this
lack of restriction on the possible fundamental groups of symplectic 4-manifolds, we restrict our
search to ordered pairs realized by simply-connected symplectic 4-manifolds. We will also further
strengthen the requirements by asking that M not only be simply-connected and symplectic, but
also that it isn’t the blow-up of some simpler manifold (in other words, is minimal). Our problem
can thus be summarized as determining which pairs (χ, c) ∈ Z×Z are realized by (χh(M), c2

1(M))
for some minimal simply-connected symplectic 4-manifold M . Note that although the problem
can be asked in terms of e(M) and σ(M), it has historically been studied using the invariants χh
and c2

1, a practice we will continue in this thesis.

We begin by making a few observations. First, by the classification theorems in Section 2.1,
smooth simply-connected 4-manifolds are uniquely determined up to homeomorphism by the rank,
signature and parity of their intersection forms. For a simply-connected symplectic manifold M ,
both σ(M) and rank(QM ) = b2(M) are in turn determined by χh(M) and c2

1(M) by the above
formula for σ(M) and

b2(M) = e(M)− 2 = 12χh − c2
1(M)− 2.

Thus for each ordered pair there can be at most two homeomorphism types of irreducible, simply
connected symplectic 4-manifolds, one for each parity of intersection form. Thus the geography
question can be further specialized to require that the desired manifolds have either even or
odd intersection form. Note that by Rohlin’s theorem (Theorem 2.1.6), if M is smooth and has
even intersection form, then σ(M) ≡ 0 (mod 16). Hence the case of even intersection forms
is significantly more restricted than case of odd intersection forms. We will not impose any
conditions on the parity of the intersection forms in our discussion.

We can also observe that for any simply-connected symplectic manifold M we have χh(M) =
1
4(e(M) + σ(M)) = 1

4(2 + 2b+2 (M)), and hence χh(M) ≥ 1. Moreover, from Taubes ([19, 34]), we
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have that c2
1(M) ≥ 0 for minimal symplectic manifolds. We thus focus our attention on ordered

pairs (a, b) ∈ N+ × N in the (χ, c)-plane.

3.2 Current results

The case of lattice points in the (χ, c)-plane corresponding to manifolds with negative signature
(equivalently points with c < 8χ) has been well understood for quite some time. In [2] the
authors constructed simply-connected minimal symplectic 4-manifolds which realized all but a
finite number of pairs (χ, c) with c ≤ 8χ − 2 (corresponding to signatures less than −1). The
authors also constructed simply-connected minimal symplectic 4-manifolds which realized points
of the form (χ, c) = (k, 8k) and (χ, c) = (j, 8j−1) for all integers k ≥ 46 and j ≥ 49, corresponding
to signatures of 0 and −1 respectively.

All but four of the pairs with c ≤ 8χ − 2 that were not realized by the constructions in [2]
were realized in the previous literature. In [4] Akhmedov and B.D. Park constructed irreducible
simply-connected symplectic 4-manifolds which realized these remaining 4 points, as well as all
points of the form (χ, c) = (k, 8k−1) for k ≥ 1. This completes the sympletic geography problem
for the negative signature case. In other words, for every pair (χ, c) ∈ Z × Z with χ ≥ 1 and
0 ≤ c ≤ 8χ−1, there exists a simply-connected minimal symplectic 4-manifold M with χh(M) = χ

and c2
1(M) = c.

The case of points with c ≥ 8χ is far from complete however. Examples of minimal simply-
connected symplectic manifolds realizing points in this region of the plane have been scarce
relative to the negative signature case. As in the negative signature case, where the possible c2

1(M)
values are bounded below by zero, we might hope to find an upper bound for the c2

1(M) values
realizable by minimal simply-connected symplectic M . To date no such upper bound has been
proven. As all simply-connected complex surfaces admit symplectic structures (Theorem 10.1.4
of [16], see also [8]), it is natural to turn to the classical complex geography problem for possible
insights into the geography of minimal simply-connected symplectic manifolds. For example, it
is well-known that the Bogomolov-Miyoaka-Yau inequality (B-M-Y) c2

1(S) ≤ 9χh(S) holds for all
minimal complex surfaces of general type. One might then ask if this relation in fact holds for
all minimal simply-connected symplectic 4-manifolds as well. Fintushel and Stern conjectured
that it does indeed hold in this case, though to this date neither it nor its negation have been
proven. Even though aside from CP2 (c2

1(CP2) = 9, χh(CP2) = 1) no such simply-connected
examples have been found with c2

1 = 9χh, there have been families of minimal simply-connected
symplectic manifolds constructed which converge to this line. In [32] Stipsicz constructed a family
{Cn | n ≥ 1} with c2

1(Cn) = 900n2 + 376n+ 4 and χh(Cn) = 100n2 + 62n+ 3, which thus realize
a sequence of points in the (χ, c)-plane converging to c = 9χ. Niepel constructed a similar family
of minimal simply-connected symplectic Kn in [25] converging to the line c = 9χ, which satisfy
c2

1(Kn) = 3n7 + 20n5− 24n4 + 6n3 + 2 and χh(Kn) = 1
3(n7 + 8n5)− 3n4 +n3 + 2. Note that even

the smallest examples in these families have large characteristic values. For example, the smallest
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two examples with nonnegative signature constructed by Stipsicz in [32] have χh(C2) = 527 and
χh(C3) = 1089, while the smallest nonnegative signature examples in the family constructed
in [25] have χh(K3) = 1163 and χh(K4) = 7490. It seems to be a common difficulty when
constructing minimal simply-connected symplectic manifolds above the c = 8χ line to find ones
with smaller characteristic values.

Recent work has not only focused on finding families converging to the B-M-Y line, but also on
finding families which fill in large areas of the (χ, c)-plane. In [26] for example, J. Park was able to
show that all but a finite number of allowable lattice points (for manifolds with even intersection
forms) satisfying 0 ≤ c ≤ 8.76χ correspond to minimal simply-connected symplectic 4-manifolds
(he actually showed there is a line c = f(χ) with slope greater than 8.76 such that all allowable
lattice points with c ≤ f(χ) in the first quadrant correspond to such manifolds). It is important to
note that the lattice points he populates are restricted to allowable points for symplectic manifolds
with even intersection form. Recall that such manifolds satisfy σ ≡ 0 (mod 16), (equivalently
c2

1 ≡ 8χh (mod 16)), and hence the allowable points do not include the vast majority of integer
points in the (χ, c)-plane.

In [27], J. Park succeeded in populating large regions of the plane using manifolds with odd
intersection form, by starting with non-simply connected complex surfaces H(n2) lying on the
B-M-Y line (constructed by Stipsicz in [32]), and performing repeated fiber sum operations with
other building block manifolds to kill the fundamental group. For each odd integer n ≥ 1 and
each 10 ≤ k ≤ 18, he constructed a simply connected irreducible symplectic 4-manifold Zn,k with
positive signature satisfying c2

1(Zn,k) = 225n2 + 248n + 35 − k and χh(Zn,k) = 25n2 + 31n + 5.
Note that these manifolds also approach the B-M-Y line as n → ∞. These manifolds were then
pieced together with various combinations of other building block manifolds, using the symplectic
fiber sum, to populate large regions of the plane above the line c = 8χ with simply-connected
irreducible symplectic manifolds. In particular, he proved the following:

Theorem 3.2.1 ([27]). There is an increasing sequence {mi} with mi → 9 such that every
integer lattice point (χ, c) satisfying 0 ≤ c ≤ miχ and χ ≥ Di (for some constants Di), is realized
by a simply connectd irreducible symplectic 4-manifold with odd intersection form, which admits
infinitely many (both symplectic and non-symplectic) exotic smooth structures.

The sequence mi is the quotient c2
1(Mi)/χh(Mi) for some simply connected irreducible sym-

plectic Mi (with i ≥ 1 odd) constructed in [27], and is given explicitly by

mi =
225i2 + 1148i+ 1413
25i2 + 143.5i+ 178.5

,

while the Di are given by Di = 25i2 + 143.5i + 178.5. Note that although the statement of
Theorem 3.2.1 only covers lattice points with χ ≥ D1 = 347, [27] contains the construction of
minimal simply-connected symplectic 4-manifolds with smaller χh values. For each integer j ≥ 1,
using the manifolds Zn,k and extending the constructions in the proof of Theorem 3.2.1, we can
find minimal simply-connected symplectic 4-manifolds which realize all lattice points in the region

Rj = {(χ, c) | χ ≥ 100j2 − 38j − 1 and 900j2 − 404j − 6 ≤ c ≤ 8χ+ 100j2 − 100j + 10}. (3.1)
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For example, the methods in [27] can be used to construct minimal simply-connected symplectic
4-manifolds corresponding to lattice points in the regions

R1 = {(χ, c) | χ ≥ 61 and 490 ≤ c ≤ 8χ+ 10}

and
R2 = {(χ, c) | χ ≥ 323 and 2786 ≤ c ≤ 8χ+ 210},

even though they contain 99 802 points not covered by Theorem 3.2.1.

Before moving on to the main constructions of this thesis, we must briefly mention one recent
result which will be useful in populating large regions of the plane by minimal simply-connected
symplectic 4-manifolds. The result is due to Akhmedov and B.D. Park, and allows us to construct
an infinite number of minimal simply-connected symplectic 4-manifolds in a wedge like region of
the (χ, c)-plane once we construct a certain base example. To be more precise:

Theorem 3.2.2 ([5]). Let M be a closed symplectic 4-manifold that contains a symplectic torus T
of self-intersection zero. Suppose further that the inclusion induced homomorphism π1(∂(νT ))→
π1(M\νT ) is trivial, where νT is a tubular neighborhood of T with boundary ∂(νT ). Then for
any pair (a, b) ∈ Z× Z satisfying

a ≥ 1 and 0 ≤ b ≤ 8a,

there exists a symplectic 4-manifold N with π1(N) = π1(M),

χh(N) = χh(M) + a and c2
1(N) = c2

1(M) + b.

If M is minimal then N is minimal as well. Furthermore, if b < 8a, or if b = 8a and M has an
odd intersection form, then N has an odd indefinite intersection form.

Thus, if we have some minimal simply-connected symplectic 4-manifold M with sympectic
torus as above, then Theorem 3.2.2 allows us to construct such manifolds which realize all lattice
points in a wedge-like region of the (χ, c)-plane given by χ ≥ χh and c2

1(M) ≤ c ≤ 8χ−8χh(M)+
c2

1(M).

If we only require 0 ≤ b ≤ 8a − 1, then the fundamental group condition in Theorem 3.2.2
can be relaxed to only requiring that the inclusion induced homomorphism π1(T ) → π1(M) be
trivial (see Theorem 2 of [4]). In this case, N is constructed by taking the symplectic fiber sum
of M with certain symplectic manifolds constructed in [2] and [4]. These symplectic manifolds
are constructed following similar recipes as the minimal simply-connected symplectic manifolds
used to realize the lattice points (χ, c) with 0 ≤ c ≤ 8χ − 1, though they need not be simply-
connected. In [5], Akhmedov and B.D. Park strengthened Theorem 2 of [4] to allow pairs with
b = 8a (under the slightly stronger fundamental group conditions). In this case, the desired
manifold N is obtained from again using the symplectic fiber sum operation, where this time
the second summand is constructed by omitting a single Luttinger surgery in the construction of
Yn(1) (see Section 5.2 below).
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3.3 Overview of constructions

The primary object of this thesis is to construct minimal simply-connected symplectic 4-manifolds
with positive signature which realize points in the (χ, c)-plane not realized in [25, 27, 32]. The
examples we construct will have the smallest χh values of all such manifolds currently known to
the author. To do this, we follow the constructions in [3]. In Sections 4.2 and 4.3 we construct
certain branched coverings from [5] over the product spaces Σg ×Σg (for closed genus g Riemann
surfaces Σg), giving rise to Lefschetz fibrations and hence symplectic manifolds which lie close
to the B-M-Y line but have nontrivial fundamental groups. In Section 5.2 we construct a family
of pairwise nondiffeomorphic 4-manifolds {Yn(m) | m = 1, 2, 3, . . .} for each integer n ≥ 2, as
constructed in [4]. When m = 1, these manifolds are symplectic. We then present general fiber
sum constructions (from [3]) in Sections 6.2.1 and 6.3.1, using the Yn(m) and relatively minimal
Lefschetz fibrations (such as those constructed in Sections 4.2 and 4.3). It is shown that by
choosing the gluing diffeomorphism of these fiber sums carefully, the result is simply-connected,
and when m = 1, minimal and symplectic. These constructions populate previously unrealized
points in the (χ, c)-plane, including points with particularly small χh values. Using Theorem 3.2.2,
we are then able to use these newly constructed manifolds as the starting point to populate large
wedge shaped regions of the plane. Using these constructions, we are able to realize 19 952 new
lattice points not realized in the previous literature.
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Chapter 4

Branched Covering Constructions of

Symplectic 4-Manifolds

4.1 Branched covering construction

The purpose of this section is to give a brief outline of a construction due to Hirzebruch which
yields branched coverings of 4-dimensional manifolds. To begin, we recall that the set of iso-
morphism classes of U(1)-bundles over a smooth 4-manifold M along with the tensor product
of bundles forms a group LM , which is canonically isomorphic to H2(M ; Z), the second integral
cohomology group of M . This isomorphism Υ : LM → H2(M ; Z) sends the line bundle L → M

to its first Chern class c1(L). (This fact serves as the starting point of an equivalent alternate
definition of the Chern classes c(L) ∈ H∗(M ; Z).)

Suppose that M is a smooth 4-manifold. Let B be a closed 2-dimensional submanifold of
M , and suppose that [B] ∈ H2(M ; Z) is divisible by d. In other words, there exists some [A] ∈
H2(M ; Z) such that d[A] = [B]. Let PD([B]) denote the Poincaré dual of [B] in H2(M ; Z). By
our above comments, Υ−1(PD([B])) is a complex line bundle, which we will denote by LB →M ,
with c1(LB) = PD([B]). Since c1(LB) is the top Chern class of LB → M , it is equal to its
Euler class e(LB). By definition of the Euler class, this implies that PD(e(LB)) = [B] is the
homology class of the zero set of a generic section of LB →M . We can thus fix a generic section
sB : M → LB, with s−1

B (0) = B. We likewise have a complex line bundle Υ−1(PD([A])), which
we denote by LA →M , with generic section sA : M → LA whose zero set is A. Furthermore, we
let π : LA →M denote its bundle projection.

Since PD([B]) = d · PD([A]), we have that LB = LA ⊗ · · · ⊗ LA = L⊗dA . We define a subset
of the total space LA by

N = {xp ∈ LA | x⊗dp = sB(p)}.

Consider the restriction π|N : N → M of the bundle projection π : LA → M . This defines a
d-fold cyclic branched covering of M which is branched along B. For a d-fold branched covering
π : N →M constructed in this way we have the following:
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Lemma 4.1.1 (See [16]). If π : N → M is the d-fold branched covering branched along B ⊂ M

constructed above, we have

c1(N) = f∗
(
c1(M)− d− 1

d
PD([B])

)
and

c2
1(N) = d

(
PD(c1(M))− d− 1

d
[B]
)2

.

4.2 First family of symplectic 4-manifolds with positive signature

Following Section 2 of [5], we construct our first family of symplectic manifolds with positive
signature by starting with an oriented genus g > 0 Riemann surface Σg. Σg can be constructed
by taking two concentric spheres S2(1) and S2(2) of radius 1 and 2 in R3, and connecting them
with g+1 tubes (see Figure 4.2). If the tubes are arranged to be centered around rays in the xy-
plane beginning at the origin, spaced at 2π

g+1 radians apart, then we can define a map γ : Σg → Σg

which is rotation of Σg around the z-axis by an angle of 2π
g+1 . Clearly γ has exactly 4 fixed points

(the points where the z-axis intersects S2(1) and S2(2)), and has order g + 1.

For each integer 1 ≤ i ≤ g + 1, let Γi = graph(γi) = {(x, γi(x)) | x ∈ Σg} ⊂ Σg × Σg.
Thus Γ1, . . . ,Γg+1 are all genus g surfaces in Σg × Σg, which are disjoint except for 4 points
{p1, p2, p3, p4}, which they all share in common. Note that for i < j, the graph Γj is the image of
Γi under the orientation preserving diffeomorphism idΣg×γj−i : Σg×Σg → Σg×Σg. Thus [Γi]2 =
[Γj ]2 for all i and j. Since Γg+1 ' Σg is the diagonal in Σg×Σg, the tangent bundle TΓg+1 ' TΣg

is isomorphic to the normal bundle νΓg+1 of Γg+1 in Σg × Σg. Since 〈e(νS), [S]〉 = [S]2 for any
closed, orientable surface embedded in an oriented 4-manifold (where we tacitly denote the Euler
class of the bundle νS here by e(νS)), we have that

[Γg+1]2 = 〈e(νΓg+1), [Γg+1]〉 = 〈e(TΣg), [Γg+1]〉 = 〈e(TΓg+1), [Γg+1]〉,

which is just equal to the Euler characteristic e(Γg+1) = 2− 2g of Γg+1. Thus [Γi]2 = 2− 2g for
1 ≤ i ≤ g + 1.

Let B = Γ1 ∪ · · · ∪ Γg+1. We compute the homology class [B] of B in H2 (Σg × Σg; Z) in the
following lemma:

Lemma 4.2.1. For B as above, the homology class of B in H2 (Σg × Σg; Z) is given by [B] =
(g + 1) ([Σg × {pt}] + [{pt} × Σg]).

Proof. Although B is not a smooth surface (it fails to be a manifold at the points (pi, pi) ∈
Σg×Σg), it does define a homology class in H2(Σg×Σg; Z) which will be equal to [Γ1]+· · ·+[Γg+1].
By the Künneth theorem, H2 (Σg × Σg; Z) ∼=

⊕(
4g2 + 2

)
Z, and is generated by the classes
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Figure 4.1: Generators of H1 (Σg; Z).

[Σg × {pt}], [{pt} × Σg], and 4g2 tori classes [µi × µj ], where µi and µj are any two of the standard
generators {α1, . . . αg, β1, . . . , βg} of H1 (Σg; Z) as in Figure 4.1. We thus write

[B] = a [Σg × {pt}] + b [{pt} × Σg] +
g∑

i,j=1

cij [αi × αj ] +
g∑

i,j=1

dij [αi × βj ]

+
g∑

i,j=1

eij [βi × αj ] +
g∑

i,j=1

fij [βi × βj ]

for some integers a, b, cij , dij , eij and fij .

Let pr1 : Σg ×Σg → Σg be the projection map onto the first factor. Since (pr1)∗[Σg ×{pt}] =
[Σg], while (pr1)∗[{pt} × Σg] = (pr1)∗[µi × µj ] = 0, it follows that

(pr1)∗[B] = a[Σg].

As each of the Γi is a graph of a self-diffeomorphism of Σg, we also have that (pr1)∗[Γi] = [Σg]
for each i. Thus

(pr1)∗[B] = (pr1)∗([Γ1] + · · ·+ [Γg+1]) = (g + 1) [Σg] ,

and hence a = g + 1. Similarly, b = g + 1.

Using the intersection pairing on H2 (Σg × Σg; Z), we will proceed to show that each of the cij
is zero. Consider the class [βi × βj ]. Note that [βi × βj ] · [αi × αj ] = ±1, while [βi × βj ] · [P ] = 0
for all of the other generators [P ] of H2 (Σg × Σg; Z). Thus

[B] · [βi × βj ] = ±cij .

Recall that the map γ : Σg → Σg is defined by rotating the surface Σg in Figure 4.2 by 2π
g+1

radians. Note that γ∗ cyclically permutes the classes [β1] , . . . , [βg] , − ([β1] + · · ·+ [βg]). If i < j,
then (γj−i)∗ [βi] = [βj ], while for i ≥ j, (γg−i+j+1)∗ [βi] = [βj ]. In either case, we can isotope βj
so that it is parallel and disjoint from the image γk(βi) (for the appropriate k). Thus, we have
that βi × βj is disjoint from Γk = {(x, γk(x)) | x ∈ Σg}. Similarly, since we can isotope all of the
βt so that they are disjoint, we have that βi × βj is disjoint from each of the Γt, and hence that
[B] · [βi × βj ] = ±cij = 0. Similarly, using the fact that [B] · [αi × αj ] = 0 we can show that each
fij is also zero.

To compute the dij values, we again note that [B] · [βi × αj ] = ±dij . As noted above, for
appropriate choice of k, we have that (γk)∗ [βi] = [βj ]. If we isotope αj and βj so that βj = γk(βi),
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Figure 4.2: Alternate view of Σg with H1 (Σg; Z) generators (thickened lines).

and so that αj and βj intersect in exactly one point, then βi × αj will intersect (βi × βj) ∩ Γk in
exactly one point. It is easy to see that this will be the only intersection point of βi×αj with Γk.
We can see however, from Figure 4.2, that we can arrange that βi×αj will also intersect Γg−i+1,
in precisely one point, whose sign will be opposite that of the intersection of βi × αj and Γk. As
we can isotope these two intersection points so that they are away from the fixed point set of γ
(and hence distinct points), and since (βi × αj) ∩ Γt = ∅ for all other 1 ≤ t ≤ g + 1, we can see
that [B] · [βi × αj ] = ±dij = 0.

To compute the values of the eij we first note that the action of γ∗ on the subgroup generated
by {[α1], . . . , [αg]} is given by the matrix

−1 −1 · · · −1 −1

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


.

Applying similar arguments as in the above cases, we can show that eij = fij = 0 for all i and
j.

Since Σg × Σg is a symplectic manifold manifold with the product symplectic structure, it
has well defined Chern classes ci ∈ H∗(Σg × Σg; Z). From the adjunction formula, we have that
〈c1(Σg ×Σg), [Σg × {pt}]〉 = 〈c1(Σg ×Σg), [{pt} × Σg]〉 = 2− 2g, and 〈c1(Σg ×Σg), [µi × µj ]〉 = 0
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(where µi and µj are generators of H1(Σg × Σg) as above). Thus

PD (c1 (Σg × Σg)) = 2 (1− g) ([Σg × {pt}] + [{pt} × Σg]) .

Blowing up Σg ×Σg at the fixed points p1, p2, p3, and p4, we obtain g + 1 disjoint surfaces Γ̃i
in (Σg × Σg) #4CP2, which are the proper transforms of the Γi. Let B̃ = Γ̃1 ∪ · · · ∪ Γ̃g+1 be the
proper transform of B = Γ1 ∪ · · · ∪ Γg+1. We have that [B̃] is given by

[B̃] = (g + 1)

(
[Σg × {pt}] + [{pt} × Σg]−

4∑
i=1

[ei]

)

where ei is the exceptional sphere of the ith blow-up. Furthermore

PD(c1((Σg × Σg)#4CP2)) = 2 (1− g) ([Σg × {pt}] + [{pt} × Σg])−
4∑
i=1

[ei] .

Since [B̃] is divisible by g + 1, we can construct a (g + 1)-fold cyclic branched cover of
(Σg × Σg) #4CP2, branched along B̃ (see Section 4.1). Furthermore, since

H2((Σg × Σg)#4CP2; Z) ∼= H2(Σg × Σg; Z)⊕ 4H2(CP2; Z)
∼=

⊕
(4g2 + 6)Z

is torsion-free, this cyclic branched covering will be uniquely constructed. Denote this cyclic
(g + 1)-fold branched covering by φ : Xg(1)→ (Σg × Σg)#4CP2.

Consider the following composition of maps

Xg(1) −→ (Σg × Σg) #4CP2 −→ Σg × Σg
pr1−→ Σg.

This can be seen to be a Lefschetz fibration over Σg, which we will denote by ϕg,1 : Xg(1)→ Σg.
The preimage of a generic point z ∈ Σg in (Σg × Σg)#4CP2 will be a surface of genus g which
intersects the branch locus B̃ ⊂ (Σg ×Σg)#4CP2 in g + 1 points. Hence a regular fiber of ϕg,1 is
a (g + 1)-fold covering of Σg, branched at g + 1 points. By the Riemann-Hurwitz formula, this
implies that for a regular fiber F

e (F ) = (g + 1) e (Σg)− g (g + 1)

= 2− 3g2 − g,

and hence F is a genus 1
2g (3g + 1) surface.

Lemma 4.2.2. For 1 ≤ i ≤ g+ 1 there exist sections si : Σg → Xg(1) of the fibration ϕg,1 whose
images si(Σg) in Xg(1) are genus g surfaces of self-intersection −2.

Proof. Since φ is branched along the union of the proper transforms Γ̃i, φ maps injectively onto
these surfaces. Thus for each i we can lift Γ̃i uniquely to a surface Γi of genus g in Xg(1). Note
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that Γi will intersect each fiber of the fibration ϕg,1 : Xg(1) → Σg in exactly one point; hence it
will be the image of a section of ϕg,1. In other words, since the restriction of the map ϕg,1 to Γi
can be seen to be both injective and surjective, it is a diffeomorphism of Γi to Σg. The inverse of
these diffeomorphism are the desired sections si of ϕg,1 with images Γi.

Denote the union Γ1∪· · ·∪Γg+1 by B (i.e. the lift of B̃ in Xg(1)). By the adjunction formula,
we have that

〈c1(Xg(1)), [B]〉 = [B]2 + χ(B)

= ([Γ1] + · · ·+ [Γg+1])2 + χ(Γ1 ∪ · · · ∪ Γg+1)

= (g + 1)([Γi]2 + χ(Γi))

= (g + 1)([Γi]2 + 2− 2g)

since the Γi are disjoint surfaces of genus g. Thus

[Γi]2 =
1

g + 1
〈c1(Xg(1)), [B]〉 − 2 + 2g.

Recall that Xg(1) is constructed by choosing a complex line bundle L eB → (Σg × Σg)#4CP2

with a generic section whose zero set is equal to B̃. Since

c1(L eB) = e(L eB) = PD[B̃] = (g + 1)PD

(
[Σg × {pt}] + [{pt} × Σg]−

4∑
i=1

[ei]

)

is divisible by (g + 1), we can use the class

[A] =

(
[Σg × {pt}] + [{pt} × Σg]−

4∑
i=1

[ei]

)
∈ H2((Σg × Σg)#4CP2; Z)

as above to specify the (g + 1)-fold branched covering φ : Xg(1) → (Σg × Σg)#4CP2 branched
along B̃.

From Lemma 4.1.1 we have that

c1(Xg(1)) = φ∗(c1((Σg × Σg)#4CP2)− gPD[A])

= φ∗PD((2− 3g)([Σg × {pt}] + [{pt} × Σg]) + (g − 1)
4∑
i=1

[ei]).

Thus

〈c1(Xg(1)), [B]〉 = 〈φ∗(c1((Σg × Σg)#4CP2)− gPD[A]), [B]〉

= 〈c1((Σg × Σg)#4CP2)− gPD[A], φ∗[B]〉

= 〈c1((Σg × Σg)#4CP2)− gPD[A], [B̃]〉

=

〈
PD

(
(2− 3g)([Σg × {pt}] + [{pt} × Σg]) + (g − 1)

4∑
i=1

[ei]

)
,
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(g + 1)

(
[Σg × {pt}] + [{pt} × Σg]−

4∑
i=1

[ei]

)〉

= (2− 3g)

(
[Σg × {pt}] + [{pt} × Σg]) + (g − 1)

4∑
i=1

[ei]

)

· (g + 1)

(
[Σg × {pt}] + [{pt} × Σg]−

4∑
i=1

[ei]

)
= −2g(g + 1),

implying that [Γi]2 = −2.

Using the Riemann-Hurwitz formula, we compute the Euler characteristic of Xg(1) as follows:

e (Xg(1)) = (g + 1) e((Σg × Σg)#4CP2)− ge(B̃)

= (g + 1) e((Σg × Σg)#4CP2)− g
g+1∑
i=1

e(Γ̃i)

= (g + 1) (e(Σg)2 + 4e(CP2)− 8e(D4))− g (g + 1) e (Σg)

= 2 (g + 1)
(
3g2 − 5g + 4

)
,

(where we used the facts that e(Σg) = 2 − 2g, e(CP2) = 3 and e(D4) = 1). Furthermore, from
Lemma 4.1.1 we have that

c2
1(Xg(1)) = (g + 1)

(
PD(c1((Σg × Σg)#4CP2))− g

g + 1
[B̃]
)2

= (g + 1)

(
(2− 3g) ([Σg × {pt}] + [{pt} × Σg]) + (g − 1)

4∑
i=1

[ei]

)2

= 2 (g + 1)
(
7g2 − 8g + 2

)
,

from which we obtain

σ(Xg(1)) =
c2

1 (Xg(1))− 2e (Xg(1))
3

=
2
3

(g + 1)(g2 + 2g − 6)

and

χh(Xg(1)) =
e (Xg(1)) + c2

1 (Xg(1))
12

=
1
6

(g + 1)(10g2 − 13g + 6).

For each integer u ≥ 2, let Θu : Σk → Σg be a u-fold unbranched covering of Σg, where
k = u(g − 1) + 1. Let ϕg,u : Xg(u)→ Σk denote the pull-back fibration of ϕg,1 by Θu. It follows
that ϕg,u is again a Lefschetz fibration with regular fiber a genus 1

2g (3g + 1) surface. Each section
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si of ϕg,1 will pull-back to a section of ϕg,u. A parallel copy of Γi in Xg(1) will pull-back to a
parallel copy of the image of the pull-back section, with each intersection point in Xg(1) yielding u
intersection points of the same sign in Xg(u). Hence ϕg,u admits sections whose images are genus
k surfaces with self-intersection −2u. Since Xg(u) can be seen to be a u-fold unbranched cover of
Xg(1), we have that e(Xg(u)) = u ·e(Xg(1)), σ(Xg(u)) = u ·σ(Xg(1)), χh(Xg(u)) = u ·χh(Xg(1)),
and c2

1(Xg(u)) = u · c2
1(Xg(1)) (from Section 7.1 of [16], using [B] = 0).

Consider now the fibration

Xg(1) −→ (Σg × Σg)#4CP2 −→ Σg × Σg,

which we can pull back by Θu ×Θu : Σk × Σk → Σg × Σg. The total space of this fibration is a
(g + 1)-fold branched cover of Σk × Σk, and will be denoted by X̃g(u2). The composition

X̃g(u2) −→ Σk × Σk
pr1−→ Σk

will be denoted by ϕ̃g,u, and can be seen to be a Lefschetz fibration of X̃g(u2) over Σk. The
preimage of a generic point z ∈ Σk in X̃g(u2) will be a (g + 1)-fold covering of Σk branched at
u(g + 1) points. Thus for a generic fiber F of ϕ̃g,u

e(F ) = (g + 1)e (Σk)− ug(g + 1)

= u(g + 1)(2− 3g),

and hence is a genus 1
2u(g + 1)(3g − 2) + 1 surface. The Γi will again give rise to sections of

ϕ̃g,u whose images will be genus k surfaces of self-intersection −2u. Since X̃g(u2) is a u2-fold
unbranched cover of Xg(1) it follows that e(X̃g(u2)) = u2 · e(Xg(1)), σ(X̃g(u2)) = u2 · σ(Xg(1)),
χh(X̃g(u2)) = u2 · χh(Xg(1)), and c2

1(X̃g(u2)) = u2 · c2
1(Xg(1)).

4.3 Second family of symplectic 4-manifolds with positive signa-

ture

A second way of constructing a genus g > 0 Riemann surface Σg is by identifying diametrically
opposite edges of a 4g-gon, so that the word given by its boundary is

a1a2 · · · a2ga
−1
1 a−1

2 · · · a
−1
2g

(see Exercise IV.5.6 of [23]). This 4g-gon can be divided into two (2g + 1)-gons along a diagonal
d so that the boundaries of the two (2g + 1)-gons are

a1a2 · · · a2gd and a−1
1 a−1

2 · · · a
−1
2g d

−1.

Viewed as regular polygons, these (2g+1)-gons can be rotated by 2π
2g+1 and then reglued, yielding

a self-diffeomorphism δ : Σg → Σg of order 2g + 1 (see Figure 4.3). This self-diffeomorphism will
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d

a2g

δ

Figure 4.3: Construction of self-diffeomorphism δ : Σg → Σg.

have three fixed points: the 2 centers of rotation of the (2g+ 1)-gons, and the single vertex (after
identification of the edges).

As in section 4.2, we consider the graphs ∆i = graph(δi) = {(x, δi(x) | x ∈ Σg} ⊂ Σg × Σg.
These ∆i will be disjoint except for three points {q1, q2, q3}, where they all intersect transversely.
Let D = ∆1 ∪ · · · ∪∆2g+1. The homology class [D] ∈ H2(Σg × Σg; Z) is given by the following
lemma:

Lemma 4.3.1. For D as above, the homology class of D in H2 (Σg × Σg; Z) is given by [D] =
(2g + 1) ([Σg × {pt}] + [{pt} × Σg]).

The proof of Lemma 4.3.1 consists of a computation similar to the computation of [B] in
Section 4.2.

Blowing up Σg ×Σg three times at the points q1, q2, and q3, we obtain 2g+ 1 disjoint surfaces
∆̃1, . . . , ∆̃2g+1, which are the proper transforms of the ∆i. Denoting the union of these proper
transforms by D̃, we have that

[D̃] = (2g + 1)

(
[Σg × {pt}] + [{pt} × Σg]−

3∑
i=1

[ei]

)

where again ei is the exceptional sphere of the ith blow-up, and that

PD(c1((Σg × Σg)#3CP2)) = 2 (1− g) ([Σg × {pt}] + [{pt} × Σg])−
3∑
i=1

[ei] .

Since [D̃] is divisible by 2g+1 we can take the (2g+1)-fold covering Zg(1) of (Σg×Σg)#4CP2

branched along D̃. As in Section 4.2, since

H2((Σg × Σg) #4CP2; Z) ∼=
⊕

(4g2 + 5)Z
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is torsion-free, Zg(1) constructed in this way will be unique. Furthermore, as in Section 4.2, the
composition

Zg(1) −→ (Σg × Σg) #3CP2 −→ Σg × Σg
pr1−→ Σg

will yield a Lefschetz fibration of Zg(1) over Σg, which will be denoted by ψg,1 : Zg(1) → Σg. A
regular fiber F of ψg,1 is a (2g + 1)-fold covering of Σg, branched at 2g + 1 points. Hence

e(F ) = (2g + 1)e(Σg)− 2g(2g + 1)

= −8g2 + 2

and thus F is a genus 4g2 surface.

Lemma 4.3.2. For 1 ≤ i ≤ 2g+1 there exist sections s′i : Σg → Zg(1) of the fibration ψg,1 whose
images s′i(Σg) in Zg(1) are genus g surfaces of self-intersection −1.

Proof. As in the proof of Lemma 4.2.2, we can lift the ∆̃i to genus g surfaces ∆i in Zg(1). The
section s′i will again be given by the inverse of the restriction of ψg,1 to ∆i. Let D be the union
of the ∆i. Then

[∆i]2 =
1

2g + 1
〈c1(Zg(1)), [D]〉 − 2 + 2g.

If φ′ : Zg(1)→ (Σg × Σg)#3CP2 is the covering map constructed above, and

[A′] = [Σg × {pt}] + [{pt} × Σg]−
3∑
i=1

[ei],

then

〈c1(Zg(1)), [D]〉 = 〈(φ′)∗(c1((Σg × Σg)#3CP2)− 2gPD[A′]), [D]〉

=

〈
PD

(
(2− 4g)([Σg × {pt}] + [{pt} × Σg]) + (2g − 1)

3∑
i=1

[ei]

)
,

(2g + 1)

(
[Σg × {pt}] + [{pt} × Σg]−

3∑
i=1

[ei]

)〉
= (2g + 1)(1− 2g),

whence [∆i]2 = −1.

Computing the Euler characterstic of Zg(1) yields

e (Zg(1)) = (2g + 1) e((Σg × Σg) #3CP2)− 2ge(D̃)

= (2g + 1) e((Σg × Σg) #3CP2)− 2g
2g+1∑
i=1

e(∆̃i)

= (2g + 1) (e (Σg)
2 + 3e(CP2)− 6e(D4)))− 2g (2g + 1) e (Σg)

= (2g + 1)(8g2 − 12g + 7),
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while

c2
1(Zg(1)) = (2g + 1)

(
PD(c1((Σg × Σg)#3CP2))− 2g

2g + 1
[D̃]
)2

= (2g + 1)

(
(2− 4g) ([Σg × {pt}] + [{pt} × Σg]) + (2g − 1)

3∑
i=1

[ei]

)2

= 5(2g + 1)(4g2 − 4g + 1).

Hence

σ(Zg(1)) =
c2

1 (Zg(1))− 2e (Zg(1))
3

=
1
3

(2g + 1)(4g2 + 4g − 9)

and

χh(Zg(1)) =
e (Zg(1)) + c2

1 (Zg(1))
12

=
1
3

(2g + 1)(7g2 − 8g + 3).

Note that Z2(1) here is the 4-manifold H(1) constructed by A. Stipsicz in [31].

Following the procedure in Section 4.2, we can pull back ψg,1 : Zg(1) → Σg by a u-fold
unbranched cover Θu : Σk → Σg (where again, k = u(g − 1) + 1). We will denote the resulting
pull-back fibration by ψg,u : Zg(u)→ Σk. This defines another Lefschetz fibration, whose regular
fiber is a genus 4g2 surface. Furthermore, the sections s′i will pull back to sections of ψg,u with
images genus k surfaces with self-intersection −u. We also have that e(Zg(u)) = u · e(Zg(1)),
σ(Zg(u)) = u · σ(Zg(1)), χh(Zg(u)) = u · χh(Zg(1)), and c2

1(Zg(u)) = u · c2
1(Zg(1)).

We can also pull back the fibration

Zg(1) −→ (Σg × Σg)#3CP2 −→ Σg × Σg

by Θu ×Θu, to yield a fibration whose total space will be denoted by Z̃g(u2). We will denote by
ψ̃g,u composition

Z̃g(u2) −→ Σk × Σk
pr1−→ Σk,

which is a genus u(4g2 − 1) + 1 Lefschetz fibration, having sections whose images are genus k
surfaces with self-intersection −u. Again, since Z̃g(u2) is a u2-fold unbranched cover of Zg(1), it
follows that e(Z̃g(u2)) = u2 · e(Zg(1)), σ(Z̃g(u2)) = u2 · σ(Zg(1)), χh(Z̃g(u2)) = u2 · χh(Zg(1)),
and c2

1(Z̃g(u2)) = u2 · c2
1(Zg(1)).
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Chapter 5

Surgery Along Lagrangian Tori and

Construction of Yn(m)

5.1 Torus surgery in symplectic 4-manifolds

Before constructing our final building block manifolds, we first define a surgery method along
embedded Lagrangian tori in symplectic 4-manifolds. This surgery, known as Luttinger surgery ,
was applied to embedded Lagrangian tori in R4 by Luttinger ([21]), and later to embedded
Lagrangian tori in general symplectic manifolds by Auroux, Donaldson and Katzarkov ([6]). It
is a special case of a more general class of torus surgeries. We recall first briefly the definition
of this general class of surgery, and discuss how these surgeries affect the fundamental groups of
the manifolds to which they are applied, before giving the more detailed description from [6] of
the special case of Luttinger surgery. The importance of Luttinger surgery lies in the fact that it
yields symplectic manifolds, whose symplectic form is unchanged away from a neighborhood of
the surgery.

5.1.1 p/q-torus surgery

We restrict our definition of torus surgery to surgery along a Lagrangian torus T in a symplectic
4-manifold (M,ω). Let U be a tubular neighborhood of T in M . Since T is Lagrangian, we can
choose U so that it has a unique framing (i.e. an identification of U with T × D2) defined by
the property that T × {d} is Lagrangian for each d ∈ D2. This framing is called the Lagrangian
framing. Since under the above identification T × {d} is isotopic to T × {d′} for any choices of
d, d′ ∈ D2, we will refer to T × {d} simply as the Lagrangian pushoff of T for any d. Let γ
be an oriented, essential, simple closed loop in T . Under this framing we can uniquely (up to
isotopy) push off γ to a curve γ′ in ∂U = T 3 by setting γ′ = γ × {do} for some do ∈ ∂D2. Let
µ = {pt} × ∂D2 be a meridian of T in ∂U . Given relatively prime integers p and q, p/q-surgery
on T with respect to γ is the process in which U in M is replaced by T 2 ×D2, resulting in the
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manifold
M(T, γ, p/q) = (M\U) ∪λ (T 2 ×D2),

where the gluing map λ : T 2 × ∂D2 → ∂(M\U) satisfies λ∗(
[
{pt} × ∂D2

]
) = q[γ′] + p [µ] in

H1(∂(M\U); Z). We will follow the notation in [12] by denoting the p/q-surgery operation on a
torus T with respect to γ by (T, γ, p/q) when the manifold M is understood.

We will be interested in computing the effect that the above surgery has on π1(M). We will
make use of the following lemmas:

Lemma 5.1.1. Let M , T , µ, γ, and γ′ be as above. Then

π1(M(T, γ, p/q)) ∼= π1(M\U)/〈µp · (γ′)q〉.

Proof. Let i : ∂(M\U) ↪→ M\U and j : ∂(T 2 × D2) ↪→ T 2 × D2 be the inclusion maps. Fix a
basepoint x ∈ ∂(M\U) to be used as the basepoint for all the fundamental groups in the following
discussion (though we will suppress it from our notation). By the Seifert-van Kampen theorem,

π1(M(T, γ, p/q)) ∼= (π1(M\U) ∗ π1(T 2 ×D2))/N,

where ∗ denotes the free product of groups, and N is the normal subgroup generated by elements
of the form (i◦λ)∗(z)·j∗(z)−1 for z ∈ π1(∂(T 2×D2)) (note that the basepoints of π1(T 2×D2) and
π1(∂(T 2×D2)) are taken to be λ−1(x)). By our choice of gluing diffeomorphism λ, we have that
λ∗({pt} × ∂D2) = µp · (γ′)q ∈ π1(∂(M\U)), whence (i ◦ λ)∗({pt} × ∂D2) = µp · (γ′)q ∈ π1(M\U).
Furthermore, j∗({pt}× ∂D2) = 1 ∈ π1(T 2×D2). Thus (i ◦λ)∗({pt}× ∂D2) · j∗({pt}× ∂D2)−1 =
µp · (γ′)q is a generator of N .

Note that π1(T 2 × D2) ∼= π1(T 2) × π1(D2) ∼= π1(T 2) is entirely carried by ∂(T 2 × D2) =
T 2×∂D2 = T 2×S1. In other words, the inclusion induced homomorphism j∗ : π1(∂(T 2×D2))→
π1(T 2 × D2) is surjective. Thus for any y ∈ (π1(M\U) ∗ π1(T 2 × D2))/N , any terms from
π1(T 2 × D2) in the expression of y can be written as j∗(zi) for some zi ∈ π1(∂(T 2 × D2)).
Using the relations introduced by N , we can rewrite each such term j∗(zi) as (i ◦ λ)∗(zi). Thus
every element of (π1(M\U) ∗ π1(T 2 × D2))/N can be written as an element of the subgroup
π1(M\U)/(N ∩ π1(M\U)). After discarding the generators of N not in π1(M\U), the lemma
follows.

As a result of Lemma 5.1.1, we will need to know the effect that removing a tubular neigh-
borhood of a Lagrangian torus has on the fundamental group of its ambient manifold. We thus
consider the following lemma, which limits the nontrivial elements introduced to the fundamental
group of a 4-manifold when any closed surface Σ with trivial normal bundle is removed. Note that
this lemma covers the cases when Σ is a Lagrangian torus or a genus g surfaces of self-intersection
zero, as both imply that the normal bundle of Σ is trivial. Though the result is rather intuitive,
we will state and prove it formally owing to its frequent usage in what follows.
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Lemma 5.1.2. Let M be a 4-manifold, and let Σ ⊂ M be a submanifold which is a closed
genus g surface of self-intersection zero. Let i : π1(M\Σ) → π1(M) be the inclusion induced
homomorphism. Then the kernel of i is the normal subgroup generated by a meridian of Σ.

Proof. We begin by fixing a basepoint in νΣ\Σ to be used for all of the fundamental groups
in the following discussion. Since the normal bundle νΣ is assumed to be trivial, we can fix
a trivialization νΣ ∼= Σ × D2. Therefore π1(νΣ) ∼= π1(Σ) × π1(D2) ∼= π1(Σ), and choosing a
standard presentation of π1(Σ) yields a presentation

π1(νΣ) = 〈c1, d1, . . . cg, dg |
g∏
j=1

[cj , dj ]〉.

Consider now the open subset (M\Σ)∩νΣ = νΣ\Σ, which can be thought of as the complement of
the zero section in the normal bundle. Note that by the above trivialization, this is homeomorphic
to Σ × D̂2, where D̂2 is the punctured disk, and hence is homotopically equivalent to Σ × S1.
Thus π1(νΣ\Σ) ∼= π1(Σ× S1) ∼= π1(Σ)× π1(S1) ∼= π1(Σ)× Z. We thus obtain the presentation

π1(νΣ\Σ) = 〈ĉ1, d̂1, . . . ĉg, d̂g, µ |
g∏
j=1

[ĉj , d̂j ], [ĉ1, µ], [d̂1, µ], . . . , [ĉg, µ], [d̂g, µ]〉.

Choose each of the ĉi and d̂i so that h(ĉi) = ci and h(d̂i) = di, where h : π1(νΣ\Σ)→ π1(νΣ) is
the inclusion induced homomorphism. Note that µ represents a meridian of Σ, and that h(µ) = 1.
Furthermore, fix a presentation

π1(M\Σ) = 〈S | R〉,

where S and R are respectively the sets of generators and relators of π1(M\Σ).

Let l : π1(νΣ\Σ) → π1(M\Σ) be the inclusion induced homomorphism. By the Seifert-van
Kampen theorem we can write

π1(M) = 〈c1, d1, . . . , cg, dg, S | R,
g∏
j=1

[cj , dj ], h(µ)l(µ)−1, h(ĉ1)l(ĉ1)−1, . . . , h(d̂g)l(d̂g)−1〉

= 〈c1, d1, . . . , cg, dg, S | R,
g∏
j=1

[cj , dj ], l(µ), c1l(ĉ1)−1, . . . , dgl(d̂g)−1〉,

since h(ĉi) = ci, h(d̂j) = dj , and h(µ) = 1. We can thus express each of the c1, d1, . . . , cg, dg in
π1(M) as words in S, and we obtain a simplified presentation

π1(M) = 〈S | R,
g∏
j=1

[l(ĉj), l(d̂j)], l(µ)〉.

Clearly, as
∏g
j=1[l(ĉj), l(d̂j)] = l(

∏g
j=1[ĉj , d̂j ]) = 1 in π1(M\Σ) (since

∏g
j=1[ĉj , d̂j ] = 1 in π1(νΣ\Σ)),

it follows that
∏g
j=1[l(ĉj), l(d̂j)] is in the normal subgroup generated by the relators in R, and

π1(M) = 〈S | R, l(µ)〉.
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The inclusion induced homomorphism i : π1(M\Σ) → π1(M) is the identity on the generating
set S, hence ker(i) = 〈l(µ)〉, where l(µ) is a meridian of Σ in π1(M\Σ).

Remark 5.1.3. Lemma 5.1.2 tells us that by removing a closed 2 dimensional submanifold with
trivial normal bundle (or a tubular neighborhood of such), the only non-trivial loops we might
create arise from the meridian of the surface. Combining Lemmas 5.1.1 and 5.1.2, we see that
although p/q-torus surgery (T, γ, p/q) introduces a relation µp · (γ′)q, it may create a nontrivial
loop µ ∈ π1(M(T, γ, p/q)).

Lemma 5.1.4. Suppose that Σ is a closed embedded surface of self-intersection zero in a 4-
manifold M whose meridian is nullhomotopic in M\Σ. Then π1(M\Σ) ∼= π1(M).

Proof. By Lemma 5.1.2 it remains only to show that the inclusion induced homomorphism
π1(M\Σ)→ π1(M) is surjective. For any loop in M , we can homotope it so that it is transverse
to, and thus disjoint from Σ. It is thus homotopic to a loop in M\Σ, and the lemma follows.

Lemmas 5.1.2 and 5.1.4 imply that the sequence

1 −→ 〈µ〉 −→ π1(M\νΣ) −→ π1(M) −→ 1

(where the middle two homomorphisms are the natural inclusions) is exact.

5.1.2 Luttinger sugery

Although the manifold M(T, γ, p/q) will not in general be symplectic, when p = 1 the above
surgery procedure does yield manifolds with a unique symplectic structure, determined by the
symplectic structure on the original manifold M . More specifically, by Theorem 9.3 of [10], there
is a tubular neighborhood U of T in M which is symplectomorphic to a neighborhood Uo of the
zero section of the cotangent bundle T ∗T ∼= T × R2, with its canonical symplectic structure (see
Example 2.2.4). Symplectically identify two such neighborhoods. Identify T itself with R2/Z2 so
that γ ⊂ T is identified with the first coordinate axis, and so that the positive direction of the
axis coincides with the orientation of γ. Letting (x1, x2) denote the corresponding coordinates
on T , with (y1, y2) being the dual coordinates on the cotangent fibers, the symplectic form is
given by ω = dx1 ∧ dy1 + dx2 ∧ dy2. Clearly in these coordinates, for small enough ε and ε′,
T ′ = {(x1, x2, ε, ε

′) | 0 ≤ x1, x2 < 1} is the Lagrangian pushoff of T . Likewise, fixing any
0 ≤ u, v < 1, a meridian of T is given by µ(t) = (u, v, w cos(t), w sin(t)), for 0 ≤ t ≤ 2π and small
enough w.

Choose r > 0 so that the set Ur = T× [−r, r]× [−r, r] is contained in Uo. Let s : [−r, r]→ [0, 1]
be a smooth function such that s(t) = 0 for t ≤ − r

3 , s(t) = 1 for t ≥ r
3 , and

∫ r
−r ts

′(t)dt = 0. For
each k ∈ Z, define the map Λk : Ur\Ur/2 → Ur\Ur/2 by

Λk(x1, x2, y1, y2) =

(x1, x2, y1, y2) when y2 <
r
2 ,

(x1 + k · s(y1), x2, y1, y2) when y2 ≥ r
2 .
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It is easy to see that Λk is a diffeomorphism for each k ∈ Z, and that it satisfies the desired
properties of having trivial action onH1(T ; Z) and having (Λk)∗ [µ] = [µ]+k [γ′] inH1(Ur\Ur/2; Z).
Likewise, a simple computation verifies that Λk preserves the symplectic form (i.e. (Λk)∗(ω) = ω).
We thus construct a new symplectic 4-manifold by removing the neighborhood Ur/2 of T from
M , and gluing Ur back by identifying the neighborhoods Ur\Ur/2 in M\Ur/2 and Ur by the
symplectomorphism Λk. More formally,

M(T, γ, 1/k) = (M\Ur/2) ∪Λk
Ur.

The surgery procedure described above on the symplectic 4-manifold M is called Luttinger surgery
and will still be denoted by (T, γ, 1/k). The isotopy class of the gluing map Λk is actually uniquely
determined by the action on the meridian µ, and hence uniquely determined by γ and k given
T . Thus M(T, γ, 1/k) has a symplectic structure uniquely determined up to isotopy, which is
independent of the choices made in the above construction (Proposition 2.2 in [6]). Away from
T the symplectic structures on M and M(T, γ, 1/k) will be the same.

5.2 Construction of Yn(m)

Having all the surgery tools in place, we proceed to construct a family of irreducible pairwise
nondiffeomorphic 4-manifolds {Yn(m) | m = 1, 2, 3, . . .} for each integer n ≥ 2. These families are
constructed in Section 2 of [4] by performing Luttinger and torus surgeries on Σ2 × Σn. Let ai
and bi (i = 1, 2) be the generators of π1(Σ2), and let ci and di (i = 1, . . . , n) be the generators of
π1(Σn) as shown in Figure 5.1. In order to choose disjoint Lagrangian tori on which to perform
our surgeries, we choose loops a′i and a′′i (for i = 1, 2) which are parallel and disjoint from the
generators ai of π1(Σ2) as in Figure 5.1. We likewise do the same for the other generators bi, cj and
dj (for i = 1, 2 and j = 1, . . . , n). As mentioned in Example 2.2.9, the cartesian products formed
from these loops will be Lagrangian tori in Σ2 × Σn under the product symplectic structure.

Recall that π1(Σ2×Σn) is generated by ai×{y}, bi×{y}, cj ×{x} and dj ×{x} (for i = 1, 2
and j = 1, . . . , n), which loops we also respectively denote by ai, bi, cj and dj . Furthermore, the
following relations hold in π1(Σ2 × Σn):

[a1, b1][a2, b2] = 1,
n∏
j=1

[cj , dj ] = 1,

[ai, cj ] = 1, [ai, dj ] = 1, [bi, cj ] = 1, and [bi, dj ] = 1.

We also have that e(Σ2 × Σn) = e(Σ2)e(Σn) = 4n − 4, and we can explicitly compute the
intersection form of Σ2 × Σn to show that σ(Σ2 × Σn) = 0.

We will also consider based loops (with basepoints the respective vertices x and y) arising
from the loops in Figure 5.1. For example, we can create a based loop from a′i by starting at
the vertex x located at the initial point of ai and the terminal point of bi, traversing backwards
along bi to the initial point of a′i, then following a′i until reaching bi again, finally returning in
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Figure 5.1: Σ2 × Σn with generators of Lagrangian tori.

the forwards direction of bi back to x. Likewise, a based loop is create from a′′i by beginning at
the initial point of bi, following it in the forward direction until reaching the initial point of a′′i ,
traversing a′′i in the forward direction, and returning to x by following bi again but in the opposite
direction. We likewise construct based loops from b′i, b

′′
i , c
′
j , c
′′
j , d
′
j and d′′j . We will not distinguish

in notation between the based loops and the unbased loops they arise from. Note that the based
loops ai, a′i and a′′i are all disjoint except for the base point x, and similarly for the other families
of loops.

For each n ≥ 2 and m ≥ 1 we define Yn(m) to be the manifold obtained from Σ2 × Σn by
performing the 2n+ 4 torus surgeries

(a′1 × c′1, a′1,−1), (b′1 × c′′1, b′1,−1), (a′2 × c′2, a′2,−1), (b′2 × c′′2, b′2,−1),

(a′2 × c′1, c′1,+1), (a′′2 × d′1, d′1,+1), (a′1 × c′2, c′2,+1), (a′′1 × d′2, d′2,+m), (5.1)

(b′1 × c′3, c′3,−1), (b′2 × d′3, d′3,−1), . . . , (b′1 × c′n, c′n,−1), (b′2 × d′n, d′n,−1).

Note that all of the surgered tori are disjoint. Furthermore, since Σ2×Σn carries a symplectic
structure, if m = 1 the surgeries are all Luttinger, implying that Yn(1) is a symplectic manifold.
We now proceed to determine the effect that the torus surgeries have on the fundamental group
of Σ2 × Σn:

Lemma 5.2.1 ([4, 12]). π1(Yn(m), (x, y)) is generated by the loops ai, bi, cj and dj (for i = 1, 2
and j = 1, . . . , n), and the following relations hold:

[b−1
1 , d−1

1 ] = a1, [a−1
1 , d1] = b1, [b−1

2 , d−1
2 ] = a2, [a−1

2 , d2] = b2,
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[d−1
1 , b−1

2 ] = c1, [c−1
1 , b2] = d1, [d−1

2 , b−1
1 ] = c2, [c−1

2 , b1]m = d2,

[a−1
1 , d−1

3 ] = c3, [a−1
2 , c−1

3 ] = d3, . . . , [a−1
1 , d−1

n ] = cn, [a−1
2 , c−1

n ] = dn,

[a1, c1] = 1, [a1, c2] = 1, [a1, d2] = 1, [b1, c1] = 1, (5.2)

[a2, c1] = 1, [a2, c2] = 1, [a2, d1] = 1, [b2, c2] = 1,

[b1, c3] = 1, [b2, d3] = 1, . . . , [b1, cn] = 1, [b2, dn] = 1,

[a1, b1][a2, b2] = 1,
n∏
j=1

[cj , dj ] = 1.

Proof. Let i ∈ {1, 2} and j ∈ {1, . . . , n}. To fix some notation for the following discussion, let
g, g ∈ {ai, bi} and h, h ∈ {cj , dj} with g 6= g and h 6= h. We will be interested in performing
surgery along the Lagrangian tori of the form g′ × h′, g′ × h′′, and g′′ × h′ (from (5.1)).

Consider first the torus g′×h′. We construct the Lagrangian pushoff of g′×h′ by constructing
individual isotopies of g′ and h′. Let G : S1 × [0, 1] → Σ2 be an isotopy from g′ to g. In other
words, G is a homotopy with G(·, 0) = g′, G(·, 1) = g, and such that G(·, t) is an embedding of
S1 into Σ2 for any t ∈ [0, 1]. Such an isotopy is easy to construct (cf. [12]), and can be chosen
so that the path of the isotopy is entirely contained within the trapezoid in Figure 5.1 whose top
edge is g′ and whose bottom edge is g. We likewise let H : S1 × [0, 1]→ Σn be a similar isotopy
from h′ to h. Clearly the product G ×H gives an isotopy of g′ × h′ to g × h, with the property
that the image of the embeddings G(·, t) × H(·, t) : S1 × S1 → Σ2 × Σn is a Lagrangian torus
for each t ∈ [0, 1]. Thus g × h is the Lagrangian pushoff of g′ × h′. Note that the pushoff g × h
contains the basepoint (x, y). Furthermore the pushoff of g′ × {y} in the Lagrangian framing is
the based loop g × {y}, while the pushoff of {x} × h′ is {x} × h (also a based loop).

Similarly, we can isotope g′′ and h′′ to parallel copies of g′′ and h′′ respectively, shown by
dashed lines in Figure 5.1 (the dashed lines have been omitted from the diagram of Σn for
clarity). These parallel copies are based loops and are given in π1(Σ2) and π1(Σn) as conjugates
gg(g)−1 and hh(h)−1 respectively. For example, the parallel copy of a′′1 is represented by b1a1b

−1
1

in π1(Σ2), while the parallel copy of c′′2 is given by d2c2d
−1
2 in π1(Σn). As above, we can construct

Lagrangian isotopies from whence it follows that the Lagrangian pushoff of g′′×h′ is homotopic to
the product (gg(g)−1)×h while the pushoff of g′×h′′ is homotopic to g×(hh(h)−1). For example,
the Lagrangian pushoff of a′′2 × d′1 is (b2a2b

−1
2 )× d1. Note that as mentioned in [12], although the

homotopy between g′′×h′ (respectively g′×h′′) and its Lagrangian pushoff needs to be Lagrangian,
the homotopy between (gg(g)−1) × h (respectively g × (hh(h)−1)) and the Lagrangian pushoff
does not need to be. Thus we can push gg(g)−1 and hh(h)−1 off to ensure that the paths of their
homotopies are disjoint from the Lagrangian tori we will be performing surgery on, and hence
won’t be affected by any of the surgeries. Furthermore the pushoffs of g′′×{y} and {x}×h′′ under
the Lagrangian framings are homotopic to (gg(g)−1)×{y} and {x}× (hh(h)−1) respectively. For
example, the pushoff of a′′1 ×{y} is homotopic to (b1a1b

−1
1 )×{y}, while the pushoff of {x}× c′′2 is

homotopic to {x} × (d2c2d
−1
2 ). Note that the paths of all the Lagrangian push-offs we’ve chosen

are disjoint from the other tori we will be performing surgery on; hence they will not be affected
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by these surgeries.

Finally, we find meridians of the Lagrangian tori. Since each of these tori have trivial normal
bundle, for a given torus T , any two meridians of T will be conjugate. Consider the torus g′ × h′

and the orthogonal torus g×h. These two tori intersect transversely in a single point. The torus
g×h contains the basepoint (x, y) and is Lagrangian; hence the commutator [g, h] of its generators
bounds a normal disk to g′×h′ in the Lagrangian framing. Upon removing a tubular neighborhood
of g′ × h′, we are left with a punctured g × h in the complement (Σ2 × Σn)\ν(g′ × h′). Consider
the boundary component of this punctured torus as a based loop (i.e. connect the boundary
component of the punctured torus to the basepoint (x, y) by a curve c). If the curve c is chosen so
that it lies entirely in the punctured torus (which is possible since the punctured torus contains
the basepoint), then we have that the based boundary component of the punctured torus is
homotopic to the commutator of the generators of g × h with some choice of orientation. Again,
this homotopy can be chosen so that its path lies completely in g × h and thus is disjoint from
the tubular neighborhoods of the Lagrangian surgery tori. This implies that a meridian to g′×h′

will be homotopic in the complement of the tubular neighborhoods of the Lagrangian surgery tori
to the commutator [g, h] (possibly with either (g)−1 or (h)−1 in place of g or h respectively). By
our above comments, any meridian of g′ × h′ will be conjugate to such a meridian.

For example, consider the surgery (a′1 × c′1, a
′
1,−1). The Lagrangian pushoff of a′1 × c′1 is

a1× c1, while the pushoff of the curve a′1×{y} is the based curve a1×{y}. A meridian of a′1× c′1
is homotopic in the complement to [b−1

1 , d−1
1 ]. By Lemmas 5.1.1 and 5.1.2, this surgery makes the

element [b−1
1 , d−1

1 ]a−1
1 trivial in the fundamental group of the newly surgered manifold. However,

the meridian [b−1
1 , d−1

1 ] may no longer be trivial; in particular, the elements b1 and d1 may not
commute in π1(Yn(m)).

As another example, consider the surgery (b′1 × c′′1, b′1,−1). The Lagrangian pushoff of the
torus b′1 × c′′1 is homotopic (in the complement of the tubular neighborhoods of the surgery tori)
to b1× (d1c1d

−1
1 ), while the pushoff of the curve b′1 is b1. A meridian to b′1×c′′1 is homotopic in the

complement of the tubular neighborhoods of the surgery tori to [a−1
1 , d1]. Arguing as above, we

see that this implies that [a−1
1 , d1] = b1 in π1(Yn(m)), but that [a1, d1] = 1 may no longer hold.

Each of the first 2n+ 4 relations in (5.2) are obtained in this way.

Note that since the new relations created through performing the torus surgeries arise from
gluing a disk {pt} ×D2 ⊂ T 2 ×D2 into the hole created by the removal of νT for some torus T ,
this relation will not be affected by any future surgeries provided they are performed on tori with
tubular neighborhoods disjoint from νT . Since all of our surgery tori were chosen to be disjoint,
the relations formed by any surgery procedures will not be affected by later surgeries (see also
Lemma 5.1.2).

The final 2n+6 relations in (5.2) are inherited from relations in π1(Σ2×Σn). By Lemma 5.1.2,
these relations will still hold after the surgeries. Geometrically, we can see this as follows: the
commutator relations from π1(Σ2 × Σn) will still hold in π1(Yn(m)) as the tori generated by the
elements in the commutators are disjoint from the surgered tori in (5.1), and thus are not affected
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by the surgeries. The final two relations [a1, b1][a2, b2] = 1 and
∏n
j=1[cj , dj ] = 1 also still hold in

π1(Yn(m)), as we can always find copies of both Σ2 and Σn which are disjoint from the tubular
neighborhoods of the surgery tori.

Since the torus surgeries neither affect the signature (by Novikov additivity) nor the Euler
characteristic, we have that σ(Yn(m)) = 0 and e(Yn(m)) = 4n − 4. We can choose surfaces
Σ2×{p} and {q}×Σn in Σ2×Σn which are disjoint from the tori in (5.1). These two symplectic
submanifolds intersect orthogonally with respect to the symplectic product structure on Σ2×Σn,
and thus satisfy [Σ2 × {p}] · [{q} × Σn] = 1. Furthermore, these surfaces have [Σ2 × {p}]2 =
[{q}×Σn]2 = 0, and will descend to surfaces of genus 2 and n in Yn(m), which we will denote by
Σ2 and Σn respectively. Recall that the Luttinger surgeries performed do not affect the symplectic
form of Σ2 × Σn away from the surgered tori. Since Σ2 × {p} and {q} × Σn are both symplectic
surfaces in Σ2 × Σn and were chosen away from the tori in (5.1), it follows that Σ2 and Σn are
both symplectic submanifolds of Yn(1) with the symplectic structure induced from the product
structure on Σ2×Σn. Furthermore, the surgeries will not affect the intersection of these surfaces,
whence we have [Σ2] · [Σn] = 1 and [Σ2]2 = [Σn]2 = 0. Since 2n − 4 of the geometrically dual
Lagrangian tori pairs (i.e. tori pairs of the form (g × h, g × h)) will be unaffected by the 2n+ 4
surgeries, for n ≥ 3, Yn(1) contains 4n − 8 Lagrangian tori, each of which can be chosen to be
disjoint from Σn.
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Chapter 6

Construction of Irreducible

Simply-Connected Symplectic

4-Manifolds

We now proceed with our main construction, by taking relatively minimal Lefschetz fibrations
as constructed in Sections 4.2 and 4.3, and performing fiber sum operations with the manifolds
Yn(m) constructed in Section 5.2.

6.1 General constructions

Let Σa and Σb denote closed Riemann surfaces of genus a > 1 and b > 0 respectively. Let
f : M → Σb be a relatively minimal Lefschetz fibration of M over Σb, with generic fiber F
diffeomorphic to Σa. Also assume that f has a section whose image S has self-intersection d in
M . Since M admits a Lefschetz fibration of genus a > 1, M also admits a symplectic structure ω
which can be chosen so both the section S and the fibers F are symplectic. Furthermore, since M
is assumed to be relatively minimal, by Theorem 1.4 of [33], M is a minimal symplectic manifold.

For an integer t > 0, any t distinct fibers will be pairwise disjoint, and each will intersect S
transversely in exactly one point. Choose such a t with the added property that t ≥ −d/2. Taking
the section S and t copies of F , we can symplectically resolve the t intersection points to yield a
symplectic surface of genus ta+ b (see Section 2.1 of [16]). Denote this surface by Σ. Note that
Σ represents the homology class t [F ] + [S] ∈ H2(M ; R) (i.e. [Σ] = t [F ] + [S]). Since [F ]2 = 0,
and [S]2 = d by assumption, the adjunction formula gives us that 〈c1(M,ω), [F ]〉 = 2 − 2a and
〈c1(M,ω), [S]〉 = d+ 2− 2b, whence

[Σ]2 = c1(M,ω) [Σ]− e(Σ)

= tc1(M,ω) [F ] + c1(M,ω) [S]− e(Σ)

= 2t+ d.
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Recall that our choice of t gives us that 2t + d ≥ 0. By symplectically blowing up at 2t + d

points of Σ, we obtain a symplectic manifold M̃ = M#(2t+ d)CP2, with symplectic submanifold
Σ̃ arising as the proper transform of Σ. Σ̃ is a genus ta + b surface, with self-intersection zero.
Furthermore

e(M̃) = e(M) + 2t+ d

σ(M̃) = σ(M)− 2t− d.

Lemma 6.1.1. Let ι̃ : Σ̃‖ ↪→ M̃\νΣ̃ be the inclusion map of a parallel copy of Σ̃ into the
complement of a tubular neighborhood of Σ̃ in M̃ . Then

π1(M̃\νΣ̃)

〈ι̃∗(π1(Σ̃‖))〉
= 1,

where 〈ι̃∗(π1(Σ̃‖))〉 is the normal subgroup of π1(M̃\νΣ̃) generated by the image of π1(Σ̃‖) under
the induced homomorphism ι̃∗ : π1(Σ̃‖)→ π1(M̃\νΣ̃).

Proof. As Σ was constructed by resolving the intersection points between t > 0 copies of the fiber
F and one copy of the section S, π1(Σ) will carry all of the generators of both π1(F ) and π1(S).
Viewing S as a parallel copy of the base Σb, we can see that π1(Σ) will carry the generators of
π1(Σb) as well. If Σ‖ is a parallel copy of Σ it will also carry all of the generators of both π1(F )
and π1(Σb). From Proposition 2.3.16, we have the following exact sequence

π1(F )
j→ π1(M)

f∗→ π1(Σb)→ 1,

where j is induced by the inclusion. Thus we have an isomorphism π1(M)/j(π1(F )) → π1(Σb)
sending the equivalence class of α ∈ π1(M) to the projection f∗(α). Since Σ‖ carries all of the
generators of both π1(F ) and π1(Σb), it follows that

π1(M)
〈ι∗(π1(Σ‖))〉

= 1,

where ι : Σ‖ → M is the inclusion. Blowing up along points of Σ will not alter π1(M), and the
proper transform Σ̃‖ of Σ‖ will be a parallel copy of the proper transform Σ̃ (which we can isotope
to be disjoint). Thus

π1(M̃)

〈ι̃∗(π1(Σ̃‖))〉
= 1.

Note that as the fiber F intersects the base space Σb transversely, F also carries a meridian of
Σb. By Lemma 5.1.2, this completes the proof.

6.2 Fiber sum construction of Pn(m, f)

Before stating the main theorem of this section, we recall that for integers n ≥ 2 and m ≥ 1 the
4-manifold Yn(m) constructed in Section 5.2 by Luttinger and torus surgeries on Σ2 × Σn has a

43



genus n submanifold Σn with self intersection zero. By choosing n = ta+b ≥ 2, since Σn ⊂ Yn(m)
and Σ̃ ⊂ M̃ are both submanifolds of the same genus with self-intersection zero, we can construct
the fiber sum

Yn(m)#ΨM̃

for some diffeomorphism Ψ : ∂(νΣ̃) → ∂(νΣn). When m = 1, Yn(1) is a minimal symplectic
manifold with symplectic submanifold Σn. The fiber sum operation can be done symplectically
so Yn(1)#ΨM̃ is a symplectic manifold and so that the symplectic and Lagrangian submanifolds
of M̃\νΣ̃ and Yn(1)\νΣn are preserved in Yn(1)#ΨM̃ (cf. [14]). For a suitable choice of gluing
diffeomorphism Ψ, we can ensure that Yn(m)#ΨM̃ is also simply-connected and irreducible.

Theorem 6.2.1 ([3]). Let f : M → Σb be a relatively minimal Lefschetz fibration as above, and
suppose that f has at least one non-separating vanishing cycle. Let n = ta+ b ≥ 2. For a suitable
diffeomorphism Ψ : ∂(νΣ̃)→ ∂(νΣn), the fiber sum

Pn(m, f) = Yn(m)#ΨM̃

along the surfaces Σ̃ and Σn is simply-connected, and satisfies

e(Pn(m, f)) = e(M) + d+ (8a+ 2)t+ 8b− 8,

σ(Pn(m, f)) = σ(M)− 2t− d,

χh(Pn(m, f)) = χh(M) + 2at+ 2b− 2,

c2
1(Pn(m, f)) = c2

1(M)− d+ (16a− 2)t+ 16b− 16.

Pn(1, f) is irreducible, minimal, symplectic, and if n = ta+ b ≥ 3, contains a symplectic torus T
of self-intersection 0 satisfying π1(Pn(1, f)\T ) = 1.

Proof. We begin by computing the Euler characteristic and signature of Pn(m, f):

e(Pn(m, f)) = e(M̃) + e(Yn(m))− 2e(Σn)

= e(M) + 2t+ d+ 4n− 4− 2(2− 2n)

= e(M) + 8n+ 2t+ d− 8

= e(M) + 8(ta+ b) + 2t+ d− 8,

σ(Pn(m, f)) = σ(M̃) + σ(Yn(m))

= σ(M)− 2t− d,

while the formulae c2
1(N) = 2e(N) + 3σ(N) and χh(N) = 1

4(e(N) + σ(N)) yield the other
characteristic numbers.

Recall that π1(Yn(m)) is generated by the based loops ai, bi, cj and dj for i = 1, 2 and j =
1, . . . , n, and that the relations in (5.2) hold. As above let Σ‖n ⊂ ∂(Yn(m)\νΣn) and Σ̃‖ ⊂
∂(M̃\νΣ̃) denote parallel copies of Σn and Σ̃ which lie in the boundary of the complements of
the tubular neighborhoods that we will be removing. Such parallel copies can be chosen since
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both surfaces have self-intersection zero. Fixing both a basepoint of the form (p, y) in the surface
Σ‖n (see Figure 5.1) and a curve connecting (p, y) to the basepoint (x, y) of Yn(m), we can fix a
presentation

π1(Σ‖n) = 〈ĉ1, d̂1, . . . , ĉn, d̂n |
n∏
j=1

[ĉj , d̂j ]〉,

with the property that the inclusion induced homomorphism i∗ : π1(Σ‖n) → π1(Yn(m)) satisfies
i∗(ĉj) = cj and i∗(d̂j) = dj for j = 1, . . . , n.

When forming the fiber sum Pn(m, f), we choose the gluing diffeomorphism Ψ so that the
induced homomorphism Ψ∗ sends the element of π1(Σ̃‖) which is represented by a non-separating
vanishing cycle of the Lefschetz fibration f : M → Σb to any one of ĉ1, d̂1, ĉ2 or d̂2 in π1(Σ‖n). For
definiteness, choose ĉ1. Although this non-separating vanishing cycle is non-trivial in π1(Σ̃‖), it is
nullhomotopic in M̃ (see Section 2.3.4). Thus ĉ1 is trivial in π1(Pn(m, f)), from which it follows
that c1 is also trivial.

Recall that [Σn]2 = 0. Note that since [a1, b1][a2, b2] is homotopic in Yn(m) to a meridian of
Σn, by Lemma 5.1.2 the kernel of the inclusion induced homomorphism i∗ : π1(Yn(m)\νΣn) →
π1(Yn(m)) is normally generated by [a1, b1][a2, b2]. Thus all of the relations which hold in
π1(Yn(m)) (see (5.2)), except for [a1, b1][a2, b2] = 1, will also hold in π1(Yn(m)\νΣn). In other
words, the following relations hold in π1(Yn(m)\νΣn):

[b−1
1 , d−1

1 ] = a1, [a−1
1 , d1] = b1, [b−1

2 , d−1
2 ] = a2, [a−1

2 , d2] = b2,

[d−1
1 , b−1

2 ] = c1, [c−1
1 , b2] = d1, [d−1

2 , b−1
1 ] = c2, [c−1

2 , b1]m = d2,

[a−1
1 , d−1

3 ] = c3, [a−1
2 , c−1

3 ] = d3, . . . , [a−1
1 , d−1

n ] = cn, [a−1
2 , c−1

n ] = dn,

[a1, c1] = 1, [a1, c2] = 1, [a1, d2] = 1, [b1, c1] = 1, (6.1)

[a2, c1] = 1, [a2, c2] = 1, [a2, d1] = 1, [b2, c2] = 1,

[b1, c3] = 1, [b2, d3] = 1, . . . , [b1, cn] = 1, [b2, dn] = 1,
n∏
j=1

[cj , dj ] = 1.

Note that by setting c1 = 1, the above relations imply that all of the ai, bi, cj and dj are trivial.
Thus π1(Yn(m)\νΣn)/〈c1〉 = 1. Since the image of c1 in π1(Pn(m, f)) is trivial, it follows that
the inclusion induced homomorphism

π1(Yn(m)\νΣn) −→ π1(Pn(m, f)), (6.2)

is also trivial.

Note that by identifying Σ̃‖ with Σ‖n using Ψ, we can see that the inclusion induced homo-
morphism π1(Σ̃‖) → π1(Pn(m, f)) will factor through (6.2) and will thus be trivial. Combining
this fact with the result from Lemma 6.1.1 that π1(M̃\νΣ̃)/〈ι̃∗(π1(Σ̃‖))〉 = 1, it follows that the
inclusion induced homomorphism

π1(M̃\νΣ̃) −→ π1(Pn(m, f))
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is also trivial. It then follows that π1(Pn(m, f)) = 1 by the Seifert-van Kampen theorem.

Since f : M → Σb is a relatively minimal Lefschetz fibration of genus a > 1 by assumption,
it follows from Theorem 2.3.12 that M is a minimal symplectic manifold. Thus by Corollary
3 of [22], the exceptional spheres of the 2t + d blowups are the only −1-spheres in M̃ . Since
each of these spheres intersect Σ̃, M̃\νΣ̃ does not contain an embedded symplectic sphere of self-
intersection −1. Moreover, since Yn(1) is minimal, Yn(1)\νΣn does not contain any such sphere
either. Pn(1, f) is thus minimal by Usher’s theorem (Theorem 2.3.9). By Taubes’ theorem (2.3.2),
since Pn(1, f) is a minimal, simply-connected, symplectic 4-manifold, it is also irreducible.

If n ≥ 3, recall that Yn(1) contains 4n− 8 Lagrangian tori of self-intersection zero which are
disjoint from Σn. Since the symplectic form on Pn(1, f) can be chosen to preserve the symplectic
and Lagrangian submanifolds of Yn(1), these tori will be Lagrangian in Pn(1, f). Letting T be
one such torus, by Theorem 2.2.10, we can perturb the symplectic form on Pn(1, f) making T

into a symplectic submanifold.

To compute π1(Pn(1, f)\T ), we set T = a′1 × c′′3 as in Figure 5.1 for convenience. From
Lemma 5.1.2, π1(Pn(1, f)\T ) is normally generated by the meridian [b−1

1 , d3] of T . In other words,
all of the relations in π1(Pn(1, f)), (including those in (6.1)), will still hold in π1(Pn(1, f)\T )
except possibly for the relation [b−1

1 , d3] = 1. The relations in (6.1) however, along with the fact
that c1 = 1 in π1(Pn(1, f)\T ) imply that b1 and d3 are both trivial, whence π1(Pn(1, f)\T ) =
1.

Remark 6.2.2. Applying gauge-theoretic arguments, we can show that the Seiberg-Witten in-
variants of the Pn(m, f) grow arbitrarily large as m goes to infinity. This implies that the set
{Pn(m, f) |m ≥ 1} contains infinitely many pairwise non-diffeomorphic manifolds. It also implies
that infinitely many of the Pn(m, f) are non-symplectic. Furthermore, for m ≥ 2, as Pn(m, f) can
be obtained from Pn(1, f) by performing a 1

m−1 -surgery on a nullhomologous torus in Yn(1)\νΣn,
it can be shown that Pn(m, f) must also be irreducible.

6.3 Fiber sum construction of Qn(m, f)

We can alter our above construction slightly, using Yn−2(m)#2CP2 when n ≥ 4 instead of Yn(m)
in our fiber sum. In particular, we can resolve the intersection between the surfaces Σ2 and Σn−2

in Yn−2(m). This yields a genus n surface represented by the class [Σ2]+[Σn−2] ∈ H2(Yn−2(m); Z).
Since

([Σ2] + [Σn−2])2 = [Σ2]2 + 2[Σ2] · [Σn−2] + [Σn−2]2 = 2,

this surface has will have self-intersection 2. Blowing up at two points on this surface yields
a genus n surface Σ′n of self-intersection 0 in Yn−2(m)#2CP2. When m = 1, the intersection
resolution and blow-ups can both be carried out symplectically, and hence Σ′n is a symplectic
submanifold of Yn−2(m)#2CP2 with the symplectic structure inherited from Yn−2(m).
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Theorem 6.3.1. Let f : M → Σb be a relatively minimal Lefschetz fibration as above, and
suppose that f has at least one non-separating vanishing cycle. Let n = ta+ b ≥ 4. For a suitable
diffeomorphism Ψ′ : ∂(νΣ̃)→ ∂(νΣn), the fiber sum

Qn(m, f) = (Yn−2(m)#2CP2)#Ψ′M̃

along the surfaces Σ̃ and Σ′n is simply-connected, and satisfies

e(Qn(m, f)) = e(M) + d+ (8a+ 2)t+ 8b− 14,

σ(Qn(m, f)) = σ(M)− 2t− d− 2,

χh(Qn(m, f)) = χh(M) + 2at+ 2b− 4,

c2
1(Qn(m, f)) = c2

1(M)− d+ (16a− 2)t+ 16b− 34.

Qn(1, f) is irreducible, minimal, symplectic, and if n = ta + b ≥ 5, contains a symplectic torus
T ′ of self-intersection 0 satisfying π1(Pn(1, f)\T ) = 1.

Proof. We begin by computing

e(Qn(m, f)) = e(M̃) + e(Yn−2(m)#2CP2)− 2e(Σ′n)

= e(M̃) + e(Yn−2(m)) + 2e(CP2)− 4e(D4)− 2e(Σ′n)

= e(M) + 2t+ d+ 4(n− 2)− 4 + 6− 4− 2(2− 2n)

= e(M) + 8n+ 2t+ d− 14

= e(M) + 8(ta+ b) + 2t+ d− 14,

σ(Qn(m, f)) = σ(M̃) + σ(Yn−2(m)#2CP2)

= σ(M̃) + σ(Yn−2(m)) + 2σ(CP2)

= σ(M)− 2t− d− 2,

while the other characteristic numbers follow as above.

Note that the exceptional sphere of each blow-up will intersect Σ′n transversely in a single
point. Let E be one of the two exceptional spheres. Then the intersection of E with νΣ′n is
a disk, and µ = E ∩ ∂(νΣ′n) is a meridian of Σ′n. Note that µ also bounds the intersection
of E with (Yn−2(m)#2CP2)\νΣ′n however, which is a disk in the complement of νΣ′n. Thus
[µ] = 1 ∈ π1((Yn−2(m)#2CP2)\νΣ′n). From Lemma 5.1.4 we conclude that

π1((Yn−2(m)#2CP2)\νΣ′n) ∼= π1(Yn−2(m)#2CP2) ∼= π1(Yn−2(m)),

as the blow-ups do not affect the fundamental group.

As in the proof of Theorem 6.2.1, we can fix a presentation

π1(Σn−2) = 〈c1, d1, . . . , cn−2, dn−2 |
n−2∏
i=1

[ci, di]〉 (6.3)
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and a path connecting the basepoint of Σn−2 to the basepoint of Yn−2(m)#2CP2 so that the
inclusion induced homomorphism into π1(Yn−2(m)#2CP2) maps each ci and dj to ci and dj

respectively. Letting the basepoint of Σn−2 also be the basepoint of Σ′n, we can consider each
generator as a loop in π1(Σ′n). Isotope Σ′n to a parallel copy Σ′‖n in ∂(νΣ′n). The image of the
basepoint of Σ′n at each t ∈ [0, 1] of this homotopy will give a path connecting the basepoint of
Σ′n to the basepoint of Σ′‖n . Joining this with the path connecting the basepoint of Σ′n with the
basepoint of Yn−2(m)#2CP2 yields a path connecting the basepoints of Yn−2(m)#2CP2 and Σ′‖n .
Using this basepoint connecting path, the image of c1 in π1(Σ′‖n ) is mapped under the inclusion
induced homomorphism to c1 ∈ π1(Yn−2(m)#2CP2).

Let Σ̃‖ denote a parallel copy of Σ̃ in ∂(νΣ̃). Choose the gluing diffeomorphism Ψ′ so that
Ψ′∗ maps the element of π1(Σ̃‖) represented by a non-separating vanishing cycle of the fibration
f : M → Σb to c1 ∈ π1(Σ′‖n ). With such a choice of Ψ′, the image of c1 is trivial in π1(Qn(m, f)).
Using the relations (5.2) and the fact that π1((Yn−2(m)#2CP2)\νΣ′n) ∼= π1(Yn−2(m)), we have

π1((Yn−2(m)#2CP2)\νΣ′n)/〈c1〉 = 1,

and hence the inclusion induced homomorphism

π1((Yn−2(m)#2CP2)\νΣ′n) −→ π1(Qn(m, f) (6.4)

is trivial. By identifying Σ̃‖ with Σ′‖n using Ψ′, the inclusion induced homomorphism π1(Σ̃‖) →
π1(Qn(m, f)) will factor through (6.4), and will thus be trivial. Since by Lemma 6.1.1 we have
π1(M̃\νΣ̃)/〈ι̃∗(π1(Σ̃‖))〉 = 1, it follows that the inclusion induced homomorphism

π1(M̃\νΣ̃) −→ π1(Qn(m, f))

is also trivial. By the Seifert-van Kampen theorem, it once again follows that π1(Qn(m, f)) = 1.

As Yn−2(1)#2CP2 and M̃ are both symplectic manifolds with symplectic submanifolds Σ′n
and Σ̃ respectively, the fiber sum Qn(1, f) is also symplectic.

As shown in the proof of Theorem 6.2.1, M̃\νΣ̃ does not contain any spheres of self-intersection
−1. Likewise, since Yn−2(1)#2CP2 is the blow up of a minimal symplectic manifold, the excep-
tional spheres are the only spheres of self-intersection −1 (by Corollary 3 of [22]), and hence there
will be no such spheres in (Yn−2(1)#2CP2)\νΣ′n. As in the proof of Theorem 6.2.1, it thus follows
that Qn(1, f) is minimal and irreducible.

Recall that Yn(m) contains 4n − 16 Lagrangian tori, each of which can be chosen disjoint
from both Σn−2 and Σ2. The images of these tori in Yn−2(1)#CP2 are disjoint from Σ′n, and as
in the proof of Theorem 6.2.1, will descend to Lagrangian tori in the fiber sum Qn(1, f). Let T ′

be any one of these tori, say a′1 × c′′3 for definiteness. As above, we can perturb the symplectic
form on Qn(1, f), so that T ′ becomes a symplectic submanifold of Qn(1, f). By Lemma 5.1.2,
π1(Qn(1, f)\T ′) is normally generated by the meridian [b−1

1 , d3] of T ′. As before however, since
c1 = 1 implies that b1 = d3 = 1, it follows that π1(Qn(1, f)\T ′) = 1.
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Remark 6.3.2. As with Theorem 6.2.1, employing gauge theoretic arguments we can show that
the set {Qn(m, f) | m ≥ 1} contains infinitely many pairwise non-diffeomorphic manifolds, and
infinitely many non-symplectic manifolds.
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Chapter 7

Geography Results

7.1 Characteristic numbers computations

Having finished all of the needed constructions, we now apply them to the symplectic geography
problem to find which lattice points in the (χ, c)-plane are now realizable as (χh(M), c2

1(M)) for
minimal simply-connected symplectic M . Recall that in Section 4.2 we defined the Lefschetz
fibrations

ϕg,u : Xg(u)→ Σk and ϕ̃g,u : X̃g(u2)→ Σk

for integers g, u ≥ 2, where k = u(g−1)+1. Applying Theorem 6.2.1 to these Lefschetz fibrations,
we obtain families

{Pn(m,ϕg,u) | m, g, u ≥ 1, n ≥ 2} and {Pn(m, ϕ̃g,u) | m, g, u ≥ 1, n ≥ 2} (7.1)

of simply-connected 4-manifolds. Recall that infinitely many of the manifolds in the above families
are pairwise non-diffeomorphic and non-symplectic, and that when m = 1 they are minimal and
symplectic. Combining the formulae in Section 4.2 and Theorem 6.2.1 yields

χh(Pn(m,ϕg,u)) =
5u
3
g3 +

(
3t− u

2

)
g2 +

(
t+

5u
6

)
g − u

c2
1(Pn(m,ϕg,u)) = 14ug3 + 2 (12t− u) g2 + 4 (2t+ u) g − 2(t+ 5u)

and

χh(Pn(m, ϕ̃g,u)) =
5u2

3
g3 + u

(
3t− u

2

)
g2 + u

(
t− 7u

6
+ 2
)
g + u(u− 2t− 2) + 2t

c2
1(Pn(m, ϕ̃g,u)) = 14u2g3 + 2u (12t− u) g2 + 4u (2t− 3u+ 4) g + 2u(2u− 8t− 7) + 14t.

Applying Theorem 6.3.1 to these constructions yields families

{Qn(m,ϕg,u) | m, g, u ≥ 1, n ≥ 2} and {Qn(m, ϕ̃g,u) | m, g, u ≥ 1, n ≥ 2}, (7.2)
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of simply-connected manifolds as above, with infinitely many pairwise non-diffeomorphic and
infinitely many non-symplectic manifolds. Again, those manifolds with m = 1 are minimal and
symplectic, and the families satisfy

χh(Qn(m,ϕg,u)) =
5u
3
g3 +

(
3t− u

2

)
g2 +

(
t+

5u
6

)
g − (u+ 2)

c2
1(Qn(m,ϕg,u)) = 14ug3 + 2(12t− u)g2 + 4(2t+ u)g − 2(t+ 5u+ 9)

and

χh(Qn(m, ϕ̃g,u)) =
5u2

3
g3 + u

(
3t− u

2

)
g2 + u

(
t− 7u

6
+ 2
)
g + u(u− 2t− 2) + 2t− 2

c2
1(Qn(m, ϕ̃g,u)) = 14u2g3 + 2u (12t− u) g2 + 4u(2t− 3u+ 4)g + 2u(2u− 8t− 7) + 14t− 18.

We similarly apply Theorems 6.2.1 and 6.3.1 to the Lefschetz fibrations

ψg,u : Zg(u)→ Σk and ψ̃g,u : Z̃g(u2)→ Σk

to obtain the families

{Pn(m,ψg,u) | m, g, u ≥ 1, n ≥ 2}, {Pn(m, ψ̃g,u) | m, g, u ≥ 1, n ≥ 2},

{Qn(m,ψg,u) | m, g, u ≥ 1, n ≥ 2}, and {Qn(m, ψ̃g,u) | m, g, u ≥ 1, n ≥ 2}.
(7.3)

These families all satisfy the same properties as mentioned above in relation to (7.1) and (7.2).
Their characteristic numbers are likewise given by

χh(Pn(m,ψg,u)) =
14u
3
g3 + (8t− 3u) g2 +

4u
3
g − u

c2
1(Pn(m,ψg,u)) = 40ug3 + 4 (16t− 5u) g2 + 6ug − 2(t+ 5u)

χh(Pn(m, ψ̃g,u)) =
14u2

3
g3 + u(8t− 3u)g2 + 2u

(
1− u

3

)
g + u(u− 2t− 2) + 2t

c2
1(Pn(m, ψ̃g,u)) = 40u2g3 + 4u(16t− 5u)g2 + 2u(8− 5u)g + 5u(u− 3) + 2t(7− 8u)

χh(Qn(m,ψg,u)) =
14u
3
g3 + (8t− 3u)g2 +

4u
3
g − (u+ 2)

c2
1(Qn(m,ψg,u)) = 40ug3 + 4(16t− 5u)g2 + 6ug − 2(t+ 5u+ 9)

χh(Qn(m, ψ̃g,u)) =
14u2

3
g3 + u(8t− 3u)g2 + 2u

(
1− u

3

)
g + u(u− 2t− 2) + 2(t− 1)

c2
1(Qn(m, ψ̃g,u)) = 40u2g3 + 4u(16t− 5u)g2 + 2u(8− 5u)g + 5u(u− 3) + 2t(7− 8u)− 18.

7.2 Main results

We can use any of the families of minimal simply-connected symplectic 4-manifolds in (7.1), (7.2),
and (7.3) to provide an alternate proof of the following theorem:
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Theorem 7.2.1. Let s ≥ 0 be an integer. Then there exists an integer λ(s) such that each integer
pair (j, 8j + s) with j ≥ λ(s) is realized as (χh(M), c2

1(M)) for some minimal simply-connected
symplectic M .

Proof. Suppose first that s ≡ 0 (mod 2). Choose some u ≥ 1 and g ≥ 2 so that

2
3
u2(g + 1)(g2 + 2g − 6)− 2 ≥ s.

Set
t = −s

2
+ u− 1 +

1
3
u2(g + 1)(g2 + 2g − 6).

These choices of parameters satisfy the conditions of Theorem 6.3.1, and hence the manifold
Qn(1, ϕ̃g,u) (where n = ta + b = tu(g + 1)(3g − 2) + u(g − 1) + t + 1 ≥ 5) will be minimal,
irreducible, simply-connected, and will contain a symplectic torus T of self-intersection zero with
π1(Qn(1, ϕ̃g,u)\T ) = 1. Futhermore, σ(Qn(1, ϕ̃g,u)) = s. Set λ(s) = χh(Qn(1, ϕ̃g,u)). We have
that Qn(1, ϕ̃g,u) realizes the point (χ, c) = (λ(s), 8λ(s) + s). Applying Theorem 3.2.2 with a =
j − λ(s) and b = 8j − 8λ(s), where j > λ(s), will realize all of the points (χ, c) = (j, 8j + s) for
j > λ(s).

Suppose now that s ≡ 1 (mod 2). Complete the above construction for s + 1, finding g, u,

and t so that Qn(1, ϕ̃g,u) is as above with σ(Qn(1, ϕ̃g,u)) = s+ 1. Set λ(s) = χh(Qn(1, ϕ̃g,u)) + 1.
Then all points of the form (j, 8j + s) with j ≥ λ(s) will be realized by applying Theorem 3.2.2
to Qn(1, ϕ̃g,u) with a = j − λ(s) + 1 and b = 7 + 8j − 8λ(s).

Since the families {Pn(m, f) |m ≥ 1} and {Qn(m, f) |m ≥ 1} contain infinitely many pairwise
non-diffeomorphic smooth 4-manifolds (see Remarks 6.2.2 and 6.3.2), the proof of Theorem 7.2.1
implies the following:

Corollary 7.2.2. For each integer s ≥ 0, there exists some λ(s) ∈ Z such that each integer
pair (j, 8j + s) with j ≥ λ(s) is realized as (χh(Mα), c2

1(Mα)) by infinitely many pairwise non-
diffeomorphic smooth 4-manifolds Mα (infinitely many of which admit no symplectic structure).

Clearly the values defined in Theorem 7.2.1 for λ(s) are not in general the smallest values
possible using these constructions. More care is needed to find these λ(s) values. Unfortunately,
there is neither a clear nor straightforward method to finding these minimal values. To aid
our discussion, we define M to be the union of the families (7.1), (7.2), and (7.3). We also
define Ms = {M ∈ M | σ(M) = s} for convenience. Recall that in constructing the above
families, we began with a genus a Lefschetz fibration f : M → Σb with a section whose image
has self-intersection d. We then chose t > 0 so that 2t+ d ≥ 0 and so that n = ta+ b ≥ µ, where
µ ∈ {2, 3, 4, 5} depends on the construction used and whether we require the resulting manifold to
contain a symplectic torus of self-intersection zero whose complement is simply-connected. These
restrictions on the parameters make it difficult to find minimal χh values in Ms, as choosing
smaller u values require us to choose larger g values to satisfy the constraints and vice versa.

52



Furthermore, even if we are able to find some M ∈ Ms with minimal χh(M) for a given s, by
applying Theorem 3.2.2 to a some N ′ ∈ Ms′ , with s′ > s and sufficiently small χh(N ′), it is
possible to construct N /∈ M with σ(N) = s and χh(N) < χh(M). Thus for a given signature
s, finding manifolds with minimal χh using the above constructions and Theorem 3.2.2 depends
not only minimizing χh over Ms, but also over Ms′ for s′ ≥ s.

We thus rely on a computer search to find manifolds with small χh values. Our results for
manifolds with signature 0 ≤ σ ≤ 99 are summarized in Table 7.1 and Theorem 7.2.3:

s λ(s)

0 25

1 25

2 24

3 27

4 26

5 51

6 50

7 53

8 52

9 59

10 59

11 59

12 59

13 59

14 58

15 58

16 58

17 58

18 58

19 58

s λ(s)

20 58

21 58

22 57

23 60

24 59

25 87

26 87

27 87

28 87

29 87

30 87

31 87

32 86

33 86

34 86

35 86

36 86

37 86

38 86

39 86

s λ(s)

40 85

41 85

42 85

43 85

44 85

45 85

46 85

47 85

48 84

49 87

50 86

51 146

52 146

53 146

54 146

55 146

56 145

57 145

58 145

59 145

s λ(s)

60 145

61 145

62 145

63 145

64 144

65 144

66 144

67 144

68 144

69 144

70 144

71 144

72 143

73 146

74 145

75 167

76 167

77 167

78 167

79 167

s λ(s)

80 167

81 167

82 166

83 166

84 166

85 166

86 166

87 166

88 166

89 166

90 165

91 165

92 165

93 165

94 165

95 165

96 165

97 165

98 164

99 167

Table 7.1: Small λ(s) values for 0 ≤ s ≤ 99.
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Theorem 7.2.3. For each pair of values (s, λ(s)) in Table 7.1, every point of the form (χ, c) =
(j, 8j + s) with j ≥ λ(s) is realized by a minimal simply-connected symplectic manifold. In other
words there exists a minimal simply-connected symplectic 4-manifold M with χh(M) = j and
c2

1(M) = 8j + s for each integer j ≥ λ(s).

Proof. Consider the twelve minimal simply-connected symplectic 4-manifolds in Table 7.2 and
their characteristic values:

M χh(M) c2
1(M) σ(M) e(M)

Q9(1, ϕ2,1) 24 194 2 94

P9(1, ϕ2,1) 26 212 4 100

Q17(1, ϕ2,2) 50 406 6 194

P17(1, ϕ2,2) 52 424 8 200

Q18(1, ψ2,1) 57 478 22 206

P18(1, ψ2,1) 59 496 24 212

Q19(1, ψ2,2) 84 720 48 288

P19(1, ψ2,2) 86 738 50 294

Q36(1, ψ2,3) 143 1216 72 500

P36(1, ψ2,3) 145 1234 74 506

Q34(1, ψ̃2,2) 164 1410 98 558

P34(1, ψ̃2,2) 166 1428 100 564

Table 7.2: Minimal simply-connected symplectic 4-manifolds with small χh values.

By Theorems 6.2.1 and 6.3.1, each of them contains a symplectic torus of self-intersection zero
whose complement is simply-connected. Each of the pairs of values (s, λ(s)) in Table 7.1 is
realized either as (σ(M), χh(M)) for some M in Table 7.2, or as (σ(N), χh(N)) for some N with
χh(N) = χh(M) + a and c2

1(N) = c2
1(M) + b, where M is again from Table 7.2 and the integers

a and b satisfy 0 ≤ b ≤ 8a (Theorem 3.2.2). For example, choosing M = Q19(1, ψ2,2), a = 2 and
b = 6, Theorem 3.2.2 implies that there exists a minimal simply-connected symplectic 4-manifold
N with

χh(N) = χh(M) + a = 86

and
c2

1(N) = c2
1(M) + b = 726,

whence σ(N) = c2
1(N) − 8χh(N) = 38. The point (χ, c) = (86, 726) is thus realized by some

minimal simply-connected symplectic manifold N . This point corresponds to the pair (s, λ(s)) =
(38, 86) in Table 7.1. All of the other pairs (s, λ(s)) in Table 7.1 are likewise realized, either by
applying Theorem 3.2.2 as shown in the case of (s, λ(s)) = (38, 86), or directly using manifolds
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from Table 7.2. These manifolds realize all of the points in the geography plane of the form
(χ, c) = (λ(s), 8λ(s) + s) for each pair (s, λ(s)) in Table 7.1.

Points of the form (χ, c) = (j, 8j + s) for j > λ(s) are also realized using Theorem 3.2.2. If
(λ(s), 8λ(s) + s) is realized directly by some M in Table 7.2, simply apply Theorem 3.2.2 to M
with a = j − λ(s) and b = 8(j − λ(s)) to obtain a minimal simply-connected symplectic manifold
N with (χh(N), c2

1(N)) = (j, 8j + s) for j > λ(s). If the point (λ(s), 8λ(s) + s) is realized by
Theorem 3.2.2 as (χh(M) + a0, c

2
1(M) + b0) for some M in Table 7.2, then points of the form

(j, 8j + s) for j > λ(s) will be realized by applying Theorem 3.2.2 to M using a = a0 + j − λ(s)
and b = b0 + 8(j − λ(s)).

Comparing these results with the regions Rj populated in [27] (see (3.1)), Theorem 7.2.3
populates 19 952 new lattice points in the (χ, c)-plane with minimal simply-connected symplectic
4-manifolds. Using similar methods, we can also find small λ(s) for s ≥ 100.

Corollary 7.2.4. For each pair (s, λ(s)) in Table 7.1 (with the possible exceptions of those with
s ≡ 0 (mod 16)), there exists a minimal simply-connected symplectic 4-manifold with signature s
that is homeomorphic to (2j − 1)CP2#(2j − s− 1)CP2 for each j ≥ λ(s).

Proof. As all smooth 4-manifolds with even intersection form satisfy σ ≡ 0 (mod 16) (Theo-
rem 2.1.6), all smooth manifolds with signature not divisible by 16 must have odd intersection
form. By Serre’s and Freedman’s classification theorems (Theorems 2.1.3 and 2.1.4), any such
simply-connected manifold M is homeomorphic to

(2χh(M)− 1)CP2#(2χh(M)− σ(M)− 1)CP2
.

Corollary 7.2.5. For each pair (s, λ(s)) in Table 7.1 (with the possible exceptions of those with
s ≡ 0 (mod 16)) and each j ≥ λ(s), there exist infinitely many pairwise non-diffeomorphic smooth
4-manifolds homeomorphic to (2j − 1)CP2#(2j − s − 1)CP2 (infinitely many of which admit no
symplectic structure).
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