Completeness of Fact Extractors and a
New Approach to Extraction with

Emphasis on the Refers-to Relation

by
Yuan Lin

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2008

©Yuan Lin 2008

AUTHOR'S DECLARATION

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This thesis deals with fact extraction, which analyzes source code (and sometimes related artifacts)
to produce extracted facts about the code. These facts may, for example, record where in the code
variables are declared and where they are used, as well as related information. These extracted facts
are typically used in software reverse engineering to reconstruct the design of the program.

This thesis has two main parts, each of which deals with a formal approach to fact extraction. Part
1 of the thesis deals with the question: How can we demonstrate that a fact extractor actually does its
job? That is, does the extractor produce the facts that it is supposed to produce? This thesis builds on
the concept of semantic completeness of a fact extractor, as defined by Tom Dean et al, and further
defines source, syntax and compiler completeness. One of the contributions of this thesis is to show
that in particular important cases (when the extractor is deterministic and its front end is idempotent),
there is an efficient algorithm to determine if the extractor is compiler complete. This result is
surprising, considering that in general it is undecidable if two programs are semantically equivalent,
and it would seem that source code and its corresponding extracted facts are each essentially
programs that are to be proved to be equivalent or at least sufficiently similar.

The larger part of the thesis, Part 2, presents Algebraic Refers-to Analysis (ARA), a new approach
to fact extraction with emphasis on the Refers-to relation. ARA provides a framework for specifying
fact extraction, based on a three-step pipeline: (1) basic (lexical and syntactic) extraction, (2) a
normalization step and (3) a binding step.

For practical programming languages, these three steps are repeated, in stages and phases, until the
Refers-to relation is computed. During the writing of this thesis, ARA pipelines for C, Java, C++,
Fortran, Pascal and Ada have been designed. A prototype fact extractor for the C language has been
created.

Validating ARA means to demonstrate that ARA pipelines satisfy the programming language
standards such as ISO C++ standard. In other words, we show that ARA phases (stages and formulas)
are correctly transcribed from the rules in the language standard.

Comparing with the existing approaches such as Attribute Grammar, ARA has the following
advantages. First, ARA formulas are concise, elegant and more importantly, insightful. As a result,
we have some interesting discovery about the programming languages. Second, ARA is validated
based on set theory and relational algebra, which is more reliable than exhaustive testing. Finally,
ARA formulas are supported by existing software tools such as database management systems and
relational calculators.

Overall, the contributions of this thesis include 1) the invention of the concept of hierarchy of
completeness and the automatic testing of completeness, 2) the use of the relational data model in fact
extraction, 3) the invention of Algebraic Refers-to Relation Analysis (ARA) and 4) the discovery of
some interesting facts of programming languages.

il

Acknowledgements

I would like to thank my supervisors, Richard Holt and Andrew Malton, for many years of guidance
and inspiration. They have constantly taken care of their graduate students by pointing out relevant
research, generating ideas, and finding work for them.

I thank my dissertation committee members, Professor Charlie Clarke, Professor Grant Weddell,
Professor Kostas Kontogiannis, and Professor Hausi Miiller, for their invaluable time and effort put
into reading my thesis.

I also thank my current and previous members of SWAG, in particular, Jingwei Wu, Lijie Zou,
Xinyin Dong, Cory Kapser and Ahmed Hassan. I appreciate their great friendship as well as their
insightful comments on many ideas in this dissertation.

I am grateful to my parents and my sister for their support from China. I wish to especially thank
my wife, Chunhui Meng for her support during the past six years of study and taking care of our
baby, Erica Lin.

v

Table of Contents

LIST OF FIGUIES ...eieiiieiiii ettt e et e e et e e et e e b e e estaeeesbeesaseeeasbeeessaeessseessseeansseessseeennes X
LSt OF TADLES ...ttt ettt sttt b e e bbbt ettt e et bt et b e et ne s Xi
Chapter 1 INtrOQUCTION.cuietieiieiie ettt et ettt ettt e et st e et e et e ebeesteesseeentesnbeenseeneenneenneas 1
1.1 HOW t0 VETify @ fACt @XITACTOT.....uiitieiieeieeiie ettt ettt ettt et ettt e teesaee e seneenee 1
1.1.1 Drawbacks in current approaches...........c.eeeuierierieiierieeie ettt esieesieesee et seeeseee e 1
112 MIOTIVALION 1.ttt ettt ettt sttt et b et e bt ese e bt et e emte bt ese et e eneeneennes 2
1.1.3 Completeness of @ fact EXITACLOTvevieiieiieiieriiecie ettt ettt e sae e ebeeseeseessaesseenenes 2

1.2 Algebraic Refers-to Analysis: A new approach to fact eXtractionccccceeeevereiienenceniennene 3
1.2.1 Current approach for extracting the Refers-to relation............coceeveviieniiinniniieceee, 4
1.2.2 MIOTIVALION 1.ttt ettt ettt sttt e he et e bt et e bt ese e bt et e ent e bt ese et e eneeneenees 4
1.2.3 Algebraic Refers-to Analysis (ARA) ...ooviiii ittt 5
1.2.4 Validation 0f ARA ..ottt ettt ettt 7

1.3 CONLIIDULIONS ...ttt sttt ettt e sa et sae e saeseeenne e 8
1.4 ThesiS OTZANIZAtIONeecuierereeeriereeteeteesteestesteesseesseesseesssessseasseasseesseessaesssesssesssessseasseesseesssessses 8
Chapter 2 Related WOTKcocviiiiiiiiieciicieeit ettt e e ettt ta e sbessbeesbeesbaessaessaessaesssessseenns 10
2.1 Extraction of the Refers-t0o relationcccooieiiiiiiiiiiiieeeee e 10
2.1.1 Ad hoC METROQ ...ceiiiiiee ettt et ae e 10
2.1.2 ArIDULE GTAMIMATSovevitiiiieieiiiiieieieee ettt ettt be e sesese e eseea 13

2.2 Data models for facts in the SOUICe COde........cccuiriiiiriiiiiiiiiiiiice e 18
2.2.1 Conceptual models for extracted factS..........cceiviuiieiiiiiiie e 18
2.2.2 Storage models for eXtracted faCtS.........ccvviiiriiiiiiieie e 18
2.2.3 SCREIMAS ... ettt ettt e b et ettt ettt sttt et 19

2.3 Application of relational algebra in software engineeringc.occeevveevuierierieneeeieeieeieeieans 20
2.3.1 Program analySiscceerierieiiieie ettt ettt ettt ettt et e sttt et et esatesnteenneenreeneen 20
2.3.2 Software repository XPlOTationcceevierieiiiiiieiieieeriee ettt ese e 21
2.3.3 Software architecture reCOVery and rePAIT.........cccuieeierieeriierieeie ettt see e 21

2.4 Relational algebra SOftWare tOOISccuieeiierieiiicicetee et 22
Chapter 3 Completeness of fact @XIraACtIONeeruieriierierie ettt ettt ettt e e sieeseeeeeeenee 24
TR B 6215 (0T L8 13 T) AU 24
3.2 Compiler phases and ASGSccouiiiiiiiiiieieeeee ettt et ettt et steeteeteebeesteesseesnneenneenne 25
3.3 Schemas and interchange fOrmatsccceeviiiieiieiie e 25
3.4 Completeness Of fACt EXITACTOTS.eiuuiiiieiieteerieeeieeee ettt ettt ettt et et e et e e steesaeeseeeeneeenee 27

3.4.1 Four levels of COMPIELENESScooveveuiriieieiiieieieiceeec e 27

3.4.2 Hierarchy of COMPIELENESScoovvveviiiiiieieiiiiieieieeeete et 28
3.4.3 Semantic COMPIETENIESSc.coviueuiuiirieiiiiieiet ettt 29
3.4.4 Relative COMPIETENESS.c.ouiiiiieeiiieieiiiieiete ettt 29
3.5 Validating CPPX's semantic COMPIEENESS........ceeerviieiiiieiiieeiieecieecieeeeiteeeree e e sreeeeaeeseree s 32
3.5.1 Why are assembly codes ap and a; identical?cccoooeiinireiineicieceee, 32
3.5.2 Suite Of tESt PIOZIAIMSvouvevinieiiieiiieiieieteeeett ettt ettt s e se s seeseneeseneas 34
3.5.3 The 1esolution ProbIEM........cc.ciiieiiiieiiieicieteeeeeee e 34
3.6 RCPPX: Recovering source from factS........cccvveiieeiieiiieriiesiesiesieere et siae e esve e ese e 35
3.6.1 SUTTIXING SCTIPE oottt 37
3.6.2 NESEA SYNEAK ...vieiieiiiiieieiiie ettt b et b e s s s s s s s esens 38
3.0.3 TXL SCTIPES .vuiveiietiieieieieteteste ettt ettt sttt et st s essese e et assesesesessesesesesseseeseneeseneas 39
3.7 Errors found in CPPX ..ottt 41
3.8 Conclusions and fUture WOTKooiiiiiii et 42
Chapter 4 Algebraic Refers-to Analysis (ARA) as a new approach to fact extraction.............ccce..... 43
4.1 Traditional approaches to fact EXIraCtioN.........ccveviierieriieeiieeie et et ere e eaeesieesaaeseaeenne e 43
4.1.1 Facts and their classifiCationocoveiieriiriiieieeee e 44
4.1.2 Importance of Refers-t0 relationcceevvierierieiieiie ettt siae e ees 44
4.1.3 Traditional approaches to extracting Refers-to relation............cccceoevieiinineniicnniiee 45
4.2 Motivation toward a relational approach to fact eXtenSIONc..eeververviiieirieerieesiee e eie e 46
4.3 Mathematical notation: Relational al@ebracccccveviiiiiiiiiieiiecieciccie e 47
4.3.1 Binary relational al@eDIa..........cccveiiiiiiiiiiiiieiieriie ettt sre e s erae e 48
4.3.2 N-ary relational @lZEDIacccviiiiiiiiiiiiieiece ettt b e e sreesreesaaesrae e 49
4.4 Problem defINTIONooiiiiiiiieiiieeeie ettt ettt ettt ee e enes 49
4.5 ARA PIPCIINES...ccuiieieiii ettt ettt ettt ettt e et e st e e ete e e ebeessteeessseeesbeeessseessseeensaaensseeensseensses 50
4.5.1 TRIEE-StEP PIPCIINEC...cceuiiiiiiiieiiieciie ettt ettt e e et e et e e et eeaeeessbeeestaeessseessseeensseennseeas 50
4.5.2 Tables and graphs used for summarizing the three-step pipelineccceevevvevviieerieennnennn 57
4.5.3 MUlti-phase PIPELIINES......cccviiiiiiiiiiieiiie ettt ettt e e e e sbeeestaeestseessbeeesseesnseeas 58
4.6 Validation OFf ARA ...ttt ettt ettt et ettt e saeeenneens 59
4.7 CRAPLET SUIMIMATY ..eutiiiiieeiieeiieeteeettesteesteeetteesteesteeteesteesaeeaseesnseenseeaseesseesseeasseenseenseeseesseesnnesnnenns 60
Chapter 5 ARA FOT C ..ottt ettt e e e et e et e e st e e e baeessbeeeasbeessseeenseeesseensseeas 61
5.1 C syntax related to Refers-to relationccccecvieiiiiiiiiiiiiee et e 61

S5.1.10CCUITENCES TN € oo 61

5.1.2 Scopes in the C Lan@UAZE..........cocvieiiuiieiieciee ettt ettt et vee et eessaeessbeeeeseesesee e 63
5.1.3 Visibility and name hidingccoevuieiiiiiiiieiie et 64
5.2 OVerview Of ARA TOT € ..oooiiiiiie ettt ettt et ettt e s aee e e 64
5.3 Stage one: Resolving unqualified OCCUITENCEScoviriiiiieiieiieiiee e 65
5.3.1 Basic Fact EXtraCtioN.cccvovoiiiiiiiririeieieieeicteeeee s 65
5.3.2 NOTIMALIZATION ..ottt ettt ettt h et sb e et e b e st et e sae e st enaeeneenee e 65
5.3.3 BINding FOIMUIAScccvieiiiiiiiiieiccieete ettt ettt e b stbeesbeesbeebeessaesasessseesneenns 67
5.4 Stage two: Resolving qualified OCCUITENCES........ccviiiiiiiiiieiieiiesie ettt ees 67
5.4.1 Basic Fact EXEraCtiON.......coouiiiieiiiiieiiee sttt 68
5.4.2 NOTINALIZATION ¢ttt ettt ettt e ettt e es e e e e et e e st e sseeaeeseeseeneeeseeneenseeneeneenne 70
5.4.3 BINding FOIMUIASeoovieiieiiiciiciceie ettt ettt bestbeeabeesseesbeessaeseeesaseesneenns 72
5.5 CRAPLET SUIMIMATY ...eecuviieereeeiieeiieeeeteeeteeestteeeteeetreessseeesseeessseesssseessseesssesensseessseeassssensseesseeensses 72
Chapter 6 ARA fOT JAVA ...cuviiiiiiieiiccieciece ettt st ettt te e tb e s st e esbeesbeesbeessaessaessaesssessseanns 73
6.1 Java syntax related to Refers-t0 relation..........ccccvevieiiiiiiiiieiieicsee e 73
6.1.1 OCCUITENCES 1N JAVA....iiutiiiieiiiiiiieiieee ettt ettt ettt et e s e st e s 73
6.1.2 SCOPES TN JAVA 1.evieiiieeiiie ettt ettt et e et e e st eesteestbeeesseeessaeesseesnsaeessseessseesnsseenssenans 74
6.1.3 Visibility and name hidingcccoeeieriiiiiiiiieiiie ettt s eseae e e 74
6.2 Overview Of ARA fOT JaVA ..ot e e e 75
6.3 Stage One: Resolving unqualified OCCUITENCESccviieriiiiiiiieiiieeieeeiee et e 76
6.3.1 BasiC FaCt EXTIACHIONeeitiiitiiiiiiiieee ettt ettt ettt 77
6.3.2 NOTMALIZALION ...ttt ettt et e b e bt esae e eat e et e e beenbeesbeesaeeenaeenne 78
0.3.3 BINAING ...ttt sttt b et s s s esenas 82
6.4 Stage Two: Resolving qualified OCCUITENCESccueeviiiriieiieiieiieiee e 82
6.4.1 Basic Fact EXTraCtiON.......ccouiiiiiiiiiiieie ittt 83
6.4.2 NOTINALIZATION ...ttt ettt ettt et ettt ettt et e b e st et e saeeneenbeeneeneene 83
0.4.3 BINAING ..eovvieiieiiieeie ettt ettt ettt e st e s e e saesabeanseeste e saessseasseesseanseenseensaesseessseensennns 85
0.5 CRAPLET SUMIMATYeetieetiesiiesiiesteeteeteeteesteesteestaesseessseasseasseessaesssesssesssesssessseeseesseesseesssesssennns 85
Chapter 7 ARA fOT G oottt ettt sttt e ettt et e sae st e s sbesabeesseenseensaessaessaesseesnsennns 86
7.1 C++ syntax related to the Refers-to relation...........cocceveiiiiieiienieniee e 86
7.1.1 OCCUITENCES TN CA ottt ettt et e be ettt e b e e 86

7. 1.2 SCOPES TN Crt ottt ettt ettt et e st esaesateesbeesbe e saesssessseesseensaensaessaesseensseensennns 87

vil

7.1.3 SUD-0DJECT LATLICES ..eeuviieiiiiiiie ettt ettt et e et e e et e et e e sbeeestaeessseessseaensseeesseeenns 91

7.1.4 Other issues related to the Refers-to relationc.ccooeiiiiiiiiiiiiiieee e, 93
7.2 OVerview Of ARA FOT Crt ittt ettt ettt e e b nee e 93
7.2.1 Phases in ARA fOT CH oottt ettt ettt st e enseas 93
7.2.2 Inside each phase of ARA for C++: Trinary hiding relationcccocovevvieniiiieeieeneennen. 93
7.3 Resolving unqualified occurrences in ordinary Statements...........c.eeeveereeereerieeieerieenieenieeneeenees 95
7.3.1 Basic Fact EXTraACHIONceviiiiiiiiiiitieieie et et 95
7.3.2 NOTIMALIZATION ..ttt sb et s et e bt eee et e sb e et e bt eeeenteeneennes 97
7.3.3 BInding FOTMULAS.c.eooiiiiiieiieiie ettt ettt s e b e esbeessaessaessaesnneans 103
7.4 CRAPLET SUIMIMATYeovvieiiieieetiesiiesiesteeteeteeseesteesseestaesssessseasseessaesssesssesssessseensesssessseesssessenns 104
Chapter 8 Advantages of ARA, applications of ARA and miscellaneous............cccceeveereeriereeennns 105
8.1 ARA is elegant, concise and insightful.............coccoriiiiiiiiiii e 105
8.1.1 Phases and stages makes ARA CONCISE......cccueirieririiiiiiieii ettt seee e 105
8.1.2 ARA only uses a small number of Basic Fact EXtraction............ccoceeeeveriencnennenceene 107
8.1.3 Normalization formulas are elegant and insightful..........c...cccoocieviiiiiiiiniiie e, 107
8.1.4 Binding formulas are the same for most 1|anguagesccceevverierieriieeiieee e 110
8.2 Validating ARAooiiiie ettt ettt sttt eeaae et e beebeeneennes 111
8.2.1 Validating claim 1: Phases and stages must satisfy the language standard 111

8.2.2 Validating claim 2: Basic Facts must represent the source code according to the language
1723 14 -« SO ROSRR P RUSRRSRPRRR 112

8.2.3 Validating claim 3: Formulas for Normalization and Binding must satisfy the language

SEANAATA ...ttt ettt e b bt e bt eh et e a b e e bt e beenbeeeneeeaneens 113
8.3 All major components of ARA are supported by existing softwareccccceeevererreeeeneeennn. 114
8.4 ARA has a wide range of applications in reverse engineeringccceeeveervveeeseeerveeesnveennnes 115
8.5 MISCEIIANEOUSeeniieiieiiie ettt sttt ettt b e s bt e st e esteeabe e beesbeesaeesnneens 116

8.5.1 Resolution of Syntactic ambiGUItIEScecvieriiieriiieeieeeiieeeteeeiee et e eaee e ereeeeveeesreeas 117

8.5.2 Macros, templates and ENETICSeeruieriieriieriieeie et ettt et eesetesee e eeeteesteesneesneeens 117

8.5.3 Features not supported by current ARA.........cooiiiiiiiiiii et 117
8.6 CRAPLET SUMITIATYeeviieiiieiit et esieeetieette et et et esteesteesteeeateenteeabe e seesseesaeeeneeenseenseenseesseesneesnseans 118

Chapter 9 CONCIUSIONSccviiiiiieiiie ettt e ettt et e et e e b e eteeessbeeebeeesbeeessaeesssaessseeesseesssseenns 119
9.1 Contributions t0 fACt EXIrACTION.c.uiiuiiiiiiiiieieeree ettt et e st esaee e ens 119
0.2 FULUIE WOTK ...ttt ettt sttt ettt e bt e sbe e e st e eat e e bt e bt e nbeesaeesnteens 121

9.2.1 Applying ARA to dynamically scoped 1anguagesccoeccvevieriiniiniieenieniesie e 121

viii

N 05 1S% 1 1a B < 123
Appendix A Visibility and name hiding rules in Java...........ccoooiiiiiiiiiiineeeeeeeee 123
Table 4. HIdING TUIESoueiiiiiiieeiieeese ettt ettt et e et e eateeabeenbeebeesseesneeenees 124
Appendix B List of formulas in ARA for Cht. ..o 125
1. Phase for namespace deClarationsc.eeevuieerieeieiiieiiieeieeeieeeere e et e esebeeeveeestaeessseeeseneessneeans 126
2 Phase fOr USINE-AITECTIVES.....eiiiuiieiiieeiiieeieeeiee et e et e et e e sreeeteeesibeessreeesbeessseeesseesssesensseensseeans 127
3 Phase for class declaration.............couiiieiiiiieiie et 128
4 Occurrences in class member defiNitioN.eoiieiiiiiiiiiiie e 128
5 Occurrences in template defiNItioN.........cceeiieiieiie et 129
6 Occurrences in template INStANIAtION.eeiieiieiieeie ettt e see e e e e 130
7 OrdiNary SEALEIMEIIES eetiertieitieiiteeite et et eesttestteetteeteete e teesseesaeeeneeesseenseesseesseesnseenseenseenseenseesneas 131
310 U0 Tea¥:1 o) 1 RSO SUUP RO U PRSPPI 132

X

List of Figures

Figure 1.1 Three-step PIPEIINEccvviiiieiieiie ettt ettt e bt beesreestaestaestbeesseesseesseesssesssessseesseessens 6
Figure 1.2 MUlti-phase PIPELINEccveiiiiieeie ettt sttt eve e steestbestaeesbeesseesseesaesssessseesseesseesses 7
Figure 3.1: CPPX faCt €XITACTOT. ..ecuvviiiiieiiieeiieeetieeiee et eeieeette et e et e et e e st e esebeesssaeensaeessseesnsneennns 24
Figure 3.2: Validating three Kinds of COMPIEtENESS......cc.vevviirieiiiiiiiiiereeieesiee e 28
Figure 3.3: Relative completeness of E and T.cccoooiiiiiiiiiiiicic e 31
Figure 3.4 Validating Completeness 0f CPPX..........ccioiiiiiiiiiiiiicee e 33
Figure 3.5: TA from example C program as a diagramcceeeeveeerireniieniiieenieeeieeesiieesveeeeeee e 38
Figure 4.1 Relational COMPOSITIONcuuieiiiiiiiiieiiieciie et e eiee et et e et eeeaeeebeeeeaeeesbeeeaaeessseeesnseennnas 48
Figure 4.2 The three-step PIPELINGcccuviiiiiiiciieciiecie ettt e e e seb e eeeeeeenas 50
Figure 4.3 HasName for EXampPle 4. 1. ...cccooiiiiiiiiieii ettt st 52
Figure 4.4 HasKind for EXample 4.1cooiiiiiiiiii ettt 52
Figure 4.5 Contains for EXamPpPle 4.1cooiiiiiiiiiie ettt e 53
Figure 4.6 Relation B; (solid arrows) and an edge of H (dashed arrows).........ccccceevvveiieiiiiiiencenenne. 56
Figure 4.7 The Refers-to Relation for Example 4.1........c.oooviviiiiiiiiiiieiieieee e 57
Figure 4.8 Data flow graph of the three-step pipelineccceveveveiiriiieiienieriece e 58
Figure 4.9 Multi-phase PIPELINeEccvevvieiieiie ittt ettt reestaestaesaeesaessseenbeesseenseennns 59
FIigure 5.1 ARA 0T € .ooviiiiiieceeeet ettt ettt ettt sttt e et e e et e e ssaessaeessessseenseenseenseennns 63
Figure 5.2 Stages in ARA {01 C..oovieiiiiieiece ettt ettt e stae s taesnaessseenbeesseesaennes 65
Figure 5.3 Data flow graph for Stage tWo........ccceeviiiriiiriieicciecee ettt re et es 68
Figure 5.4 Relations for EXampPle 5.1cooiiiiiiiiiiicii ettt st veesve e e aae e 70
Figure 5.5 Relations for EXampPle 5.2cccviiiiiiiiiiiiieieeceestese ettt esve e eea e 71
Figure 5.6 Relations for EXample 5.3coiiiiiiiiiiieiieieeeetesee ettt s aa e 72
Figure 6.1 Data flow graph for resolving unqualified 0CCUITENCES.........eevvieeiiieiieeiiieie e 76
Figure 6.2 Relation Contains (C) and Inherits (I) for Example 6.1ccccooevviiiiiiiiiiiiiiiecee e 79
Figure 6.3 Data flow graph for qualified OCCUITENCESccueeeviiiiiiiieiieciiecee e 83
Figure 7.1 Sub-object lattice for non-virtual base Class...........cccviveviiiiiieniiieeie e 91
Figure 7.2 Sub-object lattice for virtual base Classcccceviiiiiiiiiieiiieeeeeee e 92
Figure 7.3 Data Flow for resolving unqualified 0CCUITENCES........cccuivuieiieiieiieiie e 96
Figure 7.4 Relation Parent (P) and Inherits (I) for Example 7.4.......ccccoooiiiiiiiiiieieeeceeeee, 100
Figure 7.5 Relation Parent (P) and Uses (S) in Example 7.5.....ccccooiiiiiiiiiiiiieeeeeeeeeeen 101
Figure 8.1 Multi-phase PIPEliNecc.eeiiiiiieiieiieiesie ettt sttt ettt et e e eneeas 107

List of Tables

Table 2.1 Language Standardscceevuieriierieriesieste vt et et e st e staessaeesseesseebeesssesssesssessseesseessaens 11
Table 2.2 Features related to Refers-to relationcooeiiiioiiiieiiiiiee e 12
Table 2.3 Fact eXtractors SUTVEYEMc.eeiuieriieriieriesieiteeeteereesteesteesteessaessaeesseesseesseesssesssesssessseessesssaens 13
Table 2.4 Common extensions to Attribute Grammarccooerieriereiiesereeiese et 16
Table 2.5 The data models for reverse engineering toolS...........eccveeeruiieriieeiiie e 19
Table 2.6 Examples of application of relational algebra in software engineeringc.cccccveeeuvennne 22
Table 2.7 Relational algebra SOftWare t0OLScccuiieeiiiiiiiieie ettt 23
Table 3.1 Four levels of completeness for a fact eXtractor.........occveieeiieriieeiiie e 28
Table 4.1 Example entitieS in SOUICE COACccuuiiiiiieiiiiiiiieeiieesieeeiteesveeereeeiveesreeesaeessbeeesneessseeans 44
Table 4.2 Example of relations in SOUICE COAE.......ovuuiiiiiiiiiiieiieiiesie et 45
Table 4.3 Facts in EXAMPIE 4. 1. c..ooiiiiiiieiieie ettt st et ettt ente e enbeenseens 51
Table 4.4 Summary of three-step pipeline for ALGOL-60 like languagesccccoecvevveiiieneeneenienne 57
Table 5.1 Basic Facts for unqualified 0CCUITENCESecuiiiieiieiieiie et 66
Table 5.2 Basic FACts fOI StAZE tWO ..ecuviiiieiieiieciieeiiecte ettt ettt siae e et teeseaessaessseenseenseesaens 68
Table 6.1 OCCUITENCES TN JAVEA......eeiiiieiieiiiiiete ettt sttt sttt ebe et et s eeeeees 74
Table 6.2 Basic Facts for unqualified 0CCUITENCES.........cccviiiieriieiieiie et 77
Table 6.3 Basic Facts for qualified OCCUITENCES.ccviiiiiiiiiieriiecie ettt 84
TaDIE 7.1 CArF OCCUITEIICES ...ttt ettt ettt e ettt e et e a et e bt et e bt es e et e steest e beeaeensenaeeneeteaneennenees 88
Table 7.2 Basic Facts needed in resolving unqualified occurrences in ordinary statements................ 95
Table 8.1 Seven languages 1N CASE StUAICS.cvviirvieriieriieierie ettt steestaesaesaeereereesbeesaeeseeeeenas 106
Table 8.2 Formulas for Visibility (V) for different 1languagesc.coocvevveviieeiieicieenieeeeeeseesveee 109
Table 8.3 Formulas for Hiding (H) for different 1languagescccceevvievievieiiecie e 110
Table 8.4 Binding formulas for different [anguages............ccocveeeiiieiiiiiiiieciie e 111
Table 8.5 Test results 0n OPen SOUICE SOTEWATE........ccevuiiiiiieiiieeieeeiee et eree e e evee e 115

xi

Chapter 1

Introduction

Fact extraction is the process of analyzing software artifacts and presenting the information about in a
convenient form. It is a crucial step in the process of understanding the relationships among a
system's elements and is usually automated by a software tool called fact extractor.

Over the past decade, many fact extractors have been developed to extract facts from different
kinds of software artifacts, such as source code, object files, version control logs and so on. Various
fact extraction approaches have been devised based on the theory of formal language and
compilation. However, some fundamental questions remain open. In this dissertation, I answer two of
them. First, how can we verify a fact extractor automatically? Second, compiler construction
approaches such as Attribute Grammars are time consuming and error prone to use in fact extraction.
Can we find a fact extraction approach that is reliable and easy to implement? This dissertation
presents new solutions to these questions. The next two sections provide more detail about them.

1.1 How to verify a fact extractor

Fact extraction from source code is a fundamental activity for reverse engineering and program
comprehension tools, because all subsequent activities depend on the data produced. Creating such a
fact extractor is a challenging problem, especially for complex source languages such as C++
[DMHO1] [FSH+01]. Consequently, it would be useful to have a convenient means to validate a fact
extractor. Currently, test suites and benchmarks are the primary tools for this task [SHE02]
[MNLI96][AT98]. However, there are serious difficulties in justifying the test suite and in carrying out
the tests on large input.

1.1.1 Drawbacks in current approaches

Conceptually, writing a test suite for a fact extractor is straightforward; it is similar to writing a test
suite for a compiler. The difficulties appear when evaluating the output from a fact extractor. First,
what is the standard for judging whether the answers correct. The extracted facts follow a variety of
schemas, ranging from the abstract syntax tree level to the architectural level. They could be stored in
a variety of formats, such as an in-memory repository or in a human-readable intermediate format,
such as GXL [WinO1]. In addition, the extracted facts that contain some variances might still be
useful in practice. For example, we can use a fact extractor that translates (x >= 1) as (x > 0) when x
is an integer, because the compiler GCC front end carries out the translation. .

Second, software tools for correlating the extracted facts with the original code are lacking and the
task is often carried out by human. Writing a tool to check the accuracy of facts as specified by a

1

schema can be as difficult as writing an extractor itself. The feasibility of writing such a tool also
seems in doubt because validating whether two arbitrary programs have the same meaning is known
as un-decidable. As a consequence, benchmarking the fact extractor has been limited small hand-
crafted inputs.

1.1.2 Motivation

The motivation for completeness of a fact extractor comes from CPPX, a fact extractor based on
union grammars [DMHO1]. It is composed of a series of transformations from GCC internal
representations of compilation units to facts specified by the Datrix Schema [BelO1]. More
importantly, throughout all the transformations, the compilation unit (as GCC internal representation
or facts) is compliant to the union grammar of the GCC internal representation and Datrix Schema.

Besides being a fact extractor, CPPX proves that there exist transformations that map the source
code into the extracted facts using the union grammar approach. Program transformation tools such as
TXL also use this approach, which makes it possible to create recovery transformations that map the
extracted facts back into the source code.

The CPPX approach motivates the research in validating fact extractors in two ways. First, the
extracted facts and the original code are closely related and comparing these two is therefore easier
than comparing two arbitrary programs. Second, we can choose the convenient form of representing
facts when we compare the extracted fact and source code, either comparing two copies of the source
code or comparing two copies of extracted facts. The concept of completeness of fact extractor is a
result of this motivation.

1.1.3 Completeness of a fact extractor

This thesis builds on the concept of semantic completeness of a fact extractor, as defined by Tom
Dean et al [DMHO1], and further defines source, syntax and compiler completeness. One of the
contributions of this thesis is to show that in particular important cases (when the extractor is
deterministic and its front end is idempotent), there is an efficient algorithm to determine if the
extractor is compiler complete. This result is surprising, considering that in general it is undecidable if
two programs are semantically equivalent, and it would seem that source code and its corresponding
extracted facts are each essentially programs that are to be proved to be equivalent or at least
sufficiently similar.

The concept of completeness is elegant on paper, but is it useful in practice? To answer this
question, we validated the completeness of CPPX. Perhaps the most obvious approach to validate
CPPX is to run it against a large test suite of source programs, and to check that the extracted factbase
for each test is correct. This approach would be very expensive, as it requires extensive manual work
to do the checking or to create putatively correct factbases for comparison to CPPX generated

factbases. As we will explain in Chapter 3, our approach to validation of CPPX uses a test suite of
programs, but avoids this manual step.

The work involved two major surprises. First, we were surprised to discover that the assembly code
for an original source program and for the version of the source program recovered from its extracted
factbase were identical. Second, we were surprised to find a mechanical test for a special case of a
generally undecidable problem. Combining these two surprises, we developed a method for an
automatic validation for semantic completeness of a fact extractor. These results (Part 1 of the thesis)
are described in more detail in Chapter 3. We will now overview Part 2 of the thesis.

1.2 Algebraic Refers-to Analysis: A new approach to fact extraction

Facts in source code fall into three categories: lexical facts, syntactic facts and semantic facts. In
compiler construction, the extraction of lexical and syntactic facts have a formal basis (parsing theory
and formal languages) that is highly practical and have been widely used in fact extraction.

However, no formalism is widely used for the extraction of semantic facts, even though semantic
analysis approaches such as Attribute Grammars have been formalized and shown to have promise in
compiler construction. The fact is that even with the help of software tools, writing a fact extraction
based on Attribute Grammars is time consuming and error prone.

This thesis assumes that traditional lexical analysis and syntactic analysis have been done, and then
demonstrates how key aspects of fact extraction, the Refers-to relation in particular, can be elegantly
specified using mathematical relations. Because many software tools support relational algebra, the
new approach presented in this thesis requires minimal coding.

The Refers-to relation is the relation between referential occurrences of an identifier and its
definitional occurrence. Consider the following C program.

int Xi;

void () {3
nt Xg4;
X5+

3}

For convenience, occurrences and blocks in examples in this thesis are assigned unique integers.
There are three occurrences of identifier x, i.e. occurrences 1, 4 and 5. Among them, occurrences 1
and 4 are definitional occurrences and occurrence 5 is a referential occurrence, and occurrence 5
refers to occurrence 4. So, the Refers-to relation consists of a single pair <5, 4>,

Among semantic facts, the Refers-to relation is critical, for the following reasons. First, the Refers-
to relation is a fundamental concept in programming languages. Programming language
specifications, textbooks and critics of programming languages all spend considerable effort writing

3

about it. Extracting the Refers-to relation is also a critical step in compilation and program
comprehension [App98]. Second, we can derive other static semantic facts based on the Refers-to
relation and lexical and syntactical facts straightforwardly. When lexical and syntactical facts are
represented as relations, the task of extracting other static semantic facts can be implemented as
simple SQL statements. Third, the Refers-to relation is a key to understand the architecture of
software systems [BHB99] [FHCO1]. These reasons explain why we have concentrated on the
Refers-to relation in this thesis.

1.2.1 Current approach for extracting the Refers-to relation

Currently, two approaches, ad hoc method and Attribute Grammars, are widely used in extracting the
Refers-to relation. Based on language standards such as ISO C++ standard [C++03], ad hoc method is
used the most often in fact extraction. Language standards communicate the rules for the language
effectively and provide guidance for fact extraction and compiler construction. But they also have
drawbacks. There are no software tools that can implement the language standards directly.
Implementing these language standards manually using ad hoc method is time consuming and error
prone.

Attribute Grammars were introduced in 1968 and some compiler construction tools have been
developed based on Attribute Grammars. However, Attribute Grammars are not convenient for
formalizing the Refers-to relation for two reasons. First, its formalism is not complete. It only
formalizes the movement of information on the parser tree (or abstract syntax tree) and the rules on
the Refers-to relation are hand coded instead of being formalized. It is also hard to link the Attribute
Grammar back to the language standards and see whether the Attribute Grammars are correct.
Second, the Attribute Grammars are inconvenient and hard to understand, especially compared with
well-written language specifications such as ISO C++ standard and Java language specification. As a
consequence, building a fact extractor based on Attribute Grammars is time consuming and error
prone, even with the help of software tools.

1.2.2 Motivation

The thesis is partly motivated by the relational data model [Cod70][Cod82] and its applications in
software engineering. As discussed in the related work (Chapter 2), many problems in reverse
engineering and program comprehension can be formalized as relational algebra problems. The
relational algebra model has the advantages of simple data structures, mathematically defined
operations and a wide range of software tools that support it. Inspired by the relational data model, |
invented Algebraic Refers-to Relation Analysis (ARA).

ARA introduces a new approach for specifying fact extraction. It differs from Attribute Grammars
in three ways. First, in Attribute Grammar, fact extraction is a process of decorating the parse tree. In
ARA, fact extraction is a query to find pairs of occurrences of identifiers that satisfy certain

4

conditions. For example, one of the conditions requires that two occurrences of identifier have the
same name.

Second, Attribute Grammars specify the transportation of data on the parser tree, while ARA
represents facts in the source code as relations and stores them in a relational database or an ASCII
file.

Finally, Attribute Grammars require programmers to write code to implement the rules on the
Refers-to relation. ARA translates these rules into relational algebra formulas and runs them on a
relational database or other existing software tools. Because relational algebra is closely related to
predicate logic [RG00], ARA formulas are similar to rules written in natural language and therefore
are easy to be verified against language standards. In addition, many software tools including
relational database management systems support ARA formulas. As a result, the major parts of ARA
require no coding.

1.2.3 Algebraic Refers-to Analysis (ARA)

In its simplest form, ARA extracts the Refers-to relation in three steps, Basic Fact Extraction,
Normalization and Binding. Collectively, these steps are called three-step pipeline. For a practical
language such as C and Java, ARA is extended into a multi-phase pipeline. The following gives more
detail about the pipelines.

1.2.3.1 Three-step pipeline

For simplest examples (see Chapter 4), the Refers-to relation can be extracted in three sequential
steps, which we call the three-step pipeline (see Figure 1.1).

Step 1. Basic Fact Extraction. The information (facts) in the source code is represented as
relations, which are called Basic Facts. This step is implemented using a scanner and parser. The
computation of the Refers-to relation only needs a few simple facts from the source code.

Step 2. Normalization. Using a set of relational algebra formulas, the Basic Facts are converted
into Normalized Facts that are almost language independent. Each language has its own rules as to
what kinds of occurrence are compatible, what regions of code text can be referred to by an
occurrence and so on. These rules are translated into relational algebra formulas, which are used in
this step.

Step 3. Binding. The Refers-to relation is computed from the Normalized Facts in the Binding
step. In this step, all facts ARA needs have been extracted from the source code and stored as the
Normalized Facts. Binding is a query to find the relation of occurrences of identifier that satisfy four

Binding Conditions. The result of the query is the Refers-to relation.
5

The three-step pipeline is designed based on language standards. In particular, Basic Fact
Extraction is based on the syntax of the language. Normalization and Binding are basically the
translation of rules in the language standards.

Basic Fact

y

Normalization ——p Binding

Extraction

Figure 1.1 Three-step pipeline

1.2.3.2 Multi-phase pipeline

The real world programming languages is complex. The Refers-to relation of some occurrences
depends on the Refers-to relation of other occurrences and we have to compute the Refers-to relation
using several iterations. ARA solves this problem by introducing the multi-phase pipeline (see Figure
1.2).

Each phase in the multi-phase pipeline resolves a subset of identifier occurrences such as all
occurrences in the import declarations (in Java) or all occurrences in the ordinary statements. The
union of results from phases produces the Refers-to relation for occurrences in the program. The
language standards imply that some occurrences must be resolved before others. For example, the
occurrences in the import declaration (in Java) affect the Refers-to relation of occurrences in the
ordinary statements. Therefore, occurrences in the import declaration are resolved in an earlier phase
than occurrences in the ordinary statements. As a result, ARA resolves occurrences in the import
declaration in one phase and occurrences in the ordinary statements in a later phase.

Within each phase, there can be at most two stages. Stage 1 resolves the unqualified occurrences in
the current phase such as occurrence of x in x++. Stage 2 resolves the qualified occurrences such as
occurrence y in X.y. Each stage has three steps, Basic Fact Extraction, Normalization and Binding, as
we have seen in the three-step pipeline. The results from the previous phases and stages are used by
the current phase or stage.

The thesis shows that with the multi-phase pipeline, ARA can compute the Refers-to relation for C,
Java, CPP, C++, Fortran, Pascal and Ada. The major concepts of the thesis have now been
introduced. Now, let us consider the contributions of the thesis.

Normalization Normalization
Binding Binding

1 1 1 1
1 1 1 1
. Phase 1 | i Phase 2 |
| | | |
| | | |
! Stage 1 ! ! Stage 1 !
1 1 1 1
| | — |
| Basic Fact Extraction | | Basic Fact Extraction |
i ! o ! i
1 1 1 1
1 1 1 1
i Normalization i i Normalization i
1 1 1 1
| ! | ! |
i Binding i i Binding i
| Lo |
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
| | | |
' Stage 2 ' ' Stage 2 '
| | | |
1 1 1 1
| Basic Fact Extraction | | Basic Fact Extraction |
| | |
1 1 1 1
1 t 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

__

Figure 1.2 Multi-phase pipeline

1.2.4 Validation of ARA

Validation of ARA means to demonstrate that ARA satisfies programming language standards such
as ISO standards. We validate ARA by showing that it is a transcription of the programming language
standards, which produces formulas in set theory and relational algebra. For example, formulas for
ARA for the Java language comprise a multi-phase pipeline. Validation of ARA for Java consists of
proving the following three claims.

1. Phases and stages must satisfy the language standard,
2. Basic Facts must represent the source code according to the language standard;

3. Formulas for Normalization and Binding must satisfy the language standard.

Section 8.2 will give the detail of how this validation is done. It will show that rule x in the
language is transcribed into a phase (or stage) y in ARA. Then, it will show the transcription is
correct using predicate logic, set theory and relational algebra.

1.3 Contributions

The thesis makes a number of contributions to fact extraction and reverse engineering, as summarized
here.

1. Inventing the concept of hierarchy of completeness and the automatic testing of
completeness

The completeness of fact extractor is a measure for determining whether a fact extractor is accurate
enough to be useful in reverse engineering. We can classify fact extractors into different levels
based on their completeness. We can also validate how far a fact extractor is from achieving certain
level of completeness.

2. Use of the relational data model in fact extraction

We formulate the extraction of the Refers-to relation as a query to find occurrences that satisfy the
Binding Conditions. To extract the Refers-to relation, we work on a few facts in the source code
that are represented as relations.

3. Inventing Algebraic Refers-to Relation Analysis (ARA)

The three-step pipeline and multi-phase pipeline are designed and applied to seven statically
scoped languages, including C, Java, C++, CPP, Fortran, Pascal and Ada, based on the language
standards.

4. Discovery of some interesting facts of programming languages

During the design of ARA, some interesting aspects of programming languages are discovered. For
example, ARA only needs binary relations for C, CPP, Java, Fortran, Pascal and Ada. But we need
both binary relation and trinary relations in ARA for C++. This implies, in a mathematical sense,
that C++ is a more complex language than these other languages.

1.4 Thesis Organization

The dissertation is organized as the following. Chapter 2 discusses research work related to ARA.
Part 1 of the thesis (Chapter 3) details my work on the completeness of fact extractors. Part 2 of the
thesis (Chapters 4, 5, 6, 7 and 8) focuses on ARA. Specifically, chapter 4 gives the overview of ARA

8

while chapters 5, 6 and 7 present how ARA computes the Refers-to relation in C, Java and C++
programs. Chapter 8 summarizes the advantages of ARA and clarifies certain issues. Finally, Chapter
9 concludes the dissertation.

Chapter 2

Related work

This chapter presents the research work related to ARA. In specific, Section 2.1 explains the
specification of extraction of the Refers-to relation. Section 2.2 explains the data models for
representing facts. Section 2.3 presents the application of relational algebra in software engineering.
Finally, Section 2.4 presents some software tools that support relational algebra.

2.1 Extraction of the Refers-to relation

The Refers-to relation is a key component of every programming language. Besides ARA, there are
mainly two ways of implementing the extraction of the Refers-to relation, ad hoc method and
Attribute Grammars, which are explained in the following.

2.1.1 Ad hoc method

Ad hoc method is based on the informal specification of the Refers-to relation in the language
standards and implements the extraction of the Refers-to relation manually. The language standards
describe the rules for the Refers-to relation in natural language and also provide examples to help
readers to understand the rules. They are flexible and more importantly, specify the subject at the
right level of abstraction. As a result, they communicate the rules for the language effectively and
provide guidance for fact extraction and compiler construction.

But they also have drawbacks. As for the Refers-to relation, there are no software tools that can
implement rules in these standards directly. And implementing the rules manually is time consuming
and error prone.

Because language standards are often referred to in this thesis, we give some detail about them
here. The language standard usually first gives an overview of the Refers-to relation and then clarifies
the specific rules as the rules are needed. During the writing of this thesis, the standards (informal
specification) of seven programming languages are studied, including C, CPP, C++, Java, Fortran,
Pascal and Ada. These programming languages are statically typed. The language standards are listed
in Table 2.1. Also listed in the table is the clause where the standards address the concept of Refers-to
relation. All these standards use the concept of scope of declarations to specify the Refers-to relation.

10

Language Standards Overview of Refers-to Relation
Ada ISO/IEC 8652:1995(E) 8.2 Scope of declarations
C ISO/IEC 9899:1999 6.2.1 Scopes of identifiers, 6.2.3
Name spaces of identifiers
CPP ISO/IEC 9899:1999 6.10.3 macro replacement
C++ ISO/IEC 14882:2003 3.3 Declarative regions and scopes;
3.4 Name lookup
Fortran ISO/IEC 1539:2004 16.1 scope of global identifiers; 16
scope of local identifiers
Java The Java Language Specification, 3™ 6.3 scope of a declaration; 6.4
Edition Members and inheritance; 6.5
Determining the meaning of a name
Pascal ISO 7185:1990 (standard Pascal) and 6.2 blocks, scopes, activations, and
ISO/IEC 10206:1990 (extended Pascal) states

Table 2.1 Language standards

2.1.1.1 Language standards vs. ARA

Now, consider the specific rules for the Refers-to relation. Table 2.2 lists the features for Refers-to
relation in the seven languages. As a reminder, the list includes features in the latest versions of the
languages and some features might not be in a given language in the original design. For example,
inheritance is added to Ada after Ada95. The consequence of such enhancements is that the languages
are becoming alike, at least from fact extraction’s point of view.

Because the standards are written in natural language, it is not surprising to find that the
descriptions vary quite a bit from one standard to another, even for the same feature. For example, the
following is the description of name hiding in ISO/IEC C++ standard (clause 3.3.7).

A name can be hidden by an explicit declaration of that same name
in a nested declarative region or derived class...

In a member function definition, the declaration of a local name
hides the declaration of a member of the class with the same name,
The declaration of a member in a derived class (clause 10) hides the
declaration of a member of a base class of the same name, ...

11

Language ‘ Standard Refers-To Relation Features

C ISO/IEC 9899:1999 [C99] | Qualification, containment, order of occurrences

CPP ISO/IEC 9899:1999 [C99] | Order of occurrences

Java Java Language Qualification, containment, single inheritance, import
Specification, 3" Ed.
[GISBO5]

C++ ISO/IEC 14882:2003 Qualification, containment, order of occurrences,
[C++03] multiple inheritance, namespace using-directives,

namespace alias, argument-dependent name lookup

Fortran ISO/IEC 1539-1:2004 Containment, uses clause, contains clause, interface
[For04] clause

Pascal ISO/IEC 10206: 1990(E) | Qualification, containment, order of occurrences, uses
[Pas90] clause, import/export clause

Ada ISO/IEC 8652:1995(E) Qualification, containment, order of occurrences, single
[Ada95] inheritance (Ada95 only), redefine

Table 2.2 Features related to Refers-to relation

The above description is more concise than the similar description in the Java language specification,
which is the following.

A declaration d of a type named n shadows the declarations of any
other types named n that are in scope at the point where d occurs

throughout the scope of d.

A declaration d of a field, local variable, method parameter,
constructor parameter or exception handler parameter named n
shadows the declarations of any other fields, local variables, method
parameters, constructor parameters or exception handler parameters
named n that are in scope at the point where d occurs throughout the
scope of d.

A declaration d of a method named n shadows the declarations of
any other methods named n that are in an enclosing scope at the
point where d occurs throughout the scope of d.

In general, the specification in ISO/IEC C/C++ [C++03] standard and Java language specification
[GISBO5] is closer to the relational algebra formulas used in ARA.

12

2.1.1.2 Ad hoc method and fact extraction

Most compilers and fact extractors are written using ad hoc method. During the writing of this thesis,
a survey of existing fact extractors was carried out. The fact extractors studied are listed in Table 2.3.
The goal of the survey is not be complete but to confirm that writing a fact extractor using existing
approaches is a time consuming and error prone task.

Table 2.3 classifies fact extractors into three categories based on the technique they employ. The
first row includes fact extractors that use only scanners. Although these fact extractors are relatively
easy to implement, they are in general not accurate due to the lack of parsers.

The second row includes the fact extractors that consist of scanner, parser and semantic analyzer.
These fact extractors are similar to compiler front end and therefore, time consuming to develop. In
addition, testing these fact extractors is also time consuming.

The last row includes the fact extractors based on the output from a compiler. The fact extractors
listed here use the output from GCC because GCC is open source software. These fact extractors are
significantly simpler than the compiler front end. However, these fact extractors are extensions to a
compiler, not stand alone software systems.

Technique Refers-To Relation Features
Scanner only MultiLex [CCO00] [CCO03], Cscope [Csc04], AWK [AKW79]
Compiler front end Sniff [Bis92][BKMS95], GENOA [Dev92], CIA [CNR90],

A* [LR95], Rigi [MK88], Reprise [RW91], FAMIX
[S0C99], TkSee/SN [TkS03]

Using output from a CPPX[CPPO02], GCC XML [GX], gccXfront [HMPO03],
compiler (GCC [GCCO02]) | XOgastan [APMVO03]

Table 2.3 Fact extractors surveyed

2.1.2 Attribute Grammars

Attribute grammars are a specification of computations and dependence based on a formal calculus
introduced by Knuth [Knu68]. They are well known as a formal technique for compiler construction.
Most AG generators use an abstract syntax tree as an intermediate representation. Each symbol on the
tree is associated with some (semantic) attributes. The semantic specifications in AGs are defined as
attribute computations (attribution rules) associated with production rules of context free grammar.
The value of an attribute cannot be accessed outside the context of the production rule. Thus a
production rule can be considered as a specification unit, where an inherited attribute is an input and
a synthesized attribute is an output of the context of the production rule. The computation of attributes
has no side effects and is independent of parsing actions. They provide a notation for specifying

13

relationships among computations on ASTs. The programmers describe only individual computations
and where they are invoked, and a tool deduces both a traversal strategy and a strategy for storing
computed values.

The definition of an attribute grammar starts with the definition of an underlying context-free
grammar. A context-free grammar is G = (N, T, P, Z) where N is the set of non-terminals, T is the set
of terminals, P is the set of productions, and ZeN is the start symbol. The set V=N U T is called the
vocabulary. Each production p € P has the form p: X->a where X eN and ae V*.

An attribute grammar augments a context-free grammar by adding attributes and attribute
computations. It is a quadruple AG = (G, A, R, B), where

G is a context-free grammar,

A is a set of attributes associated with each symbol in V,
R is a finite set of attribute computations

B is a finite set of plain computations.

The tree structure defined by the context-free grammar is then decorated. Each production
describes a context consisting of a node and its children (if any). Attribute values decorate the nodes,
attribute computations specify whom these values are related to, and plain computations extract
information for other process.

Example 2.1 describes primitive expressions. It defines four non-terminal node types (Expr, Add,
Sub, and Const) and 3 terminal node types (/nteger, *+’, and ’-’). The children of the node type Add
have the selector names Lop, *+’, and Rop. Attribute computations are mainly written as assignments
of target language expressions to attributes and are enclosed in { } brackets. Then attribute
computations describe the evaluation of expressions. Attribute definitions are in enclosed in []
brackets. The node types Expr and Integer define one attribute named Value of type INTEGER. The
subtypes Add, Sub, Const, and Zero inherit the attribute Value from Expr.

At a tree node, the attributes of this node and the attributes of the children are accessible. Attributes
of the current node or of the left-hand side of a rule are denoted just by their name. The subtype Zero
inherits the computation of the attribute Value from the base type Expr, whereas the node types Add,
Sub, and Const overwrite it with node type specific computations. The value for the attribute of the
node type Integer has to be provided by a scanner and parser.

Expr = [Value: INTEGER] { Value :=0; }

Add = Lop: Expr '+ Rop: Expr { Value := Lop.Value + Rop.Value; }
Sub = Lop: Expr -’ Rop: Expr { Value := Lop.Value — Rop.Value; }
Const = Integer { Value := Integer.Value; }

Zero = Integer : [Value: INTEGER]

Example 2.1 Attribute Grammar

14

In 1982, the Attribute Grammar for Pascal [ZKH82] and Ada [UDP+82] were published. Both of
these grammars were developed for the GAG system, a generator that accepts attribute grammar and
produces a Pascal program to carry out attribute evaluation. Pascal requires 63 pages, Ada 365 pages.
Even the authors structured the specification in the best way they can, these specifications are hard to
understand for human readers. The development in Attribute Grammars then focuses on enabling
readable specification and generating efficient code. The extensions in the former are relevant to this
thesis and target mostly at the following three areas.

First, adding a remote (attribute) access. In the tradition AG only local dependencies are allowed.
A remote (attribute) access, a reference to an attribute on a remote tree node, is used as a tool to
overcome part of the “localness” problem. For example, an attribute instance may need to be
propagated through a sequence of nodes in corresponding to a number of production rules. Such a
propagation sequence can be avoided by introducing a remote access to the propagated attribute. In
other words, specification by remote access seems to be simpler than using lengthy attribute
propagation (copy from one node to another).

Second, handling circular dependency or non-tree structures. These structures appear in many
important tasks like symbol processing and data-flow analysis. For these tasks, current generative
techniques cannot generate codes and specific algorithms have to be hand coded.

Third, allowing values of attributes to be changed. In traditional AGs, the values of attributes
remain unchanged, which is quite inconvenient for many compiling tasks. Therefore, some extensions
to AGs allow an attribute change its internal data. For instance, a symbol table attribute needs to
change its internal value when an operation such as insertion is performed on it. An attribute with this
property is called state transitional, and the operation on a state-transitional attribute is called an
action. Some AG systems (e.g. Lido) adopt these concepts by providing ad-hoc constructs. For
example, many stems support explicit (action) dependencies by treating them as special attribution
rules.

To give a whole picture of the extensions to AGs, we first list common extensions to AGs. Table
2.4 shows the common extensions in the current AG systems. These systems are categorized into
modularity, object-oriented, remote access, and collective computing. Modularity allows users to
define the attributes and attribution rules of a symbol in more than one file. Inheritance construct lets
users define the attribution rules of a symbol by composing from those of other symbols. An upward
remote attribute denoted X.a accesses the nearest ancestor of symbol X and attribute a. Constituents
[KHZ82][KW92] represents a set of attributes in the descendants of a symbol. A chaining
[KHZ82][KW92] is a left-to-right attribute. A bucket brigade [JD84] is a bi-directional chaining. A
target language’s expression [Hed92][Gro89] is an expression evaluated into a reference to a tree
node in accessing a remote attribute. List attribution assigns the inherited attribute of each son.

Second, besides implementing new extensions in AG system, the notations used in AGs are also
extended over the years. For improving modularity, composable AGs [FMY92] are built from some
component AGs, each of which models a particular sub-domain. The interconnections of component
AGs are through input/output attributes specified by a glue grammar. Modular AGs [DC90] consists
of a number of patterns associated with a set of templates. A template specifies the attribute rules to
be generated for each matching production rule.

15

Category

Modularity

‘ Approach

Separate specification

AG systems
ALADIN/GAG[KHZS82], Lido/Eli
[KWO92], SSL[RT89], OLGA[JP91]
[JP97], Ag[Gro89][Gro92]

Piped AGs

OLGA[JP91]

Textual matching on productions

Modular AGs [DC90]

Component grammar

Composable AGs [FMY92],
Rewritable AGs [EH04]

Object-oriented

Multiple inheritance

Lido/Eli[KW92], Ag[Gro89][Gro92]

Single inheritance

TOOLS [KNP88] [Los91],
Door AGs [Hed92]

Remote access

Upward attribute ALADIN/GAG [KHZS82], Lido/Eli
[KW92][GHL+92], SSL [RT89],
OLGA [JP91]

Constituent ALADIN/GAG [KHZS82], Lido/Eli

[KW92]

Pass variable

TOOLS [KNP88][Kos91]

Target’s expression

Door AGs [Hed92], Ag[Gro89]
[Gro92]

Collective

Computing

Chaining

ALADIN/GAG [KHZ82], Lido/Eli
[KW92]

List attribution

OLGA [JP91]

Bucket brigade

Regular Right-part AGs [JD84]

Scan

Scan Grammar [Rep92]

Table 2.4 Common extensions to Attribute Grammar

Some AGs also employs the concept of hierarchy, which in essence is similar to modularity.

Attribute Coupled Grammars [Gie88] provides more higher level AG compositions: A compilation is
decomposed into a number of AGs, each of which reads an attributed tree and generates an attributed
tree. This is an AG extension for multi-pass compiling. Higher-Order AGs [TC90][VSK90] start from

another direction: promoting abstract syntax tree to “first class citizens.” The model allows an
attribute to be an abstract syntax tree called non-terminal attribute (NTA), which can be attributed

again.

Some AGs allow more flexible attribute access. Circular AGs [Jon90] allow circular-attribute
dependency. The power of fixed-point attribute evaluation can elegantly solve a collection of
attributes involved in a dependency circle. In Conditional AGs [Boy96], attribution rules may have

16

guards. Rules are active only when their guards are satisfied. They can express well-behaved
computations that involve circular attribute dependency.

Object-oriented notations have been employed in AGs after Object-Oriented technique gains
popularity. OOAG [SK90] is an approach that integrates AGs and object-oriented programming. The
static semantic is specified in Ags, the dynamic semantics is defined using message passing, which
may cause side effects. Multiple AG inheritance [MLA+00] allows an AG to inherit the specifications
from ancestors: adding or overriding specifications from ancestors.

2.1.2.1 Problems with Attribute Grammars

Although AGs have some success in compiler construction and domain specific languages, for
example, AG software tools listed in Table 2.4, using AGs in semantic analysis of production-quality
compilers is still not widely accepted. As for extracting semantic facts, the Refers-to relation in
particular, the problems with AGs are three-fold.

1. Attribute Grammars do not formalize the rules for the Refers-to relation. Instead, they treat
the Refers-to relation as a decoration of the parse tree. Data structures and functions similar to those
in programming languages are used during to decorate the tree. Only the traversal of the parse tree
and intermediate storage is formalized and computed by Attribute Grammar tools.

2. It is hard to validate the Attribute Grammars against language standards. In Attribute
Grammars, rules for the Refers-to relation are implemented by a mixture of context free grammar,
copying and transfer of attribute and hand coded program. It is hard to collate the rules in the
language standards and specification in Attribute Grammars, let alone proving they are equivalent.

3. Attribute Grammars are complex, especially when scaling up to real world programming
languages. So far, few production-quality compilers are written using Attribute Grammars, even
though the whole semantic analysis of Ada was specified in Attribute Grammar in 1982 [UDP+82].

Due to the above reasons, Attribute Grammars are not widely used in fact extraction.

2.1.2.2 Program transformation based on Attribute Grammars

Program transformation systems can also extract the Refers-to relation. Similar to Attribute
Grammars, program transformation systems extract the Refers-to relation as a series of transformation
(decoration) of the parser tree [GCDO03] [BKMVO03]. The program transformation systems surveyed
in this thesis include TXL [Cor06] [DCMS02] and Stratego/XT [Vis04].

17

2.2 Data models for facts in the source code

A data model is a collection of high-level data description constructs that hide many low-level storage
details [RGOO]. For facts extracted from source code, the data model tells us 1) what facts are
represented and 2) how to represent them. The documents that address these issues are often referred
to as schema. Similar to database research, the data models of facts are classified based on their
conceptual model and storage model [Cox]. The conceptual model describes the high level
abstraction of the facts. For example, the relational data model of facts describes how the facts
(lexical, syntactical and semantic) are represented as relations. These relations contain information
about entities, such as types, variables, expressions, and about relationships, such as the Refers-to
relation between the uses of variables and their declarations. The storage model specifies the storage
details. For example, Swagkit [Swa02] represents facts as relations in conceptual model, but stores
these relations in a text file using TA format [Hol97a].

2.2.1 Conceptual models for extracted facts

As described in conceptual models, extracted facts have been represented using relational [RG00],
objected-oriented [RGO0], deductive [RG00] and graph-based data model [CMR92]. The object-
oriented model is one example of navigational data model. Other navigational data models are the
network model (e.g., used in IDS and IDMS)), the hierarchical model (e.g., used in IBM’s IMS
DBMS), XML DOM data model and so on.

This thesis uses the relational model. In this model, data are stored in relations, which can be
thought of as a set of records. A relation has its name, the name of each field, and the type of each
field. The operations defined on relations include set operations and relational operations [RG00].

2.2.2 Storage models for extracted facts

The storage models describe the detail about implementation such as whether to use text files or
database and what database to use. One conceptual model can be implemented by different storage
model. For example, the relational model can be implemented as text files, relational database and
Prolog [OK90] [Pro03] rules.

Table 2.5 lists the conceptual model and storage model used in some reverse engineering tools.
Comparing with these tools, the data model for ARA is flexible. That is, its conceptual model is
relational and its storage model is the storage model used by the software tool that executes the ARA
formulas. For example, if we use relational database management system to execute the ARA
formulas, then the storage model for ARA is relational.

18

System ‘ Conceptual model Storage model

CIA [CGK+95] ER Relational

PBS [Holt] Relational TA format (ASCII)

Rigi [MOT93] User-defined domain model | Graph and RSF (ASCII)
Jupiter [CCO1] [Cox] Tagged document Tagged document
Harmonia [BGO0O] Graph (parse tree) XML document
cppML[MK] Graph (Parse tree) XML document

JavaML [Bad00] Graph (Parse tree) XML document

ARA Relational data model Model used by the software

Table 2.5 The data models for reverse engineering tools

2.2.3 Schemas

Schemas are the documentation that describes the conceptual and storage model of extracted facts.
Schemas can be language-specific, that is, applicable to only one language or language-independent,
applicable to a set of languages. The Bauhaus schema [KGW98], for instance, models C and a subset
of Ada in one joint schema. The Datrix [Bel01] and Columbus [FBMGO1] schemas both support a
form of generalization across languages that are similar to C++, including C, C++ and Java.

Most schemas for facts are a description document for the form of the data, in terms of a set of
entities with attributes and relationships that prescribe the form of the instance data. The schemas
aiming to represent all entities and relations in the source code tend to be similar. For example, the
independently developed Columbus and Datrix schemas have a lot in common since they are both
derived from the C++ grammar, although they differ in their terminology and details.

Datrix Schema is often used during the writing of the thesis and therefore is briefly discussed in the
following.

2.2.3.1 Datrix Schema

Datrix Schema specifies how to represent a program as an Abstract Semantic Graph (ASG). An ASG
is essential an AST embedded with semantic information. The edges in ASGs are typed and represent
different types of relationship between program entities. Datrix Schema includes the following facts
from the source code.

1. Lexical facts

19

The Datrix schema records the line and column position of most items in the AST. File names are
stored in special nodes within the AST, at the point where the file is included.

2. Syntactical facts

The Datrix schema has representation for C++ templates, types, functions, and statements. These
representations largely follow the AST of the source code.

3. Semantic facts

The Datrix schema has representation of typing information, naming and resolution.

Program entities (such as functions, variables, data types, and source files) are represented as
entities, and the relationships between these entities (such as function calls, uses of variables, and
instantiations of data types) are represented as relations. Each entity may also have associated
attributes that describe properties such as the entity’s name or line number.

The Datrix team at Bell Canada implemented a front end that parses C/C++/Java and emits
information in VCG (for visualization) [San01], and TA [Hol97a]. In the first half of 2001, the team
of Thomas Dean and Andrew Malton built CPPX (C++ Extractor) [DMHO01] that analyzes GCC
ASGs and generates corresponding Datrix ASGs. Since the data is represented in TA, mathematically
speaking, the data is a typed, directed, attributed graph, which we will call simply a typed graph. We
can use an entity/relation (E/R) diagram to specify the set of all graphs that a legal Datrix parser could
produce.

2.3 Application of relational algebra in software engineering

Relational algebra is widely used in software engineering. Among these applications, program
analysis, software repository exploration and software architecture recovery and repair are closely
related to ARA. The following gives some detail.

2.3.1 Program analysis

In program analysis, relational algebra has been used in many applications including relation lifting,
checking of design rules, cycle analysis, impact analysis, detecting unused components and dead
code, detecting similar code and similar classes, points-to analysis. In these applications, relational
algebra plays the role of calculation engine for reachability analysis, graph pattern matching,
transitive closure, shortest paths and etc.

20

Ullman [U1189] first suggested formulating data-flow analysis as database queries. Reps [Rep94]
used a deductive database for demand-driven inter-procedural data-flow analysis. Jedd [LHO04b] is a
Java language extension that rewrites pointer analysis as relational algebra formulas and then solves
these formulas using a fast algorithm called BDD. Recently, Lam [LWL+05] describes a database
framework that simplifies the development of context-sensitive program analyses. This framework
rewrites a large number of analyses as database queries, including C and Java pointer alias analyses,
finding buffer overruns and format strings in C programs, Java type inference, and reflection analyses
and detecting numerous vulnerabilities in Java web applications.

Relational algebra is also used in detecting graph pattern that are associated with design patterns
and design problems of software systems. For example, Beyer et al [BN04] [BNLO03] is able to detect
circular inheritance among other design defects. Other existing tools also capable of detecting graph
patterns include Grok [Hol98], RPA [FKO98], and RelView [BLMO02], GraphLog [CM90] and
Prolog [OK90] [Pro03].

Many researchers applied relational methods to automatic detection of implementation patterns,
object-oriented design patterns, architectural styles, potential design problems, code clones, inductive
inference of design patterns [AFC98] [FH00] [MS95] [SSC96].

Transitive closure computation is an extension to relational algebra. It has been the ingredient of
some of the above analyses, but is also crucial for dead code and change impact analysis [CGK98]
[FKO98]. Computing the difference between two graphs is necessary for checking the conformance
of the as-built architecture to the as-designed architecture [FHOO] [FKO98] [MNSO01], [SSC96].
Another application of relational methods is the lifting and lowering of relations [FHOO0] [FKO98] to
get new abstraction levels, and the calculation of software metrics (e.g., [KW99][MS95]).

Calculation of relations is also important for program analyses like points-to analysis [BLQ-+03],
and for the implementation of general graph algorithms. Jedd [LH04b] and Lam [LWL+05] rewrite
points-to analysis for Java and C as relational database queries and then solve the queries using BDD
engines.

2.3.2 Software repository exploration

Software repository exploration tools help users to search the software repository using graphical
browsing, a query language or both [LSWO01]. Graphical browsing, such as Source navigator [SON03]
usually includes package browsing, class browsing, function browsing and so on [JVO03]. Query
languages for software repository are often based on SQL, PROLOG and graph theory.

2.3.3 Software architecture recovery and repair

Software architecture is the high level view of components of a software system and the relationship
between these components. The Refers-to relation plays important roles in software architecture

21

recovery [Hol99] [MOTU93] [SCHC99] and software architecture repair [FHM97] [TGLHO02]
[TH99].

In summary of application of relational algebra in software engineering, the examples of program
analysis, software repository exploration and software architecture recovery and repair are listed in
Table.

Application ‘ Example

Program analysis data-flow analysis [U1189] [Rep94], pointer analysis [BLQ+03]
[LHO4b] [LWL+05], code defects [LWL+05], design problems
[BNO04], design pattern [AFC98] [FH00] [MS95] [SSC96], dead
code and change impact analysis [CGK98] [FKO98], lifting and
lowering of relations [FHOO] [FKO98]

Software repository SQL [CGK+95] [KC98], relational algebra [Holt], PQL [Jar98],
exploration (query Jquery [JVO03], Jupiter [CCO1], ASTLOG [Cre97], Lclint
languages) [EGHT94], SCA [PP96]

Software architecture software architecture recovery [Hol99] [MOTU93] [SCHC99],
recovery and repair software architecture repair [FHM97] [TGLHO02] [TH99],

conformance of the as-built architecture to the as-designed
architecture [FH00] [FKO98] [MNSO01] [SSC96]

Table 2.6 Examples of application of relational algebra in software engineering

2.4 Relational algebra software tools

The mathematical notation in this dissertation comes from Grok [Hol02], a relational algebra
calculator. There are other relational calculators, such as the work on RPA (Relation Partition
Algebra) [PS99] and the Relview language [Beh99][BKU96]. A related approach, GReQL, supports
queries on graphs. It would be interesting to explore using GReQL where we have used Grok. It
would also be interesting to try using a graph grammar system, such as PROGRES [Sch98][SWZ95]
in expressing queries such as given in this dissertation. PROGRES has the advantage of supporting
visual. Mendelzon’s GraphLog system also supports visual querying of graphs [CM90].

In principle, the formulas in this dissertation could be written in SQL, but our experience indicates
that such SQL queries are both clumsy to write, and slow to execute, compared with the Grok
approach. PROLOG is closer in approach to Grok.

Aho and Ullman argued that an operator for transitive closure is needed for many database
applications, which is not supported in relational algebra and calculus [AU79] until SQL99. Crocopat
(Beyer et al [BNLO3]) provides a language that is as powerful as the previous approaches, but adds a
convenient operator for transitive closure; and the interpreter is efficient for general purpose relational
computation, because it is based on BDD technology. In addition, Crocopat is relational calculator for
n-ary relations, while Grok is for binary relations only.

22

In summary, Table 2.7 lists these operations and software tools that support these operations.

Category Tools Optimizations

Relational algebra %;1;4%18010;]’}39{5 Ag;(SZS]é RelView Specially designed

calculator [1 [Beh99] [BKU96], searching and sorting
RELAX[MGO00] algorithm

RDBMS Oracle, DB2, ... Rewrite, index

Prolog PROLOG Unification

Deductive database Datalog, graphLog [CM90]

Graph database GreQL [Sch98][SWZ95]

BDD Jedd[LHO04b], bddbddb[LWL+05],

Machine 1 i
Crocopat[BNLO03] achine learning,

profiler...

Table 2.7 Relational algebra software tools

Grok is chosen as the notation for this dissertation because formulas written in Grok tends to be
more concise, elegant and insightful. We discovered some interesting facts about programming
languages based on these formulas (see Chapter 8). In ARA for C++, we need trinary relations, which
is not part of pure Grok. However, we believe the elegance and insight in the Grok formulas is more
important to the whole thesis. As a result, Grok is used in the thesis with a minor extension of the
composition of n-ary relations.

23

Chapter 3

Completeness of fact extraction

3.1 Introduction

Software reverse engineering extracts and presents information about existing software systems. A
key part of this activity is automated by fact extractors which input source code (or other artifacts)
and produce facts about the code. These facts can be thought of as rows in a relational data base
table, or as edges in a graph. For example, the fact (call, P, Q), could mean that function P calls
function Q.

The SWAG group at the University of Waterloo has been involved in developing a number of fact
extractors, including CPPX (C++ Extractor) [DMHO1][CPP02]. CPPX consists of the GCC front end
together with the CPPX graph transformer, shown here as boxes and arrows drawn with solid lines.
The GCC front end transforms the source program into a corresponding Abstract Syntax Graph
(ASG); see Figure 3.1. The ASG is an abstraction of the program's syntax tree decorated with edges
that correspond to resolution of references to declarations and with attributes representing information
such as line numbers.

Ordinarily, the back end of GCC proceeds to translate the ASG to assembly language. CPPX
operates by replacing GCC's back end by a graph transformer, called cppx (written in lower case to
emphasize that it is only part of the CPPX fact extractor). The cppx transformation produces another
version of the ASG, which is based on the Datrix schema [Bel01][HHL~+00] for representing facts
about C or C++ programs. The Datrix schema is designed to be convenient for reverse engineering
purposes.

Source code |[—GCC frontend 3| Gcc ASG ‘Mﬁ Assembly i

CPPX

v
Datrix ASG

Figure 3.1: CPPX fact extractor.

There has been considerable research on validating fact extractors [MNL96] [AT98] [SHE20]
[BGI7]. In this chapter we record the approach we used toward validating the CPPX extractor. More
generally, we give a method for validating that an extractor is semantically complete, that is, that its
extracted facts contain enough information to recover a program with the same behavior as the
original source program.

24

The rest of this chapter is organized as follows. Section 3.2 provides details about compiler phases
and ASGs. Section 3.3 provides background information on factbases, schemas and exchange
formats. Section 3.4 defines four increasingly detailed levels of facts that an extractor may produce
and introduces the concept of relative completenss of extractors. Section 3.5 gives a method for
validating the semantic completeness of a fact extractor and explains how we applied this method to
CPPX. Section 3.6 discusses the cppx graph transformer. Section 3.7 lists problems in CPPX that
were detected as a result of applying our validation method. Finally, section 3.8 summarizes the
research and proposes future work.

3.2 Compiler phases and ASGs

In a typical compiler [AU77][App98], the source code is initially preprocessed, parsed, and subjected
to semantic analysis. In the case of GCC, these steps are carried out by its front end; see Figure 3.1.
Following these initial steps, the assembly or machine code is generated, optimized and emitted.
These final steps are carried out by the compiler's back end.

The result of parsing is a parse tree. Lexical details of the source, such as spacing, comments,
preprocessor directives, do not appear in the tree. This tree is then simplified and made more
convenient for further processing. The simplified tree is called the Abstract Syntax Tree (AST)
[AU77][App98].

The semantic analysis phase of compilation decorates the AST by adding semantic information
such as types of identifiers, declaration locations and overload resolution. The decorated AST is
called the Abstract Semantic Graph (ASG) [Bel01]. After the insertion of semantic information, the
syntactic structure may be simplified further:

The nodes of the ASG represent source program entities including types, classes, methods,
statements, expressions, and so on down to the lowest level of constants and variable references. The
edges represent relationships between them. There are two kinds of edges in the ASG: tree edges and
semantic edges.

Tree edges give the tree structure of the ASG. They represent containment in the source syntax.
For example, a declaration is contained by its scope, a declared identifier by its declaration, a variable
reference by an expression involving it, and a conditional expression by the if statement which it
controls. Semantic edges (non-tree edges) represent semantic connections, such as typing and the
resolution of scoped names. For example, semantic edges connect the operands of an expression to
their declarations and an instance declaration to its class type.

3.3 Schemas and interchange formats

An extractor such as CPPX can be used for a variety of reverse engineering purposes, so its output
(the Datrix ASG factbase) should be available in a well documented, accessible format. The format

25

should determine a concrete syntax, so the ASG can be conveniently input by other reverse
engineering tools such as visualizers and analyzers.

A number of exchange formats have been proposed for exchange of reverse engineering factbases,
including GXL [Win01][GXLO02] (based on XML), TA [Hol97a], RSF [Won98], EER/GRAL
[EWB+96] and Grax [EWB+98] [EKW98]. CPPX generates TA by default, with an option to emit
GXL. Besides determining a concrete syntax, exchange formats such as TA and GXL allow the user
to specify a schema or data model. The schema constrains the relationships between facts in the
factbase and is used to give an interpretation of those facts. For example, the schema may constrain
Call edges to connect only Function nodes, and its interpretation may indicate that each call in the
source code is to have a corresponding Call edge in the factbase. The key benefit of schemas, and not
just a fixed exchange format, is that this allows the exchange format to be broadly used, across a set
of applications. The user of the format creates a special schema to handle the data of interest, such as
the data generated by CPPX.

Examples of fact exchange schemas include the Datrix schema, the Columbus schema [FBT+02]
[FBM+01][FSGO04] and the Dagstuhl Middle-Level Model [Let02]. CPPX uses the Datrix schema.
(Technically speaking, CPPX uses a slightly modified version of the Datrix schema. To simplify the
presentation in this chapter, we will refer to these both as simply the "Datrix schema.)

The Datrix Schema specifies how to represent a C or C++ program as an Abstract Semantic Graph
(ASG). An ASG is essentially an AST with embedded semantic information. The edges in ASGs are
typed and represent different kinds of relationships between program entities. Datrix Schema includes
the following facts from the source code.

1. Lexical facts

The Datrix schema records the line and column position of most items in the AST. File names are
stored in special nodes within the AST, at the point where the file is included.

2. Syntactical facts

The Datrix schema has representations for C++ templates, types, functions, and statements. These
representations largely follow the AST of the source code.

3. Semantic facts

The Datrix schema has representations of typing information, naming and resolution.

Program entities (such as functions, variables, data types, and source files) are represented as
entities, and the relationships between these entities (such as function calls, uses of variables, and
instantiations of data types) are represented as relations. Each entity may also have associated
attributes that describe properties such as the entity’s name or line number.

26

The Datrix team at Bell Canada implemented a front end that parses C/C++/Java and emits
information in VCG (for visualization) [San01], and TA [Hol97a]. In the first half of 2001, the team
of Thomas Dean and Andrew Malton built CPPX (C++ Extractor) [DMHO1] that analyzes GCC
ASGs and generates corresponding Datrix ASGs. An example of such ASGs is provided in Section
3.6.

3.4 Completeness of fact extractors

An extractor is analogous to a compiler in that it inputs source code and translates it to data in a very
different form. In the case of a compiler, the target data is assembly or machine language, for use in
linking and execution. In the case of an extractor, the target data is facts about the source, for use in
reverse engineering.

The extracted factbase may include only high level information, such as interactions between
global entities such as functions and classes, or may also contain detailed information down to the
level of statements and expressions.

3.4.1 Four levels of completeness

It is useful to characterize the extracted factbase in terms of how complete it is. At the most inclusive
extreme, the factbase can be source complete, meaning that it is possible to recover the exact source
program, byte for byte, including comments and white space, from the factbase. Most extractors
including CPPX are not source complete, because information such as white space is not usually
needed and would bloat the factbase with unwanted detail.

A fact extractor E inputs the original source program p0 and produces factbase g0, i.e., g0 = E(p0);
see Table 3.1. In this table, FE and BE are the Front End and Back End of a compiler. Sem maps a
program to its semantics

In Table 3.1 we define four levels of completeness for an extractor. These levels are a
generalization of source completeness as defined by Dean et al. [DMHO1]. At each level,
completeness is defined by whether the extracted factbase retains enough information to answer a
certain question. Figure 3.2 illustrates how the questions in levels 1 to 3 might be addressed by
means of testing.

27

Level Question Definition
1. Source complete Are original and recovered source programs po and | P1=R(go)
p1 identical, byte for byte, including comments and
spacing?
2. Syntax complete Are original and recovered syntax trees to and t, to=FE(po)
identical? t1=FE(p)
3. Compiler complete Are original and recovered assembly code agand a; | @ = BE(t)
identical? a; = BE(t))
4. Semantically complete | Are original and recovered behaviors syand s, so=Sem(po)
equivalent? si=Sem(py)

Table 3.1 Four levels of completeness for a fact extractor

3.4.2 Hierarchy of completeness

From top to bottom in Table 3.1, or from left to right in Figure 3.2, completeness becomes weaker,
i.e., the levels form a completeness hierarchy in which less information needs to be retained in the
factbase as the level number increases.

Front End Back End
Source > ASGt Assembly
program P " 0 code ag
SO N AN
ExtrEactor Y N N
~ ~ ~
v) N N
~ N
Factbase g S~ N
Source complete Syntax complete
-7 S
4 4
4
- .7 e
7 // e
//// ,/ ///
v~ / e
Source Front End Back End Assembly
»| ASG

program Py code aj

Figure 3.2: Validating three kinds of completeness

If an extractor is source complete, it is also syntax complete, because the extracted factbase g, can
be transformed back to the original source program, from which the original syntax tree can be
derived. By a similar argument, source completeness also implies compiler completeness and

semantic completeness.

28

Syntax completeness implies both compiler completeness and semantic completeness because the
syntax tree incorporates all the information about a program that is needed for code generation.
Assuming the compiler is correct, compiler completeness implies semantic completeness because if
original source and the recovered source have identical generated assembly language then they must
have the same semantics.

We have left the definition of syntax completeness somewhat ambiguous, allowing it to be based
on either the context free parse tree or on the ASG, whichever is most convenient for a given purpose.

3.4.3 Semantic completeness

The lowest level in Table 3.1 is semantic completeness, which retains information about program
behavior. This level is particularly interesting because this information is needed by many reverse
engineering tasks. This is the level of completeness that CPPX (supposedly) attains.

In level 4 of Table 3.1, we have assumed that there is a semantics function Sem, which maps a
source program to a representation of its behavior. Unfortunately, for production languages such as C
and C++, such a function has not been formally defined. Furthermore, the equality of semantics is
undecidable: In general we can't check if two programs po and p; have the same behavior. Since
semantic completeness asks whether py and p; are semantically equivalent, it seems that determining
if an extractor is semantically complete must be quite a challenge! We take up that challenge in the
last half of this chapter.

Many extractors do not extract enough information to satisfy any of the levels in Table 3.1. For
example, the CFX extractor [FHK+97] only extracts information at the level of functions and global
variables along with the interactions among them. This level is sufficient for certain reverse
engineering analyses such as recovery of architecture, but is insufficient for analysis involving
function bodies. (We might call this "architecture complete" if we assume that architectural design
recovery is based only on functions and global variables.)

CPPX's goal was to retain as much useful information as possible from the GCC ASG, and more
information than is retained by most existing fact extractors. As a result, we decided to try to make
CPPX semantically complete.

3.4.4 Relative completeness

While the four kinds of completeness we have described are important, they are not the only possible
kinds of extractor completeness. Consider the possibility that a use-def graph [ASUS86] is needed to
detect dead code. We define an extractor to be use-def complete if its created factbase contains
enough information to produce a use-def graph.

More generally, we will now introduce the formal concept of relative completeness among
translators and extractors, as follows. Suppose a source program p is translated by transformation T

29

to produce T(p). For example, T might be the front end FE of a compiler or might be an extractor for
use-def graphs. Program p is also transformed by extractor E to produce information E(p). We
define that E is at least as complete as T if the information produced by E can be further processed to
create the information created by T. (see Figure 3.3.) Formally, we define this as follows:

Definition 1. If there exists a function F such that for all p

F(E(p)) = T(p)

then we say E is at least as complete as T. We write this as:

E>T

See Figure 3.3 for illustration of T, E and F.

Although Definition 1 is intuitively appealing, in actual practice, as illustrated by Figure 3.2, we
used the following definition involving a recovery transformation R:

Definition 2. If there exists a function R such that for all p
T(R(E(p))) = T(p)
then we say E is at least as complete as T. We write this as:

E>T

This second definition states that E is more complete than T if E's output E(p) can be recovered back
to R(E(p)) which T processes to output equivalent to T(p). Fortunately, the two definitions are
equivalent, as we will now show.

Proposition. Definitions 1 and 2 are equivalent.

We will now prove this proposition. It is obvious that if R exists, F also exists, because F can be
defined in terms of R as

F(e) = T(R(e)).

30

Transform T
Source R Transform
progra‘m P output t
= A

|]

| |
Extractor | Recovery Forward |
E | Transform R Transform F |
i i

| |

| |

| |

| |
i Factbase e f——-——————-!

Figure 3.3: Relative completeness of E and T.

Now consider the converse: suppose F exists such that F(E(p)) = T(p). We show that R exists such
that T(R(E(p)) = T(p). Suppose T(t) is a left inverse of T, that is, T,(T(p)) = p. Then let R (e) =
Ti(F(e)), and we have T(R(E(p)) = T(T1(F(E(p)) = T(T(T(p)) = T(p) as required. Such T, exists since
it only needs to be defined on the range of T. End of proof.

Aside. Note that if F, E, and T are programs, then R can also be a program: that is, R is
computable. Given an extraction e, it is sufficient (for R) to generate programs p in the source
language and test them successively until one be found for which T(p) = e. However, this is not very
efficient! In practice R examines e, which is a data structure, and constructs p from the information
therein.

Although we have explained the concept of relative completeness in terms of extractors and
translators, this concept is purely mathematical, and can be applied to any functions. The relative
completeness operator (¢ forms a lattice. Its top element is ID (the identity function):

VTeID2 T

which means that no transform can preserve more information than does the identity function. Its
least elements are any constant function K:

VTeT>2K

which means that translating the input program to a constant, such as the null string, loses all
information about the input.

The four hierarchical levels of completeness (source, syntax, compiler and semantic completeness)
can be defined in terms of relative completeness. For example, extractor E is compiler complete for
compiler Cif E >, C. E is ASG complete for front end FE if E >, FE. E is source complete for
compiler C if E >, ID, which means that the facts extracted by E can be used to reconstruct the source
program.

31

With this discussion of completeness behind us, we are ready to explain how we validated CPPX's
semantic completeness.

3.5 Validating CPPX's semantic completeness

This section describes the method we used to validate the semantic completeness of CPPX. Perhaps
the most obvious approach to validate CPPX is to run it against a large test suite of source programs,
and to check that the extracted factbase for each test is correct. This approach is very expensive, as it
requires extensive manual work to do the checking or to create correct factbases for comparison to
CPPX generated factbases. As we will explain, our approach to validation of CPPX uses a test suite
of programs, but avoids this manual step.

The structure of CPPX was introduced using Figure 3.4. (Recall that CPPX consists of the front
end of GCC together with the cppx graph transformation.) Figure 2.4 expands Figure 2.1 by adding a
transformation called RCCPX (Reverse CPPX), which recovers a source program p; from CPPX's
extracted ASG gy. The figure shows recovered source p; being compiled by GCC's front end and
back end to produce assembly code a;.

If all phases in the diagram are working correctly and CPPX is compiler complete, then the
assembly language a, from any original source p, will be the same as its recovered assembly language
a; from recovered source p;. As is explained below, our validation method for CPPX works by
checking that ay and a, are identical for a suite of test source programs.

3.5.1 Why are assembly codes a, and a; identical?

Suppose we run a source program py through the phases shown in Figure 3.4. If we find that a; and a,
are identical, what can we conclude? It is tempting to conclude that this implies that cppx is
semantics complete. However, this might not be the case. If GCC's back end is severely buggy and
acts as a constant function K, producing null output for all input, then a, and a, will always be
identical, regardless of the actions of CPPX. Since GCC is widely used in production, it is clear that
its back end is not severely buggy. In fact, we can safely assume that its back end and front end
together reliably generate correct assembly output for most input source programs.

As we will explain below, the recovery transformation RCPPX is written to be simple and easy to
make correct, so we can expect that it is reasonably reliable. So, we can conclude that if there is a
failure in one of the phases shown in Figure 3.4, the failure will probably occur in the least reliable
phase, namely, in the CPPX transformation phase.

Even if CPPX is semantically complete, it would be wrong to expect a, and a; to be identical.
After all, GCC is an optimizing compiler, and the smallest change in its input, as p, varies to p;, may
produce a change from a, to a; while maintaining the same semantics. So, it may come as a surprise
to learn that when we run test source programs though the configuration in Figure 3.4, ap and a, turn

32

out to be identical (ignoring the cases when we encounter a bug in CPPX). We will now answer the
question: Why are a, and a; identical?

Although GCC's back end is extremely complex, it is deterministic, i.e., for the same input it
always generates the same output assembly code. So, if the GCC ASGs ty and t;, for the top and
bottom lines in Figure 3.2, are the same, then a, and a; will be identical. So the question becomes:
Can we expect the GCC ASGs to be the same for source programs p, and p;?

To our mild disappointment, we discovered that GCC's front end does some low level program

transformations.
GCC GCC
Source Front End | 6cc Back End Assembly
program P "l ASG g code ag
CPPX Y
v N
RCPPX Datrix . N
ASG g Compiler complete
////
///
//
A 7
Source GCC GCC GCC Assembly
Front End | Back End
program Py > ASG code aj

Figure 3.4 Validating Completeness of CPPX.

For example, it rewrites the integer comparison j >= 2 into j > 1. Because of this, one might
conclude that it is unlikely that the two GCC ASGs t; and t; can be identical. It turns out that this
conclusion is not warranted for the following reason.

Apparently, the purpose of these rewrites is to produce a standard or canonical form for a few
special constructs, and that these rewrites are idempotent, i.e., doing them a second time has no effect.
If we denote this rewriting as function f, we can expect or hope that, f(py) = f(p;). What we observed
was that, with CPPX working properly, the two ASGs were effectively the same, i.e., they were
treated the same by the back end. The idempotent property of the GCC front end together with the
deterministic nature of the GCC back end yields the overall property that, when CPPX is operating
correctly, ap and a; are identical.

After our initial validation of CPPX was largely finished, we ran tests to see if ASGs t; and t; were
the same. We found that they were very similar but not identical. They differed in their information
about file and line location. They also differed due to renaming of local variables, as described
below. These differences do not affect the generated code. Probably they could be eliminated by
deleting file and line information and by optionally disabling the renaming of local variables, but we
have not tried this.

33

In short, CPPX is almost ASG-complete, but our method of validation only shows the weaker
property of compiler completeness. Compiler completeness seems to be more "surprising" and
satisfying as its definition doesn't rely on the internal details of the compiler.

3.5.2 Suite of test programs

In our validation of CPPX, we used a test suite of C and C++ programs derived from two sources.
The first part of this suite consists of a set of small programs that were designed to show how source
programs are represented when using the Datrix schema. The second part consists of the suite of C
and C++ programs used to test the GCC compiler. Combined, these two parts provide an initial
reasonable coverage of the features of C and C++. (Note that we have thus far concentrated on
validating CPPX on C rather than on C++ input.)

3.5.3 The resolution problem

As we have explained, CPPX generates an ASG in which tree edges represent the containment
structure and semantic edges give connections in the tree. One key use of semantic connections to
represent references to declarations. For example, in the following program, there is a reference from
the final x on line 4 to the local declaration of x (line 3), not to the global declaration of x (line 1).

1 nt x;

2 int f() {

3 int x;
4 X++;
5 }

In the corresponding ASG, there is an edge from the node for the final x to the node for the
declaration of the local x and not to the global declaration. This edge is redundant in the sense that
the scope rules of the programming language imply which declaration the final x is referencing.
Despite this redundancy, such edges are important because they allow the resolution problem (the
sometimes difficult problem of resolving appropriate references) to be reliably solved once, in the
extractor. Indeed, one of the reasons CPPX is based on GCC is to take advantage of the fact that
GCC's ASG provides a reliable solution to this problem.

Now consider the possibility that CPPX might incorrectly solve the resolution problem, for
example, by generating the reference edge from the final x to the global x instead of to the local x.
Unfortunately, this error would not be detected by our validation method for CPPX, because in the

34

recovered source program pl, there is no record of this edge and hence no evidence of the error.
Although CPPX creates this edge, RCPPX deletes it when recovering the source program.

We devised the following approach to allow our validation method to check that resolution edges
in the factbase are correct: local (non-external) identifiers are systematically renamed to be unique, by
suffixing additional characters. For the above example, the recovered program pl would have this
form:

1 int x;

2 int f() {

3 intx 2;
4 X _2++;
5 }

This renaming is done in way that avoids clashing with any global identifiers which might have a
similar form. If the global had been called 'x_2' then this would of course not be chosen as the new
name of the local. With this suffixing convention, if CPPX generates incorrect reference edges, the
resulting semantic errors will be reflected in the recovered code. As a result, our validation method
effectively checks that reference edges are correct, and that the CPPX has correctly solved the
resolution problem.

3.6 RCPPX: Recovering source from facts

As can be seen in Figure 3.4, to use our validation method, we need a recovery transformation,
namely we need RCPPX. RCPPX inputs a Datrix ASG in the TA exchange format and outputs the
equivalent C/C++ source program. TA is a relational notation, whose underlying data model is much
like a Relational Data Base. In TA, there is a set of triples, recording the source, target and type of
each edge in a graph. In this case, the graph is the Datrix ASG. As well, there are triples that
represent attributes. In TA, this information is encoded as an ASCII stream, stored in a flat file.

The following is a tiny C compilation unit, which will serve as an example:
/* A tiny C program */
int x;
void glup (int y) {
x=y+1;

The CPPX extractor translates this program to TA notation (simplified here for presentation purposes)
as follows:

FACT TUPLE :
35

$INSTANCE @0 cFunction
cRefersTo @2 @3

$INSTANCE @2 cNameRef
$INSTANCE @3 cObject
$INSTANCE @4 cFormalObject
SINSTANCE @5 cBlock
$INSTANCE @7 cBuiltInType
cRefersTo @9 @4
$INSTANCE @9 cNameRef
SINSTANCE @10 cBuiltInType
contain @40 @2

$INSTANCE @15 cBuiltInType
clnstance @3 @10

contain @40 @55

contain @55 @9

contain @55 @66

contain @0 @5

clnstance @0 @7

clnstance @4 @10

contain @0 @4

clnstance @66 @10

contain @5 @40

$INSTANCE @40 cOperator
$INSTANCE @55 cOperator
$SINSTANCE @66 cLiteral
contain @577 @3

contain @577 @0

$INSTANCE @577 cScopeCompil
FACT ATTRIBUTE :

@0 { name = glup }

@2 {name=x }

@3 {name=x }

@4 { name=y }

@7 { name = void }
@9 {name=y }
@10 { name = int }
@40 { op = asgn-eq }
@55 { op =Dbplus }
@66 { value=1}

This TA represents a graph, which is diagrammed in Figure 3.5. By comparing the source program
with its image in TA (or with the diagram in Figure 3.5), it can be seen that CPPX preserves the
structural information, but deletes comments and layout. Syntax in the source code is replaced by
explicit relationships in TA.

It is the job of RCPPX to bridge the gap from TA back to source code. RCPPX does this in three
steps, first by a renaming script, second by transforming to nested syntax, and third by two structural
transformations implemented in TXL [CDM+02].

3.6.1 Suffixing script

This first step modifies program identifiers as explained in Section 3.5.3 above, in order to validate
the extractor's computation of semantic edges. The result in the TA for the sample program is to
replace

@4 { name =y }

by

@4 {name=y 1}

and similarly for node @9.

37

@577 : cScopeCompil

x : cObject @ @3
cInstance -> int ¢“—"“-1

glup : cFunction @ QO
cInstance -> void cRefersTo

y : cFormalObject @ @4
cInstance -> int

I@5 : cBlock I

L@A]O : cOperator cRefersTo
op=asgn-eqgq

I x : cNameRef @ @2

@55 : cOperator
op=bplus

Iy : cNameRef @ @9 I

@66 : cLiteral
cInstance -> int
value=1

Figure 3.5: TA from example C program as a diagram

3.6.2 Nested syntax

In the second step, the ASG TA is translated to nested syntax. This was done with the Grok relational
calculator [Hol02] [Hol98][Wu04]. Grok stores and manipulates a relational model using algebraic
operators, and can read and write TA. In order to reveal syntactic structure, Grok's operation showtree
outputs the relational model in a form in which tree edges are represented implicitly by nesting of
braces, { and }. In the Datrix schema the tree edges are contain and cInstance. Our example
represented in showtree format exhibits the tree structure once again represented by syntax, as seen
here:

@577 : ¢ScopeCompil
{ x : cObject @ @3
(cInstance -> int @ @10)
glup : cFunction @ @0
(cInstance -> void @ @7)
{ y_1: cFormalObject @ @4
(cInstance -> int @ @10)
@S5 : cBlock

38

{ @40 : cOperator { op=asgn-eq }
{ x:cNameRef @ @2
(cRefersTo > x @ @3)
@55 : cOperator { op=bplus }
{ y_1:cNameRef @ @9
(cRefersTo >y 1 @ @4)
@66 : cLiteral
{ value=1 }

(cInstance -> int @ @10)

3.6.3 TXL scripts

The final step of RCPPX is carried out by two sets of TXL scripts [DCM+02]. TXL is a source
transformation system based on context-free structure of input and output.

The first TXL script reads its input in the format shown above. This format is structurally similar
to the original program (TXL understands programs), rather than to the fact base (TXL does not
understand data bases). The key idea is to use syntax (relative position in the token stream) to
represent structural information, instead of using explicit relational edges.

TXL is well suited to translation from input according to one grammar into output according to a
second grammar. TXL first inputs a union grammar [DCM+02] that encompasses the grammars of
both the input and the output languages. Driven by a command script, the TXL processor repeatedly
manipulates the parse tree of the input, until the tree assumes the form specified by the output
grammar. Then TXL outputs the result as a source program, which satisfies the output grammar.

RCPPX drives TXL with a first set of scripts, which start by reading the ASG as represented in
showtree format. These scripts carry out a pattern of simple local rewrite transformations in which
subtrees are locally manipulated. For example, an input showtree expression of the form

cOperator { op = bplus }
{ELE2}

is transformed to this C/C++ expression
39

(E1 +E2)

Here is the TXL rule that carries out the transformation:
replace [operator]
cOperator { op = bplus }
{ E1 [expression] E2 [expression] }

(E1 +E2)

This replaces each operator in the program of the form
cOperator { op=Dbplus } { E1 E2 }

with
(E1 + E2)

Next, RCPPX uses a second set of TXL scripts to carry out local rotation transformations, which
change the order of entities. For example, an input showtree fragment of the form

p : cObject
{ cPtrType
{ int: cBuiltInType

}
}

is transformed to a C/C++ fragment of the form

int *p;

This replaces cPtrType by a star (*) and "rotates" the fragment so that type int precedes the star and
the star precedes identifier p. As well, the transformation deletes unwanted punctuation and
keywords, and adds a semicolon. Here is the TXL rule that does the replacement and the renaming;:

replace [object]
cObject cPtrType
{ T [type] }
D [declarator]
construct ND [declarator]
*D

40

cObject T ND

In this rule, T corresponds to a type, such as int, and D corresponds to an identifier, such as p. The
rule constructs ND as a temporary value consisting of a star preceding D. The result of the
transformation is

cObject T ND
whose value is

cObject T * D

This rule is executed repeatedly and recursively to replace each cPtrType by a star and to rearrange
terms. The transformations that rewrite the ASG in TA and showtree notation to source programs in
C/C++ notation could have been written in a language such as PERL or C. However, they are much
easier to write and debug in a special syntactic transformation language such as TXL. Since they are
straightforward, and are done in very high level notations, we have confidence that they are carried
out reliably.

3.7 Errors found in CPPX

Before we developed the validation method described in this chapter, CPPX had been used to extract
facts from a number of large systems, including PostgreSQL, which consists of about 400,000 lines of
source code. Because of this application of CPPX we knew that it was useable, but also that it had
various bugs. This knowledge motivated us to develop the validation method described in this
chapter.

Here are three examples of the kinds of bugs we found in CPPX using our validation method.
1) Headers of for loops. A for loop header, e.g.,

for(i=1;1<10;1++)

has, at most, three fields. For example, the third field is omitted here:

for(i=1;i1<10)

We found that when CPPX produced facts for a header with omitted fields, these facts did not specify
which fields were missing.

41

2) Details about data types. We found that CPPX did not correctly handle certain details about data
types such as struct and enum type.

3) Missing identifiers. We found that CPPX sometimes omitted certain identifiers, such as names
of structs.

We expect to find and correct more bugs in CPPX as our test suite grows and becomes more
comprehensive.

3.8 Conclusions and future work

This chapter presents a hierarchy of completeness for fact extractors and introduces the concept of
relative completeness of extractors. It gives a new method for validating a fact extractor. The
method avoids manual checking of generated fact bases. It works by recovering a version of the
source program from the extracted factbase and compiling that version.

Given certain properties of a compiler (idempotent front end and deterministic back end), the
method is able to validate semantic completeness of the extractor by checking that the generated
assembly language is identical for the original and recovered source programs. This method was
applied to the CPPX extractor. The correctness of name resolution in the factbase was checked by the
artifice of suffixing a number (a node key) to local identifiers.

In our application of this method to CPPX, we created a recovery transformation RCPPX. We did
this using high level tools including TXL and Grok, so RCPPX is small and sufficiently reliable. Our
validation of CPPX has thus far been limited to source programs written in C; we expect to extend
this work to C++ programs in the future. Our validation test suite has been limited to programs of
modest size, to allow us to monitor results as needed. We plan to scale up these tests into a fully
automatic testing framework. We have an experimental Java extractor, but thus far it does not
produce facts at the level of statements and expressions. When it is extended to extract these facts and
to be semantically complete, we will be able to apply our validation method.

Our work involved two major surprises. First, we were surprised to discover that the assembly code
for an original source program and for the version of the source program recovered from its extracted
factbase were identical. Second, we were surprised to find a mechanical test for a special case of a
generally undecidable problem. In particular, our method tests the semantic equivalence of two
programs, by using properties of the programs and the compiler. Combining these two surprises, we
developed a method for an automatic validation for semantic completeness of a fact extractor.

42

Chapter 4
Algebraic Refers-to Analysis (ARA) as a new approach to fact

extraction

Part 2 of this thesis consists of this chapter (Chapter 4) through and including Chapter 8. This Part
presents a new approach to fact extraction called Algebraic Refers-to Analysis (ARA). Part 2 is
organized as follows.

e Chapter 4 introduces ARA as a general approach to formalizing fact extraction, along with
background information about traditional approaches.

e Chapters 5, 6 and 7 apply ARA to the C, Java and C++ languages, respectively.

e Chapter 8 summarizes the case studies that apply ARA to seven languages, validates ARA
against language standards and clarifies several issues related to the Refers-to relation.

The present chapter (Chapter 4) is organized into the following sections.

4.1 Traditional approaches. This section surveys how fact extraction has traditionally been done.

4.2 Motivation. This section gives our motivation for developing a new approach to fact
extraction.

4.3 Mathematical notation. This section introduces the algebraic notation for manipulating
relations, which underlies our approach.

4.4 Program definition. This section defines the Refers-to relation using concepts in set and
relation theory.

4.5 Introduction to ARA. ARA has two pipelines, three-step pipeline for the simplest languages
and multi-phase pipeline for practical languages such as C and Java. This section introduces the three-
step pipeline using ALGOL 60-like scoping rules as an example. At the end of the section, multi-
phase pipelines are introduced.

4.6 Validation of ARA. This section explains that ARA is based on a particular language standard
and can be validated to actually implement that standard.

4.7 Chapter summary. This section summarizes the chapter.

4.1 Traditional approaches to fact extraction

In Reverse Engineering, facts are essential information about the source code. Fact extraction is the
process of analyzing the source code and exacting appropriate facts. This section surveys current
approaches to fact extraction and explains their drawbacks.

43

4.1.1 Facts and their classification

Facts in the source code fall into three groups, lexical facts, syntactical facts and semantic facts.
Lexical facts are about tokens, separators, layout, and compilation units. Syntactical facts include
features of the language specified by the language’s grammar (usually context-free) and are often
stored in a parse tree or an Abstract Syntax Tree (AST).

Semantic facts are either static semantic facts and dynamic semantic facts. Static semantic facts
include the Refers-to relation (the terms name resolution and name analysis are also used to refer to
similar facts) and type information. Dynamic semantic facts include points-to relation, runtime
polymorphism and so on. In the field of reverse engineering, these facts are usually represented as
entities and relations among them. In general, static semantic facts are decided at compile time while
dynamic semantic facts are decided at run-time. Therefore, fact extractors, which are similar to
compiler front ends, only extract static semantic facts.

Schemas, e.g. the Datrix Schema [Bel01] are the documents that determine the form of the facts in
the source code as entities and relations. Table 4.1 shows examples of entities in a program (adapted
from the Datrix Schema). As shown in the table, occurrences of identifiers and blocks in the source
code are lexical facts. The data type definitions, variables, function definitions, labels, expressions
and statements are syntactic facts.

Type Entity Type Description \
Lexical Occurrence Occurrence of an identifier
Block Global block, function body, data type definition, etc
Data Type Including built-in type, array type, pointer type, etc
Variable Instance of a data type
Syntactic Function Function definition (with a body) or function declaration
Label Labels in the program
Expression Including binary expression, unary expression , etc.
Statement Including if, switch, loop and other statements

Table 4.1 Example entities in source code

Table 4.2 shows some relations, also adapted from the Datrix Schema. The relations in rows 1
through 6 are lexical facts and syntactic facts. The Refers-to relation belongs to semantic facts. We
will revisit them when we present ARA.

4.1.2 Importance of Refers-to relation

The Refers-to relation represents semantic facts, more specifically, static semantic facts. This relation
is important to fact extraction for the following reasons.

44

1) References, as formalized by the Refers-to relation, are a fundamental concept in
programming languages. Programming language specifications, textbooks and critics of
programming languages go to some length to discuss this concept. And, extracting the
Refers-to relation is an important task in semantic analysis phase of the compiler [App98].

2) We can derive other static semantic facts from the Refers-to relation and lexical and

syntactical facts. The derivation can be written as relational algebra formulas and executed on

many existing software tools such as RDBMS and relational algebra calculators.

3) The Refers-to relation as extracted from the code for a software system is important in
understanding the architecture of the systems [BHB99] [FHCO1]. And, it can be used to
recover and repair the software architecture of large software systems such as the Linux
operating system [FHCO1].

Type Relation Description
Lexical HasName (HN) | The relation between the occurrence and the identifier
Inherits (I) Relation between a class and its base class
Syntactic Denotes (T) Relation between an occurrence and the block it denotes
Contains (C) Relation between a block and its members
Specifies (SP) Relation between type specifier and declarator
Qualifies (Q) Relationship between the qualifying occurrence and the
qualified occurrence
Instance-Of Type-instance relationship between two elements
Semantic Points-To Relationship between a pointer and the object it points to
Refers-to (R) Relationship between an referential occurrence and the
definitional occurrence it refers to

Table 4.2 Example of relations in source code

4.1.3 Traditional approaches to extracting Refers-to relation

Traditionally, there have been two approaches to specifying the extraction of Refers-to relation,
namely: (1) ad hoc methods and (2) Attribute Grammars, each having some significant drawbacks.
These two approaches will now be discussed.

4.1.3.1 Ad hoc methods

Most programming standards specify the Refers-to relation informally, for example, ISO/IEC
standard for C++[C++03]. These standards communicate the rules for the language at the level of
abstraction in an ad hoc manner. Their informal rules are the foundation for designing and teaching

the language, building compilers, and creating test suites. Unfortunately, there is no software tool that

45

can implement a fact extractor directly from these rules. Programmers have to implement the fact
extractor manually, which is time consuming and error prone.

4 1.3.2 Attribute Grammars

Attribute Grammars [Knu68] were introduced in 1968 and are viewed as a rigorous formalization for
compiler construction. Chapter 2, on related work, details the development of Attribute Grammars
over the years. While Attribute Grammars have been formalized and shown to have promise in
compiler construction, they are generally not been used in extracting the Refers-to relation for three
reasons.

1) Attribute Grammars do not formalize the rules for the Refers-to relation. Instead, they treat
the Refers-to relation as a decoration of the parse tree. Data structures and functions similar
to those in programming languages are used during to decorate the tree. Only the traversal of
the parse tree and intermediate storage is formalized and computed by Attribute Grammar
tools.

2) Itis hard to validate the Attribute Grammars against language standards. In Attribute
Grammars, rules for the Refers-to relation are implemented by a mixture of context free
grammar, copying and transfer of attribute and hand coded program. It is hard to collate the
rules in the language standards and specification in Attribute Grammars, let alone proving
they are equivalent.

3) Attribute Grammars are complex, especially when scaling up to real world programming
languages. So far, few production-quality compilers are written using Attribute Grammars,
even though the whole semantic analysis of Ada was specified in Attribute Grammar in 1982
[UDP+82].

Considering these three reasons, Attribute Grammars seem not to be convenient for specifying fact
extraction.

This completes our survey of traditional approaches to fact extraction. We conclude that current
approaches cannot conveniently formalize the extraction of the Refers-to relation. In considering
these approaches and their shortcomings, we decided to develop a new approach.

4.2 Motivation toward a relational approach to fact extension

My search for a new approach to fact extraction is motivated by the relational data model [Cod70].
Introduced by E. Codd in 1970, this model is very simple yet powerful. As described in [RGO00],

A database is a collection of one or more relations, where each
relation is a table with rows and columns. ... The major advantages
of the relational model over the older data models are its simple data

46

representation and the ease with which even complex queries can be
expressed.

But what makes the relational model relevant in this thesis is that the relational model was
introduced to remedy shortcomings similar to the shortcomings of Attribute Grammars. The data
models widely used before relational model are the hierarchical model (e.g., used in IBM’s IMS
DBMS) and the network model (e.g. used in IDS and IDMS). In these models, data are stored in tree
structures or lattices. Queries to the database of these models are solved by navigating the trees or
lattices [Bac73], which is in essence similar to a decorated parse tree (which is specified in Attribute
Grammars).

Since its introduction to the database management systems, which is two years later than Attribute
Grammars were introduced, the relational model has laid solid foundation for the theory of databases
and has dominated the market. More importantly, with extensions such as transitive closure and other
operations, the relational data model has been used to solve a wide range of problems in reverse
engineering and program analysis, including code repository exploration [FHK+97] [Aca96],
software architecture recovery and repair [BHB99] [FHCO1], pointer analysis [WL04] and code
defect detection [LWL+05].

Motivated by the above research, the author invented Algebraic Refers-to Analysis (ARA). ARA
uses a whole new diagram in specifying fact extraction. It differs from Attribute Grammars in three
ways. First, in Attribute Grammar, fact extraction is a process of decorating the parse tree. In ARA,
fact extraction is a query to find pairs of occurrences of identifiers that satisfy certain conditions. For
example, one of the conditions requires that two occurrences of identifier have the same name.

Second, Attribute Grammars specify the transportation of data on the parser tree, while ARA
represents facts in the source code as relations and stores them in a relational database or an ASCII
file.

Finally, Attribute Grammars require programmers to write code to implement the rules on the
Refers-to relation. ARA translates these rules into relational algebra formulas and runs them on
relational database or other existing software tools. Because relational algebra is closely related to
predicate logic [RG00], ARA formulas are similar to rules written in natural language and therefore
are easy to be verified against language standards. In addition, many software tools including
relational database management systems support ARA formulas. As a result, the major parts of ARA
require no coding.

Since we will be using a relational approach as a basis for fact extraction, we will now introduce
mathematical notation for representing and manipulating relations.

4.3 Mathematical notation: Relational algebra

This section introduces the notation for relational algebra that is used in this thesis. The notation is in
general compliant with from Grok [Hol98] as extended with N-ary relational operations. In this
47

dissertation, a tuple of elements X, y, ... and z is written as <X, y, ... z>. A path of nodes x, y, ... to z is
written as X-y-...Z.

4.3.1 Binary relational algebra

Binary relations are sets of 2-tuples. Binary relational algebra [Tar41] is the relational algebra on
binary relations. All set operations (Union, Intersection, Difference) are applicable on binary
relations. In addition, this dissertation uses the following operations.

The set identity of set S, id S, is the relation {<x, x> | x € S}. In the Grok relational calculator, this
relation is denoted as ID (S).

The relation inverse of relation R, R, is the relation {<y, x> | <x, y> € R}. If edge x-y represents
the tuple <x, y> in relation R, then edge y-x represents the tuple <y, x> in R™.

The set projection of relation R on set S, §. R, is the set {y | x € S A <x, y> € R}. Similarly, R . S
istheset { x|y € S A <x,y> e R}.

The relational composition of relations S and T, S o 7, is the relation {<x, y> |3z, <x,z> € S A
<z, y> € T}. The relational composition can be visualized as Figure 4.1.Note that relational
composition of relation S and T is the set of starting and end points of paths (e.g. 1-2-3) composed of
one edge in relation S (e.g. 1-2) and one edge in relation T (e.g. 2-3).

SoT

SR,

Figure 4.1 Relational composition

For convenience, we write R o R as R?, R o R 0 R as R” and so on. R? is the set of the starting point
and end point of paths composed by two edges in R, and R? is the set of the starting point and end
point of paths composed by three edges in R.

In addition, suppose that S is a set and R is a binary relation and that we want to compute the
composition of the identity relation of S and R. We can write

(idS)oR
or simply

SoR
and conversely R o S.

48

In reverse engineering, we only deal with finite relations and it is guaranteed that the fixed point
can be reached when certain operations are repeated for sufficiently many times. In this dissertation,
two kinds of fixed point operation are used, Transitive closure and reflexive transitive closure. The
transitive closure of Relation R, R is defined as

R"=RUR*U R’U ...until a fixed point is reached.

The reflexive transitive closure, R* is defined as ID U R” where ID is the identity relation of all
elements in R. In terms of the directed graph, R* is the set of starting and end points of paths
composed of zero or more edges in R. R" is the set of starting and end points of paths composed of
one or more edges in R.

4.3.2 N-ary relational algebra

This dissertation only uses one n-ary relational algebra operation: join, more precisely natural join
[RGOO]. Suppose we have relations S <w, x, y>and T <x, y, z>. The natural join of S and T is written
as

R<w,x,y,z2=S<w,x,y> ® T<x,y, z>
It means

R:{<WaXaYaZ>|<WaXay>eS/\<X:y:Z>€T}

In addition to relational algebra, the thesis also uses the standard set operations such as Union (U),
intersection (M), cross-product (x) and difference (—). We have summarized the relational algebra
notation used in this dissertation. Now, we begin to present ARA.

4.4 Problem definition

ARA defines the extraction of the Refers-to relation as a query to find a set of pairs of occurrences of
identifier <x, y> that satisfy four Binding Conditions, which will be introduced in Section 4.5. This
problem definition is drawn heavily from the ISO C++ language standard [C++03] and Java language
specification [GJSB05]. And the thesis will show that this definition is suitable for other statically
scoped languages such as C, Fortran, Pascal and Ada.

49

4.5 ARA pipelines

ARA extracts the Refers-to relation using two pipelines, the three-step pipeline for the simplest
languages and multi-phase pipeline for practical languages such as C and Java. This section focuses
on the three-step pipeline but will briefly introduce the multi-phase pipeline at the end.

4.5.1 Three-step pipeline

As explained in Chapter 1, for simplest languages, ARA extracts the Refers-to relation in three
sequential steps, Basic Fact Extraction, Normalization and Binding. We call the three steps the three-
step pipeline (see Figure 4.2).

Basic Fact

N

Normalization +—Pp»| Binding

Extraction

Figure 4.2 The three-step pipeline

We use Example 4.1 to explain the three-step pipeline. For convenience, the occurrences and
blocks are assigned unique numbers. To simplify the presentation, we use the scoping rule similar to
AIGOL 60. That is, an occurrence can refer to a declaration in an enclosing blocks and the declaration
in the innermost enclosing block is used if there are more than one declaration in the enclosing
blocks. For example, occurrence 5 can refer to occurrence 1 and 4. But occurrence 4 is in the
innermost enclosing block of occurrence 5, so occurrence 5 refers to occurrence 4. Occurrence § can
only refer to occurrence 1. Based on ARA’s definition of fact extraction, our goal is to compute the
set of pairs {<5, 4>, <8, 1>}.

int xi;

foox()1
int X4;
Xs,

3}

barg() {7
Xs,

7}
Example 4.1 C program

50

4.5.1.1 Basic Fact Extraction

In ARA, the extraction of the Refers-to relation is a query to find occurrences that satisfy the Binding
Conditions. To solve this query using relational algebra, ARA first collects the useful lexical and
syntactic facts and stores them as relations. This step is called Basic Fact Extraction.

The facts in Example 4.1 can be represented as relations as shown in Table 4.3. The lexical facts
are represented as relation HasName. The occurrence 1 has name of “x”, therefore, <1, “x> is an
element of relation HasName.

The syntactical facts are stored in two relations, HasKind and Contains. The occurrence 0 is the
global block, i.e. the occurrence 0 has the kind of block and <0, “block> belongs to relation
HasKind. The occurrence 1 is a definitional occurrence of variable X, so it has the kind of “def var”
and <1, “def var’> is an element of relation HasKind. The occurrence 5 is a referential occurrence of
variable “x”, and <5, “ref var’> belongs to relation HasKind. The relation Contains is the relation
between a block and entities immediately contained in it. The global block (block 0) contains
occurrence 1, therefore, <0, 1> belongs to relation Contains.

Relation Content

HasName (HN) <1, “x”>, <2, “fo0”>, <4, “x7> <5, “x7>, ...

HasKind (HK) <0, “block™, <1, “def var”>, <2, “def fun>, <3, “block™>, ...

Contains (C) <0, 1>, <0, 2>, <0, 3>, <0, 6>, <3, 4>, <3, 5>, ...

Table 4.3 Facts in Example 4.1.

The relations in Table 4.3 are all binary relations. Such relations can be depicted as a directed
graph, which will be used often in the rest of the thesis. We can draw a binary relation as a directed
graph. The graph for HasName for Example 4.1 is Figure 4.3. As we can see, occurrences 1, 4, 5 and
8 have the name of “x”. Occurrence 2 has the name of “foo”. Occurrence 6 has the name of “bar”.

51

Figure 4.3 HasName for Example 4.1

The second relation in Basic Facts (Table 4.3) is HasKind (HK), the binary relation between an
occurrence and its kind. HasKind for Example 4.1 is shown in Figure 4.4. It shows that occurrences 1
and 4 are definitional occurrences and occurrences 5 and 8 are referential occurrences.

Figure 4.4 HasKind for Example 4.1

The third and last relation in Basic Facts (Table 4.3) is Contains (C). It is a binary relation between
a block and the blocks or occurrences that it contains directly. Contains for Example 4.1 is Figure 4.5.
It shows the containment relationship between blocks and occurrences. For example block 0 contains
occurrence 1 and block 2. With a parser generator such as Yacc, we can create a parser that extracts
these three relations straightforwardly.

52

Figure 4.5 Contains for Example 4.1

4.5.1.2 Normalization

Normalization converts facts (Basic Facts) from being language specific into a form in which an
(almost) standard set of binding transformations can create the Refer-to relation. Normalization uses
a set of relational algebra formulas to convert the Basic Facts into the relations SameName(N),
CompatibleKind(K), Visibility(V) and Hiding(H). These four relations are called the Normalized
Facts and are defined in almost the same way for all languages. Each language has its own rules as to
what kinds of occurrence are compatible, what regions of code text can be referred to by an
occurrence and so on. ARA translates these rules as relational algebra formulas and uses them in this
step.

SameName (N). N is the set of pairs of nodes that have the same name. This relation can be
constructed by the following relational algebra formula.

N =HN o HN

where HN is relation HasName (see Figure 4.3). The formula means that the relation SameName (N)
is the set of starting and end points of paths composed of one edge in HN and one edge in the reverse
of HN. For example, occurrences 4 and 5 have the same name. In Figure 4.3, they are connected with
one edge in HN (4-x) and one edge in the reverse of HN (x-5).

CompatibleKind (K). We compute K, the relation of occurrences whose kinds are compatible, as
follows.

U, =HK. “ref var”
D, =HK. “def var”

U, =HK. “ref fun”
53

D, =HK. “def fun”
K:Ul XD1UU2XD2

Using set projection, set U; is computed as the set of all referential occurrences of variable. In
Example 4.1, elements of U, include occurrences 5 and 8. Similarly, set D, is the set of all
definitional occurrences of variable. In Example 4.1, elements of D, include occurrences 1 and 4. The
cross product U; x D of these sets gives all pairs of referential occurrence of variable and definitional
occurrence. For example, <5, 1>, <5, 3> and so on. Similarly, U, is the set of function calls and D, is
the set of function definitions.

Visibility (V). We compute the relation V of <x, y> such that y is visible to x. In Example 4.1, we
assume that an occurrence can see declarations in an enclosing block, which is similar to ALGOL-
60’s scoping rule. The formula is the following.

V=P'oC

where relation P is the inverse of relation Contains (C) (see Figure 4.5). The formula means that the
relation Visibility is the set of starting and end points of paths composed of one or more P edges and
one Contains edge.

Suppose that occurrence x is in block by, then the definitional occurrence is in block by, or the
block b, that contains block by, or the block bs that contains b,, etc. In Figure 4.5, occurrence 5 is in
block 3, its definition is supposed to be in block 3 or block 0. From occurrence 5, we can reach these
blocks via one or more P edges, e.g., 5-3 and 5-3-0. From these blocks, we can reach the occurrences
in the block via one Contains edge, e.g. 5-3-4, 5-3-0-1. Therefore, paths of one or more P edges and
one Contains edge connect an occurrence with its potential match. The formula

V=P oC

ignores the name and kind of the occurrences, because these are separately handled in formulas for
SameName (N) and CompatibleKind (K).

Hiding (H). A pair <x, y> in H means that if another occurrence z can refer to both x and y, then x
hides y and z should refer to x. In Example 4.1, the declarations in the inner block can hide the
occurrences in the outer block. For example, occurrence 4 can hide occurrence 1. H is computed as
follows.

H=PoP oC

54

The formula means that occurrence x can hide occurrence y if they are the starting and end points of
paths composed of two or more P edges and one Contains edge. Suppose that occurrence x is in block
by, then x can hide definitional occurrences in block b, that contains b, or block bs that contains b,,
..., etc. In Figure 4.5, occurrence 4 is in block 3 and it can hide occurrences in block 0. From
occurrence 4, we can reach block 0 via two or more P edges, I.e. 4-3-0. From these blocks, we can
reach the occurrences in them via one Contains edge, e.g., 4-3-0-1 and occurrence 4 can hide
occurrence 1. Therefore, an occurrence is connected to the occurrence it can hide by a path of two or
more P edges and one Contains edge. Again, we can ignore name and kind of occurrence in the
formula because they are specified in formulas for SameName and CompatibleKind.

4.5.1.3 Binding

Once Normalized Facts have been computed, we can compute the Refers-to relation. ARA defines the
Refers-to relation as the set of pairs that satisfy the four Binding Conditions, as presented in section
4.4. In Binding, we construct four relations By, B,, B3, B4, where B, satisfies Binding Condition 1, B,
satisfies Binding Conditions 1 and 2, B; satisfies Binding Conditions 1, 2 and 3 and finally B4
satisfies all four Binding Conditions. We will consider the four relations By, B, B3, B4 one by one.

Computing B;. B, requires that occurrences x and y have the same name. In Normalization
(Section 4.5.2), we have computed the relation SameName (N), which is the set of pairs of
occurrences that have the same name. Therefore B, is simply N:

B]ZN

In Example 4.1, occurrences 1, 4, 5 and 8 have the same name of “x”. Therefore, there are 16
tuples in the relation SameName. It is obvious that some tuples are redundant. For example, <4, 4>
because the occurrence cannot refer to itself. Therefore, further refinement is needed.

Computing B, B, requires that x and y have the same name and the kinds of x and y are
compatible. From Normalization, we have the relation CompatibleKind (K) that consists of all pairs
of occurrences whose kinds are compatible. Therefore, B, is the intersection of B; and K.

B, =B nK

The intersection of By and K removes from B, the pairs whose kinds are not compatible, e.g. <4, 4>
and <1, 4> because both occurrences are definitional occurrences. B, for Example 4.1 is {<5, 1>, <5,
4> <8, 1>, <8, 4>},

Computing B; B; requires that x and y have the same name, that the kinds of x and y are
compatible and that y is visible to x. In Normalization, we have computed the relation Visibility (V).

55

A pair <x, y> of Visibility means that y is visible to x. For Example 4.1, Visibility (V) is {<5, 1>, <5,
2>, <5, 4>, <5, 6>, <8, 1>, <8, 2>, <8, 6>}. ARA also defines the relation Bj as the set of pairs that
satisfy Binding Conditions 1, 2 and 3. Therefore,

B;=B,nV

It removed redundant tuples <x, y> where y is not visible to x. For example, <8, 4> should be
removed from B, because occurrence 4 is not visible to occurrence 8. In other words, it is impossible
for the definition of occurrence 8 to reside in block 3 which is not an enclosing block of occurrence 8.
At this stage, we are close to solving the Refers-to relation and B; for Example 3.1 is Figure 4.6.
Occurrence 8 is matched with occurrence 1, which is correct. However, occurrences 5 has two
matches, <5, 1> and <5, 4>. The last formula is to remove the redundant tuples.

o
<D

Figure 4.6 Relation B; (solid arrows) and an edge of H (dashed arrows)

Computing B, B, requires that y is not hidden by other occurrences besides satisfying Binding
Conditions 1, 2 and 3. In Example 4.1, both occurrences 1 and 4 have the same name and compatible
kind with occurrence 5 and they are both visible to occurrence 5. However, occurrence 4 hides
occurrence 1 and occurrence 5 refers to occurrence 4, not occurrence 1. In Normalization, we have
computed the relation Hiding (H). For Example 4.1, H is {<4, 1>}. By the definition of relational
composition,

Bs;o H={<x,y>|3z<x,7z> € B; A<z, y> € H}

In plain English, the relation composition of B; and H is the set of pairs <x, y> in B; such that y is
hidden by some occurrence z. By removing such pairs from B;, we can obtain pairs that satisfy all
four Binding Conditions. Suppose B; is the set of pairs that satisfy all four Binding Conditions and R
is the Refers-to relation, then

B4:B3—B3OH

56

The result of composition B; o H is the set of pairs <x, y> such that there is a pair <x, z> in B; and
occurrence z can hide occurrence y. According to the simplified C language rules, these pairs should
be removed. In Figure 4.6, such pairs are the starting and end points of a path of one B; edge and one
H edge, e.g., <5, 1>. We remove these pairs from B; and obtain the Refers-to relation, which is shown
in Figure 4.7. The extraction of Refers-to relation is complete.

Figure 4.7 The Refers-to Relation for Example 4.1

4.5.2 Tables and graphs used for summarizing the three-step pipeline

ARA is much more concise than informal specification and Attribute Grammars. For example, we

can summarize the three-step pipeline for languages similar to ALGOL-60 as Table 4.4.

Step Relation Definition
Basic HasName HN = {<x, y> | occurrences x has name y}
Fact HasKind HK ={<x, y> | occurrence x has kind y}
Extraction Contains C = {<x, y> | block x directly contains occurrence or block y}
SameName N =HN o HN"
Compatible- U, =HK. “ref var”
Normalization | Kind D, =HK. “def var”
U, =HK. “ref fun”
D, =HK . “def fun”
K:Ul XD1 UU2XD2
Visibility V=P oC
Hiding H=PoP oC
Condition 1 B, =N
Binding Condition 2 B, =B nK
Condition 3 B;=B,nV
Condition 4 B;,=B;—Bs;oH

Table 4.4 Summary of three-step pipeline for ALGOL-60 like languages

57

For convenience, we often depict ARA pipeline as a data flow graph like Figure 4.8. This graph
shows two kinds of information. First, it shows the relations (facts) created in each step of the
pipeline. In Figure 4.8, Basic Fact Extraction creates three relations, HasName, HasKind and
Contains. Normalization creates four relations, SameName, CompatibleKind, Visibility and Hiding.
Finally, Binding computes B, B, B;, Bsand B, is the Refers-to relation. Second, it shows how the
relations are used in the pipeline. For example, the arrow between relation HasName and relation
SameName indicates that the relation SameName is computed using relation HasName as input.

i Basic Fact Extraction i t Normalization i i Binding i
i HasName 5 i »| SameName __:_i> B, |
i HasKind . 1, CompatibleKind L B, |
| o o ‘ |
! Contains | Visibility L B; :
| ~] |
| v Hiding L B, !

Figure 4.8 Data flow graph of the three-step pipeline

4.5.3 Multi-phase pipelines

During the writing of the thesis, seven languages, including C, CPP (C Preprocessor), Java, C++,
Fortran, Pascal and Ada, were studied. As explained in Chapter 1, for these languages, we need multi-
phase pipeline (see Figure 4.9).

Each phase in the multi-phase pipeline resolve a subset of occurrences such as all occurrences in
the import declarations (in Java) or all occurrences in the ordinary statements. The union of results
from phases is the Refers-to relation.

Within each phase, there can be at most two stages. Stage 1 resolves the unqualified occurrences
such as occurrence of x in x++. Stage 2 resolves the qualified occurrences such as occurrence y in
x.y. Each stage has three steps, Basic Fact Extraction, Normalization and Binding, as we have seen in
the three-step pipeline. The result from the previous phases (stages) can be used by the current phase
(or stage). Figure 4.9 implies that each stage has its own parser. But in an actual implementation, it is
better to use one parser to extract the Basic Facts that are used in several phases.

58

We will give more detail of multi-phase ARA pipeline in Chapters 5, 6 and 7.

Phase 1
Stage 1
Basic Fact Extraction
Normalization
Binding
Stage 2

Basic Fact Extraction

Normalization

v

Binding

__

Phase 2
Stage 1
| g
Basic Fact Extraction
Normalization
Binding
Stage 2

Basic Fact Extraction

Normalization

v

Binding

__

Figure 4.9 Multi-phase pipeline

4.6 Validation of ARA

This section answers the question how ARA is shown to be correct. Validation of ARA means to
demonstrate that ARA complies with the corresponding language standard such as ISO C++ standard
[C++03] and Java language specification [GISB05]. For each rule in the language standard that deals
with the Refers-to relation, we show that the rule is correctly transcribed into ARA. For example, the
following is Item 4 of Clause 6.2.1 of ISO C standard.

59

“... the scope of one entity (the inner scope) will be a strict subset of the scope of the other entity (the
outer scope). Within the inner scope, the identifier designates the entity declared in the inner scope;
the entity declared in the outer scope is hidden (and not visible) within the inner scope” (6.2.1(4)).

Using set theory and relational algebra, this rule is transcribed into the following formulas.
V=P 0oC
H=PoP oC

We claim that transcription such as this one are direct enough and clear enough that it is obvious that
they are correct.

For practical programming languages such as the seven languages studied in this thesis (C, Java,
C++, CPP, Fortran, Pascal and Ada), ARA uses multi-phase pipeline, which is composed of phases,
stages and three-step pipelines. In general, the validation of these pipelines consists of showing that
the following three claims are satisfied.

1. Phases and stages must be designed to match the language standard.
2. Basic Facts must represent the source code according to the language standard.

3. Formulas for Normalization and Binding must follow the language standard.

In Section 8.2, we will give more details about validation and how these claims are shon to be
satisfied.

4.7 Chapter summary

This chapter gave an overview of ARA. It started with a brief survey of traditional specification
techniques for extracting the Refers-to relation, including informal specification and Attribute
Grammars and points out the drawbacks of these approaches.

Motivated by the relational data model and developments in program comprehension and reverse
engineering, Algebraic Refers-to Analysis (ARA) was invented. ARA formulated the extraction of
the Refers-to relation as a query to find occurrences of identifier that satisfy the Binding Conditions.
The query was solved with either three-step pipeline or multi-phase pipeline.

The three-step pipeline has three sequential steps, Basic Fact Extraction, Normalization and
Binding. Using a simple language with ALGOL-60 like scoping rule, the Basic Fact Extraction and
formulas used in Normalization and Binding were introduced. The data flow of ARA pipeline was
presented.

60

Chapter 5 ARA for C

This chapter presents an example of the multi-phase pipeline, ARA pipeline for the C language (ARA
for C). ARA for C has one phase. Within the phase, there are two stages. Stage one resolves
unqualified occurrences. Stage two resolves qualified occurrences. Each stage is a three-step pipeline.

Validation of ARA for C means to show that ARA for C satisfies the ISO C standard [C99]. For
each rule in the ISO C standard that is related to the Refers-to relation, we show that the rule is
correctly transcribed into phases (or stages or formulas) of ARA for C. Section 8.2 will discuss the
validation in more detail.

This chapter is organized as follows. First, Section 5.1 introduces some basic concepts about the C
language and its Refers-To relation. Then the overview of ARA for C is presented in Section 5.2. The
stages are explained in Sections 5.3 and 5.4. Finally, Section 5.5 concludes the chapter with a short
summary.

5.1 C syntax related to Refers-to relation

The current standard for the C programming language is [SO/IEC 9899:1999 [C99], commonly
referred to as C99. In this standard, syntax related to Refers-to relation includes the different kinds of
occurrences, scopes in C and rules for visibility and name hiding.

5.1.1 Occurrences in C

Recall that in the Refers-to relation, an occurrence can play one of the two roles, the referential
occurrence and the definitional occurrence. A definitional occurrence introduces a new entity (label,
type, variable, function, ...) into the program. A referential occurrence refers to an entity introduced
by a definitional occurrence.

We can distinguish the definitional occurrence from the referential occurrence by the syntactic
context. For example, occurrence x in

nt X;

is a definitional occurrence. Occurrence y in

b

y++;

1s a referential occurrence.

61

Each occurrence has its kind that is determined by the syntactic context in most cases. Occurrence
x in the above defines a variable, therefore its kind is definitional occurrence of variable. Occurrence
y in the above example refers to a variable and its kind is referential occurrence of variable.

In the C language, the kind of an occurrence can be:
1. definitional (or referential) occurrence of a label;
2. definitional (or referential) occurrence of the tags;
3. definitional (or referential) occurrence of the members of structures or unions;

4. definitional (or referential) of all other identifiers, called ordinary identifiers.

Sometimes syntactic context of an occurrence is not sufficient to decide its kind. For example,

T *x;

This is called syntactic ambiguity, which will be discussed in Chapter 8. In this chapter, we assume
that we can decide the kind of occurrence by syntactic context.

Finally, consider the qualification of referential occurrence. A referential occurrence can appear
alone or connected with other occurrences by member access operator (.) or points-to operator (->).
The occurrence following these operators are called qualified occurrence. Otherwise, it is called an
unqualified occurrence. For example, occurrences y and z in x.y.z are qualified occurrences.
Occurrences x and y in x++ and y.z are unqualified occurrences.

The Refers-to relation of qualified occurrences and unqualified occurrence are computed in
different ways. An unqualified occurrence can be resolved without the knowledge of the Refers-to
relation of other referential occurrences. This is not the case for qualified occurrences. Consider the
following example.

struct A; {»
struct B; {4
int zs;
4} Vs
2} X73
X§.Y9.Z10 +1;

We first resolve occurrence 8 because it is an unqualified occurrence and match occurrence 8 with
occurrence 7. Then, we know that the match for occurrence 9 is in block 2 (inside struct A). So, we
search block 2 for match for occurrence 9 and find occurrence 6. Again, we know that match for
occurrence 10 is in block 4 (inside struct B) and finally we match occurrence 10 with occurrence 5.

As aresult, ARA for C has one phase. Within this phase there are two stages. Stage 1 resolves
unqualified occurrences. Stage 2 resolves qualified occurrences (see Figure 5.1).

62

Stage 1

Basic Fact Extraction

v

Normalization

v

Binding

i

Stage 2

Basic Fact Extraction

Normalization

v

Binding

__

Figure 5.1 ARA for C

5.1.2 Scopes in the C language

The C standard [C99] lists four kinds of scopes: file scope, local scope, function scope and function
prototype scope. Among them, the last two scopes are simple and used less often. Only labels depend
on the function scope, which encloses the each function definition. The function prototype scope
encloses the function prototype. File scope and local scope are detailed in the following.

5.1.2.1 File scope

File scope includes the entire translation unit and is often referred to as the global scope. Definitions
that are outside of any block or a list of parameters are considered inside the global scope (file scope).
A definition in the global scope is visible to all referential occurrences appearing after it.

A special case of the global scope is the tag of structure. Consider the following program.
63

struct A {

struct B {

The structure A is considered inside the global scope because it is outside any block. However, the
C language specifies that structure B is visible in structure A and in the global scope. To avoid
confusions, it specifies that B and A must have different names.

5.1.2.2 Local scope

A local scope is a portion of program text contained within a block (function definition, compound
statement and structure definition). Declarations in a local scope are visible to a referential occurrence
in the same scope or in a nested scope and declarations in the local scope must be declared before it is
used.

5.1.3 Visibility and name hiding

In C language, containment relation, the order of occurrence and qualification are used to decide the
visibility of a definition. Also, containment relation also decides name hiding. We will give details in
Sections 5.3 and 5.4.

5.2 Overview of ARA for C

ARA for C has one phase. Within the phase, there are two stages (see Figure 5.2). Stage one is in fact
a three-step pipeline (see Chapter 4) of Basic Fact Extraction, Normalization and Binding. Stage two
is also a three-step pipeline with a loop. Suppose we have the following occurrences in the program,

X.y.Z

a.b

Stage one resolves unqualified occurrences x and a. Then, the first loop of Stage two resolves
qualified occurrences y and b. Finally, the second loop of Stage two resolves qualified occurrence z.
In general, if we have n qualified occurrences following one unqualified occurrence, Stage two loops

64

n times (see Figure 5.2). In Section 5.3, we explain Stage one, resolving unqualified occurrences. In
Section 5.4, we explain Stage two, resolving qualified occurrences.

Stage 1: unqualified

| | |
| ! |
| ! |
| ! |
| | !
' Basic Fact i Basic Fact i
i Extraction i i Extraction i
! 1
|] DI
! v i : v i
i Normalization i i Normalization i
| e |
| : | :
: A : : A :
| ! ! .. '
| Binding — Binding : >
1 M | !
! 1

Figure 5.2 Stages in ARA for C

5.3 Stage one: Resolving unqualified occurrences

The formulas for resolving unqualified occurrences in C program are similar to formulas introduced
in Section 4.5. Therefore, we only explain this stage briefly and readers can find detail in Section 4.5.

5.3.1 Basic Fact Extraction

The Basic Facts needed to resolve unqualified occurrences are stored in four relations: HasName
(HN), HasKind (HK), Follows (F) and Contains (C), and their definitions are listed in Table 5.1.

5.3.2 Normalization

Normalization converts Basic Facts into Normalized Facts, namely relations SameName (N),
CompatibleKind (K), Visibility (V) and Hiding (H).

65

Relation ‘ Explanation

HasName (HN) | {<x, y> | occurrences x has name y}

HasKind (HK) | {<x, y> | occurrence x has kind y}

Contains (C) {<x, y> | occurrence block x directly contains an occurrence or block y}

Follows (F) {<x, y> | occurrence x follows occurrence y immediately}

Table 5.1 Basic Facts for unqualified occurrences

5.3.2.1 Formulas for relations SameName (N) and CompatibleKind (K)

The formulas for relations SameName (N) and CompatibleKind (K) are the following, which have
been explained in Section 4.5.

N =HN o HN"

R; = HK . referential occurrence of ordinary identifier”
D, = HK . “definitional occurrence of ordinary identifier”
R, = HK . referential occurrence of tag”

D, = HK . “definitional occurrence of tag”

K=R;xD;UR, xD,

5.3.2.2 Formulas for relation Visibility (V)

The relation Visibility for unqualified occurrences is decided by two rules:
1) an unqualified occurrence can see definitions in the same block or an outer block;

2) a name must be defined before being referred to.

As discussed in Section 4.5, rule 1 is transcribed into the following formula.

P'oC

We use relation Follows (F) to construct the formula for rule 2. A pair <x, y> of relation Follows
means that occurrence x follows y immediately. Then, a pair <x, y> of the transitive closure of
Follows means that x follows y, immediately or transitively. Combining rules 1 and 2 by intersection,
we get the following formula for relation Visibility (V) for unqualified occurrences.

66

V=P 0oCnEF"'

5.3.2.3 Formulas for the Hiding (H) Relation

The formula for relation Hiding is the following, which has been explained in Section 4.5.

H=PoP' oC

5.3.3 Binding Formulas

As introduced in Section 4.5, the formulas for Binding are the following.

B, =N

B,=B nK
B;=B,nV
B;=B;-B;oH

where By is the Refers-to relation (R).

5.4 Stage two: Resolving qualified occurrences

Stage two is also a three-step pipeline but with a loop. Each loop resolves a layer of qualified
occurrences until all of them are resolved. Suppose we have x.y.z and a.b in the program. After the
unqualified occurrences are resolved, we need two loops, one for y and b and the other for z.

Figure 5.3 shows the data flow of Stage two. There are three steps in the stage, Basic Fact
Extraction, Normalization and Binding. First, Basic Fact Extraction (the dashed box on the left)
creates the relations that are needed in resolving unqualified occurrences, including the HasName
(HN), HasKind (HK), Denotes (T), Qualifies (Q) and Contains (C) relations. The Normalization (the
dashed box in the middle) use the HasName (HN) relation to create the SameName(N) relation, the
HasKind (HK) relation for the CompatibleKind (K) relation, the relations Denotes (T), Specifies (SP),
Qualifies (Q) and Contains (C) and relation R from the previous loop (and Stage 1) for the Visibility
(V) relation. The Hiding (H) relation is an empty relation in for qualified occurrences. The
Normalized Facts are then used in Binding (the dashed box on the right) to compute the Refers-To
relation (R). There are four formulas in Binding and Relations By, B,, B; and B, are respective results.

67

i Basic Fact Extraction E i Normalization i ' Binding i
i HasName i 1p[SameName : i B, |
o v :
: HasKind 1| CompatibleKind L B, i
i Denotes i ' i | i
i Qualifies i ; Visibility E = 33 i
i Specifies / ' Hiding : i: B, i

1 1 H
1
1 1
1 1
I L e e T
. 1
Contains !
1

Figure 5.3 Data flow graph for Stage two

5.4.1 Basic Fact Extraction

Basic Facts needed in resolving qualified occurrences are listed in Table 5.2.

Relation ‘ Explanation

HasName (HN) | {<x, y> | occurrences x has name y}

HasKind (HK) | {<x, y>|occurrence x has kind y}

Contains (C) {<x, y> | occurrence block x directly contains an occurrence or block y}

Follows (F) {<x, y> | occurrence x follows occurrence y immediately}

Denotes (T) Example: struct Ay {, ,} /<1,2>€eT

Specifies (SP) | Example: struct A; a,; //<1,2> e SP

Qualifies (Q) Example: x; .y, //<1,2>€ Q

Table 5.2 Basic Facts for Stage two

There are three ways to define a structure in the C language, illustrated below as Examples 5.1, 5.2
and 5.3.

68

struct A, {, intxs; o};
struct Ay as;
6. X7,

Example 5.1

For Example 5.2, relations Denotes, Specifies and Qualifies are the following.
Denotes (T) = {<1,2>}
Specifies (SP) = {<4, 5>}
Qualifies (Q) = {<6, 7>}.

struct By {, intx3; »} by
b5 . X6,

Example 5.2

For Example 5.2, the relations are the following.
Denotes (T) = {<1, 2>},
Specifies (SP) = {<1, 4>},
Qualifies (Q) = {<5, 6>}.

struct {; int X,; } cs;
Cs. Xs,

Example 5.3
For Example 5.3, the relations are the following.
Denotes (T) = {<3, 1>}

Qualifies (Q) = {<4, 5>}.

The remaining relations in Basic Facts have been introduced before and are not discussed in detail.
Now, consider the Normalization of the Basic Facts.

69

5.4.2 Normalization

Normalization formulas convert Basic Facts into Normalized Facts, i.e. relations SameName (N),
CompatibleKind (K), Visibility (V) and Hiding (H). Note that the formulas are based on member
access operator (.). But with minor changes, the formulas also work for pointer operator (->).

5.4.2.1 Formulas for relation SameName (N) and CompatibleKind (K)

N =HN o HN"!

R, =HK . ”qualified occurrence”

D; = HK . “definitional occurrence of ordinary identifier”
R, = HK . ”qualified occurrence”

D,=HK . “definitional occurrence of tag”

K=R; xD; UR, xD,

5.4.2.2 Formulas for relation Visibility (V)

Because there are three ways to define the structures, the formula for relation Visibility (V) has three
terms, for Examples 5.1, 5.2 and 5.3, respectively.

First, consider Example 5.1. Relations Denotes (T), Specifies (SP), Qualifies (Q) are shown in
Figure 5.4. Relation R is the Refers-to relation computed by the previous phase. In Example,
occurrence 4 resolves to occurrence 1 and occurrence 6 to occurrence 5.

Figure 5.4 Relations for Example 5.1

70

The qualified occurrence we need to resolve is occurrence 7 and definitions visible to occurrence 7
are in block 2. On Figure 5.4, they are the starting and end points of the path from occurrence 7 to
occurrence 2. Therefore, Visibility (V) for Example 5.1 is

Q'oRoSP'oR0ToC

Second, consider Example 5.2. Relations Denotes (T), Specifies (SP), Qualifies (Q) are shown in
Figure 5.5. Relation R is the Refers-to relation computed by the previous phase. In Example,
occurrence 5 resolves to occurrence 4. Again, we can find the definitions visible to occurrence 6 by
constructing a path from occurrence 6 to definitions in block. Therefore, the formula is the following.

Q'oRoSP'oToC

Figure 5.5 Relations for Example 5.2

Finally, consider Example 5.3. Relations Denotes (T), Specifies (SP), Qualifies (Q) are shown in
Figure 5.6. Relation R is the Refers-to relation computed by the previous phase. In Example,
occurrence 4 resolves to occurrence 3. The formula for Visibility is the following.

Q'oRoToC

Putting everything together, we have the formula for Visibility as the following.
V=Q'oRo(IDUSP'USP'oR)0oToC

71

()

D

Q
Figure 5.6 Relations for Example 5.3

5.4.2.3 Formulas for the Hiding (H) Relation

In resolving qualified occurrences, we only search one block. According to the One Definition Rule,
the relation Hiding (H) should be empty.

H=¢

5.4.3 Binding Formulas

The Binding Formulas for resolving qualified occurrences are the same as Binding Formulas for
resolving unqualified occurrences (see Section 5.3).

5.5 Chapter summary

This chapter used ARA for C as an example and presented the two stages of a multi-phase pipeline.
ARA for C has one phase. Within the phase, there are two stages. Stage one is a three-step pipeline
that resolves unqualified occurrences. Stage two is a three-step pipeline with a loop that resolves
qualified occurrences.

This chapter also explained in detail the formulas for resolving qualified occurrences. It explained
the three ways of defining structures and presents formulas for the three variations.

72

Chapter 6
ARA for Java

This chapter uses ARA for the Java language (ARA for Java) as an example to explain how to
compute the Refers-to relation in an Object-Oriented language. ARA for Java is a multi-phase ARA
pipeline (see Chapter 4) and this chapter also details how the output of previous phases is used in the
current phase. Another interesting fact about the Java language is that its specification [GJSB05] is
written in the similar fashion as ARA, which is discussed in Section 6.1.

Validation of ARA for Java means to show that ARA for Java satisfies the Java language
specification [GJSBO5]. For each rule in the Java language specification that is related to the Refers-
to relation, we demonstrate that the rule is correctly transcribed into phases (or stages or formulas) of
ARA for Java. Section 8.2 will discuss the validation in more detail.

The chapter is organized as follows. Section 6.1 explains Java syntax related to the extraction of
the Refers-To relation. Sections 6.2, 6.3 and 6.4 explain the ARA for Java. Section 6.5 concludes the
chapter.

6.1 Java syntax related to Refers-to relation

This section introduces Java syntax related to Refers-to relation, including the kinds of occurrences,
scopes and rules about visibility and name hiding. It also introduces an interesting fact about Java
language specification. That is, the language specification is written in the similar way as ARA.

6.1.1 Occurrences in Java

Occurrences in Java play two roles in the Refers-to relation. The definitional occurrences introduce
entities (package, class, function, variable) into the program. The referential occurrence refers to
entities defined by definitional occurrences.

There are two kinds of referential occurrences, qualified occurrences and unqualified occurrences.
Recall from Chapter 5 that the Refers-to relation of qualified occurrences depend on the Refers-to
relation of unqualified occurrences and other qualified occurrences. In Java, even the Refers-to
relation of unqualified occurrences may depend on the Refers-to relation of other occurrences. For
example, the import statement

import java.io.*;

introduces definitions in the package java.io into the translation unit. Therefore, we must first resolve
the name java.io before we resolve the unqualified occurrences.

73

Table 6.1 lists occurrences in different statements. For example, the first row is occurrences in
package declaration. All source files (.java files) in the same package start with the same package
declaration. The second row is occurrences in import statements, which introduce definitions into
current translation unit.

Table 6.1 also shows the order of resolving these occurrences. The first row is package declaration
and the occurrences (qualified and unqualified) are resolved first. This is because by default, a
definition is visible to all files within the same package. The last row is occurrences in ordinary
statement. That includes all occurrences that are not mentioned in the first four rows of Table 6.1. In
ARA for Java, each row in Table 6.1 is implemented as a phase.

Statements Use Examples

Package Merging separate parts of the Package MyPackage;

declaration same package

Import Introducing definitions into Import java.io.*;

declaration translation unit

Class Determining class hierarchy class Derived extends Base { }

declaration

Template Resolving template-related types | <T extends Base> T f(class<T> a);
and variables

Ordinary Resolving labels, types and MyClass p;

Statements objects (variables, functions) Abct+:

Table 6.1 Occurrences in Java

6.1.2 Scopes in Java

There are three kinds of important scopes in Java, package scope, local scope and class scope. The
package scope and local scope are similar to global scope and local scope that are commonly referred
to in C and C++ languages. The class scope is similar to the block scope for C structures. But the
difference is that one class scope (derived class) can inherits definitions in another class scope (base
class).

6.1.3 Visibility and name hiding

Java uses containment relation, import statements, inheritance hierarchy and qualification to decide
visibility and name hiding. These rules are detailed in Sections 6.3 and 6.4. The interesting fact about
Java is that its specification [GISB05] is written in the same fashion as ARA.

Java Specification explains the visibility of definition in Section 6.3. For example,
74

The scope of a local variable declaration in a block is the rest of
block in which the declaration appears, starting with its own
initializer and including any further declarators to the right in the

local variable statements.

The name hiding rules are divided into three categories, shadowing, hiding and obscuring.
Shadowing is mainly about imports and enclosing blocks while hiding only applies to members of
subclasses. Obscuring resolves certain syntactic ambiguities. However, all of these are specified
similar to ARA’s relation Hiding. For example,

A declaration d of a type named n shadows the declarations of any
other types named n that are in scope at the point where d occurs

throughout the scope of d. ...

A variable will be chosen in preference to a type, ...

Appendix A will list the Java rules for visibility and name hiding and their location in the Java
specification. In addition, C++ standard [C++03] also uses the similar way to specify its rules. These
specification show that although ARA uses mathematical formulas, it is also close to the way people
talk about the Refers-to relation and therefore easy to understand.

6.2 Overview of ARA for Java

ARA for Java is a multi-phase ARA pipeline (see Chapter 4). We need multiple phases for two
reasons. First, as in C, there are qualified occurrences and resolving these occurrences requires
multiple phases. Second, package name, import declarations, class names must be resolved before we
can extract some Basic Facts such as inheritance (see Table 6.1). Therefore, occurrences in package
statements, import statement and class declarations are resolved. Then, occurrences in other
statements are resolved. We leave the discussion of occurrences in template to Chapter 8, where
templates in other languages are also discussed.

Within each phase, there are two stages, Stage 1 for resolving unqualified occurrences and Stage 2
for resolving qualified occurrences. Each stage has three steps including Basic Fact Extraction,
Normalization and Binding. Among all phases, the phase that resolves occurrences in ordinary
statement uses all Basic Facts and results from all previous phases and therefore, is most difficult.
The rest of the chapter explains this phase. Section 6.3 explains Stage 1 of this phase. Section 6.4
explains Stage 2 of this phase.

75

6.3 Stage One: Resolving unqualified occurrences

This section explains how ARA resolves unqualified occurrences in ordinary statements. By ordinary
statements, we mean that the statement is not a package statement, import statement or a class
definition. ARA resolves these occurrences in three steps, Basic Fact Extraction, Normalization and
Binding. Figure 6.1 illustrates the data flow of these steps. First, in Basic Fact Extraction (the dashed
box on the left) creates the relations that are needed in resolving unqualified occurrences, including
HasName (HN), HasKind (HK), Contains (C), Inherits (1) and GroupImports (GM) and
Singlelmports (SM). The Normalization (dashed box in the middle) uses HasName (HN) creates
relation SameName (N), HasKind (HK) for CompatibleKind (K), Contains (C), Inherits (1),
GroupImports (GM) and SingleImports (SM) for the Visibility (V) relation, and Contains(C), Inherits
(D, GroupImports (GM) and Singlelmports (SM) for the Hiding (H) relation. Finally, Binding
(dashed box on the right) formulas 1, 2, 3 and 4 uses the Normalized Facts to compute the Refers-To
relation (B). Relations By, B,, B; and B, are respective results of the formulas.

! ! | I | |
I I

i Basic Fact Extraction | i Normalization i E Binding i
i L Lo |
| \ I I 1 I
| \ I I 1 I
! - Lo |
' HasName —1p SameName L B, !
| o Lo |
| L o Y |
| HasKind . 15| CompatibleKind L B, !
i Lo Lo !
| \ I I 1 I
! - Lo |
| Grouplmports b Lo !
i Lo Lo !
| I I 1 I
! N Lo |
i SingleImports \ N Lo y :
! ; Visibility 5 > B, i
I ! I | I
! I 1 I
i Contains % Lo y |
| ' Hiding L B, i
i L Lo !
! Inherits 1o TTTTTTTTTTIITITTI IO e !
I I

I I

Figure 6.1 Data flow graph for resolving unqualified occurrences

Now, we use Example 6.1 to explain the three steps of resolving unqualified occurrences.
class Base; {,
int xs;
void f4() {s s}
76

2}

class Subg extends Base; {g

int Xo, y10;
void gi1() {12
X371+,
Yigtt;
fis();
12}

8
Example 6.1. A Java program

In Example 6.1, class Sub extends class Base and inherits occurrence 3 and occurrence 4. The
occurrence 3 is shadowed in the class Sub by occurrence 9. Finally, occurrence 11 accesses
occurrence 9, occurrence 10 and occurrence 4.

6.3.1 Basic Fact Extraction

The Basic Facts for ARA include four relations, HasName (HN), HasKind (HK), Contains (C),
Inherits (1), GroupImports (GM) and Singlelmports (SM) (see Table 6.2).

HasName (HN) {<x, y> | occurrences x and y have the same name}
HasKind (HK) {<x, y> | x is an occurrence of kind y}

Contains (C) {<x, y> | block x contains block or occurrence y directly}
Inherits (I) {<x, y> | blocks x inherits definitions in block y}

Singlelmports (SM) | Importing individual class, e.g. import java.util.List;

Grouplmport (GM) Importing classes in a package, e.g. import java.util.*;

Table 6.2 Basic Facts for unqualified occurrences

Basic Fact Extraction is implemented by a simple parser that has no symbol tables. Relation
Inherits (I) and Imports (M) in Table 6.2 are first constructed by the parser and then combined with
the results from the previous phases. Consider the following example.

Class Base; {5 ... 2}
77

Class Derived; extends Basey {s ... s}

Suppose that parser constructs a relation called RawlInherits (RI), which has a tuple <3, 4>. This
relation is not convenient and what we need is the Relation Inherits between blocks. From Table 6.1,
we know that occurrence 4 has been resolved to occurrence 1 before we resolve unqualified
occurrences. The Refers-to relation from previous phases is relation R. In addition, relation Denotes
(T) tells us that occurrence 1 denotes block 2 and occurrence 3 denotes block 5. Therefore, the
following formula creates the relation Inherits that is between blocks.

I=T'oRIOROT

Relations GroupImports (GM) and Singlelmports (SM) are constructed in the similar way.

6.3.2 Normalization

Normalization formulas convert the Basic Facts (relations HasName , HasKind, Contains, Inherits,
GroupImport, Singlelmport) into Normalized Facts (relations SameName, CompatibleKind, Visibility
and Hiding).

6.3.2.1 The Formula for SameName (N)

The formula is

N = HN o HN"!

6.3.2.2 The Formulas for CompatibleKind (K)

Formulas for CompitableKind (K) are the following.
R; = HK . “unqualified referential occurrence of ordinary identifier”
R, = HK. “unqualified referential occurrence of package”
R; = HK. “unqualified referential occurrence of class”
D; = HK . “definitional occurrence of ordinary identifier”
D, = HK. “definitional occurrence of package”
D; = HK. “definitional occurrence of class”

K:RIXD1UR2XD2UR3XD3

78

6.3.2.3 Formulas for Visibility (V).

Three kinds of occurrences are visible to an unqualified occurrence x in class A:
1) occurrences in the same block or an outer block,
2) occurrences that are member of super-classes,

3) occurrences that are imported.

1. Occurrences in the same or an outer block

Figure 6.2 is the graph of relations Contains (C) and Inherits (I) for Example 6.1. Finding the
occurrences in the same or an outer block is equivalent to finding a path of one or more Parent (P)
edges and one Contains (C) edge, where relation Parent (P) is the inverse of Contains (C). For
example, occurrence 14 can see occurrence 10 because of the path 14-12-8-10. The formula finding
these occurrences is

P'oC

2. Occurrences that are member of super-classes

Finding the occurrences that are members of super-classes is equivalent to finding a path of one of
more Parent (P) edges, one or more Inherits (I) edges and one Contains (C) edges. For example,
occurrence 15 can see occurrence 4 because of the path 15-12-8-2-4. The formula computing these
occurrences is

P'ol'oC

Figure 6.2 Relation Contains (C) and Inherits (I) for Example 6.1

79

The solid arrows represent Contains I edges and the dashed arrows represent Inherits (I) edges.

3. Occurernces that are imported

In Java, we can import a single class, e.g. import java.util.List. Relation SingleImport (SM) is the
relation between the global scope and the individual classes it imports. Because classes in the global
scope are visible from the enclosed scopes, we have the following formula for classes that are
imported individually.

P o SM

In addition, we can also import all classes in a package, e.g. import java.util.*. Relation Grouplmport
(GM) is the relation between the global scope and the package it imports. The formula for imported
package is the following.

P'oGMoC

All together, we have the following formula for relation Visibility.

V=P 0l*oCUP 0oSMUP 0GMoC

6.3.2.4 Formulas For Hiding (H)

In ARA, the relation Hiding (H) is used to resolve name conflicts. The sources of name conflicts are
1. Java’s single name space;
2. Individual Visibility Rules, i.e., containment, inheritance;

3. Interaction between Visibility Rules, i.e. containment vs. inheritance and containment and
using directives.

The following are the formulas for resolving these conflicts.

Source 1. Java’s single name space

Java has one single name space and disambiguate by the kind of the occurrence. For example, a class
name can be hidden by the name of an object or function declared in the same scope [Java section
6.3.2]. The following formula is equivalent to such a rule.

ObjSet = { objects in the program }
TypeSet = { types in the program }
H = ObjSet x TypeSet

80

The cross product of ObjSet and TypeSet means that an object takes precedence over a type. We
can have similar formulas for precedence between the imported definitions and user definitions as
well.

Java also specifies the precedence among imported occurrences (see Appendix A). For example,
single-type-import hides type-import-on-demand. Therefore, we have formulas like the following.

SingleTypeSet = {single-type-import}
TypelmportOnDemand = {type-import-on-demand}
H = SingleTypeSet x TypelmportOnDemand

Source 2. Conflict caused by individual Visibility rules

First, what if there are multiple definitions of the same name in the enclosing blocks? Like the C
language, Java specifies that the definition in the inner block has the precedence over the definitions
in the outer blocks. So, ARA reuses the formula for C, which is the following.

PoP'oC

Second, what if there are multiple definitions of the same name in the base classes. On the
inheritance hierarchy, the definition in the derived class can hide the definitions in the base classes.
Suppose that occurrence X is in class A and occurrence y is in class B and B is a base class of A. On
the diagram of Contains (C) and Inherits (I) like Figure 5.2, such pairs <x, y> are the starting and end
points of one Parent (P) edge, one or more Inherits (1) edges and one Contains (C) edge. For
example, occurrence 9 can hide occurrence 3 because of the path of 9-8-2-3. The formula for these
pairs is

Pol'oC

Source 3. Conflicts caused by interaction between Visibility rules

What if we find multiple definitions by both Containment hierarchy and Inheritance hierarchy? The
inherited members are deemed as own and therefore have precedence over the definitions in the
enclosing blocks. Using the diagram of Contains (C) and Inherits (I) like Figure 5.2, we can find these
pairs of by finding the paths composed of one Parent (P) edge, one or more inverse of Inherits (I)
edges, one or more Parent (P) edges and one Contains (C) edge. The formula for these pairs is

Po(I") oP'0oC
=T oC)'oP 0C

81

As we can see, it is the composition of the inverse of (I" o C), which is the second part of formula for
2) and (P" o C), which is the second part of the formula for 1). That is, the occurrences found by
Inherits (I) relation take precedence over the occurrences found by Contains (C) relation. Similarly,
the locally defined occurrences can hide the imported occurrences. Therefore, we have

P'oSMUP 0GMoC

In summary, the formulas for the Hiding relation are the following (rules in source one are
simplified).

ObjSet = {objects in the program}
TypeSet = {types in the program}
H = ObjSet x TypeSet

UPoP 0oC
UPol'oC
uIoC)'oP 0oC
UP 0o SM
UP"0oGMoC
6.3.3 Binding
The Binding formulas remain the same for Java. They are the following.
B =N
B,=B; nK
B;=B,nV

B:B4:B3—B3OH

6.4 Stage Two: Resolving qualified occurrences

This section introduces the ARA formulas for qualified occurrences. Again, ARA extracts Refers-To
relation for qualified occurrences in three steps, Basic Fact Extraction, Normalization and Binding.
Figure 6.3 illustrates the data flow for these three steps. First, Basic Fact Extraction (the dashed box
on the left) creates five relations as Basic Facts, including HasName (HN), HasKind(HK), Qualifies
(Q), Denotes (T), Specifies (SP), Contains (C) , Inherits (1) and R from the previous step. The
Normalization (the dashed box in the middle) converts the Basic Facts into the Normalized Facts. The
Hiding (H) relation for qualified occurrences is the empty relation. Finally, Binding Formulas 1, 2, 3

82

and 4 (the dashed box on the right) compute the Refers-To relation (R). Relations B, B,, B; and B,
are the respective results for these formulas. The Normalization and Binding loop until all qualified
occurrences are resolved.

/
1 /] === e e e e e e - == e 1
Contains

Inherits

| Basic Fact Extraction | | Normalization i | Binding i
! HasName [SameName ||] i B, i
; Lo o v :
| HasKind .| CompatibleKind E ' B, i
i Denotes i ! i ! i
| \ Lo \ i
i Qualifies i - Visibility E = B; i
i Specifics /i/ % Hiding : i B, i

Figure 6.3 Data flow graph for qualified occurrences

6.4.1 Basic Fact Extraction

Table 6.3 lists the Basic Facts we need to resolve qualified occurrences in Java.

6.4.2 Normalization

Normalization formulas convert the Basic Facts (relations HasName , HasKind, Contains, Inherits)
into four relations (SameName, CompatibleKind, Visibility and Hiding).
1. Formulas for SameName (N)
N=HN o HN"
83

Relation Explanation

HasName (HN) {<x, y>| x is an occurrence named y}
HasKind (HK) {<x, y> | x is an occurrence of kind y}
Qualifies (Q) {<x, y>| x::y in the program}

Specifies (SP) {<x, y> | X y; in the program }

Denotes (T) {<x, y> | x denotes block y }

Contains (C) {<x, y>| X, y are blocks, x directly contains y}
Inherits (I) {<x, y> | X, y are blocks, x inherits y}

Table 6.3 Basic Facts for qualified occurrences.

2. Formulas for CompitableKind (K)
Ry = HK . “qualified referential occurrence of ordinary identifier”
R, = HK. “qualified referential occurrence of package”
R, = HK. “qualified referential occurrence of class”
D; = HK . “definitional occurrence of ordinary identifier”
D, = HK. “definitional occurrence of package”
D, = HK. “definitional occurrence of class”

K=R; xD; UR, xD,UR;3 x D;

3. Formula for Visibility (V):

A qualified occurrence can see all members of the nominated class and members of the base classes
of the nominated class. Based on formulas for the C language (see Section 5.4), we can find all
members of the nominated class using the following formula:

Q'oRoSP'oR0ToC

We also know from the previous section, we can find members of base classes using formula

I'oC

Therefore, the Visibility (V) relation for qualified occurrences can be computed by

V=Q'oRoSP'oRoToI*0C

84

4) Formulas for Hiding (H)
Because of polymorphism in the Java language, it is impossible to decide the Hiding relation for
qualified occurrences at compile time. However, ARA can provide all candidates for further analysis
to choose the correct fields or methods. Therefore, the relation Hiding (H) for qualified occurrences is
the empty relation. That is,

H=9

6.4.3 Binding

Binding formulas for qualified occurrences are the same as the Binding formulas for unqualified
occurrences.

6.5 Chapter summary

Java is an Object-Oriented programming language. The Refers-To relation is decided by
qualification, containment and class hierarchy. This chapter showed that ARA was able to handle
Object-Oriented languages.

An interesting fact about Java is that the Java specification is written in the similar fashion as ARA.
In addition, C++ specification also adopts the similar way of specification. This showed that ARA
was not just a mathematical approach but also the way people talk about the Refers-to relation.

85

Chapter 7
ARA for C++

C++ is widely known to be complex in many aspects. Features such as multiple inheritance and
namespace using-directive make the Refers-to relation in C++ program difficult to extract. This
chapter shows that ARA can scale up to handle C++ with the multi-phase ARA pipeline. It also
presents an interesting discovery about C++, which is that we need and trinary relations in computing
the Refers-to relation for C++, while we only need binary relations for C, Java, CPP, Fortran, Pascal
and Ada.

Validation of ARA for C++ means to demonstrate that ARA for C++ satisfies the ISO C++
standard [C++03]. For each rule in the ISO C++ standard that is related to the Refers-to relation, we
show that the rule is correctly transcribed into phases (or stages or formulas) of ARA for C++.
Section 8.2 will discuss the validation in more detail.

The chapter is organized as follows. Section 7.1 introduces C++ syntax related to the Refers-to
relation, including classification of occurrences and the relations that determine the Refers-to relation.
Then, section 7.2 gives an overview of ARA pipeline for C++. Section 7.3 uses unqualified
occurrences as an example to explain formulas for extracting the Refers-To relations. Section 7.4
concludes this chapter.

7.1 C++ syntax related to the Refers-to relation

C++ syntax related to the Refers-to relation includes the syntax of occurrences and scopes in C++. In
addition, C++ uses sub-object lattice to determine name hiding in multiple inheritance. We briefly
introduce these concepts based on ISO C++ standard [C++03] [StrO1].

7.1.1 Occurrences in C++

In C++ syntax, an occurrence (of an identifier) can appear alone or connected with other occurrences
by the scope operator (::), member access operator (.) or points-to operator (->) to form a qualified
name, such as x::y::z or x.y.z. In such cases, we say that occurrence x qualifies occurrence y and
occurrence y qualifies occurrence z. An occurrence that is a part of a qualified name is called
qualified occurrence. Otherwise, the occurrence is an unqualified occurrence.

Recall that in the Refers-to relation, an occurrence can play one of the two roles, the referential
occurrence and the definitional occurrence. A definitional occurrence introduces a new entity (type,
object, function, namespace, template, ...) into the program. A referential occurrence refers to an
entity introduced by a definitional occurrence.

86

The referential occurrences in C++ must be resolved in phases. To resolve references to class
members, we need facts about the class hierarchy. To understand the class hierarchy, we must resolve
the referential occurrences in class declarations such as

class Derived : public Base { ... };

In this example, the occurrence of identifier Base must be resolved to another occurrence of Base
that actually declares the base class. In general, occurrences in class declarations must be resolved
before resolving references to class members.

Table 7.1 lists the referential occurrences in various statements. These occurrences must be
resolved in different phases and in the order in Table 7.1. The bold font indicates the occurrences that
are resolved in the phase.

The first row in Table 7.1 shows occurrences in namespace declaration. The namespace N is
declared in two parts, one containing variable x, the other containing variable y. To merge the two
parts into one declaration, we compute the Refers-to relation of all namespace declarations (the two
N’s) before we resolve other occurrences.

After namespace declaration, we should resolve occurrences in using-directive and using-
declaration (N and N::x in the second row), and continue until all occurrences (listed in Table 7.1) are
resolved.

Note that the statement “abc ++” appears twice in Table 7.1, in rows 5 and 7. In row 5, “abc++” is
inside a template definition. In row 7, “abc ++” is just an ordinary statement. The two statements are
resolved in different phases.

7.1.2 Scopes in C++

The C++ standard [C++03] lists five kinds of scopes: local scope, namespace scope, class scope,
function scope and function prototype scope. Among them, the last two scopes are simple and used
less often. Only labels depend on the function scope, which encloses the each function definition. The
function prototype scope encloses the function prototype. The local scope, namespace scope and class
scope are detailed in the following.

87

Statements Use Examples

Namespace Merging separate parts of the namespace N { int X;}
declaration same namespace namespace N {int y;)
using-directive | Making a namespace or a using namespace N;
and using- declaration visible .]
. using N:x;
declaration
Class Determining class hierarchy Class Derived : public Base { ... };
declaration

class member | Merging class member defined Void MyClass :: MyFunc() { ... }
definition outside the class body

Template Resolving template-independent | Template<class T> void func(T x)
definition types and variables {abett; .}

Template Instantiating templates Queue<int> * pq;

Instantiation

Ordinary Resolving labels, types (struct, MyClass * p;

statements class, union, enum) and objects Abet+:

(variables, functions)

Table 7.1 C++ occurrences

7.1.2.1 Local scope

A local scope is a portion of program text contained within a block (function definition or compound
statement). Declarations in a local scope are visible to a referential occurrence in the same scope or in
a nested scope. Besides the declarations residing in the local scope, using-declarations and using
directives can introduce declarations from other scope. For example,

void £ () {

using N:x; //N::x is now visible.

Same as the C language, declarations in the local scope must be declared before it is used.

88

7.1.2.2 Namespace scope

In essence, a namespace is a block with a name. The outermost namespace scope of a program is
called global scope or global namespace. For example,

int x; //x in the global namespace
namespace N {

int x; //x in the namespace N
}
inty; /ly in the global namespace
namespace N {

inty; /ly in the namespace N

As shown in the example, the definition of a namespace (namespace N in the example) may not be
contiguous.

Declarations in a namespace can be referred in three ways. First, declarations in a namespace are
visible to referential occurrences in the same or nested scopes. Second, declarations in a namespace
can be referred to by qualification. For example, N::x. And finally, they can be referred to by using
declaration and using directives. Consider the following example.

void f(){
using namespace N; //N::x is visible now
X++;

}

The namespace N contains declaration of variable x. The using-directive “using namespace N in
function f means that the member of namespace N are visible from within function f.

7.1.2.3 Class scope

A class has its own member variables and member functions. In C++, member variables (functions)
can be either static or instance. A static member is shared by all objects of the same class. The
compiler creates one copy of static member per class. An instance member belongs to each object.
The compiler creates a copy of non-static members for each object of the class.

Besides accessing its own members, a class can inkerit some members from another class. The

class that inherits is called the derived class and the class that is inherited is called the base class.
89

When class D inherits class B, the compiler creates a separate copy of members of class B for each
object of class D. There are two kinds of base class in C++, virtual base class and non-virtual base
class. An example of virtual base class is

class V {/* ... */};

class A : virtual public V {/* ... */};
An example of non-virtual base class is

class L {/* ... */};

class A : public L {/* ... */};

In C++, one derived class can have several base classes. This is called multiple inheritance, where
one derived class inherits multiple base classes. Consider an example of multiple inheritance of non-
virtual base class (Example 7.1).

class L {/* ... */};

class A : public L {/* ... */};
class B : public L {/* ... */ };
class C: public A, B {/* ... */};

Example 7.1 Non-virtual base class

Both class A and class B inherit class L. An object of class A (or B) has a sub-object of class L. Class
C inherits both class A and class B. An object of class C has a sub-object of class A and a sub-object
of class B. Because class L is non-virtual base class of class A and class B, an object of class C has
two sub-object of class L, one from the sub-object of class A, the other from the sub-object of class B.

The virtual base class acts differently in multiple inheritance. For example (Example 7.2),
class V {/* ... */};
class A : virtual public V {/* ... */};
class B : virtual public V {/* ... */ };
class C: public A, B {/* ... */};

Example 7.2 Virtual base class

Again, class A and class B inherit class V and class C inherits class A and class B. However, class
V is a virtual base class, an object of class C has only one sub-object of class V.

The declarations in a class scope can be referred to in four ways. First, declarations in a class scope
can be referred to from within the class scope and nested local scopes. Second, a derived class can

90

refer to declarations in the base classes. Third, they can be referred to by qualification. In particular,
we use scope operator (::) to access class members, member access operator(.) to access instance
member. If we use a pointer to an object, we access the members using arrow operator (->). And
finally, they can be access by using declaration.

7.1.3 Sub-object lattices

The sub-object lattice is a graph used to decide the relation Hiding (H) among classes when there is
multiple inheritance[C++03]. Here are examples of sub-or non-virtual and virtual base class adapted
from [C++03]. First, consider the non-virtual base class.

classL { ... };

class A :publicL { ... };

class B : publicL { ... };

class C : public A, public B { ... };

In the example, each object of class A has a sub-object of class L. So does each object of class B.
An object of class C has a sub-object of class A and a sub-object of class B and therefore has two sub-
objects of class L, one from class A and the other from class B. The sub-object lattice is Figure 7.1.
now suppose that both class L and class B have a member called x. B::x can hide L::x from within
class B, but not within class C because class C inherits both class A and B, which gives it two copies
of class L.

]
N

C

Figure 7.1 Sub-object lattice for non-virtual base class

Now consider virtual base class.
classV { ... };
class A : public virtual V { .. };
class B : public virtual V { ... };

91

class C : public A, public B { ... };

In this example, an object of class A has a sub-object of virtual base class V. Similarly, an object of
class B has a sub-object of virtual base class V. An object of class C has one sub-object of class A
and one sub-object of class B. However, because class V is virtual base class, class C has only one
sub-object of class V. The sub-object lattice for this example is Figure 6.2. Suppose that both class V
and class B have a member x. B:x can hide V::x from within class B and class C, because this time
the object of class C has only one copy of class V.

It is impossible to formalize the operations on the lattice as relational algebra. However, ARA can
still use the sub-object lattice by constructing the sub-object lattice using the algorithm used in current
compiler and representing the graph as a relation called SameSubObject (ST). Suppose x, y and z are
classes, then ST is defined as the following.

ST = {<x,y, z> | x and y have the same sub-object of z}.

\%
A B
C
Figure 7.2 Sub-object lattice for virtual base class

In Figure 7.1, a sub-object of C has two copies of sub-object of L, while a sub-object of A has only
one copy of sub-object of L. Therefore,

<C,A,L>¢ ST

On the other hand, in Figure 7.2, a sub-object of C, A and B all have one copy of sub-object of V.
Therefore,

<C,A,V>e ST
<C,B,V>¢e ST

92

How to use the relation SameSubobject (ST) in deciding the relation Hiding (H)? Suppose that x, y
and z are classes and <x, y, z> € ST, then members of class y can hide members of class z from class
X.

7.1.4 Other issues related to the Refers-to relation

First, we defer the discussion of the resolution of syntactic ambiguity and template instantiation until
Chapter 8 because these topics are related to many languages. In Chapter 8, we will address these
topics in the context of all languages studied in this thesis.

Second, in C++, if an unqualified occurrence represents a function call and we cannot find its
definition based on containment, inheritance and using directives, then we should look up the
namespaces associated with the arguments of the function call and search for its definition. This is
called argument-dependent name lookup|C++03]. We can implement argument-dependent name
lookup with formulas similar to formulas for qualified occurrences. Due to limit on space, argument-
dependent name lookup is not discussed.

Finally, overload resolution and access control happen after the Refers-to relation is computed.
They can be done based on the Refers-to relation and other syntactical facts.

7.2 Overview Of ARA For C++

ARA for C++ is a multi-phase pipeline (see Chapter 4). It resolves the referential occurrences in the
program in phases. Each phase resolves a subset of the referential occurrences and the union of the
results from all phases is the Refers-to relation for the program.

7.2.1 Phases in ARA for C++

Phases and their order in ARA for C++ are decided based on Table 7.1. Each row of Table 7.1 is
mapped into ARA as a phase. We defer the discussion of templates to Chapter 8.

7.2.2 Inside each phase of ARA for C++: Trinary hiding relation

Each phase of ARA for C++ consists of three steps: Basic Fact Extraction, Normalization and
Binding. We will show the detail of these steps in next section. However, what is unique in ARA for
C++ is that its relation Hiding is trinary. A tuple <x, y, z> of the relation Hiding (H) means that
occurrence y hides occurrence z from occurrence x.

Why can’t we still use the binary relation Hiding as we do in ARA for C and Java? Consider
Example 7.3 based on the sub-object lattice in Figure 7.1.

class L; {, void 3 (); »};
93

class A4 : public Ls {4

void f; ();

void gg () {9 fio (); o}
6}
class By, : public Ly {13/* ... */ 13};
class Cy4: public Ay, Bys {13

void his () {15 fis (); 15}
13}

Example 7.3 An example of non-virtual base class

Class A inherits class L and occurrence 7 (function f in the derived class A) overrides occurrence 3
(function f in base class L). As a result, occurrence 10 (function call to f) refers to occurrence 7. Now,
consider the Refers-to relation for occurrence 16. An object of class C has two copies of sub-object of
L and therefore, two copies of occurrence 3. Occurrence 7 only overrides occurrence 3 in class A, but
not the occurrence 3 in class B. Therefore, the program is ambiguous and we do not know whether
occurrence 16 should refer to occurrence 3 or occurrence 7.

Now, consider Example 7.4 based on sub-object lattice in Figure 7.2. Class V is a virtual base
class.

class Vi {, void 5 (); »};
class A, : public Vs {¢
void f5 ();
void gg () {o fio (); o}
o)
class By; : public Vi, {13/* ... ¥/ 13};
class Cy4: public Ay, Bys {13
void hys () {15 fi6 (); 1}
13}

Example 7.4 An example of virtual base class

According to Figure 7.2, the sub-object of class A, B and C all has one copy of sub-object of V.
Therefore, occurrence 7 can hide occurrence from both occurrence 10 and occurrence 16. In short, if
there exists multiple inheritance, saying that x hides y is not sufficient. We must say that x hides y
from z. Similarly, we use trinary relation Hiding if there are using directives.

94

Now, we have completed the overview of ARA for C++. Next, we use unqualified occurrences in
ordinary statements (see Table 7.1) as an example to illustrate the detail of one phase of ARA for
C++. Other phases, which are simpler, are summarized in Appendix B.

7.3 Resolving unqualified occurrences in ordinary statements
As an example of ARA phases for C++, this section introduces the Basic Fact Extraction,
Normalization and Binding for unqualified occurrences in ordinary statements (Figure 7.3).

7.3.1 Basic Fact Extraction

Basic Facts needed in resolving unqualified occurrences are listed in Table 7.2.

Relation ‘ Explanation

HasName (HN) {<x, y> | occurrences x has name y}

HasKind (HK) {<x, y>| occurrence x has kind y}

Follows (F) {<x, y> | occurrence x follows occurrence y directly

Contains (C) {<x, y> | block x directly contains occurrence of identifier or block y}

Inherits (I) {<x, y> | block x directly inherits definitions in block y}

Uses (S) {<x, y> | block x directly uses definitions in block y}

SameSubobject (ST) | {<x,y, z> | x and y have the same sub-objects of z on the sub-object
lattice}

Table 7.2 Basic Facts needed in resolving unqualified occurrences in ordinary statements

The Basic Facts come from three sources. That is
1. Relations HasName, HasKind and Follows come the parser;
2. Relations Contains, Inherits and Uses also come from the parser but results from previous
phases will also be merged with them in Normalization.
3. Relation SameSubobject is created by a program that computes sub-object lattice from
the relation Inherits.

As we can see, Basic Facts are a very small portion of facts the parser extracts for compilation.
They are also straightforward to extract. Now, we use examples to describe the extraction of the Basic
Facts, relations Contains and Inherits in particular.

7.3.1.1 Extracting relation Contains

ARA assigns a unique number to occurrences and blocks. The occurrences appearing inside a block is
considered as contained by the block. There are three special cases. First, the function parameters are
considered as part of the block. For example, ARA considers the parameter x in the following
function definition contained inside the block 3.

void f; (il’lt Xz) {3 /* ... */3}

95

Second, the scope of a loop or if-statement. In the following for-loop, the declaration of i should be
treated as if it is inside block 2.

for (int 1, =0; ;) {2/* ...*/ 1}

! | 1 1 1 1
! | 1 ! 1 !
i Basic Fact Extraction | | Normalization i | Binding i
1
| o o :
! | 1 ! 1 !
= Lo o :
i HasName i1y SameName Ly B, !
1
= N - i
l Lo Lo y |
i HasKind 15| CompatibleKind — B, i
1
| L o |
! | 1 ! 1 !
| Vo Lo i
| Follows b Lo !
! - Lo i
: N . !
| Contai L — L Y |
i ontains Visibility Ly B, !
l Lo :
I I I I
: L :
! Inherits e |
. Lo i
1 1 I I
1 1 I I
: Lo Y |
i Uses Hiding S B, :
: o |
I I I I
: L :
| SameSubobject o !
L [e Sy S S S 1
1
1

Figure 7.3 Data Flow for resolving unqualified occurrences

And, the declaration of x should be treated as if it is inside block 2 and block 2 includes both
branches of the if-statement.

if (int x,= 0) {»
2}

else {,

2}

96

Third, the injected class name. A class-name is inserted into the scope of the class. This is called
class name injection [C++03, Clause 9]. Therefore, a synonym for the class name A (numbered 3) is
inserted into block 2.

class A; {5 /* ... %/5};

7.3.1.2 Merging results from previous phases

The parser in Basic Fact Extraction only parses the code and has no symbol tables. Therefore, we
need merge results from the previous phases into relations Contains, Inherits and Uses, which has
been discussed in Section 6.3.

7.3.2 Normalization

Normalization formulas convert the Basic Facts into Normalized Facts (relations SameName,
CompatibleKind, Visibility and Hiding). In addition, we also show how the output from other phases
is used in Normalization when we explain formulas for relation Visibility.

7.3.2.1 Formula for SameName (N)

Formula for the SameName (N) relation in C++ is the same as those in C and Java. It is

N =HN o HN

7.3.2.2 Formulas for CompatibleKind (K)

In most cases, we can decide the compatible kind for a referential occurrence. For example,
occurrence X in x++ should match a variable. But there are cases where we cannot decide the
compatible kind in C++. For example, sizeof (x). ARA for C++ creates a catch-all kind for such
cases. So, formulas for CompitableKind (K) are the following.

Ry =HK . “referential occurrence for type and object”
Dy = HK. {“definitional occurrence for type”, “definitional occurrence for object”}
R, = HK . “referential occurrence for type”
D, = HK. “definitional occurrence for type”
R, = HK . “referential occurrence for object”
D, = HK. “definitional occurrence for object”
K=RyxDyUR; xD; UR, xD,
97

7.3.2.3 Formulas for Visibility (V)

Based on rules summarized in Section 7.1.2, the following three kinds of occurrences are visible.
1) Occurrences in the same and enclosing blocks,
2) Occurrences in the super-classes,

3) Occurrences in the namespace nominated in using-directives.

1. Occurrences in the same and enclosing blocks

As in the C language, unqualified occurrences in C++ can see the definitions in the outer blocks
(which can be local scope, class scope or namespace scope). We can find these definitions by the
following formula:

P'oC

In addition, a variable or function that is not a class member must be defined before its use.
Suppose the set Members (M) contains members of all classes and the set E contains all occurrences.
The cross product, E x M, gives all combination of an entity and a member. The formula

F" U (E x M)

can find all definitions that are either a name declared before or a member declaration of some class.
It guarantees that members can be accessed everywhere in the class. Therefore, the following formula
returns a relation between an unqualified occurrence and definitions that it can see based on
containment relationship.

P oCn (F U (ExM))

2. Occurrences in the super-classes

In the C++ language, an unqualified occurrence in class A can see the members of class A and its
base classes.

class A| {, intx3; ,};
class B, : public As {¢ int X7;
void fy () {9
X0 t+;
o}

653
class Cy; : public Ay, {13 13};

98

class Dy4 : public Bys, public Cy4 {17
void gi5() {19

X0+t
19}
17}
Example 7.4 (Adapted from ISO/IEC C++ 10.1(4))

The relation Inherits (I) records the class hierarchy. For Example 7.4, Basic Fact Extraction records
the class definitions as [= {<4, 5>, <11, 12>, <14, 15>, <14, 16>}. But It is much more convenient to
use if the relation Inherits is between blocks. That is, for Example 7.4, I = {<6, 2>, <10, 2>, <17, 6>,
<17, 10>}. This substitution is done by relation compositions of relation Inherits, Denotes, and output
from previous phase (see Table 7.1).

Figure 7.4 is the graph of relations Contains (C) and Inherits (I) for Example 7.4. On this diagram,
finding members of class A and its base classes is equivalent to having a path from the occurrence to
its enclosing block following the inverse Contains (C) edge, then to base classes via zero or more
Inherits (I) edges, and finally to the occurrences in the base classes following Contains (C) edge. In
Figure 7.4, the solid arrows represent Contains (C) edges (reverse Parent (P) edges) and dashed
arrows represent Inherits (I) edges. Occurrence 20 can see occurrence 3 because there is a path 20-19-
17-6-2-3.

Therefore, the Visibility (V) relation based on inheritance can be found by the following formulas:

P'ol*oC

3. Occurrences in the namespace nominated in using-directives

If block A has a Using-directive “using namespace B”, then members in namespace B are visible to
occurrences in block A. On the graph of relations Contains (C) and Using (S), this is equivalent to a
path from an occurrence to block A following the inverse of Contains (C) edges and from block A to
namespace B following one or more Uses (U) edges. Consider Example 7.5.

99

LRSS
-~ >~
- ~
- ~<
- ~
- ~<
P ~
- ~
~ !
~ -
~ -
~ -
~ -
~ -
~ _-
~ -
So -
~ -~

Figure 7.4 Relation Parent (P) and Inherits (I) for Example 7.4

namespace A; {, int x3; ,}
namespace By {s

using namespace Ag;

X7,
5}
namespace Cg {9
int Xo;
void fi1() {12
using namespace Bys;
Xiu=17;
12}

o}

Example 7.5 An example for namespace

The Relations Contains (C) and Uses (U) for Example 7.5 are shown in Figure 7.5. The solid arrows
represent Contains (C) edges (reverse of Parent (P) edges) and dashed arrows represent Uses (S)

100

edges. Occurrence 14(x) in block 12 can see occurrence 3 in block 2 because block 12 uses block 5
and block 5 uses block 2. I.e. there is a path 14-12-5-2-3.

Figure 7.5 Relation Parent (P) and Uses (S) in Example 7.5

Therefore, We can find visible definitions based on using-directives by the following formula.

P'0oS*oC

Putting formulas for containment, inheritance and using directives together, we have the formula
for Visibility (V) as the following.

V=P o0CUP 0I*oCUP 0S*0C)n (F U (E xM))

7.3.2.4 Formulas for Hiding (H) Relation
The Hiding (H) relation for C++ is a trinary relation. It is defined as

H={<x,vy,z>|X,y, z are occurrences, y can hide z from x}

The relation Hiding is used to resolve the name conflicts. The sources of name conflicts are
1. C++’s single name space;
2. Individual Visibility Rules, i.e., containment, inheritance;

3. Interaction between Visibility Rules, i.e. containment vs. inheritance and containment and
using directives.

101

Source 1. C++’s single name space

C++ has one single name space and ISO/IEC specifies the precedence among entities in clause 3.3.7
[C++03]. For example, a class name or enumeration name can be hidden by the name of an object,
function, or enumerator declared in the same scope. The following formula is equivalent to such a
rule.

D, = HK. “definitional occurrence for type”
D, = HK. “definitional occurrence for object”

H=E xD,x D,

where E is the set of all entities. The cross product gives the precedence and the cross product of E
makes the relation trinary.

Source 2. Relation Hiding for individual Visibility Rules

First, C++ solves name conflicts in enclosing block by specifying that the definitions in the inner
block can hide the definitions in outer blocks. It is the same as rules in C and Java. So, we can use the
same formulas but add one more dimension. Suppose P is the Parent relation and E is the entity
relation for all occurrences in the program. Then, the relation Hiding (H) based on Containment is the
following.

H(x,y,z)=Ex((PoP 0C)

where E is the set of all entities. The formula in the parenthesis is the same as the formulas in the
extensions of ARA for the C language. The cross product of E makes the relation trinary.

Second, C++ uses the sub-object lattice to resolve name conflicts caused by inheritance. In ARA,
the sub-object lattice is represented by the relation SameSubobject (ST). Recall that the relation
SameSubobject (ST) is defined as

ST: {<x,y, z> | x and y have the same sub-object of z on the sub-object lattice}

If <x,y, z> € ST, then member declarations of class y can hide member declarations of class z
from class x. For clarity, we use upper case letters for classes and lower case letters for members.
Then the relation Hiding (H) based on Inheritance is the following.

H(x,y,2)=ST(X, Y, Z)® C (X, x) ® C(Y, y) ® C(Z, 2)

The compositions (®) substitute the classes in the relation ST with the their members and create the
relation Hiding for resolving name conflicts caused by inheritance.

102

Source 3. Relation Hiding for different Visibility rules

First, consider the conflict between containment and using directives. C++ specifies that the names in
the nominated namespace appear as if they were declared n the nearest enclosing namespace with
contains both the using directive and the nominated namespace [C++03, Clause 7.3.4]. For
convenience, we use upper case letters for namespaces, and low case letters for occurrences. Suppose
we define a relation NearestCommon (NC) as

NC = {<X, Y, Z> Y is the nearest common enclosing block of X and Z}.

The relation NearestCommon (NC) can be computed from the relation Contains (C) using relational
algebra. And suppose we expand the relation Using (S) to trinary and define a relation S3 as

$3={<X,Y,Z>|<X,Z> e S}.

Then, NC n S3is {<X, Y, Z>| X uses Z and members in Z appear as if they are in Y }. Therefore,
members in any block that is enclosed by Y can hide members in Z, according to C++ rules for
enclosing blocks. Then, suppose the Hiding relation at the block level is HB, then

NS=NC S3
HB (X, W,Z)=NS (X,Y,Z)®C" (W, Y)

Where C is the relation Contains (C). Substituting namespaces with their members, we get the
relation Hiding for resolving conflicts between containment and using directives.

H(x,y,z2)=HB(X,Y,Z)® C (X, x) ® C(Y,y) ® C(Z, z)

Second, consider the conflict between inheritance and containment. Because the inherited members
are considered its own members, they take precedence over the definitions in the enclosing blocks.
Therefore, we can use the same formula in ARA for Java. Of course, we need add one more
dimension.

H=Ex((I'0C)'oP" 00C)

7.3.3 Binding Formulas

In ARA pipeline for C++, the first three Binding Formulas remain unchanged from Binding Formulas
for Java (see Chapter 6). They are

B]ZN
B,=B nK

103

B;=B,nV

Because the relation Hiding is trinary in C++, we need to adjust the fourth Binding Formula. Suppose
that By is the result of Binding Formula 4 and must satisfy all Conditions. First, we introduce relation
R as

R={x,y>|3z<x,7> € By A<x,7,y> € H}.

In plain English, R consists of pairs <x, y> of B; that some definition z can hide y. We can compute R
using the definition of n-ary relational composition.

R(X,y)=Bs(x,2) ®H(x,2,y)

By removing R from B;, we get the fourth and the last Binding formula in Algebraic Dependence
Analysis. Therefore, the Binding Formulas for C++ are the following.

B1:N
B2:B1ﬁK
B;=B,nV

B,=B;—R where R(X,y)=B;(x,z2) ®H (x, z,y)

This section uses an example to explain the Basic Fact Extraction, Normalization and Binding for
resolving unqualified occurrences in ordinary statements. Based on Chapter 5 and 6, it is not difficult
to write the formulas for qualified occurrences in ordinary statements.

Formulas for other occurrences in Table 7.1 are similar but much simpler because they are resolved
in earlier phases and therefore fewer facts (relations) are involved.

7.4 Chapter Summary

The C++ language is known to be complex in many aspects including its Refers-to relation. The
occurrences in C++ programs are resolved in phases as listed in Table 7.1. The ARA for C++ has two
major extensions. First, relation SameSubObject (ST) is introduced to represent the sub-object lattice.
Second, the relation Hiding (H) is extended to trinary relation in ARA for C++. That is, a tuple <x, y,
7> of the relation Hiding (H) means that occurrence y hides occurrence z from occurrence X.

As an example of the ARA phase for C++, the resolution of unqualified occurrence in ordinary
statements is discussed and the Basic Fact Extraction, Normalization and Binding are presented.

104

Chapter 8

Advantages of ARA, applications of ARA and miscellaneous

This chapter discusses three topics. First, it presents the three advantages of ARA over the existing
approaches. The advantages are 1) ARA formulas are elegant, concise and insightful, 2) ARA is
mathematically validated and 3) ARA formulas are supported by existing software tools. The
validation is discussed in detail with examples. The three advantages are presented in three sections,
Sections 8.1, 8.2 and 8.3.

Second, this chapter discusses the applications of ARA in reverse engineering by listing the wide
range of applications of the Refers-to relation that ARA produces. The applications are presented in
Section 8.4.

Finally, Section 8.5 discusses some miscellaneous issues such as the resolution of syntactic
ambiguities, the handling of macros and templates and features not supported by ARA such as
runtime polymorphism.

8.1 ARA is elegant, concise and insightful

During the writing of this thesis, multi-phase pipelines for seven widely used languages, namely C,
CPP, C++, Java, FORTRAN, Pascal and Ada are designed. Among them, ARA for C, Java and C++
is presented in Chapters 5, 6 and 7. As we can be seen in Table 8.1, these languages generally use
qualification, containment, the order of occurrences, inheritance, importing and other features to
determine the Refers-To relation. In this section, we summarize the ARA phases, Basic Fact
Extraction, Normalized and Binding in the seven languages and show that ARA is elegant, concise
and insightful.

8.1.1 Phases and stages makes ARA concise

The Refers-to relation of some occurrences may depend on the Refers-to relation of others. For
example, the Refers-to relation of occurrence y in the qualified name x::y depends on the Refers-to
relation of occurrence x.

ARA introduces multi-phase pipeline and uses phases and stages to untangle the dependence. As
shown in Figure 8.1, a multi-phase pipeline consists of a series of phases, each dealing with one
category of occurrences, for example, class names or namespace name. Within each phase, there are
two stages, Stage one for unqualified occurrences and Stage two for qualified occurrences. Each stage
is a three-step pipeline of Basic Fact Extraction, Normalization and Binding. In other words, the
multi-phase pipeline is a combination of several three-step pipelines. As a result, although multi-

105

phase pipelines resolve much more difficult programming languages than the three-step pipeline, they
are only slightly complicated than the three-step pipeline.

Language ‘ Standard Refers-To Relation Features

C ISO/IEC 9899:1999 [C99] | Qualification, containment, order of occurrences

CPP ISO/IEC 9899:1999 [C99] | Order of occurrences

Java Java Language Qualification, containment, single inheritance, import
Specification, 3" Ed.
[GISBO5]

C++ ISO/IEC 14882:2003 Qualification, containment, order of occurrences,
[C++03] multiple inheritance, namespace using-directives,

namespace alias, argument-dependent name lookup

Fortran ISO/IEC 1539-1:2004 Containment, uses clause, contains clause, interface
[For04] clause

Pascal ISO/IEC 10206: 1990(E) | Qualification, containment, order of occurrences, uses
[Pas90] clause, import/export clause

Ada ISO/TIEC 8652:1995(E) Qualification, containment, order of occurrences, single
[Ada95] inheritance (Ada95 only), redefine

Table 8.1 Seven languages in case studies.

106

1 1 1 1
1 1 1 1
. Phase 1 | i Phase 2 |
| b |
1 1 1 1
' Stage 1 ' ' Stage 1 !
| N |
| Basic Fact Extraction | | Basic Fact Extraction |
i I o i i
1 1 1 1
1 1 1 1
i Normalization i i Normalization i
1 1 1 1
e v | v e
i Binding i i Binding i
| | | |
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
| | | |
' Stage 2 ' ' Stage 2 '
| Lo |
| Basic Fact Extraction i | Basic Fact Extraction |
| | N | |
! v : ! v !
i Normalization i i Normalization i
1 1 1 1
1 1 1 1
| ¢ | | ¢ |
i Binding — i i Binding — i
| | | |
1 1 1 1
1 1 1 1
1 1 1 1

__

Figure 8.1 Multi-phase pipeline

8.1.2 ARA only uses a small number of Basic Fact Extraction

Recall that Basic Fact Extraction is the process of extracting the facts ARA needs from the source
code, usually done by a parser and scanner. ARA needs only a small portion of lexical and syntactic
facts in the source code. We can see this from chapters 5, 6 and 7. All the Basic Facts are represented
as relations and store them in one place, either a relational database or a text file.

8.1.3 Normalization formulas are elegant and insightful

The Normalization formulas take care of the language-specific rules about the Refers-to relation and
converts the Basic Facts into the Normalized Facts. The formulas for Visibility (V) and for Hiding

107

(H) are elegant and reveal some insightful facts of the programming languages, as detailed in the
following two sub-sections.

8.1.3.1 Formulas for Visibility and what they reveal

To compute the relation Visibility, we need to consider the location of the occurrence, the commands
that introducing declarations to other scopes, and qualification. Although the wording varies from one
language standard to another, the rules in the seven languages studied in the thesis follow the
classification. Table 8.3 lists the formulas for Visibility, which are explained in the following.

These formulas show the elegance of relational algebra. For example, we can find the potential
matches for an occurrence in the enclosing blocks using the following formula.

P'oC

And we can find the potential matches for an occurrence in the base classes using the following
formulas.

I'oC

The two formulas use different Basic Facts (Contains and Inherits) but follow the same pattern.

In addition, these formulas can be combined easily. For example, ARA formulas for containment
and ordering of occurrences can be combined by intersection as the following.

P'oCNE"

This formula is used in C, C++, Ada and Pascal.

In addition, the formulas for Visibility also reveal the following interesting facts about
programming languages. First, the location of an occurrence means what scope the occurrence is in
(Containment) and in what order the occurrences appear. The first three rows show the formulas
related to containment. That is, declarations in the same scope, declarations in outer scope and
declarations in any enclosing scope. Order of occurrences is often used in Visibility formulas. The
fourth row is the formula for all previous declarations. In cases where order of occurrences is ignored,
for example, export list in Pascal, class members in C++ and Java, we can use the formula similar to
the fifth row.

Second, there are many commands that can introduce declarations into other scopes in the seven
language studied in the thesis. The commands can be non-transitive (e.g. use clauses in Fortran,
Pascal, Ada, import statement in Java, using-declaration in C++) or transitive (e.g. inheritance in Java
and C++, using-directive in C++). The formulas for these commands are in the sixth through eighth
row.

108

Finally, except CPP and Fortran, all languages use qualification. Qualification can make the
members in the nominated scope and/or members imported (/inherited) members of the nominated
scope visible. Last three rows of Table 8.3 are the formulas for qualification.

Category Rules Formulas
Declarations in the same scope (variable in PoC
Fortran)
Containment | Declarations in outer scope (subroutine in PoPoC
Fortran)
Declarations in any enclosing scope (C, C++, P'oC
Java, Pascal, Ada)
Order All Previous declarations (C, C++, Java, Pascal, F'
Ada, CPP)
Declared anywhere (e.g. class members in C++, ExM
Java)
Imports members in one scope (Java, Ada, P'oGMoC
Import/ Fortran, Pascal)
Inherit/ Inherits members in all base classes (C++, Java) P'ol'oC
Using Member in scopes nominated by using-directive P'0oSoC
and using-directives are transitive (C++)
Qualification only (C) Q'oRo0SPoRo0ToC

Qualification | Qualification and importing members in one scope Q'oR0oSPoR0ToGMoC
(Pascal, Ada)

Qualification and all base classes (C++, Java) Q'oRoSPoRo0ToI0C

Table 8.2 Formulas for Visibility (V) for different languages

8.1.3.2 Formulas for Hiding (H) and what they reveal

Formulas for the relation Hiding are used to resolve name conflicts (see Table 8.4). They have the
same elegance and conciseness we have seen in formulas for Visibility (V). In addition, they reveal
the following interesting facts about programming languages.

First, the first row of Table 8.4 is the formula for resolving name conflicts if the kind of an
occurrence cannot be decided by the context. In C++, this rule is called hiding. In Java, this rule is
called obscure.

109

Second, rows 2 through 5 are formulas for resolving name conflicts caused by single Visibility
rules. For example, if declarations in any enclosing scope are visible (row 3 in Table 8.3), then the
declaration in the innermost scope should be chosen (row 2 in Table 8.4). We can see that the

conditions such as “the innermost”, “most specific”” and “most recently” correspond to the transitive
closure of some relation.

Third, last three rows of Table 8.4 are formulas for resolving conflicts between different Visibility
rules, e.g. inheritance vs. containment. The formulas are often the composition of two Visibility rules.
For example, the seventh row in Table 8.4 is the composition of the third and seventh row in Table
8.3 (Visibility formulas).

Finally, the last row shows that the relation Hiding in C++ is trinary, while the relation Hiding in
other languages are binary. It reveals the mathematics behind the facts that the C++ language is more
complicated than others.

Sources ‘ Formula

Definition of object hides definition of | D1 =HK. “type_def”
Undecided kind | type (Java, C++) D, = HK. “object_def”

D2>< Dl

Declaration in the innermost scope (C, | PoP" o C
Java, C++, Pascal, Ada)

Most specific member declaration Pol'oC
Single (Java, C++)
Visibility Most recently declaration (CPP) F'
sub-object lattice (C++) ST
With-clause hides enclosing scope (WoC)'oPoC
(Fortran) where W is with-clause
Inherited member hides declarationin | I"0 C)' 0P 0 C
Visibility enclosing scope (Java, C++)
Interaction Using-directive and enclosing blocks HB (X, W, Z)
(C++)

=NS(X,Y,Z)®P" (W,Y)

Table 8.3 Formulas for Hiding (H) for different languages

8.1.4 Binding formulas are the same for most languages

Binding is the last step of the computation of the Refers-to relation. Previous steps, Basic Fact
Extraction and Normalization, have removed most of language-specific parts of the computation.

110

Therefore, there are only two forms of Binding, one for C, Java, CPP, Fortran, Pascal and Ada, and
the other for C++ (see Table 8.5). In addition, the Binding formulas for C++ use one trinary relation
while the Binding formulas for other languages use binary relations only. It again shows that the C++
language is more complicated than others.

Language Binding formulas

B] =N
B,=B;nK
e

C B3 = Bz NV

B,=B;—R,whereR (x,y) =B;3 (x,2z) ® H(x, 7,)
C,Java,cpp, | BTN
B2 = Bl N K
Fortran, Pascal, B

Ada B3 = Bz NV

B4 = B3 — B3 oH

Table 8.4 Binding formulas for different languages

8.2 Validating ARA

In this thesis, validation of ARA for a given programming language (e.g. ARA for C) means to show
that ARA satisfies the standards for the programming language (e.g. ISO standard for C).

As we have shown, for most programming languages, ARA is a multi-phase pipeline (see Figure
8.1). It consists of several phases, each dealing with names in certain category, for example, names of
classes. Inside each phase, there are two stages. Stage 1 resolves the unqualified occurrences. Stage 2
resolves the qualified occurrences. Each stage is a three-step pipeline, consisting of Basic Fact
Extraction, Normalization and Binding.

To validate ASA, that is, to validate its a multi-phase pipeline, we need to show that it satisfies the
language standard. To do this we must validate the following claims:

1. Phases and stages must satisfy the language standard,
2. Basic Facts must represent the source code according to the language standard;

3. Formulas for Normalization and Binding must satisfy the language standard.

In the following subsections (8.2.2, 8.2.3, 8.2.4), we will show how these claims are validated.

8.2.1 Validating claim 1: Phases and stages must satisfy the language standard

In an ASA multi-phase pipeline, a phase resolves one category of names such as class names. Within
each phase, there are two stages, one for the unqualified occurrences, the other for the qualified
occurrences. The order of phases and stages is strictly based on the language standards.

111

Briefly consider the order of phases in C++ (see Appendix B). We must show that the order of
these phases satisfies ISO C++ language standard [C++03]. For example, why the Phase 1, resolving
namespace declarations precedes Phase 2, resolving namespace member definitions? We can find the
reason in the language standard. In C++, namespaces can be declared in parts (Clause 7.3.1 in ISO
C++ standard [C++03]). This requires the ARA to identify all parts of a namespace N before it can
find the members of N. We must demonstrate that this identification is correctly transcribed from the
standard to the ARA formulas. Therefore, the design of Phase 1 and Phase 2 satisfies the language
standard.

The order of stages is validated by showing that the order in the ASA corresponds to the ordering
specified by the standards. For example, unqualified names need to be dealt with before qualified
names. To resolve qualified occurrences y and z in the qualified name x::y::z, ARA first resolves y,
then the result of resolving y is fed back to Normalization, and finally z is resolved. This loop
satisfies the rules in Clause 3.4.3 of the C++ language standard [C++03].

In summary, we validate the order of ASA phases and stages by showing that their order satisfies
the language standards.

8.2.2 Validating claim 2: Basic Facts must represent the source code according to the
language standard

Inside each stage of the multi-phase pipeline is a three-step pipeline. Basic Fact Extraction is the first
step of these three steps. It extracts facts needed in later steps and phases as relations (Basic Facts). It

is straightforward to validate that most of these relation (Basic Facts) are, such as HasName and
HasKind are correctly extracted.

However, the language standards contain a few special cases of Basic Facts, mostly related to the
Contains relation. We inspect the Basic Fact Extractor (implemented with a parser generator such
asYacc or Bison) to ensure these special cases are handled. Consider the if statement in C++. Item 3
of Clause 6.4 in ISO C++ standard specifies that the variables declared in condition of the if statement
are visible in both branches. As a result, in the following example variable x is visible in both blocks
2 and 3. lL.e., x is contained in both block 2 and 3.

if (ll’lt X1= 0) {2
2}

else {3

3}

In designing the Basic Fact Extractor, we ensure that the Contains relation include pairs <2, 1> and
<3, 1>.

112

By carefully reading the language standards and the code for Basic Fact Extractor, it is not difficult
to collect all special cases and validate Basic Fact Extractor.

8.2.3 Validating claim 3: Formulas for Normalization and Binding must satisfy the

language standard

In three-step pipeline, Normalization converts Basic Facts into Normalized Facts and then Binding
computes the Refers-to relation from the Normalized Facts. These two steps consist of a series of
relational algebra formulas. We validate these formulas with mathematical proof. In other words, for
each rule related to Normalization and Binding, we show that the rule is equivalent to one or more
formulas based on set theory and relational algebra.

Consider the following rule in ISO C language standard [C99]. Item 4 of Clause 6.2.1 says:

“...If an identifier designates two different entities in the same namespace, the scopes might
overlap. If so, the scope of one entity (the inner scope) will be a strict subset of the scope of the
other entity (the outer scope). Within the inner scope, the identifier designates the entity declared
in the inner scope, the entity declared in the outer scope is hidden (and not visible) within the inner
scope” (6.2.1(4)).

This rule is equivalent to the following:
1.y is visible to x: y is declared in a block that encloses x, directly or indirectly;

2. x can hide y: y is declared in a block that enclosed the block where x is declared.

Recall that the relation Contains (C) is the set of pair <x, y> such that x contains y directly. Its
reverse P is the set of pair <x, y> such that x is contained in y directly. The transitive closure P" is the
set of pair <x, y> such that x is contained in y directly or indirectly. By the definition of relational
composition, rule 1 is equivalent to the following relational algebra formula.

1.V=P'oC

Now consider rule 2. The block y that enclosed the block where x is declared can be expressed as
the composition of P and P". Therefore, rule 2 is equivalent to

2.H=PoP'oC

The proofs are easier to understand when presented with graphs, which is our way to present these
formulas in Chapters 4, 5, 6 and 7. In summary, this section shows that ARA is validated
mathematically to satisfy the language standards.

113

8.3 All major components of ARA are supported by existing software

The three major components of ARA, Basic Fact Extraction, Normalization and Binding are
supported by existing software tools. Basic Fact Extraction is implemented using Yacc, Bison or
other parser generators. Basic Facts are straightforward to extract. For example, assigning a unique
number to occurrences. Normalization and Binding needs no coding because relational database
management systems, relational algebra calculators, prolog and many existing software tools can
execute the ARA formulas. For example, we can write the formula for SameName (N)

N = HN o HN™!

as the following SQL statement.
SELECT Tl1.occurrence, T2.occurrence
FROM HasName T1, HasName T2
WHERE T1.name = T2.name

As another example, we can write the formula for CompatibleKind (K)

U=HK. “ref”
D=HK. “def”
K=UxD

as the following SQL statement.
SELECT Tl1.occurrence, T2.occurrence
FROM HasKind T1, HasKind T2
WHERE T1.HasKind = “ref”
AND
T2.HasKind = “def”

Other relational algebra tools (see Chapter 2) such as Crocopat (Beyer et al [BNL03]) provides a
language that is as powerful as the previous approaches, but adds a convenient operator for transitive
closure; and the interpreter is efficient for general purpose relational computation, because it is based
on BDD technology. In addition, Crocopat is relational calculator for n-ary relations, while Grok is
for binary relations only.

Grok is chosen as the notation for this dissertation because formulas written in Grok tends to be
more concise, elegant and insightful. We discovered some interesting facts about programming

114

languages based on these formulas. In ARA for C++, we need trinary relations, which is not part of

pure Grok. However, we believe the elegance and insight in the Grok formulas is more important to

the whole thesis. As a result, Grok is used in the thesis with a minor extension of the composition of
n-ary relations.

In order to show the efficiency of existing software, ARA formulas are tested on Grok, a relational
algebra calculator. Finally, Binary Decision Diagram (BDD) can also be used to execute the ARA
formulas (see Chapter 2).

The test has two steps. First, we build the Basic Fact Extractor by inserting printf statement into
GCC parser. The formulas for Normalization and Binding are written as a Grok script. Second, the
fact extractor is used to extract Refers-To relation from open source software. The execution time of
ARA is then compared with CPPX because CPPX is a fair representation of fact extractor and has
successfully extracted facts from many software systems including DB2.

Table 8.6 shows the results. For example, OpenSSH has roughly 70K line of code, the build time is
47.3 seconds, CPPX execution time is 2 minutes 28.5 seconds, and ARA execution time is 1 minute
46.7 seconds. Overall, ARA performance is satisfactory, comparable to CPPX. Note that CPPX
seems to take longer time because it outputs more relations. Tests are done on one Intel ® Pentium ®
IV 1.6 GHz CPU and 1GB memory.

System KLOC Build CPPX ‘ ARA
OpenSSH 70 | 47.3s 2m28.5s 1m46.7s
PostgreSQL 520 | 2m27.3s 10m23.4s 6m37.2s
Linux kernel, 2.0 5100 | 25ml.5s 188m24.6s | 46m25.7s
Koffice 960 | 5m46.6s 25m53.2s 12m1.7s

Table 8.5 Test results on open source software

8.4 ARA has a wide range of applications in reverse engineering

ARA has a wide range of applications in reverse engineering because it produces the Refers-to
relation, which is crucial for understanding the semantics of a program. We can summarize the
application of the Refers-to relation in reverse engineering as follows.

1. Software architecture recovery and repair

The Refers-to relation as extracted from the code is the basis for understanding the architecture of
the systems [BHB99] [FHCO1]. According to survey of literature, it is also used to recover and repair
the software architecture of large software systems [FHCO1].

115

2. Detection of design pattern instances

Design patterns are the abstract description of an object-oriented design and design rationale. The
Refers-to relation can be used to identify the design patterns in software systems. Many tools have
been developed or extended for the automatic detection of design patterns instances, e.g., Pat [KP96],
the tool of Antoniol et al. [AFC98], SPOOL [KSR+99].

3. Detection of design problems

Using the Refers-to relation, we can detect design pattern instance and detect potential design
problems such as cyclic references. Many tools are created to detail theses defects, including
Crocopat [BNLO3], Hy+ [MS95], RPA [FKO98], and Grok [FHOO].

4. Calculation of design metrics

A large number of design metrics can be defined in simple and language independent way based on
facts about software, the Refers-to relation in particular [ML02]. Using relational algebra tools
automates the calculation of metric values without coding.

5. Abstraction of design models

As we can see, it is usually convenient to extract low-level relationships directly from the source
code. However, the low-level relationship of a large software system consists of too many nodes and
edges. So, it is necessary to derive the relationships between high-level entities from these low-level
relationships. This is called lifting and is a common application of relational calculators [FKO9S].

6. Derivation of other relationships

Many important relationships between entities in the software can be derived from the Refers-to
relation using relational algebra. For example, Ullman [U1189] first suggested formulating data-flow
analysis as database queries based on the Refers-to relation and other facts. Reps [Rep94] used a
deductive database for demand-driven inter-procedural data-flow analysis. Jedd [LH04b] formulates
the points-to relation as relational algebra formulas of the Refers-to relation and other facts and then
solves these formulas using a fast algorithm called BDD.

8.5 Miscellaneous

In this section, we comment on some miscellaneous issues.

116

8.5.1 Resolution of syntactic ambiguities

There are syntactic ambiguities in many programming language. One type of ambiguity occurs when
an occurrence can potentially be interpreted as more than one kind of entity (e.g. both type and
variable). The typedef names in C is an example of such ambiguity. Currently, parsers use two ways
to disambiguate, both related to the Refers-to relation.

First, the parser creates a symbol table and uses it to decide the kind of an occurrence. This
approach is often used for resolving typedef names in C.

Second, the parser puts the ambiguous occurrences in one group, calling it ambiguous occurrences,
and matches the group with declarations and then reclassifies the kind of these occurrences. Java
compilers [GJSBO05] use this approach.

Both approaches can be used with ARA. To use the first approach, we can insert the code for
disambiguation in the Basic Fact Extraction (parser). To use the second approach, we can add another
phase to ARA, where only the Refers-to relation for the ambiguous occurrences is computed. The
relation HasKind is adjusted for these occurrences afterwards.

8.5.2 Macros, templates and generics

The languages studied in the thesis support generic programming with macros, templates and
generics, which are expanded or instantiated by the compiler. The Refers-to relation is also needed
during the expansion (instantiation). In Section 8.1, the ARA formulas for CPP (C Preprocessor,
responsible for expanding macros) have been introduced briefly.

Templates and generics in other languages are more complex because the syntax of templates can
be ambiguous and there are different ways of instantiation (e.g. expansion in C++ and erasure in
Java). However, the computation of the Refers-to relation for templates and generics is similar to
ordinary occurrences. For example, in C++ [C++03, 14.6], occurrences inside the template definition
should be resolved as the ordinary occurrences. Then templates are instantiated, the source code is
changed and all templates are replaced. The occurrences that are resolved to template parameters are
resolved again, in the context of modified source code and using the same rules for resolving other
occurrences. So, ARA is able to compute the Refers-to relation of templates as long as we provide the
lexical and syntactic facts before and after the instantiation of templates.

8.5.3 Features not supported by current ARA

So far, ARA can only analyze lexical facts and syntactical facts in the program. Information about
run-time behavior such as points-to analysis, type casting and stack allocation is not incorporated into
ARA. As aresult, the current ARA formulas cannot handle runtime polymorphism (e.g., virtual
function in C++). By the same token, ARA cannot handle dynamically scoped languages such as
LISP.

117

However, points-to analysis and other analysis can also be expressed as relational algebra [LH04b]
[LWL+05]. It is interesting future work to see whether two fields of research can be merged and
whether runtime polymorphism and dynamically scoped language can be solved by relational algebra.

8.6 Chapter summary

So far, we have designed ARA pipelines for seven statically typed languages, including C, CPP, Java,
C++, Fortran, Pascal and Ada. This chapter summarized the advantages of ARA over the existing
approaches. It also presented the applications of ARA in reverse engineering. Finally, this chapter
clarified some issues related to resolution of ambiguities, replacement of macros and templates, and
features not supported by current ARA.

118

Chapter 9 Conclusions

This dissertation consists of two parts, each of which deals with a formal approach to fact extraction.
The first part presents the level of completeness of a fact extractor, a new approach to characterizing
the amount of information a fact extractor extracts from the source code. The advantage of this
approach is that we can write a script to test the level of completeness of a fact extractor
automatically. With the help of tools such as TXL, the scripts are in general straightforward.

To validate this approach, scripts to test the compiler completeness of CPPX, a real fact extractor,
were created. The cases where CPPX violates compiler completeness were found. The tests also
showed that compiler completeness is the most practical level of completeness for most fact
extractors.

The second part of the thesis presents Algebraic Refers-to Analysis (ARA) as a new approach to
fact extraction, with an emphasis on the Refers-to relations and its application to various
programming languages.

ARA introduces a new paradigm. It formulates the extraction of the Refers-to relation as a query to
find a relation of occurrences. It represents the facts in the source code as relations and transcribes the
rules in language standards into relational algebra formulas. During the writing of the thesis, ARA
pipelines for seven languages including C, C++, Java, CPP, Fortran, Pascal and Ada are designed.
The prototype fact extractor for the C language is created.

Validating ARA means to demonstrate that ARA pipelines satisty the programming language
standards such as ISO C++ standard. In other words, we show that ARA phases (stages and formulas)
are correctly transcribed from the rules in the language standard.

Comparing the existing approaches such as Attribute Grammar, ARA has the following
advantages. First, ARA formulas are concise, elegant and more importantly, insightful. As a result,
we have some interesting discovery about the programming languages. Second, ARA is validated
mathematically, which is more reliable than exhaustive testing. Finally, ARA formulas are supported
by existing software tools such as database management systems and relational calculators.

In the rest of the chapter, the overall contributions of the thesis and future work are discussed.
9.1 Contributions to fact extraction
This section highlights the contributions this dissertation makes to fact extraction
1. Inventing the concept of hierarchy of completeness and the automatic testing of completeness

119

Part 1 of the dissertation begins by introducing the concept of completeness of fact extractor. Fact
extraction has been a research topic for years. As I began my study, there were various fact extractors.
However, validating these fact extractors is not a simple task because it is undecidable whether two
programs are equivalent and therefore there does not exist a general algorithm to decide whether the
extracted facts have the same meaning as the original source code.

The completeness of a fact extractor is a measure for determining whether a fact extractor is
accurate enough to be useful in reverse engineering. We can classify fact extractors into different
levels based on their completeness. We can also validate how far a fact extractor is from achieving
certain level of completeness. To do this, we design a series of transformation to convert the extracted
facts back to the source code and then compare the assembly code generated from the converted code
and the original code. If the two versions of assembly code are identical, then we know that the fact
extractor is complete.

2. Use of the relational data model in fact extraction

Part 2 of the dissertation has results highlighted here and in the following points 3 and 4. Using
Attribute Grammars, people have been modeling the extraction of the Refers-to relation as a process
of decorating the parse tree. This approach has succeeded in compiler construction but is time
consuming and error prone for reverse engineering. More importantly, Attribute Grammars only
formalize the transfer of data on the parse tree, not the extraction of Refers-to relation itself. The rules
on the Refers-to relation are implemented as small hand-coded functions or pseudo code.

ARA, which is presented as part 2 of this dissertation, formulates the extraction of the Refers-to
relation as a query to find a relation of occurrences. This introduces the relational data model to the
extraction of the Refers-to relation. It enables ARA to represent all the facts it needs as relation and
stores them in one place, either a database or a text file. It also enables ARA to transcribe the rules in
the language standards as relational algebra formulas.

3. Inventing Algebraic Refers-to Relation Analysis (ARA)

This dissertation documents the invention of ARA and ARA formulas for seven practical languages
namely C, CPP, Java, C++, Fortran, Pascal and Ada. Based on the language standards, an ARA
pipeline consists of a series of phases. Each phase resolves a subset of occurrences in the program, for
example, occurrences in the import declaration. Each phase is divided into at most two stages. The
first stage resolves the unqualified occurrences. The second stage resolves the qualified occurrences.
In each stage, there are three steps, Basic Fact Extraction, Normalization and Binding.

ARA follows the language standards closely. The major components of the ARA pipeline, Basic
Fact Extraction, Normalization and Binding are transcribed from the language standards. Concepts
such as the Binding Conditions, Visibility and Hiding are inspired by the language standards for Java
and C++. In addition, the phases and stages in ARA are created based on the dependency between
occurrences, which can be inferred from the language standard straightforwardly.

120

4. Discovery of some interesting facts of programming languages

During the design of ARA, some interesting aspects of programming languages are discovered. For
example, we only need binary relations in ARA for C, CPP, Java, Fortran, Pascal and Ada. But we
need both binary relation and trinary relation in ARA for C++.

Considering the whole dissertation, the levels of completeness of fact extractor and ARA are
fundamental to the maturity of the research field of reverse engineering. The completeness of fact
extractor provides a declarative approach to testing fact extractors. ARA formulates fact extraction in
an innovative way and gives relational algebraic formulas of extracting the Refers-to relation that are
supported by many existing software tools. Implementing the extraction of the Refers-to relation with
ARA requires minimum coding and yet the implementation is accurate and verifiable against the
language standards. These inventions can help programmers to extract facts they need accurately and
quickly and to focus on the analysis they intend to perform on the source code.

9.2 Future work

Possible future work that stems from this dissertation is considered below.

9.2.1 Applying ARA to dynamically scoped languages

ARA is a promising new technique for extracting facts and has bee used in seven statically scoped
languages including C, CPP, Java, C++, Fortran, Pascal and Ada. So far, we have not studied the
Refers-to relation in a dynamically scoped languages such as LISP.

We believe that it is possible for ARA to handle dynamically scoped languages. As we have seen
in this thesis, ARA models fact extraction as a query to find a set of occurrences. As long as we
represent the facts as relations and write the query as relational algebra, we can use ARA to solve the
problem. Since many problems related to the program’s behavior at run time have been formulated as
relational algebra problems, we believe that it is an interesting and promising future work to extract
facts from dynamically scoped languages using ARA.

9.2.2 Using ARA in program transformation

Program transformation techniques are used in a many areas of software engineering ranging from
program synthesis, via program optimization and program refactoring, to reverse engineering and
documentation generation. As discussed in Chapter 2, most program transformation systems analyze
the Refers-to relation based on Attribute Grammars, whose drawbacks have been discussed in this
thesis.

121

Incorporating ARA in program transformation systems such as TXL has at least two advantages
over the current approach. First, ARA makes program transformation systems more concise and
reliable. Comparing to Attribute Grammars, ARA formulas are concise, easy to understand and, as
shown in the thesis, are verified against the language standards.

Second, ARA uses relational data model. This data model is easy to extend and therefore is able to
provide more facts to program transformation systems.

In summary, incorporating ARA in program transformation is promising future work in ARA.

122

Appendix A Visibility and name hiding rules in Java

The following are rules for visibility and name hiding for Java. For each visibility rule, we summarize
it as declarations and their scope and list the page number for the rule. For name hiding rules
(shadowing, hiding, obscuring), we summarize it as declaration that hides and the declaration that is
hidden and list the page number.

1. Visibility rules in Java specification [GJSBO5].

Declaration Scope ‘ Pages
Top level package compilation unit Page 117
Type imported compilation unit Page 117
Member imported by single- compilation unit Page 117
static_import

Top level type package + no order Pages 117, 119
Member current class and nested type Page 118
Parameter of type parameter Method Page 118
Type parameter body + type parameter section (no order) Page 118
Local variable block + order Page 118
Local in for loop the whole loop(forinit, expression forupdate) | Page 118

Table 1. Visibility rules in Java specification [GJSBO05]

2. Name hiding rules in Java specification [GISBO05].
2.1 Shadowing

123

That hides That is hidden ‘ Page

Type Type already in scope Page 119

Filed, local Field, local, ... already in scope Page 119

Method Method in enclosing scope (class or blocks) Page 119
Top level type name in other compilation unit Page 119

Single-type-import Type-import-on-demand Page 119
Static-import-on-demand Page 119
Static-import-on-demand Page 119

Single-static-import Top level type name in other compilation unit Page 119
Type-import-on-demand Page 119

Table 2. Rules for shadowing

2.2 Obscuring

That hides That is hidden ‘ Page

Variable Type, package Page 122

Type Package Page 122

Table 3. Obscuring rules

2.3 Hiding

That hides That is hidden ‘ Page

Field in derived (static | Field in super class or interface (static or instance) Page 196

or instance)

Static method Static method Page 225

Member class in Member class in super class Page 237

derived

Table 4. Hiding rules

124

Appendix B List of formulas in ARA for C++

This appendix gives the formulas for ARA for C++. These are arranged into seven phases, as shown
in Table 1. Each phase has two stages. First stage resolves the unqualified occurrences. The second
resolves the qualified occurrences. Because they are the same for each phase, the stages are not listed
in Table 1.

Phase Use Examples
1. Namespace | Merging separate parts of the namespace N { int x;}
declaration same namespace namespace N {int y;}
2. Namespace | Merging namespace member void N::f() { }
member defined outside the namespace
definition body
3. Using- Making a namespace or a using namespace N;
directive and declaration visible .

. using N:x;
using-
declaration
4. Class Determining class hierarchy Class Derived : public Base { ... };
declaration
5. Class Merging class member defined Void MyClass :: MyFune() { ... }
member outside the class body
definition
6. Template Resolving template-independent | Template<class T> void func(T x)
definition types and variables {abett;)
7. Template Instantiating templates Queue<int> * pq;
instantiation
8. Ordinary Resolving labels, types (struct, MyClass * p;
statements c1as§, union, enu.m) and objects Abctt:

(variables, functions)

Table 1. Phases in ARA for C++

The following are the formulas for resolving unqualified occurrences in each phase. The formulas for
resolving qualified occurrences can be derived based on the formulas for resolving unqualified
occurrences and are not included in the following tables.

125

1. Phase for namespace declarations

Step Relation Definition
Basic Fact HasName HN = {<x, y> | occurrences x has name y}
Extraction HasKind HK ={<x, y> | occurrence x has kind y}
SameName N =HN o HN"
Normalization Compatible- | Ry =HK . “namespace name”
Kind Dy = HK. “namespace name”
K =Ry x Dy
Visibility V =E x E, where E is the set of all occurrences
Hiding H=O
Condition 1 B, =N
Binding Condition 2 B,=B,nK
Condition 3 B;=B,nV
Condition 4 B;=Bs;-Bs;oH

Table 2. Formulas for namespace declaration

126

2 Phase for using-directives

Step Relation Definition ‘
HN, HK Same as previous phase
Basic Follows F= {<x, y> | occurrence x follows occurrence y directly }
Fact Contains C = {<x, y>| block x directly contains occurrence of
Extraction identifier or block y}
Uses S = {<x, y> | block x directly uses definitions in block y}
N Same as previous phase

Normalization | Compatible- | Ry =HK . “occurrence in using-directive or using-
Kind declaration”

Dy = HK. {*“namespace name”, “definitional occurrence of

object”}
K =Ry x D
Visibility V=P 0CUP 0S*0C)n (F U (E x M))
Hiding H=9
Binding By, By, B3, By | Same as previous phase

Table 3. Formulas for using-directives

Note: when there is more than one using-directive in one block, the subsequent using-directives
depend on the first using-directive. Therefore, the unqualified occurrence in these using-directives
should be resolved during the second stage of the phase, i.e. the stage when ARA resolves qualified
occurrences.

127

3 Phase for class declaration

Step Relation Explanation
Basic Fact HN, HK, F, Same as previous phase
Extraction Cs
N Same as previous phase
Normalization Compatible- | Ro=HK . “referential occurrence in class definition”
Kind Dy =HK . “class name”
K =Ry x Dy
Visibility Same as previous phase
Hiding Same as previous phase
Binding By, By, B3, By | Same as previous phase

Table 4. Formulas for class declarations

4 Occurrences in class member definition

Step Relation Explanation
Basic Fact HN, HK, F, Same as previous phase
Extraction cs
N Same as previous phase
Normalization Compatible- | Ry=HK . “occurrence in class member definition”
Kind Dy = HK. {“definitional occurrence for type”, “definitional
occurrence for object”}
K =Ry x Dy
Visibility Same as previous phase
Hiding Same as previous phase
Binding By, B>, B3, By | Same as previous phase

Table 5. Formulas for class member definition

128

5 Occurrences in template definition

Step Relation Explanation
Basic Fact HN, HK, F, Same as previous phase
Extraction Cs
Inherits (1) {<x, y> | block x directly inherits definitions in block y}
SameSubobject | {<x, y, z> | x and y have the same sub-objects of z on the
(ST) sub-object lattice}
N Same as previous phase
Compatible- Ry =HK . “referential occurrence for type and object inside
Kind template”
Dy = HK. {“definitional occurrence for type”, “definitional
occurrence for object”}
R, =HK . “referential occurrence for type inside template”
D, = HK. “definitional occurrence for type”
R, =HK . “referential occurrence for object inside template”
D, = HK. “definitional occurrence for object”
K=RoxDyUR; xD; UR, x D,
Normalization Visibility V=P o0CUP 0I*0CUP 0S*0C)n (F U (E xM))
Hiding NS=NC N S3
HB (X, W,Z)=NS (X,Y,Z)® C"(W.,Y)
H(x,y,z)=Ex(PoP" 00C)
UST(X,Y,Z)®C(X,x)®C(Y,y)®C(Z,2z)
UHB(X,Y,Z2)® C(X,x)®C(Y,y)®C(Z,2)
UEXx(TToC)'oP 00C)
Binding B, B>, B3, B4 B;=N
B,=B; nK
B;=B,nV
B,=B;—R where R(X,y)=B;(x,z) ®H (x, z, y)
Table 6. Formulas for template definition

129

6 Occurrences in template instantiation

Step Relation Explanation
Basic Fact HN, HK, F, Same as previous phase
Extraction C S IST
N Same as previous phase
Normalization Compatible- Ry =HK . “referential occurrence for type and object
Kind referring to template parameter”
Dy = HK. {“definitional occurrence for type”, “definitional
occurrence for object”}
R, =HK . “referential occurrence for type referring to
template parameter”
D, = HK. “definitional occurrence for type”
R, =HK . “referential occurrence for object referring to
template parameter”
D, = HK. “definitional occurrence for object”
K=RyxDyUR; xD; UR,xD,
Visibility Same as previous phase
Hiding Same as previous phase
Binding B, By, B3, By Same as previous phase

Table 7. Formulas for occurrences in template instantiation

130

7 Ordinary statements

Step Relation Explanation
Basic Fact HN, HK, F, Same as previous phase
Extraction C S IST
N Same as previous phase
Normalization Compatible- Ry =HK . “referential occurrence for type and object”
Kind Dy = HK. {“definitional occurrence for type”, “definitional
occurrence for object”}
R, =HK . “referential occurrence for type”
D, = HK. “definitional occurrence for type”
R, = HK . “referential occurrence for object”
D, = HK. “definitional occurrence for object”
K=RyxDyuUR; xD; UR,xD,
Visibility Same as previous phase
Hiding Same as previous phase
Binding B, By, B3, By Same as previous phase

Table 8. Formulas for occurrences in ordinary statements

131

Bibliography

[Aca96]

[Ada95]

[AFC98]

[AKW79]

[APMVO03]

[App98]

[ASUS6]

[AT98]

[AU77]

[AU79]

[Bac73]

Wiki page for Aca Cia. Website: http://www.program-

transformation.org/Transform/AcaCia. Last accessed Oct. 2007.

International Organization for Standardization. ISO/IEC 8652:1995, 1995.

G. Antoniol, R. Fiutem, and L. Cristoforetti. Design pattern recovery in Object-
Oriented software. In Proceedings of the 6" International Workshop on Program

Comprehension, pages 153-160. IEEE, 1998.

Alfred Aho, Brian Kernighan and Peter Weinberger. AWK — A pattern scanning and
processing language. Software Practice and Experience, 9(4):267-280, 1979.

Giuliano Antoniol, Massimiliano Di Penta, Gianluca Masone and Umberto Villano.
XOgastan: XML-oriented GCC AST analysis and transformation. In Proceedings of
the Third International Workshop on Source Code Analysis and Manipulation (SCAM
'03). IEEE, 2003.

Andrew Appel. Modern Compiler Implementation in Java. Cambridge University
Press, 1998.

Alfred V. Aho, Ravi Sethi and Jeffrey D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley, 1986.

M.N. Armstrong and C. Trudeau. Evaluating architectural extractors. In Proceedings of
Fifth Working Conference on Reverse Engineering (WCRE '98), pages 30-39, October
1998.

Alfred V. Aho and Jeffrey D. Ullman. Principles of Compiler Design. Addison-Wesley,
1977.

A. V. Aho and J. D. Ullman. Universality of data retrieval languages. In Proceedings of
Symposium on Principles of Programming Languages, pages 110-120. ACM, 1979.

Charles W. Bachman. The programmer as navigator. Communications of the ACM,

Volume 16, Issue 11, pages 653 — 658, 1973.

132

[Bad00]

[BBMOS]

[Boy96]

[BDK96]

[Bel01]

[Beh99]

[BHB99]

[BG97]

[BG0O]

[Bis92]

Greg Badros. JavaML: A Markup language for Java source code. Computer Networks,
33(1-6):159-177, June 2000.

Ralf Behnke, Rudolf Berghammer, Erich Meyer, and Peter Schneider. RELVIEW — A
system for calculating with relations and relational programming. In Egidio Astesiano,
editor, Proceedings of the Ist InternationalConference on Fundamental Approaches to
Software Engineering (FASE 1998), LNCS 1382, pages 318-321. Springer-Verlag,
1998.

J. Boyland. Conditional Attribute Grammars. ACM Transactions on Programming

Languages and Systems, Vol. 18, No. 1, pages 73-108, Jan. 1996.

M. van den Brand, A. van Deursen, P. Klint, S. Klusener and E. van der Meulen,
Instrial applications of ASF+SDF, In Algebraic Methodology and Software Technology
(AMAST' 96) pages 9-18, 1996.

Bell Canada. DATRIX Abstract Semantic Graph Reference Manual, Version 1.4.
Website: _http://citeseer.ist.psu.edu/332503.html, last accessed Oct. 2007.

R. Behnke et al. Applications of the RelView system. Tool support for system
specification, development and verification, Advances in Computing Science, Springer:

Wien, pages 33-47, 1999.

Ivan T. Bowman, Richard C. Holt and Neil V. Brewster. Linux as a case study: its
extracted software architecture. In Proceedings of the 21°" International Conference on

Software Engineering, pages 555-563. Los Angeles, California, May 1999.

Berndt Bellay, Harald Gall. A comparison of four reverse engineering tools. In Fourth
Working Conference on Reverse Engineering (WCRE '97), pages 2-11, Amsterdam.
October 1997.

Marat Boshernitsan and Susan L. Graham, Designing an XML-based exchange format
for Harmonia. In Proceedings of Working Conference on Reverse Engineering, pages.

287-289, Brisbane, Queensland, Australia, November 23-25, 2000.

Walter Bischofberger. Sniff: A pragmatic approach to a C++ programming
environment. In USENIX C++ Conference, pages 67-82, Portland, Oregon, August
1992.

133

[BKMS95]

[BKMVO03]

[BKU96]

[BLMO02]

[BLQ+03]

[BN04]

[BNLO3]

[C99]

[C++03]

[CCO0]

Walter Bischotberger, Thomas Kofler, Kai-Uwe Méetzel and Bruno Schéffer.
Computer supported software engineering with beyond-sniff. In Software Engineering

Environments, pages 145-143, Los Alamitos, California, April 1995.

Mark van den Brand, Steven Klusener, Leon Moonen, and Jurgen Vinju. Generalized
parsing and term rewriting - Semantics directed disambiguation. In Third Workshop on
Language Descriptions Tools and Applications, Electronic Notes in Theoretical

Computer Science, 2003.

R. Berghammer, B. von Karger, and C. Ulke. Relation- Algebraic analysis of Petri Nets
with RELVIEW, pages 49-69. Springer-Verlag, Berlin, Passau, March 1996.

R. Berghammer, B. Leoniuk, and U. Milanese. Implementation of relational algebra
using Binary Decision Diagrams. In Proc. RelMiCS’01, LNCS 2561, pages 241-257.
Springer, 2002.

M. Berndl, O. Lhot’ak, F. Qian, L. J. Hendren, and N. Umanee. Points-to analysis
using BDDs. In Proceeding of Programming Language Design and Implementation,

pages 103—-114. ACM, 2003.

D. Beyer and A. Noack. Crocopat 2.1 introduction and reference manual. Technical

Report CSD-04-1338, University of California, Berkeley, 2004.

D. Beyer, A. Noack, and C. Lewerentz. Simple and efficient relational querying of
software structures. In Proceedings of the 10th IEEE Working Conference on Reverse

Engineering, pages 216225, Nov. 2003.

International Organization for Standardization. Programming languages — C. ISO/IEC
9899:1999, 1999.

International Organization for Standardization. Programming languages — C++.

ISO/IEC 14882:2003, 2003.

Anthony Cox and Charles Clarke. A comparative evaluation of techniques for syntactic
level source code analysis. In 7* Asia-pacific Software Engineering conference, pages

282-289, Singapore, December 2000.

134

[CCO1]

[CCO3]

[CDM+02]

[CGK98]

[CM90]

[CMR92]

[CNR9O]

[Cod70]

[Cod82]

[Cor06]

Anthony Cox and Charles Clarke. Representing and accessing extracted information. In
proceedings of IEEE International Conference on Software Maintenance (ICSM 2001)
pages 12-21, Nov. 2001.

Anthony Cox and Charles Clarke. Syntactic approximation using iteractive lexical
analysis. In Proceedings of the 11" International Workshop on Program

Comprehension, pages 154-163, Portland, Oregon, May 2003.

James R. Cordy, Thomas R. Dean, Andrew J. Malton and Kevin A. Schneider. Source
transformation in software engineering using the TXL transformation system. In
Special Issue on Source Code Analysis and Manipulation, Journal of Information and

Software Technology 44,13. Pages 827-837, October 2002.

Yih-Farn Chen, Emden R. Gansner, Eleftherios Koutsofios. A C++ data model

supporting reachability analysis and dead code detection. /[EEE Trans. Software Eng.
24 (9): 682-694 (1998), 1998.

Mariano P. Consens, Alberto O. Mendelzon. GraphLog: A visual formalism for real
life recursion, In Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pages 404-416. Nashville, Tennessee,
United States 1990.

Mariano P. Consens, Alberto O. Mendelzon, and Arthur Ryman. Visualizing and
querying software structures. In International Conference on sofiware Engineering,

pages 138-156, Melbourne, Australia, May 1992.

Yih-Farn Chen, Michael Nishimoto and Chitoor Ramamoorthy. The C information
abstraction system. [EEE Transactions on Software Engineering, 16(3):325-334,
March 1990.

Edgar Codd. A relational data model for large shared data banks. Communications of

the ACM, 13(6):377-387, June 1970.

Edgar Codd. Relational Database: A practical foundation for productivity.
Communications of the ACM, 25(2): pages 109-117, 1982

J.R. Cordy, 2006. The TXL source transformation language. Science of Computer
Programming 61,3, pages 190-210, August 2006.

135

[Cox]

[CPP02]

[Cre97]

[Csc04]

[DC90]

[DCMS02]

[Dev92]

[DMHO1]

[EBN97]

[EGHT94]

[EHO4]

Anthony M. Cox. A Source-based Approach to Representing and Managing
Information Extracted by Program Analysis. PhD thesis. 2002.

CPPX. C++ Source Code Extractor. Website: http//swag.uwaterloo.ca/~cppx. Last
accessed Oct. 2007.

R. F. Crew. ASTLOG: A language for examining abstract syntax trees. In Proceedings
of the First Conference on Domain Specific Languages, pages 229-242, October 1997.

Cscope. Website: http://cscope.sourceforge.net, 2004. Last access Oct. 2007.

G. Dueck and G. Cormack. Modular Attribute Grammars. The Computer Journal, Vol.
33, No. 2, pages 164-172, 1990.

Thomas R. Dean, James R. Cordy, Andrew J. Malton and Kevin A. Schneider.
Grammar programming in TXL. In Proceedings of Second IEEE International
Workshop on Source Code Analysis and Manipulation. Montréal, October 2002.

Premkumar Devanbu. GENOA — A customizable, language and front-end independent
code analyzer. In Proceedings of 14" International Conference on Software

Engineering, pages 307-317, Melbourne, Australia, May 1992.

Thomas R. Dean, Andrew J. Malton and Ric Holt. Union schemas as a basis for a C++
extractor. In Proceedings of Working Conference on Reverse Engineering (WCRE
2001): Working Conference on Reverse Engineering, Stuttgart, Germany, 2001.

Michael Ernst, Greg Badros and David Notkin. An Empirical Analysis of C
Preprocessor Use. Computer Science and Engineering UW-CSE-97-04-06, University
of Washington, Seattle, Washington, April 1997.

D. Evans, J. Guttag, J. Horning, and Y. M. Tan. Lclint: a tool for using specifications
to check code. In Proceedings of the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, December 1994.

T. Ekman and G. Hedin, Rewritable reference attributed grammars. In European
Conference on Object-Oriented Programing (ECOOP’04), LNCS 3086, pages 144—
169, 2004.

136

[EKW98]

[EWB+96]

[FBT+02]

[FBMGO1]

[FHOO]

[FHCO1]

[FHK+97]

[FHM97]

[FKO98]

[FMY92]

Jirgen Ebert, Bernt Kullbach and Andreas Winter. GraX — An interchange format for
reengineering tools. In Sixth Working Conference on Reverse Engineering, pages 89-

98, Atlanta, Georgia, October 1998.

Jirgen Ebert, Andreas Winter, Peter Dahm, Angelika Franzke and Roger Siittenbach.
Graph based modeling and implementation with EER/GRAL. In Thalheim, B. 15t
International Conference on Conceptual Modeling (ER'96), Proceedings. LNCS 1157,
pp- 163-178, Berlin. Springer-Verlag, 1996.

Rudolf Ferenc, Arpad Beszédes, Mikko Tarkiainen and Tibor Gyiméthy. Columbus -
Reverse engineering tool and schema for C++. In Proceedings of the International

Conference on Software Maintenance (ICSM 2002), IEEE Computer Society, 2002.

Rudolf Ferenc, Arpad Beszedes, Ferenc Magyar and Tibor Gyimothy. A short
introduction to Columbus/CAN. Technical Report, 2001.

H. Fahmy and R. C. Holt. Software architecture transformations. In Proceedings of 16"

International Conference on Software Maintenance, pages 88-96, IEEE, 2000.

Hoda M. Fahmy, Richard C. Holt and James R. Cordy. Wins and losses of algebraic
transformations of software architecture. Automated Software Engineering (ASE 2001),
San Diego, California, November 26-29, 2001.

Pat Finnigan, Richard C. Holt, Ivan Kalas, Scott Kerr, Kostas Kontogiannis, Hausi
M uller, John Mylopoulos, Steve Perelgut, Martin Stanley, and Kenny. Wong. The
software bookshelf. IBM Systems Journal, 36(4), November 1997.

Hoda Fahmy, Richard C. Holt, Spiros Mancoridis Repairing software style using
graph grammars. In the IBM Proceedings of the Seventh Centre for Advanced Studies
Conference (CASCON'97), Toronto, Ontario, Canada, November, 1997.

L. Feijs, R. Krikhaar, and R. Van Ommering. A relational approach to support
software architecture analysis. Software-Practice and Experience, 28(4):371-400,
1998.

R. Farrow, T. Marlowe, and D. Yellin. Composable Attribute Grammars: Support for

modularity in translator design and implementation. In Proceeding of 19th ACM

137

[For04]

[FSH+01]

[FSGO04]

[GCCO2]

[GCDO03]

[GHL+92]

[Gie88]

[Gro89]

[Gro92]

[GX]

[GXL02]

[Hed92]

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 223-
234, New Mexico, USA, Jan. 1992.

International Organization for Standardization. ISO/IEC 1539-1:2004, Fortran. 2004.

Rudolf Ferenc, Susan Elliott Sim, Richard C. Holt, Rainer Koschke, Tibor Gyimothy,
Towards a standard schema for C/C++, In Proceedings of the 8" Working Conference
on Reverse Engineering (WCRE 2001), Stuttgart, Germany, Oct. 2001.

Rudolf Ferenc, Istvan Siket and Tibor Gyimothy. Extracting facts from open source
software. In Proceedings of the 20" International Conference on Software

Maintenance, pages 60-69, Chicago, Illinois, September 2004.

GCC. GNU Compiler Collection. Website: http://gcc.gnu.org, 2002.

X. Guo, J. R. Cordy and T. R. Dean. Unique renaming of Java using source
transformation. In Proceedings of the 3rd International Workshop on Source Code

Analysis and Manipulation, pages 151-160, Amsterdam, September 2003.

R.W. Gray, V.P. Heuring, S.P. Levi, A. M. Sloane, and A.M. Waite. Eli: A complete,
flexible compiler construction system. Communications of the ACM 35, pages 121-131,

Feb. 1992.

R. Giegerich. Composition and evaluation of Attribute Coupled Grammars. Acta

Informatica, Vol. 25, pages 355-423, 1988.

J. Grosch. Ag-An Attribute Evaluator Generator. Report No. 16, Compiler Generation
Project, University of Karlsruhe, 1989.

Josef Grosch, Multiple Inheritance in Object-Oriented Attribute Grammars, Document
No. 28, CoCoLab — Datenverarbeitung Hohenweg 6, 77855 Achern Germany Feb. 25,
1992.

GCC_XML. Website: http://www.gccxml.org/HTML. Last accessed Oct. 2007.

GXL. The Graph eXchange Language. Website: http://www.gupro.de/GXL. Last
accessed Oct. 2007.

G. Hedin. Incremental Semantic Analysis, Dept. Computer Science, Lund University,

Sweden, March 1992.

138

[HHL+00]

[HMPO03]

[Hol02]

[Hol97a]

[Hol98]

[Hol99]

[Holt]

[Jar98]

[GISBO5]

[JD84]

[Jon90]

Ahmed E. Hassan, Richard C. Holt, Bruno Lague, Sebastien Lapierre, and Charles
Leduc. E/R schema for the DATRIX C/C++/Java exchange format. In Proceedings of
the 7" Working Conference on reverse Engineering, pages 284-284, Brisbane,
Australia, November 2000.

Mark Hennessy, Brian A. Malloy and James F. Power. gccXfront: Exploiting gcc as a
Front End for Program Comprehension Tools via XML/XSLT. International Workshop
on Program Comprehension (IWPC '03). 2003.

Richard C. Holt. Introduction to the Grok programming language. Website:
http://plg.uwaterloo.ca/~holt/papers/grok-intro.doc. Last accessed Oct. 2007.

Richard C. Holt. An introduction to TA: The Tuple-Attribute language. Website:
http://plg.uwaterloo.ca/~holt/papers/ta-intro.htm. Last accessed Oct. 2007.

Richard C. Holt. Structural manipulations of software architecture using Tarski
relational algebra. In Proceedings of the 5™ Working Conference on Reverse

Engineering, Honolulu, Oct 1998.

Richard C. Holt. Software architecture abstraction and aggregation as algebraic
manipulations. In Proceedings of Centre for Advanced Studies Conference (CASCON
'99), Toronto, November 1999.

Richard Holt. Software Bookshelf: Overview and construction. Website: http://www-
turing.cs.toronto.edu/pbs/papers/bsbuild.html. Last access Oct. 2007.

Stan Jarzabek. Design of flexible static program analyzers with PQL. [EEE
Transactions on Software Engineering, 24(3):197-215,March 1998.

James Gosling, Bill Joy, Guy L. Steele Jr. Gilad Bracha. The Java Language
Specification, Third Edition, Sun Microsystems, Inc. 2005.

R. Jullig, and F. DeRemer. Regular Right-Part Attribute Grammars. ACM SIGPLAN
'84 Symp. On Compiler Construction, pages 171-178, June 1984.

L. Jones. Efficient evaluation of Circular Attribute Grammars. ACM Trans. on

Programming languages and Systems, Vol. 12, No. 3 pages 429-462, July 1990.

139

[JP91]

[JP97]

[JV03]

[KHZ82]

[KGW98]

[KHZ82]

[Knu68]

[KNPS88]

[Kos91]

[KP96]

[KSR+99]

[KW92]

M. Jourdan, and D. Parigot. Internals and externals of the Fnc-2 Attribute Grammar
systems. Attribute Grammars, Applications and Systems, LNCS No. 545, pages 485-
504, Springer-Verlag, 1991.

M. Jourdan, D. Parigot. The FNC-2 System User’s Guide and Reference Manual.
Release 1.19, INRIA Rocquencourt, 1997.

D. Janzen and K. de Volder. Navigating and querying code without getting lost. In
Proceedings of the 2nd Annual Conference on Aspect-Oriented Software Development
(AOSD), pages 178—187, 2003.

U. Kastens, B. Hutt, and E. Zimmermann. GAG: A Practical Compiler Generator,
LNCS No. 141, Springer-Verlag, 1982.

Rainer Koschke, Jean-Francois Girard and Martin Wurthner. An intermediate
representation for integrating reverse engineering analyses. Presented at Working

Conference on Reverse Engineering, Honolulu, HI, October 1998.

U. Kastens, B. Hutt, E. Zimmermann. GAG: A practical compiler generator. Lecture

Notes in Computer Science 141, Springer-Verlag, 1982.

D. E. Knuth. Semantics of context-free languages. Mathematical Systems: The Theory

2, pages 127-146, June 1968.

K. Koskimies, O. Nurmi, and J. Paakki. The design of a language processor generator.

Software-Practice and Experience, Vol. 18, No.2 pages 107-135, Feb. 1988.

K. Koskimies. Object-Orientation in Attribute Grammars. Attribute Grammars,

Applications and Systems, LNCS No. 545, pages 297-329, Springer-Verlag, 1991.

C. Kra"mer and L. Prechelt. Design Recovery by Automated Search for Structural
Design Patterns in Object-Oriented Software. Proc. Third Working Conf. Reverse Eng.
(WCRE 1996), pp.208-215, 1996.

R.K. Keller, R. Schauer, S. Robitaille, and P. Page. Pattern-Based Reverse Engineering
of Design Components. Proc. 21st Int’l Conf. Software Eng. (ICSE 1999), pp. 226-235,
1999.

U. Kastens and W. M. Waite. Modularity and reusability in Attribute Grammars. Acta

Informatica, Volume 31, Issue 7 pages 601-627, October 1994.
140

[KW99]

[Let02]

[LHO4]

[LHO4b]

[LR95]

[LSWO1]

[LWL+05]

[MG00]

[MKO00]

[MKS8]

B. Kullbach and A. Winter. Querying as an enabling technology in software
reengineering. In Proc. CSMR, pages 42—50, 1999.

Timothy C. Lethbridge et al. The Dagstuhl Middle Model (DMM) Version 0.005.
See http://scgwiki.iam.unibe.ch:8080/Exchange/2. Last accessed May 2007.

Yuan Lin and Richard Holt. Software factbase extraction as algebraic transformations:
FEAT. In Proceedings of Ist International Workshop on Software Evolution
Transformations (SET 2004), page 21-24, Delft, Netherland, November 2004.

O. Lhot’ak and L. Hendren. Jedd: a BDD-based relational extension of Java. /n PLDI
‘04 Proceedings of the ACM SIGPLAN 2004 Conference on Programming language
Design and Implementation, pages 158—169, 2004.

David Ladd and J. Christopher Ramming. A*: A language for implementing language
processors. [EEE Transactions on Software Engineering. 21(11):894-901. November
1995.

Carola Lange, Harry Sneed and Andreas Winter: Comparing graph-based program
comprehension tools to relational database-based tools. In Proceedings of the 9th
International Workshop on Program Comprehension (IWPC 2001), Toronto, CA, May
2001.

Monica Lam et al. Context-sensitive program analysis as database queries. In
Proceedings of the 24" ACM SIGMOD-SIGACT-SIGART, Symposium on Principles of
Database Systems. Pages 1-12. 2005.

Victor Matos and Rebecca Grasser. RELAX — the relational algebra pocket calculator
project. SIGCSE Bull. vol. 4, no. 4, pages 40-44, 2000.

Evan Mamas and Kostas Kontogiannis. Towards portable source code representations
using XML. In Seventh Working Conference on Reverse Engineering, pages 172-182,
Brisbane, Austrilia, November 2000.

Hausi Muller and Karl Klashinsky. Rigi: A system for programming-in-the-large. In
10™ International Conference on Software Engineering, pages 80-86, Singapore, April
1988.

141

[ML02]

[MLA+00]

[MNL96]

[MNSO01]

[MOTU93]

[MS95]

[OK90]
[Pas90]

[PP96]

[Pro03]

[PS99]

[Rep92]

[Rep94]

[RGOO]

T. Mens and M. Lanza. A Graph-Based Metamodel for Object-Oriented Software

Metrics. Electronic Notes in Theoretical Computer Science, vol. 72, no. 2, 2002.

M. Mernik, M. Lenic, E. Avdicausevic and V. Zumer. Multiple Attribute Grammar
Inheritance. Informatica, Vol. 24, No. 3, pages 319-328, June 2000.

Gail C. Murphy, David Notkin, and Erica S.-C. Lan. An empirical study of static call
graph exractors. In the Proceedings of the 18th International Conference on Software

Engineering, IEEE Computer Society Press, Los Alamitos, CA, pages 90-99, 1996.

G. C. Murphy, D. Notkin, and K. J. Sullivan. Software reflexion models: Bridging the
gap between design and implementation. [EEE Trans. Software Engineering,
27(4):364-380, 2001.

Hausi A. Miiller, Mehmet A. Orgun, Scott R. Tilley,and James S. Uhl. A reverse
engineering approach to subsystem structure identification. Journal of Software

Maintenance: Research and Practice, 5(4), pages 181-204, December 1993.

A. O. Mendelzon and J. Sametinger. Reverse engineering by visualizing and querying.

Software — Concepts and Tools, 16(4):170-182, 1995.
R. A. O’Keefe. The Craft of Prolog. MIT Press, Cambridge, MA, USA, 1990.
International Organization for Standardization. ISO/IEC 10206: 1990(E), 1990.

S. Paul and A. Prakash. A query algebra for program databases. IEEE Trans. Software
Engineering, 22(3):202-217, 1996.
Swedish Institute of Computer Science. Quintus Prolog User’s Manual, 2003.

André Postma, Marc Stroucken. Applying Relation Partition Algebra for reverse
architecting. Workshop Software-Reengineering, Bad Honnef, pages 27-28. May 1999.

T. Reps. Scan Grammars: Parallel attribute evaluation via data-parallelism. TR 1120,

Computer Sciences Department, University of Wisconsin-Madison, November 1992.

T. Reps. Demand interprocedural program analysis using logic databases. Applications

of Logic Databases, pages 163—196, 1994,

Raghu Ramakrishnan, Johannes Gehrke, Database Management Systems, 2nd
Ed,McGraw-Hill, pages 28-45, 2000.
142

[RT89]

[RW91]

[San01]

[SCHC99]

[Sch98]

[SHE02]

[SK90]

[S0C99]

[SoN03]

[SSC96]

[Str01]

T. Reps and T. Teitelbaum. The Synthesizer Generator: A System for Constructing
Language-Based Editors, Springer-Verlag, New York, 1989.

David Rosenblum and Alexander Wolf. Representing semantically analyzed C++ code
with Reprise. In USENIX C++ Conference, pages 119-134, Berkeley, California, 1991.

Georg Sander. VCG Overview. Website: http://rw4.cs.uni-sb.de/~sander/html/gsvcgl
.html. Last accessed Oct. 2007.

Susan Sim, Charles Clarke, Ric Holt and Anthony Cox. Browsing and searching
software architectures. In International Conference on Software Maintenance, pages

381-390, Oxford, England, September 1999.

Andy Schiirr, The PROGRES Language Manual Version 9.X, Lehrstuhl Informatik I1I,
RWTH Aachen, 1998.

Susan Elliott Sim, Richard C. Holt, Steve M. Easterbrook. On using a benchmark to
evaluate C++ extractor. In Proceedings of International Workshop on Program

Comprehension (IWPC '02), Paris, June, 2002

Yoichi Shinoda and Takuya Katayama. Object-Oriented extension of Attribute
Grammars and its implementation using distributed attribute evaluation algorithm. /n
Proceedings of the International Workshop on Attribute Grammars and their
Applications, Lecture Note in Computer Science Vol. 461, pages 177-191. Springer-
Verlag, 1990.

Software Composition Group, University of Berne. The FAMIX 2.0 Specification, 2.0
edition, Aug. 1999. website: http://www.iam.unibe.ch/~scg/Archive/famoos/FAMIX.
Last accessed Oct. 2007.

Source navigator 5.1.4. website: http://sourcenav.sourceforge.net/, Last accessed Oct.

2007.

M. Sefika, A. Sane, and R. H. Campbell. Monitoring compliance of a software system
with its high-level design models. In Proc. ICSE, pages 387-396. IEEE, 1996.

Bjarne Stroustrup, The C++ programming language (special edition), Addison-Wesley,
Pearson Education, 2001

143

[Swa02]

[SWZ95]

[Tard1]

[TC90]

[TGLHO02]

[TH99]

[TkS03]

[U1189]

[Vis04]

[VSK90]

[Win01]

SwagKit. The Software Architecture Group (SWAG) Analysis Toolkit. Website:

http://swag.uwaterloo.ca/swagkit, 2002.

Andy Schiirr, Andreas Winter and A. Ziindorf, Graph grammar engineering with
PROGRES, in ESEC'95 Proceedings of the 5th European Software Engineering
Conference, Lecture Notes in Computer Science, volume 989, pp. 219-234, Springer-
Verlag, Berlin, 1995.

Alfred Tarski. On the calculus of relations. Journal of Symbolic Logic, Vol. 6, No. 3,
pages 73-89, 1941.

T. Teitelbaum and R. Chapman. Higher-Order Attribute Grammars and editing
environments. ACM SIGPLAN 90 Conference on Programming Language Design and
Implementation, Pages 197-208, 1990.

John B. Tran, Michael W. Godfrey, Eric H. S. Lee, and Richard C. Holt. Architectural
repair of open source software. In Proceedings of International Workshop on Program

Comprehnesion (IWPC’02), 2002.

John B. Tran and R. C. Holt. Forward and reverse repair of software architecture. In
Proceeding of Centre for Advanced Studies Conference (CASCON °99), Toronto,
November 1999.

TkSee/SN. A C++ source code extractor based on Cygnus Source Navigator.

Website: http://www.site.uottowa.ca/~tcl/kbre, 2003. Last accessed Oct. 2007

J. D. Ullman. Principles of Database and Knowledge-Base Systems. Computer Science

Press, Rockville, Md., 1989.

E. Visser. Program transformation with Stratego/XT: Rules, strategies, tools and
systems in StrategoXT 0.9. Technical Report UU-CS-2004-011, Institute of
Information and Computing Sciences, Utrecht University, February 2004.

H. Vogt, S. Swierstra, and M. Kuiper. Higher order Attribute Grammars. ACM

SIGPLAN’89 Conference on Programming Language Design and Implementation,
Pages 131-45, 1989.

Andreas Winter. Exchanging graphs with GXL. In P. Mutzel (ed.) Graph Drawing -
9th International Symposium, GD 2001, Vienna, Springer-Verlag. 2001.
144

[WLO04] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias analysis using
Binary Decision Diagrams. In Proceedings of the ACM SIGPLAN 2004 Conference on
Programming Language Design and Implementation (PLDI), 2004.

[Won98] Kenny Wong. The Rigi User's Manual - Version 5.4.4. The Rigi Group, June 1998. See

http://www.rigi.csc.uvic.ca/

[Wu04] Jingwei Wu. Jgrok: A query language for reverse engineering. Website:
http://swag.uwaterloo.ca/tools.html, 2004. Last accessed Apr. 2007.

145

