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Abstract 

Cell shape is important to understanding the mechanics of three-dimensional (3D) cell 

aggregates.  When an aggregate of embryonic cells is compressed between parallel plates, 

the cell mass and the cells of which it is composed flatten.  Over time, the cells typically 

move past one another and return to their original, spherical shapes, even during 

sustained compression, although the profile of the aggregate changes little once plate 

motion stops.  Although the surface and interfacial tensions of cells have been attributed 

to driving these internal movements, measurements of these properties have largely 

eluded researchers. 

Here, an existing 3D finite element model, designed specifically for the mechanics of 

cell-cell interactions, is enhanced so that it can be used to investigate aggregate 

compression.  The formulation of that model is briefly presented and enhancements made 

to its rearrangement algorithms discussed.  

Simulations run using the model show that the rounding of interior cells is governed by 

the ratio between the interfacial tension and cell viscosity, whereas the shape of cells in 

contact with the medium or the compression plates is dominated by their respective cell-

medium or cell-plate surface tensions. The model also shows that as an aggregate 

compresses, its cells elongate more in the circumferential direction than the radial 

direction. 

Since experimental data from compressed aggregates are anticipated to consist of 

confocal sections, geometric characterization methods are devised to quantify the 

anisotropy of cells and to relate cross sections to 3D properties. The average anisotropy 

of interior cells as found using radial cross sections corresponds more closely with the 3D 

properties of the cells than data from series of parallel sections.  

A basis is presented for estimating cell-cell interfacial tensions from the cell shape 

histories they exhibit during the cell reshaping phase of an aggregate compression test. 
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11  IInnttrroodduuccttiioonn  

Many fundamental biological processes, such as growth, differentiation, migration, and 

apoptosis, are mediated by changes in cell shape and cytoskeletal integrity (Watson 1991, 

Ingber, et al. 1995, Chen, et al. 2003).  For example, anisotropies in cell shape affect the 

future positions of daughter cells and therefore are critical to cell fate (Théry, et al. 2005). 

Cell shape is also important in the mechanics of three-dimensional (3D) cell aggregates 

as first revealed by centrifugation experiments of embryonic tissues (Phillips and 

Steinberg 1978).  When spherical aggregates of isotropic cells are centrifuged, the cell 

masses and the cells of which they are composed flatten.  Over time, as centrifugation 

continues, the cells anneal (spontaneously reshape and rearrange until individual cells are 

again nearly isotropic) even though the mass as a whole remains flattened.  The same 

phenomenon is also observed in compression experiments of embryonic tissues between 

parallel plates (Phillips and Davis 1978, Foty, Pfleger, et al. 1996).  Exhibiting a viscous-

liquid behavior, the cells move past one another and resume their original, undistorted 

shapes.  Comparable results from a two-dimensional (2D) finite element (FE) simulation 

of aggregate compression by parallel plates (Brodland 2003) are shown in Figure 1.1. 

 
(a) 

 
 

(b) (c) 
Figure 1.1: A parallel plate compression test of a 2D cell aggregate 
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A rapid compression causes the cell mass and individual cells to flatten normal to the 

parallel plates (Figure 1.1b) while the rounding and relative moments of cells eventually 

produce an annealed state (Figure 1.1c). 

The present study simulates the same compression experiment with a 3D FE model.  The 

reason for including the third dimension is because even though 2D simulations elucidate 

important concepts in cell mechanics, they are unable to capture certain cell phenomena 

that are demonstrated in 3D simulations (Brodland, Yang and Veldhuis 2008).  

Disparities in a 2D model are due to its reduced dimension, which produces limited cell 

connectivity and fewer numbers of cell neighbours when compared to a 3D model.  For 

example, a 3D model can accurately describe the connectedness of cells, whereas a 2D 

model, as represented by the cutting plane, portrays the cells as isolated groups (Figure 

1.2).  In addition, a 3D cell is typically surrounded by an average of 14.3 neighbours and 

a 2D cell only has on average 6.3 neighbours. 

 

Figure 1.2: Fundamental difference between 2D and 3D models 

Dimension-dependent instabilities can also arise as a chain of cells breaks in 3D but 

remains contiguous in 2D.  Dimensionality differences are also evident in other physical 

phenomena such as wave propagation (Olsen, Nigbor and Konno 2000). 

To capture the movement of embryonic cells, we assume a γ-μ model where a constant 

interface type-specific tension γ is acting on each cell boundary and a viscosity μ 
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represents the mechanical effect of the cytoplasm.  Taking into account μ, which other 

models do not do, allows the time course of cell motions to be predicted.   

According to the differential adhesion hypothesis, cell type-specific adhesions drive the 

liquid-like behaviour of embryonic tissues during morphogenesis (Foty, Forgacs, et al. 

1994, Foty and Steinberg 2005).  They guide the assembly of cells and tissues into 

anatomically “correct” higher level structures (Steinberg 1993), which represent an 

equilibrium configuration where the interfacial free energy of the system is minimized 

(Foty, Forgacs, et al. 1994). 

For cell aggregates, there are two types of tensions.  Showing a single, exterior cell in 

aggregate, Figure 1.3 defines the tension acting at the cell-medium boundary as surface 

tension and the tension acting at the cell-cell interface as interfacial tension. 

 

Figure 1.3: Surface and interfacial tensions for a cell aggregate 

The magnitudes of surface and interfacial tensions strongly depend on the state of the 

cellular cytoskeleton (Forgacs 1998, Gov, Zilman and Safran 2003, Fournier, Lacoste and 

Raphael 2004), which is a dynamic network of protein fibres (Figure 1.4).  There are 

three types of protein fibers:  microtubules, microfilaments, and intermediate filaments.  

Microtubules, which dynamically assemble and disassemble, act as a local scaffold and 

are the thickest in diameter.  Microfilaments are contractile and a prime source of the cell 

surface tensions, while intermediate filaments stabilize the cytoplasm and the structures it 

contains (Alberts, et al. 2004). 
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Figure 1.4: A typical biological cell aggregate 

Interactions between these cytoskeletal components generate tensions at the cell-medium 

and cell-cell interfaces.  Tension values are also correlated with the contraction of the cell 

membrane and the number and binding strength of cell adhesion molecules (Beysens, 

Forgacs and Glazier 2000).  Collectively, the equivalent surface or interfacial tension γAB 

can be calculated as: 

 Eq. 1.1 

where  is the combined force from the cytoskeletal components,  is the cell 

membrane force,  is the adhesion forces, and  is any other force acting on the 

cell interface (Brodland 2002).  The subscripts A, B, and AB designate the corresponding 

cell(s) that produce the force. 

Using a FE model overcomes two challenges typically associated with laboratory 

experiments.  The first issue arises from the fact that accurate measurements of 

mechanical properties are difficult to achieve in the laboratory.  Surface tensions, while 

easy to allude to, are far from easy to quantify in live, irregularly shaped cells (Morris 

and Homann 2001).  To date, no one has been able to measure the bulk interfacial tension 

between cells via compression experiments or any other experiments.  The second issue 

is the delicate nature of biological cells which significantly complicates physical 
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measurements of cell shape.  Cell shape data usually have to be inferred from planar 

images. 

With FE simulations, geometric data are readily available for analysis and the changes in 

individual cell shape under the influence of different surface and interfacial tensions can 

be determined.  Also, surface and interfacial tensions can be specified at will.   

This study theoretically analyzes the relationship between cell shape history and 

interfacial tensions using principles of mechanics, and then verifies the theoretical 

predictions using FE results.  This study also aims to provide a way for expediting the 

extraction of 3D cell shape data in real experiments from planar images. 

Based on the preceding discussion, the goal of the present study is to simulate the parallel 

plate compression of embryonic cell aggregates with the FE method and use the results 

to: (1) investigate the effects of surface and interfacial tensions on cell shape history, (2) 

develop an equation that relates cell shape history and the interfacial tension, (3) provide 

validation for theoretical shape analyses that can be used to interpret other numerical or 

experimental observations, and (4) determine if there exists a correlation between the 2D 

sections and 3D cell shape. 

Collectively, these objectives will provide insights into factors that determine cell shape 

history, and lead to a method that will finally make it possible to extract the interfacial 

tensions of cells in aggregate. 
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22  LLiitteerraattuurree  RReevviieeww  

This chapter reviews previous cell aggregate compression experiments and previous 3D 

models for the mechanics of cell-cell interactions.  The available computational 

approaches for 2D models, with their strengths and weaknesses, have been discussed by 

Brodland (2004). 

2.1 Cell Compression Experiments 

The mechanics of cell-cell interfaces has been studied using a wide range of experimental 

techniques that can be divided into two groups:  (1) techniques for global loading of 

individual cells, such as microplate manipulation (Thoumine and Ott 1997), 

micromanipulation (Zhang, et al. 1991), or whole cell micropipette aspiration (Evans and 

Yeung 1989), and (2) techniques aiming at local loading of cells, e.g., atomic force 

microscopy (Mathur, et al. 2001), cell poking (Petersen, McConnaughey and Elson 

1982), bead micromanipulation (Bausch, Ziemann, et al. 1998), or partial cell aspiration 

with micropipettes (Sato, et al. 1990).   

Specific to the present study, the following section reviews the experiments that have 

been developed to investigate the response of aggregated cells when become compressed.   

Phillips and Steinberg (1969) devised a modification of the sessile drop method to test the 

adhesive properties of embryonic cells.  In this method the cells flatten under prolonged 

centrifugal forces, while the intercellular adhesiveness in aggregates provides the 

resistance to deformation and the drive to round up.  As the final geometry of the 

aggregate only partly reflects the strengths of the intercellular adhesion, other possible 

effects of centrifugation are also accounted for in their calculations.  These effects 

include the centrifugal acceleration, buoyant densities of the aggregates, and the adhesive 

interactions of the aggregates with the agar substratum.  

Phillips and Davis (1978) described two physical tests for liquid-tissue morphogenesis in 

cell aggregates.  In one test, spherical cell aggregates in culture medium are deformed by 
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being compressed between parallel glass cover slips.  The flattened embryonic cells 

exhibit viscous-liquid behaviors by returning to their original rounded shapes.  This 

annealing process involves self-propelled translocations or passive slippage movements 

or both.  Devised to measure surface tensions, the other test has one compressing glass 

mounted on the end of a flexible quartz fiber (Figure 2.1).   

 

Figure 2.1: An aggregate compressed between two glass chips, one of which is glued to a 

quartz fibre (F) 

The degree of bending in the fiber can be used to calculate the forces exerted by the cell 

aggregate.  Once the internal cell deformation within a compressed aggregate has been 

dissipated by cell slippage, its surface tension is the sole force resisting deformation 

(Phillips and Davis 1978). 

Foty et al. (1994) introduced a thermostated parallel plate compression apparatus (Figure 

2.2) specifically developed to measure the surface tension of living embryonic cells.   

 

Figure 2.2: The parallel plate compression apparatus 
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The temperature in the inner chamber (IC) is maintained by a thermostated circulating 

water pump.  The upper compression plate (UCP) is suspended from the balance arm (B) 

by a nickel-chromium wire (NCW).  The compression of the aggregate reduces the load 

measured by the balance by an amount equal to the force acting upon the cell aggregate 

(Foty, Forgacs, et al. 1994) 

2.2 Previous Three-Dimensional Models 

The spatiotemporal dynamics of biological cells can sometimes be well described by a 

simple theoretical model.  Perhaps one of the greatest advantages is the ability to test 

hypothesis in in silico experiments, thereby eliminating unnecessary laboratory 

experiments that are often expensive and time consuming.  In addition, computational 

modelling also allows for the extraction of mechanical properties of living cells from 

numerical simulations by comparison to experimental results.  Furthermore, a validated 

theoretical model can be used to interpret or predict other experimental observations. 

2.2.1 Centric Models 

In centric models the cells are represented by individually interacting objects.  These 

models are computationally intense, as every single cell is included in the simulations; 

however, this method also allows for the interaction rules to be chosen intuitively from 

experimental observations.   

Palsson (2001) proposed a centric model for simulating, in three dimensions, individual 

biological cell movements in multicellular systems.  With the model, he investigated cell 

aggregation, embryogenesis, limb formation, and wound healing.  In the Palsson model 

each cell is idealized as a deformable ellipsoid with individually chosen properties and 

constant volume.  In addition, the viscoelastic properties of the cell are incorporated as a 

nonlinear spring in parallel with a spring and dashpot in series (Figure 2.3) contained in 

each axis of the ellipsoid.   
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Figure 2.3: The combination of springs and dashpot used to model cell viscosity 

The values of μ1, κ1, and κ2 in each spring-dashpot system are calculated based on the 

lengths of the three axes.   

A cell experiences three types of forces:  active, passive, and a viscous drag force.  

Generated in response to chemotactic signals, the active force moves the whole cell along 

its anterior-posterior axis towards the signals.  The magnitude of this force is set to a 

constant value of 5 x 10
-3

 dyn whenever the chemical concentration exceeds a threshold.  

The passive forces arise from the adhesive and elastic interactions with surrounding cells, 

and are determined based on the proximity d of the cells to one another and their relative 

axis orientations (Figure 2.4).     

 

Figure 2.4: The distance between the surfaces of two cells is determined 

The active and passive forces are balanced by the drag force, which is generated from the 

cell movements through a viscous environment.  The equilibrium state in the Palsson 

model has d < 0 such that a space filling configuration may be created (Figure 2.5).   
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Figure 2.5: The distance between cells is negative to create a space filling configuration 

With this model, Palsson was able to adequately simulate the behaviour of embryonic 

tissues under parallel plate compression (Figure 2.6).  The calculated values for surface 

tension and the adhesion constant were within the biological values.   

 

Figure 2.6: Parallel plate compression of a cell aggregate through time 

Also demonstrated in several sorting simulations, this model offers the ease of motion 

between individual cells.  However, the method for generating forces and the stiffness of 

cells may not accurately represent the actual physical system.  In addition, the Palsson 

model is not truly space filling as in the case of real biological aggregates.  Furthermore, 

the cells are restricted to one special cell form, which does not allow for more variations 

in cell shape and size. 

Clem, Konig, and Rigaut (1997) developed a centric model to investigate the renewal of 

the nasal epithelium.  In this model the cells are represented by ellipsoids with random 
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orientation, size, and shape deviations.  The cells are capable of growth and division to 

simulate the evolution of cell cycle.  During a cell division, the daughter cell F which 

does not take the place of the mother cell M is displaced in the direction towards the 

largest empty adjacent space available (Figure 2.7).  

 

Figure 2.7: Stem cell M undergoes mitosis in which daughter cell F moves into the largest 

empty adjacent space 

This displacing movement continues until the overlapping of the daughter cells ceases.  

In addition, when a collision with the neighbouring cells is imminent, the neighbours 

move in accordance with vector equations.  This model has the ability to simulate the 

ease of cell motion, but lacks the complexity required to replicate forces and time 

accurately. 

Schaller and Mayer-Hermann (2005) also developed a centric model to study the 

morphology and growth of tumour cells.  Similar to the Palsson model, this model 

represents the cells as deformable spheres with dynamic radii.  The absolute value of the 

elastic force between two spheres is a function of the maximum overlap hij (Figure 2.8) 

and the elastic properties of the spheres.  The cells also experience intercellular adhesion 

forces calculated based on the contact area Aij and the chemical concentrations of the 

spheres. 
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Figure 2.8: 2D illustration of overlapping spheres 

In dense tissues where many spheres overlap (Figure 2.9), the Voronoi contact surface, 

marked with a bold line, is used to provide a more realistic estimate of the cellular 

contact area Aij. 

 

Figure 2.9: Voronoi contact surfaces are used in dense tissues 

In addition to the elastic and adhesive forces, the equations of motion also consider 

possible random forces, cell-medium friction, and cell-cell friction.  These cells are able 

to grow, divide, and die to represent the actual population dynamics of cells.  

Experimental growth curves and typical tissue morphology were reproduced well in 

simulations.  However, in reality this model may not be adequate for cells as the 

mechanics of the cytoskeleton cannot be well described by purely elastic responses.  

There also exists an issue of accuracy in the method of determining the contact surfaces, 

which directly affects the force calculations.  In addition, the space filling nature of real-

life cells is not replicated in this model. 
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2.2.2 Boundary Vertex Models 

In boundary vertex models each cell is represented by a list of vertices that define the 

occupied space.  Accordingly, the cells are polyhedral in shape.  The interaction rules in 

these models are formulated to minimize the boundary lengths or contact surface areas. 

The first boundary vertex model was formulated by Fuchizaki et al. (1995) to study grain 

growth in metals.  In their model, triangulation is performed for each polygonal face 

around a center node (Figure 2.10), which allows the face to deform in a non-coplanar 

fashion.   

 

Figure 2.10: Triangulation of a polygonal face 

The relevance of this model arises from the fact that biological cell movements are also 

driven by interfacial tensions.  The equations of motion are derived to minimize the free 

energy of the cell boundary and the Rayleigh dissipation function associated with the cell 

boundary motion.  However, a system may lock in a local minimum instead of a global 

minimum.   

Additionally, this model is equipped with an algorithm to deal with the entanglements of 

edges.  When an edge becomes shorter than a specified length ∆, the model executes a 

recombination process (Figure 2.11), in which the system loses (gains) a triangular face 

during the left to the right (the right to the left) reaction. 
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Figure 2.11: A recombination algorithm 

This rearrangement algorithm greatly increases the ability for the cells to move and 

relocate within the aggregate (Fuchizaki, Kusaba and Kawasaki 1995). 

Honda et al. (2004) developed a 3D cell model of a multicellular aggregate to investigate 

the deformation and rearrangement of eukaryotic cells under the influence of external 

forces.  The cells are convex polyhedra, without gaps or overlaps, generated using a 

Voronoi subroutine.  The vertex motions lead toward minimization of the total free 

energy of the system, which includes the surface and interfacial energies of the cells and 

the energy of cell compression and expansion.  The same cell rearrangement algorithm as 

the Fuchizaki model is utilized in this model, and is illustrated by faces in Figure 2.12.   

 

Figure 2.12: Reconnection of neighbouring vertices in a 3D tessellation consisting of faces 

Honda et al. demonstrated the ability of the model to reproduce the behaviour of cell 

aggregates under centrifugal flattening.  The deformed cells show annealing and relative 

cell movements (Figure 2.13), which are observed in laboratory experiments.   
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Figure 2.13: Sections through a cell aggregate during application and removal of 

centrifugal forces 

Although the cell geometries can be adequately replicated, the model cannot predict time 

scales or forces associated with the deformation of the cytoplasm.  This drawback is due 

to the lack of physical μ representing cell viscosity.  Furthermore, the cell interfaces are 

forced to remain flat, which is a geometric restriction that may influence the cell shapes. 

Having reviewed the above, we conclude that to properly model biological cells in three 

dimensions, a computational model should:  (1) be truly three dimensional, (2) capture 

the close-packed geometry of real cell aggregates, (3) calculate the forces due to 

interfacial tensions correctly, and (4) account for the viscous forces generated by the 

deformation of the cytoplasm based on current cell geometry (Viens and Brodland 2007).  

Specifically developed to satisfy all of the above requirements, the finite element model 

used in this study is discussed in Section 3. 
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33  TThhee  FFiinniittee  EElleemmeenntt  MMooddeell  

The 3D finite element model used in this study satisfies the criteria for modelling 

biological cells as outlined in Section 2.2.  This chapter briefly describes this model, and 

the enhancements made to a previous cell rearrangement algorithm (Viens and Brodland 

2007).  Lastly, the procedure for simulating the parallel plate compression experiment is 

described in Section 3.5. 

3.1 The Finite Element Mesh 

To generate a 3D mesh that is representative of real embryonic aggregates, two important 

features of cell masses must be captured:  the forces they generate and their close-packed 

structure.   

Homogenous cell aggregates form into a spherical droplet to minimize the surface area.  

For an aggregate of a large number of cells, the outer surface of the cell mass will tend to 

be spherical and the interior will be hexagonal closed-packed (Goel and Doggenweiler 

1986).  Accordingly, each embryonic cell is modeled by a closed-packing convex 

polyhedron generated randomly via Voronoi tessellation (Figure 1.4).  The Voronoi mesh 

generation is performed by NalaProcess, which is a custom software package written in 

the Civil Engineering Biomechanics Laboratory at the University of Waterloo.  The 

program is specifically designed to create and alter Voronoi tessellations for use in FE 

simulations. 

In addition, we assume geometric restrictions, which are applied during the mesh 

generation:  (1) two cells meet at one face, (2) three faces meet at one edge, and (3) four 

edges meet at one vertex.  These geometric relations are better visualized in Figure 3.1a 

showing four interior cells within a typical Voronoi tessellation.   
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(a) (b) 
Figure 3.1: Typical Voronoi tessellation. (a) four interior cells (b) triangulated surface 

Each vertex is connected to 4 edges, 6 faces, and 4 cells; each edge is connected to 3 

faces, 3 cells, and 2 vertices; each face is connected to 2 cells, p vertices, and p edges; 

and each cell is connected to f faces, fp/3 vertices, and fp/2 edges.  Each face is also 

subdivided by revolving around its centroid node (Figure 3.1b).  This triangulation 

provides the freedom for faces to become convex or concave and the ability for cells to 

balance pressure differences. 

3.2 Calculation of Cytoplasm Stiffness Matrix and Nodal Forces 

As in other recent cell models (Bodenstein 1986, Chen and Brodland 2000, Graner and 

Glazier 1992, Honda, Tanemura and Nagai 2004, Umeda and Inouye 2004), the 

mechanical effects of the cytoplasm and organelles of the cell (Figure 1.4) are 

incorporated and respectively modeled as an incompressible viscous fluid of viscosity μ, 

and cell type-specific tensions γ acting on the cell surface (Viens and Brodland 2007).   

3.2.1 Cytoplasm Stiffness as Viscous Fluid of Viscosity μ 

As real cells experience strain rates of merely a few tens of percent per hour, the 

cytoplasm and the organelles of the cell can be modeled as a viscous fluid (Clausi and 

Brodland 1993).  The cytoplasm becomes viscoelastic at much higher strain rates 

(Bausch, Moller and Sackmann 1999).  In this model, the viscous effects of the cell 

cytoplasm are achieved through sets of three orthogonal dashpots whose axes correspond 



 

18 

 

with the principal axes of the cell they model (Viens and Brodland 2007).  Figure 3.2 

illustrates a set of orthogonal dashpots in one direction. 

 

Figure 3.2: System of orthogonal dashpots in the x-direction 

The stiffness of the dashpots is calculated as follows: 

 Eq. 3.1 

where g is a form factor of 35.36, μ is the cell viscosity, n is the number of nodes that 

comprise the cell, and A, B, and C are the respective lengths of the major axes of the cell 

(Brodland, Viens and Veldhuis 2007).  A series of 3D validation tests show that the 

dashpot system adequately captures both tension and shear in isotropic cells, and the 

compression characteristics of anisotropic cells (Viens and Brodland 2007).  Tetrahedra 

elements are not used here to model the cytoplasm, because they cause a spurious 

stiffening effect and interfere with proper neighbour changing (Brodland, Viens and 

Veldhuis 2007). 

3.2.2 Nodal Forces Produced by Cell Type-Specific Tensions γ 

Having discussed how type-specific tensions γ on cell interfaces arise in Chapter 1, this 

section describes the implementation of γ as nodal forces in the FE model.  The effect of 

x 

y 

z 
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γ is modeled by triangular surface elements that cover the cell surface, each with nodal 

forces acting as specified in Figure 3.3 . 

 

Figure 3.3: Set of vectors used in determining force direction, for a specific triangular 

sub-face and edge, ij 

Each triangular surface element has one face centre node k and two corner nodes i and j.  

The following paragraphs describe the method used to calculate the equivalent nodal 

forces that represent the tensions acting along edge ij in Figure 3.3.  First, a vector V1 is 

formed from corner node i to corner node j, and a vector V2 is formed from the face 

centre node k to corner node i.  Subsequently, a normal to the surface triangle is 

calculated by the cross product of V1 and V2, as represented by V3: 

 Eq. 3.2 

Lastly, a vector V4 in the plane of the surface triangle and normal to edge ij is constructed 

as follows:  

 Eq. 3.3 

The tension γ associated with edge ij is assumed to generate two equivalent nodal forces, 

each with a magnitude equal to γ times half of the length of edge ij.  The two forces act in 

the direction of V4 at node i and node j, respectively.   

The above procedure is repeated for each side of the triangular surface elements.  

Accordingly, the face centre node of an n-sided polygonal face experiences a net force of 
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2n force vectors.  Each corner node experiences two force vectors from each of the 12 

triangular sub-faces (refer to Figure 3.1a) that join at the node for a total of 24 vector 

forces.  The motions of the cell aggregates are driven by this set of equivalent nodal 

forces. 

3.3 Governing Equations 

In the finite element method, the force-displacement relationship is described by the 

equation: 

 Eq. 3.4 

where C is the damping matrix of the system, K is the stiffness matrix of the system, f is 

the applied force vector,  is the nodal displacement vector, and  is a displacement 

derivative with respect to time, or the velocity vector.  In a viscous system, the stiffness 

matrix K can be set to zero.  By using a forward difference scheme, Eq. 3.4 is rewritten as 

follows: 

 
Eq. 3.5 

 

 
Eq. 3.6 

 

where the subscript denotes a specific time step, ∆u is an incremental displacement, and 

∆t is an incremental time step.  In addition, a volume constraint is imposed on each cell 

using a Lagrange side condition as very soft tissues are often assumed to be 

incompressible (Miller 2005). 

3.4 Cell Rearrangement Algorithms 

The finite element model includes a cell rearrangement algorithm, which is invoked when 

an edge becomes shorter than a specified length.  A cell rearrangement algorithm is 

necessary, because a shortening edge eventually becomes inverted and produces an 

invalid geometry where the two cells connected by the short edge overlap.  Whether a 
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short edge signals the cohering or the separating of neighbouring cells depends on the 

geometry of the three faces connected to it.   

Figure 3.4 shows four types of initial geometries based on the number of triangular faces 

associated with the short edge.  The short edge is highlighted in red. 

  

(a) Case 1 (previous): All faces have more than three 

edges 

(b) Case 2 (previous): One face with three edges 

and two with more than three edges 

 

 

(c) Case 3 (new): Two faces with three edges and 

one with more than three edges 

(d) Case 4 (not yet observed): All faces have three 

edges 

Figure 3.4: Four types of initial geometries 

The previous model (Viens and Brodland 2007) was capable of handling the Case 1 and 

Case 2 initial geometries, as described in Section 3.4.1 and Section 3.4.2, respectively.  

The Case 3 cell rearrangement is developed by the present study in Section 3.4.4 while a 

possible algorithm is proposed for the Case 4 initial geometry in Section 3.4.5. 
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3.4.1 Case 1 Cell Rearrangement 

In the first scenario (Case 1) where all faces have more than three edges (Figure 3.4a), a 

shortening edge signals the progression of two non-neighbouring cells moving closer to 

one another.  As a result, the mesh is geometrically altered to allow these two cells to 

contact through a newly created face.  Figure 3.5 schematically demonstrates the details 

of this cell rearrangement.  

  
(a) 1 edge and 2 nodes are deleted (b) 3 faces lose an edge 

  

(c) 6 edges get re-noded (d) 6 faces gain an edge 

 

 

(e) 3 nodes, 3 edges, and 1 face are created  

Figure 3.5: Case 1 cell rearrangement 
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In Figure 3.5a, non-neighbouring cells A and B are initially separated by a short edge 

along the triple junction between cells C, D, and E (removed to reveal the short edge).  

As cells A and B continue to move closer together, the shortening edge is deleted and a 

small triangular face is created in the last step to allow contact.  Meanwhile, several 

intermediate adjustments are made to ensure the geometric conformance of the five cells 

involved, as listed in the above figure captions. 

Note that these geometric adjustments result in the removal of an edge from each of the 

three faces (Figure 3.5b) surrounding the deleted short edge.  For instance, one can 

follow the outward-facing green face of cell D transforming from a pentagon to a 

quadrilateral.  Issues arise for triangular connected faces where a reduction in the edge 

count renders a meaningless topology.  Therefore, the Case 1 rearrangement can only be 

sensibly executed for initial geometries, in which all connected faces have more than 

three edges. 

3.4.2 Case 2 Cell Rearrangement 

Figure 3.4b defines the Case 2 initial geometry where the short edge is part of one 

triangular face.  In Case 2, a shortening edge essentially prompts an inverse Case 1 

operation.  Imagine a rotation of 90˚ so the single triangular face in Figure 3.4b is flat and 

perpendicular to the page.  This rotated geometry can be viewed as the final step of Case 

1 (Figure 3.5e).  A shortening edge indicates a shrinking triangular face or a diminishing 

contact between two retreating cells.  Therefore, the parting of two contacting cells is 

required.  This disjoining of cells is achieved by performing Case 1 in a reversed order.  

In contrast with Case 1, the shrinking triangular face is ultimately replaced by a new edge 

that separates the two cells in question.   

3.4.3 Motivation for the Case 3 Cell Rearrangement 

Figure 3.4 also shows the remaining two possible initial geometries:  Case 3 (two 

triangular faces) and Case 4 (three triangular faces).  The occurrences of these two cases 

were assumed by the previous model to be extremely rare.  This assumption is quite 

reasonable considering the geometric restrictions imposed on the meshes.  Therefore, no 
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algorithm for their associated neighbour change was implemented.  A similar cell 

rearrangement model was first used by Fuchizaki, Kusaba and Kawasaki (1995). 

Offering two cases of cell rearrangement, the previous algorithm is adequately robust 

such that large deformation of a cell aggregate can be simulated without significant 

residual strains.  However, our simulations showed that undesirable configurations occur 

regularly within larger meshes, which naturally contain more atypical geometries, or 

during longer simulations when many neighbour changes have taken place.  This result is 

due to the fact that cell rearrangements are only executed for the initial geometries of 

Case 1 and Case 2, while those of Case 3 (Figure 3.4c), which do occur sporadically, are 

assumed improbable and bypassed.  The Case 4 initial geometries (Figure 3.4d) may be 

treated as invalid without consequences for they have not been observed in actual 

Voronoi meshes.   

Figure 3.6 shows the evolution of a Case 3 initial geometry into a distorted cell.  Note 

that for clarity the surrounding cells are not displayed.  Circumvented by the previous 

algorithm, the Case 3 initial geometry has a short edge (highlighted in red) that is part of 

two triangular faces (Figure 3.6b).  Figure 3.6c to Figure 3.6e show the formation of a 

“spike” as the necessary detachment of the yellow cell is left unperformed.  This “spike” 

subsequently obstructs the upward movement of the purple cell underneath (see Figure 

3.6f to Figure 3.6h). 

In Figure 3.6, we also observe an inconsistency in the mesh and its geometric 

assumptions.  Recall that two neighbouring cells are expected to contact at a single face.  

However, the illustrated purple cell and a top cell (removed in figures) are actually 

connected via two faces (Figure 3.6f).  This geometric exception is why Case 3 does 

occur infrequently in larger meshes.   
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(a) (b) 

   
(c) (d) (e) 

   
(f) (g) (h) 
Figure 3.6: Evolution of a Case 3 initial geometry into a distorted cell 

Figure 3.7 shows the formation of a Case 3 initial geometry as observed in actual 

Voronoi meshes.  Consider a finite element mesh, in which cell E (not shown for clarity) 

meets its two neighbouring cells C and D through quadrilateral faces CE and DE (Figure 

3.7a).  In addition, cells C, D, and E are positioned between cells A and B, which remain 

separated by short edges 1, 2 and 3.  This specific scenario may occur for sufficiently 

compressed cells experiencing the annealing process.  To regain spherical geometries, 

cells A and B must expand in the vertical direction and contract in the horizontal 

direction.  The same must also occur for cells C, D, and E.  As a result, one may 

reasonably expect a final configuration where cell A and B touch while the horizontal 

contraction disjoins cell E from cells C and D. 
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(a) (b) 

Figure 3.7: One possible formation of a Case 3 initial geometry 

The presence of three short edges entails the execution of three Case 1 rearrangements.  

The order in which the three rearrangements are made is somewhat random due to the 

nature of numerical simulations.  Yet, the problematic Case 3 initial geometry forms if 

edges 1 and 3 undergo neighbour changes before edge 2 does.  Recall from before that 

quadrilaterals would reduce to triangles for the connected faces in Case 1 rearrangements.  

As shown in Figure 3.7b, edge 2 becomes part of two triangular faces.  In addition, this 

neighbour change sequence produces an exception to the mesh geometric assumption; 

cells A and B are now connected through two newly created triangular faces (highlighted 

in blue in Figure 3.7b). 

Distorted cells eventually lead to numerical crashes or ineffective volume constraints due 

to miscalculated cell volumes.  Accordingly, a rearrangement algorithm is necessary for 

the Case 3 initial geometry, to more realistically replicate the interactions of real 

biological cells. 

3.4.4 Case 3 Cell Rearrangement 

With reference to Figure 3.8, the Case 3 cell rearrangement algorithm is designed to 

perform:  1) the separation of cell E from cells C and D, and 2) the joining of cells A and 

B.  A summary of the rearrangement process is schematically presented in this figure. 

New Faces 

CE 
DE 
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(a) 1 edge and 2 nodes are deleted. 
(b) 2 faces (red) are deleted.  5 faces (stripped) lose an 

edge. 

  
(c) 1 new node is created and 4 new edges are re-noded. (d) 2 faces (red) are deleted.  2 faces lose two edges. 

  
(e) 1 new edge is re-noded. (f) 2 faces, 6 edges, and 6 nodes are deleted 

  

(g) 1 new face with 5 edges and 5 nodes are created 
(h) Contact faces between cells A, B and E vary 

depending on the initial geometry 
Figure 3.8: Case 3 cell rearrangement 

B 
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As mentioned previously in Figure 3.7, cells A and B tend to expand vertically and move 

toward each other during the annealing process.  This cell movement, in combination 

with specifically ordered Case 1 rearrangements, produces the Case 3 initial geometry in 

Figure 3.8a. 

In Figure 3.8a the vertical short edge, which is part of two triangular faces (faces CE and 

DE), prompts the execution of a Case 3 cell rearrangement.  First, the short edge is 

removed to allow an eventual full contact between cells A and B.  Note that partial 

contact already exists between cells A and B via the two triangular faces (faces AB) 

resulted from earlier Case 1 rearrangements.  Ultimately, the goal is to create a final 

configuration in which cells A and B meet at a single contact face.  In addition, this 

contact face should be larger in area than the previous contact faces combined to reflect 

the attracting movement of cells A and B. 

Figure 3.8b shows the deletion of faces CE and DE.  This operation detaches both cells C 

and D from cell E, but creates undesirable openings on the surfaces of cells C, D and E.  

Therefore, geometric adjustments are necessary.  As demonstrated in Figure 3.8c, the 

openings on cells C and D can be appropriately sealed by re-noding the four associated 

edges and removing an edge from each of the surrounding five faces.  In Figure 3.8d a 

rotated view demonstrates the same deletion of faces CE and DE and the effect on cell E; 

a quadrilateral surface opening is produced.  Figure 3.8e shows the sealing of this 

opening with the re-noding of an edge, in which the two surrounding faces consequently 

lose three edges each.  

By this point, three issues remain:  (1) creating additional contact area between cells A 

and B to account for the cell movement, (2) fixing the geometric inconsistency of 

multiple contact faces between two cells, and (3) accommodating the geometric 

adjustments made up to this point.  The present algorithm adequately addresses these 

issues by replacing the two triangular faces AB in Figure 3.8f with a single pentagonal 

face (Figure 3.8g).   

Figure 3.8h shows the final configuration of this Case 3 rearrangement, in which the 

newly created pentagonal face is appropriately the only interface between cells A and B.  
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In addition, cell E is detached from cells C and D.  To summarize, Figure 3.9 illustrates 

the relevant faces before and after the Case 3 rearrangement.  Note that the two-letter 

labels designate the two cells separated by each face. 

 
(a) Initial geometry 

 
(b) Initial face and node detail 

 
(c) Final face and node detail 

Figure 3.9: Case 3 cell rearrangement – face and node details 
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3.4.5 Possible Case 4 Cell Rearrangement 

The Case 4 initial geometry describes the situation where the short edge in question is 

part of three triangular faces.  Though it has not been observed in actual FE meshes, one 

possible formation of a Case 4 initial geometry is proposed in Figure 3.10.  In this 

proposed scenario, the cells are again sufficiently compressed in the vertical direction.  

As cells A and B regain spherical shapes by expanding vertically, cells C, D, and E (not 

shown in Figure 3.10) move away from the short edges to allow contact between cells A 

and B. 

  
(a) (b) 

Figure 3.10: One possible formation of a Case 4 initial geometry 

Cells A and B are initially separated by four edges and three quadrilateral faces.  A Case 

4 initial geometry (Figure 3.10b) forms if edges 1, 2, and 3 all undergo Case 1 

rearrangements prior to edge 4.  The result is edge 4 as part of three triangular faces and 

cells A and B contacting at three small triangular faces.  Figure 3.11 provides a solution 

for removing the remaining edge 4 and fixing the geometric inconsistency of multiple 

contact faces. 
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(a) (b) 

Figure 3.11: Proposed Case 4 cell rearrangement for implementation 

In Figure 3.11a the short edge is replaced by a hexagonal face, which also integrates the 

three small triangular faces.  Figure 3.11b shows that, to accommodate this operation, six 

surrounding faces are expected to require geometric adjustments.  In the final 

configuration, cells A and B join via the newly created hexagonal face.  No longer in 

contact with each other, cells C, D, and E are displaced away from the short edge.   

3.5 Simulating Parallel Plate Compression 

This section outlines the procedure for using the FE model to simulate a cell aggregate 

undergoing parallel plate compression, while suspended in the continuous phase of an 

immiscible fluid or the medium.   

Emulsified cells are spherical in shape due to the cohesive forces at the cell-medium 

interface.  Therefore, a Voronoi tessellation (Figure 3.12a) is allowed to round up under 

tension values in the ratio of γcc:γcm = 1.0:1.5, where γcc indicates the cell-cell interfacial 

tension and γcm denotes the cell-medium surface tension.  This preliminary annealing 

process generates a near-spherical mesh (Figure 3.12b). 
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(a) Spherical Voronoi tessellation (b) Annealed mesh 

  
(c) Small faces are merged (d) Further annealed mesh 

Figure 3.12: Near-spherical configurations 

Subsequently, small faces on the mesh surface are merged (Figure 3.12c), so that each 

surface cell is exposed to the medium via only one face (Viens and Brodland 2007).  As 

the medium is basically considered as a special cell type, this face-merging procedure is 

necessary in keeping consistency with our geometric restrictions (Section 3.1) and the 

cell rearrangement algorithm (Section 3.4). 

In the final step, the mesh undergoes an additional annealing process to refine its 

spherical form.  Figure 3.12d is the typical 454-cell starting configuration used in the 

parallel compression simulations in this study.  The exterior faces appear circular and 

equal in terms of surface area.  This outcome is desirable as the cells are monotypic; each 

cell strives to minimize its exposure to the medium with equal efforts.  In addition, the 

convex nature of the surface faces is a result of the internal cell pressure. 
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The compression process is modeled by simultaneously moving the two polar nodes 

toward the mesh center along the compression or vertical axis at a constant rate (Figure 

3.13).   

 

Figure 3.13: Moving the two polar nodes to simulate compression 

In addition, appropriate boundary conditions are imposed to simulate the parallel plates.  

The present simulation considers frictionless and free lateral contact faces, i.e., the nodes 

touching the plates are fixed in the direction of compression, but are free to move across 

the plane.  The finite element mesh undergoes significant deformation to become 

approximately halved in height (Figure 3.14). 

 

Figure 3.14: Compressed finite element mesh 
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The mesh is then allowed to anneal at that compression level until a state of equilibrium 

is reached.  The anisotropy of individual cells, as later defined in Section 4.1, is 

monitored throughout the compression and annealing processes.  To investigate whether 

locations within an aggregate influence the geometry of individual cells, each cell is 

categorized into one of three groups.  Figure 3.15 demonstrates these three groups.  Cells 

in contact with the compression plates are denoted by plate, whereas medium indicates 

cells exposed to the medium.  The remaining surrounded cells are termed interior.  In 

subsequent analyses, the cell properties reported are the averages for each group. 

 

Figure 3.15: Cell location categorization by regions within the aggregate 

To investigate the effects of different surface tensions, three FE models with different 

combinations of cell-cell interfacial tension γcc, cell-medium surface tension γcm, and cell-

plate surface tension γcp (Table 3.1) are studied here.  Also included is the viscosity μ 

value used in all simulation cases. 

Table 3.1: Tension and viscosity values used for simulations 

Case γcc γcm γcp μ 

1 10000 10000 10000 

2000 2 10000 15000 15000 

3 10000 15000 10000 

Case 1 describes the reference model with equal tension values:  γcc = γcm = γcp.  Case 2 is 

designed to reveal the effect of increasing the overall surface tension, which includes 

both γcm and γcp.  Comparison between Case 1 and Case 3 shows the individual effect of 

γcm, while comparison between Case 2 and Case 3 demonstrates the result of varying γcp.   
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The value of γcc is kept constant for all cases, because previous simulations (Viens and 

Brodland 2007) have shown that changing γcc simply speeds up or slows down the 

annealing process.  For example, doubling all γcc values in a model produces identical 

sequences of nodal displacement in half of the simulation time; doubling viscosity μ has 

the opposite effect.  In other words, the ratio between γcc and μ affects the rate of interior 

cell shape change as later discussed in Section 5.1.2. 

Lastly, a dimensionless approach is taken to allow comparison between different cell 

meshes.  Parametric studies and theoretical considerations (Viens and Brodland 2007) 

show that this relationship can be non-dimensionalized by setting 

 Eq. 3.7 

where r is the radius of a spherical (isotropic) cell with the same volume, and t is the 

actual elapsed time in the simulation.  Note that applying Eq. 3.7 normalizes the ratio 

between γcc and μ so that nodal movements between different cell meshes can be 

meaningfully contrasted. 
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44  GGeeoommeettrriicc  CChhaarraacctteerriizzaattiioonnss  

Cells are convex polyhedra in the present FE model.  Section 4.1 describes the 

“equivalent ellipsoid” method used to quantify the anisotropy of individual cells in the 

present study.  In Section 4.2 the average anisotropy represented by a 2D cross section is 

defined, because we want to investigate the relationship between the geometric properties 

of 2D cross sections and 3D cell shapes. 

4.1 Characterizing the Individual Cell Anisotropy 

To characterize the shape of cells, we match each polyhedral cell with a solid and 

homogeneous ellipsoid that has the same inertia tensor.  The geometric properties of this 

“equivalent ellipsoid” are then utilized to quantify cell anisotropy and orientation.   

The concept of the inertia tensor and its inertial components are first introduced in 

Section 4.1.1.  Section 4.1.2 subsequently provides a 2D example, in which inertial 

quantities are utilized to describe the anisotropy and orientation of a rigid body.  Section 

4.1.3 details the procedure of computing the inertia tensor of an arbitrary polyhedral.  

Lastly, the “equivalent ellipsoid” method is summarized in Section 4.1.4.   

4.1.1 The Inertia Tensor 

Typically used in applications of rotational dynamics, an inertia tensor Ijk is also capable 

of describing how the mass is distributed in rigid bodies. 

 Eq. 4.1 

The diagonal quantities Ixx, Iyy, and Izz are called the moments of inertia with reference to 

the x, y, and z axes, respectively, and are defined by Eq. 4.2 to Eq. 4.4. 

 Eq. 4.2 
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 Eq. 4.3 

 Eq. 4.4 

where the variable of integration m is the mass and the integrand is the square of the 

perpendicular distance r to the corresponding rotating axis.  Exemplified in Figure 4.1, 

these equations say that the moment of inertia for the larger point mass is m1r1
2
 and that 

of the smaller point mass is m2r2
2
 with respect to the axis of rotation. 

 

Figure 4.1: Two point masses around an axis of rotation 

The non-diagonal quantities of Ijk are termed the products of inertia, as defined by Eq. 

4.5 to Eq. 4.7. 

 Eq. 4.5 

 Eq. 4.6 

 Eq. 4.7 

Products of inertia are essentially a measure of symmetry.  If an axis is perpendicular to 

the symmetric plane of the object, its associated products of inertia are zero.  Consider a 

thin plate as shown in Figure 4.2. 
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Figure 4.2: A thin plate that is symmetrical about the xy-plane 

The plate centroid is located at the origin such that half of the plate is above the xy-plane 

and half is below.  Hence, the xy-plane is a plane of symmetry and the products of inertia 

associated with the z axis ( ) are all equal to zero.  

4.1.2 Cell Anisotropy by Inertial Quantities – 2D Example 

To illustrate how inertial quantities may be used to describe the anisotropy of a rigid 

body, we consider two equal-area ellipses with different x-radius a to y-radius b ratios of 

3:1 and 3:4 (Figure 4.3). 

 

 
(a) (b) 

Figure 4.3: Ellipses with different aspect ratios 

a a 

b 

b 
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The moments of inertia about the x and y axes for ellipses are respectively defined as:  

 Eq. 4.8 

 Eq. 4.9 

Table 4.1 lists the moment of inertia values for the two ellipses illustrated in Figure 4.3.   

Table 4.1: Summary of moment of inertia values 

Ellipse (a) (b) 

Ixx 0.75 π 3 π 

Iyy 6.75 π 1.6875 π 

κ (Ixx: Iyy)
0.5

 1:3 4:3 

Note that the elongation in a certain axis is appropriately reflected by a smaller moment 

of inertia value corresponding to that axis.  In addition, an inspection of Eq. 4.8 and Eq. 

4.9 reveals that the exact aspect ratio κ of an ellipse can be obtained by taking the square 

root of the ratio of the two moments of inertia.  Section 4.2 utilizes this concept to 

characterize the 2D cross sections of cell meshes.  Extending this concept to the 3D 

counterpart of ellipses, the aspect ratios for ellipsoids are similarly obtained in Section 

4.1.4. 

Inertial quantities can also be used to identify the orientation of an object.  Figure 4.4 

depicts an ellipse rotated to align with a new coordinate system x’y’.  

  

Figure 4.4: The orientation of an ellipse can be described by products of inertia 
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With Eq. 4.5 it can be shown that Ixy ≠ 0 and Iyx ≠ 0, while Ix’y’ = Iy’x’ = 0.  The rotation 

required to achieve symmetries about a given coordinate system can define the 

orientation of an object.  In other words, the x’ and y’ axes are aligned with the principal 

axes of the ellipse.  Moreover, the inertia tensor of the ellipse in the rotated x’y’ 

coordinate system only has values for its diagonal components, termed the principal 

moments of inertia.  Thus, identifying the anisotropy and orientation of an object is 

manifest as an eigenvalue problem.   

Section 4.1.4 extends the above concept of using inertial quantities to describe the 

anisotropy of 3D polyhedral cells.  First, a method for calculating the inertia tensor of an 

arbitrary polyhedron is developed in the following section. 

4.1.3 Polyhedral Inertia Tensor Calculation 

Computing the inertia tensor of an arbitrary polyhedron can be done by partitioning it 

into several tetrahedra.  The polyhedron is triangulated by rotating around its centroid 

such that the centroid is part of every tetrahedron (Figure 4.5).   

 

 

Figure 4.5: A triangulated polyhedron is consisted of many tetrahedra 

If each tetrahedron inertia tensor is calculated with respect to the same reference system, 

the inertia tensor of the entire cell can be obtained as the sum of the tetrahedron inertia 

tensors.   

The components in the tetrahedron inertia tensor Ijk (Eq. 4.1) can be individually obtained 

by integrating Eq. 4.2 to Eq. 4.7, or we can use the expressions formulated by Tonon 

(2004) to simplify this integration step.  Tonon’s formulation starts with an affine 

transformation, in which the tetrahedron is re-defined in a more convenient coordinate 

system for integration.  Subsequently, the transformed integrand is solved alongside the 

(x2,y2,z2) 

(x3,y3,z3) 

(x1,y1,z1) 

(x4,y4,z4) 
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Jacobian determinant.  The resulting integral is conveniently explicit in terms of the four 

vertex coordinates (xi, yi, zi) i = 1,…,4 of a tetrahedron (Figure 4.5), as shown in the 

following equations:   

 
 

Eq. 4.10 

 
 

Eq. 4.11 

 
 

Eq. 4.12 

 
 

Eq. 4.13 

 
 

Eq. 4.14 

 

Eq. 4.15 

Eq. 4.10 to Eq. 4.15 express the inertial components with respect to the origin as simple 

quadratic polynomials of the vertex coordinates, multiplied by the volume V and the 

density  of the tetrahedron.  Having obtained the tetrahedron inertia tensor Ijk, the inertia 

tensor of the entire polyhedral cell is calculated as the sum of all the individual Ijk: 

 Eq. 4.16 

However, to find the principal moments and principal axes of the polyhedral cell, the 

inertia tensor I’cell relative to the cell centroid should be calculated according to the 

parallel axis theorem: 

 Eq. 4.17 

where X, Y, Z are the Cartesian coordinates of the cell centroid.   
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4.1.4 Cell Anisotropy by the Equivalent Ellipsoid Method 

The inertia tensor of an arbitrary polyhedron has been calculated in the previous section.  

In the “equivalent ellipsoid” method where cells are represented by solid and 

homogeneous ellipsoids, we require an ellipsoid (Figure 4.6b), as defined by its three 

radii a, b, and c, that has the same inertia tensor as the polyhedral cell (Figure 4.6a). 

  
(a) A single polyhedral cell (b) An equivalent ellipsoid 

Figure 4.6: 3D description of cell orientation and anisotropy 

Analogous to the ellipse example in Section 4.1.2, the principal axes of the polyhedral 

cell are found by rotating the inertia tensor I’cell into a specific coordinate system where 

I’cell becomes a diagonal matrix.  This procedure emerges as a classic eigenvector 

problem.  Each eigenvector ei of I’cell represents a principal axis of the cell, while the 

eigenvalues λi are the principal moments of inertia.  This study defines the orientation of 

the cell to be the direction corresponding to the largest λi.  The inertia tensor I’cell is real 

and symmetric; therefore, its eigenvalues are guaranteed to be real and its eigenvectors to 

be orthogonal.  

Imagine an ellipsoid whose semi-axes are aligned with the directions specified by the 

eigenvectors of I’cell (Figure 4.6b).  The lengths of the three principal radii a ≥ b ≥ c can 

be calculated based on the eigenvalues of I’cell.  We know that the principal moments of 

inertia (IA, IB, IC) of an ellipsoid of mass M with principal radii a, b, c are given by: 

 Eq. 4.18 

a 
b 

c 



 

43 

 

 Eq. 4.19 

 Eq. 4.20 

To generate an ellipsoid with an inertia tensor equal to that of the polyhedral cell, we 

equate IA, IB, and IC respectively to the three eigenvalues of I’cell: 

 Eq. 4.21 

 Eq. 4.22 

 Eq. 4.23 

Inverting the above system of equations and solving for a, b, c produce the following 

equations: 

 Eq. 4.24 

 Eq. 4.25 

 Eq. 4.26 

With a ≥ b ≥ c, the anisotropy of an ellipsoid can be defined by the following aspect 

ratios: 

 Eq. 4.27 

 Eq. 4.28 

For instance, a sphere has both aspect ratios valued at 1, while the aspect ratios of a 

compressed cell exhibit the following relationship: .  In subsequent analyses 

only κ1 is referred to as it represents the ratio between the maximum and minimum 

principal radii.  The “equivalent ellipsoid” method is a well-behaved way for identifying 
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a 

b 

the orientation and anisotropy of individual cells, especially with respect to coordinate 

transformations. 

4.2 Characterizing the Mesh Cross Sections 

The method for characterizing the anisotropy of 3D cells has been established in the 

previous section.  However, physical measurements of this geometric property are often 

restricted by the delicate nature of real cell specimens, and non-invasive methods are 

necessary.  Therefore, if we can establish a correlation between the extracted 2D image 

data and the actual 3D geometry of cells, a significant efficiency in data interpretation 

can be achieved.  Accordingly, this study intends to explore this possibility by examining 

the finite element meshes and their 2D cross sections.  First, we define a method for 

characterizing the average anisotropy of a given cross section. 

Consider a polyhedral cell and its cross section at an arbitrary plane as shown in Figure 

4.7. 

 

 

(a) (b) 
Figure 4.7: A single polyhedral cell with its cross section at an arbitrary plane 

This study defines the anisotropy of 3D cells with the “equivalent ellipsoid” method.  In a 

similar fashion, the aspect ratio of the 2D cross section can be quantified by finding an 

equivalent ellipse.  The question is whether an elongated ellipsoid has cross sections 

showing equally or similarly elongated ellipses.  Accordingly, we perform statistical 
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analyses to determine how representative equivalent ellipses are of their equivalent 

ellipsoids, in terms of average cell anisotropy, in a given cross section. 

Two different sets of planar cross sections are obtained for analysis, as schematically 

illustrated in Figure 4.8. 

  

(a) Parallel cut (b) Radial cut 
Figure 4.8: Two types of planar cross sections 

In Figure 4.8 each slice represents a cutting plane.  For each mesh, 36 parallel cross 

sections (Figure 4.8a) and 36 radial cross sections (Figure 4.8b) are generated for 

statistical analyses.  Note that the parallel planes are selected to evenly cut the aggregate 

bounded by ±25% offset from the mesh center, so that a sufficient sample of cells is 

obtained.  The radial sections evenly segment the mesh at 5˚ increments.  Figure 4.9 

illustrates a sample cross section. 

 

Figure 4.9: A typical cross section 

±25% 
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The aspect ratio κ of each 2D cell cross section is calculated using the method in Section 

4.1.2, hereby termed the “equivalent ellipse” method.  As discussed, the κ of an ellipse is 

determined by taking the square root of the ratio of the two principal moments of inertia.  

Subsequently, the values of the aspect ratio are averaged for each cell location group, as 

defined previously in Figure 3.15. 
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55  RReessuullttss  

This chapter presents the results from parallel plate compression simulations of a 3D cell 

aggregate.  In Section 5.1 we examine how cell shape history is affected by the surface 

and interfacial tensions.  A theoretical relationship between cell shape history and 

interfacial tensions is formulated and verified with numerical results, to enable the 

estimation of cell-cell interfacial tensions for other laboratory experiments or numerical 

simulations.  To provide increased efficiency in data extraction, Section 5.2 explores the 

potential of correlating 2D geometric properties of a cross section to 3D cells in a mesh.  

The simulation results are also compared to a scanning electron micrograph of a fractured 

aggregate. 

For analyses, this study defines the degree of compression ξ as the following 

dimensionless displacement: 

 Eq. 5.1 

where R is the initial aggregate radius, and h is the vertical distance from the parallel 

plates to the center of the cell mesh (Figure 5.1). 

 

Figure 5.1: An aggregate of initial radius R compressed by parallel plates located at x = ±h 
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Figure 5.1 also identifies three radii (R1, R2, and R3) referred by analyses in the later 

sections.  

5.1 Cell Anisotropy versus Annealing Time 

As mentioned previously, initially flattened cells are able to slip past one another and 

return to a nearly isotropic configuration, during prolonged compression.  This 

phenomenon can be seen in the cross sections (Figure 5.2) through the center of the 

aggregate at two different simulation times.  Cross sections in the left column are taken 

immediately after compression from meshes of the three simulation cases (see Table 3.1), 

while the right column contains the annealed cases.  

 
Immediately after Compression 

(annealing τ = 0) 

Continued Compression 

(annealing τ = 140) 

C
as

e 
1

 

  

C
as

e 
2

 

  

C
as

e 
3

 

  

Figure 5.2: Cross sections of the cell aggregate 

Each set of cross sections demonstrates the rounding and relative movements of cells, 

which are produced by the annealing process.  Also note that the aggregate side profiles 

for Case 2 and Case 3 are slightly more circular due to the increased γcm. 
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The next section examines the effects of γcm and γcp on cell shape history in different 

regions of the aggregate.  To start, the present study comments on the value of average κ1 

of an annealed mesh.  For Figure 5.3 to Figure 5.5, the configurations existing at τ = 0 

and τ = 140 should theoretically have their average κ1 for Interior cells equal (or close) to 

1.  However, as will be seen, this value for reputedly isotropic cells in aggregate ranges 

from 1.3 to 1.5.  Similarly in 2D, the average κ for Voronoi planar aggregates after 

annealing is found to be approximately 1.25. 

This departure from 1 can be caused by the reduced flexibility of polyhedral cell faces to 

become curved within an aggregate.  In addition, the surrounding cells inflict extra 

constraints on how a cell may re-align itself.  Ketcham (2005) also observed slight 

anisotropies in interior rock crystals using high-resolution X-ray computed tomography 

(HRXCT).  The distribution of garnet aspect ratios has a consistent mean value of about 

1.4 to 1.5 that persists among all size classes.  Hence, though not mathematically 

isotropic, the aggregated cells at τ = 0 and τ = 140 are considered to be annealed and at a 

state of equilibrium in this study. 

5.1.1 The Effect of Surface Tension 

To reveal the effect of overall surface tension, namely both γcm and γcp, Figure 5.3 plots 

the average κ1 versus τ for Case 1 and Case 2.   
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Figure 5.3: Effect of overall surface tension on the history of average κ1 

The interior cells remain more compressed during the initial annealing process, and are 

essentially unaffected by changes in the surface tension.  Compared to the interior group, 

cells exposed to the medium anneal at a slower rate, as their surfaces are confined to the 

surface of the mass.  The dashed green line of Case 2 shows that increasing the surface 

tension further reduces the rate of cell rounding.  The most rapid annealing is observed 

for cells in contact with the compression plates (blue lines in Figure 5.3).  This result may 

be attributed to the boundary condition that allows nodes on the plates to move freely 

within the horizontal plane. 

To show the individual effects of medium and plate surface tensions, Figure 5.4 plots the 

average κ1 versus τ for Case 1 and Case 3, and Figure 5.5 shows the comparison between 

Case 2 and Case 3. 

Loading 

Annealing 
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Figure 5.4: Effect of medium surface tension on the history of average κ1 

 

Figure 5.5: Effect of plate surface tension on the history of average κ1 

Loading 

Annealing 

Loading 

Annealing 
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Similar phenomena, as previously described for Figure 5.3, are also evident in Figure 5.4 

and Figure 5.5 in terms of the annealing rate and the anisotropy for different cell groups.  

The exception is for the plate cells in the absence of equally increased γcp.  These cells 

equilibrate to highly compressed geometries (κ1 ≈ 1.9).  The stronger γcm prevents the 

plate cells from moving out of the cylindrical region defined by R3.  As a result, they are 

in some way interior cells cut horizontally in half by the compression plates.  This 

analogy explains their annealed κ1 of approximately 2.  The curve for the interior cells of 

Case 3 decays at a faster rate, but eventually reaches an equilibrium level similar to the 

ones for Case 1 and Case 2. 

To summarize, the shapes of plate and medium cells are influenced by the additional 

geometric constraints imposed by the surface tensions and boundary conditions, whereas 

the interior cells are largely unaffected by those factors.  As will be seen in Section 5.1.2, 

geometries of the interior cells are mainly governed by γcc and μ. 

5.1.2 The Effects of Interfacial Tension and Viscosity 

Here we develop a formula that can be used to calculate the contribution of γcc and μ to 

the rate of cell shape change.  As mentioned, the behaviours of biological cells in 

aggregates are influenced by their interfacial tension γcc and effective cytoplasm viscosity 

μ (Forgacs 1998).  Considering these two factors, this section analyzes the mechanics of a 

single, isolated cell undergoing the annealing process using the principles of conservation 

of energy. 

Figure 5.6 shows an ellipsoidal cell compressed along the x-axis.  An ellipsoidal 

geometry is considered because of its intuitive behaviour and because it provides a 

prototype for the analysis of cell aggregates.  Assuming isotropic material properties, the 

deformed cell under uniaxial compression can be represented by an oblate spheroid 

having principal radii a = b > c. 
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Figure 5.6: Ellipsoidal cell model 

With reference to Figure 5.6, the volume V and the cell aspect ratio κ of an oblate 

spheroid can be defined as: 

 Eq. 5.2 

 Eq. 5.3 

Rearranging the equations allows the cell dimensions to be calculated for specified values 

of V and κ: 

 Eq. 5.4 

 Eq. 5.5 

The rate  at which work is done to the ellipsoidal cell by an interfacial (surface) 

tension  assumed to act on the cell surface A, when κ changes at rate dκ/dt, is defined 

as: 

 Eq. 5.6 
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The surface area A of an oblate spheroid can be expressed as a function of κ by utilizing 

Eq. 5.4 and Eq. 5.5 (Selby 1965): 

 

Eq. 5.7 

Under the assumptions of a uniform strain state within the cell and a constant cell volume 

during annealing, the rate  at which strain energy is being stored in the deformed cell 

can be written as: 

 

Eq. 5.8 

where σi is the normal stress and  is the normal strain rate in the i direction,  is the 

shear stress and  is the shear strain rate in the ij plane.  Material isotropy provides the 

simplification of , and geometric orthogonality allows the shear components 

to be set to zero.   

The normal stress σi can be related to the normal strain rate  through μ.  First, consider 

the parallel between shear strain γ in a material described by shear modulus G and shear 

strain rate  in a material described by viscosity μ.  Stress and strain transformation 

concepts can be used to demonstrate the existence of a state of pure shear where 

.  Furthermore, one can equate elastic modulus E to 3G for an incompressible 

fluid (Poisson ratio υ = 0.5) with the following relationship: 

 Eq. 5.9 

Hence, the incremental generalized Hooke’s law for an incompressible fluid with an 

effective viscosity μ can be written as: 
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 Eq. 5.10 

 Eq. 5.11 

 Eq. 5.12 

by replacing E with 3μ and ε with .  Note that since , an additional equation is 

required for solving the normal stresses.  We use the following constraint:  

 Eq. 5.13 

Eq. 5.13 describes the constant volume condition, because dilation is linearly 

proportional to the applied hydrostatic pressure p.  Finally, the normal stresses in the 

three principal directions are solved in terms of viscosity μ and normal strain rate : 

 Eq. 5.14 

 Eq. 5.15 

Therefore, Eq. 5.8 can be rewritten as:  

 Eq. 5.16 

Since energy is assumed to fully dissipate, an equation of motion can be derived by 

equating  to : 

 Eq. 5.17 

The κ versus τ relationship described by Eq. 5.17 is not a simple exponential decay 

because of the right hand side of that differential equation is not linear in κ.  In addition, 

γcc has the effect of expediting the rounding process, whereas μ provides cells the 

resistance to shape changes. 

Figure 5.7 shows a plot of κ versus annealing τ, with initial value κ0 = 2.3, as found using 

three different approaches.  The first approach, “3D FE Interior”, presents the result of a 



 

56 

 

FE simulation, in which an 18-faced cell (Figure 4.6a), with 94 triangular sub-faces, is 

allowed to anneal while surrounded by other similarly compressed cells.  The annealing 

of this polyhedral cell is characterized by curve a.  In a similar approach, “3D FE 

Isolated”, the same polyhedral cell undergoes the rounding process while suspended in 

medium, and is represented by curve d.  In addition to these simulated results, a 

theoretical relationship is plotted for comparison.  Describing the rounding of a 

comparable isolated, ellipsoidal cell, “3D Ellipsoid Isolated”, curve e is plotted using Eq. 

5.17 with κ0 = 2.3. 

 

Figure 5.7: Cell aspect ratio versus dimensionless time 

Note that all curves eventually go to 1.  The gap between dashed curves a and d is due to 

the hindering effects of neighboring cells on cell rounding.  To determine the appropriate 

factor to account for this rate difference, a new curve b is generated by adjusting the τ 

axis of curve a until an overlap is achieved with curve d.  With this method, the present 

study finds that the additional geometric restriction imposed by the presence of neighbors 

slows down the annealing process of an interior polyhedral cell by a factor of 3. 
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Further, comparing curves a, d and e reveals that the rounding of FE polyhedral cells 

occurs at a slower rate than that of theoretical oblate spheroids.  This rate difference can 

be attributed to the extra geometric constraints arisen from the planar sub-surfaces of 

polyhedra.  To investigate the combined impeding effects of both cell neighbors and 

polyhedral geometries, another new curve c is produced by scaling the τ axis of curve a 

to match curve e.  With a factor of 5, the simulated rounding of an interior polyhedral cell 

in aggregate corresponds reasonably well with the decay rate of Eq. 5.17.  As will be seen 

later, this factor allows us to compare the results of the parallel plate simulations in this 

study to the theoretical predictions of Eq. 5.17. 

In addition to the two geometric impositions discussed, including cell neighbors and 

planar sub-surfaces, the annealing rate is affected by the ratio between γcc and μ as 

indicated by Eq. 5.17.  Figure 5.8 shows the κ versus annealing t curves as found using 

Eq. 5.17 with κ0 = 1.6 and γcc/μ varying from 1 to 5 (black lines).  The actual elapsed 

time t is used here instead of the dimensionless time τ, because τ standardizes the ratio 

between γcc and μ to a constant value. 

 

Figure 5.8: Cell aspect ratio versus actual elapsed time 
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Figure 5.8 shows that a compressed cell returns to its original, spherical shape at a faster 

rate with a larger γcc/μ value.  This family of theoretical curves is useful, because it 

enables the evaluation of γcc/μ ratios from simulated or experimental results.  For 

example, if we superimpose the interior κ1 curves from this study (γcc/μ = 5) on Figure 

5.8 (coloured lines), we observe the initial annealing process to be in good agreement 

with the γcc/μ = 5 curve.  Note that, to match the theoretical predictions of Eq. 5.17, the 

simulated curves have been shifted down so that κ → 1 as t → ∞.  In addition, 

adjustments for volume and the combined effects of cell neighbors and polyhedral 

geometries have been made to the t axis.   

However, the rounding mechanism gradually slows down.  This reduced rate is due to the 

fact that the cell aggregate in this study is held at a fixed compression level.  Therefore, 

for similar parallel plate compression experiments, the ratio between γcc and μ can be 

inferred from the annealing rate immediately after compression. 

5.2 Correlation of Shape between 2D Cross Sections and 3D Cells 

As mentioned, experimental data can be collected more easily if the geometric properties 

of 2D cross sections can be used to estimate 3D cell shapes.  Therefore, we examine the 

FE meshes to evaluate their correlation.  Figure 5.9 combines the interior κ1 versus 

annealing τ curves for the three simulation cases, and overlays the 2D interior κ as 

averaged from 108 parallel cross sections (36 samples from each simulation case) for 

comparison.  The error bars are included to indicate the range of one standard deviation.   

For annealing τ = 0 and 140, Figure 5.9 also includes the plan view of the mesh showing 

the orientation of each cell as a blue line segment.  Recall that cell orientation is defined 

by the direction of eigenvector of I’cell corresponding the largest principal moment of 

inertia (refer to Section 4.1.4).  Figure 5.10 presents the same graph with information 

from the radial cross sections.  Here only the interior cell groups are examined as the κ 

values for the plate and medium groups do not show much consistency. 
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Figure 5.9: 3D interior κ1 and 2D interior κ averaged from parallel cross sections 

 

Figure 5.10: 3D interior κ1 and 2D interior κ averaged from radial cross sections 

3D 

2D 

3D 
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τ = 140 
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Using the “equivalent ellipse” method to determine the average anisotropy of 3D 

aggregates, with 2D cross sections, results in overestimation of κ1.  Considerable 

fluctuations exist within the data sets; however, the process of cell rounding is still 

demonstrated in the decaying average κ. 

Discrepancies with the actual cell shape:  (1) are greater for parallel cross section 

averages, and (2) increase as the cells anneal for both parallel and radial cross section 

averages.  Both results may be explained by observing how cell orientations change as 

the annealing progresses.  Immediately after compression, at annealing τ = 0, the cells 

appear to surround the mesh center, forming layers of circles.  Cutting this mesh in a 

radial, as opposed to parallel, manner produces cross sections with lower aspect ratios.  

Upon annealing, at annealing τ = 140, the orientation of cells are more random as cell 

rearrangements occur.  Figure 5.10 shows that radial cross sections provide an adequate 

representation of the 3D geometry during the initial annealing process, but not after the 

cells have re-oriented themselves. 

To compare with experimental data, we examine the scanning electron micrograph of an 

amphibian aggregate (Figure 5.11).  This image is taken shortly after the aggregate has 

reached approximately 50% compression (Phillips and Davis 1978).  After critical-point 

drying by standard techniques, the compressed aggregate is broken in a plane 

perpendicular to its flattened sides to reveal cells shapes in cross-section.  The average κ 

for each location group is manually extracted from the image as illustrated in Figure 5.11, 

using the “equivalent ellipse” method outlined in Section 4.2. 
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Figure 5.11: Scanning electron micrograph of an aggregate 5 minutes after compression 

These extracted average κ values (Table 5.1) are plotted in Figure 5.12 with the average 

κ1 versus τ curves for Case 1, in the region immediately after compression.  

Table 5.1: Extracted average κ values of the scanning electron micrograph 

Type No. of Cells Avg. κ 

Interior  47 1.86 

Plate 16 1.73 

Medium 18 1.53 

 

Figure 5.12: Average κ1 history for Case 1 and average κ values from the scanning 

electron micrograph 
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Figure 5.12 shows that the average anisotropy of one group with respect to another is in 

the correct ratio.  The absolute values also compare very well.  This result demonstrates 

adequate cell rounding mechanisms of the FE model. 

Based on the above, we learned that the time immediately after compression is an 

important period for analyzing data from parallel compression experiments.  During this 

time, the theoretical equation developed in Section 5.1.2 can be used to interpret the 

values of γcc and μ based on the rate of interior cell rounding.  In addition, this rate of 

change in cell shape can be adequately inferred from a set of radial cross sections 

gathered during the same time.  In laboratories these cross sections can be obtained via 

rotating confocal microscopes.  With these two findings, the present study provides a 

simple method for evaluating the interfacial tension of aggregated cells, which has not 

been previously achieved. 
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66  CCoonncclluussiioonnss  aanndd  FFuuttuurree  WWoorrkk  

Enhancements made to a previous cell rearrangement algorithm allowed the new finite 

element model developed here to realistically replicate embryonic cell movements and 

cell shape histories. 

The simulations show that the shape of cells in contact with the medium or the 

compression plates is dominated by their respective medium or plate surface tensions.  

Medium cells anneal at a slower rate than the interior cells because they are confined to 

the mass surface.  The movement of the plate cells is greatly restricted when the medium 

surface tension is greater than the plate surface tension.  As a result, the plate cells remain 

significantly compressed. 

In contrast, the rounding of interior cells is governed by the ratio between the interfacial 

tension and cell viscosity.  This ratio can be calculated from the cell shape history with 

the theoretical equation developed in this study (Eq. 5.17).  In addition, the study finds 

that the cell shape history of interior cells can be inferred adequately from a set of radial 

cross sections.  A basis is thus provided for estimating cell-cell interfacial tensions from 

cell shape histories. 

Future work might include validating the finite element simulations by comparison with 

more experimental data, implementing the Case 4 cell rearrangement algorithm, and 

analyzing the surface cells in more detail.  For instance, the orientation of cells suggests 

that examining cell shape with respect to a polar coordinate system may provide 

additional insights.  In addition, the reaction forces on the compression plates can also be 

correlated with cell shape histories. 
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