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Abstract

With the advent of virtual reality and the increasing power of modern comput-
ers, there is renewed interest in new modalities for the human-machine interface.
Force feedback is gaining momentum as new applications of teleoperation and hap-
tic devices are discovered. This work applies the principles of mechatronics to the
design and control of a novel five-bar robot for use as a haptic interface. Since
the robot includes flexibility, a general model for a two degree-of-freedom flexible
link mounted on an arbitrary robot is developed. The model highlights the con-
tributions of the flexibility to the overall dynamics and presents the dynamics in
a matrix form. System identification is performed to isolate the model parameters
for the robot and particular attention is paid to Coulomb friction. The model is
then used to develop a non-linear state estimator. The estimator is applied to the
problem of implementing a virtual wall and the results are shown to be superior
to conventional techniques. The importance of the mechatronics approach is high-
lighted throughout. Frameworks for optimal implicit force control and impedance

control are also developed and experiments performed.
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Chapter 1

Introduction

With the advent of virtual reality and the increasing power of modern computers,
there is renewed interest in new modalities for the human-machine interface. Force
feedback is gaining momentum as new applications of teleoperation and haptic de-
vices are discovered. However, haptic devices have their own unique set of design
considerations that have resulted in a proliferation of novel haptic devices in the
literature. Many of these devices have highly non-linear dynamics that make con-
troller design inherently difficult. Even for simple devices, the stability of systems
involving non-linear constraints has been a subject of active research, since such

constraints are necessary to emulate the environments encountered in everyday life.

This work applies the principles of mechatronics to the design and control of a
novel five-bar robot for use as a haptic interface. Mechatronics entails the design
of mechanical systems with the goal of optimizing the balance between mechanical
performance and controller complexity. The work is a continuation of the efforts
of Ching and Wang [10}, who developed the rigid version of the robot for implicit
force control experiments and virtual reality simulations.
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Chapter 2 reviews relevant literature on force control, haptic devices and control

of flexible structures.

Chapter 3 presents a general model for the dynamics of a flexible beam mounted
on an arbitrary robot. The beam is allowed to vibrate in two directions and any

number of vibrational modes may be represented.

Chapter 4 describes the two devices used for the experimental results: a one
degree-of-freedom apparatus and a three degree-of-freedom five-bar robot with a
flexible link. Unlike other haptic devices, the robot structure itself functions as a
force sensing device. The robot is also specifically designed to simplify the con-
trol problem, in accordance with a mechatronics approach, and its advantages are

expounded in this chapter.

Chapter 5 deals with the problem of identifying the parameters of the robot
model. The non-linear effects of friction are identified and modelled. The use of the
robot structure to measure forces is explained and a force cancellation experiment
is performed to demonstrate the reliability of the technique. These results are later

incorporated into the controller design.

The original intent of this work was to apply the general model of chapter 3 to
the design of controllers for the five-bar apparatus. However, the system identifica-
tion revealed unanticipated vibrational modes of the robot structure that dominate
the modes of the flexible link. As a result, the general flexible model developed in
Chapter 3 is not applied to controller design. While changes to the robot struc-
ture, such as increasing the link flexibility or the structural rigidity may help to
eliminate the unexpected modes, these options are not pursued in this work. Nor
are more sophisticated modelling techniques, such as finite-element modelling, ap-
plied. However, suggestions for modifying the controller design to account for these



CHAPTER 1. INTRODUCTION 3

unanticipated vibrational modes are given in chapters 6 and 7.

Chapter 6 investigates various control strategies for implementing a virtual wall.
A non-linear state estimator approach is presented and compared to the traditional
implicit force control technique. H, optimal control strategies are applied to the

implicit force control and impedance control problems with some success.

Chapter 7 summarizes the contributions of this work and suggests areas of future

research.



Chapter 2

Background

2.1 Force Control

Force control attempts to govern the interaction between the robot and its environ-
ment. Consider Figure 2.1(a), which depicts a robot end-effector in contact with
an environment. The point z represents the actual position of the end-effector tip,
while z. depicts the position of the environment when it is undeformed. The point
z4 represents the desired position of the end-effector and F. denotes the net force
exerted on the environment by the end-effector. Suppose the environment is linear.
Let K.(s) be the Laplace transform of the environment stiffness. Then the rela-
tionship between the force exerted upon the environment and the deformation of

the environment is:
Fe(s) = Ke(s)(z(s) — ze(s)) (2.1)

when the end-effector is in contact with the environment. Equation (2.1) provides

a convenient way of representing the relationship between the deformation of the
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“Environment”

Fe-——

Robot End-effector

(a) Robot in contact with wall (b) Finger in contact with virtual wall

Figure 2.1: Comparison of Physical and Virtual Environments

environment and the force exerted upon the environment. Since it is not possible
to measure z., it is never used for control. Instead, the force exerted upon the

environment is typically measured directly using a force/torque sensor.

Note that the end-effector position, z, is not only a function of the actuator
configuration and environment stiffness, but also the stiffness of the end-effector
itself, as well as joint flexibilities, link deformation, gear backlash, friction, control,
sensor location, etc. These factors may prevent the end-effector from reaching the

desired position, z4.

For haptic displays, the “environment” is usually the operator’s hand or finger-
tip, as illustrated in Figure 2.1(b). The virtual wall is provided by the end-effector
of the haptic device. Hence, Figure 2.1(a) and Figure 2.1(b) are not mirror images
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of each other, but instead depict the same scenario.

The “desired” position, z4, could be a point on the surface of a virtual wall,
as in the example of Figure 2.1(b). Note that both the fingertip and the virtual
wall have “deformed” under the contact force, F. The “environment” position,
z., roughly corresponds to the position of the fingertip were it undeformed. The
undeformed shapes of the finger and virtual wall are shown as dotted lines. Let the
wall be modelled as a compression spring with stiffness K,,. In this case, the goal

of the controller is to make the force produced by the haptic device, F', satisfy:
F(s) = —Ku(s)(z(s) — z4(s)) (2.2)

when z lies within the confines of the wall. Similarly, the operator’s fingertip
deforms. Assume the user’s fingertip is linear and let Ky be the fingertip stiffness.
Then the deformation of the fingertip, like that of the environment in (2.2), may
be modelled as:

F(s) = Ky(s)(z(s) — ze(s))

Note that the virtual wall shown in Figure 2.1(b) does not exist physically. Instead,
by controlling the contact force according to (2.2), the operator feels a wall. The
actual physical configuration, however, is the same as shown in Figure 2.1(a) with
the environment replaced by the operator’s fingertip. Thus, the “contact force”, F,
and the force exerted by the end-effector on the environment, F., are one and the
same. A simple method of determining this contact force is to measure it using a

force sensor mounted on the robot end-effector.

While it may seem natural to implement force control in an analogous fashion
to position control, where the error between a desired force and the measured force
drives the controller, such explicit force control is only one of a variety of “force con-

trol” techniques found in the literature. However, all the force control algorithms
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Figure 2.2: General Feedback Structure for Force Control

examined in this proposal conform to the framework depicted in Figure 2.2. The
reference input, r, is either a position, velocity, force or a combination. The con-
troller uses measurements of joint angles, q, and contact force, Fe, to compute the
control torque, u. Note that the contact force, Fe, is expressed in the end-effector
coordinate frame, while the joint angles, q, are expressed in joint space. Thus,
coordinate conversions may be necessary within the controller. The control torque
is expressed in joint space coordinates. The torque, T, represents the contact force
reflected back to the joints. The dotted frame encloses the system to be controlled

— including the effects of contact with the environment.

Before discussing different types of force control, consider the relationship be-
tween the joint torques and end-effector forces. Let x represent the end-effector
position in task space coordinates. The virtual work, §W, done by the actuator

torques, u, and contact force, Fe, is [11]:

oW =uTédq + F.Téx
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For small displacements, dq and dx are related by the manipulator Jacobian, J:
ox = Jiq
Hence:
W = (u+ JTF.)T8q = (u + 7.)Tdq

It is clear from this expression that the contact force is reflected back to the joints

as a torque:

Te = JTF, (2.3)

2.1.1 Explicit Force Control

The most easily understood form of force control is explicit force control. In this
case, the reference input is a desired force, Fq, and the error between the measured
force and desired force is used by the controller to produce the joint torques [12, 5].
Since the contact force, Fe, and desired force, Fy4, are expressed in the end-effector
frame, a coordinate conversion is necessary to express the force error as a joint

torque. The necessary coordinate transformation is provided by (2.3).

Fy ———Q——JT c -4 —O Robot =X f“_ Xe

[} K.
F.

Figure 2.3: Explicit Force Control (5]



CHAPTER 2. BACKGROUND 9

The signal-flow diagram for explicit force control is illustrated in Figure 2.3.
Note that when perfect force tracking is achieved, Fe = Fq. Also, since position
information is not used, the end-effector position is uncontrolled. For example, if
the desired force is zero, then an impulse given to the robot end-effector will cause
the robot to move to bring the force to zero. However, driving the contact force
to zero does not prevent the robot from continuing to move at constant velocity, if
no obstacles constrain it. Physical obstacles, such as table surfaces, are known as
natural position constraints. Thus, explicit force control is primarily useful where
natural position constraints exist. The principal difficulty encountered when im-
plementing pure force control is noise in the force measurements [12]. Including

derivative terms in the controller, C, only compounds the problem.

Borowiec and Tzes {13] apply an adaptive form of explicit force control to the
control of a flexible link manipulator. A recursive least-squares estimator produces
a model of the manipulator dynamics from the input torque to the force exerted
on the environment. This model is then used to tune a regulator. The controller
output is computed using the identified model such that a quadratic cost function
of the control input and output error is minimized over a fixed number of sample

periods.

2.1.2 Hybrid Position-Force Control

There are few applications which require control of force without position regu-
lation. It is possible to combine both position and force control by controlling

position and force along axes orthogonal to each other.

For example, during insertion of a peg into a hole, position control can be used

to maintain the position of the peg over the hole, while force control can be applied
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simultaneously in the direction collinear with the hole axis in order to maintain a
prescribed insertion force.

g

w —O— 5 e

(O*— Plant

Fd——»O—~I—S Cp T Fe
|

Figure 2.4: Hybrid Force Control

Figure 2.4 illustrates the feedback configuration for hybrid control. The desired
position, x4, and desired force, Fy4, are in task frame coordinates. The selection
matrix, S, is a diagonal matrix of ones and zeros. Entries containing a one corre-
spond to the axes (in task space) which are to be position controlled. For clarity,
the robot system enclosed in the dotted frame in Figure 2.2 has been collapsed into
a single box labelled “Plant” in Figure 2.4. The mapping C, represents the posi-
tion controller and Cr represents the explicit force controller. Note that while the
selection matrix decouples the position and force controllers, it does not eliminate

coupling between force and position within the “plant”.

For example, in a flexible beam of square cross-section, coupling will likely be
observed between the horizontal and vertical modes of vibration. If the horizontal
direction is controlled using position control while the vertical direction is regulated

using force control, then the actions of the position controller will influence the force
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control via coupling between the vibrational modes of the two axes (and vice-versa).
Such coupling may be especially important in flexible robotic systems that employ
hybrid control. No results have been observed by the author in the literature
concerning simultaneous design of the position and force controllers to account for

such coupling.

As an example of recent work in hybrid position/force control, see Joly et al. [14],
who use mechanical analogies to suggest a simple and robust controller applicable,
according to the authors, to hybrid control, teleoperation and multirobot coopera-

tion. Experimental work validates their results.

2.1.3 Impedance Control

Consider the relationship between contact force, F, and position, X, for a single-

input single-output linear system:

a(s) = -&L)

F(s)
The transfer function a(s) is known as the compliance and is the inverse of stiff-
ness. Applications involving contact with an environment generally need the robot
to exhibit some compliance. Otherwise, even very small displacemepts can lead
to extremely large forces, possibly damaging the robot or the environment. Let
V(s) denote velocity. Compliance may be expressed in terms of the mechanical
impedance, Z(s), defined to be [12]:

_F(s) _ F(s)
Z(3) = F(5) = 3X(s)

The notion of impedance becomes clearer when considering the extremes. If the

end-effector is immovable (i.e. zero velocity) regardless of the external force applied,
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| .
4 Cr C, O JT 2 Plant
F.

I Cp

Figure 2.5: Impedance Control

the robot impedance is infinite. In contrast, if the end-effector moves at a constant

non-zero velocity with no force being applied then its impedance is zero [12].

Impedance control attempts to regulate the mechanical impedance of the robot
system. For example, by controlling the robot such that sZ(s) = —(Ms?+ Bs+K),

the system will behave like a mass-spring-damper.

Consider the control system in Figure 2.5 at equilibrium i.e., when the robot
velocity and acceleration are zero. For these quantities to be zero, the net force
acting on the robot must also be zero. Hence, in equilibrium, the control signal,
u, must equal the torque due to contact with the environment, 7. = JTF,. (See

Figure 2.2 for an expansion of the “Plant” block.)

For small displacements about this equilibrium position, the Jacobian is approx-
imately constant. Let the Jacobian at equilibrium be denoted Jy. Define Z; to be
the mechanical impedance at the equilibrium position. Thus, for small displace-
ments about the equilibrium position and for linear time-invariant controllers, Cr

and C,, with no poles at the origin:

Jo Fels) = J§ (—Cr(s)Fe(s) — Cpls)(2(s) — z4(s)))
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Assuming Jp is full rank,

(I + Cr(s))Fe(s) = —Cp(s)(z(s) — za(s))
F.(s)

I | “10 (s .
@) — g~ ° UHCr8)TGe) (2.4)

ZQ(S) =

Observe that setting C, = 0 results in zero impedance. From the block diagram
in Figure 2.5, setting C, = 0 yields explicit force control with zero reference i.e., the
system attempts to drive the contact force to zero. Thus, if the force between the
end-effector and environment was due to friction, for example, then the controller
would compensate for the friction and the end-effector would move with constant

velocity across the surface of the environment.

Fixing Cr = —I instead results in infinite impedance (see equation (2.4)). In
this case, it can be seen from Figure 2.5 and the expansion of the “Plant” block
in Figure 2.3, that the force feedback exactly cancels the contact force, leaving
only “unconstrained” position control i.e., assuming no limitations on the actuator
torques, the system will be driven to the desired position regardless of the force due

to the environment.

For treatment of the stability issues involved in the tranmsition to and from

contact using impedance control, refer to Surdilovié [15].

Modifications to the above impedance control framework do, of course, exist in
the literature. For example, Jung et al. [16] switch between two slightly different
impedance controllers depending on whether the manipulator is in contact with
the environment, the goal being to ensure that the end-effector makes contact with
the environment but remains robust to robot model uncertainty and inaccurate

knowledge of environment position.
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2.1.4 Implicit Force Control (a.k.a. Stiffness Control)

All the previous force control schemes used a force sensor to measure the contact
force. Implicit force control regulates the impedance (or equally the stiffness) of
the system without using a force sensor. Let Cp = 0 in equation (2.4). Then
the impedance about equilibrium is simply Zo(s) = —s~!Cy(s). However, from
Figure 2.5, setting Cp = 0 is equivalent to eliminating the force feedback, and
hence any need for a force sensor. The disadvantage of this scheme, as well as
the sample impedance control scheme of Figure 2.5, is that only the impedance
for small displacements about an equilibrium position is controlled. The transient
response may be undesirable (although the system of Figure 2.5 has more control

over the transient response since it incorporates force feedback).

Recently, Ching and Wang [10] demonstrated a virtual wall based on an implicit
force control scheme. Ching and Wang [10] employ inertial compensation as the
end-effector leaves the virtual wall in order to cancel the inertia of the robot.

2.1.5 Inverse Dynamics

Counsider an n-link robot. Let:

[
%
8B
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£
o
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0
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®
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Then the dynamic equations of the robot are [12]:

M(Q)& + h(Q) é) =u-—- J(q)TFe
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The term JTF. accounts for the contact forces as the robot comes in contact with
the environment. This equation may be transformed to the end-effector frame [12]

by defining:
M(z) = (JT(q))"*M(q)J(q)™"
and  R(z,2) = (JT(q)) "' (h(g,9) — M(q)J(a)*J(q)J " (q)2)

Let F be the control torques in the end-effector frame i.e., u = JT(g)F. Then the

dynamic equation in the end-effector frame becomes:
M(z)i + h(z,2) = F - F.

Let f be a new input to the system. It is easily seen from standard inverse dynamics

techniques, that to obtain the double integrator system:
g=f
all that is necessary is to define:
F =F. 4+ M(z)f + h(z, 2)

Note, however, that the expressions for M(z) and h(z, z) are highly non-linear and
depend on accurate estimates of system parameters. Furthermore, difficulties arise
at the singularities of the Jacobian, as well as its derivative. Also, the end-effector
position, z, is seldom measured directly, but is generally computed from joint angle
measurements. Thus, the calculation even of z depends on accurate estimation of

the forward kinematics.

The inverse dynamics control strategy is illustrated in Figure 2.6. The area
enclosed in the dotted line represents the robot dynamics in the task or end-effector
space. Note that by measuring F, and adding it to the control signal F, the contact
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Figure 2.6: Inverse Dynamics

force is negated. This same cancellation appeared in the impedance control of
section 2.1.3 for C; = —I. i.e. when the impedance is designed to be infinite.
Intuitively, cancelling the contact force allows the relationship between force and
position to be specified arbitrarily. For example, let a(s) and G(s) be transfer

functions and:
f = —az - BF,

Then:

s*z = —az — BF.

and the impedance of the system is:
s+a
B

Thus, ideally, using inverse dynamics, the impedance of the system is controlled

Z=-

“exactly” i.e., even transients are controlled.

2.2 Man-Machine Interaction

The dynamic capabilities of the human operator are important for two reasons.

First, knowledge of the bandwidth limitations and nonlinearities of the human
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operator facilitates design decisions. Second, the human is also a feedback system,
reacting with the haptic display based on proprioceptive, aural and visual sensory
information. Hence, the human operator dynamics can affect the stability of the

haptic display - human operator system.

The interaction between haptic display and human operator depends on a va-
riety of factors. Certainly, the specific dynamics will vary with each individual
operator. The interaction also varies with the operation modality, for example, the
type of hand grip (palm grip, fingertip grip, tight or loose grip, etc.) [6]. Bergam-
asco [17)] investigates the changes in contact area and forces as a human grasps or
explores an object with the hand, revealing the complexity of the human grasping
operation. Such investigations are important even for simple haptic interfaces that
allow the user to release and re-grasp the haptic device during operation. The dy-
namics of the human operator also change according to the “degrees of freedom”
used by the operator [6]. For example, wrist flexion, finger flexion and elbow flex-
ion all exhibit different dynamic characteristics and different force profiles. Thus, it
is important for analysis and design to classify the different modalities and degrees
of freedom employed when operating the haptic display.

2.2.1 Performance Requirements

It would be extremely difficult to empirically determine the dynamics associated
with all possible operator modalities and motions, for every known haptic device.
However, by investigating the tradeoffs inherent in a particular haptic device and
operator motion, a number of general “rules-of-thumb” may be developed for ap-

plication to haptic interface design.

Lawrence and Chapel [6] designed a simple hand controller, depicted in Fig-
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Figure 2.7: One D.O.F. Hand Controller [6]

ure 2.7, with a single degree of freedom. The haptic device was tested using a
fingertip “pencil” grip, moved in an approximately sinusoidal trajectory of ampli-
tude Ag. This amplitude can be maintained up to a frequency of wp rad/sec, after
which Lawrence and Chapel assumed that the motion amplitude would decrease
with frequency at 40dB/decade. Thus, the input “signal” had a magnitude response
of approximately [6]:

o Aowd
X (o)l = s
Now, if the force required to move the hand controller is less than some threshold,
Fy, then the motion of the hand controller will feel “free” to the operator. Lawrence
and Chapel assumed that this threshold remained constant for a given hand grip and
motion. Thus, the maximum mechanical stiffness, K¢(s), that the hand controller
can exhibit before losing the feel of “free motion” is [6]:
. - F‘Q(L«J2 + wg )

Similarly, Lawrence and Chapel considered fully constrained motion — the

“feel” of a wall. To feel rigid, the hand controller must feel completely motionless
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for all forces exerted by the operator up to some “maximum reasonable force™ [6].
Let this maximum force be F,,. Assume there exists some lower bound, 9z, on
the displacement the operator can feel. i.e., for any displacement less than Jz, the
user will not detect the motion of the hand controller. Then for frequencies within
the bandwidth, wo, the stiffness must be at least F,,/Jz. At higher frequencies,
Lawrence and Chapel assumed that the hand controller inertia would dominate the
response, leading to a minimum stiffness, K.(s), required to achieve the sensation

of a “wall” of [6]:

2 2
1K (ju)| = 22 Fm Ao

Oz Agw?

Thus, for a hand controller to be

able to emulate the two extremes of free

motion and fully constrained motion, it

must be able to produce stiffnesses ly-

ing beyond [6] the shaded region shown

in Figure 2.8. For Aq = 2cm, Lawrence w radfs

and Chapel [6] determined approximate
values for wp, Fp and %g- of 20 rad/s, 0.1 Figure 2.8: Stiffness Range
N and 104 N/m respectively.

2.2.2 Interaction Modelling

To model the interaction between the operator and the haptic device, a simple mass-
spring-damper model is typically used. Continuing with the example of Lawrence
and Chapel’s work [6], who modelled the interaction explicitly as a mass-spring-

damper system, consider Figure 2.9.
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Figure 2.9: Device ++ Human Interaction [6]

M, and B, represent the actuator mass and damping respectively. The mass of
the end-effector which moves with the force sensor is M,. The measured force and
position are F, and X, respectively. The spring-damper combination, Ky and By,
represents the operator’s grip on the end-effector. The hand and arm are modelled
as a mass, spring and damper with parameters My, Ky and Bi. The position of

the hand is denoted by X, and the force exerted by the hand and arm as Fj.

The interesting features of this model are not so much the modelling of the
actuator and hand/arm combination, but the inclusion of a model for the operator’s
grip. The strength of the grip can significantly affect the stability and performance
of the system [6]. From a human force-control perspective, changing one’s grip is of
great utility for radically altering the compliance of the fingers/hand/arm system.
In some sense, the fingers act as an active “remote-centre compliant device” while

the hand functions as the end-effector and the arm as the rigid robot.

An enhanced version of this model of the human arm is provided by Lee et
al. [18]. Lee conceives of the human arm as driven by two components: a force

control component, driven by the error between the desired force and force sensed
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by the human proprioceptive system, and a position control component, driven by

the error between the desired position and the position detected by visual feedback.

Let M, and B, denote the mass and damping of the hand/arm system, as
before. Let e, and ey represent the errors between the desired position and actual
position, and between the desired force and actual force, respectively. Let F, be the
force exerted by the environment upon the hand/arm. Define K, B, Ky and By
to be the spring and damping parameters for the position and force “components”
of the human arm. Then the dynamics of the human-environment interaction may

be expressed, according to Lee [18], as:
Muz + Brnz = Kye, + Bpep, + Kyep + By + F,

The form of the human hand/arm model was chosen to contain similar terms to the
desired impedance, since Lee et al. [18] implemented a form of impedance control,
dubbed generalized impedance control (GIC), for their teleoperation system. (Note
that the choice of name is rather unfortunate — only impedances of a very specific
form can be achieved with the GIC control algorithm, although it does include the

traditional mass-spring-damper impedance).

2.2.3 Performance Tradeoffs

A consideration of performance tradeoffs must inevitably focus on a particular con-
trol structure and specific performance objectives. However, some general insight
can be gained by investigating a variety of control techniques. Consider once more
the work of Lawrence and Chapel [6], since it is a simple one-dimensional system

and Lawrence et al. examined the performance tradeoffs inherent in their system.

Let X4 and X, be the desired and sensed positions respectively. Similarly, let Fy,

F, and F, denote the desired force, measured force and actuator force respectively.
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The control strategy chosen in their work was an impedance controller of the form:
Fo=Cy(F4— F,) 4+ Cp(Xa — X,)

where Cy and C, are a force controller and position controller.

To achieve “free motion”, the controller C, should be set to zero. With F; equal
to zero, the force controller, Cy, will attempt to make the measured force equal to
zero. i.e., the control system will actually assist the operator in moving the pencil
by compensating for friction forces as well as inertial forces. The net result is that
the controller effectively reduces the hand controller mass, damping and friction,

as felt by the operator.

To achieve constrained motion, let C, be non-zero. If Cy is zero, then the
operator will experience a stiffness of C,. Thus, it is clear that to achieve higher
stiffnesses, the gain of C, must be higher.

To consider the effects of hand grip strength, Lawrence and Chapel (6] intro-
duced a grip-factor, a, which scales the hand/arm parameters M}, By, Bh, Ky and
K, (see section 2.2.2). Thus, a grip factor of zero represents a loose grip and a
factor of one represents a tight grip, assuming K; and By represent the stiffness
and damping for the tightest grip. Now, using the performance objectives a.h:éady
discussed in section 2.2.1, Lawrence and Chapel reached the following conclusions.
First, the “tight grip regime defines the limits of force loop performance” [6] be-
cause the highest force loop gains are experienced when the grip is tightest. If the
gain of C}y is too high, instability results. (Lawrence and Chapel used a Nyquist ar-
gument to evaluate stability). Intuitively, this observation makes sense. The force
loop is used to provide free motion. For a tight grip, the force controller is faced
with a larger mass to move (plus larger damping and stiffness). Thus, to maintain

unimpeded motion, it must generate higher actuator forces. If the force controller
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gain is too high the system will overcompensate and go unstable (especially since

the operator will likely be attempting to provide their own compensation!).

Second, the “position loop performance limits are defined by the loose grip
regime” [6]. Intuitively, the position controller is used to provide constrained mo-
tion. A tight grip helps to restrict the hand controller motion, thus improving
stability. However, a loose grip barely constrains the motion of the hand controller
at all, so if the position gains are too high, the hand controller will go unstable for
loose grips.

Thirdly, the achievable stiffness is limited by the actuator damping and the gain
of Cy. Larger actuator damping, B,, improves the obtainable stiffness but degrades
the free motion impedance. Increasing the gain Cy reduces the stiffness. A smaller

actuator mass, M,, ameliorates both the achievable stiffness and free impedance.

Finally, it is preferable for the position and force control loop bandwidths to
be “one order of magnitude larger than the characteristic mechanical frequency,
wm = B,/M,. Significantly larger bandwidths do not improve the achievable per-

formance” {6].

2.2.4 Performance Tradeoffs in Sampled Data Systems

While Lawrence and Chapel [6] examine performance tradeoffs with respect to
the dynamics of the human-machine interaction and achieving a requisite dynamic
range of stiffnesses, Colgate and Brown [7] investigate the problem of emulating a
virtual wall using a haptic display coupled with a sampled data control system. The
problem of implementing a virtual wall is interesting for two reasons. First, very
large stiffnesses are generally required and thus, as seen in the preceding section,

stability in the presence of a loose hand grip may be compromised without due
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precautions. Second, a virtual wall is a “unilateral constraint” [7]. When the end-
effector is away from the virtual wall, the haptic device should provide free motion.

Inside the virtual wall, the motion should be constrained.

operator
f v
1 —e* 1 1
s "G Ims+b s
zero-order
hold
Z, T
HG) |- < >
unilateral
constraint

Figure 2.10: Model of a Haptic Interface [7]

Colgate et al. [7] use a one degree of freedom haptic interface similar to the
device built by Lawrence and Chapel [6]. The virtual wall is implemented as a
very stiff compression spring when the end-effector lies within the virtual wall. The
model used by Colgate and Brown [7] to represent their haptic interface and the
virtual wall is illustrated in Figure 2.10. The parameters m and b represent the
inherent mass and damping respectively of the haptic device. The variables z and
v are the position and velocity and u is the control effort. The force exerted by
the operator on the haptic display is f. Finally, the sampling period is T and the
sampled position is z,. H(z) is the discrete-time transfer function of the virtual

environment. Note that the controller is essentially a discrete-time implicit force
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controller.

Observe that the unilateral constraint in their model does not necessarily elim-
inate the output torque from the controller when the user exits the virtual wall. If
H(z) has memory - in other words, if it has any state — then the human operator
will experience the zero-input response of H(z) when they exit the virtual wall. The
torque does not immediately drop to zero, as might be expected. This raises the

question of whether these residual torques result in greater instability.

Since, as Colgate and Brown assert, the “physical world relies heavily upon the
property of passivity” [7], Colgate et al. consider an impedance, H(z), achievable
if it can be implemented passively, according to the model of Figure 2.10. Instru-

mental in the assessment of passivity, is the following theorem [7]:

Theorem 2.2.1 Passivity of a Haptic Interface [7]
Let wy = T (the Nyquist frequency). The haptic interface model of Figure 2.10 is
passive if and only if:

b> T (-1———1—T~> Re{(1 - *T)H(T)} for0<w<Swy

2 —cosw

The proof is derived using Nyquist arguments. The interested reader may refer
to (19] and [20].
Suppose the virtual wall is implemented as a spring and damper of stiffness

K > 0 and damping coefficient B i.e. the transfer function H(z) is:

z—1

T=z

Substituting this expression into the theorem above leads to the following condition

H(z)=K+B

for passivity [7]:

b> 522 — BcoswT (2.5)
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or, equivalently (consider w =0 and w = wy) [7]:

b> f{; +|B| (2.6)

From the above inequality, Colgate and Brown (7] concluded that:

o The haptic device must exhibit some inherent damping for the system to
be passive, since the sampling period is necessarily non-zero and either the
stiffness, K, or the damping, B, of the virtual wall must be non-zero for the

operator to feel any effect.

¢ The maximum achievable virtual stiffness, K, is inversely proportional to the

sampling period, T, when the damping is fixed.

o The maximum achievable virtual damping, B, is independent of the sampling

period, T, when the virtual stiffness is zero.

While it is tempting to conclude that lower virtual damping, B, results in a higher
achievable stiffness, K, Colgate and Brown {7] observe that the opposite conclusion
can be drawn if the bandwidth of the human operator dynamics is less than half the
Nyquist frequency. In this case, the cos wT term of equation (2.5) is always positive
within the operator bandwidth. Thus, higher virtual damping allows higher virtual
stiffnesses for the same physical damping, b.

Alternatively, increasing the physical damping, b, and decreasing the sampling
period, T, allows higher virtual stiffness to be implemented [7]. While both these
factors might be expected to improve the ability of the haptic display to simulate
virtual walls (consider putting a real wall at the same location as the virtual wall!),
one might also expect increased physical damping to interfere with the implemen-

tation of free motion. However, Colgate and Brown [7] suggest that negative virtual
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damping may be used to compensate for physical damping. For example, let K = 0
and B = —b in equation (2.6). Then the system is still marginally passive and ex-
hibits no damping. This suggestion was implemented experimentally by Colgate
et al. 7], confirming the conclusion that higher physical damping can improve the
simulation of virtual walls. Indeed, Colgate and Brown refer to the maximization
of the haptic device’s inherent damping as the “least expensive and highest payoff

measure available” [7] for implementing virtual walls.

Colgate and Brown [7] also investigated the effect of using the Euler difference
method to calculate the velocity from encoder position measurements, as in the
damping term of H(z). Colgate et al. observed that the derivative estimate is
highly sensitive to the sampling period and encoder resolution. If one encoder
count is equivalent to A degrees and the sampling period is T, th-u the minimum
velocity discernible by differentiating the encoder counts is A/T °/sec. Thus, at
8000 counts/rev and a sampling period of 1 ms, the minimum detectable velocity
is 450 °/sec [7]. Ironmically, increasing the sampling period improves the velocity
resolution. Of course, the preferable solution is to improve the encoder resolution
or implement digital filtering. Colgate and Brown [7] report at least an order of
magnitude improvement in velocity resolution by using a simple first-order digital
filter on the raw velocity estimate. Surprisingly, Colgate and Brown also show that

introduction of the digital filter actually reduces the requirements for passivity.
See (7] for details.

It is important to observe that in their experimental results, Colgate and
Brown (7] noticed high frequency oscillations. According to Colgate and Brown,
the high frequency oscillations are caused by limit cycles that arise due to the use of
sampled data control with a unilateral constraint. The amplitude of the limit cycles

is reduced by increasing the encoder resolution [21]. Reducing the amplitude of the
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high frequency oscillations improves the subjective “feel” of the virtual wall [7].
Colgate and Brown [7] also observed that a loose one-finger grip led to instability
much more readily than a full-fingered grip. This result confirms the analysis of

Lawrence and Chapel [6] discussed in the preceding section.

Love and Book [22] employ Jury’s discrete-time stability test to analyse the
stability of virtual walls. While the results are interesting in that they demonstrate
that both a lower and upper bound on the wall damping is apparently required to
ensure stability, it appears that the results are only valid for the case where the user
is in constant contact with the wall. Due to the unilateral constraint inherent in any
virtual wall implementation, including Love and Book's, an impedance controller
for virtual walls is essentially a time-varying gain-scheduling controller where the
gain is switched between two values: zero and a constant gain, K. Hence, Jury’s
test may be used to analyse the situation where the user is in coustant contact
with the wall, where the gain is constant, but yields no insight into the stability of

contact transitions since Jury’s test is not applicable to time-varying systems.

Furthermore, Love and Book [22] only impose the unilateral constraint on the
stiffness term, not the damping term. Thus, damping will be imposed outside the
virtual wall, where it is generally undesirable. Outside the wall, it is preferable
for the haptic device to emulate “free-space”, offering the least resistance to the

operator.

In contrast to the passivity-based approach of Colgate and Brown [7], which
may yield conservative results, Tsai and Colgate [23] gxa.mine the same system
of Figure 2.10 from an approach somewhat akin to describing function analysis.
Conditions are considered under which sustained oscillations cannot exist for the
sampled data system of Figure 2.10. It is assumed that limit cycles exist and then

conditions are derived that establish a contradiction.
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Theorem 2.2.2 Limit Cycle Theorem [25]
Consider Figure 2.10. Assume the operator applies a constant bias force to the
haptic device, such that contact with the wall is achieved (although not necessarily

maintained). Define:

O(s) = operator set corresponding to the operator in Figure 2.10

sin 6
m(f) = 1 —cosé
. 1 L
H(Z) = H(z)(l -z )Z {m33 + bs? + 320(3)}

Then limit cycles will not occur if:

max {me{ff(eﬂ’)} + m(8)Im{ H(e¥)},
Re{H(e”)} ~ m(0)Im{H(e*)}} > -1 Vo€ [0,7)

2.2.5 Controller Designs

The above analyses use various assumptions about the human operator, some very
general, to arrive at “stability” conditions for virtual wall implementations. How-
ever, human models are not usually directly incorporated into controller designs.
Gillespie and Cutkosky [24] employ a user-specific second-order model of the hu-
man operator to develop improved controller designs. In particular, they focus on
the destabilizing effects of the zero-order hold (ZOH) in the standard discrete-time
implementation of virtual walls. The ZOH is destabilizing because it allows energy
to be added to the system, destroying the passive nature of the simulated wall. In
between sampling instants, the ZOH maintains output torque values at a constant
level. However, the haptic end-effector may lose contact with the wall in between

sampling instants. Hence, due to the ZOH, torque will continue to be applied even
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outside the virtual wall, leading to unintended energy being added to the system.
The ZOH also introduces an effective half-cycle delay.

Gillespie and Cutkosky [24] compensate for the delay introduced by the ZOH
through design in the discrete domain. They account for the extra energy intro-
duced at wall exit by a combination of model prediction and deadbeat control.
User-specific model prediction is used to compute when the haptic end-effector will
leave the surface of the virtual wall, and the desired state of the system at the first
sampling instant outside the wall. Since the model employed is only second-order,
deadbeat control is used in the last two timesteps prior to exiting the wall to drive
the system to the desired state. Simulation results demonstrate the effectiveness of
the technique, but while experimental results are cited as exhibiting a marked im-
provement over “conventional” techniques, unfortunately, no results are presented.
Berkelman et al. [25] use digital state estimators on a magnetically-levitated wrist
to compensate for sample-and-hold and computational delays. The results are ver-
ified experimentally. However, the forces or torques applied by the human operator

are not included in the input to the estimators.

Ellis et al. [26] also confront the issues inherent in the ZOH. They arrive at a
predictor-corrector scheme based on the impulse imparted by the virtual wall - the

integral of force over time. Let:

T = sampling period
F). = force at time kT
F(t) = desired force at time ¢

Over one sampling instant, kT to (k + 1)T, the energy imparted by the wall is:

(k+1)T
/ F(t)dt ~ TF,
kT
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By considering predictor-correction integration methods, it is readily apparent that
a better approximation to the above integral may be obtained if Fj is not simply
the sampled value of F(t), but more prudently chosen. Ellis et al. [26] chose Fp
to minimize the difference between the desired continuous-time impulse and the
impulse imparted by the discrete-time implementation. While experimental results

demonstrated a marked improvement, small residual oscillations did remain.

2.3 Haptic Interfaces

Haptic man-machine interfaces provide feedback to the human operator through
forces. Generally, in the literature, haptic refers to interfaces which provide gross
force feedback capable of being sensed by the hand and arm, while the adjective
tactile is applied to more sensitive force sensations, such as the perception of tex-
ture at the fingertip. There are numerous haptic interface designs found in the
literature. The requirements for haptic interfaces can vary depending on the ap-
plication. For example, the master hand controller in a telepresence system is
essentially a haptic display. However, there can be advantages to making the mas-
ter robot physically and kinematically similar to the slave robot, especially when
real-time camera footage is provided as visual feedback. Since this thesis assumes
virtual reality simulations will be used for visual feedback, master controllers used
in telepresence applications will be discussed only in terms of their relevance as

generic haptic displays.

Haptic interfaces may be classified into several categories: parallel platform hand
controllers, suspension systems, robotic displays, hand displays and exoskeletons.

Parallel platform hand controllers are essentially fully parallel or serial/parallel
mechanisms akin to a Stewart platform {27]. Suspension systems use taut cables to
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support and direct the operator’s finger. Robotic displays are standard industrial
robot configurations used to provide force feedback to the operator rather than
to perform a task. Hand displays are haptic interfaces designed to interact with
the fingers and palm of the human hand. Exoskeletons are manipulators which
are mounted on the operator, such as on the arm and shoulder, and enhance the

operator’s capabilities.

2.3.1 Parallel Platform Hand Controllers

Long and Collins of the University of
California [8] developed the “pantograph
linkage parallel platform master hand con-
troller” illustrated in Figure 2.11. Similar
mechanisms were developed by Noma and
Iwata [28], Bryfogle et al. [29] and others.
The design of Long and Collins will be used

as an example.

Each pantograph linkage is connected to
the top platform through a passive three
degree-of-freedom ball-in-socket joint. The
two links of each pantograph attached to

Figure 2.11: Parallel Platform (8] the base platform are actuated by rotary
motors. The point of attachment can also

rotate (passively) along an axis tangential to the corresponding edge of the base
platform. These degrees of freedom are indicated by arrows in Figure 2.11. The

actuator mechanism includes “cable/pulley reducers and differentials” rather than
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gears in order, as claimed by the authors, to “enhance transmission performance
by minimizing friction, increasing efficiency, and eliminating backlash and torque
ripple” (8].

The parallel platform mechanism of Bryfogle et al. [29] employs “direct-drive”
actuation, although a cable mechanism is used for power transmission (but not gear
reduction). The perceived advantages of parallel platform hand controllers is their
compact size and high stiffness [8, 28|. Although earlier parallel platform designs
suffered from a rather restricted workspace, the design of Long and Collins (8], and
others’ recent work, has extended the workspace [28). Unfortunately, the kinematics
of parallel platform manipulators can be quite complex. Indeed, the fully parallel
force-reflecting hand controller of Bryfogle et al. [29] requires a Newton-Raphson

iterative algorithm to solve the forward kinematics!

2.3.2 Suspension Systems

Hirata and Sato [9] designed a very simple haptic interface, dubbed SPIDAR. (Space
Interface Device for Artificial Reality) comprising four cables originating at the cor-
ners of a cube and joined in the centre. The configuration is depicted in Figure 2.12.

Each cable passes through an eyelet at the corner and then through a solenoid-
controlled gap and over a rotary encoder. The tautness of the cable is maintained
by a counterweight hung on the end of the cable. On-off pulsing of the solenoid
provides friction and is used to control the forces exerted at the junction of the
four cables, where the operator places their finger. A DC servomotor with integral
encoder could easily replace the encoder/solenoid combination and provide more

precise force sensations.
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While the apparatus is fairly large, it has a number of advantages. First, since
excessive forces are not required, nylon line could replace the cables - making the
mechanism virtually transparent in the operator’s field of view. The workspace of
the haptic display is also quite large. However, the SPIDAR interface does not
provide six degrees of freedom. It is limited to three degrees of freedom unless
more cables and actuators are added. However, addition of more cables increases
the likelihood that the cables will interfere with movement of the operator’s hand

and arm.

A similar mechanism is employed

by Morizono et al. [30] for a “virtual

sports training system”. Their system

n@ incorporates a head-mounted display,

tension sensors on the suspension wires

and a grip handle at the wire junction.

The current application of the device,

designed to demonstrate its high speed,

is a “playing catch” simulation.
Figure 2.12: SPIDAR System [9] is a “playing catch” simulation

2.3.3 Robotic Displays

Most of the devices which use either commercially available or custom designed
robotic manipulators as haptic displays are employed in teleoperation research,
where a master device translates operator commands for a slave device and feedback
from the slave is reflected back to the master. For example, Jansen, Kress and
Babcock [31] use a Kraft KMC 9100-MC 6-D.O.F. manipulator, sold by Kraft

Telerobotics Inc. of Overland Park, Kansas. To overcome Coulomb friction in the
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manipulator joints, a preload function is used. A stiffness controller is used to

control the steady-state manipulator stiffness.

Hill et al. [32] developed a 4-axis manipulator for use in endoscopic surgery
that uses stiffness control to reflect forces between the master and slave manipula-
tors. Salcudean and Yan {33] used magnetically levitated wrists in a microsurgery
system. Magnetically levitated wrists were chosen because they are fast, friction-
less, backdriveable, light and provide six degree-of-freedom motion. Sato et al. (34]
developed a force-feedback “pencil”, similar in concept to that of Lawrence and

Chapel (6], for micro-teleoperation experiments.

Luecke and Chai {35] use a “force-reflecting exoskeleton” mounted on an in-
dustrial PUMA 560 robot as a haptic interface. The “exoskeleton” applies forces
electromagnetically to one finger of the hand, while the PUMA 560 is used to

generate gross torques and extend the workspace.

Hayward et al. [36] developed a two degree-of-freedom “Pantograph” device that
the authors optimized according to size, workspace, inertia and other properties.
Kelley and Salcudean [37] designed a force-feedback mouse in which standard actu-
ators are not used. Instead, the device itself is essentially a two degree-of-freedom

actuator with the mouse mounted on a moving plate bearing the actuation coils.

The Personal Haptic Interface Mechanism (PHANToM) of Massie and Salis-
bury [38] comprises a statically balanced mechanism with low mass and friction,
high stiffness, good backdriveability and three degrees-of-freedom. According to
the authors, the transformation matrix from the motor rotations to end-effector
translations is nearly diagonal so that its three degrees-of-freedom are almost de-
coupled. Two of the motors actually act as counterbalances to achieve the gravity
balancing. The PHANToM design also employs cables and pulleys to transmit the
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motor torques to the lightweight aluminum links.

As a haptic device, Ching and Wang [10] employ a novel five-bar linkage ma-
nipulator which is both gravity balanced and dynaemically decoupled. The robot
uses direct-drive DC servomotors, without cables or pulleys for actuation. By us-
ing this innovative mechanical design, the dynamic equations are greatly simplified,
making control strategies such as feedback linearization or inverse dynamics readily

possible.

Hayward et al. [39] have developed a seven-degree of freedom haptic device called
Freedom-7 with application to surgical training. The device is also balanced, but
not dynamically decoupled. The seventh degree-of-freedom is employed to actuate
the surgical tool which mounts on the end-effector, since tools such as scissors tend

to have one degree-of-freedom.

2.3.4 Other Haptic Interfaces

There exists a great variety of haptic interfaces in the literature. While it is not
the purpose of this chapter to enumerate all possible types of haptic devices, a brief
survey of the other types of devices will be provided here for the benefit of the

reader.

One fascinating class of haptic interface is the hand display. Gomez et al. [40]
investigate the modelling of one such display, the “Rutgers Master II” haptic dis-
play. The Rutgers Master II display comprises a set of pneumatic actuators and
linear position sensors mounted on four digits of the operator’s hand. Other sensors
are also employed. The device can sense hand gestures and provide forces to four

digits, yet weighs only 80 grams.
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Caldwell et al. [41] have developed another hand display they dub the “Tac-
tileGlove”. The TactileGlove incorporate mechanoreceptive, thermoreceptive and
proprioceptive feedback, all in one device. (Proprioception is the ability of the
body to sense the orientation of its limbs, the movement of joints and resistance to
movement, independent of surroundings. This information is provided by sensors in
the muscles, tendons and joints. Mechanoreception involves the sense of pressure,
touch, vibration, slip, etc. on the skin. Thermoreception entails the detection of
temperature [41].) Air pressure is used to provide low-frequency mechanoreceptor
feedback and piezo-electric actuators are used to induce medium and high-frequency
mechanoreceptor feedback. Thermoreceptor stimulation is provided by Peltier ele-

ments, and the proprioceptor feedback by a force reflecting joystick.

Tzafestas and Coiffet [42] also have a hand display dubbed the “LRP Dextrous
Hand Master”. Tzafestas and Coiffet’s work [42] centres on the computation of the
contact forces required on each phalanx of the human hand to produce a realistic

simulation of grasping a virtual object.

The impact of higher frequency feedback is less intuitive, but experiments by
Wellman and Howe [43] demonstrate that high frequency feedback can impart a
sense of surface stiffness and texture to a human operator. Wellman and Howe [43]
refer to this higher frequency feedback as “vibrotactile feedback”. Such vibrotactile
feedback is used by Wellman and Howe [43] in conjunction with lower frequency
force feedback to investigate its impact on human perception of surface stiffness

and texture.

Submersive haptic displays are also presented in the literature. For example, the
operator stands inside the “whole body kinesthetic display device” [44] of Roston
and Peurach, with each foot on a six-degree-of-freedom actuated footpad. The
actuated footpads allow presentation of arbitrary terrains. Also included in the
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device are actuated “ground pads” to allow the operator to kneel, crawl, etc. A

“vertical feature emulator” provides features such as windows, doors, etc.

Most haptic displays involve direct and continuous contact between the operator
and the haptic device. Realistically, for such a device to provide a true sense of free
motion when the operator is not in contact with a virtual object, the force exerted
by the device on the operator must be below the operator’s threshold of touch
sensation. The human fingertip is extremely sensitive so giving the impression
of “non-contact” while maintaining continuous contact with the device is quite
difficult, if not impossible. Yoshikawa and Nagura [45] have developed a haptic
interface which does not maintain contact with the operator. Instead, the operator
puts their finger inside a ring, and the haptic control system tracks the user’s finger

to avoid contact except where the user impacts an object in the virtual environment.

Wannasuphoprasit et al. [46] developed a novel haptic interface by considering
the design foremost from the perspective of operator safety. Hence, the “cobot”
of Wannasuphoprasit et al. [46] is a mechanically passive device, in which device
motion is provided entirely by the human operator. The cobot only provides con-
straint forces. For example, in the “unicycle cobot” of Wannasuphoprasit et al. [46],
the unicycle wheel is actively steered, but not driven. While the inherently pas-
sive nature of a cobot places restrictions on its capabilities for simulating virtual
environments, its novel passive design is suitable for applications such as the pre-

sentation of virtual “guides” in automotive and aircraft assembly, etc.

2.4 Flexible Structures

The five-bar linkage robot employed for the experimental research discussed in

chapter 6 is a flezible manipulator. It is termed a “flexible” manipulator because
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the last link is flexible. Joint flexibility is not considered. The flexible link is in-
troduced into the robot design so that its deflection may be used to measure the
forces being exerted by the user on the end-effector. Thus, the robot structure it-
self serves as the force sensor. However, link flexibility complicates the robot model
since flexibility is generally represented by nonlinear partial differential equations.
Furthermore, flexibility typically results in undesirable vibrations. For the haptic
application considered in this work, eliminating such oscillation is particularly im-
portant. Hence, a survey of the literature in position control and force control of

flexible structures is presented here.

2.4.1 Position-Control of Flexible Structures

A comparison of various position control strategies, both optimal and non-optimal,
for the single flexible link is presented in {47]. The optimal control strategies em-
ployed were the rigid body linear quadratic regulator (LQR), the flexible body

LQR, bounded-input H,, one-parameter H,, and two-parameter .

The rigid body LQR controller is simply an LQR controller designed strictly
for the rigid mode. Flexibility is ignored and the output variable is chosen to be
the hub angle rather than the tip position. Since this controller ignores the link
flexibility entirely, an impulse disturbance can lead to instability.

The flexible body LQR controller is an LQR controller based on the model of the
flexible system. Hence, the output variable is the tip position rather than the hub
angle. Obviously, by including some of the flexible modes, the order of the controller
is higher. Cannon and Schmitz [48] designed a flexible body LQG controller for a
single flexible link. In fact, Cannon and Schmitz are generally acknowledged as the
first to study the control of a single flexible link experimentally.
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The bounded-input H, technique attempts to minimize the mean-squared error
between the actual tip position and the desired tip position, while maintaining a
bounded torque command signal. Unfortunately, the technique requires the refer-

ence signal to be known and the design procedure is “very complex” [47].

The H,, techniques weight the uncertainty in the model in the frequency do-
main, with the goal of obtaining robustness to modelling errors and disturbances.
In the H,, designs of [47], the higher order flexible modes that are not included
in the plant model are treated as multiplicative uncertainty. The advantage of in-
cluding the unmodelled modes as unstructured uncertainty is increased robustness
to spillover effects. Spillover is the effect of the control on unmodelled higher order
modes. Under certain conditions, the interaction of the controller with these higher
order modes can lead to instability if the higher order modes are not included in
the model for control design [49]. While the natural solution would be to increase
the number of modes in the model, augmenting the model often leads to higher

order controllers, which are undesirable.

Pieper [50] tackles the issue of controller order in H; and H,, designs by using
order reduction techniques to reduce the order of the optimal controllers. However,
he notes the impact of this order reduction on controller performance and concludes
that there appear to be nominal bounds on the reduction before performance be-

comes unacceptable.

The non-optimal control strategies outlined by Wang in [47] are the rigid
body proportional-derivative (PD) controller, the passive flexible controller and
the closed-loop shaped input controller. The rigid body PD controller, like the
rigid body LQR controller, treats the hub angle as the output variable and does
not include any of the flexible modes in the model. The rigid body PD controller
is the type of controller typically employed by industry.
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Motor

Figure 2.13: Passive, Minimum Phase Output

The passive flexible controller is based on an alternative output variable which
includes the tip position but results in a minimum-phase, passive, transfer function
between the input motor torque and the output. The normal tip position results
in a non-minimum-phase transfer function, but by using the scaled, reflected tip
position, P'(z), as shown in Figure 2.13, a passive minimum-phase transfer function
results, provided the link is sufficiently stiff. This result was demonstrated by Rossi,
Zuo and Wang [51]. In the comparison of [47], a scaling factor of & = 1 is used.

The closed-loop shaped input technique is a closed-loop version of the open-
loop shaped input of Singer and Seering [52]. The shaped-input technique is best
understood by a simple example. Let u(t) be the unit step function. Suppose a
sinusoid, 7,(t) = Asin(wt)u(t) is fed to a linear time-invariant system, P. The
output will also be a sinusoid, y;(t) = B sin(wt + a)u(t), due to the linearity of the
system. Let ry(¢) be the same input sinusoid delayed 180°. By adding the delayed
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input to the actual input, i..e, 7(¢) = r(t) + r2(t), the output becomes:

y(t) = Bsin(wt + a)[p(t) — p(t — Z)]

st

Hence, the output goes to zero for all £ > Z. Due to superposition, the delayed
input leads to complete destructive interference at the output. The same principle
can be applied to cancelling vibration in a flexible beam. By adding more delays,
the system can be made more robust to uncertainty. Zuo and Wang [53] further
increased the controller robustness by putting the shaped-input controller into the

closed-loop.

Recent work in improving the results of open-loop input shaping include the
adaptive approach of Bodson [54] and the strategy of Magee, Cannon and Book,
which combines input shaping and inertial damping [55].

Rattan and Feliu {56] examine discrete-time feedforward control in which the
plant inverse is approximated using Wiener filter theory. The result is a more

general version of the open-loop shaped-input controller of Singer and Seering [52].

Work has also been done on multiple flexible link manipulators, such as the two
flexible link robot of Morris and Madani [57]. Morris and Madani {57] compare

open-loop computed torque techniques to a quadratic optimal controller.

Also, Artega [58] develops a dynamic model of flexible link robot manipulators
using Lagrange’s equations and a serial chain approach. Artega highlights prop-
erties of the model resulting from physical attributes and the choice of flexible
model.

An interesting variation on H, control of a flexible link is presented by Tcherny-
chev et al. [59], who investigates the application of constrained H,, control to tip
position tracking. Constrained H,, control, according to the authors, involves opti-

mizing the H, norm under the constraints imposed by time-domain specifications.
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The key point to note is that the time-domain specifications are not translated into

the frequency domain, so the results are apparently much less conservative.

All of the control strategies discussed to this point have been linear time-
invariant. Some non-linear or time-varying position control strategies have also
been attempted. Kubica and Wang [60] designed a time-invariant fuzzy-logic con-
troller that was highly successful at reducing vibration in the flexible link. Bayo et
al. [61] investigated an open-loop “inverse dynamics” controller with limited suc-
cess. Neural networks have also been applied to the control of flexible manipulators,
such as the work of Talebi et al. (62]. Adaptive control strategies have also been
applied. For example, Rokui and Khorasani [63] employ a multi-output recursive

least-square algorithm for adaptive feedback linearization of a single flexible link.

Moallem et al. [64] use a non-linear observer to estimate the rates of change of
the flexible modes. These rates of change are then used in an inverse dynamics-
based control strategy to provide stable tip position tracking. (The non-linear
observer is used to cancel particular nonlinear terms in the dynamics.) Moallem et

al.’s work is expanded in [65].

Another non-linear approach is the “model-free approach” of Zhu and Ge [66].
Their controller is essentially a PD controller with an added non-linear integral
term designed to enhance the controller’s ability to suppress the link vibration.
The added term allows for some generality in its definition and a Lyapunov stability
result (based on energy concepts rather than specific linear models) is presented.
Unfortunately, the results are currently only applied in simulation, although the

PD nature of the controller augurs well for its implementation.

Also considered in the literature is the related problem of transportation of
flexible payloads by a rigid manipulator. For example, Majors and Richards [67]
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develop new real-time dynamic programming methods and apply them to the trans-
portation of a flexible link, with the goal of minimizing the transportation time —
including the time for link vibrations to cease. The real-time dynamic program-
ming (RTDP) technique employed improves upon the work of Barto et al. [68].
By borrowing concepts from symmetric successive over-relaxation techniques for
iteratively solving a system of linear equations, Majors and Richards manage to re-
duce the number of iterations required to solve the dynamic programming problem
formulated for their transportation experiment by up to 50% over the methods of

Barto et al [68].

2.4.2 Force-Control of Flexible Structures

Force control of flexible structures is still a nascent field, so it is only recently that a
body of literature has begun to appear. Some early work was performed by Tilley
et al. [69], who used a fast end-effector mechanism to improve the position and
force response of a flexible manipulator. However, Tilley et al. only performed
force control on the end-effector wrist; position control was employed to “slew the
main arm into the wrist's operating envelope™ [69]. Such a “dual” control system
is limited in application because the position of the environment must be known
to within the workspace of the end-effector wrist. For an environment, such as a
human operator’s hand, which is moving along an unknown trajectory, the dual
control scheme is entirely inappropriate without some mechanism for detecting the

environment location.

Matsuno et al. developed a “quasi-static hybrid position/force control” [70]
algorithm for an elbow manipulator with both links flexible. The control scheme

is called “quasi-static” because several technical assumptions had to be made in
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order to make the problem tractable. Further assumptions were necessary to apply
the theoretical results to their experimental apparatus. For details, refer to [70]
and [71].

Further work by Matsuno, Umeyama and Kasai on force control of flexible struc-
tures may be found in [72]. There, they develop a robust H,, force control strategy
for a flexible link with a symmetric rigid body fastened to the tip. Performance of
the control strategy is validated by experimental results.

Yoshikawa et al. [73] also considered an elbow manipulator with both links flex-
ible. However, like Tilley et al. [69], Yoshikawa et al. also added a fast, rigid
“micro-manipulator” {73] with two degrees-of-freedom to the end of the elbow ma-
nipulator. Two control systems are developed in [73]. The first scheme employs
“quasi-static” control in which only the position of the elbow manipulator is con-
trolled, while force control is applied to the rigid micro-manipulator. In order for
this first approach to remain valid, the dynamics of the “macro” elbow manipula-
tor must be effectively uncoupled from the dynamics of the micro-manipulator. In
their second scheme, simple proportional-derivative feedback control is applied to
the joints of the elbow manipulator. However, the control algorithm for the micro-
manipulator is designed to compensate for position and force errors in the flexible
elbow manipulator. More recently, Lew [74] used the rigid micro-manipulator in a
macro/micro manipulator experiment to actively damp out vibrations in the flex-
ible macro-manipulator, while the contact force is regula.ted by a force-damping

controller based on a combined model of the micro/macro- manipulator.

Chiou and Shahinpoor [75] applied a more conventional approach to force control
of an elbow manipulator with both links flexible. Chiou et al. [75] derived the
equations of motion for the elbow manipulator using a Lagrange formulation and

then linearized the resulting non-linear equations about an operating point. Hybrid
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force/position control was then employed, based on the linearized system. By
examining the eigenvalues of the A-matrix in the state-space representation of the
linearized system, for various link stiffnesses, Chiou et al. [75] observed that the
flexibility of the first link in the elbow manipulator dominates the system stability.
Hence, a manipulator with the first link rigid and second link flexible is “more
stable” [75] than a manipulator whose first link is flexible and second link is rigid.
Chiou et al. [75] also observed that the discontinuous contact of the end-effector with
the environment resulted in limit cycles. Furthermore, variations in force sensor
stiffness also affect system stability. Reducing the force sensor stiffness improves

stability at the expense of positional accuracy [75].

Pfeiffer et al. [76] considered an n-link manipulator with all links flexible. For
vibration suppression, a hybrid position/force controller was investigated, where a
proportional-derivative (PD) controller was used for the position control and pro-
portional control (P) for forces. Feedforward terms were also included, where the
feedforward terms were calculated in two steps. First, the nominal actuator torques
are calculated for the reference trajectory assuming the robot links are rigid. Sec-
ond, the elastic deformations due to flexibility are computed, and corrections ap-
plied to the nominal actuator torques to compensate for elastic deformations. The
actuator torques for the feedforward terms are calculated off-line for efficiency, while
the PD and P controllers for position and force are applied on-line to compensate

for modelling and feedforward errors, along with disturbances.

Kim et al. [77] also consider hybrid position/force control of multi-degree-of-
freedom (multi-DOF) flexible manipulators. Kim et al. [77] note that due to the
relationship between elastic deformations of a flexible link and the force exerted
on the link tip, regulation of contact force also modulates link vibrations. Hence,
Kim et al. [77] decouple, under certain assumptions, the dynamics of a multi-DOF
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system into two subsystems: a “constrained motion subsystem” which is influenced
by the contact force, and a “free motion subsystem” for which the impact of the
contact force is negligible. The contact force is regulated for the constrained motion
subsystem, but not vibrations, due to the observation above. Link vibration is
only modulated for the free motion subsystem. The control outputs are based on
velocity commands due to the velocity feedback servomotors of their experimental

apparatus.

Chang and Fu (78] apply nonlinear adaptive control to a two-link planar flexible
manipulator for the purpose of automated deburring. Again, hybrid position/force
control is employed, with singular perturbation theory used to divide the dynamics

into a slow and fast subsystem for control.

Recently, Chang and Chen [79] used the hub angle and deflection of a single
flexible link to estimate contact force and so design a force controller for the single
flexible link that does not require a force sensor. The controller structure entails a
fast inner loop PD controller for the motor angle and a slower outer loop for the

constraint force. The outer loop controller employs sliding mode control.

Compliance of flexible manipulators has long been touted as one of their advan-
tages. Yet few studies exist which examine impacts between flexible structures and
objects whose position is completely unknown. Moorehead and Wang [80] address
this issue by using strain gauges readings to estimate forces exerted at any point
along the flexible beam and hence to detect contact with an unknown object. Once
contact has been ascertained, the controller switches from position control to force
control in order to minimize the effect of the impact. Limited positive acceleration
feedback is introduced to reduce the overshoot in the force response. The results
have application to operator safety and robot protection since the techniques allow

a flexible robot to detect unexpected collisions in its workspace.



Chapter 3

Modelling

3.1 Motivation

Two experimental apparatus are employed in this research — a simple linear mech-
anism, and a rigid five-bar linkage robot with an attached flexible link. Future
research will likely focus on more degrees of freedom and other robotic configura-
tions, so a general framework has been chosen for the model development. The
model is based upon a flexible link which is free to vibrate in two directions. This
link is clamped to an arbitrary robot. An assumed modes approach is taken to
the modelling of the flexible link [81]. The base robot may be rigid or flexible.
The mode shapes for the flexible beam are assumed to be orthonormal, and any
number of modes may be used. The beam cross-section need not be square but an

Euler-Bernoulli beam model [82] is assumed.

Because of the generality of the model, it may also be applied tc a rigid robot
picking up a flexible payload [83]. The model also attempts to separate the base
robot terms and flexible link terms so that the effect of the flexibility on the robot

48
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dynamics is readily apparent. In order to do this separation, the dynamics are
expressed using Kronecker tensor products [84] and permutation matrices. The
final dynamic equations are applied to the traditional single-flexible-link experiment
to demonstrate their validity. The application of the model to the five-bar robot

employed in this research is also investigated.

3.2 Preliminaries

Modelling of robotic manipulators typically involves operations such as rotations,
translations, vector products and dot products. Yet the final dynamic equations
are more conveniently expressed in matrix form. Hence, matrix representations
of the above operations are defined to facilitate development of the general model
in matrix form from the outset. Common operators, such as rotation matrices
and skew-symmetric matrices, are defined in Appendix D, along with some useful
properties. However, a matrix calculus is defined here so that the Euler-Lagrange
equations may be applied in matrix form. In order to develop properties of the

matrix calculus, the Kronecker tensor product is also discussed.

3.2.1 Kronecker Tensor Products [1]

A useful operator for expressing equations in matrix form is the Kronecker tensor
product, denoted by ®. Let A € R™*? and B € R™**. Then the Kronecker tensor
product of A and B is defined as:
Gu_B e G1PB
A®B=| ... . ... | eRmx® (3.1)

anlB .o anB
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Define a transformation matrix, T, as:

o
—_—

L® [1 0
Tuv = € g?uuxuv (32)

I.,®‘[0 e 0 1]

—

~
u

The transformation is a permutation matrix. The definition provided here has
a different form than the one in [1]. However, this definition is readily extended to
the more general permutation matrix presented in section 3.2.2. The more general

form is not discussed in [1].

The transformation of (3.2) is introduced here, as it is in {1}, in order to allow
the Kronecker product to be commuted. Being a permutation matrix, the matrix
T., may be expressed as the product of elementary row or column operations. It
simply exchanges rows or columns of the matrix on which it operates. While the
transformation is introduced to commute Kronecker products, it may also be used
to interleave matrices and its action is probably best understood in this capacity.
For example, consider two matrices, A and B partitioned into column vectors a;

and b,' i.e.,
A=[a1 ap]eiﬁ“"l’, .B:[b1 bp]es)‘i"xp
Post-multiplication by T, interleaves the columns as follows:

[A B] Tz,p=[a1 b, .-+ a, bp]

The subscript 2 indicates that there are two matrices to be interleaved while the
subscript p denotes the number of columns in A and B. Pre-multiplication may

be used to interleave rows. The motivation for the transformation comes from the
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column partitioning problem in matrix calculus, discussed in section 3.2.2. Refer
to [1] for details concerning the T,, permutation matrix and its application to
Kronecker products. Refer to [85] for the more general permutation matrix and the

application of permutation matrices to interleaving and matrix calculus.

Properties

The Kronecker tensor product has a number of useful properties. The properties
enumerated below are particularly relevant for the ensuing derivation of the general
dynamic equations. Define [, to be the n x n identity matrix and let A ¢ R™*?

and B € R™*e,

i. AQ B =Tum(B® AT, (3.3)

e If either A or B is a row vector then:

A®@B=(B®A)T,,, sinceT,=I,and T, =1, (3.4)

e If either A or B is a column vector then:
A®B=T,n(B®A), sinceTy,=1I,and T, = I, (3.9)
i (A+B)®C=A®C+B8C (3.6)
iii. (A® B)T = AT® BT (3.7)
iv. (A® B)(C® D) = (AC® BD) (3.8)

These properties are proven in [1].
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3.2.2 Matrix Calculus

Since matrices are used throughout the modelling, a few fundamental matrix cal-
culus relationships will be derived. The key concept here is the extension of the
standard “vector” Jacobian to a matrix Jacobian. Let x = (z, z, ... z.)T be
a real-valued vector function of time, ¢, and let f;;(x),s =1,...,n,7 =1,...,p,
be real-valued differentiable functions. Let F' denote the matrix function, F(z) =
[fij(x))i=1... n.j=t1....p- Then the matriz Jacobian is defined as the n x mp matrix

function:

oF _ [OF 8F] (3.9)

ax _ |dz, Oz,
Note that if F is a column vector function then this definition reduces to the
standard Jacobian!. Let A € R™*P and let a; be a vector representing the ith

column of A. Define:
a
vec(A) = | : | € RPX! (3.10)
an
This vectorizing function, vec(A), could also be defined to arrange the matrix el-
ements in row major order instead of column major order. The ordering is not

important as long as it is applied consistently [86].

Application of the matrix Jacobian often leads to situations where an extended
form of the transformation matrix T, is expedient. Define the partitioning trans-
formation, P,, _ ..., as follows [85]:

Lo[L o - 0

Pn;,... eV —

Leo 0 I.]

1See Brogan [86] for a definition of the standard Jacobian matrix
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The transformation, T,,, of (3.2) interleaves the columns of matrices. The parti-
tioning transformation, P,,, . ,.v, is more general, and can interleave submatrices.

For example, let A € R***? and partition A into submatrices, A; € R"*? i.e.,
A= [A1 A.,] € RmxvP
Similarly, let B € R**** and partition B into submatrices B; € R"**:
B=[z . 5)]ew
Then P,,, interleaves the submatrices as follows:
[4 B]Pwpu=[ar B, - 4 B

Note that if A and B are partitioned into individual columns i.e., p=1and s =1,

then P,,, reduces to T3,. In general [85),

PI.... 1y = Tu.u (311)

Properties

Let x € R™*!, A(x) € R**?, B(x) € R™** and F(x) € R"*P. Let (-)' denote
differentiation with respect to the vector x so that F’ is defined as in equation

(3.9) and let () represent differentiation with respect to time. Use I, to denote the

m x m identity matrix. Then?:

i (A®B)Y =A'®B+(A®B')P,.....p (3.12)
N o’

o If x is a scalar (m = 1) then

(A®B)Y=A'®@B+A®B

2Properties are proven in [85]
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o If A is not a function of x then

(A® BY =(AQ B')P,,... .ap
m
e If B is not a function of x then
(A B)Y=A'®B
ii. (AB)' = A'(I,.® B) + AB'
o If x is a scalar (m = 1) then
(AB) = A'B+ AB'

@ If A is not a function of x then
(ABY = AB'

e If B is not a function of x then

(AB) = A'(I, ® B)

iii. F=F(x®I,)

o If F is a column vector (p = 1) then

F=Fx

iv. vec(x) = x, vec(xT)=x

v. X' =In, (xT) =vec(l,)T

vi. If A and B are compatible for multiplication (p = r) then

o vec(AB) = (BT ® A) vec(l,)

o vec(A)T = vec(L)T(I, ® AT)
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(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
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Partitioning

In the derivation of the dynamic equations, matrices are partitioned into subma-
trices which represent the base and flexible components and cross-coupling terms.
Hence, it is convenient to define the effect of differentiation upon submatrices within
a matrix, or differentiation by a vector which itself may be partitioned into base

and flexible components. Let x be an m-vector and F(x) be an n x p matrix.

i. Vector Partitioning

Let x be partitioned as follows: x = xl:l . Then:
X2
oF dF OF
5 5 -
ii. Row Partitioning
Let F be partitioned row-wise into two submatrices:
F=|5
F
Then:
aF
%F - [ o (3.22)
3
ili. Column Partitioning
Let F be partitioned column-wise into r submatrices:
F=[p ... F]
where F; has s; columns for i = 1,... ,r. Then:
OF [0F dF,
= (3.23)
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Since the permutation matrix only operates upon the columns, row and col-
umn partitioning may be combined by partitioning the matrix F' into rows

prior to column partitioning.

3.3 Flexible Structures

The general model derived in this chapter is based upon a flexible link mounted
on an arbitrary robot. However, before embarking on the derivation of the general
dynamic equations, it is instructive to investigate the theory behind the modelling
of flexible beams, since it is this vibration theory that is employed in the subsequent
derivations. The theory is better described within the context of an application, so
the traditional single flexible link experiment of Figure 3.1 will be considered [87,
47]. This single flexible link application will be revisited after the dynamics of the

general model are derived in order to verify the results.

Yo

Zo

Motor

Figure 3.1: Single Flexible Link
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The figure is a top view of the link. The link is typically an aluminum or
steel beam of narrow cross-section. For this example, the link is mounted to a
motor which is used to control the beam behaviour and the height of the beam is
presumed to be much larger than the width so that only transverse vibrations are
possible. Furthermore, the vibrations are assumed to occur in the horizontal plane
so that gravitational forces may be ignored. In the general framework, transverse
vibrations and gravitational forces are included in the dynamics, but, for simplicity,

these factors are ignored in this example.

The frame z;-y; is chosen such that the z,-axis is tangent to the link at the
motor (or hub). The frame z,-y, is rotated from the base frame z¢-yo by an angle
go- This frame is convenient because the angle gq is easily measured by an optical
encoder or potentiometer mounted on the motor. The z,-y; frame could also have
been chosen to pass through the centre of gravity of the link, but Belleza et al. [87]
demonstrated that either frame may be chosen. The results would only differ by
a linear coordinate transformation. Although no payload mass is included in this
derivation, Belleza’s results [87] hold even when a payload (with both mass and
inertia modelled) is added to the end of the flexible beam.

The displacement of each point along the neutral axis of the beam from the
z,-y; frame as a function of time is denoted by v(z,t). The neutral axis is the
axis of the beam that experiences zero stress [88]. For example, consider the beam
element depicted in grey in Figure 3.2. As the beam is bent upward, the portion of
the beam element above the neutral axis experiences compressive stress while the

portion below the neutral axis undergoes tensile stress [88].

Let [ be the length of the beam. Since the neutral axis does not experience
any stress, the arc length of the neutral axis in the bent beam is also I. Thus, the

z-coordinate of the end of the neutral axis, z., is less than [ and the displacement
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Figure 3.2: Beam Element in Bending

of the end of the beam over time is v(z.,t), not v(l,¢). However, for small tip
deflections, z. =~ [ and v(z.,t) = v(l,t). In the subsequent analysis of the single
flexible link, borrowed from Wang [47], it will be assumed that tip deflections are
“small”. Furthermore, damping in the beam will be ignored. Assume a uniform

beam with linear mass density, p.

Consider a point P(z) on the beam, as shown in Figure 3.1. The dependence
on time of g has been omitted for clarity. The coordinates of P(z,t) in the z¢-yo
frame are:

P(z,1) = l:z cos(go) — v(z,t) sin(qg)jl
z sin(qo) + v(z,t) cos(qo)
Since a Lagrangian approach will be used to develop the dynamic equations of the
single flexible link, the kinetic and potential energies of the beam must be derived.
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Let () denote the time derivative of the quantity in parentheses. Trivially, the

kinetic energy of the flexible link, assuming z, = [ is:
n=t [BrPam =1 [ B7Pe
0
Let I; represent the inertia of the base motor i.e., the hub inertia. Then the kinetic
energy of the hub is:
Th = 11nd5
yielding a total kinetic energy of:

3
T=L1L¢g+1p fo PTPdz (3.24)

Calculation of the potential energy of the flexible beam is more involved. It is
derived in detail in Appendix A. Let ()’ denote differentiation with respect to z,
or the spatial derivative. From (A.4), the potential energy of the flexible beam is:

{
v=1 /0 EI(v")dz

Clearly, in order to compute the Lagrangian using the kinetic and potential
energy expressions, the displacement of each point on the beam, v(z,t), must be
known. For control purposes, it would be preferable to have a semi-discretized rep-
resentation (an ordinary differential equation), resulting in a finite-dimensional sys-
tem rather than the infinite dimensional system that arises from the partial differen-
tiation of v(z,t). For this purpose, the assumed modes approach of Meirovitch [81]
will be employed. In this method, it is assumed that the variables may be separated
such that the beam deflection takes the form:

v(z,t) = &()Q(¢)
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The function Q(t) is a time-varying function that modulates the modal shape func-
tion, &(z). A modal shape function which approximates the exact solution is cho-
sen. The Euler-Lagrange dynamic equations are then used to solve for Q(t). Such
an approach mirrors the Rayleigh Method referred to in [82]. The result should

provide a good approximation to the actual beam dynamics (in an L, sense).

Mode shape functions for the Euler-Bernoulli beam model and clamped-free
boundary conditions are derived in Appendix B. The Euler-Bernoulli beam model
assumes that plane faces remain plane within a beam element and factors such as
rotary inertia and shearing deformations are ignored [82]. These assumptions are
standard and are appropriate for the flexible link employed in this work. While par-
ticular mode shapes are not assumed in the general model of this chapter, torsional
vibration and shearing deformation are ignored, consistent with an Euler-Bernoulli
beam model. However, an important observation from the derivation in Appendix B
is that the separation of variables assumption typically leads to an infinite number
of particular solutions, ¢:(z) and g:(t), = 1...00. The total solution is the sum

of the particular solutions, whence:
vz, t) =Y di(x)alt) (3.25)
i=1

A convenient property of the mode shapes for the clamped-free beam that will
be referred to throughout this chapter is orthogonality i.e. that for ¢ # j:

{
/0 $:(z)di(z)dz = 0
{
and ‘/0‘ ¢:(z)d(z)dz =0

From (B.14) and (B.15) in Appendix B, it is clear that these two “orthogonal-
ity” relations hold if the beam has uniform mass density, EI is constant and the
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boundary conditions for the beam satisfy:
¢! (N¢;(1) — ¢1"(0)45(0) — ¢{(1)#5(1) + ¢{(0)¢5(0) =0 Vi, j

This relationship is valid for a variety of boundary conditions, such as clamped-
free, clamped-pinned and clamped-clamped. Also, as discussed in Appendix B,
orthogonal mode shapes, ¢;(z), may be “normalized” such that:

!
f $i(z)dz =1 Vi
0

Kinetic Energy for the Single Flexible Link

The displacement, v, for an unforced clamped-free beam takes the form of equation
(3.25), where the modal shape functions, ¢;(z), are defined by equations (B.8)-
(B.9). In the case of the single flexible link shown in Figure 3.1, the hub actuator
exerts a force on the link. However, a reasonably accurate model of the single flex-
ible link behaviour can be obtained by assuming that the modal shape functions
are the same as those of the unforced clamped-free beam. while the time-varying
functions, g¢;(t), are treated as the generalized coordinates. Thus, instead of us-
ing ¢;(t) = ™“i*, the Euler-Lagrange formulation is employed to determine the
governing equations for each ¢;(t). Note that by using the eigenfunctions for the
clamped-free beam, the orthogonality and normalization relationships hold. Fur-
thermore, for practical purposes, let the displacement v(z, t) be approximated using

a finite number of modes, n. Thus,

oz, t) & ) dilz)alt) (3.26)
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Now, consider the kinetic energy of the single flexible link, as defined by equation

(3.24). The time-derivative of the position, P, is:

P _ —zqo SiIl((]o) - ‘vqb COS((]Q) +v Sill((]o)
zqo cos(qo) — vqosin(go) + v cos(qo)

Thus,
BTP = 222 sin*(go) + v*d2 cos*(go) + 97 sin?(go) + 2ved? sin(go) cos(go)
+ 20z4o sin®(qo) + 2v9qo cos(qo) sin(qo)
+ £*4j cos?(qo) + v*§3 sin®(go) + ¥° cos’(go) — 2vz4g sin(go) cos(go)

+ 29z cos?(go) — 2vvqo cos(go) sin(qo)

= zgg + v’ + 9 + 20zdo
Substituting the above expression into (3.24), the kinetic energy, T, is:
1 ! 1
T = L1t + 3o / (2? +v?)dz + Lp / #%dz + dop / ozdz (3.27)
0 0 0
Now, from equation (3.26):
n
(A Z (ﬁ,'q,'
’ : n
R ) Y hidigigs

i=1 j=1

! n n .
/0 vz Y Y A $i;dzgiq;

=1 j=1

noa
= Z / ¢idzq? by orthogonality
i=1 VO

= Z q¢? by normalization
i=1
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Similarly,
l n oAl
/ vidz ~ Z / Pdzg? by orthogonality
0 i=1 Y0
= z ¢} by normalization

i=1
Substituting this result into equation (3.27), the kinetic energy in terms of the

eigenfunctions and generalized coordinates is:

n n n L
T=; (Ih*'%Pls‘*‘PZ‘Iiz) ‘ig'*‘%PZd‘?'*‘PQoZdi/ z¢idz
0

i=1 i=1 i=1
Potential Energy for the Single Flexible Link
As derived previously, the potential energy for the single flexible link is:
V= %/: EI(v")dz

Let )\; and w; be defined as in Appendix B for ¢ = 1...n. From equation (3.26):

n
N
i=1
n n
A=Y Y e
i=1 j=1
{ n on L
o [ e n >SS g [ ey
0 i=1 j=1 0

n t
= Z ¢ / (¢7)*dz by orthogonality
i=1 Y0

= Z Aig? by normalization and (B.16)

i=1
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Thus:

i=1

=1p) wiq} by (B.11)

i=1
Euler-Lagrange Equations for the Single Flexible Link

Combining the expressions for the potential and kinetic energies, the Lagrangian
of the system, L =T -V, is:

L=3 (Ih+ 3p13+qug) do + 2qu, +pqqu,/ zéidz — %przqf

i=1 i=1 i=1
Let 7; be the generalized force acting upon the generalized coordinate, ¢;. The
Euler-Lagrange equations stipulate, for each generalized coordinate:

d (0L dL
— — — — ii 1 = g ey .2
7 (3&5,') aq, i, =0 n (3.28)
Now, for the rigid body mode, corresponding to generalized coordinate, go:

oL _

9g,

aL 3

3 = \ B + Lpl +pzq; qo+qus z¢.-dz

0 1=1

Hence, if T is the torque exerted by the motor at the hub, then by equation (3.28):

(Ih + 30l +p Z q;) do+2p Z Gidido + pZ @ / zhidz =T (3.29)

i=1 =1 =1
For the kth flexible mode, corresponding to generalized coordinate, gx:

oL PUwE + Perdl
a - = —pqk (3
aqk k (1]

8L . .
5}; = pdr + pdo jo zdpdz
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Since there is no generalized force acting upon the flexible modes, 7 = 0. Hence:

{
Pk + Pdo / zérdz — pards + pquwi, = 0
(1]

(3.30)

Equations (3.29) and (3.30) define the dynamic equations for the single flexible link

shown in Figure 3.1. Define:

14
ﬂi:/; :c¢;(:z:)d:c

q= [¢Io b Qn]T
T = [T 0 ) O]T
In+3mlP+p3 70 ¢
PP
M(q) = ]
I PBn
2p (2;1 id:) do
.2
. —Pq19q
C(q,9) = . °
| —Peadd
0
2
K=| 7
I pwa,

Then equations (3.29) and (3.30) may be written in matrix form as:

2

B

pﬁn-

EI\

El\,

M(q)a +C(q,q) + Kq=T

Note that the inertia matrix is symmetric.

(3.31)
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Only M(q) and C(q, q) are functions of the generalized coordinates. Define:

In+3ml® pBy -+ pPa
-A—J-= P.ﬁl P
| PBn P ]

It is easily shown that by linearizing (3.31) about the stationary operating point
q = 0 and q = 0, the inertia matrix becomes M and the centripetal and Coriolis
terms disappear. To put the linearized equations into state-space form, define the

state vector:

x=[qo e qu dﬂ oo qn]T

Let the output, y, be defined in traditional fashion as the arc length from the base
frame to the tip of the beam:

y(t) = lgo(t) + v'(‘l,t)
~ lgo(t) + ) $i(D)ai()

i=1
Since small deflections have been assumed, the distance v(l,t) may be used to
represent the tip deflection arc. The arc length is a natural displacement for the
rotary single flexible link and its use avoids the trigonometric relationships inherent
to a Cartesian displacement. Let ¥ = [] $i(l) -~~~ ¢n(l)]- Then, the dynamic

equations in state-space are:
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3.4 Forward Kinematics

The dynamic equations for a simple single flexible link experiment have been derived
in the preceding section. The full dynamic equations for a flexible link mounted
upon an arbitrary base robot will now be considered, using the same assumed modes
approach of Meirovitch [81] for modelling the flexibility that was employed in the
preceding section. The flexible link attached to a base robot is shown schematically
in Figure 3.3. Let:

Zo-Yo-zo = base frame of the base robot
T.-Y.-2z. = frame of attached end of flexible link
[ = length of flexible beam
m = degrees of freedom of base robot
q(t) = generalized coordinate vector of base robot, q(t) € R™
H§(q,t) = homogeneous transformation relating base frame to flexible frame
v(z,t) = deflection of flexible beam in y. direction

w(z,t) = deflection of flexible beam in z. direction

The undeflected beam lies along the z. axis. The beam is assumed to be a line.
Hence, there are no rotational inertia effects. It should be noted that in specific cir-
cumstances, this assumption can lead to misleading results. In particular, suppose
the base robot consists of only a rotary motor and the flexible beam is mounted
such that its neutral axis corresponds to the axis of rotation. Assume the actuator
has no rotational inertia. Since the beam is also modelled as having no rotational
inertia, the kinetic energy of the beam will be zero and the resulting inertia ma-
trix will be singular. Such singularity is not possible for a real physical system.
However, by accounting for the rotational inertia of the actuator, the singularity
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Flexible link

Zy

Figure 3.3: Flexible Beam Mounted on a Base Robot

problem disappears and the model is more realistic. Generally, a base robot has
non-zero inertia with respect to each axis so the assumption that the beam has no

rotational inertia is reasonable and will not result in a singular inertia matrix.

It is further assumed that beam deflections are small and extension or compres-
sion of the beam along the z. axis is negligible. Hence, the point p expressed in

frame e coordinates is simply:
P(z,t) = [z v(z,t) w(:c,t)]T (3.32)

The assumed modes approach will be used for modelling the flexible beam. Define,
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fort=1...00:

wi(z) = mode shapes of the beam in the y. direction
v;(t) = generalized coordinates of the beam in the y. direction
¥i(z) = mode shapes of the beam in the z. direction

7:(t) = generalized coordinates of the beam in the z. direction

Thus, the beam deflections v(z,t) and w(z,t) may be written:

v(z,t) = Z(p;(m)u;(t) (3.33)
w(z,t) = Z Dilz)mi(t) (3.34)

For convenience, define the n-vectors:

p(z) 2 [py(z) -+ on(z)” € R™! (3.35)
B() 2 (z) - Yala)]" €R (3.36)
v(t) 2 [n(t) .- wa(t))T € R (3.37)
n(t) £ [p(t) - ga(t)]T € R™! (3.38)

and write the base robot generalized coordinates as:
a(t) = lgo(t) -+ gu-1(t)]* € R™! (3.39)
Hence, by (3.33) and (3.34):

o(z,t) = 9 () T(t) (3.40)
w(z,t) = $(c)Tn(t) (3.41)
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3.4.1 Translation

The homogeneous transformation HS of Figure 3.3 may be expressed in terms of
a rotation matrix, R = R§(q,t) € SO(3) in conjunction with a translation vector,

d = di(q,t) € R**!, as follows [12]:

R d
H; =
0 1

(3.42)

Similarly, the coordinates of the point p on the flexible beam, expressed in base
frame coordinates, pg, represents a translation from the base frame to the point p

on the beam. Clearly by (3.40)-(3.42):

T
po=H; |P| ~ R |oTw| +d (3.43)
1 T
P'n

3.4.2 Orientation

In order to have a complete homogeneous transformation from the base frame to a
point on the flexible beam, the orientation of the beam at the point, p, must also
be considered. Observe the frame attached to point, p, in Figure 3.4(a). The z,
axis of the frame is tangential to the neutral axis of the beam. The y,-2, plane lies

in a planar cross-section of the beam at point, p.

The tip deflection of the beam is modelled by two displacements: v and w, in
the y. and z. directions respectively. Rotation about the z. axis, or roll, is not
considered so the orientation of the frame z,-y,-z, may be expressed by two angles,
0 and ¢, representing pitch and yaw respectively. These two angles are illustrated
individually in Figures 3.4(b) and 3.4(c), and together in Figure 3.4(d).
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(a) Axes at p

(d) Angles

Figure 3.4: Flexible Beam Orientation at Point, p, Along the Beam
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It is clear from Figure 3.4(d) that the transformation from frame e to frame p
may be accomplished by first rotating frame e through an angle ¢ about the y. axis
to get a new frame, frame €’. Denote this new frame by z/-y.-z.. Rotate frame ¢’
about its z/ axis to get frame p. Since small deflections are assumed, the same
result may be obtained by rotating about the z. axis first and then about the y.
axis.

Let Ry, be the rotation through angle ¢ about the y.-axis and R.¢ be the
rotation by 6 about the zl-axis. Then the net rotation matrix, RF, from frame e to

frame p is [12]:
cos(f) cos(¢) —sin(f)cos(¢) sin(@)
RE=R,4R.p = sin(6) cos(8) 0 (3.44)
—cos(f)sin(¢p) sin(d)sin(p) cos(@)

For convenience, define:

(=0
From Figures 3.4(b) and 3.4(c):
6 =tan~'(v'),  sin(8) = 1—_‘;(@- cos(8) = J—1j=@_)? (3.45)
¢ = tan™'(w), 4 - (3.46)

)= Frer U Arer

Assuming small deflections, let (v')? = (w’)? = v'w’ = 0. Hence, from (3.44)-(3.46):

Thus, by (3.40) and (3.41), the overall rotation between the base frame, zo-yo-2o,
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and frame zp-y,-zp is:

1 _UT‘pI nT¢/
RE=RRE~R | uTy 1 0 (3.47)
-7y’ 0 1

Equations (3.43) and (3.47) define the homogeneous transformation between
the base frame and the frame z,-yp-2,. The position and orientation of the tip of

the beam are found by evaluating equations (3.43) and (3.47) at z = [.

3.5 Velocity Kinematics

The preceding sections derived the position and orientation of a point, p, on the
flexible beam with respect to the base frame. In order to determine the kinetic
energy of the system, the velocity of each point on the beam must also be known.
Recall the position, pg, of a point p on the beam from (3.43).

z
Po=Rp+d  where p= |oTy
%'
Let:
w = angular velocity of frame e expressed in base frame coordinates
Then by the chain rule of differentiation:
Po=Rp+Rp+d
=Rp +S(w)Rp+d using (D.7)
= Rp + RS(R*w)p +d using (D.6)



CHAPTER 3. MODELLING 74

But RTw is simply the angular velocity of frame e expressed in frame e coordinates.

Define:
Q2 RTw (3.48)
Hence:
Bo = Rp + RS(Q)p +d
= Rp - RS(p)Q +d by (D.4) (3.49)

Note that R, d and Q are strictly functions of the base robot generalized coordi-

nates, q, while p is strictly a function of the flexible coordinates, v and 7.
Now, the angular velocity, 2, may always be expressed as:
Q=J%  where J%(q) e R**™ (3.50)

This fact is easily shown by considering the inverse of the skew-symmetric operator
S(-). Let A = [a;;] be an arbitrary matrix in $S(3). Define the inverse skew-
symmetric operator, S™'(A) : $5(3) — R3, by:

a3z

S7H4) 2 |ay (3.51)

azi

The inverse skew-symmetric operator is clearly linear. From (D.6)-(D.7) and (3.48):

S(0) = RTR
-2 =SYRTR) using (3.51)
m—1
=8| RT %q.- using the chain rule
=0 a i
= Z st ( TaR) by linearity of S7(-)

) )
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Hence,

Jn=[s-1 (RTgf) ... gt (Rr_an_)] (3.52)

99,

Now, define the 3 x m matrix:

2 0d
rEs (3.53)

Using (3.15), (3.22), (3.50) and (3.53) in (3.49):
Po = Rp - RS(p)J/%q+ J*q
=R0 v @ +(J°—-RS(p)JV)q since £ = 0

~ R0 T ¢Tq" +(J°—RS(p)J?)q from (3.40) and (3.41) (3.54)

Let:
0 o) 0 q(t)
B(z) & [ pLz ] ER™S and Q) 2 |y(t)| € RO (3.55)
0 0 (=)
n(¢)
and define the 3 x (m + 2r) Jacobian matrix: |
J2 (" - RS(p)J%) RET| (3.56)

Note that only S(p) and & are functions of z. Combining equations (3.54) and
(3.56):
q
po=J |p| = JQ (3.57)
n
This equation provides the relationship between the generalized coordinate deriva-
tives and the velocity of each point on the flexible link.
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3.6 Force-Torque Relationship

Of obvious interest for force control is the relationship between the torques exerted
by the robot actuators and the force at the end of the flexible beam. Let:
F = generalized force exerted at a point z along the beam
X = displacement of the beam element at z
dX = incremental displacement of the beam element at z
T = generalized forces exerted by the robot actuators

dQ = incremental change in the generalized coordinates
By the Principle of Virtual Work [12]:
FTdX = vTdQ
But from (3.57), X = JQ. Hence dX = JdQ, whence:
FT7dQ = r7dQ
r=J'F (3.58)

Thus, given a desired end-point force, or force anywhere along the flexible beam,
the required joint torques may be readily calculated using (3.58). Note, however,
that since equation (3.57) relates the coordinates of the end-effector in base frame
coordinates to the generalized coordinates, then the force, F, in (3.58) is also in

base frame coordinates, not end-effector coordinates.

3.7 Kinetic Energy

In order to derive the dynamic equations using the Euler-Lagrange approach, the

kinetic energy is required. Since no restrictions have been placed on the base robot
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up to this point, only the kinetic energy of the flexible beam will be considered.
The kinetic energy of the base robot may be derived separately since energies are

additive. Assuming the beam has uniform linear mass density, let:

Ky, = kinetic energy of the base robot
K; = kinetic energy of the flexible beam
my = mass of the flexible beam

p = linear mass density of the flexible beam
From standard vibration theory:
Ky =4 [ 3podm (3.59)

Substituting (3.57) into (3.59):

Ki=1p /0 ' QTITIQdz
But Q is independent of z, hence:

Ky =1pQT /0 ‘ JTJdzQ (3.60)
Thus, a quantity of interest is the symmetric matrix, JTJ. By equation (3.56):

J% = [(J* - RS(p)J%) R<I>T]T (7 - RS(p)J%) R&"|

_ |(J* = RS(p)JMT(J* - RS(p)J®) (J*— RS(p)J?)TRET
BRT(J® — RS(p)J®) BRTRPT

For convenience, define the following quantities:

x1 = S(p) xz2 = ®S(p)
xs 2 S(p)T S(p) X4 2 38T



CHAPTER 3. MODELLING 78

and
@ 2 BRTJY = xJ®

whence, using the orthogonality of rotation matrices:

ey l:((JU)TJu - (JQ)TX'{RTJ” - (J”)TRXIJQ + (Jﬂ)TXaJn) w'r] (3.61)

w X4
Ounly x; through x4 and @ are functions of z in this equation. Indeed, in w, only
® and yx, are functions of z. Hence, to solve for the integral in equation (3.60), the

following quantities must be evaluated:

{ {
ay, é/ pdz ay, é/ Ydz (3.62)
0 0
and the integrals:
{ {
=, 2 [ S(p)dz =, & / & S(p)de (3.63)
¢} 1}
{ ]
=2 [ S(p)TS(p)dz z, 2 / 88T dz (3.64)
(1) 0

Now consider each of the integrals, =; through =;. Each of the terms has

particular significance that will be discussed in the ensuing subsections.

3.7.1 Centre of Mass

The quantity Z; is related to the centre of mass of the flexible link with respect to
the clamped frame. For, by definition of the centre of mass, pem:

1 1/
Pm—m—f/Pdm-TLsz

i
<o S(Pem) = %/(; S(p)dz, by liearity of S
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from which:

Z1 =1 3(Pem) (3.65)

Since the generalized coordinates v and 7 are independent of z, =; may be expressed

in block matrix form, using (D.1), as:

0 -aln alv
~atv i 0

Note that a, and a, are constant, so =, is a linear function of the generalized
flexible coordinates, v and 7. Also, by setting ¥ = 0 and 5 = 0, the centre of
mass of a rigid beam may be extracted. In this manner, =; may be separated into
a “rigid” component and flexible “correction” terms. Also, it is clear from (3.66)

that:

Pem = {12 vTa, nTaul’ (3.67)

3.7.2 Cross-Coupling

The quantity =, is part of the cross-coupling terms in the JTJ matrix. In particular,
it will be shown that =, includes the coupling terms between the two modes of
vibration. Also, it should be noted that =; contains no contributions from the base

robot. It is purely a flexible term.
From equations (D.1) and (3.55):
[ ew 0 -—pz
_—¢v Yz 0 J
[ o9™n 0 —pz
—¥eTv Yz 0 }

®5(p) =

(3.68)
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Define the constant n x 1 vectors 8, and 83, and the constant » x n matrix, v, as

follows:
B, & fo ltpzd:c (3.69)
8, 2 fo  pade (3.70)
)& /0 lcpt/Jsz (3.71)
Hence:
=, = / " 85(p)dz ~ [ L ] (3.72)
0 4T B, O

The quantity v is worth further consideration. Consider each element of the

matrix «:

{
7i5=/¢p;¢jdz, ,7j=1,...,n
0

7 clearly represents all the cross-coupling terms between the two modes of vibration.
However, consider the factors which determine the mode shapes. From equation

(B.8) in Appendix B, when an Euler-Bernoulli beam model is assumed the mode

shapes take the same form regardless of the physical parameters:
wi(z) = C cos(piz) + Casin(p;z) + Cj cosh(p;iz) + Cs sinh(p;z)

This mode shape is the general solution to the unforced Euler-Bernoulli beam equa-
tion. The constants are solved by substituting the appropriate boundary conditions,
as well as the modulus of elasticity, moment area of inertia, and linear mass density.
The frequencies, p;, of the mode shapes also depend on these boundary conditions.
For example, for the clamped-free mode shapes in Appendix B, the modal frequen-

cies are determined by the characteristic equation (B.9):

cos(pl) cosh(pl) = -1
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The clamped-free mode shapes are also orthonormal, another property that often
arises. Hence, if the boundary conditions and moment areas of inertia are the same
for both directions of vibration (for a uniform beam), then the mode shapes, ¢ and
1, will be identical. In this case, assuming orthonormality of the mode shapes,

~v=1

3.7.3 Moment of Inertia of the Flexible Beam

Consider the elements of the matrix xs:

V¥ +uw?  —zv —-TWw
xs=S()TS(p) = (PP -pp" = | ~zv z+uw?® -—ww
—zw —vw  z2 422
vToeTv +nTyYpTn  —zeTv ~zpTn
= —z¢Tv 2+ 0Ty —vTeyTn
—zyn Ty 2 +vTepTy

From the form of x3, clearly p=3 = [ x3dm is the mass moment of inertia. Assuming

orthonormality of the mode shapes:

/: pplde =1 and '/: YyTdz =1
Hence:
, viv+qT™n  -Bjv -Bin
= /0 S(p)* S(p)dz = -Blv  B+qTyp Ty (3.73)
-Bon —vTyn B +0Tr

Note once again that if the mode shapes are the same for each direction and are
orthonormal, then v = I. Also observe that =; is quadratic in the generalized

coordinates.
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3.7.4 Purely Flexible Component

The quantity =, represents the purely flexible component of the kinetic energy term.

From the definition of & in equation (3.55), the integrand of =; may be expressed

g7 = |¥¢ O
0 oyt

Assuming orthonormality of the mode shapes, clearly:

in block matrix form as:

l
T = f ®¢Tdz = I (3.74)

o

3.7.5 Inertia Matrix

Now that the integrals =, through =4 have been evaluated, define:

AL

0 a, O
, O2 ARTJY - Z,J° (3.75)
¢ 0 au

Then the flexible inertia matrix, Dy, is:

4
Dy zp/ JTJdz
0

((JV)TJUZ - (J‘Q)TE’II‘RTJu _ (Jv)TREIJﬂ + (JQ)TSSJQ) ot (3 76)
— p .
o I
Thus, the kinetic energy contribution of the flexible beam may be written:
K;=1Q"D,Q (3.77)

Consider the individual terms in (3.76). The term p(J*)TJ*l = my(J*)TJ* rep-
resents the purely translational kinetic energy of the flexible beam based on the
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motion at the clamped end of the beam. The term (J*)TR=Z,J? and its transpose
represent the correction terms due to the fact that the clamped end of the beam
was used as a reference rather than the centre of mass. This fact is readily apparent
from the relationship between =, and the centre of mass of the flexible beam in
(3.65). The centre of mass was not used as the reference point in the derivations
because it is constantly changing for the flexible beam, while the clamped end is

always fixed.

Finally, the term (J®)TZ3J% is clearly the purely rotational component of the
kinetic energy since p=; is the moment of inertia of the flexible beam. The cross-
coupling terms of =, are naturally in the off-diagonal matrices of the inertia matrix.

Note that the inertia matrix is symmetric as expected.

3.8 Potential Energy

The potential energy is also needed to derive the dynamic equations using the
Euler-Lagrange approach. Both the gravitational potential energy and the elastic

strain energy must be examined. Let:

Vi, = gravitational potential energy of the flexible link

V4, = elastic strain energy of the flexible link

3.8.1 Gravitational Potential Energy

The gravitational potential energy is readily computed using the centre of mass.

Using (3.67), the height, h, of the centre of mass, in base frame coordinates, is:

kh=[0 0 1}(Rpem +d)
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~h=[0 0 1 (R[%l2 vTa, nTa.) + ‘d) (3.78)
The gravitational potential energy is:

Vig = mygh (3.79)

3.8.2 Strain Energy
Define:

E = modulus of elasticity of the beam
I, = area moment of inertia in the v-direction

I, = area moment of inertia in the w-direction

From standard vibration theory (see (A.4) in Appendix A), the elastic strain energy
of the flexible link is:

¢ ¢
Vi = %/o EIv"(z,t)%dz + %/(; El,w"(z,t)%dz
{ {
=1 [ BLu(e e @) () u(ds + } [ ELn/T " ()" (=) n(t)dz
0 0

However, assuming orthonormality of the mode shapes and an Euler-Bernoulli beam

model, there exists AY,2 =1,... ,n such that:
X, i=j
0, t#jJ

This fact is clear from Appendix B by combining (B.16) and (B.20). Note that the
A! are a function of the natural frequencies of the beam. A similar relationship

{
]0 o!(z)p! () dz =

holds in the w-direction, with corresponding constants A¥,7 = 1,... ,n. Define the
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constant diagonal matrices:
A2 and Aw 2

Hence, the elastic strain energy may be written:

Vie = LELVTAw + LELnTAun (3.80)

3.9 Dynamic Equations

3.9.1 General Equations

Before addressing the detailed expressions for the dynamic equations, it is instruc-
tive to examine the Euler-Lagrange formulation in a general form so that the results
may be applied to the rigid robot as well. Hence, consider any robot which satis-
fies the conditions for the Principle of Virtual Work and for which the kinetic and
potential energies take the following form:

Q = generalized coordinates of the robot, Q(¢) = [Qi(t)] € RV*!
K =1Q"D(Q)Q
V=V(Q)

where D(Q) is a symmetric, positive-definite inertia matrix.

Most conventional robot manipulators satisfy these conditions. Indeed, from

the previous section, it is clear that the flexible beam energies also satisfy these
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assumptions. Now, let:

F.:: = the net external force acting on the robot end-effector, F.,; € c3xt
J(Q) = the Jacobian mapping joint velocities to end-effector velocities

T = the torque exerted by the robot motors
and define the Lagrangian:
LEK-V
The Euler-Lagrange equations stipulate [12], in vector form, that:

T A T
58"~ ()" - snorn

Examine the second term in the Euler-Lagrange formulation:

oL 0K _ v
9Q — 9Q  9Q
From (3.15), (3.16) and the form of K:
0K _, 0 (o
5q = s (Q (DQ))
9K _ 510
" 3Q 1Q (1 ®Q)

Similarly, from (3.13), (3.15), (3.18), (3.19) (3.20) and the fact that D(Q) is sym-

metric and only a function of Q:

dL 0K

T
aQ aq"Q

Thus, from (3.14) and (3.17)

(gé) @D +QT30(Q® I)
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For convenience, define:

T
A D
8@ 2 (5¢) and D@50

Then from the symmetry of D(Q) and (3.7), the equations of motion are:
D(Q)Q +((QT ® In) - }(Iv ® QM) D'(Q)TQ + g(Q) = 7 — J(Q) Feze

To simplify further, use the transformation of (3.2) and define the N? x N? constant

matrix:

Z & Tyn — 3In
and let:

c(Q) £ zD'(Q)” (3.81)
Thus, application of (3.4) yields the general dynamic equations:

D(Q)Q + (I ® QT)C(Q)Q +&(Q) = 7 — J(Q) Fez (3.82)

The matrix C(Q) lies in RV**¥_ Partition C(Q) into submatrices Cx(Q) € RV*V
such that:

C.(Q)
c(Q)= :
Cn(Q)

The expression (Iy ® QT)C(Q)Q may be rewritten in the form:
QTC1(Q)Q
(Iv®QT)C(Q)Q = z e RV
QTCn(Q)Q
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Let d;; denote the (7, 7)-th element of the inertia matrix D(Q) and let c;; represent
the (Z, j)-th element of Ci(Q). It may be shown that:
ddi; Odis 0d.-~}
1 j i
Cijik = 3 + -
T { 9Q; * 0Q; 9Q,
The terms c;;x are known as the Christoffel symbols of the first kind [12]. Hence,
C(Q) in (3.81) is actually a matrix of all the Christoffel symbols. Furthermore,

since cijx = Cjik, each submatrix Cy is symmetric i.e., Ci = C,;r . This fact can also

be deduced from (3.81), (3.9), (3.2) and the symmetry of D(Q).

3.9.2 Flexible Dynamics

Since expressions for the kinetic and potential energies have been derived in terms
of the mode shapes, ¢ and 1, and the generalized coordinates, v and 7, the Euler-
Lagrange equations for our particular configuration may now be formulated. Define
the Lagrangians:

L2 K-V,
Ly 2 K;—V;
Lé[;b-l-Lf

where subscript b denotes the base robot components, and subscript f denotes the
flexible link components. Note that while K} is a function of Q and Q, as defined
in (3.77), V; is only a function of Q. Clearly, Ky and V; satisfy the assumptions of

the preceding section. Assume the base robot also satisfies these conditions. Let:

N2n+2m
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Then due to the additive nature of the Lagrangians, the dynamic equations for the

overall system may be written:

D(9)@ + D4(Q)Q + (In ® 4¥)Co(@)a + (In ® QT)C1(Q)Q

(3.83)
+g5(q) +8¢(Q) = 7 — J(Q) " Feze

Note that the terms involving only the dynamics of the base robot have been
separated from the terms comprising the dynamic contributions of the flexible link.
Furthermore, the structure is hierarchical. The base robot terms are a function
of only the base robot generalized coordinates, q(t) € R™*!, The flexible terms
are a function of both the base robot coordinates, q, and the flexible coordinates,
v and 7). Also note that the derivatives of the generalized coordinates have been
extracted from the centripetal and Coriolis terms, so that the quadratic nature of

these terms is clearly evident.
Now consider each of the flexible link components. From (3.79) and (3.80), the
total potential energy for the flexible link is:

V; =mysgh + YELVTAw + JELNT Aun

Note that & is a function of Q. By (3.15):

OV 0h o O an ) ag O
2Q = mfgaQ + "’EI"0Q (vTA) + 3EI'"8Q (" Awm) (3.84)

But by (3.21), (3.13), (3.18), (3.19), (3.20) and symmetry of A,:

a -

Fg ™M) = [£07Aw) £0A) (T AW)
=[o Z@rAw) 0
:0 2vTA, 0]
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Similarly,
anTAwﬂ T
1o g )
Substituting these results back into (3.84) yields:

av; dh
T_ 7L _ kel T T
g:(Q)" = 7Q =~ ™95q +E [0 vV ILA, 7 I,,,A,,,]
Now, by (3.21):

o _[oh 2t o
dQ |8q v an

and by (3.78) and the matrix calculus properties (3.15), (3.16) and (3.22):

dh JdR

6—q'=[0 0 % (%(Im®[§!’ via, nTaw])T‘*'U")
Ok

oy =[0 0 HED a o

dh

5, =10 0 HED 0 a,l”

90

(3.85)

(3.86)

(3.87)

(3.88)

The flexible inertia matrix, Dy has already been defined in (3.76), but for con-

venience, define its submatrices as:
Dy = (JV)TJ¥1 = (JITETRTJY — (J*)TRE,J® + (JB)TEJP
Dy =11 = ARTJ® — Z,J°

such that:

By (3.22) and (3.23):

8Dy 9(D})
9Ds _ |2q" ~oq P
aQ 8Dy 8Dy | ™M
3Q aQ

(3.89)
(3.90)
(3.91)

(3.92)
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and by (3.21):

aD;; _ 3Dij 3D,»,- 3D;J‘
9Q " "laq o on

Thus, consider each of the matrix Jacobians in equations (3.92) and (3.93):
8Dy _ ()

], ij=1,...,2 (3.93)

v O\ T
aq aq (Im ® J") + I(Ju)'raa'; _ a((;q) )(Im ® E'II‘RTJ-u)
(J“)T“Ta(R )(I ® J¥) (J“)TETRTaa—‘Z
_Q%)_)([m®REIJQ)_(Ju)TgR(I ®_1JQ) (Ju)TR_laa‘Zl
A((J™T) - = 9J%
+ Tq‘(lm ®SJ%) + (Jn)Tua-gq—
(3.94)
a_;'l'l‘ = —(J“)T@(In ® RTJ*) - (J")TRB“‘(I ® J%)
v a (3.95)
+ () (@ I
%Dll (J“)Ta(:l (I, ® RTJ*) - (J”)TRa“‘(I ® J9)
n a (3.96)
+ (JHT-= 7 (I, ®J%
8Dy, (9(RT) 9" _ aJ%
W—A( (I ®Ju) R-é-q_)__zaq (397)
aDZI a-—-z
365’ = a —(I.® J% (3.98)
21 952 Q
o = om (I.®J% (3.99)
T v\T
9 (;Z: 3((5 ) (1. @ RA) + (J”)TaR(I ® AT) - aL(I ®=T) (3.100)
8(DE) d(ET)
_aval = _(Jﬂ)'f.aT (3.101)
a(DT 8(=T)
a; —(JHT =21 n’ (3.102)
D _ (3.103)
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Applying the matrix calculus properties, and the partitioning equations (3.22),

(3.23) and (3.11), the partial derivatives of the flexible terms Z;,i = 1,... ,3 are:

o, _
v

a((Z2)")

v

O((E2)") _
an

0 0 af
0 0 T3.n
—al 0 0

0
aE 0 0 T3,n
0

0 0 0 T3,n

(3.104)

(3.105)

(3.106)

(3.107)

(3.108)

(3.109)

(3.110)

(3.111)
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P -BT 0

%i_s= I R — N (3.112)
|0 _nTyT 2T

R L T

%%: 0 T —uTy| Ton (3.113)
-8, —vTy 0

3.9.3 State-Space Representation

Consider the dynamic equations in section 3.9.1. To put these general dynamic

equations into state-space form, let:

X:£Q
X:2Q
X&xT xI*

U£|[T FE,,]T
Thus, from equation (3.82):
D(X1)X; + (Iy ® X3)C(X1)X: + g(X1) = Iy —J(X1)T|U

or in state-space form:

x; _ x2
X, —D(X,)™ (In ® XT)C(X1) X2 + g(X1))
(3.114)

+ ° U
[D(xt)-IUN —J(Xx)T]]
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3.9.4 Linearization

Once the non-linear state-space equations are defined, it is a simple matter to derive
a linearized state-space representation. Indeed, from (3.114), it is clear that the

general dynamic equations are already linear in U. For convenience, let:
P(X) 2 (Iy ® X3)C(X1)X: + g(X1)

and define:

Xe

F(X,U) =
( ) -D(X,)"'P(X) + D(X1) Iy —-J(X,)TIU

Fl(xa U) a
F,(X.U)|

To linearize (3.114) about an operating point, (X°, U?), compute constant matrices

A and B:

£ a_F. and B & 0_F
ax (xo'Uo) BU (xnyuo)
and define the incremental signals:
AX£X -X° and AU2U-U°
so that:
AX ~ AAX + BAU

Now from (3.21) and (3.22):

OF _ |5 % and oF _ |5

X 9F; 8F; au oF;

X, 89X, 8y

Consider each of the partial derivatives in turn:

dF,
ax, 0
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oF,
ox, =™
dF,  9(D(Xy)™!) . 0P
X, = X, (Iy ® P(X)) — D(X,)
(D(X,)™) T
+ —axl'— (IN ® Iy -J(X,) ]U)
F) T
+ D(X,)™! [0 ——(-{ch—)—)-] Pysn(In © U)
[ _, dP
X, ~D(Xy)™ X,
where the partial derivatives of P(X) are:
apP r 9C g
X, = (In@X;) 5 (IN®X2) X,
0P
—=(In® vec(IN)T) Py,... naC(X)X: + (In ® X7) C(X,)
X, -
Now, typically the operating point is chosen to be stationary with zero input, i.e.,
X3=0
U’=0

Substituting this partial operating point into the partial derivatives yields the state

matrices:

0 Iy

(In ® g(X1)) - D(Xy)' 2&- 0

A= |9(D(Xy)™)
X,

X,

[ 0
B =
-D(Xl)"l[IN -J(X;)T]
Note that for any system for which g(X,) = 0, such as a gravity-balanced rigid

manipulator, the A matrix reduces to a constant matrix independent of X?:

0 I
A= y
0 0
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While the A matrix will not be independent of X} once damping is introduced, it

is straightforward to add a damping term B(X,)X, to the model.

Similarly, for any system with a constant inertia matrix, D(X,) = M, such as

the single flexible link example of section 3.3, the A matrix reduces to:

0 In
A1
M O

The general model derived here is a full matrix representation of the Euler-

Lagrange dynamic equations. Hence, it is readily converted to state-space form
and coupling terms, etc. are easily discerned, and the quadratic nature of the
centripetal and Coriolis terms is clearer. Indeed, the Christoffel symbols are isolated
into a single matrix, C(Q) and a simple expression for C(Q) in terms of the matrix
Jacobian of the inertia matrix, D(Q), is presented. The model may be applied
to a rigid (or flexible) manipulator picking up a flexible payload. Separation of
the flexible terms aids in understanding the impact of flexibility on the dynamic
equations. In particular, it may be beneficial for understanding the effect of flexible
payloads on the dynamics of the manipulator. The model is hierarchical and may
be applied recursively to consider manipulators with multiple flexible links.

3.10 Rigid Links

The equations of motion were derived based on a flexible link. However, the same
derivation could equally well be applied to a rigid link. Indeed, the equations are
greatly simplified because in the case of a rigid link:

n=0 i.e., with no modes, matrix dimensions are reduced

v=w=0 i.e. there is no link deflection
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As a result of these simplifications, the equations in the derivation are modified as

follows:

in(3.32), p=[z 0 0"

oin(3.43), po=Rlz 0 0] +d

ein (3.47), RE=R

o in (3.56), J=J"— RS(p)J® € R
e in (3.57), po=Jq

0 0 0
ein (3.66), 2.=1{0 0 -3
0 2 o0

e in (3.67), Pem = [%I 0 O]T

e in (3.72), no longer relevant

0 0 0
ein (3.73), Za= (0 3P 0
0 0 38

e in (3.74), no longer relevant

oin (3.76), Dj =p((J")*J*l = (JHTETRT I — (J*)TREJ® + (J?)TE,JT)
ein(378), h=[0 o 1 (B 0 o +d)

e in (3.80), V}, = 0 since there is no strain

. dh
e in (3.85), QI(Q)T = mf!]g&

o in (3.86), %:[0 0 1] (g—i(lmeﬂ%z 0])T+J")
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3.11 Force Sensing

One objective in using flexible structures in robotics is to employ the robot structure
itself as a force sensor. Since strain gauges are inexpensive yet fairly accurate, such
an approach has evident cost advantages. To use a flexible link as a force sensor,
consider the Euler-Bernoulli beam model. From standard beam theory (see (B.2)
and (B.4)), the shear force acting on the beam due to bending, in the v-direction,

is:
Fy(z,t) = —ELv"(z,t)
= —(EL,h"Y)é,(z,t) from (C.1)
While the derivative of strain is not measured directly, it can be approximated from

strain measurements using a first-order Euler difference, whence for two strain gauge

positions, z; and z,:

Fy(z2,t) ~ ~(ELA™) (“‘v(“‘zvt) - eu(zut))

o — I
For small deflections, a crude approximation is obtained by considering z; = 0 and

z2 = l. For a clamped-free beam, the strain at the tip of the beam is always zero,

so this approximation yields:

F,(l,t)~ (if") €.(0,%) (3.115)

Hence, the shear force on the beam is approximately proportional to the strain
measured at the clamped end. In practice, as seen in section 5.2, this approximation
ends up being quite effective. Note that a more accurate result may be obtained

by using multiple strain gauges. The reader is referred to [80] for such a case.
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3.12 Single Flexible Link Revisited

In order to demonstrate the validity of the derived equations, the general model will
be applied to the traditional single-flexible link experiment depicted in Figure 3.1.
The apparatus consists of a flexible beam attached rigidly to a motor shaft at one
end, and free to vibrate at the other end. The homogeneous transformation relating

the base frame to frame e consists of the rotation:

cos(qo) —sin(go) 0
R = |sin(g) cos(g) O
0 0 1

and a translation:

d=[o o o

There is only one base generalized coordinate, go. Hence, m = 1. It is easily seen
that:
J=0 0 of (3.116)

JP=[0 o 1t (3.117)
Substituting these equations into (3.56):

—zsin(g) — TV cos(qo) —sin(go)p” O
J =] zcos(q) — ¢ vsin(g) cos(g)e® 0| € R3x(1+2n)
0 0 YT

This Jacobian provides both the velocity kinematics and the relationship between

the motor torque and the resulting force anywhere along the length of the beam.
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Now consider the flexible inertia matrix, Dy. Substituting (3.116) into (3.89) -
(3.91):

Dn = (JQ)TEQJQ
D21 = —Ean

Dyp=1

Note that Dy; contains only the purely flexible term =3 because there is no trans-
lation of the clamped end of the beam - it is attached to the hub. Substituting
(3.117) into these terms:

D11 = %13 + VTV

Du =(g7 o
Hence, the flexible inertia matrix has the very simple form:

T
W+ B, 0
Di=p B, I 0
0 0 I

Knowledge of the flexible inertia matrix allows the kinetic energy in the system due
to the flexible beam to be calculated via equation (3.77). The inertia matrix is also

present in the final dynamic equations. Now, from the above Jacobians:

8Jv
79 =0 o of
§J%

3;=[0 o of

Thus, from (3.94)-(3.103), the partial derivatives of the inertia matrix elements are:

9Dy,

dq =0
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Note that:

dv
dDyn

= (J“) (I ® J%

(J")Ta““(f ® %)

2 _9

aDn_ 3._.2 Q
63” =~ —([® J%)
Dy _ 0%, a

Tsn(ln®J% =[0 0 I)°

Hence, substituting (3.117) into these equations, along with the partial derivatives

of =, and Zj yields:

whence:

aDu _ T
P 2v
dDy
am
0Dy
v =0
0Dy
an =0
oD 0 2T 0 l 0o ... 0
Q| 9 o0 o | 0 o R

1 n n 2n 2n
Evaluating the centripetal and Coriolis terms using this expression and (3.81)

leads to:

2VTildo
(142, ® QT)C(Q)Q =p| —vg?
0
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Also, looking at the rotation, R and equations (3.86)-(3.88):

dh
5;—0
oh
a_V_O
dh | ¢
an 1T

Let I, be the hub inertia of the motor. Then substituting the above results into

the general dynamic equation (3.83) and (3.85):

In+ Smgl? + pvTv pBY 0| |do 0 9
eB, pl O0f o]+ ELA, v
0 0 pl| |7 ElAuw| |7
200 o 0 -
+|—pr@ |+ 0 | =|0]|-J(Q) Pex
0 PgCty 0 ]

Comparison with the single flexible link example in section 3.3 verifies that the
general dynamic equations have yielded the correct result®. Note that the extra
rows corresponding to 71 are present because deflections in the vertical direction
are included in this more general model. The term $myl? represents the rotary
inertia of an equivalent rigid beam. Hence, the extra factor pvTv accounts for the
deflection of the flexible beam in the horizontal plane. It is also clear from the
off-diagonal elements of the inertia matrix that there will be coupling between the

hub angle and horizontal vibrations, as expected?.

The model predicts that at equilibrium (presuming F.z = 0), there will be a

v here is equivalent to [g, ... gq,] earlier
‘There is no interaction with the vertical modes, 77, because axial extension and compression

of the beam has not been modelled
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sag in the beam due to gravity such that:

Lim n(t) = —pg(ELuAw) " aw

3.13 Five-Bar Linkage Robot

m
o3 link 4 link 5
link 3 link 1
q1
42/ \\
link 2 U
mp1

Figure 3.5: Five-Bar Linkage Robot

The model derived in this chapter applies to a flexible link attached to an arbitrary
robot. The experimental setup used for most of the experiments in this research
comprises a five-bar linkage robot with all links rigid except the last link, which
is flexible. A simplified schematic of the robot is depicted in Figure 3.5. The
first four links are rigid and the fifth link represents the flexible link. There are
three adjustable counterbalances whose purposes are described in section 4.2. The
“payload” mass m, actually represents a strain gauge unit used to measure axial

forces.
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Figure 3.6: Reference Frames for the Five-Bar Robot
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In order to apply the modelling results of this chapter to such an apparatus,
the homogeneous transformation, H§(q,t), mapping the base frame to the flexi-
ble frame must be determined. For the purposes of this derivation, the Denavit-
Hartenberg (DH) convention [12] will be followed. Note that the counterbalances
will be treated as constituting part of the associated link. Figure 3.6 illustrates
the various reference frames involved in the analysis. Each link has a centre of
mass with an associated reference frame z.-y.-z.. The base frame is z¢-yo-2¢ and
the “end-effector frame” for the purposes of this section is z.-y.-z.. The reference
frame for each link is considered to have the same orientation as the frame at the

centre of mass, but having its origin at the end of the link.

Since the frames are chosen using the DH convention, it is possible to define
the homogeneous transformation mapping the reference frame of one link to the
reference frame of the next link in the kinematic chain in terms of two rotations
and two translations. Consider the transformation from link ¢ to link ¢ 4+ 1. Rotate
frame ¢ about its z-axis through an angle § such that the z; and z;4; axes are
parallel. Then translate a distance d along the z-axis to make the z; and z;;, axes
collinear. Next, translate along the resulting z-axis to make the origins coincident.
Finally, rotate about the z-axis through an angle ¢ to make the frames identical.

This series of four operations is equivalent to the homogeneous transformation:

FCOS(H) —sin(6) cos(a) sin(8)sin(a) acos(G)-
A(,d,a,a) = sin(6) cos(@)cos(a) ~—cos(f)sin(a) asin(f)
0 sin(e) cos(a) d
| 0 0 0 1

The four transformation parameters for the mapping from each frame to the
next frame are listed in Table 3.1. The mapping from frame e to the centre of mass
of link 5 assumes that link 5 is rigid. It is included for the purposes of section 4.2.
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Mapping 0 a
00 9o 0
0= c2 s — ™ —l.2
0 —2 gz~ -1,

253 | 1m-(g2~q)
223 | 1—(@2—aq)
0 —>ecl qQ
0'>1 Q1
locd | (2—q)—7

l—=e |(g2—q)—-7

O O O O O O O o o oA
Ll
o O O O O o o © o nAle

e —ch 0

Table 3.1: Homogeneous Transformation Parameters

D L L i -
- Ome >
T = =
} |
L
Id lcl
la

Figure 3.7: Link Lengths for the Five-Bar Robot
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The distances to each centre of mass and the link lengths cited in the table are

depicted in Figure 3.7.

The mapping from one coordinate frame to any other can be determined simply
by multiplying the coordinate transformations together in the appropriate order.
For example, using C; to denote cos(¢;) and S; to represent sin(g;), the homogeneous

transformation from the base frame to frame e is simply:

H: = HY HL H:
= A(q01 01 01 %)A(qlv 01 ll1 O)A(Q2 - -7, 07 141 0)

~CoC: CoS: So |(LC1—LCa)Co |
—S0C3 SuS2 —Co | (I1C, = 14C2)S
_ oC2 9092 o | (11C1 — 14C2)S0 (3.118)
-8, =-C; 0 LS, — 145,
| 0 0 0 1 ]
R d
= (3.119)
01
Hence, using (3.42), (3.52) and (3.53):
—(LCy — lC2)Se —15,Co 152C,
J' = (LCL — ,C3)Co  —1151S0 145250 (3.120)
] 0 LC -1,C,
(5, 0 0
JP=|-Cc, 0 0 (3.121)
0 01

Let:

L2l +z (3.122)
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Substituting J¥, J® and [, from (3.120) - (3.122) into (3.56) yields:

J(Q,z) =

~(LC1—1.C2+v852)S0 + wCoy —1,5:Co (vCa2 +1:5:)Co ©T5:Co %7 S,

(1,C1—1.C24+v52)Co + wSo  —1,5150 (vC2+1252)S0 ¢TSS —9TCo
0 L,C, vS, — 1.C;,  —¢TC, 0

Recall that v & Tv and w ~ 7. Hence, in the product JQ, the ©T and T
terms above will multiply & and 7 respectively to yield v and w.

Now consider the flexible inertia matrix, Dy, as defined in (3.76). =, Z; and
=5 are defined in (3.66), (3.72) and (3.73) respectively. The Jacobians J* and J®
for the five-bar robot are described by (3.120) and (3.121). Finally, the rotation
R of frame e with respect to the base frame is evident from (3.118) and (3.119)
above. Before substituting these equations into (3.76), consider each of the terms

in (3.76). For brevity, let C,_; denote cos(g2 — q1) and S,_, represent sin(ga — q1).

(LC1 — 14Ca)%s 0 0
()T = 0 Bl —LildsCay

i 0 ~LllsCay Bl
(L1 = LCo)(B2C, — aTv) © 0

(J*)TRE,J® = Lalns, 0 L(ZCs-y —aluS, )
I ~LialnS, 0 -1
0™ + vTwS2 — 28TwS,Co + M2C2 0 (BES: +vT1Ca)n

(%) T2 = 0 0 0
(8252 + vT9Ca)n 0 s +vTy

Recall that (J*)TJ¥ls is proportional to the translational kinetic energy of the
flexible beam based on the position of the clamped end, while (J%)TZ,J% is the
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rotational kinetic energy of the beam. The term (J*)TRZE,J® and its transpose
account for the fact that the reference frame for the beam is at the clamped end

rather than at the beam’s centre of mass.

The coupling between the rigid robot and flexible beam is represented by II as
defined in (3.75). Substituting for the five-bar robot in particular:

1S -ha,Croy Ly + 8,
—(1101 -— 1402)0,,, - ’)fDSz + ﬂw02 0 0

I=

These terms may be substituted into (3.76) to obtain the final flexible inertia
matrix, Dy. The Coriolis and centripetal terms for the flexible beam are then
computed by taking the matrix Jacobian of this inertia matrix, as described by
(3.92)-(3.113). Since the equations are quite complex, they are not included here.

In order to calculate the gravitational potential energy of the beam, the height
of the beam centre of mass is required. From (3.78), (3.118) and (3.119):

h = ZLSI - (14 + %15)32 - %QEUCz

As expected, h is independent of the horizontal modal coordinates, 7, of the flexible
beam. The role of the flexibility in shifting the location of the centre of mass is

also clear from this equation.

The strain energy is independent of the base robot so (3.80) does not require

any substitutions for base robot parameters.

To obtain the full dynamic equations as described in section 3.9.2 requires all the -
partial derivatives mentioned above. While many terms have been eliminated in the
equations of that section, the final dynamic equations are extremely complicated
and will not be included here. The algebra is mechanical and the purpose of this
example is only to highlight certain aspects of the model, particularly the Jacobian,
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J, and flexible inertia matrix, D;. Derivation of the full dynamic equations requires
the dynamics of the rigid base robot as well. The dynamics of the rigid robot are
considered in greater detail in the discussion on decoupling and balancing of the

robot in section 4.2.



Chapter 4

Apparatus

It is difficult to assess the empirical results of the literature on haptic interfaces and
force control without performing experiments to ascertain the “feel” provided by a
haptic interface and the associated problems, such as high frequency limit cycles
present in the implementation of virtual walls [7]. Hence, a simple one-dimensional
experimental apparatus was employed to validate existing results in the literature

and explore new control algorithms.

However, the key to a mechatronics approach is the balance of mechanical struc-
ture and control. While the first apparatus was used for some preliminary exper-
iments, it exhibited significant friction and was limited to one degree-of-freedom.
For more sophisticated control algorithms, a better device was required. Hence,
a modified version of the three degree-of-freedom robot of Ching and Wang [10]
is employed for the more advanced control algorithms in this work. In [10], the
robot is rigid and specifically designed to be gravity-balanced and dynamically de-
coupled in order to simplify the control problem. In this work, the last link of the
robot is replaced by a “flexible” link. Strain gauges on the link allow the robot

111
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structure itself to be employed as a three degree-of-freedom force sensor and these

measurements are utilized for control.

4.1 One D.O.F. Experiment

P S
R TR
eyt
T

Bushings

Figure 4.1: One D.O.F. Apparatus

The first experimental apparatus® consists of a one degree of freedom manipulator
with approximately 42 cm of travel. An optical encoder is used to measure the
end-effector position with an accuracy of about 40 ym. The end-effector rides
along two parallel metal rods, driven by a timing belt connected to a pulley on
the motor shaft. The apparatus is illustrated in Figure 4.1. The motor is a DC
servomotor. Due to the use of bushings instead of bearings, there is a fair amount

of friction in the system. The motor has a 4:1 gear reduction and the pulley radius

lconstructed with the assistance of Kevin Krauel, a Research Associate at the University of
Waterloo
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is approximately 0.5 cm. Define:

r = the gear ratio

J = motor and gear inertia
B = motor and gear damping
T = motor torque

71 = load torque

6 = motor shaft angle
Then the motor dynamics may be modelled as:
J0+ Bl =1 —rm
Now, let:

p = pulley radius

M; = mass of carriage

B; = damping of carriage
f = friction of bushings

z = carriage position
Then the load presented to the gear shaft by the carriage is:
n = p(Mi& + Biz + f)

Using the relationship between z and 6, z = rpd, then the overall dynamics of the

system are:

(%+rpM¢)i+ (g+rp31)é=r—rpf
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Let F denote the motor torque reflected onto the linear travel of the carriage i.e.

T = rpF. Then the above equation can be rewritten as:

J . B .
(v ) o+ (v m)s=F -7
Thus, neglecting friction, it is easily seen that the haptic device has a simple second-

order transfer function of the form:

_ X(s) _ 1 _X(s) 7

Ple) = F(s) ~ as®+bs or P(s) = T(s)  as?+bs

(4.1)

where a and b are defined appropriately.

4.2 Direct-Drive Robot

Most of the experiments are performed using a unique five-bar robot designed
and built at the University of Waterloo. The robot uses direct-drive motors so
issues such as the non-linear effects of gear backlash or harmonic drives are not
present. Furthermore, a novel counterbalancing scheme developed by David Wang
and Mennas Ching [10] allows the robot to be gravity balanced and dynamically
decoupled. Hence, this direct-drive robot is ideally suited for research into force

control and haptic devices.

A schematic of the five-bar robot is illustrated in Figure 4.2. The robot consists
of five links. Links 1 through 4 form the traditional parallelogram structure of
a five-bar robot. Link 5 is considered a “flexible” link. All the links comprise
square aluminum tubing in order to reduce the weight of the links while maintaining

structural rigidity.

The joints are referenced according to the links they join. For example, the joint
between links 2 and 3 is referred to as joint 2-3. Thus, there are five joints: 1-2,
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link 4 link 3
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Figure 4.2: Five-Bar Robot Apparatus

2-3, 3-4, 4-5 and 1-4. All joints but joint 4-5 are rotational joints with bearings.
Joint 4-5 is simply a clamp binding links 4 and 5 together. Note that the aluminum
tubing typically extends beyond the joint in order to provide room for the bearings
to attach to the link. For example, the length of the link 2 tubing, I, is longer
than [, which is traditionally considered to be the length of link 2 in a five-bar
configuration. All variables associated with aluminum tubing are demarcated with
a subscript ¢, followed by the link number. Variables associated with joints are
denoted using a subscript j, followed by the numbers of the links being joined. For

example, m ;3 is the mass of the bearings, etc. constituting joint 2-3.

There are three adjustable counterbalances on the robot, which are numbered
according to the link upon which they are fastened. Counterbalances 1 and 4 are
strictly for balancing the robot. Counterbalance 3 is used to dynamically decouple
the robot. All variables associated with counterbalances are denoted with a sub-

script b, followed by the link number. Positioning of the counterbalances will be
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explained in greater detail in subsequent sections.

4.2.1 Balancing

Balancing the robot against gravity may be accomplished by adjusting the various
counterbalances. The balancing equations may be extracted from the dynamic
equations by equating the gravitational terms to zero, but this section presents the
derivation of the balancing equations in a more intuitive fashion. It should be noted
however, that balancing can only be accomplished if link 5 is assumed to be rigid.
This observation can be proven from the general dynamic equations when flexibility

is incorporated, but it will become clear from the ensuing discussion. Let:

m,; = mass of link 1, including link 1 counterbalance, ms,

m, = mass of link 2

ma = mass of link 3, including link 3 counterbalance, m3

m, = mass of link 4 and 5, including counterbalance and “payload”
l.1 = centre of mass of link 1, including counterbalance

l.2 = centre of mass of link 2

l.3 = centre of mass of link 3, including counterbalance

l.. = centre of mass of links 4 and 5, including counterbalance and “payload”

Consider the robot in the home position as depicted in Figure 4.3. For the robot
to be balanced, the net moment about the fulcrum (shown as a large caret) must

be zero. Hence a condition for balance is:

mglcg + mzlz - m,.l,_,. = 0 (4.2)
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: ? {1mp

Figure 4.3: Horizontal Moment Balance

Figure 4.4: Vertical Moment Balance
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Now consider the robot in the rotated position depicted in Figure 4.4. For
the robot to be balanced, the net moment about the fulcrum must again be zero,

yielding the following condition for balance:

myle + mele + males =0 (4.3)

In turns out that these are the only conditions for the robot to be gravity
balanced. In other words, by satisfying these two conditions, the centre of mass
of the robot is positioned at the origin (the fulcrum position). Furthermore, this
centre of mass is independent of the joint angles. Since the origin is fixed in space,
being in the centre of joint 1-2, no moment acts upon the robot due to gravity.
Thus all gravitational terms are reduced to zero, independent of robot configuration.
Thus, the non-linear effects of gravity have been completely eliminated by the novel
mechanical design.

It should also be noted that the key quantities are mostly moments, rather than
individual masses or distances. Hence, when designing the robot, it is possible
to solve for the moments associated with each counterbalance without specifying
a particular counterbalance mass. Thus, the counterbalance mass can be chosen,
for example, such that the counterbalance will be positioned in the centre of its
adjustable range. Then, if there are any errors in the computations, there is more

room left for adjusting the counterbalance positions.

Now consider the flexibility of link 5. The vertical moment balance is unchanged,
but the link will sag under the influence of gravity when the robot is in the home
position of Figure 4.3. This sag will shift the centre of mass and affect the robot
moment balance. Even if the robot is balanced in the home position, accounting for
the link flexibility, it will not be balanced in an intermediate position where the sag
will differ. Hence, flexibility destroys the pexrfect gravity compensation theoretically
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offered by the counterbalances. However, in the case of the experimental apparatus,
the deflection of link 5 under gravity is imperceptible to the naked eye and the effect
of the flexibility on the centre of mass is negligible. Let:

m = mass of flexible link

g = acceleration due to gravity (9.81 m/s?)

[ = length of link

w = width of square tubing

d = thickness of tube wall

E = modulus of elasticity

I = area moment of inertia

For a cantilever beam under uniform gravitational load, the maximum deflection of

the tip, Vmaz, is [89]:
- mgl®
™ 8EI
The parameters of the flexible link [90] used with the experimental apparatus are:

(4.4)

m = 0.077 kg
1 =47.35 cm
w =127 cm
d=0.127 cm
E = 69 x 10° N-cm?
I=L%uw'— S(w-2d)* =0.128 cm*
Substituting these parameters into (4.4), the maximum deflection of the flexible

link for this apparatus is only vmae = 0.0114 cm or 0.1 mm. Hence, for all intents
and purposes, the experimental apparatus is gravity balanced.
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4.2.2 Decoupling

Figure 4.5: Decoupling

The condition for dynamic decoupling is less readily apparent. For the dynamic
equations to be decoupled, the inertia matrix must be diagonal and the entries
in the inertia matrix should preferably be constant. Hence, consider the robot
schematic in Figure 4.5, which shows the centre of mass of each link. Since link 5
is essentially rigid, let the combination of link 4 and link 5 be called link r, with

centre of mass, m.,.

Suppose the robot is restricted as depicted in the figure, so that g2 — ¢ is
constant, yet gq; is free to rotate. Let the inertia of link ¢ about its centre of mass
be denoted I;,t = 1,2,3,r. Define the inertia of link ¢ with respect to the fulcrum
axis by I;. By the parallel axis theorem, the inertias of links 1 and 2 are constant,
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being:
L =1,+ mllz1
L=1,+ mzlfg
Define a = m — (g2 — q1). Applying the cosine law along with the parallel axis
theorem, the inertias of the other two links are:
I = I3 + ma(l} + I3, — 205l cos(x))
I, = I + m (8 + 12 — 20,1, cos(qz — q1))

Hence, the total inertia, I, of the robot is:

I'=Ig+ o+ Ig+ o+ mully + mally + ma(l + 153) + ma (1] + 1)
+ 2(mglales — m Lyl ) cos(ga — q1) (4.5)

The only term in the inertia that depends on the robot configuration is the term
in cos(gz — q1). However, this term may be eliminated by carefully adjusting the
position of the link 3 counterbalance such that

malals = m. .l =0 (4-6)

Satisfying (4.6) results in a total inertia that is constant. In fact, I3+ I, is constant,
so there exists a position of the counterbalance for which the sum of the link 3 and
link = inertias is independent of the angle, g» — ¢, between the two links. As one
link’s centre of mass moves away from the pivot, the other link's centre of mass
moves toward the pivot in exactly the right proportion to maintain a constant

moment of inertia.

It turns out that (4.6) is the condition required to dynamically decouple joints
q1 and g3, not only in terms of inertia, but also in the Coriolis and centripetal
components of the dynamics. This intriguing characteristic of the robot will be

investigated more thoroughly in the next section.
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4.2.3 Robot Dynamics

The previous three sections explore the balancing and decoupling of the five-bar
robot from an intuitive perspective. The full dynamics of the robot are calculated

in this section in order to rigorously defend the analysis of the preceding sections.

Reconsider Figures 3.6 and 3.7, which depict the frames associated with each
link and its centre of mass. For this analysis, it will be assumed that link 5 is
rigid, in which case it may simply be considered an extemsion of link 4. Hence,
as before, let the combination of link 4 and link 5 be called link r, with centre of
mass, M. Treat the links as lines and the counterbalances as point masses. Thus,
a scalar, [;, may be used to represent the inertia of link ¢ with respect to the z-axis
through its centre of mass. Using the DH parameters defined in Table 3.1 then, it
is relatively straightforward to derive the inertia matrix of the robot. Define the

constant coefficients:

ay=(L+1+ mil:1 + mali., + m,lf) (4.7)
a2 = (I + I, + mal2, + m, 12 + myld) (4.8)
Qg = (m3lc312 - TTL,-lc,.ll) (49)

For convenience, assume the following notation for z = 1,2:

C:i £ cos(q), Si&sin(g), Ci-12cos(@z—aq1); Q=g ¢ gl

Then the inertia matrix for the five-bar robot is:

aICf + asz + 2a3C,C, 0 0
D(Q) = 0 ay a3Czy (4.10)

0 0302_1 a2
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The only off-diagonal term is a3C,_,. By adjusting the link 3 counterbalance such
that az = (mgalls — m.l.l;) =0, the inertia matrix becomes diagonal. Notice that
this expression is the decoupling condition derived in section 4.2.2.

Now consider the Coriolis and centripetal terms when a; = 0. From (3.81),
the Coriolis and centripetal terms are completely characterized by %. Evaluating

(3.81) yields Coriolis and centripetal terms of:

—2(a1 C151q1 + @2C25242)4o
(52Q7)C(Q)Q = 01518
a2C2 523

The second and third rows correspond to the ¢, and ¢, joints respectively. Yet the
second row does not depend on ¢,, nor does the third row depend on ¢;. Hence, there
is no coupling between ¢, and g, even in the Coriolis and centripetal terms! Thus,
adjusting the link 3 counterbalance to satisfy the decoupling condition dynamically
decouples q; and gq,. There are, of course, interactions with the base joint which

cannot be eliminated.

Now consider the gravitational terms. According to section 4.2.1, it is possible
to completely eliminate all gravitational terms from the dynamics of the robot. It
is relatively straightforward to show that the potential energy of the rigid robot is:

V = g ((mila + males +m1h)S) + (malez + maly — m,l.)S,)

The potential energy is clearly zero for all robot configurations if the coefficients of
51 and S, are zero. Hence, the robot is dynamically balanced if:

Myl + mals +ml; =0

and mzlcg + malg - m,lc,. =0
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These two balancing conditions are exactly the same conditions derived in sec-
tion 4.2.1. Combining these results together, the final dynamic equations of the
rigid robot are:
(1C} + a2C3)go —~ 2(a1CiS1g1 + @2C25242)4o = To
aygy + 1C15163 =N
azgs + @2C25243 = T2

Note that damping has been ignored but could readily be included. Also,

lcos(z)sin(z)| < ;3 VzeR

:
Furthermore, in the case of a virtual wall, ¢; may be large but ¢; is typically small.
Indeed, in any case where a human operator is manipulating the robot end-effector,
the velocities are typically small and thus, the Coriolis and centripetal terms, which
are related to the square of velocity, are even smaller. Hence, the robot behaves
very much like a set of single-input single-output (SISO) double-integrator systems
in this case. If damping is included, then each joint of the robot behaves like a
simple second-order system and only the base joint has an inertia that depends
upon the robot configuration. This behaviour motivates the system identification

of section 5.3.2.

4.2.4 Adjusting the Counterbalances

The purpose of the counterbalances is to adjust the positions of the centres of mass
such that the balancing equations (4.2) and (4.3) and decoupling equation (4.6) are
satisfied. The counterbalances are screw-mounted so that their positions may be

changed.

Link 2 has no counterbalance, so l.; is fixed. Thus, the only quantity which
can be adjusted in (4.2) is l.. By changing the position of counterbalance me,, I
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may be tuned such that (4.2) is satisfied. In practice, this feat is accomplished by
placing the robot in the home position and adjusting the location of my, until the

robot is balanced in that position.

Once the position of my4 has been established, the decoupling equation described
in the previous section determines the value of [.3, and hence the location of the
link 3 counterbalance. It may be possible to determine the correct location of the
counterbalance experimentally as follows. Attach a lightweight brace near joint 1
that fixes the angle between link 1 and link 2 such that the robot is in the fully
extended position i.e. (g2 —q1) = . Apply a brief torque pulse to joint 1 from rest
and measure the velocity at the end of the pulse. Now fasten the brace such that the
robot is in the fully contracted position i.e. (g2 — ¢1) — 0. Repeat the experiment
using an identical torque pulse. Adjust the position of the link 3 counterbalance

until the velocity is the same in both cases.

The final degree of freedom is the location of the link 1 counterbalance my,;.
Adjusting its position enables the second balancing condition, (4.3), to be satisfied.
In practice, this balance may be accomplished by adjusting the the location of the
link 1 counterbalance until the robot is balanced in any configuration.



Chapter 5

System Identification

As in any control application, control design is facilitated by having a relatively
accurate model of the system dynamics. The experimental apparatus of Figure 4.2
comprises several components, including the current amplifiers, strain gauges, mo-
tors, joints and robot links. Since the dynamic equations of the rigid structure are
derived in the preceding section, only those components or non-linear effects which

warranted system identification will be examined here.

5.1 Power Amplifiers

Since the dynamics of mechanical systems are generally much slower than the dy-
namics of electrical systems, the dynamics of the power amplifiers are not consid-
ered. However, the amplifier gain and offset are critical factors because they affect
the magnitude of the controller parameters. These factors are experimentally de-
termined in [90]. The results of these experiments are enumerated in Table 5.1.

The torque constants of each motor are also included in the table.

126
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Axis Transconductance Offset Torque Constant
(A/V) (A) (N-m/A)
Base 3.98 -0.116 0.373
Axial 3.87 0.054 0.373
Vertical 3.96 0.001 0.373

Table 5.1: Current Amplifier Measurements

5.2 Strain Gauge Calibration

Equation (3.115) in section 3.11 encapsulates the approximate relationship between
the strain sensed at the clamped end of the flexible beam and the force exerted
on the beam at the tip. Indeed, the force is approximately proportional to the
strain, since the coefficients E, [,, h and ! in (3.115) are all constant (within
the assumptions of the Euler-Bernoulli beam model). Hence, by identifying this
constant of proportionality, it should be possible to estimate the torques at the

joints based on the generalized coordinates and the strain readings.

5.2.1 What is Measured

Section 3.6 describes the relationship between the force, F, at the end-effector and
the joint torques, 7. However, as discussed in that section, the force F is expressed
in base frame coordinates. The strain gauges are not configured to measure strain
along the axes of the base frame coordinate system. Instead, they measure strain
along the end-effector coordinate axes. Thus, equation (3.58) of section 3.6 may
not be applied directly. Fortunately, the robot geometry is relatively simple, and
the relationship between the forces deduced from the strain gauge readings and the
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strain gauges

Strain gauges

(a) Gauges at clamped end of beam (b) Axial measurement unit

Figure 5.1: Strain Gauge Positions

joint torques is straightforward to derive.

5.2.2 Mapping to Joint Space

The positions of the strain gauges are illustrated in Figure 5.1. Figure 5.1(a) shows
the strain gauges that measure the strain of the beam in the horizontal (z.) and
vertical (y.) directions. Strain gauges were hand-mounted in pairs, on either side of
the beam. Since the strain in the beam along the neutral axis, z., is negligible, the
unit depicted in Figure 5.1(b) is used to measure forces exerted along the neutral

axis. The unit is an LCL-010 load cell from Omega Engineering Inc.

The horizontal and axial strain gauge signals are amplified using Intelligent
Instrumentation PCI-5B38 strain gauge amplifiers. The vertical strain gauge signal
is amplified using a higher gain DataForth SCM5B38 amplifier. The amplifiers are
mounted directly on the robot base to minimize the distance between the strain

gauges and the amplifiers. A separate 12V power supply, line regulated to 5V using
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Figure 5.2: Mapping Strain to Torque

an MC7805ACT regulator on the robot, is used to power the strain gauge amplifiers.
The amplifier outputs are measured using 13-bit analog-to-digital converters on a

Quanser Consulting MultiQ) data acquisition card.

Consider Figure 5.2, which depicts the forces acting upon the end-effector. The
subscripts z, y and z correspond to the axes of the end-effector frame. The magni-
tudes of F;, F, and F, can be deduced from the strain gauge readings via (3.115).
Let 7; denote the torque contributed to joint ¢ by the end-effector forces. Assuming
small deflections, the beam may essentially be considered rigid and thus by simple
geometry:

10 = —F;(l, cos(q1) + I cos(gz — w)) = —F.(l1 cos(q1) — I cos(g2)) (5.1)
1= —Fzlicos(gz — 1 — 3 = ~F:lysin(q2 — q1) (5.2)
T2 = Fylf (5-3)
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where:

I, =0.30 m (5.4)
I; =0.60 m (5.5)

Given the tiny displacement of the beam tip in comparison to the link lengths I, and
ly, the treatment of the beam as rigid for the purpose of mapping the end-effector
forces to joint torques is reasonable. It must be remembered that the device is
intended as a haptic interface and small torque errors will be indistinguishable to

the human operator.

The joint angles are measured using PMI Motion Technologies type B250213
optical encoders. Table 5.2 enumerates the conversion factors between encoder

counts and angular position in radians for each joint.

I Horizontal (qo) l Axial (q1) | Vertical (g2)

. S _F =
6000 6000 4000

Table 5.2: Optical Encoder Conversion Factors

5.2.3 Calibration Experiments

Using an FT3623 nano force/torque sensor system manufactured by ATI Industrial
Automation, the strain gauge readings were calibrated to end-effector forces (in

Newtons).

Figure 5.3 illustrates the agreement between the force measured using the com-

mercial sensor and the force deduced from the strain gauge readings. The solid
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Figure 5.3: Strain Gauge Calibration Experiments
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I Horizontal (qo) | Axial (q) | Vertical (qz)

Be®™ | g05 | 134 | 531

Table 5.3: Strain Gauge Calibration Constants

lines correspond to the commercial sensor and the dotted lines depict the cali-
brated strain measurements. Note that despite the crude approximation of equa-
tion (3.115), agreement between the commercial sensor and the strain gauge read-
ings is excellent. These measurements confirm that the robot structure itself can
be used as a force sensor. It should also be observed that the “fiexible” beam is
actually quite rigid - tip deflections are typically less than 1 cm, even when simu-
lating a virtual wall. The calibration constants between the forces in Newtons and

the amplified strain gauge voltages are listed in Table 5.3.

5.2.4 Force Cancellation

The calibration experiments in the preceding section verify that the flexible link of
the robot may be used as a reliable force sensor. However, equations (5.1)-(5.3) are
not used in those experiments. To assess the accuracy of these equations and the
efficacy of using strain gauge readings as force measurements, a force cancellation
experiment was conducted. By applying an equal and opposite reaction force to the
force exerted by the user on the end-effector, it should be possible, given reliable
force measurements, to cancel the user’s applied force so that the net force acting
on the robot is zero. In this case, the robot will not move (assuming the initial

velocity is zero).

Figure 5.4 illustrates the force cancellation control strategy. The unshaded
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Figure 5.4: Force Cancellation

blocks denote simple linear transformations that are implemented as matrix gains.

The shaded block represents the non-linear transformation defined by (5.1)-(5.3).

The strain gauges outputs are read and converted to end-effector forces using
the calibration constants defined in Table 5.3. Now, some cross-coupling occurs
between the strain readings. Since the gauges were hand-mounted they are not
perfectly aligned with the neutral axis of the flexible beam. Hence, the axes the
horizontal and vertical gauges measure are not perfectly orthogonal, resulting in
some cross-coupling. Furthermore, resistive gauges are not immune to strains in
non-measurement directions. For example, a gauge aligned for measuring strain
in the z-direction will still produce a small reading when perturbed in the y or z
directions. The ratio of the strain in the measurement direction to the strain in the

orthogonal direction is known as Poisson’s ratio {89].

Let F;, i = z,y, z denote the scaled strain readings, such that F; has units of
Newtons. Denote the forces after compensation as F;. Hence, the compensation

may be expressed as the matrix equation:

A 1 0 -010| (F.
=lc 1 orm]|F
0 —002 1 F.

A

These compensation equations were not applied during the strain calibration tests
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of Figures 5.3(a)-5.3(c) since the experiments were performed on each joint individ-
ually anyway. However, similar experiments were conducted in order to ascertain

the degree of cross-coupling between the different strain readings.

The non-linear equations (5.1)-(5.3) are applied to these compensated end-
effector forces to map them to joint torques. The joint torque values are negated
and then converted to output voltages for the digital-to-analog converters based on
the pulse-width modulated current amplifier transconductances in Table 5.1 and
each motor’s torque constant. The net effect should be an equal and opposite force
being exerted on the user, preventing them from moving the end-effector of the
robot. The operation is sensitive to any errors in the measurements, calibration
constants or parameters of the non-linear transformations from end-effector forces

to joint torques.

Position information is only used to measure the generalized coordinates in the
transformation equations. No position control is performed. The controller repre-
sents pure explicit force control. The results for each axis are shown in Figure 5.5.
Note that the axes were tested concurrently, not individually. The force exerted
by the user is represented by the solid line. The spikes indicate where the user has
pushed or pulled on the end-effector.

The dotted line depicts the displacement of the corresponding robot joint as a
result of imperfect force cancellation. While deflections of approximately 1 cm may
seem large, two observations must be made. First, since explicit force control is
used, the total deflection may be expected to be large because any error in the force
cancellation will cause the robot to accelerate as long as the force is applied. Yet,
the deflection is still quite small, even after 70 seconds of prodding by the user. It
is instructive to compare the amount the robot moves to the magnitude of the force

and the duration for which it is applied. Second, the moment arm is also large so
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Figure 5.5: Open-Loop Force Cancellation Experiments
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the applied torque is substantial. For the horizontal and vertical axes, the moment

arm is 61 cm and for the axial direction it is 30 cm.

5.3 Friction Identification

5.3.1 Motivation

System identification techniques applied to the robot of Figure 4.2 produced incon-
sistent and typically impractical results. Many of the techniques available in stan-
dard control systems packages, such as Matlab, were attempted but the solutions
either failed to predict the system response for different inputs, or clearly did not
match the physical parameters of the system. However, around a given operating
point, particularly with the dynamically decoupled, gravity balanced mechanical
design, the system was expected to be essentially linear. Since system identifica-
tion techniques were producing poor results, the non-linear effects of friction were
assumed to be the confounding factor and a set of experiments were conducted to

verify the presence of friction.

5.3.2 Identification Technique

Consider the proportional control system depicted in Figure 5.6(a). The plant,
P, represents the operator mapping torque to velocity. The signal, f, denotes
the Coulomb friction, r denotes the reference input and y represents the output
position. Without the presence of friction, the output y would scale linearly with
the input r. Hence, for a step input, the peak magnitude of the output step response
should be a linear function of the input magnitude.
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Figure 5.6: Time Domain Friction Modelling

With friction, the output becomes a non-linear function of the input. According
to the simple Coulomb kinetic friction model depicted in Figure 5.6(a), the friction,

f, has constant magnitude with the same sign as the plant velocity.

The robot motors may be modelled approximately as second-order, minimum-
phase systems. In the unit step response of second-order, minimum-phase systems
under proportional control, the velocity is positive until the first peak. Addition of
friction does not change this fact since Coulomb friction is a dissipative force. As
long as the velocity does not change sign, the friction f will also not change sign,
and will, in fact, be constant. Hence, from time zero to the time of the first peak,
the system may be modelled as shown in Figure 5.6(b). Note that the constant

friction term has been combined with the reference signal at the input.

The system shown in Figure 5.6(b) is linear. The reference signal for this “equiv-
alent” system may be considered as the combination of r and the friction term, -I%

Let 7 denote the new reference signal. Then:

T=r——

K
Since the system is linear, the magnitude of the first peak will vary linearly with
the magnitude of the input 7. This fact can be exploited to identify the Coulomb
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friction, f. Let P(s) = ? and let T'(s) denote the transfer function of the “equiva-
lent” closed-loop system depicted in Figure 5.6(b). Let y; be the magnitude of the
first peak for a step input of magnitude r;. Denote the inverse Laplace transform
by £7!. Note that f is a constant independent of the input in this simple friction
model. Then:

___P(s)K(s)
T() = 15 PR (5)

i =T (1)

3

= { T2 (- Db

(- h)e o

To identify the friction term, plot the magnitudes of the first peaks, y;(t,) versus

the magnitudes of the input steps, 7;, where ¢, is the time to the first peak. The
r-intercept of this plot is 7y = }% Since K is known, the r-intercept may be used

to determine the value of the friction via:

f=Kro (5.6)

Of course, once the friction is known, it is still important to identify the linear
model of the plant, P. Suppose the robot actuator may be modelled as:
1
Pl) = 77 B)
where J is the combined motor and link inertia and B is the combined motor and
joint viscous friction. Hence, when Coulomb friction is ignored in Figure 5.6(a),
the closed-loop transfer function is the standard second-order system:

2
K wh

Js?+Bs+ K =% + 20w, s + w2 (5.7)

T(s) =
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where:

£
I
N

‘= B
T 2VKJ

It is well known that for the step response of an underdamped second-order system

as expressed in (5.7), the time to first peak is:

T
tp = ———=
P wpy/1 = (2

and the magnitude of the peak given an input r — ;% is:
yp = (1 + /1T )(r — £)

Define:
a=(1+ eﬁ)

such that y, = a(r — -é) Hence, the slope of the y;(¢,) versus r; plot is . Let:
B =—-In(a-1)

Thus, given a, the damping factor ¢ is:

B
SR %)

Given the time to first peak, t,, the natural frequency, wn, may be then be computed
as:

s
ty/1-C2

Note that since the time to first peak, ¢,, for a linear second-order system is inde-

(5.9)

Wy =

pendent of the input step magnitude, r, and the equivalent friction model depicted
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Dir. | Slope | r-Int. | ¢, Wy ¢ J B f

(rad/rad) | (rad) | (sec) | (rad/s) (kg-m?) | (N-m-s/rad) | (N-m)
ze 1.98 | 0.024 | 0.75 | 4.20 | 0.007 | 0.204 0.012 0.088
Ye 1.95 |[0.022 }0.26 | 12.0 | 0.015| 0.026 0.009 0.082
Ze 1.96 |0.034 (140 2.25 | 0.014 | 0.733 0.045 0.125

z. = axial axis ye = vertical axis z. = horizontal axis

Table 5.4: Friction Identification Results

in Figure 5.6(b) is valid for this minimum-phase second-order system up to the time
of the first peak, then (5.8) and (5.9) may be used to determine the parameters of
the plant, P, based on the slope of the y;(¢;) versus r; curve and the time to first

peak, t,. The friction is identified from the r-intercept of the same curve.

5.3.3 Results

While using an intercept to determine a quantity is typically a numerically sensitive
operation and thus not ideal, it was found to be a reasonably reliable method for
this experiment. Consider Figure 5.7, which illustrates the relationship between
yi(tp) and r; for each joint. The responses are surprisingly linear with a clearly
defined intercept. Note that for the base, both positive and negative step responses
were conducted, in which case the friction changes sign also.

The results of the friction identification for each joint are enumerated in Ta-
ble 5.4. Linear regression was used to determine the slope, @, and r-intercept of

these curves. The average time to peak i, is also shown. The natural frequency
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Figure 5.7: Friction Identification Experiments
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wn, and damping factor { were computed using (5.8) and (5.9). The inertia, J, and

damping, B, were derived from w, and ¢ using:

J

i

R &=
3
<

B =

The friction f was determined from the r-intercept using (5.6).

Direction | Value (kg -m?)
T, 0.199
Ye 0.032
Ze 0.708

Table 5.5: Theoretical Inertias

Table 5.5 contains the inertias calculated for the robot based on the mass and
dimensions of each component of the robot’s links, motors and joints [90]. In other
words, the inertias in Table 5.5 are the theoretical inertias based on knowledge of
the robot structure. The value for the z, direction is based on the home position
of the robot. Note that the identified inertias of Table 5.4 agree quite well with
the calculated inertias of Table 5.5. The identified inertia in the axial direction is
0.204 kg-m?, compared to 0.199 kg-m? for the calculated model, or a percentage

error of less than 2.7%.

The identified inertia in the vertical direction is 0.026 kg-m? compared to the
calculated inertia of 0.032 kg-m?, or a percentage error of 20%. This error may seem
fairly large, but it is important to note that the inertia in the vertical direction is
the hardest to identify because it is an order of magnitude smaller than the inertia

for the other axes, and the range of motion in the vertical direction is much smaller.
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The range of motion is important because it affects the magnitude of the step input
that can be used in the identification process. Larger magnitude steps generally

yield more reliable results since the non-linear effects of friction are less noticeable.

The identified inertia in the horizontal direction, for the robot in the home
position, is 0.733 kg-m?. The calculated inertia for the robot in the home position,

is 0.708 kg-m?, for a percentage error of less than 3.5%.

These percentage errors are well within the margin of error in both the calculated
inertias and the system identification. Indeed, the correlation in the horizontal and

axial directions between the calculated and identified inertias is surprisingly good.

Simulation of the friction model for the same closed-loop step responses reveals
that the r-intercept calculated by linear regression does not necessarily result in the
closest match between simulation and experiment. Small adjustments to the friction
coefficient can improve the simulation results. For the axial joint, for example, using
a friction coefficient of 0.061 N-m instead of 0.088 N-m yielded better results. While
the percentage error between the hand-tuned friction coefficient of 0.061 N-m and
the identified coefficient of 0.088 N-m is 30.6%, this error is not unreasonable given

the intercept method of identification and the simple kinetic friction model utilized.

Figure 5.8 illustrates three different closed-loop step responses used to evaluate
the friction in the axial joint. In each figure, the solid curve depicts the experimen-
tal data and the dashed curve represents the simulated system with friction. The
dotted curve corresponds to a linear model without Coulomb friction. To compen-
sate for the lack of Coulomb friction, the viscous friction has been increased. The
linear model employed for the simulation is:

1
0.204s2 + 0.150s

P(s) =

Note that the inertia is the same in all cases. The magnitude of the reference signal
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is different in each figure. Note that 0.1 rad corresponds to a 3 cm displacement of

the end-effector.

If the plant were perfectly linear, then the plots would look identical and only
the scale of the y-axis would change. However, friction clearly plays a role, since
fewer oscillations occur for smaller reference inputs. Also, while the envelope of the
linear model is exponential, friction causes the experimental system and friction
model to decay faster than an exponential. The model that includes Coulomb
friction clearly performs better than the linear model.

The open-loop responses of the system to two different sinusoidal inputs are illus-
trated in Figures 5.9 and 5.10. The sinusoid in both cases has the same magnitude
- the only difference is in the initial conditions. The torque input for Figure 5.10
is 180° out of phase from the torque input in Figure 5.9. In each plot, the solid
curve represents the experimental data. The dashed curve denotes the simulated

response using the friction model and the same torque input.

The simulated response agrees very well with the actual experimental data in
Figure 5.9. As expected, the simulated response for Figure 5.10 is just the negative
of the the first response, since only the phase of the input has changed. However, the
experimental data in Figure 5.10 is not symmetric. It appears that the ribbon cable
transmitting the strain gauge signals to the robot base imparts a small torque on
the axial joint. Since the equilibrium position of the ribbon cable “spring” does not
correspond to the home position of the robot, this small torque results in a slightly
asymmetric response i.e., the step response to a negative step input is not the same
as the response to a positive step. Since this ribbon cable effect is unmodelled, it
also contributes to the difference between the simulated and experimental results,

both in the open-loop sinusoid responses and in the closed-loop step responses.
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5.4 Vibration

A model of the experimental five-bar robot would be incomplete without the dy-
namics of the flexible link. The link consists of 3" (1.27 cm) square aluminum
tubing with a wall thickness of 3= (0.127 cm). The length of the beam, not

including the area which is clamped, is 43.3 cm.

5.4.1 Natural Frequencies

The natural frequencies of vibration of the flexible link were determined by tapping

the end-effector and observing the resulting vibrations in the frequency domain.

Figure 5.11(a) illustrates the response of the robot in the horizontal direction
when the robot is in the home position i.e., gy = 90° and g; = 180°. The corre-
sponding frequency content of these vibrations is depicted in Figure 5.11(b). The
frequency labelled 1.4 Hz may be ignored - it is the result of manually moving the

robot into position for the test.

The frequencies of vibration for the horizontal direction were determined for
a variety of robot configurations. The resulting frequencies are enumerated in

Table 5.6.

Both the axial and vertical directions exhibited only one measurable frequency
of vibration. The natural frequency in the axial direction is 133 Hz and in the
vertical direction is 53 Hz.

5.4.2 Analysis

Consider horizontal vibrations of the flexible link. Since the hub inertia is quite

large, assume that the link may be modelled as a clamped-free cantilever beam.
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a | |hHh| o | e|lh|f
(deg) | (deg) | (Hz) | (Hz) || (deg) | (deg) | (Hz) | (Hz)

90.1 | 180 |19.2 | 230 || 88.8 | 161 [19.5 | 228
56.0 | 184 |18.7 } 229 | 91.6 | 206 |18.7 | 229
107 | 184 |19.6 | 228

Table 5.6: Dependence of Horizontal Modes on Robot Configuration

Since the modal frequencies of a pinned-free beam are higher than those of a
clamped-free beam, this assumption should result in the natural frequencies be-
ing slightly underestimated. This point is important and should be remembered

for subsequent analysis of the actual system.

The mode shapes for the clamped-free beam are derived in Appendix B. In
particular, the characteristic equation for the modal frequencies is defined by equa-
tion (B.9). The first solution of this equation is pl = 1.875. The normalized
frequency p is related to the natural frequency of the beam by (B.6) and (B.7).

Combining these relationships:

EI
— 2
wn = (P

whence the frequency of the first mode is approximately:

EI

W = 3.516 pAl4

(5.10)

Let h denote the height of the beam, [ its length and d the wall thickness. Then

the moment area of inertia is:

=34k — 4(h~2d)* =128 x107° m*
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and the cross-sectional area is
A=h?—(h—2d)? =581 x10"° m?

For aluminum, E = 69 GPa and p = 2800 kg/m®. Substituting these values into
(5.10) yields wy = 436 rad/s or 69 Hz. The high value of the first natural fre-
quency indicates the high stiffness of the beam. In other words, while the beam is
sufficiently flexible to act as a force sensor, it is actually fairly rigid. Yet, the exper-
iments in section 5.4.1 indicate that the actual frequencies for horizontal vibrations

are lower.

Now, the mass of the flexible beam is plA = 71 g. The mass of the axial sensor
unit at the end of the beam is 43 g. Hence, the payload mass represents 60% of
the beam mass, so while the sensor assembly is small, it does actually contribute

significantly to a lowering of the natural frequency of the beam.

Hence, consider a more accurate model of the beam which considers the hub

inertia and sensor “payload mass”. Let:

Jo = hub inertia for base joint, go (kg m?)
M, = payload mass (kg)
L = length of beam (m)
p = linear mass density of beam (kg/m)
E = Young’s modulus of beam (N/m?)
I = area moment of inertia of beam (m?)

w = natural frequency (rad/s)

and define:
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From the work of Rossi [91], the characteristic equation of a flexible beam with hub

inertia and point payload mass is:

cos(BL)sinh(BL) — sin(BL) cosh(BL) — 22,8 sin(BL)sinh(BL)
— QoB%1 + cos(BL)cosh(BL))
- B*Q,Qo(cos(BL) sinh(BL) ~ sin(BL) cosh(BL)) =0 (5.11)

For the experimental apparatus,

Jo = 0.677 kg-m®
M, = 0.043 kg
L=0449m
p =0.163 kg/m
E =69 x 10° N/m?
I=128x10"° m*

Hence,

Qo = 4.16 m®

Q, = 0.26 m®

Solving the characteristic equation, (5.11), with these numbers yields the first fun-

damental frequency, w, of:
w=223rad/s or 35.5 Hz

This frequency is quite a bit lower than the frequency predicted by a simple
clamped-free beam model. The impact of the payload mass is evident. It is also
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closer to the observed frequency of approximately 19 Hz. However, it is not close

enough to conclude that the beam is the sole source of vibration in the system.

Since the hub inertia is so large, errors in the hub inertia have little effect on
the predicted frequency of vibration. Increasing the hub inertia by a factor of
10° reduces the vibrational frequency by less than 0.4 Hz. Hence, errors in hub
inertia cannot explain the discrepancy between the predicted value and empirical

observation.

While the predicted frequency is more sensitive to errors in the length of the
beam, the length of the beam is very well known. Even adding 4 cm to the beam
length only reduces the predicted freqﬁency to 31 Hz and the length is known to

far greater accuracy than to within 4 cm.

Thus, the inescapable conclusion is that the flexible link is not the only source of
vibration in the system. The robot structure itself must be flezible. Given that link 2
and link 3 are constructed of the same aluminum tubing as the so-called “flexible”
link 5, this conclusion is hardly surprising. Since link 2 is only 9 cm in length, most
of the flexibility in the robot parallelogram is likely to be contributed by the 30 cm
link 3, particularly given the 235 g counterbalance at one end of the link. Indeed,
small vibrations of the counterbalance are visible during the horizontal vibration

experiments.

Various experiments were performed to try to discern the source of vibration for
modelling purposes. For example, if a single link was primarily responsible for the
vibration, then mounting a mass at an appropriate location on the robot structure
would change the frequency of vibration in a predictable way. However, experiments
such as this failed to pinpoint a particular source of vibration. Hence, further
research into the source of oscillation, perhaps through finite element modelling, is
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necessary.

However, even with another source of vibration in the system, the natural fre-
quencies of the beam should still appear in the frequency spectrum. Close exam-
ination of Figure 5.11(b) reveals a very small peak at 34.5 Hz. This measured
frequency is very close to the predicted frequency of 35.5 Hz derived above. The

percentage error is only 2.7%.

Unfortunately, the presence of vibration in the robot structure itself prevents
the general model derived in chapter 3 from being applied. The model of chapter 3
only applies to flexibility in the last link and not the whole structure. A proper
model of the structural vibrations would require finite element methods or similar
techniques applied to the entire structure. However, it should be possible to make
controller designs robust to vibrations in the robot structure by minimizing the
closed-loop semsitivity at the natural frequencies of the robot. Note also that the
flexibility in the robot structure does not invalidate the mechatronics approach of
this work. Better construction and more substantial tubing for links 1 through 4
would undoubtedly eliminate the structural vibration problem. Sturdier construc-
tion does not negate the ability to gravity balance and dynamically decouple the

robot.



Chapter 6

Controller Design

Haptic devices are designed to emulate the physical characters of some physical
object or environment by providing force feedback to a human operator. One
perspective on the problem is that the goal of the controller is to present a specific
mechanical impedance to the human operator. A virtual wall desigred to emulate
aluminum, for example, would need to provide a stiffness’ of approximately 70 GPa.
Hence, it is not surprising that implementation of a virtual wall is one of the
more challenging problems in haptic interface control. This chapter investigates
a variety of control strategies for achieving a target impedance. The performance

with respect to virtual walls is used as a basis of comparison.

6.1 Implicit Force Control

The simplest closed-loop control strategy for achieving a desired target impedance is

the implicit force control scheme depicted in Figure 6.1. The operator P denotes the

1Refer to section 2.2.4 for background on virtual wall implementations

154



CHAPTER 6. CONTROLLER DESIGN 155

Figure 6.1: General Implicit Force Control

plant. Interaction with an environment is included only as a disturbance, d, in the
diagram because the human operator acts as the “environment”. It was decided to
model the operator as a purely external force because the user actively manipulates
the haptic end-effector. Salcudean [92] also includes a passive component for the
human operator, but this approach is not investigated here. Implicit force control
offers the advantage of not requiring a force sensor, as discussed in section 2.1.4.
While implicit force control demands a plant that is backdriveable, position sensors
such as optical encoders generally produce much cleaner signals than force sensors
and so control based solely on position might be expected to be less susceptible
to high-frequency vibration. Hence, implicit force control was investigated first
as a benchmark control strategy to which more sophisticated controllers could be

compared.

In the general strategy of Figure 6.1, the Jacobian, J, maps the force computed
by the controller, Cp, to a torque suitable for input to the plant. For the sake for
simplicity, the control strategies of this chapter are implemented in joint-space, so
that the non-linear Jacobian is not necessary i.e., J = I. Since virtual walls already
include the nonlinearity of a unilateral constraint, it would be harder to isolate the
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source of limit cycles or other performance considerations if further non-linearities,

such as the Jacobian, were also included in the control system.

From section 2.1.4, the impedance produced by the implicit force control scheme
of Figure 6.1 at “equilibrium” is Zy(s) = s7'Cp(s). Thus, the stiffness at “equilib-
rium” is Ko(s) = Cp(s). Hence, a particular stiffness is achieved at “equilibrium”

simply by setting the controller equal to the desired stiffness.

A wall might be expected to behave as a damped spring. Let K, denote the
proportional gain (Hooke’s Law) of the spring and let K4 be the viscous damping
coefficient. Then the stiffness of the damped spring may be represented by the

transfer function:
K(s) = K, + Kus (6.1)

Hence, according to section 2.1.4, the corresponding controller is simply K(s).

However, K(s) is improper and can not be implemented in practice. Hence, for
the sake of implementation, let the derivative term be band-limited by a first-order
low-pass filter with cutoff frequency, wg. Thus,

Wo

K(s) = Ky + Kas o

(6.2)

The term s;32- simply yields a filtered version of the angular velocity. Since only
the position measurements are available, the velocity can be estimated using a first-
order Euler difference equation. Due to quantization, the derivative can be noisy
and the filtering is necessary. Note that at the very low angular velocities involved,

tachometer readings would also be very noisy.

The response of the axial joint for K, = 400 and Ky = 0, a light grip and a sam-
pling period of 1 ms is depicted in Figure 6.2. The output torque is illustrated in
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Figure 6.3. Note that the torque graph has been truncated at the negative satura-
tion torque for the motor. For this large proportional gain, there is a small amount
of vibration when the robot is in contact with the virtual wall. This vibration can
be observed more readily in the magnified view of Figure 6.4. Figure 6.5 shows a
magnified view of the corresponding output torques. The magnified views focus on
a particular impact, where the end-effector is moved into the wall and then held
gently against the wall. As presented in section 2.2.3, gentle pressure against the
virtual wall with a light grip on the robot end-effector has been shown to be more
destabilizing than firm pressure and a tight grip. This distinction is also observed
in practice with the experimental apparatus employed for this work. Hence, only

the situations where gentle pressure is applied are examined in detail.

Since no viscous damping term is present, impacts with the wall feel much like
contacting a hard rubber surface using a rubber mallet. The effect is distinct, but
does not have the “crisp” feeling one might expect. Neglecting the vibration, even

the sound of impact resembles contact with hard rubber.

The quantization of the encoder measurements is readily apparent in the mag-
nified view, as is the resulting quantization of the output signal. Note that the
force being exerted by the user on the virtual wall is rather slight at this point.
However, the effect of quantization is audibly noticeable as a buzzing sound and
the oscillations can be felt on the fingertips. Low-pass filtering the encoder signals
to smooth out the quantized signal results in low-frequency oscillations induced by
the delay inherent in the filtered position measurement. If higher cutoff frequencies
are used, the buzz is not eliminated. Hence, the proportional gain of 400 N-m/rad

appears to be slightly beyond the maximum gain for acceptable performance.

Addition of a viscous damping term is ineffective. If the damping term is high

enough to be perceptible, it causes the oscillations to become completely unaccept-
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able. Increasing the proportional gain also results in oscillations. At a proportional
gain K, of 600 N-m/rad, the vibrations are so severe that they trigger one of the

hard limit switches and disable the robot power.

6.2 Implicit Impedance Matching

In section 2.1.4, the impedance produced by the implicit force control scheme of
Figure 6.1 at “equilibrium” is derived as Zy(s) = s~'Cp(s). However, suppose the
control is done in joint space so that the Jacobian transformation in Figure 6.1 is
not necessary. In this case, the system is linear (assuming a linear plant). Hence,
the closed-loop transfer function, T'(s), from the user input, d, to the plant output
z is:
T(e) = 2 = (1 + P6)C() " P(s)

T(s) represents the compliance of the closed-loop system, and is the inverse of
the stiffness. Of interest is designing a controller C(s) such that the closed-loop
compliance of the system is identically equal to a desired compliance. Let G(s)
denote the desired compliance. For the actual compliance to equal the desired

compliance:
G(s) = (I + P(s)C(s)) ™ P(s)
- (I+ P(s)C(s))G(s) = P(s)
~.C(8)=G(s)"' — P(s)? (6.3)

But G(s)~! is simply the desired stiffness, while P(s)~! is the plant stiffness. Hence,
the controller C(s) is again determined by the desired stiffness, but in this case the
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plant stiffness also enters into the controller equation. It is assumed that unstable

pole-zero cancellations do not occur.

Of course, if the plant transfer function is strictly proper, then P(s)~! will be
improper and the controller may not be implemented. Note that it is not possible
to reduce the relative degree of the closed-loop system by the addition of linear
feedback, so an inner control loop cannot be employed to make the plant non-
-1

strictly proper. However, a proper controller that approximates G(s)~! — P(s)

over a suitable bandwidth may be implemented instead.

Consider the one degree-of-freedom apparatus presented in section 4.1. From

(4.1), the form of the plant transfer function is:

1

P(s) = as? + bs

Suppose the desired impedance is that of a mass-spring-damper i.e., for some desired

mass, M, viscous damping, B, and spring constant, K, the desired compliance is:

1
Gle) = Ms*+Bs+ K
The resulting controller from (6.3) is:
C(s)=(M—-a)s*+(B-b)s+ K (6.4)

The inertia of a system is a difficult quantity for a human operator to judge. To
implement a virtual wall, a spring-damper model is often used, as in the work of
Colgate and Brown [11]. The mass of the wall is not such a concern. Thus, consider
allowing the mass, M, of the desired system match the inertia of the plant, a,

exactly. Then, the controller is simply the proportional-derivative controller:

Cls)=(B-b)s+K
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Using this controller, the system will behave exactly like a mass-spring-damper
system with corresponding coefficients of a, B and K respectively (provided friction
is cancelled). Note that for free motion, K = B = 0, yielding the proportional-

derivative control law:
C(s) = —bs

i.e., to achieve “free” motion, the controller must provide negative damping to
compensate for the inherent damping of the plant (assuming M is small). To avoid
internal stability problems, the controller may be implemented as:

— —b(do(s + 6)

C(s) st on

where .- provides low-pass filtering with a cutoff frequency of wg and ¢ is a small

quantity used to avoid the pole-zero cancellation at the origin.

To test the validity of the simple analysis above, the proportional-derivative-
derivative controller (6.4) was implemented on the experimental apparatus. The
derivative and double derivative terms were calculated using standard Euler back-
ward difference formulae. The controller was implemented digitally on an IBM PC
with an Intel 486 CPU running at 66 MHz and the Windows 3.1 operating system.
Sampling times of less than 400 microseconds were achieved. Different sampling
rates were attempted to examine the effect of sampling period on performance.
The results for the one-dimensional apparatus included here are based on a 5 ms
sampling period, except where indicated.

The motor was driven by a PAO103 voltage-to-current amplifier, provided by
Quanser Consulting. To compensate for friction, a preload function, Fy, was used.

Figure 6.6 illustrates the preload function, Fy, as a function of velocity. The dead-

band region was used to filter out noise in the velocity estimates.
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Fy

Figure 6.6: Preload Function with Deadband

Free Motion

Figure 6.7 shows the response of the system to a user-applied impulse, using friction
compensation alone. Note that since no force sensors were implemented, it was not
possible to measure the force exerted by the user during the impulse. Nor was
it possible to measure the force exerted by the user for the purposes of control.

However, similar results were obtained for various user-applied impulses.

The impulse was applied at approximately 0.5 seconds. Prior to the impulse,
the carriage was at rest. The end-effector changed direction when it gently collided
with the rubber stopper at the end of its travel. Ideally, the position versus time
curve should be linear, indicating constant velocity, before and after the collision
with the robber stopper. Observing the slope of the position versus time curve,
it is evident that the velocity is not perfectly constant during the motion. The
variation in velocity is caused by friction differences along the length of the travel,
as well as the motor shaft being slightly bent. (The apparatus is a modification of

an old, discarded printer.) There is also a small amount of viscous damping in the
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Figure 6.7: Friction Compensation for Free Motion

system, possibly due to the lubricant. The deadband of 200 counts/s in the preload
function is so small that it does not appear in Figure 6.7(b).

Qualitatively, the carriage was quite easy to move with the preload function
enabled. The friction in the system with the power amplifier disabled is substantial
- the carriage does not glide freely along the length of the apparatus without active
compensation, even for very large impulses. Thus, the use of a preload function

greatly improves the “feel” of the system.

However, use of a preload function is not without problems. While a continuous
preload function can be implemented for systems with non-uniform friction, the
greatest difficulty arises when starting to move the carriage from a standstill. Since
no force sensors are used on the system, the direction the user is applying a force
cannot be detected. Instead, the velocity of the system is used to determine the
sign of the preload function. Unfortunately, when the end-effector is at rest, the
velocity is zero. Thus, the preload function cannot compensate for static friction.

It can only compensate for kinetic friction once the carriage begins moving. As a
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result, it is very difficult to position the manipulator accurately. While the carriage
is at rest, the control system cannot compensate. Hence, to get the carriage to
move, the operator must apply a force equal in magnitude to the static friction.
Once the end-effector begins to move, the active compensation virtually cancels the
kinetic friction and no force is required to move the end-effector. The sudden drop
in the force required to move the carriage causes it to “jump”, since the operator

cannot compensate quickly enough to stop applying a force.

The problem of static vs. kinetic friction is less of a problem, of course, when
such implicit force control is used to control actuator stiffness for a pre-defined
trajectory. In this case, the actuator is rarely at rest anyway, and even if the
trajectory does bring the robot to a stop, the trajectory is primarily pre-planned so
that direction of motion as the end-effector begins to move is known. Thus, it may
be possible to compensate for static friction using implicit force control in these

circumstances.
If fine positioning is required of the experimental Fy
haptic interface, alternate preload functions may be

used. For example, fine positioning would likely be dif-

ficult on a frictionless surface when the operator has z
nothing upon which to brace their wrist or hand. Thus,

it may not only be acceptable, but perhaps preferable,
to allow some friction at low speeds while compensating

fully at high speeds.
Figure 6.8: Preload

Consider the preload function illustrated in Fig-
ure 6.8. As the velocity increases from zero, the perceived friction will decrease
from the static friction magnitude to zero, once a certain threshold velocity is

reached. Up to the threshold, the preload function is essentially identical to nega-
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Figure 6.9: Simulation of a Spring

tive damping. While this technique met with greater success for fine positioning,
the slope of the linear portion of the preload function had to be quite shallow, so
that the velocity threshold was rarely reached by the operator. This observation
suggests that a more non-linear preload function may better match human capa-
bilities. Note that the use of force sensors eliminates the difficulty because then
even the static friction can be measured as the operator applies a force to move the

manipulator.

Simulation of a Spring

Figure 6.9(a) depicts the response of the system to an impulse when the desired
transfer function, G(s), is set to that of a linear spring i.e., G(s) = K~!. The solid
line represents the position in encoder counts, while the dotted line represents the

velocity in encoder counts per sampling period. The sampling period was 5 ms.

For simplicity, the carriage inertia and viscous damping were left uncompen-

sated, so that the controller was simply C(s) = K = 0.001 V/count. Adding a
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small amount of negative damping to the controller eliminates the slight decay in
the response seen in Figure 6.9(a). It must be noted, however, that too much
negative damping (i.e. B < 0) leads to instability. With damping added to the
controller, the transfer function from the operator’s input to the carriage position
is G(s) = (Bs + K)™'. If B < 0 then G(s) has a pole in the right-half plane,
resulting in instability. With B = 0, the system behaves as an undamped spring
i.e., G(s) = K~! and the system is marginally stable.

Figure 6.9(b) shows the response of the system to an impulse when the same
controller is used, except an “inertial” term of M = (a + 2 x 10~%) V/(counts/s?)

is added, yielding:
C(s) = 0.001 + (2 x 107%)s?

Addition of the “inertial” term to the controller results in a desired transfer func-
tion, G(s), with a higher mass than the actual mass of the carriage. Thus, one
would expect the frequency of oscillation to be lower than the previous case. A
comparison of Figure 6.9(b) with Figure 6.9(a) confirms this hypothesis — the con-
troller with added “inertia” results in a system which feels heavier. Although not
shown here, adding a2 negative “inertial” term to the controller results in a higher
frequency of oscillation since the effective mass of the system is actually reduced.
This mass-reduction effect was observed experimentally. Once again, however, it
is important not to decrease the inertia too much (i.e. M < 0) or instability will
result.

Simulation of a Wall

One of the most difficult effects to simulate is a virtual wall. Figures 6.10(a) through

6.11(b) illustrate the response of the system when the operator moved into contact



CHAPTER 6. CONTROLLER DESIGN 168

3700 3700
[

.‘é’ 3500 é 3500 4+

2 1300 =1

(&) h O 3300 +

-g 3100 + -g 3100 +

& P g POT

2700 - : : 2700 + : +
0 1 2 3 4 0 1 2 3 4
Time (secs) Time (secs)
(a) Loose Grip (b) Tight Grip

Figure 6.10: Virtual Wall Using 5 ms Sampling Period

4000 4000
& 2
- .|
O &
b 3
& &

1000 ; ; } 1000 ; ; ;

0 1 2 3 4 0 1 2 3 4
Time (secs) Time (secs)
(a) Loose Grip (b) Tight Grip

Figure 6.11: Virtual Wall Using 10 ms Sampling Period



CHAPTER 6. CONTROLLER DESIGN 169

with a virtual wall. The wall was simulated by using a controller of the form:
C(s) =0.2 +0.001s

when the end-effector came “into contact” with the virtual wall. Outside the virtual
wall, only free motion was implemented, using the simple preload function Fy with
deadband already described in the previous subsection. Using this controller, the
system behaves as a very strong compression spring with a small amount of viscous
damping. Only a small viscous damping term was used so that the result would
emphasize the difference in response caused by changing the sampling period and

the operator’s grip.

Figure 6.10(a) depicts the response when the operator uses a very loose one-
finger grip and the controller employs a 5 ms sampling period. As reported in the
experimental results of Colgate and Brown [7], oscillations occur when the end-
effector comes into contact with the virtual wall. At a 5 ms sampling period, with
a loose one-fingered grip, the amplitude of the oscillations is at most 350 encoder
counts. At a 10 ms sampling period, the amplitude increases to at least 600 encoder
counts, as shown in Figure 6.11(a). Note that no oscillations occur if the operator
simply releases the end-effector. The user must push gently against the virtual wall
to incite vibration. A similar increase in the amplitude of oscillations was observed

for different operators when reducing the sampling period from 5 ms to 10 ms.

With a tight full-fingered grip, the amplitude of oscillation is significantly re-
duced, as observed by both Colgate and Brown [7], Lawrence and Chapel [6], and
Hannaford and Anderson [93]. Figure 6.10(b) depicts the response of the system
to a virtual wall for a tight full-fingered grip and a 5 ms sampling period. Fig-
ure 6.11(b) illustrates the response when the sampling period is increased to 10 ms.

In Figure 6.10(b), the amplitude of oscillations is approximately 11 encoder counts,
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while in Figure 6.11(b), the amplitude is approximately 15 encoder counts. Once

again, a slower sampling period leads to larger oscillations, even with a tight grip.

Clearly, it is desirable to use the minimum sampling period possible. It is also
evident, as concluded by Lawrence and Chapel [6], that the “loose-grip regime”
determines the stability of the virtual wall implementation. While not included
here, experiments performed at a 400 microsecond sampling period demonstrated

greatly improved responses, even for the loose one-fingered grip.

The experiments of this section were performed using the one-dimensional appa-
ratus. It is interesting to note that the limiting factor in this apparatus appears to
be the sampling rate. Faster sampling rates yield less oscillatory responses. Yet for
the five-bar robot, it is the quantization, not the sampling rate, that is the limiting
factor. This observation is less surprising when two facts are considered. First, the
one-dimensional apparatus has an encoder resolution of about 40 gm. The five-bar
robot has a position resolution of only 160 pum for the axial joint. Hence, the one-
dimensional apparatus has 4 times the positional accuracy and quantization might
be expected to be less of an issue. Furthermore, the one-dimeunsional apparatus
has far more friction than the five-bar robot. Like viscous damping, friction may
be expected to improve the performance of virtual walls since it naturally damps
out vibrations. Indeed, Colgate and Brown [7] assert that increasing the physical
damping is the “least expensive and highest payoff measure available” for improving

the perfbrmance of virtual walls. Friction, then, should yield similar “payoffs”.

6.3 State Estimation

Unfortunately, implicit force control suffers from a number of drawbacks when po-

sition measurements alone are available, as demonstrated in the preceding sections.
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If the desired stiffness includes some damping, then velocity estimates are required.
Using a derivative to calculate velocity can be a noisy operation and employing fil-
ters can introduce undesirable lags into the system. For virtual walls, these phase

lags may be destabilizing, particularly for very stiff walls.

Quantization is also an issue. Iromically, as the stiffness of the virtual wall is
increased, the quantization problem becomes more severe. Higher stiffnesses lead
to less wall penetration and fewer encoder counts being traversed. In the extreme
case, for a very stiff wall, the user may only be able to penetrate the virtual wall
to a depth of one encoder count. For a proportional implicit force controller, where
the output torque is simply a large gain, k, times the position in encoder counts,
there would be a large step in the output torque as the user entered the virtual wall.
Given the sampled nature of the controller, it is not difficult to see how this would
be destabilizing since the system would be non-conservative. This destabilizing
effect is investigated by Gillespie and Cutkosky [24] (see section 2.2.5). The output
torque is maintained by the digital-to-analog converter between sampling periods,
so while the torque may force the user out of the wall, the output would not go
to zero until the next sampling instant. Figure 6.5 illustrates the staircase control

signal that can result from insufficient encoder resolution?.

An obvious solution is to increase the encoder resolution. However, direct-drive
robots, which are well-suited for haptic interfaces, have no gearing, and thus it is

more difficult to obtain the requisite encoder resolution for very stiff walls.

An alternative is to use state estimation to predict the velocity and position of

the plant. It may seem odd to estimate position when it is a measured quantity,

2The problem is not limited to encoders. Any analog signal is ultimately converted to a digital
signal for computer control using a finite word-length analog-to-digital converter. Hence, all
analog signals will be quantized.
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but the state-estimator naturally produces a smooth, rather than quantized, out-
put. Furthermore, the velocity estimate is improved because the plant model is
incorporated into the estimator design. Also, by including the net torque acting
on the plant as one of the estimator inputs, the lag problem introduced by filtering
can be greatly reduced. The net torque is simply the difference between the torque
exerted by the user through the robot end-effector, and the torque commanded by
the controller. Hence, to compute the net torque, the torque applied by the user
must be measured. In the five-bar apparatus employed for this research, the force
applied to the end-effector is measured using the strain gauges mounted on the

flexible link. The torque may then be deduced using the techniques of section 5.2.

This approach is similar in some respects to the work of Hacksel and Salcud-
ean [94], who used a model-based observer to estimate the environment forces acting
on the plant. The velocity is also estimated using an observer and corrections based

on the estimated environment forces.

In this work, the forces are actually measured using the strain gauges mounted
on the last link. The measured forces are then fed to a linear quadratic estimator
to produce a velocity and position estimate since quantization of the position mea-
surements proved to be a problem. Nonlinear correction terms are applied to the

estimator to account for the kinetic friction observed in section 5.3.3.

Consider the axial joint for the five-bar apparatus. From Table 5.4, the identified
plant model for the axial joint is:

1 1
P($) = 757 Bs = 020457 1 0.01%

rad/N-m (6.5)

Since a mechatronics approach was applied to the design of the manipulator, the
plant dynamics are well-suited for control, being linear and low order. The linear

dynamics allow a state estimator to be employed to estimate the position and
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velocity of the plant. While some Coulomb friction is present, its magnitude is
small because the robot motors are direct-drive. However, non-linear correction
terms are added later to account for the friction as well. Now, let the plant model

be represented in state-space form as:

x = Ax+ Bu+ Gw
(6.6)

g=Cx+Du+v
The signal w = (w, w,)" represents the process noise and v denotes the noise in
the encoder measurements. Since the position and velocity are the states of interest,

let the (A, B, C, D) state-space matrices be derived using the control canonical form,

so that the states x = (z;, z,)T are, indeed, position and velocity:

-

Ao |An Au| _fo 0 1
" |An An| |0 -B| |0 -0.0565
B,] [o 0
B=|""= =
Bl |4 |49016
c-fi d
D=0

Define the noise covariances:
Q = E(ww®) R = E(vv")

Normally, for state-estimators, the input to the plant, u, is known, being generated
by the controller. Hence, the linear quadratic estimator design is not structured
specifically to account for noise in the input, . However, in the case of the haptic
interface, the input u is the net torque and is a function of both the control signal

and the torque imparted by the user. This user “disturbance” is measured using
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the strain gauges and thus is also susceptible to noise. To account for this input

noise in the state-estimator design, let G in (6.6) be defined as follows:

1 0 1 0
0 B, 0 4.9016

G=

Substituting for G. (6.6) may be rewritten in expanded form as:

z) = Anzy + Ai2Zz + Wy
T2 = Anz, + A2z; + Ba(u + wy)
gq=Cx+Du+v
Thus, w, may be interpreted as noise in the input torque u rather than process
noise. It could also be interpreted as weighted process noise B;ws, so the linear

quadratic estimator design procedure should minimize the error covariance:

J = lim E ((x - %)(x - %)T)

t—roo

given Gaussian white noise in the torque measurements derived from the strain

gauges, as well as some Gaussian process noise, and noise in the encoder readings.
Now, the covariance matrix, @, may be expanded as follows:

2
w Wy Wy
Q=E(ww')=E !
wowy Wi

Assuming the process noise and input noise are uncorrelated, let Q be diagonal.
Thus, the (1,1) element of @ corresponds solely to the process noise, and the (2,2) el-
ement relates to input noise. Since the input torque is a function of the strain gauge
readings, it may be expected to have a larger variance. Hence, the (2,2) element
should be larger than the (1,1) element.

Disregarding the non-Gaussian nature of quantization errors, the encoder mea-

surements have little noise and so the associated noise covariance, R, is expected
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to be small. Thus, for the purposes of design, let:

1 0
0 41.6

The resulting gain matrix, L, for the stationary Kalman filter is:
L= [14.4]
99.2
The gain matrix may be calculated by solving an algebraic Riccati equation (86)].
The estimator takes two inputs: the net input torque, %, and the encoder mea-
surement, g. Hence, the state-space matrices for the estimator may be calculated
as:
A= A-LC B.=[B-LD L
C.=1 D.=0

Substituting for the actual values of A, B, C, D and L, the estimator state-space

representation is:

[ 144 1000 | 0 144 ]
A|B.| | -992 —0.057|490 99.2
[Ce D,] 1 0 0 0
| 0 1 |0 o

The C. matrix is set to the 2 x 2 identity matrix so that both states — the position
and velocity — are available to the controller.

To verify the design, a sine-wave was fed to the axial joint motor of the actual
experimental apparatus and the resulting joint position was measured and recorded
over a period of 10 seconds. The sinusoidal torque input was also recorded. This

torque was then input to the state estimator in simulation.
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Figure 6.12: Block Diagram for State Estimator Simulation

A block diagram of the state estimator simulation is shown in Figure 6.12. The
simulation is complicated by practical considerations. First, the measured position
is in encoder counts and must be converted to radians for the state estimator,
which was designed using SI units. The measured position in raw encoder counts
is denoted § in the figure. Encoder counts are converted to radians using a factor

K. of —5555: based on Table 5.2.

Similarly, the interface to the analog domain is achieved using a digital-to-analog
converter. Since these converters have a finite word length and limited output range,
the output must be saturated in order not to exceed the capabilities of the digital-
to-analog converter. The raw voltage output to the digital-to-analog converter is
demarcated as %, in the figure and is followed by a saturation operator to limit its
range. The saturation of the digital-to-analog converter occurs at a voltage V; of

5V.

The output voltage is converted to a current to drive the motor by a pulse-
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width modulated current amplifier with transconductance K,, as seen in the figure.
The current amplifier has a transconductance, K, of 3.87 A/V, as recorded in
Table 5.1. The output current drives the motor and results in a motor torque of u..
It is assumed that the electrical time constant of the motor is much faster than the
mechanical time constant. Hence, the electrical dynamics of the motor are ignored
and the motor is modelled by the motor torque constant and a saturation operator
to represent the peak torque of the motor. The motors have a peak torque, 7, of
36.8 N-m. The torque constant for the motor, Ky, is 0.373 N-m/A, from the motor
specifications. Note that for the open-loop simulations, the saturation operators for
the digital-to-analog converter and peak motor torque are not required, since the
torque output is known to lie within the linear range. However, they are included
here for consistency — all the simulations performed in this work include these
saturation operators. The operators are important in the closed-loop simulations

where saturation may, in fact, occur.

The torque produced by the motor is not the net torque operating on the plant.
Friction reduces the torque output of the motor. The friction, uy, is modelled as
simple kinetic friction in the simulation. Its magnitude, fy, is constant (except at
zero velocity), but its sign depends on the sign of the robot velocity. Let sgn(-)
denote the signum function. Then the kinetic friction may be expressed as:

ug = fosgn(q) (6.7)

The net torque, u, is computed as the control torque, u., minus the friction
torque, us. Note that the direct-drive servomotor design of the mechanical system
means that non-linearities caused by gearing, such as backlash, are not present.
These non-linearities can be complicated to model. Here, due to the mechatronics

approach to mechanical design, only the simple torque calculations outlined above
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are required to compute the net torque acting on the plant. The force exerted on the
end-effector by the human operator is incorporated into the net torque calculation

later. It is not needed for the open-loop test described here.

The net torque u and position ¢ are fed to the linear quadratic estimator to
yield the estimated position and velocity, § and q respectively. Since friction is
not measured, but is included in the model, it is considered as part of the overall
estimator. Hence, the estimator is non-linear due to the inclusion of a non-linear
kinetic friction model. A friction magnitude, fg, of 0.061 N-m is employed in the

simulation, as discussed in section 5.3.3.

The position predicted by the state-estimator is compared to the measured
position in Figure 6.13. The presence of the friction model noticeably erhanced
the estimator performance. Since the measured and estimated curves are virtually
indistinguishable, a magnified view of part of the curve is depicted in Figure 6.14.
The quantization of the measured position is clearly visible in the magnified view,
yet the estimated position is smooth. Furthermore, there is no appreciable phase
lag in the estimate. Thus, if the assertion that quantization destabilizes virtual

walls is correct, then the estimator should yield improved performance.

The other claim is that derivative calculations are noisy but the phase lag in-
troduced by filtering the derivative also destabilizes virtual walls. Hence, it is
instructive to compare the estimated velocity to the velocity calculated from the
measured position. Figure 6.15 illustrates the estimated velocity superimposed on
the calculated velocity. The velocity was calculated from the position measurements
using the simple first-order Euler difference method:

dg _ gq(t) —g(t—h)
dt h

where h is the sampling period of the controller. For these experiments, h was
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Figure 6.13: Non-linear Estimation of Axial Joint Angle
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Figure 6.14: Non-linear Estimation of Axial Joint Angle - Magnified View
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Figure 6.15: Non-linear Estimation of Axial Joint Velocity

1 millisecond. The calculated velocity is extremely noisy due to the fast sampling
rate. As mentioned in section 2.2.4, there is a paradox when dealing with quantized
signals: the faster the sampling rate, the noisier the calculated velocity. This
observation is graphically illustrated in Figure 6.15.

Colgate and Brown {7] reported improved results when they digitally filtered the
calculated velocity. This improvement is validated by Figure 6.16, which depicts
the estimated velocity and the calculated velocity after filtering using a first order
low-pass filter with a 20 rad cutoff frequency. A magnified view of this graph is
shown in Figure 6.17. Note the phase delay in the filtered velocity. While 20 rad
is a low cutoff frequency, it still does not yield a signal as smooth as the velocity
produced by the state estimator. The cutoff frequency could be increased to reduce
the phase lag, but the noise would increase proportionately. Although not shown
here, the velocity estimate, ¢, was integrated to verify that the integral did indeed
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reproduce the position, g, with no apparent phase delay.

Similar experiments were performed for the other two joints. The results were
comparable, so they are not included here. Note that other values of Q and R could
have been chosen for the estimator design, although choosing @ too large or R too

small leads to numerical problems in the estimator implementation.

While the above results demonstrate the effectiveness of the non-linear state esti-
mation approach for generating smooth position and velocity estimates, the results
would not be complete without experimental verification of the estimator employed
in a closed-loop control system. However, there are difficulties in implementing the

friction compensation depicted in Figure 6.12.

Consider the kinetic friction operator of Figure 6.18(a), which is given by (6.7).
Due to the sampled nature of a digital controller, and the zero-order hold, this
block cannot be used in the actual controller. Even for a very small velocity,
(6.7) still produces an output torque of magnitude fo. If this torque is sufficient
to reverse the direction of motion of the robot before the next sampling instant,
then the robot could oscillate back and forth in a sustained limit cycle. Also, the
derivative operation used to calculate the velocity has already been shown to be a

noisy operation, and filtering is undesirable.

To compensate for these two factors, the friction operator used in the ac-
tual experimental state estimation is the saturation-type operator depicted in Fig-
ure 6.18(b). For small velocities, the friction is modelled as viscous damping so
that the limit cycle described above does not occur. The friction saturates at the
value fy, so that at velocities greater than vy the simple kinetic friction model is
employed. The velocity input to the friction operator is derived from the state

estimator to reduce noise.
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Figure 6.18: Friction Compensation

The resulting compensator is depicted in Figure 6.19. The encoder counts, 7,

and @,, are converted to radians using the conversion factors of Table 5.2:

K., = rad/count K. = rad/count

6000 4000

The axial strain measurement, &, is mapped to a force, F;, on the end-effector via
the constant of proportionality, K. = 13.4 N/V, from Table 5.3. The resulting force,
F., is mapped to a torque on the axial joint, 7, via the nonlinear equation (5.2).

T. represents the torque due to the user exerting a force on the robot end-effector.

The net torque exerted on the robot is a combination of the torque applied by
the user, the torque commanded of the motors, and the friction. The friction is esti-
mated using the nonlinear saturation-type operator already described. The friction
saturates at an amplitude of fo = 0.061 N-m when the velocity reaches a magnitude
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of 0.03 rad/s. At the 1 millisecond sampling period used for the experiments, this
velocity corresponds to 3 x 10~° rad/period, or 0.057 encoder counts/period. At
first glance, a velocity resolution of less than one encoder count per sampling period
may seem impossible to resolve. However, it must be remembered that both the
strain measurement and encoder measurement are employed by the state estimator
to arrive at the estimated velocity, ¢. Also, finite word length effects can introduce
small, yet noticeable, errors in the vicinity of zero. Using viscous damping within
this very small velocity range, [—vo, o], rather than just implementing the kinetic
friction block as it appears in the simulation of Figure 6.12 does actually make a

difference in the controller performance.

The torque commanded of the motors, u., is not used directly in the net torque
calculation due to potential saturation of the digital-to-analog converter. Hence,
when the command torque is fed back in order to compute the net torque acting
on the plant, it is first saturated at a magnitude 74. Since the digital-to-analog
converter saturates before the peak motor torque is reached, the value of 74 may

be computed as:

Td = KmKav:; =17.23 N-m

where:
K, =0.373 N-m/A (motor torque constant)
K,=387TA/V (amplifier transconductance)
Va=5V (D/A saturation voltage)

The values for the motor torque constant and amplifier transconductance are taken

from Table 5.1.

Once the position and velocity are estimated with the state estimator, the same

control strategy used for the implicit force control scheme of section 6.1 is employed.
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The controller is simply set to equal the desired stiffness, in this case:
K(s) = K, + Kg4s

The unilateral constraint for the virtual wall is applied based on the estimated
joint angle, §. It is depicted as a step function multiplying the output torque in the
diagram. The user enters the virtual wall when the joint angle becomes positive.
Note that this constraint is different from the unilateral constraint model proposed
by Colgate and Brown [7] in Figure 2.10. In the scheme of Colgate and Brown, the
user is subjected to the zero-input response of the controller whenever the user exits
the virtual wall. Hence, the user may feel a force even after they have left the wall
surface. In the scheme employed here, the output torque is completely eliminated
the instant the virtual wall is exited. In section 6.1, the maximum stiffness that
could be achieved was less than K, = 400 N-m/rad. For the state estimator results
shown later in this section, the stiffness and viscous damping terms are K, = 800 N-

m/rad and K3 = § N-m-s/rad.

Finally, the commanded torque, u,., is converted to a voltage, %, for the digital-
to-analog converter via the motor torque constant, K, and amplifier transconduc-

tance, K,.

The result of this state estimation strategy is depicted in Figure 6.20, which
illustrates the joint angle when the user taps upon the virtual wall using the robot
end-effector. Both the measured and estimated joint angle are shown. Note the
quantization of the measured joint angle, while the estimated angle remains rela-
tively smooth. The presence of the virtual wall is readily apparent, since the user

only enters the wall by a couple of encoder counts.

The corresponding output torque and the torque applied by the user are depicted
in Figure 6.21. The dotted “contact” lines below the zero line indicate those areas



CHAPTER 6. CONTROLLER DESIGN

Angular Position

i -- Estimated ||
-0.05 — Measured

5 10
Time (seconds)
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where the user is in contact with the wall, based on the position measurement. Note
that the output torque tracks the user’s input torque within the virtual wall. This
force cancellation is to be expected, since the difference between the two curves is
the net torque acting on the joint. A net torque of zero results in no displacement,

as seen in the graph of the joint angle in Figure 6.20.

The spikes which occur on initial impact are due to the derivative term, Ky, and
help to slow the robot down on impact. The result is a “crisp” feel to the virtual
wall so that the wall does not simply resemble hard rubber. This “improved” feel
may result from the fact that introducing damping reduces the velocity at which
the end-effector leaves the virtual wall surface. This reduced velocity has two
consequences. First, it decreases the effect of the robot inertia outside the virtual
wall, for which there is no compensation in this experiment. The impact of the

robot inertia is addressed in the work of Ching and Wang [10].

Second, in an impact between two bodies, there is energy loss when the coef-
ficient of restitution is not unity. The velocity just after impact is related to the
velocity just before impact by the coefficient of restitution [95]. While linear damp-
ing does not accurately model the coefficient of restitution, it does result in energy
loss and a reduced velocity after impact, and it is these factors which may improve
the qualitative feel for a human operator. Yigit et al [95] also make the interesting
observation that the impact velocity required to cause yield in even hard steel is
actually very small (0.14 m/s) and that, as a consequence, “most impacts between

metallic bodies involve some plastic deformation” [95].

To demonstrate the success of the nonlinear state estimator at producing a
smooth velocity estimate, the estimated velocity and a filtered version of the raw
velocity are compared in Figure 6.22. The filtered velocity is computed by using

the first-order Euler difference formula on the raw encodef measurements and then
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Figure 6.22: Virtual Wall by State Estimation: Velocities

passing the result through a 10 Hz first-order low-pass filter. As seen in the figure,
the filtered velocity is still noisier than the estimator output, despite the 10 Hz
cutoff frequency of the filter. The dashed curve indicates the regions of robot

contact.

The performance of the non-linear state estimator design is superior to the
standard implicit force control technique investigated in section 6.1. Much higher
stiffnesses are achievable as well as higher damping terms, leading to a more realistic
virtual wall. The problem of quantization is addressed by this design technique.
The state estimator approach is successful because of the simpler plant dynamics
resulting from the mechatronics approach to the robot design. Also note that the
same sampling rate was used in both the standard implicit force control design
and the state estimator design. Furthermore, it was observed that removing the

friction estimation reduces the achievable stiffness. Hence, the friction modelling is
an integral part of the estimator strategy.
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C<

Figure 6.23: General H,, Framework (2]

6.4 H, Control

6.4.1 General Framework [2, 3, 4]

While state estimation addresses the need for higher resolution position and velocity
coordinates, the design does not necessarily optimize the controller to best match
the desired mechanical impedance. Since the goal of this research is to provide
the user with realistic force feedback, it seems natural to minimize the difference

between the impedance of the controlled system and the target impedance.

The general framework typically used for H, optimal control is illustrated in
Figure 6.23. G represents the augmented plant and C depicts the controller. Let
G and C be linear time-invariant so that they may be represented by real-rational,

proper transfer functions.
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The input vector w represents exogenous inputs such as the reference signal
in a trajectory tracking problem. The input vector u denotes the control signal.
The output vector z represents the quantities to be minimized, such as the control
effort or tracking error while the output vector y represents the signals used by the
controller, such as position or velocity. Many standard control problems can be

formulated using this general framework.

The equations governing this general framework are:

SRR 1N
=G = (6.8)
y a Gz Gaz| |u

Let Gw, denote the transfer function from w to z. Hence Gy 5 is simply the linear

fractional transformation (LFT):
Gw,. = LFT(G, C) =Gn + GuC(I - GggO)-"Gn

Let C denote the set of all admissible controllers which stabilize the closed-loop. The

H, optimization problem seeks to minimize the H,, norm of the linear fractional
transformation, LFT(G, C), over this set of stabilizing controllers. i.e., the goal is
to find C* such that:

C* =argmin [|LFT(G,C)|eo
cec
The Hy-norm of Gy 5 represents the system gain from w to z as follows:

lill2
IGwsllo = sup
T lwlko 1wz
Since it represents the system gain with respect to the L,-norms of the input and

output signals, w and z, the H,, optimization problem minimizes based on the en-

ergies of the signals rather than their amplitude. However, for linear time invariant
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systems the distinction is partly academic because L, stability implies bounded-
input bounded-output stability [96]. For further discussion on norms and stability,
refer to [96]. An algorithm to solve the H, optimization problem was developed
by Doyle, Glover, Khargonekar and Francis [2]. Their result will be referred to as
the “DGKF algorithm”. Only the assumptions behind the algorithm are included
here, since the algorithm is implemented in commercial software packages such as

Matlab™,
Let the augmented plant, G, be represented in state-space form as:
Al B B
G=1|C|Dn Dn
Cz| D2y Do
where G;;, i,j = 1,2 from (6.8) is represented by the quadruple (A4, Bj, C;, D;;).

Define m, = dimw, m; = dimu, p, = dimz and p; = dimy. The following
assumptions on the general framework of Figure 6.23 are made for the DGKF
algorithm [97]:

1. (A, B,) is stabilizable and (Cy, A) is detectable
2. (A, B,) is stabilizable and (C3, A) is detectable
3. Ds, is tall (ma < p;) and full column rank

4. D, is wide (m; > p2) and full row rank

These assumptions are necessary for the algorithm but are not all required for a
solution to the H, problem to exist. The necessary and sufficient conditions for a
solution to exist may be found in [2, 3, 4] and others. The assumptions are listed
here because they affect the formulation of the H,, implicit force control and He

impedance control problems discussed in subsequent sections.
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6.4.2 H, Implicit Force Control

As outlined in section 2.1.4, implicit force control employs measurements of the gen-
eralized coordinates alone to produce the desired closed-loop mechanical impedance.
Force sensors are not used. While disposing of the need for costly force/torque sen-
sors has financial merit, it should be noted that implicit force control only has
utility for a haptic interface that is backdriveable. The user must be capable of
moving the device, since the user’s input can only be detected through the position

sensors of the haptic device.

Furthermore, static friction has a detrimental impact on the quality of the haptic
simulation in implicit force control and should be minimized. The problem is simply
that the device does not move until static friction is overcome. Once moving, a
“free-space” controller can counteract kinetic friction, but the net result is that
the haptic device feels “sticky” to the operator, because every time the device is

brought to rest, it gets “stuck” by the static friction.

These two factors generally reduce the applicability of implicit force control
to direct-drive haptic devices, or devices with a low gearing ratio. However, since
haptic devices are often designed as direct-drive devices in order to be backdriveable
and to avoid gear backlash, and since force/torque sensors are typically costly units,

optimal model matching in the context of implicit force control will be considered.

Consider Figure 6.24. The plant P represents the haptic device, and C denotes
the controller. The input u designates the force or torque applied by the user and
n signifies the sensor noise. Since the user applies forces directly to the haptic
device, the user input appears at the plant input, where, “traditionally”, there is
a disturbance. In essence, the user is a disturbance on the haptic device, but the

transfer function of interest is the mapping from the user “disturbance” to the plant
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Figure 6.24: Implicit Force Control for Haptic Devices

output, yp. Again, the user is treated as a purely external force - a model of the

human operator is not included.

Note that due to the direct interaction between the haptic device and the user,
the controller cannot appear between the user and the plant input, so it is necessarily
in the feedback loop. Without a force/torque sensor to measure the user input,

feedforward terms are not feasible.
Define the sensitivity S and complementary sensitivity, 7'

S2&(1+PC)™
T £ (1+ PC)"'PC

Then the mappings from » and n to the signals, y. and y, are:

w| [+pPC)yp —(+PC)1PC] [u
(1+CP)yiCP (I +CPy*C

_ |57 - ] H (6.9)
_T CS| |n

Ye n
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The compliance of this controlled system, as perceived by the user, is the transfer
function from u to yp, or SP. A quantity of interest then is the difference between
this compliance and the desired system compliance, Ps. Hence, to ensure nominal

performance, the weighted difference should be minimized. i.e., find C such that:
[Wi(SP - P} [l <1 (6.10)

The weight W, is chosen to limit the frequency range over which “tracking” of the
compliance is deemed important. Hence, it is chosen to have a low-pass characteris-
tic since a human operator will typically probe the wall very slowly. From the work
of Lawrence and Chapel [6], the user’s probing motions should have a bandwidth
of less than 20 rad/s.

In practical control systems, the torque cutput of the actuators is limited.
Hence, it is desirable to bound the control effort in order to avoid the non-linear
effects of motor saturation. The transfer function from the user input, u, to the
control output, y., is:

Y.

e _p
U

The control effort can be restricted according to frequency by defining a frequency-

dependent weighting function, W5, and requiring:
[WaTjee < 1 (6.11)

The weighting function, W3, is typically chosen to be high-pass since the control
effort needs to be large at low frequencies (particularly within the bandwidth of
human sensation) to provide good compliance tracking, but should be small at
high frequencies to avoid oscillations due to high frequency noise or unmodelled

dynamics.
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However, it is instructive to consider the nature of the input signals. The user
input, u, has a fairly limited bandwidth e.g. 20 rad/s [6], since it is produced by a
human operator. Most plants also have low-pass characteristics, being mechanical
systems. Thus, the input u is not expected to be a source of high-frequency noise.
The restriction ||W;T || < 1 is based on the transfer function from the input, u,
to the control signal, y., so due to the bandwidth limitation of » and P, it may not
be necessary to make W, high-pass.

Indeed, the expected source of high-frequency noise in the system is the sensor
noise, n. Thus, the transfer function of interest as far as limiting the control effort,
is actually the transfer function from n to y.:

Y. _
F_CS

Hence, using a frequency weighting W3, a further control effort constraint is:
[iWsCS|le <1 (6.12)

Like W2, the weight W3 should be high-pass, based on the prior discussion. For
most systems, lim|,,o S(8) = 1, since both the plant, and the controller, tend to
roll off at high frequencies. Hence, typically, lim},,oc C(3)S(8) = 0, as desired.

At first glance, there would appear to be no tradeoffs. The key transfer functions
in (6.10), (6.11) and (6.12) are SP, T and CS respectively. All three typically tend
to zero at high frequencies, as desired. (S P represents the compliance of the closed-
loop. The smaller the closed-loop compliance, the stiffer the robot appears to the

user.)

However, the transfer function SP — P; deserves closer examination. As demon-

strated in section 6.2, perfect compliance matching is achieved for:

C- — d—l - P—l
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However, for the experimental apparatus, P is strictly proper with relative degree
two and a pole at the origin. For a virtual wall consisting of a very stiff spring, K,

and damper, K4, the desired compliance is:
Py=(Kas + I{,;.)_1

which is also strictly proper. Hence, the controller which achieves perfect model
matching is high gain due to the P;! term, and actually increases in magnitude

with frequency due to P~!. Let the controller be C*. Then:
SP-P;=0
T=1-PFP!
C'S =P Y(1-PP')=P'T

The nominal performance is ideal, but T and C*S have very poor characteristics.
Since P has relative degree two and a pole at the origin, and P; only has relative
degree one, the magnitude of T has a peculiar frequency response. At low fre-
quencies, where the gain of P is high and Py is small, T is close to one. At higher
frequencies, the magnitude of P! P; will increase continuously since P has a higher
relative degree than P;. Indeed, it will increase at 20 dB/decade. Hence, T' will
also increase in magnitude at high frequencies. Thus, the control effort required to
achieve perfect tracking becomes exorbitantly large at high frequencies, and may

never be small.

The behaviour of C*S is similar, since C*S = P~!T. The difference is that C*S
is very small at low frequencies due to the pole at the origin and relative degree of
P. At high frequencies, it will increase even faster than T', again due to the relative
degree of P. Indeed, C*S will increase at 60 dB/decade! Hence, while the effect
of sensor noise on control effort is small at low frequencies, it gets quickly worse at

higher frequencies and the controller must roll off quickly to compensate.
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Thus, the weights must be chosen to balance performance against control effort
and sensor noise. The effect of sensor noise is expected to be particularly difficult
to manage while maintaining good performance. Since the requisite control effort
and the impact of sensor noise increase dramatically with frequency, the practical
operating bandwidth is expected to be limited. Indeed, the tradeoff is likely to be
most apparent as the desired operating bandwidth is progressively increased during

the design process.

' G
n— PO =
Wg E 22
1] § ‘Vg E
T Oy
c

Figure 6.25: Implicit Model Matching Framework

The framework for the implicit force control model-matching problem is shown
in Figure 6.25. The inputs to the system are:

v; = external torque applied by the operator
vy = additive output sensor noise

u = control signal
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while the outputs of the system are:

2z, = weighted error between controlled plant and target
z; = weighted control effort

y = measured plant output

Typically, the measured plant output is position rather than velocity. Hence, the
plant, P, maps torque to position and thus represents the plant compliance rather
than its impedance (see section 2.1.3). Similarly, P; denotes the target compliance.
Thus, the quantity z, is the weighted measure of the error in plant compliance

described by (6.10). The operator C represents the controller.

The weighting function W, allows the compliance comparison to be restricted
to the bandwidth of interest. The weight W, limits the control effort while W;

weights the sensor-noise.

The output equations corresponding to this framework are:

z1 = Wi(P(vy — u) — Pyv)
2y = Wgu
y = Wavs + P(vy — u)

u=_Cy

or in matrix form:

F4Y Wl(P - Pd) 0 -—W1P v (/51
Gll G13
22 = 0 0 Wg V2 = V2 (6 . 13)
— G |Gaa | |

y P W3| —-P u u



CHAPTER 6. CONTROLLER DESIGN 200

Let the state-space representation of G;; be denoted by the matrix quadruple
(Aij, Bij, Cij, Dij). The addition of a non-strictly proper weight, W5, on the control
effort ensures that D,; is full column rank, as per assumption 3. Without W,
the only term in D;, would be due to W, P. Since P is strictly proper, and W, is
preferably low-pass (hence proper), W, P is strictly proper. Strictly proper transfer
functions have a zero D matrix in their state-space representation, and hence D,

would not be full column rank in this case.

Similarly, the addition of a non-strictly proper weight W; on the sensor noise

ensures that D, is full row rank, as required by assumption 4. Let:
z2 [z z)°  — signals to be constrained
v2 [y, T  — exogenous inputs

The transfer function minimized in the H, problem is the mapping from v to z,

which is the linear fractional transformation (LFT) of G(s) and C(s):
LFT(G,C) = G + G12C(I — G32C)'Gny
Substituting for the components of G into the LFT and using the relationships:
P(I-CP)!'=(I-PC)'P
and (I-PC)y*=I1+C(I-PC)'P,
it is readily shown that:

LFT(G’C) = Wi ((I - PC)-1P - Pd) —WI(I - PC)_]’PCWz]

Wi (I+C(I-PC)P)  WaC(I- PC)™'W;
_[msp-ry -wiTws
WoT — W.CSWa
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Notice that the three transfer functions of interest: SP —P,;, T and CS are included
in the linear fractional transformation, with appropriate weightings. However, the
fact that there is a combined weight of W, W3 on T and W,;W; on C'S can make it
more difficult to choose the weighting functions.

The objective of the standard H,, control synthesis problem is to arrive at a
stabilizing controller, C, which minimizes the H norm of this linear fractional

transformation.

Now, let e; denote the i-th column of the identity matrix and consider a matrix

function G € H2*?. Let g;; denote the (%, j)-th element of G. Clearly,
gij = e:»rG’e,-
Hence, using the submultiplicative property of induced norms:
llgislleo = IleF Gejlleo < l[€illoo][Gllooll€sllo0 = [IGl oo
Thus,
HLFT(G,C)llw 2 ILFTi4(G,Cllee, i =1,2,5 = 1,2

The DGKF algorithm solves for C such that ||LFT(G,C)|| < 1. Hence, it also
ensures that the co norm of each element of LFT(G,C) is less than one. Thus,
the above design framework results in the satisfaction of the constraints defined
by (6.10), (6.11) and (6.12) [bearing in mind that the weight on CS is now the
combined weight W,;W;], although the results may be conservative.

Now, consider the axial joint of the five-bar robot, as before. The plant model
is defined in (6.5). Let the desired plant compliance be:

1

Pd(s) = Kd3+Kp
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to match the wall characteristics used in section 6.1 and defined by (6.1). In
particular, to compare the results to section 6.1, let K, = 400 N-m/rad and let

K4 =0 N-m-s/rad.

To get perfect compliance matching, the controller C* in this case is:
C*(s) = —=Js* + (K4 — B)s + K, = —0.204s* — 0.012s + 400

The corresponding transfer functions, T' and C'S, are:

—Js?+ (Kis— B)s + K, _ —0.204s% — 0.012s + 400

T(s) =

Kas + K, 400
and
s(—J%s3+ J(Kq — 2B)s* + (K4B + K,J — B*)s + K, B)
C(s)S(s) = Ko+ K,
5(—0.0425% — 0.00473 + 825 + 4.6)

400

The magnitudes of T' and C*S are depicted in the frequency response of Fig-
ure 6.26. The control effort T'(s) has two zeroes at approximately 44 rad/s. Hence,
it is virtually constant at its DC gain of one, and then increases at 40 dB/decade

for frequencies higher than 44 rad/s, or 7 Hz.

The effect of noise on the control effort, CS(s), has the same zeroes as T'(s), as
well as zeroes at the poles of the plant: 0 and -0.0564. It crosses the 0dB point at
approximately 2.2 rad/s. It increases at 40 dB/decade until it reaches 44 rad/s, at
which point it begins to increase at 80 dB/decade.

Note that the zero crossing point is actually due more to the plant than the

particular form of the controller. Omitting the Laplace variable for clarity, notice
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that:

C 1

C'S=1+PC'=5+P

~ P! for large C

But the 0dB frequency of P! is 2.2 rad/s. Even for a stiffness, K, as low as
10 N-m/rad, the 0dB frequency of CS is still 2.1 rad/s.

Clearly, it is likely to be very difficult to achieve good tracking over a bandwidth
larger than 44 rad/s, and problems may begin to appear between 2.2 rad/s and
44 rad/s.

Consider as well the Bode plot of the plant, as shown in Figure 6.27. The
cross-over frequency is approximately 2.2 rad/s. Note that the phase at the cross-
over frequency is almost -180° because the plant has relative degree two. For
good performance over a bandwidth larger than 2.2 rad/s, the controller must have
high gain over this bandwidth, resulting in a loop gain, PC, with a higher cutoff
frequency.

At higher frequencies, the phase of the plant is even closer to -180° , so for a
minimum-phase controller to stabilize the system, it must have positive phase at
the cross-over frequency of PC. But, for a stable, minimum-phase controller, C,
normalized such that C(0) > 0, the magnitude uniquely determines the phase [3].

In particular, consider the following lemma:

Lemma 6.4.1 [8] Given a proper transfer function C such that C(0) > 0, and C
and C~! are analytic in Re{s} > 0, for each frequency, wo:

2o [ In|C(jw)| —In|C(jwo)l ,

© Jo w? — W

LC(jwo) =
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Therefore, as a general rule of thumb, the faster the magnitude Bode plot
changes close to a particular frequency, wp, the greater the magnitude of the phase
at that point. For example, if the magnitude of C is decreasing at wp, then the
phase of C will generally be negative at wg. If the magnitude of C is increasing,
then the phase will generally be positive.

Thus, for the phase of C to be positive at the cross-over frequency of L, then the
magnitude of C must be increasing at that frequency. This fact results in somewhat
of a paradox. The loop gain, L, determines the bandwidth of the system. And
generally, it is desirable, due to noise considerations, to have the controller roll off
outside this bandwidth. Yet, due to the relative degree of the plant being two, the
controller gain must be increasing at the edge of the operating bandwidth. Hence,
it is expected that the optimization will produce a small peak in the controller

transfer function just past the loop gain cutoff frequency.

Consider the following Ho, design. Let the weighting functions be:
10
W;(s) = 100 (;_—16)
Wa(s) = 0.1 (6.14)

Wa(s) = 0.001;

Hence, the nominal performance has a weight, W}, of 100 over a 10 rad/s bandwidth.
A weight of 100 may seem very large, but consider the units of the transfer function
SP — P;. The units are rad/N-m. If the robot is being operated about the home
position, then the axial force exerted by the user is amplified by a moment arm of
I, = 30 cn. Hence, 1 N-m of torque is produced by a force at the end-effector of

3.3 N or 0.34 kgf. Now, for a SISO system, the H,, norm may be written:

1Glleo = sup |G(jw)|
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Suppose ||G|le < a for some constant a. Then |G(jw)| < a for any choice of
frequency w. Hence, if the input u is a sinusoid of frequency wy i.e., u(t) = sin(wot),

then the output will be sinusoidal, with amplitude less than a.

Returning to the choice of weight, Wi, consider a sinusoidal torque input of
1 N-m magnitude at a frequency wp. A constant weight, W, of 100 ensures that
|SP—Pi||c < 0.01. Hence, the difference in the actual position of the robot and the
desired position will be a sinusoid of magnritude less than 0.01 rad when this 1 N-m
sinusoidal torque is applied. Applying the moment arm, this error corresponds to

a distance of 3 mm at the end-effector, which is reasonable.

Similarly, W, weights the transfer function from the user input torque to the
control torque. Setting W» to 0.1 allows the control torque to exceed the torque
applied by the user. The control torque must exceed the torque applied by the user
if the user is to be pushed out of the virtual wall. Setting W> to a constant puts a

limit on this control torque.

Finally, W, weights the sensor noise. Since the encoders generate very clean
signals, the sensor noise is expected to be small. For example, each encoder count
corresponds to g rad, or 0.00052 rad. Hence, for a sinusoidal input v, of magni-
tude one, the semsor noise injected as an output disturbance will have magnitude

0.001 rad, or approximately 2 encoder counts.

In order to perform the optimization using the DGKF algorithm, a state-space
representation of the augmented plant, G, of (6.13), must be formed. The state-
space representation should be minimal to ensure that the requisite stabilizability

and detectability requirements are satisfied®. A minimal representation (assuming

3Forming the augmented plant in transfer function form, and then converting to a minimal
state-space realisation, led to occasional numerical problems that produced spurious results. Other
“reduction” techniques also failed when certain weights were chosen.
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no pole-zero cancellations due to the choice of weights) was derived manually. For

the augmented plant of (6.13), the state-space representation is:

[ 4, 0 6o 0o 0|
0 Ad 0 0 0
A= |By\C, —BwiCs Awn O 0 (6.15)
0 0 0 Awa O
|0 0 0 0 Aws
[ B o | -8 |
By 0 0
B=| Bwy(Dp,—Ds4) 0 |-BwiD, (6.16)
0 0 | Bw:
i 0 Bws| 0 |
[ DwiC, —DwiCs Cw1 0 0
C= 0 0 0 Cwz O (6.17)
G 0 0 0 Cws
| Dwi(Dp—Da) 0 |-DwiD,
D= 0 0 D, (6.18)
| D, Dws| -D,

The controller is calculated using the DGKF algorithm. Substituting for the
plant and weights from (6.5) and (6.14), in (6.15)-(6.18), the resulting controller is:

[ 545

A= |-124.8
314
C.=

44.8
-92.1
13.4

—45.1
73.9
-27.9

4.19 -22.0 37.3]

B,

D.

U

—-721
—3228

6.19
907 (6.19)



CHAPTER 6. CONTROLLER DESIGN

Controller Comparison
120, . r .
100k} — Rd-1P
g - - - DGKF
s b
3
10° 10° 10" 10°
Pl
L4 ’ >
-~ - 3
g° :
- Y
2 \
o Ay
£ -sof R
.
-100 . . . . . -
10° 107 10" 10° 10' 10* 1’
Frequency (rad/sec)

Figure 6.28: Bode Plot of Controller

Loog Gain

Figure 6.29: Bode Plot of Loop Gain



CHAPTER 6. CONTROLLER DESIGN 209

The Bode plot of the controller is depicted in Figure 6.28. The solid curve
represents the frequency response of the controller, C*, that results in perfect com-
pliance matching. The dotted curve illustrates the frequency characteristics of the
optimal controller of (6.19). Notice that the optimal controller is close to the ideal
controller over the bandwidth of interest (10 Hz or 62 rad/s). Also observe that
the phase of C~ only appears flat because it is non-minimum phase (the zeros are
-44.30 and 44.25). There is a dip in the phase around 44 rad/s but its magnitude
is too small to be visible at the scale of Figure 6.28.

Note the small peak in the controller magnitude around 100 rad/s. The rea-
son for the peak becomes clear by examination of the loop gain. The loop gain
is depicted in Figure 6.29. The loop gain cross-over frequency is approximately
41.7 rad/s. The phase ventures very close to -180° around 2 rad/s but the phase
peaks at the cross-over frequency. Evidently, the optimization attempts to pro-
vide some measure of robustness to the system by adding phase near the cross-over

frequency. This additional phase is provided by the controller.

The extra phase can also be seen in the phase plot of the controller in Figure 6.28.
As discussed previously, the plant is relative degree two and thus has a phase close
to -180° at higher frequencies. Hence, the loop gain, PC, also has a phase close
to -180°, except where the controller provides additional phase. The controller in
this case is stable and minimum-phase, so by Lemma 6.4.1, its magnitude must be
increasing where additional phase is required. This phenomenon is readily visible in
Figure 6.28. The phase peaks where the magnitude is increasing. As the magnitude
levels off, the phase returns to zero. As the magnitude decreases, the phase goes
negative. The result of this peak in the controller magnitude after the loop gain
cross-over frequency of 41.7 rad/s is the needed positive phase contribution. Note

that even when a small cutoff frequency is chosen for the performance weighting,
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W, the controller still exhibits a peak just above the loop-gain cross-over frequency.

It should also be noted that this design is not standard in that the transfer
function of interest is SP rather than §. Typically, the sensitivity S measures
performance because it is the transfer function from the input to the tracking
error. Multiplicative uncertainty in the plant is then managed by weighting the
complementary sensitivity, T. Since S + T = I, there is a clearly defined tradeoff.
In the case of the H,, implicit force control framework developed in this section, the
tradeoff is not as well-defined, and thus may be more difficult to manage. However,
it should be noted that the problem itself is essentially equivalent to requiring that
the robot be of such high stiffness that it is perceived by the human operator as
coming to an immediate stop upon contact with the virtual wall - not an easy task

for any control system.

The frequency responses of the performance measure, z;, and control effort
measure, z2, to the user torque input are shown in Figure 6.30. The responses for
the sensor noise input are illustrated in Figure 6.31. In all cases, the responses fall
well below the 0 dB line. Hence, the specifications are easily met.

Of course, it is important to verify that the controller actually works on the
experimental apparatus. Figure 6.32 illustrates the output torque of the controller
as the user probes the virtual wall. The solid line denotes the motor torque, and
the dotted line depicts the torque applied by the user. The corresponding joint
angles are illustrated in Figure 6.33.

The controller only produces a torque when the user enters the wall. While
damping was not specified as part of the desired compliance, the spikes in the output
torque as the user enters the wall seem to indicate that there is some damping in

the controller. Notice that when the user holds the end-effector against the wall
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the output torque approximately cancels the user torque, as expected. However,
the motor torque signal is noisy, and this noise is perceived as a small vibration
by the user. The frequency of the noise is 19.6 Hz, or 123 rad/s, according to
a Fast Fourier Transform analysis of the recorded data. Adding damping to the
desired compliance model, Py, and redoing the design failed to eliminate the small

vibrations.

Note that the frequency of the vibrations changed depending on the controller
and appeared to have some correlation with the location of the peak in the controller
transfer function, although a definitive relationship has yet to be ascertained. For
this particular controller, it is also very close to the natural frequency of the robot
structure in the horizontal direction of 19.2 Hz (see section 5.4.1), even though the
axial joint is being controlled. Hence, presumably there is some interplay between
the natural frequency of the robot structure and the controller. The horizontal

direction is uncontrolled in these experiments.

The displacement when the user holds the end-effector against the wall is quite
small, as depicted in Figure 6.33. The magnified view of Figure 6.34 shows that the
oscillations apparent in the torque translate into displacements of only one encoder
count. Asin the other experiments, the sampling rate is 1 kHz, much faster than the
bandwidth of the closed-loop system and the frequency of the vibrations. Hence,

it is the encoder resolution that appears to be the cause of the vibrations.

6.4.3 H,, Impedance Control

The state estimator approach yields a better virtual wall than both the implicit
force control schemes addressed up to this point. The addition of the torque mea-

surement allows the state estimator to smooth out the velocity measurement and
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quantized encoder signals. Hence, a natural extension of the H,, implicit force con-
trol scheme of the preceding section is to incorporate the measured torque signal

into the controller design, yielding an H,, impedance controller.

A preliminary framework for optimal H, impedance control is illustrated in
Figure 6.35. The output z, is the same nominal performance measure employed for
the H,, implicit force control of the preceding section. Similarly, z, is the weighted

control effort measure.

The key difference is in the controller. The controller takes two inputs instead
of one. The first input, y;, is the measured user torque. However, the torque is
weighted to allow sensor noise considerations to be accommodated in the design.
The second input, y,, represents the position as measured by the encoder. Hence,
like the state estimator design, the controller has both the torque and position at its
disposal. Presumably, then, this framework should yield results comparable with

the state estimator design.

The augmented plant, G, may be represented in transfer function form as:

[ W.(P-Py) | -W,P ]
0 W Gul|G
G(s) - 2 = 11 ’ 12
W3 0 G21 1 G22
- P -P .

As before, let the state-space representation of the transfer function matrices, G;;,
be denoted by the quadruple (A;j, B;j, Cij, D;;) of constant matrices. Provided the
weight on the control effort, W,, is non-strictly proper, D,; will be full row rank,
satisfying assumption 3 of the DGKF algorithm. Similarly, if W; is non-strictly
proper, D,; will be full column rank and assumption 4 will be satisfied.

While all the conditions for the DGKF algorithm are satisfied, the optimization
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produces an interesting, but impractical result. Let the controller be denoted as

C =[K, K,] such that:
u = Ky, + Kay2 = K1Wav, + Koy

The optimization produces a controller in which, regardless of the choice of Wi,
K, = W;! and K, = 0. The logic is simple. To prevent the robot from moving, it
is sufficient, by Newton’s Law, to apply an equal and opposite torque to the torque
being applied by the user, v;. Since Wj is necessarily non-strictly proper in this
design framework, in order to satisfy assumption 4 of the DGKF algorithm, it is

always invertible. Hence, the optimization produces:

U= W;IW:;‘U]_ + O’yz =0

Due to noise in the strain gauge measurement and potential calibration errors,
it is not practical to implement a virtual wall using pure force control. Hence, the
framework must be adjusted to prevent the optimization algorithm from producing
u = v;. The new framework is depicted in Figure 6.36. The inputs to the new

augmented plant are:

v, = user torque input
vz = noise in the strain gauge measurement

v3 = noise in the encoder measurement
and similarly the outputs are:

z; = weighted nominal performance

z; = weighted control effort
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y1 = measured user torque, including noise

y, = measured position, including noise

The transfer function matrix for the augmented plant, G, is:

 W.P-P) 0 0 |-WP]
0 0 0! W
G(s) =
I We 0] 0
P 0 W,| —P

By adding a separate input for the strain gauge noise, the optimization algorithm
can no longer eliminate the weighting function, Ws. In fact, W3 may now be strictly

proper without affecting the row rank of Dy;.

However, due to the change in structure, the weight Wj could not be used to
force D,; to be full rank. Hence, another input, the noise of the encoder signal,
v3, had to be added. Thus, the noise for both the strain gauge measurements and
encoder measurements is modelled, and can be shaped using the weighting functions

W3 and W; respectively.

Typically, W3 and Wy are chosen to be constants or high-pass filters to reduce the
effect of high-frequency noise on the controller performance. Let a be a constant
parameter. Suppose W3 = aW,. By varying a, the relative contribution of the
strain gauge measurements versus the encoder readings to the controller output

may be adjusted.

The state-space representation of the augmented plant, G, was manually de-
rived. Provided there are no pole-zero cancellations between the weighting func-
tions, the plant, P, and the desired plant, P,, this state-space representation will
be minimal. Let the state-space representation of the plant be (A, By, Cp, Dp)
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as before. Similarly, let the desired plant be represented by the matrix quadru-
ple (A4, Ba,C4, Dyg) and weight 7 by (Aw;, Bwi, Cwi, Dwi). Then the state-space

representation of the augmented plant, G, is:

[ 4, 0 o o0 o o |
BwiC, —BwiCa Awn 0 0 0
Ac=1{ 0 0 0 Aw: 0 O
0 0 0 0 Aws 0
0 0 0 0 0 Awe
[ B, o o | -8B |
By 0 0 0
Boo | BDe=Da 0 0 |-BuiD,
0 0 0 By
0 Bws 0 0
_ 0 0 Bw 0
[ DwiC, ~DwiCa Cwn 0 0 0O |
Coe | 0 0 Cwza 0 0
0 0 0 0 Cws O
I 0 0 0 0 0 Cws ]
 Dwi(D,—Ds) 0 0 |—DwiD, |
Do n 0 0 0 | D
I Dws 0 0
b, 0 Dwi| -Dp |

Notice the similarity between the state-space representation of the augmented plant
for the H,, impedance control framework above, to the state-space representation

of the Hy, implicit force control augmented matrix of (6.15)-(6.18).
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Let S = (1 + K;P)~!. The linear fractional transformation for the augmented

plant is:

w
W,S(K: + K, P) W,2WaSK,  W,W.SK, ’

Z2

w
[Zl} _ [Wl(P(I-S(K1+KzP))—Pa) —W\WsPSK, —Wi\W,PSK,| |

w3

Note that if K; = 0 then the LFT reduces to the implicit force control transfer
function. Unfortunately, with the number of transfer functions involved, the results

are likely to be conservative.

The above H impedance control framework was applied to the axial joint of
the experimental apparatus. Numerous designs were attempted and many con-
trollers were implemented successfully on the experimental apparatus, but only the

following design will be presented here.

Let the weighting functions be chosen to be:

10000

YT +1

(s/20 +1)2

(s/200 + 1)
8 x10™*

(5/60 + 1)

W4 = 10-6

Wz = 01

Wi =

The nominal performance weighting W, is chosen as a high gain low-pass filter
so that performance is emphasized at low frequencies, but becomes less important
at high frequencies. A large DC gain is necessary to get reasonable performance.
Recall that W; weights SP — P, which has units of rad/N-m, or compliance. For
very stiff virtual walls, the compliance is very small. Hence, W; may be large.

The weighting on the control effort, W5, is chosen to be small at low frequencies
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so that the control effort may be large, achieving a stiff virtual wall. However, at

higher frequencies it increases so that the control effort is lower at high frequencies.

The weight on the strain gauge noise is chosen as a low-pass filter. It was
observed that the noise in the encoder measurements was leading to vibration in
the response, so by lowering the weight on the strain gauge measurements at high
frequencies, the strain gauge readings are used more by the controller at high fre-
quencies. One might expect the strain gauge readings to be noisier than the encoder
measurements, but due to the high controller gain on position and the quantization

of the encoders, the strain gauge readings actually yield smoother results.

Finally, the encoder noise is weighted by a constant. Note that Wy must be

non-strictly proper to satisfy assumption 4 for the optimization.

The H,, controller was implemented at a 1 kHz sampling rate. The results of
one test are depicted in Figures 6.37 and 6.38. Figure 6.37 illustrates the axial joint
angle as the operator moved the end-effector in and out of the virtual wall. Positive
angles lie within the virtual wall. Negative angles are outside the wall. The user
probed the wall a dozen times within the 20 second interval, pushing with varying
intensity. The resulting torque is depicted as a dotted line in Figure 6.38. The
output torque, represented by the solid line, spikes as the user enters the wall, but
tracks the applied torque fairly well when the users presses up against the wall i.e.
the output torque cancels the applied torque, and the displacement into the wall is
small.

However, when the user presses lightly against the wall, there is some vibration.
Figure 6.39 shows a magnified view of a time interval over which the user pressed
lightly against the wall. The deflection is only a couple of encoder counts and the

vibration is not obvious, but it can be felt by the operator and the performance is
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Figure 6.37: Axial Joint Angles

Figure 6.38: Axial Joint Torques
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Figure 6.39: Magnified View of Joint Angle

definitely not as good as the state estimator design.

Successive design iterations were unable to completely eliminate the vibration
without compromising too much on performance. It is interesting that the vibration
can be eliminated by reducing the magnitude of W3, the weight on the strain gauge
noise, so that the controller uses more of the strain gauge measurement in producing
its output. However, this increased emphasis on the measured torque eventually
introduces a “sticky” feel to the wall. The virtual wall is very stiff but appears to
be highly damped. Indeed, once the user enters the wall, even just a little, the force
cancellation that makes the wall stiff also prevents the user from exiting the wall.
Experiments with walls that are less stiff but have very high damping resulted in a
similar problem. Making the output torque unidirectional eliminates the stickiness,
but negates the benefits of damping for reducing oscillations. The ideal solution

may be to have different gains for motion entering the wall than for motion leaving
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the wall. For example, Saludean [98] addresses the issue by generating a brief torque
pulse the instant the user enters the virtual wall. Ching and Wang [10] focus on the
moment the user exits the virtual wall. A combination of these techniques, along
with the non-linear state estimation discussed in section 6.3, may yield excellent
results. This combined approach is not investigated here but is left for future

research.

An alternative approach to reducing the vibration problem is to increase the
weights W, and/or W; at the frequency of vibration. The increase forces the control
effort to be smaller at that frequency. Hence, the controller is less likely to excite the
natural frequency of the robot structure. Likewise, the weight W) can be notched
at the frequency of vibration, leading to reduced performance at that frequency
but less vibration. The drawback of modifying the weighting functions to account
for the vibration is an increase in the controller order. These approaches were
attempted with some success, but the vibration could not be eliminated completely
without degrading the performance.



Chapter 7

Conclusions and

Recommendations

7.1 Conclusions

A general model has been presented for a flexible beam mounted on an arbitrary
robot. Vibrations in two directions are modelled. The model describes the dynamics
in a concise form that separates the base robot dynamics from the flexible dynamics
in a hierarchical structure. The equations are maintained in a block matrix form
that allows various elements, such as the inertia of the flexible beam, to be readily
identified. Since the model may also be applied to the transportation of a flexible
beam payload by a base robot, the block matrix form also allows the contributions
of the payload flexbility to the overall dynamics to be ascertained.

The Jacobian relating end-effector forces to joint torques is also expressed in a
concise matrix form. The quadratic nature of the centripetal and Coriolis terms is

more obvious than in the traditional C(q, q) representation of these terms. The

225
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matrix form allows an arbitrary number of flexible modes to be represented without

resorting to cumbersome summations.

A state-space representation is derived from this general model and linearized
about a common operating point. The impact of certain design decisions can be
observed directly in the resulting equations. For example, the advantages of gravity
balancing become immediately apparent since it grossly simplifies these linearized

equations.

Experiments are performed using two different apparatus: a one-dimensional
linear actuator with gearing and significant friction, and a three degree-of-freedom
five-bar robot. The five-bar robot was designed using a mechatronics approach -
its mechanical structure is specifically tailored to yield simpler dynamics through
gravity balancing and dynamic decoupling, and to incorporate force sensing directly
into the robot structure. The two experimental setups highlight two distinct issues

related to haptic interface control - sampling rates and quantization.

Excellent position resolution and high friction combine to yield good virtual
walls in the one-dimensional device, without the problems inherent to quantized
measurements. Hence, in this device, the sampling period is the key factor in
determining stability. The experiments on this device verify the results of Lawrence
and Chapel [6]. Limit cycles are observed that disappear at faster sampling rates.
The differences in response between a loose grip and tight grip are also verified.

The use of a preload function to address kinetic friction is also investigated and
its shortcomings are discussed, particularly with regard to haptic devices. It is
concluded that while friction can enhance the stability of a virtual wall implemen-
tation, it is a difficult not to compromise the performance of “free motion”, even

with compensation, unless a force/torque sensor is utilized.
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The five-bar robot also has good position resolution, but its low viscous and
Coulomb friction, and large torque capability, result in quantization problems when
the standard proportional-derivative implicit force control strategy is applied. The
large torque capacity is an issue because the stiffer the virtual wall, the more quan-
tization may be a destabilizing factor. Hence there is a tradeoff between position

resolution and torque output in any haptic device.

It is demonstrated that this tradeoff can be alleviated somewhat by employing
a non-linear state estimator strategy that compensates for Coulomb friction. While
the strategy introduced here is shown to outperform the conventional techniques,
it must be noted that the strategy is only possible because of the mechatronics
approach taken to the robot design. Hence, the merits of a mechatronics design
philosophy are verified by the experimental results.

The passivity result of Theorem 2.2.1 and the limit cycle theorem introduced
as Theorem 2.2.2 are not applied to the resulting control system because they do

not address the problem of quantisation present in the five-bar robot experiments.

The three degrees-of-freedom of the five-bar robot have not been exploited.
However, due to the dynamic decoupling inherent in the mechanical system, the
axial and vertical joints can be considered independently. Again, this decoupling
is a result of the mechatronics approach to the robot design. The dynamics are
simple enough that it may be possible to implement the inverse dynamics techniques

outlined in section 2.1.5.

Friction in the five-bar robot is identified using a technique that, as far as
the author is aware, is new, albeit specific to the problem at hand. However,
the technique is very simple and proved to be effective. More general friction

identification techniques were attempted but with inconsistent results.
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General frameworks for optimal implicit force control and impedance control (or
more properly, compliance control) based on H,, optimization are also introduced.
Controllers are designed and implemented successfully using these frameworks, but
prove to be less effective than the state-estimator approach. Both approaches are
based on a model-matching paradigm, where the controller is designed to shape the

closed-loop transfer function to match a desired compliance.

7.2 Recommendations

There are many potential areas of future research, both experimental and theoret-

ical. These two areas are examined separately.

7.2.1 Experimental Work

The five-bar robot used as the primary research platform for this research suffers
from unanticipated structural vibrations. By increasing the rigidity of the robot
links it should be possible to eliminate these structural vibrations. Hence, the
main source of vibration would be the last link, which is “flexible”. However, the
modelling results of this work could then be applied and the flexibility of the last
link incorporated into the plant model. Alternatively, the flexibility of the link
could be increased so that its flexibility dominates the system response. Hence,
the model could again be applied. Note however that increasing the link flexibility
is likely to degrade performance because the robot’s structural vibrational modes
would still fall within the bandwidth required for stiff virtual walls. Furthermore,
the maximum achievable wall stiffness is imited by the stiffness of the robot.

Visual observation of the robot vibration suggests that the problem may be
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linked to torsional vibration in the five-bar parallelogram structure. Hence, the
oscillations cause unmodelled coupling between the axial joint being controlled in
chapter 6 and the base joint. By implementing a multi-input multi-output compen-
sation scheme to account for this cross-coupling, the vibration may be eliminated

more effectively.

Gravity-balancing of the five-bar robot is accomplished by designing the centre
of mass to be at the origin of the robot base coordinate frame. The centre of mass
location is fixed and does not change with configuration. Hence, by designing a
three degree-of-freedom wrist with the same characteristics it should be possible to
extend the number of degrees of freedom of the robot to six without jeopardizing
the gravity balancing, nor the dynamic decoupling of the axial and vertical joints.
(Indeed, by *“chaining” versions of the current robot together, it is theoretically
possible to build an n-degree-of-freedom gravity-balanced, dynamically decoupled

manipulator.)

7.2.2 Theoretical Work

The model of chapter 3 allows for vibration of the flexible link in two directions.
However, extension and compression of the beam is not considered. It should be

relatively straightforward to add this component to the model.

In the H,, designs of chapter 6, the target compliance is not actually included
in the final controller - it is only present in the framework employed for the design.
As a result of the difficulties encountered while implementing these approaches,
however, it is felt that better results may be obtained using an alternative approach.
In particular, Yan and Salcudean [92] present a general framework for teleoperation

and H, optimization. By replacing the slave robot and its environment with a
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model of the desired compliance, it should be possible to apply their results to the
problem of simulating a particular compliance, such as a virtual wall. The target
compliance would then be incorporated into the controller structure itself. The
time delays in the Yan-Salcudean framework may be used to partially account for

computational delays in a discrete-time implementation.

Of course, in most, if not all, virtual wall implementations in the literature, the
unilateral constraint inherent to virtual walls is not included in the controller design
procedure. While the theoretical results of Colgate and Brown {7], for example,
may be applied to the final system to verify stability where the same unilateral
constraint is applied, it would be useful to include the unilateral constraint in the
design itself. For example, Yan and Salcudean [92] suggest the inclusion of passivity
constraints into the design procedure through the use of “wave” variables. By using
a similar concept to incorporate the passivity results of Colgate and Brown [7] (see
Theorem 2.2.1) into the H,, design it may be possible to guarantee stability even
with the unilateral constraint. The division of the human operator model into an
active and a passive component in the work of Yan and Salcudean [92] is also very

interesting.

The conservative nature of H., design approaches in general can be addressed
using u-synthesis and it may be necessary to use such an approach to obtain high
quality virtual walls.

Also, heuristic approaches could be combined to improve the performance of
virtual walls. For example, it would be interesting to combine the non-linear state
estimation examined in this work with the braking pulse suggested by Salcudean
and Vlaar [98] and the inertial compensation of Ching and Wang [10].



Appendix A

Strain Energy of a Flexible Beam

The following analysis is derived from the in-
vestigation of Ghanekar [88]. Consider a beam
element as shown in Figure A.1. The radius of
curvature of the neutral axis is ». The angle
subtended by the beam element is 6. The neu-
tral axis is delimited by the points a and 4. The
arc length of the neutral axis is ds. Note that
since the neutral axis is free of stress, ds is also
the length of the undeformed beam element. It
is also the original length of the other beam “fi-
bres”, such as the arc ¢-d. The strain in each

beam fibre is £(y), where y is the radial distance

a6

......

(1 +¢)ds

Figure A.1: Strain in Beam

of the fibre from the neutral axis. The strain is defined as the change in length
over the original length. Recalling that s is the original length of the fibre, the
arc length of each beam fibre is (1 + &(y))ds. But the arc length can also be found
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from the subtended angle. Hence:

(r—y)d0 = (1 + £(y))ds

Similarly, the arc length of the neutral axis is s = r§6. Consequently:

—yd0 = e(y)ds
or equivalently, in the limit:
6
cly) = ~v5r (A1)

Now, consider Figure A.2. The in-
set represents the beam segment of Fig-

ure A.1, where the line of arc length 4s

» - is the neutral axis of the segment. The
] rest of the beam is also shown, in the z;-

n y) frame. Let dv and dz be defined such
that:
(85)? = (6v)? + (8z)°
v(z,t) and

v
E = tan9

Figure A.2: Element Geometry
In the limit, the above expression dif-

ferentiated with respect to s yields:
a8 @ (9dv\ 9=z
299 _ Y (Ov) Oz
sec’(6) ds Oz (6:!:) 0s
a0  , 0oz
b—s— = COS (9)

922 8s

(A.2)
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From the inset of Figure A.2 it is evident that in the limit:

%:— = cos(f)
Thus, from (A.2):
a6 3, 0%V
55 = Wpz
For small beam deflections, the angle of curvature, 8, is very small so cos(d) = 1.
Hence:
% _ 0%
ds = Oz?

Substituting this expression into (A.1), the strain £(y) becomes:
v

ey) = -vz (A.3)
Let E be the modulus of elastic-
ity of the beam. Denote the length of
the beam by [ and an element of cross-
sectional area as dA at location y. Fig- dA

ure A.3 depicts this elemental area and

its position. The potential energy of a l\
z

beam fibre of unit volume within the

segment is 1Ee(y)? and the total po-
tential energy of the flexible link is: Figure A.3: Beam Cross-Section

'
V= / / 1 Ee(y)*dAde
0
{ azv 2
=1 2(
_2/‘; /Ey (332) dAdz

1 : 8%\’ 2
5/0 El(@) dz, where[:fy dA
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The term, I, is called the cross-sectional area moment of inertia. Using (-)’' to
denote differentiation with respect to z, the potential strain energy may be written

in concise form as:

l
V= %/0‘ EI(v")%dz (A.4)



Appendix B

Clamped-Free Beam

Eigenfunctions

This appendix describes the Euler-Bernoulli beam model and applies it to the solu-
tion of the mode shapes for a clamped-free beam. Orthogonality and normalization

of the mode shapes is discussed.

B.1 Euler-Bernoulli Beam

To derive a reasonable modal shape function, &(z), consider the free-body diagram
of an unforced beam element, as depicted in Figure B.1. The width of the beam
element is dz and the beam element is located at a position, z, along the axis =z,
and a displacement v (refer back to Figure 3.1). The quantity, o, of Figure 3.1 is
assumed to be identically equal to zero. The mass of the beam element is dm. Only
transverse vibrations are considered. The expression () refers to differentiation with

respect to time. Let ()’ denote partial differentiation with respect to z.
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M(z F(r) l F(z +dz) | M(z +dz)
idm Y
Z = I !

Figure B.1: Bernoulli Beam Element

The inertial forces due to acceleration of the beam element in the displacement,
v, direction are ¥dm. The moments experienced by the beam element are M(z)
and M(z + dz). Also, the beam element undergoes shear forces of F(z) and F(z +
dz). Note that other factors, such as rotary inertia and shearing deformations are
ignored; plane faces of the beam element are assumed to remain plane [82]. These
assumptions are standard and are reasonable for a beam whose cross-section is small

with respect to its length. Such a beam is known as an Euler-Bernoulli beam.

Using a Taylor’s series expansion for the moment and shear force at z + dz
and applying Newton's law in the transverse direction produces the following two

relationships:
vdm = F(z) — F(z + dz) = F(z) — (F(z) + F'(z)dz) = —F'(z)d=z (B.1)
F(z) = —M'(z) (B.2)
It will be presumed that the cross-sectional area, A, of the beam is constant. Sub-

stituting equation (B.2) into equation (B.1), and replacing dm with pdz, where p

is the linear mass density of the beam element:

p = —M"(z) (B.3)
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Now, the moment M(z) is generated by internal stresses in the beam. Referring to
Figures 3.2 and A.3, the moment acting on an elemental area dA, a distance y from
the neutral axis, under a stress o(y) is yo(y)dA. (The quantity o(y)dA represents
the force due to the internal stress). Thus, the moment acting on the beam element
is:

M) = [vou)da

But o(y) = Ee(y), where E is the elastic modulus of the beam element. Hence
from this relationship and equation (A.3), the magnitude of the moment is:

M(z) =ny2v"dA
= Elv"  where [ = /ysz as before (B.4)
Substituting this expression for the moment into equation (B.3):
vp = —EIv"(z)

Using the separation of variables assumption, v(z,t) = ®(z)Q(t), the above equa-

tion becomes:

EI3"(2)Q(t) = —p(z)Q(2)

: (E{) ¢"(z) _ Q)
N/ =) Q(t)
The two sides can only be the same if they equal a constant. Denote this constant

by «?. Then:

— T . ——

(ﬂ) ¥"(z) _ Q@) _ ,

p ) %) Q(t)
or as two homogeneous equations:
Q(t) +w?Q(t) =0 (B.5)
"nn wz EI
" (z) — a—ztf(a:) =0, where a® = vy (B.6)
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Since the time and spatial components have been separated, these twu equations
may be treated as ordinary differential equations. A particular solution to (B.5) is
Q(t) = e*. Define:

= % or pt==Ff (B.7)
The solution to equation (B.6) takes the form!:
&(z) = C, cos(pz) + Cysin(pz) + C3 cosh(pz) + C, sinh(pz) (B.8)

The constants Cy, Ca, C3 and C4 may be found by applying the boundary conditions

for the overall beam.

Boundary Conditions for the Clamped-Free Beam

Consider the flexible link depicted in Figure 3.1. The beam is essentially “clamped”
to the hub at one end, and free to move at the other end. Hence, this configuration
is known as a clamped-free beam. The boundary conditions at the hub are trivial.
Clearly, the displacement of the beam from the z,-axis is always zero. Similarly,
as the z)-axis is always tangential to the link, the slope of the beam at the hub is

also zero. These two conditions may be expressed mathematically as:
v(0,t) =0 (displacement is zero)
v'(0,¢) =0 (slope is zero)

Applying the separation of variables assumption, these conditions may also be

expressed in terms of the modal shape function, &(z), as:

®(0)=0 (displacement is zero)

$(0) =0  (slope is zero)

LThis solution is easily derived using Laplace transforms
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The boundary conditions at the free end (z = [) arise from the lack of both a
moment and a shear force at the end of the beam. From equation (B.4) and the

separation of variables assumption, the moment is:
M(z) = EI"(2)Q(t)
and, similarly, from equation (B.2), the shear force is:
F(z) = ~EI%"(2)Q(t)
For these two quantities to be zero at the end of the beam, for all time,
d"(l)=0 (moment is zero)
() =0 (shear force is zero)

Note that the boundary conditions for other beam configurations, such as pinned-
free or simply-supported, are similar; in each case, the modal shape function and/or

one or more of its derivatives will be zero at each end of the beam.

Mode Shapes for the Clamped-Free Beam

Evaluating these clamped-free boundary conditions in equation (B.8) yields the

four equations:

B0)=0 = C1+Cs3=0
F0)=0 = C;+Ci=0

'()=0 =  —Ccos(pl) — Cqsin(pl) + C3cosh(pl) + Cysinh(pl)
8"(1)=0 =  Csin(pl) — Czcos(pl) + Cssinh(pl) + Cq cosh(pl)

The only solution to this set of linear homogeneous equations in C;, C3, C3 and C,

is either the trivial solution C; = C; = C3 = C4 = 0 or the restriction:

cos(pl) cosh(pl) = =1  (and C3 = —C;,Cys = —C3) (B.9)
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on the mode shape “frequency”, p. Note also that given equation (B.9), the con-
stants C,, C3, C3 and C; can all be scaled by an arbitrary factor, «, and equations
(B.6) and (B.9) are still satisfied. Thus, the modal shape function &(z) can be nor-
malised by an arbitrary constant. Normalization will be discussed in more detail

in a later section.

Total Solution for the Clamped-Free Beam

The particular solution for the mode shape of equation (B.8) was derived based on
the assumption that Q(t) = e’ for some angular frequency w. Recalling equation
(B.7), the derivation of &(z) above illusfrates that there are some restrictions, (B.9),
on this angular frequency based on the boundary conditions. However, equation
(B.9) has an infinite number of solutions. For each solution, p;, of equation (B.9),
there is a corresponding mode shape function, ¢;(z). Thus, the total solution for
the displacement v(z,t) may be written as the sum of all the particular solutions.

Let ¢i(t) = e?*, where p? = “i satisfies equation (B.9). Then the total response is:

v(z,t) = Y dilz)qi(t) (B.10)

i=1
Orthogonality Conditions for the Modal Shape Functions

Since the product of the mode shapes often arises during the process of developing
the dynamic equations of a flexible system, it is revealing to examine the relation-
ship between two mode shapes, ¢;(z) and ¢;(z). Equation (B.6) must be satisfied
by both modal shape functions. Write:

A= — (B.11)
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Then ¢;(z) and ¢;(z) satisfy:

¢:"(z) = Midi(z) (B.12)
$;"(z) = Ajdi(=) (B.13)

Multiplying equation (B.12) by ¢;(z), and multiplying equation (B.13) by ¢:(z)

and then integrating across the length of the beam:
l t
[ stz = [ dutsde
0 0
! !
/ ¢;-”’¢,'d:l: = z\j / ¢_,-¢.-dz
0 0

The dependence on z has been omitted for clarity. Integrating the left-hand sides

by parts twice:

t l ! l
/ ¢idjdz + ¢'di| — ;| =N / $id;dz (B.14)

0 o o o

{ t I§ L
[ #iatan + aa - a6, = [ ostute ®.15)

Substituting the boundary conditions for the clamped-free beam:

l {
/ $ipjdz = X / Pip;dz (B.16)
(4] 0
14 {
[ #iida =, | 46z (B.17)
0 0

Subtracting equation (B.17) from (B.16):
l

(5= ) [ dubsdz =0 (B18)
0

Thus, for i # j, equations (B.18) and (B.16) yield the orthogonality relationships:

{
/ dipjdz =0
0 (B.19)

l
| #8342 =0
[1]
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Normalization of the Modal Shape Functions

In the prior section, Mode Shapes for the Clamped-Free Beam, the observation is
made that the mode shape can be scaled by an arbitrary constant without violating
the clamped-free boundary conditions. The orthogonality conditions of equation
(B.19) are also independent of the scaling of the modal shape functions, ¢; and ¢;.
Thus, for convenience, the mode shapes will be normalised by adding the following

constraint, for each i:

i
/ $2dz = 1 (B.20)
0

This normalization constraint is useful in analysis for simplifying the Euler-

Lagrange dynamic equations.



Appendix C

Strain Measurements

Consider the cross-section of the flexible beam depicted in Figure C.1.

Define the following quantities:

Ye
A
h = height of beam cross-section
b = breadth of beam cross-section ‘y
€y(z,y,t) = strain at displacement (z,y,0) z . h
z
€w(z, z,t) = strain at displacement (z, 0, 2)
The relationship between the strains and the b
beam deflections are:
eo(z,y,t) = —yo(z,t)" Figure C.1: Cross-Section

tw(z, 2,t) = —zw(=z,t)"

Suppose strain gauges are mounted on each side of the beam. Taking the difference

between the measurements on opposing sides of the beam results in the amplified
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strain measurements:

&(z,t) = e,(z, —h/2,t) — €,(z, h/2,t) = hv(z,t)" (C.1)
€w(T,t) = €u(z, —b/2,t) — €u(z,b/2,t) = bw(z,t)" (C.2)

Hence, from (3.40) and (3.41), the amplified strains may be written:

&(z,t) = he"(z)Tv(t) (C.3)
cu(z, t) = b9p"(2) " n(t) (C4)

The quantities he”(z)T and byp”(z)T are constant with respect to time, and thus
may be precomputed based on the positions of the strain gauges along the flexible
beam. Also note that v(t) and n(t) are independent of the position of each strain
gauge.

Suppose 4n strain gauges are mounted at locations z;,7 = 1,... ,n along the
beam. Using equation (C.3), the amplified strains in the v-direction at each loca-
tion, E,, are:

htp"(m )T
E,(t) = : v(t)
htp”(:l:u)T
Define the constant » x n matrix:
¢ ()T
Ky~ h :
#"(za)"

Then

E,(t) = Kou () (C.5)
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The matrix K, is a constant dependent only upon the locations of the strain gauges
and the beam cross-section. Equation (C.5) indicates that the generalized coordi-
nates of the flexible beam may be computed readily from the strain measurements
provided K, is non-singular. Thus, the strain gauges must be placed such that
det(K,) # 0. This restriction ensures, for example, that the strain gauges are not
all placed at the nodes of the same vibrational mode. Furthermore, the location of
the strain gauges may be optimized by solving the non-linear optimization problem:
T= arg max Il
Note that if K, is non-singular then the strain measurements may be used as gen-
eralized coordinates. Assuming small deflections, the tip deflection, v(l,t), may be

derived in this case as:
o(l,t) = ((1)7K;") Eolt)

The quantity ({)TK;! is constant and may be precomputed off-line. In a similar
fashion, a matrix K,, may be defined whereby E,, = K,7.



Appendix D

Common Matrix Operations

This appendix merely enumerates the well-known properties of rotation matrices
and skew-symmetric matrices that are used in Chapter 3. For a detailed discussion

of these properties and definitions, refer to [12].

D.1 Rotation Matrices

Definition D.1.1 Rotation Mairiz

A matriz R is a proper rotation matrix if and only if it satisfies:

i. RTR=1

#i. det(R) = +1

Let SO(3), referring to Special Orthogonal Group, denote the set of all rotation

matrices in R3%3.
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D.2 Skew-Symmetric Matrices

Definition D.2.1 Skew-Symmetric Matriz

A matriz A is skew-symmetric if and only if it satisfies:
A+ AT=0.

Let SS(3) denote the set of all skew-symmetric matrices in R**3.

Definition D.2.2 Skew-Symmetric Operator, S(-)
By wirtue of the definition of SS(3), all matrices in SS5(3) have only three indepen-

dent elements. Hence, every matriz A € SS(3) may be written in the form:

S(a) = | a3 0 -a (D.1)

—Q2 ay 0

Clearly every A € SS(3) may be written as S(a) for some a € R3.

D.2.1 Properties

The skew-symmetric operator, S(-), has a number of useful properties. The prop-

erties enumerated below are particularly relevant for the ensuing derivation of the
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general dynamic equations. Let a,b,w(t) € R* and a,8 € R. Let R € §O(3). Let

() denote differentiation with respect to time.

Linearity: S(aa + Bb) = aS(a) + B S(b) (D.2)
Vector product: S(a)b=axb (D.3)
Anti-commutativity: S(a)b = — S(b)a (asaxb=-bxa) (D.4)
Distributivity: R(a xb)=Ra x Rb (D.5)
Transformation:  RS(a)R® = S(Ra) (from (D.5) and (D.3)) (D.6)

Angular velocity: R = S(w)R (D.7)
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