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Abstract 
Nitrate (NO3) contamination in agricultural watersheds is a widespread problem that 

threatens local drinking supplies and downstream ecology.  Dual isotopes of NO3
- (δ15N 

and δ18O) have been successfully used to identify sources of NO3 contamination and 

nitrogen (N)-cycle processes in agricultural settings.  From 1998 to 2000, tile drainage and 

stream waters at the Strawberry Creek Catchment were sampled for NO3
- concentration 

and isotopes.  The results suggest that tile NO3 were mainly derived from soil organic 

matter and manure fertilizers, and that they were not extensively altered by denitrification.  

NO3
- concentrations and isotopes in the stream oscillated between the influence of tile 

inputs, during periods of higher basin discharge, and groundwater inputs, during low basin 

discharge.  The affect of denitrification was evident in stream NO3
- samples. 

Sources and processes of dissolved NO3
- and N2O were explored using concentrations 

and stable isotopes during the 2007 Springmelt and 2008 mid-winter thaw events.  Tiles 

are a source of NO3
- to the stream during both events and concentrations at the outflow are 

above the 10 mg N/L drinking water limit during the 2008 mid-winter thaw.  The stream 

was a source of N2O to the atmosphere during both events. δ15N and δ18O of N2O reveal 

that N2O is produced from denitrification during both events.  δ18O:δ15N slopes measured 

in N2O were due to the influence of substrate consumption (tiles) and gas exchange 

(stream).   

The stable isotopes of dissolved NO3
- and N2O were also characterized during non-melt 

conditions (October 2006 to June 2007 and Fall 2007) at the Strawberry Creek catchment.  

Again, the purpose was to determine the sources and processes responsible for the 

measured concentrations and isotopic signatures.  The isotope data suggests that N2O was 

produced by denitrification.  Furthermore, NO3
- consumption and gas exchange altered the 

original N2O signature.  Isotopic distinction between soil gas N2O and dissolved N2O is 

suggestive of different production mechanisms between the unsaturated and saturated 

zones.  Since the range of dissolved N2O isotopes from the Strawberry Creek catchment 
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are relatively constraned, definition of the local isotopic signature of secondary, 

agricultural N2O sources was possible. 
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Chapter 1: Introduction to Nitrogen Cycling in Agroecosystems, 
Study Site, and Objectives of Study 

1.1 Introduction  

1.1.1 Agriculture and the Nitrogen Cycle 

The nitrogen (N) cycle is complex and multi-faceted, driven by biotic and abiotic 

processes that are ubiquitous in oceanic, terrestrial, and atmospheric environments.  N is 

an important element for plant productivity and biochemical regulation, playing a key role 

in species diversity, composition, dynamics, and ecosystem function. 

Major alterations to the N cycle have occurred because of agriculture, combustion of 

fossil fuels, and other human activities increasing its availability and mobility (Vitousek et 

al., 1997).  Though combustion of fossil fuels has caused significant change in 

atmospheric conditions, agriculture itself appears to have had the most widespread impact 

on the N cycle.  The production of fertilizer and proliferation of N fixing crops have 

increased the rate of N fixation and the amount of reactive N in the environment 

(Galloway et al., 1995).  N mobilization is not exclusively associated with agriculture 

though some practices such as biomass burning, land clearing and conversion, and 

wetland drainage are commonly associated with it (Vitousek and Matson, 1993).    

  Natural geochemical cycling typically does not provide sufficient biologically 

available forms of N to support desired productivity in agroecosystems.   Reactive forms 

of N such as nitrate (NO3
-) and ammonium (NH4

+) are the most important forms of N for 

plant growth and are used as fertilizers to augment available crop nutrients. The industrial 

use of N fertilizers increased dramatically due to development of the Haber-Bosch method 

which combines atmospheric N2 and water (H2O) at high temperatures to form NH4
+.  The 

use of organic fertilizers has also increased dramatically with the onset of industrial 

agriculture.  The growth of N fertilizer use was originally constrained to developed 

countries where applications have stabilized since the late 1970’s (Jenkinson, 2001; 
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Vitousek et al., 1997).  On the other hand, half of industrially fixed N fertilizer use 

between 1980 and 1990 was in developing nations (Kates et al, 1990). 

Another strategy to promote reactive N formation is the cultivation of leguminous crops 

such as soybeans, peas, alfalfa, and non-leguminous crops like rice.  Through microbial 

associations with root nodules, these crops promote N fixation.  Galloway et al. (1995) 

estimates that leguminous N fixation is about half (43 Tg N yr-1) that of fertilizer 

production (78 Tg N yr-1) globally. 

A major result of increased N fixation and application of N-fertilizers has been the 

contamination of surface water and groundwater located directly within agricultural 

catchments and waters in the surrounding environments.  Although agriculture is not the 

only source of N to surface waters, Havens and Steinman (1995) and Gianessi et al. (1986) 

suggest agriculture is a major non-point contributor.  Their results suggest that, in the 

United States, croplands alone are responsible for 39% of the N found in surface waters 

and, combined with inputs from pastures and rangelands, the contribution increases to 

52%.  Howarth et al. (1996) also adds that anthropogenic N inputs are dominated by 

fertilizer in the North Atlantic and surrounding areas. In northeastern United States, the 

Saint Lawrence River, and Great Lakes basin, N loading from anthropogenic sources is 

dominated by atmospheric deposition of N-oxides (Fisher and Oppenheimer, 1991). 

In addition to atmospheric deposition of N, increases of N gas species in the atmosphere 

is of immediate concern.  The greenhouse gas nitrous oxide (N2O) is perhaps the most 

well known, though ammonia (NH3) gas is another relevant species.  Both of these gases 

are produced naturally but emissions are enhanced through N fertilization in 

agroecosystems and through other anthropogenic activities including biomass burning and 

nylon production (Rahn and Wahlen, 1997).   

N2O has 310 times the radiative forcing capacity of carbon dioxide (CO2) and the 

atmospheric concentration is increasing at a rate of 0.2-0.3%/yr (Prinn et al., 1990).  Since 

the onset of the industrial revolution in the early 1800’s, the atmospheric concentration of 

N2O has increased from 270 to 319 nmol/mol with the greatest increases of 0.6 
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nmol/mol/yr occurring in the last several decades (Figure 1-1).  This has prompted 

considerable concern in the scientific community with respect to the implications for 

climate change. 

 

Figure 1-1: Changes in atmospheric N2O mixing ratio since 1000AD as determined from air 
trapped in ice cores, firn air and whole air samples.  Calculations of increase in global 
mixing ratios (270 to 319 nmol/mol) and a maximum growth rate of 0.6 nmol/mol/yr in 2000 
are derived from the exponential model.  After Kaiser (2002). 

 

 

3

 Increases in atmospheric N2O concentrations are correlated with the onset of 

industrialization but must be considered in the context of the global N2O budget, which 

includes natural generation of the gas.  Table 1-1 provides a general survey of the global 

N2O budget and the magnitude of its components showing that natural sources (9.6 Tg/yr 

in 1994) actually outweigh anthropogenic sources (8.1 Tg/yr in 1994).  Of the natural 

sources, oceans (3.0 Tg/yr) and tropical soils (4.0 Tg/yr) are the most significant with 

temperate soils (2.0 Tg/yr) and NH3 oxidation (0.6 Tg/yr) making a lesser contribution.  

Of the anthropogenic sources, agricultural soils are responsible for the majority of N2O 

production and this has made them a key focus area for research.  With projected increases 

of global N fertilizer production of 60% by the year 2020, addressing the issue becomes 



 

more imperative (Food and Agriculture Organization (FAO), 1999).  Much of this 

fertilizer is expected to be used in developing countries that are often tropical and sub-

tropical regions and where 41% of global urea fertilization already takes place (FAO).   

Table 1-1: Sources of N2O (Tg/yr). Adapted from Stein and Yung (2003). 

 

*NA = data not available 

Source 1994 1990
Agricultural soils 4.2 3.6
Biomass Burning 0.5 0.5
Industrial Sources 1.3 0.7
Cattle and feedlots 2.1 1
Anthropogenic 
subtotal 8.1 4.1
   
Ocean 3.0 3.6
NH3 oxidation 0.6 0.6
Tropical soils 4.0 NA
Temperate soils 2.0 NA
All Soils  6.6
Natural subtotal 9.6 10.8
   
Total sources 17.7 14.9
   

Stratospheric sink 12.3 
 

NA

1.1.2 The Nitrogen Cycle 

1.1.2.1 Overview and Leaky Pipe Model 

This section introduces key processes in the N cycle.  A special emphasis is placed on 

those that produce and consume NO3
- and N2O, the central N species of this thesis 

research.  The following discussion focuses on the microbially-mediated reactions of 

nitrification and denitrification though attention is also given to other important processes 

such as N-fixation and ammonification.   

Figure 1-2 shows the major processes of the N cycle in the context of Firestone and 

Davidson’s (1989) Leaky Pipe model that explains the regulation of trace N gas 

production through nitrification and denitrification. According to the model these 

processes are controlled by three levels of regulation; (1) Flow of N through the pipe, or 
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availability of NH4
+ and NO3

-, which is controlled by the overall rate of the reaction, (2) 

the ability of the gas to move out of the cell, which is controlled by factors that partition 

the N species to a more oxidized or reduced form, and (3) the ability of the gas to move 

from the soil to the atmosphere without reduction.  Though the model deals specifically 

with N2O and NO, it can be expanded to explain the availability of NO3
-, particularly the 

first level of regulation.  It is obvious that both cellular (e.g. presence of enzymes and their 

inhibitors) and environmental (e.g. reactant availability) controls will govern these 

regulators.  This will be discussed further in the following sections. 

1.1.2.2 Microbial N fixation 

Microbial N fixation is the conversion of atmospheric N2 (gas) to NH3 (Equation 1-1).   

ADPHNHeATPHN 1628168 232 ++⇒+++ −+     Equation 1-1 

Species of the genus Azotobacter are the best known aerobic nitrogen fixers and can do 

so relatively well in ambient atmosphere (Postgate, 1987).  The N fixing capability of a 

sub-group of aerobic microbes (microaerophiles) are agriculturally important because of 

their symbiotic relationship with leguminous plants.  Rhizobium and Bradyrhizobium are 

the best known for their associations with clover, alfalfa, peas and beans.   
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Figure 1-2: The nitrogen cycle modeled after Firestone and Davidson’s (1989) Leaky Pipe 
Concept.  The specific transformations are indicated by the labeled arrows.  DNRA and 
DNR are the abbreviated forms of Dissimilatory Nitrate Reduction to Ammonium and 
Dissimilatory Nitrite Reduction, respectively.  Gases in the middle of the diagram (N2, N2O, 
and NO) are those that have escaped the cell to the environment according to the model.  
Other N species on the periphery of the diagram can be taken from the external environment 
and moved into the cell for further transformation.  

 

1.1.2.3 Ammonification 

Ammonification is the digestion of complex proteins and N compounds found in soil 

organic matter (organic N) where NH3 or NH4
+ is formed (Jansson and Persson, 1982) 

(Equation 1-2). 

++⇒− HNHNOrg 3        Equation 1-2 

It is performed by heterotrophic microorganisms that use organic N substances as an 

energy source (Bartholomew, 1965; Jansson, 1971).  Factors affecting ammonification 
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rates include soil temperature-moisture interactions, soil pH, concentrations of other 

nutrients, organic matter concentration and quality, soil structure (Cassman and Munns, 

1980; Stanford and Smith, 1972; Bremner, 1965; Herlihy, 1979). 

1.1.2.4 Ammonia volatilization 

Gaseous losses of N from different environments, including agroecosystems, can occur by 

ammonia volatilization.  NH3 loss can be significant in and around areas with high 

concentrations of plant and animal residues, such as manure piles and feedlots. NH3 

volatilization also occurs in agricultural fields and adjacent forests (Lemon and Van 

Houtte, 1980).  Schlesinger and Hartley (1992) estimate global losses of NH3-N from 

fertilized fields, domestic animal waste, and biomass burning at 10, 32, and 5 Tg/yr, 

respectively. 

The process of ammonia volatilization is controlled by the difference between the 

partial pressure of NH3 in equilibrium with solution and the partial pressure of NH3 in the 

atmosphere.  This is summarized in Equation 1-3. 

)10*8.710*4.5(
][
][ 11

3

3 −= H
NH
NH

g

aq (Sander, 1999)    Equation 1-3 

where H is Henry’s constant and [NH3]aq and [NH3]g are NH3 concentration in dissolved 

and gas phases, respectively.  Partitioning of NH3 between the two phases varies with pH 

and temperature (Hales and Drewes, 1979). 

 Furthermore, the concentration of free NH3 species in solution is directly controlled by 

the equilibrium reaction with NH4
+ summarized in Equation 1-4. 

Ka
NH

HNH
=+

+

][
]][[

4

3   (5.89*10-10 at 25oC)    Equation 1-4 

also showing the effect of pH.  This indicates greater potential for NH3 volatilization at 

higher pH.    As such, a soil’s buffering capacity has a direct affect on NH3 volatilization.  

Soils with a high buffering capacity result in increased volatilization because of the 

neutralization of the acid produced in the dissociation of ammonium ions.   
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Sorbtion of NH3 on soil minerals and organic matter occurs through physical adsorption 

and hydrogen bonding with water, thereby reducing volatilization (Young, 1964; 

Broadbent and Stevenson, 1966).  Chemical reactions create much stronger bonds to the 

soil surface than physical adsorption where the reaction of NH3 acids and other groups can 

form salts and non-exchangeable products.  The net result is that NH3/NH4
+ tends to be 

bound and therefore has low mobility. 

1.1.2.5 Nitrification 

The overall process of nitrification is the microbial oxidation of NH4
+ to NO3

-, which can 

be broken down into two steps consisting of several energy yielding, acid producing 

reactions.  The first step, termed ammonium oxidation or nitrosification, is the conversion 

of NH4
+ to nitrite (NO2) by the Nitroso genera of bacteria, including the common 

Nitrosomonas spp. and Nitrococcus spp.  Within nitrosification, there are two reactions 

that complete the transformation to NO2.  The first, catalyzed by the enzyme ammonium 

monooxygenase and with Copper (Cu) as a co-factor, is summarized by Equation 1-5. 

OHOHNHeHONH 2223 22 +⇒+++ −+      Equation 1-5 

The second step of nitrosification oxidizes NH2OH to NO2 in the hydroxylamine 

dehydration reaction shown in Equation 1-6.  

−+− ++⇒+ eHNOOHOHNH 45222      Equation 1-6 

which is catalyzed by hydroxyl-amine dehydrogenase with the help of molybdenum (Mo) 

and iron (Fe) co-factors.   

A small amount of N2O can be produced through this reaction though the exact pathway 

is presently unknown (Yoshida, 1988).  Hyponitrous acid (HNO) may be an important 

intermediate in this reaction.  In their medical experiments Sha et al. (2006) found that 

HNO is highly reactive toward nucleophiles such as thiols and rapidly forms H2N2O2 in its 

presence.  H2N2O2 then dehydrates to form N2O.  Firestone and Davidson (1989) also 

suggest that HNO is formed followed by H2N2O3 or NO and consequent oxidation to NO2.  

NO as an intermediate between HNO and NO2 is another potential pathway to N2O 
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production, though Andersson et al. (1982) state this is unlikely to be completed by one 

organism.  Delwiche (1981) also states that N2O production is energetically favorable over 

NO2 production at higher pH, which may be more important in marine environments (pH 

∼ 8.3) than in agricultural areas that tend to be on the acidic side. 

The second step of nitrification, termed nitrite oxidation, is performed by Nitro bacteria 

(e.g. Nitrobacteria spp.) and is summarized in Equation 1-7. 

−+−− ++⇒+ eHNOOHNO 22322       Equation 1-7  

1.1.2.6 Nitrifier Denitrification 

Nitrifier denitrification is a pathway that combines nitrosification to a partial 

denitrification series through NO2
- by which N2O and N2 can be produced (Figure 1-2) 

(Poth and Focht, 1985; Poth, 1986).  The enzymes required are believed to be analogous 

to those required for the same reactions in the other pathways.  Several species of 

Nitrosospira and Nitrosomonas are able to complete this pathway, which differs from 

coupled nitrification-denitrification where the different species in close proximity are 

required to produce N2O and N2 (Schmidt et al 2004; Wrage et al., 2001).  When oxygen 

becomes limiting, NO2 can be used as an electron acceptor by ammonium oxidizing 

bacteria through activation of nitrite reductase (Poth and Focht, 1985).  However, oxygen 

limitation may be more important to this pathway in the lab than in the field where Wrage 

et al. (2004) suggest NO2 availability is the limiting agent.  NO2 concentrations in natural 

systems are often very low as it quickly oxidized to NO3
- or reduced to N2O or N2.  No 

NO3
- is produced by nitrifier denitrification.   

Up to 40% of N2O produced can be through nitrifier denitrification though it can also be 

a neglible percent of the N2O produced (Wrage et al., 2005; Robertson and Tiedge, 1987).   

1.1.2.7 Denitrification 

Denitrification is the reduction of nitrate to a gaseous N product, resulting in the loss of 

fixed nitrogen from the environment (Payne, 1973; Firestone and Davidson; 1989).   

Under anaerobic conditions NO3
- can serve as an electron acceptor and be consequently 
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consumed in the production of N2.  N2O is an obligatory intermediate in the reaction series 

shown in Equations 1-8 to 1-11. 

(1)      Equation 1-8 OHNOeHNO 223 22 +⇒++ −−+−

(2)       Equation 1-9 OHNOeHNO 22 2 +⇒++ −+−

(3)      Equation 1-10 OHONeHNO 22222 +⇒++ −+

(4)       Equation 1-11 OHNeHON 222 22 +⇒++ −+

The overall reaction where organic carbon is the electron donor is summarized by 

Equation 1-12.  Sulfide can also be the electron donor when organic carbon is low (ie: 

deep groundwater). 

22223 572454 COOHNHOCHNO ++⇒++ +−     Equation 1-12 

A diverse group of microorganisms that generate metabolic energy in the form of ATP 

from electron transport phosphorylation are capable to complete these reactions.  These 

microbes are free living without association to other organisms and are capable of 

anaerobic respiration (Payne 1973, 1976).  Bacteria capable of completing the complete 

denitrification reaction series should have the most environmental importance in terms of 

their effect on geochemical cycling (Ingraham, 1981; Firestone and Davidson, 1989).  

Pseudomonas and Alcaligenes species are the largest populations of denitrifiers found in 

all environments (Tiedje, 1988). 

Ingraham (1981) states that “partial denitrifiers” cannot complete the reaction series for 

several genetic or physiological reasons that include the absence of reactants, 

environmental conditions, and absence of crucial enzymes.  Most partial denitrifiers are a 

wide variety of genera only capable of reducing NO3
- to NO2

-.  Another group are those 

that lack nitrous oxide reductase and thus do not produce N2.  Several species including 

Aquaspirillium itersoni, Pseudomonas fluorescens, and Achromobacter nephridii belong 

to this group. 
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Though denitrification is generally inhibited by the presence of oxygen there are certain 

instances where oxygen has a variable effect on enzyme synthesis.  For example, there are 

two species of Pseudomonas and one of Alcaligenes that can synthesize nitrate reductase 

(NAR) in the presence of oxygen and NO3
- (Krul, 1976; Krul and Veeningen, 1977). 

1.1.3 Controls on NO3
- and N2O availability in agroecosystems 

Controls on the availability of NO3
- and N2O in agrosystems should be considered in 

terms of pathways producing and consuming these constituents. 

Numerous factors can control the rate of nitrification through which NO3
- and N2O are 

produced though NH4
+ availability and O2 appears to be the most important (Firestone and 

Davidson, 1989; Strauss et al., 2002; Kemp and Dodds, 2002).  Factors that can affect 

NH4
+ availability include rates of mineralization, which is affected by soil organic matter, 

water availability, and temperature. Water content itself controls the diffusion of NH4
+ and 

O2, which also affects nitrification rates.  Plant uptake of NH4
+ and physical adsorbtion to 

soil also limits its availability (Robertson, 1989). In agriculture settings, the amount of 

ammonium-based fertilizer added will also obviously affect the size of the NH4
+ pool.  

Deposition of NOx’s can also influence NH4
+ availability though this is often masked by 

fertilization rates in agricultural settings.  N2O production through nitrification appears to 

be negatively related to organic carbon and C:N ratio (Kemp and Dodds, 2002; Bernhardt 

and Likens, 2002). 

While reducing NO3
- concentrations denitrification also acts as an additional pathway 

for N2O production.  Additional NO3
- attenuation occurs through plant uptake and 

dissimilatory nitrate reduction (DNRA).  The most important controls on denitrification 

appear to be NO3
-, O2, and carbon as an electron donor (Firestone and Davidson, 1989; 

Robertson, 1989).  As reactants, NO3
- and organic carbon have a positive correlation to 

denitrification while O2 inhibits this process.  Diffusion of these constituents is largely 

controlled by water and temperature.  Availability of NO3
- in agroecosystems is also 

affected by fertilization practices, which have been directly correlated with N2O 

production.  Soil type and moisture content also control the diffusion of N2O through the 
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soil and sediments.  The speed of transport and length of transport pathway for N2O 

diffusion also determines the likelihood of re-entrance into the denitrication reaction 

(Perez et al., 2000)  

1.1.4 The use of stable isotopes in the Nitrogen cycle 

This section provides a background in both general isotope geochemistry and how the 

theory has generally been applied for understanding the N cycle.  As with the previous 

section, discussion here will focus on isotopic processes related to NO3
- and N2O 

production and consumption. 

1.1.4.1 Fundamentals of stable isotope geochemistry 

The stable isotopes of an element are those atoms which differ in the number of neutrons 

present in the nucleus.  The difference in neutron counts gives rise to different masses of 

those isotopes.  The two main stable isotopes of N are nitrogen-14 and nitrogen-15.  Both 

isotopes have 7 protons in their nucleus, making them nitrogen atoms, but nitrogen-14 and 

nitrogen-15 have 7 and 8 neutrons in their nucleus, respectively.  The two most abundant 

oxygen isotopes are oxygen-16 and oxygen-18, which have 8 and 10 neutrons, 

respectively, along with 8 protons.  The sum of protons and neutrons in the isotope is 

called the mass number while the number of protons is denoted by the proton number.  

Stable isotopes are therefore ussually distinguished by their mass number. 

15
7N O18

8
16
8O14

7N b)a) c) d)
15
7N15
7N O18

8O18
8

16
8O16
8O14

7N14
7N b)a) c) d)

 
Figure 1-3: Major stable isotopes mentioned in text and used in this study with mass number 
(superscripted) and proton number (subscripted): a) Nitrogen-14, b) Nitrogen-15, c) Oxygen-
16, and d) Oxygen-18 

Although the abundance of stable isotopes may be quantified and reported in different 

ways it is always a variation on the ratio of heavy to light isotopes.  The stable isotope 

composition of substances is usually reported in delta (δ) notation in units of permil (‰), 

according to Equation 1-13. 
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1−=
s

x

R
Rδ         Equation 1-13 

where Rx and Rs are the ratios of the heavy to light isotopes of the sample and standard, 

respectively.  The primary reference material for N is atmospheric air (N2) and the mole 

fractions of 14N and 15N in air are 0.996337 and 0.003663, respectively.  The 

recommended reference material for oxygen is Vienna Standard Mean Oceanic Water 

(VSMOW) which has mole fractions of 0.9976206 and 0.0020004 for 16O and 18O, 

respectively (Coplen et al., 2002) 

1.1.4.1.1 Isotopic Effects   

Changes, or fractionation, in isotopic ratios is caused by isotopic discrimination through 

physical, chemical, or biological processes (Kendall and Caldwell, 1998).    The two types 

of fractionation are equilibrium and kinetic fractionation. 

Fractionation (α) is defined and quantified by Equation 1-14, 

substrates

products

R
R

=α          Equation 1-14 

where R is the ratio of heavy to light isotopes (15N/14N in the case of N).  This leads to the 

enrichment factor (ε) as shown by Equation 1-15. 

1000*)1( −= αε         Equation 1-15 

Furthermore, when substrate concentrations are large and enrichment factors are small, 

the difference in isotopic composition between products and substrates (∆) is the 

approximate enrichment factor (ε) of the reaction.  This is shown in Equation 1-16. 

substratesproductssubstratesproducts δδε −≅∆≅−      Equation 1-16  
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Additionally the Rayleigh equations can be used to describe isotopic fractionation 

between chemical species with at least two stable isotopes if the reacting species is 

continuously removed and the fractionation (α) does not change.  This is described by 

Equation 1-17. 
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=

α
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substrates

products

X
X

R
R

      Equation 1-17 

where R is the ratio of the heavy to light isotopes and X is concentration. 

Equilibrium fractionation is the result of reversible reactions where the isotopic 

exchange reaches steady state equilibrium and constant isotopic composition is achieved 

between products and substrates.  For equilibrium reactions, the species with the higher 

oxidation state will usually have a higher percentage of the heavier isotope.  During phase 

changes of the same compound (e.g. liquid water to water vapor) the denser material will 

usually contain more of the heavier isotope (Kendall and Caldwell, 1998). 

Irreversible kinetic reactions with variable reaction rates result in kinetic isotopic 

fractionation.  Variation in reaction rates is due to the different masses of the isotopes and 

their vibrational energies (Kendall and Caldwell, 1998). Reaction pathway, reaction rate, 

and the energy required to break and/or form bonds in a reaction determine the extent of 

kinetic fractionation.  Most of the reactions of the N cycle discussed in this thesis, except 

for ammonium volatilization, are biologically mediated chemical reactions, thus resulting 

in kinetic fractionation.  With biological processes fractionation is highly dependant on 

reaction rates, concentrations of reactants and products, environmental conditions, and 

species of the organism. 

1.1.4.2 N cycle isotope systematics 

This section serves as a brief review of the known isotopic effects within the N cycle. This 

section is also meant to highlight the current understanding of the isotopic compositions 

NO3
- and N2O that are observed in nature.  The isotopic dynamics of other N species will 

also be discussed in the context of NO3
- and N2O.   

1.1.4.2.1 N fixation, N uptake, Ammonification, and Volatilization 

Fogel and Cifuentes (1993) report a range of fractionation for N fixation from -3 to +1‰ 

(εp-r), which often produces organic material having δ15N values close to 0‰ (Kendall, 

1998).  Mariotti et al. (1980) report 15N fractionation for N assimilation by vascular plants 
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to be from -2.2 to +0.5‰ (εp-r).  Plant assimilation of NH4
+ and NO3

- is reported as to have 

no noticeable isotopic effect on soil organic matter signatures (Kendall, 1998).  N 

assimilation by soil microbes also produces small fractionations (εp-r = -1.6 to +1‰) while 

assimilation by aquatic algae can have a large range of isotopic fractionation (εp-r = -27 to 

0‰), depending on N, enzyme, and diffusion limiting conditions (Hubner, 1986; Fogel 

and Cifuentes, 1993). 

The range of 15N fractionation for ammonification is reported to range from 0 to ±1‰ 

(εp-r) (Kendall, 1998; Hogberg; 1997) and therefore it is expected that δ15N values for NH-

4
+ produced from soil organic N will be similar to the isotopic composition of the soil 

organic N.  δ15N of organic matter varies from +5 to +12.3‰ for agricultural soils across 

the U.S.A. and +8.6 ± 1.9‰ for Saskatchewan agricultural soils (Shearer et al., 1978; 

Karamanos et al., 1981). 

There are several fractionating steps associated with ammonium volatilization, and this 

can result in significant changes in isotopic composition of the remaining NH4
+ and the 

NH3 released to the atmosphere.  The equilibrium reaction between aqueous NH4
+ and 

gaseous NH3 has an associated enrichment factor of -19‰ (εp-r), leaving the remaining 

NH4
+ enriched in 15N (Fogel and Cifuentes, 1993).  The preferential volatilization of 

14NH3 is a unidirectional reaction that results in an enrichment factor of approximately -

34‰ (εp-r) (Kirshenbaum et al., 1947).  Environmental factors such as pH, temperature, 

and windspeed are known to affect these reported fractionation factors (Kendall, 1998). 

1.1.4.2.2 Nitrification 

From single organism lab cultures Yoshida (1988) calculated a range of 15N fractionation 

from -24.6 to -32% (εr-p) during nitrosification (NH4
+ to NO2) while Mariotti et al. (1981) 

observed a range from  -32 to -37‰ (εr-p).  Shearer and Kohl (1986) and Kendall (1998) 

also reported complete nitrification (NH4
+ to NO3

-) fractionation as a range from -12 to -

29‰ (εr-p) for field studies showing that less fractionation may occur in natural systems.  

See Appendix A for a complete list of enrichment factors and references. 
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Hollocher et al. (1981) and Andersson and Hooper (1983) show that the oxygen in the 

first step of nitrosification (NH4
+ to NH2OH) comes from atmospheric O2 (δ18O-O2 = 

+23.5‰).  Andersson and Hooper (1983) showed the second oxygen required to form 

NO2 came from H2O.  Kumar et al. (1983) and Hollocher (1984) show that the final 

oxygen used to form NO3
- also comes from H2O.  In summary, equation 1-18 formulates 

the most accepted theory of δ18O-NO3
- signature mechanisms from chemolithoautotrophic 

denitrification (Kendall, 1998; Mayer et al., 2001; Spoelstra et al. 2007).  Anderson et al. 

(1982) challenge this theory by showing that the two oxygen atoms on NO2 come from 

rapid exchange with water.  

−−=−+− 3
18

2
18

2
18 *3/2*3/1 NOOOHOOO δδδ     Equation 1-18 

N2O is also produced by nitrification and has associated nitrogen-15 fractionation 

factors.  Though it has been shown that a small amount of N2O can be produced directly 

from NH2OH oxidation the two step production of N2O through nitrifier-denitrification is 

likely more environmentally relevant (Yoshida, 1988; Sutka et al., 2003).  For the second 

step (NO2-N2O) Yoshida (1988) and Sutka et al. (2003) report very similar fractionation 

factors of -34.9 to -36.2‰ for Nitrosomonas europaea culture experiments.  Nitrogen-15 

fractionation for the complete nitrification-denitrification reaction (NH4
+ to N2O) ranges 

from -45 to -68.2‰ (Ueda et al., 1999; Yoshida, 1988) and from -59.5 to -68.2‰ 

(Yoshida, 1988).  Sutka et al. (2003) also report a nitrogen-15 enrichment factor of -26‰ 

for hydroxylamine oxidation by Nitrosomonas europaea through autotrophic nitrification 

and +2.3‰ for hydroxylamine oxidation by Methlycoccus capsulatus through 

methanotropic nitrification (Appendix A).   

Though little experimental work has been done to explain 18O-N2O composition formed 

from NO2 (during nitrifier-dentrification) two studies show that it has a composition near 

mean atmospheric O2 (+23.5‰) (Whalen and Yoshinari, 1985; Perez et al., 2001).   

1.1.4.2.3 Denitrification 
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The isotope systematics of denitrification are as equally complicated as nitrification 

though it is arguable that more work has been done in this area.  It has been reported that 

the residual NO3
- pool exhibits an enrichment of 1:2 when measured as δ18O:δ15N ratio 

(Mengis et al., 1999, Aravena and Robertson, 1998; Wassenaar, 1995).  This has been 

used as evidence of NO3
- removal via denitrification. The fractionation most likely occurs 

during uptake of nitrate into the cell and subsequent reduction.  However, fractionation 

would only occur if NO3
- within the cell is less limiting than limitations caused by 

reduction potential or available enzymes.  If NO3
- within the cell is limiting and the 

reduction potential and/or amount of available enzymes is high, all the NO3
- in the cell 

would be consumed and little fractionation would occur.  It has also been shown that the 

reduction of NO2
- to NO can be rate limiting, suggesting that fractionation can occur at 

this step (Baumgärtner and Conrad, 1992; Santoro et al. 2006).  However, build up of 

nitrite in the cell is unlikely as it is toxic and would also likely inhibit the uptake of nitrate, 

which is a stronger oxidizing agent (Firestone and Davidson, 1989).  The same theoretical 

arguments also limit the likelihood of fractionation during the reduction of NO to N2O. 

A large range of apparent fractionation factors are observed between NO3
- and N2O (ε = 

-13.5 to -33‰), likely due to the different scenarios controlling nitrate reduction.  These 

are deemed as apparent fractionations as it is the net isotopic effect of multiple 

fractionations.  For complete reduction of NO3
- to N2, Kendall (1998) reports a range of 

apparent fractionation factors of -5 to -40‰ for nitrogen isotopes.  Examples in Appendix 

A show that this is remarkably consistent between both incubations and field studies. 

Enrichment of 18O-NO3
- shows that NO3

- containing 16O is preferentially reduced during 

NO3
- reduction.  As shown in Equations 1-7 to 1-10 water is formed from the loss of 

oxygen atoms during reduction of NO3
- to NO2 and then to NO.  Fractionation kinetics 

suggest that N-16O would be preferentially cleaved during these progressive reductions, 

resulting in enrichment of the products.  A range of 18O enrichment factors (ε = -10 to 

+32‰) reported in the literature (Appendix A) for the reduction of NO3
- to N2O show 

positive 18O-N2O enrichment is sometimes, but not always, observed.  Alternate isotopic 
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effects such as oxygen exchange with water show that other processes likely complicate 

the expected results. 

Exchange of O-H2O with N-species during denitrification has been shown and this can 

have a significant effect on δ18O-N2O (Casciotti et al. 2002, Ye et al. 1991, Shearer and 

Kohl 1988).  It appears that the presence of nitrite reductase (NiR) enzymes with either 

copper (Cu-NiR) or heme cd1 chromatophores (cd1-NiR) are a prerequisite for oxygen 

exchange during NO2 to NO reduction (Kim and Hollocher, 1984; Hochstein and 

Tomlinson, 1988; Averill, 1996; Ye et al., 1994).  The heme cd1-NiR is found in 66% of 

examined denitrifying species (Averill, 1996; Ye et al., 1994).  Exchange during NO 

reduction is also possible.  For this reaction, Ye et al. (1991) observed that different rates 

of exchange were correlated with the different NiR, and suggested that nitric acid 

reductase (NOR) has similar chromatophores.  It is speculated that the amount of oxygen 

exchange during either reaction may be controlled by the diversity of the functional 

enzymes present (Kool et al., 2007).  Oxygen exchange with NO3
- and N2O is less likely 

though it cannot be excluded as a possibility (Kool et al., 2007). 

As δ18O-H2O in water often ranges from -26 to -2‰ (IAEA, 2001) this can cause a 

significant masking of the fractionation associated with oxygen cleavage in the 

progressive reductions of NO3
- to N2O.  This may be the reason for either negative or 

small positive enrichment factors for 18O during denitrification (Appendix A).  The 

significance of oxygen exchange on δ18O-N2O in different environments has not been 

adequately explored and is addressed further in Chapters 3 and 4. 

The reduction of N2O to N2, by which microbes gain significant energy, results in 18O 

enrichment factors of -4.9 to -42‰ (Appendix A).  15N fractionations of -1 to -39‰ have 

been reported though a range of -2 to -10‰ is more common (Appendix A).  It is 

commonly observed that the ratio of 15N:18O fractionation factors ranges from 0.36 to 0.49 

(Mandernack et al., 2000; Schmidt and Voerkelius, 1989; Vieten et al., 2007; Menyailo 

and Hungate, 2006).  This relationship possibly results from the consumption of N2O 

following production. 
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1.2 Study Site description 

1.2.1 Introduction and Land Use 

The Strawberry Creek Catchment is located near the village of Maryhill, ON, situated 

15km from the city of Waterloo, ON.  This first-order agricultural catchment is 

approximately 2.7km2 (270 hectares, 667.2 acres) with a drainage creek as the dominant 

hydrologic feature.   With its headwaters in a deciduous swamp, the creek runs for 2km 

through farmland until it reaches Hopewell creek, a tributary of the Grand River.  Upper 

portions of the creek have been channelized to enhance drainage while lower portions 

likely represent the original geomorphic structure of the creek.   

The catchment was chosen as a study site because it is considered to have representative 

land-use practices, geology, climate, and hydrology of the region.  It has been monitored 

intensively since 1997 through numerous studies giving it one of the longest records of 

hydrology and meteorology of an agriculture catchment in Southern Ontario. 
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Figure 1-4: Location of the Strawberry Creek catchment near the city of Waterloo, Ontario, 
Canada.  Rural industry in the Grand River watershed (black outline) is dominated by 
agriculture, which plays a large role in surface and groundwater quality within the region.  

 

Land-use in the catchment is dominated by agricultural fields for crop cultivation, 

making up approximately 70% of the land base.  Commonly cultivated crops include corn, 

soybeans, and winter wheat, while less common crops include alfalfa (hay), strawberries, 

and rhubarb.  The practice of summer fallowing is observed sporadically, presumably for 

water and nutrient management and conservation.  In the lowland areas such as the 

deciduous headwaters and the swamp south of the upper road, the dominant tree species is 

red maple (Acer rubrum) interspersed with a small presence of red ash (Fraxinus 

pennsylvanica) and eastern white cedar (Thuja occindentalis).  Highland areas such as the 

two main deciduous swamp areas in the southern portion of the watershed are again 

dominanted by red maple (Acer rubrum) with American beech (Fagus grandifolia), 
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Trembling Aspen (Populus tremuloides), white ash (Fraxinus americana), and American 

basswood (Tilia americana) lightly distributed throughout.  One woodland area in the 

lower portion of the catchment is connected to the creek by ephemeral flow that 

contributes only during high flow and high water table conditions (typically during the 

spring). 

Another distinct zone in the catchment is the riparian zone that flanks either side of the 

creek by 3 to 10 meters.  Grasses, sedges, and several isolated trees (Salix spp. and Acer 

negundo) are found in this zone.  The several riparian zone transects used in this study 

were the Harris (1999) transect 3 and the Cabrera (2000) A-A’ transect (Figure 1-5).  

Detailed description of the sub-surface geology and other physical characteristics at these 

transects can be found in Harris (1999) and Cabrera (2000). 

1.2.2 Geology and Soils 

Late Wisconsinan ice sheet advances and retreats formed the region’s complex till sheet 

stratigraphy and define Strawberry Creek’s quaternary geology (Karrow, 1974).  Low, 

broad features of the Guelph drumlin field give the region a gently undulating topography.  

Slopes in the catchment are variable but always modest and the gradient of the stream is 

low (Harris, 1999).  The low-lying poorly drained swamps and portions of the fields are 

found near the stream where there is little topographic gradient. 

The dominant soils in the catchment are part of the Guelph soil catena, which are the 

well-drained Orthic gray brown Luvisols (Guelph series) and the Gleyed Orthic Melanic 

Brunisols (London series).  Beneath this soil, three till layers define the stratigraphy of the 

catchment.  The predominant surface layer is the Port Stanley Till which, in this area, is 

generally loose, sandy, sometimes stony, and pinkish buff.  The Port Stanley Till was 

deposited during the Port Bruce Stade, an important glacial re-advance by the Ontario-Erie 

ice lobe.  The underlying Maryhill Till was deposited earlier (14000 to 15000 YBP) by the 

same glacial re-advance.  This deeper till is finely textured, highly consolidated clay 

which often has beds of laminated or varved clay and silt, probably resulting from the 

incorporation of lacustrine sediments (Karrow, 1993).  Cabrera (2000) encountered what 
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he presumed to be the Maryhill Till during peizometer installation and recorded its depth 

as 1-5m throughout the catchment.  Cabrera (2000) also noted that this dense layer 

possibly acts as an aquiclude to the deeper regional aquifer and forms a superficial aquifer 

for the stratigraphy above it.  Beneath the Maryhill Till lies the sandy Catfish Creek Till of 

the older (17000 to 20000 YBP) Nissouri stadial, corresponding to the maximum extent of 

Late Wisconsinan ice (Dreimanis, 1958).  It is a stony till with a matrix of sand and silt 

but very little clay.  It is yellow to buff or olive in its oxidized form, which is common due 

to the seepage of groundwater through this relatively permeable layer. 
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Figure 1-5: Instrumentation at the Strawberry Creek catchment.  Tiles monitored in this 
thesis are shown in the diagram: a) Upper road tile, b) Shantz tile, c) Forest tile, d) Bend tile, 
e) AMR tile, f) BMR tile, g) Fencerow tile and h) Harris tile.  Locations of groundwater 
transects used in this study (Cabrera A-A’ and Harris) are also indicated on the map 

1.2.3 Tile drain networks 

The extent of fine textured soils in the Strawberry Creek catchment has necessitated the 

installation of tile-drain networks to improve sub-surface drainage and soil aeration 

(Gentry et al., 2000; Deutsch et al., 2005).  This is a common practice in the region due to 

low permeable stratigraphic layers and modest precipitation in the region.  The tiles are 

pipes, made of clay or plastic, which are laid 0.5 to 1m below the soil surface in a variable 

pattern throughout the field connected to a header pipe that collects the drainage waters 

and discharges them to surface water ways.  The tiles sampled in the different studies that 
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constitute this thesis are (from headwaters to downstream locations): Upper road tile, 

Shantz tile, Forest tile, Bend tile, Halfway tile, Above middle road (AMR) tile, Below 

middle road (BMR) tile, Fencerow tile, and Harris tile (Figure 1-5).   

1.3 Objectives 

The overall objectives of this thesis are to investigate NO3
- and N2O sources and cycling at 

the Strawberry Creek Catchment using stable isotope geochemistry. 

Chapter 1 introduces nitrogen cycling in agroecosystems with respect to NO3
- and N2O.  

Processes and isotopic effects are described. 

Chapter 2 explores the effects of seasonal hydrology on NO3
- isotopes using a data set 

from 1998 to 2000.  Here the influence of denitrification in the tiles versus stream 

locations under various hydrologic regimes is investigated. 

Chapter 3 investigates dissolved N2O dynamics during two major melt events at the 

catchment using dual isotopes of N2O.  The 2007 Springmelt and January 2008 melt are 

compared in this section. Dual N2O isotopes of soil gas and dual NO3
- isotopes are also 

employed. 

Chapter 4 describes dissolved N2O dynamics during baseline conditions from October 

2006 to Fall 2007 mainly using stable isotopes of this gas.  Streams, tiles, and 

groundwaters are compared seasonally to investigate mechanisms responsible for N2O 

cycling.  Dual N2O isotopes of soil gas and dual NO3
- isotopes are also employed.  A 

conceptual model for N2O isotope cycling at the Strawberry Creek catchment is proposed 

as a summary to the findings in this and the previous chapter. 
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Chapter 2: NO3
- Isotopes at the Strawberry Creek Catchment 

(1998-2000): A reflection of Sources or Processes? 

Overview 
 
Nitrate (NO3) contamination in agricultural watersheds is a widespread problem that 
threatens local drinking supplies and downstream ecology.  Management of NO3

- is 
essential.  Dual isotopic analysis of NO3

- (δ15N and δ18O) has successfully been used to 
identify sources of NO3 contamination and nitrogen (N)-cycle processes in agricultural 
settings.  The Strawberry Creek Watershed is a first-order catchment in southern Ontario, 
typical of regional agriculture practices including the use of tile drain networks to improve 
drainage.  Tile drainage and stream water was sampled for NO3

- concentration and 
isotopes to identify whether the isotopic signatures represented the sources of NO3

- from 
the fields or whether they were altered by biogeochemical transformations occurring in the 
soil, water, or sediment.  NO3

- concentrations between tiles are variable and linked to 
season, hydrology, and N application.  NO3

- isotopes suggest the effects of denitrification 
were not extensive and could be corrected using expected δ18O values of unaltered NO3

-.  
Our results suggest that tile NO3 were mainly derived from soil organic matter and manure 
fertilizers.  NO3

- concentrations in the stream are dominated by the influence of tile inputs 
once discharge reaches a certain threshold.  At very low discharge stream NO3

- 
concentrations are controlled by groundwater inputs which also show evidence of 
denitrification.  NO3

- isotope samples affected by denitrification can also be corrected so 
that source identification is possible.  Corrected stream NO3

- generally reflects the 
combination of sources identified at various tiles in the catchment. 

2.1 Introduction 

The widespread practice of nitrogen (N)-based fertilizer application contributes to nitrate 

(NO3
-) contamination of surface-water and groundwater in agricultural watersheds.  N is 

often a limiting nutrient for crop growth and N amendments, through fertilizer application, 

are often overused to offset this limitation.  The necessity for management of this 

ubiquitous nutrient is driven by the reliance of many rural and urban populations on 

shallow groundwater wells for drinking water supply in regions where NO3
- 

concentrations exceed the human drinking water limit of 10 mg N/L.   In addition to 

human health concerns, agricultural NO3
- loading leads to eutrophication of surface and 

groundwaters, both within and outside local agroecosystems (Carpenter, et al., 1998).   

The increased atmospheric concentration of nitrous oxide (N2O) has also, in part, been due 
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to the increased use of organic and inorganic fertilizers in agriculture and has created 

another impetus for nutrient management to reduce production and emissions of this 

powerful greenhouse gas (Robertson et al., 2000). 

The dominant N inputs to agricultural watersheds are organic and inorganic fertilizers, 

crop residue, soil organic matter, residential septic systems, and animal feedlots 

(Carpenter et al., 1998; Wassenaar, 1995; Aravena and Robertson, 1998).  Overland run-

off and groundwater inputs from fields result in non-point NO3
- pollution to streams while 

certain practices, such as tile-drainage systems, contribute to point NO3
- contamination.  It 

is often difficult to determine the main source of the NO3
- contamination in agricultural 

areas due to the number of point and non-point contributions.  A further complication in 

source identification arises from the naturally occurring transformations of nitrification 

and denitrification.  These processes produce and consume NO3
-, thereby altering its 

concentrations in surface and ground waters. 

The dual NO3
- isotope method has become a useful tool for fingerprinting different 

sources of this contaminant.  Expected ranges for δ15N from literature sources are shown 

in Figure 2-1.  The widely accepted theory that one third of nitrate oxygen is from 

atmospheric O2 (+23.5‰) and two thirds are from water’s oxygen can be used to calculate 

expected δ18O-NO3
- (Andersson and Hooper, 1983; Kumar et al., 1983; Hollocher, 1984). 

This is summarized in Equation 2-1. 

−−=−+− 3
18

2
18

2
18 *3/2*3/1 NOOOHOOO δδδ     Equation 2-1 

The mean monthly weighted average δ18O-H2O from Simcoe, ON ranges from -17.1 to -

5.5‰.  This means that δ18O-NO3
- should range from -3.5 to +4.0‰.  If some allowance is 

given for evaporative enrichment of δ18O-H2O, the upper range at Strawberry Creek could 

extend to +6‰ as in Mengis et al. (1999). 

Isotopic signatures of NO3
- are retained through various influences such as dilution and 

plant uptake, though they can be altered by denitrification.  Denitrification is an anaerobic 

reaction series where NO3
- is ultimately reduced to atmospheric nitrogen (N2).  It is 
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commonly observed that in a closed system δ15N values of the residual nitrate pool 

become enriched 1.5 to 2.0 times more than δ18O values, producing a slope of 1:2 when 

δ18O-NO3
- values are plotted versus δ15N-NO3

- (Mariotti et al., 1988, Bottcher et al., 1990, 

Aravena and Robertson, 1998; Cey et al., 1999).  The characteristic isotopic enrichment of 

nitrate has been used as an indication of denitrification in surface water and groundwater 

field studies.  

The range of 15N fractionation for the conversion of soil organic matter to NH4
+ 

(ammonification) is reported to range from 0 to ±1‰ (εp-r) (Kendall, 1998; Hogberg; 

1997) and therefore it is expected that δ15N values for NH4
+ produced from soil organic N 

will be similar to the isotopic composition of the soil organic N.  Shearer and Kohl (1986) 

and Kendall (1998) report that 15N fractionation during nitrification (NH4
+ to NO3

-) ranges 

from -12 to -29‰ (εr-p) though less fractionation will occur in agricultural systems.  Since 

NH4
+ is bound to negatively charged soil particles it can actually be limiting within 

nitrification and cause there to be no observed fractionation in the NO3
- produced.  

Therefore the 15N of NO3
- should equal that of NH4

+ in these systems. 

Strawberry Creek is a typical first-order catchment in terms of size and land-use 

practices in Southwestern Ontario, Canada.  The main hydrologic feature of the catchment 

is a small stream that is fed by tile drain and groundwater inputs.  With respect to tile 

drains, the objectives of this paper are: 1) to reveal the dynamics of NO3
- concentrations 

from different tiles 2) to identify the source of NO3
- in relation to N application; 3) to 

identify if there is alteration of the original NO3
- source signature.     With respect to 

stream samples, the objectives are: 1) to reveal the influence of NO3
- inputs from tiles and 

groundwater; 2) to identify sources of NO3
-; and 3) to identify if N-cycle processes are 

affecting NO3
- concentrations in the stream. 
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Figure 2-1: Expected δ15N and δ18O (NO3
-) ranges expected for Strawberry Creek.  δ15N 

ranges are based on literature values reported in Aravena et al. (1993); Wassenaar 
(1995); Aravena and Robertson, (1998); Kendall (1998); and Spoelstra et al. (2001). 
δ18O ranges for NO3

- from atmospheric deposition, NO3
- fertilizers, and NH4

+-NO3
- 

fertilizers are based on literature values reported in Kendall (1998); Mayer et al. 
(2001); Spoelstra et al. (2001); and Wassenaar (1995).  The upper range for δ18O-
NO3

- from atmospheric deposition extends to +80‰.  δ18O ranges for NO3
- from soil 

organic matter and manure/septic system effluent were calculated based on the range of 
mean monthly weighted average δ18O of precipitation (IAEA, 2001) and the δ18O of 
atmospheric O2 (+23.5‰). 

2.2 Study Site 

For detailed site description see Section 1.2. 

2.3 Methods 

Stream and tile drain water samples were collected periodically from the Strawberry 

Creek watershed from late October 1998 to mid-August 2000 for NO3
- concentration and 
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isotopic analysis.  Stream stage was recorded continuously by pressure transducer except 

for the period of June 31, 1999 through February 16, 2000 due to equipment failure.  Stage 

was converted to discharge by the established stage-discharge curve.  Manual 

measurements of stage and velocity were taken during sampling occasions in the period of 

automated equipment failure. During summer months and in periods of low precipitation, 

tile drains were not flowing.   

Samples for NO3
- isotopic analysis were stored at 4°C and filtered through a 0.45 µm 

cellulose acetate filter within a day of collection.  Sub-samples were taken for NO3
--N, 

SO4
2- and δ18O-H2O analysis.  Isotope samples were prepared following an ion exchange 

method as described by Chang et al. (1999) and Silva et al. (2000) with modifications as 

in Spoelstra et al. (2004).  In brief, 2-5 mg NO3
--N was passed through anion exchange 

resin columns (BioRad AG 1-X8 (Cl-) 100-200 mesh resin).  The isolated NO3
- was eluted 

using HCl and subsequently neutralized through the gradual addition of Ag2O.  The 

solution was then filtered from the precipitate, frozen and freeze dried to obtain AgNO3 

salt. 

To isolate the nitrogen component for isotopic analysis, the AgNO3 was combusted with 

CuO, CaO and Cu° in evacuated 6 mm OD quartz breakseal tubes. The N2(g) which was 

produced during the combustion process was then analyzed on a mass spectrometer for 
15N/14N at the Environmental Isotope Laboratory (EIL) at the University of Waterloo.   

For 18O-NO3
- analysis, the AgNO3 was placed in 6 mm OD breakseal tubes with baked 

carbon.  The breakseal was subsequently evacuated overnight, sealed and combusted.  The 

resulting CO2(g) was analyzed using a VG Prism isotope ratio mass spectrometer at the 

EIL at the University of Waterloo. 

Results for the 15N/14N and 18O/16O analysis are reported using δ-notation relative to 

atmospheric nitrogen (air) for 15N/14N and Vienna Standard Mean Ocean Water 

(VSMOW) for 18O/16O.  The δ15N and δ18O values of the samples were calibrated against 

internal NO3
- isotope standards: EIL-61 (δ15N = +1.0‰, δ18O = +11.0‰), EIL-62 

 

29



 

(AgNO3), and Cambs 35-4.  The precision of δ15N and δ18O analysis are ± 0.2‰ and ± 

0.5‰, respectively. 

2.4 Results 

2.4.1 Tiles 

2.4.1.1 NO3
- concentration 

Dissolved NO3
- concentration varies considerably among the drainage tiles with average 

concentration ranging from 5.5 mg N/L to 32.4 mg N/L (Table 2-1).  Tiles with lower 

average NO3
- concentrations, Forest tile (7.8 mg N/L), Fencerow tile (5.5 mg N/L), Shantz 

tile (5.6 mg N/L), and Halfway tile (8.3 mg N/L), also have relatively small standard 

errors and the number of samples is small.  AMR tile is an exception with a low average 

NO3
- concentration (6.7 mg N/L) but a much larger range (23.6 mg/L) and standard error 

(2.2) indicating significant variation around this average.  Tiles with higher average NO3
- 

concentration, Harris tile (16.7mg N/L), BMR tile (18.1 mg N/L), and Bend tile (32.4 mg 

N/L), had standard errors of 1.1, 3.1, and 6.5 respectively.  This indicates that the Harris 

tile likely has the most consistently high concentrations in contrast to Bend tile which has 

a large range and few samples giving a large standard error. 

Table 2-1: Average, range, and standard error of the mean for NO3
- concentrations from 

Strawberry Creek tile drains 

Tile 

Number 
of 
samples  

Average 
NO3

- (mg 
N/L) 

Max. 
NO3

- 
(mg 
N/L) 

Min. 
NO3

- 
(mg 
N/L) 

Standard 
Error of 
the Mean 
NO3- 
(mg N/L) 

Shantz 4 5.6 7.0 2.8 1.0
Forest  9 7.8 10.3 4.1 0.8
Bend 3 32.4 43.3 20.7 6.5
Halfway 2 8.3 9.0 7.5 0.7
AMR 15 6.8 23.7 0.1 2.2
BMR 10 18.1 32.2 3.4 3.1
Fencerow 4 5.5 7.0 2.9 0.9
Harris 20 16.7 23.7 6.6 1.1
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NO3
- concentrations exhibit seasonal variability though the highest concentrations are 

measured during periods of high flow (Figure 2-2 and Figure 2-3).  Harris and BMR tiles 

have consistently high concentrations while Shantz tile remains low through a wide range 

of discharge in most seasons.  Temporally, AMR had low NO3
- concentrations in 1999 

and higher concentration in 2000, each measured at discharge less than or greater than 

20L/s, respectively (Figure 2-3).  Low average NO3
- concentration measured at Forest and 

Fencerow tiles were sampled during low flow in the summer of 2000 (Figure 2-2 and 

Figure 2-3). 

2.4.1.2 δ15N-NO3
- and δ18O-NO3

-  

δ15N-NO3
- values ranged from 0.9 to 18.2‰ (Figure 2-4).  Several of the tiles (Forest, 

Bend, BMR, and Harris tiles) exhibit a small range in values while others (Shantz and 

AMR tiles) show a large range in δ15N-NO3
- values.  Forest, BMR, and Harris tiles were 

sampled most frequently.  AMR tile has two distinct groupings of data, one from 1999 and 

one from 2000.  Maximum values for Shantz, Forest, AMR, and Fencerow tiles were 

actually collected on August 16, 2000.   

18O-NO3
- values from Strawberry Creek tiles are much more constrained than 15N-NO3

- 

(Figure 2-4).  The range of δ18O values is -1.5 to 7.2‰.  Accordingly, individual tiles also 

vary less, ranging between 1.1‰ (Bend tile) to 5.5‰ (Harris). 
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Figure 2-2: Tile NO3
- concentrations and basin discharge for the sampling period 
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Figure 2-3: The relationship between Outlet discharge and NO3
- concentration at 

Strawberry Creek tiles for (a) Spring, (b) Summer, (c) Fall, and (d) Winter seasons. 
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Figure 2-4: δ18O (VSMOW) and δ15N (air) of NO3 for Strawberry Creek tiles.  Determination 
of expected ranges of NO3

- sources are described in Section 2.1. 
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Figure 2-5: The relationship between NO3
- concentration and δ15N-NO3

- for Strawberry 
Creek tiles. 

2.4.1.3 δ15N-NO3
- and NO3

- 

No significant relationships exist between NO3
- concentration and δ15N-NO3

- isotopes for 

individual tiles at Strawberry Creek (Figure 2-5) except for BMR tile (y = 0.19x + 6.34, 

R2 = 0.70).   Despite the general absence of trends, the behavior of some individual tiles is 

reasonably distinct. In the case of Harris tile, NO3
- concentration is quite variable yet 

δ15N-NO3
- values are consistent.  Others tiles (Forest, Shantz, Fencerow, and AMR-1999) 

display greater variation in δ15N-NO3
- and less variation in NO3

- concentration.  For 

example, AMR (1999) shows low NO3
- concentrations of 0.12 to 1.04 mg N/L that vary in 

δ15N-NO3
- values from +0.9 to +6.5‰.  Variability in both NO3

- concentration and δ15N-

NO3
- is also observed at Bend, BMR, and AMR (2000) tiles.  For example, AMR tile 
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(2000) has a 10 to 25 mg N/L range in NO3
- concentration and a 12 to 16‰ range in δ15N-

NO3
- values. 

2.4.2 Streams 

2.4.2.1 NO3
- concentrations 

NO3
- concentrations in the stream are low in November 1998, April to November 1999, 

and before the 2000 springmelt when there is little or no tile flow.  Stream NO3
- 

concentrations are generally higher during periods of higher outlet discharge.  Variability 

in stream NO3
- concentrations along the stream length is obvious.  Where tile NO3

- 

concentrations are high the effect on stream NO3
- concentrations is obvious.  This is 

observed between the Outflow and Lower road tile and between the stream at Middle road 

and AMR tile (Figure 2-6).  On the other hand, Upper road, at Z, and above Harris tile 

stream locations are not immediately downstream of a tile and do not display influence of 

tiles in their NO3
- concentrations. 

Table 2-2: Average, range, and standard error of the mean for NO3
- concentrations from 

Strawberry Creek stream locations. 

Location  

Number 
of 

samples 

Average 
NO3

- (mg 
N/L) 

Max. 
NO3

- 
(mg 
N/L) 

Min. 
NO3

- 
(mg 
N/L) 

Standard 
Error of 

the Mean  
NO3

-  (mg 
N/L) 

Upper road 12.0 5.2 11.4 1.3 1.2 
Middle road 10.0 5.1 18.5 0.0 2.1 

at Z 2.0 1.8 2.5 1.1 0.7 
above Harris tile 15.0 5.8 15.8 0.4 1.2 

Outflow 33.0 4.8 15.3 0.1 0.8 
 

NO3
- concentrations in the stream remain low at low outlet discharge and generally 

increase with increasing discharge (Figure 2-7).  Stream NO3
- concentration tends to 

“break through” to high concentrations when critical outlet discharge is met.  In spring, 

NO3
- concentrations remain low until 25 L/s while in summer and fall concentrations are 

low until 35 L/s of discharge is measured.  In winter, NO3
- concentrations become 

significant after 10L/s of outlet discharge. 
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Figure 2-6: Stream NO3
- concentrations and basin discharge for the sampling period 
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Figure 2-7: The relationship between basin discharge and NO3
- concentration for stream 

locations during (a) spring, (b) summer, (c) fall, and (d) winter seasons. 

2.4.2.2 δ15N-NO3
- and 18O-NO3

- 

δ15N-NO3 values of the stream (Figure 2-8) display a considerably larger range (δ15N = 

+2.67 to +17.15‰) than from the tiles (Figure 2-4).  Stream sampling locations exhibiting 

a considerable range of values are Outflow (δ15N = +5.25 to 14.62‰), above Harris tile 

(δ15N = +7.32 to +17.15‰), and Middle Road (δ15N = +2.67 to +11.88‰) sampling 

locations (Table B-4).  Values between +7.59 and +13.8‰ (δ15N) were measured from the 

stream at the Upper road. 
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δ18O-NO3
- values from the streams range from +2.2 to +11.1‰ (Table B-4).  Individual 

stream locations show variable ranges of +3.66 to +10.87‰ (Upper road), +3.53 to 

+9.86‰ (Middle Road), +2.33 to +6.76‰ (above Harris tile), and +2.2 to +10.5‰ 

(Outflow). 
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Figure 2-8: δ18O (VSMOW) and δ15N (air) of NO3 for Strawberry Creek stream locations.  
Also included is groundwater nitrate data from Mengis et al. (1999) showing potential 
signatures of partially denitrified groundwater inputs. Ranges of NO3

- sources reported from 
the literature are indicated. 

2.4.2.3 Temporal trend in δ15N-NO3
- values 

δ15N-NO3
- values are lower and less variable during the late winter and early spring 

(Figure 2-9) whereas values become higher and more variable in the summer and fall. 

δ15N-NO3
- values show an increasing trend from late winter and spring to summer after 

which values plateau until early fall when they again begin to decrease.   
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Figure 2-9: Stream δ15N-NO3
- by Julian day and season with the best fit 2nd order polynomial 

for the compiled dataset 

2.4.2.4 δ15N-NO3
- and NO3

- concentration 

δ15N-NO3
- values above +10‰ were observed in all seasons though they were found most 

consistently during the summer and fall (Figure 2-10).  The winter has δ15N-NO3
- values 

between +10 and +12‰ through NO3
- concentrations of 0 to 20 mg N/L.  The relationship 

between NO3
- concentration and δ15N-NO3

- is not strong except during the summer season 

(Figure 2-10).  
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Figure 2-10: The relationship between NO3
- concentration and δ15N-NO3

- for stream 
locations during (a) spring, (b) summer, (c) fall, and (d) winter seasons. 

2.4.2.5 δ18O-NO3
- and NO3

- concentration 

High δ18O-NO3
- values (greater than +6‰) are measured in the Spring when 

concentrations are less than 5 mg N/L.  During the fall and winter high δ18O-NO3
- (greater 

than +6‰) is measured when NO3
- concentrations are less than 10 mg N/L but δ18O-NO3

- 

is also variable (+2 to +6‰) at these concentrations.  δ18O-NO3
- values between +4 and 

+6‰ are measured in the summer (Figure 2-11). 
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Figure 2-11: The relationship between NO3
- concentration and δ18O-NO3

- for stream 
locations during (a) spring, (b) summer, (c) fall, and (d) winter seasons. 

2.5 Discussion 

2.5.1 Sources and Processes of NO3
- in Tiles 

NO3
- concentrations vary significantly among individual tiles in the Strawberry Creek 

catchment.  Some of the variability in NO3
- concentrations at individual tiles is likely due 

to fertilizer type and application rates (Randall and Gross, 2001; Haygarth, 1997; Gentry 

et al., 2000) though other factors such as tillage and crop type can also be influential 

(Dinnes et al., 2002).  Differences in chemical export can also be the result of drainage 

anomalies caused by differences in soil type, soil moisture properties, and the influence of 
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preferential flowpaths including drainage tiles (Beauchemin et al., 1998; Stamm et al., 

1998; Welsch et al., 2001).  Denitrification could also influence tile NO3
- concentrations 

and must be accounted for before discussing NO3
- sources which will ultimately be 

integrated with land-use practices (ie: fertilizer type, application rates, crop type) in 

addition to influences of seasonality, and hydrology.   

A large range of δ15N-NO3
- values is observed from Strawberry Creek tiles creates some 

uncertainty about the use of this tool for source identification due to possible influence 

from denitrification.  Caution must also be used in predicting source identities from 

isotope values found in the literature as opposed to direct measurement.  For example, in a 

study of agricultural tile drainage in the St. Lawrence Lowlands of Quebec, tile water 15N-

NO3 was consistently enriched compared to source values (Kellman, 2005).  However, 

δ15N-NO3
- differed enough between fields that determination of the type of fertilizer 

applied was possible. Other studies of tile drain nitrate reveal that tile drain isotope data is 

often sensitive to denitrification both seasonally and with respect to the amount of time 

between precipitation events (Deutsch et al., 2005; Kellman and Hillaire-Marcel, 2003).  

This study is not as detailed with respect to specific events, instead the data provide 

insight into NO3
- sources and export under a wide range of flow conditions. 

δ18O-NO3
- on the other hand has a much smaller range and, by establishing the δ18O 

values for the different NO3
- sources it is possible to identify the influence of 

denitrification and correct for it.  As in presented in Section 2.1, the range of δ18O-NO3
- (-

3.5 to +4.0‰) expected at Strawberry Creek based on mean monthly weighted δ18O-H2O 

can be extended to +6‰ if evaporative enrichment of 18O occurs in the catchment (Mengis 

et al., 1999).  A δ18O-NO3
- value of +6‰ should therefore be considered the maximum 

allowable value for non-denitrified sources, unless indicated below. 

Mengis et al. (1999) report that groundwater δ18O-NO3
- beneath the field drained by 

Harris tile was between +0.5 and +6.2‰ while a value of +1‰ was assumed as the true 

source signature.  Since δ18O values measured at Harris tile usually do not exceed +2‰, 

this value should be considered the maximum and should also be appropriate for the Bend 
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tile.  Most samples from Forest and BMR tiles have δ18O values less than +3‰ so this 

should be the highest value of source NO3
- for these tiles.  AMR, Shantz, and Halfway 

tiles have a slightly higher average of +5.5‰ so the maximum allowable value for (non-

denitrified) NO3
- from these tiles is +6‰.     

Data points corrected to the maximum non-denitrified δ18O-NO3
- values of the 

respective sites using a δ18O:δ15N ratio of 0.67 (Mengis et al., 1999) are presented in 

Figure 2-12.  There are no major changes in source identification compared to uncorrected 

δ15N and δ18O.  The most noteworthy changes occur at Forest, BMR, and Harris tiles 

where δ15N values are reduced by 2.4, 5.2, and 2.96‰, respectively.  This places the NO3
- 

data points from BMR and Harris tile near the range of NH4
+-NO3

- fertilizer which is 

lower in δ15N than usual for these sites though still greater than +2‰ making it 

reasonable.  Most of the δ15N reductions are less than 1‰ and no greater than 1.8‰.  As a 

whole this suggests that significant denitrification has not occurred meaning low NO3
- 

concentrations measured in tiles are not a product of this process.  However, if local 

denitrification went to completion there would be no enriched residual NO3
- left behind, 

thereby erasing the signal of this process.  Back calculation of original δ18O-NO3
- source 

values also assumes that δ18O values higher than the assigned values are not a result of 

mixing of multiple sources.  For example, high δ18O values could increase with a 

contribution of atmospheric NO3
-.  Since there is no evidence of high 18O-NO3

- sources in 

tile waters, this effect is believed to be minimal but should always be considered in this 

type of analysis. 

After using this correction δ15N can be used for source identification.  Nitrate isotope 

samples collected from Strawberry Creek tiles generally fall into the ranges of soil organic 

matter or manure/septic system effluent (Figure 2-12).  δ15N of soil organic matter N at 

Strawberry Creek ranges from 6.45 to 8.78‰ with an average of 7.32‰ (Sherry Schiff, 

unpublished data) which should represent δ15N-NH4
+ values (Kendall, 1998).  This should 

also represent δ15N-NO3
- values as little fractionation will occur during nitrification 

because of the large NH4
+ pool and open system in agricultural settings.  
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δ15N values from Harris tile are tightly grouped around the source groundwater δ15N 

value (+4‰) reported by Mengis et al. (1999) and fall within literature values for nitrate 

derived from soil organic matter.  It is possible that the NO3 is derived from the mixing of 

mineralized NH4-NO3 fertilizer and soil organic matter as the farmer has indicated that 

only inorganic fertilizers have been used on this field (Table 2-3).  Though NO3
- 

concentrations are fairly consistent season appears to have some influence them.  Harris 

tile shows a range of 6 to 23 mg N/L throughout the year, with the highest concentrations 

measured in the winter (at low flow), which could be due to reduced plant uptake and 

microbial activity.  The Harris tile also often flows consistently throughout the year, 

indicating that the tile drain network consistently intersects the watertable.  This could be 

because the watertable is relatively higher than in other fields or the tile drain network is 

buried relatively deeper than the other tile networks.  The combination of fertilizer 

additions, the Strawberry crop’s nutrient retention strategies, and the position of the tile 

drainage network in relation to the watertable likely plays a role in the higher NO3
- 

concentrations observed at the Harris tile (Table 2-3).   
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Figure 2-12: δ15N and δ18O of NO3
- of tiles corrected to maximum expected δ18O values for 

each site (specified in text). 

NO3
- from the AMR and BMR tiles is generally consistent with the range of values for 

manure/septic system effluent.  This is expected since chicken manure is the only fertilizer 

that has been used on both these fields (Mike English, pers. comm.).  Wassenaar (1995) 

found similar isotope values in nitrate derived from poultry manure in the Abbottsford 

aquifer, which are enriched in 15N isotopes due to ammonium volatilization.  High NO3
- 

concentrations at BMR tile are observed in all seasons and are similar to those of AMR 

tile from 2000.  The low NO3
- concentrations at AMR tile in 1999 are observed at 

discharge lower than 20 L/s whereas higher concentrations are observed around discharge 

of 20 L/s and higher.  The distinct temporal separation of δ15N-NO3
- values from AMR 

tile suggests NO3
- was derived from soil organic matter in 1999 but from manure/septic 
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system effluent in 2000 and that the source of NO3
- is linked to high concentrations at this 

tile.  This would also explain the consistently high NO3
- concentrations at BMR tile since 

the sources (manure) are similar to AMR (2000).  Furthermore, access to manure sources 

of high NO3
- concentration may be increased through increased pore connectivity at the 

AMR tile when catchment discharge is high. 

Table 2-3: Land-use practices on fields drained by specific tile drains 

Tile 
Fertilizer 
Applied 

Crop 
(2000) 

Shantz 

manure (2000, 

2001) corn 

Forest unknown corn 

Bend manure  corn 

Halfway manure  corn 

AMR manure  corn 

BMR manure  soybeans 

Fencerow 

inorganic 

(2000,2001) soybeans 

Harris inorganic strawberries

 

Several NO3
- isotope values from Forest tile fall within the range of NO3

- derived from 

soil organic matter while others lie further in the range for septic system/manure, likely 

indicating source mixing.  Despite not directly knowing the fertilizer used this is 

indicative that manure was at least historically used on this field.  Consistent NO3
- 

concentrations are measured during the summer over a range of outlet discharges (15-

35L/s), which means the tiles would have been flowing and drainage significant.  High 

plant uptake from the corn crop planted that year may have moderated NO3
- 

concentrations.  N fixing soybeans were planted above the Fencerow tile drainage system 

and lower NO3
- concentrations measured could also have been a result of plant uptake.  

Fencerow tile had the same sampling dates and discharges as Forest tile. 
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Bend tile and Shantz tile drain different fields that are managed by the same farmer 

though a portion of a deciduous swamp is also drained by Shantz tile.  Isotope values 

suggest NO3
- is derived from a combination of soil organic matter and manure sources.  

The constant NO3
- concentrations from Shantz tile are observed throughout the different 

seasons over a wide range of outlet discharge may reflect drainage conditions of this tile 

network.  Differences between this tile and BMR tile for example may be due to the type 

of fertilizer additions as this field receives additions of cow manure (Mike English, pers. 

com.) and the land is managed by a different farmer who may use a different application 

rate. 

2.5.2 Sources and processes of NO3
- in streams 

The seasonal hydrologic conditions in the catchment are a major factor affecting stream 

NO3
- concentrations and isotopes.  As explained in the Section 2.4.2.1, high stream NO3

- 

concentrations were observed when a critical discharge was met (Figure 2-7). Tile 

concentrations also show a similar pattern where the highest concentrations coincide with 

a similar threshold discharge for each season.  This shows the influence of tile chemistry 

on that of the stream during these periods.  On the other hand, very low stream NO3
- 

concentrations are observed at low discharge (≤ 2.5L/s) during summer, fall, and winter.  

Macrae et al. (2007) found that when basin discharge was 0-40L/s tiles contributed 

minimally to basin discharge but when basin discharge was greater than 40L/s tiles could 

contribute from 0-90% of basin discharge.  However, our results show that, in terms of 

chemical inputs, the critical threshold of tile inputs could be lower than 40 L/s.  

Furthermore, this suggests that high NO3
- tile inputs are the dominant influence on stream 

chemistry when basin discharge is high, though this is variable between seasons, and that 

low NO3
- inputs from groundwater dominate when basin discharge is low.   

When basin discharge was low, stream samples with low NO3
- concentrations often 

have considerably higher δ15N-NO3
- and δ18O-NO3

- values as discussed in the results 

(Figure 2-10 and Figure 2-11).  For δ15N this was observed in the spring, summer, and fall 

while for δ18O it was observed in the spring, fall and winter.  This observation has been 
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shown to be a product of groundwater riparian denitrification at Strawberry Creek and in 

other studies (Mengis et al., 1999, Aravena and Robertson, 1998; Cey et al., 1998).  

Mengis et al. (1999) indicate that groundwater from the riparian zone can have δ15N 

values of 15.9‰ due to partial denitrification which is similar to high δ15N values 

measured in this study.  For example, in the summer and fall eight δ15N values between 

13.4‰ and 17.15‰ were measured and one value is found in this range in the spring.  In 

addition, denitrification could occur in the streambed, which would also more likely occur 

during periods of low flow though this hasn’t been fully explored in the Strawberry Creek 

(Cabrera, 1998). 

The changes in stream δ15N-NO3
- with respect to Julian Day (Figure 2-9) indicate that 

stream NO3
- is more strongly influenced by denitrification in the summer and fall.  This 

would be expected at Strawberry creek since low flow conditions and warm temperatures 

would promote higher rates of denitrification in riparian and hyporheic zones (Harris, 

2000; Mengis 1999; Cabrera, 2001).  A 2nd order polynomial equation confirms this 

observation, though using Julian day to predict δ15N is unreliable since the relationship 

between the variables is not strong (R2 = 0.40, p = 0.0001) (Figure 2-9).  However, the 

relationship is considerably strong given the range of hydrologic conditions in the summer 

and fall seasons and the potential inputs of non-denitrified sources with low δ15N-NO3
- 

values.   

As with the tiles, NO3
- isotopes in streams can be used for source identification if 

corrected for denitrification.  This again assumes that higher δ18O-NO3
- values are not 

because of mixing with a high δ18O-NO3
- source, such as NO3

- from atmospheric 

deposition.  Also, a maximum value for δ18O-NO3
- must again be assigned.  Although 

NO3
- isotopes of the stream would be influenced by NO3

- inputs from the nearest tile, they 

would also be influenced by all upstream inputs including other tiles and groundwater 

from various fields.  For example, the Outflow would be strongly influenced by the Harris 

tile, where a source δ18O-NO3
- value of +1‰ was assumed, but could also be influenced 

by denitrified groundwater inputs from the field drained by AMR and Shantz tile, where a 
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source δ18O-NO3
- value of +6‰ was assumed.  To be conservative, a maximum value of 

+6‰ should be assumed for non-denitrified stream sources.   

Several data points near a δ18O value of +6‰ and δ15N value of +9‰ are likely the 

result of partially denitrified groundwater since they are very near groundwater values 

measured by Mengis et al. (1999) (Figure 2-8).  The same is for the two data points near 

+7‰ (δ18O) and +15‰ (δ15N).  When these points are corrected using a δ18O:δ15N slope 

of 0.67 they fall in the range expected for manure sources.   The other data points that are 

mostly between +8 and +11 for δ18O and +9‰ for δ15N fall in the upper range for soil 

organic matter when they are corrected.   

According to the range of values calculated for strawberry creek and values reported in 

the literature most NO3
- in the stream originates from soil organic matter and 

manure/septic system effluent, as was found for tile drain waters (Figure 2-13).  Middle 

road stream isotope data are consistently distributed in the manure range of isotope values 

which is consistent with data from AMR and BMR tiles and do not indicate 

denitrification.  The immediate influence of the tiles on this sampling location is apparent. 

NO3
- isotopes reveal that water collected from the stream above Harris tile is generally 

reflective of manure/septic system sources though evidence of denitrification is indicated 

by several points that lie in line with a 0.5 slope.  Several samples collected from the 

Outflow generally fall in the range similar to those collected directly from the Harris tile 

which is indicative of the influence of the tile on the stream (Figure 2-12 and Figure 2-13).  

However, like at the stream above Harris tile, some NO3
- isotope samples also show 

evidence of denitrification.  Therefore, NO3
- isotopes collected from both locations 

represent the sum of all tile, groundwater inputs, and in-stream processes upstream of 

these respective points. 

Kellman and Hillaire-Marcel (2003) note that a variety of fields with different manure 

applications and multiple water travel pathways creates difficulties in using isotopes to 

identify NO3
- sources and patterns of denitrification in stream locations.  This is also true 

for our study though establishing expected δ18O-NO3
- permits correction for the isotopic 
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effects of denitrification.  In addition, the groundwater study by Mengis et al. (1999) 

established an isotopic signal for partial denitrification that allows for interpretation of 

stream data.  In-stream denitrification could have the same effect and future studies should 

investigate where the process is taking place. 
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  Figure 2-13: δ15N and δ18O of NO3
- of streams corrected to the maximum expected δ18O 

value of +6‰. 

2.6 Conclusions 

Average NO3
- concentrations were highest at Bend, AMR (2000), BMR, and Harris tile.  

Variability in concentration between tiles is linked to hydrology, season, drainage, and 

land-use.  High concentrations at Bend tile are associated with high discharge events 

whereas low concentrations at Shantz tile are associated with low discharge.  Harris and 

BMR tiles show consistently high NO3
- concentrations over a wide range of discharge and 
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through the seasons.  Fertilizer application, consistent drainage and nutrient retention 

strategies of the Strawberry crop likely influence concentrations at the Harris tile.  

Although inorganic fertilizer is used on the field drained by the Harris tile a consistent 

signal from soil organic matter is measured.  High NO3
- concentrations at BMR and AMR 

tiles (2000) are linked to manure sources (chicken) whereas low NO3
- concentrations from 

AMR tile (1999) are from soil organic matter sources.   However, the annual difference in 

NO3
- concentration at AMR tile is also linked to discharge and likely relate to how 

different NO3
- sources are flushed from the soil. Low NO3

- concentrations at the Forest 

and Fencerow tiles were measured in the summer when plant uptake would have been 

high meaning little NO3
- would be flushed from the system despite adequate drainage 

conditions.  The effects of partial denitrification were observed in some tile water samples 

and were corrected to expected source δ18O values. 

Variability in stream NO3
- concentrations and isotopes is a product of variable inputs 

from tiles and diffuse groundwater.  High NO3
- concentrations from tiles are associated 

with high basin discharge (∼40L/s) whereas low NO3
- concentrations from groundwater 

inputs are associated with low basin discharge (≤2.5L/s).  Low NO3
- concentrations were 

associated with enriched δ15N-NO3
- (spring, summer and fall) and 18O-NO3

- values 

(summer, fall, and winter) which is indicative of groundwater denitrification.  Enriched 

stream 15N-NO3
- isotopes are similar to those measured in groundwater by Mengis et al. 

(1999), which was a product of partial denitrification.  Isotope values affected by 

denitrification were corrected to expected source δ18O values.  Stream NO3
- isotopes 

generally reflected the catchment sources as identified at tile drain outlets. 
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Chapter 3: Stable Isotopes of NO3
- and N2O during two major melt 

events at the Strawberry Creek catchment, near Waterloo, ON 

Overview 

Dissolved NO3
- and N2O dynamics during the 2007 Springmelt and 2008 mid-winter thaw 

events were explored using NO3
- and N2O isotopes at the Strawberry Creek Catchment 

near Waterloo, Ontario, Canada.  Tiles are a source of NO3
- to the stream during both 

events and concentrations at the outflow are above the 10 mg N/L drinking water limit 

during the 2008 mid-winter thaw.  Tiles are also a source of N2O to the stream that, in 

turn, was a source of N2O to the atmosphere during both events.  NO3
- isotopes from the 

2007 Springmelt reveal that nitrification of soil organic matter and manure are the main 

source of NO3
- in the catchment though evidence of NO3

- from atmospheric deposition is 

also apparent.  NO3
- isotopes from all sites show evidence of denitrification from a 

common NO3
- endmember during the 2008 mid-winter thaw.  This denitrification 

occurred during the long drought that preceded the 2008 mid-winter thaw.  δ15N and δ18O 

of N2O reveal that N2O is produced from denitrification during both events.  Isotopic 

shifts (∆N2O-NO3-) of -6 to -31 for 15N and +14 to +35‰ for 18O from the 2007 Springmelt 

are similar to enrichment factors for denitrification reported in the literature.  Isotopic 

shifts (∆N2O-NO3-) for 15N (-13 to -38‰) and 18O (+33 to +47‰) from the 2008 mid-winter 

thaw are also similar to those reported in the literature.  δ18O:δ15N slopes in N2O data is 

due to the influence of several processes including substrate consumption and gas 

exchange.  Following production, gas exchange influences the isotopic composition of 

N2O in stream waters.  Isotopic composition of N2O endmembers at the outflow are 

representative of average source N2O for the 2008 mid-winter thaw but not for the 2007 

Springmelt event.  The isotopic signature of N2O flux to the atmosphere at the outflow is -

12 to -18‰ for 15N and +32 to +42‰ for 18O. 
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3.1 Introduction 

There is a markedly similar timing in the rise of industrial activity and increases in the 

atmospheric mixing ratio of N2O (Kaiser, 2002; Prinn et al., 1990).  Agricultural activities 

are among the major sources of anthropogenic N2O in the global N2O budget (Stein and 

Yung, 2003).  A major cause of agricultural N2O production is the extensive use of 

organic and inorganic nitrogen (N) fertilizers where increased N availability enhances 

transformations of N in the soil.  Agriculturally produced N2O has primarily been 

measured as direct flux from fields, though the importance of emissions from secondary 

N2O sources such as agricultural drainage water, has been recognized and is receiving 

more attention (Mosier et al., 1998). 

The occurrence of increased export of dissolved gaseous and soluble N species in 

groundwater, drainage tiles, and streams from small agricultural catchments following 

periods of major precipitation or snowmelt events has been demonstrated (Macrae et al., 

2007; Thuss et al; 2008a, Reay et al., 2004; Harrison and Matson, 2003).  In small first-

order catchments these events are often short-lived (often 2 to 7 days) but can contribute a 

significant portion of the annual stream N2O flux.  For example, 37% of the annual N2O 

flux was released from the Strawberry Creek during March 2006 largely because of the 

snowmelt event (Thuss et al., 2008a).  Because of their importance in the annual N2O flux 

budgets these events need to be better understood if the agricultural industry wishes to 

manage its GHG emissions. 

The stable isotopes of N2O are one of the most powerful tools used to delineate the 

sources and processes responsible for N2O production.  Incubation and field studies of 

nitrification have provided 15N enrichment factors of -45 to -68‰ (εNH4-N2O) while those 

for denitrification are in the range of -13.5 to -35‰ (εNO3-N2O) (Yoshida, 1988; Ueda et al., 

1999; Barford et al., 1999; Perez et al., 2006; Blackmer and Bremner; 1977).  Direct 

measurement of 18O fractionation during nitrification has evaded researchers, though the 

δ18O-N2O produced is near that of atmospheric oxygen (+23.5‰ VSMOW) (Perez et al., 

2001; Whalen and Yoshinari, 1985).  18O enrichment factors during denitrification are 
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generally constrained between -10 and +35‰ (εNO3-N2O).  Additionally, oxygen exchange 

with water during both nitrification and denitrification are known to effect the 18O 

composition of N2O (Casciotti et al., 2002; Ye et al., 1991; Shearer and Kohl, 1988; Kool 

et al., 2007; Snider et al., 2008). 

Despite the growing body of research, there have been virtually no isotope studies on 

secondary sources of agricultural N2O.  N2O isotopes studies in aquatic systems have 

generally focused on oceanic N2O contributions and biochemical processes (Dore et al., 

1998; Naqvi et al., 1998; Ostrum et al., 2000).  Bootanaan et al. (2000) provide some of 

the only river data, though this study was done in Thailand and is likely not representative 

of temperate environments.  Some of the only measurements of dissolved N2O in 

temperate agricultural watersheds are from groundwater studies.  However, processes in 

agricultural groundwater are likely different than those in tile drains or open channels 

(Well et al., 2005; Wada and Ueda, 1996; Ueda et al., 1999). 

There are four main objectives of this chapter: (1) To spatially and temporally 

characterize concentrations and isotopes of NO3
- and N2O streams, groundwaters and tiles 

during two melt events (Springmelt 2007, January thaw 2008) that were intensely 

sampled; (2) To determine if there are differences between these two major events and, if 

so, why those differences may have occurred; (3) and to determine the sources and 

processes responsible for the measured N2O isotopes. 

3.2 Study Site 

As described in Section 1.2. 

3.3 Methods 

Various tile drains and stream locations at the Strawberry Creek Catchment were 

periodically sampled from March 9, 2007 to March 27, 2007 for the spring melt of that 

year.  Groundwater was sampled from the Harris transect and Cabrera (A-A’) transect on 

March 13, 2007.  The sampling period of January 5, 2008 to January 19, 2008 

characterized the January 2008 melt event.  Groundwater was also collected on January 27 
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and 28, 2008.  Samples were collected for N2O and NO3
- isotopes and concentrations of 

N2O, and major anions (Cl-, Br-, NO3
-, PO4

3-,  SO4
2-).  Waters for N2O isotopes were 

collected in duplicate in 160mL glass serum bottles, without creating a headspace. 

Saturated HgCl2 solution (0.3mL) was used for preservation. 

Waters for major anion chemistry were collected in 125mL plastic screw-top bottles and 

were filtered with Whatman 0.45 µm syringe-tip filters within 24 hours of collection.  For 

analysis of major anions, 0.5 mL sample aliquots were used on a Dionex ICS-90 ion 

chromatograph, equipped with an IonPac AS14A column and AS40 automated sampler.  

Samples were corrected to a calibration curve made from Dionex brand standards.   

Duplicate 60mL serum bottles for N2O concentration were stoppered with butyl blue 

stoppers (Belco Glass) and preserved with 0.15mL HgCl2.  N2O was equilibrated in a 5mL 

headspace and injected manually onto a Varian CP-3800 gas chromatograph.  Trace gases 

were separated by a Poroplat Q column and N2O was analyzed by an ECD detector.  The 

analytical error of this analysis is approximately +/- 5% at 8.5 nmol/L and the detection 

limit is approximately 6.5 nmol/L. 

N2O was extracted from water using a modified CO2 extraction technique (EIL method) 

developed by the Environmental Geochemistry Group (Thuss et al., 2008b).  In brief, the 

160mL sample is bubbled for 10 minutes with a helium line that is attached to a 20mL 

capped serum vial sitting in liquid nitrogen to cryogenically trap the N2O gas.  The bottom 

and top of the vial is filled with glass beads and has silica glass wool in the middle to 

increase the surface area on which the gas may be trapped. After sample purging is 

complete the vial is pressurized with a known quantity (20mL) of Helium.   Ideal injection 

size of the sample was calculated based on peak height of standard injection.  Samples 

were analyzed for N2O isotopes by injecting 10 to 15 nmol of N2O on a Micromass Trace 

Gas Analyzer connected to a Micromass continuous flow mass spectrometer (TG-CFMS). 

Ideal injection size of the sample was calculated based on peak height of standard 

injection.  Samples were corrected to EGL 5 N2O standard (δ15N-N2O = 2.03, δ18O-N2O = 

38.44) for instrumental drift, linearity, and isotopologue contamination.  Results are 
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reported in delta (δ) notation in units of per mil (‰) relative to to N2 (air) for δ15N and 

VSMOW for δ18O.  Analytical errors for δ15N and δ18O is ±0.13‰ and ±0.31‰.  The 

instrument was calibrated to tropospheric N2O.    

The method used for NO3
- isotope analysis was originally developed by McIlven and 

Altabet (2005) but is presented here with modifications by Spoelstra (unpublished, 2007).  

After collection, 30mL of water is filtered (0.45µm) into plastic screw-top bottles and 

frozen for storage.  When ready to analyze for nitrate isotope ratios, a volume of water 

containing 0.6µg N is freeze dried.  The sample is redissolved with 0.75M NaCl and 1mL 

of 0.08M Imidazole is added to aid the cadmium reduction reaction.  The sample is then 

placed in a column with copperized cadmium and slowly shaken for 2 hours to reduce 

NO3
- to NO2

-.  The sample is then syringe filtered into a stoppered 20mL serum vial.  N2O 

is subsequently produced by addition of a 2mL sodium azide and acetic acid buffer 

solution for 10 minutes.  1mL of 6M NaOH is added to stop the reaction.  The vial is 

pressurized with 10mL of Helium and placed on a shaker to equilibrate for 10 minutes.  

The sample is then run on the TG-IRMS as above for dissolved N2O.  Analytical error 

calculated for this method was ±1.1 for δ15N-NO3
- and ±3.0 for δ18O-N2O. 
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3.4 Results 

3.4.1 2007 Springmelt 
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Figure 3-1: (a) Outlet discharge, precipitation, and (b) temperature for the 2007 Springmelt  
The effect of diurnal temperature variation on melting can be seen in discharge. 
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3.4.1.1 Event Hydrology  

The 2007 Springmelt event was largely driven by the thaw of a significant snowpack that 

accumulated previous to the event.  During the beginning of March, 22cm of snow fell in 

Breslau, ON (Waterloo-Wellington 2) which translate into the 40mm of precipitation seen 

in Figure 3-2.  From March 10 to 13 daily temperatures rise to 4oC and then over 10oC on 

March 14 and 15 which initializes the first portion of the event (Figure 3-1).  Snow 

accumulation at Breslau, ON drops from 28 to 0cm between March 9 and 14, 2007.  High 

daily temperatures (up to 20oC) on March 22 to 25 and March 27 in combination with 

modest precipitation and run-off of standing water from the first portion of the event, 

drives the second portion of the event.   

Date

Dec-06  Jan-07  Feb-07  Mar-07  Apr-07  

D
is

ch
ar

ge
 (L

/s
)

0

200

400

600

800

1000

Pr
ec

ip
ita

tio
n 

(m
m

)

0

10

20

30

40

50

60

70

Discharge
Precipitation

 
Figure 3-2: Discharge and precipitation data from December 2006 to the end of March 2007 
shows that moderate precipitation fell on the catchment.  Except for a major event in 
December 2006 baseline conditions and smaller events characterize catchment hydrology 
previous to the 2007 Springmelt event. 
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3.4.1.2 NO3
- and N2O concentrations 
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Figure 3-3: (a) NO3
- concentrations with the 10 mg N/L drinking water limit (dashed line) 

and (b) N2O concentrations with the stream concentration at 100% saturation (dashed line) 
through the 2007 Springmelt event.  Analytical errors for NO3

- and N2O concentration are 
+/- 0.03 mg N/L and +/- 0.43 nmol/L (at 8.5 nmol/L), respectively. 

 

NO3
- and N2O concentrations for the 2007 Springmelt event are shown along with basin 

discharge in Figure 3-3.  NO3
- measured at BMR and Harris tiles are consistently above 

the drinking water limit while other tiles remain below throughout the event.  NO3
- 
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concentrations at BMR and Harris tile show the same trend after March 15 despite having 

different concentrations from March 12 until this date.  Stream NO3
- concentrations at the 

Deciduous Headwaters are consistently lower (≤1mg N/L) than at the Outflow and above 

Harris tile (∼5 mg N/L) throughout the event.  The NO3
- concentrations at Shantz tile are 

also similar to those of stream samples (Outflow and above Harris tile) throughout the 

event.  Groundwater inputs from the Harris 3 and Cabrera A-A’ transects were less than 

2.25 mg N/L during this event.  Despite small variability, NO3
- concentrations at 

individual tiles and stream locations are relatively consistent through the event though 

different from each other.  

Comparison of average pre-event NO3
- concentration to the average NO3

- concentration 

during the event reveals that between the two time periods pre-event NO3
- concentration is 

greater for tiles (Upper road, Shantz, BMR, and Harris)(Table 3-1).  However, for stream 

samples (above Harris tile and Outflow) the average event NO3
- concentration is slightly 

greater (Table 3-1).  Concentrations measured in 2007 before the event were used for the 

pre-event average and were found to be fairly consistent at individual sites.  The 

deciduous headwaters and Fencerow tile were not measured in the pre-event period, so are 

not included in this comparison.  AMR tile was sampled during this period but only once 

during the 2007 Springmelt which would not provide a representative event average.    

These results suggest that although tile NO3
- contributions were less during the event 

period, overall NO3
- concentrations to the stream were not masked by dilution.  This likely 

means that NO3
- concentrations in the stream were maintained by groundwater inputs 

during this period. 

N2O concentrations for all tiles and stream locations are above atmospheric saturation of 

the stream throughout the event.  All sampling locations show increasing N2O 

concentrations from March 9 to March 15.  N2O concentrations are again lower on March 

19 before increasing to March 27 except for in the stream above Harris tile and at Harris 

tile.  Regression analysis between tile discharge and tile N2O concentrations are 

insignificant.  Generally, N2O concentration increases with NO3
- concentration for the 

2007 Springmelt (Figure 3-4) but the relationships are not strong.   
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Table 3-1: Comparison of pre-event NO3
- concentration with average NO3

- from the 2007 
Springmelt 

Site 

Average 
Pre-event 
NO3

- (mg 
N/L) 

Average 
Event NO3

- 
(mg N/L)  

Upper road tile 10.3 8.2 
Shantz tile 5.9 5.1 
BMR tile 15.9 13.8 

Harris tile 17.8 13.0 
above Harris 

tile 4.1 4.7 
Outflow 4.1 4.8 
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Figure 3-4: The relationship between NO3
- concentration and N2O concentration for the 2007 

Springmelt. 
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3.4.1.3 δ15N and δ18O of NO3
-  
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Figure 3-5: δ15N and δ18O of NO3
- from the 2007 Springmelt 

 

δ15N−NO3
- values range from +0.9 to +16.6‰ for all measurements (Table 3-1).  

Shantz, AMR, and BMR tiles have similar δ15N-NO3
- ranges where all measurements are 

between +8.1‰ and +14.1‰.  Minimum δ15N-NO3
- values for Upper road tile, Harris tile, 

and outflow are all between +2.5‰ and +4.0‰ while maximum values are +12.0, +7.8‰, 

and +9.8‰, respectively.  There are two groups with similar average δ15N-NO3
- values: 

+5.0 to +7.3‰ for Upper road tile, Fencerow tile, Harris tile, and Outflow; and +10.3 to 

12.2‰ for Deciduous Headwaters, Shantz tile, AMR tile, and BMR tiles. 
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 δ18O-NO3
- values from the 2007 Springmelt range between -10.95‰ (BMR tile) and 

+48.71‰ (Deciduous Headwaters) (Table 3-2).  Minimum δ18O-NO3
- values for Upper 

road, AMR, BMR, Fencerow, and Harris tiles are between +6.6 and +10.9‰.  Upper road 

(+7.9‰) and Shantz tile (+8.1‰) have similar maximum δ18O-NO3
- values as does the 

Fencerow tile (+15.7‰), Harris tile (+12.4‰), and Outflow (+12.0‰).  These are near the 

minimum δ18O measured for the Deciduous Headwaters (+12.7‰).   

The combination of high δ18O-NO3
- values and low NO3

- concentrations at the 

Deciduous Headwaters is suggests that NO3
- is from atmospheric deposition.  Several 

samples with high δ18O-NO3
- values also have higher δ15N values, likely due to a mixture 

of sources.  The δ18O:δ15N trend at the Upper Road tile is suggestive of denitrification 

which is supported by strong relationships between the natural log of NO3
- concentration 

and δ15N-NO3
- (R2 = 0.96, p = 0.02) and δ18O-NO3

- (R2 = 0.46, p = 0.31)(Figure 3-6).  

Fencerow tile also has a strong relationship between the natural log of NO3
- concentration 

and δ15N-NO3
- (R2 = 0.77, p = 0.17) which would play a role in the δ15N trend seen for 

this data. 

δ15N-NO3
- is indicative that most NO3

- is derived from soil organic matter and 

manure/septic system sources.  To a certain extent δ18O-NO3
- data supports this but also 

has values that are both higher and lower than the expected ranges reported in the 

literature for these sources. 
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Table 3-2: Average, Standard Deviation, and Range of δ N-NO15
3

- and δ18O-NO3
- during the 

2007 Springmelt. 
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Figure 3-6: The relationship between the natural log of NO3
- concentration and (a) δ15N-NO3

- 
and (b) δ18O-NO3

-. 
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Figure 3-7: The relationship between NO3

- concentration and (a) δ15N-NO3
- and (b) δ18O-

NO3
- for the 2007 Springmelt 
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3.4.1.4 N2O isotopes 

δ15N-N2O ranges from -21.9‰ to +2.0‰ during the 2007 Springmelt (Table 3-3).  

Minimum δ15N values are similar at the Upper Road, Shantz, AMR, BMR, and Fencerow 

tiles, ranging between -21.9 and -18.5‰, while maximum δ15N values are similar for 

Upper Road (-10.5‰), Shantz (-7.7‰), and Fencerow (-10.3‰) tiles.  Maximum δ15N-

N2O is also similar for Harris tile (-9.8‰) but the minimum value (-14.4‰) produces a 

smaller range.   

Minimum δ15N-N2O for the Deciduous Headwaters and Outflow are -8.0‰ and -

12.0‰, respectively, while maximums are +2.0‰ and -2.3‰, respectively.  Average 

δ15N-N2O for streams (-6.34‰) is larger than that of tiles (-15.2‰). 

δ18O-N2O ranges from +24.6‰ (AMR tile) to +52.8‰ (Deciduous Headwaters) during 

this event.  Minimum δ18O values are similar at Shantz tile, BMR tile, Fencerow tile, and 

Outflow with values between -31.4‰ and +32.9‰ whereas minimum values at Upper 

road (+27.9‰) and AMR (+24.6‰) tiles are lower.  Maximum δ18O values are similar 

(+39.0 to +42.3‰) between Shantz, BMR, Fencerow and Harris tiles.  Average δ18O-N2O 

values are greater for streams (+35.1‰) than they are for tiles (+41.7‰). 

In addition to the general placement of N2O isotopes, certain δ18O:δ15N slopes are 

present in this dataset, though these are only significant for several sites.  Fencerow has a 

moderate δ18O:δ15N slope of 0.7 (R2 = 0.62, p = 0.21) while Outflow has a δ18O:δ15N 

slope of 1.4 (R2 = 0.82, p = 0.002). 

For the majority of tiles there are insignificant relationships between the natural log (ln) 

of N2O concentration and N2O isotopes.  Decreasing lnN2O concentrations and increasing 

N2O isotope values can be indicative of a fractionating process (ie: substrate consumption, 

gas exchange, or N2O consumption) that could, in turn, be the cause for the δ18O:δ15N 

slopes observed.  Only Upper road tile (R2 = 0.89, p = 0.005) and outflow (R2 = 0.67, p = 

0.02) have significant relationships between lnN2O concentration and δ15N-N2O.  For the 
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relationship between lnN2O concentration and δ18O-N2O, Fencerow tile (R2 = 0.79, p = 

0.29), and Outflow (R2 = 0.52, p = 0.07) have significant negative relationships. 
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Figure 3-8: δ15N and δ18O of N2O from the 2007 Springmelt 
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Table 3-3: Average, standard deviation, and range of δ15N-N2O and δ18O-N2O from 
individual sites for the 2007 Springmelt 
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Figure 3-9: The relationship between the natural log (ln) of N2O concentration and (a) δ15N-
N2O and (b) δ18O-N2O from the 2007 Springmelt 
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3.4.2 2008 Mid-winter thaw 

3.4.2.1 Event Hydrology 

The 2008 mid-winter thaw is also driven by the melt of a significant snowpack in addition 

to significant precipitation on January 8 and 9.    A significant amount of precipitation 

occurred between mid-November 2006 and the thaw event without change in base flow 

conditions which suggests that it occurred as snow (Figure 3-10a).  Temperatures rise 

progressively from 0oC on January 5  to almost 15oC on January 9 which promoted 

thawing along with the precipitation (Figure 3-10b).  From mid-June to mid-November 

2007 there is minimal precipitation in the catchment and, consequently, no basin discharge 

(Figure 3-11).  Discharge during the 2008 mid-winter thaw is much less than during the 

2007 Springmelt. 
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Figure 3-10: (a) Outlet discharge, precipitation, and (b) temperature for the January 2008 
melt. 
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Figure 3-11: Discharge and precipitation from June 07 to the end of January 2008 indicates 
very dry conditions in the catchment for the seven months that precede the January 2008 
melt event.  A significant amount of precipitation fell on the catchment during December 
2007 as snow leading to significant accumulation for the melt event. 
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3.4.2.2 NO3
- and N2O concentrations 
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Figure 3-12: (a) NO3
- and (b) N2O concentration through the January 2008 mid-winter thaw 

shown with basin discharge 
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NO3
- and N2O concentrations for the 2008 January melt event are shown along with basin 

discharge (Figure 3-12).  NO3
- concentrations remain above the 10mg N/L drinking water 

limit and do not change dramatically through the event except for AMR and BMR tiles.  

NO3
- concentrations from the other tiles generally decrease by less than 10 mg N/L over 

the duration of the event.   

Comparison of pre-event NO3
- concentrations to event NO3

- concentrations shows that 

Shantz and Harris tiles had higher concentrations in the pre-event period whereas AMR 

tile and Outflow had higher concentrations during the event period.  The pre-event period 

was an average of Fall 2007 data (Chapter 4).  Shantz and AMR tiles may have flushed 

NO3
- from the soil during the pre-event period so that when the event occurred there was 

less available.  The reverse effect occurred at the AMR tile where low pre-event NO3
- 

concentrations allowed for build-up in the soil that was “flushed” during the event at 

AMR.  Groundwater NO3
- concentration was 8.0 mg N/L on average for the event.  

Outflow concentrations suggest that the overall affect of tile and groundwater inputs is 

that they were higher in the event period, despite dilution effects.   

For most locations, except for Harris tile and the outflow, which remain relatively 

constant, N2O concentrations increase with the two peaks of stream discharge and are 

highest on the recession limb of the hydrograph.  N2O concentrations decrease after 

January 14th but remain above atmospheric saturation of the stream which is about 12 

nmol/L. 

Table 3-4: Comparison of pre-event average NO3
- concentration (Fall 2007) with the average 

NO3
- concentration for the 2008 mid-winter thaw. 

Site 

Pre-event 
(Fall 2007) 

average 
NO3

- (mg 
N/L) 

Average 
event 

NO3
- (mg 

N/L) 

Shantz 
tile 16.1 12.5 

AMR tile 0.8 25.8 
Harris 

tile 21.2 19.5 

Outflow 4.0 13.1 
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3.4.2.3 δ15N-NO3
- and δ18O-NO3

- 

The relationship between NO3
- concentration and δ15N-NO3

- produces several distinctive 

patterns for Strawberry Creek sampling locations (Figure 3-13).  AMR and BMR tiles 

have consistent δ15N values over a wide range of NO3
- concentrations (20-40 mg N/L).  At 

AMR tile the relationship between the natural log (ln) of NO3
- concentration and δ15N-

NO3
- is strong (R2 = 0.99, p = 0.0001) which could be because of denitrification.  

However, this relationship assumes a constant starting NO3
- concentration which would 

not be expected.  Groundwater shows low NO3
- concentrations (0-10 mg N/L) that range 

from +15 to +32‰ for δ15N-NO3
-.  The relationship between lnNO3

- concentration and 

δ15N-NO3
- for groundwater is moderate in strength (R2 = 0.53) though it is insignificant (p 

= 0.44) which is not supportive evidence for denitrification.  The other tiles and outflow 

are grouped between 10 and 25 mg N/L for NO3
- and +3 to +12.5‰ for δ 15N-NO3

-.  

Shantz tile is within this group and shows a weak (R2 = 0.24) but negative relationship 

between lnNO3
- concentration and δ15N-NO3

-.  Individual sites show little variation in 

δ15N-NO3
- (2 to 3.5‰) except for Shantz tile and groundwater.  The average δ15N values 

for these sites shows small but progressive increases through Harris tile, Upper road tile, 

Shantz tile, Outflow, AMR tile, BMR tile, and then a larger increase to the groundwater 

average (Table 3-5). 

The relationship between lnNO3
- concentration and δ18O-NO3

- is weak for all locations.  

δ18O-NO3
- is consistently between -10 and 0‰ over a large range of NO3

- concentrations 

(10-40 mg N/L) for all sites except groundwater.  Groundwater has NO3
- concentrations 

less than 10 mg N/L and δ18O-NO3
- is higher than that of tiles and the outflow (0 to 

+10‰).  The weak negative relationship between lnNO3
- concentration and δ18O-NO3

- for 

groundwater is not supportive evidence of denitrification.  The range of δ18O-NO3
- is 

small (1.2‰ to 4.6‰) for all sites except groundwater (59.8‰).  The average δ18O-NO3
- 

from each site shows a progressive increase through Upper road tile, Outflow, Harris tile, 

Shantz tile, BMR tile, and AMR tile and then a larger increase to the groundwater average 

(Table 3-5). 
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While δ15N-NO3
- isotopes are fairly similar between the two events (δ15N-NO3

- = 2 to 

15‰) those of δ18O-NO3
- are, on average, much lower (Figure 3-5 and Figure 3-14).  The 

collective NO3
- isotope dataset has a δ18O:δ15N slope of 0.55 (Figure 3-14).   Data from 

groundwater and Shantz tile fall along this slope and are indicative of denitrification.  

Other individual sites are grouped upon this slope.  
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Figure 3-13: The relationship between the natural log (ln) of NO3
- concentration and (a) 

δ15N-NO3
- and (b) δ18O-NO3

- for the 2008 mid-winter thaw. The best-fit equations for AMR 
tile and groundwater are provided for 15N data. 



 

-5 0 5 10 15 20 25 30
-15

-10

-5

0

5

10

15

20

25

30

35

40

45

50
Upper road tile
Shantz tile
AMR tile
BMR tile
Harris tile
Outflow
Groundwater

δ18
O

-N
O

3
(‰

)

δ15N-NO3 (‰)

Atmospheric Deposition

NO3
-

fertilizer

NH4-NO3 fertilizer

Soil Organic 
Matter

Manure/Septic
System Effluent

δ18O:δ15N 
slope = 0.55

-5 0 5 10 15 20 25 30
-15

-10

-5

0

5

10

15

20

25

30

35

40

45

50
Upper road tile
Shantz tile
AMR tile
BMR tile
Harris tile
Outflow
Groundwater

δ18
O

-N
O

3
(‰

)

δ15N-NO3 (‰)

Atmospheric Deposition

NO3
-

fertilizer

NH4-NO3 fertilizer

Soil Organic 
Matter

Manure/Septic
System Effluent

δ18O:δ15N 
slope = 0.55

 

Figure 3-14: δ15N and δ18O of NO3
- for the 2008 mid-winter thaw with the best-fit δ18O:δ15N 

slope through the dataset. 
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Table 3-5: Average, Standard Deviation, and Range of δ15N-NO3
- and δ18O-NO3

- for the 2008 
mid-winter thaw. 
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3.4.3 δ15N-N2O and δ18O-N2O 
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Figure 3-15: δ15N-N2O and δ18O-N2O during the 2008 mid-winter thaw 

 

δ15N-N2O ranges from -32.7 (groundwater) to +1.6‰ (Harris tile) during the 2008 mid-

winter thaw (Figure 3-15 and Table 3-6).  Shantz and AMR tiles have a similar range in 

δ15N values while outflow and groundwater have similar maximum values (-3.7‰ and -

2.1‰, respectively).  Upper road tile (-15.2‰), Harris tile (-12.8‰), and outflow (-
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12.8‰) have similar minimum values.  BMR tile has few similarities to other sites with a 

minimum of -28.1‰ and a maximum of -17.3‰.   

Strong negative relationships between the natural log (ln) of N2O concentration and 

δ15N-N2O values are observed for Shantz tile (R2 = 0.92, p = 0.002), Harris tile (R2 = 0.96, 

p = 0.0005), Outflow (R2 = 0.90, p = 0.001), and groundwater (R2 = 0.61, p = 0.008).  For 

these locations it is possible that a fractionating process is responsible for this relationship.   

δ18O-N2O values range from +24.0‰ (BMR tile) to +62.4‰ (groundwater) for the 2008 

mid-winter thaw.  Similar minimum δ18O-N2O values between +33.8‰ and +37.5‰ were 

found for Shantz tile, AMR tile, Harris tile, and Outflow.  Similar maximum δ18O-N2O 

values between +42.6‰ and +46.4‰ were found for Upper road tile, AMR tile, Harris 

tile, and Outflow.  BMR tile had few similarities to other tiles with a range between 

+24.0‰ and +32.3‰.   

The relationship between the natural log (ln) of N2O concentration and δ18O-N2O is 

negative and strong for Upper road (R2 = 0.98, p = 0.0001) and Harris tiles (R2 = 0.68, p = 

0.04) (Figure 3-16).  This means that N2O concentrations decrease while δ18O-N2O values 

increase which is often indicative of an isotopic fractionating process. 

δ18O:δ15N slopes with strong relationships are measured at Shantz, AMR, BMR, and 

Harris tiles.  “Moderate” slopes of 0.57 (R2 = 0.94, p = 0.001) and 0.73 (R2 = 0.95, p = 

0.0002) were measured at AMR and BMR tiles, respectively (Figure 3-15).  Shallow 

positive slopes of 0.17 (R2 = 0.67, p = 0.46) and 0.27 (R2 = 0.51, p = 0.1) were measured 

at Shantz and Harris tiles, respectively. 
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Table 3-6: Average, standard deviation, and range of δ15N-N2O and δ18O-N2O from 
individual sites for the January 2008 melt 
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Figure 3-16: The relationship between the natural log (ln) of N2O concentration and (a) δ15N-
N2O and (b) δ18O-N2O for the 2008 mid-winter thaw.  The best fit lines for Shantz tile, Harris 
tile, Outflow, and groundwater are shown in (a).  The best fit line for Harris tile is shown in 
(b). 
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3.5 Discussion 

3.5.1 Sources and Variability of NO3
- at Strawberry Creek 

Higher NO3
- concentrations were measured at tiles and stream locations during the 2008 

January melt event than for the 2007 Springmelt (Figure 3-3 and Figure 3-12).  NO3
- 

concentrations at only Harris tile and BMR tile were above the drinking water limit (10mg 

N/L) during the 2007 event, whereas concentrations at all sampling locations are greater 

than the drinking water limit during the 2008 event.  This is likely the result of antecedent 

conditions of the watershed as a long drought had preceded the 2008 mid-winter thaw 

whereas several smaller storms occurred throughout the fall and winter preceding the 2007 

Springmelt (Macrae, 2003).  This would have resulted in significant accumulation of NO3
- 

in the soil profile during the period preceeding the 2008 melt event.  2008 event NO3
- 

concentrations were moderately lower than pre-event concentrations at Shantz and Harris 

tiles, though tile discharge was much higher suggesting dilution played a role (Table 3-4).  

Despite the potential effect of dilution event concentrations are much higher at the AMR 

tile.  Due to low tile and groundwater discharge to the stream during the 2008 pre-event, 

less NO3
- would have been removed from the soil.  High groundwater NO3

- concentrations 

(∼100 mg N/L) from the Harris groundwater transect (Harris 1998) during the 2008 event 

would have increased stream concentrations (Table 3-7).  Harris (1998) and Cabrera 

(2000) also found that NO3
- in groundwater may not always be attenuated in the riparian 

zone during high flow events.   

Table 3-7: NO3
- concentrations taken from the Harris 3 transect (Harris, 1998) on January 

27, 2008 

Well 
NO3

- (mg 
N/L) 

216-23 107.8 
191-26 103.6 
185-30 105.4 
185.5-36.5 103.9 
HTP1-J 100.0 
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While tile NO3
- concentrations were higher during the event than pre-event period, 

stream concentrations were lower during the event period.  Groundwater with low NO3
- 

concentrations (<2.5 mg N/L) during 2007 shows that much less NO3
- was in the soil 

profile and would have offset higher inputs from tiles through dilution.  Low NO3
- 

concentrations at the Deciduous Headwaters also show that this is an input of low NO3
- 

concentrations to the stream. 

NO3
- isotopes measured at Strawberry Creek during the 2007 Springmelt and 2008 mid-

winter thaw reflect differences in sources and processes as driven by hydrologic 

conditions in the catchment preceding and during the events.  Evidence of NO3
- from 

atmospheric deposition in the Deciduous Headwaters (2007 Springmelt) reveals a source 

that might otherwise be masked by high fertilizer use (Figure 3-5).  The deciduous swamp 

also shows evidence of either mixing of NO3
- from atmospheric deposition and manure 

sources or denitrification.  If the two data points in question (δ15N = 9.6 and δ18O = 12.7; 

δ15N = 10.3 and δ18O = 16.6) are corrected for denitrification to a conservative δ18O value 

of +6‰ (manure) using a δ18O:δ15N ratio of 0.63 (Mengis et al., 1999), δ15N values are -

0.4‰ and -5.4‰, respectively.  This is lower than what is normally measured for δ15N of 

soil organic matter (+2 to +4‰) at Strawberry Creek.  Source mixing is therefore the 

likely cause for these values. 

Similar NO3
- signatures from a possible combination of atmospheric and manure 

sources is also found at the Outflow during the 2007 Springmelt (Figure 3-5).  This was 

unlikely to have come from the deciduous headwaters since NO3
- concentrations here 

were less than 1 mg N/L while outflow concentrations were approximately 3 to 6 mg N/L.  

Fencerow and Harris tile also suggest mixing of atmospheric and manure/septic system 

sources which could have influenced sampling at the outflow.  It is possible that NO3
- 

from atmospheric deposition was present in the snow accumulated previous to the event 

though snow NO3
- concentrations were also less than 1 mg N/L while concentrations at 

the Fencerow and Harris tiles were 4.5 and 13.6 mg N/L, respectively.  This diminishes 

the potential influence of snow NO3
- on tile NO3

- sources.  In addition, direct overland 
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inputs to the stream would have minimized the chance for snow infiltration to Fencerow 

and Harris tiles.  As stated in the results variable δ18O-NO3
- could be the result of 

analytical errors associated with the chemical denitrification method for NO3
- isotope 

analysis which is discussed further at the end of this section. 

NO3
- isotopes measured from the 2008 mid-winter thaw suggest that either specific 

sources or a specific process dominates NO3
- dynamics during this period (Figure 3-14).  

As discussed in the results, NO3
- isotopes from each sampling location show distinct 

groupings which could be indicative of distinct sources.  Harris tile is a good example of 

this where δ15N values are tightly grouped in the expected range of NO3
- from soil organic 

matter as observed in Chapter 2.  δ15N values from BMR tile are also comparable between 

the two studies. 

On the other hand, grouping of data along a δ18O:δ15N slope of 0.55 could be indicative 

of denitrification if the NO3
- source is the same for all sites (Mengis et al., 1999, Aravena 

and Robertson, 1998; Wassenaar, 1995).   As such, a δ15N value of +4‰ and a δ18O value 

of -7.5‰ could represent a NO3
- endmember source for all sites of this event.  This is 

similar to the most depleted 15N and 18O isotope values from Shantz, Upper Road, and 

Harris tiles.  It is possible that, from this endmember, NO3
- became enriched to varying 

extents between individual sites though the extent was the same at individual sites.  

Hydrology in the catchment plays a major role for creating the conditions necessary for 

this scenario.  Very minimal precipitation resulted in absence of basin discharge for the 

period of mid-June to November 2007 after which very little discharge occurred until the 

mid-winter thaw (Figure 3-1).  As discussed above, NO3
- produced at this time was not 

flushed from the system leaving it susceptible to denitrification in anaerobic microsites.   

A strong negative relationship between the natural log (ln) of NO3
- concentration and 

δ15N-NO3
- observed groundwater and Shantz tile is indicative of denitrification though 

this is not observed for δ18O (Figure 3-13).  Strong relationships between ln of NO3
- 

concentration and NO3
- isotopes would not be expected for individual sites if they were 

subject to the same amount of denitrification.  Strong relationships would be expected for 
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the collective dataset only if source NO3
- concentrations of the sites were the same which 

hasn’t been previously observed at Strawberry Creek (ie: Chapter 2). 

Using the widely accepted theory that one third of nitrate oxygen is from atmospheric 

O2 (+23.5‰) and two thirds are from water’s oxygen would mean that water at 

Strawberry Creek would have to be -23.5‰ for 18O (Andersson and Hooper, 1983; Kumar 

et al., 1983; Hollocher, 1984).  This is much lower than the δ18O-H2O of -10‰ for 

average groundwater at Strawberry Creek (Mengis et al., 1999), though the mean monthly 

weighted average δ18O-H2O for December, January, and February is -13.1, -17.1, and -

14.2, respectively.  This issue is also apparent for 2007 Springmelt data but for Chapter 2 

data which utilizes the more established silver nitrate method outlined by Spoelstra et al. 

(2004).  Detectable errors (above ±0.5‰ uncertainty for NO3
- analysis) in the chemical 

denitrification method for δ18O-NO3
- analysis can come from NO2 if it is 2% of the total 

NO3
- and NO2 in a sample (Casciotti et al., 2007).  However, NO2 was measured in the 

samples prior to analysis and found to be less than this.  Casciotti et al. (2007) also found 

that δ18O-NO2 was altered during storage by freezing due to oxygen exchange with water.  

Assuming a NO2 concentration of 2% (total NO3
- and NO2), an initial δ18O-NO3

- of 0‰ 

(low end of δ18O-NO3
- from Chapter 2), and a final δ18O-NO3

- of -10‰ produces a δ18O-

NO2 of -500‰ using a simple isotope mass balance.  Since it is unlikely that δ18O-NO2 

would be this low and combined with low NO2 concentration the possibility of NO2 

interference can be excluded. 

Additionally, the theory that one third of nitrate oxygen is from atmospheric O2 and two 

thirds are from water does not always hold true.  For example, Snider et al. (2008) show 

that 80% of oxygen can come from water while the other 20% can come from atmospheric 

O2.  Using this ratio with the January mean monthly average of -17‰ produces a δ18O-

NO3
- of -8.9‰, which approaches the minimum δ18O-NO3

- value of -10‰.  Low δ18O-

NO3
- values could reflect the changing ratio of oxygen contributed from either water or 

atmospheric O2.   
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Although these results challenge the accuracy of δ18O-NO3
- data run by the chemical 

denitrifier method, they may also provide insight into certain reaction mechanisms in the 

N cycle.  However, interpretation of these values should be with caution until these 

mechanisms are more fully illustrated and other analytical issues are resolved. 

3.5.2 Sources and Variability of N2O during two storm events 

With N2O concentrations above atmospheric saturation the stream is a consistent source of 

N2O flux to the atmosphere during both events (Figure 3-3 and Figure 3-12).  Elevated tile 

N2O inputs (relative to the stream) are the source of stream N2O as opposed to diffuse 

groundwaters which have low N2O concentrations during both these events. Thuss et al. 

(2006) also measured N2O from the Shantz and Harris tiles that was well above 

atmospheric saturation during a November (2005) storm.   Other studies have shown that, 

at high percent saturation, significant degassing of N2O from agricultural drainage ditches 

occurs downstream of tile drain discharge points (Reay et al., 2003, 2004; Harrison and 

Matson, 2003).   

δ15N-N2O and δ18O-N2O values from Strawberry Creek suggest that N2O is mostly 

produced by denitrification since the data points fit in the expected range (Figure 3-17).  

Calculated isotopic shifts (average) also support this proposition.  For the 2007 Springmelt 

(Table 3-8) average values are -6.07‰ to -30.85‰ for 15N (∆N2O-NO3) and +14.38‰ to 

+34.48‰ for 18O (∆N2O-NO3).  For the January 2008 melt average isotopic shifts were -

13.05 and -37.70 for 15N (∆N2O-NO3) and +32.77 to +46.18‰ for 18O (∆N2O-NO3) ( 

Table 3-9).  Denitrification incubation studies have calculated 15N enrichment factors of 

-10 to -38‰ (εN2O-NO3) and 18O enrichment factors of -10 to +30‰ (εN2O-NO3) (see 

Appendix 1, Chapter 1).  These results differ in comparison to 15N isotope effects for 

nitrification and nitrifier-denitrification where fractionations of -30 to -55‰ and -45 to -

68.2‰ (εN2O-NH4), respectively, can be expected (see Appendix 1, Chapter 1).  With an 

average δ15N-NH4
+ value of +7.32 ± 0.87‰ for Strawberry Creek soils (Schiff et al., 

2007, unpublished results), δ15N-N2O values of approximately -37 to -75‰ could be 
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produced from nitrifier-denitrification, though fractionation factors could be less negative 

if NH4
+ concentration was limiting (Wada and Ueda; 1996, Ueda et al.; 1991) (Figure 

3-17). 

From direct field measurements, Perez et al. (2001) calculated instantaneous 15N 

enrichment factors and interpreted those in the range of -13 to -38‰ to be a product 

denitrification.  These samples were collected in the second week following irrigation 

even though water filled pore space (WFPS) at the surface was decreasing (≤60%).  

Strawberry Creek soils would have also been saturated during both major events.  In 

another experiment, Bol et al. (2004) found that both non-flooded and flooded estuarine 

soils produced N2O that was isotopically in the range of denitrification, despite the 

favorable conditions for nitrification during non-flooded conditions.  This is because even 

in aerobic soils denitrification can produce N2O in anaerobic microsites.  Bol et al. (2004) 

and Wrage et al. (2004) also state that nitrification or other pathways may have produced 

N2O though the isotopic signal can be masked by that of denitrification if more N2O is 

produced by that pathway.  This is a likely scenario as when N2O production is high it is 

usually being produced by denitrification. 

Data from 2007 Springmelt shows that, despite comparatively elevated δ18O-NO3
- 

values to the 2008 mid-winter thaw, δ18O-N2O is relatively similar between the two events 

(Table 3-3 and Table 3-6).  This is particularly evident for the Deciduous Headwaters 

which shows only slightly higher δ18O-N2O values (+7‰ greater than next highest 

average) despite higher δ18O-NO3
- values (average is +18.3‰ greater than next highest 

average).  This is suggestive that another process, beside the 18O fractionation of N2O 

formation, is responsible for the δ18O-N2O signatures observed.  A possible candidate is 

oxygen exchange between water and NOx which, with δ18O-H2O signatures of -10‰ at 

Strawberry Creek, would have the effect of lowering the δ18O-N2O values (Kool et al., 

2007; Ye et al., 1991; Shearer and Kohl, 1988; Garber and Hollocher, 1982).  
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Figure 3-17: δ15N and δ18O of N2O for the (a) 2007 Springmelt and the (b) 2008 mid-winter 
thaw.  Expected ranges for denitrification were drawn by applying reported isotopic shifts 
on average NO3

- values from each event.  For the 2007 Springmelt an average δ15N-NO3
- of 

8.5‰ and average δ18O-NO3
- of 3.32 was calculated.  An 15N εN2O-NO3

- range of -13 to -38‰ 
and a 18O εN2O-NO3

- range of +10 to +40‰ was applied for denitrification.  An average δ15N-
NO3

- of 10‰ and average δ18O-NO3
- of -6‰ was calculated for the 2008 mid-winter thaw.  

The range for denitrification and nitrifier-denitrification was calculated as for the 2007 
Springmelt.  High 18O ∆N2O-NO3

-of +48 calculated for the 2008 mid-winter thaw data, reflect 
the findings of Casciotti et al. (2002) where an 18O εN2O-NO3

- of +50‰ was calculated.  Based 
on this the range of denitrification could be extended by +10‰ for the 2008 mid-winter thaw.  
For nitrifier-denitrification an expected 15NH4

+ of 7.00 from Strawberry Creek soils was 
assumed and a 15N ∆N2O-NH4

+
 of -45 to -68 was applied which extends the box to -61‰ (15N) 

(Perez et al., 2001; Snider et al., 2008; Yoshida, 1988; Ueda et al., 1999).  δ18O-N2O values 
from nitrifier-denitrification have been reported as +23.5 ± 3‰ (Perez et al., 2001; Whalen 
and Yoshinari, 1985). 
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Table 3-8: Calculated range of isotopic shifts for denitrification (∆N2O-NO3
-) for the 2007 

Springmelt event.  These were calculated as the difference between average N2O and NO3
- 

isotopes for the compiled dataset of each site.   

 δ15N δ18O 
Site Shift sd Shift sd 

Upper road tile -22.6 4.6 30.5 6.9 
Deciduous 
Headwaters -6.1 6.7 14.4 22.3 

Shantz tile -24.9 5.1 34.0 5.5 
AMR tile -30.8 3.3 32.7 5.6 
BMR tile -24.4 10.9 31.2 14.7 

Fencerow tile -22.4 6.2 33.4 11.0 
Harris tile -14.6 3.3 30.2 9.0 
Outflow -15.1 3.8 34.5 7.2 

 

Table 3-9: Calculated range of isotopic shifts for denitrification (∆N2O-NO3
-) for the 2008 

January melt event.  These were calculated as the difference between average N2O and NO3
- 

isotopes for the compiled dataset of each site.  

 δ15N δ18O 
Site Shift sd Shift sd 

Upper road tile -18.6 3.6 47.2 5.3 
Shantz tile -21.2 8.5 44.0 2.9 
AMR tile -21.9 7.4 44.7 4.4 
BMR tile -36.7 3.9 32.8 3.2 

Harris tile -13.1 5.1 46.2 2.0 
Outflow -16.5 3.1 46.1 3.0 

Groundwater -37.7 16.2 37.4 21.6 

 

The distribution of N2O isotopes is also characterized by different δ18O:δ15N slopes.  A 

δ18O:δ15N slope around 0.5 could represent N2O that is produced by changing NO3
- 

isotope signature if the system is open.  Following consumption by denitrification, the 

isotopes of residual NO3
- become characteristically enriched at this ratio, though a range 

of 0.5 to 1.0 can be expected (Aravena and Robertson, 1998; Mengis et al., 1999; Green et 

al., 2008; Bottcher et al., 1990).  With δ18O:δ15N slopes of 0.42 (R2 = 0.41, p = 0.17) and 

0.69 (R2 = 0.62, p = 0.21) for N2O, the Upper Road and Fencerow tiles could represent 

this scenario during the 2007 Springmelt.  NO3
- isotopes at both sites do not show a 

δ18O:δ15N slope between 0.5 and 1.0 which challenges the postulation that the trend in 
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N2O isotopes is a product of substrate consumption, though Upper road tile has strong 

relationships between lnNO3
- and both δ15N-NO3

- (R2 = 0.97, p = 0.02) and δ18O-NO3
- (R2 

= 0.46, p = 0.31) (Figure 3-6).  Fencerow also has a strong relationship between lnNO3
- 

and δ15N-NO3
- (R2 = 0.77, p = 0.17) (Figure 3-6a).  However, an observable connection 

between the isotopes of the two N species may not necessarily be expected in samples 

from Strawberry Creek.  N2O can be produced in anaerobic microsites by only a small 

degree of denitrification.  Although the residual NO3
- following denitrification becomes 

enriched it is likely a small portion of NO3
- measured at the tile outlet since this represents 

what is collected over the drainage network.  The N2O collected at the outlet also 

represents what is collected over the drainage network but is the product of denitrification 

of NO3
- so it shows the δ18O:δ15N slope of 0.5.  Also, when NO3

- is being consumed in 

anaerobic microsites its concentration decrease should result in less N2O produced.  The 

relationship between lnN2O concentration and δ15N-N2O is negative and strong (R2 = 

0.89, p = 0.005) at Upper Road tile (2007 Springmelt) though it is not strong between 

lnN2O concentration and δ18O-N2O (Figure 3-9).  These relationships are positive at the 

Fencerow tile during this event, showing that the theory may not be reflected in the 

environment where many factors can influence these relationships.  This theory should be 

tested under controlled laboratory conditions. 

During the January 2008 melt event δ18O:δ15N ratios of N2O from BMR and AMR tiles 

have slopes of 0.57 (R2 = 0.95, p = 0.001) and 0.73 (R2 = 0.94, p = 0.0002), respectively 

(Figure 3-15).  Both AMR and BMR tiles also have negative relationships between lnN2O 

concentration and both isotopes though the relationships are weak (R2≤0.35) (Figure 

3-16).  Groundwater data also has a similar trend for N2O isotopes with a δ18O:δ15N slope 

of 0.36 though only the δ15N of N2O is moderately well correlated to lnN2O concentration 

(R2 = 0.61) (Figure 3-16a).   

Shallow δ18O:δ15N slopes with low regression coefficients (<0.50) also characterize the 

distribution of N2O isotope data for some Strawberry Creek sites.  Included in this 

classification are positive δ18O:δ15N slopes less than 0.40 and negative slopes. δ18O:δ15N 
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slopes of 0.27 from measured N2O can also be calculated from results in Perez et al. 

(2001) while negative ratios are found in Yoshida et al. (2005) due to the positive isotope 

effect on 18O.  More sites from the 2007 Springmelt are characterized this way than for the 

2008 mid-winter thaw suggesting the former dataset is more randomly distributed.  

Although less of a trend is apparent the distribution is still important as it is likely the 

result of several combined processes.  Evidence of NO3
- consumption is not apparent for 

most 2007 Springmelt data though there could be some smaller effects that are not 

obvious.  BMR tile is a good example of how variable NO3
- isotope signatures could result 

in variable N2O values though regression between NO3
- and N2O isotopes doesn’t provide 

evidence of a direct influence (Figure 3-5).  Variable fractionation factors are the most 

likely explanation for this observed effect. 

Enrichment factors for denitrification would vary for several reasons.  Denitrification is 

a sequential reduction series with different fractionation factors at each step.  The 

combination of different fractionation factors and different ratios of the concentration of 

intermediates to N2O concentration ([NO2] + [NO]/[N2O]) would produce different 

isotope effects for N2O.  Fractionation at each step could also be variable due to different 

reaction rates, environmental conditions, and the many genera of denitrifying bacteria 

completing the reactions (Menyailo and Hungate, 2006).  Reduced NO3
- availability, for 

example, would decrease 15N enrichment factors (Menyailo and Hungate, 2006; 

Mandernack et al., 2002). 

According to several incubation and field studies, δ18O:δ15N slopes of 2.5 are expected 

for N2O consumption (Mandernack et al., 2000; Schmidt and Voerkelius, 1989; Menyailo 

and Hungate, 2006; Vieten et al., 2007).  Slopes of 1.15 (AMR tile) and 1.4 (Outflow) 

during the 2007 springmelt are the steepest measured from both events (Appendix C, 

Table C-2).  Evidence of N2O consumption at outflow is supported by enriching isotopes 

with decreasing concentration.  However, given the high concentrations of N2O in the 

stream this could also be the effect of gas exchange.  
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For the stream, the effect of gas exchange can be accounted for by assuming steady state 

conditions for isotopic composition and N2O production rate.  Under these conditions, the 

isotopic composition of N2O flux can be calculated from dissolved N2O concentration and 

dissolved N2O isotopic using Equation 3-1. 
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Equation 3-1 

Where the flux of 15N2O and N2
18O is measured in mol·m-2·h-1 and K is the gas exchange 

coefficient (m·h-1), P(N2O) is the partial pressure of N2O (atm), Kh is Henry’s constant for 

N2O (mol· atm-1·m-3), and [N2O]dissolved is the dissolved concentration of N2O (mol·m-3).  

α15
in and α18

in are the fractionation factors for invasion of N2O into the dissolved phase 

and α15
ev and α18

ev are the fractionation factors for N2O evasion from the dissolved phase 

(Inoue and Mook, 1994).  R15
dissolved and R15

gas is the ratio of 15N/14N isotopes of N2O in 

dissolved and gas phases and R18
dissolved and R18

gas is the ratio of 18O/16O isotopes of N2O in 

dissolved and gas phases. 

According to Thuss and Schiff (2008) the isotopic composition of N2O flux will equal 

that of the N2O source at steady state.  This analysis provides the isotopic composition of 

the source for every isotopic measurement of dissolved N2O unlike N2O endmember 

analysis which only provides one value for a data set.  Results of this analysis show that 

the source isotopic composition of the 2008 mid-winter thaw is relatively constant and that 

the N2O isotope endmember is an appropriate average of the source (Figure 3-18).  The 

same analysis for the 2007 Springmelt shows similar source signatures for all except one 

of the data points but suggests that the N2O endmember is not an appropriate average 

value for source composition.  The δ18O-N2O source value is likely closer to +40‰. 

Regardless, the endmember and flux values are relatively well constrained and allows the 

conclusion that the isotopic signature of N2O flux to the atmosphere at the outflow is -12 

to -18‰ for 15N and +32 to +42‰ for 18O.  
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Figure 3-18: Modelled source N2O at the outflow during (a) Springmelt 2007 and (b) the 
2008 mid-winter thaw with calculated endmember N2O. 

 

Calculation of a N2O endmember was performed by regression analysis of the inverse of 

N2O concentration and the N2O isotope species.  This is known as a Keeling analysis for 
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determining the original source signature of a pool that has mixed with a background pool 

(Pataki et al., 2003).  The y-intercept of this analysis is the original isotopic signature of 

the pool mixing with the background pool. 

3.6 Conclusions and Recommendations 

NO3
- concentrations from BMR and Harris tiles was above the drinking water limit (10 

mg N/L) during the 2007 Springmelt though concentrations at the Outflow are below this 

level.  On the other hand NO3
- concentrations during the 2008 mid-winter thaw are above 

the drinking water limit for all tiles and also at the outflow, which makes this a more 

critical event in terms of NO3
- concentrations in the catchment.  This is likely linked to the 

build up of NO3
- during the long drought prior to the 2008 mid-winter event. 

N2O from tiles was a source to the stream during both events which, with consistent 
concentrations above atmospheric saturation, is a source of N2O to the atmosphere. 

NO3
- isotopes suggest that sources were mainly soil organic matter and manure during 

the 2007 Springmelt.  There is also evidence of NO3
- from atmospheric deposition in the 

Deciduous Headwaters.  NO3
- isotopes from the 2008 mid-winter thaw shows tight 

grouping of data for specific sampling locations which could be indicative of slight 

variations from soil organic matter and manure sources.  However, the groupings from 

individual tiles and the outflow fall along a δ18O:δ15N NO3
- line of 0.55 which is 

indicative of denitrification if the source is the same.  For individual sites, groundwater 

and Shantz tile alone indicate progressive enrichment of NO3
- isotopes.  Denitrification of 

NO3
- in Strawberry Creek tiles has not been previously observed but is directly linked to 

the drought conditions preceding the 2008 mid-winter thaw.  Since little NO3
- was flushed 

from the system over this long period denitrification was possible on a large scale. 

N2O measured during the 2007 Springmelt and the January 2008 melt was produced by 

denitrification.  Calculated isotopic shifts (∆N2O-NO3
-) for 15N and 18O are indicative of this 

in comparison with literature values of denitrification.  High denitrification potential is 

also indicated by saturated environmental conditions during these events.  The slope of 

δ18O:δ15N for N2O is indicative of processes influencing N2O production.  Moderate 
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slopes around 0.5 are observed for certain tiles pointing to the influence of NO3
- 

consumption, particularly when the combination of increasing N2O isotopes values with 

decreasing N2O concentrations are congruent.   Shallow negative or positive slopes reflect 

a combination of processes including NO3
- consumption, N2O consumption, and variable 

fractionation factors due to substrate availability, reaction rate, and microbial assemblages. 

Gas exchange is the dominant process in the stream.  The isotopic composition of the 

N2O source can be calculated for each measured point using a steady-state flux model.  

This analysis suggests that the calculated N2O endmember is not representative of the 

average isotopic composition of source N2O during the 2007 Springmelt.  However, the 

calculated N2O endmember is representative of the average isotopic composition of source 

N2O during the 2008 mid-winter thaw.  The isotopic signature of N2O flux to the 

atmosphere at the outflow is -12 to -18‰ for 15N and +32 to +42‰ for 18O. 

Other studies of dissolved N2O in agroecosystems should not neglect high magnitude 

events such as melt events as they can be significant portion of annual flux to the 

atmosphere.  This study shows that N2O isotopes are useful as a sensitive indicator of 

denitrification in aquatic systems including tile drain networks.  N2O isotopes are sensitive 

to both N2O production and consumption and, thus, they should be used in conjunction 

with other geochemical tools for denitrification studies. 
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Chapter 4: NO3
- and N2O during non-melt conditions at 

Strawberry Creek: A stable isotope approach 

Overview 

N2O is a powerful greenhouse gas that has a relatively long atmospheric residence time 
and contributes to ozone degradation.  Recent increases in the atmospheric mixing ratio of 
N2O have been associated with direct and indirect sources from agriculture amongst other 
anthropogenic sources.  Stable isotope research has focused on direct N2O emissions while 
research on indirect sources has lagged behind.  In this study we report the 15N/14N and 
18O/16O stable isotopes of N2O in groundwater, tile drainage, and open streams during 
non-melt conditions at the Strawberry Creek catchment near Waterloo, Ontario, Canada.  
Two datasets; October 2006 to June 2007 and Fall 2007, are used to characterize these 
conditions.  The isotope data suggests that N2O is produced by denitrification.  
Furthermore, NO3

- consumption or gas exchange is likely altering the original signature of 
the N2O produced, particularly in tiles and streams.  Isotopic distinction between soil gas 
N2O and dissolved N2O is suggestive of different production mechanisms between the 
unsaturated and saturated zones.  Based on these results, and those of Chapter 3, a 
conceptual model of N2O isotope dynamics in a small agricultural catchment is proposed, 
highlighting differences in what is measured between aquatic and non-aquatic systems.  
Compared to the variability in literature measurement of N2O isotopes those from the 
Strawberry Creek catchment are relatively tight, thereby defining the isotopic signature of 
local secondary agricultural N2O. 

 

4.1 Introduction 

N2O is a major greenhouse gas (GHG) that evolves from agriculture environments.  

Globally, the largest source of N2O is from land conversion for agriculture and heavy use 

of nitrogen (N) fertilizers (Stein and Yung, 2003) which is projected to increase in the 

future (Perez et al. 2001). 
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Direct N2O flux from arable lands is an extensively documented type of N2O emission 

but does not account for all emissions from agricultural sources (Mosier et al., 1998; 

Mosier, 1994; Bouwman, 1996).  Mosier et al. (1998) estimated that indirect emissions 

from agriculture equal direct emissions at 2.1 Tg N-N2O/yr.  The 1994 IPCC reports on 

N2O emissions did not consider secondary sources in the same detail as 1998 reporting 

which consequently accounted for missing portions in the total estimates of N2O evolution 



 

(Mosier et al., 1998).  Volatilization and deposition of NH3 and NOx, N leaching and 

runoff, human consumption of agricultural crops and subsequent municipal wastewater 

treatment, N2O formation from NH3 in the atmosphere, and food processing are all 

considered indirect N sources (Mosier et al., 1998). 

N2O is produced by the microbially mediated processes of nitrification and 

denitrification.  N2O is a by-product of hydroxyl-amine oxidation in the nitrosification 

reaction series which proceeds under aerobic conditions.  Nitrifying bacteria can also 

produce N2O by reducing NO2 when oxygen becomes limited.  N2O production by this 

process, known as nitrifier-denitrification, is believed to be more environmentally relevant 

than as a by-product of hydroxyl-amine oxidation.  Under anaerobic conditions with a 

suitable electron donor source (often organic carbon) NO3
- can be reduced through 

denitrification where N2O is an obligatory intermediate.  Consequent reduction of N2O to 

N2 completes the denitrification reaction series. 

The most powerful tool in discriminating between the different pathways of N2O 

production and consumption utilizes stable isotope ratios of 15N/14N and 18O/16O (Stein 

and Yung, 2003).  As previously discussed N2O produced in aerobic environments has 

been attributed to nitrification.  Large isotopic shifts (∆δ15N = -45 to -68‰) commonly 

cited for nitrification produce relatively depleted δ15N-N2O values in aerobic aquifers and 

upper ocean columns (Ostrum et al., 2000).  Relatively higher δ15N-N2O values produced 

during anaerobic denitrification have been found in lakes, oceans, and emitted from soils 

(Boontanan et al., 2000; Wada and Ueda, 1996; Naqvi et al., 1998; Popp et al., 2002; 

Tilsner et al, 2003; Wrage et al,. 2004).  For denitrification, 15N fractionation ranging from 

-13 to -38‰ (εNO3-N2O) has commonly been reported.  A wide range of oxygen-18 

fractionation factors have also been reported for denitrification likely due to the 

complicating mechanisms of water exchange, N2O consumption, and microbial 

assemblages. 18O fractionation factors of -10 to +32‰ (εNO3-N2O) have commonly been 

reported for denitrification. 
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Defining isotopic signatures from temperate environments could be an important 

component in closing the global isotopic N2O budget.   More importantly, understanding 

the dynamics of the processes controlling emissions from temperate agricultural 

environments could lead to mitigation strategies.  Though temperate zones studies of N2O 

isotopes are becoming more common, few have focused on dissolved sources, particularly 

drainage tile inputs and streams.  On the other hand, several groundwater N2O isotope 

studies have made significant contributions (Bol et al., 2004; Well et al., 2005; Wada and 

Ueda, 1996; Ueda et al., 1999). 

In this study we investigate the N2O isotopes from indirect sources at the Strawberry 

Creek agricultural catchment, Ontario, Canada.  Isotopic analysis was performed on 

dissolved N2O collected from tile drain waters, streams, and groundwater for the period of 

October 2006 to January 2008.  There are several objectives to this study.  First, to 

characterize the N2O isotopes during periods of baseflow and precipitation driven events 

(ie: periods other than melt events) and, secondly, to compare those collected from the 

various sampling locations including soil gas N2O.  The third objective is to answer 

whether differences in isotopic signatures are related to variability in pathway, 

fractionation factors, and substrates.  The final objective is to define the isotopic signature 

of dissolved N2O from secondary agricultural sources as defined at Strawberry Creek. 

4.2 Site Description 

A detailed description of the study site can be found in Section 1.2. 

4.3 Methods 

Tiles, and Streams at the Strawberry Creek were sampled from October 2006 to December 

2007.  Groundwater was periodically sampled from late September 2006 to December 

2007 to characterize water chemistry on a seasonal basis and through a variety of 

hydraulic gradients.  Samples were collected for N2O and NO3
- isotopes and 

concentrations of N2O, and major anions (Cl-, Br-, NO3
-, PO4

3-, SO4
2-).  Waters for N2O 
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isotopes were collected in duplicate in 160mL glass serum bottles, without creating a 

headspace. Saturated HgCl2 solution (0.3mL) was used for preservation. 

Waters for major anion chemistry were collected in 125mL plastic screw-top bottles and 

were filtered with Whatman 0.45 µm syringe-tip filters within 24 hours of collection.  For 

analysis of major anions, 0.5 mL sample aliquots were used on a Dionex ICS-90 ion 

chromatograph, equipped with an IonPac AS14A column and AS40 automated sampler.  

Samples were corrected to a calibration curve made from Dionex brand standards.  

Analytical error for NO3
- concentration is +/- 0.03 mg N/L. 

Duplicate 60mL serum bottles for N2O concentration were stoppered with butyl blue 

stoppers (Belco Glass) and preserved with 0.15mL HgCl2.  N2O was equilibrated in a 5mL 

headspace and injected manually onto a Varian CP-3800 gas chromatograph.  Trace gases 

were separated by a Poroplat Q column and N2O was analyzed by an ECD detector.  The 

analytical error of this analysis is approximately +/- 5% at 8.5 nmol/L and the detection 

limit is approximately 6.5 nmol/L. 

N2O was extracted from water using a modified CO2 extraction technique (EIL method) 

developed by the Environmental Geochemistry Group (Thuss et al., 2008) In brief, the 

160mL sample is bubbled for 10 minutes with a helium line that is attached to a 20mL 

capped serum vial sitting in liquid nitrogen to cryogenically trap the N2O gas.  The bottom 

and top of the vial is filled with glass beads and has silica glass wool in the middle to 

increase the surface area on which the gas may be trapped. After sample purging is 

complete the vial is pressurized with a known quantity (20mL) of Helium.   Ideal injection 

size of the sample was calculated based on peak height of standard injection.  Samples 

were analyzed for N2O isotopes by injecting 10 to 15 nmol of N2O on a Micromass Trace 

Gas Analyzer connected to a Micromass continuous flow mass spectrometer (TG-CFMS). 

Ideal injection size of the sample was calculated based on peak height of standard 

injection.  Samples were corrected to EGL 5 N2O standard (δ15N-N2O = 2.03, δ18O-N2O = 

38.44) for instrumental drift, linearity, and isotopologue contamination.  Results are 

reported in delta (δ) notation in units of per mil (‰) relative to to N2 (air) for δ15N and 
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VSMOW for δ18O.  Analytical errors for δ15N and δ18O is ±0.13‰ and ±0.31‰.  The 

instrument was calibrated to tropospheric N2O.    

The method used for NO3
- isotope analysis was originally developed by McIlven and 

Altabet (2005) but is presented here with modifications by Spoelstra (unpublished, 2007).  

After collection, 30mL of water is filtered (0.45µm) into plastic screw-top bottles and 

frozen for storage.  When ready to analyze for nitrate isotope ratios, a volume of water 

containing 0.6µg N is freeze dried.  The sample is redissolved with 0.75M NaCl and 1mL 

of 0.08M Imidazole is added to aid the cadmium reduction reaction.  The sample is then 

placed in a column with copperized cadmium and slowly shaken for 2 hours to reduce 

NO3
- to NO2

-.  The sample is then syringe filtered into a stoppered 20mL serum vial.  N2O 

is subsequently produced by addition of a 2mL sodium azide and acetic acid buffer 

solution for 10 minutes.  1mL of 6M NaOH is added to stop the reaction.  The vial is 

pressurized with 10mL of Helium and placed on a shaker to equilibrate for 10 minutes.  

The sample is then run on the TG-IRMS as above for dissolved N2O.  Analytical error 

calculated for this method was ±1.1 for δ15N-NO3
- and ±3.0 for δ18O-N2O. 
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4.4 Results 

4.4.1 Catchment Hydrology 

Date 

Jun-07  Jul-07  Aug-07  Sep-07  Oct-07  Nov-07  Dec-07  Jan-08  

D
is

ch
ar

ge
 (L

/s
)

0

20

40

60

80

Pr
ec

ip
ita

tio
n 

(m
M

)

0

10

20

30

40

50

60

70

Discharge
Precipitation

 

Figure 4-1: Catchment Discharge and Precipitation from June 2007 to December 2007.  Dry 
conditions from mid June 2007 to the beginning of November 2007 prohibited tile and 
stream sampling.  Sampling recommenced shortly after discharge began. 
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4.4.2 NO3
- and N2O concentrations 
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Figure 4-2: NO3
- concentrations from October 2006 to June 2007 with the 10mg N/L NO3

- 
drinking water limit (dashed line).  Analytical error for NO3

- concentration is approximately 
+/- 0.03 mg N/L. 
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Figure 4-3: (a) N2O concentrations less than 500 nmol/L and (b) N2O concentrations greater 
than 500 nmol/L from October 2006 to June 2007.  Stream N2O concentration at 100% 
saturation (dashed line).  Analytical error for N2O concentration is approximately +/- 5% at 
8.5 nmol/L. 
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Figure 4-4: (a) NO3

- concentrations from Fall 2007 with the 10 mg N/L NO3
- drinking water 

limit (dashed line). (b) N2O concentrations from Fall 2007 with N2O at 100% saturation 
(dashed line). 
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A large range of hydrologic conditions exist in the catchment between October 2006 

and June 2007 (Figure 4-2).  Even excluding the 2007 Springmelt, outflow discharge 

ranges from 0 to 600 L/s during this period.  Periods of increased discharge usually follow 

precipitation events which are frequent and often variable in magnitude.  Stream discharge 

fed by groundwater inputs are considered baseflow conditions in this study and can be 

observed in comparison to high magnitude events such as in December 2006 and May 

2007 (Figure 4-2).  Even though it is arguable that these events should be analyzed 

separately they are included in the dataset since they are all driven by precipitation, not 

snowmelt, as in Chapter 3.  A period of distinct hydrology is from July 2007 until 

November 2007 when no discharge occurred in the catchment.  This long period of 

drought was followed by low discharge caused by several precipitation events in Fall 2007 

that set up conditions for unique chemistry and isotopes.  Due to the uniqueness of this 

dataset it was separated from the October 2006 to June 2007 data for analysis.   

4.4.2.1 October 2006 to June 2007 

4.4.2.1.1 NO3
- concentrations 

NO3
- concentrations from Upper road, BMR, and Harris tiles are consistently above the 10 

mg N/L drinking water limit throughout this period (Figure 4-2).  These tiles have the 

highest average NO3
- concentrations in addition to AMR tile presumably due to very high 

concentrations in December 2006 and May 2007 (Table 4-1).  Excluding AMR tile, NO3
- 

concentrations from these tiles are more significant during baseflow conditions, 

presumably due to dilution during major events, indicated by high outflow discharge.  

Although these tiles contribute high concentrations to the stream, NO3
- concentrations at 

the outflow are usually not above the drinking water limit.  An exception to this condition 

is in October 2006 where outflow NO3
- concentrations are as high as they are at Harris 

tile, obviously reflecting the influence of the tile on this measurement (Figure 4-2 and 

Table 4-1).  This likely means that groundwater, which is typically low in NO3
- 

concentration (Table 4-1), is a large portion of stream inputs.  Tiles such as Shantz and 
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others not measured in this study (ie: Forest and Bend tiles) may also contribute to dilution 

of higher NO3
- concentrations. 

Table 4-1: Average, Standard Deviation, and Range of NO3
- concentrations from October 

2006 to June 2007 

Site 
Number 

of 
samples 

Average 
NO3

- (mg 
N/L) 

Standard 
Deviation 

of NO3
- 

(mg N/L) 

Min. NO3
- 

(mg N/L) 
Max. NO3

- 
(mg N/L) 

Upper Road tile 20 9.1 1.8 5.0 11.5 
Shantz tile 19 5.5 1.9 0.5 9.5 
AMR tile 12 9.8 8.8 0.7 26.4 
BMR tile 18 13.3 4.4 5.8 20.7 

Above Harris 
tile 9 6.6 4.0 3.3 15.8 

Harris tile 27 15.4 5.6 3.8 25.5 
Outflow 21 6.5 4.7 1.9 25.3 

Groundwater 20 1.9 2.2 0.1 5.3 

4.4.2.1.2 N2O concentrations 

Tiles and streams at Strawberry Creek are most often a source of N2O to the atmosphere 

with concentrations above atmospheric saturation (Figure 4-3).   High N2O concentrations 

measured at tiles indicates they are a significant source of N2O to the creek.  Average N2O 

concentrations at Upper Road, Shantz and BMR tiles are all consistently high (200-300 

nmol/L) while the average at AMR tile is much higher (543nmol/L)(Table 4-2).  Higher 

average N2O concentrations at the outflow than at the stream above Harris tile exemplify 

the influence of tiles on streams.  However, when basin discharge is less than 40L/s, tile 

discharge to the stream is often not significant which means that diffuse groundwater 

inputs make up stream flow during these periods.   As groundwater N2O concentrations 

are, on average, greater than those of the stream (above Harris tile and Outflow), they are 

likely a consistent source of N2O to the stream during all hydrologic conditions.  N2O 

concentrations in both the stream and tiles appear to be consistently higher during storm 

events than they are during baseflow conditions. 
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Table 4-2: Average, Standard Deviation, and Range of N2O concentrations from October 
2006 to June 2007 

Site 
Number 

of 
samples 

Average 
N2O 

(nmol/L)

Standard 
Deviation 

of N2O 
(nmol/L) 

Min. 
N2O 

(nmol/L)

Max. 
N2O 

(nmol/L)

Upper Road tile 20 212.1 85.1 28.7 344.0 
Shantz tile 19 277.5 488.0 28.6 1655.7 
AMR tile 21 542.9 817.0 51.1 3398.8 
BMR tile 24 289.0 270.9 59.4 1135.5 

Above Harris 
tile 9 51.1 17.9 33.3 88.8 

Harris tile 27 86.2 84.7 20.9 431.6 
Outflow 23 64.4 68.9 24.6 319.3 

Groundwater 21 90.2 171.1 1.3 590.9 
 

4.4.2.2 Fall 2007 

4.4.2.2.1 NO3
- concentrations 

NO3
- concentrations in Harris tile are consistently above the 10 mg/L drinking water limit 

throughout this time period while other tiles (except Shantz) and the outflow remain below 

(Table 4-3).  This is with the exception of NO3
- concentrations on December 3, 2007 that 

are >12.5mg N/L for Shantz tile, Harris tile, and Outflow.  This reflects the influence of 

tile NO3
- concentrations on stream concentrations for this day.   

Table 4-3: Average, standard deviation, and range of NO3
- concentrations during Fall 2007 

Site 
Number 

of 
samples 

Average 
NO3

- (mg 
N/L) 

Standard 
deviation 
of NO3

- 
(mg N/L) 

Min. NO3
- 

(mg N/L) 
Max. NO3

- 
(mg N/L) 

Shantz tile 1 16.1       
AMR tile 7 0.8 1.2 0.1 3.3 

Harris tile 4 21.2 7.5 15.0 31.8 
Outflow 8 4.0 4.8 0.1 14.0 

Groundwater 7 0.4 0.2 0.2 0.8 

4.4.2.2.2 N2O concentrations 

N2O concentrations in the stream are above atmospheric saturation for most of this period 

including occasions (November 21-23, 2007) when concentrations from the Harris tile are 
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at or below atmospheric saturation.  This suggests that diffuse groundwater inputs were 

more significant than tile inputs on these occasions, which is possible given that 

groundwater concentrations are the highest of all sampling locations measured during this 

period (Table 4-4).  N2O inputs from AMR tile would have been a source of N2O to the 

stream those these would have likely degassed by the time they reached the outflow.  

Comparison of average N2O concentration between the October 2006 to June 2007 dataset 

(Table 4-2) and the Fall 2007 dataset (Table 4-4) shows that concentrations are much 

higher in the former.  This combined with differences observed in N2O isotopes (section 

4.4.4) constitute the reasoning for separate treatment of this data. 

Table 4-4: Average, standard deviation, and range of N2O concentrations during Fall 2007 

Site 
Number 

of 
samples 

Average 
N2O 

(nmol/L)

Standard 
deviation 

of N2O 
(nmol/L) 

Min. 
N2O 

(nmol/L)

Max. 
N2O 

(nmol/L)

Shantz tile 2 16.2 3.0 14.1 18.4 
AMR tile 7 21.3 4.9 15.0 30.1 

Harris tile 4 21.4 9.8 14.5 35.9 
Outflow 8 19.6 5.2 15.2 31.4 

Groundwater 8 84.8 134.6 5.2 302.6 
 

4.4.2.2.3 NO3
- and N2O concentrations 

Within the October 2006 to June 2007 dataset, only AMR tile (R2 = 0.88, p = 0.0001) and 

above Harris tile (R2 = 0.84, p = 0.0005) have strong, significant relationships (Figure 

4-5).  For Fall 2007 data, the relationship between NO3
- and N2O concentrations is strong 

and significant for AMR tile (R2 = 0.66, p = 0.03), Harris tile (R2 = 0.93, p = 0.03), and 

the outflow (R2 = 0.94, p = 0.0001) (Figure 4-6).  This is further support that the Fall 2007 

dataset is unique and should be treated separately. 
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Figure 4-5: The relationship between NO3
- and N2O concentrations for October 2006 to June 

2007. 
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Figure 4-6: The relationship between NO3
- and N2O concentration for Fall 2007. 

4.4.3 δ15N and δ18O of NO3
- 

With the majority of the δ15N-NO3
- data between 6 and 15‰ and the δ18O-NO3

- data 

between -10 and 6‰ it is apparent that most of the NO3
- during these two periods is from 

manure/septic system effluent sources (Figure 4-7 and Figure 4-9).  Some of the NO3
- is 

also derived from soil organic matter.  
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4.4.3.1 October 2006 to June 2007 
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Figure 4-7: δ15N and δ18O of NO3
- from October 2006 to June 2007.  Expected δ15N ranges of 

sources are adapted from Kendall (1998). δ15N ranges are based on literature values 
reported in Aravena et al. (1993); Wassenaar (1995); Aravena and Robertson, (1998); 
Kendall (1998); and Spoelstra et al. (2001). δ18O ranges for NO3

- from atmospheric 
deposition, NO3

- fertilizers, and NH4
+-NO3

- fertilizers are based on literature values reported 
in Kendall (1998); Mayer et al. (2001); Spoelstra et al. (2001); and Wassenaar (1995).  The 
upper range for δ18O-NO3

- from atmospheric deposition extends to +80‰.  δ18O ranges for 
NO3

- from soil organic matter and manure/septic system effluent were calculated based on 
the range of mean monthly weighted average δ18O of precipitation (IAEA, 2001) and the 
δ18O of atmospheric O2 (+23.5‰) (see Section 2.1, equation 2-1).  Included on the graph are 
δ18O:δ15N slopes of 0.5 which are a typical signal of denitrification. 
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In addition to NO3
- from soil organic matter and manure/septic system effluent evidence 

of NO3
- from atmospheric deposition and inorganic NO3

- fertilizers is apparent in 



 

groundwater in the October 2006 to June 2007 period (Figure 4-7).  NO3
- from the 

expected range for fertilizer also fall on the 0.5 δ18O:δ15N slope for denitrification which 

connects to a data point near +20‰ and +35‰ for δ15N and δ18O, respectively.  The 

potential for denitrification of NO3
- in groundwater is possible though the relationship 

between the natural log (ln) of NO3
- concentration and isotopes doesn’t provide evidence 

of denitrification (Figure 4-8).  The only strong and significant relationship is at Harris 

tile, between ln NO3
- and δ15N-NO3

- (R2 = 0.65, p = 0.05) (Figure 4-8). 
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Figure 4-8: The relationship between the natural log (ln) of NO3

- concentration and (a) δ15N-
NO3

- and (b) δ18O-NO3
- for the October 2006 to June 2007 dataset. 
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4.4.3.2 Fall 2007 
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Figure 4-9: δ15N and δ18O of NO3
- from Fall 2007.  Expected ranges of sources were 

constructed as in Figure 4-7.  Included on the graph is a δ18O:δ15N slope of 0.5 which is a 
typical signal of denitrification. 

 

Evidence of NO3
- from atmospheric deposition is apparent in Fall 2007 (Figure 4-9).  

NO3
- concentrations in groundwater are very low (<1 mg N/L) here and atmospheric 

sources would also be very low.  High δ18O-NO3
- values (around +20‰) could be due to 

mixing of atmospheric source with manure/septic system effluent sources or 

denitrification of NH4
+-NO3

- fertilizers.  A strong relationship between the natural log (ln) 

of NO3
- concentration and δ15N-NO3

- (R2 = 0.78, p = 0.004) (Figure 4-10a) and δ18O-NO3
- 

(R2 = 0.93, p = 0.0001) (Figure 4-10b) for outflow data could be also caused by 

denitrification.  However, a δ18O:δ15N slope of 3.0 for outflow NO3
- is contradictory to 

this evidence (Figure 4-9).  The strong and significant relationship between lnNO3
- and 
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δ15N-NO3
- at the Harris tile (R2 = 0.75, p = 0.13) and between lnNO3

- and δ18O-NO3
- for 

groundwater (R2 = 0.56, p = 0.09) could also be caused by denitrification. 
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Figure 4-10: The relationship between the natural log (ln) of NO3

- concentration and (a) 
δ15N-NO3

- and (b) δ18O-NO3
- for Fall 2007. 
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4.4.4 δ15N and δ18O of N2O 

4.4.4.1 October 2006 to June 2007 
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Figure 4-11: δ15N and δ18O of N2O for October 2006 to June 2007.  Soil gas N2O data was 
provided by John Spoelstra (2007, unpublished data).  The tropospheric mean value is 
+6.7‰ +/- 0.12 (δ15N) and +44.6‰ +/- 0.21 (δ18O) (Kaiser, 2002).  



 

Table 4-5: Average, standard deviation, and range of N2O isotopes for October 2006 to June 
2007 
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δ15N-N2O ranges from -42.8‰ to +1.0‰ while δ18O ranges from +27.0‰ to +52.9‰ 

(Table 4-5). The average δ15N-N2O and δ18O-N2O values for groundwater are -9.2‰ and 
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38.5‰, respectively.  The Harris tile average for δ18O-N2O (38.37‰) is very similar to 

ground water though there is a larger range for this site, largely a result of two depleted 

outliers (27.01‰ and 27.73‰) collected in April 2007.  The average δ15N-N2O value for 

Harris tile (-16.6‰) is lower than that of groundwater (-9.2‰). 

Average δ15N-N2O values for Upper Road, Shantz, and BMR tiles are similar at -

13.24‰, -14.77‰, and -14.65‰, respectively while standard deviations are variable at 

7.0‰, 12.8‰, and 3.9‰, respectively (Table 4-5).  Average δ18O-N2O values for Upper 

rd, Shantz, and BMR tiles are 36.00‰, 39.06‰, and 36.39‰ while standard deviations 

are 3.3‰, 6.9‰, and 7.2‰, respectively.  

The average δ15N-NO3
- value for AMR tile is -19.89‰ with a range of -33.7‰ to -

14.6‰ while the average δ18O-N2O value is 30.6‰ with a range of +29.3‰ to 

+37.9‰(Table 4-5).  N2O isotopes from this site are distinctly lower from those of 

groundwater, other tiles, and stream locations (Figure 4-11).  Generally speaking δ15N and 

δ18O values of N2O from the stream samples collected at the Outflow and above Harris tile 

are higher than other N2O isotopes measured in tiles and groundwater at Strawberry 

Creek.  Average δ15N-N2O for Outflow and above Harris tile are -9.05 and -5.8‰, 

respectively.  Average δ18O-N2O was +42.29 and +42.46 for Outflow and above Harris 

tile, respectively (Table 4-5). 

δ18O:δ15N slopes are indicative of trends within the data at individual sites.  Upper road 

tile, above Harris tile, and groundwater all have very shallow negative or positive slopes (-

0.067 to 0.096) with low regression coefficients.  AMR tile, Harris tile, and Outflow have 

slopes of 0.28 (R2 = 0.56, p = 0.15), 0.64 (R2 = 0.47, p = 0.06), and 0.45 (R2 = 0.62, p = 

0.0001).  The steepest slope (1.65) was measured at BMR tile (R2 = 0.81, p = 0.001). 
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Soil Gas flux 18O-N2O isotopes collected by Spoelstra (2007, unpublished data) from 

February to June 2007 show a range of ∼+10 to +45‰.  One grouping of data points has 

δ15N-N2O values of -40 to -18‰ while δ18O-N2O values are less than +30‰.  Another 

grouping of data has higher δ15N and δ18O values which places them in a range with 

values from the tiles.  Most of the data points from this second grouping are from 50cm 



 

depth, though other depths are also represented.  This separation of two distinct groups 

likely shows the difference between N2O produced in the unsaturated zone versus 

saturated zone production. 

The relationship between the natural log (ln) of N2O concentration and δ15N-N2O is 

strong and significant for all sites except Upper Road tile, Shantz tile, and groundwater in 

the October 2006 to June 2007 (Figure 4-12).  The relationship between ln N2O 

concentration and δ18O-N2O is strong and significant for Shantz tile (R2 = 0.52, p = 0.06), 

AMR tile (R2 = 0.64, p = 0.1), and Outflow (R2 = 0.56, p = 0.003) (Figure 4-12). 
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Figure 4-12: The relationship between the natural log (ln) of N2O concentration and (a) δ15N-
N2O and (b) δ18O-N2O for the October 2006 to June 2007 period. 



 

4.4.4.2 Fall 2007 
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Figure 4-13: δ15N and δ18O of N2O for Fall 2007. 
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Table 4-6: Average, standard deviation, and range of N O isotopes for Fall 2007 2
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Average δ15N of N2O during Fall 2007 ranges from -0.58 to 4.14‰ for tiles and the 

outflow and is -9.16 for groundwater (Figure 4-13).  Average δ18O of N2O ranges from 
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+37.88 to +43.52‰ for tiles and outflow and is +45.67‰ for groundwater.  This generally 

places the data closer to the tropospheric mean than for the October 2006 to June 2007 

data (Figure 4-11).   

Shallow positive and negative δ18O:δ15N slopes (-0.45 to 0.01) come from Shantz tile, 

Outflow, and groundwater while medium slopes of 0.76 and 0.41 are found at AMR and 

Shantz tile, respectively.   

The relationship between the natural log (ln) of N2O concentration and δ15N-N2O is 

strong and significant for Harris tile (R2 = 0.99, p = 0.005), Outflow (R2 = 0.65, p = 0.02), 

and groundwater (R2 = 0.63, p = 0.03) in the Fall 2007 data set (Figure 4-14).  Only Harris 

tile has a strong and significant relationship between ln N2O concentration and δ18O-N2O 

(R2 = 0.91, p = 0.19) (Figure 4-14).  The importance of decreasing lnN2O concentrations 

with increasing N2O isotopes is that this is often indicative of a fractionating process, in 

this instance associated with N2O production, N2O consumption, or gas exchange.  As 

such these processes could be responsible for the trends observed in the N2O isotope data 

(ie: δ18O:δ15N slopes).  The possible influence of these processes at the various sites will 

be discussed further. 
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Figure 4-14: The relationship between the natural log (ln) of N2O concentration and (a) δ15N-
N2O and (b) δ18O-N2O for Fall 2007 
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4.4.5 Isotopic Shifts 

For October 2006 to June 2007 data, ∆15N-N2O ranges from -17.0 (groundwater) to -

24.2‰ (AMR tile) (Table 4-7).  Shantz, AMR, BMR, and Harris tiles have similar ∆15N (-

24.2 to -23.0) though the standard deviation of Shantz and AMR tiles (13.0 and 12.2, 

respectively) is much greater than that of BMR and Harris tiles (4.6 and 5.7, respectively). 

For Fall 2007 data, ∆15N-N2O ranges from -20.25 (groundwater) to 0.87‰ (Shantz tile) 

while ∆15N of -4.5, -5.3, and -4.8‰ is measured at AMR, Harris, and Outflow, 

respectively (Table 4-8).  Standard deviation is between 4.8 and 5.9‰ except for 

groundwater which has a standard deviation of 9.6‰.  Altogether ∆15N is much less 

negative and less variable for the Fall 2007 dataset than for the October 2006 to June 2007 

dataset. 

∆18O-N2O for the October 2006 to June 2007 period (Table 4-7) is between +38.1 and 

+44.3‰ with the exception of groundwater (20.35‰).  Standard deviation for tiles and 

outflow are between 5.6 and 9.1‰ and 15.5‰ for groundwater.  ∆18O-N2O for Fall 2007 

is between 41.83 to 45.35‰, again with the exception of groundwater (22.95‰) (Table 

4-8).  Standard deviation is small for Shantz and Harris tiles (2.7‰), larger for AMR tile 

(8.6‰) and Outflow (9.8‰), and largest for groundwater (19.0‰).  ∆18O is similar 

between the two events for most sites, including the variation with these shifts. 

Table 4-7: Calculated range of isotopic shifts for denitrification (∆N2O-NO3
-) for the October 

2006 to June 2007 period.  These were calculated as the difference between average N2O and 
NO3

- isotopes for the compiled dataset of each site.  Standard deviation reported is the 
square root of the sum of squares from NO3

- and N2O isotope datasets. 

 δ15N δ18O 

Site Shift Standard 
Deviation Shift Standard 

Deviation
Upper road 

tile -20.7 6.6 38.1 7.2 

Shantz tile -23.3 13.0 40.6 9.1 
AMR tile -24.2 12.2 44.3 5.6 
BMR tile -23.4 4.6 40.3 9.0 

Harris tile -23.0 5.7 42.4 8.0 
Outflow -18.9 9.1 41.3 7.6 

Groundwater -17.0 8.7 20.4 15.5 
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Table 4-8: Calculated range of isotopic shifts for denitrification (∆N2O-NO3
-) for Fall 2007.  

These were calculated as the difference between average N2O and NO3
- isotopes for the 

compiled dataset of each site.  Standard deviation reported is the square root of the sum of 
squares from NO3

- and N2O isotope datasets.  

 δ15N δ18O 

Site Shift Standard 
Deviation Shift Standard 

Deviation
Shantz tile 0.9 5.9 41.8 2.7 
AMR tile -4.5 5.2 45.3 8.6 

Harris tile -5.3 4.8 44.4 2.7 
Outflow -4.8 5.9 42.7 9.8 

Groundwater -20.2 9.6 23.0 19.0 
 

4.5 Discussion 

4.5.1 NO3
- and N2O concentrations 

During baseflow conditions NO3
- concentrations at the outflow remain below the 10 mg 

N/L drinking water limit.  Lower NO3
- concentrations at Strawberry Creek during 

baseflow conditions are consistent with the findings of Macrae et al. (2007).  However, 

NO3
- concentrations above 10 mg N/L consistently measured from Upper Road, BMR, 

and Harris tiles (October 2006 to June 2007) continue to pose a threat to the health of 

aquatic organisms (Figure 4-2).  Fall 2007 is a good example of NO3
- concentration 

dynamics in tiles and streams during low flow conditions (Figure 4-4).  Due to the long 

drought before the Fall 2007 period, NO3
- would have built up in the soil, though a slow 

increase in the water table following several small precipitation events was not enough to 

flush it from the unsaturated zone.  If a high magnitude event followed the long drought, 

higher concentrations of NO3
- would be expected from tiles and in stream.  For example, 

AMR tile and Outflow had higher average NO3
- concentrations during the 2008 mid-

winter thaw than in the Fall 2007 (Chapter 3, Section 3.4.2.2).  High groundwater NO3
- 

concentrations during the 2008 mid-winter thaw indicate that significant build-up of NO3
- 

had occurred during the drought period.  The extreme difference in hydrologic conditions 

between the Fall 2007 and 2008 mid-winter thaw exemplifies the difference in NO3
- 
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concentration dynamics between periods of baseflow and high magnitude events at 

Strawberry Creek. 

N2O concentrations at the stream outflow, and probably along the entire course of the 

stream, remain a consistent source of flux to the atmosphere throughout the annual range 

of hydrologic conditions at Strawberry Creek (Figure 4-3 and Figure 4-4).  However, 

higher stream concentrations during precipitation and snowmelt events show that these are 

periods of higher flux to the atmosphere.  Tiles are a source of N2O to the stream during 

baseflow conditions and with concentrations above atmospheric saturation rapid gas 

exchange downstream of tile inputs is expected (Reay et al. 2003).  The influence of tile 

N2O concentrations on the stream is exemplified with similar N2O concentrations between 

Harris tile and the Outflow in October 2006 (Figure 4-3).  Groundwater N2O 

concentrations can also be above atmospheric saturation, and are a source of stream N2O 

along its course.  The role of groundwater N2O inputs are exemplified on November 21-

23, 2007 when concentrations from the Harris tile are lower than at the outflow. 

Despite the long drought before the Fall 2007 period, high concentrations of NO3
- and 

N2O are not measured at sampling sites due to a slowly rising water table (Figure 4-4).  

This would have left NO3
- within the unsaturated soil profile and would have allowed N2O 

the time to escape to the atmosphere.  High concentrations of N2O in tiles and streams 

from January 2008 melt (Chapter 3) show that N2O was accumulating during this period.  

As with NO3
- concentrations, comparison of the Fall 2007 period with the 2008 mid-

winter thaw provides insight into how N2O concentrations are largely determined by 

hydrologic conditions within the catchment.   

4.5.2 Sources and Processes of NO3
-  

Identification of NO3
- sources using expected ranges from the literature and calculations 

for Strawberry Creek, reveals similar sources between the October 2006 to June 2007 and 

Fall 2007 periods.  NO3
- from mainly manure/septic system effluent and also soil organic 

matter is consistent with the results archived tile data (Chapter 2) and the 2007 Springmelt 

(Chapter 3).  Also consistent with Chapter 3 data are many δ18O-NO3
- values around -10 
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to 0‰ and some values as low as -20‰ from the AMR tile during both periods (Figure 

4-7).  As discussed in section 3.5 a δ18O-NO3
- value of -10 would require that δ18O-H2O is 

-26.9‰ assuming that δ18O-O2 is +23.5‰.  This also assumes that 1/3 of the NO3
- oxygen 

is from atmospheric O2 and 2/3 are from water (Andersson and Hooper, 1983; Kumar et 

al., 1983; Hollocher, 1984).  The lowest monthly mean-weighted average δ18O-H2O 

values collected from Simcoe, Ontario are -13.1, -17.1, and -14.2‰ for December, 

January, and February, respectively.  Other possibilities include analytical interference by 

NO2 though Casciotti et al. (2007) state that if NO2 concentration is less than 2% of total 

NO2 and NO3
-, which was confirmed in our samples, there would be no detectable effect 

(<0.5‰) using this method.  Even if NO2 was 2% of total NO2 and NO3
-, δ18O-NO2 would 

have to be around -500‰, assuming an original δ18O-NO3
- of 0‰. 

Additionally, the theory that one third of nitrate oxygen is from atmospheric O2 and two 

thirds are from water does not always hold true.  For example, Snider et al. (2008) show 

that 80% of oxygen can come from water while the other 20% can come from atmospheric 

O2.  Using this ratio with the January mean monthly average of -17‰ produces a δ18O-

NO3
- of -8.9‰.  Low δ18O-NO3

- values could reflect the changing ratio of oxygen 

contributed from either water or atmospheric O2.  

Evidence of NO3
- from atmospheric deposition in groundwater is another unexpected 

observation considering previous measurements of groundwater NO3
- isotopes at 

Strawberry Creek.  Atmospheric source NO3
- during the 2007 springmelt was considered 

reasonable since it was measured at low concentrations (<1 mg N/L) in the deciduous 

headwaters.  All NO3
- concentrations of the groundwater samples are also below 1 mg N/L 

for both October 2006 to June 2007 and Fall 2007 datasets.  Consistent δ18O-NO3
- values 

are also measured at several peizometers between the two datasets.  For example from the 

Cabrera A-A’ transect peizometer “F15” measured δ18O of +23.31‰ and +25.06‰ on 

April 19 and December 7 of 2007.  “F18” of the same transect measured δ18O-NO3
- of 

+50.21‰ and +42.22‰ on April 19 and December 7 of 2007.    Contamination from 

direct precipitation inputs is unlikely since wells were capped and also purged before 
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sampling.  The groundwater from the October 2006 to June 2007 came from sampling on 

April 19, 2007 which means that NO3
- from the snowpack of the 2007 Springmelt could 

have been in those waters.  However, water from that event would have likely not been 

sampled in groundwater on December 7, 2007 (Figure 4-7b) since the aquifer was 

sampled after recharge from precipitation in Fall 2007.  Although it is unexpected, 

consistent NO3
- concentrations and isotopes in groundwater are suggestive of NO3

- from 

atmospheric sources. 

NO3
- from inorganic fertilizer sources in groundwater measured during October 2006 to 

June 2007 is also unexpected.  NO3
- isotopes within this range may be influenced by 

denitrification since they fall along a δ18O:δ15N slope of 0.5, which would be reasonable 

to measure in a riparian groundwater transect.  Groundwater samples at +20±5‰ (δ18O) 

from Fall 2007 may also have a similar original source, that have been significantly 

altered by denitrification. 

4.5.3 Sources and Processes of N2O  

N2O in groundwater at Strawberry Creek is produced by denitrification (Figure 4-7 and 

Figure 4-9).  δ15N and δ18O of N2O is in the range of N2O measured by Well et al. (2005) 

which they concluded was a product of denitrification.  Additionally, the range of 

calculated isotopic shifts (∆N2O-NO3) for δ15N (-4.74 to -32.56‰) and δ18O (-0.78 to 

+46.69‰) are within the bounds of isotopic shifts reported for denitrification from 

incubation studies (Chapter 1, Appendix 1).  Perez et al. (2000) also suggest that if water 

filled pore space (WFPS) is greater than 60%, which would be the case in the saturated 

zone at Strawberry Creek, denitrification will be the dominant pathway.  Dissolved 

oxygen concentrations in Strawberry groundwater have typically been measured at less 

than 1 mg/L which would also promote the anaerobic conditions for denitrification. 
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In aerobic aquifers Wada and Ueda (1996) and Ueda et al. (1999) also measured 

comparable δ15N and δ18O of N2O values to those of Strawberry Creek and to those 

reported by Well et al. (2005) though N2O was produced by nitrification (or nitrifier 

denitrification).  Wada and Ueda (1996) explain that the small 15N nitrification 



 

fractionation factors (εNH4
+

-N2O = -9 to -33‰) were caused by NH4
+ limitation on 

nitrification, though they do not exclude the possibility microsite denitrification.  

Comparible enrichment factors between nitrification and denitrification suggest that they 

cannot be used for pathway determination without considering aquifer conditions, as 

above.  

Calculated isotopic shifts (∆N2O-NO3) for Strawberry Creek tiles during the October 2006 

to June 2007 period range from -8.02 to -38.53‰ for 15N and +27.68 to +53.77‰ for 18O 

which are similar to values reported from denitrification incubation studies (Table 4-7).  

N2O from AMR and Harris tiles have δ18O:δ15N slopes of 0.28 (R2 = 0.56, p = 0.15) and 

0.64 (R2 = 0.62, p = 0.0001), respectively, a range that was observed earlier in Chapter 3.  

As residual NO3
- isotopes following denitrification are typically enriched at a δ18O:δ15N 

ratio of 0.5 to 1.0, N2O produced by this enriching substrate should also produce a similar 

δ18O:δ15N slope, if the system is open system (Mengis et al., 1999, Aravena and 

Robertson, 1998; Wassenaar, 1995).  However, this effect on N2O isotopes still needs to 

be unequivocally proven through combined incubation and field sampling experiments.  

It is reasonable to assume that if N2O isotopes show a δ18O:δ15N slope of 0.5 to 1.0 due 

to substrate enrichment, it would also be observed in the NO3
- isotopes.  As NO3

- 

consumption would result in decreasing NO3
- concentrations less N2O may be produced 

because the NO3
- pool would be smaller.  With a δ18O:δ15N slope of 0.28, the AMR tile 

(October 2006 to June 2007 dataset) is a good example of how this could occur (Figure 

4-11).  A strong positive relationship between regression of NO3
- and N2O concentration 

at AMR tile (R2 = 0.88, p = 0.0001) (Figure 4-5) and there is also a strong relationship 

between lnN2O concentration and both δ15N-N2O (R2 = 0.87, p = 0.02) and δ18O-N2O (R2 

= 0.64, p = 0.1) (Figure 4-12).  For the Fall 2007, Harris tile also had δ18O:δ15N ratios of 

0.41 (R2 = 0.83, p = 0.27) (Figure 4-13) and a highly correlated (R2 = 0.93, p = 0.03), 

positive relationship between NO3
- and N2O concentration (Figure 4-6).   Negative 

relationships between lnN2O concentration and δ15N-N2O (R2 = 0.99, p = 0.005) and δ18O-

N2O (R2 = 0.91, p = 0.19) (Figure 4-14) were also strong and significant as were the 
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relationships between lnNO3
- concentration and δ15N-NO3

- (R2 = 0.75, p = 0.13) and δ18O-

NO3
- (R2 = 0.81, p = 0.1) (Figure 4-10).  These patterns are all indicative of NO3

- 

consumption.  For the Fall 2007 N2O from AMR tile also had δ18O:δ15N ratios of 0.76 (R2 

= 0.88) (Figure 4-13) and strong relationship between NO3
- and N2O concentration (R2 = 

0.93, p = 0.03) (Figure 4-6).  The relationships between lnN2O concentration and δ15N-

N2O (R2 = 0.87, p = 0.02) and δ18O-N2O (R2 = 0.64, p = 0.1) (Figure 4-14) are strong and 

significant, as is the relationship between lnNO3
- and δ15N-NO3

- (R2 = 0.54, p = 0.06) 

(Figure 4-10a). 

However, it is also possible that δ18O:δ15N slopes of 0.5 to 1.0 would not be observed 

for NO3
- even if it was observed for N2O due to substrate consumption.  First of all, N2O 

is a sensitive indicator of denitrification and can be produced by a small amount of NO3
- 

in anaerobic microsites.  Degradation of a small amount of NO3
- at a microsite would 

likely not be measured in a collective NO3
- pool measured at a tile outlet since this pool 

would also include non-degraded NO3
- sources as we have seen in this and other chapters 

(Chapter 2 and Chapter 3).  Similarly, significant changes in NO3
- concentrations may also 

not be measured because of NO3
- consumption at tile outlets since the amount consumed 

may be small.  However, as N2O is likely produced in anaerobic microsites, enriching N2O 

isotopes with decreasing concentration should be observable as less N2O would be 

produced from a smaller (more enriched) NO3
- pool.  For the October 2006 to June 2007 

dataset, Harris tile could represent this scenario.  For N2O isotopes the δ18O:δ15N slope is 

0.64 with a fairly strong regression coefficient (R2 = 0.47, p = 0.06) (Figure 4-11). 

However a relationship between NO3
- and N2O doesn’t exist (R2 = 0.022) and, despite 

negative relationships, correlation between lnN2O concentration and δ18O-N2O (R2 = 0.30, 

p = 0.1) (Figure 4-12a) and between lnNO3
- concentration and δ18O-NO3

- (R2 = 0.01, p = 

0.82) (Figure 4-8a) are also weak.   

For the October 2006 to June 2007 dataset, the outflow also has a well correlated (R2 = 

0.62) δ18O:δ15N slope of 0.45 (Figure 4-11).  There is also negative relationships and good 

correlation between lnN2O concentration and δ15N-N2O (R2 = 0.73, p = 0.0002) and δ18O-

 

136



 

N2O (R2 = 0.56, p = 0.003) (Figure 4-12).  This could be indicative of NO3
- consumption 

either as a stream process or as a signal from tile input, most likely from Harris tile.  Gas 

exchange must also be considered as Reay et al. (2003) suggest that it will occur more 

rapidly than biological processes such as NO3
- or N2O consumption.  Modeling of N2O 

concentrations and isotopes, as in Section 3.5 (Equation 3-1), showed that the isotopic 

effects of gas exchange can be significant but that the original source signature of N2O can 

be calculated (Thuss and Schiff, 2008).    This analysis also showed that the calculated 

N2O endmember can represent the average N2O isotope values of the source.   

As explained in Section 3-5, calculation of a N2O endmember was performed by 

regression analysis of the inverse of N2O concentration and the N2O isotope species.  This 

is known as a Keeling analysis for determining the original source signature of a pool that 

has mixed with a background pool (Pataki et al., 2003).  The y-intercept of this analysis is 

the original isotopic signature of the pool mixing with, in our case, atmospheric N2O.  The 

results of this analysis show an original δ15N-N2O of -23.0‰ (October 2006 to June 2007) 

and -16.6‰ (Fall 2007) (Figure 4-15).  The significance of these results is that original 

δ15N-N2O is more negative than what is normally measured in the stream.  The 

implication of this is that isotopic shifts for denitrification (∆N2O-NO3
-) could be greater 

than if calculated as in Table 4-7 and Table 4-8.  Using the N2O endmember results, the 
15N isotopic shift (∆N2O-NO3

-) for the October 2006 to June 2007 dataset is -31.8‰ (a 

change of -12.9‰) and -25.5‰ (a change of -20.7‰) for the Fall 2007 dataset.  These 

isotopic shifts are still within the range of what is expected for denitrification.  The 

similarity in values between the two datasets implies a consistent δ15N-N2O value for the 

stream, which allows for characterization of that source signature.  Weak and insignificant 

relationships were produced for the same analysis for δ18O-N2O. 

Other trends present in the N2O data include a δ18O:δ15N slope of 1.65 at BMR tile for 

the October 2006 to June 2007 dataset (Figure 4-12).  Several incubation and field studies 

have found that a δ18O:δ15N slope of 2.5 is most indicative of N2O consumption though 

the ratio can be as low as 2 (Menyailo & Hungate 2006, Vieten et al 2007, Mandernack 
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2000).  Negative relationships between N2O concentration and δ15N (R2 = 0.64) and δ18O 

(R2 = 0.42) indicate isotopic enrichment with decreasing N2O concentration.  However, a 

δ18O:δ15N slope this steep would likely not be seen for NO3
- consumption so likely 

represents an upper limit for N2O consumption. 
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Figure 4-15: The results of δ15N-N2O endmember analysis for October 2006 to June 2007 and 
Fall 2007 datasets 

 

At all sites, some variability of N2O isotopes may be due to variation of substrate 

isotopes and differences in denitrification fractionation factors created by reaction rate, 

substrate availability and microorganisms (Menyailo and Hungate, 2006; Mandernack et 

al., 2002).  This is most evident in sites with shallow slopes and poor regression 
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coefficients (ie: R2≤0.17) as in the case of Upper road tile (October 2006 to June 2007) 

(Figure 4-11) which also has poor correlation between lnN2O concentration and isotopes.  

Substrate variability could account for some of the product variation where the range of 

δ18O-NO3
- and δ18O-N2O is 15‰ while δ15N-NO3

- has a range of 8‰ and δ15N-N2O has a 

range of 20‰.   

Larger δ15N-N2O values measured in Fall 2007 produce smaller 15N isotopic shifts 

(average ∆N2O-NO3
- = -5.32 to 0.87‰) while 18O isotopic shifts remain comparable to the 

October 2006 to June 2007 period (Table 4-7 and Table 4-8).  The difference in the 15N 

isotope shifts is likely due to NO3
- limitation which would reduce the 15N fractionations of 

the various reactions.  NO3
- limitation on the other hand would not affect 18O fractionation 

in the reaction series as preferential cleavage of 16O is the cause of the fractionation.  Low 

NO3
- concentrations (< 3mg N/L) at AMR tile and Outflow are suggestive of NO3

- 

limitation but high NO3
- concentrations were measured at Harris tile which still shows 

higher δ15N-N2O values.  Groundwater on the other hand had low NO3
- concentrations yet 

δ15N-N2O values are also lower.   

Differences between unsaturated and saturated zone δ15N-N2O signatures could be due 

to variable fractionation factors within and between production pathways (Figure 4-11).  

While most saturated zone N2O is in the 15N range for denitrification, unsaturated zone 

N2O production more closely approaches the 15N range of nitrifier-denitrification and 

could be the result of mixing between N2O produced from nitrifier-denitrification and 

denitrification.  δ18O-N2O values are also directly in the range of those measured from 

other nitrifier-denitrification studies (Perez et al., 2001).  This seems reasonable since the 

unsaturated zone would be more aerobic than the saturated zone thereby promoting 

nitrifier-denitrification.   

Variable fractionation within denitrification could also explain the observed differences 

between these zones of N2O production.    Unlimited substrate (NO3
-) for denitrification 

would increase the 15N fractionation factors and produce lower δ15N-N2O values.  

Unsaturated soils would have greater accessibility to NO3
- by reduced distance of travel 
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for microbes to this substrate in comparison with saturated soils.  Reduced reaction rates, 

through cooler temperatures for example, would also increase fractionation factors in 

unsaturated soils. 

It is possible that N2O from the unsaturated zone is produced by denitrification and 

subject to the same 18O fractionation as in groundwater and tiles.  However, larger 

amounts of oxygen exchange with water in the unsaturated zone could lower δ18O-N2O 

values to where they are observed.  Results of a simple isotope mixing model show that 

60% water exchange would result in δ18O-N2O values of +10.8‰ which is the lowest 

value observed for soil gas N2O (Table 4-9).  This model assumes a denitrification 18O 

enrichment factor (εN2O-NO3-) of +40‰ and that δ18O-H2O is -10‰ (Mengis et al., 1999).  

Varying amounts of water exchange have been shown to occur between microbial species 

containing the same key enzymes (cytochrome cd1 or copper-containing nitrite reductase) 

and between the enzymes themselves (Ye et al., 1991; Shearer and Kohl, 1988; Garber 

and Hollocher, 1982).  It is likely that this effect would extend to the microbial community 

if differences were found in the saturated and unsaturated zone assemblages 

Table 4-9: Results of an isotope mixing model accounting for the influence of water exchange 

Water 
exchange 

(%) 

δ18O-N2O 

produced 

0 42 

10 36.8 

20 31.6 

30 26.4 

40 21.2 

50 16 

60 10.8 

70 5.6 
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Figure 4-16: Conceptual Model of N2O dynamics at the Strawberry Creek agriculture 
catchment.    The range of values expected for saturated zone N2O from denitrification were 
calculated using an average for isotopic shifts and standard deviation from the mean NO3

- 
value measured in this study.  The range of expected values for unsaturated zone N2O 
production were taken directly from soil gas N2O values measured by John Spoelstra (2007, 
unpublished results).  The range of values expected for nitrifier-denitrification and 
denitrification were calculated using literature estimates of fractionation factors from 
Strawberry Creek endmembers.  The range of δ15N-N2O produced by nitrifier-
denitrification extends to -63‰.  The area in between δ18O:δ15N slopes of 0.3 and 0.75 
represents the trajectory of N2O isotopes affected by NO3

- consumption.  The area in 
between δ18O:δ15N slopes of 0.45 and 1.4 represents the trajectory of N2O isotopes affected by 
gas exchange,  which ultimately trend toward the tropospheric mean.  The δ18O:δ15N slope of 
2.5 represents the trajectory of N2O isotopes affected by N2O consumption reported in the 
literature (Menyailo & Hungate 2006, Vieten et al 2007, Mandernack 2000). The δ18O:δ15N 
slope (0.5) for residual NO3

- following denitrification is also included.  Calculations for the 
influence of oxygen exchange with water assumed an isotopic shift (∆N2O-NO3

-) of +40‰ 
(Casciotti et al., 2002) from the mean δ18O-NO3

- value (+2.63‰) with 0% exchange.  A simple 
isotopic mixing model was used to calculate δ18O-N2O at various exchange rates where δ18O-
H2O was -10‰ (Mengis et al., 1999). 



 

 

Figure 4-16 represents a summary of what is observed for Strawberry Creek N2O 

isotopes along with the expected range of N2O isotopes from enrichment factors reported 

in the literature.  The isotopic shifts (∆N2O-NO3) used to create the range for saturated zone 

N2O production at Strawberry Creek assumes no N2O alteration (ie: by NO3
- consumption, 

N2O consumption, or gas exchange).  The range of δ18O:δ15N trajectories for NO3
- 

consumption and gas exchange are those observed in this study and in Chapter 3.  The 

range of δ18O:δ15N trajectories for NO3
- consumption is likely representative of that 

process since NO3
- isotopes have a similar range of alteration due to denitrification.  The 

δ18O:δ15N trajectory for N2O consumption is 2.5 (Menyailo & Hungate 2006, Vieten et al 

2007, Mandernack 2000). 

Unsaturated zone N2O has larger negative δ15N isotopic shifts for denitrification (∆N2O-

NO3 = -45 to -20) while δ18O enrichment factors are smaller than those of the saturated 

zone (εN2O-NO3 = +10 to +30‰).  Oxygen exchange is likely greater in the unsaturated 

zone and has the effect of reducing δ18O isotopic shifts for denitrification.   

Literature estimates of fractionation factors for denitrification from incubations produce 

a range of N2O that is similar to what is observed in both unsaturated and saturated zones 

at Strawberry Creek.  However, unsaturated zone N2O is also within the range of δ18O 

expected for nitrifier-denitrification and near to that expected for δ15N.  This may be 

expected from unsaturated zone N2O since conditions here would be more aerobic. 
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Figure 4-17: δ15N-N2O and δ18O-N2O from Strawberry Creek (dissolved N2O) and  from 
various field and incubation studies: 1) Bootanaan et al., 2000; 2) Well et al., 2005; 3) Snider 
et al., 2008, unpublished results; 4) Perez et al., 2006; 5) Kim and Craig, 1993 6) Bol et al., 
2004; 7) Bol et al., 2003; 8) Mandernack et al., 2000.  N2O values were normalized to end 
member data where made available by each study. 
 

Figure 4-17 shows δ15N and d18O of N2O from the Grand River, Putnam ground water, 

and a variety of reported values from field and incubation studies in the literature.  This 

plot shows that the spread of N2O isotope data currently available is very large.  

Considering the large range shown here, dissolved N2O isotopes from Strawberry Creek 

data is relatively well constrained.  Values within this range define the signal of dissolved 

N2O isotopes from Strawberry Creek and they also possibly define the signal of regional 

agroecosystems.  This is important since the isotopic signal from secondary agricultural 

sources has not previously been defined in this manner.  This range may also define the 

signal from other secondary agricultural sources from similar environments in North 
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America and Europe.  Future N2O isotope studies in these environments should seek to 

better define both the signal and the processes that determine the measured signal. 

Groundwater data from Bol et al. (2004) suggest upper limits for δ18O-N2O measured in 

groundwater may be near +80‰.  Bol et al. (2004) report that δ15N and δ18O isotopes of 

N2O increase as a function of residence time in anaerobic aquifers due to N2O 

consumption.  “Old” groundwater from the Putnam site (Figure 4-17) show similar δ15N 

and δ18O values as those from the Bol et al. (2004) and may also be a product of N2O 

consumption.  The δ18O:δ15N trajectory from old groundwater at the Putnam site is 

approximately 1.5 which means the trajectory of 1.65 measured at BMR tile (October 

2006 to June 2007) may also be from N2O consumption as previously proposed.  

4.5.4 Conclusions 

During baseflow conditions of October 2006 to June 2007 and Fall 2007, Strawberry 

Creek stream NO3
- concentrations remained below 10 mg N/L. Tile NO3

- concentrations 

from the Upper Road, BMR, and Harris tiles remained consistently above this threshold 

and continued to pose a threat to aquatic life from October 2006 to June 2007.  N2O 

concentrations in the tiles and streams remain above atmospheric saturation and, thus, are 

a source of N2O to the atmosphere. 

NO3
- isotopes show that the main sources of tile NO3

- during baseflow conditions are 

soil organic matter and manure/septic system effluent.  There is also evidence of NO3
- 

from atmospheric deposition in Strawberry Creek groundwater during both time periods.  

Strawberry Creek N2O isotopes suggest that production during baseflow conditions is 

by denitrification.  Calculated isotopic shifts for denitrification are comparable with those 

reported in the literature.  Moderate δ18O:δ15N slopes for N2O around 0.5 are caused by 

substrate (NO3
-) consumption particularly when strong and significant relationships of 

increasing isotopes values and decreasing (ln) concentrations are also observed.  Shallow 

negative or positive slopes reflect a combination of processes including NO3
- 
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consumption, N2O consumption, and variable fractionation factors due to substrate 

availability, reaction rate, and microbial assemblages. 

The isotopic effects of gas exchange in the stream are significant but the original source 

signature of stream N2O can be calculated using Keeling plot analysis.  The results show 

that δ15N-N2O produced is more negative than that measured in the creek and that isotopic 

shifts are greater than if the measured N2O isotopes are used for the calculation.  The 

consistent δ15N-N2O values produced from the October 2006 to June 2007 and Fall 2007 

datasets suggest that there is a specific signal of N2O produced in the stream. 

Divergent N2O signatures between soil gas and dissolved samples suggest different 

production pathways between unsaturated and saturated zones at Strawberry Creek.  A 

simple model of oxygen exchange with water explains differences in δ18O.  N2O produced 

in the unsaturated zone could be the result of 60% exchange, leading to lower δ18O-N2O 

values, whereas N2O from the saturated zone could be the result of 0 to 30% exchange.  

Potential causal mechanisms are different production pathway where more unsaturated 

N2O could be produced by nitrifier-denitrification or differences in fractionation for 

denitrification.  

Based on the data of this study a conceptual model of N2O isotope dynamics in a small 

agriculture catchment is proposed highlighting the differences between unsaturated and 

saturated zone production.  Given the variability of N2O isotopes reported in the literature, 

those of the Strawberry Creek catchment are relatively tight.  This implies that the range 

observed can be used to define the N2O isotope signal from local secondary agricultural 

sources.
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Appendix 

Appendix A: Summary tables of enrichment factors for 
nitrogen cycle processes 

Table A-1: Nitrification enrichment factors reported in the literature 

Reactant Product Organism ε 15N(‰) ε 18O(‰) Reference 

total community -30 to -55   Perez et al., 2001 

  -14.7 to -51.6   
Snider et al., 2007 

(submitted) NH4
+ N2O 

  -12 to -29   
Shearer and Kohl, 

1986; Kendall, 1998 

Table A-2: Nitrifier-denitrification enrichment factors reported in the literature 

Reactant Product Organism ε 15N(‰) ε 18O(‰) Reference 

  -24.6 to –32.0   Yoshida, 1988 

NH4
+ NO2

- Nitrosomonas 

europaea 
-32 to -37   Mariotti et al., 1981 

  -45 to –68.2   
Ueda et al., 1999; 

Yoshida, 1988 NH4
+ N2O 

  -59.5 to -68.2   Yoshida, 1988 

Nitrosomonas 

europaea 
-20 to -32   

Sutka et al., 2003 

and 2004 

Nitrosomonas 

europaea 
-3 to +7   Sutka et al., 2006 

Methylococcus 

capsulatus 
0 to -3   

Sutka et al., 2003 

and 2004 

Methylosinus 

trichosporium 
+4 to +8   Sutka et al., 2006 

Nitrosomonas 

multiformis 
-1 to +5   Sutka et al., 2006 

NH2OH N2O 

methanotrophs -55   
Mandernack et al., 

1998 
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Table A-3: Denitrification enrichment factors reported in the literature 

Reactant Product Organism ε 15N(‰) ε 18O(‰) Reference 

Paracoccus 

denitrificans 
-24.4 to -32.8   Barford et al., 1999 

Pseudomonas 

aureofacians 
  40 Casciotti et al., 2002 

Paracoccus 

fluorescens 
-39 to –17 -1 to +23 Toyoda et al., 2005 

Paracoccus 

denitrificans 
-22 to -10 +4 to +32 

Toyoda et al., 2005; 

incubations  

Paracoccus 

fluorescens 
-33 to –37   Yoshida, 1984 

Soil denitrifyers -27   Wada et al., 1991  

Soil denitrifyers -16 -8 
Schmidt and 

Voerkelius, 1989 

Soil denitrifyers -24 to -35   
Mariotti et al., 1981 

and 1982 

Pseudomonas 

aureofacians 
-36.7   Sutka et al. 2006 

Pseudomonas 

chlororaphis 
-12.7   Sutka et al. 2006 

Soil denitrifyers -10.4 to -45.2   Perez et al., 2006 

  -37.5   Tilsner et al, 2003 

overall bacterial 

community  
10 to -30   Perez et al., 2001 

Soil denitrifyers -24 to -29 -34 to -54 
Menyailo and 

Hungate, 2006 

Soil denitrifyers   8 
Wada and Ueda, 

1996 

Soil denitrifyers -38   Tilsner et al., 2003 

Soil denitrifyers -14 to -23   
Blackmer and 

Bremner, 1977 

Soil denitrifyers   -10 
Wahlen and 

Yoshinari, 1985 

NO3
- N2O 

Pseudomonas 

chlororaphis 
-13   Sutka et al., 2006 
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Table A-4: Denitrification enrichment factors reported in the literature (continued) 

Reactant Product Organism ε 15N(‰) ε 18O(‰) Reference 

Soil denitrifyers -19.3 to -25.2 15.9 to 40.7 Snider et al., 2007 
NO3

- N2 
  -19 to -35   Perez et al., 2000 

Nitrosomonas 

europaea 
-35 to -36   Yoshida 1988 

Nitrosomonas 

europaea 
-32 to -38   

Sutka et al., 2003 

and 2004 

Nitrosomonas 

multiformis 
-24 to -25   Sutka et al., 2006 

NO2
- N2O 

Soil denitrifyers -9 to -37   Mariotti et al., 1982 

NO N2O 

Paracoccus 

denitrficans, 

Paracoccus 

fluorescens 

-10 to -39   Toyoda et al., 2005 

Paracoccus 

denitrificans 
-7.1 to -18.7   Barford et al., 1999 

Paracoccus 

denitrificans 
-27 to –1   

Yoshida, 1984 (PhD 

Thesis) 

Soil denitrifyers -2.4 -4.9 
Mandernack et al., 

2000 

Soil denitrifyers -4 -11 
Schmidt and 

Voerkelius, 1989 

Soil denitrifyers -9 -26 Vieten et al., 2007 

Soil denitrifyers -6 to -10 -13 to -25 
Menyailo and 

Hungate, 2006 

Azotobacter 

vinelandii 
-39   

Yamazaki et al., 

1987 

N2O N2 

Pseudomonas 

aureofacians 
  -37 to -42 

Wahlen and 

Yoshinari, 1985  
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Appendix B: NO3
- concentrations and isotopes from 1998 

to 2000 (Chapter 2) 

Table B-1: NO3
- concentrations and isotopes for Strawberry Creek tiles 

Date 
NO3- 
(mg/L) 

δ15N-
NO3- 
(air) 

δ18O-
NO3- 
(SMOW)  Date 

NO3- 
(mg/L)

δ15N-
NO3- 
(air) 

δ18O-
NO3- 
(SMOW) 

Shantz 
tile      above Middle road (AMR) tile 
6/1/2000 6.9 6.1 5.5  11/27/1998 0.1 3.3   
6/9/2000 2.8 4.5    1/22/1999 0.4 1.1   

8/16/2000 5.9 18.2 7.2  5/27/1999 0.3 4.8   
  Mean 9.6 6.4  10/4/1999 1.0 6.5 4.7
  Min. 4.5 5.5  12/8/1999 21.7 13.0 4.3
  Max. 18.2 7.2  2/11/2000 0.4 0.9 6.5
  Range 13.7 1.7  3/7/2000 23.7 11.6 4.9
         6/1/2000 12.9 12.7 5.8
Forest 
tile      8/16/2000 10.7 15.5 4.9
10/4/1999 6.5 8.1 1.9    Mean 7.7 5.2
2/26/2000 8.1 4.7 2.8    Min. 0.9 4.3
3/7/2000 4.1 7.5 4.6    Max. 15.5 6.5

3/28/2000 4.1 7.2 2.4    Range 14.6 2.3
6/1/2000 9.9 5.4 3.9          

8/16/2000 8.2 9.9 2.5  below Middle road (BMR) tile 
  Mean 7.1 3.0  1/26/1999 15.0 8.1 6.5
  Min. 4.7 1.9  2/11/1999 13.2 10.4 1.2
  Max. 9.9 4.6  12/8/1999 32.2 13.2 2.8
  Range 5.1 2.7  3/7/2000 17.5 9.1 3.5
         3/28/2000 26.9 11.3 2.9
Bend tile      6/1/2000 27.1 10.9 2.6
3/7/2000 33.2 5.7 2.0    Mean 10.5 3.2

3/28/2000 43.3 7.7 0.9    Min. 8.1 1.2
           Max. 13.2 6.5
Halfway tile       Range 5.1 5.3
6/9/2000 9.0 11.1 4.9          
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Figure B-1 continued: NO3
- concentrations and isotopes for Strawberry Creek tiles 

Date 
NO3- 
(mg/L) 

δ15N-
NO3- 
(air) 

δ18O-
NO3- 
(SMOW) 

Harris 
tile     
6/1/1997 10.7 4.7 0.3

8/10/1998 11.1 4.2 1.1
12/7/1998 16.5 5.4 -1.5
1/26/1999 22.0 5.2 1.3
2/12/1999 22.6 4.5 1.8
4/8/1999 17.1 4.2 1.3

5/14/1999 14.7 4.5 1.5
8/11/1999 6.6 5.4 1.2
10/4/1999 17.6 5.2 4.0
11/2/1999 15.2 5.4 0.9
12/8/1999 23.3 5.4 1.0
1/10/2000 20.3 3.5 1.3
2/11/2000 19.5 3.6 1.6
3/7/2000 22.8 3.6 1.6
6/1/2000 17.6 5.2 2.5

  Mean 4.7 1.3
  Min. 3.5 -1.5
  Max. 5.4 4.0
  Range 1.9 5.5
        
Complete Data Set   
  Mean 7.1 2.9
  Min. 0.9 -1.5
  Max. 18.2 7.2
  Range 17.3 8.7
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Table B-4: NO3
- concentrations and isotopes for Strawberry Creek stream locations 

DATE 
NO3

- (mg 
N/L) 

δ15N-
NO3

- 
(‰) 

δ18O-
NO3

- 
(‰) DATE 

NO3
- (mg 

N/L) 

δ15N-
NO3

- 
(‰) 

δ18O-
NO3

- (‰) 
Upper road      at Z (Zinger's)    

10/8/1997 7.92 9.80 8.39 1/22/1999 2.50 10.28 11.10
5/14/1999 1.66 9.30 10.87 5/27/1999 1.13  12.61
5/27/1999 1.29 9.12 16.30   Mean 10.28 11.86
6/22/1999 4.60 13.80 5.95   Min.  10.28 11.10
10/4/1999 1.91 13.40 5.36   Max. 10.28 12.61
12/8/1999 11.32 10.83 3.66   Range 0.00 1.51
2/11/2000 2.38 7.09           
3/28/2000 2.97 9.72 6.50 above Harris tile    

6/1/2000 11.00 7.59 3.80 10/4/1999 2.04 16.60 6.76
8/16/2000 11.37 11.99 5.20 12/8/1999 15.83 10.56 2.33

  Mean 10.26 7.34 2/11/2000 3.18 11.14 4.60
  Min.  7.09 3.66 3/7/2000 9.96 7.32 4.30
  Max. 13.80 16.30 3/28/2000 8.73 9.62 3.90
  Range 6.71 12.64 6/1/2000 14.08 10.38 5.10
        8/16/2000 5.12 17.15 5.80
Middle 
road       Mean 11.82 4.68

1/22/1999 0.47 2.67 13.66   Min.  7.32 2.33
2/5/1999 10.06 10.00 9.86   Max. 17.15 6.76

5/14/1999 0.10 8.60 22.74   Range 9.83 4.43
10/4/1999 0.75 7.84 6.42         
12/8/1999 18.54 11.88 3.53      
2/11/2000 0.47 3.76 3.60      

3/7/2000 12.64 7.48 4.30      
3/28/2000 7.53 10.46 3.90      

  Mean 7.84 8.50      
  Min.  2.67 3.53      
  Max. 11.88 22.74      
  Range 9.21 19.21      
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Table B-2 continued: NO3
- concentrations and isotopes for Strawberry Creek stream 

locations 

DATE 

NO3
- 

(mg 
N/L) 

δ15N-
NO3

- 
(‰) 

δ18O-
NO3

- 
(‰) 

Outflow       
11/8/1997 2.78 14.62 7.21
7/28/1998 0.60  6.80

11/10/1998 2.30 13.82   
11/11/1998 3.00 13.70 10.50
11/25/1998 1.16  10.80
11/27/1998 2.50  14.39

12/7/1998 5.80 7.50 2.20
1/24/1999 15.02 5.25 4.34
1/25/1999 11.05  8.47

2/5/1999 7.27 8.50 8.14
4/8/1999 2.35 9.20 7.00

5/15/1999 0.39 14.50 21.79
7/22/1999 0.20  16.14
8/11/1999 0.21 15.20   

9/8/1999 1.80 8.90 3.14
10/4/1999 8.91 6.50 2.50
12/8/1999 15.27 10.30 2.58
2/11/2000 3.13 10.95 5.00

3/7/2000 11.17 5.73 3.90
3/28/2000 9.04 9.07 3.60

6/1/2000 15.29 10.00 4.20
  Mean 10.23 7.51
  Min.  5.25 2.20
  Max. 15.20 21.79
  Range 9.95 19.59
        
Complete Data Set    

Mean 10.05 7.41
  Min.  2.67 2.20
  Max. 17.15 22.74
  Range 14.48 20.54
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Appendix C: Results of Regression Analysis for the 2007 
Springmelt and the 2008 mid-winter thaw (Chapter 3) 

Table C-1: Results of linear regression analysis between the natural log (ln) of NO3
- 

concentration and NO3
- isotopes 

 δ15N δ18O 

Site 
linear 

equation 

Regression 
Coefficient 

(R2) 

Level  
of 

signifi-
cance 

(P) 
linear 

equation 

Regression 
Coefficient 

(R2) 

Level  
of 

signifi-
cance 

(P) 
Upper 

road tile 
y = -3.4x 
+ 35.4 0.97 0.02 

y = -4.7x + 
39.4 0.46 0.31 

Deciduous 
Headwater

s 
y = 12.4x 

+ 2.2 0.46 0.31 
y = 0.7x + 

27.1 0.00 0.92 

Shantz tile 
y = -0.5x 
+ 14.6 0.02 0.78 

y = 3.3x - 
12.3 0.31 0.28 

BMR tile 

y = -
0.09x + 

11.5 0.07 0.74 
y = -0.2x - 

10.4 0.12 0.63 
Fencerow 

tile 
y = -1.8x 
+ 14.6 0.77 0.17 

y = -0.2 + 
3.9 0.00 0.99 

Harris tile 
y = -0.2x 

+ 7.0 0.03 0.87 
y = -0.5x + 

6.5 0.02 0.90 

Outflow 
y = -0.1x 

+ 7.8 0.00 0.89 
y = 0.1x + 

10.0 0.09 0.90 
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Table C-2: Results of regression analysis between δ15N-N2O and δ18O-N2O for 2007 
Springmelt 

Site 

number 
of 

samples 

linear 
regression 
equation slope

Regression 
Coefficient 

(R2) 

Level of 
Significance 

(P) 

Upper Road tile 6 y = 0.42x + 
37.42 0.42 0.41 0.17 

Deciduous 
Headwaters 5 y = -0.18x 

+ 45.23 -0.18 0.03 0.79 

Shantz tile 7 y = 0.14x + 
40.04 0.14 0.03 0.71 

AMR tile 3 y = 1.15x + 
48.41 1.15 0.27 0.65 

BMR tile 6 y = -0.27x 
+ 29.51 -0.27 0.06 0.64 

Fencerow tile 4 y = 0.69x + 
48.09 0.69 0.62 0.21 

Above Harris tile 1         

Harris tile 8 y = 0.19x + 
41.06 0.19 0.05 0.58 

Outflow 8 y = 1.4x + 
49.91 1.40 0.82 0.002 

Table C-3: Results of regression analysis between the natural log (ln) of N2O concentration 
and N2O isotopes for the 2007 Springmelt event. 

 δ15N δ18O 

Site 
linear 

equation 

Regression 
Coefficient 

(R2) 

Level  
of 

Signifi-
cance 

(P) 
linear 

equation 

Regression 
Coefficient 

(R2) 

Level 
of 

Signifi-
cance 

(P) 
Upper 

road tile 
y = -11.7x 

+ 48.6 0.89 0.005 
y = -3.3x + 

49.1 0.17 0.43 
Deciduous 
Headwater

s 
y = -1.6x + 

2.2 0.11 0.58 
y = 3.1x + 

33.8 0.36 0.29 

Shantz tile 
y = 8.6x - 

53.3 0.67 0.05 
y = -1.8x + 

47.1 0.07 0.61 

AMR tile 
y = -0.5x - 

15.7 0.25 0.67 
y = 1.2x + 

19.4 0.24 0.68 

BMR tile 
y = 0.28x - 

19.5 0 0.92 
y = -5.2x + 

61.9 0.81 0.02 
Fencerow 

tile 
y = 88.3x - 

436.7 0.82 0.26 
y = 73.0x - 

310.7 0.79 0.29 

Harris tile 
y = -0.6x - 

9.5 0.08 0.53 
y = -0.4x + 

40.9 0.06 0.6 

Outflow 
y = -2.6x + 

4.4 0.67 0.02 
y = -3.5x + 

55.4 0.52 0.07 

 

170



 

Table C-4: The results of regression analysis between the natural log of NO3
- concentration 

and NO3
- isotopes for the 2008 mid-winter thaw. 

 δ15N δ18O 

Site 
linear 

equation 

Regression 
Coefficient 

(R2) 

Level 
of 

Signifi-
cance 

(P) 
linear 

equation 

Regression 
Coefficient 

(R2) 

Level  
of 

Signifi-
cance 

(P) 
Upper road 

tile 
y = -2.1x + 

12.5 0.17 0.41 
y = -0.7x - 

6.4 0.02 0.77 

Shantz tile 
y = -6.1x + 

23.6 0.24 0.32 
y = -1.9x - 

0.96 0.05 0.68 

AMR tile 
y = -3.8x + 

25.3 0.99 0.0001 
y = 0.65x - 

6.2 0.05 0.67 

BMR tile 
y = 0.07x 

+ 13.9 0 0.97 
y = 3.1x - 

14.0 0.46 0.14 

Harris tile 
y = 3.8x - 

6.4 0.12 0.51 
y = -1.01x - 

3.3 0.03 0.76 

Outflow 
y = 0.21x 

+ 0.92 0 0.96 
y = -0.4x - 

5.6 0 0.92 

Groundwater 
y = 7.5x + 

15.1 0.53 0.44 
y = -3.2x + 

8.62 0.32 0.24 

 

Table C-5: The results of regression analysis between δ15N-N2O and δ18O-N2O for the 2008 
mid-winter thaw 

Site 

number 
of 

samples 

linear 
regression 
equation slope

Regression 
Coefficient 

(R2) 

Level of 
Significance 
(P) 

Upper rd tile 7 
y = 0.78x + 

47.89 0.78 0.26 0.24 

Shantz tile 6 
y = 0.17x + 

39.70 0.17 0.67 0.46 

AMR tile 6 
y = 0.57x + 

45.87 0.57 0.94 0.001 

BMR tile 7 
y = 0.73x + 

44.73 0.73 0.95 0.0002 

Harris tile 6 
y = 0.27x + 

42.02 0.27 0.51 0.1 

Outflow 8 
y = 0.26x + 

41.14 0.26 0.06 0.61 

Groundwater 10 
y = 0.36x + 

48.87 0.36 0.18 0.23 

All data 50 
y = 0.41x + 

43.87 0.41 0.26 0.0001 
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Table C-6: The results of regression analysis between the natural log (ln) of N2O 
concentration and N2O isotopes for the 2008 mid-winter thaw. 

 δ15N δ18O 

Site 
linear 

equation 

Regression 
coefficient 

(R2) 

Level  
of 

Signifi-
cance 

(P) 
linear 

equation 

Regression 
coefficient 

(R2) 

Level  
of 

Signifi-
cance 

(P) 
Upper 

road tile 
y = 5.92x - 

41.3 0.21 0.36 
y = 19.1x 

- 55.8 0.98 0.0001 

Shantz tile 
y = -14.4x 

+ 51.0 0.92 0.002 
y = -1.7x 
+ 46.0 0.17 0.42 

AMR tile 
y = -13.1x 

+ 48.5 0.32 0.24 
y = -5.8 + 

66.6 0.18 0.40 

BMR tile 
y = -3.9x + 

0.64 0.25 0.32 

y = -
2.77x + 

44.8 0.22 0.35 

Harris tile 
y = -14.4x 

+ 44.7 0.96 0.0005 
y = -4.6x 
+ 56.6 0.68 0.04 

Outflow 
y = -9.2x + 

28.1 0.90 0.001 
y = -4.2 + 

56.0 0.24 0.26 
Ground-

water 
y = -8.5x + 

28.5 0.61 0.008 
y = -4.0x 
+ 64.0 0.18 0.22 
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Appendix D: Results of Regression Analysis for October 
2006 to June 2007 and Fall 2007 (Chapter 4) 

Table D-1: Results of regression analysis between NO3
- and N2O concentration for October 

2006 to June 2007 

Site linear equation 

Regression 
Coefficient 

(R2) 

Level of 
Significance 

(P) 

Upper Rd Tile 
y = 4.64x + 

152.36 0.008 0.77 

Shantz tile 
y = 138.7x - 

444.72 0.27 0.07 

AMR tile 
y = 122.5x - 

218.57 0.88 0.0001 

BMR tile 
y = 45.19x - 

245.89 0.29 0.11 
Above Harris 

tile 
y = 4.13x + 

23.73 0.84 0.0005 

Harris tile 
y = 0.66x + 

54.45 0.022 0.55 

Outflow 
y = 3.08x + 

47.72 0.042 0.38 

Groundwater 
y = 39.48x + 

34.95 0.31 0.002 
 

Table D-2: Results of regression analysis between NO3
- and N2O concentration for Fall 2007 

site 
linear 
equation 

Regression 
Coefficient 

(R2) 

Level of 
Significance 

(P) 

AMR tile 
y = 3.44x + 
18.54 0.66 0.03

Harris tile y = 1.26x - 5.26 0.93 0.03

Outflow 
y = 1.06x + 
15.40 0.94 0.0001

Groundwater 
y = 329.6x - 
47.23 0.25 0.25

 

 

 

 

173



 

Table D-3: The results of regression analysis between the natural log (ln) of NO3
- 

concentration and NO3
- isotopes for the October 2006 to June 2007 period. 

 
 δ15N δ18O 

Site 
Linear 

equation 

Regression 
coefficient 

(R2) 

Level  
of 

Signifi-
cance 

(P) 
Linear 

equation 

Regression 
coefficient 

(R2) 

Level  
of 

Signifi-
cance 

(P) 
Upper 

road tile 
y = -7.7x + 

24.3 0.28 0.36 
y = -5.9x 
+ 10.8 0.05 0.71 

Shantz 
tile 

y = -0.4x + 
10.4 0.00 0.92 

y = 1.9x - 
4.6 0.01 0.84 

AMR tile y = 6.8x + 
4.6 1.00 0.00 

y = 15.6x 
- 32.6 1.00 0.00 

BMR tile y = 9.1x - 
12.5 0.09 0.70 

y = -
25.8x + 

67.7 0.32 0.43 
Harris 

tile 
y = -2.0x 

+12.2 0.65 0.05 
y = 1.1x - 

7.3 0.01 0.82 

Outflow y = 2.1x + 
7.1 0.03 0.73 

y = -4.6x 
+ 9.4 0.03 0.74 

Ground-
water 

y = 0.1x + 
7.8 0.00 0.99 

y = 4.3x 
+24.2 0.02 0.61 

 
Table D-4: The results of regression analysis between the natural log (ln) of NO3

- 
concentration and NO3

- isotopes for Fall 2007 data. 

 δ15N δ18O 

Site 
Linear 

equation 

Regression 
coefficient 

(R2) 

Level  
of 

Signifi-
cance 

(P) 
Linear 

equation 

Regression 
coefficient 

(R2) 

Level  
of 

Signifi-
cance 

(P) 

AMR tile y = 3.1x 
+ 5.5 0.54 0.06 

y = 4.0x - 
4.1 0.34 0.17 

Harris 
tile 

y = -3.4x 
+ 17.3 0.75 0.13 

y = 4.4x - 
17.8 0.81 0.1 

Outflow y = -1.3x 
+ 9.2 0.78 0.004 

y = -4.9x 
+ 1.3 0.93 0.0001 

Ground-
water y = 3.1x 

+ 15.2 0.75 0.03 

y = -
22.6x - 

4.4 0.56 0.09 
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Table D-5: Results of regression analysis between δ15N-N2O and δ18O-N2O for the period of 
October 2006 to June 2007. 

Site 
Linear 

Equation 

Regression 
Coefficient 

(R2) 

Level of 
Significance 

(P) 

Upper road tile 

y = -
0.067x + 

39.18 
0.03 

0.96 

Shantz tile 
y = 0.32x 
+ 44.33 0.28 0.06 

AMR tile 
y = 0.28x 
+ 38.79 0.56 0.15 

BMR tile 
y = 1.65x 
+ 58.14 0.81 0.001 

Above Harris 
tile 

y = 
0.096x + 

49.89 0.17 0.79 

Harris tile 
y = 0.64x 
+ 49.64 0.47 0.06 

Outflow 
y = 0.45x 
+ 46.52 0.62 0.0001 

Groundwater 

y = -
0.016x + 

38.32 0.00 0.87 
 

Table D-6: The results of regression analysis between δ15N-N2O and δ18O-N2O for Fall 2007 
data 

Site linear equation 
Regression 
Coefficient 

(R2) 

Level of 
Significance 

(P) 

Shantz tile y = -0.45x + 
45.80 1.00 0.00 

AMR tile y = 0.76x +38.25 0.88 0.0007 

Harris tile y = 0.41x + 
39.69 0.83 0.27 

Outflow y = 0.01x + 
43.48 0.00 0.94 

Groundwater y = -0.15x + 
44.27 0.06 0.59 
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Table D-7: The results of regression analysis between the natural log (ln) of N2O 
concentration and N2O isotopes 

 δ15N δ18O 

Site 
Linear 

equation 

Regression 
coefficient 

(R2) 

Level  
of 

Signifi-
cance 

(P) 
Linear 

equation 

Regression 
coefficient 

(R2) 

Level  
of 

Signifi-
cance 

(P) 
Upper 

road tile 
y = -2.2x - 

0.59 0.05 0.59 
y = -0.1x + 

40.6 0 0.94 
Shantz 

tile 
y = -4.8x + 

8.4 0.36 0.16 
y = -3.4x + 

56.5 0.52 0.06 

AMR tile 
y = -5.6x + 

11.5 0.87 0.02 
y = -1.8x + 

43.3 0.64 0.1 

BMR tile 
y = -4.6x + 

11.5 0.69 0.006 
y = -6.8x + 

73.6 0.46 0.05 
above 
Harris 

tile 
y = -15.0x 

+ 53.6 0.99 0.002 
y = -1.4x + 

54.8 0.15 0.73 
Harris 

tile 
y = -8.6x + 

18.1 0.58 0.007 
y = -6.0x + 

63.6 0.3 0.1 

Outflow 
y = -9.0x + 

26.1 0.73 0.0002 
y = -4.5x + 

60.1 0.56 0.003 
Ground-

water 
y = -0.95x - 

6.3 0.18 0.13 
y = 0.34x + 

37.4 0.14 0.18 
 

 

Table D-8: Results of regression analysis between the natural log (ln) of N2O concentration 
and isotopes for Fall 2007 

δ15N δ18O 

Site 
Linear 

equation 

Regression 
coefficient 

(R2) 

Level  
of 

Signifi-
cance 

(P) 
Linear 

equation 

Regression 
coefficient 

(R2) 

Level  
of 

Signifi-
cance 

(P) 
Shantz 

tile 
y = 32.0x -

79.6 1 0 
y = -14.5x 

+ 81.8 1 0 

AMR tile 
y = 0.75x + 

1.9 0.004 0.89 
y = 2.0x + 

31.8 0.05 0.64 
Harris 

tile 
y = -11.6x 

+ 36.6 0.99 0.005 
y = -5.0x + 

55.6 0.91 0.19 

Outflow 
y = -18.2x 

+ 57.8 0.65 0.02 
y = -3.1x + 

52.6 0.3 0.16 
Ground-

water 
y = -4.5x + 

6.1 0.63 0.03 
y = -0.04x 

+ 45.8 0 0.98 
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