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Abstract

The proliferation and universal adoption of the Internet hreade it become the key
information transport platform of our time. Congestion wxscwhen resource demands
exceed the capacity, which results in poor performancearfdhm of low network uti-
lization and high packet loss rate. Internet congestiorirobis a topic that has drawn
attentions of many researchers, and it has also become taofadaily life for Internet
users. The goal of congestion control mechanisms is to wesedtwork resources as
efficiently as possible, that is, attain the highest possibfoughput while maintaining
a low loss ratio and small delay. The research work in thisithis centered on finding
ways to address these types of problems and provide gueddiom predicting and con-
trolling network performance, through the use of suitab&mematical tools and control

analysis.

The first congestion collapse in the Internet was observel®80’s, although the
Internet was still in its early stage at that time. To solwe pnoblem, Van Jacobson pro-
posed the Transmission Control Protocol (TCP) congestimrtrol algorithm based on
the Additive Increase and Multiplicative Decrease (AIMDgchanism in 1988. To be
effective, a congestion control mechanism must be pairékd a&vicongestion detection
scheme. To detect and distribute network congestion italisdairly to all on-going
flows, Active Queue Management (AQM), e.g., the Random EBsyection (RED)
gueue management scheme has been developed to be depltheohtermediate nodes.
The currently dominant AIMD congestion control, coupledhwthe RED queue in the
core network, has been acknowledged as one of the key factdhe overwhelming

success of the Internet.

In this thesis, the AIMD/RED system, based on the fluid-flondelois systemati-



cally studied. In particular, we concentrate on the systerdeting, stability analysis and
bounds estimates. We first focus on the stability and fagraealysis of the AIMD/RED
system with a single bottleneck. Stability results andiess conditions are obtained for
both homogeneous- and heterogeneous-flow systems with itmolivfeedback delays.
Then, we derive the theoretical estimates for the upper aweérl bounds of homoge-
neous and heterogeneous AIMD/RED systems with feedbaelyslahnd further discuss
the system performance when it is not asymptotically stadldst, we develop a general
mathematical model for a class of multiple-bottleneck reks and discuss the stability
properties of such a system. Our analytical results arelatdd both numerically and
by simulations. Theoretical and simulation results presgion this thesis provide im-
portant insights for in-depth understanding of the AIMEIR&ystem and can also help
predict and control the system performance for the Intenntt higher data rate links

multiplexed with heterogeneous flows.
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Chapter 1

Introduction

1.1 Problem Description and Motivations

The Internet is surely the second most extensive machinkeoplanet, after the public
switched telephone network, and it is rapidly becoming aguitbus. As a decentralized
system, network stability and integrity rely on the endetad congestion control algo-
rithm, which is deployed in the dominant transport layertpcol, Transmission Control

Protocol (TCP).

Internet congestion occurs when resource demands exceedphcity. Congestion
in the Internet can cause high packet loss rates, increadagisgd and even break the
whole system. Without congestion control, as shown in[Eifj, When the offered load
is larger than the network capacity, the network power dqrafi throughput to delay)
will decrease sharply and the network will be driven to catige collapse. The circled
area in FiglL. 11l is the desired operation area under coogestntrol. The main targets

of TCP congestion control are to explore and fully utilize tvailable bandwidth for

1
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network power (throughput/delay)

\

collapse

desired area

0
offered load

Figure 1.1: Objective of Congestion Control

a connection and to avoid severe congestions in the netwerkio make the network

operating near the optimal area.

To deal with this problem, Van Jacobson proposed the Trasssam Control Protocol
(TCP) congestion control algorithm based on the Additiverdase and Multiplicative
Decrease (AIMD) mechanism in 1988: when there is no congrestdication (no packet
loss), the TCP congestion window size is increased lindarlgne packet per round-trip
time (RTT); otherwise, the TCP congestion window size isupsdl by half upon the
detection of packet loss. Since then, the TCP congestiotrataagorithm has been
widely deployed in the end systems to respond to network estign signals and avoid

network congestion collapses.

Driven by new commercial demands and technological pregtbs Internet is sup-
porting differentiated services, e.g. a large amount otimeldia applications. Although
it has been shown that TCP congestion control is very suftddes bulk data transfer,
its increase-by-one or decrease-by-half strategy pradadeighly fluctuating sending

rate which is undesirable for many applications that havg s&ingent delay require-
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ment. For example, most multimedia traffic cannot tolersteénding rate suddenly cut

by half.

To overcome this limitations of TCP while maintaining alf @dvantages, a TCP-
friendly Additive Increase and Multiplicative Decreasd D) congestion control strat-
egy has been proposed [11] to support heterogeneous seovieethe Internet. For each
round trip time, the AIMD sender either increase its congesivindow by« packets
if no congestion occurs, or decrease the window tames its current value when con-
gestion signal is captured. For different traffic, apprat@ipair of parametergy, /3)
can be chosen according to the traffic characteristics taduepits quality of service
(Qo0S). The protocol with this congestion control mechanisialled the AIMO«, 3)
protocol. Without any modifications to the core networkg, #&IMD protocol can be a
scalable solution to support differentiated servicées.] §ldo showed that AIMD can be
efficient on bandwidth utilization, fairly share the netweesources with ordinary TCP

flows, and provide better QoS.

TCP/AIMD has no information of network mechanisms conttiibg to packet loss,
which is taken as an indicator of congestion in the wired oektw To effectively con-
trol the congestion in the Internet, a congestion contratimaism must be paired with
a congestion detection scheme. To detect and distributeoniettongestion indicators
fairly to all on-going flows, Active Queue Management (AQM)g., the Random Early
Detection (RED) queue management scheme has been devédopedieployed in the
intermediate nodes. The currently dominant AIMD congestiontrol, coupled with the
RED queue management that is widely deployed in the coreankfivas been acknowl-

edged as one of the key factors to the overwhelming succehbs &iternet/[40, 41].

With the rapid advances in optical and wireless commurooatilnternet is becom-
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ing an even more diversified system. It will contain hetermgris wireless and wired
links with speeds varying from tens of Kbps to tens of GbpshWow round-trip delays
varying from ms to seconds. It will also support various nmodidia applications with
different throughput, delay, and jitter requirements. Aical and immediate question
is whether the AIMD/RED system is a stable, fair, and effitystem, independent of
the heterogeneity of the link capacity, end-to-end delag, etwork topology. In other
words, should we re-design the Internet congestion conteghanism to accommodate
future killer applications over the ever-diversified Imtet, or can we take an incremental
approach of engineering the existing congestion contrahaeism and routers’ queue

management parameters to achieve the same objective?

With large time delays or link capacities, the AIMD/RED sst as a whole may
not be asymptotically stablgl/[9]. However, It has been ustdedable that as long as the
system operates near its desired equilibrium, small egicis are acceptable, and the
network performance can still be satisfactory, i.e., therall system efficiency can still
be high, and the packet loss rate and queuing delay canesitEltl bounded. Therefore,
the important issue to investigate is: does the AIMD/REDieysalways operate in the

area close to the desired equilibrium state, and what arthéogetical bounds?

A realistic network normally accommodates flows that undengiltiple bottlenecks.
It has been shown that the conditions which guarantee thdistaf a single-bottleneck
system do not apply to the network system with multipledeottck links anymore.
This situation is the main motivation to study the stabiliyoperties of the general

AIMD/RED system with multiple bottlenecks.

In this thesis, we mainly study the AIMD/RED system and fooussolving all the

guestions outlined above.
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1.2 Related Work and Main Contributions

Internet congestion control is a topic that has drawn thenéitin of many researchers.
Stability problems of TCP or AIMD with RED queue have beereistigated in the liter-
ature [21] 22, 23, 24, 25, 26]. Some new control mechanisisexban control theory and
game theory have been proposed [7]. Instead of proposing aeetrol mechanism, we
focus attention on the stability and performance of theently dominant AIMD con-
gestion control mechanism over RED queues! In [26], usingid fhodel, the stability
of single-bottleneck TCP/RED system is proved, negledtiegeedback delay. The sta-
bility of TCP/RED with feedback delay has been questiond@jinwhich suggested that
TCP/RED becomes unstable when delay increases, or mdamglyi when link capac-
ity increases. Furthermore, for the vast-scale Internsingle bottleneck topology may
not be representative. The stability issue with multiplélboecks has been investigated
in [61]], which concluded that TCP/RED may become unstabtk miultiple bottleneck

scenario if the configuration of RED queue is inappropriate.

Our main objective in this thesis is to provide theoretiagd®ort for the analysis of
AIMD/RED system. Theoretical analysis and simulation hsspresented in the the-
sis provide important insights for the in-depth undersiag@f the AIMD/RED system
and can be used as guidelines to set up system parametetein@maintain network

stability and to fully utilize network resources withoutoessive delay and loss.

In this thesis, the AIMD/RED system, based on the fluid-flondelois systemati-
cally studied. In particular, we concentrate on the systerdeting, stability analysis and
bounds estimates. We first focus on the stability and fagaeslysis of the AIMD/RED
system with a single bottleneck. Stability results andiiess conditions are obtained for

both homogeneous- and heterogeneous-flow systems with itmolivfeedback delays.

5
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Then, we derive the theoretical estimates for the upper awerl bounds of homoge-
neous and heterogeneous AIMD/RED systems with feedbaelyslahd further discuss
the system performance when it is not asymptotically stdldst, we develop a general
mathematical model for a class of multiple-bottleneck rmeks and discuss the stability

properties of such a system. Our analytical results ardatd both numerically and by

simulations.

Our theoretical findings in the study of this topic are oraiand of great practi-
cal value for controlling and enhancing system performaarae efficiency in terms of
bounded delay and packet loss. Our results can also helgpaed control the system

performance for the Internet with higher data rate linkstiplexed with heterogeneous

flows.

1.3 Thesis Outline

The rest of this thesis is organized as follows.

Chaptef P describes in some detail the Internet congestiotnat problem and sum-
marizes the necessary mathematical background on whicinthlgsis and discussions

in this thesis rely.

The stability properties of a class of generalized AIMD/RE{stem are system-
ically discussed in Chaptéd 3. Sufficient conditions forrapgotic stability of both
homogeneous- and heterogeneous-flow systems with anduwitbedback delay are
obtained, by using direct Lyapunov and Lyapunov-Razunmkhethods. Also, the re-
lationship between the AIMD parameters and the average omirglze of competing

AIMD flows are derived in this chapter, as well as the TCPridky condition.

6
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Chaptef 4 focuses on the practical stability of the homogeseand heterogeneous-
flow AIMD/RED systems with feedback delays, and derives tagcal bounds on the
AIMD flow window size and the RED queue length. The systemgrerhinces are also

discussed when AIMD/RED is not asymptotically stable.

Chaptefb studies the stability properties of the genersIYRED system with mul-
tiple bottlenecks. A general mathematical model for midittleneck scenarios is first
developed and sufficient conditions for the asymptoticibtalmf multiple-bottleneck

systems are obtained for the cases with and without heteeoges delays.

Concluding remarks and potential research directionsiufturé work are presented

in Chaptef ®.

1.4 Bibliographic Notes

Most of the research results reported in this thesis haveapg in the research papers
and technical reports [2[7, 28,]129,30] 31,132, 33]. Work offiiéa3 appeared in [27, 28,
29]; Chapter 4 appeared in [30,/31]; Chapter 5 appeared ir3{32



Chapter 2

Background

2.1 Internet Congestion Control Overview

The proliferation and universal adoption of the Internei@sinformation transport plat-
form have escalated it as the key wired network. The expbogrowth of the Internet
depends on the design of the best-effort service core nktvildre Internet is a packet
switching network. Its intermediate nodes, e.g., routiensyard packets with their best
efforts, but with no guarantee. Packets are forwarded ofirten first out (FIFO) strat-
egy, and discarded when buffer overflows. The intermediaties know almost nothing
and do not maintain any state information about end-to-e&sdisns. These designs

make the core network simple, robust and scalable.

In the Internet, it is the end points, instead of the core pétwthat take the re-
sponsibility of maintaining stability and integrity of thvehole system. Since the core
network does not explicitly inform the end points of the mi& characteristics, e.g.,

logical topology, background traffic, and available resesr etc., the end points have to

8



2.1. INTERNET CONGESTION CONTROL OVERVIEW

take appropriate actions without explicit feedback from¢bre network. When the best
effort service network suffers congestion, the most imgrarsignals which end points
can capture are packet losses. The end points should aebpthrottle their sending

rates to avoid network collapse, i.e., network power, defiag throughput over delay,
may dramatically decrease to zero. The first network colayss seen in the late 1980's.
Since then, the dominant Internet transport layer proto@nsmission Control Proto-
col (TCP) [1,[2], had been engineered and re-engineerecctwporate the end-to-end
flow/congestion control mechanism [3], which is acknowledlgs one of the key factors

to the overwhelming of the Internet.

Congestion in the Internet can cause high packet loss ratggased delays, and
even break the whole system. Without congestion controenmie offered load is
larger than the network capacity, the network power (ratithooughput to delay) will
decrease sharply and the network will be driven to congesttlapse. The main targets
of TCP congestion control are to explore and fully utilize tvailable bandwidth for a

connection and to avoid severe congestions in the network.

TCP implements an Additive Increase and Multiplicative ase (AIMD) [4] con-
gestion control mechanism. In brief, it additively incredbe sending rate to probe the
available bandwidth when no congestion occurs and expi@tigrimultiplicatively) de-
crease its sending rate in response to congestion signaith. tNé AIMD congestion
control mechanism,TCP is honored for utilizing the bandtviefficiently, guaranteeing
the stability of the networks and maintaining the fairnes®ag co-existing TCP flows,

which lead to the explosive growth of the Internet usage énlaist decade.

On the other hand, the growth of the Internet is fueled by taeetbpment of the
Web. The application protocol of text webpage is Hypertaxnsfer Protocol (HTTP),
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which sends data by TCP connection, same as traditionald&SBd application proto-
cols such as File Transfer Protocol (FTP), Simple Mail Tfan®rotocol(SMTP), and
Telnet Protocol, etc.. These TCP-based applications damitoday’s Internet. Briefly
speaking, TCP controls the sending rate by a congestionamirictond). The cund of

the TCP flow is increased by one packet per round trip tiRiE)) when no congestion

occurs and halved when a congestion signal is captured blyGResender.

2.1.1 Internet Architecture

Before we study the Internet congestion models and algosiht would be helpful
to know the layered architecture of the Internet in orderndarstand the framework
within which the window flow control protocol is implementedthe Internet. A brief
introduction is provided in this subsection. A more dethitkescription and discussion

can be found in[5]. Briefly speaking, the Internet is orgadiin several layers [6]:
Physical layer
Data link layer
Network layer
Transport layer
Application layer.

The physical layer refers to the collection of protocold #ra required to transmit a
bit, a 0 or a 1, over a physical medium such as an ethernet.ddbtenally, the physical
medium takes a waveform as an input and produces a wavefdim astput. Therefore,
protocols needs to convert Os and 1s into these wavefornis fdriction is implemented

at the physical layer.

10



2.1. INTERNET CONGESTION CONTROL OVERVIEW

The data link layer consists of the collection of protocolsich collect many bits
together in the form of a frame and ensures that the framansterred from one end of
the physical link to the other. In order to guarantee thairsrin the frame transmission

can be detected and corrected, error correction could alsaltled at this layer.

The network layer performs the crucial task of routing oivaglng a packet from a
source to a destination. The protocols at this layer are toseppend end-host addresses
and other information to data bits to form a packet and furtbeoute packets through
the network using these addresses. In the Internet, thes iagplso called the IP (Internet
Protocol) layer. However, packets passing through theortaould be lost or corrupted
in the route from the source to the destination. For exanmphen the source transmis-
sion are bigger than the rate at which packets can be pratéegsehe routers, buffers
at the routers will overflow. This is a main reason to causeldbs of packet. Thus,
although the network layer performs the packet deliveryiser the packet delivery may

not be reliable.

The transport layer adds reliability to the network laydreTransport layer protocols
make sure that lost packets are detected and possibly setithed from the source, if
necessary, depending upon the application. The transpgat bsually turns the unre-
liable and basic service provided by the network layer intoae powerful one. The
predominant transport layer protocol used in today’s heers the Transmission Con-
trol Protocol (TCP). The adaptive window flow control algbm proposed by Jacob-
son’s is implemented within TCP. TCP provides end-to-efidlske communication and
is used for many protocols, including HTTP web browsing, gtmansfer., etc.There are
some other transport layer protocols such as video trasgmisvhich can tolerate some

amount of packet losses, where packet retransmission nidenmequired.

11



2.1. INTERNET CONGESTION CONTROL OVERVIEW

Finally, the application layer refers to protocols suchtpstittp, etc. which use the
lower layers to transfer files or other forms of data over tiierhet. The application layer
provides services for an application program to ensurectifettive communication with

another application program in a network is possible.

The introduction above, which is not intended to be a detaileaccurate description,
can be taken as a quick overview of the layered architectutteednternet. Our target
is to point out the layer within which TCP is performed in tmgernet and further to
indicate that congestion control is implemented withinttia@sport layer protocol TCP.
It also shows the fact what are studying in this thesis is@fatte collection of protocols

that make the Internet function.

2.1.2 TCP Congestion Control

In the 1980’s, network congestion was not a concern due tbrttied user population,
and the original version of TCP did not constitute the cotigagsontrol mechanism [1].
Later, with the explosive growth of the Internet, congestpyoblems became severe
owing to the lack of bandwidth. In the mid 1980’s, the Intaregffered a series of con-
gestion collapses that the bandwidth suddenly has a faétibrousand drop. Not until
the late 1980’s was a congestion control mechanism develape widely accepted[3].
Since then TCP congestion control has been modified and esgid to enhance its per-

formance.

Consider a single source accesses a link with the capéacpwyckets/second. For
simplicity, we also assume all packets are of equal size.nfore that congestion does
not occur at this link, the source should transmit at a marimate ofC' packets/second.

One way to guarantee it is to usendndow flow control protocol A source’s window

12



2.1. INTERNET CONGESTION CONTROL OVERVIEW

size is the maximum number of unacknowledged packets tkagdhrce can send into

the network at any time.

The window size started with 1, then the source maintainsiateo which has a max-
imum value of 1. The counter indicates the number of packetsit can send into the
network. The counter’s value is initially the same as thedwim size. When the source
sends one packet into the network, the counter is reduced bigus, the counter in this
case would become zero after each packet transmission arsttince cannot send any
more packets into the network till the counter becomes 1nadai increase the counter,
the source waits for the destination to acknowledge thegtoktthe packet. This process
is accomplished by sending a small packet called the acladgeiment{ck) packet,
from the destination back to the source. Once receivingthethe counter is increased
by 1 and thus the source can send one more packet into therkedgain. The term
round trip time RT'T) is used to refer to the amount of time that elapses betwesn th
instant that the source transmits a packet and the instartiel it receives the acknowl-
edgment for the packet. With a window size of 1, since one g@iaiskransmitted during

every RT'T, the source’s data transmission rate iBLT" packets/sec.

When the window is 2, the counter’s value is initially set toThus, the source can
send two packets into the network. For each transmittedgiattie counter is decreased
by 1. Thus, after the first two packet transmissions, the tus decremented to zero.
When one of the packets is acknowledged anditihiegeaches the source, then the source
increments the counter by 1 and can send one more packehmttetwork. Once the
new packet is transmitted, the counter is again decremdgteki to zero. Thus, after
eachack, one packet is sent, and then the source has to wait for theznedefore it

can send another packet. If one assumes that the procepsedaf the link is very fast,
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i.e.,1/C < RTT, and that the processing times at the source and destiratomeg-
ligible, then the source can transmit two packets duringye¥® 7'. Thus, the source’s
transmission rate i8/ RT'T packets/sec. From the above argument, it should be easy to
conclude that, if the window size 1§/, then the transmission rate can be approximated
by W/RTT packets/sec. A precise computation of the rate as a funofitme window

size is difficult because we need to take processing delay® aource and destination
and the queueing delays at the link into account. In commain euirrent literature, we

will use the approximate relationship between the windod tue transmission rate.

If the link capacity isC' and the source’s window sid& is such thalV’/RTT < C,
thenthe system will be stable. In other words, all transmittedkaas will be eventually
processed by the link and reach the intended destinaklomever, in a general network,
the available capacity cannot be easily determined by aceourhe network is also
shared by many sources which are sharing the capacitie® atifferent links in the
network. Therefore, each source has to adaptively estithatealue of the window size
that can be supported by the network. The solution propasettis by Jacobson [3] is

described in the following.

Jacobson’s algorithm have been widely implemented in tsd&gP. TCP uses a
scheme that adjusts its window size depending on the detectithe congestion in the
network. The essential idea is that the window size keepeasing till buffer overflow
occurs. The destination detects the overflow by the factdbate of the packets do not
reach the destination. Upon the detection of the packete$pshe destination informs
the source that will reset the window size to a small value.eWthere is no packet
loss, the window increases rapidly when it is small. After window size reaches some

threshold, it is increased more slowly later by probing tegvork for bandwidth gradu-
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ally and trying to stay at this stage as long as possible.

Jacobson’s congestion control algorithm operates in tvase$[6]:
1. Slow-Start Phase:
Start with a window size of 1.

Increase the window size by 1 for everyk received. This continues till the window
size reaches a threshold called the slow-start thresketd(esh). The initial value of
ssthresh is set at the beginning of the TCP connection when the recedramunicates
the maximum value of window size that it can handle. Theahitalue ofssthresh is
set to be some fraction (say, half) of the maximum window.s@ece the window size
reachesssthresh, the slow-start phase ends, and the next phase callecbtigestion
avoidancebegins. If a packet loss is detected before the window seehesssthresh,
thenssthresh is set to half the current window size, then the current windize is reset

to 1, and slow-start begins all over again.
2. Congestion Avoidance Phase:

In the congestion avoidance phase, the window size is isetEbyl /cwnd for every
ack received, wherewnd denotes the current window size. This is roughly equivalent

to increasing the window size by 1 after evemynd acks are received.

When packet loss is detected, the window size is decreaseéll:esh is reset to be

half of the current window sizeynd is reset to one and go back to the slow-start phase.

Remark: Different versions of TCP, such as TCP-Tahoe, TCP-Reno,-$E8EK,

reduce the window size in different ways. However, for modgpurposes, these do not
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make much of a difference and we will use the algorithm dbscriabove for analysis.

In the description of Jacobson’s algorithm, how TCP detpeisket loss was not
discussed. In the early versions of this algorithm, TCPe&alpacket loss was detected
only if there was a timeout, i.e., arrk is not received within a certain amount of time.
In more recent versions such as TCP-Reno and TCP-NewReoketdass is assumed

either if there is a timeout or if three duplicateks are received.

2.1.3 TCP-friendly AIMD Congestion Control

Driven by new commercial demands and technological pregthe Internet is support-
ing differentiated services, including a large amount ofitrmedia applications. Al-
though it has been shown that TCP congestion control is wergessful for bulk data
transfer, its increase-by-one or decrease-by-half stygbeoduces a highly fluctuating
sending rate which is undesirable for many multimedia @pgilbns, since most multi-
media traffic cannot tolerate its sending rate suddenlyygaglf. Since TCP-transported
applications are dominant in the Internet, it is crucial &wdrcompatible traffic regula-
tions for non-TCP applications. These regulations, or estign control should meet the
following requirements: 1) different classes of multimeedpplications should be able to
share the network resources appropriately with ordinarP-fi@nsported applications.
2) there multimedia applications can coexist and behavparhyp We refer to these
regulations as TCP-friendly congestion control for nonPHEansported applications. In

addition to the fairness and TCP-friendliness isgmsy new congestion control scheme

1TCP-friendliness is defined as the average throughput ofTi@P-transported applications over a
large time scale does not exceed that of any conformant T&Rjtorted ones under the same circum-

stance[[10].
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should also a) have the ability to maintain the network $tgthly promptly responding
to the congestion and be cooperative with other flows in theaork; b) utilize the net-
work resources efficiently; c) be capable of providing bretpeality of service (QoS)
and d) be simple and easy to implement, compatible with thadg and scalable for

incremental deployment.

To overcome the limitations of TCP’s saw-teeth flows whileetrgg all the re-
quirements stated above, a TCP-friendly Additive Incresass Multiplicative Decrease
(AIMD) congestion control strategy has been proposed [tidupport heterogeneous
services over the Internet. For each round trip time, the BId&nder either increase
its congestion window by packets if no congestion occurs, or decrease the window
to 3 times its current value when congestion signal is captueat. different traffic,
appropriate pair of parametefs, ) can be chosen according to the traffic characteris-
tics to improve its QoS. The protocol with this congestiontcol mechanism is called
the AIMD(«, [3) protocol. TCP is a special case of AIMD witlx = 1, § = 0.5).
Without any modifications to the core networks, the AIMD il can be a scalable
solution to support differentiated services. [[12] alsovebd that AIMD can be efficient
on bandwidth utilization, friendly to ordinary TCP flows,daprovide better QoS. By ad-
justing the pair of(«, () parameters, different classes of flows can get differengknei

of bandwidth when they share the link.

2.1.4 Active Queue Management

By itself, TCP/AIMD has no information of network mechanseontributing to packet
loss, which can affect network performance by decreasiagénders’ effective trans-

mission and increasing delay due to packet retransmisiiarder to detect and control
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the congestion effectively, TCP/AIMD congestion controtghanism must be paired
with a congestion detection scheme. Thus, routers mustresauole in network man-
agement by sensing congestion and pre-emptively sign@@RyAIMD rather than have

it to react to unreceived packets.

An Internet router typically maintains a set of queues, oeeipterface, that hold
packets scheduled to go out on that interface. Traditignié 1P router only maintains
a First In First Out (FIFO) queue for each output interfacehéWthe packet arriving
rate is larger than the service rate (mainly transmissit®#) rastantaneously, aggregated
packets are buffered in the FIFO queue. When the buffer isthé following packets
will be discarded (in the tail). This is called Drop-Tail gueemanagement. The Drop-
Tail queue is known to produce burst packet losses and begaidst flows with long

RTTs, and violates the fairness constraint.

To detect and distribute network congestion indicatordyfao all on-going flows,
Active Queue Management (AQM) has been developed to be yeglio the interme-
diate nodes. Modern routers equipped with AQM can detecygestion even before
buffer overflow actually occurs. Random Early Detection [REs a well-known AQM

scheme([14] and is widely deployed in core networks.

The RED router defines two thresholds. If the queue lengtkss than the lower
threshold, no additional action is taken. If the queue lemyiceeds the lower threshold
a certain level, incoming packets are discarded randomily seme certain dropping
probability, which is proportional to the current queueesizncoming packets are dis-
carded with probability one if the queue length exceeds gpeuthreshold. The router
is not limited to drop packets. It can also mark the incomiagkets when the queue

length is above the lower threshold, and the packet-margnodpability is a function
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of the queue length. Thus, before the buffer overflows, thrgestion signals have al-
ready been distributed to on-going flows proportional tarteending rates. The flow
with higher sending rate will suffer more packets losseser&fore, with RED queue
management, the link bandwidth can be more fairly disteub all on-going flows. In

addition, since RED helps the end points detect the cormgestrlier, the network can

recover from congestion quicker and the on-going flows cae batter throughput.

RED routers are compatible with in-use FIFO routers, so taeybe deployed incre-
mentally. The currently dominant AIMD congestion contraéchanism, coupled with
the RED queue management that has been widely deployed intdraet core routers,
has been acknowledged as one of the key factors to the oviemwigesuccess of the

Internet [40| 41].

2.2 Mathematical Background

Before delving into the modeling and stability analysisha tnternet congestion control
problem, we summarize the mathematical background thadria/sis and discussions
in this thesis rely on. Most of the material in this sectior taken from Khalil [[51],

unless otherwise mentioned.

2.2.1 Basic Definitions and Preliminaries

Consider the following system of differential equations

#(t) = f(x(t), 2(0)=z9, f:D—R" (2.1)
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where D is an open and connected subset¥f and f is a locally Lipschitz function

mappingD into R™.

Definition 1 A pointz = z* is said to be an equilibrium point of system (2.1) if it has
the property that whenever the solutioft) of (2.1) starts at:*, it remains atz* for all

future time.

According to this definition, the equilibrium points of (24re then the real roots of
the equatiory (z*) = 0.

For convenience, we will state all definitions and theoreorstlie case when the
equilibrium point is at the origiriz* = 0), since any equilibrium point can be shifted
to the origin by a change of variables. In the sequel, we g#luane thaf (z) satisfies

f(0)=0.
Definition 2 The equilibrium point:* = 0 of system[(2]1) is said to be
e stable if for any= > 0, there exists & = d(¢) > 0 such that| z, ||< J implies
| z(t) [[<e, Vt>0;
e unstable if it is not stable;
e asymptotically stable if it is stable and there exists a tantsj > 0 such that

| z(t) ||< 0 implieslim;_. ||z(t)] = 0.

Having defined the stability and asymptotic stability cqrtse we use Lyapunov’s ap-
proach to determining stability. The main idea behind tbeéhnhique is to determine how
a special class of functions behave along the solutionsstésy{(2.1). Let us first define

these functions.
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Definition 3 Let D be an open subset éf* containingx = 0. A functionV : D — R

is said to be positive semi-definite énif it satisfies the following conditions

(i) V(0) = 0;
(i) V(z) > 0,Vx € D — {0}.

It is said to be positive definite ai if it satisfies(:) above and

(i*) V(z) > 0,Vz € D — {0}.

It is said to be negative definite (semi-definite) Onf —V is positive definite (semi-

definite) onD.

Definition 4 A positive definite functio” defined onR™ is said to be radially un-

bounded (or proper) if the following condition holdsm, |« V (z) — co.

In the Lyapunov stability theorems, the focus is on the fiomct” and its time derivative
along the trajectories of the dynamical system under censithn. The time derivative
of V(z) along the trajectories of system (2.1) is (simply) denotgd’/band defined as
V=vV-f(z)

Theorem 2.1 Let 2* = 0 be an equilibrium point for systern (2.1). LBtbe an open
subset of?" containingr = 0 andV : D — R be a continuously differentiable function

defined onD such that

(i) V(0) =0,
(i) V(z) > 0, Vz € D — {0}
(i) V <0, Vo € D — {0}

Then,z* =0 is stable. If conditior{(zii) is replaced by
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(i*) V <0, Vo € D — {0},
thenx* = 0 is asymptotically stable. Moreover,fif = R™ andV is radially unbounded,

thenz* = 0 is globally asymptotically stable.

In the next definition, we define positive definite matricesohiplay an important

role in defining Lyapunov functions.

Definition 5 [52] A real symmetricn x n matrix is said to be positive definite if and

only if it has strictly positive eigenvalues.

An important class of positive definite functions are thedyatic functionsl/(z) =
2T Pz, whereP is a positive definite matrix. Lex,,;,,(P) and\,,....(P) denote the min-
imum and maximum eigenvalues of P, respectively. Then, we hg;,(P) || = [|?<
V(z) = 27 Pz < Muaa(P) || = ||* . This inequality is referred to as tHeayleigh

Inequality:
A special case of systern (2.1) is when the vector field funcfiac) has the linear
form Az whereA is a realn x n matrix; namely, we have
t(t) = Az(t), x(0) = zy. (2.2)
which is called a linear time-invariant (or autonomous)tegs The solution of (2]2) is
given byx(t) = elxy.

An efficient technique to investigate the stability prostof system[(2]2) is by
determining the location of the eigenvalues of the mattjxas shown in the following

theorem.
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Theorem 2.2 The equilibrium pointz* = 0 of system[(2]2) is stable if and only if the
eigenvalues ofd (\;s) have non-positive real parts and for those with zero realtpar
and algebraic multiplicityy;, rank(A — X\;I) = n— ¢;, wheren represents the dimension
of z. It is globally asymptotically stable if and only if all eigealues ofA have strictly

negative real parts.

Definition 6 Ann x n matrix is said to bed urwitz (or stable) if all its eigenvalues have

negative real part.

The asymptotic stability property can also be charactdrizg using Lyapunov’s
method. Consider the following Lyapunov function candédéfz) = x Pz, the deriva-
tive of V (z) along the trajectories df (2.2) is given by= &7 Pz + 27 Pi = 2T (ATP +

PA)x = —2TQz, whereQ is ann x n matrix given by

ATP 4+ PA=—Q. (2.3)

If Q is positive definite, then by Theorem (2.1) the origin is ayngstotically stable

equilibrium point. This result is summarized in the nextdiems.

Theorem 2.3 Ann xn matrix A is Hurwitz if and only if, for any given positive definite

matrix ), there is a unique positive definite matixwhich satisfied (213).

The matrix equatior (23) is referred to as a Lyapunov equatihich is solved for

P for a givenQ whereP = /OO et Qe dt.
0

Lemma 2.4 (Schur complement) [52] The following three inequalities equivalent:
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<0

—_ 3

1)

BT C
(2)A<0,andC — BTA™'B <0
(3)C <0,andA — BC~'BT <0,
where A, B, C are real constant matrices of appropriate dimensions, ahd_' are

symmetric.

If in a domain about the origin we can find a Lyapunov functiomoge derivative
along the trajectories of the system is negative semi-defiand if we can establish that
no trajectory can stay identically at points whé?(ez) = 0, except at the origin, then the
origin is asymptotical. This idea follows from LaSalle’'ssariance principle, which is

described as follows.

Theorem 2.5 Let 2 C D be a compact set that is positively invariant with respect
to (Z). LetV : D — R be a continuously differentiable function such that:) < 0in
Q. Let E be the set of all points ift whereV/ (z) = 0. Let M be the largest invariant set

in E. Then every solution starting i approaches\/ ast — oo.

Unlike Lyapunov’s theorem, Theoredm 2.5 does not requirefihetion V() to be

positive definite.

When our interest is in showing thatt) — 0 ast — oo, we need to establish that
the largest invariant set ify is the origin. This is done by showing that no solution can

stay identically inZ, other than the trivial solutiom(t) = 0.

Theorem 2.6 [61] Let z = 0 be an equilibrium point for[(2]1). Let’ : D — R be

a continuously differentiable positive definite functiam @ domainD containing the
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origin z = 0, such thatV’(z) < 0in D. LetS = {z € D : V(z) = 0} and suppose that
no solution can stay identically ifi, other than the trivial solution:(¢) = 0. Then, the

origin is asymptotically stable.

2.2.2 Delay Differential Equations

Delay differential equations (DDES) arise as models fotesys where the rate of change
of the state depends not only on the current state of theraysti¢ also its state at some

time(s) in the past (see e.q. [56/57]| 58]).

Ordinary differential equations(ODESs) have played imaottoles in modeling many
physical processes and they will continue to serve as a faadtal tool in future inves-
tigations. A drawback of these models is that they are rujetthé principle of causality,
that is, the future state of the dynamical system depengsaorthe present state and not
on the past. However, in the more realistic models, someigsd values of the state
should and have to be taken into account. This leads us ty défarential equations,

also known as retarded functional differential equations.

Let C, = C([-7, 0], R™), with 7 > 0, representing a time delay, be the set of
continuous functions from—7, 0] to R"*. If ¢ € C,, the 7-norm of this function is

defined byi|¢||; = sup_,4<( |@(0)]|, where|| - || is the Euclidean norm oR™.

Definition 7 If x is a function mappingt — 7, t| into R", a new function:; mapping

[—7, 0] into R™ is defined as follows, () = xz(t + 0), for 6 € [—7, 0].

Here,z,(6) (or simplyx,) is the segment of the functian from ¢ — 7 to ¢, that has

been shifted to the interval-r, 0]. AssumeQ) is a subsetoR x C,andf : Q — R". A
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general delay differential equation is described as falow

x(t) = f(t, =), (2.4)

wheref depends on bothandz;. Sincez, is an element of’([—7, 0], R"), f is called
a functional. Unlike the initial state of an ordinary difégtial equation, the initial state
of system[(2.4) is defined on the entire interital— 7, o], not justt,. Then, an initial

condition is given as a continuous functiof) = ¢(t) fort € [ty — 7, to].

A function z is said to be a solution of the equatidn (2.4)[an— 7, t, + A) if there
arety € RandA > 0 such thatr € C([ty — 7, to + A), R"), (t, ;) € Q andz(t)
satisfies the equatioh (2.4) foe [ty, to + A).

Remark: There are several special cases[ofl(2.4)r ¥ 0, then [2.4) becomes an

ordinary differential equation:(t) = f(¢, =(t)), i.e. ODEs are special case of DDEs.

If 7 takes a finite number of values,--- ,7, and0 < k& < oo, then [2.4) becomes

x(ﬂ = f(tv x(t)v I(t - 7-1)7 T ,.T(t - Tk))

Theorem 2.7 (Existence) In[(2]4) supposeis an open subset iR x C' and f is con-
tinuous onC2: If (ty; ¢) € 2, then there is a solution of (2.4) passing through ¢).

We sayf(t; ¢) is Lipschitz ong in a compact sek’ of R x C, if there is a constarit > 0
suchthat, foranyt, ¢;) € K, i = 1,2, [[f(t, ¢1) — f(t, ¢2)|| < kllgr — ¢2f|-

Theorem 2.8 (Uniqueness) Suppoge is an open subset iR x C, f : Q@ — R"is
continuous and (¢, ¢) is Lipschitz ing on each compact set . If (¢y, ¢) € € then

there is a unique solution df (2.4) through,, ¢).

26



2.2. MATHEMATICAL BACKGROUND

Theorem 2.9 [54] Consider the following delay differential inequality

u(t) < f(t,u(t), sup u(f)) te€ty, to+a), a>0.
oe(t—, t]

Assume thag(t) is a solution of the delay differential equation

y(t) = f(t,y(t), eeilfp ) y(0)) t € to, to+a)

such thaty(t) = u(t), t € [to — 7, to]. Thenu(t) < y(t) fort € [to, to + a).

Definition 8 Supposef : R x C' — R™ is continuous and (¢, 0) = 0 for all . Then,

the solutionr = 0 of system[{Z]4) is said to be

e stable if, for a giverr > 0, there exists & = §(e, ty) > 0 such that|z,,||. < §

implies||z(t)|| < e for Vt >ty — 7;
e unstable if it is not stable;

e asymptotically stable if it is stable and there exist§ a §(t,) > 0 such that

||z, |- < ¢ implieslim, ., ||z(¢)|| = 0.

In DDEs the analysis of characteristic equations of linedomomous delay differ-
ential equations is often a difficult task even for equatiwaith two discrete delays or
systems with just one discrete delay since those charsiitezgjuations are transcenden-
tal. However, this can be overcome by using Lyapunov funeti® to obtain sufficient
conditions for stability and instability of steady state@DESs in a way similar to the

second method of Lyapunov for ODEs [53] 57].
If V: Rx C — Ris continuous and(t,, ¢) is the solution of[(24) througfty, ¢),

then we define

V= V(t, ¢) = lim sup %[V(t +h, mq) = V(E, 9)]
h—0t
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whereV is the upper right-hand derivative bf(z, ¢) along the solution of{2]4).

Theorem 2.10 [63] Supposef : R x C — R" takesRx (bounded sets of C) into
bounded sets ak™ and«, 3, v : Rt — R* are continuous and nondecreasing func-
tions,a(s), G(s) are positive fors > 0, anda/(0) = 5(0) = 0. If there is a continuous

functionV : R x C — R such that,

a(lle(O)]) < V(t, ¢) < B(l¢ll-) and V(t, ¢) < —¢([[6(0)])

then the solution: = 0 of (2.4) is uniformly stable. If&(s) — oo ass — oo, then
the solution of[(2}4) is uniformly bounded. fs) > 0 for s > 0, then the solution is

uniformly asymptotically stable.

The above theorem tells us that if a Lyapunov functional ismatonically decreasing
along the solution of (214), then the solution is uniforméymptotically stable. However,
this method may be different sin€e is much more complicated thak™ and there is
no control between|z(¢)|| and ||z(¢ + 6)|| for 6 € [—7, 0]. For this reason another
effective method of analyzing stability of DDEs is the apption of Razumikhin-type

theoremsl[[53, 55, 57]. This techniqgue makes use of functather than functionals.

Consider an autonomous DDE defined by

and a positive definite and continuously differentiablection V' : R* — R. Then the
derivative ofV along the solutions of (2].5) is given by

_ oV(a(1)

Vi) = S

f(x).
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To proveV is negative definite requires thatt) somehow dominates(t + 6). From
the definition of uniform stability, we know that if; is initially in a ball B = B(0, )
in C, then, for it to escapé3, it has to reach the boundary &f at some time*: At
time ¢*, we have||z(t*)|| = J, and||z(t* + 6)|| < ¢ for § € [—7, 0); and we must have
d||z(t*)]|/dt > 0. Hence, if we show this is impossible, then we arrive at thbibtya

conclusion. This observation leads to stability resubified Razumikhin type Theorems.

In general}l : R x R" — Ris a continuous function, arid(¢, =(t)), the derivative

of V along the solutions of the DDE_(2.4) is defined by

Ut 2(t) = lim sup ~[V(t+ h, 2(t + b)) — V(£, 2(t)],

h—0t

wherezx(t) = z(ty, ¢) fort > t, is the solution of the DDH(214) throudl, ¢).

Theorem 2.11 [63] Supposef : R x C — R" takesRx (bounded sets of C) into
bounded sets adk” and«, 3, ¢ : Rt — R™ are continuous, nondecreasing functions,
satisfyinga(0) = 8(0) = ¢(0) = 0, anda(s), [(s) are positive fors > 0. Assume that
there is a continuous functiori : R x R™ — R such that,

allz]) <V (¢, o) < B(ll=[]) for te R, xeR"

Then the solution x = 0 of(2.4) is

(i) uniformly stable if

V(t, z(t)) < —=y(||z(t)]]) for V(t+6, z(t+0)) <V(t, x(t)), 0 € [—7, 0];

(i) asymptotically uniformly stable if)(s) > 0 for s > 0 and there is a continuous

nonincreasing functiop(s) > s for s > 0 such that

Vi(t, z(t) < =p(lz@)]]) for V(E+6, z(t+0)) <p(V(t, x(t))), ¢ €[, 0.

If a(s) — oo ass — oo, thenx = 0 is globally asymptotically stable.
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Chapter 3

Stability Analysis of Single-Bottleneck
AIMD/RED Systems

In this chapter, we systematically study the stability ofeess of generalized AIMD/RED
(Additive Increase and Multiplicative Decrease/RandomyHaetection) system. Suffi-
cient conditions are obtained for asymptotic stability oftbhomogeneous-flow system
and heterogeneous-flow system with and without feedbackyd®s} using direct Lya-
punov and Lyapunov-Razumikhin method. Our study reveasehationship between
the AIMD parameters and the average window size of comp&iMp flows. Con-
sequently, the TCP (Transmission Control Protocol)-filigrcondition is derived. Nu-
merical results with Matlab and simulation results with R&+e given to validate the
theorems and analytical results. The analysis and thelisatmnditions derived can
be used as a guideline to set up the AIMD/RED system paramigt@rder to maintain

network stability and integrity, and to enhance systemgreréince.
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3.1. INTRODUCTION

3.1 Introduction

Internet stability depends on the Transmission Controtdea (TCP), which is vol-
untarily deployed in the end system based on the Additiveease and Multiplicative
Decrease (AIMD) congestion control mechanism. To suppeteéiogeneous traffic, the
general AIMD congestion control uses a pair of parameters) to set the increase rate
and the decrease ratio [10,/ 11, 12]. On the other hand, tiveeapieue management
(AQM) algorithms, such as Random Early Detection or RandamyEDiscard (RED),
have been developed and deployed in the intermediate systefairly distribute net-
work congestion signals to all on-going flows. With the REDenes|[14, 15], the
packet loss rate of each flow is roughly proportional to the 8ending rate. AIMD and

RED both contribute to the overwhelming success of the teter

Today'’s Internet is becoming a more heterogeneous andseéiwistem: link capac-
ity varies from several Kbps to several Gbps, with six oradémmagnitude; transmission
bit error rates vary from< 107 to 103, also with about six orders of magnitude; and
end-to-end delay varies from several milliseconds to sgv@conds. A critical and
immediate question is whether the AIMD/RED system is a stdbir, and efficient sys-
tem, independent of the heterogeneity of the link capaeitg-to-end delay, and network
topology. In other words, should we re-design the Internagestion control mechanism
to accommodate future killer applications over the eveediified Internet, or can we
take an incremental approach of engineering the existingestion control mechanism

and routers’ queue management parameters to achieve tesobgactive?

Stability problems of TCP flows with RED queues have beenesitely investigated
in [21,[22, 23] 24|, 25, 26]. New control mechanisms based otrabtheory and game

theory have also been proposéd [7]. Instead of proposingnacoetrol mechanism,
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we focus on the stability and performance of the dominant Blbbngestion control
mechanism with RED queues. [n|26], using a fluid model, tobgl asymptotic stability
of TCP/RED is proved, neglecting the feedback delay. Theadyos of TCP/RED with
feedback delay has been studied using a frequency domaioaabpin [9]. Because of
the heterogeneity of the Internet, understanding the lgtabonditions of the general
AIMD/RED system with heterogeneous flows and feedback dekaygritical for future

network planning and design.

In this chapter, we systematically study the stability & &IMD/RED system, con-
sidering heterogeneous flows with different AIMD parameterboth delay-free mark-
ing and delayed marking scenarios. The definitions of stalaihd asymptotic stability

follow that in [36]. Consider dynamic systems with time detd the following form:

dx
= = [t a(), 2t = (), a(t = 7a(1)))

wherezcR", f: IXR"XR"x---xR" — R"iscontinuous. Let = max sup,-, 7i(t).

i=1,...,m

The trivial solution of the system is said to be

stableif for every e>0 andt,€R ., there exists som&=4(t, €)>0 such that for any

E(t)eC[[—m, 0], R"], ||€|l-<d implies||x(t, to, §)||<e forall t > g ;

asymptotically stablé the system is stable and for eveyeR ., there exists some

n=n(to)>0 such thatim, ., ||z(t, to, £)||=0 whenever|||,<n.

Based on the fluid model of the generalized AIMD/RED systemapply the meth-
ods of Lyapunov functional and Lyapunov function with Lyapu-Razumikhin condi-
tion to study the stability properties of the system. D#fer sufficient conditions are
derived for the local asymptotic stability of the systemhafitedback delays. Since the

fluid model captures the ensemble averages of the systermegma, with the sufficient
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conditions derived, the ensemble averages or the time ge®r@ver a round) of the
AIMD/RED system can be locally asymptotically stable, ewatih heterogeneous feed-
back and propagation delays, so the AIMD/RED system can kbginadly stable. A
round is defined as the time interval between two instant$atiwthe sender reduces its
window size consecutively. The analysis also reveals tlatioaship between AIMD pa-
rameters and the average window size of competing AIMD flams, the TCP-friendly
condition is also derived. Numerical results are given talate the analysis. Extensive
simulations with NS-2[[60] are performed to study the syspariormance with realis-
tic protocols and network topologies. The analytical amdwation results can help to
better understand the stability and performance of AIMOIREystem, and the theoret-
ical results can be used as a guideline for the setting oésygiarameters to maintain

network stability and enhance system performance.

The remainder of the chapter is organized as follows. Sel&id proposes the model
of the generalized AIMD/RED system. Sectionl3.3 studiessthbility property of the
generalized AIMD/RED system with delay free-marking, amdies the TCP-friendly
condition and average queuing delay. The stability ancémsis analysis of AIMD/RED
system with heterogeneous feedback delays are given iilo8Bc#. Numerical results
with MATLAB and simulation results with NS-2 are presentadSectiorl 3.6. Related
work is briefly introduced in Sectidn 3.6, followed by summand further discussions
in Sectior 3.7.
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3.2. AFLUID-FLOW MODEL OF AIMD/RED SYSTEM

3.2 A Fluid-flow Model of AIMD/RED System

A stochastic model of TCP behavior was developed using floid-and stochastic dif-
ferential equation analysis [22]. Simulation results hdeenonstrated that this model
accurately captures the dynamics of TCP. We extend the fllmidimodel for general
AIMD( «, 3) congestion control: the window size is increasedbyacket perRTT if

no packet loss occurs; otherwise, it is reduced tomes its current value.

We first consider the case that all AIMD-controlled flows héve samed, ) pa-
rameter pair and round-trip delay. The AIMD/RED fluid modelates to theensemble
averageof key network variables, and it is described by the follagvaoupled, nonlin-

ear differential equations:

daw(t) a  201-p)
dt — R(t) 1+p W)

N(t) - W (#)
q
@ N(t) - W(2) o
{W - C}, q=0.

wherg{a}*=max{a, 0}, a>0, 5€[0, 1], W0, W,,..] is the ensemble average of AIMD
window size (packets); € [0, gn.q.] iS the ensemble average of queue length (packets);
R is the round-trip time withR(t) = % + T, (secs), where& is the queue capacity
(packets/sec) and, is the deterministic delay (including propagation, preteg, and
transmission delay). The delay terrrin R(-), W (-) andp(-) is defined as the average
round trip time. V is the number of AIMD flows ang is the probability of a packet
being marked (or dropped).
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3.2. AFLUID-FLOW MODEL OF AIMD/RED SYSTEM

The first differential equation of system (B.1) describ@sAMMD(«, ) window con-

trol dynamic. Roughly speakingy/ R represents the window’s additive increase, while

2(11;5@ W represents the window’s multiplicative decrease in respda packet marking
(or dropping) probability. This is because the flow’s window size always oscillates be-
tweensW,,q. 10 W,..., the average window size over a roundist+ 3)W,,.../2. Each
time, the window size is cut bl — 3) W, = 2(1—3)W/(1+ ). The second equation
models the bottleneck queue length as simply an accumul#tecence between packet
arrival rateNW/ R and link capacityC. {-}* in the model guarantees queue length is a

non-negative number.

With RED, as shown in Fid. 3.1, the packet marking probabiitproportional to
the average queue length:= K,(q..: — ming,) with K, > 0 andpe|0, 1]. When the
actual queue length is less than or equal to the minimumhbtdsi.e. ¢,.; < ming,,
the marking probability is zero. Therefo@f# = %, thatis, the window size will keep
increasing and not converge. In the following, we will dissuhe stability property of
this model whem,.,> min,;,. Without loss of generality, lef(t) = g,.(t) —miny,. Since
the system behaves the same as a Drop-Tail queue once the lgngth exceeds the
maximum thresholdnax,;, to focus on the behavior of AIMD/RED, we choosex,;,

to be sufficiently large such that,.. = 1.

It should be noted that, (3.1) is a generalized AIMD/RED asigpn control model,
which includes the model studied in [22, 23] 24| 25,26, 3Ayvd choosex = 1, § =
0.5, (3.1) is equivalent to the traditional TCP/RED model. Wl also show in the next
section that the stability properties of the specific modehie literature is compatible

with the corresponding properties of this generalized rmaslevell.
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3.3 Stability and Fairness Analysis with Delay-free mark-
ing
3.3.1 Delay-free Homogeneous AIMD/RED system

With the fluid-flow model[(3.11), we assume that the traffic I¢ADAIMD flows) is time-
invariant, i.e.,N(t)=N, and the round-trip time of each flow is a constapf{)=R. In
the case of delay-free marking, i.e.= K,q(t), the original delay-free marking model

(3.3) can be written as a closed-loop dynamics:

AWt o 20-8). W(t)
dt = ﬁ - 1+ 0 W(t) R qu(t>7
N ¢>0 (3.2)
doy _ )"
at N W)
{T - C}7, q=0.

For a single-bottleneck system, the equilibrium pdint, ¢;) for (3.2) is given by

:R_C. . o(l+p)N?

Wo=77  “=s5n_prck,

(3.3)

At equilibrium, the RED queue length is inversely propamabto k,. Thus, we

should choosés, according to the delay budget.

With the transformed variablé® : =1V — Wi, ¢:=q — ¢, (3.2) becomes
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0 avg, <min,
avg, —min,, .
IJd =V Pmax L n, < avg, <max,
max,, —min,,
D, 1 max, <avg,

maxp

m I, m axg, K

Figure 3.1: RED Marking Scheme

i 2(1 - 3) (W(t) + Wg)?

W) = R i)
21— B)W2(t) + 2W ()W, 3.4
"1+ 8 R =Ky, G4)
i = %),

The equilibrium point of@3.4) is (W*, §*)=(0, 0).

We construct the positive-definite Lyapunov function,

< (1+ B)N?3

- 1
VW, q) = 1= B2

W) + 5K (),

which is used to derive the following theorem.

Theorem 3.1 The equilibrium point 0f3.2) is asymptotically stable for al’,, > 0.
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congested queue

TCP load factor

Control law | «——

p (RED)

TCP window control

Figure 3.2: Block Diagram of Generalized AIMD/RED System

The proof of Theorem 1 is omitted, and we will prove a more gaitbeorem (The-

orem 2) in the next subsection.

From the viewpoint of control theory, the block diagram of RIMD/RED system
is depicted in Fig._3]2. By a suitable control law, we rel&te dutputy with the inputp,
which makes the original open loop systems into a closeddoogrol system to achieve

asymptotic stability.

3.3.2 Delay-free Heterogeneous AIMD/RED System

In the previous subsection, we discussed the stabilitygitgpf the homogeneous-flow
system when there is only one type of flows with the paramedgr(p, 5). To support
heterogeneous multimedia applications, we study the sysii¢gh heterogeneous-flows,

i.e., there are two or more types of flows with the parametes(@;, 5,), (a2, 52), - - -,
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(s Bm)-

First, we consider the case when there are two differenrbgemeous flowsiv;

whoseRT'T is Ry, andW;; whoseR1'T is R,, with the parametersy, 5,), (a2, 52),

respectively. The number d#/; flows is V;, and that ofiV;; flows is N,. Then the

corresponding mathematical model has the following form,

i 2
dW(t) _ o 2(1— ) ' WE(t) Koqh),
dt Rl 1 + 61 Rl
dWII(t) _ % - 2(1 - 62) . lel(t)2 . qu<t)7
dt R2 1 + 52 R2
N W (t) N NoWy(t) _c >0,
dq(t) 1
= (3-5)
NiWi(t) — NoWy(t)
—CYr, g=0.
{ Rl _I_ R2 } ) q
The equilibrium point§W;, W}, ¢;) of (3.5 can be obtained as
. R1R,C
WI - RN a2(1—51)(1452) /2. R N;
2N+ (Garanag)) /- BV
— R RyC _
II' = o (1+51)(1-8 !
<a2§1fﬁ1§§1+53§>”2 RNy A+ NV
. a1+ 51)[Ra Ny + (%)U%&Nz]z
4y = (3-6)

2RIR3C?*K,(1 — ()
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With the transformed variablé§’; (t) := Wi (t) — Wy, Wy(t) :== Wi (t) — W},
andq(t) := q(t) — ¢, (3.5) becomes
¢ 21— B1) (Wilt) + W7)

Wi(t) = — 1+ 5, i) Kpq(t)

21— By) WE() + 20 Wi (1)

1+ 5 I o
Wi(t) = - 2<11+_ ﬁﬁf) Wn(tg —
201 Bo) Wi (1) + 2W5, Wi (t) Kpg5,
1+ 53, 1tz
o Ny W) LN I/T/H(t). (3.7)

Ry Ry
The equilibrium point of3.7) is then (V;, W7, @)=(0, 0, 0).

With (3.7), choose the following positive-definite Lyapuwrfanction,

V(Wi(t), Wii(t), 4(t))

(14 B1) N %9 (1+ B2) Ny

+E,G° (1)

Then,
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%Wn(tmfn(t) + 2K,G(1)q(t)

_ ié\??[;i W2()(Wi(t) + 2W7) (1) + a5)

2N, K,
Wit Ry

WE (Wi (t) + 2W7) () + g5)

< 0

From the physics constraint point of view, the positive-giédi Lyapunov function is
the total energy function of the system, i.e., the sum ofticrend potential energy. Here
V <0, sinceW;(t) + 2W; > 0, Wy (t) + 2W} > 0 andq(t) + ¢& > 0, which means
the energy of the system is non-increasing. Thus, we praielile equilibrium point is

stable. To conclude asymptotic stability, we first consttierset of states whefé = 0,

M: = {(Wb Wlb q) : VZO}
= {(Wr, Wiy, §) : Wi=Wp=00rj=— ¢:}.

By LaSalle’s Invariance Principlé [36], trajectories 1) converge to the largest
invariant set contained iM. We will then prove that the only invariant set contained in
M is the equilibrium point, 0, 0). If (W;(t), Wy (t), G(t)) is equal to(0, 0, G(t)) or
(Wi(t), Wi (t), —q), by using(3.7), we can conclude thabV; (t+), Wi, (t), g(tT))
is not in M, which implies that no trajectory can stayM1, other than the point( 0, 0).

Therefore, asymptotic stability is obtained, which we swanae as follows:
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Theorem 3.2 For any K, > 0, the equilibrium point of3.7) is asymptotically stable for
any positive pairgay, 41), (a2, [52) and any positiveR;, Rs.

We can also extend our results to the case when more than texmgeneous flows

existin the same system. Suppose that ther@ad#ferent heterogeneous flows(, ),

(a2, B2), -+, (qum, Bm) Sharing the resources, with the numbér, N, ---, N,,, and
different RTTs Ry, Ro,--- , R,, respectively, then those flows can be mathematically
modeled as,

dW[(t) o (03] 2(1 —61) W[(t)2
dt - E o 1 + 61 ’ Rl ’ qu<t)7

dW[[(t) _ % . 2(1 - ﬂg) ) W[[(t)z ) K
dt Ry, 1+ R, .

q(t),

dW]\/](t) . (67 2(1 — ﬂm) W]V[(t)z

Zm NVV. ) - Ca q > 07
AT (3.8)
(MY -y, g=0.

With (3.8), we choose a positive-definite Lyapunov funcisn
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V(Wi(t), Wir(t), -+ . Wa(t), 4(t))

(14 B1) Ny (L4 B8)MN

= s gy MO

(1 4 Brm) Ni
2(1 = B Wit

whereW;(t), i=1,2, - -- ,m, and{(t) have the same meaning as[in{3.7). Then,

+o W () + K@ (),

(14 B2)Ny = =

1+ B8N, -, =
( COL) WiWr + WiWir

V= = Wi

(1 + /Gm)NM T < ~ L
o Wy W, 2K

_ 2N|K,
- WP%R,

W2(Wr +2W) G+ q)) — - -

2N, K,
Wi2R,,

Wi (Was +2W3)(d + 45)

<0.

We can obtain its asymptotic stability by applying LaSallkeivariance Principle, and

thus have the following theorem,

Theorem 3.3 For any K,>0, the equilibrium point of systef®.8) is asymptotically sta-
ble for any positive pairéay, 1), (a2, 52), -+, (m, Bm) @nd any positivé?;, Ry, -+, R,,.
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3.3.3 TCP-friendliness and Differentiated Services

For two competing AIMD flows, from[3.6), we can also get the relationship between

W} andWW7j, as follow:

Wi a1+ B) (1 = B2) 1
W~ =BT B (3.9)

This means that the ratio 6 and W}, depends only on the choices @f;, ;)
and (ay, f2), and regardless of the traffic loads in the network and timdiial states.
Therefore, by choosing suitable;, ;) and(as, 32), we can guarantee the fair share
of bottleneck bandwidth for each flow. Consequently, for &AM, /) flows to be TCP-
friendly, i.e., co-existing TCP and AIMD flows obtain the sashare of bottleneck band-

width, the necessary and sufficient condition is

_3(1-p)
o= 57 (3.10)

A large value ofg can be chosen for applications that cannot tolerate drelséinges of

the throughput, and can be set according to the TCP-friendly condition.

In the Internet, different types of multimedia services prmavided with different re-
source requirements. To provide differentiate servicescan assign different traffic a
different weight. Eq.[(3]9) indicates that we can easilyatlthe AIMD parameters of
the end systems to provide differentiated services acagrtti different QoS require-
ments. For instance, let the throughput of an AIMD, ;) flow be k times that of an
AIMD (s, () flow, the AIMD parameter pairs should satisfy

o k(1= B1)(1+ [a)

a1+ 8)(1—pB) (311)
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3.3.4 Numerical Results

The traces of average window size and queue lengthDofTCP (@ = 1, 8 = 0.5)
flows and100 AIMD( 0.2, 0.875) flows are given in Figs. 3.3 amnd B.4, respectively. The
parameters used ae = 100, 000 packet/seck = 100 ms, K,, = 0.0001, andminy, =

200 packets. For the TCP-friendliness, [0 TCP flows and24 AIMD(0.2, 0.875)
flows share the bottleneck, and the numeric results with dbadire shown in Fid. 3.5.

It can be seen that when the flows in the network possess the (gan¥) parameter
pair, the ensemble averages of window size and the bot#teméeue length converge
to some certain values, i.e., the equilibrium points wewetin the previous analysis.
When TCP and AIMD(.2, 0.875) flows co-exist, they will fairly share the link capacity
in steady state, sincé.@, 0.875) satisfies the TCP-friendly condition (3110). Thus, the

numeric results validate the theorems.

Furthermore, from Fig§. 3.3 ahd B.4, with a smaller value ahd a larger value of,
it takes longer time for the system to converge to the stetadg,sand the link utilization
during the transient stage is low; however, in steady stag oscillation amplitudes
of the instantaneous window size and queue length are smhilether words, with a
smaller value ofx and a larger value of, the queuing delay jitter is smaller, and the
link utilization in steady state is higher, which are degifer supporting time-sensitive

multimedia applications.
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TCP window trace
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(a) TCP window trace

AIMD(0.2, 0.875) window trace
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(b) AIMD(0.2, 0.875) window trace

Figure 3.3: Window Trace
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TCP queue length
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(a) TCP queue length

AIMD(0.2, 0.875) queue length
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(b) AIMD(0.2, 0.875) queue length

Figure 3.4: Queue Length
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TCP and AIMD(0.2, 0.875) window trace
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(a) TCP and AIMD(0.2, 0.875) window trace
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(b) Queue length

Figure 3.5: TCP-friendliness
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3.4 Stability and Fairness Analysis with Heterogeneous

Feedback Delays

In this section, we study the stability properties of the AINRED system with feedback
delay, using the method of Lyapunov functional and Lyapuiooetion with Lyapunov-
Razumikhin condition, to establish different sufficienhddions for the stability of the

AIMD/RED system with heterogeneous flows and feedback delay

3.4.1 Homogeneous Delayed AIMD/RED System

For AIMD/RED system with feedback delay, i.e(f — 7) = K,q(t — 7), we can obtain
the equilibrium poin{ W, ¢;) of the system(3]1) as

R*C . a(l+p)N?

._RC _ . 12
Wo C DTS- RCK, (3.12)

whereR* = %0 + T,. Due to the highly nonlinear nature and the effect of delaythe
system, no suitable Lyapunov function could be construtdgatove global asymptotic
stability of the equilibrium. Without loss of generalityewix the time-delay argument

t — 7 in the system t@ — R*. Then, the systen) (3.1) can be linearized as

- alN -~ alN - «
W(t) = —paaWt) = oWt — R - z5740(t)
_ 2 P
_ <2(11+ ﬁﬁ) Kp]€2R . Rgc> d(t . R*), (313)
N .
i) = W () — )
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wherelV:=W — Ws, ¢:=q — q}-

System(3.13 can be written in the form of

() = Az(t) + Bzt — RY), (3.14)
—aN -« —aN —2(1-8) KpC?R* 4 _a

Wlth T = (W(t), Cj(t))T, A — R*2C R*2C andB _ R*2C 118 N2 20
R* R*

The norm of matrix is defined byA|| = / Anax (AT A), i.e., the square root of the maxi-

mum eigenvalue ofi” A.

It can be checked that is a Hurwitz matrix, which implies that for any positive

definite matrixQ, there exists certain positive definite matftxsuch thatA” P + PA =

—Q.

Theorem 3.4 Let M:\/)\max(P)/)\min(P), if there exist positive definit®? and () sat-
isfying AT P + PA= — @ such that matrixQ) — 2M ||PB]| I is positive definite, then the

equilibrium point of(3.2) is locally asymptotically stable.

Proof: With (3.13) and (3.14), we choose Lyapunov functiori(x) = ¥ Px. Then

V = iTPz+1TPi
= 2T(t)(ATP + PA)x(t) + 227 (t — R*)BT Px(t).

Applying Lyapunov-Razumikhin condition, we assume1 such that

V() < p’V(t), fort — R* < ¢ <t,

)\max(P)

which implies that|x(&)|| <M -p-||z(t) P

, whereM =

50



3.4. STABILITY AND FAIRNESS ANALYSIS WITH HETEROGENEOBBBECK
DELAYS

Thus,

<t
IN

—aT(1)Qu(t) + 2|e(t — B [|PB] e(0)]
< —aT(1)[Q - 21 M| PB] Ta(t).

SinceQ — 2M ||PB|| I is positive definite, there exists> 1 such that’ < 0. The

local asymptotic stability of systeif.2) is then obtained]

Lyapunov-Razumikhin condition is used in Theorem| 3.4 tol déth the delayed
terms inV. Lyapunov functional is another method that can be appliedmstudying
the stability of delayed systems. In the following, we apilg method of Lyapunov

functional to give a different sufficient condition for thechl asymptotic stability of

system(3.2).

Theorem 3.5 If there exist positive definit® and Q satisfyingA” P + PA= — Q and

. - | @—H —-PB | " - .
positive definited such that matrix Is positive definite, the equilib-
-BTP H

rium point of (3.2) is locally asymptotically stable.

Proof: With (313 and (312, we choose Lyapunov functionl(z) = 27 Pz +
[l pe 27 (s)Hz(s)ds, then
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V = 2T (t)(ATP 4+ PA)x(t) + 227 (t — R*)B" Px(t)
+at (t)Hx(t) — 27 (t — R*)Hz(t — R¥)

= T (0(Q — H)a(t) + 27 (t — RY)BT Pa(t)
—aT(t — R*)Hz(t — R")

—H —-PB x(t
= —(a"(t),2"(t - RY)) - ¢ "
-BTP H z(t — RY)
: : | Q—H —-PB | .
Thus, systen{3.2) is locally asymptotically stable i is positive
-BTP H

definite.™

The two theorems provide sufficient conditions of local aptatic stability for the
AIMD/RED system. We give a numerical example for Theorem B N=10, C=3000
(packets/sec), T,=0.02(sec), K,=0.0005 with a=1, 5=0.5.

39.0410 2.2648

We choose)= { and H=1Q. Note thatQ) and H are positive

2.2648 6.4539
19.0990 0.2793
0.2793  0.0599

definite. we getP=

] with Matlab, and the eigenvalues of the ma-

| Q—H -PB .
trix are all positive: 0.1780, 3.2305, 3.4105, 38.6758; theegfo
-BTP H
Q—-H —-PB | i - .
is positive definite. Thus, the condition of Theorem| 3.5 badd
-BTP H

the system is locally asymptotically stable. Simulatiosutes using the same parameters
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will be given in Sec_35.

Theorem$ 3J4 arld 3.5 give different sufficient asymptotbisity conditions, which
allow us to use any of them at our convenience. Again, the pytm stability is for the
average values of window size and queue length. Given teaatBrage window size
converges tdV;, the maximum instantaneous window size is boundeditg /(1 + 53),
so the AIMD window size can be marginally stable with knowrubds. Similarly, the

instantaneous queue length is bounded.

So far, we have mathematically derived the local stabilityditions of AIMD/RED
system. For local asymptotic stability, once the systenersnthe stability region or
region-of-attraction, the system will converge to the &guum asymptotically. Obvi-
ously, the equilibrium point belongs to the stability ragidVe conjecture that, with both
the slow-start and the AIMD algorithms of the TCP/AIMD protds, the system will
eventually evolve to the stability region and equilibrivend thus global asymptotic sta-
bility can be achieved. Simulations in Séc.]3.5 also demmatesthis tendency. Global

asymptotic stability conditions for AIMD/RED systems at#l sinder investigation.

3.4.2 Heterogeneous Delayed AIMD/RED System

In the previous subsection, we discuss the stability iséb@mogeneous flows with the
same AIMD ¢, () pair and the same round-trip delay. With the emergence oérmaod
more heterogeneous traffics in the Internet, understartegtability properties of the
AIMD/RED system with heterogeneous flows is critical fonitg network planning and
design. In this section, we first consider two classes of flawtls parametersd(;, 3;),

(cve, (32), traffic loadsN;, N, and RTT's R;, R,, respectively, as depicted in Fig. B.6.
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Figure 3.6: Heterogeneous AIMD/RED System

The model and results in this part can be generalized to ampauof flows with het-

erogeneous AIMD parameters and feedback delays.

Taking all the time delays into consideration, the AIMD/RE{stem shared by two

classes of flows can be modeled as

dWi(t)  an 2(1=01) Wi(t)Wi(t—m)
7 _Rl(t)_ 1_|_61 Rl(t—Tl) qu(t—71)>

dW]](t) (6) 2(1—62) W]](t)W]](t—’TQ)

dt  Ro(t) 1+0  Ra(t—m) Kpa(t =),
NWi (1) NaWys(t)
dq(t) Falt) O R
K NWi (1) NaWyg(t) o)
{ R.(t) Rao(t) CF, a=0.

with 7 andr, as the average of round trip tindg (¢) and Ry (t), respectively .
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Then, the delayed linearized system about the equilibriamtps

B a1 (N1 R5GH+NyRY) .
%% t:— Wi (t)—W;(t—R
1) Gomm Wil =T R)
. 2 2 D% P2
1+ 6 (N1R;G + NyR7)?
ald(t) (05 *
— t—
RTZC CRT2q( R1)7
B as(N1R5G+NoRY) .
Wii(t)= — W Wi (t—R
(1) Crm W)= W)
(3.16)
_ 2 %2
_2(1 Ba)  K,C*Ri*Ry Q=R
1+ 6y (N1R;G + NyR7)?
05267(t) Qo *
— t—
R;ZC + CR§2q( R2)7
2 Nl N2 GNIRS ~
= Wt 1% t
1) = Wi+ Wl -y et a1
)
R2(N1R2G + NZR*) '
wherelV; := W — Wy, Wi =W — Wi, ¢:=q—q;.
(Wi, Wiy, q)= (e i CRik; L5 s the equilib-

N1 R3;G + NoRy N1R5G + NoRy' 2(1 — B1) WK,
rium point of systerrﬂﬂS) Similar to Sec. 3]4.1, we aldarsandr, to be R} and R3,

o _on(1 461 = B2) 1y
s A= =+ 5)

respectively, wheré?; = C + T, Ry =

55



3.4. STABILITY AND FAIRNESS ANALYSIS WITH HETEROGENEOBBBECK
DELAYS

System|[(3.16) can be rewritten as

t(t) = Az(t) + Byz(t — R;) + Box(t — R3), (3.17)

a1y 0 R_,{OQQC blll 0 6113 0 0 0
A= 0 an & [Bi=| 0 0 0 |andBy= |0 b2y b2y
g—% % ass 0 0 0 0 0 0
Oél(NlR;G + NQRT) OéQ(NlR;G + NQRT)
wherea;;= — , Qgp= — — :
H GCRIR; > CRiR}
Qe — GN1R§2+N2RT2 bly— — Oél(NlRSG—i‘NgRik)
BT RIRNNRG + NoRy) GCR:R} ’
b 20-0) KGCPRiRS? o
P 145 (NMRG + NoRj)? T CRY
O[Q(N:[R;G + NQRT) 2(1 — 62) KpCZRT2R2 9
b222: - CR*R* 5 b223: - 1 - ¥\ 2 + 2"
149 +62 (NlRQG"‘NQRl) CR2

Also, we can check thatl is a Hurwitz matrix. Let]\/[:\/)\max(P)/Amin(P), we

have the following theorem.

Theorem 3.6 If there exist positive definit? and Q) satisfyingA” P + PA= — @ such
that matrix@ — 2M (||PB|| + || PB.||)I is positive definite, then the equilibrium point
of (313 is locally asymptotically stable.

Proof: With (3.168) and(3.17), we choose Lyapunov functioi(z) = ¥ Pz, then

Vo= o (t)(ATP + PA)a(t) + 22" (t — R}) BY Pu(t)
+ 227(t — Ry) BT Px(t).
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Let R* = max{R;, R5}. Applying the Lyapunov-Razumikhin condition, we assume

u>1 such that

V() <pV(t), t—-R<E<t,

which implies that|z(¢)|| < M-p-||z(t)|].

Thus,

<.
AN

—a" ()Qu(t)+2[|x(t — B [|1PB: ] [|l=(#)]
+2[z(t = B [PBs| [|=()]]
< —2'(1)[Q = 2u M (||[PBy| + || PBa| )] (t).

Therefore, there exiss>1 such thatl’ <0 under the condition of the Theorem. The

local asymptotic stability of systeif8.15) is then obtained]

We can also apply the method of Lyapunov functional to obdadlifferent sufficient

condition for the local asymptotic stability of systéB115).

Theorem 3.7 If there exist positive definit® and @ satisfyingA” P + PA = —Q and
Q—-2H —-PB, —-PB,
positive definite/{ such that matrix| — BIP H 0 is positive definite,

-BfP 0 H
the equilibrium point off3.15) is locally asymptotically stable.

Proof: With (3.16) and(3.17), we choose Lyapunov functional

TPer/ s)Hx(s d8+/ T(s)Hzx(s)ds,
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then

V = 2T (t)(ATP + PA)x(t) + 227 (t — RY) BT Px(t)

+227(t — Ry) BT Pa(t) + 227 (t)Hx(t)

—2T(t — R})Hx(t — RY) — 27 (t — Ry)Hax(t — R3)

= —2T(t)(Q — 2H)x(t) + 227 (t — R) B Px(t)

+227(t — Ry) BT Px(t) — 2" (t — R})Hz(t — R})

—zT(t — Ry)Hz(t — R})

= —(27(t),2"(t — RY), 2T (t — R}))-

-BTP o 0 || z(t—-RY)
_BTP 0 H z(t — RY)

Q—-2H —-PB, —PB,
DenoteD = | —BI'P H 0 . Thus, systenf3.15) is locally asymptoti-

-BfP 0 H
cally stable ifD is positive definite.

The two theorems provide sufficient conditions of local aptatic stability for the
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AIMD/RED system with heterogeneous delays. We now give aarigal example for
Theorem 3.J7: letV,=N,=10, K,=0.0001, C=12000(packets/sec). Choos&a,, 1) =
(1, 0.5) with 7,,;=0.01(sec), and(az, B2) = (0.2, 0.875) with 7,,=0.008(sec), respec-
107.8925 66.0119 49.7801
tively. LetQ=| 66.0119 62.8475 38.7408 andH:iQ. Note that) and H are
49.7801 38.7408 52.1792
13.8052  6.9367 —0.3094
positive definite. We obtain matrik= | 69367 11.6831 —0.1195 | with Matlab,
—0.3094 —0.1195 0.1443
Q—2H —-PB, —PBs
and the eigenvalues of the matidx = | —BI'p H 0 are all positive:

~BIP 0 H
2.4997, 3.4597, 3.8422, 5.5610, 7.9974, 13.6734, 46.2002592, 93.4159; therefore,

D is positive definite. Thus, the condition of Theorem| 3.7 badtid the system is lo-
cally asymptotically stable. Simulation results usingshene parameters will be give in
Sec[3.5.

While choosing parameters in the numerical example, we hbgefound that link
capacityC' and feedback delays cannot be too large, so that the maicen be positive
definite. This observation is also consistent with [9], whsuggested that TCP/RED
will become unstable when delay increases, or more stikimghen link capacity in-

creases.

Similarly, we can obtain the local stability of the AIMD/RE8ystem when it is
shared by more than two classes of heterogeneous flows asWelproof is omitted

here.
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3.4.3 TCP-friendliness

According to the equilibrium point of the syste];/IW}, = G is a function of the
AIMD parameter pairs, and it is independent of the delays.othrer words, for two
AIMD flows, as long as their AIMD parameters satisfy the caiodi thatG' = 1, their
average window sizes are the same and their flow throughpwssely proportional
to their RT'T's. To be TCP-friendly, the necessary and sufficient cormdigostill o« =
3(1 = 3)/(1+ ), the same as the conditidn (3.10) derived in the delay freterys in
Sec[3.3B.

3.5 Performance Evaluation

Matlab is used to obtain the system evolution trajectory of the flamdel in order to
verify the asymptotic stability proved in Séc.3.4. Netwsikulator, NS-2, is used to

evaluate the performance of the AIMD/RED systems.

3.5.1 Numerical Results

The traces of window size and queue length @TCP flows andl0 AIMD(0.2, 0.875)
flows in a RED-enabled link with feedback delays are givenigsE3.7 and 318, respec-
tively. The parameters used are the same as those in the ioahetample of Theo-
rem[3.5, i.e.(’=3000 packet/seck,=0.0005, RT'T = 0.02 sec, andnin,, = 200 pack-
ets. For heterogeneous-flow case lleTCP flows and 0 AIMD( 0.2, 0.875) flows share
the bottleneck witlC’=12000 packet/seck,=0.0001, andR7'T’s of the TCP and AIMD

flow are0.01 sec and).008 sec, respectively. These parameters are the same as those
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in the numerical example of Theorém13.7. To show the locaingégtic stability of the
system, we choose the value of the initial condition closth&equilibrium point. As
shown in the figures, all systems are asymptotically stald the numerical results val-
idate the theorems proved in this chapter. Since the paearpair (0.2, 0.875) satisfies
the TCP-friendly condition derived, the average windovesiaf the competing TCP and
AIMD (0.2, 0.875) flows should be the same, which is verified by the numericallte
shown in Fig[3.D.

3.5.2 Simulation Results

We use network simulator (NS-2) to further study the perfamge of the AIMD/RED
system with realistic protocols and network topologiestiBsingle bottleneck and mul-
tiple bottleneck topologies are used in the simulationse fdllowing parameters are
used unless otherwise explicitly stated. The routers adjaito the bottleneck link are
RED-capable: all packets can be queued when the average tprggih is less tha200
packets, and the packets will be discarded with probali{iftimes the current average
queue length minug00. The packet size of all flows is 250 bytes. The bottleneck link
capacity isl Gbps, equivalent td00, 000 packet/sec.

We first let100 TCP flows andl00 AIMD( 0.2, 0.875) flows with homogeneous de-
lays share a single bottleneck, respectively. Their winttases and instantaneous queue
lengths are given in Figs. 3110, 3111, 3.12, and13.13, witfler@int values ofR7'T" and
K,. All figures show that the flow window sizes and queue lengtegariodically os-
cillating in steady state, and their time averages over ad@re converging to certain

values, i.e., their time averages are asymptotically stabl

As shown in Figs[(3.10 and—3]11, a small valuefof can reduce the oscillation
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amplitude in the steady state, and thus improve the linkzatibn and reduce delay jitter
in the steady state, at the cost of taking longer for the ayttgeach the steady state. The
network utilization in transient states is low, so a slowvangence speed is not desired.
Comparing Figs_3.10 arid 3112, it is noticed that the systétn MMD (0.2, 0.875)
flows has smaller oscillation amplitude in the steady stat@abse the AIMD flows have
a smaller value ofr and a larger value gf than that of TCP flows. Another observation
from Figs[3.1D an 3.13 is that the larger tR€'T", the slower the system converges to

the steady state and the larger the variation of the quegghémthe steady state.

To study the system performance with heterogeneous flow} IMD( 0.2, 0.875)
flows compete with100 TCP flows, and theirRTT's are randomly chosen between
0.09 sec to0.1 sec. The traces of their average window size and queue langtiiven
in Fig.[3.14. It is shown that, when heterogeneous TCP andD{IM, 0.875) flows
share the network, the network converges to the steadycgiatiely and the queue oscil-
lation in the steady state is small. In other words, whenrbgeneous traffic shares the
network, the system performance is even better than thhatawiy TCP flows (high os-
cillation amplitude in the steady state) or homogeneousBI(d.2, 0.875) flows (slow
convergence speed). Another observation from [Fig.] 3.14as the average window
sizes of the TCP flows and the AIMD ., 0.875) flows are close to each other, therefore

validating the TCP-friendly condition derived in Sec.]3.3.

A realistic network will accommodate flows with heterogem&oound-trip delays,
and some flows may undergo multiple bottlenecks. The togolsgd for a multiple-
bottleneck scenario is shown in Fig. 3.150 group | flows compete withs0 group |l
TCP flows in linkryr; and with 50 group Il TCP flows in linkry7,. The round-trip

times of the flows are randomly chosen fréhms to400 ms. There aré0 TCP flows

69



3.5. PERFORMANCE EVALUATION

3000

' Qu'eue ﬁengtﬁ —
Time Average Queue Length
2500
= 2000
o0
£
S
> 1500
=
Q
=
< 1000 |
500
Time (second)
140 T . . . , . . i
120
100
x 80 | /
3 i
3 j
E= 60 Y
=
40
AIMD Window Size
20 TCP Window Size ——— ]
AIMD Window Size (time average) -
0 TCP Window Size (time average)

0 5 10 15 20 25 30 35 40 45 50
Time (second)

(b) Window trace

Figure 3.14: TCP and AIMDY2, 0.875) flows

70



3.6. RELATED WORK

————— group:
,,,,,,,,,,,, = group :

= group :

Figure 3.15: Queue length, multiple-bottleneck topology

and 50 AIMD(0.2, 0.875) flows in group I. The trace of queue lengthrgtis shown
in Fig.[3.16. Although the instantaneous queue length lased over time, the time
average does not change significantly. The stability camditfor multiple-bottleneck

AIMD/RED systems are discussed in Chapter 5.

3.6 Related Work

Congestion control mechanisms and AQM schemes for thenlettdrave been exten-
sively studied, aiming to achieve quick convergence toiefiicy, stability, fair band-

width sharing, and low packet loss rate.

Internet stability properties and fairness issues in tiesgmce of feedback delay have
received much attention recently. The original work of msipg the congestion con-
troller using utility optimization has been done [16]. Sirtben, lots of work have been
conducted for the TCP/Random Exponential Marking (REM}esys For example, for
the case of a single node and a single source in the TCP/RERIsythe design of con-

gestion controllers and the stability problems with delases studied in [7, 17, 18], and
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the sufficient conditions for global stability are given aslwRecently, a discrete con-
gestion control system has been proposed in [19] to maibiatim stability and fairness
under heterogeneous delayed feedback. The boundednestahitity for the TCP/REM

system are discussed in [20].

In the design of congestion controllers, one of the impdrtaiteria is asymptotic
stability, i.e., the capability of the network to avoid dktions in the steady-state and to
properly respond to other external perturbations. AQM seerecently discussed in-
clude RED, REM, Proportional-Integral (PI) control and E&%atio-based RED (LRED).
For TCP/RED system, the sufficient conditions for globabsiiy in the absence of feed-
back delay are given in [26]; the conditions for the stapitif TCP/RED system in the
frequency domain are given inl[9] by Nyquist stability crite. The design and anal-
ysis of the PI controller for RED routers are discussed irj.[2Bewly proposed AQM
scheme, LRED in[35], measures the latest packet loss eattbuses it as a complement

to queue length for adaptively adjusting the packet drojppaindity. To the best of our
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knowledge, the stability properties of AIMD/RED systemshe presence of heteroge-
neous AIMD and TCP flows with heterogeneous feedback delays hot been studied

and they are the main focus of this chapter.

3.7 Summary and Future Discussions

In this chapter, we have studied the stability of AIMD/REDs®ms with and without
the consideration of feedback delays. Delay-free systeans been proved asymptot-
ically stable. Sufficient conditions have been obtainedtli@ asymptotic stability of
both homogeneous-flow and heterogeneous-flow systems eattback delays, which
provide insight and guidelines for the design of a stabléesys TCP-friendliness issue
has also been discussed for multiple flows with different Blighrameters and different
RTTs. Numerical results have been given to validate the analytesults, and exten-
sive simulations with NS-2 have been conducted to studyybtes performance with
realistic protocols and network topologies. The study baluseful to re-design and re-
engineer TCP congestion control for supporting heterogesenultimedia application

in more diversified Internet in the future.

There are many interesting open issues require furtheargse First, for RED
gueues, the packet drop probability depends on the quegélenly. With the model
presented in the chapter, the average queue length in théysstate can be derived,
which can be used to give a rough estimation of the packet#éssHowever, the packet
loss rate depends on the queue length distribution, whicimksown from the model.
Second, the robustness of the system with disturbance tont-bved TCP connections

and UDP connections is an important open issue. Third, desimgftleneck topology
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is used in this chapter. In a follow-up work, we will discug® tstability analysis to
systems with multiple bottlenecks in Chapiér 5. Finallyycsi multicast applications
may use a large portion of Internet bandwidth in the futuey o design and analyze
flow/congestion control mechanisms for multicast appiicet is a very challenging is-

sue beckon for more research.
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Chapter 4

Bounds of AIMD/RED Systems with

Time Delays

The Additive Increase and Multiplicative Decrease (AIMDBhgestion control algorithm
of TCP (Transmission Control Protocol) deployed in the eysteans and the Random
Early Detection (RED) queue management scheme deploydteimtermediate sys-
tems contribute to Internet stability and integrity. Pomis research based on the fluid-
flow model analysis indicated that with the consideratiotimme delays, the TCP/RED
system may not be asymptotically stable when the time dalayise link capacity be-
comes largel[9]. However, as long as the system operatestaetasired equilibrium,
small oscillations are acceptable, and the network pedoga (in terms of efficiency,
loss rate, and delay) is still satisfactory. Deriving theubds of these oscillations for
the AIMD/RED system with time delays is non-trivial. In thisiapter, we study the
practical stability of the homogeneous-flow and heterogasdlow AIMD/RED system

with feedback delays, and obtain theoretical bounds of th&DAflow window size and
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the RED queue length, as functions of number of flows, linkac#ty, RED queue pa-
rameters, and AIMD parameters. Numerical results with Matnd simulation results
with NS-2 are given to validate the correctness and dematestine tightness of the de-
rived bounds. The analytical and simulation results prewdportant insights on which
system parameters contribute to higher oscillations osgtstem and how to set system
parameters to ensure system efficiency with bounded dethlpas. Our results can also
help to predict and control the system performance for haewith higher data rate links

multiplexed with more flows with different parameters.

4.1 Introduction

Internet stability has been an active research topic sisdest congestion collapse was
observed. With a fluid-flow model of the system, it has beewguidhat, without feed-
back delay, the AIMD congestion control mechanism, couplétth the RED queue
management, can ensure the asymptotic stability of thersys9]. However, with a
non-negligible feedback delay, the AIMD/RED system may m@tasymptotically sta-
ble when the delay becomes large and/or when the link cgplaedomes large [9]. On
the other hand, the Internet is a very dynamic system, andatarate some transient
congestion events. In fact, TCP controlled flows aggregsmmbe for available band-
width in the network, and create transient congestionanFagractical point of view, a
concrete system is considered stable if the deviation offrtbigon from the equilibrium
remains within certain bounds determined by the physitahsbn. The desired state of
a system may be mathematically unstable and yet the systaiiates close enough to

this state for its performance to be acceptable. To dealswith situations, the notion of
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practical stabilityis more useful.

With large time delays or link capacities, the AIMD/RED sst as a whole may
not be asymptotically stable![9]. However, it can be pralycstable as long as the
end systems do not overshoot the available bandwidth toerelgv In this case, the
overall system efficiency can still be high, and the packss late and queuing delay
can still be well bounded, i.e., its performance is stilleguable. Therefore, the critical
issue to investigate is: does the AIMD/RED system alwaysaipein the area close
to the desired equilibrium state, and what are the the@aldbicunds? To answer these
questions, studying system practical stability and bousdke key, which is also the

focus of this chapter.

With clearly defined bounds, a system is considered prdigtistable. The bounds
can be used as a guideline to set up the AIMD/RED system pagasiie enhance system
performance. Using the fluid-flow model of the AIMD/RED systaith homogeneous
and heterogeneous flows, instead of applying the Lyapuikewatethod, we derive up-
per and lower bounds of congestion window size and queu¢Hdmgdirectly studying
the inherent properties of the AIMD/RED system. The deritrezbretical bounds pro-
vide important insights on which system parameters cautito high oscillations of the
system and how to choose system parameters to ensure syBtéeney with bounded
delay and loss. The theorems given in this chapter can alpad@redict the system
performance for the future Internet with higher capacitg amore flows with different

flow parameters.

The remainder of the chapter is organized as follows. Hio-models of homoge-
neous and heterogeneous AIMD/RED systems are revieweditdSeand Se¢. 4.3, re-

spectively; upper and lower bounds of the homogeneous aedigeneous AIMD/RED
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systems with feedback delays are also obtained. In[Semdmderical results with Mat-
lab and simulation results using NS-2 are presented toatalithe derived bounds, and
the impacts of different system parameters on the systeforp@ance are also discussed.

Sec[4.b briefly introduces the related work, followed bygshemary in Se¢.4.6.

4.2 Bounds and Practical Stability of Homogeneous

AIMD/RED System

4.2.1 A Fluid-flow Model of Homogeneous AIMD/RED System

For all AIMD-controlled flows with the samex( 3) parameter pair and round-trip de-
lay, the AIMD/RED fluid model relates to thensemble averages key network vari-
ables[[22, 23] and is described by the coupled, nonlineéaréifitial equations (3.1)

The equilibrium poin{IW*, ¢*) for (3.1) is given by

_ RO, . a(l+p)N?

W = :
N 1 T o1 - BRNCPK,

Remark 1.At the equilibrium, the total arrival rate equals the totaklcapacity, so
the link bandwidth can be fully utilized. In other words, #guilibrium point is also the
most desired operating point of the system. If the windowe $szlarger thariV*, the
queue will build up which results in a longer queueing deléthe window size is less
than*, the network load is smaller than its capacity, so the ndtwesources are not

fully utilized.
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4.2.2 Upper Bound on Window Size

It has been demonstrated in [9] that an AIMD/RED system besoasymptotically)
unstable with the increase of round trip delays of the systésing the fluid-flow model,
sufficient conditions for the asymptotic stability of AIMRED systems with feedback
delays have been derived [n [27]. In this section, we showedhan though the system
may become (asymptotically) unstable because of the sftéddime delay, its window
size and queue length are still bounded, and the upper bdumthdow size is close to

the equilibrium.

We study the delayed homogeneous AIMD system with RED defirye@8.1) and
derive the upper and lower bounds of the system. Wensef, =0 in RED and assume
that the traffic load (i.e., the number of AIMD flows) is timevariant, i.e.,N(¢)=N.
With ever-increasing link capacity and appropriate cotigasontrol mechanism, vari-
ation of queuing delays becomes small relative to propagatelays. In fact, recent
work [48] reveals that the variable nature®iI" due to queueing delay variation helps
to stabilize the TCP/RED system. Therefore, we ignore tifiecebf the delay jitter
on the round-trip time and derive the bounds of AIMD/RED systassuming?1'7T" to
be constant. Simulation results with NS-2 in 4.4 shasthe obtained bounds

estimates is still applicable whe®il'T" is actually time-varying.

Notice that the AIMD/RED system defined hy (3.1)are desdribg delayed differ-
ential equations, with initial conditions given liy< W (¢) < W*and0 < ¢(¢) < ¢* on
the intervalt € [—R, 0]. According to[(3.1L), it is also reasonable that wellétt) < G
fort € [-R, 0].
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Theorem 4.1 LetUp > 0 be the largest real root of

RC A (1+4)

Us- (Us =) (Us = 5~ = )" = 7=

thenW (t) < Ug fort > 0.

Proof: With (3.1), we note thati’ < %fort > 0, sinceW () > 1 andgq(t) > 0.

For7 > 0, taking integration on both sides frotm- 7 to ¢ gives

Wt)-W(t—-—7)<—=-7 for t>0. 4.1)

x| e

We show that thé/z (> 0) in the theorem is an upper boundidf(¢) for ¢ > 0, i.e.,
if W(t) = Up for somet = t, > 0, thenW/(¢,) < 0.

With (4.1) andWW (t;) = Ug, and takingr = R andt = ¢, we have
W(tl - R) Z UB — Q. (42)

Notice thatiV (¢, — 7) > U — a-a WhenTt € [R, aR] for any real numbes > 1.

Consider
N-WE) >0
. . R ) )
W=y ~Nwe
{T - C} ) q = 0.

Taking integration on both sides from—aR to t; — R, we have

v

t1—R N t1i—R
/ i(s)ds > = W(s)ds — (a — 1)R-C
t1—aR R t1—aR

> N-(a—1)-(Ug—aa)—(a—1)RC

which implies

gty — B) > [N - (Up — a-0) — B:C] - (a— 1) (4.3)
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sinceq(t) > 0.

Taking f(a) = (a—1) - [N - (Up — a-a) — R-C] and computing the maximum value
of f(a) by letting f’(a) = 0 givesa = (N-Ug + R-C + N-a)/(2aN) and

f(a) = N(Up — R-C/N — a)?/(2q). (4.4)

Therefore, it follows from[{4]2)[{413) and (#.4) théi,(¢,) < 0 sincely satisfies

N'UB'(UB—O[)'(UB—R'C/N—(I)Q o a(1+ﬁ)
20 - 2(1-B)K,’ (4.5)

which impliesiW (t) < Ug fort > 0. O

If all AIMD flows are TCP-friendly, i.e., the average throumit of non-TCP-transported
flows over a large time scale does not exceed that of any aoafur TCP-transported
ones under the same circumstance [47], thes({ pair should satisfies the TCP-friendly
conditiona = 3(1 — 3)/(1 + ) derived in [12] 29]. Thus, the above equality {(4.5)

becomes

. _— . _— . _— 2— 3a
UB (UB Oé) (UB RC/N Oé) —NKp.

(4.6)
By the continuity property o/ - (U — «) - (Ugp — R-C/N — «)? and the fact
that the RHS of{(4]5) is always greater than zero, we can adedhat the largest root
of (4.8) must be greater thaRC'/N + «, whereR-C'/N is the equilibrium value of the
window size for AIMD/RED system. Therefore, the oscillatiof the window size from
its equilibrium value will increase with the increment®find the decrement df,. In

addition, the upper boundy itself will increase with the increment a@-C, a and the

decrement ofV, K.

It is also noted that the upper bound derived in Thedrem 4alg®bal one for the

timet, i.e., the window sizéV (¢) will not go aboveUj for anyt > ¢;. If we assume,
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instead, that there exists > ¢, andAW > 0, such thatV (t}) = Ug + AW, then there
must be some’ € (0, ¢/ —t,) such thalV (¢, — ') = U andW (¢, —7') > 0. However,
similar to the proof of Theorem 4.1, we halié(! — ') < 0, which is a contradiction.

Therefore, the window size is upper bounded yfor anyt > 0.

4.2.3 Lower Bound on Window Size and Upper Bound on Queue

Length

In the previous subsection, we proved that the AIMD windaxe§V (¢) is bounded from
above, and an upper bouridg, is defined by[(4]5). In this subsection, we show that the

window size is also bounded from below while the queue lergytipper bounded.

. a  2(1-p)Ug?
Th 4.2 Defined == — — — letL th t of
eorem efine = 177 R and letLg; > 0 be the root o

a(l+p5)

Lo+ (Lo = AR) = S0,

thenW (t) > Lp, fort > 0.

Proof: From Theoreni 41/ (t) < Ug for t > 0, which implies

W(lt)>3—2(1_ﬁ)UB2

— =A
R 1+ R

It can be seen from the definition bf; that A < 0. We show that.z; > 0 is the lower

bound of W (¢) for t > 0, i.e., if W (t) = L, attimet = t, > 0, thenW/(¢,) > 0.

Taking integration on both sides frof— R tot, givesW (to — R) < W(ty) — AR =
L — AR.
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Since dropping/marking probability(t) = K, - ¢(t) < 1 for all ¢, thenW (t,) >

R : >
R 1+0 R ThereforeJV (t,) > 0 sinceL p, satisfies
1+
Lt - (Lpi — AR) = % @

which impliesW (t) > Lp, fort > 0. O

Notice thatL g, in Theoreni 4.2 is the lower bound &f (¢) for all ¢ > 0, which is
a global one. By similar analysis to the upper bound of windae U, it is easy to
check that the window siz8/(¢) will not go below Ly, for anyt > t,. However, the
value of L 5 is actually very small since(1+ 3)/(2(1 — ()) is fairly small compared to
—AR. Therefore, the global lower bound does not provide muobrin&tion about the

performance of AIMD/RED systems.

Since window size oscillates around its equilibrium in ttesagly state, the amplitude
of the oscillation is more important than the global loweubd. Next, We will show
the local lower bound of the window size after the first timeetiches the peak value at
momentt;. This local lower bound is more useful for understandinggegormance of

AIMD/RED systems.

Theorem 4.3 DefineT; andUg, as

Up — —~
T1:2(1 3) CK RCN ’
—5) CK, R -
75 N [ Aa+ AW(g + Ag)]

. . N
Up=  jnf  {(G+2a)+(Us—C) - (Ti+R)}

AWEJO, UBf%]

whereUy is defined in Theorem 4.1. L&z, > 0 satisfy

2(1-5)
115

a(1+0)
2(1-p)’

Lpo-(Lpy+ Up* K, Ug—a)-K, Uy=
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theng(t) < Ug fort > 0 andW (t) > Lp, fort > t.

Proof: We first derive the upper bound gft) for ¢ > 0. At momentt = ¢,, W(t)
reaches its peak value. To get a loose upper bourd: dfwe introduce the comparison
theorem[[51]. Instead of following systeimn (B.1), we consile comparison system:
q(t) = Ug/R — C, andW(t) = Ug for t€[ty, t}]. Notice that the solutions of the
comparison system are larger than those of the originaésysto the bounds derived in

the following are also the bounds for systém{3.1).

Assume that¥/ (t) does not decrease for some time afterand thus;(¢) increases
atthe rate%UB — C. Momentt} is chosen such thatt|) = ¢* + Aq with Ag > 0, then
W (t) decreases from, while ¢(¢) keeps increasing till momemt such thatj(t;) = 0
(i.e.,W(ty) = R-C/N). Thereforeg(t,) is the local maximum value af(¢). It should
be noticed that this estimate @ft) might be greater than the real maximum value (@j
sincelV(t) may not stay at its peak value aftgr andg(¢) will still increase aftett;, but
with the rate less tha%UB - C.

From above analysis, fare [t}, t2], §(t) < % -Up — C. Thus,

t2 N
, (s < (U = ©) (22 = 10)

which implies

/ N !
alts) < q(t)+ (5 Up—=C)- (ta— ) (4.8)

= (@ +2q)+ (5 -Us—C)-(ta — t)).

84



4.2. BOUNDS AND PRACTICAL STABILITY OF HOMOGENEOUS
AIMD/RED SYSTEM

To estimate the length of the intervé], ¢,], for¢ € [t} + R, to], it follows from the

analysis above that

R-C
q(t—R) = q(t}) =q5 + Ag,
W(t—R) > W(t,—R) = RTC+AW,
for someAg > 0 andAW € (0, Up — &C).
Thus,
. 201-38) CK, R-C
_ : : x - 4.9
W(t) < 77 N [AW (g5 + Aq) + —=Ad] (4.9)
fort e [t/l + R, tg]
On the other hand,
to . , RC
/ W(s)ds = W(ts) — W(t, + R) >~ — Up. (4.10)
t\+R N
It follows from (4.9) and[(4.10) that,
RC 21-38) CK, ,
- < . . _ ¢
N~ Ups 1+ N (I’;zctl k)
(AW (g5 + Ag) + —— Adl,
ie., PO
Up — —~
to—t,—R < N

201-75) CK, RC
1+3 N Iy

With the definition of7; in the theorem, we have — ¢| < T} + R. Therefore, it
follows from (4.8) that

Aq+ AW (g5 + Aq)]

o)< it G+ Ag (5 Us—C)-(T+ R, (411)

AW e, UB—R;NC]
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i.e.,q(t) < Ug fort > 0, which indicates thal/;, is the upper bound of the RED queue
length. Since the packet loss in a RED queue is proportianti¢ queue length, the

derived queue length upper bound also reflects the uppedaafipacket loss rate.

We finally show that.z, > 0 is a lower bound ofV (¢) for ¢t > ¢4, i.e.,if W (t) = Lps
attimet = t3 > t,, thenW(¢3) > 0.

With (4.5) and[(4.111),
: (0% 2(1 - ﬁ) UB2
> . Ko 4.12
fort > 0, we have
B (1-5) 2
/tS_RW(s)d >0 S Us’ Ky Ug,
i.e.,
2(1 —
W(tg—R) S LBQ+ ( ﬁ) 'UB2'KP~UQ—04. (413)
1+0
It follows from (4.13) that,
. a 2(1—-0) Lp-Uw
> . . .
, 2(1 - B)
WlthUwi:L32+ 1+ﬁ ‘UB2'KP'UQ—O(.
Thus, W (t5) > 0 if L, is chosen to satisfy
L U - K, UQ_O‘llfg)), (4.14)

and thusl z, is the lower bound ofV/ (¢) for ¢ > ;.

Therefore, the heterogeneous AIMD/RED system is pradyistdble with the bounds
derived in Theorenls 4.1 abhd % [3.
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4.3 Bounds and Practical Stability of Heterogeneous

AIMD/RED System

4.3.1 A Fluid-flow Model of Heterogeneous AIMD/RED System

In this section, we study the AIMD/RED system with hetercgmus flows, considering
time delays. With the emergence of more and more heterogentedffics in the Inter-
net, understanding the stability properties and bounds@iMD/RED system with

heterogeneous flows is critical for future network planrang design.

We consider the case when there are two classes of flows widmgders ¢, 1),
(a, (o), time-invariant traffic loadsV,, N,, respectively. We assume that all the flows
have the same round-trip time (since variation of queuing@ydebecomes negligible
compared to the round-trip delays, the effect of the deldgrjon the round-trip time is
ignored and the round-trip time of each flow assumed to be staohR(t) = 7 = R).
The model in this section can be extended to any certain nupfti@ws in multiple

classes with heterogeneous AIMD parameters and feedbédaksde

Taking time delays into consideration, a heterogeneous¥RED system shared

by two classes of flows can be modeled as

dWi(t) oy 2(1—By) Wi(t)W;(t—R)
dt R 1+0 R Kpa(t = R),

dW[[(t)_%_2(1—ﬁ2) W[[(t)W[[(t—R)K
dt R 145, R b
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N{Wi(t)  NoWipg(t)
" R(?) Ry & 1”0
q
R NWi(t)  NoWipg(t) o

It is shown in [26] thatV;(¢)W;(¢—R) in (413) can be approximated By ?(¢) for
i = I, 11 when the window size is much larger than one. We apply thisaqomation

in following analysis for the convenience of computation.

For the heterogeneous systém (4.15), the equilibrium goiitit 17/, ¢;) is given by

GCR CR a1 (1451)

e W* e *:
NGHNy U N GNP ) WK,

wr
_ [o1(1+B1)(1—PB2)
whereG=, | s
The physical significance of studying the stability projgsrof the equilibrium point
of AIMD/RED system is because the equilibrium point is thesindesired operating
point of the system. At the equilibrium, the total windowesig N, W} + N,W;; and the

total arrival rate equals the total link capacity, thus ihk& bandwidth is fully utilized.

In (4.I5), we takdV (t) = Ny-Wy(t) + No-Wi(t), My = %. My = (};gj’,
ry = M; /Ny, andry = My /Ns, then

W = (Nau + Neas)/R
(N1 2012)/ (4.16)
= 2[r (NI W) () +r9- (N2 Wip )2 (1)) - Kpq(t — R)/R.
Note thati¥;(¢) > 0fori = I, I1. Taker,,;, = min(ry, rs), andr,,., = max(ry, r2),

the following inequality can be obtained:

W2(t)  W(t) — Meathaar W2 (1)
_2 max < R < — min T o~ - 417
fmarT T = TR gt-R)  — ™R .17
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Also, we have

(4.18)

W(t)/R—-C, q>0,

{ {W(t)/R—-C}", ¢=0.

Thus, with the new variable paifV (t), ¢(t)), the original heterogeneous AIMD/RED
system [(4.155) can be rewritten Hy (4.16) ahd (#.18). We wiltg the properties of
(W(t), q(t)) in the following to show the practical stability and deritetbounds of the

system.

Remark 2 Our focus in the analysis below i (¢), the total window size at This is
becauséV (t) indicates the entire throughput of the heterogeneous ARED system,

which is more useful than the throughput of each individuad/fl
4.3.2 Upper Bound on Window Size

The bounds estimates of heterogeneous AIMD/RED systemivaa on the following.

Theorem 4.4 LetUi > 0 be the largest real root of

o A(N Nyt )?
0% - [0 — R-C — (Nyay + Noaw)]? = (Mas + 20‘2), (4.19)

Tmin * Kp

thenW (¢t) < Ug for t > 0.
Proof: With (@),W(t) < (Niag+Naaw)/Rfort > 0. Forr > 0, take integration
on both sides fromt — 7 to ¢:
W(t) — W(t — 7‘) S (N1a1 + NQO{Q) . T/R (420)
We show that/z > 0 in the theorem is an upper bounddf(¢) for t > 0, i.e., if
W (t) = Ug for somet = #, > 0, thenWW (£;) < 0.
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Integrating on both sides df (4/18) from— a - Rtot;—R for a > 1 gives

" ) L s C
j > = —(a—1)R-C.
/zl_aRQ(S) s 2 g [T W(9ds—(a-1R

Note that[[4.20) impliesV (t, — 7) > Up — a-(N1a; + Naao) whent € [R, aR].
Thus,

q(fl — R) 2 [UB — a-(N1a1 + NQ(IQ)] . (CL — 1) — RC . (a — 1), (421)

sinceq(t) > 0.
Taking f(a) = (a—1)-[Up —a:(Nya; + Naay) — R-C] and computing the maximum
value of f(a) by letting f’(a) = 0 gives

f(CL) = [UB — R-C — (NlOél + NQO&Q)]2/[4(N1041 + NQOKQ)], (422)

with a = [UB —RC+ (Nl()él + NQQQ)]/[2(N1Q1 + NQO[Q)] andf”(a) < 0.

Therefore, it follows from[(4.17)[(4.21) and (4122) thﬁ/f,(ﬂ) < 0if Up satisfies

_ _ 4(N Noavo)?
02 - [0 — RC — (Nyay + Ny = S0+ Mo”0y o

Tmin * Kp

which impliesW (t) < Ug for t > 0.

It is also noted that the upper bound derived in here is gltdrghe timet, i.e., the
window sizeW (¢) will not go aboveUy for anyt > #,. If we assume, instead, that
there exists), > #; andAW > 0, such thatV (#;) = U + AW, there must be some
7 € (0, , — #,) such that?V (#, — 7') = Uz andW (#, — 7') > 0. However, similar to
the proof of Theorern 414, we haV@’(E’l — 7') < 0, which is a contradiction. Therefore,

the window size is upper bounded by, for all ¢ > 0.

By the continuity property of/2 - [Up — R-C' — (N1a; + Noay)]? and the fact that the

RHS of [4.19) is always greater than zero, we can concludehbee exists at least one
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real root for [4.1D) and the largest root must be greater thaht (N, + Noawy ). There-
fore, the upper bound itself will increase with the increment dt-C' and (N,a; +
Nyae). In addition, the oscillation of the window size from its ddwium value will

increase with the increment of; o, + Naa, and the decrement df,.

4.3.3 Lower Bound on Window Size and Upper Bound on Queue

Length

We have showed that the AIMD window siZg(t) is bounded by/z, which is defined
by (4.19). In this subsection, we prove that the window sizdewer bounded while the

queue length is upper bounded.

Theorem 4.5 Let L = (Mg1tl202)1/2 then/ (¢) > Ly fort > 0.

‘Tmax

Proof: Showing thatlz, > 0 is the lower bound of// (¢) for ¢t > 0, we should prove

that if W (t) = Lg, attimet =%, > 0, thenTV (£,) > 0.

Since the dropping/marking probabilityt) = K, - ¢ < 1 for all ¢, then
— N1a1 + NQO[Q W2(t)

W(tg) 2 T -2 TmaxTKpQ(t - R)
N1a1 + NQO[Q _ 9.y W2(t)
= R mazx R .

Therefore,W(f,) > 0 whenW(t) = Ly, with Ly, defined in the theorem, which

impliesW (t) > L, fort > 0.

Notice thatZL B1 in Theoreni4b is the lower bound Bf (¢) for all t > 0, which is a
global bound. To show this, similar analysis to the uppemigoof window sizel/; can

be applied to check that the window sidé(t) will not go below L g, for anyt > #,. [
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Note thatLp, in Theoren(4.b is a global bound, but it does not provide mueh i
formation about the system performance. This is becausealne of Lz, is actually
very small caused by the loose approximation/gf- ¢ and the fact thato;, 5;) pair
are all small real numbers foe=1, 2. We next derive the upper bound of queue length
and local lower bound of the window size after the first timesdiches the peak value
att;. The local lower bound is more useful for understanding tbdgomance of the
AIMD/RED system since window size oscillates around itsidogpium in the steady

state, the amplitude of the oscillation is more importaattthe global lower bound.

Theorem 4.6 DefineT; and Uy as

7 Us — R-C
1 -= N N. s
Fonin - RO? - K,y - (qi-+Aq) — W
Uog:= inf {(¢p + A )+(%—C) (T' + R)}
Q'_Alzlzl>0 o q R 1 ’

whereUy is defined in Theorem 4.4. Léf, > 0 satisfy

N1a1 + NQOQ

2Tmax

L%, K, Uy = 7 (4.24)

theng(t) < Ug fort > 0andW (t) > Lp, fort > ¢,.

Proof: We first derive the upper bound gft) for t > 0. Suppose thdt/ (¢) reaches
its peak value at momemnt= ¢;. To get a loose upper bound ¢ft), we introduce the
comparison theorem [51]. Instead of following systém (% drd [4.18), we consider its
comparison systemj(t) = Uz/R — C, andW (t) = Up for t€[t;, }]. Notice that the
solutions of the comparison system are larger than thoskeeobtiginal system, so the

bounds derived in the following are also the bounds for sy 16) and[(4.18).
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Assume thai¥ (¢) does not decrease for some time afierand thus;(¢) increases
at the rate of/z/ R — C. #] is chosen such that?,) = ¢* + Aq with Ag > 0, thenW (¢)
decreases frorfi while ¢(t) keeps increasing tifl, such thatj(,) = 0 (W (£,) = RC)
with ¢ > #} + R. Therefore(t,) is the local maximum value of(¢). It should be
noticed that this estimate gf¢) might be greater than the real maximum value; @f
sincelV (t) may not stay at its peak value after andq(t) will still increase aftert, but

with the rate less thabiz /R — C.

From the above analysis, fore [}, t2], (t) < % — C, which implies

oB) < aB)+(E-C) (b )

= @A)+ (L -0) BB,

(4.25)

To estimate the length of the intervd], ¢}, fort € [t} + R, t], it follows from the

analysis above that

=
Vv

W(EZ) = RC7

gt —R) > q(t)) = ¢+ Aq,

for someAq > 0.

Thus,
. 2
W(t) < Niag + Noay ry (RO)” | K, (g + Aq), (4.26)
R R
fort € [t} + R, ty).
On the other hand,
ta - _ _ _
W(s)ds =W (ty) — W(t, + R) > RC — Us. (4.27)

4R
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4.3. BOUNDS AND PRACTICAL STABILITY OF HETEROGENEOUS
AIMD/RED SYSTEM

It follows from (4.26) and[(4.27) that,

RC—UB S [(NlOél —+ NQO&Q)/R—TmZnRCQKp(qg‘i‘Aq)]

Ug — RC
TmmRCZKP<q>Ok+AQ) - (Nlal + N2O‘2)/R.

fy—# R <

With the definition ofT; in the theorem, we have — #; < T, + R. Therefore, it
follows from (4.25) that
. . Up .
a(t) < jnf (g5 +Ag) + (5~ C)- (T + B}, (4.28)
i.e.,q(t) < Ug for t > 0, which indicates that/y, is the upper bound of the RED queue
length. Since the packet loss in a RED queue is proportianti¢ queue length, the

derived queue length upper bound also reflects the maximekepkoss rate.

We finally show that., > 0is a lower bound ofV/ (¢) fort > #,,i.e., if W (t) = L,

attimet = t3 > ¢, thenﬁ/(fg) > 0.

With @.17) and[(4.28),
. N N. L2 _
W (t;) > % —o % K, Up.

Thus,W(t},) > 0 if Lp, is chosen to satisfyf (4.24). Thereforkg, is the lower
bound of W (¢) for t > #,. O

Therefore, the heterogeneous AIMD/RED system is pradyistdble with the bounds
derived in Theorems 4.4 ahd #.6.

Remark 3The approach applied in this section can also be extendetttnothe
theoretical bounds for the AIMD/RED system when it is shdrgdhore than two classes

of flows. Details are omitted here due to space limit.
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(e, B) | (9/5.1/4) (1.1/2) (3/7, 3/4) (1/5.7/8) | (3/31. 15/16)

Num Ana |Num Ana [ Num Ana | Num Ana | Num  Ana

max | 12222 1244 | 1133 1150 | 1065 1076 | 1036 1043 | 1021 1026

W | 106 006 | 323 026 | 687 128 | 868 2090 | 942 358

G | 2470 3020 ( 1730 2650 ) 1095 1770 7.70 1280 ( 588 1010

Table 4.1: Bounds with differerfty, )

4.4 Performance Evaluation

In this section, numerical results with Matlab and simwlatiesults with NS-2 [60] are
given to validate the theorems and evaluate how the systeimrpance is affected by

different parameters.

4.4.1 AIMD Parameter Pairs of Homogeneous Flows

First, we investigate how the AIMD parameter péir, 5) affects the bounds of win-
dow size and queue length. Lat, R, C' and K, be constantsN = 10, R = 0.1 sec,

C' = 1000 packet/sec an&, = 0.01. The AIMD («, () pairs are chosen to be TCP-
friendly, varying from 0/5,1/4) to (3/31, 15/16), and the results are given in Tablel4.1
and Fig.[4.1l. It can be seen that for the upper and lower boahttee window size
and the upper bound of the queue length, the numerical sesdtall within the bounds
given by Theorerh 411 and Theoréml4.3, which verifies the coress of the Theorems.
In addition, the upper bound of the window size given by thedrem is very tight. The
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T T
Theoretical Upper Bound of W(t)
Theoretical Lower bound of W(t)
Theoretical Upper bound of q(t)

Numerical Upper Bound of W(t)
Numerical Lower bound of W(t)
Numerical Upper bound of q(t)

w
o1
T
00OOese

I
1 12

Figure 4.1: Bounds of window size and queue length with cbffe(a, )

one for queue length is a loose bound as mentioned in the pfottieoreni 4.8. The
theoretical lower bound of window size is also a loose bowrwhbse of the approxima-
tion of 1V (). How to find a tight lower bound for window size will be a futiesearch

issue.

Another observation is that the differences between nuwakaind theoretical results
is getting smaller agx, () pair varies from §/5,1/4) to (3/31,15/16), which shows

that the theoretical results become tighter when the vdlykegets larger.

In ideal cases, the window size should converg&+0'/N, which is10 packets per
RTT in the above cases. The results in Table 4.1 and Fig. 4.1 dmwith a smaller
value ofa and a larger value gf, the AIMD flows have less oscillation amplitude around
the optimal operation point, so they can utilize networloteses more efficiently with
less delay and loss in steady state. This is because, witladlesivalue ofo, the AIMD

flows overshoot the available bandwidth in a slower paceh) witarger value of}, the
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4.4. PERFORMANCE EVALUATION

AIMD flows will not decrease drastically for any single patkess. Also, as shown in
Fig.[4.1, the upper bound of the queue length becomes smatlers; thus, the average

gueueing delay (and thus loss rate) becomes smaller inyssbaie.

Fig.[4.3 shows the traces of TCP flows with AIMD parameter paif1, 1/2) and
those of AIMD(l/5,7/8) flows. Here,N=10, C=10000 packet/seckR=0.05 sec and
K,=0.005. For NS-2 simulations, we sék,;, of the RED queue to b#) packets. There-
fore, the upper bound of window size of each flow should bergathbyQ,,;,/N = 2
packets, and the upper bound of the queue length should hegedl byQ,.;, = 20
packets. We compare the theoretical bounds with both theageevindow size among
all flows and its time average of window size over a round. Bbthnumerical results
with Matlab and simulation results with NS-2 show that altgb the window variation
of AIMD(1/5,7/8) in steady state is smaller, it takes longer time for AIMEX, 7/8)
flows to converge to the steady state. The oscillations ohtleeage window size and
queue length with Matlab are bigger than those with NS-2abseRTT's are set as
constants in the Matlab results (which is the same as thargegans of bounds esti-
mates theorems in the chapter), whitd'T's are time varying in NS-2. This difference
in the system oscillations is consistent with the conclusim [48] which reveals that
the variable nature aR7'T" helps to stabilize the AIMD/RED system. Simulation results
also demonstrate the tightness of the upper bound of winamev #&\nother interesting
observation is that although the upper bound of queue laagibt tight comparing to the
time average of queue length, it is close to the maximum imateeous queue length in
steady state. The average window size in the NS-2 simulagisults are slightly larger
than the numerical results, because the numerical resuitdagions with Malab ignore

the queuing delay iR7T's, which slightly underestimates the window size.
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Figure 4.2: Bounds of window size and queue length,

98



4.4. PERFORMANCE EVALUATION

Window Size

Window Size

70

60
50
40
30 +
20
10 -

70

60 -
50

30 +
20
10 -

0

‘Q_n‘lax ‘
Queue Length
Time Average Queue Length -

S 10 15 20 25 30 35 40 45 50

Time (second)

40 '

‘ Q_rhax ‘
Queue Length
Time Average Queue Length -

100
2 8¢
ST g o ] <
i g
~ 60
=
o
g
3 40
%}
=
Q
W_max 5 20
Flow Average Window Size
ije Avepage Winqow Size . 0k
0 5 10 15 20 25 30 35 40 45 50 0
Time (second)
TCP flows (NS-2)
80
= 70
260 |
[Z}
s
2 50
=
T 40
g
= 30
%}
2 20
W_max 5
Flow Average Window Size 10
Time Average Window Size - 0
0 5 10 15 20 25 30 35 40 45 50 0

Time (second)

5

10 15 20 25 30 35 40 45 50

Time (second)

AIMD(1/5, 7/8) flows (NS-2)
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4.4. PERFORMANCE EVALUATION

4.4.2 Impact of System Parameters: Homogeneous Flows

In the following, we study how the paramete¥§ R, C and K, affect the bounds of
window size and queue length. We chodse 3) pair to be (, 1/2) and (1/5, 7/8), and

obtain the results with different network parameters asvshia Tables 4.2 anld 4.3.

Round-trip delay and link capacity

First, comparing rows 1 and 2 in both tables. By enlargingdélay from0.02 sec to
0.05 sec (by2.5 times), the upper bound of window sizes only increase$.by times
and1.86 times for TCP and AIMD{/5, /, 7/8), respectively, which means a larger delay
reduces the relative oscillation amplitude of window sireaddition, the upper bound of
queue length is decreasing. Similar trend can be found ifpasing rows 4 and 5 in both
tables. This is a surprising result. From [9], a longer detey drive the system from
stable to unstable. We can explain it as follows. A largeag@heans that the window
size increasing speed (in terms of packet per second) dtivehgdditive increase period
is smaller, and the AIMD flows will overshoot the network caipain a slower pace;
thus, the upper bound of window size is closer to the optinpakating point, and the
maximum queue length is smaller. Similar results are fofimegticompare rows 4 and 6
in both tables. By enlarging the link capacity by times, the upper bound of window
size is increased by.5 and8.9 times, for TCP and AIMD 1/5, /,7/8), respectively.
Although enlarging the link capacity may drive the systeonfrstable to unstablél[9],
the oscillating amplitude of window size (relative to theugiprium 17*) and queue
length will actually decrease. The window and queue tra¢d$ dCP flows in a link
with 1000 packet/sec andl0, 000 packet/sec are depicted in FHig.14.5. The conclusion is

that larger values of delay and link capacity will actuattiguce the oscillating amplitude
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of window size and queue length, and significantly reducertheimum queueing delay.

Number of flows

Comparing rows 3 and 4, or rows 6 and 7 in Talile$ 4.2[and 4.3 owelude that if we
increase the number of flows and the link capacity propoalignthe bounds of window
size are almost un-affected. With twice the flows multiptexe a twice capacity link,
the upper bound of queue length increases less than twiezefbine, the queuing delay

bound is slightly reduced because of the multiplexing gain.

Comparing rows 6 and 8 in Tables 4.2 4.3, if we increasauh®er of flows in
the same link, théV - Uz becomes larger. In other words, the oscillation of windaxe si
will increase significantly if the number of flows in a link i@ases, and the queueing
delay will also increase significantly. This can be undardtasN AIMD( «, (3) flows
will increase their windows bWwa packets per RTT, and the larger the increasing rate
during Additive Increase stage, the more significantly toev$l will overshoot the link
capacity. This suggests that we should limit the number dP/ROIMD connections in
a link or promote to use more conservative AIMD parameterspi@ ensure that the

gueueing delay (and also the loss rate) is less than cehtastold.

Marking/Dropping parameter K,

Comparing rows 2 and 4 in Tables 4.2 dndl 4.3, for a smallerevafuk,, the RED

parameter will result in a larger bounds of both window sizé queue length.

The last four rows of Tablds 4.2 ahd 4.3 are the upper boundseoT CP/AIMD
window size and queueing delay in a highly multiplexed, thghdwidth (tens of Gbps),
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and long delay(.1 sec RTT) link. It can be seen for TCP flows, the queuing delaybea
bounded tal0.785 ms if the K, is chosen to b€.001. The delay bound can be slightly
reduced tol0.349 ms and10.248 ms if K, is increased t@.005 and0.01, respectively.
The results show that althoudti, can be adjusted to control the queueing delay in the
system, the impact is limited for high bandwidth cases. Limgithe number of flows

or using more conservative AIMD pairs are more effectiveaducing queueing delay.
For instance, if the number of flows is reduced 60 or 1000, the queueing delay bound
can be reduced t®.241 ms or1.079 ms, respectively. If using an AIMD parameter pair
of (1/5, 7/8), the queueing delay far0000 flows with K, = 0.001 can be bounded to
2.361 ms only.

4.4.3 Impact of System Parameters: Heterogeneous Flows

Considering that the Internet might contain mixed traffithadifferent AIMD param-
eters, we further study the performance of the AIMD/RED aystvith heterogeneous
flows. Parameters are firstly chosend@s-10, 000 packet/seck,=0.005, and R =
0.05 sec for5 TCP flows competing withh AIMD(1/5, 7/8) flows. For comparison, we
also choos&’'=20000 packet/seck,=0.005, andR = 0.05 sec for10 TCP flows and
10 AIMD(1/5, 7/8) flows.

For the case of TCP flows competing witth AIMD(1/5, 7/8) flows, the upper
bound of N, W; + N,W;; is 508.9 packets, the lower bountds, is 28.28 packets, and the
upper bound of the queue lengthlis2 packets. For the case t TCP flows competing
with 10 AIMD( 1/5, 7/8) flows, the upper bound af, W;+ N,W;;is1016.1 packets, the
lower boundL 3, is 55.80 packets, and the upper bound of queue lengil9 i§ packets.

In the NS-2 simulations, since the RED thresholth,;, is set to20 packets, the upper

106



4.4. PERFORMANCE EVALUATION

Window Size

—— Window Trace
--- Upper Boound ||

1200

1000F

Window Size

400¢

200y,

5 10 15 20 25 30

Time t

Queue Length

20
——Queue length
Upper Bound
15 1
10f
0
0 5 10 15 20 25

30
Time t

5 TCP vs. 5 AIMD flows,C'=10, 000 pac/sec (Matlab)

800r

6001

—— Window Trace

--=- Upper Boound

0 5 10 15 20 25

Time t

30

Queue Length

30

N
a

N
(=)

=
[4)]

=
o

ol

——Queue length
Upper Bound

o

0

5 10 20 25

15
Time t

30

10 TCP vs. 10 AIMD flows({'=20, 000 pac/sec (Matlab)

Figure 4.6: Bounds of Heterogeneous flo&$=0.005, R = 0.05 sec

107



4.4. PERFORMANCE EVALUATION

‘Window Size

Window Size

600

500

400 -

300 -

200

100 -

Total Window Size
Total Window Size (time avg) ——
Uppel“ Bound .............

Queue Length (packets)

1200

1000 ¢

800

600

400 1

200

10 15 20 25
Time (second)

30

100

80

60

40

Qﬁeue Léngth |
Queue Length (time avg) ——
Upper BOund ..............

10 15 20 25 30
Time (second)

5 TCP vs. 5 AIMD flows,C'=10, 000 pac/sec (NS-2)

Total Window Size
Total Window Size (time avg) ——
Upper‘ Bound .............

Queue Length (packets)

10 15 20 25
Time (second)

30

100

80

60

40

Qﬁeue Léngth |
Queue Length (time avg) ——
Upper BOund ..............

Time (second)

10 TCP vs. 10 AIMD flows('=20, 000 pac/sec (NS-2)

Figure 4.7: Bounds of Heterogeneous flo&$=0.005, R = 0.05 sec

108



4.4. PERFORMANCE EVALUATION

bounds of total window size and queue length are enlargezDipackets accordingly.
For the simulation results, we compare the theoretical bswith both the total window
size of all flows and its time average over a round. The camsss of our theoretical
bounds and the tightness of the upper bound of window sizel@monstrated by the
numerical and simulation results, as shown in Eigl. 4.7. Meeame window sizes in the
NS-2 simulation results are slightly larger than the nuoamesults. This is because
the numerical simulations with Matlab ignore the queuintage in R7TT, which may
under-estimates the window size. It is also observed frogn[£if that, if the number
of flows and the link capacity are increased proportion#lg, upper bound of per-flow
window size is closer to its optimal value. With both the n@mbf flows and the link
capacity being doubled, the upper bound of the queue lesgiss than twice of the
previous bound. Therefore, the queuing delay bound isthighduced because of the
multiplexing gain. An interesting conclusion is that altigh the increase of link capacity
may cause an AIMD/RED system to become asymptotically biestg], the system
queuing delay has lower bound and the upper bound of flowsomirsikze is closer to the
optimal operating point. This result demonstrates the mgmee of studying practical

stability and bounds of the AIMD/RED system.

Fig.[4.9 shows the window trace and queue length w2@id CP flows share the
bottleneck with40 AIMD(1/5, 7/8) flows with K,=0.005 and K,,=0.001, respectively.
For the case of{,=0.005, the upper bound ofV; W; + N,W;; is 3034.4 packets and
the upper bounds of queue lengthiis1 packets; while for the case @f,=0.001, the
upper bound ofViW; + NoW/; is 3042.4 packets and the upper bounds of queue length
is 60.7 packets. It can be seen that a smaller valug<pfresults in a slightly larger

bounds on both window size and queue length. This observetioonsistent with our
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analysis in subsection. However, in the case of higher battdwthe impact ofi, is

less. Similar results are shoed with homogeneous AIMD flows.

4.5 Related Work

Control Problems arising in the Internet congestion haeeived wide attention re-
cently [7,9] 23| 26]. For delay-free marking scheme, thelfmiodel of the AIMD/RED
system has been proved to be asymptotically stable [29] plyig the method of Lya-
punov function. Itis well known [9] that the system may beeomsymptotically unstable
in the presence of time delays. In[27], sufficient condiifor the asymptotic stability of
AIMD/RED system with feedback delays are given in termsmddir matrix inequalities.
However, simulation results show that even though the sy&eot asymptotically sta-
ble, it oscillates around the steady state periodicallytikdted by this phenomenon, we
present performance bounds of the AIMD/RED system in thagptér and demonstrate
that the delayed AIMD/RED system is bounded from above atahbe

Different from many previous work [7, 9, 23,126,127] on thefgignt conditions for
the asymptotic stability of AIMD/RED or other network cooltisystems, in this chap-
ter, we study the practical stability of the AIMD/RED systeamd derive its theoretical
bounds in both homogeneous-flow and heterogeneous-flow,daseflows’ congestion
window size and intermediate systems’ queue length, givemtmber of flows sharing
the link, their AIMD parameter pairs and round-trip timeasklcapacity, and RED queue
parameters. Since the bounds are closely related to sysidarmance, our results pro-

vide important insights for in-depth understanding of tHeole system.

The boundedness issue has been studied in [43, 44, 45] wignong the bounds
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Figure 4.9: Bounds of Heterogeneous flows;60, 000 packet/secR = 0.05 sec
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estimates, by applying Lyapunov-like method for some TiRB-tongestion control al-
gorithms. [46] justified the use of deterministic model fatdrnet congestion control
and [42] gave the upper bound on the transmission rate fokimas of TCP-like traffic.
However, to the best of our knowledge, the theoretical uppérlower bounds of win-
dow size and queue length of AIMD/RED system with homogeseoul heterogeneous

flows considering feedback delays have not been reportdabilitérature.

4.6 Summary

In this chapter, we have studied the practical stabilityhef AIMD/RED system by de-
riving theoretical bounds of window size and queue lengtthef AIMD/RED system
for both homogeneous and heterogeneous cases. The thabresiults obtained in the
chapter can provide important insights and guidelines éttirey up parameters for the
AIMD/RED system in order to maintain network stability aradfully utilize network
resources without excessive delay and loss. The simulegguits given in the chapter
can also help to predict and control the system performamrcéné Internet with higher
data rate links multiplexed with more flows with differentrameters. Our main findings
are 1) larger values of delay and link capacity will actuatiyuce the oscillating ampli-
tude of window size and queue length from their equilibritmsteady state; 2) although
AIMD flows can adapt their sending rates according to avilabndwidth, larger num-
ber of flows leads to longer queueing delay in the AIMD/REDisys Thus, we should
limit the number of AIMD connections in a link or promote toeusiore conservative
AIMD parameters to bound the queueing delay and loss; anél\8¢ iproportionally

increase the link capacity and number of TCP/AIMD flows, thewging delay will be
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slightly reduced, so the multiplexing gain slightly incsea. Thus, AIMD/RED should

be suitable in the Internet with higher bandwidth and hefen@ous flows.

There are many interesting research issues worth furtivestigation: a) how to
deploy effective admission control for TCP/AIMD flows to baldelay and loss; b) how
to adapt AIMD parameter pair to ensure that the system cavecge to the equilibrium
quick enough and to control the queueing delay and loss iméh&ork; and ¢) how to
extend the work to heterogeneous flows with differ&it7’s and multiple bottleneck

links cases.
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Chapter 5

Stability Analysis of

Multiple-Bottleneck Networks

A TCP/RED system with multiple-bottleneck links could bestable even if its system
parameters are set the same as those in a stable singkabokisystem. In this chapter,
we study the stability of the general AIMD /RED system withltiple bottlenecks. We
develop a general mathematical approach to analyze nesiaoKity for both delay-free
AIMD/RED systems and those with feedback delays. We dengcgent conditions
for the asymptotic stability of multiple-bottleneck sysie with heterogeneous delays
by appealing to Lyapunov stability theory with LyapunovzRenikhin conditions, and
these conditions can be easily assessed by using LMI (LMa#ix Inequality) Toolbox.
Numerical results with Matlab and simulation results witB-®R are given to validate the

analytical results.
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5.1 Introduction

For the vast-scale Internet, the single bottleneck topotogy no longer be representa-
tive and a flow may traverse multiple links with non-negligilpacket losses. In [61],
it is shown that a multiple-bottleneck network may be unigt&ven if the same system
parameters are used as those in a single bottleneck, stthlerk. In fact, the conges-
tion signals from multiple links sharing by different flowsagnlead to chaotic behav-
iors. Clearly, the results from single bottleneck netwaraa not be directly applied to
multiple-bottleneck networks. In a nutshell, the stapifitoperty of multiple-bottleneck

networks remains an important open issue beckoning fanéuainvestigation.

In this chapter, after developing a general mathematicaletaf multiple-bottleneck
AIMD/RED system, we study the stability properties of thesteyn, considering het-
erogeneous flows with different feedback delays. The mairridmtions of the chap-
ter are summarized as follows. First, the fluid model of a ganmaultiple-bottleneck
AIMD/RED system without feedback delay is proved toddebally asymptotically sta-
ble, independent of the number of flows in each bottleneck, flopater pairsd, 3),
and their round-trip delays, etc. Next, we consider the rindttleneck system with feed-
back delays where global stability is often difficult to &ttadue to the highly nonlinear
nature and the effect of delays. We present two sufficiendlitioms to guarantetcal
asymptotic stabilityof the system and note that these results are for generaipietilt
bottleneck scenarios. Numerical results with Matlab amaugation results with NS-
2 [60] have validated the analytical results with an exanoplevo-bottleneck topology.
The theoretical findings can be used as a guideline for tuthiegystem parameters to
maintain network stability and enhance system performaanue the analytical and sim-

ulation results provide important insight to understarel gtability and performance of
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5.2. MULTIPLE-BOTTLENECK NETWORK MODEL

multi-bottleneck networks.

The remainder of the chapter is organized as follows. In[5&;.we provide back-
ground on the fluid model for stability analysis of the In&tgnbuilding on which we
develop a general model for multi-bottleneck scenarios.inestigate in Se¢. 5.3 the
stability properties with delay-free marking, and prove tflobal asymptotic stability
of the fluid model system by using Lyapunov stability theong d aSalle’s Invariance
Principle. Sec[ 5]4 studies the multi-bottleneck systemsiwering feedback delays.
Stability properties of multiple-bottleneck systems atedsed by applying the singu-
larly perturbed techniques are given in 5.5 and dedgeiadent LMI criteria for the
stability of singularly perturbed AIMD/RED systems with ftiple bottlenecks are ob-
tained. Numerical results by MATLAB and simulation resudtsNS-2 are presented in
Sec[5.6. Se€. 5.7 gives a brief review of related work, falid by concluding remarks
in Sec[5.8.

5.2 Multiple-Bottleneck Network Model

A general scenario of a multiple-bottleneck AIMD/RED systés shown in Fig[ 5]1.

In the system, AIMD flows pass through multiple links whichusas more than one
congested routers. The thick lines with arrow in the figupggesent the volume of the
traffic load on each link and the traffic load becomes smab@hdime after passing
through a congested router. Assume that a packet can onlyabbkethat most once,
following the idea of modeling in[ [27], based on the modelithga of single-bottleneck
systems, a multiple-bottleneck AIMD/RED system that corgav groups of AIMD

flows andM congested links can be mathematically modeled as follows:
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Figure 5.1: General Case of a Multiple-Bottleneck Network

Ai(t) _ a2 fr)y Wil —7)
dt Ri(t)  1+4 Ryt —m)

XZZET’ ( Ky.qi(t—m1)),

dWy(t)  ay  2(1-px) (t)WN(t—rN)
dt Ry(t) 148y " Ry(t—1v)
X ZjET(N)(Kijj (t_TN))v
N, W, (t)
oy, g1 >0, (5.1)
) | o
dt { Z N W t) Cla}+a q1 :Oa
nef(1) "(t>
Ny Wi (1)
—Cu, qu >0
danlt) | i R O
dr N, W, (t
C ) +7 :0
PR R

wherer(7),i=1, --- , N, denotes the set of congested routers that flpasses through,
andf(m), m=1, --- , M, denotes the set of flows that pass through the congestest rout

m.
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5.3. STABILITY ANALYSIS WITH DELAY-FREE MARKING

5.3 Stability Analysis with Delay-free Marking

In this section, we study the dynamics of the multi-bottldneetworks in the absence
of feedback delays by using Lyapunov stability theory an&alée’s Invariance Prin-
ciple. Assume that the round-trip time; is time-invariant, i.e.,R;(t) = R; fori =

1, 2, ---, N. We shall show that the equilibrium point of this delay-fegstem is glob-

ally asymptotically stable for all positive gains.

For delay-free marking multiple-bottleneck AIMD/RED sgst, the equilibrium point

(Wi, -, Wk, qf, - -, ¢;;) can be obtained by

2(1 - ﬂl)‘(Wf)z(Zier(l)(KpiQ;‘k) = 051<1 + 51)7
2(1 = Bn) (W) (Zjerv) Kp, GG) = an(l + By),
(5.2)
Yoner) Na Wi /R, = Cy,
Zmef(M) Nm‘W;;/Rm =Cuy.
One observation is that, if all flows have the same AIMD parampair, the flow
that traverses more bottlenecks always suffers more péassts than other flows, and

its window size is always smaller than those of others.

Remark 1.:The analysis throughout this chapter is about the stalplipperty of the
equilibrium point of systeni (5l1). Since the equilibriumingas typically in the desired
operating region of the system, its stability property,,ithe convergence of system
trajectories to the equilibrium point, will guarantee netiw performance in terms of

packet loss, delay, and jitter.
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5.3. STABILITY ANALYSIS WITH DELAY-FREE MARKING

With the transformed variable®/;(t)=W;(t)-W;, fori = 1,---, N; §;(t) =
qj(t) —¢qj, forj = 1,---, M; we can use the following Lyapunov function to estab-

lish the asymptotic stability of delay-free marking system

VIWLi(@), -+, Wa(t), au(t), -+, qu(t))
_ %i (L+ BN, 1 3

—W2(t) + 5 Zl Ky, @3 (t).
‘]:
The time-derivative of along the solution of syster (5.1) is non-positive, ilé <
0. By applying LaSalle’s Invariance Principle, all the tretgries converge to the unique
equilibrium point of system (511). Thus, the global asyntiptstability of system(5.1)

is obtained. The results can be summarized by the followiegrem.

Theorem 5.1 For any K, >0, ---, K,,,>0, the equilibrium point of the delay-free

M

marking AIMD/RED system is globally asymptotically stdbleany positive pairga;, (1),

.-+, (aw, By) and any positiveR;, - - -, Ry.

Proof: With the transformed variablé¥; (t)=W,(t)—W; fori =1, --- , N; §;(t) =

qj(t) —qj, forj =1, ..., M; the delay-free marking system becomes

120



5.3. STABILITY ANALYSIS WITH DELAY-FREE MARKING

: 2(1 — Br) (Wi(t) + W)

= _ K
a0 ) TR + 2 Z .
L+ ﬂl Rl ier(l) .

i 2(1 — Bn) (W (t) + W5)

Wy(t) = — K
N( ) 1 +6N RN JGTZ) p]qJ
2(1— ) WE() + 205 W (1) Z
1+ On Ry jer(v
. N, - W, (t
Gi(t) = 5 . ( )7
nef(1) "
. Ny - Win(t
qu(t) = >, R ()
mef(M) m
with the equilibrium poin{WWy, - -+, Wy, d1, --- Gar) = (0, 0, -

With system[(5.4), we choose Lyapunov function with thedwaiing form,

V( 1(t)7 T WN(t>7 dl(t) ’ gM@))
1+ﬂi)N 1Y

+ Z KPJ

7

.0, 0).

(5.4)

(5.5)

Computing the time-derivative 6f along the solution of syster (5.4) gives,
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5.3. STABILITY ANALYSIS WITH DELAY-FREE MARKING

. M
Wi(t)Wi + 3 Ky, 4;(t)g;

= — X gy WO +275) i@%K LG + q)-

Note thatiVy (t) + Wi = Wi(t) > 0fork = I,--- | N; andg;(t) + ¢* = ¢i(t) > 0
fori = 1,---, M; which impliesV < 0. Thus, we prove that the equilibrium point of
system[(5.4) is stable. Next, we show the globally asympitibility of the system by

applying LaSalle’s Invariance Principle. Consider theafestates wher& = 0,

M ={ (Wi, -, Wy, G, Gqu): V=0}
={ (W, W, G-, )
Wy=-=Wy=0;
Or i = —qf, -+, Gu = —qy- }-

Applying LaSalle’s Invariance Principle [5L, 53], trajedes of (5.4) converge to
the largest invariant set containedAr. We then prove that the only invariant set con-
tained inM is the equilibria@, 0, - -, 0, 0). If (Wy(t), -+, Wa(t), Gu(t), - Gar(t))
is equal to(0, ---, 0,G1(t), - -, Gur(t)) or (Wi(t), ---, Wn(t), —=¢*, - — ¢};), We
can then conclude th&tV; (t1), - -, Wy (t"), Gi(t1), -+ Gu(th)) is not in M by ap-
plying (5.4), which implies that no trajectory can stay.M, other than the equilibrium
point 0, 0, -- -, 0, 0). Therefore, the equilibrium point of systeim (5.4) is asyotipally
stablel]

In the above analysis, the AIMD parameter pairs for all thevélon group:, i =
1, ---, N, are the same. In reality, there may be heterogeneous AIMDsfleithin

one group. As an example, we consider the case when two typ&d/® flows are
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5.3. STABILITY ANALYSIS WITH DELAY-FREE MARKING

within the group/: N;; AIMD («a;1, 811) flows denoted byV;;, and N;5 AIMD (s,
Gr2) flows denoted byV;,, with round trip-timeR;; and R;5, respectively. In this case,
we can still obtain the globally asymptotic stability by dsing the following proper

Lyapunov function and LaSalle’s Invariance Principle.

Assume that there are two types of AIMD flows within the grdupV;; AIMD (a1,
G11) flows denoted byV;,, and N 5 AIMD (a9, B12) flows denoted byV;,, with round

trip-time R;; and R», respectively. Then these flows can be modeled as follows,

dWn(t) an  2(1—8n) WA(t)

_ K, ¢
dt Rn  1+0n Rll Z; il (5.6)
dWp(t) « — Bro) W3 '
(t) arp 2(1—Br) Wi Z K qi(t

dt _RIQ 1+ 0 Rlz

ZET’
We can then obtain the global asymptotic stability by chabsdollowing Lyapunov

function,

V(Wll(t)v Wipa(t), -+, Wa(t), @(t), -+, Gu(t))

1 BNn s L (L4 B)Ne

e 611)Wffwll(t> t 0 B3 Wis(t) 5.7)
Lo (L4 BN 2y, 157

—|—§Z

1#T (1 - ﬁl)W*Q

Using the similar analysis as in Theorem]5.1, global asytps$tability for this case

+ Z KPJ

can be proved. The same conclusion can be drawn for moreaeraeses, i.e., when
more than two types of AIMD flows in each group are sharing thie ¢apacities. The

corresponding mathematical models can be constructed aionilar lines as above,
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5.4. STABILITY ANALYSIS WITH FEEDBACK DELAYS

by extending the model to higher dimensions to include menas$, each representing

another kind of flow.

Remark 2.:Note that a similar analysis can be carried out for more garoases, i.e.,
when there are more than two types of AIMD flows in each growpisl the link capac-
ities. For this, the corresponding mathematical modelsheaconstructed along similar
lines as above, by extending the mo(&fl) to higher dimensions to include more terms,

each representing a type of flow.

5.4 Stability Analysis with Feedback Delays

5.4.1 Stability Criteria for General Multiple-Bottleneck Systems

In this section, we study the stability properties of theagtet systenf5.1) in Section
[5.2. With ever-increasing link capacity and appropriategastion control mechanism,
variation of queuing delays becomes relatively small toppgation delays. In fact,
recent work([48] reveals that the variable nature@f7" due to queueing delay variation
helps to stabilize the TCP/RED system. Therefore, we caoregthe effect of the delay
jitter on the round-trip time and derive sufficient condigofor the asymptotic stability
of multiple-bottleneck system assumiity' 7" to be constant. Clearly, these sufficient

conditions will be still applicable iR7'T" is actually time-varying.

The equilibrium points W5, ---, W5, q¢f, ---, ¢;;) of system[(5ll) are defined
by B2) withR, = 7, = R; fori = 1, --- , N, whereR! = T), + Y, g,_

Due to the highly nonlinear nature and the effect of delayh@system, no suit-

able Lyapunov function could be constructed to prove glaisgimptotic stability of the
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equilibrium. We linearize systerfb.1) about the equilibrium point and write it in the

following form,

N
i(t) = + > Biz(t — R}), (5.8)
i=1
. ~ ~ - — All O — Bill Bi12
withz=(W1(t), - -+, Wa(t), @u(t), -+, qu(t))?, b= ’
Ay Ago 0 0

whereA;;, B;1; and B;;, are known real constant matrices with appropriate dimessio

with following forms:

_R?‘}Vl* 0 e 0
N; . L
0 -2 .. 0 e W ger(d),
A= _ 22 _ . , (Ag1)ij = J
: : ' ' 0, otherwise,
0 0 Rf‘%*
L N 4
NW ‘
- oRt for i=j,
CJ lef(d) K R
(A22)ij =
1 N W,
- Z l*zl , otherwise
i resionray
a.
—_— for j=k=1,
(Bﬂl)jk = RiW;
0, otherwise,
2(1 — 3;) W2 o .
- —— Ky, for j=iandk € f(i),
(Bio)jr = 1+8 R
0, otherwise.
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5.4. STABILITY ANALYSIS WITH FEEDBACK DELAYS

It can be checked by the Routh Criterion thétis a Hurwitz matrix, which im-
plies that for any positive definite matri¢, there exists positive definite matrik,
such thatA”P + PA = —(Q. We next give some sufficient conditions for the local

asymptotic stability of systeni (5.1) by applying the direstthod of Lyapunov. Let

M:\/Amax(P)/Amin(P), where)\(P) denotes eigenvalues of matiX we can obtain a
sufficient condition to guarantee the local asymptoticiitglof the multiple-bottleneck

system.

Theorem 5.2 If there exists positive definite, @ satisfyingA” P+ PA= — @ such that
N _

matrix @ — 2M - (X ||PB;||) - I is positive definite, then the equilibrium point(&E1)
i=1

is locally asymptotically stable.

Proof: With (5.8), we choose Lyapunov functidri(z) = = Px, then

V = TPz + 2T Pi
= [Az(t) + SN, Bix(t — R)|T Pz + 2T P[Az(t) + N, Biw(t — RY)]
_ WT($)(ATP+PA)ya(t)42 5 o (t— R BT Pa(t)
i=1

= —2T(t)Qux(t)+2 g:le(t—R;k)BZTPx(t).

Let R*=max{R}, ---, Ry }. Applying the Lyapunov-Razumikhin condition, with
pu>1 such that
V() <pPV(t), for t— R <¢<t,

which implies that|z(&)|| < M-pu-||x(t)]].
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Thus,

<.
IA

—z" (1) Qu(t)+2||x(t — R (ié 1B Pl =)

N _
< —2'(O[Q — 2u M (X NIPBill) T]a(1),
thereby establishing the asymptotic stability of syst&ud). [

Observe that the Lyapunov-Razumikhin condition is used heorem 5.2 to deal
with the delayed terms iir. Lyapunov functional is another method that can be applied
when studying the stability of delayed systems. Our nexiltggves another sufficient
condition for the local asymptotic stability of systeff.d) in terms of linear matrix

equality by applying the method of Lyapunov functional.

Theorem 5.3 If there exist positive definit®, Q satisfyingA”P + PA = —(Q and

positive definite~; fori = 1, --- , N such that the following matrix is positive definite,

i N
Q->G, —PB, --- —PBy
=1
-BTP G, 0 0
0 .0

> 0,

—BLp 0 0 Gy

then the equilibrium point of5.7) is locally asymptotically stable.

Proof: With (5.8), we choose Lyapunov functional

N ot
V() = aTPety / 7 ()G (s)ds,
i=1 =R}
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then
V o= 2T(t)(ATP+PA)x(t)+2 Y o7 (t—R:) Bl Px(t)
i=1

+ﬂ(t>(§l Go)a(t) — gleT(t ~ R)Gia(t — RY)

2

N
T

— T ()0 é Gi)x(t)+2§jl o (t—R) BT Pa(1)
— S aT (- R Gualt - )

= —(a"(t),2"(t - R}), - ,a"(t — Ry))-
D - (xT(t)>IT(t - RT)? e >IT(t - R*N))Ta

i N
Q-G —PB, -~ —PBy
i=1
“B'P G, 0 0
0 .0

whereD denotes the matri . Thus, systenf5.])

—BLP 0 0 Gy
is locally asymptotically stable i is positive definite]

It is worth pointing out that sufficient conditions derivedliheorem&5]2 aid 5.3 are
both given in terms of linear matrix inequalities (LMI). T¢®conditions can be easily

assessed by applying the LMI Control Toolbox with Matlab][67

In general, Theorenis 5.2 ahd 5.3 shed some light on how theoreparameters
impact the network stability. Specifically, we have thedualing intuitive interpretation
of the conditions in these theorems. To guarantee the |@yahptotic stability of sys-
tem [5.1),V in Theorem$§5]2 and 5.3 is required to be negative definitearitbe seen
from the proof that the more negativ€ P + P A and the smalleff PB;|,i =1,--- , N,
the more likelyV’ <0. In other words, the termal” P + PA should be dominant i’

and the absolute values af A) are expected to be sufficiently large. Notice that

128



|

|

v Groupl —
Group Il =----»
Group I

Figure 5.2: Multiple-Bottleneck Topology

has been checked to be a Hurwitz matrix a#ig, i=I,--- , N has the form ofRC/N.
From the expression of and B;, we know that the smaller the ternf, i = 1,--- , N,
C;, 7 =1,---,M, the larger the absolute values &f4) and the smaller thé PB; |,
and hence the better the chance that the system is asynafijosiable. These observa-
tions are also consistent with thoselin [9]: TCP/RED will bme unstable when delay

increases or when link capacity increases.

5.4.2 Case Study: A Class of Two-Bottleneck Topology

In this section, we consider a basic multi-bottleneck sdenas depicted in Fid. 5.2.
Three groups of flows are sharing the links between four reut®IMD flows in group

| compete with flows in group Il over link;, and also compete with 50 flows in group
Il over link L,. We assume all routers are RED enabled and there is no padeet |
and delay jitter in the non-bottleneck links. All routerg &ED enabled. Linkg; and
L, are bottlenecks with the capacity 6f and (s, respectively. The round-trip delays
for the three groups of traffic ar®,, R,, and R3, respectively. The results with this

topology are also applicable to the scenarios when the tprea@ps of flows traverse
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5.4. STABILITY ANALYSIS WITH FEEDBACK DELAYS

other non-bottleneck links before/after they enter/lebyver L.

In this multi-bottleneck topology, lek,, and K, denote the marking probability on
Ly and Ly, and ¢, 51), (e, B2) and (3, B3) be AIMD parameter pairs for the three
groups of flows, respectively. For the first group of flows, tin@king probabilities on
Ly andLy arep; (t — Ry) = K, q1(t— Ry) andps(t — Ry) = K,,q2(t — Ry), respectively.
Since we assume that a packet can only be marked at most bagepbability of a flow
I packet receiving amark js (t — Ry) +p2(t — R1) —p1(t — Ry )p2(t — Ry ). The marking
probability can be approximated by(t — R, ) + p2(t — Ry ) given thatp; andp, are very

small. The closed-loop dynamics can be modeled as follows:

dWi(t) _ 2(1 -5

(Kpoqo(t—71)+Kp,qa(t—11)),

dt Ryt 1+ 5 Ry(t — 1)
dW[[(t) . (6D) 2(1—ﬁ2) W][(t—Tg)
R O WH(t)profJo(t—Tz%
dWir(t) oz 2(1—[33) Wit — 73)
& R g O TRy )
NiWi(t)  NoWir(t)
- (1, qo > 0, (5.9)
das(t) Ry (t) Ry (t)
i NiWi(t)  NoWi(t)
Wi 2 Wir
Cro TTRm O w0
N1W](t) NgW[[[(t)
027 g2 > 07
dgs(t) Ry(t) Rs(t)
i NiWi(t)  NsWirr(t)
Wy sWirr
{ A0 Ralt) ~Co}", =0
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Next, we give a numerical example to get a more concrete sange sufficient
conditions in Theoreml 5.2 on local asymptotic stability foe AIMD/RED system
with heterogeneous delays. L&t = N, = N; = 5, C; = 3 x 10°packet/sec,
Cy = 5 x 10° packet/sec withK,; = K,, = 0.0005. Choose(«, 3;)=(1, 0.5) with
T, = 0.020 sec,(az, B2) = (0.2, 0.875) with 7,,,=0.013 sec andas, §3)=(1, 0.5)
with T,,3=0.007 sec, respectively. Solving the LMI in Theoréml5.2 with Matf@ontrol

Toolbox, one feasible solution we obtain is as follow: pesitlefinite matrix

[ 42596 —1.2369 23752 —1.8226 —1.9184 |
—1.2369 4.5479 —3.1861 —2.0736 0.8033
Q=10°x | 23752 —3.1861 2.8241 0.5329 —1.2195 | and
—1.8226 —2.0736 0.5329  2.4057  0.6722
| —1.9184 0.8033 —1.2195 0.6722 0.8817 |
| 2217 —2.6696 24213 03497 —1.091 |
—2.669 4.9555 —3.8606 —1.3247 1.439
P=| 2421 —-3.8606 3.3280 0.9250 —1.279
0.349 —1.3247 0.9250 0.6115 —0.229
| —1.091 14386 —1.2789 —0.2295 0.559 |

We can also check that the eigenvalues of maf}ix- 2M (|PB, || + ||PBsl| +
| PBs]||)I are :1.0e + 003 x [9.0769, 5.8269, 0.0088, 0.0044, 0.0001], which implies that
Q —2M (||PBy|| + ||PBz]| + || PBs||)I is positive definite. Thus, the condition of The-
orem[5.2 holds and the system is locally asymptoticallylstaBimulation results using

the same parameters will be given in ecl 5.6.

Remark 3.:Notice that Theorenis 5.2 ahd b.3 give two different sets fifcéent condi-

tions for the asymptotic stability of systef.9). These conditions can be easily checked
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by the LMI Toolbox, which allow us to use any of them at our cemence.

Remark 4.:Using the similar idea of this section, we can obtain the ligtability of
the network when it is shared by more than three groups of famwsell. Mathematical
models can be established following the idea in §ed. 5.2 lmadechnique used in this
section can be applied to obtain sufficient conditions, rmseof LMI, for asymptotic

stability of any given scenarios.

Remark 5.:We note that the results in this section are for local stigbdnly, whereas
the results obtained in Sdc. b.3 are for global stabilityisT$ due to the difficulty in
constructing a suitable Lyapunov-type function for the limear multiple-bottleneck
AIMD/RED system with heterogeneous delays. A plausiblerapgh to resolve this
issue is to develop a sequence of upper and lower boundstehsysajectories and use
these bounds in Razumikhin’s theorem to derive conditiansggfobal stability in the
presence of heterogeneous delays, and our study alongnhiss lunderway. Studying
the stability properties of the general case of multipléboeck AIMD/RED networks

by directly using the moddb.]) is an important open issue for further investigation.

5.5 Delay-Dependent Stability Analysis using Singular

Perturbation Approach

In this section, we take the mathematical model of AIMD/RBBtems with multiple
bottlenecks and feedback delays into the novel frame ofusanly perturbed systems.
Stability properties of multiple-bottleneck systems aadsed by applying the singu-
larly perturbed techniques. Delay-dependent LMI critéoiathe stability of singularly
perturbed AIMD/RED systems with multiple bottlenecks a¢éained, and the existence
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of the sufficiently small parameters that guarantee the ptytm stability of the system

considered above is also demonstrated.

5.5.1 Singularly Perturbed Multiple-Bottleneck Systems

We consider a multiple-bottleneck AIMD/RED system thatteams NV groups of AIMD
flows andM congested links. The corresponding mathematical modehfersystem,

which has been proposed in 5.2, is describedd ds (5.1).

Notice that in systeni (5.1), the te#@f—t) changes much faster thé%’;(—t), especially
whenN; is large, i.e., window size is slow variable and queue lengfast variable in
the system. We assume all groups in systeni (5.1) containutméer of AIMD flows
with the same order, i.eQ(N;) ~ O(Ny) ~ --- ~ O(Ny). Let N = >N N;/N,
and1/N is then a small real number i@, 1]. Takes = 1/N and ), = N,/N, %0

j=1,--- M, qu(t in the original system[(5l.1) can be rewritten as,

n(t) |
;) (t) — C;/N, q; >0,

eg;(t) = (5.10)

(> xR

Hence, the multiple-bottleneck AIMD/RED system with theeqa length described
in (5.10) has been taken into the framesirigularly perturbed systenj68, [71] with

heterogeneous feedback delays.

We then linearize the singularly perturbed multiple-letdck system about the equi-

librium point (W, -+, W%, ¢i, -+, qiy). Takex(t) = (Wy(t),---,Wx(t))" and
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y(t) = (qi(t), - ,qu(t))T, the obtained linearized singularly perturbed system with

delays is as follows:

ey (t) Ay Ay y(t)
N 4 , x(t — Ry
s Bii Bio (t — R}) ’ (5.11)
=1 0 0 y(t — Ry)

wherez(t) € RY andy(t) € RM are slow- and fast-state vectors, respectivelis a
singular perturbation parameteR; > 0 are time delays on(¢) andy(t). A;;, Bin

and B;;, are known real constant matrices with appropriate dimerssiath following

forms:
_R;}Vf 0 e 0
@2 e
An=| ety v
I O 0 Ce _Rglij* |
)\,
oo i Jer(),
(Az)ij = i
0, otherwise,
1 AW o
= D> for i=j,
Ci iér Ry
(Az2)ij =
1 NW
e Z %, otherwise,
Jlef@nfG) M
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Q; . .
-, or j=k=1,
(Bill)jk = RiWE d /
0, otherwise,

2(1- ) Wy

(Bi12)jk = L+6 Ry

0, otherwise.

Ky, for j=iandk e f(i),

It can be checked that;; and Ay, both are Hurwitz, which is important to establish

sufficient conditions for the stability of system (5.11) &rsmall enouglr and R;.

5.5.2 Stability Analysis

To facilitate the discussion, we introduce the followinglaas for later use.

Lemma 5.4 [70] Letx € R" andy € R" be real vectors, then for any positive definite

matrix X = X7 > 0, the inequality—2x"y < x X ~'x + y? Xy holds.

Lemma 5.5 For any constants and b and any functiong and g, the following result

holds:

d b ot 0)
Gl [ Floasas
- /ab <F(9(t, 9))%9&, 0)—F(f(t, 9))%]@@, 9)> 0.

We first focus on the necessary condition for the stabilityhaf system[(5.11) as

e — 0andR; — 0.
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The reduced-order delay-free system of the+ M )th-order systeni(5.11) is given

ase — 0andR; — 0.

. xs(t)
l’s(t) = Alll’s(t) + |:Bi11 Bi12 :| s (12a)
=1 ys(t)
0= Aglﬂfs(t> -+ Aggys(t). (12b)
Note thatA,, exists becausd,, is Hurwitz,
ys(t) = —A2_21A211'8(t) (513)

is the unique solution of (12b). Substituting (5.13) int@4} results in the uniqu&’th

order system.
xs(ﬂ = AOJ:S(t)v (514)
N — —
WhereA(] = A11 -+ ZB“ B; := B;1; — Bi12A2_21A21.

i=1
Then we have the following necessary condition:

Theorem 5.6 Let system [(5.11) be stable for all small enoughnd R;, then 4, is

Hurwitz. In other words, there exist$ = P]" > 0 such that the following LMI holds.

PyAy + AT Py < 0. (5.15)

Proof: Itis clear that this result is given as the limitssodnd R} both go to zero.

In the remainder of the section, sufficient conditions anéved for system[(5.11).

We first define the following similarity transformaticn [6B1].

I 0 } [x(ﬂ (5.16)




5.5. DELAY-DEPENDENT STABILITY ANALYSIS USING SINGULAR
PERTURBATION APPROACH

whereL(¢) is obtained by solving the following linear algebraic edoat

A21 — A22L(€) + €L(€)A11 =0. (517)

Lemma 5.7 [71] There exists a small constaatsuch that for alle € (0, ¢), the linear

algebraic equation (5.17) admits the unique solutios- L(¢) that can be expressed as

L = L(s) = A7} Ay + O(e). (5.18)

By using the similarity transformatiof (5]16) and lemma, System[(5.11) can be

rewritten as:

x(t) An 0 x(t)
en(t) 0 Ax | [n()
N | B B; x(t — R!
pyo | P B | Jalt= R (5.19)
=1 LBill LBilZ n(t - R;k)

WhereBm = B;11 — Bio L.

Sulfficient conditions are obtained as follows for asymptstability of systen{(5.11).

Theorem 5.8 Givene > 0, R > 0, system[(5.11) is asymptotically stable if there exist
P1:P1T>0,P2:P2T>O,QMIQ£ >0,Q2i: g; >O,X1i:Xﬂ>0and
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Xy = XL >0,i=1, ..., N such that the LMI

® A Ay O, ©, -+ Oy Oy
AT Ay -~-Ay 0 0 -~ 0 0
AU Ay~ Ay 0O 0 - 0 0
I'=|er o 0 -Xy3 0 -~ 0 0 |<0,
er 0 0 0 —Xp--- 0 0
0
oL 0 0 0 0 —Xiv 0
0% 0 0 0 0 0 —Xov |
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where

®:=d(c, R, ..., RYy)

T
e 2 3l V< s S B P
i=1 LBill 0 LBill 0
N h
"—ZR: Xli[Au 0:|7
i=1 0
N
P1A11+A{P1+ZQ12‘ 0
U= = N ’
0 P2A22+A52P2+ZQ21
=1
Qu 0 B N _
A= — + H (Z RZX%) [ Biin B } ,
0 Qu B, | k=1
B, | (&L N .
Aij = Z RkX2k [ lel Bj12 ] y ¢ # I
352 k=1
A =P Y e = mp| T,
0 LBilg LBill
P .= B0 .
0 B

Proof: The main idea of the proof for Theorédm 5.8 is as follows.

Consider the following Lyapunov-Krasovskii function

V(z(1)) = ol (t)Pr(t) + en’ (t) P (t)

(5.20)
+ Y ftt—RZ‘ 21(5)Qiz(s)ds + W (t),
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whereW (t) := Wy (t) + Wa(t),

T
lez

Qli: £>07Q2i: g;>07

Xi=XL>0, Xy = X3, >0.

With the Lyapunov-Krasovskii function defined as (5.20) agstem([(5.111), we have
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% = 2T ()(P A+ AT PO (8) T () (PoAsy+ AL Po)n(t)
+ 2xT(t)P1§;[ B Bm]z(t—R;)
+ 2nT(t)P2§;L[BZ.H Bm}z(t—R:) (5.21)
b YL (000 — (¢~ R)Qult — R

Integratingz(t) in system[(5.19) from — R; to ¢ results in

Bt — R = :)s(t)—/tt [AH O}Z(S)ds

_R’:

(5.22)
- 2 /;R [Bﬂl Bm]z(t—R;)ds.

j=1 i

141



5.5. DELAY-DEPENDENT STABILITY ANALYSIS USING SINGULAR
PERTURBATION APPROACH

Substituting[(5.22) intd(5.21), we obtain that
dV (=(t))

(5.23)

. N | B Nt ~
+2" (P> | o Z/ . [lel Bj1z ] 2(t — Rj)ds
i=1 | LBy | R

—Z dt—-R)Qiz(t—R) + ——2.

i=1
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It follows from the inequality of lemm@a 5.4 that

dV(=(t))

N . N ~7;Z N .
+ Z/ (Z ZT(S - R;) ’ )Xm(Z { Brii  Bria } z(s — RZ)>dS
i=1 R\ B;'Fm k=1
N
d
- Y- R)Qet- Ry + O

i=1

(5.24)
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On the other hand we have

dW (t)
dt
Noood AL
N ; ~/—RT E <~/t+9 i ) 0

[ (S )

+

ol ¢ T {1
_Z/t e (s) X X1 { Ay 0 ] z(s)ds
=171 0
S S 3 al
(S m | ) (S B B |- R
i=1 7 ]:1 Bj12 k=1

144



5.5. DELAY-DEPENDENT STABILITY ANALYSIS USING SINGULAR
PERTURBATION APPROACH

Then, we have

dV (z(t))
dt

ZL(Z2(t) + 227 (t) ; Az(t — RY)

<

=2 (t— R))Qix(t — Ry),
1=1

(5.25)
where

Bill

LBy,

x| BL, BLLT| P

N
E=®+) R/P

(X5 + X5
=1

Therefore, we obtain

W < W (#)TTw(?). (5.26)

where
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Finally, using Schur complement for matrix inequaliy < 0 results in[" < 0. This

completes the proof of the theorem.

Furthermore, sufficient conditions for robust asymptatiabgity of system([(5.111) is

given in the following corollary.

Corollary 5.9 If there exist?, = Pf > 0, P, = Pf > 0, Q; = QF, > 0 and
Qs = Q% > 0 such that the LMI

(i) Al e AN
- AT —_0O, ... 0
ne |89 | <o (5.27)
I AL 0 —Qx |
where
_ — N —
PAL+ATP+Y Qu 0
o = =1 N
0 P2A22+A52P2+ZQ%
i=1
) B T
N B Bi 0 Bi 0
+> | P B + _ ;
i=1 A5t A9 B; 0 Ay A B; 0
R, - P 0 Biio ’
0 Ay Ag Biro
— Qli 0 Pl 0
0 Qm‘ 0 P2

then there exist small enoughand R such that for allec(0, £) and R;€(0, R), system

(5.11) is asymptotically stable.
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It is worth pointing out that sufficient conditionis (5120)dab.27) derived in Theo-
rem[5.8 are both given in terms of linear matrix inequaliti@ese conditions can be

easily assessed by applying the LMI Control Toolbox with lellat

Remarks: The singular perturbation approach applied itery$5.11) provides two
distinct advantages. First, this approach demonstraegxtstence of small singular
perturbation parameter and time delays that guaranteesiyrapotic stability of the
system. Second, when time delays are sufficiently smalinpsytic stability can be
guaranteed by checking LML(5.27), whose order is much sn#ian [(5.20) and needs
less computation. Mathematically deriving the boundsmgslar perturbation parameter
and time delays is an important problem, for which no gensshltion has been found.

This issue is not addressed in the current work.

5.6 Numerical Results and Performance Evaluation

With the two-bottleneck topology described in 5.4, wst Hbtain the system evo-
lution trajectories by usin{ylatlab to verify the asymptotic stability proved in SeCs.15.3
and[5.4. Network simulator, NS-2, is then used to furthedtihe performance of the

systems.

5.6.1 Numerical Results

System without feedback delays

Figs.[5.83£5.5 show the traces of window size and queue lemgdler the topology of
Fig.[5.2, modeled by (519). The capacity bf is C; = 1 x 10° packet/sec, that of
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Figure 5.3: Homogeneous TCP flows, delay-free
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Figure 5.4: Homogeneous AIMD(0.2, 0.875) flows, delay-free
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Figure 5.5: TCP and AIMD(0.2, 0.875) flows, delay-free

Ly is Cy = 12 x 10* packet/sec. The number of flows in each groups/dyre= 80,
N, = 60 and N3 = 50, respectively. The deterministic round trip times of thgssups
areT, = 0.05 sec,T,, = 0.08 sec andl,, = 0.06 sec, respectively. We choose

K,, =0.0006, K,, = 0.0008, Q,,:»n1=150 packets and),,;,»=180 packets.

In Fig.[5.3, all flows are TCP flows, i.e(¢r, 3) = (1, 0.5). In Fig.[5.4, all flows
are AIMD flows with the same parameter pdit, 5) = (0.2, 0.875). W; in Fig.[5.3
(a) and FigL 5.4 (a) represents the average window size o$filowthei-th group, andy
andg, in Fig.[5.3 (b) and Fig_514 (b) represent the bottleneck guengths at; and
r9, respectively. It can be seen that both the average windoes @ind queue lengths
converge to constants in steady state. Although the coemeggspeed of homogeneous
TCP flows is faster than that of homogeneous AIMD flows, the@rage windows and

the average queue lengths in steady state are the same.

We further investigate the case that different groups of Slase different AIMD
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Figure 5.6: TCP and AIMD(0.2,0.875) flows, heterogeneoaif§itrin group |

parameters. The flow parameters of the three groups i H@ré(«y, 51) = (1, 0.5),
(g, B2) = (0.2, 0.875) and (a3, 3) = (1, 0.5), respectively. The numerical results
show that the average window sizes of the three groups of tmsjueue lengths of the
two bottleneck routers converge to constants. Since att#jectories are asymptotically
stable, thereby validating Theorém15.1. In addition, therage window sizes of each
groups in Figs[ 5]8-5l5 are the same in steady state, whiegms&IMD (0.2, 0.875)

flows are TCP-friendIH.This property can be further illustrated in the followingea

The traces of window size and queue lengths when there areliffeoent classes
of flows in group | are shown in Fig. 5.6, which is modeled by6}5.Here the number

of flows within each group is chosen a5, = N, = 40, N, = 60 and N3 = 50.

1TCP-friendlinesss defined as the average throughput of non-TCP-transpiiotes over a large time
scale does not exceed that of any conformable TCP-traresportes under the same circumstancé [47].
It has been shown that if an AIMD flow with the parameter paiiséging the condition% = 3, the

AIMD flow is TCP-friendly [12,27].
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Figure 5.7: TCP and AIMD(0.2, 0.875) flows, delay-free, thbettleneck links

Their deterministicRT'T's are7,,, = 0.05sec,T,,, = 0.04sec,7,, = 0.06 sec and
T,, = 0.04 sec, respectively. Also, we havg = 1 x 10° packet/sec and, = 1.2 x 10°
packet/sec as in Figs. 5.8-5.5 wifki,, = 0.0006 and K,, = 0.0008. The AIMD
parameter pairs in this case a@y;, 511) = (a3, f3) = (1, 0.5) and (ai2, f12) =
(aa, B2) = (0.2, 0.875), respectively. It can be seen that both the window size ardeju
length are asymptotically stable and are consistent wittanalysis, and the AIMDY.2,

0.875) flows are truly TCP-friendly.

Figs.[5.7 and 518 show how the window size and queue lengtheewden the link
capacity ofrry for group | flows,Cs, is so small that the linkr, becomes the third
bottleneck. Consequently, there are three bottlenecksimétwork under the topology
shown in Fig[5.2. We choosE, = 80, N, = 60 andN; = 50, C; = 8 x 10* packet/sec,
Cy = 1 x 10° packet/sec and’; = 4 x 10* packet/sec with<,,, = 0.0004, K,,, = 0.0006
and K,; = 0.0008, respectively. The deterministi¢l'I’s are chosen &5,, = 0.05 sec,

T,, = 0.06sec andl},, = 0.04sec. In Fig[5J7(ay, £1) = (a3, #3) = (1, 0.5), and
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Figure 5.8: TCP and AIMD(0.2,0.875) flows, delay-free, thbettleneck links

(v, B2) = (0.2, 0.875). In Fig.[5.8, there are two types of flows in group |, with; =
40, N1 = 40; andT),,, = 0.05sec,T,,, = 0.04sec. Other parameters are chosen as
(a1, Bu) = (as, B3) = (1, 0.5), (12, Sri2) = (aa, f2) = (0.2, 0.875). We can observe

the property of the asymptotic stability of these systeramfthe numerical results.

System with feedback delays

Figs.[5.5£5.B show the asymptotic stability of the multiptettleneck system without
feedback delays, in which the property of stability is glotfags.[5.9 £5.11 illustrate the
local asymptotic stability of the system with feedback gslawe choosév, = N, =
N3 =5, C; = 3 x 10 packet/sec(, = 5 x 10° packet/sec withk,, = K,, = 0.0005.
The deterministic?1'T’s for the flows are chosen d§, = 0.020sec,7;,, = 0.013sec
andT,, = 0.007sec, respectively. The parameters used are the same asrthbse

numerical example of Theorem b.2. In Fig.15(8;, 3;) = (1, 0.5) fori = 1,2,3; in
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Figure 5.10: Homogeneous AIMD flows, with feedback delay
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Figure 5.11: TCP and AIMD flows, with feedback delay

Fig.[5.10,(cvw, 3;) = (0.2, 0.875) fori = 1,2, 3; and in Fig[5.I(cy, 51) = (a3, £3) =
(1, 0.5), (e, B2) = (0.2, 0.875). As shown in the figures, all the trajectories are locally

asymptotically stable, and the numerical results valitteeheorems.

In the last part of this section, we give an example of an inhstaultiple-bottleneck
RED network. We choosé&’;, = N3 = 4, N, = 8, C; = 1000 packet/sec(C; =
1000 packet/sec withi,, = K,, = 0.05 and(«;, 5;) = (1, 0.5) for i = 1,2, 3 with
T, = 0.03sec,T,, = 0.03sec andl,,, = 0.04sec. This case has been shown unstable
in [61] and it is consistent with our results in Fig. 5.12.dtgasy to check that this case
does not satisfy the conditions of Theordms 5.2[and 5.3.
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Figure 5.12: Homogeneous TCP flows: unstable case

5.6.2 Simulation Results

We use network simulator (NS-2) to further study the perfamge of the AIMD/RED
system with realistic protocols and network topologies.e Bame multiple-bottleneck

topology as in Fig. 512 is used in the simulations.

We first validate a theoretically stable setting. The patenseused are the same as
those used for Fig. 5.11. It should be mentioned that, simedétid model describes the
ensemble averageof window size and queue length, the asymptotically stptiperty
applies to the ensemble averages or time averages overa fidare, a round is defined
as the time interval between two instants at which the seretkrces its window size
consecutively. Therefore, we focus on the time averageleoiindow size and queue
length over a round. Fid. 5.13 shows that the time averagéseoflow window sizes
and queue lengths are converging to certain values, ier,tttne averages over a round

are asymptotically stable. The average window sizes in the2Nimulation results are
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Figure 5.13: Simulation results for a stable system

slightly larger than the numerical results. This is becabssumerical simulations with

Matlab ignore the queuing delay ®'T’s, which under-estimates the window size.

We also run the simulation for the unstable case with the qaan@meters as those
used in Fig[5.12, and the results are shown in [Fig.|5.14.ntbeaseen that even aver-
aging over a round, the window sizes and queue lengths #rkighily oscillating. The

simulation results validate the analytical ones.

5.7 Related Work

Internet stability analysis has recently received muatraiton. In particular, the stability
of TCP systems has been studied from the point of windowebtiee control [9, 7| 19,

23,[25) 26| 2[7] and rate control [64,/65]. New control mechians such as those in [35]
are also proposed for the Internet, aiming to achieve quicikergence to efficiency,

stability, fair bandwidth sharing, and low packet loss rate
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Figure 5.14: Simulation results for an unstable system

In practice, it is very likely that heterogeneous flows witfiestent round-trip delays

may undergo multiple bottlenecks. To date, little work hagr done on the stabil-

ity and analysis of multiple-bottleneck networks. It hagmehown in[[61] that RED

configuration based on a single-bottleneck assumption raggrevent traffic instability

when congestion occurs in two different locations of thewoek simultaneously. Recent

work [62] studied a class of TCP/RED multiple-bottleneckdeland tried to avoid net-

work congestion by imposing some restrictions of AQM partaree In this chapter, we

study the general case of multiple-bottleneck AIMD/REDtegss and obtain sufficient

conditions for the asymptotic stability with and withouetiback delays. It is illustrated

that appropriate system parameters can be chosen to makgdteen asymptotically

stable.
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5.8 Summary and Future Discussions

In this chapter, we have developed a class of general AIMDYRiobdels for multi-
bottleneck systems, and have studied stability propefteshe models with delay-
free marking and with heterogeneous delays, respectiwd.have proved the global
asymptotic stability for the multiple-bottleneck AIMD/REsystems without feedback
delay, and then derived sufficient conditions or the locgihgstotic stability of multiple-
bottleneck AIMD/RED systems with heterogeneous delayspplying the methods of
Lyapunov functional and Lyapunov function with the Razuhaikcondition. These re-
sults are obtained for general multiple-bottleneck sdesand provide important guide-
lines for setting system parameters that guarantee theeeffigtilization of network re-
sources in multi-bottleneck networks without excessiviayl@tter. We are currently
investigating sufficient conditions for establishing gibbtability in the presence of het-
erogeneous delays, by developing a sequence of upper ard bownds of system tra-
jectories and applying these bounds in Razumikhin’s Thaor&he generalization of
stability analysis for networks with mesh topologies wik@be an interesting future

research direction.
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Chapter 6

Conclusions and Future Work

In this chapter, we conclude the thesis by summarizing nesiearch results and propos-

ing future work.

6.1 Main Research Results

The goal of congestion control mechanisms is to use the mktvsources as efficiently
as possible, that is, attain the highest possible throughipile maintaining a low loss ra-
tio and small delay. The research work is centered on findengswo address these types
of problems and provide guidelines for predicting and aghiryg network performance,

through the use of suitable mathematical tools and contrallyais.

e We first systematically studied the stability of a class afigyalized AIMD/RED
system and obtained sufficient conditions for asymptogibiity of both homogeneous-

and heterogeneous-flow systems with and without feedbdely t§ using direct
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Lyapunov and Lyapunov-Razumikhin method. Our study res/da relationship
between the AIMD parameters and the average window sizeropeting AIMD

flows. Consequently, the TCP-friendly condition is derivéithe analytical and
simulation results can help us to better understand thdistamd performance of

AIMD/RED system.

e Even though previous research indicated that the AIMD/REfesn may not be
asymptotically stable when the time delay or the link cajydosecomes large, as
long as the system operates near its desired equilibriurall ©scillations are
acceptable, and the network performance is still satisfgctMotivated by this,
we studied the practical stability of the homogeneous- agtgrogeneous-flow
AIMD/RED systems with feedback delays, and obtained themibounds on the
AIMD flow window size and the RED queue length. Our analyt@adl simula-
tion results provide important insights on which systemapaters contribute to
higher oscillations of the system and the derived theakbounds can be used
as a guideline to set up the system parameters to enhaneesg8iciency with
bounded delay and loss. These results can also help to peediccontrol the
system performance for Internet with higher data rate Imk#tiplexed with more

flows with different parameters.

e Arealistic network normally accommodate flows that undergutiple bottleneck.
It has been known that the network system with multipledbo#ick links could
be unstable even if its system parameters are set the sarhesasin a stable
single-bottleneck system. Because of this reason, weestutie stability of the
general AIMD/RED system with multiple bottlenecks. A geadenodel for multi-

bottleneck scenarios was first developed and sufficientitond for the asymp-
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totic stability of multiple-bottleneck systems with andtlout heterogeneous de-

lays were derived. These conditions can be easily assegseiny LMI Toolbox.

6.2 Future Work

Congestion control is a topic that has drawn attentions afymmasearchers, and it has
also become a facet of daily life for Internet users. The g@ere and development
of new Internet technologies have brought with them new lgrab which need to be
solved. In this section, we identify several potential egsk directions from this thesis

for future work.

¢ Global stability analysis of Multiple-Bottleneck Systems

Intuitively, the Internet system is stable if all transmdtpackets will be eventually
processed by the link and reach the intended destinati@tilB problems have
been investigated for the Internet models with a singlédameck. As the Inter-
net is becoming a more diverse system, most flows traverstpheubottlenecks.
The theoretical and performance analysis for the multq@tleneck network is

becoming more and more necessary.

Local stability results for multiple-bottleneck systenmstitute one aspect of the
work in this thesis. But when considering the uncertaindecaind unpredictable
changes in the Internet, the guarantee of convergenceiatesbwith a global sta-

bility result carries significant weight. To address thislgem, a plausible ap-
proach is to apply the iterative method and construct mor@&equences that

converge to the trivial solution of the system.
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e Bound estimates of Multiple-bottleneck systems

For the vast-scale Internet, the single bottleneck topology no longer be repre-
sentative and a flow may traverse multiple links with nonhg#gle packet losses.
As long as the system operates near its desired equilibsomall oscillations are
acceptable, the overall system efficiency can still be végi,hand the network
performance is still satisfactory. Therefore, besidekibtyanalysis, another im-

portant research issue is to study the bounds of the mubiptdeneck network.

Upper and lower bounds estimates for single-bottleneckesys form one im-
portant chapter of this thesis. However, so far, there isesolt for the bounds
estimates of multiple-bottleneck systems because of tiieutiies in modeling
and theoretical analysis. We are going to solve this issugpipyying the method
of comparison theory and approximation technique. Theystiidhis topic will

be theoretically original and of great practical value fontrolling, predicting and

enhancing the system performance
e Adding impulsive control in the congestion control meclsami

Abrupt changes at selected moment can be expressed in termpulses. Exis-
tent theoretical results have shown that impulsive comol speed up the conver-

gence of a system to its steady state.

For the Internet congestion, adding proper impulsive aman help the system
converge to its steady state more quickly, stay in the deésiperating area longer,
and even avoid some serious latent congestion. As far as o, ko results for
impulsive control to the Internet have been reported. Basdte existing work on

the theoretical analysis of impulsive systems, properrotiet shall be designed
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for the Internet congestion

e Modeling and theoretical analysis of TCP/AIMD performaneer wireless links

Although fluid model is successfully applied for performaranalysis in wired
domain, it is not suitable in wireless networks. Time to ssstully transmit a
packet in wireless link is not negligible when compared @tibtal transfer time.
With time-varying delay and bandwidth wireless link, tR&7's of each packet is
highly variable according to not only the queue length bsib &he wireless channel

state. The fluid traffic model cannot capture this charastieri

Because of the wireless link’s own characteristics, sudimated bandwidth, high
error rate, time-varying and location dependent, mathiegadft modeling and the-
oretical analysis of TCP/AIMD performance over wirelesk$ becomes a great
challenge. At the time of writing, no related results hadrbpeesented on this

matter and some of our future efforts will be put on this issue

6.3 Final Remarks

In this thesis, we systematically studied the widely useMBIRED system in the In-
ternet, particularly on system modeling, stability anesyend bounds estimates. Our
theoretical analysis provide important insights for irptteunderstanding of the conges-
tion control problem, and have shown how to guarantee systiorency with bounded
delay and loss. Results in this thesis can also help to pradit control the system
performance for the Internet with higher data rate linkstiplexed with heterogeneous

flows.
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