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Abstract

The proliferation and universal adoption of the Internet has made it become the key

information transport platform of our time. Congestion occurs when resource demands

exceed the capacity, which results in poor performance in the form of low network uti-

lization and high packet loss rate. Internet congestion control is a topic that has drawn

attentions of many researchers, and it has also become a facet of daily life for Internet

users. The goal of congestion control mechanisms is to use the network resources as

efficiently as possible, that is, attain the highest possible throughput while maintaining

a low loss ratio and small delay. The research work in this thesis is centered on finding

ways to address these types of problems and provide guidelines for predicting and con-

trolling network performance, through the use of suitable mathematical tools and control

analysis.

The first congestion collapse in the Internet was observed in1980’s, although the

Internet was still in its early stage at that time. To solve the problem, Van Jacobson pro-

posed the Transmission Control Protocol (TCP) congestion control algorithm based on

the Additive Increase and Multiplicative Decrease (AIMD) mechanism in 1988. To be

effective, a congestion control mechanism must be paired with a congestion detection

scheme. To detect and distribute network congestion indicators fairly to all on-going

flows, Active Queue Management (AQM), e.g., the Random EarlyDetection (RED)

queue management scheme has been developed to be deployed inthe intermediate nodes.

The currently dominant AIMD congestion control, coupled with the RED queue in the

core network, has been acknowledged as one of the key factorsto the overwhelming

success of the Internet.

In this thesis, the AIMD/RED system, based on the fluid-flow model, is systemati-
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cally studied. In particular, we concentrate on the system modeling, stability analysis and

bounds estimates. We first focus on the stability and fairness analysis of the AIMD/RED

system with a single bottleneck. Stability results and fairness conditions are obtained for

both homogeneous- and heterogeneous-flow systems with and without feedback delays.

Then, we derive the theoretical estimates for the upper and lower bounds of homoge-

neous and heterogeneous AIMD/RED systems with feedback delays and further discuss

the system performance when it is not asymptotically stable. Last, we develop a general

mathematical model for a class of multiple-bottleneck networks and discuss the stability

properties of such a system. Our analytical results are validated both numerically and

by simulations. Theoretical and simulation results presented on this thesis provide im-

portant insights for in-depth understanding of the AIME/RED system and can also help

predict and control the system performance for the Internetwith higher data rate links

multiplexed with heterogeneous flows.
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Chapter 1

Introduction

1.1 Problem Description and Motivations

The Internet is surely the second most extensive machine on the planet, after the public

switched telephone network, and it is rapidly becoming as ubiquitous. As a decentralized

system, network stability and integrity rely on the end-to-end congestion control algo-

rithm, which is deployed in the dominant transport layer protocol, Transmission Control

Protocol (TCP).

Internet congestion occurs when resource demands exceed the capacity. Congestion

in the Internet can cause high packet loss rates, increased delays, and even break the

whole system. Without congestion control, as shown in Fig. 1.1, when the offered load

is larger than the network capacity, the network power (ratio of throughput to delay)

will decrease sharply and the network will be driven to congestion collapse. The circled

area in Fig. 1.1 is the desired operation area under congestion control. The main targets

of TCP congestion control are to explore and fully utilize the available bandwidth for
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1.1. PROBLEM DESCRIPTION AND MOTIVATIONS

Figure 1.1: Objective of Congestion Control

a connection and to avoid severe congestions in the network,i.e., to make the network

operating near the optimal area.

To deal with this problem, Van Jacobson proposed the Transmission Control Protocol

(TCP) congestion control algorithm based on the Additive Increase and Multiplicative

Decrease (AIMD) mechanism in 1988: when there is no congestion indication (no packet

loss), the TCP congestion window size is increased linearlyby one packet per round-trip

time (RTT); otherwise, the TCP congestion window size is reduced by half upon the

detection of packet loss. Since then, the TCP congestion control algorithm has been

widely deployed in the end systems to respond to network congestion signals and avoid

network congestion collapses.

Driven by new commercial demands and technological progress, the Internet is sup-

porting differentiated services, e.g. a large amount of multimedia applications. Although

it has been shown that TCP congestion control is very successful for bulk data transfer,

its increase-by-one or decrease-by-half strategy produces a highly fluctuating sending

rate which is undesirable for many applications that have very stringent delay require-

2



1.1. PROBLEM DESCRIPTION AND MOTIVATIONS

ment. For example, most multimedia traffic cannot tolerate its sending rate suddenly cut

by half.

To overcome this limitations of TCP while maintaining all its advantages, a TCP-

friendly Additive Increase and Multiplicative Decrease (AIMD) congestion control strat-

egy has been proposed [11] to support heterogeneous services over the Internet. For each

round trip time, the AIMD sender either increase its congestion window byα packets

if no congestion occurs, or decrease the window toβ times its current value when con-

gestion signal is captured. For different traffic, appropriate pair of parameters(α, β)

can be chosen according to the traffic characteristics to improve its quality of service

(QoS). The protocol with this congestion control mechanismis called the AIMD(α, β)

protocol. Without any modifications to the core networks, the AIMD protocol can be a

scalable solution to support differentiated services. [11] also showed that AIMD can be

efficient on bandwidth utilization, fairly share the network resources with ordinary TCP

flows, and provide better QoS.

TCP/AIMD has no information of network mechanisms contributing to packet loss,

which is taken as an indicator of congestion in the wired network. To effectively con-

trol the congestion in the Internet, a congestion control mechanism must be paired with

a congestion detection scheme. To detect and distribute network congestion indicators

fairly to all on-going flows, Active Queue Management (AQM),e.g., the Random Early

Detection (RED) queue management scheme has been developedto be deployed in the

intermediate nodes. The currently dominant AIMD congestion control, coupled with the

RED queue management that is widely deployed in the core network, has been acknowl-

edged as one of the key factors to the overwhelming success ofthe Internet [40, 41].

With the rapid advances in optical and wireless communications, Internet is becom-
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1.1. PROBLEM DESCRIPTION AND MOTIVATIONS

ing an even more diversified system. It will contain heterogeneous wireless and wired

links with speeds varying from tens of Kbps to tens of Gbps, with flow round-trip delays

varying from ms to seconds. It will also support various multimedia applications with

different throughput, delay, and jitter requirements. A critical and immediate question

is whether the AIMD/RED system is a stable, fair, and efficient system, independent of

the heterogeneity of the link capacity, end-to-end delay, and network topology. In other

words, should we re-design the Internet congestion controlmechanism to accommodate

future killer applications over the ever-diversified Internet, or can we take an incremental

approach of engineering the existing congestion control mechanism and routers’ queue

management parameters to achieve the same objective?

With large time delays or link capacities, the AIMD/RED system as a whole may

not be asymptotically stable [9]. However, It has been understandable that as long as the

system operates near its desired equilibrium, small oscillations are acceptable, and the

network performance can still be satisfactory, i.e., the overall system efficiency can still

be high, and the packet loss rate and queuing delay can still be well bounded. Therefore,

the important issue to investigate is: does the AIMD/RED system always operate in the

area close to the desired equilibrium state, and what are thetheoretical bounds?

A realistic network normally accommodates flows that undergo multiple bottlenecks.

It has been shown that the conditions which guarantee the stability of a single-bottleneck

system do not apply to the network system with multiple-bottleneck links anymore.

This situation is the main motivation to study the stabilityproperties of the general

AIMD/RED system with multiple bottlenecks.

In this thesis, we mainly study the AIMD/RED system and focuson solving all the

questions outlined above.
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1.2. RELATED WORK AND MAIN CONTRIBUTIONS

1.2 Related Work and Main Contributions

Internet congestion control is a topic that has drawn the attention of many researchers.

Stability problems of TCP or AIMD with RED queue have been investigated in the liter-

ature [21, 22, 23, 24, 25, 26]. Some new control mechanisms based on control theory and

game theory have been proposed [7]. Instead of proposing a new control mechanism, we

focus attention on the stability and performance of the currently dominant AIMD con-

gestion control mechanism over RED queues. In [26], using a fluid model, the stability

of single-bottleneck TCP/RED system is proved, neglectingthe feedback delay. The sta-

bility of TCP/RED with feedback delay has been questioned in[9], which suggested that

TCP/RED becomes unstable when delay increases, or more strikingly, when link capac-

ity increases. Furthermore, for the vast-scale Internet, asingle bottleneck topology may

not be representative. The stability issue with multiple bottlenecks has been investigated

in [61], which concluded that TCP/RED may become unstable with multiple bottleneck

scenario if the configuration of RED queue is inappropriate.

Our main objective in this thesis is to provide theoretical support for the analysis of

AIMD/RED system. Theoretical analysis and simulation results presented in the the-

sis provide important insights for the in-depth understanding of the AIMD/RED system

and can be used as guidelines to set up system parameters in order to maintain network

stability and to fully utilize network resources without excessive delay and loss.

In this thesis, the AIMD/RED system, based on the fluid-flow model, is systemati-

cally studied. In particular, we concentrate on the system modeling, stability analysis and

bounds estimates. We first focus on the stability and fairness analysis of the AIMD/RED

system with a single bottleneck. Stability results and fairness conditions are obtained for

both homogeneous- and heterogeneous-flow systems with and without feedback delays.
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1.3. THESIS OUTLINE

Then, we derive the theoretical estimates for the upper and lower bounds of homoge-

neous and heterogeneous AIMD/RED systems with feedback delays and further discuss

the system performance when it is not asymptotically stable. Last, we develop a general

mathematical model for a class of multiple-bottleneck networks and discuss the stability

properties of such a system. Our analytical results are validated both numerically and by

simulations.

Our theoretical findings in the study of this topic are original and of great practi-

cal value for controlling and enhancing system performanceand efficiency in terms of

bounded delay and packet loss. Our results can also help predict and control the system

performance for the Internet with higher data rate links multiplexed with heterogeneous

flows.

1.3 Thesis Outline

The rest of this thesis is organized as follows.

Chapter 2 describes in some detail the Internet congestion control problem and sum-

marizes the necessary mathematical background on which theanalysis and discussions

in this thesis rely.

The stability properties of a class of generalized AIMD/REDsystem are system-

ically discussed in Chapter 3. Sufficient conditions for asymptotic stability of both

homogeneous- and heterogeneous-flow systems with and without feedback delay are

obtained, by using direct Lyapunov and Lyapunov-Razumikhin methods. Also, the re-

lationship between the AIMD parameters and the average window size of competing

AIMD flows are derived in this chapter, as well as the TCP-friendly condition.

6



1.4. BIBLIOGRAPHIC NOTES

Chapter 4 focuses on the practical stability of the homogeneous- and heterogeneous-

flow AIMD/RED systems with feedback delays, and derives theoretical bounds on the

AIMD flow window size and the RED queue length. The system performances are also

discussed when AIMD/RED is not asymptotically stable.

Chapter 5 studies the stability properties of the general AIMD/RED system with mul-

tiple bottlenecks. A general mathematical model for multi-bottleneck scenarios is first

developed and sufficient conditions for the asymptotic stability of multiple-bottleneck

systems are obtained for the cases with and without heterogeneous delays.

Concluding remarks and potential research directions for future work are presented

in Chapter 6.

1.4 Bibliographic Notes

Most of the research results reported in this thesis have appeared in the research papers

and technical reports [27, 28, 29, 30, 31, 32, 33]. Work of Chapter 3 appeared in [27, 28,

29]; Chapter 4 appeared in [30, 31]; Chapter 5 appeared in [32, 33].
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Chapter 2

Background

2.1 Internet Congestion Control Overview

The proliferation and universal adoption of the Internet asthe information transport plat-

form have escalated it as the key wired network. The explosive growth of the Internet

depends on the design of the best-effort service core network. The Internet is a packet

switching network. Its intermediate nodes, e.g., routers,forward packets with their best

efforts, but with no guarantee. Packets are forwarded on thefirst in first out (FIFO) strat-

egy, and discarded when buffer overflows. The intermediate nodes know almost nothing

and do not maintain any state information about end-to-end sessions. These designs

make the core network simple, robust and scalable.

In the Internet, it is the end points, instead of the core network, that take the re-

sponsibility of maintaining stability and integrity of thewhole system. Since the core

network does not explicitly inform the end points of the internal characteristics, e.g.,

logical topology, background traffic, and available resources, etc., the end points have to
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2.1. INTERNET CONGESTION CONTROL OVERVIEW

take appropriate actions without explicit feedback from the core network. When the best

effort service network suffers congestion, the most important signals which end points

can capture are packet losses. The end points should appropriately throttle their sending

rates to avoid network collapse, i.e., network power, defined as throughput over delay,

may dramatically decrease to zero. The first network collapse was seen in the late 1980’s.

Since then, the dominant Internet transport layer protocol, Transmission Control Proto-

col (TCP) [1, 2], had been engineered and re-engineered to incorporate the end-to-end

flow/congestion control mechanism [3], which is acknowledged as one of the key factors

to the overwhelming of the Internet.

Congestion in the Internet can cause high packet loss rates,increased delays, and

even break the whole system. Without congestion control, when the offered load is

larger than the network capacity, the network power (ratio of throughput to delay) will

decrease sharply and the network will be driven to congestion collapse. The main targets

of TCP congestion control are to explore and fully utilize the available bandwidth for a

connection and to avoid severe congestions in the network.

TCP implements an Additive Increase and Multiplicative Decrease (AIMD) [4] con-

gestion control mechanism. In brief, it additively increase the sending rate to probe the

available bandwidth when no congestion occurs and exponentially (multiplicatively) de-

crease its sending rate in response to congestion signals. With the AIMD congestion

control mechanism,TCP is honored for utilizing the bandwidth efficiently, guaranteeing

the stability of the networks and maintaining the fairness among co-existing TCP flows,

which lead to the explosive growth of the Internet usage in the last decade.

On the other hand, the growth of the Internet is fueled by the development of the

Web. The application protocol of text webpage is Hypertext Transfer Protocol (HTTP),
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2.1. INTERNET CONGESTION CONTROL OVERVIEW

which sends data by TCP connection, same as traditional TCP-based application proto-

cols such as File Transfer Protocol (FTP), Simple Mail Transfer Protocol(SMTP), and

Telnet Protocol, etc.. These TCP-based applications dominate today’s Internet. Briefly

speaking, TCP controls the sending rate by a congestion window (cwnd). Thecwnd of

the TCP flow is increased by one packet per round trip time (RTT ) when no congestion

occurs and halved when a congestion signal is captured by theTCP sender.

2.1.1 Internet Architecture

Before we study the Internet congestion models and algorithms, it would be helpful

to know the layered architecture of the Internet in order to understand the framework

within which the window flow control protocol is implementedin the Internet. A brief

introduction is provided in this subsection. A more detailed description and discussion

can be found in [5]. Briefly speaking, the Internet is organized in several layers [6]:

Physical layer

Data link layer

Network layer

Transport layer

Application layer.

The physical layer refers to the collection of protocols that are required to transmit a

bit, a 0 or a 1, over a physical medium such as an ethernet cable. Normally, the physical

medium takes a waveform as an input and produces a waveform asthe output. Therefore,

protocols needs to convert 0s and 1s into these waveforms. This function is implemented

at the physical layer.
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The data link layer consists of the collection of protocols which collect many bits

together in the form of a frame and ensures that the frame is transferred from one end of

the physical link to the other. In order to guarantee that errors in the frame transmission

can be detected and corrected, error correction could also be added at this layer.

The network layer performs the crucial task of routing or delivering a packet from a

source to a destination. The protocols at this layer are usedto append end-host addresses

and other information to data bits to form a packet and further to route packets through

the network using these addresses. In the Internet, this layer is also called the IP (Internet

Protocol) layer. However, packets passing through the network could be lost or corrupted

in the route from the source to the destination. For example,when the source transmis-

sion are bigger than the rate at which packets can be processed by the routers, buffers

at the routers will overflow. This is a main reason to cause theloss of packet. Thus,

although the network layer performs the packet delivery service, the packet delivery may

not be reliable.

The transport layer adds reliability to the network layer. The transport layer protocols

make sure that lost packets are detected and possibly retransmitted from the source, if

necessary, depending upon the application. The transport layer usually turns the unre-

liable and basic service provided by the network layer into amore powerful one. The

predominant transport layer protocol used in today’s Internet is the Transmission Con-

trol Protocol (TCP). The adaptive window flow control algorithm proposed by Jacob-

son’s is implemented within TCP. TCP provides end-to-end reliable communication and

is used for many protocols, including HTTP web browsing, email transfer., etc.There are

some other transport layer protocols such as video transmission which can tolerate some

amount of packet losses, where packet retransmission may not be required.
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Finally, the application layer refers to protocols such as ftp, http, etc. which use the

lower layers to transfer files or other forms of data over the Internet. The application layer

provides services for an application program to ensure thateffective communication with

another application program in a network is possible.

The introduction above, which is not intended to be a detailed or accurate description,

can be taken as a quick overview of the layered architecture of the Internet. Our target

is to point out the layer within which TCP is performed in the Internet and further to

indicate that congestion control is implemented within thetransport layer protocol TCP.

It also shows the fact what are studying in this thesis is partof the collection of protocols

that make the Internet function.

2.1.2 TCP Congestion Control

In the 1980’s, network congestion was not a concern due to thelimited user population,

and the original version of TCP did not constitute the congestion control mechanism [1].

Later, with the explosive growth of the Internet, congestion problems became severe

owing to the lack of bandwidth. In the mid 1980’s, the Internet suffered a series of con-

gestion collapses that the bandwidth suddenly has a factor-of-thousand drop. Not until

the late 1980’s was a congestion control mechanism developed and widely accepted [3].

Since then TCP congestion control has been modified and engineered to enhance its per-

formance.

Consider a single source accesses a link with the capacityC packets/second. For

simplicity, we also assume all packets are of equal size. To ensure that congestion does

not occur at this link, the source should transmit at a maximum rate ofC packets/second.

One way to guarantee it is to use awindow flow control protocol.A source’s window
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size is the maximum number of unacknowledged packets that the source can send into

the network at any time.

The window size started with 1, then the source maintains a counter which has a max-

imum value of 1. The counter indicates the number of packets that it can send into the

network. The counter’s value is initially the same as the window size. When the source

sends one packet into the network, the counter is reduced by 1. Thus, the counter in this

case would become zero after each packet transmission and the source cannot send any

more packets into the network till the counter becomes 1 again. To increase the counter,

the source waits for the destination to acknowledge the receipt of the packet. This process

is accomplished by sending a small packet called the acknowledgement (ack) packet,

from the destination back to the source. Once receiving theack, the counter is increased

by 1 and thus the source can send one more packet into the network again. The term

round trip time (RTT ) is used to refer to the amount of time that elapses between the

instant that the source transmits a packet and the instant atwhich it receives the acknowl-

edgment for the packet. With a window size of 1, since one packet is transmitted during

everyRTT , the source’s data transmission rate is 1/RTT packets/sec.

When the window is 2, the counter’s value is initially set to 2. Thus, the source can

send two packets into the network. For each transmitted packet, the counter is decreased

by 1. Thus, after the first two packet transmissions, the counter is decremented to zero.

When one of the packets is acknowledged and theack reaches the source, then the source

increments the counter by 1 and can send one more packet into the network. Once the

new packet is transmitted, the counter is again decrementedback to zero. Thus, after

eachack, one packet is sent, and then the source has to wait for the next ack before it

can send another packet. If one assumes that the processing speed of the link is very fast,
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i.e., 1/C ≪ RTT , and that the processing times at the source and destinationare neg-

ligible, then the source can transmit two packets during every RTT . Thus, the source’s

transmission rate is2/RTT packets/sec. From the above argument, it should be easy to

conclude that, if the window size isW , then the transmission rate can be approximated

byW/RTT packets/sec. A precise computation of the rate as a functionof the window

size is difficult because we need to take processing delays atthe source and destination

and the queueing delays at the link into account. In common with current literature, we

will use the approximate relationship between the window and the transmission rate.

If the link capacity isC and the source’s window sizeW is such thatW/RTT < C,

thenthe system will be stable. In other words, all transmitted packets will be eventually

processed by the link and reach the intended destination.However, in a general network,

the available capacity cannot be easily determined by a source. The network is also

shared by many sources which are sharing the capacities at the different links in the

network. Therefore, each source has to adaptively estimatethe value of the window size

that can be supported by the network. The solution proposed for this by Jacobson [3] is

described in the following.

Jacobson’s algorithm have been widely implemented in today’s TCP. TCP uses a

scheme that adjusts its window size depending on the detection of the congestion in the

network. The essential idea is that the window size keeps increasing till buffer overflow

occurs. The destination detects the overflow by the fact thatsome of the packets do not

reach the destination. Upon the detection of the packets losses, the destination informs

the source that will reset the window size to a small value. When there is no packet

loss, the window increases rapidly when it is small. After the window size reaches some

threshold, it is increased more slowly later by probing the network for bandwidth gradu-
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ally and trying to stay at this stage as long as possible.

Jacobson’s congestion control algorithm operates in two phases [6]:

1. Slow-Start Phase:

Start with a window size of 1.

Increase the window size by 1 for everyack received. This continues till the window

size reaches a threshold called the slow-start threshold (ssthresh). The initial value of

ssthresh is set at the beginning of the TCP connection when the receiver communicates

the maximum value of window size that it can handle. The initial value ofssthresh is

set to be some fraction (say, half) of the maximum window size. Once the window size

reachesssthresh, the slow-start phase ends, and the next phase called thecongestion

avoidancebegins. If a packet loss is detected before the window size reachesssthresh,

thenssthresh is set to half the current window size, then the current window size is reset

to 1, and slow-start begins all over again.

2. Congestion Avoidance Phase:

In the congestion avoidance phase, the window size is increased by1/cwnd for every

ack received, wherecwnd denotes the current window size. This is roughly equivalent

to increasing the window size by 1 after everycwnd acks are received.

When packet loss is detected, the window size is decreased.ssthresh is reset to be

half of the current window size,cwnd is reset to one and go back to the slow-start phase.

Remark: Different versions of TCP, such as TCP-Tahoe, TCP-Reno, TCP-SACK,

reduce the window size in different ways. However, for modeling purposes, these do not
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make much of a difference and we will use the algorithm described above for analysis.

In the description of Jacobson’s algorithm, how TCP detectspacket loss was not

discussed. In the early versions of this algorithm, TCP-Tahoe, packet loss was detected

only if there was a timeout, i.e., anack is not received within a certain amount of time.

In more recent versions such as TCP-Reno and TCP-NewReno, packet loss is assumed

either if there is a timeout or if three duplicateacks are received.

2.1.3 TCP-friendly AIMD Congestion Control

Driven by new commercial demands and technological progress, the Internet is support-

ing differentiated services, including a large amount of multimedia applications. Al-

though it has been shown that TCP congestion control is very successful for bulk data

transfer, its increase-by-one or decrease-by-half strategy produces a highly fluctuating

sending rate which is undesirable for many multimedia applications, since most multi-

media traffic cannot tolerate its sending rate suddenly cut by half. Since TCP-transported

applications are dominant in the Internet, it is crucial to have compatible traffic regula-

tions for non-TCP applications. These regulations, or congestion control should meet the

following requirements: 1) different classes of multimedia applications should be able to

share the network resources appropriately with ordinary TCP-transported applications.

2) there multimedia applications can coexist and behave properly. We refer to these

regulations as TCP-friendly congestion control for non-TCP-transported applications. In

addition to the fairness and TCP-friendliness issues1, any new congestion control scheme

1TCP-friendliness is defined as the average throughput of non-TCP-transported applications over a

large time scale does not exceed that of any conformant TCP-transported ones under the same circum-

stance [10].
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should also a) have the ability to maintain the network stability by promptly responding

to the congestion and be cooperative with other flows in the network; b) utilize the net-

work resources efficiently; c) be capable of providing better quality of service (QoS)

and d) be simple and easy to implement, compatible with the legacy, and scalable for

incremental deployment.

To overcome the limitations of TCP’s saw-teeth flows while meeting all the re-

quirements stated above, a TCP-friendly Additive Increaseand Multiplicative Decrease

(AIMD) congestion control strategy has been proposed [11] to support heterogeneous

services over the Internet. For each round trip time, the AIMD sender either increase

its congestion window byα packets if no congestion occurs, or decrease the window

to β times its current value when congestion signal is captured.For different traffic,

appropriate pair of parameters(α, β) can be chosen according to the traffic characteris-

tics to improve its QoS. The protocol with this congestion control mechanism is called

the AIMD(α, β) protocol. TCP is a special case of AIMD with(α = 1, β = 0.5).

Without any modifications to the core networks, the AIMD protocol can be a scalable

solution to support differentiated services. [12] also showed that AIMD can be efficient

on bandwidth utilization, friendly to ordinary TCP flows, and provide better QoS. By ad-

justing the pair of(α, β) parameters, different classes of flows can get different weight

of bandwidth when they share the link.

2.1.4 Active Queue Management

By itself, TCP/AIMD has no information of network mechanisms contributing to packet

loss, which can affect network performance by decreasing the senders’ effective trans-

mission and increasing delay due to packet retransmission.In order to detect and control
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the congestion effectively, TCP/AIMD congestion control mechanism must be paired

with a congestion detection scheme. Thus, routers must assume a role in network man-

agement by sensing congestion and pre-emptively signalingTCP/AIMD rather than have

it to react to unreceived packets.

An Internet router typically maintains a set of queues, one per interface, that hold

packets scheduled to go out on that interface. Traditionally, the IP router only maintains

a First In First Out (FIFO) queue for each output interface. When the packet arriving

rate is larger than the service rate (mainly transmission rate) instantaneously, aggregated

packets are buffered in the FIFO queue. When the buffer is full, the following packets

will be discarded (in the tail). This is called Drop-Tail queue management. The Drop-

Tail queue is known to produce burst packet losses and biasedagainst flows with long

RTTs, and violates the fairness constraint.

To detect and distribute network congestion indicators fairly to all on-going flows,

Active Queue Management (AQM) has been developed to be deployed in the interme-

diate nodes. Modern routers equipped with AQM can detect congestion even before

buffer overflow actually occurs. Random Early Detection (RED) is a well-known AQM

scheme [14] and is widely deployed in core networks.

The RED router defines two thresholds. If the queue length is less than the lower

threshold, no additional action is taken. If the queue length exceeds the lower threshold

a certain level, incoming packets are discarded randomly with some certain dropping

probability, which is proportional to the current queue size. Incoming packets are dis-

carded with probability one if the queue length exceeds the upper threshold. The router

is not limited to drop packets. It can also mark the incoming packets when the queue

length is above the lower threshold, and the packet-markingprobability is a function
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of the queue length. Thus, before the buffer overflows, the congestion signals have al-

ready been distributed to on-going flows proportional to their sending rates. The flow

with higher sending rate will suffer more packets losses. Therefore, with RED queue

management, the link bandwidth can be more fairly distributed to all on-going flows. In

addition, since RED helps the end points detect the congestion earlier, the network can

recover from congestion quicker and the on-going flows can have better throughput.

RED routers are compatible with in-use FIFO routers, so theycan be deployed incre-

mentally. The currently dominant AIMD congestion control mechanism, coupled with

the RED queue management that has been widely deployed in theInternet core routers,

has been acknowledged as one of the key factors to the overwhelming success of the

Internet [40, 41].

2.2 Mathematical Background

Before delving into the modeling and stability analysis of the Internet congestion control

problem, we summarize the mathematical background that theanalysis and discussions

in this thesis rely on. Most of the material in this section are taken from Khalil [51],

unless otherwise mentioned.

2.2.1 Basic Definitions and Preliminaries

Consider the following system of differential equations

ẋ(t) = f(x(t)), x(0) = x0, f : D → Rn (2.1)
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whereD is an open and connected subset ofRn, and f is a locally Lipschitz function

mappingD intoRn.

Definition 1 A pointx = x∗ is said to be an equilibrium point of system (2.1) if it has

the property that whenever the solutionx(t) of (2.1) starts atx∗, it remains atx∗ for all

future time.

According to this definition, the equilibrium points of (2.1) are then the real roots of

the equationf(x∗) = 0.

For convenience, we will state all definitions and theorems for the case when the

equilibrium point is at the origin(x∗ = 0), since any equilibrium point can be shifted

to the origin by a change of variables. In the sequel, we will assume thatf(x) satisfies

f(0) = 0.

Definition 2 The equilibrium pointx∗ = 0 of system (2.1) is said to be

• stable if for anyε > 0, there exists aδ = δ(ε) > 0 such that‖ x0 ‖< δ implies

‖ x(t) ‖< ε, ∀t > 0;

• unstable if it is not stable;

• asymptotically stable if it is stable and there exists a constant δ > 0 such that

‖ x(t) ‖< δ implieslimt→∞ ‖x(t)‖ = 0.

Having defined the stability and asymptotic stability concepts, we use Lyapunov’s ap-

proach to determining stability. The main idea behind this technique is to determine how

a special class of functions behave along the solutions of system (2.1). Let us first define

these functions.
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Definition 3 LetD be an open subset ofRn containingx = 0. A functionV : D → R

is said to be positive semi-definite onD if it satisfies the following conditions

(i) V (0) = 0;

(ii) V (x) ≥ 0, ∀x ∈ D − {0}.

It is said to be positive definite onD if it satisfies(i) above and

(ii*) V (x) > 0, ∀x ∈ D − {0}.

It is said to be negative definite (semi-definite) onD if −V is positive definite (semi-

definite) onD.

Definition 4 A positive definite functionV defined onRn is said to be radially un-

bounded (or proper) if the following condition holds:lim‖x‖→∞ V (x) → ∞.

In the Lyapunov stability theorems, the focus is on the function V and its time derivative

along the trajectories of the dynamical system under consideration. The time derivative

of V (x) along the trajectories of system (2.1) is (simply) denoted by V̇ and defined as

V̇ = ▽V · f(x)

Theorem 2.1 Let x∗ = 0 be an equilibrium point for system (2.1). LetD be an open

subset ofRn containingx = 0 andV : D → R be a continuously differentiable function

defined onD such that

(i) V (0) = 0,

(ii) V (x) > 0, ∀x ∈ D − {0}

(iii) V̇ ≤ 0, ∀x ∈ D − {0}

Then,x∗ = 0 is stable. If condition(iii) is replaced by
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(iii*) V̇ < 0, ∀x ∈ D − {0},

thenx∗ = 0 is asymptotically stable. Moreover, ifD = Rn andV is radially unbounded,

thenx∗ = 0 is globally asymptotically stable.

In the next definition, we define positive definite matrices which play an important

role in defining Lyapunov functions.

Definition 5 [52] A real symmetricn × n matrix is said to be positive definite if and

only if it has strictly positive eigenvalues.

An important class of positive definite functions are the quadratic functionsV (x) =

xTPx, whereP is a positive definite matrix. Letλmin(P ) andλmax(P ) denote the min-

imum and maximum eigenvalues of P, respectively. Then, we have λmin(P ) ‖ x ‖2≤

V (x) = xTPx ≤ λmax(P ) ‖ x ‖2 . This inequality is referred to as theRayleigh

Inequality.

A special case of system (2.1) is when the vector field function f(x) has the linear

formAx whereA is a realn× n matrix; namely, we have

ẋ(t) = Ax(t), x(0) = x0. (2.2)

which is called a linear time-invariant (or autonomous) system. The solution of (2.2) is

given byx(t) = eAtx0.

An efficient technique to investigate the stability properties of system (2.2) is by

determining the location of the eigenvalues of the matrixA, as shown in the following

theorem.
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Theorem 2.2 The equilibrium pointx∗ = 0 of system (2.2) is stable if and only if the

eigenvalues ofA (λis) have non-positive real parts and for those with zero real parts

and algebraic multiplicityqi, rank(A−λiI) = n−qi, wheren represents the dimension

of x. It is globally asymptotically stable if and only if all eigenvalues ofA have strictly

negative real parts.

Definition 6 Ann×nmatrix is said to beHurwitz (or stable) if all its eigenvalues have

negative real part.

The asymptotic stability property can also be characterized by using Lyapunov’s

method. Consider the following Lyapunov function candidateV (x) = xTPx, the deriva-

tive of V (x) along the trajectories of (2.2) is given byV̇ = ẋTPx+xTP ẋ = xT (ATP +

PA)x = −xTQx, whereQ is ann× n matrix given by

ATP + PA = −Q. (2.3)

If Q is positive definite, then by Theorem (2.1) the origin is an asymptotically stable

equilibrium point. This result is summarized in the next theorems.

Theorem 2.3 Ann×nmatrixA isHurwitz if and only if, for any given positive definite

matrixQ, there is a unique positive definite matrixP which satisfies (2.3).

The matrix equation (2.3) is referred to as a Lyapunov equation which is solved for

P for a givenQ whereP =
∫ ∞

0
eAT tQeAtdt.

Lemma 2.4 (Schur complement) [52] The following three inequalities are equivalent:
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(1)







A B

BT C





 ≤ 0;

(2)A ≤ 0, andC − BTA−1B ≤ 0;

(3)C ≤ 0, andA− BC−1BT ≤ 0,

whereA, B, C are real constant matrices of appropriate dimensions, andA, C are

symmetric.

If in a domain about the origin we can find a Lyapunov function whose derivative

along the trajectories of the system is negative semi-definite, and if we can establish that

no trajectory can stay identically at points whereV̇ (x) = 0, except at the origin, then the

origin is asymptotical. This idea follows from LaSalle’s invariance principle, which is

described as follows.

Theorem 2.5 Let Ω ⊂ D be a compact set that is positively invariant with respect

to (2.1). LetV : D → R be a continuously differentiable function such thatV̇ (x) ≤ 0 in

Ω. LetE be the set of all points inΩ whereV̇ (x) = 0. LetM be the largest invariant set

in E. Then every solution starting inΩ approachesM ast→ ∞.

Unlike Lyapunov’s theorem, Theorem 2.5 does not require thefunctionV (x) to be

positive definite.

When our interest is in showing thatx(t) → 0 ast → ∞, we need to establish that

the largest invariant set inE is the origin. This is done by showing that no solution can

stay identically inE, other than the trivial solutionx(t) ≡ 0.

Theorem 2.6 [51] Let x = 0 be an equilibrium point for (2.1). LetV : D → R be

a continuously differentiable positive definite function on a domainD containing the
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origin x = 0, such thatV̇ (x) ≤ 0 in D. LetS = {x ∈ D : V̇ (x) = 0} and suppose that

no solution can stay identically inS, other than the trivial solutionx(t) ≡ 0. Then, the

origin is asymptotically stable.

2.2.2 Delay Differential Equations

Delay differential equations (DDEs) arise as models for systems where the rate of change

of the state depends not only on the current state of the system but also its state at some

time(s) in the past (see e.g. [56, 57, 58]).

Ordinary differential equations(ODEs) have played important roles in modeling many

physical processes and they will continue to serve as a fundamental tool in future inves-

tigations. A drawback of these models is that they are ruled by the principle of causality,

that is, the future state of the dynamical system depends only on the present state and not

on the past. However, in the more realistic models, some historical values of the state

should and have to be taken into account. This leads us to delay differential equations,

also known as retarded functional differential equations.

Let Cτ = C([−τ, 0], Rn), with τ > 0, representing a time delay, be the set of

continuous functions from[−τ, 0] to Rn. If φ ∈ Cτ , the τ -norm of this function is

defined by‖φ‖τ = sup−τ≤θ≤0 ‖φ(θ)‖, where‖ · ‖ is the Euclidean norm onRn.

Definition 7 If x is a function mapping[t − τ, t] into Rn, a new functionxt mapping

[−τ, 0] intoRn is defined as followsxt(θ) = x(t+ θ), for θ ∈ [−τ, 0].

Here,xt(θ) (or simplyxt) is the segment of the functionx, from t − τ to t, that has

been shifted to the interval[−τ, 0]. AssumeΩ is a subset ofR×C, andf : Ω → Rn. A
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general delay differential equation is described as follows

ẋ(t) = f(t, xt), (2.4)

wheref depends on botht andxt. Sincext is an element ofC([−τ, 0], Rn), f is called

a functional. Unlike the initial state of an ordinary differential equation, the initial state

of system (2.4) is defined on the entire interval[t0 − τ, t0], not justt0. Then, an initial

condition is given as a continuous functionxt0 = φ(t) for t ∈ [t0 − τ, t0].

A functionx is said to be a solution of the equation (2.4) on[t0 − τ, t0 +A) if there

aret0 ∈ R andA > 0 such thatx ∈ C([t0 − τ, t0 + A), Rn), (t, xt) ∈ Ω andx(t)

satisfies the equation (2.4) fort ∈ [t0, t0 + A).

Remark:There are several special cases of (2.4). Ifτ = 0, then (2.4) becomes an

ordinary differential equatioṅx(t) = f(t, x(t)), i.e. ODEs are special case of DDEs.

If τ takes a finite number of valuesτ1, · · · , τk and0 ≤ k < ∞, then (2.4) becomes

ẋ(t) = f(t, x(t), x(t− τ1), · · · , x(t− τk)).

Theorem 2.7 (Existence) In (2.4) supposeΩ is an open subset inR × C andf is con-

tinuous onΩ: If (t0; φ) ∈ Ω, then there is a solution of (2.4) passing through(t0, φ).

We sayf(t;φ) is Lipschitz onφ in a compact setK of R×C, if there is a constantk > 0

such that, for any(t, φi) ∈ K, i = 1, 2, ‖f(t, φ1) − f(t, φ2)‖ ≤ k‖φ1 − φ2‖.

Theorem 2.8 (Uniqueness) SupposeΩ is an open subset inR × C, f : Ω → Rn is

continuous andf(t, φ) is Lipschitz inφ on each compact set inΩ. If (t0, φ) ∈ Ω then

there is a unique solution of (2.4) through(t0, φ).
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Theorem 2.9 [54] Consider the following delay differential inequality.

u̇(t) ≤ f(t, u(t), sup
θ∈[t−τ, t]

u(θ)) t ∈ [t0, t0 + a), a > 0.

Assume thaty(t) is a solution of the delay differential equation

ẏ(t) = f(t, y(t), sup
θ∈[t−τ, t]

y(θ)) t ∈ [t0, t0 + a)

such thaty(t) = u(t), t ∈ [t0 − τ, t0]. Then,u(t) ≤ y(t) for t ∈ [t0, t0 + a).

Definition 8 Supposef : R × C → Rn is continuous andf(t, 0) = 0 for all t. Then,

the solutionx = 0 of system (2.4) is said to be

• stable if, for a givenε > 0, there exists aδ = δ(ε, t0) > 0 such that‖xt0‖τ < δ

implies‖x(t)‖ < ε for ∀t ≥ t0 − τ ;

• unstable if it is not stable;

• asymptotically stable if it is stable and there exists aδ = δ(t0) > 0 such that

‖xt0‖τ < δ implieslimt→∞ ‖x(t)‖ = 0.

In DDEs the analysis of characteristic equations of linear autonomous delay differ-

ential equations is often a difficult task even for equationswith two discrete delays or

systems with just one discrete delay since those characteristic equations are transcenden-

tal. However, this can be overcome by using Lyapunov functionals to obtain sufficient

conditions for stability and instability of steady state ofDDEs in a way similar to the

second method of Lyapunov for ODEs [53, 57].

If V : R×C → R is continuous andx(t0, φ) is the solution of (2.4) through(t0, φ),

then we define

V̇ = V̇ (t, φ) = lim sup
h→0+

1

h
[V (t+ h, xt+h) − V (t, φ)]
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whereV̇ is the upper right-hand derivative ofV (t, φ) along the solution of (2.4).

Theorem 2.10 [53] Supposef : R × C → Rn takesR× (bounded sets of C) into

bounded sets ofRn andα, β, ψ : R+ → R+ are continuous and nondecreasing func-

tions,α(s), β(s) are positive fors > 0, andα(0) = β(0) = 0. If there is a continuous

functionV : R × C → R such that,

α(‖φ(0)‖) ≤ V (t, φ) ≤ β(‖φ‖τ) and V̇ (t, φ) ≤ −ψ(‖φ(0)‖)

then the solutionx = 0 of (2.4) is uniformly stable. Ifα(s) → ∞ as s → ∞, then

the solution of (2.4) is uniformly bounded. Ifψ(s) > 0 for s > 0, then the solution is

uniformly asymptotically stable.

The above theorem tells us that if a Lyapunov functional is monotonically decreasing

along the solution of (2.4), then the solution is uniformly asymptotically stable. However,

this method may be different sinceC is much more complicated thanRn and there is

no control between‖x(t)‖ and ‖x(t + θ)‖ for θ ∈ [−τ, 0]. For this reason another

effective method of analyzing stability of DDEs is the application of Razumikhin-type

theorems [53, 55, 57]. This technique makes use of functionsrather than functionals.

Consider an autonomous DDE defined by

ẋ = f(xt), (2.5)

and a positive definite and continuously differentiable functionV : Rn → R. Then the

derivative ofV along the solutions of (2.5) is given by

V̇ (x(t)) =
∂V (x(t))

∂x
f(xt).
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To proveV̇ is negative definite requires thatx(t) somehow dominatesx(t + θ). From

the definition of uniform stability, we know that ifxt is initially in a ballB = B(0, δ)

in C, then, for it to escapeB, it has to reach the boundary ofB at some timet∗: At

time t∗, we have‖x(t∗)‖ = δ, and‖x(t∗ + θ)‖ < δ for θ ∈ [−τ, 0); and we must have

d‖x(t∗)‖/dt ≥ 0. Hence, if we show this is impossible, then we arrive at the stability

conclusion. This observation leads to stability results, called Razumikhin type Theorems.

In general,V : R×Rn → R is a continuous function, anḋV (t, x(t)), the derivative

of V along the solutions of the DDE (2.4) is defined by

V̇ (t, x(t)) = lim sup
h→0+

1

h
[V (t+ h, x(t+ h)) − V (t, x(t))],

wherex(t) = x(t0, φ) for t ≥ t0 is the solution of the DDE (2.4) through(t0, φ).

Theorem 2.11 [53] Supposef : R × C → Rn takesR× (bounded sets of C) into

bounded sets ofRn andα, β, ψ : R+ → R+ are continuous, nondecreasing functions,

satisfyingα(0) = β(0) = ψ(0) = 0, andα(s), β(s) are positive fors > 0. Assume that

there is a continuous functionV : R×Rn → R such that,

α(‖x‖) ≤ V (t, φ) ≤ β(‖x‖) for t ∈ R, x ∈ Rn.

Then the solution x = 0 of (2.4) is

(i) uniformly stable if

V̇ (t, x(t)) ≤ −ψ(‖x(t)‖) for V (t+ θ, x(t+ θ)) ≤ V (t, x(t)), θ ∈ [−τ, 0];

(ii) asymptotically uniformly stable ifψ(s) > 0 for s > 0 and there is a continuous

nonincreasing functionp(s) > s for s > 0 such that

V̇ (t, x(t)) ≤ −ψ(‖x(t)‖) for V (t+ θ, x(t+ θ)) < p(V (t, x(t))), ψ ∈ [−τ, 0].

If α(s) → ∞ ass→ ∞, thenx = 0 is globally asymptotically stable.
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Chapter 3

Stability Analysis of Single-Bottleneck

AIMD/RED Systems

In this chapter, we systematically study the stability of a class of generalized AIMD/RED

(Additive Increase and Multiplicative Decrease/Random Early Detection) system. Suffi-

cient conditions are obtained for asymptotic stability of both homogeneous-flow system

and heterogeneous-flow system with and without feedback delay by using direct Lya-

punov and Lyapunov-Razumikhin method. Our study reveals the relationship between

the AIMD parameters and the average window size of competingAIMD flows. Con-

sequently, the TCP (Transmission Control Protocol)-friendly condition is derived. Nu-

merical results with Matlab and simulation results with NS-2 are given to validate the

theorems and analytical results. The analysis and the stability conditions derived can

be used as a guideline to set up the AIMD/RED system parameters in order to maintain

network stability and integrity, and to enhance system performance.
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3.1 Introduction

Internet stability depends on the Transmission Control Protocol (TCP), which is vol-

untarily deployed in the end system based on the Additive Increase and Multiplicative

Decrease (AIMD) congestion control mechanism. To support heterogeneous traffic, the

general AIMD congestion control uses a pair of parameters (α, β) to set the increase rate

and the decrease ratio [10, 11, 12]. On the other hand, the active queue management

(AQM) algorithms, such as Random Early Detection or Random Early Discard (RED),

have been developed and deployed in the intermediate systems to fairly distribute net-

work congestion signals to all on-going flows. With the RED schemes [14, 15], the

packet loss rate of each flow is roughly proportional to the flow sending rate. AIMD and

RED both contribute to the overwhelming success of the Internet.

Today’s Internet is becoming a more heterogeneous and diverse system: link capac-

ity varies from several Kbps to several Gbps, with six ordersof magnitude; transmission

bit error rates vary from< 10−9 to 10−3, also with about six orders of magnitude; and

end-to-end delay varies from several milliseconds to several seconds. A critical and

immediate question is whether the AIMD/RED system is a stable, fair, and efficient sys-

tem, independent of the heterogeneity of the link capacity,end-to-end delay, and network

topology. In other words, should we re-design the Internet congestion control mechanism

to accommodate future killer applications over the ever-diversified Internet, or can we

take an incremental approach of engineering the existing congestion control mechanism

and routers’ queue management parameters to achieve the same objective?

Stability problems of TCP flows with RED queues have been extensively investigated

in [21, 22, 23, 24, 25, 26]. New control mechanisms based on control theory and game

theory have also been proposed [7]. Instead of proposing a new control mechanism,
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we focus on the stability and performance of the dominant AIMD congestion control

mechanism with RED queues. In [26], using a fluid model, the global asymptotic stability

of TCP/RED is proved, neglecting the feedback delay. The dynamics of TCP/RED with

feedback delay has been studied using a frequency domain approach in [9]. Because of

the heterogeneity of the Internet, understanding the stability conditions of the general

AIMD/RED system with heterogeneous flows and feedback delays is critical for future

network planning and design.

In this chapter, we systematically study the stability of the AIMD/RED system, con-

sidering heterogeneous flows with different AIMD parameters in both delay-free mark-

ing and delayed marking scenarios. The definitions of stability and asymptotic stability

follow that in [36]. Consider dynamic systems with time delay of the following form:

dx

dt
= f(t, x(t), x(t− τ1(t)), · · · , x(t− τm(t)))

wherex∈Rn, f : I×Rn×Rn×· · ·×Rn → Rn is continuous. Letτ = max
i=1,..,m

supt≥t0 τi(t).

The trivial solution of the system is said to be

stableif for every ǫ>0 andt0∈R+, there exists someδ=δ(t0, ǫ)>0 such that for any

ξ(t)∈C[[−τ, 0], Rn], ‖ξ‖τ<δ implies‖x(t, t0, ξ)‖<ǫ for all t ≥ t0 ;

asymptotically stableif the system is stable and for everyt0∈R+, there exists some

η=η(t0)>0 such thatlimt→∞ ‖x(t, t0, ξ)‖=0 whenever‖ξ‖τ<η.

Based on the fluid model of the generalized AIMD/RED system, we apply the meth-

ods of Lyapunov functional and Lyapunov function with Lyapunov-Razumikhin condi-

tion to study the stability properties of the system. Different sufficient conditions are

derived for the local asymptotic stability of the system with feedback delays. Since the

fluid model captures the ensemble averages of the system parameters, with the sufficient
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conditions derived, the ensemble averages or the time averages (over a round) of the

AIMD/RED system can be locally asymptotically stable, evenwith heterogeneous feed-

back and propagation delays, so the AIMD/RED system can be marginally stable. A

round is defined as the time interval between two instants at which the sender reduces its

window size consecutively. The analysis also reveals the relationship between AIMD pa-

rameters and the average window size of competing AIMD flows,and the TCP-friendly

condition is also derived. Numerical results are given to validate the analysis. Extensive

simulations with NS-2 [60] are performed to study the systemperformance with realis-

tic protocols and network topologies. The analytical and simulation results can help to

better understand the stability and performance of AIMD/RED system, and the theoret-

ical results can be used as a guideline for the setting of system parameters to maintain

network stability and enhance system performance.

The remainder of the chapter is organized as follows. Section 3.2 proposes the model

of the generalized AIMD/RED system. Section 3.3 studies thestability property of the

generalized AIMD/RED system with delay free-marking, and derives the TCP-friendly

condition and average queuing delay. The stability and fairness analysis of AIMD/RED

system with heterogeneous feedback delays are given in Section 3.4. Numerical results

with MATLAB and simulation results with NS-2 are presented in Section 3.5. Related

work is briefly introduced in Section 3.6, followed by summary and further discussions

in Section 3.7.

33



3.2. A FLUID-FLOW MODEL OF AIMD/RED SYSTEM

3.2 A Fluid-flow Model of AIMD/RED System

A stochastic model of TCP behavior was developed using fluid-flow and stochastic dif-

ferential equation analysis [22]. Simulation results havedemonstrated that this model

accurately captures the dynamics of TCP. We extend the fluid-flow model for general

AIMD(α, β) congestion control: the window size is increased byα packet perRTT if

no packet loss occurs; otherwise, it is reduced toβ times its current value.

We first consider the case that all AIMD-controlled flows havethe same (α, β) pa-

rameter pair and round-trip delay. The AIMD/RED fluid model relates to theensemble

averagesof key network variables, and it is described by the following coupled, nonlin-

ear differential equations:

dW (t)

dt
=

α

R(t)
−

2(1 − β)

1 + β
W (t)

W (t− τ)

R(t− τ)
p(t− τ),

dq(t)

dt
=



































N(t) ·W (t)

R(t)
− C, q > 0,

{
N(t) ·W (t)

R(t)
− C}+, q = 0.

(3.1)

where{a}+= max{a, 0},α>0, β∈[0, 1],W∈[0, Wmax] is the ensemble average of AIMD

window size (packets);q ∈ [0, qmax] is the ensemble average of queue length (packets);

R is the round-trip time withR(t) = q(t)
C

+ Tp (secs), whereC is the queue capacity

(packets/sec) andTp is the deterministic delay (including propagation, processing, and

transmission delay). The delay termτ in R(·), W (·) andp(·) is defined as the average

round trip time.N is the number of AIMD flows andp is the probability of a packet

being marked (or dropped).
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3.2. A FLUID-FLOW MODEL OF AIMD/RED SYSTEM

The first differential equation of system (3.1) describes the AIMD(α, β) window con-

trol dynamic. Roughly speaking,α/R represents the window’s additive increase, while

2(1−β)
1+β

W represents the window’s multiplicative decrease in response to packet marking

(or dropping) probabilityp. This is because the flow’s window size always oscillates be-

tweenβWmax toWmax, the average window size over a round is(1 + β)Wmax/2. Each

time, the window size is cut by(1−β)Wmax = 2(1−β)W/(1+β). The second equation

models the bottleneck queue length as simply an accumulateddifference between packet

arrival rateNW/R and link capacityC. {·}+ in the model guarantees queue length is a

non-negative number.

With RED, as shown in Fig. 3.1, the packet marking probability is proportional to

the average queue length:p = Kp(qact − minth) with Kp > 0 andp∈[0, 1]. When the

actual queue length is less than or equal to the minimum threshold, i.e. qact ≤ minth,

the marking probability is zero. Therefore,dW (t)
dt

= α
R

, that is, the window size will keep

increasing and not converge. In the following, we will discuss the stability property of

this model whenqact>minth. Without loss of generality, letq(t) = qact(t)−minth. Since

the system behaves the same as a Drop-Tail queue once the queue length exceeds the

maximum thresholdmaxth, to focus on the behavior of AIMD/RED, we choosemaxth

to be sufficiently large such thatpmax = 1.

It should be noted that, (3.1) is a generalized AIMD/RED congestion control model,

which includes the model studied in [22, 23, 24, 25, 26, 34]. If we chooseα = 1, β =

0.5, (3.1) is equivalent to the traditional TCP/RED model. We will also show in the next

section that the stability properties of the specific model in the literature is compatible

with the corresponding properties of this generalized model as well.
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3.3 Stability and Fairness Analysis with Delay-free mark-

ing

3.3.1 Delay-free Homogeneous AIMD/RED system

With the fluid-flow model (3.1), we assume that the traffic load(N AIMD flows) is time-

invariant, i.e.,N(t)=N , and the round-trip time of each flow is a constant,R(t)=R. In

the case of delay-free marking, i.e.,p = Kpq(t), the original delay-free marking model

(3.1) can be written as a closed-loop dynamics:

dW (t)

dt
=

α

R
−

2(1 − β)

1 + β
W (t)

W (t)

R
Kpq(t),

dq(t)

dt
=































N ·W (t)

R
− C, q > 0,

{
N ·W (t)

R
− C}+, q = 0.

(3.2)

For a single-bottleneck system, the equilibrium point(W ∗
0 , q

∗
0) for (3.2) is given by

W ∗
0 =

RC

N
; q∗0 =

α(1 + β)N2

2(1 − β)R2C2Kp

. (3.3)

At equilibrium, the RED queue length is inversely proportional toKp. Thus, we

should chooseKp according to the delay budget.

With the transformed variables̃W :=W −W ∗
0 , q̃:=q − q∗0 , (3.2) becomes
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Figure 3.1: RED Marking Scheme

˙̃W (t) = −
2(1 − β)

1 + β

(W̃ (t) +W ∗
0 )2

R
Kpq̃(t)

−
2(1 − β)

1 + β

W̃ 2(t) + 2W̃ (t)W ∗
0

R
Kpq

∗
0,

˙̃q(t) =
N

R
· W̃ (t).

(3.4)

The equilibrium point of(3.4) is (W̃ ∗, q̃∗)=(0, 0).

We construct the positive-definite Lyapunov function,

V (W̃ , q̃) =
(1 + β)N3

2(1 − β)R2C2
· W̃ 2(t) +

1

2
Kpq̃

2(t),

which is used to derive the following theorem.

Theorem 3.1 The equilibrium point of(3.2) is asymptotically stable for allKp > 0.
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Figure 3.2: Block Diagram of Generalized AIMD/RED System

The proof of Theorem 1 is omitted, and we will prove a more general theorem (The-

orem 2) in the next subsection.

From the viewpoint of control theory, the block diagram of the AIMD/RED system

is depicted in Fig. 3.2. By a suitable control law, we relate the outputq with the inputp,

which makes the original open loop systems into a closed loopcontrol system to achieve

asymptotic stability.

3.3.2 Delay-free Heterogeneous AIMD/RED System

In the previous subsection, we discussed the stability property of the homogeneous-flow

system when there is only one type of flows with the parameter pair (α, β). To support

heterogeneous multimedia applications, we study the system with heterogeneous-flows,

i.e., there are two or more types of flows with the parameter pairs (α1, β1), (α2, β2), · · · ,
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(αm, βm).

First, we consider the case when there are two different heterogeneous flows:WI

whoseRTT is R1, andWII whoseRTT is R2, with the parameters (α1, β1), (α2, β2),

respectively. The number ofWI flows isN1, and that ofWII flows isN2. Then the

corresponding mathematical model has the following form,

dWI(t)

dt
=
α1

R1
−

2(1 − β1)

1 + β1
·
W 2

I (t)

R1
·Kpq(t),

dWII(t)

dt
=
α2

R2
−

2(1 − β2)

1 + β2
·
W 2

II(t)
2

R2
·Kpq(t),

dq(t)

dt
=



































N1WI(t)

R1
+
N2WII(t)

R2
− C, q > 0,

{
N1WI(t)

R1
+
N2WII(t)

R2
− C}+, q = 0.

(3.5)

The equilibrium points(W ∗
I , W

∗
II , q

∗
0) of (3.5) can be obtained as

W ∗
I =

R1R2C

R2N1 + (α2(1−β1)(1+β2)
α1(1+β1)(1−β2)

)1/2 · R1N2

;

W ∗
II =

R1R2C

(α1(1+β1)(1−β2)
α2(1−β1)(1+β2)

)1/2 · R2N1 +R1N2

;

q∗0 =
α1(1 + β1)[R2N1 + (α2(1−β1)(1+β2)

α1(1+β1)(1−β2)
)1/2R1N2]

2

2R2
1R

2
2C

2Kp(1 − β1)
. (3.6)
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With the transformed variables̃WI(t) := WI(t) −W ∗
I , W̃II(t) := WII(t) −W ∗

II

andq̃(t) := q(t) − q∗0, (3.5) becomes

˙̃WI(t) = −
2(1 − β1)

1 + β1

(W̃I(t) +W ∗
I )2

R1
Kpq̃(t)

−
2(1 − β1)

1 + β1

W̃ 2
I (t) + 2W ∗

I W̃I(t)

R1
Kpq

∗
0,

˙̃WII(t) = −
2(1 − β2)

1 + β2

(W̃II(t) +W ∗
II)

2

R2
Kpq̃(t)

−
2(1 − β2)

1 + β2

W̃ 2
II(t) + 2W ∗

IIW̃II(t)

R2
Kpq

∗
0,

˙̃q(t) =
N1 · W̃I(t)

R1
+
N2 · W̃II(t)

R2
. (3.7)

The equilibrium point of(3.7) is then (W̃ ∗
I , W̃

∗
II , q̃

∗
0)=(0, 0, 0).

With (3.7), choose the following positive-definite Lyapunov function,

V (W̃I(t), W̃II(t), q̃(t))

=
(1 + β1)N1

2(1 − β1)W ∗2
I

· W̃ 2
I (t) +

(1 + β2)N2

2(1 − β2)W ∗2
II

· W̃ 2
II(t)

+Kpq̃
2(t).

Then,
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V̇ =
(1 + β1)N1

(1 − β1)W
∗2
I

W̃I(t)
˙̃WI(t)

+
(1 + β2)N2

(1 − β2)W
∗2
II

W̃II(t)
˙̃WII(t) + 2Kpq̃(t) ˙̃q(t)

= −
2N1Kp

W ∗2
I R1

W̃ 2
I (t)(W̃I(t) + 2W ∗

I )(q̃(t) + q∗0)

−
2N2Kp

W ∗2
II R2

W̃ 2
II(t)(W̃II(t) + 2W ∗

II)(q̃(t) + q∗0)

≤ 0.

From the physics constraint point of view, the positive-definite Lyapunov function is

the total energy function of the system, i.e., the sum of kinetic and potential energy. Here

V̇ ≤ 0, sinceW̃I(t) + 2W ∗
I > 0, W̃II(t) + 2W ∗

II > 0 andq̃(t) + q∗0 ≥ 0, which means

the energy of the system is non-increasing. Thus, we prove that the equilibrium point is

stable. To conclude asymptotic stability, we first considerthe set of states wherėV = 0,

M : = {(W̃I , W̃II , q̃) : V̇ = 0}

= {(W̃I , W̃II , q̃) : W̃I=W̃II=0 or q̃= − q∗0}.

By LaSalle’s Invariance Principle [36], trajectories of(3.7) converge to the largest

invariant set contained inM. We will then prove that the only invariant set contained in

M is the equilibrium point (0, 0, 0). If (W̃I(t), W̃II(t), q̃(t)) is equal to(0, 0, q̃(t)) or

(W̃I(t), W̃II(t), −q
∗
0), by using(3.7), we can conclude that(W̃I(t

+), W̃II(t
+), q̃(t+))

is not inM, which implies that no trajectory can stay inM, other than the point (0, 0, 0).

Therefore, asymptotic stability is obtained, which we summarize as follows:
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Theorem 3.2 For anyKp > 0, the equilibrium point of(3.7) is asymptotically stable for

any positive pairs(α1, β1), (α2, β2) and any positiveR1, R2.

We can also extend our results to the case when more than two heterogeneous flows

exist in the same system. Suppose that there areM different heterogeneous flows (α1, β1),

(α2, β2), · · · , (αm, βm) sharing the resources, with the numberN1, N2, · · · , Nm, and

differentRTTs R1, R2, · · · , Rm respectively, then those flows can be mathematically

modeled as,

dWI(t)

dt
=
α1

R1

−
2(1 − β1)

1 + β1

·
WI(t)

2

R1

·Kpq(t),

dWII(t)

dt
=
α2

R2

−
2(1 − β2)

1 + β2

·
WII(t)

2

R2

·Kpq(t),

· · · · · · · · · · · ·

dWM(t)

dt
=
αm

Rm

−
2(1 − βm)

1 + βm

·
WM(t)2

Rm

·Kpq(t),

dq(t)

dt
=



























∑m
i=1

NiWi(t)
Ri

− C, q > 0,

{
∑m

i=1
NiWi(t)

Ri
− C}+, q = 0.

(3.8)

With (3.8), we choose a positive-definite Lyapunov functionas

42



3.3. STABILITY AND FAIRNESS ANALYSIS WITH DELAY-FREE MARKING

V (W̃I(t), W̃II(t), · · · , W̃M(t), q̃(t))

=
(1 + β1)N1

2(1 − β1)W
∗2
I

· W̃ 2
I (t) +

(1 + β2)N1

2(1 − β2)W
∗2
II

· W̃ 2
II(t)

+ · · ·+
(1 + βm)Nm

2(1 − βm)W ∗2
M

· W̃ 2
M(t) +Kpq̃

2(t),

whereW̃i(t), i=1, 2, · · · , m, andq̃(t) have the same meaning as in (3.7). Then,

V̇ =
(1 + β1)N1

(1 − β1)W ∗2
I

W̃I
˙̃WI +

(1 + β2)N2

(1 − β2)W ∗2
II

W̃II
˙̃WII

+ · · ·+
(1 + βm)NM

(1 − βm)W ∗2
M

W̃M
˙̃WM + 2Kpq̃ ˙̃q

= −
2N1Kp

W ∗2
I R1

W̃ 2
I (W̃I + 2W ∗

I )(q̃ + q∗0) − · · ·

−
2NmKp

W ∗2
MRm

W̃ 2
M(W̃M + 2W ∗

M)(q̃ + q∗0)

≤ 0.

We can obtain its asymptotic stability by applying LaSalle’s Invariance Principle, and

thus have the following theorem,

Theorem 3.3 For anyKp>0, the equilibrium point of system(3.8) is asymptotically sta-

ble for any positive pairs(α1, β1), (α2, β2), · · · , (αm, βm) and any positiveR1, R2, · · · , Rm.
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3.3.3 TCP-friendliness and Differentiated Services

For two competing AIMD flows, from(3.6), we can also get the relationship between

W ∗
I andW ∗

II as follow:

W ∗
I

W ∗
II

= [
α1(1 + β1)(1 − β2)

α2(1 − β1)(1 + β2)
]1/2. (3.9)

This means that the ratio ofW ∗
I andW ∗

II depends only on the choices of(α1, β1)

and (α2, β2), and regardless of the traffic loads in the network and their initial states.

Therefore, by choosing suitable(α1, β1) and(α2, β2), we can guarantee the fair share

of bottleneck bandwidth for each flow. Consequently, for AIMD(α, β) flows to be TCP-

friendly, i.e., co-existing TCP and AIMD flows obtain the same share of bottleneck band-

width, the necessary and sufficient condition is

α =
3(1 − β)

1 + β
. (3.10)

A large value ofβ can be chosen for applications that cannot tolerate drasticchanges of

the throughput, andα can be set according to the TCP-friendly condition.

In the Internet, different types of multimedia services areprovided with different re-

source requirements. To provide differentiate services, we can assign different traffic a

different weight. Eq. (3.9) indicates that we can easily adjust the AIMD parameters of

the end systems to provide differentiated services according to different QoS require-

ments. For instance, let the throughput of an AIMD(α1, β1) flow bek times that of an

AIMD (α2, β2) flow, the AIMD parameter pairs should satisfy

α1

α2

=
k2(1 − β1)(1 + β2)

(1 + β1)(1 − β2)
. (3.11)
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3.3.4 Numerical Results

The traces of average window size and queue length of100 TCP (α = 1, β = 0.5)

flows and100 AIMD( 0.2, 0.875) flows are given in Figs. 3.3 and 3.4, respectively. The

parameters used areC = 100, 000 packet/sec,R = 100 ms,Kp = 0.0001, andminth =

200 packets. For the TCP-friendliness, let100 TCP flows and24 AIMD( 0.2, 0.875)

flows share the bottleneck, and the numeric results with Matlab are shown in Fig. 3.5.

It can be seen that when the flows in the network possess the same (α, β) parameter

pair, the ensemble averages of window size and the bottleneck queue length converge

to some certain values, i.e., the equilibrium points we derived in the previous analysis.

When TCP and AIMD(0.2, 0.875) flows co-exist, they will fairly share the link capacity

in steady state, since (0.2, 0.875) satisfies the TCP-friendly condition (3.10). Thus, the

numeric results validate the theorems.

Furthermore, from Figs. 3.3 and 3.4, with a smaller value ofα and a larger value ofβ,

it takes longer time for the system to converge to the steady state, and the link utilization

during the transient stage is low; however, in steady state,the oscillation amplitudes

of the instantaneous window size and queue length are smaller. In other words, with a

smaller value ofα and a larger value ofβ, the queuing delay jitter is smaller, and the

link utilization in steady state is higher, which are desired for supporting time-sensitive

multimedia applications.
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Figure 3.3: Window Trace
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Figure 3.4: Queue Length
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3.4 Stability and Fairness Analysis with Heterogeneous

Feedback Delays

In this section, we study the stability properties of the AIMD/RED system with feedback

delay, using the method of Lyapunov functional and Lyapunovfunction with Lyapunov-

Razumikhin condition, to establish different sufficient conditions for the stability of the

AIMD/RED system with heterogeneous flows and feedback delays.

3.4.1 Homogeneous Delayed AIMD/RED System

For AIMD/RED system with feedback delay, i.e.,p(t− τ) = Kpq(t− τ), we can obtain

the equilibrium point(W ∗
0 , q

∗
0) of the system (3.1) as

W ∗
0 =

R∗C

N
; q∗0 =

α(1 + β)N2

2(1 − β)R∗2C2Kp

. (3.12)

whereR∗ =
q∗0
C

+ Tp. Due to the highly nonlinear nature and the effect of delays in the

system, no suitable Lyapunov function could be constructedto prove global asymptotic

stability of the equilibrium. Without loss of generality, we fix the time-delay argument

t− τ in the system tot−R∗. Then, the system (3.1) can be linearized as

˙̃W (t) = −
αN

R∗2C
W̃ (t) −

αN

R∗2C
W̃ (t− R∗) −

α

R∗2C
q̃(t)

−

(

2(1 − β)

1 + β

KpC
2R∗

N2
−

α

R∗2C

)

q̃(t− R∗),

˙̃q(t) =
N

R∗
W̃ (t) −

1

R∗
q̃(t).

(3.13)
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whereW̃ :=W −W ∗
0 , q̃:=q − q∗0.

System(3.13) can be written in the form of

ẋ(t) = Ax(t) +Bx(t− R∗), (3.14)

with x = (W̃ (t), q̃(t))T ,A =







−αN
R∗2C

−α
R∗2C

N
R∗ − 1

R∗





 andB =







−αN
R∗2C

−2(1−β)
1+β

KpC2R∗

N2 + α
R∗2C

0 0





.

The norm of matrix is defined by‖A‖ =
√

λmax(ATA), i.e., the square root of the maxi-

mum eigenvalue ofATA.

It can be checked thatA is a Hurwitz matrix, which implies that for any positive

definite matrixQ, there exists certain positive definite matrixP , such thatATP +PA =

−Q.

Theorem 3.4 LetM=
√

λmax(P )/λmin(P ), if there exist positive definiteP andQ sat-

isfyingATP + PA=−Q such that matrixQ− 2M ‖PB‖ I is positive definite, then the

equilibrium point of(3.2) is locally asymptotically stable.

Proof: With (3.13) and(3.14), we choose Lyapunov functionV (x) = xTPx. Then

V̇ = ẋTPx+ xTP ẋ

= xT (t)(ATP + PA)x(t) + 2xT (t−R∗)BTPx(t).

Applying Lyapunov-Razumikhin condition, we assumeµ>1 such that

V (ξ) ≤ µ2V (t), for t− R∗ ≤ ξ ≤ t,

which implies that‖x(ξ)‖≤M ·µ·‖x(t)‖, whereM=
√

λmax(P )
λmin(P )

.
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Thus,

V̇ ≤ −xT (t)Qx(t) + 2‖x(t− R∗)‖ ‖PB‖ ‖x(t)‖

≤ −xT (t)[Q− 2µM ‖PB‖ I]x(t).

SinceQ − 2M ‖PB‖ I is positive definite, there existsµ > 1 such thatV̇ < 0. The

local asymptotic stability of system(3.2) is then obtained.�

Lyapunov-Razumikhin condition is used in Theorem 3.4 to deal with the delayed

terms inV̇ . Lyapunov functional is another method that can be applied when studying

the stability of delayed systems. In the following, we applythe method of Lyapunov

functional to give a different sufficient condition for the local asymptotic stability of

system(3.2).

Theorem 3.5 If there exist positive definiteP andQ satisfyingATP + PA= − Q and

positive definiteH such that matrix







Q−H −PB

−BTP H





 is positive definite, the equilib-

rium point of(3.2) is locally asymptotically stable.

Proof: With (3.13) and(3.14), we choose Lyapunov functionalV (x) = xTPx +
∫ t
t−R∗ xT (s)Hx(s)ds, then
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V̇ = xT (t)(ATP + PA)x(t) + 2xT (t− R∗)BTPx(t)

+xT (t)Hx(t) − xT (t− R∗)Hx(t−R∗)

= −xT (t)(Q−H)x(t) + 2xT (t− R∗)BTPx(t)

−xT (t−R∗)Hx(t− R∗)

= −(xT (t), xT (t−R∗)) ·







Q−H −PB

−BTP H





 ·







x(t)

x(t− R∗)





 .

Thus, system(3.2) is locally asymptotically stable if







Q−H −PB

−BTP H





 is positive

definite.�

The two theorems provide sufficient conditions of local asymptotic stability for the

AIMD/RED system. We give a numerical example for Theorem 3.5: LetN=10, C=3000

(packets/sec), Tp=0.02(sec), Kp=0.0005 with α=1, β=0.5.

We chooseQ=







39.0410 2.2648

2.2648 6.4539





 andH=1
2
Q. Note thatQ andH are positive

definite. we getP=







19.0990 0.2793

0.2793 0.0599





 with Matlab, and the eigenvalues of the ma-

trix







Q−H −PB

−BTP H





 are all positive: 0.1780, 3.2305, 3.4105, 38.6758; therefore,







Q−H −PB

−BTP H





 is positive definite. Thus, the condition of Theorem 3.5 holds and

the system is locally asymptotically stable. Simulation results using the same parameters
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will be given in Sec. 3.5.

Theorems 3.4 and 3.5 give different sufficient asymptotic stability conditions, which

allow us to use any of them at our convenience. Again, the asymptotic stability is for the

average values of window size and queue length. Given that the average window size

converges toW ∗
0 , the maximum instantaneous window size is bounded to2W ∗

0 /(1 + β),

so the AIMD window size can be marginally stable with known bounds. Similarly, the

instantaneous queue length is bounded.

So far, we have mathematically derived the local stability conditions of AIMD/RED

system. For local asymptotic stability, once the system enters the stability region or

region-of-attraction, the system will converge to the equilibrium asymptotically. Obvi-

ously, the equilibrium point belongs to the stability region. We conjecture that, with both

the slow-start and the AIMD algorithms of the TCP/AIMD protocols, the system will

eventually evolve to the stability region and equilibrium,and thus global asymptotic sta-

bility can be achieved. Simulations in Sec. 3.5 also demonstrate this tendency. Global

asymptotic stability conditions for AIMD/RED systems are still under investigation.

3.4.2 Heterogeneous Delayed AIMD/RED System

In the previous subsection, we discuss the stability issue of homogeneous flows with the

same AIMD (α, β) pair and the same round-trip delay. With the emergence of more and

more heterogeneous traffics in the Internet, understandingthe stability properties of the

AIMD/RED system with heterogeneous flows is critical for future network planning and

design. In this section, we first consider two classes of flowswith parameters (α1, β1),

(α2, β2), traffic loadsN1, N2 andRTTsR1, R2, respectively, as depicted in Fig. 3.6.
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Sender
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AIMD Flow II : )  ,( 22 βα

Figure 3.6: Heterogeneous AIMD/RED System

The model and results in this part can be generalized to any number of flows with het-

erogeneous AIMD parameters and feedback delays.

Taking all the time delays into consideration, the AIMD/REDsystem shared by two

classes of flows can be modeled as

dWI(t)

dt
=

α1

R1(t)
−

2(1−β1)

1 + β1

WI(t)WI(t−τ1)

R1(t− τ1)
Kpq(t− τ1),

dWII(t)

dt
=

α2

R2(t)
−

2(1−β2)

1 + β2

WII(t)WII(t−τ2)

R2(t− τ2)
Kpq(t− τ2),

dq(t)

dt
=



































N1WI(t)

R1(t)
+
N2WII(t)

R2(t)
− C, q > 0,

{
N1WI(t)

R1(t)
+
N2WII(t)

R2(t)
− C}+, q = 0.

(3.15)

with τ1 andτ2 as the average of round trip timeR1(t) andR2(t), respectively .
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Then, the delayed linearized system about the equilibrium point is

˙̃WI(t)= −
α1(N1R

∗
2G+N2R

∗
1)

GCR∗
1R

∗
2

(W̃I(t)−W̃I(t−R
∗
1))

−
2(1 − β1)

1 + β1

KpG
2C2R∗

1R
∗2
2

(N1R∗
2G+N2R∗

1)
2
q̃(t−R∗

1)

−
α1q̃(t)

R∗2
1 C

+
α1

CR∗2
1

q̃(t−R∗
1),

˙̃WII(t)= −
α2(N1R

∗
2G+N2R

∗
1)

CR∗
1R

∗
2

(W̃II(t)−W̃II(t−R
∗
2))

−
2(1 − β2)

1 + β2

KpC
2R∗2

1 R2

(N1R∗
2G+N2R∗

1)
2
q̃(t−R∗

2)

−
α2q̃(t)

R∗2
2 C

+
α2

CR∗2
2

q̃(t−R∗
2),

˙̃q(t) =
N1

R∗
1

W̃I(t)+
N2

R∗
2

W̃II(t)−
GN1R

∗
2

R∗
1(N1R∗

2G +N2R∗
1)
q̃(t)

−
N2R

∗
1

R∗
2(N1R∗

2G+N2R∗
1)
q̃(t).

(3.16)

whereW̃I := W −W ∗
I , W̃II := W −W ∗

II , q̃ := q − q∗0 .

(W ∗
I ,W

∗
II , q

∗
0)=(

GCR∗
1R

∗
2

N1R∗
2G+N2R∗

1

,
CR∗

1R
∗
2

N1R∗
2G+N2R∗

1

,
α1(1 + β1)

2(1 − β1)W ∗2
I Kp

) is the equilib-

rium point of system (3.15). Similar to Sec. 3.4.1, we also set τ1 andτ2 to beR∗
1 andR∗

2,

respectively, whereR∗
1 =

q∗0
C

+ Tp1, R
∗
2 =

q∗0
C

+Tp2, andG=(
α1(1 + β1)(1 − β2)

α2(1 − β1)(1 + β2)
)1/2.
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System (3.16) can be rewritten as

ẋ(t) = Ax(t) +B1x(t− R∗
1) +B2x(t−R∗

2), (3.17)

with x = (W̃I(t), W̃II(t), q̃(t))
T ,

A=















a11 0 −α1

R∗2
1 C

0 a22
−α2

R∗2
2 C

N1

R∗

1

N2

R∗

2
a33















, B1=















b111 0 b113

0 0 0

0 0 0















andB2 =















0 0 0

0 b222 b223

0 0 0















.

wherea11= −
α1(N1R

∗
2G+N2R

∗
1)

GCR∗
1R

∗
2

, a22= −
α2(N1R

∗
2G+N2R

∗
1)

CR∗
1R

∗
2

,

a33= −
GN1R

∗2
2 +N2R

∗2
1

R∗
1R

∗
2(N1R

∗
2G+N2R

∗
1)
, b111= −

α1(N1R
∗
2G+N2R

∗
1)

GCR∗
1R

∗
2

,

b113= −
2(1 − β1)

1 + β1

KpG
2C2R∗

1R
∗2
2

(N1R∗
2G+N2R∗

1)
2

+
α1

CR∗2
1

,

b222= −
α2(N1R

∗
2G+N2R

∗
1)

CR∗
1R

∗
2

, b223= −
2(1 − β2)

1 + β2

KpC
2R∗2

1 R2

(N1R∗
2G+N2R∗

1)
2

+
α2

CR∗2
2

.

Also, we can check thatA is a Hurwitz matrix. LetM=
√

λmax(P )/λmin(P ), we

have the following theorem.

Theorem 3.6 If there exist positive definiteP andQ satisfyingATP + PA= −Q such

that matrixQ − 2M (‖PB1‖ + ‖PB2‖)I is positive definite, then the equilibrium point

of (3.15) is locally asymptotically stable.

Proof: With (3.16) and(3.17), we choose Lyapunov functionV (x) = xTPx, then

V̇ = xT (t)(ATP + PA)x(t) + 2xT (t− R∗
1)B

T
1 Px(t)

+ 2xT (t−R∗
2)B

T
2 Px(t).
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LetR∗ = max{R∗
1, R

∗
2}. Applying the Lyapunov-Razumikhin condition, we assume

µ>1 such that

V (ξ) ≤ µ2V (t), t− R∗ ≤ ξ ≤ t,

which implies that‖x(ξ)‖ ≤M ·µ·‖x(t)‖.

Thus,

V̇ ≤ −xT (t)Qx(t)+2‖x(t− R∗)‖ ‖PB1‖ ‖x(t)‖

+2‖x(t− R∗)‖ ‖PB2‖ ‖x(t)‖

≤ −xT (t)[Q− 2µM (‖PB1‖ + ‖PB2‖)I]x(t).

Therefore, there existsµ>1 such thatV̇ <0 under the condition of the Theorem. The

local asymptotic stability of system(3.15) is then obtained.�

We can also apply the method of Lyapunov functional to obtaina different sufficient

condition for the local asymptotic stability of system(3.15).

Theorem 3.7 If there exist positive definiteP andQ satisfyingATP + PA = −Q and

positive definiteH such that matrix















Q− 2H −PB1 −PB2

−BT
1 P H 0

−BT
2 P 0 H















is positive definite,

the equilibrium point of(3.15) is locally asymptotically stable.

Proof: With (3.16) and(3.17), we choose Lyapunov functional

V (x)=xTPx+
∫ t

t−R∗

1

xT (s)Hx(s)ds+
∫ t

t−R∗

2

xT (s)Hx(s)ds,
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then

V̇ = xT (t)(ATP + PA)x(t) + 2xT (t− R∗
1)B

T
1 Px(t)

+2xT (t−R∗
2)B

T
2 Px(t) + 2xT (t)Hx(t)

−xT (t−R∗
1)Hx(t− R∗

1) − xT (t−R∗
2)Hx(t− R∗

2)

= −xT (t)(Q− 2H)x(t) + 2xT (t− R∗
1)B

T
1 Px(t)

+2xT (t−R∗
2)B

T
2 Px(t) − xT (t−R∗

1)Hx(t− R∗
1)

−xT (t−R∗
2)Hx(t− R∗

2)

= −(xT (t), xT (t− R∗
1), x

T (t− R∗
2))·















Q− 2H −PB1 −PB2

−BT
1 P H 0

−BT
2 P 0 H















·















x(t)

x(t− R∗
1)

x(t− R∗
2)















.

DenoteD =















Q− 2H −PB1 −PB2

−BT
1 P H 0

−BT
2 P 0 H















. Thus, system(3.15) is locally asymptoti-

cally stable ifD is positive definite.

The two theorems provide sufficient conditions of local asymptotic stability for the
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AIMD/RED system with heterogeneous delays. We now give a numerical example for

Theorem 3.7: letN1=N2=10,Kp=0.0001,C=12000(packets/sec). Choose(α1, β1) =

(1, 0.5) with Tp1=0.01(sec), and(α2, β2) = (0.2, 0.875) with Tp2=0.008(sec), respec-

tively. Let Q=















107.8925 66.0119 49.7801

66.0119 62.8475 38.7408

49.7801 38.7408 52.1792















andH=1
4
Q. Note thatQ andH are

positive definite. We obtain matrixP=















13.8052 6.9367 −0.3094

6.9367 11.6831 −0.1195

−0.3094 −0.1195 0.1443















with Matlab,

and the eigenvalues of the matrixD =















Q− 2H −PB1 −PB2

−BT
1 P H 0

−BT
2 P 0 H















are all positive:

2.4997, 3.4597, 3.8422, 5.5610, 7.9974, 13.6734, 46.2107,46.2592, 93.4159; therefore,

D is positive definite. Thus, the condition of Theorem 3.7 holds and the system is lo-

cally asymptotically stable. Simulation results using thesame parameters will be give in

Sec. 3.5.

While choosing parameters in the numerical example, we havealso found that link

capacityC and feedback delays cannot be too large, so that the matrixD can be positive

definite. This observation is also consistent with [9], which suggested that TCP/RED

will become unstable when delay increases, or more strikingly, when link capacity in-

creases.

Similarly, we can obtain the local stability of the AIMD/REDsystem when it is

shared by more than two classes of heterogeneous flows as well. The proof is omitted

here.
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3.4.3 TCP-friendliness

According to the equilibrium point of the system,W ∗
I /W

∗
II = G is a function of the

AIMD parameter pairs, and it is independent of the delays. Inother words, for two

AIMD flows, as long as their AIMD parameters satisfy the condition thatG = 1, their

average window sizes are the same and their flow throughputs inversely proportional

to theirRTTs. To be TCP-friendly, the necessary and sufficient condition is still α =

3(1 − β)/(1 + β), the same as the condition (3.10) derived in the delay free systems in

Sec. 3.3.3.

3.5 Performance Evaluation

Matlab is used to obtain the system evolution trajectory of the fluidmodel in order to

verify the asymptotic stability proved in Sec. 3.4. Networksimulator, NS-2, is used to

evaluate the performance of the AIMD/RED systems.

3.5.1 Numerical Results

The traces of window size and queue length of10 TCP flows and10 AIMD( 0.2, 0.875)

flows in a RED-enabled link with feedback delays are given in Figs. 3.7 and 3.8, respec-

tively. The parameters used are the same as those in the numerical example of Theo-

rem 3.5, i.e.,C=3000 packet/sec,Kp=0.0005,RTT = 0.02 sec, andminth = 200 pack-

ets. For heterogeneous-flow case, let10 TCP flows and10 AIMD( 0.2, 0.875) flows share

the bottleneck withC=12000 packet/sec,Kp=0.0001, andRTTs of the TCP and AIMD

flow are0.01 sec and0.008 sec, respectively. These parameters are the same as those
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Figure 3.7: TCP flows

61



3.5. PERFORMANCE EVALUATION

0 1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

140

160

180

200

Time

W
in

do
w

 S
iz

e

(a) Window trace

0 1 2 3 4 5 6 7 8
0

200

400

600

800

1000

1200

1400

1600

1800

Time

Q
ue

ue
 L

en
gt

h

(b) Queue length

Figure 3.8: AIMD(0.2, 0.875) flows
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Figure 3.9: TCP vs. AIMD(0.2, 0.875) flows
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in the numerical example of Theorem 3.7. To show the local asymptotic stability of the

system, we choose the value of the initial condition close tothe equilibrium point. As

shown in the figures, all systems are asymptotically stable,and the numerical results val-

idate the theorems proved in this chapter. Since the parameter pair (0.2, 0.875) satisfies

the TCP-friendly condition derived, the average window sizes of the competing TCP and

AIMD ( 0.2, 0.875) flows should be the same, which is verified by the numerical results

shown in Fig. 3.9.

3.5.2 Simulation Results

We use network simulator (NS-2) to further study the performance of the AIMD/RED

system with realistic protocols and network topologies. Both single bottleneck and mul-

tiple bottleneck topologies are used in the simulations. The following parameters are

used unless otherwise explicitly stated. The routers adjacent to the bottleneck link are

RED-capable: all packets can be queued when the average queue length is less than200

packets, and the packets will be discarded with probabilityKp times the current average

queue length minus200. The packet size of all flows is1, 250 bytes. The bottleneck link

capacity is1 Gbps, equivalent to100, 000 packet/sec.

We first let100 TCP flows and100 AIMD( 0.2, 0.875) flows with homogeneous de-

lays share a single bottleneck, respectively. Their windowtraces and instantaneous queue

lengths are given in Figs. 3.10, 3.11, 3.12, and 3.13, with different values ofRTT and

Kp. All figures show that the flow window sizes and queue lengths are periodically os-

cillating in steady state, and their time averages over a round are converging to certain

values, i.e., their time averages are asymptotically stable.

As shown in Figs. 3.10 and 3.11, a small value ofKp can reduce the oscillation
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Figure 3.10: TCP,Kp = 0.0001,R = 100ms
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Figure 3.11: TCP,Kp = 0.00002,R = 100ms
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Figure 3.12: AIMD(0.2, 0.875),Kp = 0.0001,R = 100ms
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Figure 3.13: TCP,Kp = 0.0001,R = 400ms
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amplitude in the steady state, and thus improve the link utilization and reduce delay jitter

in the steady state, at the cost of taking longer for the system to reach the steady state. The

network utilization in transient states is low, so a slow convergence speed is not desired.

Comparing Figs. 3.10 and 3.12, it is noticed that the system with AIMD ( 0.2, 0.875)

flows has smaller oscillation amplitude in the steady state because the AIMD flows have

a smaller value ofα and a larger value ofβ than that of TCP flows. Another observation

from Figs. 3.10 and 3.13 is that the larger theRTT , the slower the system converges to

the steady state and the larger the variation of the queue length in the steady state.

To study the system performance with heterogeneous flows, let 24 AIMD( 0.2, 0.875)

flows compete with100 TCP flows, and theirRTTs are randomly chosen between

0.09 sec to0.1 sec. The traces of their average window size and queue lengthare given

in Fig. 3.14. It is shown that, when heterogeneous TCP and AIMD(0.2, 0.875) flows

share the network, the network converges to the steady statequickly and the queue oscil-

lation in the steady state is small. In other words, when heterogeneous traffic shares the

network, the system performance is even better than that with only TCP flows (high os-

cillation amplitude in the steady state) or homogeneous AIMD (0.2, 0.875) flows (slow

convergence speed). Another observation from Fig. 3.14 is that the average window

sizes of the TCP flows and the AIMD (0.2, 0.875) flows are close to each other, therefore

validating the TCP-friendly condition derived in Sec. 3.3.

A realistic network will accommodate flows with heterogeneous round-trip delays,

and some flows may undergo multiple bottlenecks. The topology used for a multiple-

bottleneck scenario is shown in Fig. 3.15;100 group I flows compete with50 group II

TCP flows in linkr0r1 and with50 group III TCP flows in linkr1r2. The round-trip

times of the flows are randomly chosen from50 ms to400 ms. There are50 TCP flows
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group 3

Figure 3.15: Queue length, multiple-bottleneck topology

and50 AIMD( 0.2, 0.875) flows in group I. The trace of queue length atr0 is shown

in Fig. 3.16. Although the instantaneous queue length oscillates over time, the time

average does not change significantly. The stability conditions for multiple-bottleneck

AIMD/RED systems are discussed in Chapter 5.

3.6 Related Work

Congestion control mechanisms and AQM schemes for the Internet have been exten-

sively studied, aiming to achieve quick convergence to efficiency, stability, fair band-

width sharing, and low packet loss rate.

Internet stability properties and fairness issues in the presence of feedback delay have

received much attention recently. The original work of proposing the congestion con-

troller using utility optimization has been done [16]. Since then, lots of work have been

conducted for the TCP/Random Exponential Marking (REM) system. For example, for

the case of a single node and a single source in the TCP/REM system, the design of con-

gestion controllers and the stability problems with delaysare studied in [7, 17, 18], and
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Figure 3.16: Multiple-bottleneck, heterogeneous round-trip delays

the sufficient conditions for global stability are given as well. Recently, a discrete con-

gestion control system has been proposed in [19] to maintainboth stability and fairness

under heterogeneous delayed feedback. The boundedness andstability for the TCP/REM

system are discussed in [20].

In the design of congestion controllers, one of the important criteria is asymptotic

stability, i.e., the capability of the network to avoid oscillations in the steady-state and to

properly respond to other external perturbations. AQM schemes recently discussed in-

clude RED, REM, Proportional-Integral (PI) control and Loss Ratio-based RED (LRED).

For TCP/RED system, the sufficient conditions for global stability in the absence of feed-

back delay are given in [26]; the conditions for the stability of TCP/RED system in the

frequency domain are given in [9] by Nyquist stability criterion. The design and anal-

ysis of the PI controller for RED routers are discussed in [23]. Newly proposed AQM

scheme, LRED in [35], measures the latest packet loss ratio,and uses it as a complement

to queue length for adaptively adjusting the packet drop probability. To the best of our
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knowledge, the stability properties of AIMD/RED systems inthe presence of heteroge-

neous AIMD and TCP flows with heterogeneous feedback delays have not been studied

and they are the main focus of this chapter.

3.7 Summary and Future Discussions

In this chapter, we have studied the stability of AIMD/RED systems with and without

the consideration of feedback delays. Delay-free systems have been proved asymptot-

ically stable. Sufficient conditions have been obtained forthe asymptotic stability of

both homogeneous-flow and heterogeneous-flow systems with feedback delays, which

provide insight and guidelines for the design of a stable system. TCP-friendliness issue

has also been discussed for multiple flows with different AIMD parameters and different

RTTs. Numerical results have been given to validate the analytical results, and exten-

sive simulations with NS-2 have been conducted to study the system performance with

realistic protocols and network topologies. The study willbe useful to re-design and re-

engineer TCP congestion control for supporting heterogeneous multimedia application

in more diversified Internet in the future.

There are many interesting open issues require further research. First, for RED

queues, the packet drop probability depends on the queue length only. With the model

presented in the chapter, the average queue length in the steady state can be derived,

which can be used to give a rough estimation of the packet lossrate. However, the packet

loss rate depends on the queue length distribution, which isunknown from the model.

Second, the robustness of the system with disturbance from short-lived TCP connections

and UDP connections is an important open issue. Third, a single bottleneck topology
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is used in this chapter. In a follow-up work, we will discuss the stability analysis to

systems with multiple bottlenecks in Chapter 5. Finally, since multicast applications

may use a large portion of Internet bandwidth in the future, how to design and analyze

flow/congestion control mechanisms for multicast applications is a very challenging is-

sue beckon for more research.
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Chapter 4

Bounds of AIMD/RED Systems with

Time Delays

The Additive Increase and Multiplicative Decrease (AIMD) congestion control algorithm

of TCP (Transmission Control Protocol) deployed in the end systems and the Random

Early Detection (RED) queue management scheme deployed in the intermediate sys-

tems contribute to Internet stability and integrity. Previous research based on the fluid-

flow model analysis indicated that with the consideration oftime delays, the TCP/RED

system may not be asymptotically stable when the time delaysor the link capacity be-

comes large [9]. However, as long as the system operates nearits desired equilibrium,

small oscillations are acceptable, and the network performance (in terms of efficiency,

loss rate, and delay) is still satisfactory. Deriving the bounds of these oscillations for

the AIMD/RED system with time delays is non-trivial. In thischapter, we study the

practical stability of the homogeneous-flow and heterogeneous-flow AIMD/RED system

with feedback delays, and obtain theoretical bounds of the AIMD flow window size and

75



4.1. INTRODUCTION

the RED queue length, as functions of number of flows, link capacity, RED queue pa-

rameters, and AIMD parameters. Numerical results with Matlab and simulation results

with NS-2 are given to validate the correctness and demonstrate the tightness of the de-

rived bounds. The analytical and simulation results provide important insights on which

system parameters contribute to higher oscillations of thesystem and how to set system

parameters to ensure system efficiency with bounded delay and loss. Our results can also

help to predict and control the system performance for Internet with higher data rate links

multiplexed with more flows with different parameters.

4.1 Introduction

Internet stability has been an active research topic since its first congestion collapse was

observed. With a fluid-flow model of the system, it has been proved that, without feed-

back delay, the AIMD congestion control mechanism, coupledwith the RED queue

management, can ensure the asymptotic stability of the system [29]. However, with a

non-negligible feedback delay, the AIMD/RED system may notbe asymptotically sta-

ble when the delay becomes large and/or when the link capacity becomes large [9]. On

the other hand, the Internet is a very dynamic system, and cantolerate some transient

congestion events. In fact, TCP controlled flows aggressively probe for available band-

width in the network, and create transient congestions. From a practical point of view, a

concrete system is considered stable if the deviation of themotion from the equilibrium

remains within certain bounds determined by the physical situation. The desired state of

a system may be mathematically unstable and yet the system oscillates close enough to

this state for its performance to be acceptable. To deal withsuch situations, the notion of
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practical stabilityis more useful.

With large time delays or link capacities, the AIMD/RED system as a whole may

not be asymptotically stable [9]. However, it can be practically stable as long as the

end systems do not overshoot the available bandwidth too severely. In this case, the

overall system efficiency can still be high, and the packet loss rate and queuing delay

can still be well bounded, i.e., its performance is still acceptable. Therefore, the critical

issue to investigate is: does the AIMD/RED system always operate in the area close

to the desired equilibrium state, and what are the theoretical bounds? To answer these

questions, studying system practical stability and boundsis the key, which is also the

focus of this chapter.

With clearly defined bounds, a system is considered practically stable. The bounds

can be used as a guideline to set up the AIMD/RED system parameters to enhance system

performance. Using the fluid-flow model of the AIMD/RED system with homogeneous

and heterogeneous flows, instead of applying the Lyapunov-like method, we derive up-

per and lower bounds of congestion window size and queue length by directly studying

the inherent properties of the AIMD/RED system. The derivedtheoretical bounds pro-

vide important insights on which system parameters contribute to high oscillations of the

system and how to choose system parameters to ensure system efficiency with bounded

delay and loss. The theorems given in this chapter can also help to predict the system

performance for the future Internet with higher capacity and more flows with different

flow parameters.

The remainder of the chapter is organized as follows. Fluid-flow models of homoge-

neous and heterogeneous AIMD/RED systems are reviewed in Sec. 4.2 and Sec. 4.3, re-

spectively; upper and lower bounds of the homogeneous and heterogeneous AIMD/RED
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systems with feedback delays are also obtained. In Sec. 4.4,numerical results with Mat-

lab and simulation results using NS-2 are presented to validate the derived bounds, and

the impacts of different system parameters on the system performance are also discussed.

Sec. 4.5 briefly introduces the related work, followed by thesummary in Sec. 4.6.

4.2 Bounds and Practical Stability of Homogeneous

AIMD/RED System

4.2.1 A Fluid-flow Model of Homogeneous AIMD/RED System

For all AIMD-controlled flows with the same (α, β) parameter pair and round-trip de-

lay, the AIMD/RED fluid model relates to theensemble averagesof key network vari-

ables [22, 23] and is described by the coupled, nonlinear differential equations (3.1)

The equilibrium point(W ∗, q∗) for (3.1) is given by

W ∗ =
R·C

N
; q∗ =

α(1 + β)N2

2(1 − β)R2C2Kp

.

Remark 1.At the equilibrium, the total arrival rate equals the total link capacity, so

the link bandwidth can be fully utilized. In other words, theequilibrium point is also the

most desired operating point of the system. If the window size is larger thanW ∗, the

queue will build up which results in a longer queueing delay;if the window size is less

thanW ∗, the network load is smaller than its capacity, so the network resources are not

fully utilized.
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4.2.2 Upper Bound on Window Size

It has been demonstrated in [9] that an AIMD/RED system becomes (asymptotically)

unstable with the increase of round trip delays of the system. Using the fluid-flow model,

sufficient conditions for the asymptotic stability of AIMD/RED systems with feedback

delays have been derived in [27]. In this section, we show that even though the system

may become (asymptotically) unstable because of the effects of time delay, its window

size and queue length are still bounded, and the upper bound of window size is close to

the equilibrium.

We study the delayed homogeneous AIMD system with RED definedby (3.1) and

derive the upper and lower bounds of the system. We setminth =0 in RED and assume

that the traffic load (i.e., the number of AIMD flows) is time-invariant, i.e.,N(t)=N .

With ever-increasing link capacity and appropriate congestion control mechanism, vari-

ation of queuing delays becomes small relative to propagation delays. In fact, recent

work [48] reveals that the variable nature ofRTT due to queueing delay variation helps

to stabilize the TCP/RED system. Therefore, we ignore the effect of the delay jitter

on the round-trip time and derive the bounds of AIMD/RED system assumingRTT to

be constant. Simulation results with NS-2 in Sec. 4.4 shows that the obtained bounds

estimates is still applicable whenRTT is actually time-varying.

Notice that the AIMD/RED system defined by (3.1)are described by delayed differ-

ential equations, with initial conditions given by1 ≤ W (t) ≤ W ∗ and0 ≤ q(t) ≤ q∗ on

the intervalt ∈ [−R, 0]. According to (3.1), it is also reasonable that we letẆ (t) ≤ α
R

for t ∈ [−R, 0].
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Theorem 4.1 LetUB > 0 be the largest real root of

UB · (UB − α) · (UB −
R·C

N
− α)2 =

α2(1 + β)

(1 − β)NKp

,

thenW (t) ≤ UB for t ≥ 0.

Proof: With (3.1), we note thatẆ ≤
α

R
for t ≥ 0, sinceW (t) ≥ 1 andq(t) ≥ 0.

For τ > 0, taking integration on both sides fromt− τ to t gives

W (t) −W (t− τ) ≤
α

R
· τ for t ≥ 0. (4.1)

We show that theUB (> 0) in the theorem is an upper bound ofW (t) for t ≥ 0, i.e.,

if W (t) = UB for somet = t1 ≥ 0, thenẆ (t1) ≤ 0.

With (4.1) andW (t1) = UB, and takingτ = R andt = t1, we have

W (t1 − R) ≥ UB − α. (4.2)

Notice thatW (t1 − τ) ≥ UB − a·α whenτ ∈ [R, aR] for any real numbera > 1.

Consider

q̇(t) =















N ·W (t)

R
− C, q > 0,

{
N ·W (t)

R
− C}+, q = 0.

Taking integration on both sides fromt1−aR to t1−R, we have
∫ t1−R

t1−aR
q̇(s)ds ≥

N

R

∫ t1−R

t1−aR
W (s)ds− (a− 1)R·C

≥ N · (a− 1) · (UB − a·α) − (a− 1)RC

which implies

q(t1 − R) ≥ [N · (UB − a·α) − R·C] · (a− 1) (4.3)
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sinceq(t) ≥ 0.

Takingf(a) = (a− 1) · [N · (UB − a·α)−R·C] and computing the maximum value

of f(a) by lettingf ′(a) = 0 givesa = (N ·UB +R·C +N ·α)/(2αN) and

f(a) = N(UB − R·C/N − α)2/(2α). (4.4)

Therefore, it follows from (4.2), (4.3) and (4.4) that,Ẇ (t1) ≤ 0 sinceUB satisfies

N · UB · (UB − α) · (UB − R·C/N − α)2

2α
=

α(1 + β)

2(1 − β)Kp
, (4.5)

which impliesW (t) ≤ UB for t ≥ 0. �

If all AIMD flows are TCP-friendly, i.e., the average throughput of non-TCP-transported

flows over a large time scale does not exceed that of any conformant TCP-transported

ones under the same circumstance [47], the (α, β) pair should satisfies the TCP-friendly

conditionα = 3(1 − β)/(1 + β) derived in [12, 29]. Thus, the above equality (4.5)

becomes

UB · (UB − α) · (UB −R·C/N − α)2 =
3α

NKp

. (4.6)

By the continuity property ofUB · (UB − α) · (UB − R·C/N − α)2 and the fact

that the RHS of (4.5) is always greater than zero, we can conclude that the largest root

of (4.5) must be greater thanR·C/N + α, whereR·C/N is the equilibrium value of the

window size for AIMD/RED system. Therefore, the oscillation of the window size from

its equilibrium value will increase with the increment ofα and the decrement ofKp. In

addition, the upper boundUB itself will increase with the increment ofR·C, α and the

decrement ofN ,Kp.

It is also noted that the upper bound derived in Theorem 4.1 isa global one for the

time t, i.e., the window sizeW (t) will not go aboveUB for any t > t1. If we assume,
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instead, that there existst′1 > t1 and∆W > 0, such thatW (t′1) = UB + ∆W , then there

must be someτ ′ ∈ (0, t′1−t1) such thatW (t′1−τ
′) = UB andẆ (t′1−τ

′) > 0. However,

similar to the proof of Theorem 4.1, we havėW (t′1 − τ ′) ≤ 0, which is a contradiction.

Therefore, the window size is upper bounded byUB for anyt ≥ 0.

4.2.3 Lower Bound on Window Size and Upper Bound on Queue

Length

In the previous subsection, we proved that the AIMD window sizeW (t) is bounded from

above, and an upper bound,UB, is defined by (4.5). In this subsection, we show that the

window size is also bounded from below while the queue lengthis upper bounded.

Theorem 4.2 DefineA :=
α

R
−

2(1 − β)

1 + β

UB
2

R
and letLB1 > 0 be the root of

LB1 · (LB1 − AR) =
α(1 + β)

2(1 − β)
,

thenW (t) ≥ LB1 for t ≥ 0.

Proof: From Theorem 4.1,W (t) ≤ UB for t ≥ 0, which implies

Ẇ (t) ≥
α

R
−

2(1 − β)

1 + β

UB
2

R
=: A

It can be seen from the definition ofUB thatA < 0. We show thatLB1 > 0 is the lower

bound ofW (t) for t ≥ 0, i.e., ifW (t) = LB1 at timet = t2 ≥ 0, thenẆ (t2) ≥ 0.

Taking integration on both sides fromt2−R to t2 givesW (t2−R) ≤W (t2)−AR =

LB1 − AR.
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Since dropping/marking probabilityp(t) = Kp · q(t) ≤ 1 for all t, thenẆ (t2) ≥

α

R
−

2(1 − β)

1 + β

LB1 · (LB1 − AR)

R
. Therefore,Ẇ (t2) ≥ 0 sinceLB1 satisfies

LB1 · (LB1 − AR) =
α(1 + β)

2(1 − β)
, (4.7)

which impliesW (t) ≥ LB1 for t ≥ 0. �

Notice thatLB1 in Theorem 4.2 is the lower bound ofW (t) for all t ≥ 0, which is

a global one. By similar analysis to the upper bound of windowsizeUB, it is easy to

check that the window sizeW (t) will not go belowLB1 for any t > t2. However, the

value ofLB1 is actually very small sinceα(1+β)/(2(1−β)) is fairly small compared to

−AR. Therefore, the global lower bound does not provide much information about the

performance of AIMD/RED systems.

Since window size oscillates around its equilibrium in the steady state, the amplitude

of the oscillation is more important than the global lower bound. Next, We will show

the local lower bound of the window size after the first time itreaches the peak value at

momentt1. This local lower bound is more useful for understanding theperformance of

AIMD/RED systems.

Theorem 4.3 DefineT1 andUQ as

T1 =
UB −

R·C

N
2(1−β)

1 + β
·
C·Kp

N
· [
R·C

N
∆q + ∆W (q∗0 + ∆q)]

,

UQ= inf
∆q>0,

∆W∈[0, UB−
R·C
N

]

{(q∗0+∆q)+(
N

R
·UB−C) · (T1+R)},

whereUB is defined in Theorem 4.1. LetLB2 > 0 satisfy

LB2·(LB2+
2(1−β)

1+β
UB

2·Kp·UQ−α)·Kp·UQ=
α(1+β)

2(1−β)
,
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thenq(t) ≤ UQ for t ≥ 0 andW (t) ≥ LB2 for t ≥ t1.

Proof: We first derive the upper bound ofq(t) for t ≥ 0. At momentt = t1, W (t)

reaches its peak value. To get a loose upper bound ofq(t), we introduce the comparison

theorem [51]. Instead of following system (3.1), we consider its comparison system:

q̇(t) = UB/R − C, andW (t) ≡ UB for t∈[t1, t
′
1]. Notice that the solutions of the

comparison system are larger than those of the original system, so the bounds derived in

the following are also the bounds for system (3.1).

Assume thatW (t) does not decrease for some time aftert1, and thusq(t) increases

at the rate
N

R
UB −C. Momentt′1 is chosen such thatq(t′1) = q∗ +∆q with ∆q > 0, then

W (t) decreases fromt′1 while q(t) keeps increasing till momentt2 such thatq̇(t2) = 0

(i.e.,W (t2) = R·C/N). Therefore,q(t2) is the local maximum value ofq(t). It should

be noticed that this estimate ofq(t) might be greater than the real maximum value ofq(t)

sinceW (t) may not stay at its peak value aftert1, andq(t) will still increase aftert1, but

with the rate less than
N

R
UB − C.

From above analysis, fort ∈ [t′1, t2], q̇(t) ≤
N

R
· UB − C. Thus,

∫ t2

t′1

q̇(s)ds ≤ (
N

R
· UB − C) · (t2 − t′1),

which implies

q(t2) ≤ q(t′1) + (
N

R
· UB − C) · (t2 − t′1)

= (q∗0 + ∆q) + (
N

R
· UB − C) · (t2 − t′1).

(4.8)
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To estimate the length of the interval[t′1, t2], for t ∈ [t′1 +R, t2], it follows from the

analysis above that

W (t) ≥ W (t2) =
R·C

N
,

q(t− R) ≥ q(t′1) = q∗0 + ∆q,

W (t− R) ≥ W (t2 − R) =
R·C

N
+ ∆W,

for some∆q > 0 and∆W ∈ (0, UB − R·C
N

).

Thus,

Ẇ (t) ≤ −
2(1 − β)

1 + β
·
C·Kp

N
· [∆W (q∗0 + ∆q) +

R·C

N
∆q] (4.9)

for t ∈ [t′1 +R, t2].

On the other hand,

∫ t2

t′1+R
Ẇ (s)ds = W (t2) −W (t′1 +R) ≥

R·C

N
− UB. (4.10)

It follows from (4.9) and (4.10) that,

R·C

N
− UB ≤ −

2(1 − β)

1 + β
·
C·Kp

N
· (t2 − t′1 −R)

· [∆W (q∗0 + ∆q) +
R·C

N
∆q],

i.e.,

t2−t
′
1−R ≤

UB −
R·C

N
2(1 − β)

1 + β
·
C·Kp

N
· [
R·C

N
∆q + ∆W (q∗0 + ∆q)]

.

With the definition ofT1 in the theorem, we havet2 − t′1 ≤ T1 + R. Therefore, it

follows from (4.8) that

q(t) ≤ inf
∆q>0,

∆W∈[0, UB−
R·C
N

]

{(q∗0 + ∆q) + (
N

R
· UB − C) · (T1 +R)}, (4.11)
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i.e.,q(t) ≤ UQ for t ≥ 0, which indicates thatUQ is the upper bound of the RED queue

length. Since the packet loss in a RED queue is proportional to the queue length, the

derived queue length upper bound also reflects the upper bound of packet loss rate.

We finally show thatLB2 > 0 is a lower bound ofW (t) for t ≥ t1, i.e., ifW (t) = LB2

at timet = t3 > t1, thenẆ (t3) ≥ 0.

With (4.5) and (4.11),

Ẇ (t) ≥
α

R
−

2(1 − β)

1 + β
·
UB

2

R
·Kp · UQ (4.12)

for t ≥ 0, we have

∫ t3

t3−R
Ẇ (s)ds ≥ α−

2(1 − β)

1 + β
· UB

2 ·Kp · UQ,

i.e.,

W (t3 − R) ≤ LB2 +
2(1 − β)

1 + β
· UB

2 ·Kp · UQ − α. (4.13)

It follows from (4.13) that,

Ẇ (t3) ≥
α

R
−

2(1 − β)

1 + β
·
LB2 · UW

R
·Kp · UQ

with UW := LB2 +
2(1 − β)

1 + β
· UB

2 ·Kp · UQ − α.

Thus,Ẇ (t3) ≥ 0 if LB2 is chosen to satisfy

LB2 · UW ·Kp · UQ =
α(1 + β)

2(1 − β)
, (4.14)

and thusLB2 is the lower bound ofW (t) for t ≥ t1.

Therefore, the heterogeneous AIMD/RED system is practically stable with the bounds

derived in Theorems 4.1 and 4.3.�
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4.3 Bounds and Practical Stability of Heterogeneous

AIMD/RED System

4.3.1 A Fluid-flow Model of Heterogeneous AIMD/RED System

In this section, we study the AIMD/RED system with heterogeneous flows, considering

time delays. With the emergence of more and more heterogeneous traffics in the Inter-

net, understanding the stability properties and bounds of the AIMD/RED system with

heterogeneous flows is critical for future network planningand design.

We consider the case when there are two classes of flows with parameters (α1, β1),

(α2, β2), time-invariant traffic loadsN1, N2, respectively. We assume that all the flows

have the same round-trip time (since variation of queuing delays becomes negligible

compared to the round-trip delays, the effect of the delay jitter on the round-trip time is

ignored and the round-trip time of each flow assumed to be a constant,R(t) = τ = R).

The model in this section can be extended to any certain number of flows in multiple

classes with heterogeneous AIMD parameters and feedback delays.

Taking time delays into consideration, a heterogeneous AIMD/RED system shared

by two classes of flows can be modeled as

dWI(t)

dt
=
α1

R
−

2(1−β1)

1 + β1

WI(t)WI(t−R)

R
Kpq(t−R),

dWII(t)

dt
=
α2

R
−

2(1−β2)

1+β2

WII(t)WII(t−R)

R
Kpq(t− R),
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dq(t)

dt
=



































N1WI(t)

R(t)
+
N2WII(t)

R(t)
− C, q > 0,

{
N1WI(t)

R(t)
+
N2WII(t)

R(t)
− C}+, q = 0.

(4.15)

It is shown in [26] thatWi(t)Wi(t−R) in (4.15) can be approximated byW 2
i (t) for

i = I, II when the window size is much larger than one. We apply this approximation

in following analysis for the convenience of computation.

For the heterogeneous system (4.15), the equilibrium point(W ∗
I ,W

∗
II , q

∗
0) is given by

W ∗
I =

GCR

N1G+N2

,W ∗
II=

CR

N1G+N2

, q∗0=
α1(1+β1)

2(1−β1)W
∗2
I Kp

,

whereG=
√

α1(1+β1)(1−β2)
α2(1−β1)(1+β2)

.

The physical significance of studying the stability properties of the equilibrium point

of AIMD/RED system is because the equilibrium point is the most desired operating

point of the system. At the equilibrium, the total window size isN1W
∗
I +N2W

∗
II and the

total arrival rate equals the total link capacity, thus the link bandwidth is fully utilized.

In (4.15), we takeW̄ (t) = N1·WI(t) + N2·WII(t), M1 = (1−β1)
1+β1

, M2 = (1−β2)
1+β2

,

r1 = M1/N1, andr2 = M2/N2, then

˙̄W = (N1α1 +N2α2)/R

− 2[r1·(N1WI)
2(t)+r2·(N2WII)

2(t)] ·Kpq(t−R)/R.
(4.16)

Note thatWi(t) ≥ 0 for i = I, II. Takermin = min(r1, r2), andrmax = max(r1, r2),

the following inequality can be obtained:

−2rmax
W̄ 2(t)

R
≤

˙̄W (t) − N!α1+N2α2

R

Kpq(t−R)
≤ −rmin

W̄ 2(t)

R
. (4.17)
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Also, we have

q̇(t) =











W̄ (t)/R− C, q > 0,

{W̄ (t)/R− C}+, q = 0.
(4.18)

Thus, with the new variable pair(W̄ (t), q(t)), the original heterogeneous AIMD/RED

system (4.15) can be rewritten by (4.16) and (4.18). We will study the properties of

(W̄ (t), q(t)) in the following to show the practical stability and derive the bounds of the

system.

Remark 2.Our focus in the analysis below is̄W (t), the total window size att. This is

becauseW̄ (t) indicates the entire throughput of the heterogeneous AIMD/RED system,

which is more useful than the throughput of each individual flow.

4.3.2 Upper Bound on Window Size

The bounds estimates of heterogeneous AIMD/RED system are given in the following.

Theorem 4.4 Let ŪB > 0 be the largest real root of

Ū2
B · [ŪB − R·C − (N1α1 +N2α2)]

2 =
4(N1α1 +N2α2)

2

rmin ·Kp

, (4.19)

thenW̄ (t) ≤ ŪB for t ≥ 0.

Proof: With (4.16), ˙̄W (t) ≤ (N1α1+N2α2)/R for t ≥ 0. Forτ > 0, take integration

on both sides fromt− τ to t:

W̄ (t) − W̄ (t− τ) ≤ (N1α1 +N2α2) · τ/R. (4.20)

We show thatŪB > 0 in the theorem is an upper bound ofW̄ (t) for t ≥ 0, i.e., if

W̄ (t) = ŪB for somet = t̄1 ≥ 0, then ˙̄W (t̄1) ≤ 0.
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Integrating on both sides of (4.18) from̄t1 − a · R to t̄1−R for a > 1 gives

∫ t̄1−R

t̄1−aR
q̇(s)ds ≥

1

R

∫ t̄1−R

t̄1−aR
W̄ (s)ds− (a− 1)R·C.

Note that (4.20) implies̄W (t̄1 − τ) ≥ ŪB − a·(N1α1 + N2α2) whenτ ∈ [R, aR].

Thus,

q(t̄1 − R) ≥ [ŪB − a·(N1α1 +N2α2)] · (a− 1) − R·C · (a− 1), (4.21)

sinceq(t) ≥ 0.

Takingf(a) = (a−1) · [ŪB −a·(N1α1+N2α2)−R·C] and computing the maximum

value off(a) by lettingf ′(a) = 0 gives

f(a) = [ŪB − R·C − (N1α1 +N2α2)]
2/[4(N1α1 +N2α2)], (4.22)

with a = [ŪB −R·C + (N1α1 +N2α2)]/[2(N1α1 +N2α2)] andf ′′(a) < 0.

Therefore, it follows from (4.17), (4.21) and (4.22) that,˙̄W (t̄1) ≤ 0 if ŪB satisfies

Ū2
B · [ŪB − R·C − (N1α1 +N2α2)]

2 =
4(N1α1 +N2α2)

2

rmin ·Kp

, (4.23)

which impliesW̄ (t) ≤ ŪB for t ≥ 0.

It is also noted that the upper bound derived in here is globalfor the timet, i.e., the

window sizeW̄ (t) will not go aboveŪB for any t > t̄1. If we assume, instead, that

there exists̄t′1 > t̄1 and∆W > 0, such thatW̄ (t̄′1) = ŪB + ∆W , there must be some

τ ′ ∈ (0, t̄′1 − t̄1) such thatW̄ (t̄′1 − τ ′) = ŪB and ˙̄W (t̄′1 − τ ′) > 0. However, similar to

the proof of Theorem 4.4, we havē̇W (t̄′1 − τ ′) ≤ 0, which is a contradiction. Therefore,

the window size is upper bounded byŪB for all t ≥ 0.

By the continuity property of̄U2
B · [ŪB −R·C− (N1α1 +N2α2)]

2 and the fact that the

RHS of (4.19) is always greater than zero, we can conclude that there exists at least one
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real root for (4.19) and the largest root must be greater thanR·C+(N1α1+N2α2). There-

fore, the upper bound̄UB itself will increase with the increment ofR·C and(N1α1 +

N2α2). In addition, the oscillation of the window size from its equilibrium value will

increase with the increment ofN1α1 +N2α2 and the decrement ofKp.

4.3.3 Lower Bound on Window Size and Upper Bound on Queue

Length

We have showed that the AIMD window sizēW (t) is bounded bȳUB, which is defined

by (4.19). In this subsection, we prove that the window size is lower bounded while the

queue length is upper bounded.

Theorem 4.5 Let L̄B1 := (N1α1+N2α2

2·rmax
)1/2, thenW̄ (t) ≥ L̄B1 for t ≥ 0.

Proof: Showing that̄LB1 > 0 is the lower bound of̄W (t) for t ≥ 0, we should prove

that if W̄ (t) = L̄B1 at timet = t̄2 ≥ 0, then ˙̄W (t̄2) ≥ 0.

Since the dropping/marking probabilityp(t) = Kp · q ≤ 1 for all t, then

˙̄W (t̄2) ≥
N1α1 +N2α2

R
− 2 · rmax

W̄ 2(t)

R
Kpq(t− R)

≥
N1α1 +N2α2

R
− 2 · rmax

W̄ 2(t)

R
.

Therefore, ˙̄W (t̄2) ≥ 0 when W̄ (t) = L̄B1 with L̄B1 defined in the theorem, which

impliesW̄ (t) ≥ L̄B1 for t ≥ 0.

Notice thatL̄B1 in Theorem 4.5 is the lower bound of̄W (t) for all t ≥ 0, which is a

global bound. To show this, similar analysis to the upper bound of window sizeŪB can

be applied to check that the window sizēW (t) will not go belowL̄B1 for anyt > t̄2. �
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Note thatL̄B1 in Theorem 4.5 is a global bound, but it does not provide much in-

formation about the system performance. This is because thevalue of L̄B1 is actually

very small caused by the loose approximation ofKp · q and the fact that(αi, βi) pair

are all small real numbers fori=1, 2. We next derive the upper bound of queue length

and local lower bound of the window size after the first time itreaches the peak value

at t̄1. The local lower bound is more useful for understanding the performance of the

AIMD/RED system since window size oscillates around its equilibrium in the steady

state, the amplitude of the oscillation is more important than the global lower bound.

Theorem 4.6 DefineT̄1 andŪQ as

T̄1 :=
ŪB −R·C

rmin · RC2 ·Kp · (q
∗
0+∆q) −

N1α1 +N2α2

R

,

ŪQ:= inf
∆q>0

{(q∗0 + ∆q) + (
ŪB

R
− C) · (T̄1 +R)},

whereŪB is defined in Theorem 4.4. LetL̄B2 > 0 satisfy

L̄2
B2 ·Kp · ŪQ =

N1α1 +N2α2

2rmax
, (4.24)

thenq(t) ≤ ŪQ for t ≥ 0 andW̄ (t) ≥ L̄B2 for t ≥ t̄1.

Proof: We first derive the upper bound ofq(t) for t ≥ 0. Suppose that̄W (t) reaches

its peak value at momentt = t̄1. To get a loose upper bound ofq(t), we introduce the

comparison theorem [51]. Instead of following system (4.16) and (4.18), we consider its

comparison system:̇q(t) = ŪB/R − C, andW̄ (t) ≡ ŪB for t∈[t̄1, t̄
′
1]. Notice that the

solutions of the comparison system are larger than those of the original system, so the

bounds derived in the following are also the bounds for system (4.16) and (4.18).
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Assume thatW̄ (t) does not decrease for some time aftert̄1, and thusq(t) increases

at the rate of̄UB/R−C. t̄′1 is chosen such thatq(t̄′1) = q∗ +∆q with ∆q > 0, thenW̄ (t)

decreases from̄t′1 while q(t) keeps increasing till̄t2 such thatq̇(t̄2) = 0 (W̄ (t̄2) = RC)

with t̄2 ≥ t̄′1 + R. Therefore,q(t̄2) is the local maximum value ofq(t). It should be

noticed that this estimate ofq(t) might be greater than the real maximum value ofq(t)

sinceW̄ (t) may not stay at its peak value aftert̄1, andq(t) will still increase after̄t1, but

with the rate less than̄UB/R− C.

From the above analysis, fort ∈ [t̄′1, t2], q̇(t) ≤
ŪB

R
− C, which implies

q(t̄2) ≤ q(t̄′1) + (
ŪB

R
− C) · (t̄2 − t̄′1)

= (q∗0 + ∆q) + (
ŪB

R
− C) · (t̄2 − t̄′1).

(4.25)

To estimate the length of the interval[t̄′1, t̄2], for t ∈ [t̄′1 +R, t̄2], it follows from the

analysis above that

W̄ (t) ≥ W̄ (t̄2) = RC,

q(t−R) ≥ q(t̄′1) = q∗0 + ∆q,

for some∆q > 0.

Thus,

˙̄W (t) ≤
N1α1 +N2α2

R
− rmin ·

(RC)2

R
·Kp · (q

∗
0 + ∆q), (4.26)

for t ∈ [t̄′1 +R, t̄2].

On the other hand,

∫ t̄2

t̄′1+R

˙̄W (s)ds = W̄ (t̄2) − W̄ (t̄′1 +R) ≥ RC − ŪB. (4.27)
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It follows from (4.26) and (4.27) that,

RC−ŪB ≤ [(N1α1 +N2α2)/R−rmin·RC
2·Kp·(q

∗
0+∆q)]

· (t̄2 − t̄′1 − R),

i.e.,

t̄2−t̄
′
1−R ≤

ŪB − RC

rminRC2Kp(q∗0+∆q) − (N1α1 +N2α2)/R
.

With the definition ofT̄1 in the theorem, we havēt2 − t̄′1 ≤ T̄1 + R. Therefore, it

follows from (4.25) that

q(t) ≤ inf
∆q>0

{(q∗0 + ∆q) + (
ŪB

R
− C) · (T̄1 +R)}, (4.28)

i.e.,q(t) ≤ ŪQ for t ≥ 0, which indicates that̄UQ is the upper bound of the RED queue

length. Since the packet loss in a RED queue is proportional to the queue length, the

derived queue length upper bound also reflects the maximum packet loss rate.

We finally show that̄LB2 > 0 is a lower bound of̄W (t) for t ≥ t̄1, i.e., if W̄ (t) = L̄B2

at timet = t̄3 > t̄1, then ˙̄W (t̄3) ≥ 0.

With (4.17) and (4.28),

˙̄W (t̄3) ≥
N1α1 +N2α2

R
− 2rmax ·

L̄2
B2

R
·Kp · ŪQ.

Thus, ˙̄W (t̄3) ≥ 0 if L̄B2 is chosen to satisfy (4.24). Therefore,L̄B2 is the lower

bound ofW̄ (t) for t ≥ t̄1. �

Therefore, the heterogeneous AIMD/RED system is practically stable with the bounds

derived in Theorems 4.4 and 4.6.

Remark 3.The approach applied in this section can also be extended to obtain the

theoretical bounds for the AIMD/RED system when it is sharedby more than two classes

of flows. Details are omitted here due to space limit.
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Table 4.1: Bounds with different(α, β)

4.4 Performance Evaluation

In this section, numerical results with Matlab and simulation results with NS-2 [60] are

given to validate the theorems and evaluate how the system performance is affected by

different parameters.

4.4.1 AIMD Parameter Pairs of Homogeneous Flows

First, we investigate how the AIMD parameter pair(α, β) affects the bounds of win-

dow size and queue length. LetN , R, C andKp be constants:N = 10, R = 0.1 sec,

C = 1000packet/sec andKp = 0.01. The AIMD (α, β) pairs are chosen to be TCP-

friendly, varying from (9/5, 1/4) to (3/31, 15/16), and the results are given in Table 4.1

and Fig. 4.1. It can be seen that for the upper and lower boundsof the window size

and the upper bound of the queue length, the numerical results are all within the bounds

given by Theorem 4.1 and Theorem 4.3, which verifies the correctness of the Theorems.

In addition, the upper bound of the window size given by the Theorem is very tight. The
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Figure 4.1: Bounds of window size and queue length with different(α, β)

one for queue length is a loose bound as mentioned in the proofof Theorem 4.3. The

theoretical lower bound of window size is also a loose bound because of the approxima-

tion of Ẇ (t). How to find a tight lower bound for window size will be a futureresearch

issue.

Another observation is that the differences between numerical and theoretical results

is getting smaller as(α, β) pair varies from (9/5, 1/4) to (3/31, 15/16), which shows

that the theoretical results become tighter when the value of β gets larger.

In ideal cases, the window size should converge toR·C/N , which is10 packets per

RTT in the above cases. The results in Table 4.1 and Fig. 4.1 show that with a smaller

value ofα and a larger value ofβ, the AIMD flows have less oscillation amplitude around

the optimal operation point, so they can utilize network resources more efficiently with

less delay and loss in steady state. This is because, with a smaller value ofα, the AIMD

flows overshoot the available bandwidth in a slower pace; with a larger value ofβ, the
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AIMD flows will not decrease drastically for any single packet loss. Also, as shown in

Fig. 4.1, the upper bound of the queue length becomes smallerw.r.t. β; thus, the average

queueing delay (and thus loss rate) becomes smaller in steady state.

Fig. 4.3 shows the traces of TCP flows with AIMD parameter pairof (1, 1/2) and

those of AIMD(1/5, 7/8) flows. Here,N=10, C=10000 packet/sec,R=0.05 sec and

Kp=0.005. For NS-2 simulations, we setQmin of the RED queue to be20 packets. There-

fore, the upper bound of window size of each flow should be enlarged byQmin/N = 2

packets, and the upper bound of the queue length should be enlarged byQmin = 20

packets. We compare the theoretical bounds with both the average window size among

all flows and its time average of window size over a round. Boththe numerical results

with Matlab and simulation results with NS-2 show that although the window variation

of AIMD( 1/5, 7/8) in steady state is smaller, it takes longer time for AIMD(1/5, 7/8)

flows to converge to the steady state. The oscillations of theaverage window size and

queue length with Matlab are bigger than those with NS-2, becauseRTTs are set as

constants in the Matlab results (which is the same as the assumptions of bounds esti-

mates theorems in the chapter), whileRTTs are time varying in NS-2. This difference

in the system oscillations is consistent with the conclusions in [48] which reveals that

the variable nature ofRTT helps to stabilize the AIMD/RED system. Simulation results

also demonstrate the tightness of the upper bound of window size. Another interesting

observation is that although the upper bound of queue lengthis not tight comparing to the

time average of queue length, it is close to the maximum instantaneous queue length in

steady state. The average window size in the NS-2 simulationresults are slightly larger

than the numerical results, because the numerical results simulations with Malab ignore

the queuing delay inRTTs, which slightly underestimates the window size.

97



4.4. PERFORMANCE EVALUATION

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

Time t

W
in

d
o

w
 S

iz
e

 

 

TCP window trace
Upper bound of W

0 5 10 15 20 25 30
0

5

10

15

20

Time t

Q
u

eu
e 

L
en

g
th

 

 

Queue length
Upper bounf q

TCP flows (Matlab)

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

W
in

d
o

w
 S

iz
e

 

 

TCP window trace
Upper bound of W

0 5 10 15 20 25 30
0

5

10

15

20

Time t

Q
u

eu
e 

L
en

g
th

 

 

Queue length
Upper bounf q

small AIMD(1/5, 7/8) flows (Matlab)

Figure 4.2: Bounds of window size and queue length,
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Figure 4.3: Bounds of window size and queue length,
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4.4.2 Impact of System Parameters: Homogeneous Flows

In the following, we study how the parametersN , R, C andKp affect the bounds of

window size and queue length. We choose(α, β) pair to be (1, 1/2) and (1/5, 7/8), and

obtain the results with different network parameters as shown in Tables 4.2 and 4.3.

Round-trip delay and link capacity

First, comparing rows 1 and 2 in both tables. By enlarging thedelay from0.02 sec to

0.05 sec (by2.5 times), the upper bound of window sizes only increases by1.54 times

and1.86 times for TCP and AIMD(1/5, /, 7/8), respectively, which means a larger delay

reduces the relative oscillation amplitude of window size.In addition, the upper bound of

queue length is decreasing. Similar trend can be found if comparing rows 4 and 5 in both

tables. This is a surprising result. From [9], a longer delaymay drive the system from

stable to unstable. We can explain it as follows. A larger delay means that the window

size increasing speed (in terms of packet per second) duringthe additive increase period

is smaller, and the AIMD flows will overshoot the network capacity in a slower pace;

thus, the upper bound of window size is closer to the optimal operating point, and the

maximum queue length is smaller. Similar results are found if we compare rows 4 and 6

in both tables. By enlarging the link capacity by10 times, the upper bound of window

size is increased by7.5 and8.9 times, for TCP and AIMD (1/5, /, 7/8), respectively.

Although enlarging the link capacity may drive the system from stable to unstable [9],

the oscillating amplitude of window size (relative to the equilibrium W ∗) and queue

length will actually decrease. The window and queue traces of 10 TCP flows in a link

with 1000 packet/sec and10, 000 packet/sec are depicted in Fig. 4.5. The conclusion is

that larger values of delay and link capacity will actually reduce the oscillating amplitude
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Table 4.2: AIMD/RED system bounds with(α, β)=(1, 1/2)
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Table 4.3: AIMD/RED system bounds with(α, β)=(1/5, 7/8)
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Figure 4.4: Bounds of TCP window size and queue length with differentC
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Figure 4.5: Bounds of TCP window size and queue length with differentC
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of window size and queue length, and significantly reduce themaximum queueing delay.

Number of flows

Comparing rows 3 and 4, or rows 6 and 7 in Tables 4.2 and 4.3, we conclude that if we

increase the number of flows and the link capacity proportionally, the bounds of window

size are almost un-affected. With twice the flows multiplexed in a twice capacity link,

the upper bound of queue length increases less than twice. Therefore, the queuing delay

bound is slightly reduced because of the multiplexing gain.

Comparing rows 6 and 8 in Tables 4.2 and 4.3, if we increase thenumber of flows in

the same link, theN · UB becomes larger. In other words, the oscillation of window size

will increase significantly if the number of flows in a link increases, and the queueing

delay will also increase significantly. This can be understood asN AIMD(α, β) flows

will increase their windows byNα packets per RTT, and the larger the increasing rate

during Additive Increase stage, the more significantly the flows will overshoot the link

capacity. This suggests that we should limit the number of TCP/AIMD connections in

a link or promote to use more conservative AIMD parameter pairs to ensure that the

queueing delay (and also the loss rate) is less than certain threshold.

Marking/Dropping parameter Kp

Comparing rows 2 and 4 in Tables 4.2 and 4.3, for a smaller value of Kp, the RED

parameter will result in a larger bounds of both window size and queue length.

The last four rows of Tables 4.2 and 4.3 are the upper bounds ofthe TCP/AIMD

window size and queueing delay in a highly multiplexed, highbandwidth (tens of Gbps),
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and long delay (0.1 sec RTT) link. It can be seen for TCP flows, the queuing delay can be

bounded to10.785 ms if theKp is chosen to be0.001. The delay bound can be slightly

reduced to10.349 ms and10.248 ms ifKp is increased to0.005 and0.01, respectively.

The results show that althoughKp can be adjusted to control the queueing delay in the

system, the impact is limited for high bandwidth cases. Limiting the number of flows

or using more conservative AIMD pairs are more effective in reducing queueing delay.

For instance, if the number of flows is reduced to100 or 1000, the queueing delay bound

can be reduced to0.241 ms or1.079 ms, respectively. If using an AIMD parameter pair

of (1/5, 7/8), the queueing delay for10000 flows withKp = 0.001 can be bounded to

2.361 ms only.

4.4.3 Impact of System Parameters: Heterogeneous Flows

Considering that the Internet might contain mixed traffic with different AIMD param-

eters, we further study the performance of the AIMD/RED system with heterogeneous

flows. Parameters are firstly chosen asC=10, 000 packet/sec,Kp=0.005, andR =

0.05 sec for5 TCP flows competing with5 AIMD( 1/5, 7/8) flows. For comparison, we

also chooseC=20000 packet/sec,Kp=0.005, andR = 0.05 sec for10 TCP flows and

10 AIMD( 1/5, 7/8) flows.

For the case of5 TCP flows competing with5 AIMD( 1/5, 7/8) flows, the upper

bound ofN1WI +N2WII is 508.9 packets, the lower bound̄LB2 is 28.28 packets, and the

upper bound of the queue length is10.2 packets. For the case of10 TCP flows competing

with 10 AIMD( 1/5, 7/8) flows, the upper bound ofN1WI +N2WII is1016.1 packets, the

lower boundL̄B2 is 55.80 packets, and the upper bound of queue length is19.6 packets.

In the NS-2 simulations, since the RED thresholdminth is set to20 packets, the upper
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Figure 4.6: Bounds of Heterogeneous flows,Kp=0.005,R = 0.05 sec
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bounds of total window size and queue length are enlarged by20 packets accordingly.

For the simulation results, we compare the theoretical bounds with both the total window

size of all flows and its time average over a round. The correctness of our theoretical

bounds and the tightness of the upper bound of window size aredemonstrated by the

numerical and simulation results, as shown in Fig. 4.7. The average window sizes in the

NS-2 simulation results are slightly larger than the numerical results. This is because

the numerical simulations with Matlab ignore the queuing delays inRTT , which may

under-estimates the window size. It is also observed from Fig. 4.7 that, if the number

of flows and the link capacity are increased proportionally,the upper bound of per-flow

window size is closer to its optimal value. With both the number of flows and the link

capacity being doubled, the upper bound of the queue length is less than twice of the

previous bound. Therefore, the queuing delay bound is slightly reduced because of the

multiplexing gain. An interesting conclusion is that although the increase of link capacity

may cause an AIMD/RED system to become asymptotically unstable [9], the system

queuing delay has lower bound and the upper bound of flows window size is closer to the

optimal operating point. This result demonstrates the importance of studying practical

stability and bounds of the AIMD/RED system.

Fig. 4.9 shows the window trace and queue length when20 TCP flows share the

bottleneck with40 AIMD( 1/5, 7/8) flows withKp=0.005 andKp=0.001, respectively.

For the case ofKp=0.005, the upper bound ofN1WI + N2WII is 3034.4 packets and

the upper bounds of queue length is43.1 packets; while for the case ofKp=0.001, the

upper bound ofN1WI +N2WII is 3042.4 packets and the upper bounds of queue length

is 60.7 packets. It can be seen that a smaller value ofKp results in a slightly larger

bounds on both window size and queue length. This observation is consistent with our
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analysis in subsection. However, in the case of higher bandwidth, the impact ofKp is

less. Similar results are shoed with homogeneous AIMD flows.

4.5 Related Work

Control Problems arising in the Internet congestion have received wide attention re-

cently [7, 9, 23, 26]. For delay-free marking scheme, the fluid-model of the AIMD/RED

system has been proved to be asymptotically stable [29] by applying the method of Lya-

punov function. It is well known [9] that the system may become asymptotically unstable

in the presence of time delays. In [27], sufficient conditions for the asymptotic stability of

AIMD/RED system with feedback delays are given in terms of linear matrix inequalities.

However, simulation results show that even though the system is not asymptotically sta-

ble, it oscillates around the steady state periodically. Motivated by this phenomenon, we

present performance bounds of the AIMD/RED system in this chapter and demonstrate

that the delayed AIMD/RED system is bounded from above and below.

Different from many previous work [7, 9, 23, 26, 27] on the sufficient conditions for

the asymptotic stability of AIMD/RED or other network control systems, in this chap-

ter, we study the practical stability of the AIMD/RED system, and derive its theoretical

bounds in both homogeneous-flow and heterogeneous-flow cases, i.e., flows’ congestion

window size and intermediate systems’ queue length, given the number of flows sharing

the link, their AIMD parameter pairs and round-trip times, link capacity, and RED queue

parameters. Since the bounds are closely related to system performance, our results pro-

vide important insights for in-depth understanding of the whole system.

The boundedness issue has been studied in [43, 44, 45] without giving the bounds
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Figure 4.8: Bounds of Heterogeneous flows,C=60, 000 packet/sec,R = 0.05 sec
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Figure 4.9: Bounds of Heterogeneous flows,C=60, 000 packet/sec,R = 0.05 sec
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estimates, by applying Lyapunov-like method for some TCP-like congestion control al-

gorithms. [46] justified the use of deterministic model for Internet congestion control

and [42] gave the upper bound on the transmission rate for twokinds of TCP-like traffic.

However, to the best of our knowledge, the theoretical upperand lower bounds of win-

dow size and queue length of AIMD/RED system with homogeneous and heterogeneous

flows considering feedback delays have not been reported in the literature.

4.6 Summary

In this chapter, we have studied the practical stability of the AIMD/RED system by de-

riving theoretical bounds of window size and queue length ofthe AIMD/RED system

for both homogeneous and heterogeneous cases. The theoretical results obtained in the

chapter can provide important insights and guidelines for setting up parameters for the

AIMD/RED system in order to maintain network stability and to fully utilize network

resources without excessive delay and loss. The simulationresults given in the chapter

can also help to predict and control the system performance for the Internet with higher

data rate links multiplexed with more flows with different parameters. Our main findings

are 1) larger values of delay and link capacity will actuallyreduce the oscillating ampli-

tude of window size and queue length from their equilibrium in steady state; 2) although

AIMD flows can adapt their sending rates according to available bandwidth, larger num-

ber of flows leads to longer queueing delay in the AIMD/RED system. Thus, we should

limit the number of AIMD connections in a link or promote to use more conservative

AIMD parameters to bound the queueing delay and loss; and 3) if we proportionally

increase the link capacity and number of TCP/AIMD flows, the queueing delay will be
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slightly reduced, so the multiplexing gain slightly increases. Thus, AIMD/RED should

be suitable in the Internet with higher bandwidth and heterogeneous flows.

There are many interesting research issues worth further investigation: a) how to

deploy effective admission control for TCP/AIMD flows to bound delay and loss; b) how

to adapt AIMD parameter pair to ensure that the system can converge to the equilibrium

quick enough and to control the queueing delay and loss in thenetwork; and c) how to

extend the work to heterogeneous flows with differentRTTs and multiple bottleneck

links cases.
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Chapter 5

Stability Analysis of

Multiple-Bottleneck Networks

A TCP/RED system with multiple-bottleneck links could be unstable even if its system

parameters are set the same as those in a stable single-bottleneck system. In this chapter,

we study the stability of the general AIMD /RED system with multiple bottlenecks. We

develop a general mathematical approach to analyze networkstability for both delay-free

AIMD/RED systems and those with feedback delays. We derive sufficient conditions

for the asymptotic stability of multiple-bottleneck systems with heterogeneous delays

by appealing to Lyapunov stability theory with Lyapunov-Razumikhin conditions, and

these conditions can be easily assessed by using LMI (LinearMatrix Inequality) Toolbox.

Numerical results with Matlab and simulation results with NS-2 are given to validate the

analytical results.
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5.1 Introduction

For the vast-scale Internet, the single bottleneck topology may no longer be representa-

tive and a flow may traverse multiple links with non-negligible packet losses. In [61],

it is shown that a multiple-bottleneck network may be unstable even if the same system

parameters are used as those in a single bottleneck, stable network. In fact, the conges-

tion signals from multiple links sharing by different flows may lead to chaotic behav-

iors. Clearly, the results from single bottleneck networkscan not be directly applied to

multiple-bottleneck networks. In a nutshell, the stability property of multiple-bottleneck

networks remains an important open issue beckoning for further investigation.

In this chapter, after developing a general mathematical model of multiple-bottleneck

AIMD/RED system, we study the stability properties of the system, considering het-

erogeneous flows with different feedback delays. The main contributions of the chap-

ter are summarized as follows. First, the fluid model of a general multiple-bottleneck

AIMD/RED system without feedback delay is proved to beglobally asymptotically sta-

ble, independent of the number of flows in each bottleneck, flow parameter pairs (α, β),

and their round-trip delays, etc. Next, we consider the multi-bottleneck system with feed-

back delays where global stability is often difficult to attain, due to the highly nonlinear

nature and the effect of delays. We present two sufficient conditions to guaranteelocal

asymptotic stabilityof the system and note that these results are for general multiple-

bottleneck scenarios. Numerical results with Matlab and simulation results with NS-

2 [60] have validated the analytical results with an exampleof two-bottleneck topology.

The theoretical findings can be used as a guideline for tuningthe system parameters to

maintain network stability and enhance system performance, and the analytical and sim-

ulation results provide important insight to understand the stability and performance of
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multi-bottleneck networks.

The remainder of the chapter is organized as follows. In Sec.5.2, we provide back-

ground on the fluid model for stability analysis of the Internet, building on which we

develop a general model for multi-bottleneck scenarios. Weinvestigate in Sec. 5.3 the

stability properties with delay-free marking, and prove the global asymptotic stability

of the fluid model system by using Lyapunov stability theory and LaSalle’s Invariance

Principle. Sec. 5.4 studies the multi-bottleneck system considering feedback delays.

Stability properties of multiple-bottleneck systems are studied by applying the singu-

larly perturbed techniques are given in Sec. 5.5 and delay-dependent LMI criteria for the

stability of singularly perturbed AIMD/RED systems with multiple bottlenecks are ob-

tained. Numerical results by MATLAB and simulation resultsby NS-2 are presented in

Sec. 5.6. Sec. 5.7 gives a brief review of related work, followed by concluding remarks

in Sec. 5.8.

5.2 Multiple-Bottleneck Network Model

A general scenario of a multiple-bottleneck AIMD/RED system is shown in Fig. 5.1.

In the system, AIMD flows pass through multiple links which causes more than one

congested routers. The thick lines with arrow in the figure represent the volume of the

traffic load on each link and the traffic load becomes smaller each time after passing

through a congested router. Assume that a packet can only be marked at most once,

following the idea of modeling in [27], based on the modelingidea of single-bottleneck

systems, a multiple-bottleneck AIMD/RED system that contains N groups of AIMD

flows andM congested links can be mathematically modeled as follows:
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Figure 5.1: General Case of a Multiple-Bottleneck Network

dW1(t)

dt
=

α1

R1(t)
−

2(1 − β1)

1 + β1
W1(t)

W1(t− τ1)

R1(t− τ1)

×
∑

i∈r(1)(Kpi
qi(t−τ1)),

· · · · · · · · · · · · · · · · · · · · · · · ·

dWN(t)

dt
=

αN

RN (t)
−

2(1 − βN)

1 + βN

WN(t)
WN (t− τN)

RN (t− τN)

×
∑

j∈r(N)(Kpj
qj(t−τN )),

dq1(t)

dt
=



























∑

n∈f(1)

NnWn(t)

Rn(t)
− C1, q1 > 0,

{
∑

n∈f(1)

NnWn(t)

Rn(t)
− C1, }

+, q1 = 0,

· · · · · · · · · · · · · · · · · · · · · · · ·

dqM(t)

dt
=



























∑

m∈f(M)

NmWm(t)

Rm(t)
− CM , qM > 0,

{
∑

m∈f(M)

NmWm(t)

Rm(t)
− CM , }

+, qM = 0.

(5.1)

wherer(i), i=1, · · · , N , denotes the set of congested routers that flowi passes through,

andf(m),m=1, · · · , M , denotes the set of flows that pass through the congested router

m.
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5.3 Stability Analysis with Delay-free Marking

In this section, we study the dynamics of the multi-bottleneck networks in the absence

of feedback delays by using Lyapunov stability theory and LaSalle’s Invariance Prin-

ciple. Assume that the round-trip timeRi is time-invariant, i.e.,Ri(t) = Ri for i =

1, 2, · · · , N . We shall show that the equilibrium point of this delay-freesystem is glob-

ally asymptotically stable for all positive gains.

For delay-free marking multiple-bottleneck AIMD/RED system, the equilibrium point

(W ∗
1 , · · · ,W ∗

N , q∗1, · · · , q∗M ) can be obtained by

2(1 − β1)·(W
∗
1 )2(

∑

i∈r(1)(Kpi
q∗i ) = α1(1 + β1),

· · · · · · · · · · · · · · · · · · · · · · · ·

2(1 − βN)·(W ∗
N )2(

∑

j∈r(N)Kpj
q∗j ) = αN(1 + βN ),

∑

n∈f(1)Nn·W
∗
n/Rn = C1,

· · · · · · · · · · · ·

∑

m∈f(M)Nm·W
∗
m/Rm = CM .

(5.2)

One observation is that, if all flows have the same AIMD parameter pair, the flow

that traverses more bottlenecks always suffers more packetlosses than other flows, and

its window size is always smaller than those of others.

Remark 1.:The analysis throughout this chapter is about the stabilityproperty of the

equilibrium point of system (5.1). Since the equilibrium point is typically in the desired

operating region of the system, its stability property, i.e., the convergence of system

trajectories to the equilibrium point, will guarantee network performance in terms of

packet loss, delay, and jitter.
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With the transformed variables̃Wi(t)=Wi(t)−W
∗
i , for i = 1, · · · , N ; q̃j(t) =

qj(t) − q∗j , for j = 1, · · · , M ; we can use the following Lyapunov function to estab-

lish the asymptotic stability of delay-free marking system:

V (W̃1(t), · · · , W̃N (t), q̃1(t), · · · , q̃M(t))

=
1

2

N
∑

i=1

(1 + βi)Ni

(1 − βi)W̃ ∗2
i

W̃ 2
i (t) +

1

2

M
∑

j=1

Kpj
q̃2
j (t).

(5.3)

The time-derivative ofV along the solution of system (5.1) is non-positive, i.e.,V̇ ≤

0. By applying LaSalle’s Invariance Principle, all the trajectories converge to the unique

equilibrium point of system (5.1). Thus, the global asymptotic stability of system(5.1)

is obtained. The results can be summarized by the following theorem.

Theorem 5.1 For any Kp1>0, · · · , KpM
>0, the equilibrium point of the delay-free

marking AIMD/RED system is globally asymptotically stablefor any positive pairs(α1, β1),

· · · , (αN , βN) and any positiveR1, · · · ,RN .

Proof: With the transformed variables̃Wi(t)=Wi(t)−W
∗
i , for i = 1, · · · , N ; q̃j(t) =

qj(t) − q∗j , for j = 1, · · · , M ; the delay-free marking system becomes
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˙̃W1(t) = −
2(1 − β1)

1 + β1

(W̃I(t) +W ∗
1 )2

R1
(
∑

i∈r(1)

Kpi
q̃i(t))

−
2(1 − β1)

1 + β1

W̃ 2
1 (t) + 2W ∗

1 W̃1(t)

R1
(
∑

i∈r(1)

Kpi
q∗i )),

· · · · · · · · · · · · · · · · · · · · · · · ·

˙̃WN(t) = −
2(1 − βN )

1 + βN

(W̃N(t) +W ∗
N)2

RN

(
∑

j∈r(N)

Kpj
q̃j(t))

−
2(1 − βN )

1 + βN

W̃ 2
N(t) + 2W ∗

NW̃N (t)

RN
(
∑

j∈r(N)

Kpj
q∗j )),

˙̃q1(t) =
∑

n∈f(1)

Nn · W̃n(t)

Rn

,

· · · · · · · · · · · ·

˙̃qM(t) =
∑

m∈f(M)

Nm · W̃m(t)

Rm
.

(5.4)

with the equilibrium point(W̃1, · · · , W̃N , q̃1, · · · q̃M) = (0, 0, · · · , 0, 0).

With system (5.4), we choose Lyapunov function with the following form,

V (W̃1(t), · · · , W̃N (t), q̃1(t), · · · , q̃M(t))

=
1

2

N
∑

i=1

(1 + βi)Ni

(1 − βi)W̃
∗2
i

W̃ 2
i (t) +

1

2

M
∑

j=1

Kpj
q̃2
j (t).

(5.5)

Computing the time-derivative ofV along the solution of system (5.4) gives,
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V̇ =
N
∑

i=1

(1 + βi)Ni

(1 − βi)W̃
∗2
i

W̃i(t)
˙̃Wi +

M
∑

j=1

Kpj
q̃j(t) ˙̃qj

= −
N
∑

k=1

Nk

W ∗2
k Rk

· W̃ 2
k (t)(W̃k(t) + 2W ∗

k ) ·
∑

i∈r(k)

Kpi
(q̃i(t) + q∗i ).

Note thatW̃k(t) + W ∗
k = Wk(t) ≥ 0 for k = I, · · · , N ; andq̃i(t) + q∗i = qi(t) ≥ 0

for i = 1, · · · ,M ; which impliesV̇ ≤ 0. Thus, we prove that the equilibrium point of

system (5.4) is stable. Next, we show the globally asymptotic stability of the system by

applying LaSalle’s Invariance Principle. Consider the setof states wherėV = 0,

M : = { (W̃1, · · · , W̃N , q̃1, · · · , q̃M) : V̇ = 0 }

= { (W̃1, · · · , W̃N , q̃1, · · · , q̃M) :

W̃1 = · · · = W̃N = 0;

or q̃1 = −q∗1 , · · · , q̃M = −q∗M . }.

Applying LaSalle’s Invariance Principle [51, 53], trajectories of (5.4) converge to

the largest invariant set contained inM. We then prove that the only invariant set con-

tained inM is the equilibria (0, 0, · · · , 0, 0). If (W̃1(t), · · · , W̃N (t), q̃1(t), · · · q̃M(t))

is equal to(0, · · · , 0, q̃1(t), · · · , q̃M(t)) or (W̃1(t), · · · , W̃N(t), −q∗1, · · · − q∗M), we

can then conclude that(W̃1(t
+), · · · , W̃N(t+), q̃1(t

+), · · · q̃M (t+)) is not inM by ap-

plying (5.4), which implies that no trajectory can stay inM, other than the equilibrium

point (0, 0, · · · , 0, 0). Therefore, the equilibrium point of system (5.4) is asymptotically

stable.�

In the above analysis, the AIMD parameter pairs for all the flows in groupi, i =

1, · · · , N, are the same. In reality, there may be heterogeneous AIMD flows within

one group. As an example, we consider the case when two types of AIMD flows are
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within the groupI: NI1 AIMD (αI1, βI1) flows denoted byWI1, andNI2 AIMD (αI2,

βI2) flows denoted byWI2, with round trip-timeRI1 andRI2, respectively. In this case,

we can still obtain the globally asymptotic stability by choosing the following proper

Lyapunov function and LaSalle’s Invariance Principle.

Assume that there are two types of AIMD flows within the groupI: NI1 AIMD (αI1,

βI1) flows denoted byWI1, andNI2 AIMD (αI2, βI2) flows denoted byWI2, with round

trip-timeRI1 andRI2, respectively. Then these flows can be modeled as follows,

dWI1(t)

dt
=
αI1

RI1

−
2(1 − βI1)

1 + βI1

W 2
I1(t)

RI1

(
∑

i∈r(I)

Kpi
qi(t)),

dWI2(t)

dt
=
αI2

RI2
−

2(1 − βI2)

1 + βI2

W 2
I2(t)

RI2
(
∑

i∈r(I)

Kpi
qi(t)).

(5.6)

We can then obtain the global asymptotic stability by choosethe following Lyapunov

function,

V (W̃I1(t), W̃I2(t), · · · , W̃N(t), q̃1(t), · · · , q̃M (t))

=
1

2

(1 + βI1)NI1

(1 − βI1)W̃
∗2
I1

W̃ 2
I1(t) +

1

2

(1 + βI2)NI2

(1 − βI2)W̃
∗2
I2

W̃ 2
II2(t)

+
1

2

∑

i6=I

(1 + βi)Ni

(1 − βi)W̃
∗2
i

W̃ 2
i (t) +

1

2

M
∑

j=1

Kpj
q̃2
j (t).

(5.7)

Using the similar analysis as in Theorem 5.1, global asymptotic stability for this case

can be proved. The same conclusion can be drawn for more general cases, i.e., when

more than two types of AIMD flows in each group are sharing the link capacities. The

corresponding mathematical models can be constructed along similar lines as above,
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by extending the model to higher dimensions to include more terms, each representing

another kind of flow.

Remark 2.:Note that a similar analysis can be carried out for more general cases, i.e.,

when there are more than two types of AIMD flows in each group sharing the link capac-

ities. For this, the corresponding mathematical models canbe constructed along similar

lines as above, by extending the model(5.1) to higher dimensions to include more terms,

each representing a type of flow.

5.4 Stability Analysis with Feedback Delays

5.4.1 Stability Criteria for General Multiple-Bottleneck Systems

In this section, we study the stability properties of the delayed system(5.1) in Section

5.2. With ever-increasing link capacity and appropriate congestion control mechanism,

variation of queuing delays becomes relatively small to propagation delays. In fact,

recent work [48] reveals that the variable nature ofRTT due to queueing delay variation

helps to stabilize the TCP/RED system. Therefore, we can ignore the effect of the delay

jitter on the round-trip time and derive sufficient conditions for the asymptotic stability

of multiple-bottleneck system assumingRTT to be constant. Clearly, these sufficient

conditions will be still applicable ifRTT is actually time-varying.

The equilibrium points (W ∗
1 , · · · , W ∗

N , q∗1, · · · , q∗M ) of system (5.1) are defined

by (5.2) withRi = τi = R∗
i for i = 1, · · · , N, whereR∗

i = Tpi
+
∑

j∈r(i)
q∗
j

Cj
.

Due to the highly nonlinear nature and the effect of delays inthe system, no suit-

able Lyapunov function could be constructed to prove globalasymptotic stability of the

124



5.4. STABILITY ANALYSIS WITH FEEDBACK DELAYS

equilibrium. We linearize system(5.1) about the equilibrium point and write it in the

following form,

ẋ(t) = Āx(t) +
N
∑

i=1

B̄ix(t− R∗
i ), (5.8)

with x=(W̃1(t), · · · , W̃N(t), q̃1(t), · · · , q̃M(t))T , Ā=







A11 0

A21 A22





, B̄=







Bi11 Bi12

0 0





,

whereAij , Bi11 andBi12 are known real constant matrices with appropriate dimensions

with following forms:

A11=























− α1

R∗

1W ∗

1
0 · · · 0

0 − α2

R∗

2W ∗

2
· · · 0

...
...

.. .
...

0 0 · · · − αN

R∗

N
W ∗

N























, (A21)ij =















Nj

R∗
j

, if j∈r(i),

0, otherwise,

(A22)ij =







































−
1

Cj

∑

l∈f(i)

NlW
∗
l

R∗2
l

, for i = j,

−
1

Cj

∑

l∈f(i)∩f(j)

NlW
∗
l

R∗2
l

, otherwise,

(Bi11)jk =















−
αi

R∗
iW

∗
i

, for j = k = i,

0, otherwise,

(Bi12)jk =















−
2(1 − βi)

1 + βi

W ∗2
i

R∗
i

Kpk, for j = i and k ∈ f(i),

0, otherwise.
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It can be checked by the Routh Criterion thatĀ is a Hurwitz matrix, which im-

plies that for any positive definite matrixQ, there exists positive definite matrixP ,

such thatĀTP + PĀ = −Q. We next give some sufficient conditions for the local

asymptotic stability of system (5.1) by applying the directmethod of Lyapunov. Let

M=
√

λmax(P )/λmin(P ), whereλ(P ) denotes eigenvalues of matrixP , we can obtain a

sufficient condition to guarantee the local asymptotic stability of the multiple-bottleneck

system.

Theorem 5.2 If there exists positive definiteP, Q satisfyingĀTP +PĀ=−Q such that

matrixQ − 2M · (
N
∑

i=1
‖PB̄i‖) · I is positive definite, then the equilibrium point of(5.1)

is locally asymptotically stable.

Proof: With (5.8), we choose Lyapunov functionV (x) = xTPx, then

V̇ = ẋTPx+ xTP ẋ

= [Āx(t) +
∑N

i=1 B̄ix(t− R∗
i )]

TPx+ xTP [Āx(t) +
∑N

i=1 B̄ix(t−R∗
i )]

= xT (t)(ĀTP+PĀ)x(t)+2
N
∑

i=1
xT (t−R∗

i )B̄
T
i Px(t)

= −xT (t)Qx(t)+2
N
∑

i=1
xT (t−R∗

i )B̄
T
i Px(t).

Let R∗=max{R∗
1, · · · , R

∗
N}. Applying the Lyapunov-Razumikhin condition, with

µ>1 such that

V (ξ) ≤ µ2V (t), for t− R∗ ≤ ξ ≤ t,

which implies that‖x(ξ)‖ ≤M ·µ·‖x(t)‖.
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Thus,

V̇ ≤ −xT (t)Qx(t)+2‖x(t− R∗)‖ (
N
∑

i=1
‖B̄T

i P‖) ‖x(t)‖

≤ −xT (t)[Q− 2µM (
N
∑

i=1
‖PB̄i‖) I]x(t),

thereby establishing the asymptotic stability of system(5.1). �

Observe that the Lyapunov-Razumikhin condition is used in Theorem 5.2 to deal

with the delayed terms iṅV . Lyapunov functional is another method that can be applied

when studying the stability of delayed systems. Our next result gives another sufficient

condition for the local asymptotic stability of system(5.1) in terms of linear matrix

equality by applying the method of Lyapunov functional.

Theorem 5.3 If there exist positive definiteP, Q satisfyingĀTP + PĀ = −Q and

positive definiteGi for i = 1, · · · , N such that the following matrix is positive definite,

























Q−
N
∑

i=1
Gi −PB1 · · · −PBN

−BT
1 P G1 0 0

... 0
. . . 0

−BT
NP 0 0 GN

























> 0,

then the equilibrium point of(5.1) is locally asymptotically stable.

Proof: With (5.8), we choose Lyapunov functional

V (x) = xTPx+
N
∑

i=1

∫ t

t−R∗

i

xT (s)Gix(s)ds,
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then

V̇ = xT (t)(ĀTP+PĀ)x(t)+2
N
∑

i=1
xT (t−R∗

i )B̄
T
i Px(t)

+xT (t)(
N
∑

i=1
Gi)x(t) −

N
∑

i=1
xT (t−R∗

i )Gix(t−R∗
i )

= −xT (t)(Q−
N
∑

i=1
Gi)x(t)+2

N
∑

i=1
xT (t−R∗

i )B
T
i Px(t)

−
N
∑

i=1
xT (t− R∗

i )Gix(t− R∗
i )

= −(xT (t), xT (t− R∗
1), · · · , x

T (t−R∗
N ))·

D · (xT (t), xT (t− R∗
1), · · · , x

T (t−R∗
N ))T ,

whereD denotes the matrix

























Q−
N
∑

i=1
Gi −PB1 · · · −PBN

−BT
1 P G1 0 0

... 0
. . . 0

−BT
NP 0 0 GN

























. Thus, system(5.1)

is locally asymptotically stable ifD is positive definite.�

It is worth pointing out that sufficient conditions derived in Theorems 5.2 and 5.3 are

both given in terms of linear matrix inequalities (LMI). These conditions can be easily

assessed by applying the LMI Control Toolbox with Matlab [67].

In general, Theorems 5.2 and 5.3 shed some light on how the network parameters

impact the network stability. Specifically, we have the following intuitive interpretation

of the conditions in these theorems. To guarantee the local asymptotic stability of sys-

tem (5.1),V̇ in Theorems 5.2 and 5.3 is required to be negative definite. Itcan be seen

from the proof that the more negativēATP +PĀ and the smaller‖PB̄i‖, i = 1, · · · , N ,

the more likelyV̇ <0. In other words, the term̄ATP + PĀ should be dominant iṅV

and the absolute values ofλ(Ā) are expected to be sufficiently large. Notice thatĀ
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r1 r2

Group I
Group II
Group III

L1
L2

r r

Figure 5.2: Multiple-Bottleneck Topology

has been checked to be a Hurwitz matrix andW ∗
i , i=I, · · · , N has the form ofRC/N .

From the expression of̄A andB̄i, we know that the smaller the termsR∗
i , i = 1, · · · , N ,

Cj, j = 1, · · · ,M , the larger the absolute values ofλ(Ā) and the smaller the‖PBi‖,

and hence the better the chance that the system is asymptotically stable. These observa-

tions are also consistent with those in [9]: TCP/RED will become unstable when delay

increases or when link capacity increases.

5.4.2 Case Study: A Class of Two-Bottleneck Topology

In this section, we consider a basic multi-bottleneck scenario, as depicted in Fig. 5.2.

Three groups of flows are sharing the links between four routers. AIMD flows in group

I compete with flows in group II over linkL1, and also compete with 50 flows in group

III over link L2. We assume all routers are RED enabled and there is no packet loss

and delay jitter in the non-bottleneck links. All routers are RED enabled. LinksL1 and

L2 are bottlenecks with the capacity ofC1 andC2, respectively. The round-trip delays

for the three groups of traffic areR1, R2, andR3, respectively. The results with this

topology are also applicable to the scenarios when the threegroups of flows traverse
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other non-bottleneck links before/after they enter/leaveL1 orL2.

In this multi-bottleneck topology, letKp1 andKp2 denote the marking probability on

L1 andL2, and (α1, β1), (α2, β2) and (α3, β3) be AIMD parameter pairs for the three

groups of flows, respectively. For the first group of flows, themarking probabilities on

L1 andL2 arep1(t−R1) = Kp1q1(t−R1) andp2(t−R1) = Kp2q2(t−R1), respectively.

Since we assume that a packet can only be marked at most once, the probability of a flow

I packet receiving a mark isp1(t−R1)+p2(t−R1)−p1(t−R1)p2(t−R1). The marking

probability can be approximated byp1(t−R1)+p2(t−R1) given thatp1 andp2 are very

small. The closed-loop dynamics can be modeled as follows:

dWI(t)

dt
=

α1

R1(t)
−

2(1 − β1)

1 + β1
WI(t)

WI(t− τ1)

R1(t− τ1)
(Kp0q0(t−τ1)+Kp2q2(t−τ1)),

dWII(t)

dt
=

α2

R2(t)
−

2(1−β2)

1+β2
WII(t)

WII(t−τ2)

R2(t−τ2)
Kp0q0(t−τ2),

dWIII(t)

dt
=

α3

R3(t)
−

2(1−β3)

1+β3
WIII(t)

WIII(t− τ3)

R3(t−τ3)
Kp2q2(t−τ3),

dq1(t)

dt
=



































N1WI(t)

R1(t)
+
N2WII(t)

R2(t)
− C1, q0 > 0,

{
N1WI(t)

R1(t)
+
N2WII(t)

R2(t)
− C1}

+, q0 = 0,

dq2(t)

dt
=



































N1WI(t)

R1(t)
+
N3WIII(t)

R3(t)
− C2, q2 > 0,

{
N1WI(t)

R1(t)
+
N3WIII(t)

R3(t)
− C2}

+, q2 = 0.

(5.9)
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Next, we give a numerical example to get a more concrete senseof the sufficient

conditions in Theorem 5.2 on local asymptotic stability forthe AIMD/RED system

with heterogeneous delays. LetN1 = N2 = N3 = 5, C1 = 3 × 103 packet/sec,

C2 = 5 × 103 packet/sec withKp1 = Kp2 = 0.0005. Choose(α1, β1)=(1, 0.5) with

Tp1 = 0.020 sec,(α2, β2) = (0.2, 0.875) with Tp2=0.013 sec and(α3, β3)=(1, 0.5)

with Tp3=0.007 sec, respectively. Solving the LMI in Theorem 5.2 with Matlab Control

Toolbox, one feasible solution we obtain is as follow: positive definite matrix

Q = 103 ×































4.2596 −1.2369 2.3752 −1.8226 −1.9184

−1.2369 4.5479 −3.1861 −2.0736 0.8033

2.3752 −3.1861 2.8241 0.5329 −1.2195

−1.8226 −2.0736 0.5329 2.4057 0.6722

−1.9184 0.8033 −1.2195 0.6722 0.8817































and

P=































2.217 −2.6696 2.4213 0.3497 −1.091

−2.669 4.9555 −3.8606 −1.3247 1.439

2.421 −3.8606 3.3280 0.9250 −1.279

0.349 −1.3247 0.9250 0.6115 −0.229

−1.091 1.4386 −1.2789 −0.2295 0.559































.

We can also check that the eigenvalues of matrixQ − 2M (‖PB1‖ + ‖PB2‖ +

‖PB3‖)I are :1.0e+ 003× [9.0769, 5.8269, 0.0088, 0.0044, 0.0001], which implies that

Q− 2M (‖PB1‖ + ‖PB2‖ + ‖PB3‖)I is positive definite. Thus, the condition of The-

orem 5.2 holds and the system is locally asymptotically stable. Simulation results using

the same parameters will be given in Sec. 5.6.

Remark 3.:Notice that Theorems 5.2 and 5.3 give two different sets of sufficient condi-

tions for the asymptotic stability of system(5.9). These conditions can be easily checked
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by the LMI Toolbox, which allow us to use any of them at our convenience.

Remark 4.:Using the similar idea of this section, we can obtain the local stability of

the network when it is shared by more than three groups of flowsas well. Mathematical

models can be established following the idea in Sec. 5.2 and the technique used in this

section can be applied to obtain sufficient conditions, in terms of LMI, for asymptotic

stability of any given scenarios.

Remark 5.:We note that the results in this section are for local stability only, whereas

the results obtained in Sec. 5.3 are for global stability. This is due to the difficulty in

constructing a suitable Lyapunov-type function for the nonlinear multiple-bottleneck

AIMD/RED system with heterogeneous delays. A plausible approach to resolve this

issue is to develop a sequence of upper and lower bounds of system trajectories and use

these bounds in Razumikhin’s theorem to derive conditions for global stability in the

presence of heterogeneous delays, and our study along this line is underway. Studying

the stability properties of the general case of multiple-bottleneck AIMD/RED networks

by directly using the model(5.1) is an important open issue for further investigation.

5.5 Delay-Dependent Stability Analysis using Singular

Perturbation Approach

In this section, we take the mathematical model of AIMD/RED systems with multiple

bottlenecks and feedback delays into the novel frame of singularly perturbed systems.

Stability properties of multiple-bottleneck systems are studied by applying the singu-

larly perturbed techniques. Delay-dependent LMI criteriafor the stability of singularly

perturbed AIMD/RED systems with multiple bottlenecks are obtained, and the existence
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of the sufficiently small parameters that guarantee the asymptotic stability of the system

considered above is also demonstrated.

5.5.1 Singularly Perturbed Multiple-Bottleneck Systems

We consider a multiple-bottleneck AIMD/RED system that containsN groups of AIMD

flows andM congested links. The corresponding mathematical model forthis system,

which has been proposed in Sec. 5.2, is described as (5.1).

Notice that in system (5.1), the termdqj(t)

dt
changes much faster thandWi(t)

dt
, especially

whenNi is large, i.e., window size is slow variable and queue lengthis fast variable in

the system. We assume all groups in system (5.1) contain the number of AIMD flows

with the same order, i.e.,O(N1) ∼ O(N2) ∼ · · · ∼ O(NN). Let N̄ =
∑N

i=1Ni/N ,

and1/N̄ is then a small real number in(0, 1]. Takeε = 1/N̄ andλi = Ni/N̄ , dqj(t)

dt
,

j = 1, · · · M , dqj(t)

dt
in the original system, (5.1) can be rewritten as,

εq̇j(t) =







































∑

n∈f(j)

λnWn(t)

Rn(t)
− Cj/N̄, qj > 0,

{
∑

n∈f(j)

λnWn(t)

Rn(t)
− Cj/N̄, }

+, qj = 0.

(5.10)

Hence, the multiple-bottleneck AIMD/RED system with the queue length described

in (5.10) has been taken into the frame ofsingularly perturbed systems[68, 71] with

heterogeneous feedback delays.

We then linearize the singularly perturbed multiple-bottleneck system about the equi-

librium point (W ∗
1 , · · · , W

∗
N , q

∗
1, · · · , q

∗
M). Takex(t) = (W1(t), · · · ,WN(t))T and
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y(t) = (q1(t), · · · , qM(t))T , the obtained linearized singularly perturbed system with

delays is as follows:







ẋ(t)

εẏ(t)





 =







A11 0

A21 A22













x(t)

y(t)







+
N
∑

i=1







Bi11 Bi12

0 0













x(t− R∗
i )

y(t− R∗
i )





 , (5.11)

wherex(t) ∈ RN andy(t) ∈ RM are slow- and fast-state vectors, respectively.ε is a

singular perturbation parameter.R∗
i ≥ 0 are time delays onx(t) andy(t). Aij , Bi11

andBi12 are known real constant matrices with appropriate dimensions with following

forms:

A11=























− α1

R∗

1W ∗

1
0 · · · 0

0 − α2

R∗

2W ∗

2
· · · 0

...
...

.. .
...

0 0 · · · − αN

R∗

N
W ∗

N























,

(A21)ij =















λj

R∗
j

, if j∈r(i),

0, otherwise,

(A22)ij =







































−
1

Cj

∑

l∈f(i)

λlW
∗
l

R∗2
l

, for i = j,

−
1

Cj

∑

l∈f(i)∩f(j)

λlW
∗
l

R∗2
l

, otherwise,
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(Bi11)jk =















−
αi

R∗
iW

∗
i

, for j = k = i,

0, otherwise,

(Bi12)jk =















−
2(1 − βi)

1 + βi

W ∗2
I

R∗
i

Kpk, for j = i and k ∈ f(i),

0, otherwise.

It can be checked thatA11 andA22 both are Hurwitz, which is important to establish

sufficient conditions for the stability of system (5.11) forall small enoughε andR∗
i .

5.5.2 Stability Analysis

To facilitate the discussion, we introduce the following lemmas for later use.

Lemma 5.4 [70] Let x ∈ Rn andy ∈ Rn be real vectors, then for any positive definite

matrixX = XT > 0, the inequality−2xT
y ≤ x

TX−1
x + y

TXy holds.

Lemma 5.5 For any constantsa andb and any functionsf andg, the following result

holds:

d

dt

∫ b

a

∫ g(t, θ)

f(t, θ)
F (s)dsdθ

=
∫ b

a

(

F (g(t, θ))
∂

∂t
g(t, θ)−F (f(t, θ))

∂

∂t
f(t, θ)

)

dθ.

We first focus on the necessary condition for the stability ofthe system (5.11) as

ε→ 0 andR∗
i → 0.

135



5.5. DELAY-DEPENDENT STABILITY ANALYSIS USING SINGULAR
PERTURBATION APPROACH

The reduced-order delay-free system of the(N +M)th-order system (5.11) is given

asε→ 0 andR∗
i → 0.

ẋs(t) = A11xs(t) +
N
∑

i=1

[

Bi11 Bi12

]







xs(t)

ys(t)





 , (12a)

0 = A21xs(t) + A22ys(t). (12b)

Note thatA−1
22 exists becauseA22 is Hurwitz,

ys(t) = −A−1
22 A21xs(t) (5.13)

is the unique solution of (12b). Substituting (5.13) into (12a) results in the uniqueN th

order system.

ẋs(t) = A0xs(t), (5.14)

whereA0 := A11 +
N
∑

i=1

B̄i, B̄i := Bi11 −Bi12A
−1
22 A21.

Then we have the following necessary condition:

Theorem 5.6 Let system (5.11) be stable for all small enoughε andR∗
i , thenA0 is

Hurwitz. In other words, there existsP0 = P T
0 > 0 such that the following LMI holds.

P0A0 + AT
0 P0 < 0. (5.15)

Proof: It is clear that this result is given as the limits ofε andR∗
i both go to zero.

In the remainder of the section, sufficient conditions are derived for system (5.11).

We first define the following similarity transformation [69,71].






x(t)

η(t)





 =







IN 0

L(ε) IM













x(t)

y(t)





 , (5.16)
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whereL(ε) is obtained by solving the following linear algebraic equation:

A21 − A22L(ε) + εL(ε)A11 = 0. (5.17)

Lemma 5.7 [71] There exists a small constantε̄ such that for allε ∈ (0, ε̄), the linear

algebraic equation (5.17) admits the unique solutionL = L(ε) that can be expressed as

L = L(ε) = A−1
22 A21 +O(ε). (5.18)

By using the similarity transformation (5.16) and lemma 5.7, system (5.11) can be

rewritten as:






ẋ(t)

εη̇(t)





 =







A11 0

0 A22













x(t)

η(t)







+
N
∑

i=1







B̃i11 Bi12

LB̃i11 LBi12













x(t− R∗
i )

η(t−R∗
i )





 , (5.19)

whereB̃i11 := Bi11 − Bi12L.

Sufficient conditions are obtained as follows for asymptotic stability of system (5.11).

Theorem 5.8 Givenε > 0, R∗
i > 0, system (5.11) is asymptotically stable if there exist

P1 = P T
1 > 0, P2 = P T

2 > 0, Q1i = QT
1i > 0, Q2i = QT

2i > 0, X1i = XT
1i > 0 and
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X2i = XT
2i > 0, i = 1, ... , N such that the LMI

Γ :=





























































Φ ∆1 · · · ∆N Θ1 Θ1 · · · ΘN ΘN

∆T
1 Λ1 · · · Λ1N 0 0 · · · 0 0

...
...

. . .
...

...
...

. . .
...

...

∆T
N ΛN1 · · · ΛN 0 0 · · · 0 0

ΘT
1 0 · · · 0 −X11 0 · · · 0 0

ΘT
1 0 · · · 0 0 −X12 · · · 0 0

...
...

. . . 0
...

...
. . .

...
...

ΘT
N 0 · · · 0 0 0 · · · −X1N 0

ΘT
N 0 · · · 0 0 0 · · · 0 −X2N





























































< 0,
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where

Φ := Φ(ε, R∗
1, ... , R

∗
N )

= Ψ +
N
∑

i=1









P







B̃i11 0

LB̃i11 0





+







B̃i11 0

LB̃i11 0







T

P









+
N
∑

i=1

R∗
i







AT
11

0





X1i

[

A11 0

]

,

Ψ :=













P1A11+A
T
1 P1+

N
∑

i=1

Q1i 0

0 P2A22+A
T
22P2+

N
∑

i=1

Q2i













,

Λi := −







Q1i 0

0 Q2i





+







B̃T
i11

BT
i12







(

N
∑

k=1

R∗
kX2k

)

[

B̃i11 Bi12

]

,

Λij :=







B̃T
i11

BT
i12







(

N
∑

k=1

R∗
kX2k

)

[

B̃j11 Bj12

]

, i 6= j,

∆i := P







0 Bi12

0 LBi12





 , Θi :=
√

R∗
iP







B̃i11

LB̃i11





 ,

P :=







P1 0

0 P2





 .

Proof: The main idea of the proof for Theorem 5.8 is as follows.

Consider the following Lyapunov-Krasovskii function

V (z(t)) = xT (t)P1x(t) + εηT (t)P2η(t)

+
∑N

i=1

∫ t
t−R∗

i
zT (s)Qiz(s)ds +W (t),

(5.20)
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whereW (t) := W1(t) +W2(t),

W1(t) :=
N
∑

i=1

∫ 0

−R∗

i

∫ t

t+θ
zT (s)







AT
11

0







×X1i

[

A11 0

]

z(s)dsdθ,

W2(t) :=
N
∑

i=1

∫ 0

−R∗

i

∫ t

t+θ

(

N
∑

j=1

zT (s− R∗
j )







B̃T
jii

BT
j12







)

×X2i

(

N
∑

k=1

[

B̃kii Bk12

]

z(s− R∗
k)

)

dsdθ,

z(t) :=







x(t)

η(t)





 , Qi :=







Q1i 0

0 Q2i





 ,

Q1i = QT
1i > 0, Q2i = QT

2i > 0,

X1i = XT
1i > 0, X2i = XT

2i > 0.

With the Lyapunov-Krasovskii function defined as (5.20) andsystem (5.11), we have
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dV (z(t))

dt
= xT (t)(P1A11+A

T
11P1)x(t)+η

T (t)(P2A22+A
T
22P2)η(t)

+ 2xT (t)P1

N
∑

i=1

[

B̃i11 Bi12

]

z(t−R∗
i )

+ 2ηT (t)P2

N
∑

i=1

L
[

B̃i11 Bi12

]

z(t−R∗
i )

+
N
∑

i=1

[zT (t)Qiz(t) − zT (t−R∗
i )Qiz(t− R∗

i )]

+
dW (t)

dt
.

(5.21)

Integratingẋ(t) in system (5.19) fromt− R∗
i to t results in

x(t−R∗
i ) = x(t) −

∫ t

t−R∗

i

[

A11 0

]

z(s)ds

−
N
∑

j=1

∫ t

t−R∗

i

[

B̃j11 Bj12

]

z(t− R∗
j )ds.

(5.22)
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Substituting (5.22) into (5.21), we obtain that

dV (z(t))

dt

= zT (t)Ψz(t) + 2zT (t)
N
∑

i=1

∆iz(t− R∗
i )

+2zT (t)P
N
∑

i=1















B̃i11 0

LB̃i11 0















z(t)

+2zT (t)P
N
∑

i=1







B̃i11

LB̃i11







(

−
∫ t

t−R∗

i

[

A11 0

]

z(s)ds

)

+2zT (t)P
N
∑

i=1







B̃i11

LB̃i11





×



−
N
∑

j=1

∫ t

t−R∗

i

[

B̃j11 Bj12

]

z(t −R∗
j )ds





−
N
∑

i=1

zT (t−R∗
i )Qiz(t−R

∗
i ) +

dW (t)

dt
.

(5.23)
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It follows from the inequality of lemma 5.4 that

dV (z(t))

dt

= zT (t)Ψz(t) + 2zT (t)
N
∑

i=1

∆iz(t−R∗
i )

+ 2zT (t)P
N
∑

i=1







B̃i11 0

LB̃i11 0





 z(t)

+ zT (t)
N
∑

i=1

R∗
iP







B̃i11

LB̃i11





 (X−1
1i +X−1

2i )
[

B̃T
i11 B̃T

i11L
T

]

Pz(t)

+
N
∑

i=1

∫ t

t−R∗

i

zT (s)







AT
11

0





X1i

[

A11 0

]

z(s)ds

+
N
∑

i=1

∫ t

t−R∗

i

(

N
∑

j=1

zT (s− R∗
j )







B̃T
jii

BT
j12







)

X2i

(

N
∑

k=1

[

B̃kii Bk12

]

z(s− R∗
k)

)

ds

−
N
∑

i=1

zT (t−R∗
i )Qiz(t−R

∗
i ) +

dW (t)

dt
.

(5.24)

143



5.5. DELAY-DEPENDENT STABILITY ANALYSIS USING SINGULAR
PERTURBATION APPROACH

On the other hand we have

dW (t)

dt

:=
N
∑

i=1

∫ 0

−R∗

i

d

dt

(

∫ t

t+θ
zT (s)







AT
11

0







×X1i

[

A11 0

]

z(s)ds

)

dθ

+
N
∑

i=1

∫ 0

−R∗

i

d

dt





∫ t

t+θ

(

N
∑

j=1

zT (s− R∗
j )







B̃T
jii

BT
j12







)

×X2i

(

N
∑

k=1

[

B̃kii Bk12

]

z(s−R∗
k)

)

ds



dθ

:=
N
∑

i=1

R∗
i z

T (t)







AT
11

0





X1i

[

A11 0

]

z(t)

+
N
∑

i=1

R∗
i

(

N
∑

j=1

zT (t−R∗
j )







B̃T
jii

BT
j12







)

×X2i

(

N
∑

k=1

[

B̃kii Bk12

]

z(t− R∗
k)

)

−
N
∑

i=1

∫ t

t−R∗

i

zT (s)







AT
11

0





×X1i

[

A11 0

]

z(s)ds

−
N
∑

i=1

∫ t

t−R∗

i

(

N
∑

j=1

zT (s− R∗
j )







B̃T
jii

BT
j12







)

×X2i

(

N
∑

k=1

[

B̃kii Bk12

]

z(s−R∗
k)

)

ds.
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Then, we have

dV (z(t))

dt

≤ zT (t)Ξz(t) + 2zT (t)
N
∑

i=1

∆iz(t −R∗
i )

+
N
∑

i=1

R∗
i

(

N
∑

j=1

zT (t−R∗
j )







B̃T
jii

BT
j12







)

×X2i

(

N
∑

k=1

[

B̃kii Bk12

]

z(t−R∗
k)

)

−
N
∑

i=1

zT (t−R∗
i )Qiz(t− R∗

i ), (5.25)

where

Ξ := Φ +
N
∑

i=1

R∗
iP







B̃i11

LB̃i11





 (X−1
1i +X−1

2i )

×
[

B̃T
i11 B̃T

i11L
T

]

P.

Therefore, we obtain

dV (z(t))

dt
≤ wT (t)Πw(t). (5.26)

where

Π :=























Ξ ∆1 · · · ∆N

∆T
1 Λ1 · · · Λ1N

...
...

. . .
...

∆T
N ΛN1 · · · ΛN























,

w(t) :=
[

zT (t) zT (t−R∗
1) · · · zT (t−R∗

N )

]

.
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Finally, using Schur complement for matrix inequalityΠ < 0 results inΓ < 0. This

completes the proof of the theorem.�

Furthermore, sufficient conditions for robust asymptotic stability of system (5.11) is

given in the following corollary.

Corollary 5.9 If there existP̄1 = P̄ T
1 > 0, P̄2 = P̄ T

2 > 0, Q̄1i = Q̄T
1i > 0 and

Q̄2i = Q̄T
2i > 0 such that the LMI

Π̄ :=























Φ̄ ∆̄1 · · · ∆̄N

∆̄T
1 −Q̄1 · · · 0

...
...

. . .
...

∆̄T
N 0 · · · −Q̄N























< 0, (5.27)

where

Φ̄ :=













P̄1A11+A
T
1 P̄1+

N
∑

i=1

Q̄1i 0

0 P̄2A22+A
T
22P̄2+

N
∑

i=1

Q̄2i













+
N
∑

i=1









P̄







B̄i 0

A−1
22 A21B̄i 0





+







B̄i 0

A−1
22 A21B̄i 0







T

P̄









,

∆̄i := P̄







0 Bi12

0 A−1
22 A21Bi12





 ,

Q̄i :=







Q̄1i 0

0 Q̄2i





 , P̄ :=







P̄1 0

0 P̄2





 .

then there exist small enough̄ε andR̄ such that for allε∈(0, ε̄) andR∗
i∈(0, R̄), system

(5.11) is asymptotically stable.
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It is worth pointing out that sufficient conditions (5.20) and (5.27) derived in Theo-

rem 5.8 are both given in terms of linear matrix inequalities. These conditions can be

easily assessed by applying the LMI Control Toolbox with Matlab.

Remarks: The singular perturbation approach applied in system (5.11) provides two

distinct advantages. First, this approach demonstrates the existence of small singular

perturbation parameter and time delays that guarantee the asymptotic stability of the

system. Second, when time delays are sufficiently small, asymptotic stability can be

guaranteed by checking LMI (5.27), whose order is much smaller than (5.20) and needs

less computation. Mathematically deriving the bounds of singular perturbation parameter

and time delays is an important problem, for which no generalsolution has been found.

This issue is not addressed in the current work.

5.6 Numerical Results and Performance Evaluation

With the two-bottleneck topology described in Sec. 5.4, we first obtain the system evo-

lution trajectories by usingMatlab to verify the asymptotic stability proved in Secs. 5.3

and 5.4. Network simulator, NS-2, is then used to further study the performance of the

systems.

5.6.1 Numerical Results

System without feedback delays

Figs. 5.3 - 5.5 show the traces of window size and queue lengthunder the topology of

Fig. 5.2, modeled by (5.9). The capacity ofL1 is C1 = 1 × 105 packet/sec, that of
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Figure 5.3: Homogeneous TCP flows, delay-free
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Figure 5.4: Homogeneous AIMD(0.2, 0.875) flows, delay-free
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Figure 5.5: TCP and AIMD(0.2, 0.875) flows, delay-free

L2 is C2 = 12 × 104 packet/sec. The number of flows in each groups areN1 = 80,

N2 = 60 andN3 = 50, respectively. The deterministic round trip times of thesegroups

are Tp1 = 0.05 sec,Tp2 = 0.08 sec andTp3 = 0.06 sec, respectively. We choose

Kp1 = 0.0006,Kp2 = 0.0008,Qmin1=150 packets andQmin2=180 packets.

In Fig. 5.3, all flows are TCP flows, i.e.,(α, β) = (1, 0.5). In Fig. 5.4, all flows

are AIMD flows with the same parameter pair,(α, β) = (0.2, 0.875). Wi in Fig. 5.3

(a) and Fig. 5.4 (a) represents the average window size of flows in thei-th group, andq1

andq2 in Fig. 5.3 (b) and Fig. 5.4 (b) represent the bottleneck queue lengths atr1 and

r2, respectively. It can be seen that both the average window sizes and queue lengths

converge to constants in steady state. Although the convergence speed of homogeneous

TCP flows is faster than that of homogeneous AIMD flows, their average windows and

the average queue lengths in steady state are the same.

We further investigate the case that different groups of flows use different AIMD
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Figure 5.6: TCP and AIMD(0.2,0.875) flows, heterogeneous traffic in group I

parameters. The flow parameters of the three groups in Fig. 5.5 are(α1, β1) = (1, 0.5),

(α2, β2) = (0.2, 0.875) and (α3, β3) = (1, 0.5), respectively. The numerical results

show that the average window sizes of the three groups of flowsand queue lengths of the

two bottleneck routers converge to constants. Since all thetrajectories are asymptotically

stable, thereby validating Theorem 5.1. In addition, the average window sizes of each

groups in Figs. 5.3-5.5 are the same in steady state, which means AIMD (0.2, 0.875)

flows are TCP-friendly.1 This property can be further illustrated in the following case.

The traces of window size and queue lengths when there are twodifferent classes

of flows in group I are shown in Fig. 5.6, which is modeled by (5.6). Here the number

of flows within each group is chosen asN11 = N12 = 40, N2 = 60 andN3 = 50.

1TCP-friendlinessis defined as the average throughput of non-TCP-transportedflows over a large time

scale does not exceed that of any conformable TCP-transported ones under the same circumstance [47].

It has been shown that if an AIMD flow with the parameter pair satisfying the conditionα(1+β)
1−β

= 3, the

AIMD flow is TCP-friendly [12, 27].
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Figure 5.7: TCP and AIMD(0.2, 0.875) flows, delay-free, three bottleneck links

Their deterministicRTTs areTp11 = 0.05 sec,Tp12 = 0.04 sec,Tp2 = 0.06 sec and

Tp3 = 0.04 sec, respectively. Also, we haveC1 = 1×105 packet/sec andC2 = 1.2×105

packet/sec as in Figs. 5.3 - 5.5 withKp1 = 0.0006 andKp2 = 0.0008. The AIMD

parameter pairs in this case are(α11, β11) = (α3, β3) = (1, 0.5) and (α12, β12) =

(α2, β2) = (0.2, 0.875), respectively. It can be seen that both the window size and queue

length are asymptotically stable and are consistent with our analysis, and the AIMD(0.2,

0.875) flows are truly TCP-friendly.

Figs. 5.7 and 5.8 show how the window size and queue length evolve when the link

capacity ofrr2 for group I flows,C3, is so small that the linkrr2 becomes the third

bottleneck. Consequently, there are three bottlenecks in the network under the topology

shown in Fig. 5.2. We chooseN1 = 80,N2 = 60 andN3 = 50,C1 = 8×104 packet/sec,

C2 = 1×105 packet/sec andC3 = 4×104 packet/sec withKp1 = 0.0004,Kp2 = 0.0006

andKp3 = 0.0008, respectively. The deterministicRTTs are chosen asTp1 = 0.05 sec,

Tp2 = 0.06 sec andTp3 = 0.04 sec. In Fig. 5.7,(α1, β1) = (α3, β3) = (1, 0.5), and
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Figure 5.8: TCP and AIMD(0.2,0.875) flows, delay-free, three bottleneck links

(α2, β2) = (0.2, 0.875). In Fig. 5.8, there are two types of flows in group I, withN11 =

40, N12 = 40; andTp11 = 0.05 sec,Tp12 = 0.04 sec. Other parameters are chosen as

(α11, β11) = (α3, β3) = (1, 0.5), (α12, β12) = (α2, β2) = (0.2, 0.875). We can observe

the property of the asymptotic stability of these systems from the numerical results.

System with feedback delays

Figs. 5.5 - 5.8 show the asymptotic stability of the multiple-bottleneck system without

feedback delays, in which the property of stability is global. Figs. 5.9 - 5.11 illustrate the

local asymptotic stability of the system with feedback delays. We chooseN1 = N2 =

N3 = 5, C1 = 3 × 103 packet/sec,C2 = 5 × 103 packet/sec withKp1 = Kp2 = 0.0005.

The deterministicRTTs for the flows are chosen asTp1 = 0.020 sec,Tp2 = 0.013 sec

andTp3 = 0.007 sec, respectively. The parameters used are the same as thosein the

numerical example of Theorem 5.2. In Fig. 5.9,(αi, βi) = (1, 0.5) for i = 1, 2, 3; in
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Figure 5.9: Homogeneous TCP flows, with feedback delay
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Figure 5.10: Homogeneous AIMD flows, with feedback delay
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Figure 5.11: TCP and AIMD flows, with feedback delay

Fig. 5.10,(αi, βi) = (0.2, 0.875) for i = 1, 2, 3; and in Fig. 5.11,(α1, β1) = (α3, β3) =

(1, 0.5), (α2, β2) = (0.2, 0.875). As shown in the figures, all the trajectories are locally

asymptotically stable, and the numerical results validatethe theorems.

In the last part of this section, we give an example of an unstable multiple-bottleneck

RED network. We chooseN1 = N3 = 4, N2 = 8, C1 = 1000packet/sec,C2 =

1000 packet/sec withKp1 = Kp2 = 0.05 and(αi, βi) = (1, 0.5) for i = 1, 2, 3 with

Tp1 = 0.03 sec,Tp2 = 0.03 sec andTp3 = 0.04 sec. This case has been shown unstable

in [61] and it is consistent with our results in Fig. 5.12. It is easy to check that this case

does not satisfy the conditions of Theorems 5.2 and 5.3.
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Figure 5.12: Homogeneous TCP flows: unstable case

5.6.2 Simulation Results

We use network simulator (NS-2) to further study the performance of the AIMD/RED

system with realistic protocols and network topologies. The same multiple-bottleneck

topology as in Fig. 5.2 is used in the simulations.

We first validate a theoretically stable setting. The parameters used are the same as

those used for Fig. 5.11. It should be mentioned that, since the fluid model describes the

ensemble averages of window size and queue length, the asymptotically stableproperty

applies to the ensemble averages or time averages over a round. Here, a round is defined

as the time interval between two instants at which the senderreduces its window size

consecutively. Therefore, we focus on the time averages of the window size and queue

length over a round. Fig. 5.13 shows that the time averages ofthe flow window sizes

and queue lengths are converging to certain values, i.e., their time averages over a round

are asymptotically stable. The average window sizes in the NS-2 simulation results are

155



5.7. RELATED WORK

 0

 10

 20

 30

 40

 50

 10  20  30  40  50  60  70  80  90  100

W
in

d
o
w

 S
iz

e

Time (second)

Time Average of W1
Time Average of W2
Time Average of W3

 0

 20

 40

 60

 80

 100

 120

 140

 5  10  15  20  25  30  35  40  45  50

Q
u

eu
e 

L
en

g
th

Time (second)

Time Average of q0
Time Average of q2

(a) Window trace (b) Queue length

Figure 5.13: Simulation results for a stable system

slightly larger than the numerical results. This is becausethe numerical simulations with

Matlab ignore the queuing delay inRTTs, which under-estimates the window size.

We also run the simulation for the unstable case with the sameparameters as those

used in Fig. 5.12, and the results are shown in Fig. 5.14. It can be seen that even aver-

aging over a round, the window sizes and queue lengths are still highly oscillating. The

simulation results validate the analytical ones.

5.7 Related Work

Internet stability analysis has recently received much attention. In particular, the stability

of TCP systems has been studied from the point of window-based flow control [9, 7, 19,

23, 25, 26, 27] and rate control [64, 65]. New control mechanisms such as those in [35]

are also proposed for the Internet, aiming to achieve quick convergence to efficiency,

stability, fair bandwidth sharing, and low packet loss rate.
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Figure 5.14: Simulation results for an unstable system

In practice, it is very likely that heterogeneous flows with different round-trip delays

may undergo multiple bottlenecks. To date, little work has been done on the stabil-

ity and analysis of multiple-bottleneck networks. It has been shown in [61] that RED

configuration based on a single-bottleneck assumption may not prevent traffic instability

when congestion occurs in two different locations of the network simultaneously. Recent

work [62] studied a class of TCP/RED multiple-bottleneck model and tried to avoid net-

work congestion by imposing some restrictions of AQM parameters. In this chapter, we

study the general case of multiple-bottleneck AIMD/RED systems and obtain sufficient

conditions for the asymptotic stability with and without feedback delays. It is illustrated

that appropriate system parameters can be chosen to make thesystem asymptotically

stable.
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5.8 Summary and Future Discussions

In this chapter, we have developed a class of general AIMD/RED models for multi-

bottleneck systems, and have studied stability propertiesfor the models with delay-

free marking and with heterogeneous delays, respectively.We have proved the global

asymptotic stability for the multiple-bottleneck AIMD/RED systems without feedback

delay, and then derived sufficient conditions or the local asymptotic stability of multiple-

bottleneck AIMD/RED systems with heterogeneous delays, byapplying the methods of

Lyapunov functional and Lyapunov function with the Razumikhin condition. These re-

sults are obtained for general multiple-bottleneck scenarios and provide important guide-

lines for setting system parameters that guarantee the efficient utilization of network re-

sources in multi-bottleneck networks without excessive delay jitter. We are currently

investigating sufficient conditions for establishing global stability in the presence of het-

erogeneous delays, by developing a sequence of upper and lower bounds of system tra-

jectories and applying these bounds in Razumikhin’s Theorem. The generalization of

stability analysis for networks with mesh topologies will also be an interesting future

research direction.
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Chapter 6

Conclusions and Future Work

In this chapter, we conclude the thesis by summarizing main research results and propos-

ing future work.

6.1 Main Research Results

The goal of congestion control mechanisms is to use the network resources as efficiently

as possible, that is, attain the highest possible throughput while maintaining a low loss ra-

tio and small delay. The research work is centered on finding ways to address these types

of problems and provide guidelines for predicting and controlling network performance,

through the use of suitable mathematical tools and control analysis.

• We first systematically studied the stability of a class of generalized AIMD/RED

system and obtained sufficient conditions for asymptotic stability of both homogeneous-

and heterogeneous-flow systems with and without feedback delay by using direct
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Lyapunov and Lyapunov-Razumikhin method. Our study reveals the relationship

between the AIMD parameters and the average window size of competing AIMD

flows. Consequently, the TCP-friendly condition is derived. The analytical and

simulation results can help us to better understand the stability and performance of

AIMD/RED system.

• Even though previous research indicated that the AIMD/RED system may not be

asymptotically stable when the time delay or the link capacity becomes large, as

long as the system operates near its desired equilibrium, small oscillations are

acceptable, and the network performance is still satisfactory. Motivated by this,

we studied the practical stability of the homogeneous- and heterogeneous-flow

AIMD/RED systems with feedback delays, and obtained theoretical bounds on the

AIMD flow window size and the RED queue length. Our analyticaland simula-

tion results provide important insights on which system parameters contribute to

higher oscillations of the system and the derived theoretical bounds can be used

as a guideline to set up the system parameters to enhance system efficiency with

bounded delay and loss. These results can also help to predict and control the

system performance for Internet with higher data rate linksmultiplexed with more

flows with different parameters.

• A realistic network normally accommodate flows that undergomultiple bottleneck.

It has been known that the network system with multiple-bottleneck links could

be unstable even if its system parameters are set the same as those in a stable

single-bottleneck system. Because of this reason, we studied the stability of the

general AIMD/RED system with multiple bottlenecks. A general model for multi-

bottleneck scenarios was first developed and sufficient conditions for the asymp-
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totic stability of multiple-bottleneck systems with and without heterogeneous de-

lays were derived. These conditions can be easily assessed by using LMI Toolbox.

6.2 Future Work

Congestion control is a topic that has drawn attentions of many researchers, and it has

also become a facet of daily life for Internet users. The emergence and development

of new Internet technologies have brought with them new problems which need to be

solved. In this section, we identify several potential research directions from this thesis

for future work.

• Global stability analysis of Multiple-Bottleneck Systems

Intuitively, the Internet system is stable if all transmitted packets will be eventually

processed by the link and reach the intended destination. Stability problems have

been investigated for the Internet models with a single-bottleneck. As the Inter-

net is becoming a more diverse system, most flows traverse multiple bottlenecks.

The theoretical and performance analysis for the multiple-bottleneck network is

becoming more and more necessary.

Local stability results for multiple-bottleneck systems constitute one aspect of the

work in this thesis. But when considering the uncertain factors and unpredictable

changes in the Internet, the guarantee of convergence associated with a global sta-

bility result carries significant weight. To address this problem, a plausible ap-

proach is to apply the iterative method and construct monotone sequences that

converge to the trivial solution of the system.
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• Bound estimates of Multiple-bottleneck systems

For the vast-scale Internet, the single bottleneck topology may no longer be repre-

sentative and a flow may traverse multiple links with non-negligible packet losses.

As long as the system operates near its desired equilibrium,small oscillations are

acceptable, the overall system efficiency can still be very high, and the network

performance is still satisfactory. Therefore, besides stability analysis, another im-

portant research issue is to study the bounds of the multiple-bottleneck network.

Upper and lower bounds estimates for single-bottleneck systems form one im-

portant chapter of this thesis. However, so far, there is no result for the bounds

estimates of multiple-bottleneck systems because of the difficulties in modeling

and theoretical analysis. We are going to solve this issue byapplying the method

of comparison theory and approximation technique. The study of this topic will

be theoretically original and of great practical value for controlling, predicting and

enhancing the system performance

• Adding impulsive control in the congestion control mechanism

Abrupt changes at selected moment can be expressed in terms of impulses. Exis-

tent theoretical results have shown that impulsive controlcan speed up the conver-

gence of a system to its steady state.

For the Internet congestion, adding proper impulsive control can help the system

converge to its steady state more quickly, stay in the desired operating area longer,

and even avoid some serious latent congestion. As far as we know, no results for

impulsive control to the Internet have been reported. Basedon the existing work on

the theoretical analysis of impulsive systems, proper controller shall be designed
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for the Internet congestion

• Modeling and theoretical analysis of TCP/AIMD performanceover wireless links

Although fluid model is successfully applied for performance analysis in wired

domain, it is not suitable in wireless networks. Time to successfully transmit a

packet in wireless link is not negligible when compared to the total transfer time.

With time-varying delay and bandwidth wireless link, theRTTs of each packet is

highly variable according to not only the queue length but also the wireless channel

state. The fluid traffic model cannot capture this characteristic.

Because of the wireless link’s own characteristics, such aslimited bandwidth, high

error rate, time-varying and location dependent, mathematically modeling and the-

oretical analysis of TCP/AIMD performance over wireless links becomes a great

challenge. At the time of writing, no related results had been presented on this

matter and some of our future efforts will be put on this issue.

6.3 Final Remarks

In this thesis, we systematically studied the widely used AIMD/RED system in the In-

ternet, particularly on system modeling, stability analysis and bounds estimates. Our

theoretical analysis provide important insights for in-depth understanding of the conges-

tion control problem, and have shown how to guarantee systemefficiency with bounded

delay and loss. Results in this thesis can also help to predict and control the system

performance for the Internet with higher data rate links multiplexed with heterogeneous

flows.
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