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Abstract

The major contributions of this thesis are: a new discriminative training algorithm,
new discriminative feature selection and extraction algorithms, and a new image

segmentation algorithm used for feature extraction from speech spectrogram.

In the first part of this thesis, a new misclassification measure and a discrimi-
native training algorithm are proposed. The misclassification measure is a smooth
representation of classification probability of error and can be made as close as pos-
sible to this probability by varying its parameters. The training algorithm indirectly
minimizes the probability of error by minimizing the misclassification measure. A
new discriminative training algorithm for speech segmentation based on another

misclassification measure is also introduced.

In the second part of this thesis, a feature selection and a feature extraction
algorithm are proposed. The proposed algorithms allow the dimensionality of fea-
ture space to be decreased, while trying to maintain a class separability measure.
This measure is the misclassification measure of a classifier built in the higher di-
mensional space. The feature selection and extraction algorithms determine the
maximum change in the misclassification measure (or indirectly the maximum loss
in probability of correct classification) for the feature vectors presented in the lower
dimensional space. The algorithms find the best subset of features and an opti-
mum orthogonal linear mapping before applying feature selection that minimizes

the maximum change in the misclassification measure.

In the third part of this thesis, several algorithms for feature extraction from
speech spectrograms are proposed. Some of these algorithms first segment the spec-
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trogram using a new self-organizing image segmentation algorithm. This algorithm
segments the spectrogram into two classes of object and background, where pixels
of each class have common characteristics. The algorithm iteratively minimizes a
defined segmentation measure in the spectrogram image. Moreover, pixels with
lower likelihood of belonging to object or background classes are adjusted less in
each iteration. delaying their segmentation until more image information is avail-
able. The resulting features are the inputs to the proposed feature selection and

extraction algorithms.

Some speaker independent isolated word speech recognition experiments are also

carried out in this thesis which validate the proposed algorithms.



A cknowledgments

[ wish to thank my supervisor, Professor Li Deng. for his support throughout
this work. I would also like to thank the scholarship department of Iran ministry
of culture and higher education for the financial support of this work.



To my fiance. Najmeh
and

my mother. Parvaneh



Contents

1 Introduction

2 Training criteria

2.1 Imtroduction . . . . . . . . . . .. e e e e e e
2.2 Minimum risk and error criteria . . . .. .. ... Lo
2.3 A new misclassification measure . . . .. ... ... ... ... ...

2.3.1 State models and discriminative training . . . ... ... ..
2.4 Discriminant segmentation . . . . .. .. .. ... .. ...
25 SUIMIMATY . . . . v v v o i et e e e e e e e e e e e e e e e

3 Feature selection and extraction

3.1 Imtroductiom . . . . ... ... ... ... ..
32 Relatedworks . . .. ... ... ... ... ... . .. o
3.3 Theproposed algorithm . .. .....................
34 Summary .. .. ... .. e e e e e e e e e e



4 Feature extraction using spectrogram 44

4.1 Introduction . . . ... ... ... ... ... .. . ... ... ... 44
4.2 A new self-organizing image segmentation algorithm . . . . . .. .. 45
4.2.1 Formant segmentation . . ... ................ 48

422 Voicingfeatures . . . . .. .. .. ... ... ..., 59

4.2.3 Rising and falling formats . .. ... ... .......... 62

424 Energyfeatures . ... ... ... .. ... .. ... .... 64

425 Overalenergy. ... ... ... ... ... ... ... 64

4.2.6 Filter-banking ... ... ........ .. .. .. ... 66

4.3 Summary . . . . . . .. e e e e e e e e e e e e e e 66

5 Experimental results 67
51 Database .. ......... .. ... . ... . . 67
5.2 Segmentation experiments . . . . ... ... ... ... ..., 68
5.3 Training of discriminant classification models . . . . . .. .. .. .. 72

6 Summary and conclusion 87
6.0.1 Contributions . . ... ... .... ... . ... ... ... 89

A State models 90
Bibliography 113



List of Tables

5.1

5.3

5.4

5.6

5.7

5.8

Recognition result on training set using the statistical model in the

higher dimensional space . . . . ... ... .. .. ... ....... 74

Recognition result on test set using the statistical model in the higher
dimensional space . . . . . . . ... ... ... e 75

Recognition result on train set after discriminant training and reduc-

tion of dimensionality (the proposed approach) . . . . . ... .. .. 75

Recognition result on test set after discriminant training and reduc-

tion of dimensionality (the proposed approach}. .. ... .. .. .. 76

Recognition result on training set for the reduced dimensionality
found by KL-expansion algorithm and by training the statistical model 76

Recognition result on test set for the reduced dimensionality found
by KL-expansion algorithm and by training the statistical model . . 77

Recognition result on training set for the reduced dimensionality
found by KL-expansion algorithm and by training the discriminative
model . . . . .. ... 77

Recognition result on test set for the reduced dimensionality found
by KL-expansion algorithm and by training the discriminative model 78

X



5.9

5.10

5.11

5.12

5.13

9.14

5.15

5.16

Al
A2
A3
A4
A5

A6

Recognition result on training set using the statistical model in the

higher dimensional space . . . . ... ... ... ... ........ 79

Recognition result on test set using the statistical model in the higher

dimensional space . . . . . .. .. ... .. L oo 80

Recognition result on train set after discriminant training and reduc-

tion of dimensionality (the proposed approach). . .. .. .. .. .. 81

Recognition result on test set after discriminant training and reduc-

tion of dimensionality (the proposed approach) . . .. .. .. .. .. 82

Recognition result on training set for the reduced dimensionality
found by KL-expansion algorithm and by training the statistical model 83

Recognition result on test set for the reduced dimensionality found
by KL-expansion algorithm and by training the statistical model . . 84

Recognition result on training set for the reduced dimensionality
found by KL-expansion algorithm and by training the discriminative
model . . .. . ... e e 85

Recognition result on test set for the reduced dimensionality found
by KL-expansion algorithm and by training the discriminative model 86

Important features associated to states of model /zeto/ . . . .. .. .. 92
Important features associated to states of model fone/ . .. .. .. .. 94
Important features associated to states of model /two/ . .. .. .. .. 95
Important features associated to states of model /three/ .. .. .. .. 97
Important features associated to states of model /ffour/ . .. ... ... 98
Important features associated to states of model /five/ . .. ... ... 99

xi



A.7 Important features associated to states of model /six/ . . . . . . .. .. 100

A.8 Important features associated to states of model /seven/ . . . . .. .. 102
A.9 Important features associated to states of model feight/. . . . . . . .. 104
A.10 Important features associated to states of model /nine/ . . . . . . . .. 106
A.11 Important features associated to states of model /bi/ . . . . .. .. .. 108
A.12 Important features associated to statesof model /di/ . . . .. . .. .. 110
A.13 Important features associated to states of model /pi/ . .. ... .. .. 111
A.14 Important features associated to states of model /ti/ . . ... .. ... 112



List of Figures

1.1
1.2

1.3

3.1

3.2

4.1

4.3

4.4

A speech recognitionsystem . . .. ... ... ... ..o 1
Word zero uttered by (a) a female speaker (b) a male speaker . . . . . . 3
The overall classificationsystem . . . . . ... ... .. .. ...... 9
Two typical classes and their corresponding hyper-plane decision boundary 18

Statemodel . . . .. ... ... e e 19
A simple counter example for Lee’s algorithm . . . . .. ... ... .. 34
Sigmoid function . . .. ... .. .. ... ... oo 38
The filter that is used for format features (frequency range of each spec-

trogram contains 200 pixels for spectrograms up to 6KHz) . . ... .. 49

Progress of segmentation of word nine in different iterations, from top to

button: origin-gal spectrum, iteration number 1,2 . . . . . . . ... .. 30

Progress of segmentation of word nine in different iterations, from top to

button, iteration number: 3,4,5 . ... ... ... ... ... 91

Progress of segmentation of word nine in different iterations, from top to

button, iteration number: 6,78 . . .. .. ... ... ... ... 92



4.5 Progress of segmentation of word one in different iterations, from top to

button: original spectrum, iterationnumber 1,2 . . . . . .. . . .. ..

4.6 Progress of segmentation of word one in different iterations, from top to

button, iteration number: 3,4,5 . ... ... ... . ... ......

4.7 Progress of segmentation of word one in different iterations, from top to

button, iteration number: 6,78 . ... .. ... ... ... .. ...,

4.8 Progress of segmentation of word zero in different iterations, from top to

button: original spectrogram, iteration number 1,and 2 . . .. .. ..

4.9 Progress of segmentation of word zero in different iterations, from top to

button: iteration number 3,4,and5 ... .. .............

4.10 Progress of segmentation of word zero in different iterations, from top to

button: iteration number 6,7,and8 .. ... ... ... ... ....
4.11 The filter that is used for voicing features (each frame represent 10ms) .

4.12 Segmented voicing regions found using part of the spectrogram of the
word /zero/: (a) original spectrogram of part of the word /zero/ (b)

segmentedregions . . . . .. . .. ... ... et e

4.13 Segmented voicing regions found using part of the spectrogram of the
word /ti/: (a) part of the original spectrogram (b) the corresponding
segmentedregions . . .. ... ... .. ...,

4.14 Center of gravity of the objects of the segmented image of Fig. 4.10
4.15 Uprising features found from the segmented image in Fig. 4.14 . . . . .
4.16 Falling formant found from the segmented image in Fig. 4.15 . . . . . .

4.17 Local energy found from the spectrogramin Fig. 4.8 . . ... ... ..

62



4.18

4.19

5.1

5.3

5.4

5.6

Al

A2

A3

A4

AS

A6

AT

(a)Voicing image of the spectrogram in Fig. 4.8(b) its corresponding local

ENETEY IMAZE . . .« . & v . v e et e e e e e e e e e e e e e 65

The filter that is used for extracting features from segmented images . . 66

The progress of overall misclassification measure during the first phase of

segmentation training for word /zero/ . . . . . . .. ... ... .. .. 69

The accumulative projection of y(£ydsaeq:)N; for a typical state of the

model after the first phase of segmentation training for word /zero/ . . . 69

The progress of overall misclassification measure during the second phase

of segmentation training for word /zero/ . . . . . .. .. .. .. .. .. 70

(a)Hand segmented regions of word /eight/ before training(b) the seg-

mented regions resulted from the segmentation model . . . . ... .. 71

The progress of overall cost function during the first phase of discriminant

training forword /B/ . . . .. .. .. ... o oo 72

The progress of overall cost function during the second phase of discrim-

inant training forword /B/ . . . . .. ... . ... 00, 73

(a) A sample of segmented word /zero/ (b) state model of word /zero/ . 91
(a) A sample of segmented word /one/ (b) state model of word /one/ . . 93
(a) A sample of segmented word /two/ (b) state model of word /two/ . 95
(a) A sample of segmented word /three/ (b) state model of word /three/ 96
{a) A sample of segmented word /four/ (b) state model of word /four/ . 98
(a) A sample of segmented word /five/ (b) state model of word /five/ . . 99

(a) A sample of segmented word /six/ (b) state model of word /six/ . . 100

xv



A.8 (a) A sample of segmented word /seven/ (b) state model of word /seven/ 101
A.9 (a) A sample of segmented word /eight/ (b) state model of word /eight/ 103

A.10 (a) A sample of segmented word /nine/ (b) state model of word /nine/ . 105

A.11 (a) A sample of segmented word /bi/ (b) state model of word /bi/ . . . 107
A.12 (a) A sample of segmented word /di/ (b) state model of word /di/ . . . 109
A.13 (a} A sample of segmented word /pi/ (b) state model of word /pi/ . . . 111
A.14 (a) A sample of segmented word /ti/ (b) state model of word /ti/ . . . . 112



Chapter 1

Introduction

The object of speech recognition is to provide a system that enables a human to
communicate to a computer via speech signal. Fig. 1.1 shows a block diagram of a
typical speech recognition system. The input speech signal is first passed through
a feature selection and extraction block to reduce its redundant information for
the purpose of speech recognition. Ideally, the representation of the signal should
be minimal while containing all the sufficient information for recognition purpose.

The reduced feature set is then passed through a classifier whose output is either a

:feech selection Sequence of | partern Sequence of | ranguage Text of
gnal and Features Phonemes or Speech
E . Class{fication = Processing

) 3

Acoustic Models Word, Phrase or
f Phonemes or Sentence Models
Words

Figure 1.1: A speech recognition system
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CHAPTER 1. INTRODUCTION 2

sequence of phonemes or words. Finally. at the language processing stage. sentences
corresponding to the speech utterances are provided using word, phrase or sentence

models.

The fundamental difficulty of speech recognition is the high variability of speech
signals. Based on a priori knowledge. the speech waveform is a band-limited signal.
The bandwidth of speech can be limited to 4 — 6kHz without reducing its percep-
tual characteristics significantly. Even by only considering this limited a priori

knowledge. a large number of samples is still required to represent speech signal.

The speech signal is generated by the movement of the articulatory apparatus
which modulates the air pressure to generate speech. Although speech signal has
energy and information in the frequency domain up to several kHz, its pattern
does not significantly change in intervals of more than 10ms because of the slow
movement of articulators. The speech signal is also produced by humans in a way

that is easily recognizable by the human recognition system.

The speech signal contains information that is not useful for recognition pur-
poses such as the identity of the speaker, the speaker's emotional state, speaking
rate. etc. Also, the characteristics of a given utterance can differ significantly for
different occurrence of the utterance. Such differences are also recognizable for
human listeners, but they are not useful for the purpose of recognition. Fig. 1.2
shows the spectrograms (short time Fourier transformations) [40] of the word zero
produced by a female and a male speaker, respectively. There is an evident sim-
ilarity in the appearance of the patterns. However, the patterns have distinctive

differences as it may also be heard in the sound of these utterances.

In general, if the performance of classifiers is inadequate, new features should

be added. Increasing the number of features requires an increase in the number of
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Figure 1.2: Word zero uttered by (a) a female speaker (b) a male speaker



CHAPTER 1. INTRODUCTION 4

model parameters. Such an increase will reduce the performance of the classifier
beyond a certain limit due to three factors: lack of enough training data, improper
choice of models. and lack of an appropriate training algorithm. Feature selection
and extraction can alleviate these design problems. Also. feature selection and
extraction are appealing for real time speech recognition, as they can highly reduce
the dimensionality of the feature space. and thereby reduce the computational
costs. Moreover. each feature can usually be evaluated independently of others

using parallel processors.

Ideally, the design of feature selection and extraction algorithms should be based
on minimizing the probability of clussification error. In this case, the design of
feature selection and extraction cannot be separated from the design of the classifier.
An ideal feature extractor is nothing other than an ideal classifier. The design
difficulties of feature selection and extraction based on minimizing the probability
of error are the same as the aforementioned difficulties for the design of classifiers.
Therefore, a suboptimal solution for the design of feature selection or extraction is

usually selected.

There are two practical ways to carry out the feature extraction and selection
tasks. One is based on using human judgment to rely on his/her a prioriknowledge
of the classification problem to extract or select features. The other one is to define
a class separability measure in lieu of probability of error. For feature extraction,
a parametric structure can be defined (again based on a priori knowledge of the
problem), and the parameters can be found to maximize the class separability
measure. For feature selection in this case, a set of features should be selected that
maximizes the class separability measure. Both of these approaches are exercised
in this thesis.

The overall proposed recognition system is shown in Fig. 1.3. Here, a broad cat-
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Figure 1.3: The overall classification system

egory of speech classes is first identified at the root of the tree, and then a detailed
classification is carried out, depending on the results of the broad classification.
In each category. the speech events are represented in a more discriminative na-
ture using the feature selection and extraction blocks. Moreover, greater emphasis
is placed to find classifier parameters that reduce the classification error using a

discriminative training algorithm.

The organization of this thesis is as follows. In Chapter 2, a new misclassification
measure and a new discriminative training algorithm along with a new form of
classifier for speech recognition are introduced. The training algorithm finds the
model parameters that reduce the misclassification measure. This algorithm has
a lower complexity compared to other similar discriminative training algorithms

such as the one introduced by Juang et al. {23]. The misclassification measure
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is also used as a measure of performance for the feature selection and extraction
algorithms presented later in Chapter 3. Also. in this Chapter, a new discriminative
segmentation algorithm is introduced. In this algorithm. model parameters are
trained for the purpose of segmentation to find the distinctive characteristics of
speech utterances within a word. The segmentation algorithm can also use the
feature extraction and selection algorithms. This greatly reduces the computational

cost of segmentation and improves its performance.

In Chapter 3, the proposed feature selection and extraction algorithms are de-
scribed. The feature selection and extraction techniques allow the dimensionality of
data to be decreased, while trying to keep the discriminative information content
of the remaining features for the purpose of classification task. In the proposed
feature selection and extraction processes, a classifier is first designed in the higher
dimensional space. The form of this classifier and its misclassification measure are
adapted to make the feature extraction algorithm feasible. The feature selection
and extraction algorithms can provide the maximum change in the misclassification
measure if the classifier is built in a lower dimensional space for the extracted or

selected features.

The preliminary selection of acoustic measurements is made based on the a
priori knowledge of speech by extracting features from speech spectrograms. In
practice, an expert spectrogram reader can classify speech utterances with a high
accuracy rate. In Chapter 4, the information that is usually used in spectrogram
reading experiments is measured using a new image segmentation technique. In
this algorithm, the spectrogram is first segmented into two classes of object and
background. The object and background classes consist of pixels having common
characteristics such as regions that can be associated to formants. For each pixel,

the a posteriori probabilities of belonging to each class are estimated based on the
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knowledge about the shape and the intensity characteristics of each class. Using
such knowledge, a new self-organizing image segmentation algorithm is introduced.
This algorithm minimizes a defined segmentation measure in the image. The seg-
mentation measure is a function of the a posterior: probability of pixels, and is
minimum for any segmented image (having zero or one for the a posterior: prob-
abilities). The algorithm iteratively adjusts the probabilities of pixels to reduce
this measure. Pixels that are less likely to belong to object or background classes
are adjusted less in each iteration, delaying their segmentation until more image

information is available.

In Chapter 5. some speaker independent isolated word speech recognition exper-
iments are provided. The experimental results validate the proposed algorithms.

Finally, in Chapter 6. summary and conclusion of the thesis is provided.



Chapter 2

Training criteria

2.1 Introduction

Bayes decision theory [17] [15] is a fundamental theory in classification. It is opti-
mum in terms of minimizing the probability of classification error. In Bayes theory,
class C; for an input sample X is selected , if the a posterior: probability of that
class, P(C;{X), is maximum among all the possible classes. Therefore. classifiers
can be built by estimating the ¢ posteriori probability of each class on the input
domain. However, we have

P(C)P(X|Ci)
P(X)

P(Ci|X) = (2.1)

Considering Bayes decision rule, we only need to estimate the a priori probability
P(C;), and the conditional probability P(X|C:), of each class C; since P(X) is the
same among all classes. Estimates of the conditional probabilities are usually pro-
vided by assuming that each class C; is generated by a parametric probability model
with the parameter set of A;. That means, we choose P(X|);) to model P(X|C;). In

8
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this case. model parameters A; can be estimated based on the maximum likelihood

criterion. where we maximize
I, P(X* (). (2.2)

over all the samples X!. X2..... XV of the training set of class C; (assuming inde-

pendence between training samples).

Considering the Bayes decision theory. only an accurate estimate of the a pos-
terior: probabilities around the decision surface is required to build an optimum
classifier. Therefore, more emphasis can be placed for estimating the parameters
of the models to estimate the a posteriori probabilities accurately in more critical
regions of the feature space (around the decision boundaries). Since the exact de-
cision boundaries are not known, approximate boundaries are first estimated using
estimates of a posteriori probabilities (based on maximum likelihood training). and
then misclassification measures representing the degree of ambiguity about the clas-
sification of each input are defined and minimized. The misclassification measure
can place more emphasis on regions closer to decision boundaries. This approach
for finding the model parameters, is referred to as discriminative training. Com-
pared to the maximum likelihood approach, the cost of training is usually higher.
However, the model parameters are usually better estimated for the objective of

minimizing the error rate.

When the assumptions about the parametric probability models are correct
or classes are distinctively separated in the feature space, maximum likelihood
training can perform well. On the other hand, if we have poor models for the
underlying probability distributions and the classes are not distinctively separated,
the discriminative training should be selected when the computational costs can be
afforded.
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In this chapter. different classifier design approaches are reviewed and a new
approach for the design of classifiers is introduced with an emphasis on models
suited for speech recognition. Also, a new segmentation algorithm for speech seg-
mentation is introduced. This algorithm can find model parameters to distinctively

characterize the differences within a speech unit such as word.

2.2 Minimum risk and error criteria

Suppose. for an input X, class C; is selected. If X indeed belongs to class C;
and if a loss of {(C;|C;, X) can be associated to such a decision, the expected loss

associated with selecting class C; can be written as [15]
R(Ci|X) = D_U(Ci|C;. X) P(C;1 X). (2.3)
i

This expected loss is usually referred to as conditional risk. The overall risk can
then be defined as
R= '[x R(C(X)|X)P(X)dX, (2.4)

where C(X) is the class selected for a given observation X. It is clear from the
above definition that for minimizing the overall risk, one should select the class

with the minimum conditional risk for a given observation X.

If the conditional risk for a correct selection is assumed to be one and for an
incorrect selection zero, the overall risk can be interpreted as the probability of error
and the optimum selection is the class with the highest a posterior probability, since
the conditional risk can be written as

R(Ci|X) = 3 _UCilC;, X)P(C;1X) = Y P(C;lX) =1-P(Ci|X).  (2.5)
i =
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To build up a classifier. one may estimate the conditional risks or the a posterior:
probabilities of different classes depending upon having minimum risk or minimum

error rate as the criterion, respectively.

Another common approach to build a classifier is to use discriminant functions in
lieu of the a posteriori probabilities. In this case, a discriminant function g;(X: A;),
with free parameters J;, is associated to each class C;. The class C; is selected (in
a similar way as in Bayes classifiers) when it has the highest g;(X; \;) among all
classes, i.e., when

(X N) > gi(X: ;) Vi (2.6)

The optimum Bayes classifier can be achieved by selecting g;(X; A:) = —P(C;|X).
However, the choice of optimum discriminant functions is not unique. For example.
they can be multiplied by a positive constant, added by a constant or even replaced
by f(gi(X;A)), where f(-) is a monotonic function, without changing the probabil-
ity of error. Considering Eq. (2.1), the following discriminant function also results

in the optimum classifier for minimum error rate criterion:
9i(X; As) = logP(X|C;) + logP(C3). (2.7)

The discriminant functions do not necessarily need to be monotonic functions of a
posteriori probabilities to result in optimum classification. The only requirement
is that the inequality (2.6) results in the same classification as Bayes inequality for
every point in space. The approach that is usually selected is to make the discrimi-
nant functions be close to monotonic functions of the a posteriori probabilities only

in the regions close to estimates of decision boundaries.

There are different ways to estimate the parameters of the discriminant func-

tions. Assume the discriminant functions are limited between zero and one. One
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criterion is based on minimizing a mean square error function over the feature space

defined as
M M
En =Y [ P(X.C) L I6(Ck = Ci) - g(X; M)PdX. (2.8)
k=1

i=1
where d(s) is one if the statement “s” is true and zero otherwise, P(X,Cy) is the
joint probability of class Ci and input X, and M is the number of classes. It can

be shown that the above error function can also be written as (see [36] for more

detail)
Em = Z/x P(X)[P(Ci|X) = g:(X; M)]* + P(Ci| X)[1 - P(Ci| X)}dX.  (2.9)

As can be seen from the above equation. the global minimum of the error is

achieved when

gi(X: M) = P(C|X). (2.10)

That means. if the parametric form of the discriminant functions are consistent
with the true a posterior: probability functions of different classes, this criterion
can result in the minimum error rate. In this training algorithm, the error may
decrease during the course of training, but the probability of error may increase
at the same time. Note that only the giobal minimum of the error function is
an optimum solution. This is an important drawback as the training algorithm is

usually trapped in the local minimum of the error function.

The above shortcoming of training algorithm is addressed by Minimum Classi-
fication Error algorithm (MCE) proposed by Juang et al., [23], [26], [46]. In this
algorithm, a misclassification measure is first defined for any input sample X to
measure the degree of performance of the classifier. A common form of misclassifi-
cation measure is defined as

B(X:A) = —gu(Xi M) + [z 3 gl )T, (211)
Jnd#Ed
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where g;(-) is the discriminant function of the correct class. A is the set of model
parameters and 7 is a positive number. A cost function (a monotonic function of
h(-)) is defined as y(£hi(X: A)), where £ is a positive number and v(z) is a sigmoid

function defined as
1

l+e-=

7(z) = (2.12)

This cost function is defined to place less emphasis on regions having high
misclassification measure, that is. regions having less degree of ambiguity about
their class membership. Moreover, it can make the training algorithm feasible as
the misclassification measure is limited for any input sample. We can minimize the
expected cost in the domain X in a similar way as risk theory to find the model

parameters. That is to minimize
E=3 [ P(X.C8(C(X) = Cav(ghe(X: A))dX. (2.13)
However, the classification error rate can be written as
E= 2 /X P(X,C8(C(X) = CYI(P(C|X) # max P(C;IX))dX.  (2.14)

Comparing Eq. (2.13) and Eq. (2.14), we can see that the difference is only in the
second d(-) term of Eq. (2.14) and the «(-) term of Eq. (2.13). One can make these
two terms as close as possible to each other by varying the value of parameters £
and n [23]. By increasing 7, we approach to max; ¢;(X; A;) for the second term in
Eq. (2.11), and then by increasing £, we approach to one for a wrong classification
and to zero for a correct classification. Therefore, the minimization of the overall
cost function (Eq. (2.13)) is consistent with minimization of error rate, as the

defined error function is indeed a smooth representation of the error rate.

The minimization of the defined error function is usually carried out using a

steepest descent algorithm which finds a local minimum of the error function. As
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was discussed earlier. the defined cost function places a greater emphasis on more
accurately estimating the a postertori probabilities (or their monotonic functions)
around the decision boundaries. This emphasis can only be meaningful if a good
approximation of initial model parameters or decision boundaries exists. If this is
not the case. the chance of being trapped in an undesirable local minimum may
increase since a wrong cost has been initially associated with regions of space.
The initial approximation of model parameters is usually provided by initializing
the discriminant functions g;(X; A;)’s, by log(P(X|A;)) (assuming equal a prior
probability for different classes), where A;’s have already been estimated based on

maximum likelihood criterion.

2.3 A new misclassification measure

As mentioned before, the essence of discriminative training can be interpreted as
properly modeling the a posteriori probability functions (or their monotonic func-
tions) in the neighborhood of decision surface. The maximum likelihood criterion
can provide estimates of the decision boundaries. Therefore, one can use such
boundaries, and place a proper emphasis on different regions of space. In the MCE
training algorithm proposed in [23] , the parametric form of discriminant functions
of each class is defined as log(P(C;|X)), and its parameters are initialized using
maximum likelihood training algorithm. Here, the parametric form of discrimi-
nant functions is defined as a function of the parametric form of the a posteriori
probabilities of all classes. The form of discriminant functions is defined to be
1 M

i(X54) = —— (&2m:i5(X; A)), (2.15)
[/ M—1 J_=1ZJ#’Y 2T,
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where M is the number of classes, &; is a positive constant, and 7;;(X: A) is defined
as

mi;(X; A) = log P(Ci| X) — log P(C;|X), (2.16)

and 7¥(-) is a sigmoid function and is defined as in Eq. (2.12). Note that the use of
4(-) function place less emphasis on regions of space that are far from the decision

boundaries. If we assume equal a prior: probabilities. we have

(X2 A) = log P(X|A;) — log P(X|A;). (2.17)

If P(C;|X) is maximum among all classes, then g;(X;A) is maximum for all
classes and vice versa, since each term of Eq. (2.15) is greater than a corresponding
term of the discriminant functions of other classes, i.e., if P(C;|X) is maximum

among all classes, then
7(§2(log P(C:| X) — log P(Ck|X))) > 7(é2(log P(C;|X) — log P(Ck|X))). (2.18)
where Cj is a class other than C; and C;. Also, we have
7(§2(log P(Ci|X) — log P(C;1X))) > 7((log P(C;|X) — log P(C;|X))).  (2.19)
Therefore, we have
gi(X;A) > gitX; A). (2.20)

Clearly, for the minimum error rate criterion, one should select the class having
the highest g;(-) or P(C;|X). The motivation behind the selection of this form of
discriminant functions will be more clarified when state models and feature extrac-
tion and selection algorithms are presented in this thesis.

In a similar way as in the MCE algorithm, a misclassification measure h;(X;A)
for each class ¢ can be defined as

hi(X; ) = —gi( X; A) + O (2.21)
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where
-2
+ M—" (2.22)

Oy = .
M 2AM —1)

SV

A cost function /; can also be defined as
L= 7(&h). (2.23)

The above cost function is also a smooth representation of probability of error.
If& >> 0and & >> 0, for a correct classification, /; is close to zero and for a wrong
classification, [; is close to one. If a correct classification is made, g; is maximum and
is close to 1. That implies A; is negative since 1/2+ (M —2)/2(M —1) < 1. Negative
h; means [; approaches to zero as {5 becomes large. If a wrong classification is made,
gk(X; A) of a class k other than class ¢ is maximum. It implies that P(C|X) is
maximum, and it can be concluded that

M-=-2
M-1

and from here k; becomes positive and therefore /; approaches to one if &; is large.

0<gi(X:h) < (2.24)

Now, consider the overall loss
Bn =% [ P(X,C8(CX) = COL(X; NdX, (2.25)

Comparing the above cost function and the probability of error as in Eq. (2.14),
it can be concluded that the overall cost can be made as close as possible to the
probability of error, and minimization of overall cost is consistent with minimization

of error probability.

Since the distribution of training data is usually unknown, the overall misclas-
sification measure defined in Eq. (2.25) is estimated by an empirical average cost.

Consider the set of input samples is X*, X2,..., X%, ..., XY. We can minimize

Se=Y 2 §(C(X™) = Ci)l(X™; N), (2.26)
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where C(X*") gives the class to which the input sample X* belongs. The model
parameters can also be found to minimize the overall misclassification measure over

the space. i.e.. the following cost function can also be selected
LIX™A) = —gi(X™,X), (2.27)
and the following overall cost should be minimized

Sm =2 H(C(X¥) = Ci)gil X* ) (2.28)

u

One common approach for minimizing the overall misclassification is to use the
steepest gradient descent algorithm. According to this algorithm, the parameters
are adjusted in proportion to the negative gradient of the misclassification measure.

The model parameters can be updated using

. oL(X: A
A,\f“ - ”QZZO(C(Xu) = C‘)'—(a,\_‘:_")'lla=*\f' (2.29)

where a is the learning rate and ( is the iteration number.

In the following. we try to partly explain the motivation behind the selection of
the form of discriminant functions. Consider two classes that can be modeled by
Gaussian probability distribution with tied diagonal covariance matrix (¥; = X; =
2) and the mean M; and M; for class i and j respectively. Also, assume equal @
priori probabilities for the two classes. Therefore, for a point X° = [z9,...,z0], we

have

P(X°|X) = N(X°, M. %)
n -mi)?
= (2,)n/2ﬁl“)x/n exp(—% k=1 Sm_,?_h)_),
where o is the kth diagonal element of ¥, my; is the kth element of M;, and z; is
the kth element of X°.

(2.30)

The decision boundary between the two classes is a hyper-plane. Fig. 2.1 shows
such a boundary. In this figure, d; is the distance of an input sample X° from the
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Xa

T

M, Qg M

> X1

Figure 2.1: Two typical classes and their corresponding hyper-plane decision boundary

decision boundary, d; and d, are the distances of the input sample from the mean
of different classes M, and M, respectively. and «p is the distance of the two means.

The decision boundary has the following equation (see Fig. 2.1):

(X% ) =0, (2.31)
where
75 (X%A) = log P(X°|\) —log P(X°|A;)
- _é ::1 (ze—mis P —(za~mjs)? (2.32)

k
= ¥ 1""‘7‘,;'—"11[:::,, — mapbmig

and the associated misclassification measure would be
1
B(X% ) = —7(Ems X% ) + 5. (2:33)
However, we can easily see that

(X% A) = aodogo, (2.34)
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Figure 2.2: State model

where ag is the distance between the mean of the two classes normalized by co-
variance values, dg is the distance of X° from the decision boundary, and ¢ is 1 if
X? belongs to the correct class and —~1 otherwise. These values, dy and ay, can be

calculated as follows:

n Mik—Mik 0 _ Mik+Mik
=1 () ]
and
a0 = (3 (P Tk s, (2.36)

Note that the direction perpendicular to the decision hyper-plane is only important
for classification. dy and ao (and consequently =;;(X%; A)) and the misclassification
measure h; remain the same if this direction is preserved. In practice, decision
boundaries can be estimated by several hyper-planes. As it will be seen in the next
chapter, the directions perpendicular to these hyper-planes can eventually define

the feature space for classification.

2.3.1 State models and discriminative training

The speech signal is not a memoryless signal. This is mainly a result of the articula-
tory constraints imposed in generating speech sounds and the phoretic constraints
imposed by language models. Hidden Markov Models (HMM’s) [42], [41], [19] are
simple yet efficient in modeling this characteristic of speech signal.
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Consider a Markov model (see Fig. 2.2) with a state transition probability
matrix A = [a,,]. where a,, is the probability of making a transition from state s to
state r. Also. consider the initial state probability matrix II = [x,], where =, is the
initial state probability of state s. Let b,(X.) be the probability density function
governing the observation X, (each observation is actually a feature vector extracted
from speech frame) produced by state s. Let ¢, = $8;,..., 37 be a possible sequence

of states. The density function of an input X produced by a Markov model can be

defined as the following equation

P(Xll\ﬁ) = 2 W01H¢T=1alg_|ubn(Xt)7 (2.37)
allgm
or
P(XIA‘) = ﬁlax 1r0| H{:].atg_;l(bng(xt)- (2.38)
qm

The optimum state durations for Eq. (2.38) can be found using Viterbi algorithm

as described in [42].

To estimate the model parameters A, the model likelihood score should be max-
imized. This can be achieved based on the Baum-Welch algorithm [42] or the
segmental k-means algorithm [22]. The second approach uses Eq. (2.38) for the
likelihood score. This algorithm is more attractive as it has a lower computational
cost while having similar performances as Baum-Welch algorithm. This algorithm
has two steps: the segmentation step and estimation step. In the segmentation
step, the state durations that maximize the overall likelihood are found. In the
estimation step, the model parameters (1)) are estimated using statistical charac-
teristics of the cluster sets found in segmentation. These two steps of segmentation
and estimation are repeated for several iterations until the change in the average
likelihood probabilities of input samples in the training set becomes small. For
more details of the algorithm, the reader is referred to [22]. Several algorithms
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have also been proposed in literature for finding the parameters of hidden Markov
models based on discriminaat training criterion. In (1], Bahl et al. use maximum
mutual information as the criteria. Juang et al. [38], [23], [21], [4], [26] minimize

a misclassification measure to find the model parameters.

Another practical issue in HMM’s is that the initial state probabilities and the
transitional state probabilities are not important factors in classification decisions
or in segmentation decisions of the Viterbi algorithm. This is due to lack of dis-
criminative capability of such parameters [24]. The transitional probabilities also

inherently model the duration of stay in each state of the model by

P,(d) = (an)d—l(l = Gy). (2.39)

This assumption about the state durations imposed by transitional probabilities

is inappropriate for almost any speech event [24].

Semi-Markov models {43] try to address this shortcoming of Markov models by
introducing a distribution model for probability of stay in each state. The models
that are adopted for discriminant functions of speech classes are based on similar
models to semi-Markov models with Gaussian state distributions. In the following,

these models are introduced.

Consider a semi-Markov model with S states (Fig. 2.2), where the states take
the duration sequence d = d,,...,ds, respectively, that is the model stays in state
1 for d; frames, etc. Let X = Xj,..., X7 be the observed frames for the modeled
token having total length T = d; + ... + ds. The free parameters used to train
the model are collected as A = (M, X), where M is the mean and £ is covariance

matrix for the continuous output densities associated with the states.

Let b,(X.) be a Gaussian probability density governing the observation X, pro-
duced while the model is in state s. Observations are modeled as conditionally
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independent and identically distributed given the state. Duration of stay in each
state is modeled by a uniform distribution having a minimum duration of ™" and
a maximum of d™%*. Let D™ = {d7*....,dp*,....d"} be a possible set for duration

of stay in state 1 to s, where d}* be the duration of stay in state . The density of

observation can be expressed as the following equation:

PX)= > [bl(Xl)---bl(Xd;n)]---[bs(Xd;n+...+4-;-_l+1)---bs(XT)], (2.40)
allpm

or

P(X)= max [b(X1)---bi(Xap)]--[bs(Xamstam  +1)---0s(XT)]. (2.41)

maxallD™

Viterbi beam algorithm [34] is a practical way to calculate Eq. (2.41). In this
algorithm. only a maximum of N best path up to each frame of time is considered.
N is referred to beam size. In HMM’s, calculating the best state sequence has a
problem size of O(S X T), where S is the number of states in the model and T is
the duration of input sample. In the Viterbi beam algorithm used for calculation
of Eq. (2.41), the problem size is of the order of @(5, X T), where 5 is the
average beam size. This increased computational cost is a disadvantage of semi-
Markov models over HMM's. However, as it will be seen in the next section, model
parameters can be trained to properly model the differences within states of the

model. As a result, the maximum size of beam can be reduced in this algorithm.

In the proposed algorithm, the state durations are found using a discriminant
segmentation algorithm described in the following section. Therefore, the model
parameters only need to be estimated using the statistical characteristics of the
segmented input tokens. After the models are trained, they are used to initial-
ize the discriminant functions before applying the discriminative training. The
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discriminant function of each class is defined as

gi(X:2) = 3 v(&2log(P(X1X:)) — log(P(X|;))). (2.42)

Ji#t

where ¢» is a positive constant. It is also known that
1
log(P(X|X)) = = 3= N(Xe. ME.E)), (2.43)
t
and
1
log( P(X|);)) = T-ZN(Xc.M;,E_‘,-), (2.44)
t

where N(-) is defined as in Eq. (2.30), and M} and Zf are the mean and covariance

of the state selected at time ¢ for input vector X, in the model of class <.

Here, diagonal shared covariance matrices are used and the following approxi-

mation is applied

1 T
log(P(X|X\)) — log(P(X[A;))) = 527(&7?5,-) - 0.5, (2.45)
t=1
where 7f; is
2 mf, —mb mt, + mi
=Y (o - 5 £, (2.46)
k=1 Tijk

¢

for the state parameters selected for class i and j at time frame t (g{;, is the kth
element of the shared covariance between state i and j). Please note that if £ is
small enough, we are in the linear portion of the sigmoid function, and therefore by
applying the nonlinearity imposed by +(-), we will not have a different classification
result other than that of maximum likelihood. In practice, usually the performance
is slightly better, as the nonlinearity of sigmoid function can limit the effect of an
input vector X, in the overall decision making. Although initially the class with
maximum P(X|);) results in maximum g;(X;\), this may not be the case after
training of model parameters using discriminant training algorithm.
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The empirical overall cost function that should be minimized for a set of input

samples X*,.... XY is defined as follows:

B = ¥ ¥ 4(Gi= LX) o zﬁ-zygm,) _0.5)+0x). (2.47)

J J#Fi T, t=1

Using steepest descent algorithm, the adjustment of mean parameters is as

follows:
Am! = “5‘&5“ Z Z&(c C(X*))y(1 —y) Z “’(1 Z v(l - e,
" (2’.43)
where
y= 5 3 A S r(ant) = 05) + b, (249)
u#t L=
and
w= ’T('—u ‘2:'7(5271’,,) 0.5), (2.50)
and B
v = (&), (251)
and
——a""gu A) -l-(m,,, zv). (2.52)

In the experiments reported in this thesis, the mean parameters are only adjusted.
As can be seen from the above equations, the training algorithm is very similar to
the training algorithm of LVQ2.1 [29] [28] [30]. Here, the terms y(1—y) , w(l —w).
v(1—v) play the role of the window region in LVQ2.1 algorithm. Compared to MCE
algorithm [21], the cost of calculating the derivative of the overall cost function is
lower resulting in faster training time.
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2.4 Discriminant segmentation

For traditional speech recognition systems using Hidden Markov Models. the op-
timum segmentation is to find the sequence of states that maximizes the overall
likelihood of an input sample produced by the Markov model. This strategy has
some advantages and disadvantages. The main advantage is that the same model is
used for segmentation and classification. The disadvantage of this strategy appears
when we study the differences of more confusing classes of speech. Such classes
of speech often differ in a limited number of features within a limited number of
frames. These frames usually are not assigned to a separate state using the max-
imum likelithood segmentation, as they cannot produce a significant change in the
overall likelihood. As a result, the statistical characteristics of such regions do not
change the statistics of their associated states significantly. As a result, the overall

classification is not affected by these regions.

Another problem appears when model parameters are trained using discriminant
training. In this case, the model parameters are trained to minimize the defined
overall cost functions. Therefore, such parameters are not valid to estimate the
likelihood models anymore. Since in the Viterbi segmentation, the optimum choice
of state durations that maximizes the overall likelihood are selected, the newly
trained parameters cannot be used to do the segmentation task. Therefore, the

task of segmentation and classification should be carried out by different models.

If we carefully examine the segmentation task. we notice that it is nothing more
than a classification problem. In segmentation, we have to classify or select the best
path from a set of possible paths. The maximum likelihood segmentation selects
the path that has the highest likelihood. Similarly, we can associate discriminant
functions to each path and select the path having the highest discriminant function
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value. Also, similar to discriminant training algorithm described in the previous
sections, misclassification measures can be defined and discriminant training algo-
rithm can be applied for training of segmentation models. Discriminant training
can only focus on the acoustic differences within a class which is a reduced clas-
sification problem. As it will be seen in the next chapter, a feature extraction
algorithm can also be applied for segmentation purpose that can greatly reduce the

computational cost of discriminative segmentation.

Here, we define a discriminant function for any given path. The path is selected
such that its discriminant function is maximum. To initialize model parameters,
each input sample is first hand segmented and the parameters of the state models
are initialized using the statistical characteristics of their associated segmented

regions.

Consider a path ¢ = s¥,...,s¥,...,s%, where s} is the state that input X™ has

stayed in at time frame ¢£. The discriminant function of this path is defined as

1 Tu J
W X¥1g%) = e rt,, ) = 0.5, 2.53
gu(X*: %) T.,(J—I)EIF;#,-"(E‘ ua;) (2.53)

where J is the number of states in the model and,
wy,, = log(P(Xplst)) — log(P(XF|s;))- (2.54)

If " = {s.....8],...,87} is a path that maximizes P(X“[)A) over all possible
choices of g, and if & is small enough that we are in the linear portion of the
sigmoid fanction, then ¢ also maximizes g(.X*;q) over all possible choices of g.
This can be proved as follows: Let assume that g™ = {sP,...,s{*,...,sF} is a

path other than ¢~, then we have

Tu Tu
;loy(P(X? |s)) > 3 log(P(X|sT"))s (2.55)
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then, we have

Tu J Tu J
> (Jlog(P(X}|s;)) =D log(P(X}'|s;))) > Y _(Jlog(P(X}|s7*)) =) log(P(X}|s5))),
j t=1 =1
(2.56)

t=1 =1

and we have

Sy Tiatay4er [0g(P(X}(8])) — log(P(X}!s;)) >

Sty Tyt pap L0g(P(XPST)) — log(P(XYs5)),
(2.57)

and by considering that v(-) is a monotonic function and §; is small enough, we

have

9(X*;:q¢7) > g(X"; ™). (2.58)

Here, for the training of model parameters, we minimize the misclassification mea-
sure of the best paths in the training set. If we have a set of input training tokens
X!, ..., XY with their corresponding best paths ¢', ..., ¢", we minimize the follow-

ing cost function
v
=- Zg(X“; q*)- (2.59)
u=1

Note that the optimum state durations should be found using the Viterbi beam
search to reduce the computational cost. However, due to discriminant ability of
the model, small sizes of beam results in almost perfect segmentation. In my ex-
periments, the maximum beam size was selected to be 50. Also, note that the
computational costs can be reduced using the feature selection and extraction al-

gorithms proposed in the following chapter.
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2.5 Summary

A new discriminant training algorithm along with a new form of state models for
the design of speech classifiers was introduced in this chapter. The training algo-
rithm first initializes the model parameters using statistical characteristics of the
training set. Then. model parameters are adjusted using a discriminative training
algorithm by minimizing a defined misclassification measure. The misclassification
measure is a smooth version of probability of error. Therefore, the probability of
error is indirectly minimized. A new discriminant segmentation algorithm was also
introduced. Discriminant functions were associated to each possible path of the
state model and the model parameters were trained to emphasis on the differences

of states within speech units such as word.



Chapter 3

Feature selection and extraction

3.1 Introduction

Feature extraction is a preprocessing mechanism to reduce the dimensionality of
data by mapping the original measurements into more discriminative features. The
proper choice of the mapping functions depends on a priori knowledge of data and
in practice, usually heuristic techniques are used for this selection. A completely
optimal feature extractor can never be anything but an optimal classifier. In other
words, if the minimum error rate criterion is our objective, the design of mapping
functions cannot be separated from the design of the classifier. Examples of such
systems can be seen in literature in [4], [45], [35], {31], [5], [33]. It is usually
hard to achieve the objective of minimum error rate criterion, mainly due to high
dimensionality of feature space. Therefore, class separability measures are defined
and optimized instead of error rate criterion to measure the discriminative power

of new feature set.

Generally, if the performance of a classifier is inadequate, we would like to add

29
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new features. in particular those features that are more effective for the classification
of more confusing classes. The performance of the classifier should increase if an
optimum classifier can be built up in the new feature space. The worse thing is that
the optimum classifier ignores the new features. In practice. beyond a certain point,
inclusion of new features leads to worse performance of classifier. The basic source
of the problem can be traced to the fact that we usually use a parametric classifier
to model the optimum classifier. Such a classifier requires more free parameters
to model the higher dimensional input space. When the models are estimating a
posteriori probabilities (at least around the decision boundaries), the increase in
the number of model parameters usually results in an increase in the mismatch
of models and true a posteriori probabilities. When the number of parameters is
increased, the chance of finding the optimum set of parameters is also decreased.
Moreover, we require a higher number of sample data to estimate the increased

number of parameters, resulting in another possible source of error.

Feature selection is an approach to alleviate these design problems. Here, we
select a subset of k features from n possible candidate features. In practice, a linear
transformation of the feature space before or after feature selection can usually
improve the performance of the classifier considerably. This method is an example
of feature eztraction. The optimum solutions (reducing the error rate) for feature
selection or extraction are hard to find. Therefore, instead of reducing the error

rate, some predefined discriminative measure in data is maximized.

There are several attempts in literature to design a discriminative feature ex-
traction [4], (5], [31]. Various techniques have also been used to jointly train the
parametric form feature extraction and classifier [45], [3], [12], [35], [33], (8], [7], [9])-

My approach to the problem is to use the classifier built in the higher dimen-

sional space, and use its misclassification measure as an estimator of the discrimi-
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nation ability of different directions in the feature space. Although such a classifier
cannot be a solution for the classification problem, it can provide certain useful
information on the informativeness of different directions in the space. In this
chapter. we first review some related work for feature selection and extraction, and

then describe our proposed algorithm.

3.2 Related works

A classical method to reduce the dimensionality of data is a technique known as
Karhunen-loeve ezpansion (KL-expansion) or principal component analysis [15].
Consider an n-dimensional random vector X. This vector can be represented by
n orthogonal basis vector &; without any error. In KL-expansion, we represent
the n-dimensional input vector X by an m-dimensional estimate X’:,.. Here, the
estimate is found such that the mean-squared of the magnitude difference of these

two vectors is minimized. That is, to minimize
- . =~ 2
& = E{|X — Xall }. (3.1)

It can be shown that this estimate should be evaluated as follows (see {17] for more

detail)

fm =Y ud.+ ¥ bd, (3.2)
i=1 i=m+1
where
b = E{y:} = 8T E{X}. (3.3)

and &,’s are the eigenvectors of the covariance matrix of X , Bx, sorted to the order

of their corresponding eigenvalues \;, where the largest one is 51. In this case, the
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error can be shown to be (see {15])

=Y A (3.4)

(3.5)

Based on the acceptable level of error or the normalized value of eigenvalues. one
can select the dimensionality of the new feature space. The KL-transform has
three attractive properties. First, it can order the importance of each direction
in representing X using the value of its corresponding eigenvalues. Second, the
covariance matrix of )} is diagonal. Third, the transformation is optimum in terms
of minimizing the mean-squared error defined in (3.1) over all choices of orthogonal

transformations.

The disadvantage of using the KL-expansion in pattern recoguition is that this
transformation is only appropriate in terms of representing the data not in terms
of minimizing the classification error or maximizing a class separability measure.
Another disadvantage of this algorithm may appear in calculating the covariance
matrix, since we require an increased number of sample data when the dimension-

ality of the input space is increased.

Another common approach for feature extraction is based on finding a linear
mapping A of the n dimensional measurement space, and then select m features such
that a measure of discrimination ability is maximized. Fisher’s linear discriminant
method [15] is an example of this approach, where we try to maximize

AT, A
AT AT

(3.6)
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where £, and X,, are the between-class and within-class scatter matrices, respec-

tively, and are defined as

S = 3 P(Ci)(M; - ML) (8h; - M) (3.7)
E, = Z P(C;)%;, (3.8)

where P(C;), M; and E; are the & priori probability. mean and covariance matrix

of class C;, respectively. M, is the mean of all classes, i.e.,
M, = Y P(Co)M. (3.9)

Fisher’s algorithm finds the linear mapping A from the n dimensional space to the
K — 1 dimensional space where K is the number of classes. It can be shown that
the optimum solution for this criterion can be obtained by solving a generalized
eigenvector problem

¥p.6; = AiZyad;, (3.10)

where d; are columns of A corresponding to k — 1 nonzero eigenvalues of \;. The
reader is referred to [15] for more detail. The basic shortcoming in using such
criterion is that the class separability measure used in Eq. (3.6) is not optimum
for all classification problems. There are certain practical cases where this criterion
does not perform well. For example, when the mean of a class is very different
from the mean of other classes, that class will then be dominant in calculating
the between class scatter matrix, and therefore undermining the feature extraction
method. Moreover, the true estimation of the criterion may not be very accurate
when the dimensionality of the feature space is increased due to possible lack of

enough training data.

C. Lee et al. use decision boundaries estimated in the higher dimensional space
to find the importance of different directions in the feature space [32]. They first
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X1

Fligure 3.1: A simple counter example for Lee’s algorithm

define the following feature matrix
%o = — [ @) (z)p(z)de (3.11)
K s ’

where N(z) is the unit normal vector to the decision boundary at point z, p(z)
is the probability density function of z, K = f5p(z)dz, and S is the decision
boundary. They claim that if this matrix has zero eigenvalues, the direction of their
corresponding eigenvectors do not have any useful information in the classification
task. They further generalize the algorithm and try to sort different direction based

on the eigenvalues of the feature matrix.

It can be seen that the above claim is not valid in some practical cases where
p(z) = 0 on the decision boundary. Fig. 3.1 is such an example. Here, we assume
the distribution of data is uniform within each circle for each class and it is zero
elsewhere. Following the above algorithm, we can see that the feature matrix
has a zero eigenvalue and that the zero eigenvalue corresponds to the direction



CHAPTER 3. FEATURE SELECTION AND EXTRACTION 35

parallel to line d,. That means the direction perpendicular to such a line can
only be considered for classification without having any increase in error rate. As
can be seen from the figure, this direction will result in an increase in error rate.
Moreover, p(z) is introduced in Eq. (3.11) to place a weight on regions having
a higher concentration of data. Such emphasis is simply not valid. In fact, every
point in space should provide a share in feature selection or extraction as each point

has a share in the probability of error.

My proposed approach for feature extraction and selection that will be pre-
sented in the next section was motivated by the above approach. In the proposed
approach, decision boundaries are approximated by several hyper-planes. The dif-
ference in calculating the similarity matrix is in the weighting factors p(z). These
weighting factors are replaced by the misclassification measure of each point. Also
the integration is carried out over the whole space not just over the decision bound-
aries.

As mentioned before. one can directly select a subset of features without do-
ing any transformation. This approach is rather interesting mainly because of its
reduced computational cost in building the classifier after the selection of appropri-
ate features. Moreover, feature selection can eliminate irrelevant information (i.e.
noise in general). Here, some measures of class separability are also used instead
of probability of error to evaluate the importance of different features. Probabil-
ity distances are examples of such measures. These measures allow evaluation of
discriminative power of each feature between two classes only. The followings are

some examples of them [15]:

e Bhattacharyya's distance

J = ~In [ [P(X]C1) - P(X|Ca)]dX. (3.12)
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e Divergence
P(X|C1)

mdx. (3.13)

Ja= [ [PXiC1) - P(X|Ca)]1n

In another algorithm, mutual information between features and the classes is used

to order different feature. This mutual information is defined as [11}(2]

o ) P(X,C:)
1C:X) =% [x P(Cit X) log| sy isldX. (3.14)

Mutual information measures the amount by which the knowledge provided by a
feature decreases the uncertainty about that class. Therefore, the most informative
feature can be found using the above measure. Generally, the nth selected feature,

should be the one maximizing

JdX.
(3.15)

The computational cost and the increased number of required sample data to calcu-

P an Cl'
[(C Xn‘XI. caey Xn—l) = Z '/‘; P(C,'; an.X]_ ..... Xn_;,)lOg[—'(—("——)_

late the above mutual information makes the above algorithm practically infeasible,

when the dimensionality increases.

3.3 The proposed algorithm

If the decision boundary is a hyper-plane, the directions parallel to such a hyper-
plane do not contain any useful information for the purpose of classification. There-
fore, we can use the direction perpendicular to such hyper-plane only, without
changing the recognition error rate. However, the decision boundaries in practice
are not usually hyper-planes and such absolutely redundant directions do not exist.
However. decision boundaries can be estimated using a collection of hyper-planes.

As we will see in this section, the perpendicular directions to such hyper-planes,
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if properly weighted, can provide us useful information about the importance of

different directions in the space.

Here, linear orthogonal transforms are found that can map the higher dimen-
sional space before applying feature extraction. It is shown that in the lower di-
mensional space, at least a model can be build that its misclassification measure
(or indirectly the probability of error) is close to that of the model in the higher
dimensional space. Indeed, an upper-bound can be found in the maximum change
of misclassification measure. The desired transform is the one that minimizes this
upper-bound. It is also shown that a subset of features can be selected that mini-

mizes the upper-bound.

Assume that the model is first trained in the higher dimensional space based
on the discriminative training criterion explained in Section 2.3. Also assume that
after the linear transformation ®, only the first m-dimension of a vector V are used

in the new space for its representation. Such a vector is shown by V. That is

‘7 = z yié‘iv (3'16)
=1
and.
V=Y u. (3.17)
i=1

The squared error in representing V can be defined as

E(V) = i yi. (3.18)

i=m+1
Here, it is shown that if the model and input are transformed to a lower dimen-

sional space, the change in the overall misclassification measure is bounded.

The cost function of an input X* for class ¢ was defined as (see Chapter 2)

k=1 g A atbe) = 05) + b (3.19)
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Figure 3.2: Sigmoid fanction

Let us define,
y= & (2 7(6—2 Y- y(&aws;) — 0.5)) + Oar) (3.20)
M— 1 hi#Ei T" t v !
and,
W= 1{_2 Z’?(fﬂrfj - 0.5. (3.21)
v ¢

Also consider §j, & and #; as the estimation of y, w and «; in the lower dimensional
space, respectively. Considering Fig. 3.2, and the convexity of the sigmoid function,

it can be written that

) — 1@ < ly—§188 e

(3.22)
< ly = glr(zo)(1 = 7(20)),
where z4 is
e { min(y.§) fmin(y,§) >0 (.23
max(y, §) else,
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However. it can easily be shown that

7(z)(1 - ¥(z)) < 0.25 Vz. (3.24)
Therefore.
Ir(y) — ()| < 0.25)y — 3|, (3.25)
b =31 < (T ) = 1@, (3.26)
In a similar way
fr(w) — (@)} < 0.25|w — @], (3.27)
and
o3| < 0255 5 higns) - v(675) (3.28)

In the following, an upper bound for [y(&7f;) — ¥(£17};)| is found.

As it was seen in Section 2.3.1. nf; = draeqe, Where d, is the distance of input
vector X, from its corresponding boundary hyper-plane, a, is the distance of of
the pair of code-books selected for input X,, g, is 1 if the input vector is correctly

classified and —1 otherwise.

Consider the parallel vectors dtﬁ}, a; ﬁg, and 7(§1d¢a¢q¢).’\7¢ in the feature space,
where N, is the unit normal vector of the decision hyper-plane in the direction of
correct class associated to input vector X,. The lengths of the first m-dimension of
d; N, and a,N, after the transformation are shown by d; and &, respectively. Since
the vectors d;N,, @, N, and 7(dig)ﬁg are parallel to each other, we can have

E(1(brdrarq) Ny) = e’(d,ﬁg)m‘;‘—“‘l'l, (3.29)

and

& =& +qd, (3.30)
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where .
n= 52(7(€1dtae‘It)Ne)
T rdearg)
Considering d;>0and 0 <7<l
d; = (1 - n)'/*d,.
In a same way
&g = (1 - Y])I/zag.

Therefore

(1-7n)dia; = Czcdt-
Considering the convexity of v(€1dreqe) when g, = 1.

(€rdiae) — y(&1d:d.) < Tlfxdtaea(zg))iusd.&v

or

Y&dear) — 7(€1dee) < néideary(€EdiGe)(1 — Y(E1deGe)).

Considering Eq. (3.34),

v(&rdear) — Y(Erdee) < 1 E1diaey(61dee)(1 - Y(E1dedar)).

(1-n)

It can easily be shown that

zy(z)(1 - v(z)) < 0.23 Vz.

Therefore

1&rdear) — y(62d:G:) < 0-23ﬁ,

or

E(y(&rdia) N)

v(6rdrar) — v(&1deae) < 0.23

P(&rdea) — (y(E1deae) Ne)

40

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)
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Considering £;d:a, is positive,

0.25 < 7*(budrae) < 1., (3.41)
and
v(6rdras) — Y(£1drG,) < 0.5, (3.42)
which results
E(y(E1dra) Ny

0.5). (3.43)

v(&rdra) — y(&1dece) < min(0.230'25 e Eda) V)|

The first term is dominant when €*(7(£,d;) V) < 0.18. By evaluating the denom-
inator with the highest value of 63(7({1d,a,)1\-l'}), we can write:

7(&1drcee) —‘7(51J¢&t) < 0-2852(7(51!1:&:)1\70 ifez(*y({ldta,)ﬁ,) < 0.18, (344)

But
0.286*(v(€&1dre) N;) > 0.5 if €2(y(€rdeae) Ne) > 0.18. (3.45)
Therefore
Y(Erdeae) — Y(Erdiae) < 0.28€3(7(Erdeaxe) Ny). (3.46)

Following similar steps for ¢, = —1,
V(~&1dede) — v(~Erdrar) < 0.28¢*(v(—Erdrare) V). (3.47)

Combining the above two inequalities,

[r(érdeaege) — Y(€1deéegs)| < 0.28€ (‘7(514:0:9:)1\7:)— (3.48)

Combining the inequalities (3.25)-(3.28) with the above inequality, it can be con-

cluded that the change in misclassification measure can be written as

L~ ;] <0.28 0.25’%5_3—1 I s’(l(ﬁl-;f—“ﬁ*lﬁ,). (3.49)

Ji#i
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The above bound shows that the loss in misclassification measure is bounded by
the loss in representing the vectors perpendicular to decision hyper-planes weighted
by (1-‘5‘—‘;-5:“—‘951). Based on K-L expansion technique, such vectors can be best pre-
sented if the columns of transformation are the eigenvectors of the covariance matrix

of these vectors sorted by the value of their corresponding eigenvalues.

Note that one can also select a subset of features without having any transfor-
mation by minimizing the upper bound over all possible subset of features. This
can be done by sorting different directions by maximizing the average length of the

projection of vectors ( ﬁ%?‘—“‘-)Ng) in different direction.

As it was shown above, minimization of the maximum change in overall misclas-
sification measure using feature selection or extraction requires proper representa-
tion of a set of vectors 7(£1dsarqe) N; calculated for every frame of the input samples
of the training set. Therfore, one can partition this set depending on selection of

states in different models and find a proper transformation for each partition.

The above feature selection and extraction strategy can also be applied for the
segmentation algorithm described in the previous chapter. Considering Eq. (2.53),
and by going through similar steps as finding the bound in Eq. (3.49), it can be
seen that the maximum change in evaluating discriminative functions of each path
is bounded

Ty J tn .
lg(X™; ¢*) — g(X*; q*)] < 0.28 * 0.25——51— Z Z e’(MM) (3.50)
(J - 1) =1 j=1,5%#i Tu

where N, is the unit normal vector for the hyper-plane associated to state s and
s;. By considering such a bound, feature selection or extraction can be done by
‘Y(fl*:u a;

A ) = . .
properly presenting the vectors ——4+-N; in the new space. Such representation

can also be state dependent. Feature selection and extraction is appealing for the
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segmentation algorithm to reduce the additional cost of segmentation imposed by

using semi-Markov models.

3.4 Summary

It was shown in this chapter that for the given state model described in previous
chapter, after an orthogonal transform, the dimensionality of the space can be
reduced. It was also shown that by using such transform, the maximum change in
misclassification measure of the models trained in the higher dimensional space has
an upper-bound. The upper bound can be minimized by properly representing the
vectors perpendicular to decision hyper-planes weighted by the share of the input
vectors in the overall misclassification measure. The proper representation of such
vectors is an easy task using Kl-expansion algorithm. Feature selection is also
possible by projecting such vectors in different directions of space and selecting
the directions having a higher accumulated projection. The proposed algorithm
can also be applied to the discriminant segmentation algorithm described in the
previous chapter. Since the differences within speech units such as word is less
complicated, the required number of features in practice is very small (5 features in
the experiments reported in chapter 5). It was also discussed that feature selection

and extraction can be implemented depending on state of the model.



Chapter 4

Feature extraction using

spectrogram

4.1 Introduction

The speech spectrogram is a time-dependent Fourier representation of speech signal.
To calculate the speech spectrogram, the speech signal is first Hamming-windowed
with a window size of about 40ms. The resulting signal is then zero-padded and
its Fast Fourier Transform is taken. The Hamming-window is then moved forward

(about 10ms) and the same process is repeated.

Experts can use spectrogram and classify words or phonemes from a spoken
sentences with a high accuracy rate {40], {27], [16], [18], [37], {48]. It is one of the
objectives of this thesis to properly measure the features that are used by these
experts. One of the most important features is the position of resonant frequencies
or formants in the spectrogram and their relative movements, the existence of

voicing information in the signal, and the distribution of energy patterns in the

44
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spectrogram.

To extract features from the spectrogram, the image is first segmented into two
homogeneous regions of object and background, each having similar characteristics.
The object class is associated to regions having the desired features. For example,

the object class can be the regions associated to resonance frequencies.

Existing segmentation algorithms include amplitude thresholding, component
labeling, boundary-based approaches, region-based approaches, template matching
and texture segmentation. An overview of the existing algorithms can be found
in (6] and [20]. In the following section, a new self-organizing image segmentation

algorithm is introduced.

4.2 A new self-organizing image segmentation al-

gorithm

The overall goal of this algorithm is to segment images consisting of an object and
a background. In particular, a self-organizing segmentation algorithm is presented
that can segment the image based on a priori knowledge of object and background
characteristics. These characteristics include the knowledge about the intensity
of pixels in object and background classes and the shape of these classes. Based
on Bayes decision theory, the optimum segmentation, in terms of minimizing the
probability of segmentation error, is to decide in favor of object for each image pixel
(7) if the a posteriori probability of that pixel belonging to object (O) is greater
than that of background class (B) given the input image (). That is if

P(j € O|I) > P(j € B|I). (4.1)
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A common segmentation strategy is then to estimate the above a posteriori proba-
bilities using parametric stochastic models for object and background classes [10],
[13], [39], [47], and [25]. However. such methods rely on unrealistic assumptions
made in the selection of their stochastic models. Moreover, it is usually hard to
find the optimum set of model parameters. As a result, the parametric estimation
of the a posteriori probabilities does not usually result in accurate segmentation.
However, these estimates can provide some information on the degree of confidence
in making segmentation decisions by considering their closeness to one or zero.
The proposed algorithm uses such confidence information provided by estimates
of a posteriori probabilities along with a priori knowledge about the object shape.
Here, the value of each pixel's a posterior: probabilities is iteratively adjusted where
less ambiguous ones are adjusted more in each iteration in hope of finding a bet-
ter estimate of the a posteriori probabilities for other pixels in the next iterations.
Note that the e posteriori probabilities are functions of the value of other pixel’s
a posteriori probabilities in the image (usually the neighboring pixels). To avoid
instability in such adjustments, an error function is also defined as a measure of
overall segmentation of output image pixels. This error function is minimum for
any binary image (with pixels having probabilities of zero or one). The adjust-
ment strategy also reduces this error function, thereby leading to a higher degree
of segmentation. The a posteriori probabilities are initially estimated using the
intensities of image pixels and the knowledge of the object shape. After this initial
estimation is found, the a posteriori probabilities are adjusted using the a posterior:

probabilities of other pixels and the knowledge of the object shape.

The initial estimate of P(j € O|I) can be provided as

p;=P(j €0|) = ZZ'S:D"’(:J(}"Z‘)”‘ (42)

where o; is the intensity of pixel j, A(4, k) is a constant depending on pixels j and
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k. D is a set of neighboring pixels ( including node j ), O is the object class and [
is the given image. After this initial estimate of p;. these probabilities are adjusted
during the segmentation phase using

Apitt = a > d(j.k)(p; — 0.5), (4.3)

keD

where d(j, k) is a weighting factor that should be selected based on the shape of
objects, px is the estimate of a posterior: probability of pixel k. ¢ is the iteration
number, and « is a positive constant. Here, it is assumed that d(j, k) = d(k, 7).
This adjustment strategy adjusts image pixel’s probabilities iteratively, where less
ambiguous pixels are adjusted more in each iteration. The above adjustments will
also result in a more segmented image after each iteration. If we carefully examine
the above training strategy we notice that it also minimizes the following error
function for which any binary image (having a posteriori probabilities of zero or

one) is a global minimum:

n

E=Y Y d(j.k)p;(1 - p). (4.4)

j=1keD
This can be shown by taking the derivative of E with respect to p; and assuming
that d(j. k) = d(k. 7).

gps; = Yep d(d, k)(1 —pi) — d(k,5)psx

(4.5)
= —}Teep s, k)(px ~ 0.5).

Considering that a is a positive constant, and by comparing Eq. (4.5) and (4.3),
we can conclude that the adjustment algorithm reduces the error function defined
in Eq. (4.4), as the adjustment is in the negative direction of the derivative of the
defined error function. In summary, the end product is a self-organizing algorithm

described as follows:
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o Calculate an estimate of ¢ posteriori probability of image pixels belonging to
object or background classes based on their intensity and the shape of object.

o®Select a proper d(j.k) (weighting coefficients of the defined measure) based
on the shape of the objects. Also, select a learning rate (a) and adjust
the estimate of probabilities iteratively using the following equations until a

desired segmentation level is achieved at the output image

Apttt = { @[Ciepd(j. k)(pk — 0.5)] if pi#0 or 1 (46)

0 otherwise

and keep 0 < p} < L.

Also, one should note that the change in the probability of node j, caused by a
neighboring pixel % is limited to $d(j, k). prohibiting the system from excessive

smoothing.

4.2.1 Formant segmentation

Here, formant regions are referred to regions that have high energy and are close
to the resonant frequencies of speech signal. Correct identification of such regions
can play an essential role in any speech recognition system. To segment the image

into these two regions. the following approximation was made
Pij = O{j, (4'7)

where i refers to horizontal position of a pixel in the image and j refers to its vertical
position. After this initial estimation, the probability of each pixel is estimated

using

Apﬁ'l =

{ a[%-IZ:'i;—J d(5)(5; "0-5)] £ p#0 or 1 (4.8)

0 otherwise
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Figure 4.1: The filter that is used for format features (frequency range of each spectro-

gram contains 200 pixels for spectrograms up to 6KHz)

where d(j) is given as in Fig. 4.1, I and J define the size of neighboring pixels. In
these experiments, spectrogram images have 200 pixels in the frequency direction
and 1 pixel every 1ms of time domain. For these images, / =11 and J = 9. @ was
selected 0.2 and the segmentation was carried out for 10 iterations. The resulting
segmented images of the words /nine/, /one/, /zero/, and their corresponding
segmented images for different iterations are shown in Fig. 4.2- 4.10. Please compare
the difference of the words fone/ and /nine/ in the time domain between 0.3sec
and 0.4sec of both words for the segmented images and the original spectrogram
images. It is indeed these regions that can play a significant role in classification of
the two words.
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Figure 4.8: Progress of segmentation of word zero in different iterations, from top to
button: original spectrogram, iteration number 1, and 2
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Figure 4.9: Progress of segmentation of word zero in different iterations, from top to
button: iteration number 3, 4, and 5
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Figure 4.10: Progress of segmentation of word zero in different iterations, from top to
button: iteration number 6, 7, and 8
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Figure 4.11: The filter that is used for voicing features (each frame represent 10ms)

4.2.2 Voicing features

By voicing regions, we refer to regions of spectrogram that show a pencil line pattern
having higher energy in a large portion of frequencies for a short period of time. To
extract voicing information, we estimate the approximate probabilities as follows:

I J
pii= Y, Y h(3o (4.9)

i=—I j==J
where A(z) is defined as in Fig. 4.11. The adjustment of the probabilities are done
using:
Agt# { a[Sh Tl se-05)] i p#0 or 1 .10
0 otherwise
In our experiment I =1 and J = 11. Fig. 4.12 shows the resulting images for part
of the spectrogram image of word /zero/. Fig. 4.13 shows the resulting segmented

image for part of the word /ti/.
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Figure 4.12: Segmented voicing regions found using part of the spectrogram of the word
/zero/: (a) original spectrogram of part of the word /zero/ (b) segmented regions
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Figure 4.13: Segmented voicing regions found using part of the spectrogram of the word
/ti/: (a) part of the original spectrogram (b) the corresponding segmented regions
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Figure 4.14: Center of gravity of the objects of the segmented image of Fig. 4.10

4.2.3 Rising and falling formats

One of the features that is very important for speech recognition is to know if the
formant frequencies are increasing or decreasing. To find that, first the center of

gravity for a window of size IxJ was calculated as follows:

I J
M.'i = Z Z j'pi—m,j—n, (4.11)
i=-I j=-J
and
I J
Mi=3Y 3 i pimjn (4.12)
=1 j=mJ

In these experiments, ] = 4 and J = 8. Then, the points that their center of
gravity are closer to their position were selected. Fig. 4.14 shows the resulting
image from the segmented image of Fig. 4.10. To find if the formants are uprising
or down-falling, the best regression line that can be passed through each point in
a window of size 21x21 was calculated. We separate the points with positive and
negative slopes of the regression line into different images. Fig. 4.15 and 4.16 show
the resulting images for the segment image of Fig. 4.10.
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Figure 4.16: Falling formant found from the segmented image in Fig. 4.15



CHAPTER 4. FEATURE EXTRACTION USING SPECTROGRAM 64

Frequency (KHz)
N W s o
T 1 T 1

-
L)

0.2 04 0.6 0.8 1 1.2
Time (sec)

Figure 4.17: Local energy found from the spectrogram in Fig. 4.8
4.2.4 Energy features

Another set of features are the smooth version of spectrogram. The spectrogram
image is averaged over a window of 15x5. Fig. 4.17 shows the resulting image of the
spectrogram image of Fig. 4.8. A smooth version of voicing images over a window
of 20x8 was also calculated. The resulting image for the spectrogram shown in 4.17
is shown in Fig. 4.18.

4.2.5 Overall energy

Overall energy of signal over a window of 25 frames were also calculated as a single
feature.
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Figure 4.19: The filter that is used for extracting features from segmented images
4.2.6 Filter-banking

After the feature images are calculated, 14 features per frame were extracted using

overlapping filters shown in Fig. 4.19.

4.3 Summary

A self-organizing algorithm for segmentation of spectrogram images was proposed.
The algorithm first calculates the estimates of the a posteriori probabilities of each
pixel for object and background classes, and then iteratively adjusts these probabil-
ities to reduce a defined segmentation measure. Pixels that are less likely to belong
to object or background classes are adjusted less in each iteration, delaying their
segmentation until more image information is available. Experiments showed that
the algorithm can be applied to successfully segment formant and voicing regions in
the spectrogram image. Other sets of features were also calculated which include:
uprising and down-falling formant features, local energy of spectrogram and local
energy of segmented voicing images. From each image, and for each frame 14 fea-
tures were calculated using overlapping filters. These features are the primary set

of features as the input to our recognition system.



Chapter 5

Experimental results

5.1 Data base

For the experimental tests. a corpus of isolated spoken words was selected. This cor-
pus was designed and collected at Texas Instruments (TT) in 1980 called TI46 [14], [44].

The material contained on this data base was recorded in a low noise environment.

The TI46 corpus contains 16 speakers: 8 males and 8 females. There are 46
words per speaker. They are: numbers: ZERO to NINE, English letters: A to Z
and the words: ENTER, ERASE, GO, HELP, NO, RUBOUT, REPEAT, STOP,
START, YES. In all the experiments reported here, 4 samples were used per each
speaker in the training set resulting in a total of 64 samples for each word, and 12
samples per speaker were selected for each word of test set resulting in 192 samples

per word.

67
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5.2 Segmentation experiments

For any input sample, all the set of images discussed in the previous chapter are
computed. From each set of images, 14 features are extracted using the filter banks
shown in Fig. 4.19. There are 6 images resulting in 84 features and 1 total energy

feature, which results in 85 feature in total for each input.

Based on a priori knowledge of important regions of speech words using spectro-
gram reading experiences, a state model for each word was designed. The training
set of corpus was then hand segmented. Appendix A shows an example of each

word and its corresponding state model and segmented regions.

For each word, three models are used for training and testing. These models
are called: statistical model, segmentation model, and discriminant classification
model. For the statistical model, the parameters are trained using the statistical
characteristics of segmented regions of each word. The segmentation model is used
for the segmentation of each word and the discriminant classification model is used

for discriminant training of model parameters.

After the statistical model parameters are estimated, the segmentation model
parameters are initialized with the parameters of the statistical models. There
are two phases for the discriminant segmentation training algorithm. In the first
phase, the model parameters were trained for 10 iterations. In these experiments,
& = 0.01, £ = 0.5, and the learning rate « = 0.1. After this training phase, only
10 directions were selected using our proposed feature selection algorithm. Fig. 5.1
shows a typical progress of overall cost function for the word /zero/ during this
training phase. Fig. 5.2 shows the accumulative projection of 7(§1dgagQg)ﬁg for a
typical state of the model versus the number of directions that can be used. Note

that the direction numbers are sorted based on their importance. In the second
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segmentation training for word /zero/
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Figure 5.2: The accumulative projection of 7(£1degQg)ﬁg for a typical state of the model
after the first phase of segmentation training for word /zero/
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Figure 5.3: The progress of overall misclassification measure during the second phase of

segmentation training for word /zero/

phase of segmentation training, the training of model parameters was continued,
but this time only 10 directions per state was used. The training continued for 10
more iterations. Fig. 5.3 shows the progress of overall cost during training for word
/zero/. After the second training phase, an orthogonal transforms for each state
is calculated and cthe dimensionality of input is mapped to only 5 directions. The
resulting models were used for segmentation of input samples. Fig. 5.4 compares
the segmentation of the word /eight/ done before training with hand and the seg-
mentation results of segmentation model of /eight/. In practice, the segmentation
result by models usunally outperform that of hand segmentation, as the models have
a better estimate of overall statistical characteristics of each state.

After the segmentation models are trained, all the words in training set are
segmented by the segmentation madels of all classes using Viterbi beam algorithm.
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Figure 5.4: (a)Hand segmented regions of word /eight/ before training(b) the segmented
regions resulted from the segmentation model
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Figure 5.5: The progress of overall cost function during the first phase of discriminant

training for word /B/

The maximum beam size of 50 was selected in this algorithm. The resulting se-

quences was then recored in the data base for later references.

5.3 Training of discriminant classification models

The training phase of discriminant classification models starts by initializing the
models by the statistical models. Again, a similar procedure as in segmentation
training phase was carried out. First, the model parameters were trained for 50
iterations using the discriminant training algorithm, and then the feature selection
algorithm was applied. At this stage only 20 features out of 85 features were
selected for each state. Again the training was continued for 20 iterations and then
the feature extraction algorithm was applied to transform the 20 features to extract
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b|d p | t | recognition rate
b|60| 2 2 |0} class0=93.75%
d| 915203 | 0| class1=81.25%
gl 010(50] 3] 2/ class2=92.19%
Pl 0|0 [1][62]|1] class3=96.88%
t] 0| 0| 4] 5|55 class4=85.94%
average recognition rate 90.00%

Table 5.1: Recognition result on training set using the statistical model in the
higher dimensional space

10 features per state. Fig. 5.5 and Fig. 5.6 show the progress of overall cost during
each phase of training. For comparison, the input features were mapped using KL-
expansion algorithm to 20 dimensions and the statistical model and discriminative

classification model were trained. The following reports on the results.

Here, the result of classification on the confusing set /bi/, /di/, /gi/, /pi/. and
/ti/ are reported. Table 5.1 and 5.2 show the recognition results for the statistical
model (in the higher dimensional space) on training and test sets, respectively. Ta-
ble 5.3 and 5.4 shows the results for the discriminant training algorithm and after
reduction of dimensionality on the training and test sets, respectively. Table 5.5
and 5.6 show the results of statistical model in the reduced feature set on training
and test sets, respectively. Table 5.7 and 5.8 show the results of discriminative clas-
sification model in the reduced feature set on training and test sets, respectively. As
can be verified by the results, discriminant training and feature extraction methods
can improve the recognition rate of these confusing classes while having a reduced

set of parameters for the classifiers and much lower computational cost.
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bid| g p | t | recognition rate
b|{97127}| 0 4 | 0| class0=75.78%
d|16)90¢ 7 15 | 0 | class1=70.31%
gl 0]0]13] 5 |10/ class2=88.28%
pl 1|1/ 8 {10612 class3=82.81%
t] 0! 1 (28 | 14 | 85| class4=66.41%
average recognition rate 76.72%

Table 5.2: Recognition result on test set using the statistical model in the higher
dimensional space

b;d|g ]| p| t |recognition rate
b|60( 40| 0| 0| class0=93.75%
d; 558, 011{0 | classi=90.62%
glolole2|o] 2] clas2=9688%
Pl 7T [2{0]52] 3| class3=81.25%
t{0 |0 ]0]1]63]| classd=9844%
average recognition rate 92.19%

Table 5.3: Recognition result on train set after discriminant training and redaction
of dimensionality (the proposed approach)
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b d g | p| t |recognition rate

b | 105 ) 22 0 1 0 class0=82.03%

d| 9 |114( 2 | 2 { 1 | class1=89.06%

g{ 0 | 0 [125{ 1| 2 | class2=97.66%

p|l 10| 5 1 {93 19 | class3=72.66%

t| 0 1 10 | 2 } 115 | class4=89.84%
average recognition rate 86.25%

Table 5.4: Recognition result on test set after discriminant training and reduction

of dimensionality (the proposed approach)

b|d P | t | recognition rate
b|52{10| 0| 2 | 0| class0=81.25%
d}12|50) 20} 0| class1=78.12%
gl 02571} 4! class2=89.06%
pl2]0]1({58|3]| class3=90.62%
t] 0|0} 15|58 class4d=90.62%
average recognition rate 85.94%

Table 5.5: Recognition result on training set for the reduced dimensionality found
by KL-expansion algorithm and by training the statistical model
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bl d p | t | recognition rate
b|92] 33 3 | 0 | class0=71.88%
di181105| 4 0 | 1] class1=82.03%
g{ 1| 4 [112] 3 | 8 | class2=87.50%
pil12j 0 3 |100 |13 | class3=78.12%
6] 2| 1 | 23| 6 [96] class4=75.00%
average recognition rate 78.91%

Table 5.6: Recognition result on test set for the reduced dimensionality found by
KL-expansion algorithm and by training the statistical model

b|d P | t | recognition rate
b|59| 4|0 (| 1] 0/ class0=92.19%
d} 7 (8| 1| 0] 0] class1=87.50%
g0 1(61] 1] 1] class2=95.31%
Pl 0 {0 |1]62]1] class3=96.88%
tE{ 0] 0] 1] 0|63 classd=98.44%
average recognition rate 94.06%

Table 5.7: Recognition result on training set for the reduced dimensionality found
by KL-expansion algorithm and by training the discriminative model
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b | d p | t | recognition rate
b|102| 24 { 0 | 2| O | class0=79.69%
dy 10 {1121 1 | 3| 2 | class1=87.50%
gl 1|6 (116 1] 4 | class2=90.62%
pl| 8 4 1 {97} 18 | class3=75.78%
b4 0 | 2 | 9 |3 ]|114 ] class4=89.06%

average recognition rate 84.53%

Table 5.8: Recognition result on test set for the reduced dimensionality found by
KL-expansion algorithm and by training the discrimninative model

The next set of experiments were carried out on digits /zero/ to /nine/. Table 5.9
and 5.10 show the recognition results for the statistical model (in the higher dimen-
sional space) on training and test sets, respectively. Table 5.11 and 5.12 shows the
results for the discriminant training algorithm and after reduction of dimensionality
on the training and test sets, respectively. Table 5.13 and 5.14 show the results of
statistical model in the reduced feature set on training and test sets, respectively.
Table 5.15 and 5.16 show the results of discriminative classification model in the
reduced feature set on training and test sets, respectively. This set of experiments

also validate the improved performance of the proposed algorithm.
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zero | one | two | three | four | five | six | seven | eight | nine | recognition rate

zero | 99 0 0 0 0 5 0 0 0 0 class0=92.19%
onme | 1 [ 58| 0 0 0 310 0 0 2 | class1=90.62%
two | 4 0 | 50 0 3 4 |0 3 0 0 | class2=78.12%
three | 0 0 0 63 0 0 0 0 1 0 class3=98.44%
four 0 0 0 0 64 0 |0 0 0 0 [ class4=100.00%
five | 0 0| 0 0 0 640 0 0 0 | class5=100.00%
six 0 0 0 0 0 4 |60 0 0 0 class6=93.75%
seven | 1 0 0 0 0 (10| 0} 53 0 0 | class7=82.81%
eight | 0 0 0 0 0 6 | 3 0 55 0 class8=85.94%
nine | O 1 0 0 0 12 | 0 0 0 51 | class9=79.69%

[ average recognition rate 90.16%

Table 5.9: Recognition result on training set using the statistical model in the
higher dimensional space
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zero | one | two | three | four | five | six | seven | eight | nine | recognition rate
zero | 171 | O | 0 1 8 |12} 0 0 0 0 | class0=89.06%
one | 0 170 0 | O 0 {2070 0 0 2 | class1=88.54%
two 4 0 | 158 3 2 11810 7 0 0 | class2=82.29%
three | 0 0 0 | 185 0 7 0 0 0 0 | class3=96.35%
four | 0 | 0 | O 0 j191| 110 0 0 0 | class4=99.48%
five 0 0 0 ¢ 0 {190 0 0 0 2 class5=98.96%
six 0 0 0 0 0 |10 |182] O 0 0 class6=94.79%
seven | 2 (N 1 1 19| 0 | 169 0 0 | class7=88.02%
eight | 0 0 0 0 0 |25} 8 0 159 0 class8=82.81%
nine | 0 4 0 3 0 {61} 0 0 0 124 | class3=64.58%
average recognition rate 88.49%

Table 5.10: Recognition result on test set using the statistical model in the higher
dimensional space
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zero | one | two | three | four | five | six | seven | eight | nine | recognition rate

zero | 64 0 0 0 0 0 0 0 0 0 | class0=100.00%
one 0 64 0 0 0 0 0 0 0 0 | class1=100.00%

two 0 0 | 64 0 0 0 0 0 0 0 | class2=100.00%
three | 0 0 0 64 0 0 0 0 0 0 | class3=100.00%
four 0 0 0 0 64 | 0 0 0 0 0 | class4=100.00%
five | O 310 0 0 | 610 0 0 0 | class5=95.31%

six 0 0 0 0 0 0 | 64 0 0 0 | class6=100.00%

seven | 0 0 {0 0 0 |00 64 0 0 | class7=100.00%
eight | 0 0|0 0 0 0|0 0 64 0 | class8=100.00%
nine 0 0 0 0 0 1 0 0 0 63 | class9=98.44%

average recognition rate 99.38%

Table 5.11: Recognition result on train set after discriminant training and reduction

of dimensionality (the proposed approach)
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zero | one | two | three | four | five | six | seven | eight | nine | recognition rate

zero ;190 | 0 | O 0 1 0|0 1 0 0 | class0=98.96%
one | 0 |191| 0 0 0 110 0 0 0 | class1=99.48%
two 1 0 {191 0 0 0 0 0 0 0 class2=99.48%
three | 1 0 0 187 0 0 0 0 4 0 class3=97.40%
four | 0 110 0 |191{0 (0O 0 0 0 | class4=99.48%
five | 0 0| 0 0 0 {187 O 0 0 5 | class5=97.40%
six 0 0 0 0 0 0 {190 0 2 0 class6=98.96%
seven | 2 0 0 0 0 2 0 188 0 0 class7=97.92%
eight | 0 0 0 1 0 0 3 0 188 0 class8=97.92%
nine 0 6 0 2 0 3 0 1 0 180 | class9=93.75%

average recognition rate 98.07%

Table 5.12: Recognition result on test set after discriminant training and reduction
of dimensionality (the proposed approach)
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zero | one | two | three | four | five | six | seven | eight | nine | recognition rate
zero | 63 | O 0 0 0 010 1 0 0 class0=98.44%
one | 0 (62} O 0 0 0|0 0 0 2 | class1=96.88%
two 0 0 | 64 0 0 00 0 0 0 | class2=100.00%
three | 0 0| 0! 61 0 0 |0 0 3 0 | class3=95.31%
four 1 1 0 0 89 { 3 (0 0 0 0 class4=92.19%
five 1 3 0 0 0 1590 0 0 1 class5=92.19%
six 0 0 0 0 0 0 | 63 0 1 0 class6=98.44%
seven | 2 0 0 0 0 010 62 0 0 class7=96.88%
eight | 0 0 0 0 0 0 (O 0 64 0 | class8=100.00%
pine | 1 1310 0 0 10 0 0 49 | class9=76.56%
average recognition rate 94.69%

Table 5.13: Recognition result on training set for the reduced dimensionality found
by KL-expansion algorithm and by training the statistical model
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zero | one | two | three | four | five ; six | seven | eight | nine | recognition rate
zero | 1851 0 | 2 0 3 1 {0 1 0 0 | class0=96.35%
one { 0 184 0 0 0 1|0 0 0 7 | class1=95.83%
two | 0 0 (192 0 0 0 |0 0 0 0 | class2=100.00%
three | 0 1 3 184 0 2 0 0 2 0 class3=95.83%
four 4 5 1 0 181 | 1 0 0 0 0 class4=94.27%
five 1 1 0 0 2 117641 O 1 0 11 | class5=91.67%
six 1 0 0 0 0 2 (18| 0 3 0 | class6=96.88%
seven | T 0 0 0 0 2 |1 0 | 183 0 0 | class7=95.31%
eight | 0 0 0 0 0 5 3 0 184 0 class8=95.83%
nine | 0 |38 ) 0 1 0 2 {0 1 0 150 | class9=78.12%

average recogunition rate

94.01%

Table 5.14: Recognition result on test set for the reduced dimensionality found by

KL-expansion algorithm and by training the statistical model
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zero | one | two | three | four | five | six | seven | eight | nine | recognition rate

zero | 63 | 0 0 0 0 00 1 0 0 | class0=98.44%
one ] 63 | 0 0 0 0 0 0 0 1 class1=98.44%
two 0 0 | 62 0 0 0 1 0 1 0 class2=96.88%
three | 0 0 0 99 0 0 0 0 5 0 class3=92.19%
four | © 00 0 61 ] 3 |0 0 0 0 | class4=95.31%
five | 1 1 0 0 0 {620 0 0 0 | class5=96.88%
six 0 0| 0 0 0 0 {63 O 1 0 | class6=98.44%
seven | 2 0{0 0 0 0 |0 62 0 0 | class7=96.88%
eight | 0 0} 0 0 0 0|1 0 63 0 | class8=98.44%
nine 0 4 0 0 0 0 0 0 0 60 | class9=93.75%

average recognition rate 96.56%

Table 5.15: Recognition result on training set for the reduced dimensionality found
by KL-expansion algorithm and by training the discriminative model
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zero | one | two | three | four | five | six | seven | eight | nine | recognition rate

zero | 179 | 0 7 0 2 0 0 3 0 1 class0=93.23%
one 0 (183 O 0 0 1 0 0 0 8 | class1=95.31%
two 0 0 192 O 0 0 |0 1 0 0 | class2=99.48%
three | 0 0 4 | 179 1,0 0 8 0 | class3=93.23%
four | O 1 ¢ 0 190 | 1 0 0 0 0 | class4=98.96%
five 0 1 0 0 1 (183 O 2 0 5 | class5=95.31%
six 0 0 0 2 0 4 11824} 0 4 0 | class6=94.79%
seven | 1 0| o 0 0 1 | 0 | 190 0 0 | class7=98.96%
eight | 0 0 0 2 0 1 3 0 186 0 | class8=96.88%
nine { 0 | 18 | O 2 0 4 0 0 0 168 | class9=87.50%

average recognition rate 95.36%

Table 5.16: Recognition result on test set for the reduced dimensionality found by
KI-expansion algorithm and by training the discriminative model



Chapter 6

Summary and conclusion

The motivations behind this thesis were inspired based on the following three facts.
First, speech signal is produced by our articulatory apparatus which has inherent
physical constraints in the production mechanism, and as a result statistical con-
straints are imposed in the pattern of speech. Second, speech units such as words
or sentences are produced by human in a way that they can be recognizable by
human recognition system. Third, although speech units may have a high degree
of variability in their patterns, their differences are more easily measurable when

compared with each other pairwise.

Most of the features extracted in this thesis use speech spectrogram. Based
on speech spectrogram reading experiences, speech units that sound differently,
have measurable differences in their spectrogram patterns. In this thesis, I tried to
measure such differences with emphasis on those features that are more important

in the classification of more confusing classes using image processing techniques.

Extracting discriminative features from spectrogram for different speech units
results in a large dimensionality of input vector for each frame of speech. This

87
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is due to the fact that features that may be good for a classification task, may
not be good for other classification tasks. As a result of high dimensionality of
input space, design of classifiers becomes difficult mainly due to three factors: lack
of enough training data, improper choice of models, and lack of an appropriate
training algorithm. It may also be computationally impractical for real time speech
recognition to build classifiers in higher dimensional space (if the classifiers can not
be implemented using parallel processors). Design of feature selection and feature
extraction based on minimizing the probability of error is also a difficult problem

for the same aforementioned reason for the design of classifiers.

Instead of minimizing the probability of error, the proposed feature selection
and extraction algorithms use a classifier trained in the higher dimensional space
as a measure of class separability. This was achieved by introduction of a new
form of classifiers for speech recognition along with a new discriminative training
algorithm. In the training algorithm, first a new form of misclassification measure
was defined, and then this measure was minimized over the training set. The mis-
classification measure was shown to be a smooth version of probability of error. It
was shown that the change in the misclassification measure (or indirectly the prob-
ability of correct classification) for the proposed feature selection and extraction
algorithms was bounded. It was also shown that such a bound could be minimized.
This was achieved by properly presenting vectors perpendicular to decision hyper-
planes weighted by their share of misclassification measure in the lower dimensional
space. This in turn resulted in the proposed state dependent feature selection and
extraction algorithm.

It was also shown through speaker independent experiments that classification
of confusing classes can be much better achieved by the proposed algorithm. Also,
it was shown that classification can be achieved in a low dimensional space with
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better classification rate.

This thesis also suggests that the problem of speech recognition should be partly
addressed in the feature selection and extraction stages. The algorithms proposed
here can be practically implemented using parallel processors and the computations
left for classifiers are highly reduced. This suggests that increasing the parallel
processing ability of computers is more important and economically cheaper than

increasing their speed for the purpose of speech recognition.

6.0.1 Contributions

The contribution of this thesis are as follows:

e Introduction of a new discriminative training algorithm for the design of

speech classifiers with emphasis on a specifically designed state model.

¢ Introduction of a new discriminative segmentation algorithm for segmentation

of speech utterances to states of the proposed model.

¢ Introduction of a new feature selection and extraction algorithm based on
minimizing the misclassification measure of classifiers built in higher dimen-

sional space.

e Introduction of a new self-organizing image segmentation algorithm for fea-

ture extraction from speech spectrogram.



Appendix A

State models

In this appendix state models used in the experiments are shown. We also provide a

sample of spectrogram of each word and its corresponding hand segmented regions.
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Figure A.1: (a) A sample of segmented word /zero/ (b) state model of word /zero/
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0,11 silence
1 voice bar only
2 voice bar + friction of /z/
3 voice bar + friction of /z/ + F2 + F3
4 vowel /i/ as in /zero/
5 transition /i/ to /r/, F2 going down
6 [x/ F3 low
7 F3 going up, transition /r/ to o/
8 F3 much higher than F2 in /o/
9 Fl1 and F2 in /o/ present
10 whisper mode of /o
12 friction of /z/ without voice bar
13 | friction of /z/ without voice bar + F2 + F3

Table A.1: Important features associated to states of model /zero/
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Figure A.2: (a) A sample of segmented word /one/ (b) state model of word /one/
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silence
F1 +F2low in /w/
Fl1 +F2low + F3 in /w/
F1 low + F2 high + F3 (transition /w/ to /n/)
/n/

/n/ with voice bar only

o
Qo

/n/ + aspiration

/n/ in whisper mode

O ||| || =

voice bar

Table A.2: Important features associated to states of model /one/

04
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Figure A.3: (a) A sample of segmented word /two/ (b) state model of word /two/

0,6 silence
pencil line
aspiration of /t/ with high energy

aspiration of /t/ with low energy
transition of /t/ to o/ (F2 high)
/o/, F1 +F2, F3 not present

[ B S U B R

Table A.3: Important features associated to states of model /two/
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Figure A.4: (a) A sample of segmented word /three/ (b) state model of word /three/



APPENDIX A. STATE MODELS

0,7 silence
/th/ aspiration +F2 + F3
F2 and F3 going down, transition of /th/ to /r/
/r/ F3 low
transition of /r/ to /i/, F2 and F3 going up
/i/ sound

(=20 RS0 I L o )

voice bar

8 /th/ aspiration, F2 and F'3 not present

Table A.4: Important features associated to states of model /three/
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Figure A.5: (a) A sample of segmented word /four/ (b) state model of word /four/

0,7 silence
friction of /f/
[o/, F2 low, F3 high
transition of /o/ to /r/, F3 going down
[x/ , F3low

voice bar

D |Ov | v || =

whisper mode of voice bar

Table A.5: Important features associated to states of model /four/
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Figure A.6: (a) A sample of segmented word /five/ (b) state model of word /five/

0,8 silence

friction of /f/

[aa/

transition of /aa/ to /ey/, F3 going up

transition of /ey to /v/, F3 going down

voice bar in [v/

silence

~ | OOt W N

friction of /v/

Table A.6: Important features associated to states of model /five/
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Figure A.7: (a) A sample of segmented word /six/ (b) state model of word /six/

o0

silence
friction of /s/ high frequencies only
friction of /s/ high and low frequencies F2, F3 present
/i/ in six, F2 and F3 join
/k/ sound high energy around 2kHz
friction of /s/ high frequencies

DOV W [N

7 friction of /s/ low frequencies

Table A.7: Important features associated to states of model /six/
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Figure A.8: (a) A sample of segmented word /seven/ (b) state model of word /seven/
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0,10

silence

friction of /s/ high frequencies

friction of /s/ high and low frequencies

/e/

/v/ with pattern as in low energy /e/

transition of /e/ to /v/

/n/

/n/ voice bar only

/n/ voice bar and aspiration

O |0 |3 ]| |0 | WD |-

whisper mode of voice bar

P
—

/v/ with pattern of voice bar

12

/v/ with pattern of friction as in /f/

Table A.8: Important features associated to states of model /seven/

102



APPENDIX A. STATE MODELS 103

D

[¢ )
T

»
T

Frequency (KHz)
N (&)
1 ¥

-
)

(b)
Figure A.9: (a) A sample of segmented word /eight/ (b) state model of word /eight/
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©

silence

/e/ with low energy

/ey/ F2 going up
/ey/ F2 going down

voice bar
pencil line
aspiration of /t/ with high and low energy

N || ]WLW IO

8 aspiration of /t/ with low energy only

Table A.9: Important features associated to states of model /eight/
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Figure A.10: (a) A sample of segmented word /nine/ (b) state model of word /nine/
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silence
/nf
transition of /n/ and /aa/, F1 and F2 are distanced
Jaa/
/ey/ F2 going up
/n/

voice bar

©o
=}

/n/ with aspiration

@O || || (DN

/n/ aspiration only

Table A.10: Important features associated to states of model /nine/
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Figure A.11: (a) A sample of segmented word /bi/ (b) state model of word /bi/
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0,8 silence

voice bar
pencil line
aspiration of /b/

transition of /b/ to /i/, F2 and F3 moving up
/i/
/i/ with weak F2
7 /i/ in whisper mode

DOV [ W=

Table A.11: Important features associated to states of model /bi/
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Figure A.12: (a) A sample of segmented word /di/ (b) state model of word /di/
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0,8 silence

voice bar

pencil line

aspiration of /d/

transition of /d/ to /i/, F2 and F3 moving up
/if
/i with weak F2
7 /i/ in whisper mode

(=2 LI I UC T -

Table A.12: Important features associated to states of model /di/
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Figure A.13: (a) A sample of segmented word /pi/ (b) state model of word /pi/

0,5 silence
1 | aspiration of high energy in low frequencies
2 fi/
3 /i/ with weak F2
4 aspiration of /i/

Table A.13: Important features associated to states of model /pi/
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Figure A.14: (a) A sample of segmented word /ti/ (b) state model of word /ti/

0,6 silence
pencil line

aspiration of /t/
/i/
/i/ with weak F2

voice bar

AN ||

Table A.14: Important features associated to states of model /ti/
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