
Feature Model Mining

by

Steven She

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2008

c
 Steven She 2008

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Software systems have grown larger and more complex in recent years. Generative
software development strives to automate software development from a systems family
by generating implementations using domain-specific languages. In current practice,
specifying domain-specific languages is a manual task requiring expert analysis of multiple
information sources. Furthermore, the concepts and relations represented in a language
are grown through its usage. Keeping the language consistent with its usage is a time-
consuming process requiring manual comparison between the language instances and its
language specification. Feature model mining addresses these issues by synthesizing a
representative model bottom-up from a sample set of instances called configurations.

This thesis presents a mining algorithm that reverse-engineers a probabilistic feature
model from a set of individual configurations. A configuration consists of a list of features
that are defined as system properties that a stakeholder is interested in. Probabilistic ex-
pressions are retrieved from the sample configurations through the use of conjunctive and
disjunctive association rule mining. These expressions are used to construct a probabilistic
feature model.

The mined feature model consists of a hierarchy of features, a set of additional hard
constraints and soft constraints. The hierarchy describes the dependencies and alterna-
tive relations exhibited among the features. The additional hard constraints are a set of
propositional formulas which must be satisfied in a legal configuration. Soft constraints
describe likely defaults or common patterns.

Systems families are often realized using object-oriented frameworks that provide
reusable designs for constructing a family of applications. The mining algorithm is
evaluated on a set of applications to retrieve a metamodel of the Java Applet framework.
The feature model is then applied to the development of framework-specific modeling
languages (FSMLs). FSMLs are domain-specific languages that model the framework-
provided concepts and their rules for development.

The work presented in this thesis provides the foundation for further research in feature
model mining. The strengths and weaknesses of the algorithm are analyzed and the thesis
concludes with a discussion of possible extensions.

iii

Acknowledgements

I would like to begin by thanking my supervisor, Professor Krzysztof Czarnecki, for
providing the direction and guidance that has led to the completion of my Master’s degree.
His mentoring has taught me to enjoy the occasionally arduous, but ultimately rewarding
process of research. Without his guidance, this thesis would not have been possible.

I would also like to thank Professor Joanne Atlee and Professor Michael Godfrey of
the University of Waterloo, and Professor Andrzej Wąsowski of the IT University of
Copenhagen for taking their time to read and suggest improvements to this thesis. I am
grateful for their professional advice and helpful comments towards this work.

Furthermore, I would like to express thanks to my course instructors, Professor Ric
Holt, Professor Steve MacDonald, and Professor Chrysanne Di Marco for introducing
me to the world of research. Their knowledge and expertise have provided me with the
academic background that has been invaluable for the completion of this thesis.

My colleagues in the Generative Software Development Lab have made it a great place
to work. Our frequent discussions have helped me find my course of research and provided
the much needed laughs during my studies.

I am grateful to my friends for being able to put up with my busy schedule and occasional
absences to social gatherings. During my Master’s, they have reminded me to take a break
when it was the last thing on my mind.

I am indebted to my girlfriend, Anita, for having the patience to listen to my jargon
filled presentations, erratic graduate student hours and for embracing my inner geekness. I
am grateful that she has taken the time to complete the strenuous task of proof-reading and
editing this thesis (which included this sentence). She has cared for me when I couldn’t
care for myself. Her love and support has provided me with inspiration and motivation.

Finally, I would like to express my sincerest appreciation to my family for their endless
love, encouragement and support. They have taught me to keep an open-mind and to
always strive to reach my full potential. With that, I was able to discover my strength
in the field of Computer Science. Their unwavering faith in my abilities have been my
motivation for seeking out this Master’s degree and for excelling in my future studies.

iv

Contents

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Research Contributions . 2
1.2 Notation . 2
1.3 Thesis Organization . 3

2 Background 4
2.1 Basic Feature Model . 4

2.1.1 Connection with Propositional Logic 6
2.2 Probabilistic Feature Model . 8
2.3 Data Mining . 9
2.4 Framework-Specific Modeling Languages 10

3 Mining for Feature Models 11
3.1 Overview of the Algorithm . 12
3.2 Sample Sets and Propositional Logic 14
3.3 Association Rules . 15
3.4 Retrieving Feature Model Formulas 17

3.4.1 Binary Implications . 18
3.4.2 Group Implications . 19
3.4.3 Mutual Exclusion Clauses . 23
3.4.4 Retrieving Multiple Feature Models 26
3.4.5 Additional Hard Constraints 26
3.4.6 Soft Constraints . 27

3.5 Propositional Formula to Feature Model 27
3.6 Feature Model Mining Algorithm . 28
3.7 Implementation . 30

4 Mining on Frameworks 31
4.1 Applet FSML . 32
4.2 Constructing the Applet Metamodel 34

4.2.1 Constructing the Sample Set 35

v

4.2.2 Mined Applet Metamodel . 37
4.2.3 Soft Constraints . 41
4.2.4 Study Conclusions . 43

4.3 Mining on the Framework Boundary 44

5 Analysis and Future Work 45
5.1 Cardinality-Based Feature Models . 45
5.2 User-specified Queries . 45
5.3 Correcting Errors in the Sample Set 46

5.3.1 Effect of Errors on the Feature Hierarchy 46
5.3.2 Dealing with Errors . 47
5.3.3 Presenting Constraints . 49
5.3.4 Filtering Soft Constraints . 49

5.4 Using Prior Knowledge . 50
5.4.1 Additional Hard Constraints 50
5.4.2 Separating AND-groups . 50
5.4.3 Asserted Structures . 51
5.4.4 Other Sources of Knowledge 52

5.5 Rule Mining Optimizations . 52
5.5.1 Alternate Interestingness Measures 52
5.5.2 Generalized Association Rules 53

6 Related Work 54
6.1 API Usage Mining . 54
6.2 Ontology learning systems . 54
6.3 Bayesian network learning . 55

7 Conclusions 56

Appendix 58

Bibliography 59

vi

List of Tables

2.1 Sample set notations . 10

3.1 Sample set of clock configurations . 17
3.2 Minimal OR-clauses mined from the clock sample set 22
3.3 Mined group implications . 23
3.4 Mined mutual exclusion clauses . 25
3.5 Set of soft constraints for the clock feature model 27

vii

List of Figures

2.1 Basic feature model of an applet . 5
2.2 Textual rendering of the applet feature model 7
2.3 Propositional formulas representing the applet feature model 7
2.4 Probabilistic feature model of an applet 9

3.1 From a sample set of configurations to a mined model 13
3.2 Configuration expressions and supporting configurations 15
3.3 Expert-specified clock feature model 17
3.4 Binary association rule mining . 20
3.5 Clock implication graph and resulting feature diagram 21
3.6 Feature diagram after adding group implications 24
3.7 Feature diagram after adding mutual exclusion clauses 25
3.8 Retrieving multiple feature models . 26
3.9 Feature model mining algorithm . 29

4.1 Expert-specified Applet FSML metamodel 33
4.2 Constructing a configuration from a framework-specific model 36
4.3 Mined Applet FSML metamodel . 37

5.1 Progression of a set of constraints . 48
5.2 Separating AND-groups . 51
5.3 Simple taxonomy . 53

viii

CHAPTER 1

Introduction

Inevitably, software systems grow in both size and complexity. Object-oriented program-
ming has greatly increased a developer’s ability to model large and complex domains,
however, object-orientation alone has been insufficient for achieving the scalability neces-
sary for software systems today and in the future.

Generative software development adopts a systems engineering approach and automates
the creation of software systems from a systems family by generating an implementation
from a set of specifications written using domain-specific languages [Cza04]. In current
practice, these languages are written in a top-down fashion by an expert through analysis
of domain artifacts such as documentation and existing applications. In addition, languages
are extended and grown over time by its usage. Incorporating new abstractions introduced
by a language’s usage is important to its evolution [Ste99]. This is particularly applicable
in the area of generative software development where users construct domain-specific
languages tailored to their specialized domain.

A systems family is a set of software systems that share a common infrastructure and
product characteristics called features. Feature modeling is a key technique for identifying
common and variable features in a systems family and formalizing such analysis in the
form of a feature model. In the current state of the art, feature models are constructed
using a top-down approach involving analysis of domain artifacts by an expert. Examples
of feature models constructed using such an approach include template libraries [CE00],
Telecom systems [LKL02], and e-commerce systems [Lau06]. Feature model mining
introduces a novel bottom-up approach for retrieving a representative feature model from
a sample set of system family members, called configurations.

Systems families are often realized using object-oriented frameworks. An object-
oriented framework provides a reusable set of abstractions for building a family of frame-
work applications. Frameworks have a set of rules for development, called its rules of
engagement, which must be followed when building framework applications. Framework-
specific modeling languages (FSMLs) are domain-specific languages for formalizing the
framework-provided concepts in an object-oriented framework and its rules of engagement

1

1.2 NOTATION 2

[AC06]. FSMLs use feature models to describe a framework’s rules and concepts. Thus,
FSMLs offer the perfect target for applying feature model mining to a practical problem
in software engineering.

Currently, building an FSML is a manual process that requires a framework expert to
construct a feature model from several sources of information such as existing applications,
developer documentation, tutorials and web articles. Feature model mining automates the
construction by reverse-engineering a feature model from a sample set of applications.
In this thesis, feature model mining is applied as a means of comparing framework
applications with an FSML, discovering implementation patterns, and jump-starting FSML
development.

The feature model mining algorithm is used to reverse-engineer a feature model for the
Applet FSML [AC07]. Through the exploratory case study, several issues are identified
and potential solutions are discussed. Consequently, the work presented in this thesis also
suggests significant future work for improving and extending the mining algorithm.

1.1 Research Contributions

The following novel contributions are made in this thesis:

� The feature model mining algorithm which reverse-engineers a probabilistic feature
model from a sample set of configurations is presented.

� A method for constructing disjunctive association rules using minimal OR-clauses is
described.

� Applying feature model mining towards the development of an framework-specific
modeling language (FSML) is described. The mined feature model is used to analyze
framework usages and to refine an existing FSML.

� The work presented in this thesis provides the foundation for further research in the
area of feature model mining. Short-term and long-term extensions and improvements
to the mining algorithm are presented.

1.2 Notation

A negated feature i is denoted as i when describing propositional formulas. This thesis
applies association rule mining in retrieving probabilistic propositional formulas. To
differentiate association rules and Boolean implications, an association rule between two
expression A and B is denoted by a double right arrow, A) B, while Boolean implications
are denoted by a single right arrow, A! B. The differences between association rules and
implications are further discussed in Section 3.3.

1.3 THESIS ORGANIZATION 3

1.3 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 introduces fundamental
concepts used in this thesis, such as feature models, data mining and framework-specific
modeling languages (FSMLs). Chapter 3 presents the feature model mining algorithm
and methodology in detail. Chapter 4 discusses several use cases of feature model mining
for FSML development. Chapter 5 discusses extensions and improvements to the mining
algorithm. Finally, Chapter 7 summarizes the work presented and concludes the thesis.

CHAPTER 2

Background

In this chapter, an overview of the areas that this thesis addresses is presented. In Sec-
tion 2.1, basic feature models are introduced. Section 2.2 describes probabilistic feature
models which are an extension of basic feature models with support for soft constraints.
Section 2.3 briefly describes the necessary data mining concepts and terminology and
finally, Section 2.4 provides a brief overview of framework-specific modeling languages
(FSMLs).

2.1 Basic Feature Model

A feature model [KCH+90] consists of a feature hierarchy describing its variability and
an optional set of constraints. A feature is a property that is relevant to some stakeholder
[CE00]. For example, features in a car may be a gearbox, wheels, and an engine. A feature
model can be instantiated in the form of a configuration. A configuration is a set of
selected features according to the semantics of a feature model. Consequently, a feature
model describes a set of legal configurations with respect to a set of features. A basic
feature model consists of a set of hard constraints, separated into two components: (i)
a feature hierarchy and (ii) a set of additional hard constraints. A hard constraint is a
constraint in the feature model that must be satisfied in all legal configurations.

The feature hierarchy is a tree of features. A feature may have one or more child features
called subfeatures. The top most feature in the feature hierarchy is called the root feature.
In a basic feature model, all features other than the root feature must either be a solitary or
a grouped feature [CE00]. Solitary features are either mandatory or optional. Mandatory
features should be selected in all legal configurations, and optional features may or may
not be selected provided that its parent is selected. Grouped features are subfeatures of
either an OR-group (inclusive-or) or a XOR-group (exclusive-or). An OR-group requires
that at least one subfeature be selected in a legal configuration. A XOR-group requires that
exactly one subfeature must be selected in a legal configuration.

4

2.1 BASIC FEATURE MODEL 5

Applet

must override

paintinitstart

destroy stopinit thread

fieldthis

stop! start

Figure 2.1: Basic feature model of an applet

In additional to the feature hierarchy, a basic feature model may have an additional
set of hard constraints. Additional hard constraints are specified as a list of propositional
formulas. These additional hard constraints further limit the set of legal configuration as
described by the feature hierarchy.

Feature modeling has also been extended with support for other concepts, such as
feature and group cardinalities, attributes and references [CHE05]. These extensions are
not covered by the mining approach presented in this thesis, but can be solved as part of
future work.

In this thesis, two graphical renderings of feature models are used: (i) a feature diagram,
and (ii) a textual representation.

The feature diagram notation was first introduced by Kang et al. in their Feature
Oriented Domain Analysis (FODA) [KCH+90] methodology. It was later expanded upon
by Czarnecki and Eisenecker with the addition of OR-groups [CE00]. In this notation,
features are represented by labeled rectangular boxes. The root feature is represented as the
top most, superior feature with no ancestors. Subfeatures are indicated by a line connecting
parent to child. Solitary features are denoted by a small circle where a filled circle indicates
a mandatory feature and an empty circle denotes an optional feature. Grouped features are
represented by an arc between its subfeatures. A filled arc represented a OR-group, while
an empty arc represents an XOR-group. The list of additional hard constraints is shown
below the feature hierarchy.

A second, textual rendering of a feature model is also used in this thesis. The notation is
based on the tree notation used in the Eclipse Feature Modeling Plug-in (fmp) [CAK+05].
In a textual representation, descendants of a feature are indicated by its indentation. The
topmost feature in the tree is the root feature and is shown in bold face. Indentation is
used to indicate subfeatures. A solitary feature is prefixed with its cardinality, where [0::1]
represents an optional feature and [1::1] represents a mandatory feature. An OR-group with
k features is shown as h1–ki, and an XOR-group is shown as h1–1i. Additional constraints
are listed below the feature hierarchy.

2.1 BASIC FEATURE MODEL 6

In Figure 2.1, a basic feature model of an Applet is shown as a feature diagram. In
this example, Applet is the root feature. The features must override, init thread, destroy,
and stop are solitary features and subfeatures of Applet. The must override node is an
OR-group, with paint, start, and init as its subfeatures. init thread is an XOR-group. The
equivalent textual representation of this feature model is shown in Figure 2.2.

2.1.1 Connection with Propositional Logic

The constraints imposed by a basic feature model can be represented as a conjunction of
propositional formulas [Bat05, BBC06]. The features in a feature model are translated to a
set of Boolean variables. Each feature and feature group in the feature hierarchy of a basic
feature model can be systematically broken down into the following hard constraints:

Child-parent implications. The nesting relations in the feature hierarchy are repre-
sented as implications from a child feature to its parent feature. The following form of
constraint models the nesting for a parent feature fp with a subfeature fc:

fc! fp (2.1)

Mandatory features. A mandatory feature is a feature that must be present in all legal
configurations given the presence of its parent feature. Translating this constraint into a
propositional formula, mandatory features are bi-implications between parent and child.
The bi-implication provides the constraint that the presence of the parent implies the
presence of the child, and vice versa. In addition to the child-parent implication shown
in Equation 2.1, A mandatory subfeature fc with parent feature fp has the following
constraint:

fp! fc (2.2)

AND-groups. An AND-group is a set of features that are always present given the
presence of its parent feature. An AND-group is logically equivalent to a set of mandatory
features with the same set of ancestors. An AND-group with features f1; : : : ; fk has the
following constraint:

k̂

i=1

k̂

j=1
i6= j

fi! f j (2.3)

OR-groups. The OR-group requires one or more subfeatures to be selected in a legal
configuration. Thus, a constraint exists from the parent to the subfeatures in the form of
an OR-clause. Expressing an OR-group f with subfeatures f1; : : : ; fk in propositional logic
requires adding the following constraint in addition to the child-parent implications:

f !
k_

i=1

fi (2.4)

2.1 BASIC FEATURE MODEL 7

Applet
[1::1] must override
h1–3i

[0::1] paint
[0::1] start
[0::1] init

[0::1] init thread
h1–1i

[0::1] this
[0::1] field

[0::1] destroy
[0::1] stop

Additional Constraints:
stop ! start

Figure 2.2: Textual rendering of the applet feature model

stop! Applet
destroy! Applet

init thread! Applet
must override! Applet

paint!must override
start!must override
init!must override
this! init thread

field! init thread

Applet!must override
must override! paint_ start_ init

init thread! this_field

(b) parent-child and group implications

this! field

field! this

(a) child-parent implications (c) mutual exclusion conditions

Figure 2.3: Propositional formulas representing the applet feature model

2.2 PROBABILISTIC FEATURE MODEL 8

XOR-groups. The XOR-group is a specialization of the OR-group with the additional
constraint of mutual exclusion amongst it’s subfeatures (ie. one and only one feature may
be selected in the XOR-group). Consequently, an XOR-group f with subfeatures f1; : : : ; fk
require the constraints of an OR-group and the following set of mutual exclusion clauses:

k̂

i=1

k̂

j=1
i6= j

fi! f j (2.5)

A feature model is logically represented by its feature model formula which is the
conjunction of the propositional formulas for features, feature groups and additional
constraints. Thus, a legal configuration corresponds to a valuation of the feature model
formula that evaluates to true.

2.2 Probabilistic Feature Model

Probabilistic feature models (PFMs) introduces a new constraint called the soft constraint
to basic feature models by using probabilistic logic constraints [CSW08]. A soft constraint
is a constraint that should be satisfied by most, but not necessarily all legal configurations.
As a result, a legal configuration may violate a soft constraint and still remain legal. Soft
constraints can be used to specify defaults or preferences in a PFM. This is in contrast to
a hard constraint, which is a constraint that must be satisfied in all legal configurations.
Soft constraints have no impact on individual configurations, however, the set of soft
constraints models a distribution of configurations for a PFM.

There is no single formalism for specifying soft constraints in a PFM. For example, we
could choose a loose description of preference, such as using the terms “encourages” and
“discourages”. In the case of the feature model mining algorithm, the mined PFM uses
conditional probabilities in the form of confidence.

In Figure 2.4, a probabilistic feature model of an applet is shown. In the probabilistic
feature model, the constraint stop! start is modeled as a soft constraint instead of a hard
constraint as in the basic feature model in Figure 2.1. The soft constraint provides the
user with the information that if stop was selected in a configuration, then start should
probably be selected as well. However, modeling the relationship as a soft constraint
allows an individual configuration to violate the particular constraint and still be a legal
configuration.

2.3 DATA MINING 9

Applet

must override

paintinitstart

destroy stopinit thread

fieldthis

stop encourages start
init encourages init thread

Figure 2.4: Probabilistic feature model of an applet

2.3 Data Mining

Data mining is the process of extracting knowledge from large amounts of data [HK00].
Feature model mining uses association rule mining to retrieve the necessary propositional
formulas to construct a probabilistic feature model. In this section, data mining concepts
will be related to feature model terminology and an overview of association rule mining
follows.

A sample set of configurations, S , and a set of features, F , is provided as input into the
feature model mining algorithm. A sample set contains a multiset of sample configura-
tions. A sample configuration, c 2 S, is a set of selected features from F . Each sample
configuration has an associated id, called a tid in order differentiate configurations in the
multiset. The absent features in a configuration, c, is represented as c.

In data mining terminology, a sample set is equivalent to a dataset. A sample configura-
tion is the same as a transactions and a feature is equivalent to an item or attribute in data
mining literature. Since this thesis is mainly concerned with feature models, the feature
model terminology will be primarily used.

The two notations for representing a sample set used in this thesis are shown in Table 2.1
on the following page. At the top of the table, the set of features,F , is shown. In Table 2.1a,
the sample set is represented as a list of configurations. In the left column, the tid is shown,
and in the right, the set of selected features for the configuration is shown. In Table 2.1b,
the tabular form for a sample set is presented. Here, the columns consist of the set of
features, F . A check mark (X) in a column represents that the feature is selected in a
configuration.

Association rule mining is used by the mining algorithm to retrieve propositional for-
mulas from the sample set. An association rule, written A) B, is an expression between
two Boolean formulas A and B with an associated interestingness. The interestingness
measures the quality and strength of the association rule. The measures of interesting-

2.4 FRAMEWORK-SPECIFIC MODELING LANGUAGES 10

F = fOverride;Start; Init;Paintg

id Configuration

1 Override Init Paint

2 Override Start Init

3 Override Start

Tid Override Start Init Paint

1 X X X

2 X X X

3 X X

(a) List of configurations (b) Tabular form

Table 2.1: Sample set notations

ness used in this thesis are support and confidence. Support is a measure of statistical
significance and confidence is a measure of rule strength. An association rule with 100%
confidence is equivalent to a boolean implication. A detailed definition of support and
confidence is provided in Section 3.3.

A significant but subtle difference between an association rule and a Boolean implication
exists. An association rule was defined by Agrawal et al. as an implication between two
expression [AIS93]. During the course of research, it was found that a Boolean implication
and an association rule have a different interpretation when the confidence of an association
rule is less than 100%. An association rule can model uncertainty when its confidence is
less than 100%. A Boolean implication cannot model such a concept. An association rule
is equivalent to a Boolean implication only in the case where the rule has a confidence of
100%. The differences are further explained in Section 3.3.

2.4 Framework-Specific Modeling Languages

We apply feature model mining to the development of framework-specific modeling
languages (FSMLs). An FSML is a domain-specific language that describes concepts in
an object-oriented framework [AC06]. Framework-provided concepts and relations are
represented in a metamodel specified using a feature model. A given FSML configuration
is called a framework-specific model and it describes the concepts as implemented in the
corresponding sample application [ABC07].

The metamodel of an FSML is an extended feature model enriched with support for
attributes and references [CHE05]. The mining algorithm presented in this thesis is
incapable of mining for these extension. This thesis is focused on mining FSMLs that use
basic feature models. Implementing the mentioned extensions is left as future work.

We have identified the following use cases for feature model mining in the context
of FSMLs: (i) as a basis for jump-starting development of an FSML, (ii) as an means
of comparing an expert-specific FSML and sample applications, and (iii) as a method
of refining an existing FSML by discovering new patterns in sample code. We discuss
FSMLs and the application of feature model mining to these use cases in Chapter 4.

CHAPTER 3

Mining for Feature Models

The core of the feature model mining algorithm lies in the retrieval of propositional
formulas for each type of feature in a basic feature model. The mined propositional
formula with 100% confidence are conjoined to form the feature hierarchy formula. Next,
a feature model synthesis algorithm introduced by Czarnecki and Wąsowski [CW07] is
used to construct the mined feature model.

The chapter begins with an overview of the feature model mining algorithm in Sec-
tion 3.1. The overview will provide a better understanding of the mining process using an
example to demonstrate the steps of the algorithm from start to finish.

The connection between a sample set and propositional logic is described in Section 3.2.
Two important operators are established, the configuration expression and the supporting
configurations. The configuration expression defines a mapping from a configuration to a
propositional formula, while the supporting configuration defines an inverse mapping.

Section 3.3 describes the use of association rules for feature model mining. Association
rule mining is used to retrieve the various forms of propositional formulas from a sample
set. Association rules describe a relationship between two expression and have a measure
of quality. Support and confidence are the two measures used in this thesis to quantify
statistical significance and the quality of the rules respectively. These measures, called
rule interestingness measures, are further described in this section.

Section 3.4 presents an in-depth description of the feature model mining algorithm.
Following the semantic constructs of feature models described in Chapter 2, three forms of
implications are mined to construct a probabilistic feature model: (i) binary implications,
(ii) group implications, and (iii) mutual exclusion clauses. The process and techniques
used for retrieving the various forms of formulas for each feature type are described.

The mining algorithm uses the feature model synthesis algorithm by Czarnecki and
Wąsowski to construct a feature model after having mined for the formulas in the sample
set. The synthesis algorithm constructs a feature model using a propositional formula as
input. The algorithm is described in further detail in Section 3.5.

11

3.1 OVERVIEW OF THE ALGORITHM 12

The implemented mining algorithm is presented in Section 3.6. Finally, the chapter
ends with a description of the current prototype in Section 3.7.

3.1 Overview of the Algorithm

Feature model mining retrieves a probabilistic feature model representative of a sample
set of configurations. The mining algorithm relies on the property that feature models
can be synthesized from propositional logic [CW07]. Thus, the goal of the feature model
mining algorithm is to retrieve the propositional formula for the semantic constructs of
a basic feature model as described in Section 2.1.1. These formulas are mined from the
sample set using association rule mining. Association rules mined with 100% confidence
are equivalent to implications and thus, are used to construct the feature hierarchy. This
equivalence is further explained in Section 3.3. Rules with less than 100% confidence are
presented to the user as a list of soft constraints.

Conceptually, the mining algorithm can be broken down into the following steps:

1. Mine for the following association rules:
i. in the form of binary implications,

ii. group implications,
iii. and mutual exclusion clauses.

2. Create the feature hierarchy formula.
3. Construct feature model using the feature model synthesis algorithm.
4. Construct set of soft constraints.

The algorithm begins by mining for binary implications, which are used to construct
the feature hierarchy and AND-groups. This step involves finding implications of the form
fi! f j in the sample set. The implications are found using conjunctive association rule
mining. Rules with 100% confidence are conjoined to form the feature hierarchy formula.

Next, group implications are mined in order to construct OR-groups. Group implications
have the form f ! f1_�� �_ fk. These constraints are found using disjunctive association
rule mining. 100% confidence rules are selected and conjoined with the feature hierarchy
formula.

The last form of expression is the mutual exclusion clause. These clauses are used to
strengthen existing OR-groups into XOR-groups. Mutual exclusion clauses are implications
of the form fi! f j, where fi; : : : ; f j are subfeatures of an OR-group. If mutual exclusion
clauses for all subfeatures in an OR-group are found in the feature hierarchy formula with
100% confidence, then the feature group becomes an XOR-group.

All mined association rules with less than 100% confidence are gathered to form the
set of soft constraints.

The feature diagram is constructed using the feature model synthesis algorithm by
Czarnecki and Wąsowski [CW07]. All mined rules with 100% confidence are conjoined
together to form the feature hierarchy formula. The formula is fed into the synthesis

3.1 OVERVIEW OF THE ALGORITHM 13

F = fSuit;Handkerchief;Neckpiece;Tie;Bowtieg

id Configuration

1 Suit

2 Suit, Handkerchief

3 Suit, Neckpiece, Tie

4 Suit, Neckpiece, Bowtie

Handkerchief! Suit
Neckpiece! Suit

Tie! Neckpiece
Bowtie! Neckpiece

Neckpiece! Tie_Bowtie

Neckpiece! Handkerchief

Neckpiece! Tie

Bowtie! Handkerchief

Tie! Bowtie

Tie! Handkerchief

(a) Sample set (b) Mined association rules with
100% confidence

Tie Bowtie

Suit

NeckpieceHandkerchief

(c) Mined feature model

Figure 3.1: From a sample set of configurations to a mined model

algorithm which returns a feature diagram representing the inputted formula. The set of
soft constraints consists of all remaining rules with less than 100% confidence.

As an example of the feature mining process, let us assume that a sample set is con-
structed from the sales data of four people at a suit store. The first person purchased just
a suit with no additional items. The second person purchased two items: a suit and a
handkerchief. The third purchased a suit and a tie which is categorized as a neckpiece in
the system. The fourth purchased a suit and a bowtie (also considered a neckpiece). From
the sales data, the set of features, F , is: Suit, Handkerchief, Neckpiece, Tie and Bowtie.
The resulting sample set is shown in Figure 3.1a.

Now, the feature mining algorithm is executed on the sample set. The mined formulas
with 100% confidence are shown in Figure 3.1b. The first four implications shown are
examples of binary implications. The fifth rule, Neckpiece! Tie_Bowtie, is a group
implication and is used to synthesize an OR-group between Tie and Bowtie. Finally, the last

3.2 SAMPLE SETS AND PROPOSITIONAL LOGIC 14

five implications are the mutual exclusion clauses. Note that the mutual exclusion clauses
are bi-directional, in that a mutual exclusion clause x! y is equivalent to y! x. For
example in the mined rules, Tie! Bowtie� Bowtie! Tie. Only one mutual exclusion
clause is useful to us, namely, Tie! Bowtie. This clause is used to strengthen the OR-
group between Tie and Bowtie into an XOR-group.

The mined implications are conjoined together to form a feature hierarchy formula,
which is inputted into the feature model synthesis algorithm. The resulting mined feature
model is shown in Figure 3.1c. Suit is the root feature of the mined feature model.
Handkerchief and Neckpiece are optional features of Suit. Neckpiece has an exclusive-or
relationship between Tie and Bowtie.

3.2 Sample Sets and Propositional Logic

The sample set of configurations, S, simply called the sample set for short is the set of
configurations used for data mining. A sample configuration c is a set of selected features.
The negated configuration, c, consists of the features that were unselected, or absent from
a configuration. The set of all features, F , is the union of all features in the sample set.
The definition of a configuration and its negated configuration is shown in Equation 3.2.

c�F (3.1)
c = F n c (3.2)

A mapping from configurations to propositional logic is first defined. The configuration
expression, r(c), is a clause constructed from a conjunction of all selected features and a
negation of all unselected features in a configuration:

r(c) =
^

v 2 c
v ^

^

w 2 c
w (3.3)

In the inverse direction, the supporting configurations of a Boolean expression, c(α), is
the set of configurations with configuration expressions that satisfy the boolean expression
α:

c(α) = fc 2 S j r(c) satisfies αg (3.4)

The sample set expression, Φ, describes the set of all configurations in the sample
set. The sample set expression, Φ, is an expression in disjunctive-normal form (DNF)
constructed as the disjunction of all the configuration expressions in the sample set:

Φ =
_

c 2 S

r(c) (3.5)

3.3 ASSOCIATION RULES 15

Tid Itemset

c1 A B C

c2 B C

F = fA;B;C;D;Eg

(a) Sample set

r(c1) = A^B^C^D^E

r(c2) = A^B^C^D^E

(b) Configuration expressions

c(A^B) = fc1g

c(B^C) = fc1;c2g

c(A_D) = fc1g

(c) Supporting configurations

Figure 3.2: Configuration expressions and supporting configurations

Figure 3.2 is an example illustrating the defined operators in a sample set. The sample
set, shown in Figure 3.2a, consists of two configurations, c1 and c2. The set of features, F ,
consists of five features, A through E. Figure 3.2b is the set of configuration expressions
for the sample set. Figure 3.2c shows several examples of supporting configurations. The
sample set expression is the disjunction of all configuration expressions in the sample set,
which is r(t1)_ r(t2).

3.3 Association Rules

The mining algorithm uses several forms of association rule mining to retrieve the neces-
sary formulas. An association rule, A) B, is an expression between two propositional
formulas, A and B with a degree of interestingness. Similar to Boolean implications, the
expression A in the association rule is called the antecedent, and the expression B is known
as the consequent. Association rules are directional, such that A) B and B) A are two
distinct association rules.

The quality of an association rule is measured by its interestingness. An interestingness
measure assigns a numeric value quantifying an association rule and allowing it to be
interpreted and compared. The implemented algorithm uses two measures to judge the
quality of a mined association rule, support and confidence [AIS93].

The support of an association rule is a measure of its statistical significance. Support is
defined as the relative size of the set of supporting configurations for A and B with respect
to the size of the sample set:

supp(A) B) =
jc(A^B)j
jSj

(3.6)

A configuration supports an association rule A) B if and only if both A and B are
satisfied in the configuration. The support of an association rule can also be interpreted

3.3 ASSOCIATION RULES 16

in probability theory. The support of association rule A) B can be thought of as the
probability of events A and B occurring together, which is written as P(A\B).

Confidence measures the accuracy or strength of an association rule. In terms of
supporting configurations, the confidence of an association rule is the size of the supporting
configurations of A^B relative to the size of the satisfying configurations of A:

con f (A) B) =
jc(A^B)j
jc(A)j

(3.7)

Intuitively, an x% confidence for an association rule states that given the antecedent
evaluates to true for a configuration c, there is a x% chance that the configuration c also
satisfies the consequent. Confidence can also be written in terms of support as shown in
Equation 3.8.

con f (A) B) =
supp(A) B)

supp(A)
(3.8)

In terms of probability theory, the confidence of an association rule A) B is the
same as the conditional probability of B given A, written P(BjA) [HK00]. The defini-
tion of confidence in Equation 3.8 is analogous to the definition of P(BjA), which is
P(A\B)=P(A).

In association rule literature, an association rule is written as A) B, and is often
referred to as an implication [AIS93, AS94]. In our work, we treat an association rule,
A) B with 100% confidence as being equivalent to the implication A! B in the sense
that the implication A! B holds across all configurations in the sample set.

An association rule, A) B with 100% confidence is a statement that the presence of
A entails the presence of B in the sample set, in all configurations that A is present in.
As a result, it follows from the definition of confidence in Equation 3.7 that given an
association rule with 100% confidence, the supporting configurations of A^B is the same
as the supporting configurations of A:

c(A^B) = c(A) (3.9)

An implication A! B is equivalent to the expression A_ (A^B). Thus, the supporting
configurations of an implication A! B with a corresponding 100% confidence association
rule A) B is:

c(A! B) = c(A)+ c(A^B) (3.10)

= c(A)+ c(A) (3.11)
= S (3.12)

Thus, the implication constructed from an association rule with 100% confidence
holds for all configurations in the sample set and will evaluate to true for the sample set

3.4 RETRIEVING FEATURE MODEL FORMULAS 17

Tid Clock Alarm Digital 24hr Analog Hands

1 X X X

2 X X X

3 X X X

4 X X X X

Table 3.1: Sample set of clock configurations

Digital Analog

24hr Hands

Clock

Alarm

Figure 3.3: Expert-specified clock feature model

expression, Φ. As a result, an association rule A) B with 100% confidence is equivalent
to an implication A! B.

However, in the case where the association rule has less than 100% confidence, there is
no simple relation between the support of an association rule and that of an implication.
Association rules have a range of uncertainty for which its interestingness quantifies, while
Boolean implications do not, and must evaluate to true or f alse for each configuration.
As a result, an association rule cannot be interpreted in terms of propositional logic.

3.4 Retrieving Feature Model Formulas

The core of the feature model mining algorithm lies in mining the propositional formulas
for the feature types from a sample set. The various feature types in a basic feature model
and their translation to propositional logic were introduced in Section 2.1. These feature
types can be generalized into three different forms of implications: (i) binary implications,
(ii) group implications, and (iii) mutual exclusion clauses.

Four clock configurations, shown in Figure 3.1, will be used as the example input sample
set for the algorithm in this section. As a reference feature model, the clock configurations
conform to the expert-specified feature model shown in Figure 3.3. Throughout the
remainder of this section, each step the mining process will be demonstrated on this
sample set.

3.4 RETRIEVING FEATURE MODEL FORMULAS 18

In Section 3.4.1, techniques for retrieving binary implications are described. Sec-
tion 3.4.2 presents disjunctive association rules and mining for group implications. Sec-
tion 3.4.3 describes the process of mining for mutual exclusion clauses. The mining
algorithm is also capable of mining for multiple feature models, which is described
in Section 3.4.4. Techniques for selecting additional hard constraints are presented in
Section 3.4.5. Finally, the mining process for the set of soft constraints is described in
Section 3.4.6.

3.4.1 Binary Implications

Binary implications have the form fi! f j and are used to construct two types of features:
(i) the feature hierarchy in the form of child-parent implications, and (ii) AND-groups
as parent-child implications. AND-groups are logically equivalent to mandatory features.
In order to separate an AND-group into a hierarchy of mandatory features, additional
knowledge is required. This extension to the mining algorithm is discussed further in
Section 5.4.2.

A binary implication fi! f j is equivalent to the following association rules with 100%
confidence called binary association rules:

fi) f j (3.13)

Thus, we mine for binary association rules using two alternative approaches:

1. Feature combinations. The first approach for retrieving binary association rules is by
iterating through all feature tuples (fi ; f j) 2 F

2 and creating an association rule fi) f j
for each tuple. This approach has the advantage of being fast and simple. While this
method finds the necessary rules for constructing the feature hierarchy, soft constraints
involving AND-groups are scattered over multiple binary binary association rules.

2. Conjunctive association rules. This approach mines for conjunctive association
rules which have the form shown in Equation 3.14. Binary association rules are a subset
of conjunctive association rules, however, conjunctive association rules have an added
advantage that soft constraints involving AND-groups are codified as a single association
rule. ^

x2X

x =)
^

y2Y

y (3.14)

Mining for conjunctive association rules can be separated into two steps [HK00]. First,
frequent itemsets are mined from the sample set. Afterwards, the association rules are
constructed using the mined frequent itemsets.

A frequent itemset is a set of features that satisfy a minimum user-specified support.
As a sample set grows in size, the number of frequent itemsets can grow to be very large
[UAUA04]. As a result, the mining procedure mines for either maximal or closed itemsets.

3.4 RETRIEVING FEATURE MODEL FORMULAS 19

Two common forms of frequent itemsets are used in practice, maximal and closed
frequent itemsets. A maximal itemset is a set of features such that no proper superset of
features is also frequent. A closed itemset is a set of features such that no proper superset
has the same support [HK00]. Frequent closed itemsets retain more information than their
frequent maximal itemset counterparts, since frequent subsets of features are retained.

In Figure 3.4a, the closed frequent itemsets with a minimum support of 1 are mined
from the clock sample set using the LCM algorithm by Uno et al. [UKA04] Only the
closed frequent itemsets are shown, however, LCM is also capable of mining for maximal
frequent itemsets.

The second step in constructing conjunctive association rules is the actual generation of
rules using the mined frequent itemsets. We have implemented the association rule mining
algorithm described by Agrawal et al. [AIS93] for this task. Using closed frequent itemsets,
the mining procedure is as follows. Each closed frequent itemset I, is partitioned into two
subset of features, A� I and B = I nA. An association rule,

V
x2A)

V
y2B is constructed

for each possible subset of features A. This process is repeated for each frequent itemset
that is mined. Association rules that satisfy a certain user-specified minimum support and
confidence thresholds, so called strong association rules, are kept

In Figure 3.4b, the conjunctive association rules mined from the clock sample set
of the form x)

W
Y , where x is a single feature, and Y is a set of features, are shown.

Conjunctive association rules with more than one feature in the antecedent have been
omitted, since they do not have an effect on the feature hierarchy. Figure 3.4c is a listing
of all the binary implications equivalent to the conjunctive association rules in Figure 3.4b.
Note that the binary association rules with 100% confidence are equivalent to the binary
implications, as discussed in Section 3.3.

Figure 3.5a shows the implication graph constructed from the mined binary association
rules with 100% confidence (shown in Figure 3.4). In Figure 3.5b, the feature diagram
constructed from the implication graph is shown. The bi-implications between Analog
and Hands is translated into an AND-group. All other features are represented as optional
features in the feature hierarchy.

3.4.2 Group Implications

Group implications have the form f ! f1 _ �� � _ fk where f is a feature group, and
f1; : : : ; fk are the set of subfeatures of the group. Group implications add additional
constraints to a set of subfeatures and require that child-parent implications exist for its
subfeatures. Thus, the implications necessary for constructing an OR-group f , with the set
of subfeatures G are:

1: child-parent implications: fi! f for all fi 2 G

2: group implication: f !
_

fi2G

fi
(3.15)

3.4 RETRIEVING FEATURE MODEL FORMULAS 20

1: Clock
2: Clock^Alarm
3: Clock^Analog^Hands
4: Clock^Alarm^Analog^Hands
5: Clock^Digital
6: Clock^Alarm^Digital
7: Clock^Digital^24hr

(a) Closed frequent itemsets with minimum support of 1

Alarm) Clock con f = 1:0
Analog) Clock^Hands con f = 1:0
Hands) Clock^Analog con f = 1:0
Digital) Clock con f = 1:0

24hr) Clock^Digital con f = 1:0

(b) Subset of the conjunctive association rules with 100% confidence

Alarm! Clock
Digital! Clock

24hr! Clock
Analog! Clock
Hands! Clock

24hr! Digital
Analog! Hands
Hands! Analog

(c) Mined binary implications

Figure 3.4: Binary association rule mining

3.4 RETRIEVING FEATURE MODEL FORMULAS 21

Digital Analog

24hr Hands

Clock

Alarm

24hr

Clock

Analog HandsDigitalAlarm

(a) Implication graph (b) Feature diagram

Figure 3.5: Clock implication graph and resulting feature diagram

Group implications are found by mining for disjunctive association rules in the sample
set. In general, a disjunctive association rule is an association rule between two sets of
features, X and Y , with the form [NCJK01]:

^

x2X

x =)
_

y2Y

y (3.16)

In the context of feature model, we can restrict the mining to rules with a single feature
in the antecedent such that the form of the rule is, f ! f1_�� �_ fk. We call these rules
simple disjunctive association rules.

Consequently, to retrieve the implications necessary to construct an OR-group (shown
in Equation 3.15), the following forms of association rules with 100% confidence are
mined:

1: binary association rules: fi) f for all fi 2 G

2: simple disjunctive association rule: f)
_

fi2G

fi
(3.17)

The mining algorithm uses a novel approach for mining disjunctive association rules.
First, the set of minimal OR-clauses are mined from the sample set. Afterwards, the
disjunctive association rules are constructed using the minimal OR-clauses as the conse-
quents.

An OR-clause is a disjunction of features where it has _ as the only operator over
its literals, or features in our context [ZZR06]. The supporting configurations of an OR-
clause, o, is the set of configurations that contain at least one feature in o. The closure
of an OR-clause o, called C(o), is the union of all features contained in the supporting
configurations, c(o). In other words, the closure of an OR-clause contains only the selected
features in the configuration expression, r(c(o)).

A minimal OR-clause is defined as a disjunction of features such that no subset of
features has the same closure (of features). The set of all minimal OR-clauses for a sample

3.4 RETRIEVING FEATURE MODEL FORMULAS 22

Tidset Minimal OR-clauses

1 24hr

1, 2 Digital

2, 4 Alarm

3, 4 Analog Hands

1, 2, 4 Digital _ Alarm 24hr _ Alarm

1, 3, 4 24hr _ Analog 24hr _ Hands

2, 3, 4 Alarm _ Analog Alarm _ Hands

1, 2, 3, 4
Clock Digital _ Analog
Digital _ Hands 24hr _ Alarm _ Analog
24hr _ Alarm _ Hands

Table 3.2: Minimal OR-clauses mined from the clock sample set

set,M, is defined as the set of minimal OR-clauses for all combinations of closures over
the sample set. The definition ofM, where O and X are sets of features, and C is the
closure operator described above is:

M
n_

O
��� @ X � O s.t. C

�_
X
�
� C

�_
O
�o

(3.18)

Intuitively, a minimal OR-clause can be understood as the smallest expression that
forms a lossless representation of all possible OR-clauses [ZZR06]. Using the closure
operator on a minimal OR-clause o, all other selected features in the set of supporting
configurations can be retrieved. The mined minimal OR-clauses from the clock sample set
are shown in Table 3.2.

Recall the intent was to use minimal OR-clauses as a means of constructing simple
disjunctive association rules with the form f) f1_ �� � _ fk. A minimal OR-clause de-
scribes a disjunction amongst the subfeatures of a group. Thus, the minimal OR-clause
is used as the consequent of a disjunctive association rule. Features present in one or
more configurations that the minimal OR-clause satisfies, or collocated, are selected as
the antecedent. A feature f is collocated with a minimal OR-clause o iff the supporting
configurations of o, c(o) is a subset of the supporting configurations of f , c(f).

The set of disjunctive association rules, D, is mined using the conditions shown in
Equation 3.19. In the case where the set of supporting configurations of the antecedent,
c(f), is equal to the set of supporting configurations of the minimal OR-clause, c(o), the
resulting association rule will have 100% confidence.

D f f) o j o 2M ^ c(o)� c(f)g (3.19)

The simple disjunctive association rules constructed from the mined minimal OR-clauses
(in Table 3.2) with 100% confidence are shown in Table 3.3. These simple disjunctive

3.4 RETRIEVING FEATURE MODEL FORMULAS 23

24hr! Digital_Alarm

Clock! Digital_Analog
24hr! Digital_Analog

Alarm! Digital_Analog
Hands! Digital_Analog

Hands! 24hr_Analog
Analog! 24hr_Hands

Digital! 24hr_Alarm

Clock! Digital_Hands
24hr! Digital_Hands

Alarm! Digital_Hands
Hands! Digital_Hands

Hands! Alarm_Analog
Analog! Alarm_Hands

Clock! 24hr_Alarm_Analog
Digital! 24hr_Alarm_Analog
Hands! 24hr_Alarm_Analog

Clock! 24hr_Alarm_Hands
Digital! 24hr_Alarm_Hands
Analog! 24hr_Alarm_Hands

Table 3.3: Mined group implications

rules are written as their equivalent implication. The implications shown in bold face are
implications of the correct form where the feature in the antecedent is an ancestor of the
subfeatures in the consequent. Thus, only these rules shown in bold have an effect on the
feature hierarchy.

In Figure 3.6, the feature diagram retrieved after adding the mined group implications to
the feature hierarchy formula is shown. Two OR-groups are created as a result of the new
implications. First, an OR-group between Digital and the AND-group (Analog ^ Hands)
is shown in the hierarchy. The second OR-group between Alarm or 24hr or (Analog ^
Hands) is shown as an additional constraint since it cuts through the feature hierarchy (ie.
Clock is not a direct parent of 24hr).

Disjunctive association rule mining is not as well researched as that of conjunctive
association rule mining. Nanavati et al. [NCJK01] present a method for finding disjunctive
association rules through a greedy search algorithm. However, their method does not
retrieve the complete set of disjunctive association rules for a given sample set and as a
result, is not applicable for mining feature models.

3.4.3 Mutual Exclusion Clauses

A mutual exclusion clause has the form fi! f j where fi and f j are subfeatures of an
OR-group. If mutual exclusion clauses exist between all subfeatures of an OR-group, then
a XOR-group is constructed in its place. The conditions necessary for constructing a

3.4 RETRIEVING FEATURE MODEL FORMULAS 24

24hr

Clock

Analog HandsDigitalAlarm

Clock! Alarm_24hr_ (Analog^Hands)

Figure 3.6: Feature diagram after adding group implications

XOR-group f with the set of subfeatures G are:

1: child-parent implications: fi! f for all fi 2 G

2: group implication: f !
W

g2G g

3: mutual exclusion clauses: fi! f j for all fi; f j 2 G and i 6= j

(3.20)

Mutual exclusion clauses are equivalent to so called negative binary association rules
with 100% confidence of the form:

fi) f j (3.21)

Thus, the following forms of association rules with 100% confidence are mined in order
to find the implications necessary to construct an XOR-group f with subfeatures G:

1: binary association rules: fi) f for all fi 2 G

2: simple disjunctive association rule: f)
W

fi2G fi

3: negative binary association rules: fi) f j for all fi; f j 2 G
and i 6= j

(3.22)

A significant difference with mining for negative binary association rules compared
with other expression forms is the need to mine on the absent features of a configuration,
c. Similar to mining for binary association rules, two approaches have been explored
to retrieve negative binary association rules: (i) mining binary implications on absent
features in the sample set, or (ii) using conjunctive association rule mining with absent
features.

Feature combinations with absent features. This approach is similar to the mining
procedure for binary association rules in Section 3.4.1 where we iterate through all feature

3.4 RETRIEVING FEATURE MODEL FORMULAS 25

Digital! Analog
Digital!Hands
Digital! 24hr

24hr! Alarm

24hr! Analog

24hr! Hands

Table 3.4: Mined mutual exclusion clauses

24hr

Clock

Analog HandsDigitalAlarm

Clock! Alarm_24hr_ (Analog^Hands)

Figure 3.7: Feature diagram after adding mutual exclusion clauses

combinations. The key difference is that the consequent of the rules consists of absent
features. We define a new set, F , which contains the set of all negated features f , such
that f 2 F . Using this approach, a negative binary association rule x) y is constructed
for all feature tuples (x;y) 2 F �F .

Conjunctive association rule mining with absent features. Conjunctive association
rule mining can also be used to retrieve negative binary association rules. The employed
association rule mining algorithm by Agrawal et al. [AIS93] is capable of mining only
on selected features. Thus, we apply an operator e(S) to the sample set, which appends
additional features, f -, that represent absent features in a configuration:

e(S) = fc[f f - j f 2 cg j c 2 Sg (3.23)

In Table 3.4, the mined negative binary rules with 100% confidence are shown. These
rules are presented as their equivalent mutual exclusion clauses. The mutual exclusion
clauses in bold face are the clauses that are applicable to the mined OR-groups. Adding
these two mutual exclusion clauses to the feature hierarchy formula, the OR-group between
Digital and Analog^Hands is further constrained into a XOR-group. The final mined
feature model is shown in Figure 3.7.

3.4 RETRIEVING FEATURE MODEL FORMULAS 26

tid configuration

1 Fruit

2 Fruit Apples Oranges

3 Car

4 Car Transmission

Fruit

ApplesOranges

Car

Transmission

(a) sample set (b) Mined feature models

Figure 3.8: Retrieving multiple feature models

3.4.4 Retrieving Multiple Feature Models

The mining algorithm is capable of retrieving multiple feature models from a single
sample set. This situation arises when there are two sets of unrelated configurations
tangled in the sample set. For example, assume that the set of features, F , was partitioned
into two sets FA and FB such that FA\FB = F . If there are two sets of configurations, CA
and CB 2 S, such that CA contains only features from FA and CB contains only features
from FB, then the mined association rules will have disjoint feature spaces. As a result, two
feature models will be constructed by the Czarnecki and Wąsowski synthesis algorithm.
One feature model will be representative of the configurations in CA, while the other will
represent the configurations in CB.

Figure 3.8 illustrates this scenario. In the sample set, four configurations are present.
Configurations 1 and 2 correspond to fruit, while configurations 3 and 4 correspond to a
car. As a result, two separate feature models are retrieved from the sample set.

3.4.5 Additional Hard Constraints

Hard constraints in a probabilistic feature model can be separated into two categories: (i)
feature hierarchy, and (ii) additional hard constraints. The set of additional hard constraints
appear as a list of propositional formulas below the feature hierarchy. Additional hard
constraints can be used form constraints that would otherwise complicate the feature
hierarchy.

Currently, only group implications which cut across the feature hierarchy are considered
additional hard constraints. These group implications are have subfeatures which are not
direct children of the parent feature group.

For example, in the clock example shown in Figure 3.7 on the preceding page, the
group constraint, Clock! Alarm_24hr_ (Analog^Hands), is shown as an additional
hard constraint because 24hr is not a direct child of Clock.

3.5 PROPOSITIONAL FORMULA TO FEATURE MODEL 27

Clock) Digital_Alarm supp = 3 con f = 0:75
Clock) 24hr_Alarm supp = 3 con f = 0:75
Clock) 24hr_Analog supp = 3 con f = 0:75
Clock) 24hr_Hands supp = 3 con f = 0:75
Clock) Alarm_Analog supp = 3 con f = 0:75
Clock) Alarm_Hands supp = 3 con f = 0:75

Table 3.5: Set of soft constraints for the clock feature model

3.4.6 Soft Constraints

The last component to retrieve for a probabilistic feature model are its soft constraints.
The set of soft constraints describes relationships among the features which exist in most
sample configurations, but not all. Soft constraints are useful for describing suggested
defaults or trends.

The mining algorithm filters association rules with confidence greater than 50% as soft
constraints. A confidence of 50% for an association rule A) B implies that the antecedent
A has no effect on the consequent B. Thus, a confidence of greater than 50% implies a
positive relationship where the presence of the antecedent A increases the chance of the
consequent B appearing.

In Table 3.5, the soft constraints for the clock example are shown. In the left column,
the soft constraint is shown with the support and confidence measures to the right. Only
disjunctive association rules are present in this example, however in general, any mined
rule may be a soft constraint if the confidence is greater than 50% and less than 100%. In
practice, the minimum confidence threshold is often set higher than 50% in order to limit
the mined soft constraints to a manageable number.

3.5 Propositional Formula to Feature Model

A feature hierarchy formula is constructed from mined association rules with 100%
confidence. The feature hierarchy formula is used as the input propositional formula to
the feature model synthesis algorithm [CW07].

The feature model synthesis algorithm constructs a feature diagram using a proposi-
tional formula as input. The feature hierarchy represent only hard constraints which must
be satisfied in all legal configurations. As a result, only rules with 100% confidence are
added to the feature hierarchy formula. Rules with 100% confidence are satisfied for the
entire sample set, and thus, are equivalent to a Boolean implication.

3.6 FEATURE MODEL MINING ALGORITHM 28

The algorithm separates the different forms of formulas for a basic feature model given
the feature hierarchy formula. First, an implication hypergraph is constructed from the
feature hierarchy formula. An implication hypergraph is a visualization of the feature
hierarchy formula where the nodes correspond to features and constants (true or f alse),
and the hyperedges correspond to implications. The hyperedges can have multiple sources
and targets. Each hyperedge represent a conjunction of source features which imply a
disjunction of the target features.

A summary of the procedure is as follows. The first step in the algorithm is identifying
feature hierarchy implications in the feature hierarchy formula. Next, AND-groups are
identified in the implication hypergraph as cliques. The AND-groups are constructed, and
the cliques are then removed. Finally, OR-groups and XOR-groups are constructed. The
feature model synthesis algorithm is implemented using operations on binary decision
diagrams (BDDs) [Bry86].

When retrieving a feature model from a propositional formula, it is possible for a
feature to have multiple parents. For example, two implications B! A and C! A in the
propositional formula will result in the feature A having two parents, B and C. Since it is
impossible to selective choose a single parent without additional information, the resulting
synthesized feature model is in a generalized feature model notation [CW07], that allows
features to have multiple parents.

3.6 Feature Model Mining Algorithm

In Figure 3.9, the feature model mining algorithm is presented. Two forms of association
rule mining are used: (i) conjunctive, and (ii) disjunctive association rule mining. Four
parameters are provided as input to the algorithm: the sample set S , the minimum support
threshold š, the maximum support threshold ŝ, and the minimum confidence m. The
con f (α;S) and supp(α;S) operators returns the confidence and support of the given
association rule α , with respect to the sample set S. Association rules which satisfy the
minimum support and minimum confidence are called strong association rules.

The algorithm begins by mining conjunctive association rules in lines 3–4 using the
algorithm described by Agrawal et al. [AIS93]. The conjunctive association rules are used
to retrieve binary implications and mutual exclusion clauses. Mining on the set of selected
features retrieves binary association rules. However, in order to retrieve negative binary
association rules, the set of absent features must be included for each sample configuration.
The conjunctive rule mining algorithm is capable of mining only on selected features,
thus, the e(S) operator, defined in Equation 3.23 on page 25, is used to append additional
features to each configuration in order to represent absent features.

Next, minimum OR-clauses are mined in lines 5–6 using the BLOSOM-MO algorithm
by Zhao et al. [ZZR06]. These OR-clauses are a prerequisite for constructing disjunctive
association rules. The maximum support is used to limit the number of minimal OR-clauses
that are mined since an OR-clause with excessive support is likely too general to be useful
as a group implication.

3.6 FEATURE MODEL MINING ALGORITHM 29

MINE-FEATURE-MODEL(S : sample set; š; ŝ;m : [0;1])

1 � š is min. support and ŝ is max. support
2 � m is min. confidence

3 �Mine strong conjunctive association rules [AIS93]
4 C CONJ-RULE-MINER(e(S); š;m)

5 �Mine frequent minimal OR-clauses [ZZR06]
6 O BLOSOM-MO(S; š; ŝ)

7 � Build disjunctive association rules
8 D fd p) f1_�� �_ fk j

9 supp(d,S) � š ^ con f (d;S)� c
10 ^ f1_�� �_ fk 2 O
11 ^ c(f1_�� �_ fk)� c(p) g

12 � Select hard constraints
13 H fb (fi) f j 2C) j con f (b;S) = 1g
14 [fg (p) f1_�� �_ fk) 2 D j con f (g;S) = 1g
15 [fe (fi) f j 2C) j con f (e;S) = 1g

16 � Create set of soft constraints
17 S (B[G[M)nH

18 � Synthesize feature model [CW07]
19 G FEATURE-GRAPH(

V
r2H r)

20 � Return mined feature model and soft constraints
21 return G;S

Figure 3.9: Feature model mining algorithm [CSW08]

3.7 IMPLEMENTATION 30

The set of simple disjunctive association rules are mined in lines 7–11. We call these
rules simple to distinguish the fact that only a single feature exist in the antecedent. These
rules are constructed by using the minimal OR-clauses as the consequent and selecting
features that appears in the same supporting set of configurations as its antecedent.

The hard constraints for constructing the feature hierarchy are selected in lines 12–15
of the algorithm. Hard constraints are association rules with the correct form and have a
confidence equal to 100%. The set b contains the association rules equivalent to binary
implications, g contains rules equivalent to group implications and finally, e contains the
rules equivalent to mutual exclusion clauses.

The set of soft constraints is constructed in lines 16–17. The soft constraints are the
remaining rules after the hard constraints have been removed. All soft constraints have
less than 100% confidence.

Finally, in line 18, the propositional formulas are conjoined to form the feature hierarchy
formula and the feature model synthesis algorithm [CW07] is executed.

The feature model mining algorithm returns the mined feature hierarchy and a set of
soft constraints.

3.7 Implementation

The feature model mining algorithm has been implemented as a prototype Eclipse IDE
plug-in [Ecl08a]. A prototype implementation of the feature model synthesis algorithm
was graciously provided by Andrzej Wąsowski. The feature diagrams are generated using
the GraphViz graph visualization project [ATT08] or visualized in Eclipse using the Zest
toolkit [BBS04].

Frequent itemsets are mined using the LCM miner by Uno et al. [UKA04]. Conjunctive
association rules are constructed using the procedure described by Agrawal et al. [AIS93].
Minimal OR-clauses are mined using the BLOSOM-MO algorithm by Zhao et al. [ZZR06].
A language describing for sample sets and configurations was constructed using the
openArchitectureWare xText textual DSL generator [ope08].

A source code analyzer for extracting basic code patterns was constructed using the
Eclipse Java Development Tools (JDT) project [Ecl08b]. The Applet FSML analyzer
wizard [AC07] is used to construct the applet framework-specific models described in the
next chapter.

CHAPTER 4

Mining on Frameworks

Object-oriented frameworks are a set of reusable abstractions commonly used for building
software systems. A framework models a domain and have a set of rules that developers
must follow. A framework-specific modeling language (FSML) is a domain-specific
language that models concepts and the relations in an object-oriented framework [AC06].
In this chapter, the feature model mining algorithm is applied towards the development
and maintenance of object-oriented frameworks and FSMLs.

An FSML consists of a metamodel, which formalizes the framework-provided concepts
and relations and optionally, an interpreter, which constructs a mapping between the FSML
metamodel and code. The FSML metamodel is represented as an extended feature model
with support for feature cardinalities, cloning, references and attributes. The semantics of
the features are specified using mapping definitions [ABC07]. The mapping definitions are
implemented for a particular language, such as Java, using so called mapping interpreters
[Ant08].

An FSML is capable of reverse-engineering a framework-specific model by using its
specified mapping definitions and a mapping interpreter. A framework-specific model, is
a model of the framework-provided concepts as implemented by a sample application.
A framework-specific model can be used as a comprehension artifact or as a means
of evolving the application through forward-engineering [ABC07]. FSMLs provide a
notation for model-driven engineering [Sch06] or the Object Management Group’s variant,
model driven architecture [Obj04]. A framework-specific model can also be specified a
priori, allowing a user to specify a model in which framework completion code can be
automatically generated.

Feature model mining can be used to retrieve a feature model representing code patterns
in a set of sample applications. The mined feature model is useful for FSML development
in the following three use cases: (i) jump-starting development of an FSML, (ii) confirma-
tion or comparison of an FSML with existing framework applications and, (iii) refining
an existing FSML by discovering unexpected patterns in framework applications. These
use cases will be described in further detail below.

31

4.1 APPLET FSML 32

(i) Jump-starting FSML development. A mined feature model with features represent-
ing structural and behavioral patterns will provide a model of the variation points in the
sample applications of a framework. The variation points in the feature model are potential
framework hotspots or areas requiring developer customization.

(ii) Comparison of an FSML and framework applications. Feature model mining can
be applied to compare an existing expert-specified FSML with the framework usages
present in a set of sample applications.

(iii) Refining an existing FSML by discovering unexpected patterns in framework usage.
Feature model mining can be used to discover common implementation patterns among
the sample applications themselves. The mined feature model represents the framework
usage patterns in the sample applications and can be used as a framework comprehension
artifact.

In this chapter, the feature model mining algorithm is applied to a set of configurations
constructed using the Applet FSML. The expert-specified Applet FSML is first described
in Section 4.1.

In Section 4.2, the Applet FSML will be reverse-engineered using the feature model
mining algorithm on a sample set of applets. This approach assumes that a mapping
interpreter and a set of code queries are defined prior to the mining approach. Consequently,
the process described in this section addresses use cases (ii) and (iii).

In Section 4.3, a brief discussion on a methodology for mining in the scenario where
a mapping between framework-provided features and code does not exist. We propose
mining on the framework boundary. This approach address use case (i), where the resulting
mined feature model can be used as a means of jump-starting FSML development.

4.1 Applet FSML

The Applet FSML models the concepts and suggested usages of the Java Applet framework
[AC07]. An applet is a Java program that can be included in a web page and run from a
web browser [Sun08]. The expert-specified metamodel of the Applet FSML is shown in
Figure 4.1. A feature with an exclamation mark is an essential feature. Essential features
are a stronger form of constraint than mandatory features and must be present if it’s parent
feature is present. The absence of an essential feature implies that it’s parent feature is also
absent. The absence of a mandatory features, on the other hand, simply indicates an error
in the configuration. The remainder of this section will describe the framework-provided
concepts in the model.

The root feature in the Applet FSML metamodel is the AppletModel, which contains a
list of applets.

The name feature represents the fully-qualified Java class name for an applet.
extendsApplet is selected in a configuration if the Applet class extends java.app-
let.Applet. The extendsJApplet feature corresponds to whether the applet extends
javax.swing.JApplet (which is a subclass of java.applet.Applet).

4.1 APPLET FSML 33

Applet
[1::1] name (String)

![1::1] extendsApplet
[0::1] extendsJApplet

[0::�] parameter
[0::�] name

[0::1] providesParameterInfo
[0::�] showsStatus

[0::�] message (String)
[1::1] overridesRequiredMethods

h1–3i
[0::1] overridesInit
[0::1] overridesStart
[0::1] overridesPaint

[0::�] registersMouseListener
h1–1i
[0::1] this

[1::1] implementsMouseListener
[1::1] deregisters

![1::1] this
[0::1] mouseListenerField

[1::1] fieldName (String)
[1::1] typedMouseListener
[1::1] deregisters

![1::1] this

Applet (cont.)
[0::�] thread

![1::1] typedThread
[1::1] nullifiesThread
[1::1] initializesThread

h1–1i
[0::1] initializesThreadWithRunnable

h1–1i
[0::1] this

[1::1] implementsRunnable
[0::1] helper
[0::1] variable
[0::1] runnableField

[1::1] typedRunnable
[1::1] name (String)

[0::1] initializesThreadWithSubclass
[1::1] name (String)
[1::1] overridesRun

Figure 4.1: Expert-specified Applet FSML metamodel

4.2 CONSTRUCTING THE APPLET METAMODEL 34

The overridesRequiredMethods OR-group models the rule that an Applet should override
one or more lifecycle methods: init, start and paint. These methods are shown as the
grouped subfeatures: overridesInit, overridesStart, overridesPaint.

The features showsStatus and message represent the calls and the strings passed as
parameters to the method Applet.showsStatus(String) which displays a message in
the status bar of the applet window.

The XOR-group registersMouseListener, model the registration of MouseListeners
through calls to java.awt.Component.addMouseListener(...). Two subfeatures
exist under the listener groups, this and mouseListenerField. The feature, this, represents
the applet object was provided as a parameter to registersMouseListener call and mouse-
ListenerField models the case where the parameter was a field.

The implementsMouseListener mandatory feature represents the rule that an ap-
plet must implement a MouseListener if it is used as the parameter to the register
call. The deregisters / this mandatory features model the framework requirement that
java.awt.Component.removeMouseListener(...) must also be invoked with the
applet object (this) as a parameter.

Applet documentation recommends long running operations to be executed as back-
ground threads. The next feature, thread, models the threads and the various methods
of instantiation. The essential feature, typedThread, indicates that the thread must be of
type java.lang.Thread. The initializesThread XOR-group represent the two alternative
methods of instantiating a thread. In the first method, the thread could be initialized with
this, where the applet implements java.lang.Runnable. Otherwise, the thread must be
initialized with a Thread subclass, which is shown by the initializesWithThreadSubclass
feature.

Finally, the last group of features in the Applet FSML represent HTML parameters.
Applets are intended to be embedded within web pages, where parameters are passed as
HTML elements. parameter models accesses through the Applet.getParameter(...)
method. Framework documentation also recommends applets provide parameter infor-
mation by overriding the getParameterInfo() method which is represented by the
providesParameterInfo feature.

For further details on the Applet FSML, refer to the technical report by Antkiewicz and
Czarnecki [AC07].

4.2 Constructing the Applet Metamodel

We address use case (ii), where an existing FSML is compared to framework applications
by using feature model mining on a set of applets to reconstruct an Applet FSML. The
goal of the experiment was to evaluate the effectiveness of the mining algorithm on a
sample set representing applications used in practice. The results of the analysis can be
used to refine an existing FSML with additional tool support. This application of feature
model mining is potential future work and is discussed further in Section 5.4.3.

4.2 CONSTRUCTING THE APPLET METAMODEL 35

The experiment used a sample set that was comprised of 63 applets gathered from
tutorials by Sun Microsystems and various sources over the internet. The full list of
applets used to construct the sample set is shown in Appendix A. Three applets from the
original sample set provided by Michał Antkiewicz, Hitmeter, MyApplet, and Ungrateful,
did not override one of the three required lifecycle methods (ie. init, start, stop) and
were manually removed from the sample set prior to mining.

This section is structured as follows. In Section 4.2.1, the procedure of constructing a
valid sample configuration from the applet source code is described. In Section 4.2.2, the
mined applet feature model is presented. In Section 4.2.3, the soft constraints gathered
from the mining process are presented and analyzed.

4.2.1 Constructing the Sample Set

A sample set must be constructed from the applet source code prior to the execution of
the mining algorithm. We use the reverse-engineering capabilities of the Applet FSML
to accomplish this task. The mapping definitions in the FSML map framework-provided
concepts in the model to code patterns in implementation code.

Code patterns are classified into two categories: (i) structural or (ii) behavioral patterns
[ABC07]. A structural pattern represents the static properties present in code. In a Java
class, structural patterns include its inheritance hierarchy, implemented interfaces, fields,
and methods. The second category, behavioral patterns, describe run-time properties,
such as method calls, variable assignments and temporal properties such as the order of
execution for a set of methods. A code query retrieves code patterns from an application
implementation using static analysis. Code queries retrieve exact structural patterns and
approximate behavioral patterns. The various code queries are not described in detail in
this thesis, for further details, refer to relevant paper by Antkiewicz et al. [ABC07].

A reverse engineering algorithm by Antkiewicz constructs a framework-specific model
for a given applet using the mapping definitions in the Applet FSML metamodel [Ant08].
The set of construct framework-specific models correspond to the sample set used for
feature model mining. The framework-specific models use feature modeling extensions
such as cardinalities, feature types and references which are unsupported in the current
mining algorithm. As a result, the framework-specific models must be further processed
before the configuration is suitable for our mining algorithm.

A basic feature can either be selected or absent (unselected) from a configuration. A
cloneable feature, on the other hand, can have multiple copies depending on its specified
cardinality. A cloneable feature in a configuration, c, is converted to a selected feature
if at least one copy of the feature exists in c. A String feature is considered selected if
the string is not null. Boolean features are translated such that true corresponds to the
feature being selected. In addition, feature model references [CK05] are unfolded.

To demonstrate how a sample configuration is constructed, a simple Java applet is
shown in Figure 4.2a. The FSML reverse engineering algorithm is executed on the applet

4.2 CONSTRUCTING THE APPLET METAMODEL 36

public class MyApplet extends java.applet.Applet {
@Override
public void init() {

showStatus("Hello World!");
String hw = "Hello World, again!";
showStatus(hw);

}
}

(a) A simple Java applet

- Applet
- name “MyApplet”
- extendsApplet
- overridesRequiredMethods

- overridesInit
- showsStatus

- message “Hello World!”
- showsStatus

- message “Hello World, again!”

- Applet
- name
- extendsApplet
- overridesRequiredMethods
- overridesInit
- showsStatus
- message

(b) Framework-specific model (c) Sample configuration

Figure 4.2: Constructing a configuration from a framework-specific model

4.2 CONSTRUCTING THE APPLET METAMODEL 37

1: Applet ^ name ^ extendsApplet ^ overridesRequiredMethods
2: h1–3i
3: [0::1] overridesStart
4: [0::1] initializesThreadWithSubclass ^ initializesThreadWithSubclass.name

^ initializesThreadWithSubclass.overridesRun Ê

5: [0::1] overridesPaint
6: [0::1] MouseListener.deregisters ^MouseListener.deregistersThis Ë

7: [0::1] overridesInit
8: [0::1] thread ^ typedThread
9: [0::1] initializesThread

10: [0::1] nullifiesThread
11: h1–1i
12: [0::1] implementsRunnable ^ initializesThreadWithRunnable

^ initializesThreadWithRunnable.this
13: [0::1] initializesThreadWithSubclass ^ initializesThreadWithSubclass.name

^ initializesThreadWithSubclass.overridesRun Ê

14: [0::1] registersMouseListener ^ registersMouseListener.this ^ implementsMouseListener
15: [0::1] extendsJApplet
16: [0::1] deregisters ^ deregisters.this Ë

17: [0::1] parameter ^ name
18: [0::1] providesParameterInfo
19: [0::1] showsStatus
20: [0::1] message

Figure 4.3: Mined Applet FSML metamodel

code, and the resulting framework-specific model is shown in Figure 4.2b. The framework-
specific model is converted into a suitable configuration for data mining as shown in
Figure 4.2c.

4.2.2 Mined Applet Metamodel

After the sample set is constructed, the mining algorithm is executed. The resulting mined
feature model is shown in Figure 4.3. Note that the mined Applet metamodel is in the
generalized feature model notation as described in Section 3.5, which allow features to
have multiple parents. Features marked with Ê or Ë both have two parents and appear in
the textual feature model twice. In addition, AND-groups are denoted with the ^ symbol
between its features. The mined applet metamodel will be discussed in several groups of
features.

Overall. For the most part, related features remained together in several trees in the
mined model. A significant difference between the expert-specified model and the mined

4.2 CONSTRUCTING THE APPLET METAMODEL 38

model lies in the feature cardinalities, references and attributes and lack of mandatory
features. The mining algorithm described in this thesis is unable to retrieve [0::�] cardinal-
ities or feature references. All features are reduced to basic features which can be selected
or unselected prior to mining. Thus, features are either optional, or part of an AND-group.
AND-groups can be separated into a hierarchy of mandatory features, however, additional
knowledge is required. This extension to the mining algorithm is discussed further in
Section 5.4.1. In addition, essential features are absent from the mined model. Additional
knowledge from a framework expert is necessary to separate mandatory and essential
features. The expert could add essential constraints to features through a feature model
editor such as the Feature Model Plug-in, fmp [CAK+05].

Applet root. The mined feature model is quite similar to the structure of the expert-
specified model in this set of features. The mandatory features name and extendsApplet
are preserved in the mined feature model as an AND-group. The OR-group nested under
overridesRequiredMethods is preserved in the mined feature model, however, the feature
itself is collapsed as part of an AND-group.

Applet
[1::1] name (String)

![1::1] extendsApplet
[1::1] overridesRequiredMethods
h1–3i
[0::1] overridesInit
[0::1] overridesStart
[0::1] overridesPaint

Applet
^ name
^ extendsApplet
^ overridesRequiredMethods
h1–3i
[0::1] overridesInit
[0::1] overridesStart
[0::1] overridesPaint

(a) Expert (b) Mined

Parameter and showsStatus. An interesting result of the mining algorithm is present
in this set of features. First, the parameter and showsStatus features are nested under the
overridesInit feature. This set of features correspond to method calls, and consequently,
must be nested within a method. In our sample set, the parameter and showsStatus all
co-occur with an overridden init() method. Note that nesting relation in this case does
not described that the calls for parameter and showsStatus are within the init() method,
but rather describes a co-occurrence between the two features.

The providesParameterInfo and showsStatus features are subfeatures of parameter in the
mined metamodel. In the case of providesParameterInfo, there is no framework rule that an
applet must provide its own parameter information if parameters are accessed. However,
examining applets in the sample set, a trend emerges where if parameter information is
provided, then external parameters are also accessed. This pattern is reflected in the nesting
relationship between the features in the mined feature model. Similarly with showsStatus,
the nesting relationship with parameters is not specified in applet documentation, but is a
common pattern exhibited in our sample set.

4.2 CONSTRUCTING THE APPLET METAMODEL 39

[0::�] parameter
[0::�] name

[0::1] providesParameterInfo
[0::�] showsStatus

[0::�] message (String)

[0::1] parameter
^ name

[0::1] providesParameterInfo
[0::1] showsStatus

[0::1] message

(a) Expert (b) Mined

Threads. The typedThread feature is part of an AND-group with thread in the mined
metamodel. This is an expected side effect of the mining algorithm as discussed earlier.
The XOR-group nested under initializesThread is also preserved in the mined metamodel.
Similar to the previous set of features, thread is a child of the overridesInit feature. This
relation occurs because all applets with threads, also override the init() method.

The initializesThread and nullifiesThread features were both mandatory features in the
expert-specified model, but in the mined model, both features appear as optional.

First, the change in the feature type for initializesThread was traced back to the DotProd-
uct sample applet. In this applet, a thread field was declared, but was simply initializes to
null. This field was not access in the applet at all. As a result, it’s framework-specific
model contained an instance of thread and typedThread, but not of initializesThread.

Similarly, with the nullifiesThread feature, the feature was retrieved as an optional
feature due to an erroneous sample applet. In this case, the applet had declared and
initialized the thread, but did not nullify the thread after its use.

The nesting relation between initializesThread and nullifiesThread is explained by the
aforementioned erroneous applets. In one, a thread was declared but not initialized. In the
other, the thread was declared and initialized, but not nullified. Thus, the mining algorithm
constructed nullifiesThread as a child of initializesThread.

[0::�] thread
![1::1] typedThread
[1::1] nullifiesThread
[1::1] initializesThread

h1–1i
[0::1] withRunnable

. . .
[0::1] withThreadSubclass

. . .

[0::1] thread
^ typedThread
[0::1] initializesThread

[0::1] nullifiesThread
h1–1i

[0::1] withRunnable
. . .

[0::1] withThreadSubclass
. . .

(a) Expert (b) Mined

Initializes thread with subclass. The mandatory features nested under InitializesWith-
ThreadSubclass are appropriately preserved as an AND-group in the mined model.

The mining algorithm discovered an interesting pattern with the AND-group containing
the features InitializesWithThreadSubclass, name and overridesRun. In the mined feature

4.2 CONSTRUCTING THE APPLET METAMODEL 40

model, the AND-group has two parents, overridesStart and overridesInit. The relationship
with these methods is reasonable since threads need to be explicitly started in a method,
and the start or init methods seems like an appropriate place to do so.

[0::1] initializesWithThreadSubclass
[1::1] name (String)
[1::1] overridesRun

[0::1] initializesThreadWithSubclass
^ name
^ overridesRun

(a) Expert (b) Mined

Initializes thread with runnable. The initializesThreadWithRunnable feature is nested
under the overridesInit feature, but not the overridesStart feature like the previous group of
features. The initializesThreadWithRunnable feature models the scenario when the applet
class is used as the thread. Since the thread does not need to be explicitly instantiated, it is
likely that application developers started the thread when the applet is initialized. This
pattern is exhibited in the sample set, and is reflected in the mined feature model.

The remaining features have significant differences between the mined feature model
and the expert-specified metamodel. The helper, variable and runnableThread features are
absent in the mined model. These features are missing due to the absence of these features
in the sample applets themselves. The XOR-group under initializesThreadWithRunnable is
also absent. The absence of the forementioned features caused the mined model to have
no alternatives other than this. As a result, no group is constructed, and this (feature) is
collapsed into the AND-group.

[0::1] initializesThreadWithRunnable
h1–1i
[0::1] this

[1::1] implementsRunnable
[0::1] helper
[0::1] variable
[0::1] runnableField

[1::1] typedRunnable
[1::1] name (String)

[0::1] initializesThreadWithRunnable
^ this
^ implementsRunnable

(a) Expert (b) Mined

MouseListener and extendsJApplet. Similar to the previous set of features, the mouse
listener features are also missing an XOR-group in the mined feature model. The sample
applets did not contain an instance of mouseListenerField. This caused the feature to be
absent in the mined model, and thus, a feature group was not constructed and the this
feature was collapsed into an AND-group along with one of its children, implements-
MouseListener.

The deregisters feature is an optional feature in the mined model, whereas it is a
mandatory feature in the expert-specified FSML model.

4.2 CONSTRUCTING THE APPLET METAMODEL 41

An interesting result of the mining process is that the extendsJApplet feature is nested
under registersMouseListener. To explain this result, the sample set contained only a single
class extending JApplet and the instance implemented a mouse listener. As a result, the
exhibited relationship may be be inaccurate as a result of low support.

[0::�] registersMouseListener
h1–1i
[0::1] this

[1::1] implementsMouseListener
[1::1] deregisters

![1::1] this
[0::1] mouseListenerField

[1::1] fieldName (String)
[1::1] typedMouseListener
[1::1] deregisters

![1::1] this

[0::1] registersMouseListener
^ this
^ implementsMouseListener

[0::1] extendsJApplet
[0::1] deregisters

^ this

(a) Expert (b) Mined

4.2.3 Soft Constraints

In this section, the mined soft constraints of the applet sample set are presented and
analyzed. Due to the large number of soft constraints, constraints with less than 70%
confidence were filtered out. In addition, only a single constraint involving a AND-group
is shown, since the other constraints can be inferred. The soft constraints are sorted by
descending confidence.

Parameters and Shows Status

Soft Constraint supp con f

providesParameterInfo) overridesStart 21 0.84

showsStatus) overridesStart 8 0.80

showsStatus) overridesPaint 8 0.80

showsStatus) message 8 0.80

message) overridesPaint 6 0.75

providesParameterInfo) overridesPaint 13 0.72

parameter) overridesStart 23 0.70

In the feature hierarchy, parameter is nested under the overridesInit feature. The soft
constraints show that parameters and the overridesStart and overridesPaint features are
also highly correlated. As a result, it may be due to a biased sample set that has drawn the

4.2 CONSTRUCTING THE APPLET METAMODEL 42

conclusion that parameter is a child of overridesInit in the hierarchy. As a result, an expert
may decide that parameter should simply be a child of Applet instead.

The soft constraints for showsStatus infer that there is a high confidence of being nested
under overridesStart or overridesPaint. In addition, showsStatus often has a message
associated with it. Looking at the mined feature hierarchy, showsStatus is nested under
parameter, however, these soft constraints imply that the relationship may also be a result
of a biased sample set.

Mouse Listener

Soft Constraint supp con f

registersMouseListener) implementsMouseListener 23 0.88

implementsMouseListener) overridesPaint 20 0.87

deregisters) parameter 8 0.80

deregisters) overridesStart 8 0.80

registersMouseListener) overridesPaint 20 0.77

deregisters) providesParameterInfo 7 0.70

In this set of soft constraints, there are a total of 26 configurations containing instances
of registersMouseListener (i.e. 23=0:88 = 26). Three sample applets registered a mouse
listener, but did not implement a mouse listener. These applets, instead registered a separate
inner or anonymous class that implemented the MouseListener interface.

In the mined feature hierarchy, the deregisters feature is a child of overridesPaint
and overridesInit. In the set of soft constraints, deregister is also highly correlated with
overridesStart. From this information, we can deduce that deregisters may simply be a
child of Applet instead of one of the three lifecycle methods.

4.2 CONSTRUCTING THE APPLET METAMODEL 43

Threads

Soft Constraint supp con f

nullifiesThread) initThreadWithRunnable 16 0.94

initializesThread) initThreadWithRunnable 22 0.92

nullifiesThread) overridesStart 15 0.88

thread) initThreadWithRunnable 22 0.88

initThreadWithRunnable) overridesStart 19 0.86

thread) overridesStart 21 0.84

nullifiesThread) overridesPaint 13 0.76

initThreadWithRunnable) nullifiesThread 16 0.73

initThreadWithRunnable) parameter 16 0.73

initializesThread) nullifiesThread 17 0.71

nullifiesThread) parameter 12 0.71

The first soft constraint dealing with nullifiesThread indicates that in 16 out of the
17 configurations containing the feature, the thread was initialized using a Runnable.
Consequently, there is only a single sample applet containing an instance where the thread
was nullified, and it was initialized with a subclass. This indicates that reviewing the single
applet, may be necessary to ensure that the implementation conforms to the suggested
framework rules.

The second constraint initializesThread) initializesThreadWithRunnable further high-
lights issues with the distribution of Runnable and subclasses in the sample set. 92% of
applets that initializes a thread, the thread was initialized using a Runnable. This indicates
that only two applets initialized the thread using a subclass.

The overridesStart feature also commonly appears in the consequent of this set of soft
constraints. This is not surprising, since a subtree of threads, the initializesThreadWith-
Subclass AND-group, is a child of overridesStart in the mined feature hierarchy. As a result,
it can be deduced that either overridesInit or overridesStart are both likely candidates for
initializing threads.

4.2.4 Study Conclusions

Feature model mining can be applied as a means of understanding framework usages from
a sample set of applications. The mined metamodel shown in the previous section has
provided insight into the use of the applet framework. In addition, these observations can
be used to update the expert-specified metamodel to better represent the framework.

4.3 MINING ON THE FRAMEWORK BOUNDARY 44

In conclusion, the mined applet metamodel captures many of the relationships that are
modeled in the expert-specified metamodel. However, there are several notable defects
with the mined metamodel. First, a set of mandatory features are collapsed into a single
AND-group, which would need to be separated out by the user post-mining. Next, the
mining algorithm is not tolerant of any errors in the dataset. Evidence of this deficiency is
with the mined nullifiesThread and the overridesRequiredMethods OR-group. Next, the
mined metamodel is in the generalized feature model notation, and user input is required in
order to construct a true feature hierarchy. Finally, the mining algorithm is very susceptible
to relationships with low support or none at all. Feature which did not appear in the sample
set were not represented at all in the mined feature model. These issues and suggested
solutions are described further in Chapter 5.

4.3 Mining on the Framework Boundary

The third use case we identified is the application of feature model mining to jump-start
FSML development. In this scenario, an existing FSML mapping definition is not available
to construct framework-specific models. As a result, the mapping between code patterns
and framework-provided features must also be mined prior to constructing a sample set.

A suggested approach for solving this problem is mining on the framework boundary.
The framework boundary consists of all calls that occur between an application and the
framework. The boundary includes both callback methods implemented in application
code, as well as framework methods called via the framework API.

Pre-defined code queries can approximate the framework boundary by identifying the
method calls to the framework and callback methods implemented by an application.
The results of these code queries on a sample application are used to construct a sample
configuration. Thus, the sample set of configurations is constructed by executing the code
queries on a set of sample applications.

While pre-defined queries are sufficient for constructing a useful sample set, user-
specified queries provide additional flexibility. A user-specified query allows users to
focus the mining procedure on a particular framework subsystem, or add additional facts
to the sample set. The use of user-defined queries is further discussed in Section 5.2.

Once the sample set is constructed, the mining algorithm can be used to retrieve a
feature model using the procedure described in Chapter 3.

CHAPTER 5

Analysis and Future Work

In the previous chapter, a feature model representing the Java applet framework was
reverse-engineered from a set of sample applications. The study identified several issues
with the mining algorithm. In this chapter, recommendations and extensions to the fea-
ture model mining algorithm are discussed and suggested solutions are presented. The
extensive list of improvements to the mining algorithm opens up a large area of research.

5.1 Cardinality-Based Feature Models

The mining algorithm presented in this thesis is capable of constructing only basic feature
models. Mining for cardinality-based feature models was not addressed by the algorithm.

The current algorithm mines for optional features [0::1], and AND-groups which rep-
resent groups of features with cardinality [1::1]. Other cardinalities, such as [0::�], have
not been addressed. For feature groups, the current mining algorithm retrieves OR-groups
h1::ni and XOR-groups h1::1i. Methods for mining more general hm::ni feature groups
should be investigated as future work.

Addressing this issue will require changes to both the feature model synthesis algorithm
as well as the mining procedure. The synthesis algorithm constructs a feature model
from a propositional formula and will need to be extended in order to handle feature
cloning. An issue to consider is that a propositional formula can not represent multiplicity,
or a multiset of variables. This work will need to be done prior to the construction of a
cardinality-based feature model from logic.

5.2 User-specified Queries

The sample set is currently constructed from queries specified by an expert in either
an FSML mapping definition (Section 4.2), or through a set of pre-defined framework

45

5.3 CORRECTING ERRORS IN THE SAMPLE SET 46

boundary queries (Section 4.3). However, the user currently has no control over how the
sample set of configurations is constructed.

User-specified queries provide users with the capability of specifying their own set of
queries to construct a sample set. For example, user-specified queries can be applied by a
user to focus the mining algorithm on a particular subsystem in a large framework, such as
a single type. Also, obscure code patterns that the user is familiar with may not be picked
up by an automatic miner.

Presenting an interface for constructing queries is a challenging task. The interface must
be powerful enough to specify complex queries, yet require less effort than specifying
an entire FSML mapping definition. Constructing an interface for composing the already
existing code queries used in the automatic extraction of framework-specified models
[AC06] seems like a good starting point.

Constraint-based mining can be used to implement such queries. Constraint-based
mining allows the user to specify expectations as constraints to confine the search space
[HK00].

5.3 Correcting Errors in the Sample Set

The mining algorithm presented in this thesis constructs a feature model representative
of a sample set of configurations. However, if the configurations contained errors, then
the errors would be represented in the mined feature model. In addition, the sample set is
typically an incomplete representation. As a result, the algorithm may derive incorrect
relations among its features especially among relationships with low support. This section
describes the following: (i) the effect that an error has on the different components
of a feature model, (ii) possible methods for dealing with such errors, (iii) methods
for presenting suggestions for corrections, and (iv) filtering rules from the set of soft
constraints.

5.3.1 Effect of Errors on the Feature Hierarchy

In the presented algorithm, only association rules with 100% confidence are selected as
hard constraints. As a result, the mined feature model is very sensitive to errors in the
sample set. In this section, a preliminary analysis of the effect that erroneous sample
configurations or an incomplete sample set will be discussed.

Feature hierarchy. A binary implication fi! f j will be absent from the set of hard
constraints in the case where the consequent of the implication, f j, is absent when the
antecedent, fi, is present in a sample configuration. The absence of an expected binary
implication will cause either, (i) the feature fi to be absent in the hierarchy if there no other
binary implications, or (ii) the feature fi to appear higher in the hierarchy than expected.

5.3 CORRECTING ERRORS IN THE SAMPLE SET 47

The presence of an erroneous binary implication will cause an entire sub-tree of features
to be shifted in the mined feature model. For example, the mined applet metamodel in
Section 4.2 (Figure 4.3) has a much deeper nesting hierarchy than the expert-specified
model (Figure 4.1). The additional nesting was introduced by the presence of additional
binary implications. These implications were gathered from the patterns exhibited from
the sample set, and may, in fact, have produced a feature model that is more constrained
than necessary.

AND-groups. An AND-group is constructed when bi-implication exists among a set of
features. Thus, a feature fi will be present in an AND-group f1; : : : ; fk if all fi features
have bi-implications among each other.

In the case where a bi-implication is not present for a feature due to an incomplete
sample set, the feature will remain as an optional feature and appear as sibling of the AND-
group in the feature hierarchy. On the other hand, an additional, erroneous bi-implication
will cause an optional feature to collapse into a AND-group.

Group implications. A group implication, f ! f1_�� �_ fk constructs an OR-group f
with subfeatures f1; : : : ; fk given that its subfeatures are descendants of the group feature
f . An invalid configuration where f is present, and any one of its subfeatures f1; : : : ; fk
are absent will cause a group implication to be absent, and thus, the OR-group.

The subfeatures, f1; : : : ; fk, will appear simply as a set of optional features under the
parent f . Erroneous group implications and thus, additional OR-groups may appear in the
mined model due to an incomplete sample set.

Mutual exclusion clauses. An XOR-group f with subfeatures f1; : : : ; fk is constructed
with a set of mutual exclusion clauses fi ! f j for all combination of subfeatures, in
addition to the constructs of an OR-group. If any one of the mutual exclusion clauses
is absent due to an error in the sample set, then the feature group would remain as an
OR-group.

An incomplete sample set can generate erroneous mutual exclusion clauses. A single
erroneous mutual exclusion clause will have no effect on the mined feature model. Only
in the case where all k2 subfeatures of a feature group f ! f1_�� �_ fk are mined, will an
expected OR-group be further constrained into a XOR-group.

5.3.2 Dealing with Errors

The feature hierarchy and additional hard constraints in the mined feature model are
constructed from association rules with 100% confidence. However, in the event that an
error exists in the sample set, valid hard constraints will have less than 100% confidence.
These expected hard constraints will instead be contained in the set of soft constraints. Two
methods for retrieving these valid constraints are described. First, the confidence threshold

5.3 CORRECTING ERRORS IN THE SAMPLE SET 48

Figure 5.1: Progression of a set of constraints

for hard constraints can be lowered. Second, an interactive approach for promoting and
demoting constraints is described.

Lowering the confidence threshold. A common approach for dealing with sample set
errors is to lower the minimum confidence threshold when mining for association rules
[BSM06, Mic00]. The feature model mining algorithm uses a strict confidence threshold
of 100% when constructing the feature hierarchy. Using association rules with less than
100% confidence may retrieve valid constraints from the set of soft constraints.

A side effect of including constraints with less than 100% confidence in the feature
hierarchy is that both soft constraints and hard constraints are present in the same model.
As a result, it is important to separate the hard constraints from the soft constraints when
presenting such a feature hierarchy. A suggestion would be to annotate the feature types
and subfeature relationships with the mined confidence and support measures similar to
the notation used in a probabilistic feature model [CSW08]. However, since feature types
such as OR-groups and XOR-groups are constructed using a number of different formulas,
it is unclear how best to present the different confidence and support measures for each of
the formulas.

Interactive approach. The previous approach of lowering the confidence threshold
is likely to add false positives to the mined feature hierarchy. An interactive approach
is complementary. The user may still wish to modify the mined feature model using
information from the set of soft constraints.

A proposed method for modifying the mined feature model is based on a progression of
feature types where a user can promote or demote a feature or feature group. In Figure 5.1,
an example progression between the different feature types in the feature hierarchy is
shown. At the lowest level is a set of sibling optional subfeatures, f1; : : : ; fk, with parent
feature, f . The optional subfeatures were constructed using a set of binary implications,
fi! f where 1� i� k.

There are two possible paths of progression at this point. Given that the set of features
are connected through a set of bi-implications where fi ! f j where 1 � i; j � k exist
among all of the optional features, an AND-group is constructed.

5.3 CORRECTING ERRORS IN THE SAMPLE SET 49

Alternatively, given a group implication f !
W

1�i�k fi, an OR-group will be created.
The OR-group can be further constrained as a XOR-group if mutual exclusion clauses,
fi_ f j where 1� i; j � k, are present as hard constraints.

A constraint is promoted by adding the additional constraints to the feature hierarchy
formula in order to construct the next type of feature. A constraint is demoted by removing
the corresponding constraint. For example, when promoting a set of optional features to
an OR-group, an additional group constraint is added to the feature hierarchy formula.
When demoting an XOR-group to an OR-group, the mutual exclusion clauses are removed.

5.3.3 Presenting Constraints

A method for presenting suggested changes to the feature hierarchy will need to be
researched as part of future work. As a general rule, the soft constraints with the highest
confidence should appear first in the list of possible changes. Rules should be presented in
terms of its effect on the feature hierarchy rather than arbitrary propositional formulas.
For example, adding a group implication and mutual exclusion clauses changes a set
of optional features to an XOR-group. This change should be presented as an atomic
operation instead of the addition of multiple constraints.

However, adding or moving a feature in the feature hierarchy may have side effects
which affect its subfeatures and these side effects should be presented to the user as
well. Investigating possible methods of presenting these constraints should be done in the
future.

5.3.4 Filtering Soft Constraints

Soft constraints are presented to the user as a set of constraints sorted by descending
confidence as shown in Figure 3.5 on page 27. The set of soft constraints may contain a
large number of redundant or misleading rules that could be filtered prior to presenting
the constraints to the user.

Subsumption is logical property that can be used to determine redundant rules. A
Boolean expression A subsumes B if A logically implies B. For example, the rule (i)
Applet! Stop^Start subsumes the rules (ii) Applet! Stop, and (iii) Applet! Start.
In the scenario where all of these rules are boolean implications (i.e. are found with 100%
confidence), it is not necessary to present rules (ii) and (iii) to the user since rule (i) present
the same information in a more concise manner. However, in the case where the rules
have different confidence, there are more intricate rules that exist for filtering unnecessary
rules. Implementing this form of filtering is a useful extension to the mining algorithm.

Several methods for filtering association rules are described by Michail [Mic00] and
used in FrUiT [BSM06]. Further research in applying association rule filtering in the
context of feature model mining is a part of future work.

5.4 USING PRIOR KNOWLEDGE 50

5.4 Using Prior Knowledge

Often times, a user may have knowledge regarding the structure of the mined feature
model. This knowledge can be provided before or after the mining process in order to
refine the mined feature model. Providing additional knowledge to the mining algorithm
will yield a more precise and useful feature model to the user.

Three uses of prior knowledge are identified: (i) first, prior knowledge can be used to
separate additional hard constraints from the set of constraints used to construct the feature
hierarchy, (ii) user input can separate an AND-group into a hierarchy of mandatory features
and (iii) the user may have an idea of the resulting feature model, and may wish to assert
such a model a priori. These three uses will be discussed in the following subsections.

5.4.1 Additional Hard Constraints

The feature hierarchy formula is a conjunction of formulas used in constructing the
hierarchy of the mined feature model. As described in Section 3.4, only group implications
which cut across the feature hierarchy are separated as additional constraints. For example,
in the mined clock feature model (shown in Figure 3.7 on page 25), the group implication
Clock! Alarm_24hr_(Analog^Hands) was presented as an additional hard constraint
because 24hr was not an immediate child of Clock. All other types of implications are
added to the feature hierarchy formula.

Additional hard constraints can also be used to represent hard constraints that have
been removed from the feature hierarchy. When a user modifies the feature model post
mining using an interactive approach as described in Section 5.3.2, constraints can also be
moved from the hierarchy to the set of additional hard constraints. Doing so will maintain
the logical constraints that the feature model imposes on its legal configurations.

A common task for users will be to remove the multiple parent relations from a gen-
eralized feature model which is represented as a DAG to form a tree. In Figure 4.3 on
page 37, the deregisters AND-group has two parent features, overridesPaint and the regis-
tersMouseListener AND-group. If the registersMouseListener feature was selected to be
the parent feature in the hierarchy, the child-parent relation deregisters! overridesPaint
can be preserved as an additional constraint.

5.4.2 Separating AND-groups

The feature model synthesis algorithm constructs AND-groups from the set of bi-implicated
features in the feature hierarchy formula. However, the current algorithm does not separate
the AND-group into a hierarchy of mandatory features. An extension to the algorithm is to
separate the features in an AND-group using additional knowledge.

A proposed means of separating AND-groups is to specify a set of implications among
features in an AND-group. The implications, called mandatory hierarchy relations, deter-

5.4 USING PRIOR KNOWLEDGE 51

Analog Hands
Hands! Analog

Analog

Hands

(a) An AND-group (b) Mandatory
hierarchy relations

(c) Separated
mandatory features

Figure 5.2: Separating AND-groups

mine the nesting relationship that the grouped features will have when it is separated into
a set of mandatory features.

In Figure 5.2a, an AND-group consisting of two features, Analog and Hands is shown.
The AND-group can be separated into two mandatory features with a separate mandatory
hierarchy relation Hands! Analog. As a result, Hands is a subfeature of Analog. The
resulting mandatory feature hierarchy is shown in Figure 5.2c.

5.4.3 Asserted Structures

One of the goals of feature model mining is to assist in the evolution of domain-specific
languages. Consequently, often times, a feature model representing the domain may
already exists. Such is the case with FSMLs. We refer to this existing model as the asserted
model hereafter. Feature model mining could be used to incorporate new concepts or
relations into this asserted model.

In Chapter 4, feature model mining was applied to retrieve a model to refine or discover
new patterns in an object-oriented framework. An existing feature model existed in the
form of an FSML metamodel. Analyzing and merging the differences between the mined
metamodel and the expert-specified model is currently a manual task.

The asserted model does not need to be a complete representation of the domain. Partial
relationships still add useful knowledge to the mining algorithm. For example, in Java, we
know that a class is the parent of a method. Thus, in the mined feature model, a feature
such as overridesStart should be a child of extendsApplet. This knowledge could be
specified as part of an propositional formula, called an asserted formula, prior to the start
of the mining algorithm.

The asserted formula should contain the facts and relationships which the user guaran-
tees, or asserts to be true. Thus, the mining algorithm should incorporate such knowledge
into the mined feature model if it does not contradict the model. However, any mined
constraints that contradict the asserted formula should be brought to the user’s attention.
For example, a warning should be issued in the case where an asserted formula contained
showsStatus!message and mined constraint had less than 50% confidence. The asserted
formula can then serve as a mechanism of validating and testing certain assumptions of
the domain on the sample set.

The concept of an asserted formula should be further investigated as part of future work.

5.5 RULE MINING OPTIMIZATIONS 52

5.4.4 Other Sources of Knowledge

The current research has been focused on mining feature models from the source code
of a set of sample framework applications. Source code is only one knowledge artifact
in a typical object-oriented framework. Other sources of knowledge include framework
documentation, code comments and existing models. The knowledge contained in these
artifacts can be added to the sample set if an appropriate mapping definition or interpreter
was written. Incorporating these sources of knowledge may increase the precision of the
mining algorithm.

5.5 Rule Mining Optimizations

Feature model mining uses both conjunctive and disjunctive association rule mining
to retrieve the different forms of expressions used to construct a feature model. The
basic conjunctive association rule mining is implemented as described by Agrawal et al.
[AIS93]. In this section, several improvements to basic mining procedure are described.

5.5.1 Alternate Interestingness Measures

The interestingness measures used in this thesis, support and confidence, as discussed
in Section 3.3, are not the only interestingness measures available for an association
rules. Other interestingness measures include lift (originally called interest) [BMS97] and
conviction [BMUT97].

The lift measure [BMS97] measures the correlation between the antecedent and the
consequent of an association rule using the χ2 test. The chi-squared test specifies whether
all k items are k-way independent. It is a bi-directional measure, such that the rules A) B
and B) A will have the same lift. Lift is defined in Equation 5.1. Lift has an advantage
over confidence in that it incorporates P(B) into the interestingness measure.

lift(A) B) =
jSj� supp(A^B)

supp(A)� supp(B)
=

P(BjA)
P(B)

=
P(A;B)

P(A)P(B)
(5.1)

Conviction is another measure from Brin et al. [BMUT97]. Unlike lift, conviction is
directional and measures actual implication rather than the correlation. Conviction is
defined for an association rule A) B with a sample set S as:

conv(A) B) =
supp(A)� supp(B)
jSj� supp(A^B)

=
P(A)P(B)
P(A;B)

(5.2)

Association rules in which A and B are completely unrelated have a conviction of 1 and
rules that always hold have a conviction value of ∞. However, in practice, to avoid dealing
with infinities, the conviction measure can be inverted such that implications have a value
of zero.

5.5 RULE MINING OPTIMIZATIONS 53

Class

Field Method

Call

Figure 5.3: Simple taxonomy

A survey of many other interestingness measures for association rules was done by
Lenca et al. [LVML07]. The various interestingness measures could be used as alternative
methods of presenting soft constraints to the user.

5.5.2 Generalized Association Rules

Generalized association rules are a form of conjunctive association rules first introduced
by Srikant and Agrawal [SA95]. An associated taxonomy is provided to the mining
algorithm.

The primary benefits of generalized association rules is in the form of speed improve-
ments for the mining algorithm and in rule filtering. A smaller set of rules will be presented
to the user because generalized association rule mining can retrieve the most specific form
of rule that satisfies the minimum interestingness measures. Michail [Mic00] uses the
class inheritance structure as its taxonomy when mining for generalized association rules.

Generalized association rule mining does not discover additional rules when compared
with traditional association rule mining. The associated taxonomy can be flattened such
that the ancestors of each feature are added to the each sample configuration. For example,
given the taxonomy shown in 5.3, the configuration fField;Callg is equivalent to the
transaction fField, Call, Method, Classg. Using this technique, a traditional association
rule miner can find the same association rules as a generalized association rule miner.

CHAPTER 6

Related Work

6.1 API Usage Mining

In the context of understanding framework usages, CodeWeb and FrUiT are two notable
works which use association rule mining on a set of sample applications.

CodeWeb [Mic00] mines for API usage patterns from a sample set of applications using
association rule mining. The patterns can be viewed through a browser interface. However,
unlike the algorithm presented in this thesis, CodeWeb does not synthesize a model.

FrUiT [BSM06] is an IDE tool which provides assistance in the form of framework
completion suggestions. FrUiT combines data mining with context-dependent presentation.
FrUiT’s context is limited to the current Java class and rules are sorted by confidence. In
comparison, feature model mining is a generic mining approach which constructs a model
of variability out of any sample set.

FUDA [HBC07] is an approach developed by fellow members of the Generative Soft-
ware Development Lab. FUDA constructs implementation recipes for framework concepts
using code analysis and data mining techniques. However, the focus of FUDA and feature
model mining are different. FUDA collects traces from multiple executions of an appli-
cation using dynamic analysis. The recipe constructed by FUDA describes the detailed
implementation steps for a single feature in a framework. In contrast, feature model
mining synthesizes a model describing the relation between the features in a framework
using static analysis.

6.2 Ontology learning systems

As Ontologies and feature models are related forms of domain modeling [CKK06],
ontology learning systems [SB03] are related to feature model mining. Ontology learning

54

6.3 BAYESIAN NETWORK LEARNING 55

systems are systems which extract ontological elements from input and construct a model
representing the concepts described. Both ontology learning systems and feature model
mining synthesize a model using a sample set of facts.

Ontology learning systems typically deal with natural language processing. As a result,
the relationship and concepts in an learned ontology is retrieved from the syntactic and
semantic properties of the input language. A key difference between ontology learning
systems and feature model mining lies in what the synthesized model describes. A learned
ontology models concepts and relationships as described within the input data. A mined
feature model, on the other hand, models the variability of the input data itself. An analogy
between the systems is that ontology learning systems are concerned with learning the
semantics of a sentence, while feature model mining is concerned with understanding the
grammar.

6.3 Bayesian network learning

Bayesian learning tools [MJKL05, JN07] attempts to construct a Bayesian network with
a joint probability distribution that adequately describes the sample set of data. Bayesian
networks and probabilistic feature models are very similar in nature as shown in the paper
by Czarnecki et al. [CSW08]. However,concepts in a Bayesian network are represented as
nodes in a directed acyclic graph. In a feature model, the concepts are part of a hierarchy
(tree). As a result, the learned Bayesian network may be more difficult to interpret than a
feature model.

However, many similar problems exist between Bayesian learning and feature model
mining such as (i) dealing with a biased or flawed sample set, (ii) determining how closely
the learned / mined model should be to the sample set and (iii) choosing an appropriate
structure for the model. The similarities between feature model mining and Bayesian
learning should be further explored.

CHAPTER 7

Conclusions

The feature model mining algorithm was presented in this thesis. Feature model mining
provides an analytical tool for reconstructing a model of variability from a sample set of
configurations. Applied to systems families, feature model mining can retrieve a model
for a family from a sample set of software systems and applications. As a practical
example, the mining algorithm is applied to aid in the development of a framework-
specific modeling language (FSML), used to describe the domain of an object-oriented
framework.

The core of the mining algorithm is in finding propositional formulas representing
the different components of a probablistic feature model from the input sample set. In
this thesis, the mining of (i) binary implications, (ii) group implications, and (iii) mutual
exclusion clauses are discussed. The mined implications are used to construct the feature
hierarchy. Retrieving the set of additional hard constraints and soft constraints are also
discussed.

Applying the algorithm to a real-world scenario, the mining algorithm was used to
mine for a metamodel representing the Java applet framework. From the experiment, the
algorithm is shown to be capable of describing framework usages from a sample set of
applications. The mined metamodel was useful in providing insight on the use of the
applet framework, and the set of soft constraints show patterns in the framework appli-
cations which may be useful for posterior editing of the feature model or for framework
comprehension.

The work presented in this thesis is one step towards a method for reverse-engineering a
feature model from a sample set. Several extensions to the algorithm include (i) cardinality-
based feature models, (ii) methods for dealing with sample set error and bias, (iii) using
prior knowledge, (iv) using other sources of knowledge and (v) rule mining optimizations.

Feature model mining is a tool in the generative software development paradigm. Gen-
erative software development seeks to automate development of a software system family
by generating a software system through the use of a specification written using domain-
specific languages. These languages are currently written using a top-down methodology

56

6.3 BAYESIAN NETWORK LEARNING 57

where an expert analyzes domain artifacts and constructs an appropriate model of the do-
main. In addition, the software systems may evolve over time and the language must also
evolve to remain consistent. Feature model mining addresses this problem by providing a
bottom-up approach for constructing a model. The mining algorithm reverse-engineers a
specification through analyzing the variability present in a sample set of systems.

Appendix A: Applet Sample Set
Gathered from Sun Tutorials

Animator
ArcTest
BarChart
Blink
Clock
DitherTest
DrawTest
Fractal
GraphicsTest
GraphLayout

ImageMap
JumpingBox
MoleculeViewer
NervousText
SimpleGraph
SortDemo
SpreadSheet
TicTacToe
WireFrame

Gathered from the Internet
anbutton
antacross
antmarch
aqua
blinkhello
brokeredchat
bsom
buttontest
camk
client
consultomatic
cte
demographics
dotproduct
envelope
fireworks
formeln
gammabutton
geometry
hellotcl
hyperbolic
iagttager

inspect
jscriptex
kbdfocus
linprog
mousedemo
myapplet2
nickcam
notprolog
scatter
scope
simplepong
simplesun
smtp
starfire
superapplet
swatch
tetris
urcrccalendar
urlexample
vechat
webstart
ympyra

Acknowledgements. Thanks to Michał Antkiewicz for constructing this sample set used
in our case study [App08].

58

Bibliography

[ABC07] M. Antkiewicz, T. T. Bartolomei, and K. Czarnecki, “Automatic extraction
of framework-specific models from framework-based application code,” in
ASE, R. E. K. Stirewalt, A. Egyed, and B. Fischer, Eds. ACM, 2007, pp.
214–223. 10, 31, 35

[AC06] M. Antkiewicz and K. Czarnecki, “Framework-specific modeling languages
with round-trip engineering,” in MoDELS ’06. Springer, 2006, pp. 692–706.
2, 10, 31, 46

[AC07] M. Antkiewicz and K. Czarnecki, “Framework-specific modeling lan-
guages; examples and algorithms,” ECE, Univeristy of Waterloo, Tech.
Rep. 2007-18, 2007. [Online]. Available: http://gp.uwaterloo.ca/tr/
2007-TR-antkiewicz-fsmls.pdf 2, 30, 32, 34

[AIS93] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules between
sets of items in large databases,” in SIGMOD ’93. New York, NY, USA:
ACM, 1993, pp. 207–216. 10, 15, 16, 19, 25, 28, 29, 30, 52

[Ant08] M. Antkiewicz, “Framework-specific modeling languages,” Ph.D. disserta-
tion, University of Waterloo, Waterloo, Ontario, Canada, 2008. 31, 35

[App08] “Listing of sample applets,” Generative Software Development Lab,
2008. [Online]. Available: http://gsd.uwaterloo.ca/projects/fsmls/applet-fsml/
applet-examples/ 58

[AS94] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules
in large databases,” in VLDB ’94: Proceedings of the 20th International
Conference on Very Large Data Bases. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1994, pp. 487–499. 16

[ATT08] “GraphViz,” AT&T Research, 2008. [Online]. Available: http://www.
graphviz.org 30

[Bat05] D. S. Batory, “Feature models, grammars, and propositional formulas,” Uni-
versity of Texas at Austin, Texas, Tech. Rep. TR-05-14, Mar. 2005. 6

[BBC06] D. S. Batory, D. Benavides, and A. R. Cortés, “Automated analysis of feature
models: challenges ahead,” Commun. ACM, vol. 49, no. 12, pp. 45–47, 2006.
6

59

http://gp.uwaterloo.ca/tr/2007-TR-antkiewicz-fsmls.pdf
http://gp.uwaterloo.ca/tr/2007-TR-antkiewicz-fsmls.pdf
http://gsd.uwaterloo.ca/projects/fsmls/applet-fsml/applet-examples/
http://gsd.uwaterloo.ca/projects/fsmls/applet-fsml/applet-examples/
http://www.graphviz.org
http://www.graphviz.org

Bibliography 60

[BBS04] R. I. Bull, C. Best, and M.-A. Storey, “Advanced widgets for eclipse,” in
eclipse ’04: Proceedings of the 2004 OOPSLA workshop on eclipse technol-
ogy eXchange. New York, NY, USA: ACM, 2004, pp. 6–11. 30

[BMS97] S. Brin, R. Motwani, and C. Silverstein, “Beyond market baskets: Generaliz-
ing association rules to correlations,” in SIGMOD Conference, J. Peckham,
Ed. ACM Press, 1997, pp. 265–276. 52

[BMUT97] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur, “Dynamic itemset count-
ing and implication rules for market basket data,” in SIGMOD Conference,
J. Peckham, Ed. ACM Press, 1997, pp. 255–264. 52

[Bry86] R. E. Bryant, “Graph-based algorithms for boolean function manipulation,”
IEEE Transactions on Computers, vol. 35, no. 8, pp. 677–691, Aug. 1986.
[Online]. Available: http://www.cs.cmu.edu/~bryant/pubdir/ieeetc86.ps 28

[BSM06] M. Bruch, T. Schäfer, and M. Mezini, “Fruit: Ide support for framework
understanding,” in eclipse ’06. New York, NY, USA: ACM, 2006, pp.
55–59. 48, 49, 54

[CAK+05] K. Czarnecki, M. Antkiewicz, C. H. P. Kim, S. Lau, and K. Pietroszek, “fmp
and fmp2rsm: eclipse plug-ins for modeling features using model templates,”
in OOPSLA Companion, R. Johnson and R. P. Gabriel, Eds. ACM, 2005,
pp. 200–201. 5, 38

[CE00] K. Czarnecki and U. W. Eisenecker, Generative Programming: Methods,
Tools, and Applications. Boston, MA: Addison-Wesley, 2000. 1, 4, 5

[CHE05] K. Czarnecki, S. Helsen, and U. W. Eisenecker, “Staged configuration through
specialization and multilevel configuration of feature models,” Software
Process: Improvement and Practice, vol. 10, no. 2, pp. 143–169, 2005. 5, 10

[CK05] K. Czarnecki and C. H. P. Kim, “Cardinality-based feature modeling and con-
straints: a progress report,” in International Workshop on Software Factories,
2005. 35

[CKK06] K. Czarnecki, C. H. P. Kim, and K. Kalleberg., “Feature models are views
on ontologies,” in Proceedings of 10th International Software Product Line
Conference (SPLC 2006). IEEE, 2006, pp. 41–51. 54

[CSW08] K. Czarnecki, S. She, and A. Wąsowski, “Sample spaces and feature models:
There and back again,” in SPLC ’08. IEEE, Sep. 2008, to appear. 8, 29, 48,
55

[CW07] K. Czarnecki and A. Wąsowski, “Feature models and logics: There and back
again,” in SPLC ’07. IEEE, Sep. 2007. 11, 12, 27, 28, 29, 30

http://www.cs.cmu.edu/~bryant/pubdir/ieeetc86.ps

Bibliography 61

[Cza04] K. Czarnecki, “Overview of Generative Software Development,” in Pro-
ceedings of Unconventional Programming Paradigms (UPP) 2004, 15-17
September, Mont Saint-Michel, France, Revised Papers, ser. Lecture Notes in
Computer Science, vol. 3566. Springer-Verlag, 2004, pp. 313–328. [Online].
Available: http://www.swen.uwaterloo.ca/~kczarnec/gsdoverview.pdf 1

[Ecl08a] “Eclipse IDE,” Eclipse Foundation, 2008. [Online]. Available: http://www.
eclipse.org/ 30

[Ecl08b] “Eclipse java development tools (JDT) subproject,” Eclipse Foundation, 2008.
[Online]. Available: http://www.eclipse.org/jdt/ 30

[HBC07] A. Heydarnoori, T. T. Bartolomei, and K. Czarnecki, “Comprehending Object-
Oriented Software Frameworks API Through Dynamic Analysis,” School of
Computer Science, University of Waterloo, Technical Report CS-2007-18,
October 2007. 54

[HK00] J. Han and M. Kamber, Data Mining: Concepts and Techniques. Morgan
Kaufmann, 2000. 9, 16, 18, 19, 46

[JN07] F. V. Jensen and T. D. Nielsen, Bayesian Networks and Decision Graphs.
Springer, 2007. 55

[KCH+90] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson, “Feature-oriented
domain analysis (FODA) feasibility study,” Technical Report CMU/SEI-90-
TR-21, 1990. 4, 5

[Lau06] S. Q. Lau, “A domain analysis of e-commerce systems using feature-based
model templates,” Master’s thesis, University of Waterloo, Waterloo, Ontario,
Canada, 2006. 1

[LKL02] K. Lee, K. C. Kang, and J. Lee, “Concepts and guidelines of feature modeling
for product line software engineering,” in Software Reuse: Methods, Tech-
niques, and Tools: Proc. of the Seventh Reuse Conference (ICSR7), Austin,
USA, Apr. 15-19, 2002, ser. Lecture Notes in Computer Science, C. Gacek,
Ed., vol. 2319. Heidelberg, Germany: Springer-Verlag, 2002, pp. 62–77. 1

[LVML07] P. Lenca, B. Vaillant, P. Meyer, and S. Lallich, “Association rule interesting-
ness measures: Experimental and theoretical studies,” in Quality Measures in
Data Mining, ser. Studies in Computational Intelligence, F. Guillet and H. J.
Hamilton, Eds. Springer, 2007, vol. 43, pp. 51–76. 53

[Mic00] A. Michail, “Data mining library reuse patterns using generalized association
rules,” in ICSE ’02. ACM, 2000, pp. 167–176. 48, 49, 53, 54

[MJKL05] A. L. Madsen, F. Jensen, U. Kjærulff, and M. Lang, “The Hugin tool for prob-
abilistic graphical models,” International Journal on Artificial Intelligence
Tools, 2005. 55

http://www.swen.uwaterloo.ca/~kczarnec/gsdoverview.pdf
http://www.eclipse.org/
http://www.eclipse.org/
http://www.eclipse.org/jdt/

Bibliography 62

[NCJK01] A. A. Nanavati, K. P. Chitrapura, S. Joshi, and R. Krishnapuram, “Mining
generalised disjunctive association rules,” in CIKM ’01: Proceedings of the
tenth international conference on Information and knowledge management.
New York, NY, USA: ACM, 2001, pp. 482–489. 21, 23

[Obj04] Model-Driven Architecture, Object Management Group, 2004. [Online].
Available: http://www.omg.org/mda 31

[ope08] “xText,” openArchitectureWare.org, 2008. [Online]. Available: http://www.
xtext.org 30

[Pec97] J. Peckham, Ed., SIGMOD 1997, Proceedings ACM SIGMOD International
Conference on Management of Data, May 13-15, 1997, Tucson, Arizona, USA.
ACM Press, 1997.

[SA95] R. Srikant and R. Agrawal, “Mining generalized association rules,” in VLDB,
1995, pp. 407–419. 53

[SB03] M. Shamsfard and A. A. Barforoush, “The state of the art in ontology learning:
a framework for comparison,” Knowl. Eng. Rev., vol. 18, no. 4, pp. 293–316,
2003. 54

[Sch06] D. C. Schmidt, “Guest editor’s introduction: Model-driven engineering,”
IEEE Computer, vol. 39, no. 2, pp. 25–31, 2006. 31

[Ste99] G. L. Steele Jr., “Growing a language,” Higher-Order and Symbolic Compu-
tation, vol. 12, no. 3, pp. 221–236, 1999. 1

[Sun08] “Applets,” Sun Microsystems, Inc., 2008. [Online]. Available: http://java.sun.
com/applets/ 32

[UAUA04] T. Uno, T. Asai, Y. Uchida, and H. Arimura, “An efficient algorithm for
enumerating closed patterns in transaction databases,” in Discovery Science,
ser. Lecture Notes in Computer Science, E. Suzuki and S. Arikawa, Eds., vol.
3245. Springer, 2004, pp. 16–31. 18

[UKA04] T. Uno, M. Kiyomi, and H. Arimura, “LCM ver. 2: Efficient mining algo-
rithms for frequent/closed/maximal itemsets,” in FIMI, 2004. 19, 30

[ZZR06] L. Zhao, M. J. Zaki, and N. Ramakrishnan, “Blosom: A framework for mining
arbitrary boolean expressions over attribute sets,” Technical Report 06-05,
2006, available from http://www.cs.rpi.edu/research/pdf/06-05.pdf. 21, 22,
28, 29, 30

http://www.omg.org/mda
http://www.xtext.org
http://www.xtext.org
http://java.sun.com/applets/
http://java.sun.com/applets/
http://www.cs.rpi.edu/research/pdf/06-05.pdf

	Title
	Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	Research Contributions
	Notation
	Thesis Organization

	Background
	Basic Feature Model
	Connection with Propositional Logic

	Probabilistic Feature Model
	Data Mining
	Framework-Specific Modeling Languages

	Mining for Feature Models
	Overview of the Algorithm
	Sample Sets and Propositional Logic
	Association Rules
	Retrieving Feature Model Formulas
	Binary Implications
	Group Implications
	Mutual Exclusion Clauses
	Retrieving Multiple Feature Models
	Additional Hard Constraints
	Soft Constraints

	Propositional Formula to Feature Model
	Feature Model Mining Algorithm
	Implementation

	Mining on Frameworks
	Applet FSML
	Constructing the Applet Metamodel
	Constructing the Sample Set
	Mined Applet Metamodel
	Soft Constraints
	Study Conclusions

	Mining on the Framework Boundary

	Analysis and Future Work
	Cardinality-Based Feature Models
	User-specified Queries
	Correcting Errors in the Sample Set
	Effect of Errors on the Feature Hierarchy
	Dealing with Errors
	Presenting Constraints
	Filtering Soft Constraints

	Using Prior Knowledge
	Additional Hard Constraints
	Separating and-groups
	Asserted Structures
	Other Sources of Knowledge

	Rule Mining Optimizations
	Alternate Interestingness Measures
	Generalized Association Rules

	Related Work
	API Usage Mining
	Ontology learning systems
	Bayesian network learning

	Conclusions
	Appendix
	Bibliography

