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Abstract

Near lossless source coding with side information only at the decoder, was first
considered by Slepian and Wolf in 1970s, and rediscovered recently due to applica-
tions such as sensor network and distributed video coding. Suppose X is a source
and Y is the side information. The coding scheme proposed by Slepian and Wolf ,
called SW coding, in which information only flows from the encoder to the decoder,
was shown to achieve the rate H(X|Y ) asymptotically for stationary ergodic source
pairs. As H(X|Y ) is the minimum achievable rate even if the encoder is informed
of the side information Y , this implies the optimality of SW coding for any sta-
tionary ergodic source-side information pairs. However, it is shown by Yang and
He that SW coding can not achieve this rate for most of non-ergodic source-side
information pairs.

Recently, a new source coding paradigm called interactive encoding and decod-
ing(IED) was proposed for near lossless coding with side information only at the
decoder. In such paradigm, information flows in both ways, from the encoder to
the decoder and vice verse, and the behaviour of the encoder also relies on the bits
sent back from the decoder. The compression rate of an IED scheme is defined as
average number of bits per symbol exchanged between the encoder and the decoder.
In contrary to SW coding, IED can achieve the rate of H(X|Y ) for any stationary
source-side information pairs, ergodic or not. Also it was shown that for memoryless
source-side information pairs, IED schemes achieve better redundancy performance
than SW coding schemes. And universal IED can be built coupled with classical
universal codes for any stationary ergodic source-side information pairs, while it is
well known that there does not exist a universal SW coding scheme.

The results reviewed above show that IED schemes are much more appealing
than SW coding schemes to applications where the interaction between the encoder
and the decoder is possible. However, the IED schemes proposed by Yang and He
do not have an intrinsic structure that is amenable to design and implement in
practice. Towards practical design, we restrict the encoding method to linear block
codes, resulting in linear IED schemes. It is then shown that this restriction will
not undermine the asymptotical performance of IED, in the sense that a sequence
of linear IED schemes can be always found for any stationary ergodic source-side
information pair (X, Y ) to achieve the rate of conditional entropy H(X|Y ). More-
over, the result can also be extended to non-ergodic source-side information pairs.

Another step of practical design of IED schemes is to make the computational
complexity incurred by encoding and decoding feasible. In the framework of lin-
ear IED, a scheme can be conveniently described by parity check matrices. It can
be easily observed that density of these matrices (measured as the average num-
ber of non-zero entries) is directly related to the scheme’s encoding and decoding
complexity: the complexity increases as the density increases. Further, we get an
interesting trade-off between the density of the associated parity check matrices
and the resulting symbol error probability. Our analysis reveals that as long as
εnp
∗
n = Ω(log n/n), where εn and p∗n are real numbers, one can always construct a
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sequence of universal linear IED schemes {In} such that the average density of the
parity check matrices associated with In is concentrated around (|X | − 1)p∗n, and
the resulting symbol error probability is upper bounded by εn + o(εn). In addition,
if some modification applies to linear IED schemes, it can be shown that p∗n can be
as low as logn

n
while the symbol error probability goes to zero asymptotically.

To implement the idea of linear IED and follow the instinct provided by the
result above, Low Density Parity Check(LDPC) codes and Belief Propagation(BP)
decoding are utilized. Considering incremental encoding is needed in IED, a suc-
cessive LDPC code based on syndrome splitting is proposed, and the splitting rule
is optimized according to density evolution results. Moreover, as existing BP de-
coding algorithms can only apply to limited kinds of correlation between the source
X and the side information Y , a new BP decoding algorithm is proposed, which
applies to the case where the correlation between Y and X can be modelled as a
finite state channel. It then can be shown that the existing BP algorithms, which
apply to hidden markov state channels, such as GE channels and Markov Mod-
ulated Channels, are the special cases of this new algorithm. Finally, simulation
results show that linear IED schemes are indeed superior to SW coding schemes.
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Chapter 1

Introduction

1.1 Classic Source Coding

1.1.1 Source Code, Compression Rate and Redundancy

The purpose of source coding, or data compression is to remove the redundancy
embedded in the data and reduce the size of storage needed for the data. Usually
the system of source code consists of two parts, the encoder, which maps the original
data to a finite-length string of certain set, i.e. the codeword, and the decoder, which
maps the codeword back to the domain of original data. From theoretical point
of view, the data are usually modelled as the random variable, then the formal
definition of source code is given below:

Definition 1.1.1. A source code C for a random variable X is a mapping pair
(f, g). f , which denotes encoder, is a mapping from X , the range of X, to D∗,
the set of finite-length strings of symbols from a D-ary alphabet, while g, denoting
decoder, is mapping from D∗ to X . Let f(x) denote the codeword corresponding to
x, l(x) denote the length of f(x), and x̂ denote the output of decoder.

Encoder Decoder

f g

X d1d2 . . . X̂

Figure 1.1: Source Code

To qualify the efficiency of source code, expected length is usually used.

Definition 1.1.2. [3] The expected length L(C) of a source code C = {f, g} for
random variable X with probability mass function p(x) is given by

L(C) = E(f(X))

=
∑
x∈X

p(x)l(x) (1.1)
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In many cases, instead of encoding and decoding one symbol, a source code
C could target to a block of symbols. Formally, let n denote the length of one
block, called block length. Then C = {f, g}, where f is a mapping from X n to
D∗, while g is a mapping from D∗ to X n. And the original data are denoted by
X = (X1, X2, . . . , Xn). To better reflect the efficiency of source codes in such
scenario, compression rate Rn is defined as expected length of the codeword per
symbol.

Rn =
1

n
E(l(X1, X2, . . . , Xn)) (1.2)

To get block-version source code, we just have to manipulate the definition of
random variable X.

Beside removing redundancy of the data, we also do not expect to lose fidelity
of the data, which means that the distortion between the original data x and the
constructed data x̂ should satisfy some constraints. One of special cases, involved in
applications widely, is the source code with lossless reconstruction. That is, X̂ = X
with probability one. In this setup, it is a well-known fact due to First Shannon
Theory that

L(C) ≥ H(X) (1.3)

Therefore the redundancy of source code C is defined as

R(C) = L(C)−H(X) (1.4)

For block-version source codes,

Rn ≥
1

n
H(X1, X2, . . . , Xn) (1.5)

If the source is stationary ergodic, then the limit

lim
1

n
H(X1, X2, . . . , Xn) (1.6)

exists, defined as H(X). Accordingly, the redundancy is defined as

Rn(C) = Rn −H(X) (1.7)

The subscript n indicates that Rn(C) is a function of n.

1.1.2 Uniquely Decodable Code, Prefix Code and Kraft In-
equality

In some application, even X̂ = X with probability one is not enough. Instead,
it requires ∀x ∈ X , x̂ = x. In the other word, the encode mapping has to be
one-to-one mapping.
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Definition 1.1.3. [3] A code C = {f, g} is said to be nonsingular if every element
of the range of X maps into a different string in D∗; that is,

x 6= x′ ⇒ f(x) 6= f(x′) (1.8)

In this case, the data can be reconstructed exactly if g = f−1 in the sense that
∀s ∈ D∗, if ∃x ∈ X s.t. s = f(x), then g(s) = x.

So far we only consider a single value of X. For sequences of symbols X, we
have to extend the definition of source code.

Definition 1.1.4. [3] The extension C∗ = {f ∗, g∗} of a code C = {f, g}, where f ∗

is the mapping from finite-length strings of X , to finite-length strings of D, defined
by

f ∗(x1x2 . . . xn) = f(x1)f(x2) . . . f(xn) (1.9)

where f(x1)f(x2) . . . f(xn) indicates the concatenation of the corresponding code-
words, and g∗ is a mapping from finite-length strings of D to finite-length strings
of X .

For convenience, we will sometimes write xmxm+1 . . . xn as xnm, where m < n
are two integers, and xn1 simply as xn. Also, we have to extend the definition of
non-singularity.

Definition 1.1.5. [3] A code is called uniquely decodable if its extension is non-
singular.

Now we say a string A is a prefix of another, called B if B can be written as
AC, concatenation of A and C, for some strings C.

Definition 1.1.6. [3] A code is said to be prefix code if no codeword is a prefix of
any other codeword.

If no codeword is a prefix of another, a codeword in prefix code can be decoded
once the end of this codeword is recognized, without referring future codewords.
Therefore, the prefix code is also called the instantaneous code. In the contrary,
if the code is not prefix, sometimes the entire string has to be considered when to
decode.

There is a well-known inequality which applies to the prefix codes, called Kraft
inequality.[3] ∑

x∈X

|D|l(x) ≤ 1 (1.10)

where | · | denotes the cardinality. This inequality is then shown to be true for any
uniquely decodable source code.
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1.1.3 Universal Source Coding

Many source codes target to the sources with particular probability distribution,
such as Huffman code. However, this approach may fail in certain scenarios. In
one hand, probability distribution of source may be unknown. Instead, all we know
is a class of distribution. Under this circumstance, a two-round coding can be
applied, while the distribution is estimated during the first round, and the source
is encoded during the second. Still it is much more advantageous to do one-round
coding, estimating the distribution on the fly. Adaptive Arithmetic code is one
of the examples. In the other hand, there may be no probability distribution
underlying the data, which is just an individual sequence. For instance, Lempel
Ziv code[51, 52] and Grammar based code[22, 50] are two of codes targeting to this
scenario. Therefore, the universality is one of important aspect of source codes
when applied to practice.

1.1.4 Source Coding with Side Information at Both En-
coder and Decoder

For some practical situations, a sequence of the data, which is correlated with
source, may be available for the encoder and the decoder, called side information.
In such case, side information will be helpful to compress the source, and the
definition of source codes is modified as

Definition 1.1.7. A source code C for a random variable X with side information
Y is a mapping pair (f, g). f , which denotes encoder, is a mapping from X × Y,
to D∗, while g, denoting decoder, is mapping from D∗ × Y to X .

Encoder Decoder

f g

Y Y

X d1d2 . . . X̂

Figure 1.2: Source Code with Side Information at the Encoder and the Decoder

The definitions, extensions and properties of source code without side informa-
tion in section 1.1.1 1.1.2 and 1.1.3 apply here similarly. The intuition is that with
side information Y available, source codes can be designed targeting to the condi-
tional statistics of the source X given Y , instead of statistics of the source X alone.
Specifically, in the case of the lossless coding, according to Shannon Theory, the
expected length of code L(C) must satisfy

L(C) ≥ H(X|Y ) (1.11)
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For block version, the compression rate Rn must satisfy

Rn ≥
1

n
H(Xn|Y n) (1.12)

For stationary ergodic source pair, the limit

lim
n→∞

1

n
H(Xn|Y n) (1.13)

exists, which is also the least rate that code scheme can possibly approach. As long
as X and Y are not independent, H(X|Y ) < H(X), from which it can be seen
that the side information indeed improves the efficiency of source code. Universal
source code for such scenario can also be found in literature[49].

1.2 Distributed Source Coding

1.2.1 Model and Theoretical Result

Distributed Source Coding is to compress the correlated source, which are physi-
cally separated. One of its applications is sensor network, where sensors capture
the image sampled in the same region but from different positions, and send the
image to one common station. The formal definition of distributed source coding
is addressed below:

Definition 1.2.1. A ((2nRX , 2nRY ), n) distributed source code for the joint source
(X, Y ) consists of two encoder maps,

f1 : X n → {1, 2, . . . , 2nRX} (1.14)

f2 : Yn → {1, 2, . . . , 2nRY } (1.15)

and a decoder map,

g : {1, 2, . . . , 2nRX} × {1, 2, . . . , 2nRY } → X n × Yn (1.16)

Here f1(Xn) is the index corresponding to Xn, f2(Y n) is index corresponding to
Y n, and (RX , RY ) is the rate pair of the code.

The coding problem can be near lossless or lossy, which corresponds to Slepian
Wolf coding or Wyner-Ziv coding. As the scope of this thesis only involves near
lossless coding, we mainly focus on near lossless distributed source coding, i.e.
Slepian-Wolf(SW) Coding.

”Near lossless” means that reconstructed data equals to the original data with
high probability. Therefore, besides rate pair (RX , RY ), the probability that recon-
structed data is not the same as original data is another concern.

5



X Encoder

Y Encoder

Decoder

RX

RY

X̂, Ŷ

Figure 1.3: Distributed Source Coding

Definition 1.2.2. The probability of error for a distributed source code is defined
as

P (n)
e = P (g(f1(Xn), f2(Xn)) 6= (Xn, Y n)) (1.17)

In the case of distributed source coding, two sources are to be compressed.
Therefore, the efficiency of the coding scheme is evaluated by two rates, or a rate
region with two dimensions.

Definition 1.2.3. A rate pair (RX , RY ) is said to be achievable for a distributed
source if there exists a sequence of ((2nRX , 2nRY ), n) distributed source codes with

probability of error P
(n)
e → 0. The achievable rate region is the closure of the set of

achievable rates.

A naive coding scheme is to let each encoder compress each source alone without
consideration of each other, as they are physically separated. Under such scheme,
it is straightforward to see that RX ≥ H(X) and RY ≥ H(Y ). However, this is far
from optimal.

Due to the work of Slepian, Wolf and Cover, the achievable rate region for
stationary ergodic source has been determined as

RX ≥ H(X|Y ) (1.18)

RY ≥ H(Y |X) (1.19)

RX +RY ≥ H(X, Y ) (1.20)

which is quite surprising as this rate region is the same as that in the case two
encoders are not separated. The achievable rate region by SW coding scheme is
shown in 1.4.

This result suggests that even if the encoders are physically separated, and
therefore do not know the sources of each other, the correlation between two sources
can be explored at the decoder side. The idea of Slepian-Wolf coding scheme can
be explained by binning argument. For one of the encoders, instead of telling the
decoder what exactly the source is, it constructs bunch of bins blindly, i.e. without
considering existence of the other source. Then it sends the index of bin in which
the source lies. The other encoder does the same thing. For the decoder, as it
knows the bin structures of both two encoders, it can construct joint bins with
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RYH(Y )H(Y |X)0

H(X|Y )

H(X)

RX

Figure 1.4: Slepian-Wolf Region

Figure 1.5: One Dimensional Bins for the Encoder

two dimensions. Then it consider the source pairs which fall in the joint bin with
indices sent by those two encoders, and tries to find the pair which is most likely,
considering the correlation between two sources.

One special case of SW coding is to consider the corner point of the achievable
region, in which case one of the sources can be coded by classic source codes and
reconstructed at the decoder losslessly, and then is treated as the side information
of the other source. This approach is also called Asymmetrical SW Coding. Another
perspective for this model is from source coding with side information at the encoder
and the decoder considered in section 1.1.4. The modification here is that side
information is no longer available to the encoder. As the rate RX is the main
concern, it is not difficult to derive from Slepian Wolf region that the achievable
rate RX must satisfy

RX ≥ H(X|Y ) (1.21)

Again, it is quite surprising to obverse that there is no rate-less asymptotically even
if the encoder does not have the side information.

7



Figure 1.6: Two Dimensional Bins for the Decoder

Encoder Decoder

f g

Y

X d1d2 . . . X̂

Figure 1.7: Source Code with Side Information at the Decoder Only

1.2.2 Channel Coding Approach

The method to prove the achievability of SW coding used in [40] [4] is random
binning argument, illustrated above. Although this method is quite elegant for
theoretical proof, it does not provide much intuition how to implement SW coding
in practice. The first insight for practical SW coding is due to A.D. Wyner, who
observed the relation between Asymmetrical SW coding and Channel Coding [46].
In the channel coding approach, the correlation between the source X and the side
information Y is modelled by the virtual channel with its input Y and and output
X. For the coding scheme, each bin is represented by a coset of channel code. Given

Y
Virtual
Channel

X

Figure 1.8: Virtual Channel from the side information Y to the source X

the source X, the encoder calculates the syndrome, or the index of coset in which
X lies, and sends to the decoder. With the syndrome, or the coset X lies in and the
side information Y , the decoder tries to recover X based on Maximum Likelihood
Method. In this way, the design of a SW code is transformed to the design of a
channel code, with each of its coset code powerful enough to correct the ’error’ due
to the noise of the virtual channel from Y to X. This idea was rediscovered by
Pradhan and Ramchandran [33], and began to appear in practical code recently.
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Syndrome
Former

ML
Decoding

f g

Y

X d1d2 . . . X̂

Figure 1.9: Channel Coding Approach for the Asymmetrical SW Coding

1.3 LDPC codes and Applications to SW Coding

LDPC codes and Turbo codes are two kinds of capacity-approach channel codes,
which are also proved to achieve the SW limit. Moreover, the complexity of decod-
ing is linear with block length if belief propagation(BP) decoding, or sum product
algorithm(SPA) is used. For the practical SW coding design, LDPC codes are more
popular than Turbo code. One of the reasons is that syndrome forming is more
straightforward in LDPC codes than turbo codes. and another reason is that LDPC
codes have better error floor performance, and the requirement of bit error is much
higher in SW coding than channel coding.

1.3.1 Low-Density Parity-Check Code

Low-Density Parity-Check(LDPC) code was first invented by Gallager [13] back to
1960s, and then forgotten largely, as its complexity was considered impractical at
that time. Tanner [41] proposed to represent codes as bipartite graphs and to view
the iterative decoding as a message-passing algorithm on such a graph, where the
bipartite graph is a graph whose vertices can be divided into two disjoint sets U
and V such that every edge connects a vertex in U to one in V . In the framework
of linear block code represented by parity check matrix, vertices of sets U and V
represent the rows and columns of the parity check matrix, and vertex i in U is
connected to j in V if and only if the element in i-th row and j-th column of the
matrix is a non-zero entry. Generally, vertices in U are called check nodes, and V
is the set of variable nodes.

. . .

. . .

Figure 1.10: Tanner Graph

The iterative decoding or message-passing algorithm are the general terms re-
ferring to one kind of algorithms based on graphs. Actually many algorithms, such
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as the Viterbi algorithm for convolutional codes and BCJR algorithm, can fit into
this category, while belief propagation refers to the algorithm, which is also in this
category, introduced by Kim and Pearl [23] to solve statistical inference problems
in 1980s. Its successful implementation on turbo code ignited the related research
in 1990s, and rediscovery of LDPC was credited to several research group, Mackay
and Neal[27], Sipser and Spielman[39], and Wiberg[45]. Density evolution analysis
was established by Richardson and Urbanke[34] , which founded the theoretical
framework of asymptotical analysis of LDPC decoded with BP algorithm. Initially,
research mainly focus on regular LDPC code, in which each row of parity check
matrix has exactly dc non-zero entries, and each column has exactly dv non-zero
entries, or in the language of graphs, each check node has dc degrees, and each
variable node has dv degrees. Both empirical result and density evolution analysis
shows that there is a small gap between achievable rate of regular LDPC code and
Shannon limit. This gap can be further reduced by irregular LDPC code introduced
by Luby et. al[26], where the degree of check(variable) node, no longer constant
but varying from one to another, is represented by a distribution known as degree
sequence.

1.3.2 Decoding over Finite State Channel

The concept of finite state channel(FSC) was established by Gallager [14], where
he tried to provide a mathematical model for physical channel with memory. Es-
sentially the history of channel inputs and outputs, as well as other parameters
affecting the behaviour of channel, are described by the state of channel. Also
there is a so called non-anticipatory assumption, which states for a given current
input and previous state of channel, the output is statistically independent with the
future inputs. Therefore, the statistical behaviour of the channel can be described
by the joint distribution of the output and the state at given time conditioned
on current input and previous states. If the state is represented by sn, the input
by yn, and the output by xn, then the channel is modelled by the distribution
p(xnsn|ynsn−1).

Y
Finite
State

Channel
X

S

Figure 1.11: Finite State Channel

One of the special cases of finite state channel, which is also called hidden markov
state model , is the case when p(xnsn|ynsn−1) can be factored into p(xn|ynsn−1)p(sn|sn−1).
In such scenario, the state of channel is a hidden markov process, independent with
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the input of channel and un-revealed to decoder. One of the well known models in
this category is the Gilbert-Elliott(GE) channel, a binary symmetric channel with
crossover probability determined by the state of channel, which is either 0 or 1.

As finite state channel is of practical interest in some applications such as fading
channel, many proposals of modified BP decoding for LDPC code used in FSC can
be found in literature. For the best knowledge of the author, Garcia-Frias is the
person who first targeted to this problem [15]. Similar algorithm targeting to more
general markov noise case was proposed by Wadayama[43]. And density evolution
analysis on those algorithm was given by Eckford, Kschischang, and Pasupathy[10]
[9]. Fairly speaking, the model considered by those papers is restricted to hidden
markov state channel.

1.3.3 Single Rate SW coding Based on LDPC Codes

The application of LDPC codes on SW coding can be found in literature [25, 36,
37, 35]. Their work targets to either asymmetrical SW coding or any achievable
point of SW bound. BP decoding algorithm was modified to accommodate the
situation here. However, as the original BP decoding used in these work targets
to the memoryless channel in channel coding scenario, their coding schemes only
work when the correlation between Y and X can be modelled by the memoryless
channel.

However, the correlation between the source and the side information is much
more complicated and variable than that between the channel input and output
in channel coding. Therefore BP decoding algorithm working only for memoryless
channel is far from enough for SW coding schemes. In [16], a BP decoding algorithm
working under the assumption that there is hidden markov state channel between
side information and source was proposed, which is based on the algorithm for
channel coding mentioned in last section 1.3.2. But still, number of models are
limited, for which there exists the algorithm that can be applied. This limitation
is the central problem to push Slepian-Wolf coding into practical implementation.

1.4 Interactive Encoding and Decoding Schemes

1.4.1 Theoretical Approach – Benefit of Interaction

Interactive communication for lossless compression with the side information only
at the encoder was first considered by Orlitsky[30, 31, 32]. In his setup, the decoder
with the side information Y tries to learn X available at the encoder in two-way
transmission, where X has to be reconstructed at the decoder with no probability
of error. Note that the requirement of reconstruction is more strict than the Slepian
Wolf case, where the probability of error goes to 0 asymptotically with block length.
Therefore, the rate in this setup is higher than Slepian Wolf case. Meanwhile, the
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idea of incremental encoding is introduced into asymmetrical SW coding by Feder
and Shulman[11], where they consider the scenario that one common source is
broadcast to several receivers with different side information. Coupling incremental
encoding with universal fix-rate SW coding scheme proposed by Csiszar and Korner
[6], Draper [7] built a universal SW coding scheme. However, as the universal coding
scheme by Csiszar and Korner is only for the memoryless source pairs, so is Draper’s
scheme.

Recently, the concept of interactive encoding and decoding(IED) was formalized
in [48], [47]. A special case of IED for (near) lossless one way learning (or in other
words, lossless source coding) with decoder only side information is depicted in
Figure 1.12 below, where X denotes a finite alphabet source to be learned at the
decoder, Y denotes another finite alphabet source that is correlated with X and is
only available to the decoder as the side information, and R denotes the average
number bits per symbol exchanged between the encoder and the decoder measuring
the performance of the IED scheme used. In view of Figure 1.12, we see that the
main difference between IED and non-interactive Slepian-Wolf coding [40] lies in
that IED allows the encoder and the decoder to interact until the learning (or source
coding) task is accomplished.

X Encoder Decoder X̂

Y

source
input rate R output

correlated

Figure 1.12: Interactive Encoding and Decoding for One Way Learning with the
Side Information at the Decoder

Several important results concerning IED for (near) lossless source coding with
decoder only side information were established in [48], [47]. Specifically, in compar-
ison to non-interactive Slepian-Wolf coding [40], it was shown that IED not only
delivers better first-order (asymptotic) performance for general stationary, non-
ergodic source-side information pairs [48], but also achieves better second-order
performance for memoryless pairs with known statistics [47]. Furthermore, in con-
trast to the well known fact that universal Slepian-Wolf coding does not exist,
it was shown [47] that coupled with classical universal lossless codes [49], one can
build IED schemes that are truly universal in the sense that they are asymptotically
optimal with respect to the class of all stationary, ergodic sources-side information
pairs. Essentially, the motivation to consider interactive schemes is that the feed-
back is embedded in many pratical communication protocols, like TCP-IP. And
IED schemes provide a way to utilize this feature to further improve the efficiency
and reduce complexity of the system.

12



1.4.2 Practical Approach – Rate-Less Slepian Wolf Coding

As the incremental encoding is embedded in interactive encoding and decoding
scheme, a natural idea to implement IED is to build a rate-less SW coding, suit-
able for any compression rate of SW problem, and change the rate incrementally
from low to high until the decoding is successful. Several such coding schemes are
proposed for this kind of applications based on different codes and different tech-
niques. Rate-less SW code can be built using fountain codes [38]. Considering the
complexity of encoding and decoding practical implementation of this idea can be
achieved by using raptor codes [12]. Syndrome splitting method is utilized both
in Product Accumulate codes [2] and in LDPC codes[42] to get rate-less property,
where parity check matrix is split in each time to generate a new syndrome. Also
rate-less SW code can be developed based on rate-adaptive LDPC code[21], or lay-
ered LDPC code[8]. Note that in [8], the coding scheme is essentially multi-rate,
instead of rate-less, in the sense it can only achieve rate of certain values. Actu-
ally generalization of this scheme to more than two rates becomes complicated and
daunting.

1.5 Motivation

The results reviewed above imply that IED is much more appealing than Slepian-
Wolf coding to applications where the one-way learning model depicted in Fig-
ure 1.12 fits. However, the IED schemes constructed in [48], [47] do not have an
intrinsic structure that is amenable to design and implementation in practice.

1.5.1 Theoretical Side

In an attempt toward building practical IED schemes, in this thesis we consider
linear IED schemes, i.e., IED schemes that use linear codes for encoding. It is
shown that linear IED is indeed asymptotically optimal, or in other words, for
any stationary, ergodic or not, source-side information pair (X, Y ) in Figure 1.12,
one can always find a sequence of linear IED schemes that is asymptotically op-
timal with respect (X, Y ) in the sense of achieving the conditional entropy rate
H(X|Y ) asymptotically while at the same time the error probability goes to zero
asymptotically.

Another aspect of building practical IED schemes is to make the computational
complexity incurred during the encoding and decoding process feasible. In practice,
naturally one would like to have asymptotically optimal IED schemes that also have
low encoding and decoding complexity. In the framework of linear IED, a linear IED
scheme can be conveniently described by using parity-check matrices [3]. Examining
the encoding and decoding process of a linear IED schemes, we observe that the
density of these matrices (measured as the average number of non-zero entries) is
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directly related to the scheme’s encoding and decoding complexity: the complexity
increases as the density increases [13]. For brevity, we shall refer to the density
of the parity matrices used by a linear IED scheme simply as the density of the
linear IED scheme. Subsequently, a low-density linear IED scheme simply refers to
a linear IED scheme using parity-check matrices whose density is qualitatively low.

Our further efforts in this paper then reveal an interesting tradeoff between
the density of the associated parity-check matrices and the resulting symbol error
probability. Specifically, it is shown that as long as

εnp
∗
n = Ω

(
log n

n

)
(1.22)

where εn and p∗n are real numbers depending upon n, one can always find a sequence
of linear IED schemes satisfying the following conditions simultaneously for any
(X, Y ):

1. the density of the associated parity-check matrices is concentrated around
(|X | − 1)p∗n;

2. the rates of the IED schemes go to H(X|Y ) with probability one as n → ∞;
and

3. the resulting symbol error probability is upper bounded by εn + o(εn).

Throughout the thesis, log denotes logarithm to 2, and ln denotes the natural
logarithm. In view of the above result, we see that using the particular construction
method considered in this paper, one has to balance εn and p∗n under the constraint
of (1.22). Our conjecture is that for (X, Y ), (1.22) is also the necessary condition
for the existence of IED schemes achieving H(X|Y ) at the speed of O(1/

√
n), which

in turn reflects that the three quantities characterizing a linear IED scheme: error
probability, rate, and density, are all connected. This conjecture, however, remains
open at the moment of writing this thesis.

1.5.2 Practical Side

Although the complexity of encoding is manageable by considering low density
linear IED schemes, complexity of decoding is impractical as it is still Maximum
Likelihood Decoding(MLD). Therefore, to push the idea of IED towards a practical
system, LDPC codes and BP decoding are utilized. For the encoding side, as
feedback from decoder is embedded into the whole scheme, a rate-less or multi-
rate SW coding scheme is expected here. In this thesis, we propose a rate-less
SW coding based on LDPC codes and syndrome splitting. Different from [42],
each step of splitting is optimized according to density evolution analysis in this
scheme. We show that the best way to split the syndrome, or equivalently to split
the row of parity check matrix, is to select the row with maximum degrees, and
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split it evenly. This splitting method can be proved to be optimal in several LDPC
decoding algorithms, for both symmetrical and asymmetrical channels.

For the decoder side, as the correlation between the source and the side infor-
mation in SW coding is more variable than that between the channel input and
output in channel coding, we propose a new BP decoding algorithm which targets
to general finite-state channel models, where the state of channel is not necessar-
ily statistically independent with the channel input. Further, we show that the
algorithm for hidden markov state channel is a special case of this new algorithm.

1.6 Overview of the Thesis

The rest of the thesis is organized as follows. In chapter II, the overview of IED
is presented. The formal definition and main results of IED will be introduced. In
chapter III, the concept of general linear IED, and low density case will be defined,
with theoretical analysis presented. In chapter IV, practical linear IED scheme
based on LDPC codes and BP decoding is concerned. New rate-less SW coding
scheme based on syndrome splitting and new BP decoding algorithm targeting
to general finite-state channel are presented. Simulation result shows that there
is indeed performance advantage of IED scheme over SW coding. Finally, the
conclusion will be given in chapter V.
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Chapter 2

Review of IED schemes

In this chapter, we briefly review the concept of IED, and some of the important
results concerning IED for lossless source coding with decoder only side information
(see Figure 1.12).

2.1 Definition

Throughout this paper, let X be a finite source alphabet with cardinality greater
than or equal to 2. Let X ∗ be the set of all finite strings drawn from X , including
the empty string, and X+ be the set of all finite strings of positive length from
X . Let X++ be the set consisting of all finite dimension vectors over X+, i.e.,
X++ = {(s1, s2, · · · , sk) : k ≥ 1 and si ∈ X+, i = 1, 2, · · · , k}. The notation |X |
stands for the cardinality of X , and for any x ∈ X ∗, |x| denotes the length of x.
For any positive integer n, X n denotes the set of all sequences of length n from X .
For convenience, we will sometimes write xmxm+1 · · ·xn as xnm, where m ≤ n are
two integers, and xn1 simply as xn. Similar notation applies to other countable sets
and strings and random sequences drawn from them as well. In addition, random
variables will be denoted by capital letters whereas their realizations will be denoted
by the respective lower case letters.

Let Y denote a finite alphabet with cardinality greater than or equal to 2. Let
B = {0, 1}. Suppose that the task is, with reference to Figure 1.12, to learn xn

drawn from X at the decoder with the helper yn drawn from Y . Then IED for this
task can be formally defined as follows [48], [47]:

Definition 2.1.1. An n-th order interactive encoding and decoding scheme is a
triple In = (f1, f2, g), where

• f1 : X n → B+ is a mapping from X n to a binary prefix set, acting as the first
round of encoding of xn;
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• f2 is a mapping from B++×X n to B+ satisfying that for any s = (s1, s2, . . . , sk) ∈
B++, the set {f2(s, xn)} is a binary prefix set whenever f2(s, ·) is well defined
as a function of xn ∈ X n;

• together, (f1, f2) acts as an interactive encoder;

• g = (g1, g2) is a mapping from B++ × Yn to B+ × (X n ∪ {Λ}) such that

1. for any s ∈ B++, the set {g1(s, yn) : yn ∈ Yn} is a binary prefix set
whenever g1(s, ·) as a function of yn ∈ Yn is well defined;

2. for any s ∈ B++ and yn ∈ Yn, g2(s, yn) is a member of X n whenever
the leading bit of g1(s, yn) is 1;

• the mapping g acts as an interactive decoder with g1 providing a feedback
g1(s, yn) to the interactive encoder upon receiving s and g2 trying to decode
out an estimate for xn.

The IED scheme In defined above works as follows. To encode xn with yn

available only to the decoder, the encoder first encodes xn into s1 = f1(xn) and
then sends s1 to the decoder. Upon receiving s1, the decoder outputs g1(s1, y

n)
(denoted as t1) and g2(s1, y

n), and then sends t1 back to the encoder. If the leading
bit of t1 is 1, then the decoder declares g2(s1, y

n) as an estimate of xn; in this case,
the IED process is deemed to terminate after one round of interaction. Otherwise,
upon receiving t1, the encoder encodes xn again into s2 = f2(t1, x

n) and sends s2

to the decoder. Upon receiving s2, the decoder outputs g1((s1, s2), yn) (denoted as
t2) and g2((s1, s2), yn), and then sends t2 back to the encoder. If the leading bit
of t2 is 1, then the decoder declares g2((s1, s2), yn) as an estimate of xn, and the
IED process is deemed to terminate after two rounds of interaction. Otherwise,
the whole process repeats itself again and again until at some point, after receiving
bitstreams s1, s2, · · · , sj from the encoder, the decoder outputs and sends back tj =
g1((s1, s2, · · · , sj), yn) the leading bit of which is 1, at which point the IED process
is deemed to terminate, and g2((s1, s2, · · · , sj), yn) is regarded as an estimate of xn.

For any xn ∈ X n and yn ∈ Yn, let j(xn, yn) denote the number of interactions at
the time when the IED process of In terminates. In general, j(xn, yn) depends on
both xn and yn and varies. Nonetheless, for convenience, we shall write hereafter
j(xn, yn) simply as j whenever there is no ambiguity, i.e., whenever the pair of
involved sequences xn and yn is clear from the context. During the j rounds of
interaction, the encoder sends j bitstreams s1, s2, · · · , sj to the decoder; likewise,
the decoder sends back j bitstreams t1, t2, · · · , tj to the encoder. These two groups
of bitstreams interleave with each other:

s1 = f1(xn)

ti = g1((s1, s2, · · · , si), yn), i = 1, 2, · · · , j
si = f2((t1, t2, · · · , ti−1), xn), i = 2, · · · , j
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Therefore, the forward bit rate in bits per symbol from the encoder to the decoder
is

rf (x
n, yn|In)

∆
=
|s1|+ |s2|+ · · ·+ |sj|

n

and the backward bit rate in bits per symbol from the decoder to the encoder is

rb(x
n, yn|In)

∆
=
|t1|+ |t2|+ · · ·+ |tj|

n
.

The total number of bits per symbol exchanged between the encoder and decoder
during the whole IED process of In (hereafter referred to as the total rate in bit
per symbol and denoted as r(xn, yn|In)) is then equal to

r(xn, yn|In)
∆
= rf (x

n, yn|In) + rb(x
n, yn|In) .

A decoding error occurs if the estimate g2((s1, s2, · · · , sj), yn) is not equal to xn.

Let (X, Y ) = {(Xi, Yi)}∞i=1 be a stationary source pair with alphabet X × Y .
When In is applied to interactively encode Xn with Y n available only to the de-
coder, the resulting average forward bit rate, backward bit rate, and total rate in
bits per symbol are, respectively,

Rf (In)
∆
= E[rf (X

n, Y n|In)],

Rb(In)
∆
= E[rb(X

n, Y n|In)],

and

R(In)
∆
= E[r(Xn, Y n|In)].

Let J(In) and P (In) denote respectively the resulting average number of inter-
actions during the whole encoding and decoding process of In and the resulting
(block) error probability, i.e.,

J(In)
∆
= E[j(Xn, Y n)] and

P (In)
∆
= Pr{g2((s1, s2, · · · , sj(Xn,Y n)), Y

n) 6= Xn} .

The above five quantities are interesting parameters related to the general perfor-
mance of In for (X, Y ).

Note that the definition of interactive encoding and decoding can be extended
to more general source networks, for instance, the model shown in figure 2.1.

With respect to figure 2.1, IED is a In = (f1, f2, f3, f4, g), consisting of five
parts. f1, f2, which specifies the encoder on X, follow the same definition above,
and f3, f4 for the encoder on Y are defined similarly, the only difference is to change
the domain of X in the definition of f1, f2 to Y . For decoder, g = (g1, g2, g3, g4) is
a mapping from B++×B++ to B+×B+× (X n ∪ {Λ})× (Y ∪ {Λ}), where for any
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Figure 2.1: IED scheme for the separated encoders and the joint decoder

s0 ∈ B++, the set {g1(s0, s) : s ∈ B++} and {g2(s, s0) : s ∈ B++} are binary sets
whenever g1(s0, ·) and g2(·, s0) as a function of s ∈ B++ is well defined. And for any
s1, s2 ∈ B++, g3(s1, s2) (g4(s1, s2)) is a member of X n (Yn) whenever the leading
bit of g1(s1, s2) (g2(s1, s2)) is 1. Here g1 and g2 provide feedback for encoder on X
and Y respectively, and g3 and g4 try to estimate X and Y . Similarly interactive
encoding and decoding scheme can be extended to many other source networks.

2.2 Results

The problem of determining how small R(In) can be while keeping P (In) vanishing
as n→∞ without imposing any constraint on J(In) was studied in detail in [48],
[47]. A series of coding theorem was then established.

2.2.1 IED Scheme for Stationary Ergodic Source Pairs -
Universality Gain

It is well known that there does not exist universal SW coding. Particularly, for
asymptotical SW coding case, as the side information is not available for encoder,
there is no way for the encoder to learn the conditional statistics of source given
the side information, even if two-round coding is allowed. However, for memoryless
source pair, if H(X|Y ) , the theoretical limit, is known to encoder and decoder,
there exists so-called universal SW coding in the sense that encoder and decoder
do not have to know the statistics of source and side information except H(X|Y )
[5, 29]. The reason that H(X|Y ) is needed in those schemes is that they are fix-rate
coding scheme. One way to build a truly universal scheme is to build a variable
rate scheme base on those schemes, by allowing the decoder to send feedback to
the encoder. However, directly basing on those scheme will end up a scheme which
works only for memoryless source pairs.

Universal IED schemes for any stationary ergodic source pair proposed in [48,
47] are to couple incremental encoding and classical universal prefix source code
with side information at both encoder and decoder. The basic idea is that by
incremental encoding, both the encoder and the decoder probe the rate required
to send source losslessly to decoder with side information, as H(X|Y ) is unknown,
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while by classical universal prefix source code, decoder can build up a rule to
decide when the information sent by encoder is enough for it to reconstruct source
losslessly.

In particular, the following result was proved by using a random binning argu-
ment.

Result 1. There exists a sequence of IED schemes1 {In} such that for any station-
ary, ergodic source-side information pair (X, Y ),

lim
n→∞

rf (X
n, Y n|In) = H(X|Y ) with probability one, (2.1)

rb(X
n, Y n|In) = O

(
1√
n

)
, and (2.2)

P (In) = O(2−
√
n). (2.3)

Result 1 essentially states that universal IED schemes exist for the class of
all stationary, ergodic source pairs. Thus by allowing interactions between the
encoder and decoder, IED achieves universality gain over non-interactive Slepian-
Wolf coding.

2.2.2 IED Scheme for Stationary Non-Ergodic Source Pairs
- Rate Gain

The way to study non-ergodic source pairs is to use ergodic decomposition [17]. If
(X, Y ) is not ergodic, one can equivalently regard (X, Y ) as a class of stationary
ergodic source pairs indexed by a random variable Θ, which takes values in a
measurable space (Λ,z) with probability distribution µ(·). In other word, given
value of Θ, (X, Y ) is conditionally stationary ergodic. As estimating this Θ may
not be possible under some circumstance, or even it is possible, the process will be
extremely complicated, increasing the complexity of coding scheme dramatically,
we assume that Θ is unknown to either encoder or decoder.

For any θ ∈ Λ, define

H(θ)
∆
= lim

n→∞

1

n
H(Xn|Y n, θ) (2.4)

and

H(X|Y ) = lim
n→∞

1

n
H(Xn|Y n) (2.5)

It then follows that

H(X|Y ) = E[H(Θ)] =

∫
Λ

H(θ)dµ(θ) (2.6)

1Note that the schemes constructed in [47] are random in that they utilize a random database
known to both the encoder and the decoder.
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Now let us consider the distribution of source X given value of Θ = θ. Define

PX|θ = {p(xn|θ) : xn ∈ X n, n ≥ 1} (2.7)

which represents the ergodic component of X given θ. Also define the set [θ] in z
as

[θ]
∆
={η ∈ Λ : PX|η = PX|θ} (2.8)

Also define
[Λ]

∆
={[θ] : θ ∈ Λ} (2.9)

It is easy to see that [θ1] = [θ2] if and only if θ1 and θ2 correspond to the same
ergodic component of X. Note that [θ1] = [θ2] does not imply they correspond to
the same ergodic component of (X, Y ). Therefore H(θ1) may or may not equal to
H(θ2). Now we are interesting in finding the largest H(θ) given the same ergodic
component of X. For each [θ] ∈ [Λ], define HS([θ]) as the conditional essential
supremum of H(Θ) given Θ ∈ [θ],

HS([θ])
∆
= inf{α : Pr{H(Θ) > α|Θ ∈ [θ]} = 0} (2.10)

As HS([θ]) is a function of θ on (Λ,z), define

HS(X|Y )
∆
=E[HS([Θ])] =

∫
Λ

HS([θ])dµ(θ) (2.11)

Then for asymmetrical SW and IED setup, the following results are given in [48, 47],

Result 2. For any stationary source pair (X, Y ), the minimum rate achievable
asymptotically in asymmetrical SW setup RS(X, Y ) = HS(X|Y ).

Result 3. For any stationary source pair (X, Y ), the minimum rate achievable
asymptotically in IED setup R(X, Y ) = H(X|Y ).

As for most of non-ergodic source,

H(X|Y ) < HS(X|Y ) (2.12)

by using Result 2 and 3, it was shown [48], [47] that for stationary, non-ergodic pair
(X, Y ), the best achievable rate R(In) under the condition that P (In) vanishes as
n→∞ is in most cases strictly less than that afforded by Slepian-Wolf coding. In
this sense, IED achieves first order performance gain over Slepian-Wolf coding.

2.2.3 IED scheme for Memoryless Source Pairs - Redun-
dancy Gain

Now let us consider the case that the source and side information are i.i.d pairs,
whose statistics are known by both the decoder and the encoder. In this case, from
Slepian-Wolf coding theorem, we know that the minimum achievable rate of SW
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coding is H(X|Y ). This limit also applies for IED, as even the encoder is informed
of side information, H(X|Y ) is the minimum rate that can be achieved. However,
if the speed that rate of coding scheme approaches this limit with respect to block
length, as well as the speed that error probability tends to zero, is concerned, there
are still advantages of IED over asymmetrical SW coding.

The redundancy result of asymmetrical SW coding is obtained in [18, 19].

Result 4. Let (X, Y ) be an i.i.d. source-side information pair with finite alphabet
X × Y such that

I(X;Y ) > 0

and PXY (x, y) > 0 for all (x, y) ∈ X × Y. Let {εn} be a sequence of positive real

numbers satisfying εn = o

(√
logn
n

)
and − log εn = o(n). Then for sufficiently large

n and any order-n SW code Sn = (fn, gn) satisfying

P (Sn) ≤ εn

one has

R(Sn) ≥ H(X|Y ) + Θ

(√
− log εn

n

)

Here Θ(·) is defined as for any two functions f(n) and g(n) of n, f(n) = Θ(g(n))
if and only if ∃c1, c2, which are constants, such that

c1g(n) ≤ f(n) ≤ c2g(n)

At the same time, redundancy result of IED is given in [47].

Result 5. Let (X, Y ) be an i.i.d. source-side information pair with finite alphabet
X × Y such that

I(X;Y ) > 0

and PXY (x, y) > 0 for all (x, y) ∈ X × Y. Then there exists a sequence of IED
schemes {In} such that for sufficiently large n,

Rf (In) ≤ H(X|Y ) + c
(log n)1/4

n3/4
+ o

(
(log n)1/4

n3/4

)
Rb(In) ≤ c

(log n)1/4

n3/4

and

P (In) ≤ 2−c(n logn)1/4
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By result 4 and 5, both the speed that rate of coding scheme approaches to
H(X|Y ), and the speed that the error probability approaches to zero are much
faster in IED than in asymmetrical SW coding. This shows that IED achieve
better second order performance over SW coding, which suggests that to achieve
the same rate and error probability, the required block length is less in IED scheme
than in SW coding scheme. As we know that complexity of coding scheme is related
to the block length, this result shows that compared to SW coding, to achieve the
same rate and error probability, the IED scheme should have less complexity.

2.2.4 Converse Coding Theorem

To gain more insight of IED, a converse coding theorem is provided in [47], which
states that

Result 6. Let (X, Y ) be stationary. For any sequence {In} of IED schemes, where
In is an n-th order IED scheme,

lim inf
n→∞

Rf (In) ≥ H(X|Y )

whenever P (In) goes to 0 as n→∞.

This result suggests that the forward rate Rf in IED must be greater than
H(X|Y ) if the error probability goes to zero. It also suggests that if total rate R
of IED approaches to H(X|Y ), the backward rate Rb of IED must goes to zero
asymptotically.

2.3 Summary

With definition formalised in [47], several results mentioned above have been ob-
tained. These results clearly suggest that for applications where the model depicted
in Figure 1.12 fits, IED is a preferred choice compared to Slepian-Wolf coding in
the sense that IED has universality gain, rate gain and redundancy gain over SW
coding for different scenarios. However, the random IED schemes constructed in
[48], [47] do not have an intrinsic structure that is amenable to design and imple-
mentation in practice. In our attempt toward building practical IED schemes, we
begin with investigating linear IED in the next chapter.
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Chapter 3

Linear IED schemes with Low
Density Parity Check Matrix

3.1 Linear IED

In this section, we investigate linear IED where (f1, f2) is a linear mapping, and g
implements maximum a posteriori(MAP) decoding. Throughout this section, X is
assumed to be a finite field denoted by GF(qm), where q is a prime number, and
m is a positive integer, and (f1, f2) in Definition 2.1.1 is conveniently described
by using a sequence of parity-check matrices {H(i); i = 0, 1, 2, · · · } with n columns
whose elements are from GF(qm):

s1 = f1(xn) = H(0)xn

si = f2((t1, t2, · · · , ti−1), xn) = H(i−1)xn, i = 2, · · · , j,

where we abuse the notation by regarding xn as a column vector.

Our purpose in this section is to show that for the lossless source coding problem
depicted in Figure 1.12, there is no (asymptotic) performance loss by restricting to
linear IED. To this end, we construct a sequence of linear IED schemes {In}. Before
describing how In works, we need a few more definitions. Let (X, Y ) = {(Xi, Yi)}∞i=0

be a stationary, ergodic source-side information pair with alphabet X × Y . Let
{Cn}∞n=1 denote a sequence of (classical) prefix codes, where Cn is a mapping from
X n × Yn to {0, 1}∗. For each code Cn in this sequence, we define a normalized
length function hn(·|·) such that nhn(xn|yn) denotes the number of bits when Cn
applies to encode xn from X given side information sequence yn from Y . As in [47],
we assume that

lim
n→∞

hn(Xn|Y n) = H(X|Y ) with probability one (3.1)

for any stationary, ergodic pair (X, Y ). In other words, {Cn} is assumed to be
universal with respect to the class of all stationary, ergodic source pairs.
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We are now ready to describe our linear IED schemes {In}. Let ∆ be a positive
integer to be specified later. To encode a source sequence Xn with decoder only
side information sequence Y n, In works as follows.

1: l← 0.
2: while Encoder does not receive 1 do
3: Encoder selects a ∆×n matrix H(l) whose elements are randomly generated

from X by using a uniform distribution (the sequence H(0),H(1), ... is known
to both Encoder and Decoder before the encoding process begins), and sends
the syndrome Sl = H(l)Xn by using ∆ log |X | = m∆ log q bits.

4: Upon receiving the syndrome Sl, Decoder tries to find the sequence X̂n as
follows.

X̂n = arg min
vn∈Xn: H(i)vn=Si, i=0,··· ,l

hn(vn|Y n). (3.2)

5: if hn(X̂n|Y n) ≤ l∆ log |X |
n

then

6: Decoder reconstructs Xn as X̂n, and sends bit 1 to Encoder.
7: else
8: Decoder sends bit 0 to Encoder.
9: end if

10: l← l + 1.
11: end while

Analyzing the performance of In, we need the following lemma [47].

Lemma 1. For any yn ∈ Yn and any 0 ≤ α ≤ log |X |, define Aα(yn)
∆
={xn ∈ X n :

hn(xn|yn) ≤ α}. Then

|Aα(yn)| ≤ 2nα.

Proof. Since the code Cn is prefix code, it satisfies Kraft inequality. Therefore, ∀yn,

1 ≥
∑
xn∈Xn

2−nhn(xn|yn)

≥
∑

xn∈Aα(yn)

2−nhn(xn|yn)

≥
∑

xn∈Aα(yn)

2−nα

≥ |Aα(yn)|2−nα

which finishes the proof.

Then we arrive at the following theorem.

Theorem 1. For any stationary, ergodic source-side information pair (X, Y ),

lim
n→∞

rf (In) = H(X|Y ) with probability one, (3.3)
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rb(In) = O(
1√
n

), and (3.4)

P (In) ≤ O(2−
√
n). (3.5)

Proof. We begin the proof with selecting ∆ ∼
√
n. For notational convenience, we

also assume that ∆ divides n. In view of Step 3 of the IED scheme In constructed
above, the maximum number of feedback bits is n

∆
∼
√
n. Thus, we have already

established (3.33).

To prove (3.32), we consider two cases: X̂n = Xn and X̂n 6= Xn. In the case
where X̂n = Xn, we see that

rf (X
n, Y n|In) ≤ hn(Xn|Y n) +

∆

n
. (3.6)

In the case where X̂n 6= Xn, we have

rf (X
n, Y n|In) ≤ hn(X̂n|Y n) +

∆

n

≤ hn(Xn|Y n) +
∆

n
, (3.7)

where the last inequality follows from (3.29). Putting (3.1), (3.36), and (3.37)
together, and recalling our selection of ∆ ∼

√
n, we have proved (3.32).

It remains to upper bound P (In). To this end, let us define a sequence of

indicator random variables {El}
n
∆
l=0 as follows. For 0 ≤ l ≤ n/∆,

El
∆
=


1 if there exists a sequence vn ∈ X n such that vn 6= xn,

H(i)(xn − vn) = 0 for 0 ≤ i ≤ l, and h(vn|Y n) ≤ l∆ log |X |
n

0 otherwise

.

In view of Step 3 of In, we see that for any non-zero vector x̃n,

Pr{H(i)x̃n = 0} =
1

|X |∆
. (3.8)

Further, since the error event X̂n 6= Xn implies El = 1 at some l, we have by union
bound that

P (In) ≤
n
∆∑
l=0

Pr{El = 1}. (3.9)

It follows from Lemma 1 and (3.39) that

Pr{El = 1|Y n = yn} ≤ |A
l∆ log |X|

n (yn)|
l∏

i=0

1

|X |∆

≤ 2−∆ log |X |,
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which, together with (3.40), implies

P (In) ≤ 2−∆ log |X |+log( n
∆

+1) = O(2−
√
n), (3.10)

where the last equality is due to our selection of ∆ ∼
√
n. This completes the proof

of Theorem 1.

Remark 1. In view of Theorem 1, Result 1, and the converse coding theorems in
[47], we see that linear IED is indeed asymptotically optimal for any stationary,
ergodic source pairs.

This asymptotic optimality can be further extended to non-ergodic pairs by
using an argument similar to that used in [48].

Theorem 2. For any stationary source-side information pair (X, Y ), there exists
a sequence of linear IED scheme {In}, such that ∀ε > 0, ∃N satisfying n > N ,

R(In) ≤ H(X|Y ) + ε

P (In) ≤ ε

Remark 2. This theorem is the direct result of theorem 1 and ergodic decompo-
sition. Essentially by theorem 1, linear IED scheme can achieve H(θ) for ergodic
component of (X, Y ) corresponding to θ. Details omitted here can be found in the
full paper [28].

3.2 Low-Density Linear IED

In view of the encoding and decoding process of the IED scheme In constructed in
Section 3.1 above, we see that the encoding complexity and the decoding complexity
of In are directly related to the density of the parity-check matrices H(0),H(1), · · · :
the lower the density, the lower the complexity. Clearly there is a lower bound on
the density of linear IED schemes that needs to be maintained without negatively
affecting the asymptotic optimality. The purpose of this section is then to investi-
gate the performance of low-density linear IED schemes. Specifically, we modify the
linear IED schemes in Section 3.1 and show that under the constraint that the total
rate in bits per symbol goes to H(X|Y ) asymptotically for any stationary, ergodic
pair (X, Y ), there exists an interesting tradeoff between symbol error probability
and density.

Our modification of the linear IED scheme In in Section 3.1 is as follows. Instead
of using a uniform distribution over X to draw elements in H(l) independently, l ≥ 0,
we use the following distribution pn,l. Let x denote a symbol in X .

pn,l(x) =

{
p0
n,l if x = 0
p∗n,l otherwise

, (3.1)
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where p∗n,l is a real number in [0, 1] and p0
n,l = 1− (|X |−1)p∗n,l. Thus if p∗n,l is small,

pn,l is biased toward 0, and as a consequence the density of H(l) is low. Throughout
this paper, we assume that p∗n,l ≤ 1

|X | .

Note that each element in H(i), i ≥ 0, is randomly drawn from X by using the
probability distribution pn,i. Using this fact, we prove the following lemma.

Lemma 2. For any sequence xn ∈ X n,

Pr{H(i)xn = 0} =

[
1 + (|X | − 1)(1− |X |p∗n,i)w(xn)

|X |

]∆

,

where w(xn) denotes the weight of xn, i.e., w(xn)
∆
=|{i : xi 6= 0}|.

Proof. Fix xn ∈ X n. We write the weight w(xn) of xn simply as w for brevity. Recall
that each element in H(i) is drawn independently from X by using the probability
distribution pn,i. Thus in order to calculate the probability of the event H(i)xn = 0,
it suffices to calculate the probability of the following event

U1 + U2 + · · ·+ Uw = 0, (3.2)

where {Uk}wk=1 is a sequence of independent copies of a random variable U whose
distribution PU over X is equal to pn,i. Note that in (3.2), the addition is defined
over the finite field X = GF (qm).

Let S =
∑w

k=1 Uk. Then the distribution PS of the random variable S is equal
to the w-th order convolution of PU . In the following, we shall use the standard
discrete fourier transform (DFT) method to facilitate the calculation of PS from
PU .

Let FU denote the DFT of PU defined as follows. For any a ∈ X ,

FU(a) =
∑
b∈X

PU(b)e−
2πj
q
a·b,

where j =
√
−1, and a · b denotes the dot product of a and b regarded as two

length-m vectors over GF (q), that is, a = (a1, a2, · · · , am), b = (b1, b2, · · · , bm), and
a · b =

∑m
i=1 aibi, where ai and bi, 1 ≤ i ≤ m, are all from GF (q). Similarly, let FS

denote the DFT of PS. It follows immediately from the convolution theorem that
for any a ∈ X ,

FS(a) = (FU(a))w , and (3.3)

PS(0) =
1

|X |
∑
a∈X

FS(a). (3.4)

Let us now calculate FU . Observe that PU can be written as the linear sum of
a uniform distribution P0 and a unitary distribution P1, both over X , i.e.,

PU = p∗n,iP0 + (p0
n,i − p∗n,i)P1, (3.5)
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where for any a ∈ X , P0(a) = 1
|X | , and

P1(a) =

{
1 if a = 0
0 otherwise

.

The DFTs of P0 and P1, denoted by F0 and F1, respectively, can be easily calculated
by definition: for any a ∈ X ,

F0(a) =

{
1 if a = 0
0 otherwise

,

and F1(a) = 1. Thus, it follows from the linearity of DFT and (3.5) that

FU = p∗n,iF0 + (p0
n,i − p∗n,i)F1

=

{
1 if a = 0
p0
n,i − p∗n,i = 1− |X |p∗n,i otherwise

. (3.6)

Combining (3.3), (3.4), and (3.6) leads to

PS(0) =
1 + (|X | − 1)(1− |X |p∗n,i)w

|X |
, (3.7)

which, together with the observation that H(i) has ∆ independent rows, implies

Pr{H(i)xn = 0} =

[
1 + (|X | − 1)(1− |X |p∗n,i)w

|X |

]∆

.

This completes the proof of Lemma 2.

In the following theorem, we analyze the performance of the modified (low-
density) linear IED schemes {In}. Note that for the purpose of characterizing the
tradeoff between symbol error probability and density, instead of P (In), we are in-
terested in the symbol error probability D(In) defined as the normalized Hamming
distance between the decoder output X̂n and the source sequence Xn resulting from
using In to encode and decode Xn with the decoder only side information sequence
Y n.

Theorem 3. Let {εn} be a sequence of real numbers. Suppose that In is constructed
by using the distributions pn,0,pn,1, · · · defined by (3.1) such that

lim
n→∞

n/∆∑
i=0

log(1 + (|X | − 1)(1− |X |p∗n,i)nεn) < log |X |. (3.8)

Then for any stationary, ergodic source-side information pair (X, Y )

lim
n→∞

rf (In) = H(X|Y ) with probability one, (3.9)

rb(In) = O(
1√
n

), and (3.10)

D(In) ≤ εn +O(2−
√
n). (3.11)
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Proof. Recall that ∆ ∼
√
n. Equations (3.9) and (3.10) can then be proved by

using an argument similar to that used in the proof of Theorem 1. Thus it re-
mains to upper bound the symbol error probability D(In) to complete the proof of
Theorem 3.

For any real number α ∈ [0, 1] and any sequence xn ∈ X n, define

Bα(xn)
∆
=

{
vn ∈ X n :

1

n
|{i : vi 6= xi}| ≤ α

}
.

Observe that one of the following events must happen: X̂n ∈ Bεn(Xn) or X̂n 6∈
Bεn(Xn). In the case where the event X̂n ∈ Bεn(Xn) happens, we immediately
have

D(In) ≤ εn. (3.12)

In the following, we shall focus on upper bounding D(In) in the case where X̂n 6∈
Bεn(Xn).

For convenience, let us define a sequence of indicator random variables {El}
n
∆
l=0

as follows. For 0 ≤ l ≤ n
∆

,

El =


1 if there exists a sequence vn from X such that vn 6= Xn, vn ∈ Bεn(Xn),

H(i)(Xn − vn) = 0 for 0 ≤ i ≤ l, and hn(vn|Y n) ≤ l∆ log |X |
n

0 otherwise

.

Clearly, the right-hand-side of the equation in Lemma 2 is decreasing as the
function of w(xn). It follows from this observation, Lemma 2, and the definition of
Bεn(xn) that for any xn ∈ X n,

Pr{H(i)(xn − vn) = 0} ≤
[

1 + (|X | − 1)(1− |X |p∗n,i)nεn

|X |

]∆

, (3.13)

which, together with Lemma 1, leads to

Pr{El = 1|Xn = xn, Y n = yn}

≤
∣∣∣A l∆ log |X|

n (yn) ∩Bεn(xn)
∣∣∣ l∏
i=0

[
1 + (|X | − 1)(1− |X |p∗n,i)nεn

|X |

]∆

≤ 2∆(− log |X |+
∑l
i=0 log(1+(|X |−1)(1−|X |p∗n,i)nεn )). (3.14)

Since (3.8) implies that when n is sufficiently large, there exists a small real constant
δ > 0 such that for all 0 ≤ l ≤ n/∆,

l∑
i=0

log(1 + (|X | − 1)(1− |X |p∗n,i)εnn) ≤ log |X | − δ. (3.15)

Putting (3.15) back into (3.14), we have

Pr{El = 1|Xn = xn, Y n = yn} ≤ 2−δ
√
n log |X |,
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which in turn implies
Pr{El = 1} ≤ 2−δ

√
n log |X |. (3.16)

It then follows from the union bound that under the condition X̂n 6∈ Bεn(Xn),

D(In) ≤ (
n

∆
+ 1)2−δ

√
n log |X | = O(2−

√
n). (3.17)

Because of (3.12) and (3.17), this completes the proof of Theorem 3.

Let us take a closer look at equation (3.8). Note that ln(1 + x) ≤ x for all
|x| < 1. Thus when p∗n,i is small for all i,

n/∆∑
i=0

log(1 + (|X | − 1)(1− |X |p∗n,i)nεn)

≤
n/∆∑
i=0

1

ln 2
(|X | − 1) exp(−nεn|X |p∗n,i). (3.18)

Accordingly it is sufficient to require

n/∆∑
i=0

exp(−nεn|X |p∗n,i) ≤
ln 2(log |X |)
|X | − 1

. (3.19)

In a special case where p∗n,i = p∗n for all i, we have

exp(−nεn|X |p∗n) ≤ ln 2(log |X |)
( n

∆
+ 1)(|X | − 1)

(3.20)

which, together with ∆ ∼
√
n, leads to

εnp
∗
n = Ω(

log n

n
). (3.21)

Remark 3. Equations (3.21) and (3.11) together quantify the tradeoff between the
symbol error probability and the density of the linear IED scheme In. In other
words, in order to maintain asymptotic optimality, one has to balance the com-
putational complexity quantified by p∗n and the resulting symbol error probability
according to (3.11) under our construction of In.

Equation (3.21) is a sufficient condition under which the construction of asymp-
totic optimal linear IED schemes with the desired density is possible. Though we
conjecture that for (X, Y ), (3.21) must be held by linear IED schemes achieving
H(X|Y ) at the speed of O(1/

√
n), establishing such a necessary condition is still

an open problem at the moment of writing this paper. Finally we note that the above
conjecture reflects our belief that the three fundamental quantities characterizing an
IED scheme: error probability, rate, and density, are all connected.

Another remark here is that the result also can be extended into stationary non-
ergodic source -side information pairs, with the same technology mentioned in sec-
tion C) 3.1.
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From the theorem above, essentially, as long as pn∗ = ω( logn
n

), the bit error

probability ε will go to zero asymptotically. Even if pn∗ is on the order of logn
n

, it
can still be shown that the bit error probability goes to zero. However, we have
to make a small modification of coding scheme at this point. Instead of starting
from step 1, the encoding goes to r

√
n step at the beginning, which means that the

parity-check matrix has non-negligible rate r in the first interaction. The rate r is
the initial rate of this interactive encoding and decoding scheme.

Corollary 1. Let

pn∗ =
1

2|X |ε
lnn− 2 ln β

n
(3.22)

where ε ≤ 1
2

and β is a constant set to satisfy criterion (3.20), i.e.

β =
ln 2(log |X | − C0)

|X | − 1
(3.23)

Also for large n, there exists a constant 0 < θ ≤ 1, such that

pn∗ ≥
θ

2|X |ε
lnn

n
(3.24)

Then if the initial rate r satisfies

r ≥ max {f1(ε), f2(ε)} (3.25)

where

f1(ε) =
H(ε)

ln

(
|X |

1+(|X |−1)e
− θ

2
√
ε

) (3.26)

and

f2(ε) =
3|X |

2(|X | − 1)

(√
ε+

2ε

θ

)
(3.27)

for the code in the first interaction

Pr{D ≤ εn} = O
(

1√
n

)
→ 0 (3.28)

where D is the minimum hamming distance of this code.

Proof. By union bound,

Pr{D ≤ nε} ≤
nε∑
l=1

(
n
l

)(
1 + (|X | − 1)(1− |X |p∗n)l

|X |

)nr
≤

nε∑
l=1

(
n
l

)(
1 + (|X | − 1)(1− θ

2ε
lnn
n

)l

|X |

)nr

≤

√
ε n

lnn∑
l=1

·+
nε∑

l=
√
ε n

lnn

· (3.29)
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where √
ε n

lnn∑
l=1

· =

√
ε n

lnn∑
l=1

(
n
l

)(
1 + (|X | − 1)(1− θ

2ε
lnn
n

)l

|X |

)nr

(3.30)

and
nε∑

l=
√
ε n

lnn

· =

√
ε n

lnn∑
l=1

(
n
l

)(
1 + (|X | − 1)(1− θ

2ε
lnn
n

)l

|X |

)nr

(3.31)

For
√
ε n

lnn
≤ l ≤ nε, (

1− θ

2ε

n

lnn

)l
≤ exp

(
− θ

2ε

l lnn

n

)
≤ exp

(
− θ

2
√
ε

)
(3.32)

Therefore

nε∑
√
ε n

lnn

· ≤

 nε∑
√
ε n

lnn

(
n
l

)1 + (|X | − 1) exp
(
− θ

2
√
ε

)
|X |

nr

(3.33)

Note that

nε∑
√
ε n

lnn

(
n
l

)
≤

nε∑
l=1

(
n
l

)

=

(
n
nε

) nε−1∑
l=0

(
n

nε− l

)
(

n
nε

)
=

(
n
nε

) nε−1∑
l=0

l∏
i=1

nε− i+ 1

n− nε+ i

≤
(

n
nε

) nε−1∑
l=0

(
nε

n− nε+ 1

)l
≤

(
n
nε

) nε−1∑
l=0

(
ε

1− ε

)l
≤

(
n
nε

)
1− ε
1− 2ε

(3.34)

Note that at the beginning, we assume ε < 1
2
.

From striling formula, we know that(
n
nε

)
≤ 1√

2πnε(1− ε)
expnH(ε) (3.35)
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where

H(ε) = −ε ln ε− (1− ε) ln(1− ε)

Therefore

nε∑
√
ε n

lnn

· ≤ 1

1− 2ε

√
1− ε
2πnε

expn

H(ε) + r ln

1 + (|X | − 1) exp
(
− θ

2
√
ε

)
|X |


(3.36)

It is not difficult to observe that as long as r satisfies

r ≥ H(ε)

ln

(
|X |

1+(|X |−1) exp

(
− θ

2
√

(ε)

)
) = f1(ε) (3.37)

then

nε∑
√
ε n

lnn

· ≤ C1
1√
n

where

C1 =
1

1− 2ε

√
1− ε
2πε

Now we would like to bound
∑√ε n

lnn
l=1 ·. Before that, two inequalities are proved

here. One is that
exp(−x) ≤ 1− x

1 + x
(3.38)

for any x > 0, which comes from

exp(x) > 1 + x (3.39)

And the other inequality (
n
l

)
≤
(en
l

)l
(3.40)

for 1 ≤ l ≤ n, is a little tricky. We prove it by induction. It is easy to see this
inequality holds for l = 1, which is

n ≤ ne

as e > 1. Now suppose that (
n
k

)
≤
(en
k

)k
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then (
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=
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=
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where the last step is due to that
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is a increasing function of k, and it is

well known that
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√
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Therefore
√
ε n

lnn∑
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when
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θ

) > 1

i.e. ∃δ such that

r =
|X |(1 + δ)
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)
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where
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which means √
ε n

lnn∑
l=1

· ≤ C2

(
1

n

)δ
(3.45)

Now let δ = 1
2
, then as long as

r ≥ 2|X |
3(|X | − 1)

(√
ε+

2ε

θ

)
= f2(ε)

then √
ε n

lnn∑
l=1

(e
l

)l
≤ C2

1√
n

(3.46)

The bounds on
∑√ε n

lnn
l=1 · and

∑nε√
ε n

lnn
· together complete the proof.
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Remark 4. Note that through the interaction, when number of rows of parity check
matrix used in IED scheme increases, the hamming distance of corresponding linear
code will not decrease. In other word, the hamming distance of the linear code
at the first interaction is the least hamming distant of linear codes used in IED
schemes. As the corollary shows that the least hamming distant is greater than
nε with probability one in the modified interactive encoding and decoding scheme,
together with the proof of theorem 3, it essentially shows that the bit error probability
goes to 0 in this modified version of IED schemes. Moreover, from equation ( (3.25))
(3.26) and (3.27), as well as the fact that f1(ε), f2(ε) → 0 when ε → 0 ,the initial
rate can be very close to 0 as long as ε is close to 0. The density of matrix pn∗
will increase as ε decreases. But pn∗ will be on the order of logn

n
if ε is a constant

respective to block length n. Also, for the source-side information pairs of non-
negligible conditional entropy rate, it is always possible to set initial rate far smaller
than the entropy rate such that the probability that a sequence of pair produced by
this source can be encoded and decoded successfully by a parity-check matrix with
rate less than initial rate goes to zero. In the other word, rate loss due to the
modification of coding scheme goes to zero.
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Chapter 4

Linear IED schemes with LDPC
code and BP decoding

In the previous chapter, we illustrate that the linear IED scheme, specifically the
low density IED scheme can achieve SW bound universally with asymptotically zero
bit error probability. Although low density parity check matrix used in the scheme
reduces the complexity of encoding, complexity of decoding, which is assumed ML
decoding, is still too high. Therefore, for the practical coding scheme, LDPC code
and BP decoding is utilized, to guarantee the complexity of coding scheme linear
with block length.

4.1 Practical Coding Scheme – LDPC Approach

The practical coding scheme is as follows: In each step i, both the encoder and
the decoder know the low density matrix Hi. For the encoder, it obtains syndrome
by Si = Hi ∗ X, and sends Si to the decoder, while the decoder tries to solve the
problem maxHi∗X=Si Pr{X|Y } [25] using the sum product algorithm. If the decoder
succeeds to converge, and the output passes through the threshold criterion, then it
sends back one bit 1, indicating the success of decoding and terminating the coding
procedure for this block. Otherwise, it sends back one bit 0, indicating the failure
of this step, and the encoder will enlarge the matrix and the whole procedure goes
to next step. Below is the schematic graph.

4.1.1 Interactive Encoding

As Syndrome Encoding is to perform S = H ∗X, and this operation can be done
efficiently, the main issue of encoding is how to get the matrix Hi. One way is to
generate a n×n matrix Hn, where n is the block length, and each step select several
rows of Hn. However, this approach is not good for the reason that it will change
the distribution of check node degrees, and variable node degrees in each step, and
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Figure 4.1: Practical Coding Scheme

to keep the distribution optimized for each step is not traceable. Instead, we keep
the variable node degrees unchanged, and split several check nodes to generate new
syndromes. The procedure follows:

1: Given a Low Density Parity Check Matrix H.
2: while more syndromes are needed do
3: Find the check node Cm with maximum degrees in current H.
4: Partition the neighbours of Cm into two sets, S1 and S2 such that ||S1| −

|S2|| ≤ 1.
5: Delete the edges between Cm and variable nodes in S2.
6: Create a new check node Cn, with neighbours set S2, and corresponding

syndrome.
7: Update H according to the change of its tanner graph.
8: end while

Figure 4.2: Splitting Syndrome Encoding

Remark 1. Note that this Splitting Syndrome Encoding algorithm is similar to
LDPC Accumulate Codes in [42]. But there are two major difference. Fist of all,
our coding scheme design follows the theoretical result obtained in [48], [47] and
previous chapter. Therefore, number of syndrome split in each step is designed
carefully such that rate-less between the total rate exchanged between encoder and
decoder and bit error probability is low. However, in [42], actually one syndrome
is split in each step. There is no guarantee that bit error probability is low, and
the total rate exchanged between encoder and decoder is more than twice of the
conditional entropy of source given side information. Second, splitting method is
designed according to density evolution analysis. Actually every time the algorithm
selects the check node with maximum degrees and split its neighbours as even as
possible. The rational behind it is that in this way ρ′(1) is reduced most, where ρ(x)
is check node distribution of LDPC codes[26]. More specificly,

ρ′(1) =
∑
j

(j − 1)ρj

=
∑
j

jρj − 1 (4.1)

40



while if a check node with degree j0 is split to two check nodes, with degree j1 and
j2, then

ρ̂′(1) = ρ′(1)− j2
0 − j2

1 − j2
2

N

= ρ′(1)− 2j1j2
N

(4.2)

where j0 = j1 + j2 and N is the total number of edges. Apparently, the way to split
above enlarge the amount of reduction of ρ′(1) most. From density evolution anal-
ysis, ρ′(1) is critical to the performance of codes using message passing algorithm,
whether message is discrete or continuous.

4.1.2 Density Evolution Analysis

For the irregular LDPC code[26], let (λi1 , λi2 , . . . , λi|Λ|) and (ρj1 , ρj2 , . . . , ρj|Ω|) de-
scribe the variable node and check node degree distribution, where λi(ρi) repre-
sents the fraction of edges connecting to the variable(check) node with degree i,
and Λ = {i1, i2, . . . , i|Λ|}(Ω = {j1, j2, . . . , j|Ω|}) represents the set of variable(check)
degree with nonzero probability. Therefore,∑

i∈Λ

λi =
∑
j∈Ω

ρj = 1 (4.3)

As the total number of edge is determined by matrix, whether from viewpoint
of variable node or check node, so automatically there is a constrain:

1

R

∑
i∈Λ

λi/i =
∑
j∈Ω

ρj/j (4.4)

where R is the ratio of number of rows and columns of matrix, which corresponds
to compression rate.

Now if we define λ(x) and ρ(x) as

λ(x) =
∑
i∈Λ

λix
i−1 (4.5)

ρ(x) =
∑
j∈Ω

ρjx
j−1 (4.6)

Note usually it is assumed that mini∈Λ i > 1 and minj∈Ω j > 1, as check node
with degree 1 is only useful for a single bit, and we can simply expurgate this row
from the parity check matrix. For variable node with degree 1, this may involve
constant error probability no matter how many iterations it is applied.

Density evolution essentially is to analyse the performance of decoding for par-
ticular ensemble of codes, which is determined by check and variable node degrees.
Based on density evolution, we investigate several well-known message passing al-
gorithm for LDPC decoding, with discrete or continuous alphabet, and show the
role of ρ′(1) in code performance.
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Discrete Alphabets

In this kind of decoding algorithms, we investigate two algorithms proposed by
Gallager[13], called Gallager Algorithm I and Gallager Algorithm II. Detail of this
algorithm will be found in Gallager’s paper cited above. For binary symmetrical
channel, density evolution shows that the bit error probability in i-th iteration pi
satisfies the following recursive function:

pi+1 = p0 − p0λ

(
1 + ρ(1− 2pi)

2

)
+ (1− p0)λ

(
1− ρ(1− 2pi)

2

)
(4.7)

where p0 = ε, the transmission error of channel.

For Gallager Algorithm II, the density evolution shows that:

pi+1 = p0 −

p0

∑
j∈Λ

λj

j−1∑
t=bi,j

(
j − 1
t

)
g(ρ(1− 2pi), t, j) + (1− p0)

∑
j∈Λ

λj

j−1∑
t=bi,j

(
j − 1
t

)
g(−ρ(1− 2pi), t, j) (4.8)

where
bi,j = d(j − 1 + zi)/2e (4.9)

zi =
log((1− p0)/p0)

log((1 + ρ(1− 2pi))/(1− ρ(1− 2pi)))
(4.10)

g(y, t, j) =

(
1 + y

2

)t(
1− y

2

)j−1−t

(4.11)

Now let us consider pi+1 a function of ρi = ρ(1−2pi), for both of the algorithms
above we have the following result:

Proposition 1. pi+1 is a decreasing function of ρi.

Proof. For non-relaxed version, that is equation (4.7), it is quite straightforward,
as 0 ≤ ρi ≤ 1 and λ(x) is an increasing function in (0, 1). For relaxed version, it is
not very obvious. In fact, given j, t ≥ bi,j, g(y, t, j) is an increasing function of y in
(−1, 1), and then proposition 1 is proved. Now let us differential the g(y, t, j),

dg(y, t, j)

dy
=

1

2

(
1 + y

2

)t−1(
1− y

2

)j−2−t

×
(
t− (j − 1)

1 + y

2

)
(4.12)

Here −1 ≤ y ≤ 1, therefore 0 ≤ 1±y
2
≤ 1, and t ≥ bi,j ≥ j − 1. Proof is completed.
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Therefore, to increase the speed of convergence of decoding algorithm, ρi should
be as large as possible, given the same pi. Consider the case when pi is very small,
and ρi is determined by the behaviour of the function ρ around 1. Now apply Taylor
expansion to ρ at 1, we get

ρi = ρ(1− 2pi) = ρ(1) + ρ′(1)(−2pi) + o(pi) (4.13)

where

ρ′(1) =
dρ(x)

dx

∣∣∣∣
x=1

=
∑
j∈Ω

(j − 1)ρj =
∑
j∈Ω

jρj − 1 (4.14)

As ρ(1) = 1 for any check node degree distribution, this means that it is better
to select check node distribution such that ρ′(1) is as small as possible.

Continuous Alphabets – Belief Propagation

When the message is continuously distributed, usually it is impossible to find the
density evolution function directly for the error probability of message[34].

Instead, the recursive function is between the distribution or density of message
in each iteration. For any binary memoryless symmetric channel, we have stability
conditions, the sufficiency part of which states decoding will succeed if rλ′(0)ρ′(1) ≤
1, where

r =

∫
P0(x)e−

x
2 dx (4.15)

and P0(x) is the initial L-density, or density of initial Log-Likelihood Ratio. Obvi-
ously if λ(x) is fixed, ρ′(1) should be as small as possible for the sake of correction
ability of codes.

For asymmetric memoryless channels[44], sufficient stability condition tells us
that error threshold ε∗ is the smallest strictly positive root of the equation:

λ(ρ′(1)ε)r = ε (4.16)

where

r =

∫
〈P0(x)〉e−

1
2dx (4.17)

where 〈P0(x)〉 is the initial L-density averaging over all possible codewords. Again
considering ρ′(1), we have

Proposition 2. ε∗ is a decreasing function of ρ′(1).

Proof. Suppose ρ′1(1) > ρ′2(1), we have to show that ε∗1 < ε∗2. Now we reformulate
the equation by substituting ε̄ = ρ′(1)ε:

ρ′(1)rλ(ε̄) = ε̄ (4.18)
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or

ρ′(1) =
ε̄

rλ(ε̄)
(4.19)

Now we can consider ρ′(1) the function of ε̄. As the smallest variable degree is

larger than 1, then λ(ε̄)
ε̄

is still polynomial. In addition, r > 0 and coefficients of λ
are all positive, then ρ′(1) is decreasing function of ε̄. If ρ′1(1) > ρ′2(1), then ε̄1 < ε̄2.
Then

ε∗1
ε∗2

=
ρ′2(1)

ρ′1(1)

ε̄1
ε̄2

=
λ(ε̄1)

λ(ε̄2)

< 1 (4.20)

The first equation is from the relation between ε∗ and ε̄, and the second from (4.18).
The inequality is due to the fact that λ(x) is an increasing function.

In summary, for all those analysis, ρ′(1) should be as small as possible. In
fact, this also implies that even check distribution is optimal, given fixed variable
node degree λ and rate R. Suppose C = 1

R

∑
λi
i

, we know that in addition to the
constraint

∑
ρj = 1, the check node degree ρ also has to satisfy C =

∑ ρj
j

. Then
we have the following result:

Proposition 3. If C is an integer, then the case that check node degrees all equal
to C yields the best performance in the sense mentioned above.

Proof. This is a straightforward result apply Cauchy-Schwartz inequality. That is,(∑
j∈Ω

jρj

)(∑
j∈Ω

ρj
j

)
≥

[∑
j∈Ω

√
(jρj)

√(
ρj
j

)]2

= 1 (4.21)

which means that
∑

j∈Ω jρj ≥ C, and equality is satisfied if and only if j2 is
constant. This indicates that Ω = {C}.

When C is not an integer, it is impossible to make all check nodes degrees even.
But it turns out that it should be as even as possible.

Proposition 4. If C is not an integer, the best performance is achieved when
Ω∗(C) = {Cz, Cz + 1}, where Cz = bCc.

Proof. First of all, it is obvious that C ≥ 1, as

1

C
=
∑
j∈Ω

ρj
j
≤
∑
j∈Ω

ρj = 1 (4.22)
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where the inequality is due to the fact that j is degree of check node, which is
integer and larger than 1.

Then it can be shown that it is always possible to choose Ω∗(C) no matter
what C is. In fact, for Ω and ρ, there are those two constraints (4.3) and (4.4).
Therefore, if we substitute Ω∗(C) as Ω into those two constraints, we can solve the
linear equations, and get

ρCz = Cz

(
Cz + 1

C
− 1

)
(4.23)

ρCz+1 = (Cz + 1)

(
1− Cz

C

)
(4.24)

It is obvious that 0 ≤ ρCz , ρCz+1 ≤ 1 when C ≥ 1. In this case,

∑
j∈Ω

jρj = C +
Cm(1− Cm)

C
(4.25)

where Cm = C − Cz.

In general, suppose Ω = {j1, . . . , jd} is fixed, whose elements are in ascend order.
Then the problem turns out to be

min∑
ρj=1,

∑
ρj/j=

1
C

∑
j∈Ω

jρj = min{~ρT ~J |~ρ ≥ 0, ~ρTA = ~eT} (4.26)

where

A =


1 1

j1

1 1
j2

...
...

1 1
jd

 , ~e =

(
1
1
C

)

According to duality theorem of linear programming, this minimization equals
to

max{~eTx|Ax ≤ ~J} = max
x1+

x2
ji
≤ji

(
x1 +

x2

C

)
=

1

C
max

jix1+x2≤j2i
(Cx1 + x2) (4.27)

Due to complementary slackness phenomenon, suppose ~ρ0 is the optimal vector,
then ρj 6= 0 implies j ∗x1 +x2 = j2, and as every j ∈ Ω is different with each other,
any row of A is linearly independent with each other, which means there are at
most two ρj is not zero. According to constraint (4.4), if C is not integer, there
should be at least two ρj 6= 0, and at least one larger than C, at least one smaller
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than C. Then we get that to minimize the objective function, we should pick some
jp and jq, with jp < C and jq > C. Solve the linear equation, we have

min∑
ρj=1,

∑
ρj/j=

1
C

jρj = jp + jq −
1

C
jpjq (4.28)

With jp < C and jq > C, this function is a decreasing function with jp and
increasing function with jq. Therefore to minimize this function given Ω, we should
pick

jp = max{j : j ∈ Ω, j < C} (4.29)

jq = min{j : j ∈ Ω, j > C} (4.30)

Meanwhile we show that Ω∗(C) is indeed the optimal.

Remark 2. This proof has show us not only which check degree is optimal, but also
how to choose check degrees when set of possible check node degrees has been given.
Note that this result has been mentioned in [26] without proof.

Therefore from this point of view, the best way to select node and partition is
to try to make check node degree as even as possible in the structure of splitting.

4.2 Model-Training Interactive Decoding Algo-

rithm

4.2.1 General Form of Decoding

Conventional iterative decoding algorithm of LDPC codes for memoryless channel

bases on factor graph. General form is as follows:[24] where represents check

. . .

. . .

. . .

Figure 4.3: General LDPC Decoding for memoryless channels

node, represents variable node, and represents cost function for each variable
node.
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For arbitrary distribution, we propose a general form called model-training.
”Model Training” tries to enforce the statistical property of model into decoding
procedure. It is a multiple input multiple output function. Its input is the vector
of marginal distribution calculated by factor graph in current step, and its output
is the vector of marginal distribution, which is embedded some model constraints.

. . .

. . .

Model
Training

Figure 4.4: General LDPC Decoding for general channels

4.2.2 Non-anticipatory Finite State Channel - Channel with
Memory

Finite state channel was first defined by Gallager[14], depicted in figure 4.5. The

Y
Finite
State

Channel
X

S

Figure 4.5: Finite State Channel

motivation to define finite state channel is to deal with channel with memory, i.e.
output of channel Xi statistically depends current input Yi, past input Y i−1

1 and
past output X i−1

1 . Non-anticipatory assumption is that current output Xi is in-
dependent of future inputs Y ∞i+1 given current input Yi and input output history
Y i−1

1 , X i−1
i , i.e. Y ∞i+1 → (Y i

1 , X
i−1
1 ) → Xi forms a markov chain. To generalise

this notation, we use state of channel si. which denotes the effect of history on
current output. However, to accommodate more general model, e.g. fading chan-
nel, the state can be related to, but not necessarily determined by the history
of input and output. Therefore channel is defined by the conditional probability
Pr{xisi+1|yisi}. As history of input and output have been taken into account in
state, we have (Y i−1

1 , X i−1
1 , Si−1

1 )→ (Yi, Si)→ (Xi, Si+1) as a markov chain. With
non-anticipatory assumption, we require that (Y i−1

1 , X i−1
1 , Si−1

1 , Y ∞i+1)→ (Yi, Si)→
(Xi, Si+1) forms a markov chain.
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In decoding design for this model, the intuition is to utilize forward and back-
ward propagation. And the essential problem is to how to calculate the backward
transition probability efficiently, as we already know the forward transition prob-
ability is Pr{Xi, Si+1|Yi, Si}. This problem will be answered by the following two
propositions.

Proposition 5. Given output history Y i−1
1 and initial channel state s1, the current

output xi and state si+1 depends only on current input yi, and independent with
future input Y ∞i+1. In other word, Y ∞i+1 → (Y i

1 , s1) → (Xi, Si+1) forms a markov
chain.

Proof. From definition,

Pr{xisi+1|Y ∞1 s1}
=

∑
Xi−1

1 Si2

Pr{X i
1S

i+1
2 |Y ∞1 s1}

=
∑

Xi−1
1 Si2

i∏
j=1

Pr{xjsj+1|Xj−1
1 Sj1Y

∞
1 }

=
∑

Xi−1
1 Si2

i∏
j=1

Pr{xjsj+1|Xj−1
1 Sj1Y

i
1}

=
∑

Xi−1
1 Si2

Pr{X i
1S

i+1
2 |Y i

1 s1}

= Pr{xisi+1|Y i
1 s1} (4.31)

We can see that given input Y n
1 , xi, si+1 only depends on si. Actually it can be

shown that similar property holds in the reverse direction.

Proposition 6. Given input history and initial state (Y i−1
1 , S1) and current input

and next state (Yi, Si+1), current output and state (Xi, Si) is independent with other
future input, output and state (Y n

i+2, S
n
i+2, X

n
i+1). In the other word, (Y n

i+2, S
n
i+2, X

n
i+1)→

(Y i+1
1 , S1, Si+1)→ (Xi, Si) forms a markov chain.

Proof. From definition,

Pr{xisi|Y n
1 , s1, S

n+1
i+1 , X

n
i+1}

=
Pr{Xn

i S
n+1
i |Y n

1 , s1}
Pr{Xn

i+1S
n
i+1|Y n

1 , s1}

=
Pr{si|Y n

1 , s1}
∏n−1

j=i−1 Pr{xj+1sj+2|sj+1yj+1}
Pr{si+1|Y n

1 , s1}
∏n−1

j=i Pr{xj+1sj+2|sj+1yj+1}

=
Pr{si|Y i−1

1 , s1}
Pr{si+1|Y i

1 , s1}
Pr{xisi+1|yisi}

= Pr{xisi|Y i
1 , s1, si+1} (4.32)
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Now if we consider linear block code, usually decoder does not know the exact
value of s1, which is channel state at the beginning of this block. However, as
decoder has the output before, we can see that from decoder point of view, s1 is
independent with Y n

1 , and from the proof above, we can get

Pr{xisi+1|Y n
1 } = Pr{xisi+1|Y i

1} (4.33)

and

Pr{xisi|Y n
1 , S

n+1
i+1 , X

n
i+1}

= Pr{xisi|Y i
1 , si+1} (4.34)

=
Pr{si|Y i−1

1 }
Pr{si+1|Y i

1}
Pr{xisi+1|yisi} (4.35)

Remark 3. marginalization, where in principle both forward and backward direc-
tion the sequence forms markov chain. Equation (4.34) provides the rational that
we can also do the same thing. Note that for backward propagation, instead of
(Yi+1, Si+2), we should use (Y i+1

1 , Si+2) as condition. The forward and backward
transition probability is related in equation (4.35), which also provides the efficient
way to calculate the backward transition probability. It will be shown that the com-
plexity of calculation is linear with block length afterward.

Now we can describe the algorithm for finite state channel. The message passing

diagram is shown in figure 4.6, where I depicts interfere node. In this diagram,
message passed between check node an variable node is identical to the standard BP
decoding, while message passed between variable node and inference node, as well
as among inference nodes, is specified as follows. Suppose ~q = {qi(xi), 1 ≤ i ≤ n} is
the message from variable node to interfere node, and ~p = {pi(xi), 1 ≤ i ≤ n} is the
message in the reverse direction. Two additional vectors will be defined to represent
message between interfere nodes. ~α = {αi(si), 1 ≤ i ≤ n} and ~β = {βi(si), 1 ≤ i ≤
n}. For one of inference node, inference propagation can be depicted by figure 4.7.

. . .

. . .

I I . . . I I

Figure 4.6: Message passing diagram of LDPC Decoding over finite-state channels
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Interfere
Node i

α(si)

β(si) β(si+1)

α(si+1)
q(xi) p(xi)

Figure 4.7: Interfere Propagation

The message related to this inference node is calculated by equations below.

αi+1(si+1) =
∑
si

∑
xi

Pr{xisi+1|yisi}

× αi(si)qi(xi) (4.36)

βi(si) =
∑
si+1

∑
xi

Pr{xisi|Y i
1 , si+1}

× βi+1(si+1)qi(xi) (4.37)

pi(xi) = κi
∑
si

∑
si+1

Pr{xisi+1|yisi}

× αi(si)βi+1(si+1) (4.38)

where κi is a normalising parameter, which guarantees pi(xi) is a probability dis-
tribution. This is similar to forward-backward algorithm. Actually for backward
part, if (4.34) is substituted into (4.37), we have

βi(si)

Pr{si|Y i
1}

=
∑
si+1

∑
xi

Pr{xisi+1|yisi}

βi+1(si+1)

Pr{si+1|Y i
1}
qi(xi) (4.39)

and if we define βi(si) = βi(si)

Pr{si|Y i1 }
, then (4.37) and (4.38) can be written as

βi(si) =
∑
si+1

∑
xi

Pr{xisi+1|yisi}

× βi+1(si+1)qi(xi) (4.40)

pi(xi) = κi
∑
si

∑
si+1

Pr{xisi+1|yisi}

×αi(si)Pr{si+1|Y i
1}βi+1(si+1) (4.41)

In the following we will investigate several special cases of finite state channel,
and existing BP decoding algorithm for those cases. It will show that those existing
algorithm will degrade to the algorithm proposed here in those special cases.
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4.2.3 Memoryless Channel

If channel is memoryless, Pr{xisi+1|yisi} ∝ Pr{xi|yi} with the same factor no
matter si+1 and si are. Then according to (4.41), pi(xi) ∝ Pr{xi|yi}, and if κi is
chosen properly, pi(xi) = Pr{xi|yi}, and this algorithm reduces to sum product
algorithm for memoryless channel.

4.2.4 GE channel

For GE channel, channel state is independent with input, therefore Pr{xisi+1|yisi} =
Pr{xi|yisi}Pr{si+1|si}. According to (4.36) (4.40) and (4.41), we have

αi+1(si+1) =
∑
si

Pr{si+1|si}αi(si)

×
∑
xi

qi(xi)Pr{xi|yisi} (4.42)

βi(si) =
∑
xi

qi(xi)Pr{xi|yisi}

×
∑
si+1

Pr{si+1|si}βi+1(si+1) (4.43)

pi(xi) =
∑
si

∑
si+1

Pr{xi|yisi}Pr{si+1|si}

× αi(si)Pr(si+1)βi+1(si+1) (4.44)

Here (4.42) and (4.43) are exactly same to LDPC decoding algorithm for GE
channel[], and (4.44) is different only by the item Pr{si+1}. However, when channel
enters into stationary state, Pr{si} will be a constant for any i. Therefore this
algorithm reduces into normalised version of LDPC algorithm for GE channel.
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4.2.5 Output Markov Channel

Now we consider the case when state is determined by previous k output, that is,
si = X i−1

i−k . Then from (4.36) (4.37) and (4.38), we will get

αi+1(X i
i+1−k) =

∑
xi−k

Pr{xi|yi, X i−1
i−k}

× αi(X i−1
i−k)qi(xi) (4.45)

βi(X
i−1
i−k) =

∑
xi

Pr{xi−k|Y i
1 , X

i
i−k+1}

× βi+1(X i
i+1−k)qi(xi) (4.46)

pi(xi) =
∑
Xi−1
i−k

Pr{xi|yi, X i−1
i−k}

× αi(X i−1
i−k)βi+1(X i

i+1−k) (4.47)

where

Pr{xi−k|Y i
1 , X

i
i−k+1} =

Pr{X i−1
i−k |Y

i−1
1 }

Pr{X i
i−k+1|Y i

1}
Pr{xi|yi, X i−1

i−k} (4.48)

4.2.6 Complexity of the Algorithm

As we know that inference propagation within LDPC tanner graph has the com-
plexity of O(n), and n is block length. And we can see from equations of forward-
backward propagation, the propagation itself also has the complexity of O(n). Now
the issue is how to calculate Pr{si+1|Y i

1}. Note that

Pr{si+1|Y i
1} =

∑
si

Pr{si|Y i−1
1 }Pr{si+1|yi, si} (4.49)

we can calculate those probabilities sequentially, and complexity is again O(n).

Remark 4. Note that the derivation of algorithm does not involve the statistical
property of Y . Even for non-stationary non-ergodic Y , this algorithm also works.

4.3 Experiment Results

4.3.1 Complexity of Interactive Coding - Incremental Mes-
sage Passing Algorithm and Block-wise Adaptive En-
coding

Theoretically, in each interaction, message passing algorithm will output a block of
symbols, which satisfies the check node constraint. Then by comparing its likelihood
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with threshold, decision whether more bits are necessary for decoding is made. For
LDPC code, usually when the bits are not enough to estimate source from side
information, decoding simply fails, which means that within maximum number of
iterations allowed message passing algorithm fails to output such block of symbols
satisfying the check node constraint. In such case, the decoding complexity will
increase linearly with number of interactions. However, number of interactions also
affects the whole performance of coding, and should be reasonably large. Therefore,
in each interaction instead of waiting for decoding failure, we design the technique of
detecting the failure. Essentially, both the failure and success are detected during
iterative decoding in each interaction. For failure detection, in each iteration of
message passing algorithm, number of unsatisfied check nodes is counted, and if
this number is unchanged for several round of iterations, this is the sign of decoding
failure, then decoder claims the failure, and send back bit 0 to ask more bits from
encoder. For detecting success, decoder is looking for high confidential bits (variable
with high Log-Likelihood Ratio) during the initial several iteration, and if those
bits are present, decoding will continue, otherwise, decoding is terminated and
decoder asks more bits from encoders. And in each interaction, the iteration of
decoding does not start from the very beginning. Instead, decoder will utilize the
message vector from the last interaction. By doing this, the complexity will be
approximately the same as the case without interaction. Experiment shows that
the average total iteration of one block over all interaction turns out to be about
100 for small conditional entropy region(0.25 to 0.4), and 300 for high conditional
entropy region(0.75-0.9).

The model of interactive coding is the master-slave type. In practical system,
this is not necessary. Encoder can also adapt the property of source, block-wisely.
Essentially, initial rate the encoder transmits in the first interaction can be any
number as long as it is above the rate of base code. From previous blocks, encoder
can estimate the range of number of interaction required, and set the initial rate at
the bottom of that range. In this way, the number of both interactions and total
iterations will be reduced.

4.3.2 Symmetrical Memoryless Model

Experiment settings are as follows: Block Length = 8000. The three different base
LDPC codes are used here, whose variable node degrees distributions target to
channel rate 0.25, 0.5, and 0.7 respectively. Therefore, the corresponding SW rates
are 0.75, 0.5 and 0.3. The variable node degrees distributions are obtained in [1],
and SW rates of base codes are 0.375, 0.25 and 0.15. And Codes are generated by
Progressive Edge-Growth Method [20]. Therefore there is no need to specify the
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check node degrees distributions. The variable node degrees used are:

λ0.15(x) = 0.132994x+ 0.125532x2 + 0.163834x4

+ 0.148921x5 + 0.428719x19 (4.50)

λ0.25(x) = 0.23802x+ 0.20997x2 + 0.03492x3 + 0.12015x4

+ 0.01587x6 + 0.0048x13 + 0.376269x14 (4.51)

λ0.375(x) = 0.351551x+ 0.221134x2 + 0.215355x5 + 0.00260617x6

+ 0.0439016x12 + 0.127313x14 + 0.0381391x15 (4.52)

where the subscript indicates the SW rate of base codes.

Figure 4.8: Performance of LDPC code, Length 8000

Figure 4.8 shows the performance of those three codes. Note that for channel
rate = 0.3(SW rate = 0.7), when gap between theoretical limit and compression
rate is less than 0.06, errors blow up, larger than 10−4. Same thing happens for
the code of channel rate = 0.5(SW rate=0.5), when gap is less than 0.06, and for
channel rate=0.75(SW rate=0.25), when gap is less than 0.07.

Now let us look at our coding scheme with feedback. Note that if there is
feedback, decoder can send information to encoder to indicate which code is suitable
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for the current source. Therefore, we have flexibility to choose LDPC for different
rate region. The performance is shown in Figure 4.9.

Figure 4.9: Performance Interactive Coding Scheme, Length 8000

Here we do not show error probability. Actually except for SW rate=0.25,
which has errors at 10−5 level, rest of them has no error within 106 bits simulated,
which means they should have error probability less than 10−6. For SW rate = 0.3,
0.5 and 0.75, gaps are 0.367, 0.443 and 0.510, which are much better for regular
coding scheme. More importantly, this coding scheme adapts all the rate, and note
that when the compression rate is calculated, both forward and backward bits are
counted. Figure 4.10 is another way to show the performance.

4.3.3 Asymmetrical Memoryless Model

Here are some results when channel between Y and X are asymmetrical, but still
memoryless. Base code is generated according to variable node distribution of
channel rate = 0.5(SW rate=0.5), and rate of base code is 0.25. Performance is
shown in Table 4.1.

We can see that when the entropy is approaching to 0.5, and channel turns more
”symmetrical”, the result is better. This is the property of this particular LDPC
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Figure 4.10: Performance showed in another way, length 8000

code. The coding scheme accommodate the ”asymmetric” very well. Here 105 bits
are simulated and there is no error, which implies the error should at least at the
level of 10−5.

4.3.4 First Order Output-Markov Source

Here we assume Y is i.i.d sequence. In this assumption, it is not hard to see that
X is first-order Markov Source itself. Actually

Pr{Xi|Xi−1} =
∑
yi

Pr{Xi|yi, Xi−1} (4.53)

Therefore entropy can be calculated as

H(Xi|Yi, Xi−1) =
∑
yi,xi−1

Pr(yi)π(xi−1)

×H(Xi|Yi = yi, Xi−1 = xi−1) (4.54)

where π is stationary distribution of x.
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Pr{0|0} Pr{0|1} Entropy Rate Gap
0.95 0.15 0.3834 0.4441 0.0607
0.94 0.14 0.4045 0.4604 0.0559
0.93 0.13 0.4234 0.4744 0.0510
0.92 0.12 0.4403 0.4856 0.0453
0.91 0.11 0.4555 0.4977 0.0422

Table 4.1: Asymmetrical Memoryless Channel Model

p00 p01 p10 p11 Entropy Gap
0.95 0.05 0.85 0.15 0.3942 0.0543
0.94 0.06 0.86 0.14 0.4134 0.0481
0.93 0.07 0.87 0.13 0.4303 0.0484
0.92 0.08 0.88 0.12 0.4451 0.0440
0.91 0.09 0.89 0.11 0.4580 0.0405

0.95 0.15 0.85 0.05 0.4251 0.0462
0.94 0.14 0.86 0.06 0.4380 0.0443
0.93 0.13 0.87 0.07 0.4486 0.0441
0.92 0.12 0.88 0.08 0.4573 0.0412
0.91 0.11 0.89 0.09 0.4640 0.0387

Table 4.2: Performance of First Order Markov Source Case

The result is shown in Table 4.2, where Pr{Y = 0} = 0.7:

where pst = Pr{Xi = 0|Yi = s,Xi−1 = t}. First five results are in the case
there are symmetrical channel from Yi to Xi, with different cross error probability
according to different value of Xi−1. Last five results are the case when the channel
is asymmetrical.

It can be seen that when the entropy is approaching to 0.5, and Xi has less
dependence on Xi−1, gap is smaller. Here 105 bits are simulated and there is no
error, which implies the error should at least at the level of 10−5.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

Distributed source coding, which is formalised conceptually in 1970s and rediscov-
ered in 1990s due to its application such as sensor network etc. is considered in this
thesis. Particularly the thesis focuses on one of the special cases where side infor-
mation is only available at the decoder and the source has to be reconstructed near
losslessly. This problem has been settled theoretically by Slepian and Wolf during
1970s in the classical setup, where only one way transmission, i.e. from the encoder
to the decoder, is allowed. Its practical code scheme design and implementation,
according to the idea transforming it to channel coding problem first proposed by
Wyner, are reviewed. In contrary to the Slepian Wolf setup, a new approach, called
interactive encoding and decoding, was formalised conceptually by Yang and He,
while the idea can be traced back to 1980s. The difference between Slepian Wolf
coding and IED is that two way transmission is allowed in latter. While several
theoretical results of IED has been derived by Yang and He, the proof largely bases
on random binning argument, which does not provide the answer how to design
a practical code scheme. Meanwhile, this idea has been utilized, although not ac-
curately, in the research of rate-less SW coding. This thesis is essentially in the
framework of IED. The purpose is to consider the complexity of IED scheme, and
build a practical code scheme. In order to achieve this purpose, different approaches
are used.

From theoretical side, we restrict code scheme to the scope of linear block code,
resulting in linear IED. It then shows that this restriction does not undermine the
performance of IED asymptotically, in the sense that a sequence of linear IED
schemes will be always found that asymptotically the performance of code scheme,
evaluated by compression rate Rn and error probability, is the same as IED scheme.
Spefically, it shows that linear IED scheme can approach H(X|Y ) for any station-
ary source-side information pair (X, Y ), ergodic or not, with asymptotically zero
error probability. With the consideration that H(X|Y ) is also the minimum rate
achievable by any IED scheme in such setup, we reach the conclusion made above.
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To further investigate the complexity of linear IED scheme, a parameter p∗n,
called the density of linear IED scheme, is introduced, which is defined as the
probability that each element of parity check matrix used in IED is non-zero. p∗n is
shown to be related to the complexity of encoding and decoding in the code scheme.
With another parameter P e

n, the bit error probability concerned, an interesting
result is obtained that as long as p∗n and εn satisfy

εnp
∗
n = Ω

(
log n

n

)
then a sequence of linear IED schemes, with density p∗n can be found such that
compression rate approaches H(X|Y ) asymptotically, with P e

n upper-bounded by
εn. This event shows that there is an interesting trade-off between bit error proba-
bility and density of code scheme given that H(X|Y ) is approached asymptotically.
Moreover, it is shown that density can be as low as logn

n
, with bit error probability

still going to 0, if linear IED scheme is modified in the way that it starts from
non-negligible initial rate. With the results summarised above, we conclude the
theoretical approach.

From practical side, LDPC codes and BP decoding are utilized. We improve
one of rate-less SW coding schemes based on the syndrome splitting in the way that
splitting method in each step is optimized according to density evaluation analysis.
More important issue of practical implementation is to deal with the case that the
correlation between source and side information can not be modelled simply, for
example by memoryless channel or hidden markov state channel, which are already
considered in literature. Towards this destination, we propose ”Model Training”
BP decoding algorithm for general cases, and design a BP decoding used in the
finite state channel case accordingly. Those existing algorithms, for memoryless or
hidden markov state channel, can be shown to be the special cases of our algorithm.
Finally, with the simulation results that clearly demonstrate the advantages of IED
scheme over SW coding scheme, we conclude practical approach.

5.2 Future Work

The results of this thesis are just starting point towards practical Interactive En-
coding and Decoding schemes. Several critical problems have to be answered before
an efficient implementation is found.

1. As the linear IED scheme is just one of approaches to design practical IED
schemes, are there any other ways which are more efficient and easier to
design?

2. The scope of the thesis is limited to the case of side information at the decoder,
how to extend the approach used in this thesis to the case of two encoders
and one decoder, and more general source networks?
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3. The relation between the density of code scheme and the bit error probability
is the achievability result, how about converse theorem? i.e. Is this relation
necessary to be satisfied for all linear IED schemes?

4. Syndrome splitting method and LDPC codes are used to form a rate-less SW
code, which is the incremental encoding problem in IED scheme. Is there any
other way to design incremental encoding?

5. If LDPC codes and BP decoding algorithm are utilized in IED scheme, how to
design BP decoding to solve the problem of more general correlation between
the source and side information?
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