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Abstract

Supply chain management is the set of tasks through which businesses acquire, pro-

cess, and move raw materials and final products from suppliers through factories

and distribution points to customers. The mathematical problems encountered in

supply chain optimization models are difficult to solve. Free Trade Agreements

can simplify the models of inter-company trade between countries. Another way

to make these models more tractable is to decompose the complete supply chain

into a set of small, manageable units representing businesses or business processes

and optimize the system by controlling the interactions between these units. We

illustrate such a model and optimize it with genetic-algorithm-controlled Multidis-

ciplinary Design Optimization.

Keywords: Supply Chain Management, Inventory, Transportation, Logistics, NAFTA,

Free Trade, Multidisciplinary Design Optimization, Genetic Algorithms
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Chapter 1

Introduction

Supply chain management is the process by which businesses acquire, produce

and move raw materials and final products from suppliers through factories and

distribution points (such as distribution centres and retailers) to customers. Each

step in the supply chain involves the creation of value (either through a change in

the product or a change in its location) and the costs incurred to create that value.

While the tasks involved are complex, the idea driving them is simple: optimize

the total system that is the supply chain.

Unfortunately, the simplicity stops there. The mathematical problems that

represent the vanguard of supply chain optimization models are difficult at best,

if not NP-Hard. Managing the relationships that those models recommend can be

trying, due to conflicting goals within the organization and between supply chain

partners. Supply chains that operate across international borders face additional

barriers, both cultural (such as language and traditions) and political (including

tariffs, preferential trade partners, local content restrictions).

While only global hegemony and homogenization will completely eliminate the

challenges posed by international supply chain management, Free Trade Agree-

ments (FTAs) such as the North American Free Trade Agreement (NAFTA) can

simplify, or at least clearly codify, the requirements for freer trade. By eliminating

some of the political constraints, supply chain models become easier to solve.
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Another way to make these models more tractable is to take a lesson from com-

puter science’s object-oriented methodology and break down the complete supply

chain into a set of small, manageable units representing businesses or business pro-

cesses and define the relationships between them. We can then try to find a set of

relationships such that, when the individual components are optimized, so is the

supply chain. That is the essence of this thesis; the method by which we optimize

the system is known as Multidisciplinary Design Optimization (MDO).

We will begin by describing supply chain management in detail and formulating

a basic mathematical model. Subsequently, we will discuss in detail how interna-

tional trade and FTAs can be quantified and included, expanding our model. Later,

we will introduce MDO and demonstrate how it can be used to optimize supply

chain problems. We will end the thesis with a validation of the usage of MDO in

supply chain management, by applying it to both a small example and a case study

based on an existing company.
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Chapter 2

Supply Chain Management

2.1 Overview

Supply chain management has been a long time coming. We see elements of it

as early as the first assembly line in the first plant belonging to the Ford Motor

Company: Ford’s assembly line wouldn’t have worked its magic without consistent

supply of up-to-spec components and subassemblies. The tools that permitted the

possibility of such a system grew out of work conducted by Allied researchers in

World War II. With the birth of “Operations Research” (OR), and its attendant

tools of optimization, statistics and simulation, the design of optimal systems began.

Despite its military roots, OR was quickly picked up by the business world.

Statistical forecasting methods, schedule and layout optimization and simulation

became common-place in the world. Business logistics received a tremendous boost

in effectiveness as computers entered the work world, permitting more advanced

inventory control policies, faster ordering and more efficient transportation routing

and scheduling.

By the 1980s, the tools used to plan the individual components listed in our

earlier definition of supply chain management had become sufficiently advanced

that a paradigm shift had to occur for more progress to be made. This appeared in
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the form of Just-in-Time (JIT) inventory management and Total Quality Control

systems [13].

These two tools, among others, required that interacting businesses be consid-

ered as more than just isolated islands, each dealing with their own customers and

suppliers, but as a complete system denoted a ‘supply chain.’ By changing the unit

of analysis, managers started to look at processes from raw material acquisition to

selling the final good to the end consumer. While there are issues to overcome, such

as the need for information sharing between supply chain members or the need to

find a way to induce members to act for the benefit of the chain, not just their

company, supply chain management provides a way to make all members more

competitive.

There are several ways that looking at the supply chain as a whole can im-

prove the situation for individual members. For example, if a retailer shares its

demand forecasts with the company that manufactures the products it sells, the

manufacturer can make sure that it has sufficient raw materials on-hand to avoid

stocking-out. By doing this, both the retailer and the manufacturer can increase

their sales by avoiding the chance of a stock-out during a high-demand period.

Alternatively, by sharing storage cost information, supply chain members can de-

termine the optimal location(s) and form for products to be stored in.

A basic supply chain is illustrated in Figure 2.1. It is simple, but shows most

of the basic elements needed for supply chain management. There are four levels

or tiers: supplier (the organization that provides raw materials or sub-assemblies),

manufacturer (the company that performs the final production and assembly), dis-

tributor (the business that provides transportation to the end consumer) and the

consumer (the final customer, be it an external retailer, a business, or a person).

We can see that physical product flows from left to right, from the supplier to the

consumer and that capital and information flow in the reverse direction, from the

consumer to the supplier. We often use a river metaphor to describe these flows;

we call the direction from supplier to consumer as “downstream,” and the direction
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from consumer to supplier as “upstream.”

Few supply chains are as linear as this example, however. A more realistic

example can be found in Figure 2.2. Here, the manufacturer purchases from several

suppliers. The manufacturer ships to a distributor with multiple customers as well

as directly to another type of customer. Of course, supply chains can have more or

fewer tiers, or more organizations or ‘nodes’ at each tier. Organizations can span

tiers (i.e. ‘vertical integration’), but the general idea stays the same.

Supplier Manufacturer ConsumerDistributor

Flow of Information & Capital
Flow of Material

Figure 2.1: A Basic Supply Chain

Supplier Manufacturer

Consumer

Distributor

Flow of Information & Capital
Flow of Material

Supplier

Supplier

Consumer

Consumer

Figure 2.2: A More Realistic Supply Chain

When designing an optimal supply chain, the first decision must be “What does

‘optimal’ mean?” and “to whom do we apply the optimization process?” Typically

there is a cost/profit factor in the answer to this question, but there may be other
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considerations. One might want to ensure a minimum service level to the end

consumer, or maintain a high degree of flexibility in case of disruptions (i.e. an

‘agile’ supply chain). Based on these criteria, other decisions can and must be

made. Facility locations must be decided and how much of which products to

produce at each facility or which end-users get. Transportation routes and modes

(as discussed later) must be chosen so as to get the products to the right place at

the right time.

One view of supply chain management is to minimize total system cost (intend-

ing to, therefore, maximize system profit.) We conjecture that two of the largest of

these costs are the costs associated with holding inventory and the costs of trans-

porting the goods between locations. These two issues are dealt in subsequent

sections; the reader should note, however, that these sections are not meant to be

an exhaustive treatment of either topic, but instead are meant to give the readers

sufficient background to understand the context of our problem.

Once an ‘optimal’ supply chain has been designed, it must be implemented.

However, it is entirely possible that what is optimal for the entire supply chain

may not be optimal for some of the members (i.e. some members gain more than

others lose between the current and optimal systems.) In the typical case where

a supply chain manager is tasked with modifying an existing supply chain and

moving it towards ‘optimality,’ he must find a way to convince all the organizations

involved to co-operate.

One such way is through side payments. For example, if the SC manager wishes

one of his suppliers to provide terms that allow for an optimal purchasing ar-

rangement, he must ensure that the supplier’s income under the new purchasing

arrangement is at least equal to what it would be under the supplier’s individual

optimal purchasing arrangement. Revenue-sharing clauses and buy-back clauses

are two ways that a contract may include such side payments [38].
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Before we examine transportation and inventory costs in more detail, let us first

review some pertinent literature. The papers below include both review papers and

those that develop state-of-the-art methods for modeling and optimizing supply

chains.

Beamon [4] divides the literature into four main categories:

1. deterministic analytical models,

2. stochastic analytical models,

3. simulation models, and

4. economic models.

The first two get a fairly thorough review, referring to some articles (particularly

Cohen and Lee [16]). Beamon later discusses metrics for supply chain management

(the most popular being cost, as defined by inventory levels) and possible deci-

sion variables (the most popular being inventory levels and production amounts).

Beamon finishes by suggesting further research areas, in particular delayed differ-

entiation, single vs. multiple-country supply base, and bullwhip effect reduction.

Schwarz, Ward and Zhai [36] characterize the class of problem that includes

both inventory and transportation considerations. They then survey and categorize

nearly 50 relevant articles and recommend several areas of research that may yield

useful results.

Qu, Bookbinder and Iyogun [32] investigate the division of inventory and trans-

portation systems within the context of a single company. They then examine co-

ordination between these two. The model is periodic and examines multiple prod-

ucts. The routing is pre-determined using a TSP model. Here, costs are balanced

in an iterative manner between the inventory and transportation sub-problems.

In Camm et al. [9], the authors describe a supply chain initiative in which

Procter & Gamble worked with the University of Cincinnati to restructure its supply
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chain. New facilities (plants and distribution centres) could be opened, based on a

predetermined list of candidate sites and existing facilities could be closed. The type

of product processed at a facility was also open for discussion, as was each facility’s

sources. Also included was a “blank page” analysis in which they permitted facilities

to be located anywhere, not just those on the list, as an ‘ideal’ supply chain for

them to use as a metric.

In a solid introductory paper, Giunipero and O’Neal [20] list six points of re-

sistance to JIT implementation, one of which is the issue of distance. This paper

supports the possibility of long-distance JIT, though it suggests that small distances

in between suppliers and consumers are better.

Blumenfeld et al. [6] discuss three things: the relationship between transporta-

tion and set-up costs, conditions for when many-to-many networks can be analyzed

on a link-by-link basis, as well as a method to simultaneously determine optimal

routing and shipment size for certain problems.

Of course, not all research concentrates on supply chains in general, but some-

times focusses on specific areas. In a very analytical paper, Berman and Wang [5]

discuss the minimization of unimodular transportation and inventory costs, par-

ticularly when dealing with direct shipping or a cross-dock. They provide both

heuristics and an exact algorithm.

Burns et al. [8] examine the cost differences between direct shipment and ped-

dling and determine optimal sizes for each. They also work with spatial density

of customers rather than precise locations. This results in simpler formulae, which

helps sensitivity analysis.

The work of Gümüs and Bookbinder [22] examines multi-echelon networks that

include cross-docks. It also discusses when to ship direct and when to use cross-

docks - i.e. direct shipment is more cost-efficient in a TL situation.

Leung, Wu and Lai [26] develop a ‘robust’ optimization model to take into

account variability in certain parameters, such as demand, using a scenario-based

approach. They then apply this model to a cross-border logistics problem in Hong
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Kong. Their model permits a reduction in variability in the model, as well as an

examination of the tradeoffs between model and solution robustness.

Wu [44] applies similar techniques to the production loading problem. He for-

mulates a two-stage stochastic approach and compares it to three types of robust

optimization models (solution robust, model robust and solution/model robust).

He then describes a series of tests used to compare these models. Wu claims that

robust optimization models permit a high reduction in risk due to variability by

incurring slightly increased costs.

Most of the literature concerns supply chains as a whole, or restricts itself to a

very specific class of problem. We will, in a manner akin to Qu, Bookbinder and

Iyogun [32], differ from the bulk of the literature and divide the supply chain into

two major disciplines, the inventory discipline and the transportation discipline.

The model we formulate in this chapter will later be reorganized to fit this paradigm.

2.2 Issues in Inventory

When designing a supply chain, the issues surrounding inventory must necessarily

play an important role. However, the inventory in a supply chain isn’t only finished

goods sitting on a retail store shelf. Thorough planners must include in their

analysis every location in which goods might be stored. They should also consider

the costs and benefits of storing goods in these locations. Typically, finished goods

inventory is typically stored near the downstream end of the supply chain (i.e. at

a retailer or distributor), whereas raw material inventory is typically found at the

opposite, upstream, end. Work-in-process (WIP) inventory of the final product is

typically found at neither end, but more towards the middle.

The typical case aside, it can be advantageous to store WIP inventory closer to

the end-consumer, i.e. to implement product postponement strategies. However,

this likely incurs a higher inventory holding cost. It can also be useful to store

finished goods inventory upstream of the end-consumer to take advantage of risk-
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pooling for demand satisfaction. However, this comes at the cost of a longer lead

time to the consumer. It is up to the supply chain planner to evaluate these, and

other, tradeoffs when inventory storage locations are chosen.

One cost that may be overlooked (particularly by planners who are using models

that ignore transportation lead-times or production processing times) is the cost of

pipeline inventory. That is, inventory that is currently between storage locations

or currently between inventory classifications. With a production process with a

relatively high yield, planners may, perhaps justifiably, not worry themselves overly

with this form of WIP inventory. However, a large stock of nearly-finished products

may tie up nearly as much capital and shelf-space as the end-product will, such as

in the case of final computer assembly (the cost to make or acquire the components

has already been incurred and components such as monitors may not be compactly

stored.)

In an era with materials, parts and components sourced globally, it is likely

unreasonable to assume that there will be zero lead-time throughout the supply

chain. It is possible for this assumption to be true, such as in a supply chain

that has only local suppliers and customers (for example, a just-in-time automobile

manufacturer in southern Ontario).

In the general case, however, at least one of the links in the supply chain may

be sufficiently long to require consideration of pipeline inventory. Consider, for

example, a typical Canadian retailer who sells products, perhaps toys, made some-

where in eastern Asia. It is almost guaranteed that these products spend several

weeks in a container, traveling by truck or rail to a seaport, voyaging across the

Pacific Ocean to Vancouver, BC, and then again by truck or rail to the retailer’s

warehouse. Even Hollywood screenwriters are aware of this possibility, as shown by

a line in the 1998 disaster movie Armageddon [3]: “American components, Russian

components, all made in Taiwan.”

Inventory holding costs typically have two components at a given location: the

fixed cost of storing the good (such as building a warehouse) and the variable cost
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of storing that good (such as refrigeration, security, or depreciation). How many

times these costs are incurred depends on the type of inventory control policy that

a company uses. Often, inventory holding cost is expressed as a percentage of the

value of a unit of inventory and is incurred per period.

The value of a unit of inventory is usually a combination of material cost plus

processing cost. However, it could also take into account final selling price, the

value of the item at different locations (i.e. making transportation a value-added

process), or even just be a value prescribed by an accountant (i.e. a ‘transfer cost’,

to move profit between organizational structures within a company).

Inventory policies can be divided into two major classes: periodic review and

continuous review. In a continuous review inventory policy, the amount of inventory

is assumed to be known at all times and new orders are placed when a minimum

level is reached. The size of this order can be exactly what is needed (lot-for-lot) for

a certain time period, or a fixed quantity (such as the canonical Economic Order

Quantity [23]), or the amount needed to reach a maximum level of inventory (known

as the Order-Up-to-Level). The most characteristic of these models, as described

in Silver, Pyke and Peterson [37], are the (s,Q) and (s,S) models. Here, we order

only if inventory falls below s and we either order Q units of inventory, or we order

enough to bring us up to S units. These policies are equivalent when Q = S − s .

In a periodic review inventory policy, inventory is checked at regular intervals

and, if it is below a minimum level, an order is placed. Periodic policy order size

choices are the same as in continuous policies, but tend to follow Order-Up-to-

Levels [37]. Two periodic review policies are the (R,S) policy (where we check

our inventory level every R time units and order up to S units) and the (R, s, S)

policy (where we check our inventory level every R time units and order up to

S units if our level is less than s). Additionally, a company may choose to hold

additional stock, known as safety stock, for the possibility unusually high demand

or unreliable suppliers.
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Over the years, it has become easier to keep track of inventory levels due to com-

puterization of inventory systems. This means it has become cheaper to maintain a

continuous review system, and one can even automate ordering through the use of

electronic data interchange (EDI) or equivalent standards. That said, unless these

systems have a way of confirming inventory presence (say, through RFID tracking),

it would be reasonable to confirm inventory levels in person. By doing this, we can

account for inventory shrinkage by such factors as theft or forms of obsolescence

such as perishability - assuming that the RFID readers are not tampered with.

2.3 Issues in Transportation

As with the inventory component of the supply chain, a transportation planner

must make careful decisions to work towards an optimal supply chain. There are

three major decisions faced by a transportation planner: how much to send, when

to send it, and by what route and mode should it be sent? We will deal with this

last question first, because its decision greatly impacts the first two.

In modern transportation planning, there are five basic modes of transportation:

truck, train, air, water and pipeline. This fifth mode will not be discussed further

here as it tends to be used for goods that can only be transported by pipe; this

results in a different type of supply chain problem. Truck and train tend to be used

between contiguous land regions. In choosing between these two modes, one trades

off flexibility in time and space (i.e. pick-up and drop-off location, as well as the

routes between them) for cost. Trains typically run between fixed locations, but

permit a lower unit-cost per distance travelled.

Air and water transportation involve a somewhat similar trade-off but over

longer distances (often between non-contiguous regions, separated by either land

or water). Shipping by air is often assumed to be faster and more flexible than

shipping by water, but is more expensive per unit by far. The relationships between

the modes can be summarized in Figure 2.3.
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By combining these different modes, known as intermodal transportation, we

can gain the benefits of two or more modes, while (hopefully) avoiding some of

their drawbacks. For example, combining water with train permits cost-effective

transportation of goods to and from almost anywhere in the world. By combining

rail and truck, we can get low-cost transportation between distant cities, and still

have flexibility of delivery location. In fact, combining truck with any of the other

modes is something that is frequently done in Canada; it eliminates the need to

locate in the immediate vicinity of an airport/seaport or to have one’s own rail

siding. The most prevalent intermodal types are listed in Table 2.1.

Typically, the type of product (i.e. its value and obsolescence rate) defines what

mode it is shipped by, although there are occasions when circumstances dictate

another. For example, products with a high value-density, i.e. a high cost per

unit weight, (such as pharmaceuticals or jewelry) may reasonably be shipped by

air. The main reason here would be to get the products to their destination, and

thus available to sell, as soon as possible. Alternatively, a product such as grain

or potash is a viable candidate for rail travel due to its low value-density and long

shelf-life (under the right conditions, of course). Other products, such as Chinese

garlic, must almost certainly be shipped by water; it would not be cost effective to

ship this by air, the only other alternative.

Name Modes Benefits

Piggyback Rail and Truck Lower cost, flexibility
Fishyback Water and Truck Lower cost, flexibility
Birdyback Air and Truck High speed, flexibility

N/A Water and Rail Low cost over extremely long distances

Table 2.1: Common Forms of Intermodal Transportation

After picking the mode by which a product will be shipped, the transporta-

tion planner must select the route by which the product travels to its destination.

Sometimes this is easy, such as shipping a car by train between Calgary and Regina

- there is only one rail line. Other times, this problem is much more difficult. Con-
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Air WaterTruck Rail

Speed
Flexibility

Unit Cost

Figure 2.3: Comparison of Transportation Modes
Arrows show direction(s) of increase.

sider, for instance a FedEx delivery truck in metropolitan Toronto. This situation

has many end-consumers (the addressees) and many possible routes to get between

one customer and the next. This may even occur when a company owns a fleet of

planes; again FedEx or UPS come to mind.

The simplest solution to the routing problem is to send a vehicle to each location

with exactly that location’s demand. This policy, known as direct shipment, is

typically very expensive per unit of inventory delivered. Of course, if a particular

customer orders near to a full truckload of parts, it does make sense to send a truck

straight to them from the the nearest warehouse. Usually, however, we will want

to arrange several demand destinations into an ordered list, known as a route for a

vehicle to cover.

Routes are ‘anchored’ at some fixed location, typically a warehouse or cross-

dock. Cross-docks, basically transshipment points, often appear between modes or

between routes (to divide and allocate, or break-bulk, incoming shipments and con-

solidate, or make-bulk outgoing ones). Routes may also be anchored at production

facilities or border crossings.

In forming a route, we must consider two things: the cost of adding a partic-

ular destination to an ordered list (i.e. the distance to that destination from the

points already in that list) and whether or not it is feasible to add the destination

to the list (i.e. if there is enough space on the vehicle to include enough inven-

tory to satisfy that destination’s demand). Combining routes like this is known
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as, unsurprisingly enough,“route consolidation.” A commonly used algorithm for

doing this type of consolidation is the “Clarke-Wright Savings Method.” [15] The

“Sweep Method” [2] constructs routes from scratch, but designs them according to

a somewhat similar philosophy. Shipment consolidation may permit a company to

obtain a least unit cost for transportation by filling a truck or container as full as

possible, but consistent with the desire of its customers for timely shipment.

The problem of finding the optimal route (being a sequence of stops for a vehicle)

is known in the literature as the Traveling Salesman Problem (TSP). Given that

the time it takes to solve the TSP to optimality with current algorithms requires

a time exponential in the number of stops, this does not make life particularly

easy. Fortunately, there are existing heuristic algorithms that can solve to near-

optimality relatively quickly, such as the “Nearest Neighbour” algorithm or the

k − opt heuristic.

Once an optimal route is found between locations that are consistently visited,

it may be used repeatedly. If the same product or product mix is delivered to each

location, this route may develop into a “milk run.” The existence of such routes

may simplify a planner’s life, and can even be used to consolidate stops in a TSP,

reducing its effective size.

Typically, the amount shipped at any given time is determined by what is needed

at the demanding location. This condition may be written into a contract, or be

implicit due to the relative costs of shipping and holding inventory. Other times,

particularly when there are are price breaks in the shipping costs, there may be

an amount to ship that attains an optimal unit cost. This amount is, of course,

bounded from above by the capacity of the chosen mode. Transportation costs

can usually be broken down into a fixed cost (typically called a release cost in a

private fleet or an order cost otherwise) and a variable cost (such as driver wages

in a private fleet, or a unit shipping cost otherwise). The magnitude of these costs

depend on the type of transportation policy (mode and route) used.
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Deciding on a trucking schedule is also difficult, particularly when hard con-

straints in time exist, such as a restaurant’s desire to be serviced only on off-peak

times. Additionally, the transportation planner may choose to delay or speed up

shipments to obtain a better average unit cost for shipping. Typically, though, one

would want to ship with sufficient extra time to account for possible delays (i.e.

“safety lead-time”) and not so frequently that inventory holding cost savings are

eaten up by the higher transportation costs.

Now that we have examined a variety of supply-chain topics, let us consider how

some of them might be formulated in a mathematical model, to be later optimized.

2.4 Model Formulation

In the previous section, we have touched on what issues may appear in a supply

chain model, let us formulate one that we will use for the rest of this thesis. It is

based on the model developed in Cohen et al. [16], with the notable addition of in-

ventory considerations. The mixed-integer linear programming formulation is often

used in supply chain management. Typically, we choose either a cost-minimization

approach or a profit maximization approach. The latter, which we use, is typically

of the following general form:

max cT
1 X + cT

2 Y

s.t.

A1X + A2Y ≤ d1

B1X + B2Y = d2

X ∈ R+

Y ∈ Z+
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X and Y are our positive real decision variable vectors and integer decision variable

vectors, respectively. In the objective (or profit) function, they are multiplied by

vectors of constants, indicating their profit contributions or subtractions. The con-

straints under which the objective function is maximized, represented by coefficient

matrices multiplied by the vectors of decision variables, are divided into inequality

constraints and constraints that must be satisfied by equality at all times.

Our initial model, which we will call the Base Model (BM), can be divided into

several main sections: raw material supply and requirements, inventory storage,

plant capacity, and demand satisfaction. We display BM below, and will examine

it in detail in subsequent paragraphs. The notation used can be found in Appendix

A. BM can be seen visually in Figure 2.4.

Vendor 1

......

Vendor 2

Vendor v

Plant 1

Plant 2

Plant j

...

Market 1

Market 2

Market k

material r under contract j product i

Figure 2.4: General Base Model (BM) Supply Chain
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The objective function (Equation 2.1) is essentially the total income (
∑

ijkt pikZ
p
ijkt)

less the total costs of the supply chain. The cost terms are the cost of shipping

final products (
∑

ijkt cijkZ
p
ijkt) and raw materials (

∑
rvjnt crvjntZ

v
rvjnt), the fixed

costs of establishing contracts with the suppliers (
∑

rnv mjfvnrYrvtn), the fixed

(
∑

ij(gijWij)and variable (
∑

ijt vijXijt) costs of production, and the costs of hold-

ing raw materials inventory (
∑

rjt h
v
rjI

v
rjt) and final product inventory at both the

plant (
∑

ijt h
p
ijI

p
ijt) and market tiers (

∑
ikt h

v
ikI

m
ikt). Only the objective function will
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be explained in this level of detail; the more straightforward constraints will be

described more generally.

With one exception, each of the above terms is a scalar financial value (i.e. a

dollar value) multiplied by the appropriate variable. The exception is the cost of

establishing a contract term in which the scalar financial value fvnr is pre-multiplied

by mj. This quantity permits the cost of establishing a contract to be spread across

multiple plants for accounting purposes; this will appear more useful once we start

to consider international factors. The reader should note that
∑

j mj = 1.

The raw material supply considerations can be found in Equations 2.2 and

2.3. The former describes upper and lower limits of raw material shipment from a

particular vendor, as defined by the contract with that vendor. The index τ and

contract length tn are used so that contract n may last for a period shorter than the

entire planning horizon. We restrict, however, that t+tn does not exceed the end of

horizon. The latter equation ensures that sufficient raw materials are transported

to each manufacturing plant in time to meet its production needs.

In BM, inventory is stored at two locations (at the plant and market level), with

two types (raw materials and final product) being stored at the plant and one type

(final product) being stored at the market. Each of the three inventory constraints,

Equations 2.4, 2.5, and 2.6, takes the same form. The current level of inventory

is equal to the inventory of the previous period plus inventory added during the

period (due to incoming shipments or production) less the inventory used in the

period (due to outgoing shipments, production, or final sale).

The first plant capacity constraint, Equation 2.7, concerns overall plant capacity.

It also permits different final products to use different proportions of that capacity.

Equation 2.8 restricts production to be within a prescribed range of values (i.e.

minimum/maximum batch size). It also forces Wik to be equal to 1, therefore

incurring the product’s fixed setup cost in that plant, if it is used for production

during the period.

19



The two demand satisfaction constraints are of similar form. Equation 2.10

ensures that sufficient final products are transported to each market in time to

meet its demand. Equation 2.9 makes sure that enough of each final product is

prepared to be transported.

The last set of constraints (Equation 2.11) defines the domain of each variable.

We require the variables to be integer here as many products cannot be produced

in fractional amounts.
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Chapter 3

International Trade

In today’s business world, it is rare that one can find a supplier for every needed

component or raw material within the bounds of a single nation. Even if one

does, it may very well be that there is at least one cheaper (or somehow better)

source elsewhere. Unfortunately, when one crosses international borders, there are

additional complexities to consider.

One such complexity is that of foreign currency exchange. Because of myriad

factors, including a country’s political stability and the strength of its economy,

currencies tend not to be at ‘parity,’ i.e. they have different values. This difference

provides benefits as well as drawbacks. Producing in a country with a relatively

weak (i.e. cheap) currency and selling in a country with a relatively strong (i.e.

valuable) currency may provide a cost advantage, permitting a lower selling price

or higher profit. However, selling a final product in a country with a weak currency

does not increase sales figures by as much.

Differing corporate tax rates are another potential advantage of working in

multiple countries. Typically, a corporation must pay taxes only on net income

earned in that country; by setting transfer prices (within the particular country’s

legal limits), a supply chain planner can effectively move income to shelter it from

taxes.
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Even if there is no advantage provided by the various financial instruments, there

can still be an advantage to working in multiple countries, due to what economists

call comparative and absolute advantages. This occurs when one country can pro-

duce a good (or service) more cheaply than another, primarily due to advantages in

location, natural resources, human capital, etc. For example, it is easier to extract

crude oil using wells in southern Alberta than to get oil from the Orinoco oil sands

in Venezuela. Comparative advantage happens when, instead of absolute cost, one

country can produce a good (or service) at a lower opportunity cost than another.

3.1 Barriers to Trade

Unfortunately for the modern supply chain planner, the benefits of international

trade do not come free. Many governments restrict trade explicitly through the use

of tariffs and import quotas, as well as enacting implicit restrictions such as gov-

ernment regulations. The reasons that governments would enact policies to restrict

international trade run the gamut from political pressure by unions and public in-

terest groups, to a desire to protect fledgling industries that cannot yet compete

on the world stage to international political machinations completely unrelated to

commerce (i.e. trade embargoes to encourage a change of domestic policy within

the target country). We will denote any firm within the country in question to be

a ‘domestic’ firm and any other company wishing to trade across that country’s

border as ‘foreign.’

Quotas are a form of trade barrier that are a hard upper limit on the amount

of a product that can be imported over a predefined time period. In comparison,

by enforcing a tariff, a government is able to artificially inflate the price of that

good within its borders. This permits local producers to charge that higher price,

and earn the same or higher profits (as compared to the foreign producer) with the

same or higher costs.
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Tariffs are an explicit cost to import or export a good into or from a country. We

will examine the former case, but the latter is analogous. A country can require

that a company pay the tariff to import a product, much like a local tax. This

tariff effectively raises supplier’s production cost, giving a form of protection to

domestic suppliers. The government can then use the tariff to directly subsidize

local suppliers, or use it for other ends, effectively lowering domestic taxation.

Very similar to tariffs are the aforementioned subsidies to domestic suppliers.

Instead of raising the cost of production for foreign suppliers, a government can

subsidize to lower the cost of production for domestic ones. Unlike the last two

barriers, subsidization represents an explicit cost to the domestic government. Re-

gardless, it is still one that is commonly used and may be favoured because it is

not applied directly to foreign firms.

There are a few other barriers that may occur. A government may ban com-

pletely a product from being imported (in effect, a quota of zero). They may also

implement a buy-local initiative (often found in government contracts, particularly

for the military) in which the government subsidizes in some way the purchase of

local goods, possibly through a tax incentive. We do not consider the case where

a country may choose to subsidize foreign companies as a means of stimulating

investment because it is hardly a barrier to international trade.

Alternatively, the government may permit only the purchase of local goods

(again, sometimes found in military contracts). A more insidious form of trade

barrier may occur in government regulations, such as safety rules. While these

rules may often be legitimate, some may be of questionable validity, as shown by

the quote from Vogel [42] below:
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The Japanese argued that because their snow was different from that

found in the West – they contended that it was wetter-American and

European standards for skis were inappropriate for Japan. (An anal-

ogous argument had been made two years later by a former Japanese

agricultural minister who explained that the Japanese people were in-

capable of eating much beef because they had longer intestines than

foreigners.)

Such regulations have the same effect as an outright ban, and may be so named.

All of these barriers protect domestic suppliers at the expense of foreign ones,

with tariffs providing the domestic government with a source of income. Regardless,

barriers restrict international trade and may even be used in concert. It is still

possible, of course, that international trade would be profitable despite such barrier,

just less so.

The good news for the technically-minded supply chain manager is that most

trade barriers are fairly easy to model. Quotas, for example, can be added as an

upper bound (representing a company’s quota allocation) on the sum of amounts

of product that the company wishes to import. Tariffs can be modeled as a cost

term in the objective function multiplied by the number of items imported.

Subsidies cannot be explicitly modeled by a foreign company because they apply

only to domestic firms; if, however, the supply chain manager is responsible for

planning for a conglomerate of domestic and foreign firms, the subsidy may be

modeled similarly to a revenue term for the domestic firms only. In such a case,

bans and buy-local programs can be modeled as inequalities and penalty terms in

the objective function, respectively. If the company is foreign-only, bans will never

need to be modeled but buy-local programs can remain as a penalty term.
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3.2 Free Trade Zones

Historically, there has been a high degree of protectionism exercised by govern-

ments, with respect to at least some of their products. In recent decades, how-

ever, there has been a trend towards freer trade and, ultimately, Free Trade Zones

(FTZs). An FTZ is a multi-country region where trade barriers are reduced or

eliminated entirely. The reasons for this trend are beyond the scope of this thesis,

but the author is of the opinion that the increasing availability of international cost

information to the end the consumer and the decreasing prevalence of an “us vs.

them” attitude are reducing the effectiveness of national borders as barriers of any

type.

Free Trade Agreements (FTAs) can typically be divided into two forms. Bilat-

eral agreements (between two countries) and multilateral agreements (between three

or more) involve the mutual reduction of trade barriers between the involved coun-

tries. Two famous multilateral FTAs are the North American Free Trade Agreement

(NAFTA) and the European Economic Community (EEC). The NAFTA grew out

of a bilateral agreement between the United States of America (USA) and Canada

to include the United States of Mexico (Mexico). The EEC became a founding

stone for the European Union (EU). It should be noted, however, that FTAs may

not mean complete and absolute free trade between the member countries, but just

a lessening of the restrictions or costs.

The other form of FTA is best exemplified by the now-defunct ‘maquiladora’

program in Mexico. Instead of making an entire country into an FTZ, a country

may choose to relax trade rules in one or more areas of the country. The country

may opt to tax only the added value, letting goods flow in and out freely. This

type of FTA can be used to stimulate economic growth in a particular area, since it

reduces the costs of production in the area. These areas are sometimes called Free

Trade Areas, but we will not abbreviate it to ‘FTA’ here, as is typical, to avoid

confusion.
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Regardless of the form of an FTA, it is intended to have the effect of reducing the

impact of existing trade barriers. Quotas may have their limits raised or entirely

lifted, tariffs and subsidies may be reduced or eliminated. Often, trade barriers

between FTA signatory countries and non-signatory countries must be equalized;

otherwise, the benefit of reduced paperwork at intra-FTZ borders is lost.

To qualify for the reduced barriers companies may be required to ensure that

a certain percentage of the end-value of their products is produced within the

boundaries of the FTZ. The regulations enforcing this requirement are known as

‘local-content rules.’ They can be modeled as an inequality between the fraction

of value of a product produced within the FTZ and the minimum local content

percentage.

3.2.1 NAFTA

Enacted in 1994, the NAFTA is one of the major FTAs in the world (the others

being the EU and Mercosur, in South America). As mentioned previously, the

NAFTA grew out of the 1988 FTA between Canada and the USA. The NAFTA

was focussed primarily on reducing the trade barriers between the three countries.

The amount of the reduction varied by industry, however, with the automotive and

textile industries remaining more protected than others. In addition to these re-

ductions, the NAFTA made it easier for citizens of one country to work in either of

the others, as well as an attempt to rationalize environmental and work-place stan-

dards. Furthermore, the agreement included dispute arbitration clauses intended

to facilitate the resolution of any concerns or conflicts that might arise.

Since then, Canadian trade in merchandise alone has increased by 122% [10].

Services trade has increased to $76.4 billion CAD from $ 46.4 billion (ibid). The

Canadian government also claims increased environmental performance across the

FTZ, as well as improved labour standards.
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Even with these broad claims of success, there remain trade barriers between

the countries, such as tariffs in the textile industry [11]. Disputes over such goods

as softwood lumber remain contentious. Public opinion of the NAFTA remains

divided [25]. Regardless of these problems, however, the NAFTA is a reality, and

supply chain planners must consider it in their work.

3.3 International Supply Chain Management

Each of the discussion points examined above presents an opportunity or an obstacle

for a suppy chain manager (although Oscar Wilde might assert that we have just

repeated ourselves1). It is true, in fact, that most of what we have discussed can

be used to better a company’s bottom line or can hurt it if not accommodated.

Let us first examine the case of where there is a difference in the valuation of

the currencies used in two countries (A and B, with weak and strong currencies,

respectively) in which a company operates. As mentioned previously, a company

might produce in A and sell in B (possibly in A as well). This relatively simple plan

is valid when the exchange rate is relatively stable. But what should be done in

the case when this is not the case? If the company had factories in both countries

A and B, and sold the bulk of their product in country C, production capacity

utilization could be shifted back and forth between the two plants based on which

had the more favourable exchange rate with respect to the market

Alternatively, if a company does not have an actual manufacturing facility in

both countries, they may choose to buy a call option (an option to buy at an

agreed-upon price in the future) on capacity in a third-party manufacturer. Then,

if exchange rates favour it, the company can exercise that option to produce. Using

options like this would increase the effective production cost of the product, but

could still turn a profit under the right circumstances. The company could, of

course, simply purchase options or futures on the currencies in question to hedge

1“What seems to us as bitter trials are often blessings in disguise” – Oscar Wilde
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against the exchange rate risk, but the details of this are outside the scope of this

thesis.

In a very similar way to exchange rates, a company can take advantage of

differing tax rates in countries they produce and sell in. It makes sense to build

facilities in countries with favourable corporate income tax rates. Alternatively,

if one has a facility in a location with an unfavourable income tax rate, selling

components produced there to facilities in other countries at a high transfer price,

to lower net profits, may be profitable. Of course, a country may require that this

price be considered ’reasonable’ or bounded by certain prescribed values (e.g. some

market value average ± a legislated percentage).

There are, of course, other ways of intentionally decreasing before-tax profit,

such as donating profit to charity or reinvesting it in the local economy. Both of

these may earn tax-credits; however, their efficacy at maximizing total after-tax

profit is not guaranteed. That said, they may improve the firm’s public image.

To take advantage of a country’s comparative advantage, there is really only

one possibility: establish or expand facilities there. The latter may even create

synergies between the comparative advantage and increased economies of scale.

These choices are the only way a foreign company may be able to take advantage of

domestic subsidies, although it may be difficult to obtain certification as a domestic

company.

Quotas and tariffs may be a fact of life for the supply chain manager. A company

can lobby to have them removed, but may not meet with success. They must

then insure they have sufficient quota certificates for their desired exports or must

reduce their production costs sufficiently to obtain an acceptable profit on units

sold. Alternatively, the company may be able to import the components to the

final product, thereby avoiding the final product quota/tariff, and then conduct

the final production step(s) within the country in question. Of course, they may

face different quotas or tariffs on these components, but they are likely to be less

binding.
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To take advantage of any benefits a free trade zone offers, including small free

trade areas, a supply chain manager must determine if the costs of being consid-

ered to be ‘domestic’ within the zone (i.e. by establishing facilities to transform

imported goods sufficiently to be considered ‘local’) are outweighed by the benefits

(i.e. reduced or eliminated tariffs and quotas). It may be that doing this would

turn out to be a good long-term investment as, once ‘in’ the free trade zone, one can

export more easily to any other signatory country. Utilizing free-trade areas can

be a definite boon as the company will have a place to store goods while they are

waiting to cross the border, or to store them if refused at the border (as compared

to shipping them immediately back to the country of origin).

Before we discuss how international considerations can be applied to the Base

Model, let us first review some of the available literature on international supply

chain management.

Andrea and Smith [1] describe how typical automotive manufacturers move

inventory back and forth across the border as processing occurs. They then discuss

the impact of increased U.S. border entry requirements since September of 2001, and

how they affect border crossing times and the bottom line for auto manufacturers.

Bookbinder and Fox [7] examine optimal mode selections for shipping from

Canada to Mexico as well as transshipment points in the U.S. They use a shortest-

path algorithm to determine which links (and therefore which modes) to employ to

minimize time.

Chang [12] develops a heuristic to optimize international mult-imodal trans-

portation problems. His model incorporates multiple objectives (of cost vs. time),

transportation schedules, delivery time windows, and realistic transportation costs

using step functions. His heuristic is a combination of Lagrangian relaxations and

network flow decompositions that proves quite efficient at obtaining optimal solu-

tions.
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Reid [33] uses statistical regression to identify positive and negative correlations

between spatial location/integration with a host economy and various business at-

tributes. The key result supports the idea that JIT works best with spatial cluster-

ing. Other results such as a negative relationship between age and local integration,

and another between the level of R&D and local integration, are discussed.

The paper by Vidal and Goetschalckx [41] begins with a very good review of

models and other papers. The paper goes on to solve a very specific (and large)

type of problem. The authors see success in cutting run-time using benders de-

composition on this problem. They also hint at developing a way to solve their

problems simultaneously, as we will do here.

In Wilhelm et al. [43], a very detailed model is presented for, as the title says,

“international assembly systems”. Of particular note is the extensive literature re-

view. Additionally, the authors describe constraints that model NAFTA/international

trade issues (i.e. local content rules, graduated income tax, etc.).

Morash and Clinton [29] bring to light and explain trends in supply chain man-

agement affected by transportation. The authors surveyed several thousand com-

panies across the US, Japan, Korea and Australia using a questionnaire and in-

dividual interviews. The results show the differences and similarities between the

supply chain methods (with regard to external/internal integration, loyalty, power

balance, etc.) found between companies in each of the aforementioned countries.

Robinson and Bookbinder [34] created a model to decide how many and where

to locate finishing plants and distribution centres. This was then applied to the a

case study on Tectrol, Inc. to develop some real-life results in the Canada-U.S.A.-

Mexico context.

Cohen and Lee [27] discuss a variety of factors that influence supply chain

management in a modern, international setting. They then formulate a model that

takes into account strategic policy decisions. This model is applied to the case

of a computer manufacturer and analysis is conducted under a variety of possible

scenarios.
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In a recent paper, Miler and de Matta [28] examine the use of transfer prices to

maximize after-tax profits in an international supply chain. The authors present a

strategic/tactical model and use it to examine the effects of fully variable transfer

prices; they then examine several fixed markup rates. They end the paper with a

series of insights for supply chain practitioners.

3.3.1 Model Reformulation

Let us now consider how adding international trade considerations affect our Base

Model from Section 2.4 (recall that the notation key can be found in Appendix A).

We add four extensions to that model: exchange rates, tax rates, transfer prices

and local content restrictions.

Since the first two complications affect only profit, not capacity, lot sizes, etc.,

they change only the objective function in BM. Equation 2.1 now becomes Equa-

tion 3.1, below. We include exchange rates by grouping the terms by region, and

multiplying them by an exchange rate factor ecc′ , where c and c′ are two countries.

It should be noted that country o in the equations below is the numeraire coun-

try, i.e. the country to whose currency all others are converted. This can be any

country, but is typically either a corporation’s ‘home’ country or a country whose

currency is often considered to be standard, such as the U.S. The result might thus

be a general conversion to the U.S. dollar, or perhaps a European Union member

would convert to the Euro.

Corporate tax rates, defined on a per-country basis, are modeled by multiplying

these same groups by 1−Tj. This may be an approximation of what is found in the

tax code of some nations, such as Canada, where a step function would be more

appropriate. However, if Tj is set to the country’s ‘marginal tax rate,’ i.e. the tax

rate paid on the last unit of currency earned, the approximation is reasonable. This

is particularly true when a company makes a substantial amount in the nation’s

upper tax bracket.
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Transfer prices are handled by including a factor Mijk, permitting income to be

redistributed between regions. This tool lets companies shift profit from countries

with higher tax rates to countries with lower tax rates. However, the value of Mijk

may be bounded legislatively to ensure that a minimum amount of money can be

taxed.

max Z =
∑

ij∈Jc∀c,k∈Kc∀c,t eok(1− Tk)[pik − ekjMijk(vij + cijk) + cijk]Z
p
ijkt

+
∑
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(3.1)

Another tool that a government may choose to enact is the ‘local content restric-

tion,’ ensuring that a minimum amount is spent within that country by a company

wishing to sell there. Equation 3.2 shows one way, within our existing context, that

local content restrictions could be modeled: a legislated fraction αc of the sales

revenue earned in a country c must be no greater than the sum total of the money

spent on raw materials, their attendant contracts, finished good production and

transportation, and facility costs. Recall that all costs are defined in terms of local

currency units, so no exchange rate terms are required.

αc

∑
ijk∈Kc,t pikZ

p
ijkt ≤

∑
rnj∈t,v∈Vc

(crvjntZ
v
rvnjt + mjfvnrYrvnt)

+
∑

ij∈Jc,kt(vij + cijk)Z
p
ijkt +

∑
ij∈Jc

gijWij,∀c, t
(3.2)

We define the International Model (IM) to be Equation 3.1, subject to Equations

3.2 and 2.2 through 2.11. A visualization of this model can be found in Figure 3.1.

In the next chapter, we discuss how the IM might be optimized, and reformulate

it using our proposed methodology of division into transportation and inventory

disciplines.

32



Country c

......

Vendor 1

Vendor 
Vc

Plant 2

Plant Jc

...

Market 2

Market Kc

material r under contract j product i

Country 1

......

Vendor 1

Vendor 
V1

Plant 2

Plant J1

...

Market 2

Market K1

...

Figure 3.1: General International Model (IM) Supply Chain
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Chapter 4

Optimization of Supply Chains

4.1 Traditional Methods

Minimizing the total costs in a supply chain is an application of operations research

that is important to business because every dollar saved goes directly to the bottom

line (as opposed to increased sales, which is reduced by the cost of the goods sold).

The minimization of inventory and transportation costs is particularly important in

international supply chains: when it takes longer to move goods between facilities,

due to distance, border congestion, etc., mistakes and inefficiencies are more costly.

However, minimizing these two costs is a problem that is not currently solved by

a simultaneous optimization problem in the literature. Instead, either the inventory

or transportation problem is typically solved to optimality, using techniques such

as those described in Sections 2.2 and 2.3; the output from this first problem is

used as the input to the second discipline. It is possible that the decision of which

to solve first may be made solely on the comfort level of the manager: i.e., if they

come from an inventory background, they may feel better equipped to make this

decision first, and piece together a transportation plan to support it.
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Alternatively, a heuristic approach that iterates between improving the solution

to the transportation and inventory sub-problems can be used, such as the one

found in Qu et al. [32]. Approaches such as this do not guarantee optimality, but

usually result in a better quality solution than the method mentioned previously.

Ideally, we would use a method that will find optimal solutions in a reasonable time

frame, incorporating a wide variety of real-life business constraints.

Mixed integer programming is one possible solution for this need. It can easily

be used to solve instances of this problem by encoding it and solving it through

conventional optimization techniques. There are a variety of solution schemes for

solving mixed integer problems (MIP); Branch & Bound and Branch & Cut are two

of the most popular. In these algorithms, the integer constraints are relaxed and

the linear program is solved. Then, if the solutions is not integer (and therefore not

optimal for the MIP) the algorithms diverge. In the first, the relaxed constraints

are bounded one by one to integer values and the problem is re-optimized in an

attempt to find the solution to the MIP with the best optimal value. In the second

algorithm, new constraints are added that do not reduce the solution space of the

original MIP, but ’cut out’ the current non-optimal solution; the problem is then

resolved as in the Branch & Bound algorithm. The General Algebraic Modeling

System (GAMS) and the Optimization Programming Language (OPL) are two

tools to encode MIPs (in fact, one can model most general optimization problems

with both of these). They can then be submitted to solvers such as Simple Branch

& Bound (SBB), included with some GAMS licenses, or the CPLEX optimization

software packages.

4.2 Multidisciplinary Design Optimization

In many fields, we can find examples of applied problems in which two or more ‘dis-

ciplines’ (distinct mathematical problems, usually found in independent academic

fields) are used in the decision making process. These disciplines may easily come
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in conflict with each other. While designing an airplane, engineers must balance

the need for a wing to be aerodynamic with the need for the wing to be structurally

sound. Supply chain management is no different: practitioners must balance the

cost of holding inventory with the cost of moving inventory. A major drawback of a

typical MDO problem is that it is computationally expensive due to the large num-

bers of differential equations included in a typical engineering discipline. We will

not face this particular issue, but an equivalent one, due to the potential difficulty

of solving the transportation subproblem may arise.

In this thesis, we wish to show that MDO can be used beneficially to balance

the inventory and transportation costs. An optimal solution derived from MDO is

expected to be no worse than one derived from a heuristic algorithm, and, quite

possibly, could be better. Additionally, the component structure of some MDO

algorithms may permit an increase in ease-of-use for the end-user by allowing simple

substitution of different inventory management and transportation policies (often

requiring different solution techniques and therefore different solvers). Furthermore,

when combined with certain types of metaheuristics (such as the genetic algorithm),

as described below, the solving of the MDO problem should produce a set of near-

optimal solutions from which a manager can select. It should be noted that there

will likely be extra computational expense to get this set of solutions..

In some of these fields, such as aerolasticity (the name for the aforementioned

aerospace problem), a new technique known as Multidisciplinary Design Optimiza-

tion (MDO) is being used. It is also referred to as simply Multidisciplinary Opti-

mization. We refer the reader to Cramer et al. [17] for more information. MDO is

based on several principles:

• the overall problem being examined must balance requirements by two or

more fields, called disciplines,

• each discipline is well studied and has developed techniques for optimizing

problems of its type,
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• every discipline sub-problem shares at least one variable, called an interface

variable, with at least one other discipline,

• the objective function of every discipline’s problem can be evaluated according

to common units, and

• a solution that is optimal for the overall multidisciplinary problem may be

sub-optimal for one or more of its individual discipline sub-problems.

The interface variables mentioned above are the key to this solution technique. The

general idea of MDO is to choose values for the interface variables such that the

sum of the objective values of every disciplinary sub-problem is optimized. If there

is a high ratio of interface variables to discipline variables between two disciplines,

they are known as “tightly coupled.” If not, they are “loosely coupled.”

We can now describe three different ways to look at, and solve, MDO problems,

summarized in Table 4.1. MDO formulations can be categorized into the three

groups found in Cramer et al. [17] by looking at the structure of their variables and

their constraints.

All-At-Once (AAO) formulations combine every discipline into a single (large)

problem through a reformulation of the original problem with additional variables

to permit the solver more flexibility in finding optimal solutions.. Here, we do

not differentiate between the constraints and objective function found in different

disciplines, nor truly between interface and discipline variables. A very robust

solver may be needed to solve a problem formulated like this, particularly if any of

the constraints or objective functions are non-linear.

If we do differentiate between constraints, objective functions, and variables

found in differing disciplines, we can take advantage of specialized solvers and

algorithms for specific disciplines. The method then moves towards (or insists

upon) multidisciplinary feasibility and optimality through the controller algorithm.

This controller may use a metaheuristic algorithm such as a genetic algorithm (GA)

or simulated annealing.
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We can also further divide these problems into Multidisciplinary Feasible (MDF)

and Individual Discipline Feasible (IDF). In the former, we require that interface

variables take the same value for all disciplines they are used in, maintaining a feasi-

ble solution across all disciplines in every optimization iteration that the controller

algorithm makes.

In the IDF formulation, we permit interface variables to take differing values

between disciplines during a particular (usually early) iteration of the controller

algorithm. However, we still require multidisciplinary feasibility by forcing interface

variables to be equal between disciplines at the termination of the algorithm. This

can be done by enforcing interface equilibrium constraints in the controller (though

much computation time would be wasted if non-equilibrium solutions were entirely

rejected) or by relaxing and penalizing these constraints.

Differentiate between Disciplines
Yes No

Feasibility before Optimality
Multi MDF AAO

Individual IDF -

Table 4.1: Classification of MDO Formulations

Note that we do not specify a formulation type for the fourth quadrant, as

differentiating between feasibility types without differentiating between disciplines

does not make much sense.

The MDF and IDF problems are solved in two stages. First, a ‘controller’ op-

timizer chooses values for each of the interface variables. It then provides to each

disciplinary solver, based on the formulation’s criteria, values for the appropriate

interface variables. In the second stage, the disciplinary solvers then fix the inter-

face variables and optimize their problems over the non-interface variables. The

disciplinary solvers then return to the controller their objective values. The con-

troller is then able to amalgamate these objective values to evaluate the efficacy of

current interface variable values. This formulation is described in Figure 4.1.
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Most optimization algorithms can be modified for use as a controller for solving

MDOs; the algorithm must be able to set variables to valid values (i.e. binary,

continuous positive, etc.) and interface with the disciplinary solvers to evaluate an

optimal value for that set of variables. For use in the optimization, we recommend

that a genetic algorithm be used, because of its ability to generate a set of near-

optimal solutions. This set of solutions is obtained for ‘free’ over the course the GA;

upon termination of the GA, we expect that the ‘genotype’ of possible solutions to

the MDO problem contains multiple solutions that can be considered to be ‘good.’

The elements of this set may then be evaluated by a decision maker according to

qualitative or difficult-to-model factors. It is this algorithm that we will use to

optimize our MDO formulation. It is our opinion that this robustness outweighs

the extra computational cost inherent in a genetic algorithm.

Controller

Discipline 1 Discipline n

Interface Variables
Objective Values

...

Figure 4.1: General IDF Formulation

4.2.1 MDO Literature Review

It is this third formulation technique we will use to find solutions to the problem

of interest. Before we reformulate our model, though, let us consider some of the

key literature in this field. Sobieszczanski-Sobieski (arguably the father of MDO)

and Haftka [39] provide an accessible review of MDO techniques with high-level
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overviews. They then follow with two examples in the fields of aerolasticity and

control theory. The authors finally discuss a collaborative optimization algorithm.

Cramer et al. [17], in addition to alluding to the formulation topology in Figure

4.1, present an interesting way to simultaneously optimize two different problems

(in their case wing structure and wing aerodynamics). This is done by optimizing

the sub-problems, and then trying to find a solution where common variables are

equalized at a minimum change from the optimal solution. This solution is com-

pared to traditional approaches of solving everything at once, or considering the

two problems separately.

Sabri and Beamon [35] describe an algorithm that, while not truly MDO, bears

enough similarity to lend credence to the possibility of using MDO in SCM. It

solves two sub-problems simultaneously, requiring some of the common variables

(in this case, the binary ones) to be equal at optimality. The sub-problems are also

further divided for solution, and formulae are provided for calculating many of the

parameters.

Ye and McPhee [24] describe an application of MDO, using a genetic algorithm

as an overall controlling structure, to find an optimal solution that balances con-

flicting constraints in a vehicle design example. They describe an MDO problem

with two disciplines, their common and discipline-specific variables, and how the

genetic algorithm balances between them.

It is relevant, at this point, to mention a class of algorithms entitled “Hybrid

Genetic Algorithms” (Hybrid GAs.) A hybrid GA includes one or more local search

techniques in the main loop of the algorithm. This is done to compensate for

the GA’s relatively poor performance at picking the optimal point of a promising

region in the feasible space. The performance issue is known as the ‘exploration

vs. exploitation tradeoff:’ GAs are very good at ‘exploring’ to get ‘close to’ an

optimal solution, but are not well suited to ‘exploit’ a good solution to final a local

optimum.
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The above use differs in a subtle but fundamental way from an MDO algorithm

with a GA solver. In this case, a disciplinary solver is primarily used to evaluate

the fitness value of a candidate gene, rather to improve the values of the gene itself.

It is possible, of course, to use information gleaned from the disciplinary solver to

make such an improvement, but is not necessary for an algorithm to be considered

‘MDO.’ As can be seen in Section 4.3, we use a form of hybrid algorithm to improve

our results.

Let us briefly discuss some related literature. For the a broad overview of

hybrid algorithms, Cheng, Gen and Tsujimura [14] present an application to the

familiar Job-Shop Scheduling Problem. The authors describe how to adapt genetic

operators to the job shop problem, as well as try incorporating three distinct local

search algorithms to improve their performance.

Gen and Syarif [19] describe a multi-period production/distribution problem.

As opposed to the typical ’local search’ hybrid, they then develop a hybrid GA

that uses a fuzzy-logic controller to vary the GA’s parameters. They then claim

that this algorithm gives better results than the traditional GA used to solve this

class of problem.

Torabi, Ghomi and Karimi [40] study the use of hybrid GAs to minimize costs

in a supply chain that uses a flexible flow line under deterministic demand. Their

decision variables model a production/delivery schedule. They first create an enu-

meration method to solve the problem, and then compare it to a hybrid GA. This

GA is more suitable for use in large-scale problems, when the enumeration method

becomes infeasible.

4.2.2 Model Reformulation

To make use of the possible benefits of MDO, we must first divide our model into

two or more disciplines. The International Model (IM), as described in Section

3.3.1, can most logically be decoupled into two disciplines: the inventory model

and the transportation model. Both the objective function and the constraints can
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be straightforwardly divided between these disciplines. After this division, we must

decide upon ‘interface’ variables, i.e. the variables that are manipulated by the

controller algorithm.

In our case, the inventory model is where the bulk of the work is done, as shown

below. The reader should recall that the notation key can be found in Appendix

A.
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We have chosen Zv′
rvjtn and Zp′

ijkt to be the interface variables. They can therefore

can be considered as constants while satisfying the inventory constraints. These

interface variables are chosen subject to the following implicit constraints:

∑
j

Zp′

ijkt = dikt∀i, k, t (4.11)

Zp′

ijkt, Z
v′

rvtnt ∈ Z+ (4.12)

Additionally, the reader should note that o is the numeraire country.

Now, let us examine the transportation discipline. Here we add in some new

constants, c′ijk and c′rvjnt, that represent the actual costs of transportation of final

product and raw materials, respectively, as opposed to the amount charged to

the inventory discipline. The values of c′ijk and c′rvjnt would be derived from a

transportation discipline, as opposed to being treated as givens here. These actual

costs are not included in the inventory model, as it would eliminate the need for a

transportation discipline.

In the transportation discipline, we require only the very basic constraints that,

within the horizon, the transportation division must satisfy all orders. A more

complicated transportation problem is entirely within the capacity of this method

to be solved, but does not add anything to our current analysis. However, we

suggest that a more realistic transportation discipline be investigated as the first

extension to this research.
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max ZTrans =
∑
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p
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In this discipline, the difference between cijk and c′ijk, and between crvjnt and

c′rvjnt, multiplied by their respective quantities, is the profit we wish to maximize.

The shipments from vendors to plants are modeled in Equation 4.14, while Equation

4.15 handles shipments to markets. We require equality in these last two constraints

to be satisfied over all periods, as opposed to in each and every period; this permits

inequality in two or more periods, if there are sufficient cost savings. The variable

types are denoted in Equation 4.16. Note that Qp, Qv are the interface variables for

this discipline and can be considered as constants while satisfying the transportation

constraints. The interface variables in this discipline will be chosen subject to

constraints equivalent to Equations 4.11 and 4.12.

We must also discuss the relationship between Qp′

ijkt and Zp′

ijkt as well as between

Zv′
rvjtn and Qv′

rvjtn. Ideally, these relationships would be found to be at equality. This

may often not be the case, particularly in the Individual Feasible Discipline (IDF)

case. As described in the first section of this chapter, we then have two choices:

penalize the difference, or explicitly enforce equality, that is to say work within a

Multidisciplinary Feasible framework. We will examine the results of using each in

Section 5.1.
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4.3 Implementation

Now that we have thoroughly discussed the model that we will be optimizing, let

us examine how we have implemented the multidisciplinary optimization (MDO)

solvers. A GAMS implementation of the AAO formulation can be found in Ap-

pendix B.

As mentioned previously, the heart of the Individual Discipline Feasible (IDF)

solver is a genetic algorithm (GA), which controls two disciplinary solvers: one

for the inventory problem, one for the transportation problem. Please note that

this section assumes that the reader has some basic experience in Object Oriented

Programming in general, and Sun’s Java language in particular. The exact code

used has been included in Appendix C

The genetic algorithm was implemented by utilizing the Java Genetic Algo-

rithms Package1 (JGAP), developed primarily by Klaus Meffert. This package

provided a working framework for the GA, allowing us to focus on MDO-specific

issues, rather than the development of general GA code. JGAP requires at least

two custom classes: a ‘main’ class that controls the evolution of the GA and a

‘fitness function’ class that evaluates each gene and returns a fitness or objective

value.

The ‘main’ class is fairly straightforward. Two sets of constants must be speci-

fied by the user. In the first set, the user must indicate the number of evolutionary

generations (or iterations) to evolve over, the population size, the number of top

genes the he wishes returned. Ideally, the top genes will represent a near-optimal

set of solutions for the decision maker to choose from. In the second set, the number

of interface variables and a reasonable upper-bound on the interface variables are

set. The number of raw material interface variables, for each discipline, is:

1http://jgap.sourceforge.net/
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(rawmaterials)× (vendors)× (plants)× (contracts)× (timeperiods) (4.17)

The number of final product interface variables is:

(finalproducts)× (plants)× (markets)× (timeperiods) (4.18)

Based on these parameters, an initial population is randomly generated, the

population is evolved many times, and the results are returned to the user. Both

the optimal fitness value and the values of the interface variables that created it

are outputted. A more formal statement of the MDO Algorithm can be found in

Algorithms 4.1 and 4.2.

Input: numEvolutions, popSize, topN
Output: topN solutions from population
population←GenerateRandomFeasiblePopulation();1

while currIter ≤ numEvolutions do2

Evolve(population);3

end4

Output(topN solutions ∈ population);5

Algorithm 4.1: Multidisciplinary Design Optimization Algorithm

Input: population
Output: Evolved population
CrossOverBreeding(population);1

Mutate(population);2

foreach gene ∈ population do3

EvaluateFitness(gene);4

end5

Return population;6

Algorithm 4.2: Details of the Evolve Function, Line 3 of Algorithm 4.1
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The ‘fitness function’ class is substantially more complicated than the ‘main’

class as it is here that the bulk of the work is done. Recall that the fitness function

is used to evaluate the quality of the solution represented by a particular gene, so

it must be evaluated for each gene. How it does this is can be found in Algorithm

4.3.

Input: gene
alleleArray ← gene.alleles;1

gamsTemplate←ImportTemplates();2

CreateGAMSFiles(gamsTemplate,alleleArray) ;3

RunGAMS();4

gamsOutput←Parser();5

gene.alleles← gamsOutput.newAlleles);6

gene.fitnessV alue← gamsOutput.fitnessV alue;7

Algorithm 4.3: Details of the EvaluateFitness Function

In addition to the two classes required by JGAP, we make use of two custom

classes. Firstly, we use a custom ‘Configuration’ class. This class is used to modify

the default mutation values. Secondly, we implement a custom class to act as

our gene. If we were to use the default classes to create our gene, the best we

could do would be to have an array of independent alleles (i.e. sets of orders and

shipments of raw materials and final products) to represent all interface variables.

However, since all of the interface variables are not independent: they can logically

be grouped into Zp, Zv, Qp, Qv. Each of these are composed of dependent alleles,

the sum of which should be equal to the total demand of that type. If we were to

keep all alleles independent, it is very likely that a randomly generated gene would

be infeasible for our problem, and therefore obtain a very poor objective value.

To encourage our genes to start out feasible or near-feasible, we implemented a

custom ‘Gene’ class to represent each of the four aforementioned interface variables.

When this gene is used, the user must provide two parameters: the number of

variables to create (i.e. the number calculated by Equations 4.17 and 4.18) as well

as the desired total demand. When a gene of this class is randomly generated, it is

assigned allele values such that their sum is approximately the total demand. If we
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require n alleles to sum to value d, the class generates n Uniform(0,1) values, and

then scales them such that sum is appropriate. Because the Uniform distribution is

continuous, we must round the values; this means we can only get a sum ‘near’ to d.

In our experience, the difference between the actual and desired sums is acceptable.

In line 3 of Algorithm 4.3, we insert a gene’s values into a GAMS template

file. These templates are near-complete specifications of the optimization problem,

and are where the user should specify all of the problem’s parameters. The fitness

function inserts into these templates a GAMS ‘table’ structure indexed by (i, j, k, t)

and (r, v, j, n, t), as appropriate. Part of the strength of this implementation is that,

provided the user’s template is able to make use of these tables, any model could

be substituted for the ones described in Section 4.2.2.

To speed up the convergence of this algorithm, the template files are modified

slightly from the disciplines, as described above. We have included a pseudo-slack

and a pseudo-surplus variable for each interface variable. These two variables per-

mit the GAMS solver to ‘modify’ the values of the interface variable in a positive

and negative fashion, for example,

Zp
i,j,k,t

becomes

Zp
i,j,k,t + S1p

i,j,k,t − S2p
i,j,k,t (4.19)

The extra flexibility provided by these pseudo-slack variables permits us to

ensure that we always have a feasible set of interface parameters. More importantly,

however, they also permit the GAMS model to ‘recommend’ new values to the GA.

The disciplinary slack variables (and objective value) are parsed by Java code in

line 5 of Algorithm 4.3, and then are added and subtracted to the values stored in

the gene being evaluated. We also include a new constraint in the template file that

ensures that we only use the ‘negative’ pseudo-slack variable when the ‘positive’

one is not. The use of these variables is penalized in the objective function of each
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discipline so that we do not use them excessively, possibly accidentally achieving a

discipline object value higher than the real-life optimal value. One drawback of the

pseudo-slack variables is that they substantially increase the problem size. While

computing the test cases found in the next chapter, however, we did not find this

cost to be prohibitive..
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Chapter 5

Numerical Results and Nemak

Case

5.1 General Numerical results

To test the efficacy of the implementation described in Section 4.3, we have for-

mulated a small test problem based on a hypothetical manufacturer working in

NAFTA. The problem includes two suppliers, two manufacturing plants and two

customers across three countries, planning for a single product over 12 time periods,

represented pictorially in Figure 5.1 below. This example involves approximately

550 continuous variables, 500 binary variables and 500 constraints.

We solve this problem two ways, first by using the All-At-Once (AAO) method

to obtain a “known optimal’ value, and then by our implementation. We are

then able to gauge the performance of Algorithm 4.1. The Genetic Algorithm

(GA) controller is permitted a population size of 500 potential solutions and is set

to perform 80 iterations. It should be noted that our implementation could be

easily modified to terminate when the ‘best’ optimal value is within a prescribed

percentage of the “known optimal.” We have not done this because specifying the

maximum number of iterations is the standard in the literature; this increases the

probability of a near-optimal set, instead of a single ‘good’ value.
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Figure 5.1: Small Problem Supply Chain.
Arrows represent product flow, not routes. All shipments are made by truck.
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Figure 5.2 shows the convergence of Algorithm 4.1 to the ’known optimal’ value

found by the AAO formulation. Iterations 1 and 2, not shown in that figure,

are sufficiently bad that the necessary scale to display them would obfuscate the

improvements shown. The best solution presented by the algorithm, MDO 1 (found

in Table 5.1), achieves an objective value that is 99.4% of the AAO optimal. If MDO

1 is unsatisfactory for unquantifiable reasons, MDO 2 encapsulates a solution that

is only 0.4% less profitable. The last two solutions, designated MDO 19 and 20, are

infeasible for the Small Problem’s constraints, as indicated by their exceptionally

bad objective values.

Figure 5.2: Small Example: Iteration Optimal Values

At the termination of Algorithm 4.1, we are presented with the objective values

of the ‘top 20’ solutions, as shown in Table 5.1. We can see that a near-optimal

set of feasible solutions is emerging. A detailed investigation of these solutions

indicated that they differ from each other substantially.
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Solution Objective Value ($) Solution Objective Value($)

AAO 8259 - -

MDO 1 8,210 MDO 11 7,124
MDO 2 8,181 MDO 12 6,920
MDO 3 7,706 MDO 13 6,515
MDO 4 7,614 MDO 14 6,450
MDO 5 7,476 MDO 15 5,747
MDO 6 7,330 MDO 16 53
MDO 7 7,259 MDO 17 -568
MDO 8 7,248 MDO 18 -1,972
MDO 9 7,191 MDO 19 -10,000,000
MDO 10 7,126 MDO 20 -10,000,000

Table 5.1: Small Example: Objective Values of AAO and Top 20 MDO Solutions

5.2 Nemak S.A. de C.V.

In order to show the utility of our proposed optimization methodology, we wish

to apply it to a realistic supply chain situation. Based on preliminary research

to find an industry and a company whose supply chain spans all three NAFTA

countries, we have selected Nemak S.A. de C.V. (Nemak), of Monterrey, Mexico,

a division of the Mexican company ALFA. We have built what we believe to be a

reasonable picture of Nemak’s North American supply chain. Since this example is

based on publicly available data and on non-financial data graciously provided by

Carl Jansen of Nemak, some quantities had to be estimated.

Since 1981, Nemak has been a producer of aluminum automotive components,

particularly engine blocks (blocks) and cylinder heads (heads) from recycled alu-

minum. Through both organic growth and acquisitions, Nemak has expanded to

include twenty-eight manufacturing facilities across thirteen countries. Of particu-

lar interest to us, for this example, are the Mexican facilities in Monterrey, in the

state of Nuevo Léon; Saltillo and Monclova, both in Coahuila de Zaragoza; and the

Canadian facilities in Windsor and Essex, Ontario. The Windsor factory produces

primarily engine blocks, and the other plants produce heads. Nemak’s customers
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include nearly every major automotive manufacturer in the world. For this study,

however, we limit ourselves to Ford Motor Company’s Cleveland facility (Ford),

Chrysler LLC’s Detroit plant (Chrysler), and General Motors Corporation’s De-

troit facility (GMC).

Nemak purchases its recyled aluminum in ingot form from a variety of suppli-

ers. The Canadian plants are supplied by AlCan, Inc. in Guelph, Ontario and

AlChem, Inc. of Coldwater, Michigan. The Essex plant also self-supplies a portion

of its demand by purchasing scrap and then processing and alloying it using on-site

recycling facilities. The Windsor factory purchases material to specification. The

Mexican plants are supplied by a US supplier (not likely to be AlCan, due to the

distances involved) and a Mexican supplier.

The resulting supply chain is depicted in Fig. 5.3.

Nemak receives specific orders from their “Detroit 3” customers. Each product

typically goes to only 1 customer location. They receive daily, weekly and monthly

demand figures; we will use weekly figures for our example. Nemak currently makes

about 7,000 cylinder heads per day and 2,400 blocks per day, with approximately

260 working days per year. For the example, we assume that Ford orders 0.62

million blocks per year and a corresponding 1.24 million heads. Chrysler and GMC

order 1.2 million heads each.

A head weighs about 20 lbs and is produced from 25 lbs of scrap aluminum.

An engine block weighs approximately 150 lbs and is produced from 200 lbs of an

aluminum alloy. Each block requires two heads in the end-vehicle, so heads are

often in orders of even quantity. Prices are negotiated annually with the customers

and they demand regular price reductions. However, since this example only spans

one year, we can assume a fixed price. We calculate this price as being a fraction

of the price an end-consumer sees for an equivalent product.
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Figure 5.3: Nemak Supply Chain.
Arrows represent product flow, not routes. All shipments are made by truck.
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The Windsor plant has the capacity to produce 1.2 million blocks per annum.

The Essex factory can produce up to 3.7 million heads. The Saltillo and Monclova

facilities can cast 0.86 million heads each, while the Monterrey factory can produce

3.9 million. The Windsor plant can produce blocks at a cost of $2.50 per pound. It

is fair to assume that the Essex plant will also produce at this cost. The Mexican

facilities will produce at a reasonable fraction of this cost. Fixed costs are allocated

to each plant for administration and shared services, such as IT and accounting.

The raw material for these products is purchased from as many as 50 different

suppliers. Many provide scrap aluminum in different shapes and alloys, while some

supply alloy material to very specific standards. The former is the ‘scrap’ aluminum

mentioned above, while the latter is the ‘alloyed’ aluminum. The cost of the mate-

rial changes daily according to world markets. Nemak typically buys at a price per

pound that includes freight costs. Due to the volatility of the market, they receive

aluminum quotes on a monthly basis, likely through the futures market. While the

current model can incorporate this aspect, we use a constant cost as we have little

information on the magnitude of that volatitility. Depending on commodity, some

is held unprotected in the yard surrounding the factory and some indoors. We have

a few suppliers that hold inventory locally. For the purposes of this case example,

we will assume a single holding cost per commodity at each of Nemak’s locations.

The US supplier to the Mexican plants sells at a cost of 80.7 cents per pound,

while Alchem sells to Windsor at 87.7 cents per pound. No other costs were avail-

able, so we assume that the domestic suppliers in each country supply at a reason-

able fraction of that cost. Futher, we assume that Nemak Essex’s internal supply

is acquired at a very low fraction of AlCan’s price.

No capacities were reported for any of the suppliers. Based on the size of the

known suppliers, it is reasonable to assume that they can satisfy all of Nemak’s

annual demand. To avoid automatic selection of only the least-cost supplier (such

as the Essex’s self supply), we place an arbitrary upper limit on each, while ensuring

that the sum of these artificial capacities are sufficient to meet all orders.
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(a) Iteration Optimal Values

(b) Optimal Value Change Detail

Figure 5.4: Nemak Base Case: Iteration Optimal Values
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Typically, Nemak ships several loads per day, with lead-times varying from hours

to days. Some movement from Mexico could take up to 10 days or more. As we

are using weeks for the time unit in our case example, we assume that the weekly

figure could be subdivided by a tactical operations team. Current truck rates could

be as high as $3,500 per load, which we allocated based on capacity used by each

product. Nemak’s customers typically tell them to max out the weight capacity

of the trailers. Given the nature of the items transported, this will likely occur

before the space in the trailer “cubes out.” Now that we have described Nemak’s

situation, let us apply the AAO and MDO formulations to it. The AAO formulation

contains approximately 10,000 constraints and 11,000 variables. The optimal value

of the AAO solution is nearly $140 million, which is a reasonable profit for a mid-to-

large-sized company, given that we do not consider centralized administration costs,

facility fixed costs, etc. When the problem size becomes sufficiently large that the

AAO formulation becomes difficult to solve, one may use a relaxation method to

define what is ‘optimal.’ With the Nemak data, we found that a simple relaxation

of the non-binary discrete variables to be positive and continuous to be good (i.e.

only 0.2% different).

Similarly to the Small Example, Algorithm 4.1 obtains a ‘good’ solution, i.e.

94.6% of optimal, in relatively few iterations. The progression of the iteration

optimal values can be seen in Figure 5.4a. Even though it’s not apparent in that

figure, further improvement does occur, as shown in Figure 5.4b. We ran Algorithm

4.1 for 100 iterations on a population of size 100, and report the top 20 results. The

run-time of the algorithm on a problem of this size ranges from 15 to 30 minutes on

a 2.6Ghz dual core AMD Opteron with 32Gb of RAM. While this is substantially

longer than the run-time of alternative solution methods, as described in Section

4.1 and the AAO formulation, we feel that our code could be further optimized by

the elimination of the GAMS interface and better memory usage through proper

multithreading. However, we believe the runtime of even this proof-of-concept code

to be acceptable in a strategic decision making scenario and that the benefits of

the IDF formulation to be worth the cost in computation time.
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(a) Blocks

(b) Heads

Figure 5.5: Nemak Base Case: Production Levels
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Algorithm 4.1, as before, provides a set of near-optimal solutions, as described

in Table 5.2. As can be seen, the percentage change between these values is trivial.

Unlike the Small Example, these solutions do not different substantially, in terms

of the supply chain they describe. This suggests that, due to the costs, constraints

and prices faced by Nemak, that a supply chain design that differs from the one

recommended by Algorithm 4.1 would face greatly reduced profits.

Solution Objective Value ($)

AAO Relaxation 139,072,483

MDO 1 131,503,061
MDO 2 131,501,830
MDO 3 131,498,647
MDO 4 131,493,434
MDO 5 -1,000,000,000

... ...
MDO 20 -1,000,000,000

Table 5.2: Nemak Base Case: Objective Values of AAO and MDO Solutions

Let us now examine in more detail the solution denoted ‘MDO 1’ from Table 5.2.

Figure 5.6 gives a graphical representation of the vendors and factories chosen, as

well as the flow of goods between these facilities and the end-consumers. Facilities

that have a dashed border are not used, due to excess capacity in our dataset. This

excess is likely due to a lack of complete demand data from Nemak.

Production of both blocks and heads (Figures 5.5a and 5.5b, respectively) is

steady, as we would expect, given constant known demand. Raw Materials inven-

tory builds up initially, and then is used up over the course of the year, demonstrated

in Figure 5.8a. Final products never have inventory (Figure 5.8b); this is exactly

what we would like to see in a company implementing Just-In-Time practices.

Now that we have scrutinized the Nemak base case, let us examine what happens

when we perturb the model. We propose a set of perturbations whose optimal

solutions drastically differ from the base case. First, we examine two different

demand scenarios, one with a demand burst occurring during a middle-of-horizon
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Figure 5.6: Nemak Base Case: Supply Chain Design.
Arrows represent product flow, not routes. All shipments are made by truck.

61



Figure 5.7: Demand burst Case: Supply Chain Design.
Arrows represent product flow, not routes. All shipments are made by truck.
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(a) Raw Materials

(b) Finished Goods, Factory

Figure 5.8: Nemak Base Case: Inventory
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the time period and one with cyclic demand. We then consider the case where the

availability of raw materials changes, both when a major supplier goes bankrupt

and when the general market supply is diminished. After that, we see what happens

when there’s a disruption to factory capacity, such as when a critical machine breaks

down, or an entire factory must be closed. Finally, we examine a situation in which

a raw materials supplier implements a minimum order policy. As with the Base

Case, we run each scenario for 100 evolutions of 100 candidate solutions.

In the event of a single demand burst for each end-product, increasing raw

material capacity for the Mexican aluminum supplier to retain problem feasibility.

As seen in Figure 5.7, the supply chain changes significantly. The increased raw

material capacity induces Windsor factory to single-source at lowest cost, building

up raw materials inventory (See Figure 5.10a) just before production must increase,

as shown in Figure 5.9a. For five periods before the peak period, as shown in Figure

5.9b, the Essex Plant produces at capacity and stores excess finished goods (Figure

5.10b), although there is no initial raw materials inventory (see Figure 5.10a).

Additionally, the Saltillo and Monterrey facilities are activated, though Saltillo

produces only two heads; this could be avoided by implementing a fixed production

start-up cost. This is likely because the facility is only barely not chosen, in favour

of Monterrey, to meet head demand. The Monterrey plant produces (and ships to

GMC) enough heads to meet the difference between the burst of demand and the

sum of Essex’s production and on-hand inventory.

During our analysis, we became interested in the build-up of scrap aluminum at

the Essex facility and what would cause it to change. By varying in small increments

the raw materials inventory holding cost from its base value of $0.10 Canadian, we

found that, when the cost moves from $0.599 to $0.600, the buildup disappears.

The rest of the Nemak data can be found in Appendix D. At this higher price,

Nemak prefers to order ‘Just-In-Time’ from higher-cost suppliers (AlChem and US

Aluminum), instead of stocking raw materials from Mexico Aluminum. Figures

5.11a and 5.11b show Essex’s inbound shipments at these two costs.
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(a) Blocks

(b) Heads

Figure 5.9: Demand Burst Case: Production Levels
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(a) Raw Materials

(b) Finished Goods, Factory

Figure 5.10: Demand Burst Case: Inventory
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(a) Holding Cost of $0.599

(b) Holding Cost of $0.600

Figure 5.11: Demand Burst Case: Raw Material Inventory Analysis
Inbound Shipments
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Figure 5.12: Cyclic Demand Case: Supply Chain Design.
Arrows represent product flow, not routes. All shipments are made by truck.

68



After examining the burst demand case, we move on to the more complicated

cyclic demand scenario. We modify the demand pattern by using a sinusoidal func-

tion of the original demand and a time parameter. As well, we scale the demand

pattern slightly so that at least one period exceeds production capacity; we also

increase raw material availability (of the Mexican aluminum supplier) to maintain

problem feasibility. As can be seen in Figures 5.13a and 5.13b, the favoured Wind-

sor and Essex factories must produce at capacity for much of the time horizon.

Additionally, the Monterrey plant is added to the supply chain (see Figure 5.12).

To support this production, and take advantage of the increased supply capacity

of lowest-cost aluminum provider, the Windsor plant purchases from only AlCan

and the Mexican aluminum supplier, while Essex single-sources from the latter, not

even using its own self-supply. The Monterrey factory purchases what it can from

the Mexican aluminum supplier, and fulfills the balance of its needs from AlChem

and the US aluminum supplier.

Both the Windsor and Monterrey facilities find it optimal to store raw materials

inventory in preparation for peak production (see Figure 5.14a) while Windsor and

Essex store finished products. Windsor must store both types of inventory to

ensure it can meet sustain peak production because it is the only source for the

block finished good. The Essex facility only pre-produces head inventory until it

reaches peak capacity, at which point any further demand is satisfied from on-hand

inventory and the Monterrey plant.

Interestingly - and likely due to the lack of a truck dispatch cost - customer de-

mand satisfaction is not always from same plant. Additionally, once the Monterrey

facility is producing, the Essex plant doesn’t ship every period, as illustrated in

Figure 5.15.
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(a) Blocks

(b) Heads

Figure 5.13: Cyclic Demand Case: Production Levels

70



(a) Raw Materials

(b) Finished Goods, Factory

Figure 5.14: Cyclic Demand Case: Inventory
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(a) Ford

(b) GMC

(c) Chrysler

Figure 5.15: Cyclic Demand Case: Head Distribution
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When Nemak is put the unfortunate situation of a raw materials supplier facing

bankruptcy (in this case, AlChem, as shown in Figure 5.16 ), it will increase its

reliance on the other suppliers. However, this is not the only change that happens.

By comparing Figures 5.8a and 5.17a, we see that, instead of storing the more ex-

pensive alloy material from the non-AlChem suppliers, it is now cheaper to produce

and store finished goods inventory (shown in Figure 5.17b) at the Windsor factory.

However, because of extra capacity in the supply chain, production levels remain

the same as in the Base Case.

Let us now consider what happens when Nemak’s production capabilities are

reduced only slightly. This might occur due to worker holidays, or a machine being

taken down for maintenance. To simulate this, we set the production capacity for

blocks at the Windsor plant and the production capacity for heads at Essex to be

zero for the last two periods.

Two interesting things happen when we do this. The Windsor factory ramps

up product in the five periods before the capacity loss, causing inventory to be

held. The Essex plant does as well, but to a lesser extent; instead of producing and

storing all the inventory at Essex, the Monterrey facility is activated. The resulting

supply chain is illustrated in Figure 5.18.

As seen in Figure 5.19a, block production starts to increase during week 46.

During the weeks before then, extra ‘alloy’ raw material is stored to be used in

periods 46-50 (see Figure 5.20a). Figure 5.20b shows that excess engine blocks are

held in inventory to satisfy demand in the last two periods.

The “typical”, i.e. as found in the Base Case (Figure 5.8a), initial buildup of

scrap aluminum at the Essex plant occurs in this case as well (see Figure 5.20a).

In contrast, however, this case shows increasing inventory of finished heads at both

the Monterrey and Essex locations, due to excess production (seen in Figure 5.19b),

to meet demand during the lowered-capacity period.
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Figure 5.16: Bankrupt Supplier Case: Supply Chain Design.
Arrows represent product flow, not routes. All shipments are made by truck.
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(a) Raw Materials

(b) Finished Goods, Factory

Figure 5.17: Bankrupt Supplier Case: Inventory
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Figure 5.18: Lowered-Production Case: Supply Chain Design.
Arrows represent product flow, not routes. All shipments are made by truck.
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(a) Blocks

(b) Heads

Figure 5.19: Lowered-Production Case: Production Levels
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(a) Raw Materials

(b) Finished Goods, Factory

Figure 5.20: Lowered-Production Case: Inventory
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If, instead, the capacity reduction happens in the middle of the year (e.g. a

plant-wide summer vacation period), approximately the same changes from the

Base Case occur. This can be seen by comparing the resulting supply chain, de-

picted in Figure 5.21, with Figure 5.18. The production levels (Figures 5.22b and

5.22a) exhibit the same characteristics as those in the previous case; in these latter

figures, however, we see that production returns to normal within one period of

the capacity being restored. One difference of note is the lower production rate

in period 25 at the Monterrey factory; this is off-set by a small production run in

period 24 (and kept for one period). This evidence suggests that profit, at least at

in Monterrey, is relatively inelastic with respect to the amount of inventory stored

(due to the low holding cost).

Another difference can be seen when we compare the Figures 5.23a and 5.23b,

the raw materials and finished goods inventory stored at the factory level, to those

for the end-of-year case. The large inventory build-up of alloyed aluminum at the

Windsor factory does not repeat itself, and instead we see only the slight build-

up typical of a start-of-horizon. Interestingly, the Monterrey plant builds up raw

materials inventory in the middle-of-year case, but not when the capacity decrease

is at the end of the time horizon - it also holds some (very minimal) excess inventory

afterwards. The finished goods inventory is equivalent to that in the end-of-year

case, excepting a higher inventory kept at the Monterrey location.
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Figure 5.21: Early Lowered-Production Case: Supply Chain Design.
Arrows represent product flow, not routes. All shipments are made by truck.
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(a) Blocks

(b) Heads

Figure 5.22: Early Lowered-Production Case: Production Levels
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(a) Raw Materials

(b) Finished Goods, Factory

Figure 5.23: Early Lowered-Production Case: Inventory
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Our next scenario concerns the loss of an entire facility, namely the Essex plant.

This could happen as a planned closure, an (extremely) prolonged labour dispute,

or as a ‘disaster’ such as a flood or tornado. As drastic as this sounds, it does not

make any unexpected changes to the supply chain.

Figure 5.24 shows how the Monterrey plant simply picks up the slack left by the

Essex closure, as well the impacts on the latter’s suppliers and customers. Block

production, of course, does not change (Figure 5.25a). Head production (Figure

5.25b) looks mostly the same, except at a different location; the irregular production

in the last periods, as well as the slight finished goods inventory (see Figure 5.26b)

is likely due to the stochastic nature of the GA controller, and the fact that it does

not guarantee a true optimal solution.

This scenario does produce one ‘interesting’ result, however. The Monterrey

plant’s raw material inventory buildup, as seen in Figure 5.26a, does not decrease

as quickly as in the Base Case (Figure 5.8a). We believe that this is because of

the significantly lower raw material holding cost in Mexico that results from the

Mexican Peso/Canadian Dollar exchange rate, and the increased reliance on the

US Supplier rather than the Essex plant’s self-supply facility.
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Figure 5.24: Plant Loss Case: Supply Chain Design.
Arrows represent product flow, not routes. All shipments are made by truck.
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(a) Blocks

(b) Heads

Figure 5.25: Plant-Loss Case: Production Levels
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(a) Raw Materials

(b) Finished Goods, Factory

Figure 5.26: Plant-Loss Case: Inventory
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Our final scenario concerns the case in which one or more of the suppliers

implements a minimum-order policy. To test this case, we set minimum order

quantities on purchases of AlCan’s alloyed aluminum, as well as on purchases of

scrap aluminum from both the US and Mexican Suppliers. This does not result in

a supply chain whose network differs from that of the base case. It does, however,

change production and inventory quantities slightly.

In the Base Case, the first order placed by the Windsor plant for alloyed alu-

minum is less than the minimum order quantity that we required. This causes the

advance production of some units (compare Figures 5.5a and 5.27a), as well as an

attendant build-up in finished goods inventory (see Figure 5.28b). Note that this

inventory is stored in finished goods form because it is cheaper to store the final

product than over 200 pounds of alloyed aluminum ingots.

The scrap aluminum, however, is cheaper to store than the finished head, so we

see (in Figure 5.28a) several periods when scrap inventory is held. Interestingly, as

we approach the end of the time horizon, material purchased to meet the minimum-

order criteria, but not necessary for production, is shipped to the un-used Monterrey

facility, rather than be stored at the relatively-higher-cost Essex plant. If the model

were to permit transshipment of raw material inventory between plants, it is possible

that we would see this effect more often - perhaps to the point of having all such

inventory stored at the lowest cost location until immediately before use. We have

not included such a case as it would fundamentally change our model and would

not be suitable for comparison.

Through the detailed examination of the Nemak test case and all its variations,

it seems fair to say that that the MDO formulation we present provides both reason-

able and useful results. Of course, due to its dependence on the very mature field of

mixed-integer programming, that was to be expected. The predicted near-optimal

set of solutions that occurred in our smaller test example definitely suggests that

MDO is worth further investigation as a possible supply chain management tool.

87



(a) Blocks

(b) Heads

Figure 5.27: Minimum-Order Case: Production
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(a) Raw Materials

(b) Finished Goods, Factory

Figure 5.28: Minimum-Order Case: Inventory
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Chapter 6

Summary and Conclusions

6.1 Summary

In this thesis, we discussed two major topics in detail: international supply chain

management, and the application of Multidisciplinary Design Optimization (MDO)

to the former. Subsequently, we tested the solution method on a small test case

and a real-life case, and then interpreted the results.

We began by describing a basic supply chain model that incorporates both

inventory and transportation decisions. We then examined the opportunities and

frustrations created by operating at an international level. After that, we showed

how the establishment of Free Trade Areas can alleviate some of these concerns,

while not extinguishing the opportunities. At each stage, we showed how our initial

model could be modified to reflect the effects discussed.

After our international supply chain model was formulated, we first demon-

strated how supply chain optimization problems have been solved in the past. We

then asserted that MDO was an interesting candidate methodology for solving large

international supply chain management problems. We reviewed the types of prob-

lems to which MDO has been applied already, and discussed several classes of MDO

methodologies.

90



Once we selected the Individual Discipline Feasible model as the most promising

for our problem, we discussed at length how to prepare our model to be solved using

this technique. Following this, we described in detail our implementation of MDO,

namely Algorithm 4.1 with a Genetic Algorithm at its core. Emphasis was placed

on the crux of the algorithm: the fitness function evaluation of candidate genes.

Subsequently, we tested the efficacy of our implementation on a small test case;

this yielded the expected results of a near-optimal set of solutions. The problem

established in the realistic case study was also easily solved to near-optimality,

albeit with a single dominant solution emerging. We then perturbed the problem

data to examine how robust the model is to different data and situations.

6.2 Conclusions

The analysis of our international supply chain model, particularly in its applica-

tion to the Nemak case, revealed that it is capable of modeling a wide variety of

international supply chain scenarios accurately. Of particular interest from our

analysis are the Plant-Loss and the Minimum-Order scenarios. In the former, we

see that there is a drastic difference in the planned inventory (as compared to the

base case). This leads us to conclude that, at a Mexican or at an other plant

with equivalently low holding-cost, it is preferable to carry a substantial amount

of inventory, rather than placing frequent orders. In the Minimum-Order case, the

model uses the Monterrey plant purely as a storage depot. This suggests that it

may be advantageous to maintain a low-cost storage facility (in the case of scrap

aluminum, even a section of uncovered pavement would suffice) to store any excess

material needed to meet minimum order quantities - even if there is no plan to use

this material in the near future!

We also recommend that MDO is indeed a valid and potentially preferable

method for optimizing international supply chain problems. From a development

perspective, it does require additional effort to reformulate existing models; how-
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ever, when building a model from scratch, this should not be a problem. We

believe this effort would be well spent, however, to be able to leverage the two key

advantages of MDO, namely the possibility of obtaining a near-optimal set at no

extra cost, and the modularity of disciplinary models. The former allows the final

decision-maker a wider set of choices, increasing the likelihood that a ‘good’ solution

that meets unquantifiable constraints is found. The latter decreases future model

development and expansion time by permitting re-use of existing model code, as

well as permitting ‘what-if’ exploration of inventory and transportation policies.

6.3 Extensions for Future Research

There is a variety of ways in which the research presented in this thesis may be

extended. One such way is to increase the usability of the software application

developed. Incorporating an information-systems aspect, i.e. developing a database

from which the parameter values can be efficiently extracted and/or calculated

would be a major step towards creating a viable end-product. Similarly, a user-

friendly front-end to enter data and interpret results would be a boon.

These types of improvements could make use of the knowledge and resources

within the Management Sciences Department. Furthermore, these avenues of re-

search could provide insight into what distinguishes mediocre supply chain man-

agement software from market leaders.

As mentioned previously, the first extension that should be made to this research

involves the design and implementation of a realistic transportation discipline for

the IDF formulation. Code that incorporates the Traveling Salesman Problem

or another form of dynamic route design, shipment consolidation, transshipment

points (e.g. between the Canadian and Mexican factories), backhaul, etc. would

be of great value. This extension would show how MDO can solve supply chain

models that are difficult or impossible using current techniques.
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A logical extension to the current research would be to include suppliers, man-

ufacturing plants and markets located in non-NAFTA countries. While this is

theoretically possible with the current model, there is no explicit or elegant way of

doing this. Currently, a non-NAFTA-member country would be treated the same

as a member but with higher costs. However, this possible implementation poses a

difficulty in enforcing the current local content restrictions.

By implementing this addition, we would gain the ability to model a greater

number of real-life supply chains. Many Canadian retailers rely on importing lower-

cost goods from the Orient or other non-NAFTA countries. As the passages open

through the arctic, it is possible that Canada will see drastically increased exports to

Russia, so it would be beneficial to be able to model this type of ’what-if’ situation.

Furthermore, by doing this, one could model the effect of a country (with which a

company does business currently) joining an FTA.

A similar extension would be to include the ability to model trade with another

FTA, such as the European Union. 2006 trade with the EU in goods alone amounted

to 45.9 billion Euros: the supply chains involved in this trade are clearly important

to the Canadian economy. Mercosur would be another interesting case to study.

The potential for a Pacific Rim FTA supported by Asia-Pacific Economic Forum

(APEC) provides a very fruitful problem to model. Such an FTA would likely

supersede the Association of Southeast Asian Nations (ASEAN) Free Trade Area

(AFTA). It is likely that Canada would then be a member of two powerful FTAs.

However, goods entering Canada under one FTA and leaving Canada under the

other would present significant interactions between (possibly) conflicting local-

content regulations.

In a security-conscious world, any company wishing to trade across national,

particularly American, frontiers faces increased difficulty getting their products past

the border crossings. This is due to tighter security requirements, but affects the

supply chain in multiple ways. Manufacturers and retailers, both inside and outside

the USA) will face higher costs of inbound goods due to the administrative expense

93



of meeting security regulations and longer, less dependable lead-times because of

physically congested borders. Manufacturers will face higher outbound costs and

difficulty guaranteeing lead-times for those same reasons. However, manufacturers

will see those expenses explicitly, rather than as part of an increased price.

Another improvement related to border congestion would be to encourage the

utilization of ’inland ports.’ These facilities aim to decrease border congestion, par-

ticularly at seaports (such as the one in Vancouver), by moving the security/import

screenings and break/make bulk processes away from the border. By making use

of these facilities, both the ports and companies should be able to decrease their

overall costs. One possible way to add this functionality would be to increase the

number of levels in the supply chain by two, with these levels representing border

crossing facilities for raw materials.

Given the uncertain nature of the international business world, a useful exten-

sion would be to formulate and implement disciplinary sub-models that include

stochastic elements. These could be formulated as a traditional Monte Carlo simu-

lation for random variables (such as demand or lead times). Alternatively, a robust

optimization formulation (see Leung, Wu and Lai [26] or Wu [44] for more de-

tails) for either or both disciplines would permit an investigation into the effects of

robustness on the entire supply chain.

Modifying the model to include non-unit lead (i.e. greater than one time period,

possibly even non-discrete) times would be a very useful extension. This would

permit analysis under shorter period lengths, and would make the transportation

discipline less trivial to solve. Furthermore, in the real world, lead-times are often

variable and difficult to guarantee; therefore, their addition would add a substantial

degree of realism to the model.
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A final, relatively straightforward extension of this research would be to include

different forms of local content restrictions. The one that we have currently mod-

elled effectively represents a requirement that the company reinvest profits in the

local economy by utilizing local labour and resources. Another that is relevant to

supply chains operating within NAFTA is the requirement that companies must

transform their goods sufficiently such that change the tariff classification of their

products to pay preferential tariff rates at the border.
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Appendix A

Notation

We present all notation without units, as they will be problem-specific. For exam-

ples of possible units, we refer the reader to Appendix D.

A.1 Sets

c is the set of all countries

i is the set of all products

j is the set of all plants

Jc is the set of plants in country c

k is the set of all market regions

Kc is the set of indices of market regions in country c

n is the set of all contracts

r is the set of all raw material inputs

t is the set of all time periods

v is the set of all vendors

Vc is the set of indices of vendors in country c
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A.2 Constants

aij is the amount of plant j’s capacity needed to make product i

αc is the fraction of sales revenue in country c that must be spent in country c

cijk is the unit cost charged to ship product i from plant j to market k

ci,j,k,t is the actual cost to ship product i from plant j to market k

crvjnt is the total unit cost for material r from vendor v for delivery to plant j under

contract n in period t

c
′
rvjnt is the unit cost to ship material r from vendor v for delivery to plant j under

contract n in period t

dikt is the demand for product i in market k during period t

dl
ikt is the minimum cash flow for product i in market k during time t

du
ikt is the maximum cash flow for product i in market k during time t

ecc′ units of currency c′ per unit of currency c

fvnr is the fixed cost of opening contract n with vendor v for material r

gij is the fixed cost of producing product i in plant j

hp
ij is the cost of holding a unit of item i at plant j for one period

hv
rj is the cost of holding a unit of material r at plant j for one period

hm
ik is the cost of holding a unit of item i at market k for one period

mj is the fraction of vendor fixed costs allocated to plant j

Mijk is the markup for product i from plant j to market k

pik is the selling price of product i in market k

tn is the length of contract n

Tk is the corporate tax rate in market k

uri is the units of raw material r needed to make one unit of product i

vij is the unit cost of producing product i in plant j

xl
ijt is the lower limit on production for product i in plant j during time t

xu
ijt is the upper limit on production for product i in plant j during time t

xc
jt is the capacity of plant j in time t

zl
nrv is the lower bound on period shipments under contract n for material r from
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vendor v

zu
nrv is the upper bound on period shipments under contract n for material r from

vendor v

A.3 Variables

Integer Variables

Im
ikt is the amount of product i stored at market k at the end of period t

Ip
ijt is the amount of product i stored at plant j at the end of period t

Iv
rjt is the amount of raw material r stored at plant j at the end of period t

Qp
ijkt is the order of product i shipped from plant j to market k in period t

Qv
rvjnt is the order amount of raw material r shipped from vendor v to plant j under

contract n in period t

Qp′

ijkt is the interface variable corresponding to planned orders of product i shipped

from plant j to market k in period t

Qv′
rvjnt is the interface variable corresponding to planned orders of raw material r

shipped from vendor v to plant j under contract n in period t

Zp
ijkt is the amount of product i shipped from plant j to market k in period t

Zv
rvjnt is the amount of raw material r shipped from vendor v to plant j under

contract n in period t

Zp′

ijkt is the interface variable corresponding to planned shipments of product i

shipped from plant j to market k in period t

Zv′
rvjnt is the interface variable corresponding to planned shipments of raw material

r shipped from vendor v to plant j under contract n in period t

Binary Variables

Wij = 1 if any amount of product i is produced in plant j, 0 otherwise

Xijt is the amount of product i produced in plant j during period t

Yrvtn = 1 if contract option n ( for material r from vendor v) is selected in period

t, 0 otherwise
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Appendix B

Base Code

Below is a GAMS implementation of the AAO formulation for the Small Example.

*Small Example: AAO Formulation*

Sets

c Countries /Can, US, Mex/

k(c) Markets /Can,US,Mex/

j(c) Plants /Can, Mex/

v(c) /Can, Mex/

i Products /widget/

r Materials /rawMat/

t Months /1*12/

n Contracts /Low, High/;

alias(c,c2);

alias(c,c3);

alias(t,t2);

Sets

plantcountries(j,c) /Can.Can, Mex.Mex/

marketcountries(k,c) /Can.Can, US.US, Mex.Mex/

vendorcountries(v,c3) /Can.Can, Mex.Mex/;

Parameters

l(n) the length of contract n /Low 12, High 12/

cm(r,v,j,n,t) the unit cost for material r from vendor v for delivery

to plant j under contract n in period t

/ rawMat.Can.Can.Low.1*12= 5.0

rawMat.Can.Can.High.1*12= 4.0

rawMat.Can.Mex.Low.1*12= 5.5

rawMat.Can.Mex.High.1*12= 4.5
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rawMat.Mex.Can.Low.1*12= 6.0

rawMat.Mex.Can.High.1*12= 5.0

rawMat.Mex.Mex.Low.1*12= 4.5

rawMat.Mex.Mex.High.1*12= 4.0/

Cmp(r,v,j,n,t) the unit cost for material r from vendor v for delivery

to plant j under contract n in period t paid by transportation

/ rawMat.Can.Can.Low.1*12= 4.5

rawMat.Can.Can.High.1*12= 3.5

rawMat.Can.Mex.Low.1*12= 5

rawMat.Can.Mex.High.1*12= 4

rawMat.Mex.Can.Low.1*12= 5.5

rawMat.Mex.Can.High.1*12= 4.5

rawMat.Mex.Mex.Low.1*12= 4

rawMat.Mex.Mex.High.1*12= 3.5/

f(v,n,r) is the fixed cost of opening contract n with vendor v

for material r

/ Can.Low.rawMat= 1000

Can.High.rawMat= 1000

Mex.Low.rawMat= 700

Mex.High.rawMat= 700/

Zl(v,n,r) is the lower bound on period shipments under contract n

for material r

/ Can.Low.rawMat= 0

Can.High.rawMat= 101

Mex.Low.rawMat= 0

Mex.High.rawMat= 101/

Zu(v,n,r) is the upper bound on period shipments under contract n

for material r

/ Can.Low .rawMat= 100

Can.High.rawMat= 1000

Mex.Low .rawMat= 100

Mex.High.rawMat= 1000/

m(j) is the fraction of vendor fixed costs allocated to plant j

/Can 0.6, Mex 0.4/

alpha(c) is the fraction of sales revenue in country c that must be

spent in country c /Can 0.010, US 0.15, Mex 0.02/

Tk(k) is the corporate tax rate for market k /Can 0.23, US 0.20, Mex 0.30/

Tj(j) is the corporate tax rate for plant j /Can 0.23, Mex 0.30/

Penalty to penalize pseudo-slack variables /1000/;

Table e(c,c2) units of currency c2 per unit of currency c

Can US Mex

Can 1 0.9 10

US 1.11 1 11.1

Mex 0.1 0.09 1;
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Table p(i,k) is the selling price of product i in market k

Can US Mex

widget 30 33 4.2 ;

Table var(i,j) is the unit cost of producing product j

Can Mex

widget 3 1

Table G(i,j) is the fixed cost of producing product i at plant j

Can Mex

widget 30 10 ;

Table Cship(i,j,k) is the cost of shipping product i from plant j

to market k

Can.Can Can.US Can.Mex Mex.Can Mex.US Mex.Mex

widget 11.5 2...5 1 ;

Table U(i,r) amount of material r needed to make one item of product i

rawMat

widget 1 ;

Table D(t,i,k) is the demand for product i in market k during time t

Widget.Can Widget.US.idget.Mex

1*2 0 0 0

3*12 50 115 35 ;

Table Xl(t,i,j) is the lower limit on product i in plant j during time t

Widget.Can Widget.Mex

1*12 0 0;

Table Xu(t,i,j) is the upper limit on product i in plant j during time t

Widget.Can Widget.Mex

1*12 2000 750;

Table Xc(t,j) is the capacity of plant j in time t

Can Mex

1*12 20000 7500;

Table Mark(i,j,k) is the markup charged by plant j in market k

on product i

Can.Can Can.US Can.Mex Mex.Can Mex.US Mex.Mex

widget 1.15 1.16 1.17 1.05 1.06 1.07;

Table a(i,j) is the amount of capacity of plant j to make product i
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Can Mex

widget 5 5;

Table hp(i,j) is the cost of holding a unit of item i at plant j

for one period

Can Mex

widget .5 .7;

Table hv(r,j) is the cost of holding a unit of material r at plant j

for one period

Can Mex

rawMat .1 .15;

Table hm(i,k) is the cost of holding a unit of item i at market k

for one period

Can US Mex

widget .9 .95 1.05;

Table Cg(i,j,k) is the price to shipping product i from plant j to market k

charged by transportation

Can.Can Can.US Can.Mex Mex.Can Mex.US Mex.Mex

widget 1 1.5 2 2 1.5 1;

Table Cgp(i,j,k) is the cost of shipping product i from plant j to market k

paid by transportation

Can.Can Can.US Can.Mex Mex.Can Mex.US Mex.Mex

widget 0.5 0.75 1 1 0.75 0.5;

Variables

Y(r,v,t,n) 1 if contract option n ( for material r from vendor v) is

selected in period t 0 otherwise

W(i,j) 1 if any amount of product i is produced in plant j 0 otherwise

X(i,j,t) is the amount of product i produced in plant j during period t

period t

Zv(r,v,j,t,n)

Zp(i,j,k,t)

Qv(r,v,j,t,n)

Qp(i,j,k,t)

Ip(i,j,t) is the amount of product i stored at plant j at the

end of period t

Iv(r,j,t) is the amount of raw material r stored at plant j at the

end of period t

Im(i,k,t) is the amount of product i stored at market k at the

end of period t

ZInv objective value for the Inventory Model
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ZTrans

Z;

Binary Variable Y,W;

Integer Variable X,Ip,Iv,Im,Zp,Zv,Qp,Qv;

Equations

Obj

ObjInv

ObjTrans

MatSup1(r,t,v,n)

MatSup2(r,t,v,n)

MatReq(j,t)

PlantMatInv(r,j,t)

PlantShip(i,j,t)

PlantGoodInv(i,j,t)

MarketGoodInv(i,k,t)

MarketDem(i,k,t)

PlantCap1(j,t)

PlantCap2(i,j,t)

PlantCap3(i,j,t)

LocalContentCan(t)

LocalContentMex(t)

TransVendShip(r,v,j,n)

TransMarkShip(i,j,k)

MDF1(i,j,k,t)

MDF2(r,v,j,n,t);

Obj .. Z =e= ZInv+ZTrans;

ObjInv .. ZInv =e= sum((plantcountries(j,c),t), e(c,’US’)*(1-Tj(j))

*(sum((i,marketcountries(k,c)),Mark(i,j,k)*(var(i,j)+Cship(i,j,k))

*Zp(i,j,k,t))-sum((r,n,v),e(c,j)*(cm(r,v,j,n,t)*Zv(r,v,j,t,n)+m(j)*F(v,n,r)

*Y(r,v,t,n)))-sum((i),G(i,j)*W(i,j)-var(i,j)*X(i,j,t))-sum((i),Ip(i,j,t)

*hp(i,j)) -sum((r),Iv(r,j,t)*hv(r,j))))

+ sum((marketcountries(k,c),t),e(c, ’US’)

*(1-Tk(k))*sum((i,plantcountries(j,c2)),(P(i,k)-e(k,j)*(Mark(i,j,k)

*(var(i,j)+Cship(i,j,k))+Cship(i,j,k))*Zp(i,j,k,t)-Im(i,k,t)*hm(i,k)));

ObjTrans .. ZTrans =e= sum((j,t), e(j,’US’)*(1-Tj(j))*(sum((i,k),(Cg(i,j,k)

-Cgp(i,j,k))*Qp(i,j,k,t))+sum((r,n,v),e(j,v)*(Cm(r,v,j,n,t)-Cmp(r,v,j,n,t))

*Qv(r,v,j,t,n))));

MatSup1(r,t,v,n) .. Zl(v,n,r)*Y(r,v,t,n) =l= sum(j,Zv(r,v,j,t,n));

MatSup2(r,t,v,n) .. sum(j,Zv(r,v,j,t,n)) =l= Zu(v,n,r)*Y(r,v,t,n);

MatReq(j,t) .. sum((v,n,r),Zv(r,v,j,t,n))+sum(r,Iv(r,j,t))

=g=sum((i,r),U(i,r)*X(i,j,t));

PlantMatInv(r,j,t) .. Iv(r,j,t) =e= Iv(r,j,t-1)-sum(i,U(i,r)*X(i,j,t))
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+sum((v,n),Zv(r,v,j,t,n));

PlantShip(i,j,t) .. X(i,j,t)+Ip(i,j,t-1)=g= sum(k,Zp(i,j,k,t));

PlantGoodInv(i,j,t) .. Ip(i,j,t) =e= Ip(i,j,t-1) + X(i,j,t)-sum(k,Zp(i,j,k,t));

MarketGoodInv(i,k,t) .. Im(i,k,t) =e= Im(i,k,t-1)+sum(j,Zp(i,j,k,t))-D(t,i,k);

MarketDem(i,k,t) .. sum(j,Zp(i,j,k,t))=g=D(t,i,k);

PlantCap1(j,t) .. sum(i,a(i,j)*X(i,j,t)) =l= Xc(t,j);

PlantCap2(i,j,t) .. Xl(t,i,j)*W(i,j) =l= X(i,j,t);

PlantCap3(i,j,t) .. X(i,j,t) =l= Xu(t,i,j)*W(i,j);

LocalContentCan(t) .. sum((r,n,j,vendorcountries(v,’Can’)),cm(r,v,j,n,t)

*Zv(r,v,j,t,n))+sum((i,k,plantcountries(j,’Can’)),(var(i,j)+Cship(i,j,k))

*Zp(i,j,k,t))+sum((i,plantcountries(j,’Can’)),G(i,j)+W(i,j))=g= alpha(’Can’)

*sum((i,j,t2,marketcountries(k,’Can’)),P(i,k)*Zp(i,j,k,t2));

LocalContentMex(t) .. sum((r,n,j,vendorcountries(v,’Mex’)),cm(r,v,j,n,t)

*Zv(r,v,j,t,n))+sum((i,k,plantcountries(j,’Mex’)),(var(i,j)+Cship(i,j,k))

*Zp(i,j,k,t))+sum((i,plantcountries(j,’Mex’)),G(i,j)+W(i,j))=g= alpha(’Mex’)

*sum((i,j,t2,marketcountries(k,’Mex’)),P(i,k)*Zp(i,j,k,t2));

TransVendShip(r,v,j,n) .. sum(t,Zv(r,v,j,t,n)) =e= sum(t,Qv(r,v,j,t,n));

TransMarkShip(i,j,k) .. sum(t,Zp(i,j,k,t)) =e= sum(t,Qp(i,j,k,t));

MDF1(i,j,k,t) .. Zp(i,j,k,t)=e=Qp(i,j,k,t);

MDF2(r,v,j,n,t) .. Zv(r,v,j,t,n) =e= Qv(r,v,j,t,n);

Model AAO /all/;

option iterlim=1000000;

Solve AAO using mip maximizing Z;
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Appendix C

MDO Code

This appendix is a collection of readouts for the various files needed for the imple-

mentation of the MDF Formulation.

MDF.java:

import org.jgap.*;

import org.jgap.data.*;

import org.jgap.impl.*;

import org.jgap.xml.*;

import org.w3c.dom.*;

import java.util.List;

import java.util.Iterator;

public class MDF {

private static int popSize=500;

private static int MaxEvo=80;

private static int topN=20;

public static void main(String[] args) throws Exception {

// Start with a default configuration

MDFConfiguration conf = new MDFConfiguration();

//Set the fitness function

MDFFitnessFunction myFunc = new MDFFitnessFunction();

conf.setFitnessFunction(myFunc);

//Set some more configuration settings

conf.setPreservFittestIndividual(true);
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//Set up the chromosome. 96 ZUv and QUv, 72 Zup, Qup means 336 variables.

//Gene is in the order [ZUp Zuv QUp QUv]

//ie [ZUp(1,1,1,1) ZUp(1,1,1,2) ... ZUp(1,2,3,12) ZUv(1,1,1,1,1) ...

//QUv(2,2,2,12,2)]

//We organize them into four InterfaceGenes

Gene[] sampleGenes = new Gene[4];

sampleGenes[0]=new InterfaceSupergene(conf);

sampleGenes[1]=new InterfaceSupergene(conf);

sampleGenes[2]=new InterfaceSupergene(conf);

sampleGenes[3]=new InterfaceSupergene(conf);

for (int i=0; i<72; i++) {

((InterfaceSupergene)sampleGenes[0]).addGene(new IntegerGene(conf,0,50));

((InterfaceSupergene)sampleGenes[2]).addGene(new IntegerGene(conf,0,50));

}

for (int i=0; i<96; i++) {

((InterfaceSupergene)sampleGenes[1]).addGene(new IntegerGene(conf,0,30));

((InterfaceSupergene)sampleGenes[3]).addGene(new IntegerGene(conf,0,30));

}

Chromosome sampleChromosome = new Chromosome(conf, sampleGenes);

conf.setSampleChromosome(sampleChromosome);

conf.setPopulationSize(popSize);

//Create a population

Genotype population = Genotype.randomInitialGenotype(conf);

System.out.println("Evolving now");

//Evolve the population

for (int i=0; i< MaxEvo; i++) {

IChromosome bestSolution = population.getFittestChromosome();

System.out.println("Current Evolution:"+i+" Best Profit:" +

(bestSolution.getFitnessValueDirectly()-myFunc.getOffSet()));

population.evolve();

}

IChromosome bestSolution = population.getFittestChromosome();

System.out.println("Algorithm Ended.");

System.out.println("Best Profit:" + bestSolution.getFitnessValue());
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//Now, output look at the top chromosomes

System.out.println("Top " + topN +" solutions");

List topChroms = population.getFittestChromosomes(topN);

Iterator topIter = topChroms.iterator();

int i = 0;

while (topIter.hasNext()) {

i++;

IChromosome currChrom = (IChromosome)topIter.next();

System.out.println( i + ". Profit:" + (currChrom.getFitnessValueDirectly()

-myFunc.getOffSet()));

//System.out.println(currChrom.getGene(1));

System.out.println(currChrom);

}

//Re-evaluate the best solution so we have those files to look at

myFunc.evaluate(bestSolution);

System.out.println("Best SOl:");

}

}
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MDFFitnessFunction.java:

import org.jgap.IChromosome;

import org.jgap.Chromosome;

import org.jgap.Population;

import org.jgap.Configuration;

import org.jgap.FitnessFunction;

import org.jgap.Genotype;

import org.jgap.Gene;

import org.jgap.impl.IntegerGene;

import java.io.*;

import java.util.*;

public class MDFFitnessFunction extends FitnessFunction {

private int PARAM_k=3; //Can,US,Mex

private int PARAM_c=3; //Can,US,Mex

private int PARAM_i=1; //widget

private int PARAM_j=2; //Can,Mex

private int PARAM_r=1; //rawMat

private int PARAM_t=12; //1,2,...,12

private int PARAM_n=2; //Low,High

private int PARAM_v=2; //Can,Mex

private String[] kMap= {"Can", "US", "Mex"};

private String[] cMap= {"Can", "US", "Mex"};

private String[] iMap= {"widget"};

private String[] jMap= {"Can", "Mex"};

private String[] rMap= {"rawMat"};

private String[] tMap= {"1", "2", "3", "4", "5", "6", "7", "8", "9",

"10", "11", "12"};

private String[] nMap= {"Low", "High"};

private String[] vMap= {"Can", "Mex"};

private String tranFile1="";

private String invFile1="";

private String tranFile2="";

private String invFile2="";

private Genotype m_pop;

private int BigM=1000;
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private int OffSet=10000000;

private InputStream s;

/**

* Constructs the MDFFitnessFunction.

*/

public MDFFitnessFunction() {

BufferedReader in;

String str;

StringBuilder theBuilder = new StringBuilder();

//Read in the transportation templates

try {

in = new BufferedReader(new FileReader("Trans1.tmp"));

while ((str = in.readLine()) != null) {

theBuilder.append(str+"\n");

}

in.close();

tranFile1=theBuilder.toString();

in = new BufferedReader(new FileReader("Trans2.tmp"));

theBuilder=new StringBuilder();

while ((str = in.readLine()) != null) {

theBuilder.append(str+"\n");

}

in.close();

tranFile2=theBuilder.toString();

} catch (IOException e) {

System.out.println("Exception: Problem inputting Transportation

Template\n"+e);}

//Read in the inventory templates

try {

in = new BufferedReader(new FileReader("Inv1.tmp"));

theBuilder=new StringBuilder();

while ((str = in.readLine()) != null) {

theBuilder.append(str+"\n");

}

in.close();

invFile1=theBuilder.toString();

in = new BufferedReader(new FileReader("Inv2.tmp"));

theBuilder=new StringBuilder();

while ((str = in.readLine()) != null) {

theBuilder.append(str+"\n");
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}

in.close();

invFile2=theBuilder.toString();

} catch (IOException e) {

System.out.println("Exception: Problem inputting Inventory

Template\n"+e);}

}

public int getOffSet() {

return OffSet;

}

public void setPop(Genotype a_pop) {

m_pop=a_pop;

}

/**

* Determine the fitness of the given Chromosome instance. The higher the

* return value, the more fit the instance. This method should always

* return the same fitness value for two equivalent Chromosome instances.

*/

public double evaluate(IChromosome a_subject ) {

//To evaluate a chromosome, 3 steps must occur.

//First, we extract the interface variable values from the chromosome

//and insert them into the model files. Next, we submit those model

//files to GAMS. Lastly, we extract the output values for the rest of

//the variables and evaluate them in the objective function (including

//penalty cost for interface variables not being equal between models).

double cost=0;

//Extract interface variables from the chromosome

int[][][][] ZUp = new int[PARAM_i][PARAM_j][PARAM_k][PARAM_t];

int[][][][][] ZUv = new int[PARAM_r][PARAM_v][PARAM_j][PARAM_t][PARAM_n];

int[][][][] QUp = new int[PARAM_i][PARAM_j][PARAM_k][PARAM_t];

int[][][][][] QUv = new int[PARAM_r][PARAM_v][PARAM_j][PARAM_t][PARAM_n];

//Extract ZUp and QUp

InterfaceSupergene temp1 = (InterfaceSupergene)a_subject.getGene(0);

InterfaceSupergene temp2 = (InterfaceSupergene)a_subject.getGene(2);

int geneIndex=0;

Gene[] tempGenes1 = temp1.getGenes();

Gene[] tempGenes2 = temp2.getGenes();

for (int i=0;i<PARAM_i;i++) {

110



for (int j=0;j<PARAM_j;j++) {

for (int k=0;k<PARAM_k;k++) {

for (int t=0;t<PARAM_t;t++) {

ZUp[i][j][k][t]=((IntegerGene)tempGenes1[geneIndex]).intValue();

QUp[i][j][k][t]=((IntegerGene)tempGenes2[geneIndex]).intValue();

geneIndex++;

}}}}

//Extract ZUv and QUv

temp1 = (InterfaceSupergene)a_subject.getGene(1);

temp2 = (InterfaceSupergene)a_subject.getGene(3);

geneIndex=0;

tempGenes1 = temp1.getGenes();

tempGenes2 = temp2.getGenes();

for (int r=0;r<PARAM_r;r++) {

for (int v=0;v<PARAM_v;v++) {

for (int j=0;j<PARAM_j;j++) {

for (int t=0;t<PARAM_t;t++) {

for (int n=0;n<PARAM_n;n++) {

ZUv[r][v][j][t][n]=((IntegerGene)tempGenes1[geneIndex]).intValue();

QUv[r][v][j][t][n]=((IntegerGene)tempGenes2[geneIndex]).intValue();

geneIndex++;

}}}}}

//Enforce MDF

QUp=ZUp;

QUv=ZUv;

//prepare Strings to be inserted

StringBuilder ZUpStrB = new StringBuilder("Table ZUp(i,j,k,t)\n\t");

StringBuilder QUpStrB = new StringBuilder("Table QUp(i,j,k,t)\n\t");

for (int j=0;j<PARAM_j;j++) {

for (int k=0;k<PARAM_k;k++) {

for (int t=0;t<PARAM_t;t++) {

ZUpStrB.append(jMap[j]+"."+kMap[k]+"."+tMap[t]+"\t");

QUpStrB.append(jMap[j]+"."+kMap[k]+"."+tMap[t]+"\t");

}}}

for (int i=0;i<PARAM_i;i++) {

ZUpStrB.append("\n"+iMap[i]);

QUpStrB.append("\n"+iMap[i]);

for (int j=0;j<PARAM_j;j++) {

for (int k=0;k<PARAM_k;k++) {

for (int t=0;t<PARAM_t;t++) {

ZUpStrB.append("\t"+ZUp[i][j][k][t]+"\t");

QUpStrB.append("\t"+QUp[i][j][k][t]+"\t");
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}}}}

StringBuilder ZUvStrB = new StringBuilder("Table ZUv(r,v,j,t,n)\n\t");

StringBuilder QUvStrB=new StringBuilder("Table QUv(r,v,j,t,n)\n\t");

for (int v=0;v<PARAM_v;v++) {

for (int j=0;j<PARAM_j;j++) {

for (int t=0;t<PARAM_t;t++) {

for (int n=0;n<PARAM_n;n++) {

ZUvStrB.append(vMap[v]+"."+jMap[j]+"."+tMap[t]+"."+nMap[n]+"\t");

QUvStrB.append(vMap[v]+"."+jMap[j]+"."+tMap[t]+"."+nMap[n]+"\t");

}}}}

for (int r=0;r<PARAM_r;r++) {

ZUvStrB.append("\n"+rMap[r]);

QUvStrB.append("\n"+rMap[r]);

for (int v=0;v<PARAM_v;v++) {

for (int j=0;j<PARAM_j;j++) {

for (int t=0;t<PARAM_t;t++) {

for (int n=0;n<PARAM_n;n++) {

ZUvStrB.append("\t"+ZUv[r][v][j][t][n]+"\t");

QUvStrB.append("\t"+QUv[r][v][j][t][n]+"\t");

}}}}}

ZUpStrB.append(";\n");

ZUvStrB.append(";\n");

QUpStrB.append(";\n");

QUvStrB.append(";\n");

//Output the Transportation File

try{

FileWriter fstream = new FileWriter("Trans.gms");

BufferedWriter out = new BufferedWriter(fstream);

out.write(tranFile1);

out.write(QUvStrB.toString());

out.write(QUpStrB.toString());

out.write(tranFile2);

out.close();

}catch (Exception e) {System.out.println("Exception: Problem

outputting Trans.gms");}

//Output the Inventory File

try{

FileWriter fstream = new FileWriter("Inv.gms");

BufferedWriter out = new BufferedWriter(fstream);

out.write(invFile1);

out.write(ZUvStrB.toString());

out.write(ZUpStrB.toString());

out.write(invFile2);
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out.close();

}catch (Exception e) {System.out.println("Exception: Problem

outputting Inv.gms");}

runOptimization();

int[][][][] transSp = new int[PARAM_i][PARAM_j][PARAM_k][PARAM_t];

int[][][][][] transSv = new int[PARAM_r][PARAM_v][PARAM_j][PARAM_t][PARAM_n];

int[][][][] transSp2 = new int[PARAM_i][PARAM_j][PARAM_k][PARAM_t];

int[][][][][] transSv2 = new int[PARAM_r][PARAM_v][PARAM_j][PARAM_t][PARAM_n];

int[][][][] invSp = new int[PARAM_i][PARAM_j][PARAM_k][PARAM_t];

int[][][][][] invSv = new int[PARAM_r][PARAM_v][PARAM_j][PARAM_t][PARAM_n];

int[][][][] invSp2 = new int[PARAM_i][PARAM_j][PARAM_k][PARAM_t];

int[][][][][] invSv2 = new int[PARAM_r][PARAM_v][PARAM_j][PARAM_t][PARAM_n];

int ZTran=0;

int ZInv=0;

int penalty=0;

String line="";

try {

//First process Trans.lst

BufferedReader in = new BufferedReader(new FileReader("TransOut.txt"));

try{

ZTran=Integer.valueOf(in.readLine().trim());

} catch (NumberFormatException e) {

//really really bad profit

ZTran=Integer.MIN_VALUE;

}

for (int r=0;r<PARAM_r;r++) {

for (int v=0;v<PARAM_v;v++) {

for (int j=0;j<PARAM_j;j++) {

for (int n=0;n<PARAM_n;n++) {

for (int t=0;t<PARAM_t;t++) {

transSv[r][v][j][t][n]=Integer.valueOf(in.readLine().trim());

}}}}}

for (int i=0;i<PARAM_i;i++) {

for (int j=0;j<PARAM_j;j++) {

for (int k=0;k<PARAM_k;k++) {

for (int t=0;t<PARAM_t;t++) {

transSp[i][j][k][t]=Integer.valueOf(in.readLine().trim());

}}}}

for (int i=0;i<PARAM_i;i++) {

for (int j=0;j<PARAM_j;j++) {

for (int k=0;k<PARAM_k;k++) {

for (int t=0;t<PARAM_t;t++) {
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transSp2[i][j][k][t]=Integer.valueOf(in.readLine().trim());

}}}}

for (int r=0;r<PARAM_r;r++) {

for (int v=0;v<PARAM_v;v++) {

for (int j=0;j<PARAM_j;j++) {

for (int n=0;n<PARAM_n;n++) {

for (int t=0;t<PARAM_t;t++) {

transSv2[r][v][j][t][n]=Integer.valueOf(in.readLine().trim());

}}}}}

//Then process inv.lst

in.close();

in = new BufferedReader(new FileReader("InvOut.txt"));

try{

ZInv=Integer.valueOf(in.readLine().trim());

} catch (NumberFormatException e) {

//really really bad profit

ZInv=Integer.MIN_VALUE;

}

for (int r=0;r<PARAM_r;r++) {

for (int v=0;v<PARAM_v;v++) {

for (int j=0;j<PARAM_j;j++) {

for (int t=0;t<PARAM_t;t++) {

for (int n=0;n<PARAM_n;n++) {

invSv[r][v][j][t][n]=Integer.valueOf(in.readLine().trim());

}}}}}

for (int i=0;i<PARAM_i;i++) {

for (int j=0;j<PARAM_j;j++) {

for (int k=0;k<PARAM_k;k++) {

for (int t=0;t<PARAM_t;t++) {

invSp[i][j][k][t]=Integer.valueOf(in.readLine().trim());

}}}}

for (int r=0;r<PARAM_r;r++) {

for (int v=0;v<PARAM_v;v++) {

for (int j=0;j<PARAM_j;j++) {

for (int t=0;t<PARAM_t;t++) {

for (int n=0;n<PARAM_n;n++) {

invSv2[r][v][j][t][n]=Integer.valueOf(in.readLine().trim());

}}}}}

for (int i=0;i<PARAM_i;i++) {

for (int j=0;j<PARAM_j;j++) {

for (int k=0;k<PARAM_k;k++) {

for (int t=0;t<PARAM_t;t++) {

invSp2[i][j][k][t]=Integer.valueOf(in.readLine().trim());

}}}}
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in.close();

} catch (Exception e) {System.out.println("Problem in parsing\n"+e);}

//calculate the cost

//while calculating the penalty, lets also create some

genes based on Sv,Sv2,Sp,Sp2 that are nicer

//create the new Genes

temp1 = (InterfaceSupergene)a_subject.getGene(1);

temp2 = (InterfaceSupergene)a_subject.getGene(3);

geneIndex=0;

Gene[] newZUv = temp1.getGenes();

Gene[] newQUv = temp2.getGenes();

int penaltyCorrectionFactor=0;

try {

for (int r=0;r<PARAM_r;r++) {

for (int v=0;v<PARAM_v;v++) {

for (int j=0;j<PARAM_j;j++) {

for (int t=0;t<PARAM_t;t++) {

for (int n=0;n<PARAM_n;n++) {

penalty+=Math.abs((ZUv[r][v][j][t][n]+invSv[r][v][j][t][n]

-invSv2[r][v][j][t][n])-(QUv[r][v][j][t][n]+transSv[r][v][j][t][n]

-transSv2[r][v][j][t][n]));

penaltyCorrectionFactor+=invSv[r][v][j][t][n]

+invSv2[r][v][j][t][n]+transSv[r][v][j][t][n]

+transSv2[r][v][j][t][n];

String strZUv=Math.max(0,(ZUv[r][v][j][t][n]+invSv[r][v][j][t][n]

-invSv2[r][v][j][t][n]))+":0:2000";

String strQUv=Math.max(0,(QUv[r][v][j][t][n]+transSv[r][v][j][t][n]

-transSv2[r][v][j][t][n]))+":0:2000";

((IntegerGene)newZUv[geneIndex]).setValueFromPersistentRepresentation(strZUv);

((IntegerGene)newQUv[geneIndex]).setValueFromPersistentRepresentation(strQUv);

geneIndex++;

}}}}}

}catch (Exception e) {System.out.println("Problem setting ZUv, QUv:"+e);}

temp1 = (InterfaceSupergene)a_subject.getGene(0);

temp2 = (InterfaceSupergene)a_subject.getGene(2);

geneIndex=0;

Gene[] newZUp = temp1.getGenes();

Gene[] newQUp = temp2.getGenes();

try {

for (int i=0;i<PARAM_i;i++) {
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for (int j=0;j<PARAM_j;j++) {

for (int k=0;k<PARAM_k;k++) {

for (int t=0;t<PARAM_t;t++) {

penalty+=Math.abs((ZUp[i][j][k][t]+invSp[i][j][k][t]-invSp2[i][j][k][t])

-(QUp[i][j][k][t]+transSp[i][j][k][t]-transSp2[i][j][k][t]));

penaltyCorrectionFactor+=invSp[i][j][k][t]+invSp2[i][j][k][t]

+transSp[i][j][k][t]+transSp2[i][j][k][t];

String strZUp =Math.max(0,(ZUp[i][j][k][t]+invSp[i][j][k][t]

-invSp2[i][j][k][t]))+":0:2000";

String strQUp =Math.max(0,(QUp[i][j][k][t]+transSp[i][j][k][t]

-transSp2[i][j][k][t]))+":0:2000";

((IntegerGene)newZUp[geneIndex]).setValueFromPersistentRepresentation(strZUp);

((IntegerGene)newQUp[geneIndex]).setValueFromPersistentRepresentation(strQUp);

geneIndex++;

}}}}

}catch (Exception e) {System.out.println("Problem setting ZUp, QUp:"+e);}

Gene[] newGenes = new Gene[4];

Configuration m_conf = temp1.getConfiguration();

try {

newGenes[0]=new InterfaceSupergene(m_conf,newZUp);

newGenes[1]=new InterfaceSupergene(m_conf,newZUv);

newGenes[2]=new InterfaceSupergene(m_conf,newQUp);

newGenes[3]=new InterfaceSupergene(m_conf,newQUv);

} catch (Exception e) {System.out.println("Problem setting new

interfaceSupergene Configuration");}

penalty=penalty*BigM;

cost=(double)(ZTran+ZInv-penalty+penaltyCorrectionFactor*10+OffSet);

if (cost <0) { cost =0; } //To avoid crashing on really bad solutions

return cost;

}

private void runOptimization() {

// call gams on each

try {

Process p = Runtime.getRuntime().exec("gams Trans.gms lo=2");

p.waitFor();

} catch (Exception e) {System.out.println("Problem running

GAMS with Trans.gms");}
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try {

Process p = Runtime.getRuntime().exec("gams Inv.gms lo=2");

p.waitFor();

} catch (Exception e) {System.out.println("Problem running

GAMS with Inv.gms");}

}

}
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MDFConfiguration.java:

import org.jgap.*;

import org.jgap.event.*;

import org.jgap.util.*;

import org.jgap.impl.*;

public class MDFConfiguration

extends Configuration implements ICloneable {

public MDFConfiguration() {

this("","");

}

public MDFConfiguration(String a_id, String a_name) {

super(a_id, a_name);

try {

setBreeder(new GABreeder());

setRandomGenerator(new StockRandomGenerator());

setEventManager(new EventManager());

BestChromosomesSelector bestChromsSelector =

new BestChromosomesSelector(this, 1.0d);

bestChromsSelector.setDoubletteChromosomesAllowed(true);

addNaturalSelector(bestChromsSelector, true);

setMinimumPopSizePercent(0);

setKeepPopulationSizeConstant(true);

setFitnessEvaluator(new DefaultFitnessEvaluator());

setChromosomePool(new ChromosomePool());

addGeneticOperator(new CrossoverOperator(this));

addGeneticOperator(new MutationOperator(this,100));

addGeneticOperator(new MutationOperator(this));

}

catch (InvalidConfigurationException e) {

throw new RuntimeException(

"Fatal error: MDFConfiguration class could not use its "

+ "own stock configuration values. This should never happen. "

}

}

public Object clone() {

return super.clone();

}

}
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InterfaceSupergene.java:

import java.io.*;

import java.lang.reflect.*;

import java.net.*;

import java.util.*;

import org.jgap.*;

import org.jgap.supergenes.*;

import org.jgap.impl.IntegerGene;

public class InterfaceSupergene

extends AbstractSupergene

implements Supergene, SupergeneValidator, IPersistentRepresentation {

private int m_demand=2000;

public InterfaceSupergene()

throws InvalidConfigurationException {

super();

}

public InterfaceSupergene(final Configuration a_conf)

throws InvalidConfigurationException {

super(a_conf);

}

public InterfaceSupergene(final Configuration a_conf, final Gene[] a_genes)

throws InvalidConfigurationException {

super(a_conf, a_genes);

}

public boolean isValid(final Gene[] a_case, final Supergene a_forSupergene) {

int total=0;

for (int i=0; i< a_case.length;i++) {

IntegerGene temp = (IntegerGene)a_case[i];

total+=temp.intValue();

}

if (total<=m_demand) { return true;} else {return false;}

}

}
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Inv1.tmp:

$offlisting

*Inv Model*

Sets

c Countries /Can, US, Mex/

k(c) Markets /Can,US,Mex/

j(c) Plants /Can, Mex/

v(c) /Can, Mex/

i Products /widget/

r Materials /rawMat/

t Months /1*12/

n Contracts /Low, High/;

alias(c,c2);

alias(c,c3);

alias(t,t2);

Sets

plantcountries(j,c) /Can.Can, Mex.Mex/

marketcountries(k,c) /Can.Can, US.US, Mex.Mex/

vendorcountries(v,c3) /Can.Can, Mex.Mex/;

Parameters

l(n) the length of contract n /Low 12, High 12/

cm(r,v,j,n,t) the unit cost for material r from vendor v for delivery

to plant j under contract n in period t

/ rawMat.Can.Can.Low.1*12= 5.0

rawMat.Can.Can.High.1*12= 4.0

rawMat.Can.Mex.Low.1*12= 5.5

rawMat.Can.Mex.High.1*12= 4.5

rawMat.Mex.Can.Low.1*12= 6.0

rawMat.Mex.Can.High.1*12= 5.0

rawMat.Mex.Mex.Low.1*12= 4.5

rawMat.Mex.Mex.High.1*12= 4.0/

f(v,n,r) is the fixed cost of opening contract n with vendor v for material r

/ Can .Low .rawMat = 1000

Can .High .rawMat = 1000

Mex .Low .rawMat = 700

Mex .High .rawMat = 700 /

Zl(v,n,r) is the lower bound on period shipments under contract n

for material r

/ Can .Low .rawMat = 0

Can .High .rawMat = 101
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Mex .Low .rawMat = 0

Mex .High .rawMat = 101 /

Zu(v,n,r) is the upper bound on period shipments under contract n

for material r

/ Can .Low .rawMat = 100

Can .High .rawMat = 1000

Mex .Low .rawMat = 100

Mex .High .rawMat = 1000 /

m(j) is the fraction of vendor fixed costs allocated to plant j

/Can 0.6, Mex 0.4/

alpha(c) is the fraction of sales revenue in country c that must be spent

in country c /Can 0.010, US 0.15, Mex 0.02/

Tk(k) is the corporate tax rate for market k /Can 0.23, US 0.20, Mex 0.30/

Tj(j) is the corporate tax rate for plant j /Can 0.23, Mex 0.30/

Penalty to penalize slack variables /10/;

Table e(c,c2) units of currency c2 per unit of currency c

Can US Mex

Can 1 0.9 10

US 1.11 1 11.1

Mex 0.1 0.09 1 ;

Table p(i,k) is the selling price of product i in market k

Can US Mex

widget 30 33 4.2 ;

Table var(i,j) is the unit cost of producing product j

Can Mex

widget 3 1 ;

Table G(i,j) is the fixed cost of producing product i at plant j

Can Mex

widget 30 10 ;

Table Cship(i,j,k) is the cost of shipping product i from plant j to market k

Can.Can Can.US Can.Mex Mex.Can Mex.US Mex.Mex

widget 1 1.5 2 2 1.5 1;

Table U(i,r) amount of material r needed to make one item of product i

rawMat

widget 1;

Table D(t,i,k) is the demand for product i in market k during time t

Widget.Can Widget.US.idget.Mex

1*2 0 0 0

3*12 50 115 35 ;

Table Xl(t,i,j) is the lower limit on product i in plant j during time t

Widget.Can Widget.Mex

1*12 0 0;

Table Xu(t,i,j) is the upper limit on product i in plant j during time t

Widget.Can Widget.Mex
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1*12 2000 750;

Table Xc(t,j) is the capacity of plant j in time t

Can Mex

1*12 20000 7500;

Table Mark(i,j,k) is the markup charged by plant j in market k on product i

Can.Can Can.US Can.Mex Mex.Can Mex.US Mex.Mex

widget 1.15 1.16 1.17 1.05 1.06 1.07;

Table a(i,j) is the amount of capacity of plant j to make product i

Can Mex

widget 5 5;

Table hp(i,j) is the cost of holding a unit of item i at plant j

for one period

Can Mex

widget .5 .7;

Table hv(r,j) is the cost of holding a unit of material r at plant j

for one period

Can Mex

rawMat .1 .15;

Table hm(i,k) is the cost of holding a unit of item i at market k for

one period

Can US Mex

widget .9 .95 1.05;
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Inv2.tmp:

Variables

Y(r,v,t,n) 1 if contract option n ( for material r from vendor v)

is selected in period t 0 otherwise

W(i,j) 1 if any amount of product i is produced in plant j 0 otherwise

X(i,j,t) is the amount of product i produced in plant j during

period t

period t

Sv(r,v,j,t,n) is the amount of raw material r ordered from vendor v

by plant j under contract n in period t

Sp(i,j,k,t) is the amount of product i ordered from plant j by market k

in period t

Sv2(r,v,j,t,n)

Sp2(i,j,k,t)

Ip(i,j,t) is the amount of product i stored at plant j at the end of period t

Iv(r,j,t) is the amount of raw material r stored at plant j at the end of

period t

Im(i,k,t) is the amount of product i stored at market k at the end of

period t

*S(i,k,t) is the amount of product i sold in market k during period t

ZInv objective value for the Inventory Model

penaltyVar is the amount of penalty for using Sv,Sv2,Sp,Sp2;

Binary Variable Y,W;

Integer Variable X,Ip,Iv,Im;

Positive Variable Sv,Sv2,Sp,Sp2;

Equations

Obj

MatSup1(r,t,v,n)

MatSup2(r,t,v,n)

MatReq(j,t)

*InitPlantMatInv(r,j)

PlantMatInv(r,j,t)

PlantShip(i,j,t)

*InitPlantGoodInv(i,j)

PlantGoodInv(i,j,t)

*InitMarketGoodInv(i,k)

MarketGoodInv(i,k,t)

MarketDem(i,k,t)

PlantCap1(j,t)
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PlantCap2(i,j,t)

PlantCap3(i,j,t)

LocalContentCan(t)

LocalContentMex(t)

Sane1(i,j,k,t)

Sane2(r,v,j,n,t)

SetPen

;

Obj .. ZInv =e= sum((plantcountries(j,c),t), e(c,’US’)*(1-Tj(j))

*(sum((i,marketcountries(k,c)),Mark(i,j,k)*(var(i,j)+Cship(i,j,k))

*(ZUp(i,j,k,t)+Sp(i,j,k,t)-Sp2(i,j,k,t)))-sum((r,n,v),e(c,j)*(cm(r,v,j,n,t)

*(ZUv(r,v,j,t,n)+Sv(r,v,j,t,n)-Sv2(r,v,j,t,n))+m(j)*F(v,n,r)*Y(r,v,t,n)))

-sum((i),G(i,j)*W(i,j)-var(i,j)*X(i,j,t))-sum((i),Ip(i,j,t)*hp(i,j))

-sum((r),Iv(r,j,t)*hv(r,j))))

+ sum((marketcountries(k,c),t),e(c, ’US’)*(1-Tk(k))

*sum((i,plantcountries(j,c2)),(P(i,k)-e(k,j)*(Mark(i,j,k)

*(var(i,j)+Cship(i,j,k))+Cship(i,j,k))*(ZUp(i,j,k,t)+Sp(i,j,k,t)

-Sp2(i,j,k,t))-Im(i,k,t)*hm(i,k)))-penaltyVar;

MatSup1(r,t,v,n) .. Zl(v,n,r)*Y(r,v,t,n) =l= sum(j,(ZUv(r,v,j,t,n)

+Sv(r,v,j,t,n)-Sv2(r,v,j,t,n)));

MatSup2(r,t,v,n) .. sum(j,(ZUv(r,v,j,t,n)+Sv(r,v,j,t,n)-Sv2(r,v,j,t,n)))

=l= Zu(v,n,r)*Y(r,v,t,n);

MatReq(j,t) .. sum((v,n,r),(ZUv(r,v,j,t,n)+Sv(r,v,j,t,n)-Sv2(r,v,j,t,n)))

+sum(r,Iv(r,j,t)) =g=sum((i,r),U(i,r)*X(i,j,t));

PlantMatInv(r,j,t) .. Iv(r,j,t) =e= Iv(r,j,t-1)-sum(i,U(i,r)*X(i,j,t))

+sum((v,n),(ZUv(r,v,j,t,n)+Sv(r,v,j,t,n)-Sv2(r,v,j,t,n)));

PlantShip(i,j,t) .. X(i,j,t)+Ip(i,j,t-1)=g= sum(k,(ZUp(i,j,k,t)+Sp(i,j,k,t)

-Sp2(i,j,k,t)));

PlantGoodInv(i,j,t) .. Ip(i,j,t) =e= Ip(i,j,t-1) + X(i,j,t)-

sum(k,(ZUp(i,j,k,t)+Sp(i,j,k,t)-Sp2(i,j,k,t)));

MarketGoodInv(i,k,t) .. Im(i,k,t) =e= Im(i,k,t-1)+sum(j,(ZUp(i,j,k,t)

+Sp(i,j,k,t)-Sp2(i,j,k,t)))-D(t,i,k);

MarketDem(i,k,t) .. sum(j,(ZUp(i,j,k,t)+Sp(i,j,k,t)-Sp2(i,j,k,t)))

=g=D(t,i,k);

PlantCap1(j,t) .. sum(i,a(i,j)*X(i,j,t)) =l= Xc(t,j);

PlantCap2(i,j,t) .. Xl(t,i,j)*W(i,j) =l= X(i,j,t);

PlantCap3(i,j,t) .. X(i,j,t) =l= Xu(t,i,j)*W(i,j);

LocalContentCan(t) .. sum((r,n,j,vendorcountries(v,’Can’)),cm(r,v,j,n,t)
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*(ZUv(r,v,j,t,n)+Sv(r,v,j,t,n)-Sv2(r,v,j,t,n)))

+sum((i,k,plantcountries(j,’Can’)),(var(i,j)+Cship(i,j,k))

*(ZUp(i,j,k,t)+Sp(i,j,k,t)-Sp2(i,j,k,t)))

+sum((i,plantcountries(j,’Can’)),G(i,j)+W(i,j))=g= alpha(’Can’)

*sum((i,j,t2,marketcountries(k,’Can’)),P(i,k)*(ZUp(i,j,k,t2)

+Sp(i,j,k,t2)-Sp2(i,j,k,t2)));

LocalContentMex(t) .. sum((r,n,j,vendorcountries(v,’Mex’)),cm(r,v,j,n,t)

*(ZUv(r,v,j,t,n)+Sv(r,v,j,t,n)-Sv2(r,v,j,t,n)))

+sum((i,k,plantcountries(j,’Mex’)),(var(i,j)+Cship(i,j,k))

*(ZUp(i,j,k,t)+Sp(i,j,k,t)-Sp2(i,j,k,t)))

+sum((i,plantcountries(j,’Mex’)),G(i,j)+W(i,j))=g= alpha(’Mex’)

*sum((i,j,t2,marketcountries(k,’Can’)),P(i,k)*(ZUp(i,j,k,t2)

+Sp(i,j,k,t2)-Sp2(i,j,k,t2)));

Sane1(i,j,k,t) .. (ZUp(i,j,k,t)+Sp(i,j,k,t)-Sp2(i,j,k,t))=g=0;

Sane2(r,v,j,n,t) .. (ZUv(r,v,j,t,n)+Sv(r,v,j,t,n)-Sv2(r,v,j,t,n)) =g=0;

SetPen .. penaltyVar=e=penalty*(sum((r,v,j,t,n),Sv(r,v,j,t,n)

+Sv2(r,v,j,t,n))+sum((i,j,k,t),Sp(i,j,k,t)+Sp2(i,j,k,t)));

Model Inv /all/;

option iterlim=1000000;

option mip=cplex;

Solve Inv using mip maximizing ZInv;

file output /InvOut.txt/;

put output;output.nd=0;put round(ZInv.l)/;

loop((r,v,j,t,n), put round(Sv.l(r,v,j,t,n))/);

loop((i,j,k,t), put round(Sp.l(i,j,k,t))/);

loop((r,v,j,t,n), put round(Sv2.l(r,v,j,t,n))/);

loop((i,j,k,t), put round(Sp2.l(i,j,k,t))/);
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Trans1.tmp:

$offlisting

*Trans Model*

Sets

c Countries /Can, US, Mex/

k(c) Markets /Can,US,Mex/

j(c) Plants /Can, Mex/

v(c) /Can, Mex/

i Products /widget/

r Materials /rawMat/

t Months /1*12/

n Contracts /Low, High/

;

alias(c,c2);

alias(c,c3);

alias(t,t2);

Sets

plantcountries(j,c) /Can.Can, Mex.Mex/

marketcountries(k,c) /Can.Can, US.US, Mex.Mex/

vendorcountries(v,c3) /Can.Can, Mex.Mex/

;

Parameters

cm(r,v,j,n,t) the unit cost for material r from vendor v for delivery

to plant j under contract n in period t

/ rawMat.Can.Can.Low.1*12= 5.0

rawMat.Can.Can.High.1*12= 4.0

rawMat.Can.Mex.Low.1*12= 5.5

rawMat.Can.Mex.High.1*12= 4.5

rawMat.Mex.Can.Low.1*12= 6.0

rawMat.Mex.Can.High.1*12= 5.0

rawMat.Mex.Mex.Low.1*12= 4.5

rawMat.Mex.Mex.High.1*12= 4.0/

Cmp(r,v,j,n,t) the unit cost for material r from vendor v for delivery

to plant j under contract n in period t paid by transportation

/ rawMat.Can.Can.Low.1*12= 4.5

rawMat.Can.Can.High.1*12= 3.5

rawMat.Can.Mex.Low.1*12= 5

rawMat.Can.Mex.High.1*12= 4

rawMat.Mex.Can.Low.1*12= 5.5

rawMat.Mex.Can.High.1*12= 4.5
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rawMat.Mex.Mex.Low.1*12= 4

rawMat.Mex.Mex.High.1*12= 3.5/

Tj(j) is the corporate tax rate for plant j /Can 0.23, Mex 0.30/

Penalty to penalize slack variables /1000/

;

Table Cg(i,j,k) is the price to shipping product i from plant j to

market k charged by transportation

Can.Can Can.US Can.Mex Mex.Can Mex.US Mex.Mex

widget 1 1.5 2 2 1.5 1;

Table Cgp(i,j,k) is the cost of shipping product i from plant j to

market k paid by transportation

Can.Can Can.US Can.Mex Mex.Can Mex.US Mex.Mex

widget 0.5 0.75 1 1 0.75 0.5;

Table e(c,c2) units of currency c2 per unit of currency c

Can US Mex

Can 1 0.9 10

US 1.11 1 11.1

Mex 0.1 0.09 1 ;
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Trans2.tmp:

Variables

Sv(r,v,j,t,n) is the amount of raw material r shipped from vendor v to

plant j under contract n in period t

Sp(i,j,k,t) is the amount of product i shipped from plant j to market k

in period t

Sp2(i,j,k,t)

Sv2(r,v,j,t,n)

ZTrans objective value for the Transportation Model;

Positive variables Sv, Sp, Sv2, Sp2;

Equations

ObjTrans

TransVendShip(r,v,j,n)

TransMarkShip(i,j,k);

ObjTrans .. ZTrans =e= sum((j,t), e(j,’US’)*(1-Tj(j))*(sum((i,k),(Cg(i,j,k)

-Cgp(i,j,k))*(QUp(i,j,k,t)+Sp(i,j,k,t)-Sp2(i,j,k,t)))+sum((r,n,v),e(j,v)

*(Cm(r,v,j,n,t)-Cmp(r,v,j,n,t))*(QUv(r,v,j,t,n)+Sv(r,v,j,t,n)-Sv2(r,v,j,t,n)))))

-Penalty*(sum((r,v,j,t,n),Sv(r,v,j,t,n)+Sv2(r,v,j,t,n))

+sum((i,j,k,t),Sp(i,j,k,t)+Sp2(i,j,k,t)));\

TransVendShip(r,v,j,n) .. sum(t,(QUv(r,v,j,t,n)+Sv(r,v,j,t,n)-Sv2(r,v,j,t,n)))

=e= sum(t,QUv(r,v,j,t,n));

TransMarkShip(i,j,k) .. sum(t,(QUp(i,j,k,t)+Sp(i,j,k,t)-Sp2(i,j,k,t)))

=e= sum(t,QUp(i,j,k,t));

Model Trans /all/;

option mip=cplex;

option limcol=0, limrow=0, solprint=off,profile=0, sysout=off;

Solve Trans using mip maximizing ZTrans;

file output /TransOut.txt/;

put output;output.nd=0;put round(ZTrans.l)/;

loop((r,v,j,t,n), put round(Sv.l(r,v,j,t,n))/);

loop((i,j,k,t), put round(Sp.l(i,j,k,t))/);

loop((i,j,k,t), put round(Sp2.l(i,j,k,t))/);

loop((r,v,j,t,n), put round(Sv2.l(r,v,j,t,n))/);
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Appendix D

Nemak Data

The following tables represent the data used in the Nemak Base case. All costs are

in units of the local currency (i.e. Canadian Dollars, American Dollars, Mexican

Pesos)

Country Vendor Plant Customer

Canada
AlCan Windsor -

Essex Self-Supply Essex

Mexico
Monterrey

Mexico Aluminum Saltillo -
Monclova

USA
AlChem Ford

US Aluminum - GMC
Chrysler

Table D.1: Nemak Data: Facilities

Product

Engine Block
Engine Head

Table D.2: Nemak Data: Products

Raw Material

Alloyed Aluminum
Scrap Aluminum

Table D.3: Nemak Data: Raw
Materials
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Contracts

Bulk

Table D.4: Nemak Data: Contracts

Time Horizon

Week 1
...

Week 52

Table D.5: Nemak Data: Time
Horizon

Raw Material Vendor Plant Contract Time Period Cost

Alloy

AlCan Windsor Bulk 1-52 0.95
AlCan Essex Bulk 1-52 0.95
AlCan Monterrey Bulk 1-52 1.14
AlCan Saltillo Bulk 1-52 1.14
AlCan Monclova Bulk 1-52 1.14

AlChem Windsor Bulk 1-52 1.05
AlChem Essex Bulk 1-52 1.05
AlChem Monterrey Bulk 1-52 1.16
AlChem Saltillo Bulk 1-52 1.16
AlChem Monclova Bulk 1-52 1.16

Essex Self-Supply Windsor Bulk 1-52 120.00
Essex Self-Supply Essex Bulk 1-52 120.00
Essex Self-Supply Monterrey Bulk 1-52 120.00
Essex Self-Supply Saltillo Bulk 1-52 120.00
Essex Self-Supply Monclova Bulk 1-52 120.00

US Aluminum Windsor Bulk 1-52 1.02
US Aluminum Essex Bulk 1-52 1.02
US Aluminum Monterrey Bulk 1-52 1.02
US Aluminum Saltillo Bulk 1-52 1.02
US Aluminum Monclova Bulk 1-52 1.02

Mexico Aluminum Windsor Bulk 1-52 1.16
Mexico Aluminum Essex Bulk 1-52 1.16
Mexico Aluminum Monterrey Bulk 1-52 0.87
Mexico Aluminum Saltillo Bulk 1-52 0.87
Mexico Aluminum Monclova Bulk 1-52 0.87

Table D.6: Nemak Data: Material Cost to Inventory Discipline1
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Raw Material Vendor Plant Contract Time Period Cost

Scrap

AlCan Windsor Bulk 1-52 0.89
AlCan Essex Bulk 1-52 0.89
AlCan Monterrey Bulk 1-52 1.07
AlCan Saltillo Bulk 1-52 107
AlCan Monclova Bulk 1-52 1.07

AlChem Windsor Bulk 1-52 1.00
AlChem Essex Bulk 1-52 1.00
AlChem Monterrey Bulk 1-52 1.00
AlChem Saltillo Bulk 1-52 1.00
AlChem Monclova Bulk 1-52 1.00

Essex Self-Supply Windsor Bulk 1-52 120
Essex Self-Supply Essex Bulk 1-52 0.77
Essex Self-Supply Monterrey Bulk 1-52 120
Essex Self-Supply Saltillo Bulk 1-52 120
Essex Self-Supply Monclova Bulk 1-52 120

US Aluminum Windsor Bulk 1-52 1.07
US Aluminum Essex Bulk 1-52 1.07
US Aluminum Monterrey Bulk 1-52 0.97
US Aluminum Saltillo Bulk 1-52 0.97
US Aluminum Monclova Bulk 1-52 0.97

Mexico Aluminum Windsor Bulk 1-52 1.05
Mexico Aluminum Essex Bulk 1-52 1.05
Mexico Aluminum Monterrey Bulk 1-52 0.87
Mexico Aluminum Saltillo Bulk 1-52 0.87
Mexico Aluminum Monclova Bulk 1-52 0.87

Table D.7: Nemak Data: Material Cost to Inventory Discipline 2
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Raw Material Vendor Plant Contract Time Period Cost

Alloy

AlCan Windsor Bulk 1-52 0.7893
AlCan Essex Bulk 1-52 0.7893
AlCan Monterrey Bulk 1-52 0.9472
AlCan Saltillo Bulk 1-52 0.9472
AlCan Monclova Bulk 1-52 0.9472

AlChem Windsor Bulk 1-52 0.8770
AlChem Essex Bulk 1-52 0.8770
AlChem Monterrey Bulk 1-52 0.9647
AlChem Saltillo Bulk 1-52 0.9647
AlChem Monclova Bulk 1-52 0.9647

Essex Self-Supply Windsor Bulk 1-52 100.0000
Essex Self-Supply Essex Bulk 1-52 100.0000
Essex Self-Supply Monterrey Bulk 1-52 100.0000
Essex Self-Supply Saltillo Bulk 1-52 100.0000
Essex Self-Supply Monclova Bulk 1-52 100.0000

US Aluminum Windsor Bulk 1-52 0.85
US Aluminum Essex Bulk 1-52 0.85
US Aluminum Monterrey Bulk 1-52 0.85
US Aluminum Saltillo Bulk 1-52 0.85
US Aluminum Monclova Bulk 1-52 0.85

Mexico Aluminum Windsor Bulk 1-52 0.9684
Mexico Aluminum Essex Bulk 1-52 0.9684
Mexico Aluminum Monterrey Bulk 1-52 0.7263
Mexico Aluminum Saltillo Bulk 1-52 0.7263
Mexico Aluminum Monclova Bulk 1-52 0.7263

Table D.8: Nemak Data: Material Cost to Transportation Discipline 1
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Raw Material Vendor Plant Contract Time Period Cost

Scrap

AlCan Windsor Bulk 1-52 0.7455
AlCan Essex Bulk 1-52 0.7455
AlCan Monterrey Bulk 1-52 0.8945
AlCan Saltillo Bulk 1-52 0.8945
AlCan Monclova Bulk 1-52 0.8945

AlChem Windsor Bulk 1-52 0.8332
AlChem Essex Bulk 1-52 0.8332
AlChem Monterrey Bulk 1-52 0.8332
AlChem Saltillo Bulk 1-52 0.8332
AlChem Monclova Bulk 1-52 0.8332

Essex Self-Supply Windsor Bulk 1-52 100.0000
Essex Self-Supply Essex Bulk 1-52 0.6456
Essex Self-Supply Monterrey Bulk 1-52 100.0000
Essex Self-Supply Saltillo Bulk 1-52 100.0000
Essex Self-Supply Monclova Bulk 1-52 100.0000

US Aluminum Windsor Bulk 1-52 0.8877
US Aluminum Essex Bulk 1-52 0.8877
US Aluminum Monterrey Bulk 1-52 0.8070
US Aluminum Saltillo Bulk 1-52 0.8070
US Aluminum Monclova Bulk 1-52 0.8070

Mexico Aluminum Windsor Bulk 1-52 0.8716
Mexico Aluminum Essex Bulk 1-52 0.8716
Mexico Aluminum Monterrey Bulk 1-52 0.7263
Mexico Aluminum Saltillo Bulk 1-52 0.7263
Mexico Aluminum Monclova Bulk 1-52 0.7263

Table D.9: Nemak Data: Material Cost to Transportation Discipline 2

Vendor Plant Raw Material Cost

AlCan Bulk Alloy 10,000
AlCan Bulk Scrap 10,000

AlChem Bulk Alloy 10,000
AlChem Bulk Scrap 10,000

Essex Self-Supply Bulk Alloy 10,000
Essex Self-Supply Bulk Scrap 10,000

US Aluminum Bulk Alloy 10,000
US Aluminum Bulk Scrap 10,000

Mexico Aluminum Bulk Alloy 10,000
Mexico Aluminum Bulk Scrap 10,000

Table D.10: Nemak Data: Contract Fixed Costs
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Vendor Contract Raw Material Minimum Order

AlCan Bulk Alloy 0
AlCan Bulk Scrap 0

AlChem Bulk Alloy 0
AlChem Bulk Scrap 0

Essex Self-Supply Bulk Alloy 0
Essex Self-Supply Bulk Scrap 0

US Aluminum Bulk Alloy 0
US Aluminum Bulk Scrap 0

Mexico Aluminum Bulk Alloy 0
Mexico Aluminum Bulk Scrap 0

Table D.11: Nemak Data: Contract Minimum Order per Week

Vendor Contract Raw Material Maximum Order

AlCan Bulk Alloy 1,050,000
AlCan Bulk Scrap 630,000

AlChem Bulk Alloy 840,000
AlChem Bulk Scrap 420,000

Essex Self-Supply Bulk Alloy 0
Essex Self-Supply Bulk Scrap 126,000

US Aluminum Bulk Alloy 420,000
US Aluminum Bulk Scrap 336,000

Mexico Aluminum Bulk Alloy 210,000
Mexico Aluminum Bulk Scrap 336,000

Table D.12: Nemak Data: Contract Maximum Order per Week

Contract Cost Allocation

Windsor 0.2
Essex 0.2

Monterrey 0.2
Saltillo 0.2

Monclova 0.2

Table D.13: Nemak Data: Contract Cost Allocation
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Country Fraction

Canada 0.10
US 0.00

Mexico 0.20

Table D.14: Nemak Data:
Local Content Fraction

Country Tax Rate

Canada 0.23
US 0.23

Mexico 0.20

Table D.15: Nemak Data:
Corporate Tax Rate
(Average Marginal)

Canada USA Mexico

Canada - 0.9 10.00
USA 1.11 - 11.10

Mexico 0.10 0.09 -

Table D.16: Nemak Data: Exchange
Rate

Product Ford GMC Chrysler

Blocks 840 840 840
Heads 320 320 320

Table D.17: Nemak Data: Product
Prices

Product Factory Ford GMC Chrysler

Blocks

Windsor 10 10 10
Essex 10 10 10

Monterrey 10 10 10
Saltillo 10 10 10

Monclova 10 10 10

Heads

Windsor 10 10 10
Essex 10 10 10

Monterrey 10 10 10
Saltillo 10 10 10

Monclova 10 10 10

Table D.18: Nemak Data: Plant Markup on Products (%)

Product
Raw Material
Alloy Scrap

Blocks 207 0
Heads 0 25

Table D.19: Nemak Data: Bill of Materials
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Product Ford GMC Chrysler

Blocks 0 0 0
Heads 0 0 0

(a) Weeks 1-2 (000s)

Product Ford GMC Chrysler

Blocks 12 0 0
Heads 24 23 23

(b) Weeks 3-52 (000s)

Table D.20: Nemak Data: Customer Demand

Product Windsor Essex Monterrey Saltillo Monclova

Blocks 517.5 517.5 310.5 310.5 310.5
Heads 62.5 62.5 37.5 37.5 37.5

Table D.21: Nemak Data: Unit Production Cost

Product Windsor Essex Monterrey Saltillo Monclova

Blocks 100 100 100 100 100
Heads 100 100 100 100 100

Table D.22: Nemak Data: Production Fixed Cost
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Product Windsor Essex Monterrey Saltillo Monclova

Blocks 0 0 0 0 0
Heads 0 0 0 0 0

Table D.23: Nemak Data: Unit Production Lower Limits (000s)

Product Windsor Essex Monterrey Saltillo Monclova

Blocks 23 0 0 0 0
Heads 0 71 75 16.5 16.5

Table D.24: Nemak Data: Production Upper Limits (000s)

Windsor Essex Monterrey Saltillo Monclova

23 71 75 16.4 16.5

Table D.25: Nemak Data: Weekly Production Capacity (000s)

Product Windsor Essex Monterrey Saltillo Monclova

Blocks 1 - - - 0
Heads - 1 25 1 1

Table D.26: Nemak Data: Production Capacity Requirements

Product Windsor Essex Monterrey Saltillo Monclova

Blocks 0.1 0.1 0.1 0.1 0.1
Heads 0.1 0.1 0.1 0.1 0.1

(a) Raw Materials at Factory

Product Windsor Essex Monterrey Saltillo Monclova

Blocks 75 75 75 75 75
Heads 75 75 75 75 75

(b) Finished Goods at Factory

Product Ford GMC Chrysler

Blocks 100 100 100
Heads 100 100 100

(c) Finished Goods at Customer

Table D.27: Nemak Data: Inventory Holding Costs
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Product Factory Ford GMC Chrysler

Blocks

Windsor 14.40 14.40 14.40
Essex 14.40 14.40 14.40

Monterrey 14.40 14.40 14.40
Saltillo 14.40 14.40 14.40

Monclova 14.40 14.40 14.40

Heads

Windsor 1.89 1.89 1.89
Essex 1.89 1.89 1.89

Monterrey 1.89 1.89 1.89
Saltillo 1.89 1.89 1.89

Monclova 1.89 1.89 1.89

Table D.28: Nemak Data: Transportation Cost to Inventory Discipline

Product Factory Ford GMC Chrysler

Blocks

Windsor 12.00 12.00 12.00
Essex 12.00 12.00 12.00

Monterrey 12.00 12.00 12.00
Saltillo 12.00 12.00 12.00

Monclova 12.00 12.00 12.00

Heads

Windsor 1.58 1.58 1.58
Essex 1.58 1.58 1.58

Monterrey 1.58 1.58 1.58
Saltillo 1.58 1.58 1.58

Monclova 1.58 1.58 1.58

Table D.29: Nemak Data: Transportation Cost to Transportation Discipline
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