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Abstract

To address the overload conditions caused by the increasing network traffic vol-

ume, recent literature in the network intrusion detection and prevention field has

proposed the use of clusters of network intrusion detection and prevention systems

(NIDPSs). We observe that simple traffic distribution schemes are usually used for

NIDPS clusters. These schemes have two major drawbacks: (1) the loss of correla-

tion information caused by the traffic distribution because correlated flows are not

sent to the same NIDPS and (2) the unbalanced loads of the NIDPSs. The first

drawback severely affects the ability to detect intrusions that require analysis of

correlated flows. The second drawback greatly increases the chance of overloading

an NIDPS even when loads of the others are low.

In this thesis, we address these two drawbacks. In particular, we propose two

novel traffic distribution systems: the Correlation-Based Load Balancer and the

Correlation-Based Load Manager as two different solutions to the NIDPS traffic

distribution problem. On the one hand, the Load Balancer and the Load Manager

both consider the current loads of the NIDPSs while distributing traffic to pro-

vide fine-grained load balancing and dynamic load distribution, respectively. On

the other hand, both systems take into account traffic correlation in their distribu-

tions, thereby significantly reducing the loss of correlation information during their

distribution of traffic.

We have implemented prototypes of both systems and evaluated them using

extensive simulations and real traffic traces. Overall, the evaluation results show

that both systems have low overhead in terms of the delays introduced to the pack-

ets. More importantly, compared to the naive hash-based distribution, the Load

Balancer significantly improves the anomaly-based detection accuracy of DDoS at-

tacks and port scans – the two major attacks that require the analysis of correlated

flows – meanwhile, the Load Manager successfully maintains the anomaly-based

detection accuracy of these two major attacks of the NIDPSs.
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Chapter 1

Introduction

1.1 Network Intrusion Detection and Prevention

Systems

Nowadays, as people rely heavily on computer systems to conduct business and op-

erate mission critical devices, effects of viruses and worms can easily be disastrous.

One way to combat the spread of viruses and worms is to use intrusion detection

systems.

Intrusion detection systems (IDSs) detect unauthorized use of and malicious

activities on computer systems and networks. There are two major types of IDS:

host-based IDS (HIDS) and network-based IDS (NIDS) [9]. While host-based IDSs

detect intrusions by monitoring file system modifications, application execution

logs, system calls, and so on, network-based IDSs detect intrusions by examining

packets that travel on network links.

Compared to network-based IDSs, host-based IDSs have access to more refined

resources, such as file system and system calls. On the other hand, network-based

IDSs are able to detect intrusions at an earlier stage and they have global views of

the networks. As a result, these two systems can complement each other to provide

high quality detection.

Intrusion prevention systems (IPSs) extend the capabilities of IDSs by providing

real-time protection to the resources. For instance, a network-based IPS is capable

of dropping malicious packets while still allowing legitimate traffic to pass through

and a host-based IPS can block suspicious accesses to certain files in real-time.

In this research, we are interested in network-based intrusion detection and
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Figure 1.1: Placement of an NIDPS

prevention systems (NIDPSs) which can detect intrusions and prevent them when

necessary. NIDPSs are usually placed at the edges of networks – between the

internal and the external networks. NIDPSs monitor all packets coming in from

the external networks and going out of the internal networks to detect and prevent

intrusions. Figure 1.1 shows the placement of an NIDPS in a network. Some of the

popular operational NIDPSs are Snort [34], Bro [31], and Cisco IPSs [7].

Based on the approach used for detection, NIDPSs are categorized into two

classes: misuse and anomaly-based [9]. Misuse NIDPSs detect intrusions by match-

ing the monitored traffic with previously known intrusive traffic patterns or attack

signatures. As a result, misuse NIDPSs are also called signature-based NIDPSs. On

the other hand, anomaly-based NIDPSs detect intrusions by detecting deviations

of the monitored traffic from the normal traffic patterns or the baselines. These

baselines are predefined by the administrators and can include traffic load, typical

packet sizes, protocol distribution, and so on.

1.2 Clusters of NIDPSs

Since network traffic volume is increasing with an exponential rate [35], and NIDPSs

are becoming more complex, a critical problem with using a single NIDPS in a

network is that it could be easily overloaded. When overloaded, the NIDPS becomes

a bottleneck of the network. The consequence is that packets going in and out of

the network suffer long delays; eventually, the NIDPS has to drop some packets.

Dropping packets compromises the security offered by the NIDPS because some

intrusions cannot be detected if some of the packets involved are dropped. For

example, flow-based analyses, which are used by most of the NIDPSs, require that

all packets belonging to a flow be examined by a single NIDPS.
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In order to handle the increasingly high network traffic volume, there are two

possible solutions:

1. Upgrading hardware and tuning software of the NIDPSs so that they can

handle more traffic.

2. Using clusters of NIDPSs and distributing the traffic across the NIDPSs.

The first solution is costly and not scalable. Since network bandwidth is con-

tinuously increasing by a factor of 10 every 4 years [35], continuous upgrades are

required for the NIDPSs to operate. This results in high adoption and maintenance

costs. Moreover, tuning NIDPSs is a challenging task with many trade-offs [10].

The tuning also makes the NIDPSs overly complicated and the management tasks

very difficult.

The second solution, using clusters of NIDPSs, is affordable and scalable. In

fact, it has been adopted by many researchers [2, 18, 35, 40, 43]. This solution takes

advantage of the availability of low cost computers. It uses several of them together

to handle the high traffic load. Moreover, extending the system can be done by

adding additional NIDPSs to the cluster. When using clusters of NIDPSs, however,

the distribution of the network traffic to the NIDPSs plays a very important role;

this is the main focus of our research.

1.3 Motivation

We observe that simple traffic distribution schemes are usually used for NIDPS

clusters. These schemes apply simple hash functions on subset of the 5-tuples:

source IP address (src-ip), source port number (src-port), destination IP address

(dst-ip), destination port number (dst-port), and protocol (proto) from each of the

incoming packets to distribute the packets to the NIDPSs [39, 43].

There are two major problems with these simple distribution schemes:

1. Correlated flows are not sent to the same NIDPS.

2. The loads of the NIDPSs are not balanced.

The first problem is very critical. Since the correlated flows are distributed

across many NIDPSs, some correlation information – the information derived from
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the correlated flows – is lost. This loss of correlation information severely affects the

anomaly-based detection and prevention of some intrusions which require analysis

of the correlated flows. In the worst case, these intrusions might slip through the

NIDPSs undetected. Well-known representatives of these intrusions are distributed

denial of service (DDoS) attacks and port scans.

To demonstrate, we conducted a simple simulation. We simulated a port scan

which involved an attacker scanning ports 1–1000 of a victim. We used Snort [34]

as our port scan detector. In this simulation, there were two settings: a single

NIDPS and a cluster of 10 NIDPSs with a hash-based traffic distribution scheme.

The implemented hash function was a simple additive hash: (src-ip + src-port +

dst-ip + dst-port) mod n, where n is the number of NIDPSs. The background

traffic was omitted for simplicity.

When a single NIDPS was used to handle all the traffic, it detected the port

scan; however, when the cluster was used, the port scan was not detected. This was

because the flows of the port scan were distributed fairly evenly to all the NIDPSs,

rather than to a single NIDPS.

The second problem is not less critical. The objective of using clusters of

NIDPSs is to avoid overload conditions. However, if the loads of the NIDPSs

are not balanced, then one of the NIDPSs might become overloaded even when

loads of the other NIDPSs are low. Again, overloaded NIDPSs drop packets, which

compromises security. Hence, poor load balancing results in an ineffective use of

NIDPS clusters and also weakens the security of the clusters.

This research addresses the above two critical problems. We argue that by

intelligently analyzing the traffic correlation and actively monitoring the loads of

the NIDPSs, we can distribute the traffic to the NIDPSs in better ways – ways

that reduce the loss of correlation information and provide load balancing to avoid

overload conditions.

Finally, we note that the correlation information considered in our study is of

which can be extracted from the five-tuples: src-ip, dst-ip, src-port, dst-port, and

proto. Because extracting and analyzing packets’ payload are expensive in terms of

processing time, they are not supported by our study, which wishes to distribute the

traffic in real-time. As a result, correlation information derived from the packets’

payload is out of the scope of this research.

4



1.4 Contributions

The main contributions of this thesis are the two novel solutions that we developed

to intelligently distribute network traffic to the NIDPSs in real-time. The two

implemented systems corresponding to the solutions are the “Correlation-Based

Load Balancer” and the “Correlation-Based Load Manager” (“Load Balancer” and

“Load Manager” for short).

In particular, the proposed Load Balancer delivers the following features:

1. Fine-grained Load Balancing: The Load Balancer distributes the traffic in a

way such that the difference between NIDPSs’ loads is kept within a specified

bound. This provides both protection and better traffic engineering to the

network.

2. Anomaly-Based Detection and Prevention Support: Our Load Balancer is ca-

pable of grouping correlated flows in real-time. In particular, we focus on

grouping flows which have identical dst-ip, src-ip, or dst-port, which greatly

increases the accuracy of anomaly-based detection of DDoS attacks and port

scans. Additionally, our Load Balancer preserves flows. Thus, it fully sup-

ports flow-based analysis.

3. Configurable Security: With our Load Balancer, one might favor security, i.e.,

reduced loss of correlation information, over performance, i.e., load balancing,

when it is desirable to do so.

Meanwhile, the proposed Load Manager offers the following features:

1. Identical Correlation Preservation: Flows having the same dst-ip, src-ip, or

dst-port are guaranteed to be sent to the same NIDPS. This maintains the

anomaly-based detection accuracy of DDoS attacks and port scans. The Load

Manager also preserves flows, so flow-based analysis is fully supported.

2. Dynamic Load Distribution: The Load Manager considers the current NIDPSs’

loads while distributing the traffic and it also provides a mechanism to opti-

mally move flows from one NIDPS to another when it is needed. These help

to prevent overload conditions.

3. Customizable Correlation: The Load Manager allows for adding custom corre-

lations. This feature extends the capability of the Load Manager to guarantee

the grouping of various interested flows, which supports advanced detection

techniques.
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1.5 Thesis Organization

The remainder of this thesis is organized into 4 chapters. Chapter 2 discusses some

of the most influential and recent research literature in the area of traffic distribution

for NIDPSs. Chapter 3 and Chapter 4 present the design, implementation, and

evaluation of the Load Balancer and the Load Manager, respectively. Finally,

Chapter 5 concludes this thesis and discusses some future work.
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Chapter 2

Literature Survey

In this chapter, related work in the area of traffic distribution for NIDPSs is pre-

sented in chronological order. Some of them are very influential works, which

pioneered the research in this area, while others are recent approaches, which rep-

resent the current research direction. For each related work, we briefly present

the approach; we then summarize the contribution; lastly, we point out how our

research inherits from the approach and enhances it.

2.1 Slicing and Reassembling Mechanism

The problem that a single NIDS cannot keep up with the network traffic volume was

examined by Kruegel et al. [18] in 2002. The authors proposed the use of clusters

of NIDSs and an architecture, which involved a traffic slicing and reassembling

mechanism, to distribute packets to the NIDSs. This work pioneered the research

in this area.

In this approach, a network tap is used to extract link-layer frames and pass

them to a scatterer. The scatterer uses a round-robin algorithm to partition the

frames to send to a set of slicers. Then, the slicers send the frames to the channels

which the NIDSs are attached to. At the channels, the frames are reassembled by

the reassemblers to make sure that the order in which they arrive at the NIDSs

is the same as their original order. The slicers choose the channels based on the

attack scenarios that the channels’ NIDSs handle. In other words, each NIDS will

receive the necessary packets for the attacks that it handles.

The main contribution of this work is the traffic partitioning scheme which

realizes the use of multiple NIDSs. This scheme distributes the load across the
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NIDSs while making sure that each NIDS receives all the packets required for its

detection; however, this work falls short in a few aspects:

• No support for anomaly-based detection: The traffic is distributed to the

NIDSs based on the predefined signatures of the attack scenarios that they

handle; thus, NIDSs are assumed to be signature-based only.

• No load balancing: Because the attack scenarios are fixed, the distribution

of traffic is static. Although the authors realized the threat of the overload

conditions and discussed one possible solution, which requires splitting and

reassigning attack scenarios in real-time, the discussion lacked technical de-

tails. Also, there was no supportive implementation.

• Unmanageable duplication: Frames might be concurrently sent to many chan-

nels due to the overlapping attack scenarios – multiple attack scenarios that

require the monitoring of the same traffic. Although the authors acknowl-

edged the duplication, there was no discussion about how much this amount

could be. This is crucial because the amount of duplication directly increases

the chance of overloading an NIDS.

In this thesis, we enhance the above approach in many ways. Besides support-

ing anomaly-based detection by using dynamic traffic distributions, both of our

solutions provide mechanisms to avoid overload conditions in real-time. One of our

solutions, the Load Manager, inherits the idea of duplicating traffic to preserve the

detection accuracy of the NIDSs; however, we clearly identify the upper bound of

the duplication, as well as validate this amount through extensive simulations.

2.2 Hash-Based Distribution with Multiple Hash

Functions

One early work that addressed the problem of overload conditions associated with

static distributions was presented by Schaelicke et al. [35] in 2005. This work

proposed the use of a dynamic distribution based on the NIDSs’ loads.

In this approach, the authors presented a load balancer with a single hash table

and multiple hash functions. During under-load conditions, one hash function is

used on flows to hash them into buckets, which are mapped to the NIDSs. When

an NIDS’s load is over a threshold, this NIDS is considered overloaded. To handle

8



the overload condition, the first proposed solution is to reassign some buckets of

the overloaded NIDS to other NIDSs. The second proposed solution is to apply

additional hash functions on the flows that are hashed into buckets of the overloaded

NIDS by the first hash function, so that these flows are hashed into additional

buckets of other NIDSs.

The main contribution of this work is the idea of changing the distribution

of traffic when there is an overloaded NIDS. The goal is to remove the overload

conditions. This work, however, does not take into account traffic correlation in

its traffic distribution. Both of our approaches inherit from this work the idea

of accounting for the NIDSs’ loads while distributing the traffic. However, unlike

this work, both of our approaches take into account the traffic correlation in their

distributions.

2.3 Active Traffic Splitter

A state-of-the-art approach to distribute traffic to the NIDPSs was presented by

Xinidis et al. [43] in 2006. This work proposed that the traffic distributors should

be more active in their roles.

In this work, the authors introduced a traffic splitter with a set of active op-

erations. In particular, three operations are implemented in the traffic splitter to

improve the NIDPSs’ performance:

1. Early filtering/forwarding: Incoming packets that do not contain any intru-

sions are identified early by the traffic splitter. The traffic splitter then filters

them out immediately. This reduces the number of packets that the NIDPSs

receive, as well as eliminates the process of sending the filtered-out packets

to the NIDPSs. The resulting improvement in performance is 8 percent.

2. Locality buffering: Incoming packets are buffered and reordered by the traf-

fic splitter, so that they arrive at the NIDPSs in sequences that improve

the memory accesses of the NIDPSs, thus reducing their cache misses. The

resulting performance improvement is 10–18 percent.

3. Cumulative acknowledgment: Early filtering/forwarding requires a coordina-

tion between the traffic splitter and the NIDPSs. In particular, the NIDPSs

have to tell the traffic splitter which packets to filter/forward. Cumulative

acknowledgment utilizes a novel communication scheme between the splitter
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and the NIDPSs to reduce the amount of traffic involved in the coordination.

This results in 50–90 percent performance improvement.

The major contributions of this work are the three operations implemented in

the traffic splitter, which significantly improve the performance of the NIDPSs.

Nonetheless, in this work, the traffic splitter uses a simple hash function to dis-

tribute the traffic to the NIDPSs. This distribution results in critical drawbacks

that we have discussed: the loss of correlation information and an unbalanced load

distribution.

We consider this as an important related work because of the idea that this work

brings up: the traffic distributors should be more active in their roles. This idea

is really an important foundation of our work. In our solutions, the Load Balancer

and the Load Manager take into account both the traffic correlation and the current

NIDPSs’ loads to distribute the traffic intelligently. In other words, they are more

active and do more processing than the typical hash-based traffic distributors.

2.4 Double-Threshold Load Balancing

In 2007, Andreolini et al. [2] proposed a dynamic load balancing scheme for the

NIDSs. The proposed load balancing scheme uses two thresholds: a high threshold

and a low threshold. When the load of one of the NIDSs reaches the high threshold,

the load balancing scheme will activate. On the other hand, the low threshold is

used for two purposes:

1. Deactivation: If the loads of all the NIDSs fall below the low threshold then

the load balancing algorithm will terminate.

2. Identifying target NIDSs: Any NIDS with load lower than the low threshold

is qualified to receive the traffic load, which is moved from another overloaded

NIDS.

In addition to the two thresholds, the authors represented load of the NIDSs in

terms of the traffic rate (Mbps). Also, the authors used linear aggregation methods

to estimate the loads of the NIDSs. Moreover, they showed that the load balancing

scheme can achieve a satisfactory balance of load with a low number of activations

and deactivations.
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The main contribution of this work is the load balancing algorithm which uti-

lizes the two thresholds and the linear aggregation methods; however, similar to

the multi-hash-function approach, this load balancing scheme does not take into

account traffic correlation in its distribution.

Nevertheless, our work benefits a lot from this work. In particular, we adopt

the proposed NIDS load representation and the estimation of load using linear

aggregation methods. Being able to estimate the loads of the NIDSs is crucial

for us because we cannot do load balancing without such estimates. Lastly, our

approaches consider the traffic correlation while theirs does not.

2.5 Hash-Based Distribution with Communica-

tion

In 2007, Vallentin et al. [40] introduced a state-of-the-art cluster of NIDSs. On the

one hand, this cluster uses a simple additive hash to distribute the traffic, which

results in the already discussed drawbacks. On the other hand, the cluster imple-

ments a novel inter-NIDS communication scheme which is worthy of discussion.

In this scheme, a cluster has global variables whose values are synchronized

among all the NIDSs via communication. In particular, when a global variable

is updated at one of the NIDSs, this NIDS will send update packets to all other

NIDSs to synchronize the variable. The communication could be seen as a means

to compensate for the loss of correlation information due to distributing traffic.

The main contribution of this work is the inter-NIDS communication scheme.

However, the communication itself brings in a substantial amount of overhead in

terms of traffic generated to synchronize the global variables. Moreover, it must be

noted that the inter-NIDS communication scheme requires uniform and open-source

NIDSs. In other words, all NIDSs of the cluster must be the same and modifiable to

support the communication. In particular, the authors use Bro [31], an open-source

NIDS developed at UC Berkeley, as their NIDS of choice since Bro supports low level

communication. In the case where there are various NIDSs, or proprietary NIDSs,

such as Cisco NIDSs [7], it is difficult to establish the communication scheme.

Our approaches could be considered orthogonal to the above approach. We

choose to reduce the loss of correlation information upfront, at the time the traffic

is distributed. We also note that since our approach is independent of the NIDPSs,
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it could be applied to a cluster of any NIDPSs. Lastly, our approaches provide load

balancing while theirs does not.

2.6 Summary

In summary, all of the related work discussed above use simple distribution schemes

to distribute traffic to the NIDPSs. Two of them use the static slicing distribution

scheme [2, 18], and the others use the hash-based distribution schemes [35, 40, 43].

Some of these schemes do not take into account the current loads of the NIDPSs

when distributing the traffic; as a result, they provide no load balancing [18, 39, 43].

More importantly, none of the related work considers the loss of correlation infor-

mation when distributing the traffic. This loss of correlation information severely

reduce the anomaly-based detection accuracy of the NIDPSs. One notable ap-

proach, which uses an inter-NIDS communication scheme to compensate for the

loss of correlation information, was recently proposed by Vallentin et al. [40].

Our approaches, first and foremost, appropriately distribute the traffic to reduce

the loss of correlation information. Furthermore, we leverage the real-time loads

of the NIDPSs to provide load balancing. The load balancing provided by our

approaches should be considered as alternatives to the other approaches [2, 35].
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Chapter 3

Correlation-Based Load Balancer

3.1 Introduction

In this chapter, we present the Correlation-Based Load Balancer – our first novel

solution to the problem of traffic distribution for the NIDPSs. The objective of the

Load Balancer is to provide fine-grained load balancing while minimizing the loss

of correlation information.

To address the traffic distribution problem, we first formalize it as an optimiza-

tion problem, considering both the NIDPSs’ load variance and the loss of correlation

information. We then present our Benefit-Based Load Balancing (BLB) algorithm

as a solution to the optimization problem. This algorithm uses a novel on-line

clustering technique to distribute flows in real-time to achieve the following:

• The difference between NIDPSs’ loads is kept within a specified bound.

• Correlated flows are grouped together at a single NIDPS to reduce the loss

of correlation information.

We have implemented a prototype Load Balancer which uses the BLB algorithm.

We also evaluated the Load Balancer against various DDoS attacks and port scans.

The evaluation results show that compared to the naive hash-based distribution,

our Load Balancer significantly improves the anomaly-based detection accuracy

of these attacks while keeping the difference between loads of the NIDPSs small.

Figure 3.1 shows how our Load Balancer fits into a network topology.

As briefly discussed in Section 1.4, our Load Balancer delivers the following

features:

13



Figure 3.1: Placement of the Load Balancer

1. Fine-Grained Load Balancing: Our Load Balancer monitors loads of the

NIDPSs and distributes the traffic in a way such that the difference between

NIDPSs’ loads is kept within a specified bound. This provides both protection

and better traffic engineering to the network.

2. Anomaly-Based Detection and Prevention Support: Our Load Balancer is

capable of grouping correlated flows in real-time. In particular, we focus on

grouping flows which have identical dst-ip, src-ip, or dst-port, which greatly

increases the accuracy of anomaly-based detection of DDoS attacks and port

scans. Additionally, our Load Balancer preserves flows, i.e., packets belonging

to the same flow are sent to the same NIDPS. Thus, it fully supports flow-

based analysis.

3. Configurable Security: With our Load Balancer, one might favor security, i.e.,

reduced loss of correlation information, over performance, i.e., load balancing,

when it is desirable to do so. For example, when the load of the whole system

is low, one might want to use only one NIDPS to analyze all the traffic

instead of distributing the traffic across multiple systems. Our Load Balancer

provides several ways to favor security: (1) relaxing the variance constraint,

(2) duplicating the traffic to send to multiple NIDPSs, and (3) operating with

a threshold-based constraint instead of a load-balancing-based constraint.

The rest of this chapter is organized as follows: Section 3.2 contains the problem

statement and an overview of our approach. In Section 3.3, we formalize the flow

assignment problem as an optimization problem and provide an approximation for
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it. Section 3.4 explains the on-line clustering technique and describes the BLB

algorithm. Section 3.5 discusses the correlations between flows. In Sections 3.6 and

3.7, we describe the implementation and evaluation results, respectively. Finally,

we conclude this chapter in Section 3.8.

3.2 Problem Statement and Approach Overview

3.2.1 Problem Statement

Given a cluster of NIDPSs, we want to develop a load balancer which provides a

desired level of load balancing, i.e., keeps the difference between loads of the NIDPSs

within a specified bound, and minimizes the loss of correlation information due to

distributing flows, which in turn improves the anomaly-based detection accuracy

of the NIDPSs.

3.2.2 Approach Overview

The intuition of our approach is as follows: Since each NIDPS only receives a portion

of the network traffic, we want to make sure that this portion contains sufficient

information for the NIDPS to detect and prevent intrusions. In particular, we want

to send attack-correlated flows to the same NIDPS, so that no attack will be missed.

First, we introduce clusters to structure the flows. A cluster contains flows

which are closely correlated with each other. Clusters are constructed and deleted

on-the-fly depending on both the variety and the rate of the traffic. When a new

flow arrives, it can join some existing clusters or form a new cluster of its own. We

discuss on-line cluster management in detail in Section 3.4. Also, an NIDPS could

contain several clusters of flows. This means that an NIDPS could be monitoring

multiple groups of correlated flows at the same time to detect and prevent possible

intrusions.

Next, the notion of benefits is introduced as a means to measure the correlations

between a new flow and groups of previously assigned flows, or clusters. The

correlations between flows are derived from their five-tuples: src-ip, dst-ip, src-

port, dst-port, and proto. As previously mentioned in Section 1.3, we only consider

the correlations derived from these five-tuples, and other correlations derived from

packets’ payload are out of the scope of this study. We discuss the correlations in

more detail in Section 3.5.
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Benefits play very important role in our approach since we use them to assign

new flows to clusters. For example, if there are two existing clusters and a new flow

comes, we will assign this new flow to the cluster which gives a better benefit. In

other words, the new flow is assigned to the cluster which is more strongly correlated

with it.

Load balancing is achieved by closely monitoring the loads of all the NIDPSs

and assigning flows to them correspondingly. A load balancing level is described

using a variance. Specifically, a small value of variance indicates a high level of

load balancing and vice versa.

We summarize our approach as follows: Flows in NIDPSs are organized as

clusters and a desired level of load balancing is specified as a variance constraint.

When a new flow comes, we find candidate NIDPSs which satisfy the variance

constraint. Then, among clusters of these NIDPSs, we assign the new flow to

the ones which give the best benefits. By assigning flows this way, we achieve

the highest amount of correlation information possible while keeping the difference

between NIDPSs’ loads within a bound.

3.3 Problem Formalization

In this section, we first describe how the problem of assigning new flows is formalized

as an optimization problem. We then show that the problem is NP-hard; thus, it

cannot be solved in polynomial time. We subsequently present an approximation

for the optimization problem. Finally, we discuss how our formalization could be

fine-tuned to favor security over performance when required.

3.3.1 Flow Assignment Optimization Problem

Here we formalize the problem of assigning new flows as an optimization problem.

At time t, let n be the number of NIDPSs and m be the number of clusters. The

mapping between the NIDPSs and the clusters is one-to-many. For each NIDPS

i (i ∈ [1, n]), let
−→
Gi be a vector of size m whose jth element (j ∈ [1,m]) is 1 if

NIDPS i owns cluster j and 0 otherwise.

Now let f be the new flow. Assigning f to a cluster j gives a benefit Bj.

Essentially, this benefit reflects how much f and the flows in cluster j are correlated.

Let
−→
B be a vector of size m whose jth element is the benefit Bj.
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Next, let Li denote the current load of NIDPS i in the system. An NIDPS’s load

is expressed as the amount of traffic it handles per second (Mbps). We estimate

the load by taking periodic samples of the traffic going to each NIDPS and apply

the standard Single Exponential Moving Average (SEMA) [30] to the samples to

alleviate the negative effect of spikes in traffic. This linear aggregation method

was shown to perform very well in the context of NIDPS load balancing [2], as we

discussed in Section 2.4.

In addition, we note that representing an NIDPS’s load is a nontrivial task

since an NIDPS may have numerous hardware and software resources, for example,

CPU, disk, and memory. Therefore, one might challenge our load representation;

however, the representation we use is the most common approach in the context of

network intrusion detection and prevention [2, 35, 43].

In the following, let µ be the average load of all the NIDPSs and V be the

upper bound for the variance after the assignment. Let Lf be the predicted load

of the new flow. Here, SEMA is utilized on sampling flows to make predictions for

incoming TCP and UDP flows separately.

Let F be the maximum number of NIDPSs which f could be assigned to con-

currently. Assigning f to multiple NIDPSs could give more benefit because f might

be correlated to multiple clusters maintained by different NIDPSs. For example,

assume that there are two clusters, assigned to two different NIDPSs, one monitor-

ing flows with dst-ip 10.0.0.1 and the other monitoring flows with dst-port 80. If f

has both dst-ip 10.0.0.1 and dst-port 80 then it is desirable to assign this flow to

both of the NIDPSs.

Finally, let
−→
X be the solution vector of size m. The jth element of

−→
X is 1 if f

is going to be assigned to cluster j and 0 otherwise. In order to determine which

clusters to assign f to, we have to solve the Flow Assignment Optimization Problem

(FAOP) specified in Figure 3.2.

Our optimization problem is a Non-linear Binary Integer Programming problem.

Expression (1) states that we want to maximize the total benefit. Constraint (2)

requires that f be concurrently assigned to at most F NIDPSs. Constraint (3)

requires that f be assigned to at most one cluster of each NIDPS. Finally, constraint

(4) requires that the variance of the NIDPSs’ loads after the assignment be less than

or equal to the desired variance V . A small value of V means a high level of load

balancing is expected while a high value of V indicates otherwise.

For instance, if V is set at 9 (%2 load), and load is assumed to be normally

distributed among the NIDPSs, then 99.73% of the NIDPSs will have their loads
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Maximize:

(1)
−→
X ·
−→
B

Constraints:

(2)
−→
X ·
−→
I ≤ F

(3)
−→
X ·
−→
Gi ≤ 1, ∀i ∈ [1, n]

(4) 1
n

∑n
i=1

[
(Li + Lf (

−→
X ·
−→
Gi)− (µ+ Lf

−→
X ·
−→
I

n
)
]2

≤ V

Where:
−→
X : Solution vector of size m
−→
B : Benefit vector of size m
−→
Gi : Cluster-ownership vector of size m of NIDPS i
−→
I : Vector of 1’s of size m

F : Maximum number of NIDPSs to assign f

Li : Load of NIDPS i

µ : Average load of all NIDPSs

Lf : Predicted load of f

V : Upper bound for the new variance

Figure 3.2: Flow Assignment Optimization Problem
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Algorithm 1 HeuristicFlowAssignment(f)

1: solution set = ∅
2: nidps set = all NIDPSs

3: for i from 1 to F do

4: cluster set = all clusters of nidps set

5: find cluster in cluster set

- which satisfies variance constraint

- and has the biggest benefit

6: if no cluster found then

7: quit for loop

8: end if

9: solution set = solution set ∪ cluster
10: nidps = NIDPS which has cluster

11: update load of nidps

12: nidps set = nidps set \ nidps
13: end for

14: return solution set

within 3
√
V = 9 (% load) of the average load µ, or within 18 (% load) of each

other.

3.3.2 Heuristic Flow Assignment Algorithm

In order to solve FAOP, one has to examine all the cluster subsets, whose sizes

are less than or equal to F . As a result, any algorithm which optimally solves

FAOP would take at least polynomial (greater than linear) time. Due to the real-

time requirement of the flow assignment, we propose a greedy-based approximation

algorithm, the Heuristic Flow Assignment (HFA) algorithm, to solve the FAOP in

linear time. The HFA algorithm is detailed in Algorithm 1. This algorithm searches

for a cluster giving the maximum benefit and satisfying the constraints at the same

time. This can be done in O(m) time, and it tries to do this up to F times (Line

3–13). We also note that when F equals 1, the result of the HFA algorithm is the

optimal solution to the FAOP.
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3.3.3 Configurable Security

When it is desirable to favor security, i.e., reduced loss of correlation information,

over performance, i.e., load balancing, our formalization provides three possible

approaches:

1. Relaxing variance constraint: Setting V high loosens the load balancing re-

quirement; thus, a higher benefit might be achieved. In the extreme, V could

be set high enough so that load balancing is completely ignored. In this case,

the traffic is distributed based solely on the benefit, resulting in the use of

only one NIDPS. This might be a desirable setting when the traffic load is

low.

2. Duplicating flows: A high value of F reduces the loss of correlation informa-

tion because flows are duplicated up to F times to be sent to the NIDPSs.

However, the duplication of flows consumes system resources like bandwidth

and CPU load; therefore, it must be used selectively.

3. Threshold-based load distribution: The load balancing requirement could be

replaced by a threshold-based requirement, which requires the NIDPSs’ loads

to be kept below a certain threshold Tload. This requirement is easier to satisfy

and gives more room to obtain higher benefits. Threshold-based load distri-

bution could be readily achieved by replacing constraint (4) with a simpler

constraint:

(4∗) Li + Lf (
−→
X ·
−→
Gi) < Tload ,∀i ∈ [1, n] .

Compared to this threshold-based approach, the Load Balancer’s approach,

which keeps the difference between NIDPSs’ loads within a bound, provides

better load balancing. In particular, when using this threshold-based ap-

proach, clusters are more likely to have an overloaded NIDPS even when the

other NIDPSs’ loads are low; this is because all traffic is sent to a NIDPS

to achieve the best benefit until this NIDPS’s load is high, rather than dis-

tributed to all of the available NIDPSs.

In summary, F and V could be set high, along with using the threshold-based

load distribution, to reduce the loss of correlation information and ultimately in-

crease the detection and prevention accuracy. However, because these configura-

tions compromise the performance, they should be used selectively depending on

the current traffic load, system resources, and performance requirements.
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3.4 On-line Clustering Technique

Managing clusters is a central activity of our Load Balancer. Because of the real-

time requirement, it is not possible to manage clusters using traditional clustering

techniques like K-Means [16] or K-Medoids [16]. Thus, we have customized an on-

line clustering technique introduced by Aggarwal et al. [1] to create a suitable one

for our Load Balancer. Specifically, we have integrated into the existing technique

several new concepts: benefit, cluster weight, and decay of weight.

3.4.1 Benefit Calculation

When a new flow arrives, we calculate the benefits of adding this flow to the existing

clusters to make assignment decisions. The benefits vary depending on two factors:

the correlations between the flow and the clusters; and the weights of the clusters.

First, the correlations between the new flow and the existing clusters are deter-

mined based on the correlations between the flow and the centroids of those clusters,

where a centroid of a cluster is a flow representing the cluster. The correlations

between flows are described in detail subsequently.

Secondly, weights of clusters represent the activeness of the clusters and the

number of flows that the clusters have. The less active a cluster is or the fewer

flows the cluster has, the less weight it has. In order to reflect those properties,

weights of clusters decay over time and are updated every time the clusters receive

a new flow. More details about the decay and update of weights are provided

subsequently.

Let D(f, cj) be the logical distance between a new flow f and the centroid cj

of cluster j, where the logical distance between two flows is a value reflecting how

correlated the two flows are (the logical distance notion is discussed in detail in

Section 3.5), and let Wj be the current weight of cluster j. The benefit of adding

f to cluster j is calculated as follows:

Bj = (1−D(f, cj))Wj .

This formula is constructed to provide the following properties:

• The closer f is to cj, i.e., the more correlated f and cj are, the higher benefit

the assignment gives because of the larger 1−D(f, cj)
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• The heavier the cluster j is, i.e., the more active the cluster is or the more

flows the cluster has, the higher benefit the assignment gives because of the

larger Wj.

3.4.2 Cluster Weight

Each cluster has a weight, whose value is between 0 and 1 inclusive. When a

cluster is first constructed, it has weight 1. For each cluster j, we keep track of

these variables: the number of flows it has, sj, its construction time or the last

time it received a new flow, tj,f , its weight at this time, Wj,tj,f
, and the last time

it received a packet, tj,p. For instance, at time t0 when cluster j is constructed,

sj = 1, tj,f = tj,p = t0, and Wj,tj,f
= 1.

The weight of a cluster decays when the cluster is inactive, i.e., when it does

not receive network traffic. In particular, if a cluster j has not received any packet

for a period of time t− tj,p, where t is the current time, then its weight at time t is

calculated as follows:

Wj,t = λ(tj,p−t)Wj,tj,f
, (3.1)

where λ > 1 is the decaying factor. We introduce the decay of weight as a means

to better group recent flows, as well as to manage the number of clusters in the

system.

In particular, with the decay of weight, when a new flow arrives, it is more likely

to be assigned to more active and recent clusters. This is because these clusters

have higher weights due to less decay. For example, let ta,p and tb,p be the times

clusters a and b received their last packets, respectively. If ta,p > tb,p, i.e., cluster a

received the last packet more recently than cluster b, then at a later time t, cluster a

has decayed less than cluster b due to a smaller decaying duration: t−ta,p < t−tb,p.

Furthermore, if clusters are inactive for a long period of time, they have very

low weights due to the decay. As a result, we can delete these clusters by setting a

minimum weight threshold Tweight and deleting any cluster whose weight is less than

this threshold. The deletion of old clusters is necessary to give room for more recent

clusters and to make sure that the maintained clusters in the system represent the

recent traffic.

When a new flow f is added to cluster j at time t, all the variables get updated

as follows:
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Wj,t = λ(tj,p−t)Wj,tj,f
+ [1− λ(tj,p−t)Wj,tj,f

]
1−D(f, cj)

sj + 1
, (3.2)

sj = sj + 1 ,

tj,f = tj,p = t ,

Wj,tj,f
= Wj,t .

If at time t, there were no new flow added to cluster j then its weight would

equal λ(tj,p−t)Wj,tj,f
, according to Equation 3.1. However, since f is added to it, its

weight increases by the amount [1− λ(tj,p−t)Wj,tj,f
]
1−D(f,cj)

sj+1
, according to Equation

3.2. Consequently, adding a new flow to a cluster essentially increases the cluster’s

weight.

The increment amount depends on both the correlation between the new flow

and the cluster – the D(f, cj), as well as the number of flows that the cluster already

has – the sj. In particular, the more correlated with the cluster the new flow is,

i.e., the smaller D(f, cj), the more weight it adds to the cluster. In contrast, the

more flows that the cluster already has, i.e., the larger sj, the less weight the new

flow adds to the cluster. It must be noted that as a cluster becomes large, the

increment of weight becomes insignificant due to the large sj. As a result, this

increment eventually can not compensate for the loss of weight due to the decay to

keep the cluster alive.

In summary, the increment of weight ensures that clusters with more flows and

clusters with flows which are more correlated have heavier weights than the others.

Ultimately, this ensures that any new flow is more likely to be assigned to more

dense clusters due to better benefits.

3.4.3 Benefit-Based Load Balancing Algorithm

The Benefit-Based Load Balancing (BLB) algorithm, which is used to distribute

traffic intelligently to the NIDPSs, is the heart of the Load Balancer. This algorithm

ties together all the details presented in this chapter. We summarize the BLB

algorithm in Algorithm 2 and describe it below.

When there is a new flow f , we use the HFA algorithm to solve the FAOP to get

a candidate set of clusters (Line 1). If the FAOP has no solution or this solution

gives a benefit below a predefined threshold Tbenefit, then a new cluster, whose

centroid is f and weight equals 1, is created. This cluster is added to the NIDPS
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Algorithm 2 Benefit-BasedLoadBalancing(f)

1: C = HeuristicFlowAssignment(f)

2: if C = ∅ or Benefit(C) < Tbenefit then

3: create a cluster (centroid f , weight 1)

4: assign it to the lowest load NIDPS

5: else

6: assign f to the clusters in C

7: update those clusters

8: end if

with the lowest load (Line 2–4). In the other case, f is added to the candidate

clusters and these clusters are updated appropriately (Line 5–7).

3.5 Flow Correlations

The correlations between flows are essential to our benefit calculation. In this

section, we explain how the correlations are measured by a logical distance. We

first present a general formula for the logical distance. Afterward, we thoroughly

describe the components of the formula.

3.5.1 Logical Distance Formula

Given two flows f1 and f2, the logical distance between the two flows, which indi-

cates how closely correlated they are, is formally defined as follows:

D(f1, f2) = αip δip(f1, f2) + αport δport(f1, f2) + αprotocol δprotocol(f1, f2) ,

where δip(f1, f2), δport(f1, f2), δprotocol(f1, f2) are the logical distances given by the

IP addresses, port numbers, and protocols of the two flows respectively; and the

α’s are their weights.

The δip(f1, f2) reflects the correlations between the source IP addresses, as well

as the destination IP addresses of the two flows f1 and f2. On the other hand,

δport(f1, f2) mainly concerns with the correlations between the destination ports

of the two flows. This is because the source ports play an insignificant role in

anomaly-based detection.
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Figure 3.3: Matching Order of Correlations given by IP Addresses, Port Numbers,

and Protocols

Through detection scenarios that we conducted, we observe that the IP ad-

dresses’ and port numbers’ correlations play more important roles than the proto-

cols’ correlation. As a result, weights of the IP addresses and port numbers should

be heavier than that of the protocols. We suggest 0.4 - 0.5 as a range for both αip

and αport, and αprotocol = 1− (αip + αport) .

3.5.2 Logical Distance Components

Logical Distance given by IP Addresses – δip()

We match the correlation given by IP addresses of two flows with the following

correlations: identical, subnet, and configuration correlations. δip() returns a value

between 0 and 1 corresponding to the matching. The correlations are defined as

follows:

• Identical Correlation: If source IP addresses or destination IP addresses of

two flows are identical then their correlation matches the identical correlation.

This correlation is the most important correlation between two flows. For

example, in a DDoS attack scenario, numerous source IP addresses might be

used for the attack [27]. However, computers corresponding to those source

IP addresses attack the same target. Because flows of the attack all have the

same destination IP address, they have the identical correlation.

• Subnet Correlation: If source IP addresses or destination IP addresses of

two flows belong to the same subnet or virtual LAN, then their correlation

matches the subnet correlation.
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In practice, attackers often try to find vulnerabilities in different computers

in a target network; thus, attack-correlated flows are sent to the same network.

Identifying this type of correlation helps to group these flows together to

detect and prevent the intrusions.

• Configuration Correlation: If source IP addresses or destination IP addresses

of two flows belong to a predefined set of addresses then their correlation

matches the configuration correlation.

For instance, it is sometimes of interest to group flows going to the unused

address space together to detect suspicious activities. This correlation allows

the grouping of these flows in particular, and the grouping of flows of any

specified set of addresses in general.

Figure 3.3 shows the order in which the matching is done. Going from top to

bottom, the significances of the correlations decrease, so the values returned by

δip() increase.

Logical Distance given by Port Numbers – δport()

Because destination port numbers represent target services, they play a more im-

portant role than source port numbers. As a result, we concentrate on investigating

the correlations of the destination port numbers instead of the source port numbers.

Similar to the IP address case, in order to determine a value between 0 and 1 which

δport() returns, we match the correlation between two destination port numbers

with one of the following correlations:

• Identical Correlation: If destination port numbers of two flows are identical

then their correlation matches the identical correlation.

This correlation supports the detection and prevention of intrusions tar-

geting a particular service provided by a number of computers. For example,

flows belonging to an attack aiming at multiple web servers all have 80 as

their destination port number.

• Functional Correlation: If destination port numbers of two flows are func-

tionally correlated then their correlation matches the functional correlation.

For example, flows belonging to an FTP connection have both destination

port numbers 20 and 21. Thus, it is desirable to group these flows together. It

26



is also possible to use the configuration correlation, which is discussed below,

to group these flows together.

• Configuration Correlation: If destination port numbers of two flows belong

to a predefined set of port numbers then their correlation matches the con-

figuration correlation.

In practice, the administrators might want to group together flows belong-

ing to different services, for instance, telnet and web, to detect certain attacks.

This correlation enables them to do so.

Logical Distance given by Protocol – δprotocol()

Either 0 or 1 is returned by δprotocol(), depending on the following correlation:

• Identical Correlation: If protocols of two flows are the same then they have

the identical correlation.

3.6 Implementation

We have implemented a prototype Load Balancer, which can distribute the traffic

to the NIDPSs in real-time. In addition, in order to evaluate the Load Balancer, we

implemented a DDoS detector. We describe our implementations in detail below.

3.6.1 Load Balancer

The prototype Load Balancer was developed using the libpcap library [22] – a library

for capturing and sending network packets directly from and to network interfaces

in real-time. The BLB algorithm was implemented as the default load balancing

algorithm. The identical correlations given by IP addresses, port numbers, and

protocol were initially supported.

Besides the BLB algorithm, for comparison purposes, we also integrated a hash-

based algorithm into our Load Balancer. As discussed in Chapter 2, various hash-

based algorithms were used by others [31, 35, 43] to distribute the traffic and they

all shared a common property: applying a simple hash function on a subset of

the five-tuples. Hence, we implemented the hash-based algorithm using a simple
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additive hash: (src-ip + dst-ip + src-port + dst-port) mod n, where n is the number

of NIDPSs.

For the simulations, our Load Balancer was run on a system with an Intel Dual

Core 2.0 GHz CPU, 2 GB RAM, 2× 1 Gbps NICs. The Load Balancer operates as

follows: first it gets a new packet from a specified source, which could be a network

interface or a trace file; it then executes either the BLB or the hash-based algorithm

to identify which NIDPS(s) to send this packet to; finally, it sends the packet to

the corresponding network interface(s) or writes the packet to the corresponding

trace file(s).

3.6.2 DDoS Detector

For evaluation purposes, a DDoS detector was developed using the Cumulative Sum

algorithm – a simple and robust algorithm to detect DDoS proposed by T. Peng

et al. [32]. Fundamentally, this algorithm detects the change of the mean value of

the percentage of new source IP addresses over time. A sequence {Yn} is used to

characterize the change. If at any time, a value of {Yn} is bigger than a predefined

threshold Ty, then an attack is detected.

3.7 Evaluation

3.7.1 Performance

In order to evaluate how well our Load Balancer distributes the traffic, we needed

high volume traffic traces. Consequently, we chose two weeks of GPS-synchronized

IP header traces, which were captured in December 2003 at the University of Auck-

land by the National Laboratory for Applied Network Research (NLANR) [29].

We note that because of privacy issues, the traces were sanitized by NLANR.

The IP addresses were mapped into the network space 10.X.X.X in a non-reversible

way. However, the mapping was one-to-one, which meant IP addresses identical in

the traces were identical in the real world. Thus, we could still identify the identical

correlation given by IP addresses. Identical correlations given by port numbers and

protocols were unaffected by this sanitization.

The trace used in both of the below simulations was an hour trace captured from

12:00 to 13:00 on Tuesday, December 2nd, 2003. This hour was one of the busiest
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Figure 3.4: Effect of the Number of Clusters on the System Overhead

hours of the network. During this hour, there were 200 new flows per second and

14 Mbps of traffic on average [37].

Effect of the Number of Clusters on the System Overhead

Here we examine the effect of the number of clusters on the system overhead. The

number of clusters maintained in the Load Balancer is dependent on the threshold

Tweight and the decay rate λ. In this simulation, λ was fixed at 1.1, and Tweight was

varied to get the desired number of maintained clusters. There were 10 NIDPSs,

each of which had a capacity of 3 Mbps; V was 25; F was 1; αip and αport were 0.5

and αprotocol was 0; Tbenefit was 0.1; and the Load Balancer used the BLB algorithm.

For each flow, when its first packet arrives at the Load Balancer, the Load

Balancer has to perform a calculation to determine to which cluster(s) to assign the

flow. This is the primary system overhead associated with the flow. We measured

this overhead by the delay introduced to the first packet of the flow, which was the

time to run the BLB algorithm. The measurement was done as follows:

For every packet read from the trace file, the Load Balancer checked if it be-

longed to previously assigned flows. If it did not, BLB algorithm was then used

to assign this packet; in this case, the difference between the timestamps taken

after and before the execution of the BLB algorithm was recorded. This difference

was the overhead introduced to this packet, which starts a new flow, by the Load
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Figure 3.5: Effect of the Algorithms on the Variance

Balancer. The timestamps were taken using the Java function System.nanoTime().

We also note that the packets were not actually sent to the NIDPSs since it was

not necessary.

Figure 3.4 plots the delays of the first packets of a sampling of 100 consecutive

flows when the system maintained 500, 750, and 1000 clusters. The average delays

of the full trace were 0.58, 0.80, and 1.31 milliseconds respectively (not shown in

the figure). This result indicates that the higher the number of clusters, the higher

the delays. This is because it takes more time to calculate the benefits when there

are more clusters. Also, the spikes happened when there was a significant number

of clusters that satisfied the variance constraint, which increased the execution time

of the BLB algorithm. In summary, the delay per flow introduced by our system is

on the order of a millisecond, which is tolerable.

Effect of the Algorithms on the Variance

We carried out this experiment to examine how different algorithms affect the

NIDPSs’ load variance. In this experiment, the Load Balancer maintained 500

clusters and used both the BLB and the hash-based algorithms. There were 10

NIDPSs, each of which had a capacity of 3 Mbps; λ was 1.1; Tbenefit was 0.1; αip

and αport were 0.5 and αprotocol was 0; F was 1; and V was 16. We note that

because the trace only contained packet headers, we uniformly generated packet
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payload having sizes between 400 and 600 bytes. This is to preserve the overall

traffic rate of 14 Mbps of the trace file.

Throughout the experiment, we recorded the loads of the NIDPSs to calculate

the variance. For each NIDPS, we take a sample of the traffic going to it every 1

second to estimate its load. For the Single Exponential Moving Average [30], the

number of samples for the initial calculation is s = 30. In other words, the first

estimated load is the mean of 30 initial samples of load. Also, the smoothing factor

is α = 2
s+1

. The smoothing factor is essentially the weight of the current load in

the estimation:

estimated load = α · current load + (1− α) · last load .

Figure 3.5 plots the variance associated with the two algorithms at every 2

seconds during a sampling of 60 seconds. We observed that the variance of the

hash-based algorithm was noticeably higher than that of the BLB algorithm. This

indicated that the loads of the NIDPSs when the hash-based algorithm was used

were substantially unbalanced. Also, our BLB algorithm often had variance less

than V ; however, there were occasions when the variance was bigger than V . These

were points of time at which there was no solution to the FAOP.

In summary, the result of this simulation shows that our BLB algorithm has a

solid performance in terms of keeping the variance low in comparison to the hash-

based algorithm. Most importantly, the BLB algorithm is often able to keep the

variance below the specified upper bound V .

3.7.2 Security

Three simulations were conducted to evaluate how the BLB algorithm supports the

detections of DDoS attacks and port scans compared to the hash-based algorithm.

For the BLB algorithm, the Load Balancer maintained 500 clusters; λ was 1.1;

Tbenefit was 0.1; αip and αport were 0.5 and αprotocol was 0; NIDPS capacity was 10

Mbps; V was 25; and F was 1. The Load Balancer was used to distribute traffic to

10 NIDPSs.

In the simulations, the protected internal network was a Class B network – a

network which has 65534 addresses, each of which has a leading bit string “10”.

10% of the address space was occupied. The generated background traffic was

about 15 Mbps with 100 flows per second on average. The source and destination

addresses were randomly generated such that 80% of the flows were from or to 20%
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of the machines in the internal network. Packets had sizes uniformly distributed

from 500 to 1500 bytes. Flows’ durations were uniformly distributed from 1 to 30

seconds.

DDoS Attack

We simulated a large scale UDP flood attack [36], which involved 9000 distinct

attacking hosts and a victim. Each UDP packet was of fixed size 1 KB, and its

source port and destination port were randomly selected. The simulation lasted

60 seconds, during which there were both background traffic and the attack traffic.

The attack started at second 20 and lasted for 30 seconds. During the attack, the

victim saw about 300 new source IP addresses of the attack traffic per second.

Figure 3.6 plots the highest fractions of new source IP addresses observable by

one of the NIDPSs in the following three settings: (1) a single NIDPS without the

Load Balancer, (2) 10 NIDPSs with the Load Balancer using the BLB algorithm,

and (3) 10 NIDPSs with the Load Balancer using the hash-based algorithm. We

note that when the single NIDPS was used, we assumed that it could handle all

the traffic without dropping packets. The corresponding values of Yn are shown in

Figure 3.7.

It can be observed that during the attack, when the BLB algorithm was used,

the fractions of new source IP addresses observable by one of the NIDPSs were

significantly higher than those when the hash-based algorithm was used. This was

because a substantially higher number of attack flows went to the same NIDPS

when the BLB was used. The higher fractions over time resulted in the higher

values of Yn. Thus, there would be scenarios when the hash-based algorithm failed

to detect the attack but the BLB algorithm succeeded.

For example, if the threshold Ty was set to 3 then the hash-based algorithm

would fail to detect the DDoS attack. This is because Yn was always below Ty.

However, the BLB algorithm detected the attack at second 38, which was 4 seconds

later than when a single NIDPS without the Load Balancer was used. In the case

when the single NIDPS was used, the attack was detected earlier because all flows

of the attack went to this NIDPS.

This evaluation, however, has several limitations. First, the success of the detec-

tion strongly depends on the arbitrarily chosen Ty. Secondly, given the importance

of Ty on the success of the detection, this evaluation lacks a thorough investigation

of Ty. As a result, in order to characterize the benefit of the BLB algorithm more
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Figure 3.6: Effect of the Algorithms on the Fraction of New Source IP Addresses

per Second

Figure 3.7: Effect of the Algorithms on the Value of Yn
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accurately, we plan to answer the following question in future work:

• Given a good sampling of traffic and a reasonable distance between a Ty of

the normal traffic and a Ty of the attack traffic, what is the probability of a

successful detection for a well chosen Ty?

In conclusion, this evaluation result shows that the BLB algorithm distributes

the traffic in a way which increases the detection accuracy of the DDoS attack sig-

nificantly compared to the hash-based algorithm. Also, this evaluation has several

limitations that are the subjects of future work.

Port Scans

For this part, we used Snort [34] as our scan detector. From version 2.6, the

Snort preprocessor sfPortscan takes care of detecting port scans. By analyzing the

anomaly of the traffic, sfPortscan can detect the following scans [6]:

• Portscan: A small number of scanning hosts, scanning one victim, for a lot

of ports.

• Portsweep: A small number of scanning hosts, scanning many victims, for a

small number of ports.

• Decoy Portscan: A high number of scanning hosts with a few spoofed hosts,

scanning a small number of hosts, for a small number of ports.

• Distributed Portscan: Similar to Decoy Portscan but with a high number of

ports.

We note that sophisticated scans, such as decoy portscans and distributed port-

scans, might not be well supported by the Load Balancer because of the diversity of

these scans’ flows. In order to support the detection of these scans, it might be ben-

eficial to monitor the number of connection attempts to unused address space of the

protected networks. The Load Balancer can support the grouping of flows of these

connection attempts by specifying the unused address space in its configuration

correlations.

In practice, sophisticated scans currently have low detection accuracy (high false

positive rate) [6]. In other words, current NIDPSs do not support them well. As a
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Figure 3.8: The Highest Number of SYN Packets Observable by One of the NIDPSs

During the Portscan

Figure 3.9: The Highest Number of SYN Packets Observable by One of the NIDPSs

During the Portsweep
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result, in this evaluation, we focus on evaluating how our Load Balancer supports

the detection of ordinary portscans and portsweeps.

For both of the following simulations, the background traffic was the same as in

the previous DDoS simulation. Similarly, when a single NIDPS without the Load

Balancer was used, we assumed that no packets were dropped. Also, the sensitivity

level of sfPortscan was set at medium, and TCP SYN scans were used. Lastly,

the scans were designed so that a single NIDPS without the Load Balancer always

successfully detected them.

First we used nmap [28] to carry out a portscan. We used one host to scan ports

1–1000 of one victim. When a single NIDPS was used, it detected this portscan.

When there were 10 NIDPSs and the hash-based algorithm was used, no attack was

detected; however, when the BLB algorithm was used, the attack was detected.

When the hash-based algorithm was used, the highest number of SYN packets

observable by one of the NIDPSs was about 100. This was not enough for the

sfPortScan to trigger a portscan alert. However, when the BLB algorithm was

used, one NIDPS observed up to 700 SYN packets; thus, it generated a portscan

alert. These numbers are plotted in Figure 3.8.

Secondly, we used nmap to carry out a portsweep. We used one host to scan

port 80 of 100 victims. When a single NIDPS without the Load Balancer was

used, it detected this portsweep. When there were 10 NIDPSs and the hash-based

algorithm was used, no attack was detected. In this case, we noticed that each

NIDPS observed about 10 SYN packets, targeting port 80 of 10 different victims.

This number was not high enough for the sfPortscan to trigger a portsweep alert.

On the other hand, when the BLB algorithm was used, one NIDPS observed as

many as 80 SYN packets; thus, it generated a portsweep alert. These numbers are

plotted in Figure 3.9.

One might argue that the sfPortscan’s mechanism to detect port scans is naive

and simple and that a better mechanism should be used in our evaluation. Nonethe-

less, this simplicity represents commonly used techniques for detecting port scans

and for anomaly-based detection in general. To the best of our knowledge, the

mechanism used by two other popular operational NIDPSs: Bro [31, 40] and Cisco

IPS [7], are similarly simple in terms of detecting port scans. As future work, we

plan to evaluate our Load Balancer with advanced port scan detection techniques,

such as the one proposed by Jung et al. [15].

In summary, both the portscan and the portsweep went undetected when the

hash-based algorithm was used to distribute the traffic. In contrast, when the BLB
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algorithm was used, the cluster of NIDPSs successfully detected both of them.

Consequently, this shows that our Load Balancer using the BLB algorithm can

substantially improve the detection accuracy of portscans and portsweeps compared

to the hash-based algorithm.

3.7.3 Number of Clusters

We conducted a simulation to evaluate the effect of the number of maintained

clusters on the security. In particular, we want to evaluate how the number of

maintained clusters affects the grouping of scan flows.

In this simulation, the network model and the background traffic were similar

to the ones in Section 3.7.2. Recall that the background traffic had about 100

flows per second and was about 15 Mbps. There were 10 NIDPSs, each of which

had capacity of 10 Mbps. The Load Balancer distributed traffic using the BLB

algorithm. λ was 1.1; Tbenefit was 0.1; αip and αport were 0.5 and αprotocol was 0;

and F was 1.

We set V to 25. V was set high enough so that the variance of the NIDPSs

during the simulation was always less than V . This was to eliminate the negative

effect of the variance of the NIDPSs on the distribution of the scan packets because

if the variance constraint could not be satisfied then any new flow would be assigned

to the NIDPS with the lowest load regardless of the benefit.

For the simulation, we varied the weight threshold Tweight to get the desired

number of maintained clusters: 500, 1000, and 1500. We first let the Load Balancer

distribute just the background traffic for 60 seconds. We then generated a TCP

SYN scan, which consisted of 1024 packets and scanned port 1–1024 of a victim.

There were two settings used for the scan duration: 5 and 60 seconds. During the

scan, the Load Balancer distributed the scan packets in addition to the background

traffic. We recorded the assignment of the scan packets.

Fast Scans

Figure 3.10 plots the distribution of the scan packets when the number of main-

tained clusters was 500, 1000, and 1500; and when the scan duration was 5 seconds.

It can be observed from this figure that in all three cases, the percentage of the

highest number of the scan packets that one NIDPS received was about 80%. We

conclude that the number of maintained clusters did not affect the grouping of
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Figure 3.10: The Distribution of the Scan Packets of the 5-Second Scan

Figure 3.11: The Distribution of the Scan Packets of the 60-Second Scan
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flows of this 5-second scan. In general, this evaluation result implies that the Load

Balancer works well with fast scans.

Slow Scans

Figure 3.11 plots the distribution of the scan packets when the scan duration was 60

seconds. It can be observed from this figure that packets of the scan were scattered.

The spread of the scan packets was due to new clusters that were created during the

scan. These new clusters might give higher benefit than the clusters which received

part of the scans; thus, some scan packets were distributed to the new clusters.

The overall result was the spread of scan packets.

Furthermore, Figure 3.11 also indicates that the percentage of the highest num-

ber of scan packets that one NIDPS received slightly increases when the number

of maintained clusters increases. This was because the more clusters maintained in

the systems, the less likely new clusters would be created. Thus, the new clusters

created during the scan would have less effect on the distribution of the scan pack-

ets. Nevertheless, the small improvement in grouping might not justify the large

overhead that the large number of clusters creates, especially, since the system

overhead increases linearly with the number of maintained clusters as discussed in

Section 3.7.1.

In summary, this evaluation result shows that the Load Balancer does not work

well with slow scans. In particular, it could not group flows of the 60-second

scan well even when the load balancing constraint was waived. This indicates the

limitation of the proposed cluster dynamics. In order to support the grouping

of flows of slow scans well, the proposed cluster dynamics must be revised. This

remains as future work.

3.7.4 Traffic Duplication

All the previous experiments were conducted to gain a fundamental understanding

of the performance and the security of the Load Balancer. As such, we started with

a basic configuration, which involves setting F = 1. This essentially does not allow

any packet duplication.

A value of F higher than 1 will at least double the system overhead – the amount

of time required to make the assignment decision. This is because Algorithm 1, the

Heuristic Flow Assignment algorithm, now has to execute the “for” loop at least
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two times and this loop is the most time consuming task of the whole process of

making assignment decisions.

On the other hand, there is very little that we can tell about the variance of the

systems when changing the value of F . This is because the loads of the NIDPSs are

now completely different from those when setting F = 1 due to additional traffic

from the duplication.

Finally, a value of F higher than 1 might improve the detection accuracy of the

port scans and DDoS attacks since it might send more attack flows to the same

NIDPS compared to the situation with F = 1. With F = 1, the Load Balancer is

already able to send about 70% of the attack flows to the same NIDPS. A higher

value of F, therefore, might improve the grouping to above 70%.

In summary, the effect of F on the variance and the detection accuracy needs

additional experiments. This remains as future work, as indicated in Section 5.2

3.8 Summary

In this chapter, we detail the Correlation-Based Load Balancer – our first solution to

the traffic distribution problem. We first formalize the traffic distribution problem

as an optimization problem. We then present a novel Benefit-Based Load Balancing

algorithm as a solution to it. This algorithm thoroughly considers both the load

variation of the NIDPSs and the loss of correlation information due to distribut-

ing traffic. Our algorithm performs real-time optimization, thus it accommodates

intrusion detection systems as well as intrusion prevention systems.

We have implemented a prototype Load Balancer which uses the BLB algorithm.

Our Load Balancer intends to achieve the following properties:

• The difference between the NIDPSs’ loads are kept within a specified bound.

• Correlated flows are grouped together at a single system to reduce the loss of

correlation information. In particular, we focus on grouping flows which have

identical dst-ip, src-ip, or dst-port.

Extensive simulations with real traffic traces and major attacks showed that

our Load Balancer using the BLB distribution algorithm could achieve high perfor-

mance and provide enhanced security. In particular, it has low overhead and can
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keep the load variances below the desired levels of load balancing. More impor-

tantly, compared to the naive hash-based distribution, it significantly improves the

accuracy of anomaly-based detection of DDoS attacks and port scans. Nevertheless,

the evaluation results also point out a limitation of the proposed Load Balancer:

The Load Balancer does not work well with slow scans. This is an open problem

and we plan to address it in future work.
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Chapter 4

Correlation-Based Load Manager

4.1 Introduction

We first started with the Load Balancer. At the time, our main focus was to spread

the traffic load evenly to the NIDPSs, i.e., to keep the difference between the loads

of the NIDPSs within a bound, and the traffic correlation took a back seat. We did

not focus much on the security of the cluster.

After experimenting with this idea, we realized that we should have focused

on security as long as there is no overloaded NIDPS. This is because security –

detecting and preventing attacks – is the most important goal of the NIDPSs. As

a result, we developed the Load Manager with the security as its main focus.

In particular, from the evaluation of the Load Balancer, we learned that provid-

ing load balancing is a challenging task. Sometimes the Load Balancer could not

achieve its load balancing goal, i.e., keeping the difference between the NIDPSs’

loads within a bound. This was illustrated by the points of time at which the

variance of the NIDPSs was above the upper bound for variance in the evaluation

done in Section 3.7.1.

Furthermore, the Load Balancer tries its best to group attack-correlated flows

together; however, it does not guarantee the grouping of all of them. Thus, some of

the attack-correlated flows will not be sent to the desired NIDPSs. Consequently,

it is possible that attacks go through the NIDPSs undetected. For example, in the

evaluation done in Section 3.7.2, if the threshold Ty was set at 6 then the DDoS

attack would not be detected even when the BLB algorithm was used.

The resulting Load Manager can prevent overload conditions and group flows

of the two major attacks of interest: DDoS attacks and port scans. We consider
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the Load Manager as an improvement over the Load Balancer because of its better

security. The only advantage that the Load Balancer has over the Load Manager

is that the Load Balancer can keep the loads of the NIDPSs more balanced.

In this chapter, we present the Correlation-based Load Manager – our second

solution to the traffic distribution problem. Unlike the Load Balancer’s objective,

the objective of the Load Manager is to group flows having the same dst-ip, src-ip,

and dst-port together while preventing overload conditions.

As briefly introduced in Section 1.4, our Load Manager delivers the following

features:

1. Identical Correlation Preservation: Flows having the same dst-ip, src-ip, and

dst-port are guaranteed to be sent to the same NIDPS. In other words, the

Load Manager preserves the identical correlations given by addresses and port

numbers. This maintains the anomaly-based detection accuracy of DDoS

attacks a port scans.

For example, using the Load Manager, all flows of a DDoS attack targeting a

victim are guaranteed to be sent to the same NIDPS. Therefore, if the NIDPS

is capable of detecting the attack in the first place, then the attack is detected.

We note that the grouping of flows is achieved at the cost of duplicating

traffic; however, unlike the approach proposed by Kruegel et al. [18], which

was discussed in Section 2.1, the amount of duplication generated by our Load

Manager is bounded.

Moreover, our Load Manager preserves flows. In other words, packets be-

longing to the same flow are sent to the same NIDPS. Thus, it fully supports

flow-based analysis.

2. Dynamic Load Distribution: The Load Manager considers the current NIDPSs’

loads while distributing traffic. In particular, the majority of the new traffic

is assigned to the NIDPS with the lowest load. This reduces the chance of

overloading any NIDPS when the loads of the other NIDPSs are low. Further-

more, the Load Manager provides a mechanism to optimally move flows from

one NIDPS to another when needed. The moving helps to prevent overload

conditions.

3. Customizable Correlation: Besides the default correlations which we initially

support, the Load Manager allows the addition of custom correlations. This

feature extends the capability of the Load Manager to guarantee the grouping
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of various flows of interest. As a result, advanced detection techniques, which

require the grouping of diverse flows, can be used.

We have implemented a prototype Load Manager. We evaluated both the per-

formance and the security of the Load Manager using simulation. The evaluation

results show that the Load Manager has a low overhead in terms of the delays it

introduces to packets. Moreover, it causes traffic duplication noticeably less than

the established upper bound. Most importantly, the results show that the Load

Manager successfully assigns attack-correlated flows of a variety of DDoS attacks

and port scans to the same NIDPS, thereby maintaining successful detection of the

attacks.

The rest of this chapter is organized as follows: In Section 4.2, we describe the

overall architecture of the Load Manager. Section 4.3 and Section 4.4 discuss the

design of the two main components of the Load Manager: the Flow Distributor and

the Flow Manager. In Section 4.5, we describe our implementation of the system.

Evaluation results are presented in Section 4.6. Finally, we conclude this chapter

in Section 4.7.

4.2 Overall Architecture

Figure 4.1 details the overall architecture of the Load Manager. The Load Manager

has two main components: the Flow Distributor and the Flow Manager.

The Flow Distributor’s first task is to distribute packets of previously assigned

flows to the corresponding NIDPSs. Its second task is to distribute new flows to the

NIDPSs based on both the current loads of the NIDPSs and the traffic correlation.

The new-flow distribution is done in such a way that identical correlations are

preserved. When there is an overloaded NIDPS, the Flow Manager’s task is to

optimally select a set of flows from this NIDPS to move to the lowest load NIDPS.

How these two components work is briefly described below.

When a new packet arrives, the Flow Distributor checks to see if this packet

belongs to a previously assigned flow. If it does then the packet is sent to the

corresponding NIDPS(s). Otherwise, the Flow Distributor checks the correlations

between the new flow, which starts with this packet, and the NIDPSs. Afterward,

the packet is duplicated to be sent to all the NIDPSs that the flow is correlated

with.
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Figure 4.1: Correlation-Based Load Manager Architecture

The Flow Distributor must be in operation all the time; meanwhile, the Flow

Manager only operates when an NIDPS becomes overloaded. When so, the Flow

Manager selects from this NIDPS a set of flows sufficient to reduce the load below

the predefined load value and with the minimum correlation with the rest of the

flows in the NIDPS to move to the lowest load NIDPS. By moving flows, the

Flow Manager prevents overload conditions. We also note that there are several

alternative ways that could be used to choose the NIDPSs that receive the moving

flows. For example, as discussed in Section 2.4, a low load threshold can be used

to determine the eligible NIDPSs to receive the moving flows. Then, the moving

flows can be distributed evenly to them, rather than distributed only to the lowest

load NIDPS.
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Table 4.1: Intrusions whose detections require the analysis of correlated flows

ID Name Description

1 DoS Machine Denial of service (DoS) attack to a target machine

2 DDoS Machine Distributed DoS attack to a target machine

3 DoS Application DoS attack to a target service

4 DDoS Application Distributed DoS attack to a target service

5 Scan Horizontal, vertical, and mixed scans

6 Distributed Scan Distributed horizontal, vertical, and mixed scans

4.3 Flow Distributor

In this section, we present the design of the Flow Distributor. First, we differentiate

intrusions whose detection requires the analysis of correlated flows from the ones

whose detection only requires the analysis of individual flows. We then discuss our

representation of NIDPS load. Afterward, we describe the Bloom filter – the data

structure that we utilize to make distribution decisions. Finally, we present our

Correlation-Based Flow Distribution algorithm, which is used to distribute packets

of previously assigned flows as well as new flows.

4.3.1 Applicable Intrusions

There are intrusions, such as viruses and worms, whose detection relies on analyzing

individual flows. As such, the detection of these intrusions is not affected by any

flow-based traffic distribution, which distributes packets belonging to the same

flow to the same NIDPS. Therefore, this type of intrusion is not the target of our

research. Instead, we focus on intrusions whose detection requires the analysis of

correlated flows.

Table 4.1 lists the most common intrusions whose detection requires the analysis

of correlated flows. We do not claim that this is a comprehensive list. In fact, one

can add additional intrusions to this table; however, the intrusions in this list are

very well-known in the research literature [15, 21, 27, 35, 40]; therefore, we consider

it a reasonable start. We note that the classification of the intrusions was adopted

from the classifications proposed by Mirkovic and Reiher [27], and by Weaver et al.

[41].

46



4.3.2 NIDPS Load

Although this topic is briefly discussed in Section 3.3, we visit it again because it is

important to the design of the Load Manager, and because we gain an additional

advantage with our choice of NIDPS load representation.

As there are numerous hardware and software resources an NIDPS might have,

for example, CPU, disk, memory, and open files, representing an NIDPS load is a

nontrivial task. For the purpose of our study, load of each NIDPS is represented

as the amount of traffic it handles per second. In particular, bits per second is

used to represent the NIDPS load. For example, an NIDPS load could be 40

Mbps. Although one might argue about our choice of load representation, this

representation is the most common solution to the load representation problem in

the context of network intrusion detection and prevention [2, 35, 43].

It is worth noting that packets per second would be a more accurate load mea-

sure for the NIDPSs than bits per sec if the Load Manager worked with NIDPSs

which only do anomaly-based detection based on the packet headers. When de-

signing the Load Manager, however, we want to have it work with general NIDPSs,

which do both signature-based and anomaly-based detection. In fact, the Load

Manager preserves flows to fully support signature-based detection. Because our

target is general NIDPSs, which spend 80–90% of their time analyzing packet pay-

load, we choose bits per second as a load measure for the NIDPSs.

An advantage that we gain by representing NIDPS load in this way is the direct

relation between the NIDPS load and the flow load. In particular, we can easily

determine the percentage contributed by a flow to the load of an NIDPS. This is

because a flow load is naturally represented in terms of its traffic rate. This enables

the Flow Manager to select appropriate flows to move when an NIDPS becomes

overloaded.

Lastly, to estimate load of an NIDPS, we take periodic samples of the raw traffic

going to that NIDPS. Then, we apply the standard Single Exponential Moving

Average method [30] on the samples to estimate the load. This linear aggregation

method helps us to alleviate the negative effect of traffic spikes in our estimation. In

fact, it has been shown to perform very well in the context of NIDS load balancing

[2], as discussed in Section 2.4.
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4.3.3 Bloom Filters

In order to determine if a packet belongs to a previously assigned flow, and more

importantly, to determine the correlations between a new flow and the NIDPSs, we

use Bloom filters.

Background

A Bloom filter, originally introduced by Bloom [4], is a space-efficient probabilistic

data structure that is used to test whether a set contains a certain element. In the

context of this study, it is used to test whether an NIDPS has a certain flow, and

whether an NIDPS monitors a certain src-ip, a certain dst-ip, or a certain dst-port.

In short, a Bloom filter is an array of m bits and has k different hash functions.

Each of these functions maps an element to one of the m bits. Adding an element

involves hashing it using these functions and setting all the mapped bits to 1.

Likewise, querying an element involves checking if all the mapped bits are 1. If

one of the bits is 0 then the element is not in the set. The followings are two

fundamental properties of a Bloom filter:

1. False positives are possible, but false negatives are not.

2. Elements can be added to the set but not removed.

The primary reason why we use Bloom filters in our design is their space and

time advantages. A Bloom filter has a significant space advantage over other data

structures, such as hash tables, linked lists, and arrays. While these data structures

require storing the elements themselves, a Bloom filter with a low error rate (about

1%) requires storing only several bits per element, independent of the element size.

As a result, a Bloom filter of several KB can handle thousands of flows with low

error rate. Furthermore, adding and querying an element takes a constant time

O(k), regardless of the number of elements the set already has. This, therefore,

supports the real-time requirement of adding and querying flows.

Utilizing Bloom Filters

In order to assign packets in a way that preserve flows and correlation information,

we construct two types of Bloom filter: the Flow Bloom (FB) filters and the Cor-

relation Bloom (CB) filters. The FB filters help to preserve flows, while the CB

filters help to preserve the correlation information.
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Table 4.2: Correlation Bloom filters

ID Name Description

1 dst-ip CB filter Bloom filter containing a set of dst-ip’s

2 dst-port CB filter Bloom filter containing a set of dst-port ’s

3 src-ip CB filter Bloom filter containing a set of src-ip’s

First, each NIDPS has one FB filter. Whenever a new flow is assigned to an

NIDPS, this NIDPS’s FB filter is updated by adding the flow. At a later time, if

a packet of this flow arrives, the Flow Distributor checks the FB filters of all the

NIDPSs to determine which NIDPSs contain the flow. Then the packet is sent to

the corresponding NIDPSs.

Secondly, for each NIDPS, three CB filters are constructed. These three filters

contain sets of dst-ip’s, dst-port ’s, and src-ip’s that the NIDPS is monitoring. These

filters are termed “dst-ip CB filter”, “dst-port CB filter”, and “src-ip CB filter”

respectively and are listed in Table 4.2.

When a new flow comes, if this new flow’s src-ip, dst-ip, or dst-port belongs to

one of the three corresponding CB filters of an NIDPS, then this flow is said to

be correlated with this NIDPS and is sent to this NIDPS. The source of the traffic

duplication comes from the scenarios when a flow is correlated to multiple NIDPSs.

In these scenarios, the flow is sent to all of the NIDPSs that it is correlated with.

We note that only CB filters for dst-ip, dst-port, and src-port are constructed

because these sufficiently support the grouping of flows of the default intrusions

listed in Table 4.1. Nevertheless, additional CB filters might be added for the

purposes of detecting other attacks and advanced detection techniques. We discuss

this in detail in Section 4.3.5.

4.3.4 Correlation-Based Flow Distribution Algorithm

Here, we describe the Correlation-Based Flow Distribution (CFD) algorithm.

First, we note that the CFD algorithm is flow-based, which means it sends all

packets belonging to the same flow to the same NIDPS. Secondly, the CFD preserves

the correlation information, which means no correlation information is lost during

the distribution. Finally, the CFD makes extensive use of the FB and CB filters to

distribute the traffic appropriately. The essence of this algorithm lies in the querying

and updating of the filters. We provide the pseudocode of the CFD algorithm in

Algorithm 3, and we describe it below.
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Algorithm 3 Correlation-BasedFlowDistribution(p)

1: determine if p belongs to a previously assigned flow by checking the FB filters

2: if p belongs to a previously assigned flow then

3: distribute p to the NIDPSs that the flow was assigned to

4: return

5: end if

6: determine the correlated NIDPSs of flow f of p by checking the CB filters

7: if f is correlated with some NIDPSs then

8: distribute f to those NIDPSs

9: update FB filters of those NIDPSs to contain f

10: update CB filters of the correlated NIDPS with the lowest load to contain

new fields of f

11: else if f is not correlated with any NIDPS then

12: distribute f to the lowest load NIDPS

13: update FB filter of this NIDPS to contain f

14: update CB filters of this NIDPS to contain new fields of f

15: end if

16: return

When a packet comes, it could belong to an existing flow, which was assigned

to an NIDPS, or it could be the first packet of a new flow. To determine this,

the packet is checked against the FB filters (Line 1). If it belongs to a previously

assigned flow, the FB filters also tell which NIDPSs that the flow was assigned to.

The packet is then sent to those NIDPSs (Line 2–5). This case does not involve

updating the FB and CB filters.

On the other hand, if the packet is the first packet of a new flow, then we

examine the correlations that this flow has with all the NIDPSs. These correlations

are identified by checking the CB filters (Line 6). If this new flow is correlated

with some NIDPSs then it will be sent to those NIDPSs. Furthermore, the FB

filters of those NIDPSs will be updated by adding this flow. In addition, if this flow

introduces any new dst-ip, dst-port, and src-ip values, these values will be added

to the corresponding CB filters of the correlated NIDPS with the lowest load (Line

7–10).

In the other case, if this new flow is not correlated with any of the NIDPSs,

then it is assigned to the NIDPS with the lowest load. The FB filter of this NIDPS

is updated by adding the flow, and the CB filters of this NIDPS are updated by

adding the fields of the flow (Line 11–15).
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We note that the CFD algorithm always takes into account the current loads of

the NIDPSs while adding a new flow to an FB filter or a new field to a CB filter. In

particular, it always adds a new flow or a new field to the FB filter or the CB filter

of the NIDPS with the lowest load. This minimizes the probability of overloading

any already heavily loaded NIDPS.

4.3.5 Customizable Correlation

By default, our Flow Distributor preserves the identical correlations given by

dst-ip, dst-port, and src-ip. In particular, flows having the same value of any one of

these fields are guaranteed to be sent to the same NIDPS. Furthermore, our Flow

Distributor can support additional correlations by adding appropriate CB filters.

We next describe how the Flow Distributor supports a new correlation.

Let δ be the new correlation that we want to support. That is if flows have

the correlation δ then they must be sent to the same NIDPS. For example, δ could

specify a group of various dst-ip’s, so that flows having dst-ip’s belonging to this

group will be sent to the same NIDPS. We construct a CB filter for δ by adding the

appropriate field values to an empty Bloom filter. For instance, adding the above

dst-ip’s to a new Bloom filter. Let ∆ be the CB filter of δ.

Following, we adjust the CFD algorithm to accommodate the new CB filter ∆.

The new algorithm is termed ∆-CFD and is detailed in Algorithm 4. The changes

made to the original CFD algorithm to produce this algorithm are as follows: At

the beginning, ∆ is not assigned to any particular NIDPS. When a new flow f

comes, right before checking for the default CB filters, we check if f belongs to

∆. If so then we assign the CB filter ∆ to the current lowest load NIDPS, and we

distribute f to this NIDPS (Line 8–10). After the assignment of ∆, future flows

which belong to ∆ will be sent to the NIDPS which owns ∆ (Line 11–12).

In the case there are multiple ∆’s, i.e. when there are multiple custom correla-

tions, the ∆’s would be assigned to the NIDPSs similarly: each of the ∆’s will be

assigned to the lowest load NIDPS when its first matching flow arrives. After that,

when a new flow comes, the already assigned ∆’s have to be checked before the CB

filters are checked.

By supporting additional correlations, the Flow Distributor allows for the group-

ing of diverse flows, which enables advanced detection techniques, such as detecting

port scans by analyzing connection attempts to the unused address space and de-

tecting various attacks derived from known attack graphs.
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Algorithm 4 ∆-Correlation-BasedFlowDistribution(p)

1: determine if p belongs to a previously assigned flow by checking the FB filters

2: if p belongs to a previously assigned flow then

3: distribute p to the NIDPSs that the flow was assigned to

4: return

5: end if

6: determine if flow f of p belongs to ∆

7: if f belongs to ∆ then

8: if ∆ was not assigned then

9: assign ∆ to the NIDPS with the lowest load

10: distribute f to this NIDPS

11: else

12: distribute f to the NIDPS that owns ∆

13: end if

14: end if

15: determine the correlated NIDPSs of f by checking the CB filters

16: if f is correlated with some NIDPSs then

17: distribute f to those NIDPSs

18: update FB filters of those NIDPSs to contain f

19: update CB filters of the correlated NIDPS with the lowest load to contain

new fields of f

20: else if f is not correlated with any NIDPS then

21: distribute f to the lowest load NIDPS

22: update FB filter of this NIDPS to contain f

23: update CB filters of this NIDPS to contain new fields of f

24: end if

25: return
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4.3.6 Duplication Upper Bound

Here, we show that the amount of packet duplication created by the Flow Distrib-

utor is bounded. This duplication is needed to send flows having the same dst-ip,

src-ip, or dst-port to the same NIDPS.

Lemma 1. Assuming that the Bloom filters have 0% error rate, the maximum

amount of packet duplication introduced by the Flow Distributor is 200%.

Proof.

Let f be a new flow. First, when f arrives, if it is correlated with multiple

NIDPSs then it is duplicated to be assigned to all of them. As a result, the amount

of duplication is dependent on the number of correlated NIDPSs.

Secondly, because each new value dst-ip, dst-port, or src-ip of any previous

flow is only added once to the corresponding CB filters of an NIDPS by the CFD

algorithm, the CB filters of the NIDPSs are mutually exclusive. In other words,

given a value of dst-ip, dst-port, or src-ip, it cannot belong to more than 1 CB filter.

As a result, each of the dst-ip, dst-port, and src-ip of f can belong to a maximum

of 1 CB filter. Thus, f could be correlated with a maximum of 3 CB filters.

Finally, given any 3 CB filters, they can belong to a maximum of 3 NIDPSs (each

NIDPS owns 1 CB filter). Hence f is correlated with a maximum of 3 NIDPSs.

In this case, 2 additional copies of f are produced to be sent to the 2 additional

NIDPSs. Thus, the maximum amount of packet duplication is 200%.

As discussed in Section 4.3.3, Bloom filters have false positives, which may

introduce additional amount of packet duplication; however, if the Bloom filters

are constructed with reasonable sizes – a Bloom filter with 1% error rate requires

only several bits per element that it stores – their error rates will be small. Thus,

the amount of packet duplication due to Bloom filters’ errors is negligible.

It must also be noted that the duplication upper bound does not apply when

the Flow Distributor implements additional correlations. This is because in order

to support the additional correlations, the Flow Distributor has to duplicate more

traffic.

4.4 Flow Manager

In this section, we present the design of our Flow Manager. When an NIDPS

becomes overloaded, i.e., its load is higher than a predefined threshold Tload, the
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Flow Manager selects from this NIDPS an optimal set of flows, which has the least

cost and a satisfactory benefit, to move to the lowest load NIDPS. We first describe

the need to move flows, its expense, and our approach to it. Then, we describe the

cost and the benefit of moving flows. We then formalize the problem of selecting

flows to move as an optimization problem, as well as provide an approximation to

it. Finally, we present the Correlation-Based Flow Moving algorithm, which is the

heart of the Flow Manager.

4.4.1 Moving Flows

Why Moving Flows?

Although the Flow Distributor usually distributes flows to the NIDPSs with the

lowest load, there remains the risk of an NIDPS becoming overloaded due to the

burstiness of network traffic. When an NIDPS is overloaded, it drops packets.

As a result, intrusions whose packets are dropped might slip through the NIDPS

undetected. This seriously compromises the security provided by the cluster. We

argue that although moving flows involves the loss of some detection states – as we

discuss subsequently – it is still more desirable than random packet drops.

In fact, the idea of dynamically moving flows has been included in several recent

approaches [2, 35]. In their approaches, there is usually a threshold and when the

load of an NIDPS reaches that threshold, some of the flows going to that NIDPS are

moved to other NIDPSs. We have adopted the threshold-based approach; however,

we consider moving flows as our last resort to guard against overload conditions,

not the main method for providing load balancing, in contrast to the work of others

[2, 35].

The Expense of Moving Flows

The primary expense of moving flows is the loss of detection states. Since modern

NIDPSs, such as Snort [34], Bro [31], and Cisco IPS [7], are stateful, they keep

track of the states of the connections to accurately detect and prevent intrusions.

Moving flows, however, renders the states at both the source and the target NIDPSs

incomplete. This affects the detection accuracy for intrusions whose effects can be

seen only by monitoring the moving flows.

We note that the loss of detection states when moving flows is very difficult to

avoid. In particular, in order to preserve these detection states, additional complex
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hardware and software are required. We discuss one possible way to preserve these

detection states in Section 5.2. Nevertheless, the loss of detection states caused by

moving flows is still preferable to random packet drops. This is because random

packet drops, in the worst case, might cause the loss of all detection states of the

overloaded NIDPS.

Another notable expense when moving flows is the loss of correlation informa-

tion. Since the correlations among flows in an NIDPS plays an important role in

the anomaly-based detection of the NIDPS, this loss of correlation might decrease

detection accuracy. For instance, if some early attack flows of an intrusion are

moved in the middle of the intrusion, then the NIDPS will lose the correlations

between those flows and the later attack flows. As a result, this intrusion might

avoid the NIDPS’s detection. Unfortunately, this expense was overlooked by the

approaches taken by others [2, 35].

Our Approach

Our objective is to develop a flow moving mechanism that provides a desired re-

duction of load of the overloaded NIDPS, while minimizing the loss of correlation

information. Before going into detail in subsequent sections, we briefly describe our

approach here.

When there is an NIDPS whose load is over a predefined threshold, the Load

Manager activates. It first collects the active flows of the overloaded NIDPS. These

flows serve as the candidates for the move. It then executes an algorithm, which

we describe subsequently, to select a set of flows to move. This set of flows has the

desired amount of load and the minimal amount of correlation with the other flows

in the NIDPS.

Finally, we note that the process of moving flows is computationally expensive

since it involves collecting active flows, executing an algorithm, and so on. As a

result, in order to ensure the Load Manager’s real-time assignment of packets, this

process must be run as a separate thread or process, utilizing a different core or

processor. The purpose of this is to ensure that the Flow Manager does not interfere

with the Flow Distributor except when updating the Bloom filters.

4.4.2 Cost – Correlations among Flows

Within the same NIDPS, a flow has a certain degree of correlation with other flows.

This correlation is translated directly into a cost when the flow is moved to another
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Table 4.3: Correlations and the intrusions that they entail

ID Correlation Intrusion ID

1 none none

2 {dst-ip} 1,2,5,6

3 {dst-port} 3,4,5,6

4 {src-ip} 1,3,5

5 {dst-ip,dst-port} 1,2,3,4,5,6

6 {dst-ip,src-ip} 1,2,3,5,6

7 {dst-port,src-ip} 1,3,4,5,6

8 {dst-ip,dst-port,dst-ip} 1,2,3,4,5,6

NIDPS. Intuitively, if a flow has a very little correlation with other flows within the

same NIDPS, then moving this flow away costs very little and vice versa. Therefore,

in order to determine the cost of moving a flow, we fundamentally have to identify

the degree of correlation it has with other flows.

We construct a correlation table, Table 4.3, based on the intrusions listed in

Table 4.1 and the information given by the flow tuples. Table 4.3 lists all the

correlations given by the 3-tuples: dst-ip, dst-port, and src-ip; and the intrusions

each correlation entails. For example, if two flows have the same dst-ip, then they

might belong to a DoS machine (1), a DDoS machine (2), a vertical scan (5), or

a distributed vertical scan (6). Therefore, separating flows having the same dst-

ip would negatively affect the detection accuracy of these intrusions.

We next describe how a cost for moving each flow in an NIDPS is calculated. At

a particular point in time, for each flow in the NIDPS, we identify its correlations

with every other flow in the same NIDPS. We note that if two flows have the

same dst-ip and dst-port, then their correlation is {dst-ip,dst-port} but not {dst-ip}
or {dst-port} alone and so on. Afterward, for each correlation, a score is given

depending on the intrusions that the correlation entails, which is based on Table

4.3. Lastly, we total the scores to get the cost.

For example, Table 4.4 illustrates how the cost of moving a flow f1 in an NI-

DPS having four flows f1, f2, f3, and f4 is calculated. Regarding the scoring, for

simplicity, we give every intrusion a weight of one, so all intrusions have the same

weight. One could give different weights to different intrusions, depending on their

severities. For instance, if one gives intrusion 1 weight 2 and other intrusions weight

1, then the corresponding scores are 5, 4, and 6 instead of 4, 3, and 5. Thus, the

cost is 15 instead of 12.
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Table 4.4: Calculation of the cost of moving flow f1 in an NIDPS having four flows

f1, f2, f3, and f4

Flows Correlation Intrusions Entailed Score

f1 and f2 {dst-ip} 1,2,5,6 4

f1 and f3 {src-ip} 1,3,5 3

f1 and f4 {dst-ip,src-ip} 1,2,3,5,6 5

Cost 12

Formally, the cost of moving a flow in an NIDPS is calculated as follow:

ci =
n∑

j=1,i 6=j

m∑
k=1

wkai,j,k .

In this equation, ci is the cost of moving flow i, n is the number of flows in the

NIDPS, m is the number of intrusions, wk is the weight of intrusion k, and ai,j,k

equals 1 if the correlation between flow i and flow j entails the intrusion k and 0

otherwise.

In summary, the cost of moving a flow in an NIDPS is a direct translation of

how much it correlates with other flows in the same NIDPS. Our calculation of cost

is tightly connected with the frequently experienced intrusions, whose detection

requires analysis of correlated flows. Lastly, administrators could customize the list

of intrusions, as well as the weight of each intrusion, to achieve the most suitable

cost calculation for their domains.

4.4.3 Benefit – Reduced Load

While the cost of moving previously assigned flows from one NIDPS to another is

the loss of correlation information, the benefit of it is the reduced load of the former

NIDPS. This amount of load is discussed here.

First, given a set of flows, we need to be able to calculate its load in order to

determine the benefit of moving it. The load of a flow set equals the sum of the

load of its flows and the load of each flow is estimated similarly to the NIDPS load,

as discussed in Section 4.3.2.

Secondly, suitable values of the benefit (reduced load) should be specified de-

pending on the overall system load and the burstiness of the traffic. When the

overall system load is high, the load of every NIDPS in the system may be high.
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In this case, giving the benefit a low value is preferable since there is little room to

move the load around. In fact, if the benefit value is set high, then a substantial

amount of load may be moved from the overloaded NIDPS to another NIDPS. In

this case, the latter NIDPS is very likely to become overloaded since its load is

already high. On the contrary, when the overall system load is low, a high value of

benefit becomes more viable as there is more room to move the load; however, there

is a high cost associated with the high benefit value since more flows are moved.

With regard to the burstiness of the traffic, it is preferable to give the benefit

a high value if the traffic is bursty. This would give the overloading NIDPS more

room to deal with the traffic spikes. Otherwise, a smaller benefit value is better

suited for more uniform traffic.

Finally, if the benefit value is too low, the overloading NIDPS would be more

likely to become overloaded again in a short time. This is because only a small

amount of load is relocated. Since moving flows is costly in terms of computation,

this setting should be avoided.

4.4.4 Optimal Flow Selection Problem

The optimal flow selection problem (OFSP) is to find in an NIDPS a set of flows,

which has the minimum cost of moving, i.e., the least amount of correlation with

the other flows, and has a total benefit higher than or equal to a specified benefit

value.

Let n be the number of flows the NIDPS has. For each flow i, denote its benefit

bi and its cost ci. Let B be the predefined benefit value. Then, the OFSP can be

formulated as a Binary Integer Programming problem:

Minimize
n∑

i=1

xi ci ,

subject to
n∑

i=1

xi bi ≥ B ,

xi = 0 or 1 , i = 1, · · · , n ,

where xi is a binary integer: xi = 1 if flow i is selected, and xi = 0 otherwise. The

OFSP can be solved by simply converting it to a standard 0-1 Knapsack problem

(KP) through the change of variable:
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yi = 1− xi, i ∈ [1, n] .

After the change of variable, the following standard KP needs to be solved for

yi:

Maximize
n∑

i=1

yi ci ,

subject to
n∑

i=1

yi bi ≤
n∑

i=1

bi −B ,

yi = 0 or 1 , i = 1, · · · , n .

Here ci and bi could be thought of as value and weight of item i correspondingly.

Also, the capacity of the knapsack is
∑n

i=1 bi−B. Once the yi’s are solved, finding

xi’s, the solution to the OFSP, is straightforward.

4.4.5 Heuristic Flow Selection Algorithm

Solving OFSP primarily involves solving the standard KP. The KP is a very well-

known NP-hard problem, which cannot be solved in polynomial time. For the

purpose of this study, because of the real-time requirement of the flow selection, we

choose the popular greedy algorithm described by Martello and Toth [25] to find

the y’s. Afterward, we derive the x’s from the y’s. The details of our approximation

– the Heuristic Flow Selection algorithm – can be found in Appendix A.

It is worth noting that because the KP has been studied extensively in the

combinatorial optimization research community, there are other algorithms to find

better approximate solutions, as well as the optimal solution [25]. However, these

algorithms usually require more computational time. Nevertheless, there is room

for further improvement.

4.4.6 Correlation-Based Flow Moving Algorithm

After the flows are selected, in order to complete the move, Bloom filters of the

source NIDPS and the target NIDPS have to be updated. In particular, the FB

and CB filters of the source NIDPS have to be reconstructed to exclude the selected

flows and their fields since Bloom filters do not support removals. Meanwhile, for
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Algorithm 5 Correlation-BasedFlowMoving(S,B)

Require: An NIDPS S, a predefined benefit B

1: build the set of active flows Factive of S

2: Fmove = HeuristicFlowSelection(B,Factive)

3: T = NIDPS with the lowest load

4: Reconstruct FB filter of S to exclude flows in Fmove

5: Reconstruct CB filters of S to include only fields which are in both the original

filters and the remaining flows

6: Update FB filter of T to include flows in Fmove

7: Update CB filter of T to include fields in the flows being moved

8: return

the target NIDPS, its FB filter is updated by adding the selected flows, and its CB

filters are updated by adding the fields which are removed from the source NIDPS’s

CB filters. The complete Flow Manager’s moving algorithm – Correlation-Based

Flow Moving (CFM) algorithm - is presented in Algorithm 5.

4.5 Implementation

We have implemented a prototype Load Manager using the libpcap [22]. Besides our

CFD algorithm, for the purpose of comparison, the Load Manager also has a hash-

based distribution algorithm. In particular, we implemented a simple additive hash:

(src-ip + dst-ip + src-port + dst-port) mod n, where n is the number of NIDPSs.

Bloom filters are constructed to be capable of handling up to 1 million elements

(q = 106) with a low error rate at 1%. Specifically, each Bloom filter is of size

p = 107 (bit) – about 1.2 MB – and has the optimal number of hash functions:

k = 0.7p
q

= 7. The optimal value k is as presented in the work of Putze et al.

[33]. We construct the 7 hash functions based on an efficient and effective method

introduced by Kirsch and Mitzenmacher [17]. In particular, the 7 hash functions

are constructed as follows:

gi = (h1 + i h2) mod p , i = 1 · · · 7 ,

where h1 = (src-ip + src-port + dst-ip + dst-port) mod p ,

and h2 = (src-ip + src-port− dst-ip− dst-port) mod p .
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For each NIDPS, we take a sample of the traffic going to it every 1 second to

estimate its load. For the Single Exponential Moving Average [30], the number of

samples for the initial calculation is s = 30. In other words, the first estimated load

is the mean of 5 initial samples of load. Also, the smoothing factor is α = 2
s+1

. The

smoothing factor is essentially the weight of the current load in the estimation:

estimated load = α · current load + (1− α) · last load .

Flow load is estimated similarly but with s = 5.

Intrusions listed in Table 4.1 are initially supported and they all have weight 1

in the implementation. We also note that the Flow Manager is implemented to run

as a separate thread beside the Flow Distributor. This thread only interferes with

the distribution process when it updates the filters. We have done this to ensure

real-time traffic distribution.

Finally, for the simulations, the prototype Load Manager is run on a system

having a 2.0 GHz Intel Duo Core CPU, 2 GB RAM, and 2× 1 Gbps NICs; and it

is used to distribute traffic to 8 NIDPSs.

4.6 Evaluation

4.6.1 Performance

In order to evaluate the performance of the Load Manager, we used the same trace

file that was previously used to evaluate the performance of the Load Balancer in

Section 3.7. In particular, this is an hour trace captured from 12:00 to 13:00 on

Tuesday, December 2nd, 2003, by NLANR. This hour was one of the busiest hours

of the network. During this hour, there were 200 new flows per second and 14 Mbps

traffic on average [37].

We also note that in the two performance evaluations conducted, which eval-

uated the system overhead and the packet duplication amount, there was no flow

movement. The NIDPSs’ capacity was set high enough so that no flow movement

was needed.

System Overhead

We conducted the first simulation to evaluate the system overhead in terms of

delays that the Load Manager introduces to the packets. In this simulation, the
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Figure 4.2: System Overhead – Packet Assignment Time

Load Manager used the trace file as its input. It read the packets off the trace file

and distributed them using the CFD algorithm. We recorded the time required to

run the CFD algorithm for all the packets. The recorded time was the difference

between the two timestamps, one before and one after the execution of the CFD

algorithm. The timestamps were taken using the Java function System.nanoTime().

We also note that the packets were not actually sent to the NIDPSs since it was

not necessary.

Recall that when a new packet arrives, we check the FB and CB filters to assign

the packet correspondingly. In addition, in some scenarios, FB and CB filters need

to be updated. The overhead associated with each packet is the time required to

query and update the filters. More specifically, it is the time required to calculate

the different hash functions of the Bloom filters for querying and updating them.

Figure 4.2 plots the delays that the Load Manager introduces to a sampling

of 1000 consecutive packets. It can be observed from this graph that there are 3

distinct classes of delays. The lowest class has about 10 microseconds (µs) delay,

the middle class has about 20 µs delay, and the highest class has above 20 µs delay.

By analyzing the CFD algorithm, we learned that these classes corresponded to the

following three different scenarios:

1. The new packet belongs to some previously assigned flows: In this scenario, the

Load Manager introduces the lowest amount of delay to the packet because
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only the FB filters of the NIDPSs are queried and there is no update.

2. The new packet starts a new flow but is not correlated with an NIDPS: In this

scenario, additional CB filters are queried, and the FB and CB filters of the

NIDPS with the lowest load are updated.

3. The new packet starts a new flow and is correlated with some NIDPSs: In this

scenario, additional CB filters are queried, FB filters of all correlated NIDPSs

and CB filters of the correlated NIDPS with the lowest load are updated.

Overall, the delays introduced to the packets by the Load Manager are very

low since they are on the order of µs. In fact, the average delay per packet for the

whole trace is 17 µs (not shown on the graph). As a result, we conclude that the

Load Manager has a very low overhead in terms of the delays introduced to the

packets. With our prototype implementation and our hardware, the Load Manager

can provide real-time traffic distribution to 8 NIDPSs for up to 500 Mbps traffic.

Duplication Amount

As discussed previously, the preservation of correlation is achieved at the cost of

duplicating traffic. Although we proved in Section 4.3.6 that the amount of packet

duplication is bounded by 200% – assuming that Bloom filters have no errors and

that there are no additional correlations – it is valuable to learn what this amount

could be in practice. Here, we conduct a simulation to measure the amount of

packet duplication introduced by the Load Manager over time.

Similar to the previous simulation, in this simulation, the Load Manager read

packets off the trace file then assigned them using the CFD algorithm. We measured

both the number of packets taken in, Pin (packet), and the number of packets sent

out, Pout (packet), by the Load Manager. Then, we used them to calculate the

packet duplication amount, Pdup (%), as follows:

Pdup =
Pout − Pin

Pin

· 100%

Figure 4.3 plots the packet duplication amount reported at every 5-minute inter-

val of the simulation. It can be observed from the graph that the packet duplication

amount for this trace changes gently over time and has value about 115%. This

amount of packet duplication, however, is a lot less than the upper bound 200%.
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Figure 4.3: Duplication Amount over Time

We note that the amount of packet duplication might vary from trace to trace.

In particular, it depends on the diversity of the traffic as well as the rate of the new

connections; however, the result of this simulation gives us a valuable observation of

what the amount of packet duplication could be in practice. In this particular case,

the amount of packet duplication is significantly less than the established packet

duplication upper bound and is about 115%.

The packet duplication is the cost of grouping flows having the same dst-ip,

src-ip, or dst-port together. This cost, however, can be compensated by adding

additional NIDPSs to a cluster because the amount of duplication does not depend

on the number of NIDPSs. In particular, the more NIDPSs a cluster has, the more

tolerable the duplication because the additional load caused by the duplication is

distributed to more NIDPSs.

4.6.2 Security

In order to evaluate the security of the Load Manager, we conducted a variety of

simulations. These simulations involved both background traffic and attack traffic.

Here, we first describe the network model and the background traffic used in the

simulations. We then present the evaluation results related to various DoS attacks

and port scans.
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Network Model and Background Traffic

The internal network that we simulated was a Class B network, and 10% of the

address space was occupied. Thus, the protected internal network had about 6500

active IP addresses.

Variable background traffic was generated as follows: Source and destination

addresses were randomly generated such that 65% of the flows were going to or

coming from 10% of the occupied IP addresses of the internal network; the flows

are randomly generated such that 80% of the load came from 20% of the flows;

the traffic rate was about 100 Mbps; there were about 100 new flows per second;

packets had sizes uniformly distributed from 500 to 1500 bytes; and flows’ durations

were uniformly distributed from 1 to 30 seconds.

DDoS Attacks

We carried out 9 simulations to evaluate how the Load Manager supports the

grouping of attack flows for 9 different (D)DoS attacks. The generated attacks

were all UDP flood attacks, which involved a number of attackers sending large

numbers of UDP packets to random ports on a single victim. Nonetheless, the

attacks varied in the number of machines used for the attacks, the attack duration,

and the rate of the attack traffic. Meanwhile, we used the same background traffic

described above for all 9 simulations. For each simulation, both the CFD algorithm

and the hash-based algorithm were used, and we recorded the assignment of the

attack packets. We also note that in these simulations, the NIDPSs’ capacity was

set high enough so that there was no flow movement.

Table 4.5 lists the generated (D)DoS attacks and the NIDPSs which received

100% of the attack packets when the CFD algorithm was used. The results of the

simulations showed that for each of the attacks, when the CFD algorithm was used,

there was always at least one NIDPS which received all the attack packets.

Figure 4.4 and Figure 4.5 detail the distribution of the attack packets of two

of the 9 generated (D)DoS attacks when both of the algorithms were used. The

plotted attacks are 2 and 8. It can be observed from the graphs that when the

hash-based algorithm was used, the attack packets were fairly evenly distributed to

all of the NIDPSs. Thus, there was no NIDPS which could receive all of the attack

packets.

In conclusion, the evaluation results validate that the Load Manager successfully

grouped the flows of the (D)DoS attacks together. For each of the simulated attacks,
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Table 4.5: Various simulated (D)DoS attacks

DDoS No. of No. of Duration Rate NIDPSs receiving

ID Attackers Victims (sec) (pkt/sec) 100% atk-packet

1 1 1 5 5000 1, 5

2 1 1 30 10000 1, 5

3 1 1 60 20000 1, 5

4 500 1 5 5000 1

5 500 1 30 10000 1

6 500 1 60 20000 1

7 1000 1 5 5000 1

8 1000 1 30 10000 1

9 1000 1 60 20000 1

Figure 4.4: The Distribution of Attack Packets of the DDoS 2
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Figure 4.5: The Distribution of Packets of DDoS 8

when the CFD algorithm was used, the Load Manager guaranteed that there was

at least one NIDPS which received all packets of the attack. Thus, this NIDPS had

all the available correlation information to detect and prevent this attack.

Port Scans

We conducted 8 simulations with different port scans to evaluate how the Load

Manager supports the grouping of the scans’ flows. Similar to the DDoS evalua-

tion, we use the same background traffic in all the simulations. Furthermore, all

of the scans were TCP SYN scans. However, the scans varied in the number of

scanning hosts, the scan duration, the number of target machines, and the number

of target ports. For each simulation, both the CFD algorithm and the hash-based

algorithm were used, the target machines and the target ports were randomly se-

lected, and we recorded the assignment of every scan packet. We also note that in

these simulations, the NIDPSs’ capacity was set high enough so that there was no

flow movement.

Table 4.6 lists the 8 scans that we simulated, together with the NIDPSs which

received 100% of the scan packets when the CFD algorithm was used. The last

column of the table shows that, for each scan, there was at least one NIDPS which

received 100% of the scan packets.

Figure 4.6 further shows the distribution of the packets of scan 7 when both

the CFD algorithm and the hash-based algorithm were used. Similar to the DDoS
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Table 4.6: Various simulated port scans

Scan Number Duration Number Number NIDPSs receiving

ID of Scan (sec) of Target of Target 100% atk-packet

Hosts Machines Ports

1 1 5 1 1024 1,5

2 1 60 1 1024 1

3 100 5 1 1024 1

4 100 60 1 1024 4

5 1 5 1000 1 1

6 1 60 1000 1 1

7 100 5 1000 1 5

8 100 60 1000 1 4

Figure 4.6: The Distribution of Packets of Scan 7
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evaluation result, when the hash-based algorithm was used, the packets were scat-

tered; thus, each NIDPS only received a small number of scan packets. On the

other hand, when the CFD algorithm was used, NIDPS 5 received 100% of the

scan packets.

It is worth noting that with regard to sophisticated scans, which use many

scanning hosts to scan many ports of many victims over a long duration, the Load

Manager might not be able to group all flows of these scans together due to the

diversity of the scans’ flows. Nevertheless, these scans might be detected by moni-

toring the number of connection attempts to unused address space of the protected

networks. In this case, custom correlations might help to group flows of these

connection attempts together, thereby supporting the detection of such scans.

In summary, the results of this evaluation showed that the Load Manager suc-

cessfully grouped flows of the port scans together. For each of the simulated scans,

when the CFD algorithm was used, the Load Manager guaranteed that there was at

least one NIDPS which received 100% of the scan packets. Therefore, if this NIDPS

was capable of detecting the scan then it would detect the scan successfully.

4.6.3 Flow Movement

Effect of Flow Movement on NIDPSs’ Loads

We conducted two simulations to evaluate the effect of flow movement on loads

of the NIDPSs when the cluster is lightly loaded. In both simulations, variable

background traffic as described in Section 4.6.2 was generated. Recall that the

background traffic was about 100 Mbps. The Load Manager received the traffic

and assigned it to the NIDPSs using the CFD algorithm. Both the simulations

were run five times with different seeds for the random traffic generator. During

the simulations, we recorded the NIDPSs’ load.

In the first simulation, there was no flow movement. The NIDPSs’ capacity

was set high enough so that no flow movement was needed. In particular, both

the NIDPSs’ capacity and the Flow Manager’s activation threshold were set to 100

Mbps. In the second simulation, there were flow movements because loads of some

NIDPSs were larger than the Flow Manager’s activation threshold. Specifically, the

NIDPSs’ capacity was set to 50 Mbps and the threshold was set to 30 Mbps. With

regard to the flow movement, the benefit (reduced load) was set to 10 Mbps, and

the Flow Manager checked the NIDPSs’ loads every 10 seconds to move flows if

necessary.
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Figure 4.7: Loads of the NIDPSs over Time without Flow Movement (top) and

with Flow Movement (bottom)
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Figure 4.8: Loads of the NIDPSs over Time with Flow Movement

Figure 4.7 plots average values of loads of the NIDPSs in both simulations. We

note that the x-axis does not begin at zero but begins at time 10 seconds. During

the first 10 seconds, the system establishes an initial load. On the one hand, it

can be observed from the top graph that when there was no flow movement, the

loads of the NIDPSs were significantly unbalanced. In particular, the load of the

first NIDPS was noticeably higher than the rest. The first NIDPS could have

dropped packets due to being overloaded if the NIDPSs’ capacity had been lower

than 70 Mbps. On the other hand, it can be observed from the bottom graph that

when there were flow movements, the loads of the NIDPS were more balanced. In

particular, the loads of the NIDPSs were kept below the specified threshold of 30

Mbps.

In conclusion, flow movements help to balance NIDPSs’ load. In particular, if

overall traffic load is not high and an activation threshold is reasonably chosen then

the flow movements can help to keep the NIDPSs’ loads below this threshold.

Effect of Flow Movement on Port Scans

We conducted 8 simulations to evaluate the effect of flow movement on the detection

accuracy of port scans when overall load of the cluster was high.

In these simulations, the same background traffic as the previous evaluation was

generated. There were flow movements during the simulations. The Flow Manager’s
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activation threshold was set to 25 Mbps, which was less than the threshold used in

the previous evaluation. The reason was that we wanted flow movements to occur

more often during the simulations. With regard to the moving, the benefit (reduced

load) was set to 10 Mbps, and the Flow Manager checked the NIDPSs’ loads every

10 seconds to move flows if necessary.

Figure 4.8 plots the average values of the NIDPSs’ loads of five runs with dif-

ferent seeds for the random traffic generator. As in Figure 4.7, the x-axis begins

at time 10 seconds. It can be observed from this graph that with the activation

threshold set to 25 Mbps, flow movements occurred almost every 10 seconds. Also,

since some NIDPSs usually had loads larger than the threshold, the cluster was

considered heavily loaded.

Within this setting, we generated 8 different port scans, which were identical to

the ones presented in Section 4.6.2. The scans all started at second 60. For each

simulation, the CFD algorithm was used to distribute the traffic and we recorded

the assignment of every scan packet.

The result of this evaluation was that for each of the generated scans, there

was always at least one NIDPS which received 100% of the scan flows. This result

indicated that the flow movements did not decrease the anomaly-based detection

accuracy of port scans.

If flows had been randomly chosen to move from an overloaded NIDPS to an-

other, flows belonging to the same scan could have been distributed to different

NIDPSs, resulting in a decrease of detection accuracy. This evaluation result, how-

ever, indicated that the Flow Manager, which always selects flows having the least

amount of correlation to move, did not select flows from the same scan to move.

In summary, the above two evaluation results show that flow movement helps

to balance the loads of the NIDPSs when the cluster is lightly loaded and it does

not negatively affect the grouping of scan flows. Nonetheless, whether the flow

movement can help to balance the loads of the NIDPSs when the cluster is heavily

loaded needs further investigation. We plan to examine this in future work.

4.7 Summary

In this chapter, we present the design, implementation, and evaluation of the Load

Manager. As our second solution to the traffic distribution problem, the Load
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Manager’s first objective is to group flows having the same dst-ip, src-ip, and dst-

port together, which preserves the anomaly-based detection accuracy of DDoS at-

tacks and port scans, and its second objective is to prevent the NIDPSs from being

overloaded.

The Load Manager consists of two main components: the Flow Distributor and

the Flow Manager. The Correlation-Based Flow Distribution algorithm is used by

the Flow Distributor to intelligently distribute the traffic to the NIDPSs in a way

such that: (1) the identical correlations given by addresses and port numbers are

preserved and (2) the risk of overloading any NIDPS is reduced. On the other hand,

the Flow Manager uses the Correlation-Based Flow Moving algorithm to move flows

to prevent overload conditions of the NIDPSs. Together, the Flow Distributor

and the Flow Manager provide the key attributes of the Load Manager: identical

correlations preservation, customizable correlation, and dynamic load distribution.

We have implemented a prototype Load Manager and evaluated it using sim-

ulation. The evaluation results show that the Load Manager has low overhead in

terms of the delays introduced to the packets and that the amount of traffic dupli-

cation is significantly lower than the established upper bound. Most importantly,

the evaluation results validate that the Load Manager successfully sends flows of

a variety of DDoS attacks and port scans to the same NIDPS, thereby preserving

the anomaly-based detection accuracy of the NIDPSs.
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Chapter 5

Conclusion and Future Work

To address the overload conditions brought up by the increasing network traffic

volume, recent literature in the network intrusion detection and prevention field has

proposed the use of clusters of NIDPSs [2, 18, 35, 40, 43]. When using clusters of

NIDPSs, distributing the network traffic to the NIDPSs plays a very important role

in both performance and security of the clusters. In particular, on the one hand,

uneven load distribution greatly increases the chance of overloading an NIDPS

even when the loads of the other NIDPSs are low. On the other hand, since simple

traffic distributions cause high loss of correlation information, some intrusions might

slip through the NIDPSs undetected. These intrusions are those that require the

analysis of correlated flows, such as DDoS attacks and port scans.

Clusters proposed in recent research often use simple traffic distribution schemes.

Some of these schemes do not provide load balancing [18, 43, 40], which results in

a high risk of overloading the NIDPSs. More importantly, none of the previously

proposed approaches takes into account the traffic correlation in their traffic distri-

butions. As a result, the security of the cluster might be compromised because of

the substantial loss of correlation information.

In this thesis, we propose two novel systems: the Correlation-Based Load Bal-

ancer and the Correlation-Based Load Manager as two different solutions to the

NIDPS traffic distribution problem. The Load Balancer and the Load Manager

both consider the current loads of the NIDPSs when distributing traffic to provide

fine-grained load balancing and dynamic load distribution, respectively. More im-

portantly, both systems consider traffic correlation in their distributions, thereby

significantly reducing the loss of correlation information during their distribution

of traffic.
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We have implemented prototypes of both systems and evaluated them using

extensive simulations and real traffic traces. Overall, the evaluation results show

that both systems have low overhead in terms of the delays introduced to the pack-

ets. More importantly, compared to the naive hash-based distribution, the Load

Balancer significantly improves the anomaly-based detection accuracy of DDoS at-

tacks and port scans – the two major attacks that require the analysis of correlated

flows – meanwhile, the Load Manager successfully maintains the anomaly-based

detection accuracy of these two major attacks of the NIDPSs.

5.1 Summary of Contributions

This thesis contributes to the network intrusion detection and prevention research

community two novel traffic distribution systems for clusters of NIDPSs:

1. The Correlation-Based Load Balancer is flow-based and delivers the fol-

lowing features:

• Fine-grained Load Balancing: The difference between loads of the NIDPSs

is kept within a specified bound.

• Anomaly-based Detection and Prevention Support: The loss of correla-

tion information is minimized, so the accuracy of the anomaly-based

detection is significantly improved.

• Configurable Security: Various configurations are available to favor secu-

rity, i.e., reduced loss of correlation information, over performance, i.e.,

load balancing.

2. The Correlation-Based Load Manager is also flow-based and offers the

following features:

• Identical Correlation Preservation: Flows having the same dst-ip, src-ip,

or dst-port are guaranteed to be sent to the same NIDPS. This maintains

the anomaly-based detection accuracy of DDoS attacks and port scans.

• Dynamic Load Distribution: The chance of overloading any NIDPS when

the loads of the other NIDPSs are low is greatly reduced. Overload

conditions are prevented.

• Customizable Correlation: Custom correlations can be added, which

supports the grouping of various flows of interest. Thus, advanced de-

tection techniques requiring the grouping of diverse flows can be used.
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5.2 Future Directions

There are several valuable research topics that follow from our work:

• Duplication amount: When a flow is distributed using the BLB algorithm

of the Load Balancer, it might be duplicated up to F times. It would be

interesting to learn which values of F would give the best trade-off between

the loss of correlation information and the load balancing. These values of F

might have some important connections with the Load Manager’s duplication

amount upper bound.

• Number of maintained clusters: The clusters play a very important role in

the BLB algorithm of the Load Balancer since they characterize the received

traffic. It would be interesting to identify the lowest number of clusters which

can still characterize the traffic well enough to support the detection of the

major intrusions. Because a high number of clusters causes a high system

overhead, the smaller the number of clusters, the better the performance of

the Load Balancer.

• Detection-state preservation: As we discussed in Section 4.4.1, the primary

expense of moving flows is the loss of some detection states. With the emerg-

ing virtual machine (VM) technology, it is possible to live-migrate a VM from

one physical machine to another. It would be interesting to see how the VM

technology can help to move flows from an overloaded NIDPS to another

NIDPS while preserving the detection states.

• Complex correlations: With the space and time advantage of Bloom filters,

the Load Manager is capable of supporting potentially complex correlations,

as long as they are compressible into Bloom filters. It would be interesting

to develop a systematic way of compressing correlations into Bloom filters.
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Appendix A

Heuristic Flow Selection

Algorithm

This section provides details of the Heuristic Flow Selection algorithm, which is

discussed in Section 4.4.5. This algorithm is presented in Algorithm 6. The inputs

of this algorithm are the specified benefit B and the set of active flows F of the

overloaded NIDPS. The flows are assumed to be ordered according to decreasing

values of the cost per unit benefit, i.e.:

c1
b1
≥ c2
b2
≥ · · · ≥ cn

bn
.

In this algorithm, we first initialize 3 variables B∗, C, and im (Line 1–7): B∗ is the

capacity of the knapsack, C is the current cost (or value), and im is the index of

the highest-cost flow. Next, we use the greedy algorithm proposed by Martello and

Toth [25] to find the xi’s (Line 8–20). We note that although the original algorithm

would find the yi’s, here we directly derive the values of the xi’s instead. Finally,

to avoid the worst case scenario, we compare the resulting total cost (total item

value) with the cost of the highest-cost flow (value of the highest value item) (Line

21–26). The highest-cost flow will be solely selected if it has a higher cost. Similar

to the greedy algorithm, our algorithm has the worst-case performance ratio 1
2
, i.e.,

in the worst case scenario, total value of the items of the solution of this algorithm

is 1
2

of the optimal solution’s. Also, the time complexity is O(n), plus O(n log n) to

sort the flows in advance.
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Algorithm 6 HeuristicFlowSelection(B,F )

Require: c1
b1
≥ · · · ≥ cn

bn
, bi and ci are the benefit and cost of flow fi in F .

Ensure: A set containing the selected flows

1: B∗ = 0

2: C = 0

3: im = 1

4: for i = 1 to n do

5: B∗ = B∗ + bi

6: end for

7: B∗ = B∗ −B

8: Bremain = B∗

9: for i = 1 to n do

10: if bi > Bremain then

11: xi = 1 //select flow

12: else

13: xi = 0 //do not select flow

14: Bremain = Bremain − bi
15: C = C + ci

16: end if

17: if ci > cim and bim ≤ B∗ then

18: im = i

19: end if

20: end for

21: if cim > C then

22: for i = 1 to n do

23: xi = 1 //select flow

24: end for

25: xim = 0 //do not select flow

26: end if

27: M = ∅ //return set

28: for i = 1 to n do

29: if xi = 1 then

30: M = M ∪ {fi}
31: end if

32: end for

33: return M
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