
Cooperative Models

of

Particle Swarm Optimizers

by

Mohammed El-Abd

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2008

c© Mohammed El-Abd 2008

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Particle Swarm Optimization (PSO) is one of the most effective optimization tools, which

emerged in the last decade. Although, the original aim was to simulate the behavior of a group

of birds or a school of fish looking for food, it was quickly realized that it could be applied in

optimization problems. Different directions have been taken to analyze the PSO behavior as well

as improving its performance. One approach is the introduction of the concept of cooperation.

This thesis focuses on studying this concept in PSO by investigating the different design decisions

that influence the cooperative PSO models’ performance and introducing new approaches for

information exchange.

Firstly, a comprehensive survey of all the cooperative PSO models proposed in the literature

is compiled and a definition of what is meant by a cooperative PSO model is introduced. A

taxonomy for classifying the different surveyed cooperative PSO models is given. This taxonomy

classifies the cooperative models based on two different aspects: the approach the model uses for

decomposing the problem search space and the method used for placing the particles into the

different cooperating swarms. The taxonomy helps in gathering all the proposed models under

one roof and understanding the similarities and differences between these models.

Secondly, a number of parameters that control the performance of cooperative PSO models

are identified. These parameters give answers to the four questions: Which information to share?

When to share it? Whom to share it with? and What to do with it? A complete empirical study

is conducted on one of the cooperative PSO models in order to understand how the performance

changes under the influence of these parameters.

Thirdly, a new heterogeneous cooperative PSO model is proposed, which is based on the ex-

change of probability models rather than the classical migration of particles. The model uses two

swarms that combine the ideas of PSO and Estimation of Distribution Algorithms (EDAs) and

is considered heterogeneous since the cooperating swarms use different approaches to sample the

search space. The model is tested using different PSO models to ensure that the performance is ro-

bust against changing the underlying population topology. The experiments show that the model

is able to produce better results than its components in many cases. The model also proves to be

highly competitive when compared to a number of state-of-the-art cooperative PSO algorithms.

Finally, two different versions of the PSO algorithm are applied in the FPGA placement prob-

lem. One version is applied entirely in the discrete domain, which is the first attempt to solve

this problem in this domain using a discrete PSO (DPSO). Another version is implemented in

the continuous domain. The PSO algorithms are applied to several well-known FPGA benchmark

iii

problems with increasing dimensionality. The results are compared to those obtained by the aca-

demic Versatile Place and Route (VPR) placement tool, which is based on Simulated Annealing

(SA). The results show that these methods are competitive for small and medium-sized problems.

For higher-sized problems, the methods provide very close results. The work also proposes the

use of different cooperative PSO approaches using the two versions and their performances are

compared to the single swarm performance.

iv

Acknowledgements

This thesis would not be possible without the support of many individuals, to whom I would

like to express my gratitude. I will always be indebted to my supervisor, Prof. Mohamed Kamel,

for his key role in my development as a person and as a researcher. He offered me support,

encouragement, guidance, and most importantly trust. His input and guidance was invaluable to

the quality and contribution of the work presented in this thesis, as well as in other publications.

His trust and support was instrumental in giving me confidence to achieve many accomplishments.

I wish to thank many of my colleagues at the Pattern Analysis and Machine Intelligence (PAMI)

Lab, especially Shady Shehata, Abbas Ahmadi and Moataz El Ayadi, for valuable discussions and

feedback.

I also wish to thank Hassan Hassan for being both a great friend and a valuable collaborative

worker during my studies.

I would like to thank the PAMI administrative secretary Heidi Campbell for her help and

support during my graduate studies.

I would like to thank Ahmed Abdel Rahman, Mohamed El-Said, Ismael El-Samahy, Khaled

Hammouda, Mohamed Hassan, Ayman Ismail, Hazem Shehata, Shady Shehata, Nayer Wanas,

Ahmed Youssef, and Hatem Zeineldin, for being such great friends.

Finally I would like to thank my wife, Walaa, for her unconditional support and love, without

which many things would not be possible. I would like also to thank my mother Foaz, my late

father Hamed, my sister Safia, and my brother Mostafa, for their support and encouragement

throughout my life.

v

Contents

List of Tables x

List of Figures xiii

List of Algorithms xvi

1 Introduction 1

1.1 Motivation . 1

1.2 Proposed Work . 2

1.3 Thesis Organization . 3

2 A Taxonomy of Cooperative Particle Swarm Optimizers 4

2.1 Particle Swarm Optimization . 4

2.2 Cooperative PSO Models . 5

2.2.1 Single-Objective Optimization . 5

2.2.2 Multi-Objective Optimization . 11

2.2.3 Constrained Optimization . 12

2.2.4 Other Applications . 12

2.3 Classifying the Cooperative PSO Models . 14

2.4 Conclusion . 15

vi

3 Information Exchange in Cooperative Particle Swarm Optimizers 17

3.1 Definition . 17

3.2 The Which, When, Whom and What Parameters 18

3.2.1 Which Information to Share? and What to do with it? 20

3.2.2 When to Share Information? . 22

3.2.3 Whom to Share Information With? . 23

3.2.4 Additional Parameters . 23

3.3 Results and Discussions . 24

3.3.1 Experimental Settings . 24

3.3.2 How are the experiments divided? . 24

3.3.3 Results of A Single Swarm . 26

3.3.4 Synchronization Period . 29

3.3.5 Neighborhood Topology . 33

3.3.6 Number of Swarms . 37

3.3.7 Information Exchange . 41

3.3.8 Increasing the Dimensionality . 43

3.4 Conclusion . 45

4 Particle Swarm Optimization Based on Probabilistic Models 47

4.1 Estimation of Distribution Algorithms . 47

4.2 PSO Based on Probabilistic Models . 48

4.2.1 EDPSO . 48

4.2.2 EDA-PSO . 49

4.3 PSO with Varying Bounds . 51

4.4 Results and Discussions . 53

4.4.1 Experimental Settings . 53

4.4.2 Experimental Results . 54

4.5 Conclusion . 58

vii

5 A Heterogeneous Cooperative Particle Swarm Optimizer with Migrated Prob-

ability Models 61

5.1 Parallel EDAs . 61

5.2 Proposed Model . 63

5.2.1 Cooperative Swarms . 64

5.2.2 Probability Model Exchange . 64

5.3 Results and Discussions . 67

5.3.1 Experimental Settings . 67

5.3.2 Results of the Proposed Model . 67

5.3.3 Convergence Behavior . 69

5.3.4 Synchronization Period Effect . 70

5.3.5 Exchanging Particles . 71

5.3.6 A Simple Adaptive Version . 73

5.4 Comparison with other PSO cooperative models . 82

5.5 Conclusion . 84

6 Particle Swarm Optimization for FPGA Placement 87

6.1 FPGAs Placement Problem . 87

6.2 Discrete PSO . 89

6.3 Discrete PSO Placement Algorithm . 92

6.3.1 DPSO Operations . 92

6.3.2 DPSO Problem Formulation . 93

6.3.3 Local Minima Avoidance . 94

6.4 Discrete Cooperative PSO . 96

6.5 Continuous PSO Placement Algorithm . 97

6.5.1 Local Minima Avoidance . 98

6.6 Results and Discussions . 98

viii

6.6.1 Experimental Setup . 98

6.6.2 Experimental Results . 100

6.7 Conclusions . 104

7 Conclusions and Future Work 108

7.1 Conclusions . 108

7.2 Future Work . 109

Biblography 111

ix

List of Tables

3.1 Static cooperative PSO models. 19

3.2 Static cooperative PSO models, contd. 20

3.3 Dynamic cooperative PSO models. 20

3.4 Benchmark functions. 25

3.5 Results of a single swarm for the unimodal functions for a dimensionality of 10. . . 26

3.6 Results of a single swarm for the multimodal functions for a dimensionality of 10. . 26

3.7 Results of a single swarm for the multimodal functions for a dimensionality of 10,

contd. 27

3.8 CEC05 benchmark functions. 28

3.9 Results of a single swarm for the CEC05 functions for a dimensionality of 10. 29

3.10 Results of a single swarm for the CEC05 functions for a dimensionality of 10, contd. 29

3.11 Results of a single swarm for the CEC05 functions for a dimensionality of 10, contd. 29

3.12 Results of the cooperative model for a dimensionality of 10. 30

3.13 Results of the cooperative model for the CEC05 functions for a dimensionality of 10. 32

3.14 Results of the global sharing approach for a dimensionality of 10. 34

3.15 Results of the circular communication approach for a dimensionality of 10. 34

3.16 Results of the circular communication approach for the CEC05 benchmark functions

for a dimensionality of 10. 36

3.17 Varying the number of swarms for the multimodal functions for a dimensionality of

10. 38

3.18 Varying the number of swarms for the CEC05 benchmark functions for a dimen-

sionality of 10. 39

x

3.19 Varying the number of swarms for the CEC05 benchmark functions for a dimen-

sionality of 10, contd. 39

3.20 Varying the number of swarms for the CEC05 benchmark functions for a dimen-

sionality of 10, contd. 40

3.21 Results of the lbest model for a dimensionality of 10. 41

3.22 Results of different exchange approaches for a dimensionality of 10. 41

3.23 Results of a single swarm for a dimensionality of 30. 43

3.24 Results of the cooperative model for a dimensionality of 30. 43

3.25 Varying the number of swarms for the multimodal functions for a dimensionality of

30. 45

4.1 Parameter settings. 54

4.2 Results of all the algorithms for the classical functions. 55

4.3 Results of all the algorithms for the CEC05 functions. 56

4.4 Comparison between all the algorithms using the gbest model. 56

4.5 Results of all the algorithms using the lbest model for the classical functions. 59

4.6 Results of all the algorithms using the lbest model for the CEC05 functions. 60

4.7 Comparison between all the algorithms using the lbest model. 60

5.1 Results of the cooperative model for the classical functions. 68

5.2 Results of the cooperative model for the CEC05 functions. 69

5.3 Results of all the cooperative model the lbest model for the classical functions. . . . 70

5.4 Results of the cooperative model using the lbest model for the CEC05 functions. . . 71

5.5 Results of cooperative model adopting particles migration for a dimensionality of 10. 72

5.6 Results of the adaptive gbest cooperative model for the classical functions. 82

5.7 Results of the adaptive gbest cooperative model for the CEC05 benchmark functions. 83

5.8 Results of all the algorithms for the classical functions 84

5.9 Results of all the algorithms for the CEC05 benchmark functions 85

5.10 Comparison of all the algorithms . 85

xi

6.1 Problem sizes for the different benchmarks used. 100

6.2 Swarm size and performed function evaluations. 101

6.3 VPR, DPSO and continuous PSO Results for several FPGA benchmarks. 101

6.4 DCPSO results for several FPGA benchmarks. 102

6.5 CPSO results for several FPGA benchmarks. 102

6.6 Results of the continuous cooperative model. 106

6.7 PSO, EDA PSO and PSO Bounds results for several FPGA benchmarks. 106

6.8 Results of the adaptive cooperative model based on probability models migration. . 107

xii

List of Figures

2.1 The CPSO S approach. 6

2.2 The CPSO H approach. 6

2.3 The CONPSO approach. 7

2.4 The MCPSO approach . 9

2.5 The co-evolving PSO approach . 13

2.6 Decomposition-Type based taxonomy. 14

3.1 Different neighborhood topologies. 23

3.2 Each dimension of the multi-modal functions. 27

3.3 Synchronization period effect for the unimodal functions for a dimensionality of 10. 31

3.4 Synchronization period effect for the multimodal functions for a dimensionality of 10. 32

3.5 Synchronization period effect for the CEC05 functions. 33

3.6 Synchronization period effect for the CEC05 functions, contd. 34

3.7 Comparing two neighborhood topologies for a dimensionality of 10. 35

3.8 Comparing two communication strategies for the CEC05 functions for a dimension-

ality of 10. 36

3.9 Comparing two communication strategies for the CEC05 functions for a dimension-

ality of 10, contd. 37

3.10 Results of increasing the number of swarms. 39

3.11 Balancing techniques. 40

3.12 Comparing four information exchange approaches. 42

xiii

3.13 Increasing the number of exchanged particles. 42

3.14 Synchronization period effect for a dimensionality of 30. 44

3.15 Comparing two neighborhood topologies for a dimensionality of 30. 44

3.16 Results of increasing the number of swarms for a dimensionality of 30. 45

4.1 Probabilistic models. 52

4.2 Convergence behavior of all the algorithms for the CEC05 functions. 57

4.3 Convergence behavior of all the algorithms for the CEC05 functions, contd. 58

5.1 Hybrid cooperative model. 64

5.2 Probabilistic models conversion. 66

5.3 Convergence behavior of the three algorithms for the unimodal classical functions. . 72

5.4 Convergence behavior of the three algorithms for the multimodal classical functions. 73

5.5 Convergence behavior of the three algorithms for the CEC05 benchmark functions. . 74

5.6 Convergence behavior of the three algorithms for the CEC05 benchmark functions,

contd. 75

5.7 Synchronization period effect for the cooperative model. 76

5.8 Synchronization period effect for the cooperative model, contd. 77

5.9 Synchronization period effect for the cooperative model, contd. 78

5.10 Comparing probabilistic model migration vs. particles migration for the classical

functions for a dimensionality of 10. 79

5.11 Comparing probabilistic model migration vs. particles migration for the CEC05

benchmark functions for a dimensionality of 10. 80

5.12 Comparing probabilistic model migration vs. particles migration for all dimension-

alities. 81

5.13 Non-Adaptive vs. Adaptive Model Performance. 84

6.1 FPGA layout. 88

6.2 FPGA design CAD flow. 89

xiv

6.3 DPSO formulation. 92

6.4 A position plus velocity example. 93

6.5 A constant times velocity example. 94

6.6 The discrete cooperative PSO. 97

6.7 Convergence behavior for problems with a dimensionality within 60. 103

6.8 Convergence behavior for problems with a dimensionality within 80. 104

6.9 Convergence behavior for problems with a dimensionality above 100. 105

xv

List of Algorithms

3.1 A cooperative sequential algorithm. 21

3.2 Exchanging the particles information both ways. 22

3.3 The information exchange step when adopting the ring topology. 24

4.1 Estimation of Distribution Algorithm (EDA). 48

4.2 The EDPSO algorithm. 50

4.3 The EDA-PSO algorithm. 51

4.4 The PSO Bounds algorithm. 53

5.1 The sequential algorithm for the cooperative model. 65

5.2 The PSO Bounds swarm models combination function. 66

5.3 The adaptive information flow algorithm. 81

6.1 DPSO implementation. 95

6.2 The lazy descent method for the discrete algorithm. 96

6.3 Proposed DCPSO implementation. 97

6.4 The lazy descent method for the continuous algorithm. 99

xvi

Chapter 1

Introduction

1.1 Motivation

Although a number of different Cooperative Particle Swarm Optimizers (CPSO) have emerged in

the past 6 years in order to efficiently solve larger problems. The work in this field still falls short

in different directions:

• Many heuristic search methods have been used in a cooperative search environment before

PSO including Tabu Search (TS), Genetic Algorithms (GAs), and Ant Colony Optimization

(ACO). In these implementations, there are a number of parameters that need to be tuned

in order to have a powerful cooperative system. Some of these parameters have been studied

before in different areas. However, such studies have never been fully carried out for PSO

cooperative models.

• Parallel Estimation of Distribution Algorithms (EDAs) is a new research direction that has

been pursued in the previous 4 years. In this field, it was shown that exchanging information

on the form of probabilistic models capturing the search space characteristics can produce

better results than the classical migration of individuals. However, almost all cooperative

PSO models proposed up to-date rely on exchanging information in the form of particles.

This motivated the investigation of using such a powerful exchange scheme in cooperative

PSO.

• To follow on the previous point, the parallel EDAs proposed so far had all the populations us-

ing the same probability models to sample the search space. Hence, the different populations

might actually run into the same problems caused by the used model. Nevertheless, these

1

approaches managed to produce better results for a different number of cases. Employing a

heterogeneous cooperative model where the cooperating swarms use different approaches in

sampling the search space is an interesting direction to follow as one could end-up using the

benefits of the different approaches.

• To our knowledge, there haven’t been any cooperative implementations of a discrete version

of PSO. This direction is investigated in this thesis by taking the FPGA placement problem

as the application under study.

1.2 Proposed Work

The contributions of this work is summarized as follows:

• The work gives a comprehensive survey of all the cooperative PSO models proposed in the

literature. These models are categorized by the application they were designed for.

• The work proposes a taxonomy for classifying the different surveyed cooperative PSO mod-

els. This taxonomy classifies the cooperative models based on two different aspects: the

decomposition approach adopted by the model and the method used for placing the particles

into the different cooperating swarms.

• The work gives a definition of what is meant by a cooperative model. This definition helps in

identifying key design issues that are essential in having a successful model. These decisions

give answers to the four questions: Which information to share? When to share it? Whom

to share it with? and What to do with it? The design decisions taken by all the surveyed

cooperative PSO models are identified which helps to shed light on the similarities and

differences between these models.

• The work performs a complete empirical study on one of the cooperative PSO models in

order to understand how the performance changes under the influence of the design issues

previously identified. The addressed issues include the exchange of the gbest (global best) in-

formation vs. the exchange of complete particles, changing the number of iterations between

successive communication steps, changing the number of cooperating swarms, changing the

method for selection and replacement of exchanged particles and changing the number of

exchanged particles.

2

• The work proposes a new heterogeneous cooperative PSO model, which is based on the

exchange of probability models rather than the classical migration of particles. The model

uses two swarms that combine the ideas of PSO and EDAs. Since the two swarms use two

different probability models, each swarm performs a model conversion step on the received

probability model to transform it into a model similar to its own. After that, a model

combination step is performed between the resident and received models before continuing

with the search.

• The work investigates the idea of applying a Discrete PSO (DPSO) algorithm for the FPGA

placement problem. This is the first attempt to entirely solve this problem in the discrete

domain using PSO. The work also proposes the use of a discrete cooperative PSO (DCPSO)

version by optimizing the placement of different types of blocks by different swarms.

All the experiments conducted in this thesis are implemented on an Intel Xeon machine with

a 3.06GHz CPU and a 1.00GB of RAM. All the codes have been implemented using VC++ 6.0.

1.3 Thesis Organization

This work is organized as follows: an overview of the cooperative PSO models proposed in the

literature presented in Chapter 2. In Chapter 3, the work defines what is meant by a cooperative

PSO model, points out the key parameters associated withe their design, identifies the design

decisions taken by previously proposed models and conducts a complete empirical study on one

of theses models. A new PSO and EDA hybrid is introduced in Chapter 4. In Chapter 5, the

heterogeneous PSO-EDA cooperative optimizer is proposed and studied. Chapter 6 investigates

the application of both discrete and continuous PSO and their cooperative versions to the FPGA

placement problem. Conclusions and future work are presented in Chapter 7.

3

Chapter 2

A Taxonomy of Cooperative Particle

Swarm Optimizers

This chapter starts by giving a brief background about PSO. A comprehensive survey of all the

cooperative PSO models proposed in the literature is then presented. A taxonomy for classifying

the different surveyed cooperative PSO models is proposed. This taxonomy classifies the coopera-

tive models based on two different aspects: the decomposition approach adopted by the model and

the method used for placing the particles into the different cooperating swarms. The taxonomy

helps in gathering all the proposed models under one roof and understanding the similarities and

differences between these models.

2.1 Particle Swarm Optimization

The PSO [1,2] method is regarded as a population-based method, where the population is referred

to as a swarm. The swarm consists of a number of individuals called particles. Each particle i in

the swarm holds the following information: (i) the current position xi, (ii) the current velocity vi,

(iii) the best position, the one associated with the best fitness value the particle has achieved so

far pbesti, and (iv) the global best position, the one associated with the best fitness value found

among all of the particles gbest. In every iteration, each particle adjusts its own trajectory in the

space in order to move towards its best position and the global best according to the following

equations:

vt+1
ij = wvt

ij + c1r
t
1j(pbest

t
ij − xt

ij)

+c2r
t
2j(gbesttj − xt

ij), (2.1)

4

xt+1
ij = xt

ij + vt+1
ij , (2.2)

for j ∈ 1..d where d is the number of dimensions, i ∈ 1..n where n is the number of particles,

t is the iteration number, w is the inertia weight, r1 and r2 are two random numbers uniformly

distributed in the range [0,1], and c1 and c2 are the acceleration factors.

Afterwards, each particle updates its personal best using the equation (assuming a minimization

problem):

pbestt+1
i =

{
pbestti if f(pbestti) ≤ f(xt+1

i)

xt+1
i if f(pbestti) > f(xt+1

i)
(2.3)

Finally, the global best of the swarm is updated using the equation (assuming a minimization

problem):

gbestt+1 = arg min
pbestt+1

i

f(pbestt+1
i), (2.4)

where f(.) is a function that evaluates the fitness value for a given position. This model is referred

to as the gbest (global best) model.

2.2 Cooperative PSO Models

Applying cooperation in PSO followed the same steps that were taken in applying cooperation

in any other search algorithm. Cooperative search algorithms have been extensively studied in

the past decade to effectively solve many large size optimization problems. The basic approach

involves having more than one search module running and exchanging information among each

other in order to explore the search space more efficiently and reach better solutions.

Many heuristic search methods have been used in a cooperative search environment including

Tabu Search [3, 4], Genetic Algorithms [5, 6], Ant Colony Optimization [7, 8] and Particle Swarm

Optimization [9, 10].

Several cooperative models have been introduced for PSO in the past few years. These models

are surveyed in this section and categorized by the application they were used in.

2.2.1 Single-Objective Optimization

2.2.1.1 Static Optimization

A cooperative approach referred to as Cooperative PSO (CPSO S), was introduced in [9,11]. The

approach relies on splitting the space (solution vector) into sub-spaces (smaller vectors) where

5

each sub-space is optimized using a separate swarm. The overall solution vector is constructed

using the solutions found by the best particle of each swarm. To update the fitness value for a

certain particle i in a swarm j, a solution vector is used with that particle and the best particles of

all the other swarms. This approach was originally introduced using genetic algorithms [12]. This

approach is illustrated in Figure 2.1.

gbestn gbest2 gbest1

Complete solution (Context Vector)

Swarm 1

Swarm 2

Swarm n

Figure 2.1: The CPSO S approach.

A hybrid cooperative approach was also introduced in [9, 11], it was referred to as the hybrid

CPSO (CPSO H). It consists of having two search stages working in a serial fashion. Each stage

was only run for one iteration then passing the best found solution to the next stage. The first

stage applied the CPSO S technique and the second stage used the normal PSO algorithm. This

approach was applied to take advantage of the ability of PSO to escape pseudo-minimizers while

benefiting from the CPSO S fast convergence property. This approach is shown in Figure 2.2.

 PSO gbest

CPSO_S
Context Vector

CPSO_S

PSO

Figure 2.2: The CPSO H approach.

A different cooperative approach was introduced in [10], referred to as concurrent PSO (CONPSO).

The approach adopted was to have two swarms searching concurrently for a solution with frequent

6

message passing of information. The information exchanged was the global bests of the two

swarms. After every exchange point, the two swarms were to track the better global best found.

The two swarms were using two different approaches, one adopted the original PSO method, and

the other used the Fitness-to-Distance Ratio PSO (FDRPSO) [13]. This approach improved the

performance over both methods as well as minimizing the time requirement of the FDRPSO alone.

Figure 2.3 illustrates this approach.

gbest2

gbest1

Swarm 1

Swarm 2

Figure 2.3: The CONPSO approach.

In [14, 15], a Parallel PSO (PPSO) was proposed. The idea was similar to [10] but with

using more than two swarms, referred to as groups, and all performing the same PSO algorithm.

The exchange of information was also performed every predetermined number of iterations. The

authors proposed changing the method the information is exchanged depending on the level of

correlation between the problem variables. If the variables are uncorrelated or loosely correlated,

the overall gbest value is shared among all the groups, mutated and then used to replace the poor

particles. If the problem variables are strongly correlated, the exchange is done in a directed ring

fashion. Finally, if the correlation information is unknown, a hybrid method is adopted.

In [16], the authors introduced a hierarchal cooperative particle swarm optimizer. This coop-

erative model was based on combining the CONPSO and CPSO S models. The combination is

achieved by having two swarms searching for a solution concurrently, each swarm is adopting the

CPSO S technique. Experiments run on four benchmark optimization functions showed that this

approach produces better results than the CPSO S ,CPSO H and the CPSO S model with multi-

ple restarts in some cases. Results also showed that choosing a suitable synchronization period is

related to the convergence behavior of CPSO S.

In [17], the cooperating swarms exchanged information based on a diversity strategy. At

the beginning of the search, the population was clustered into m different sub-swarms. At each

communication stage, each swarm prepares a list of particles to be sent to another swarm and

a list of particles to be replaced. The communication only occurs between swarms in the same

neighborhood, determined by an inter-swarm distance measure. Since distance information changes

between communication stages, a sub-swarm could communicate with different sub-swarms every

7

time. The velocity update equation was also modified allowing each particle to follow the best

particle in its sub-swarm, the best particle in its neighborhood and the best particle in the whole

population. The authors concluded that the performance of their algorithm depends on the rate of

information exchange and stated that more experiments need to be conducted to find an optimal

exchange rate.

Different parallel PSO models were studied in [18]. The authors experimented with three

different parallel versions of PSO. First, the master/slave PSO, which is a simple parallelization

approach where the PSO operation is handled by a master processor that delegates some of the

work to several slave processors. Second, the migration PSO, in which different swarms are run

on different processors, and after a finite number of iterations the best solution of each swarm

(processor) is migrated to the neighboring swarms (processors). Finally, the diffusion PSO, in

which each particle is handled by a separate processor. Each particle has only local information

about the best position achieved by its neighborhood. The neighborhood topology used was the

Von-Neuman model [19]. Based on the complexity analysis, the authors came to the conclusion

that the diffusion PSO can be regarded as a limiting case to the migration PSO. Also, the diffusion

model is scalable compared to the master/slave model. Finally, the convergence rate of the diffusion

model is dependent on the neighborhood topology used.

A multi-population cooperative PSO (MCPSO) was proposed in [20]. The authors adopted the

master/slave approach by having one master swarm and several slave swarms. The slave swarms

were to evolve in parallel then supply their best solutions to the master swarm. The master swarm

then updates its particles by taking into account the information of the best solution among all

the slave swarms. This information was integrated as a third component in the velocity update

equation. This approach is illustrated in Figure 2.4, where gbest is the best solution among all the

received ones.

In all of the previous implementations, all the swarms were static. If a particle is assigned to

a specific swarm in the beginning of the search, it stays in that swarm till the end. A dynamic

multi-swarm approach was presented in [21, 22]. In this approach, each swarm adopted the lbest

model. After a predefined number of iterations k, the regrouping period, each particle gets randomly

assigned to a different swarm. The information exchange in this approach is implicit rather than

explicit since every particle takes its information and carries it when it is assigned to a different

swarm.

8

Slave Processors

Master Processor

gbest

gbestn gbest2 gbest1

Slave

Swarm 1

Slave

Swarm 2

Slave

Swarm n

Master
Swarm

Comparison Module

Figure 2.4: The MCPSO approach

2.2.1.2 Multimodal Optimization

To locate multiple optima in multimodal functions, a multi-swarm approach was presented in [23],

referred to as the NichePSO. The approach was used to locate multiple optimal solutions in

multimodal problems. Multiple sub-swarms were grown out of an initial main swarm. These

sub-swarms utilized the guaranteed convergence PSO (GCPSO) algorithm [24]. These sub-swarms

were allowed to merge if they intersect. They also had the ability to absorb new particles. New sub-

swarms were created if a particle’s fitness showed little change over a small number of iterations.

The approach was applied to 5 different multimodal functions and it was able to locate all maxima

in all the runs.

A speciation-based PSO (SPSO) was proposed in [25]. In SPSO, the population was dynam-

ically divided into multiple species after identifying the species seeds. The seeds were identified

after each step based on a similarity measure. Each seed was used as the neighborhood best in its

species. SPSO was proven effective when dealing with multimodal functions with low dimension-

ality. The approach was further enhanced in [26] by using a time-based convergence measure in

order to overcome the burden of specifying the species radius.

In [27], the authors propose a Multi-Grouped PSO (MGPSO) for multimodal function opti-

9

mization. To ensure that every group is approaching a different optimum. A repulsive velocity

component is added to the particle’s velocity equation if it becomes too close to the gbest of an-

other group rather than its own. Also, the updating of the gbest values of the different groups

is done in a way that ensure that these values are far enough from each other. The method was

successfully applied to a number of problems showing a good performance when the number of

groups is less or higher than the number of peaks.

2.2.1.3 Dynamic Optimization

In [28], a multi-swarms technique was tested on a number of dynamic multimodal benchmark

functions. The swarms evolved in parallel and communicated with each other after every iteration

to test if their attractors are within a certain range, the exclusion radius. If two swarms are

following two attractors that are close to each other, the swarm that has the bad attractor gets all

its particles positions and velocities re-initialized. In their experiments, the authors changed the

number of swarms while fixing the total number of particles and the total number of performed

function evaluations. They concluded that a multi-PSO model is better than a single swarm model

and that the number of swarms is related to the number of optima. They also showed that the

off-line error is reduced while increasing the number of swarms up to a certain limit after which

the error starts to increase again.

In [29], the authors proposed the use of a partitioned hierarchical particle swarm optimizer (PH-

PSO) to tackle dynamic optimization problems. Hierarchical PSO (HPSO) was first introduced

in [30], where the particles were arranged in a dynamic hierarchical order that defines a dynamic

neighborhood structure. Particles were allowed to move up and down that hierarchy so better

particles can influence the swarm. In the cooperative approach, this hierarchy was divided into

sub-swarms after a change occurs (defined as a change in the fitness value of the gbest). These

sub-swarms search for the optimum in an independent fashion for a small number of iterations,

the division interval, after which they get rejoined again. When this hierarchy is split again, the

sub-swarms will not contain the same particles as before since these particles continuously move

up and down the hierarchy. Experiments showed that PH-PSO performed best on multimodal

functions where the changes were not too severe. The authors also proposed an adaptive version

(PH-PSO-a), where the division interval is adaptively determined according to the optimization

behavior. Different methods for determining the best time when to rejoin the sub-swarms and how

to handle the topmost sub-swarm were studied in [31].

The authors in [32] developed a particle swarm model for tracking multiple maxima using

10

speciation in continuously dynamic environments. The model allowed parallel sub-populations to

track different peaks. The best particle in each sub-population or species is referred to as the species

seed. To ensure that the model is unbiased for local maxima, the species are reconstructed after

every iteration, usually with different members and different seeds. The number of members per

species was also limited to prevent many particles from exploiting the same peak. The experiments

showed that low species populations has lower error rates in highly dynamic environments. It was

also shown that in order to achieve the lowest average error, there is a maximum limit for the

species size. This work was further extended in [33] by adding a mechanism to remove redundant

particles.

A multi-swarms technique with multiple interaction strategies was proposed in [34]. The popu-

lation was split into different sub-swarms. Nearby swarms interacted through an exclusion strategy

similar to what was used in [28]. Another interaction also occurs globally among all the swarms

through an anti-convergence operator. The diversity was maintained inside each swarm by us-

ing different types of particles. When changing the number of swarms, the authors reached the

same conclusion as in [28]. The behavior of the multiswarms model was not so sensitive against

changing the exclusion radius. In addition, a formula was provided for tuning this parameter.

Experiments showed that the model performed well on a wide range of problems and was robust

against changing the different parameters.

2.2.2 Multi-Objective Optimization

In [35], the authors introduced the parallel vector evaluated PSO (VEPSO) that was used to solve

multi-objective optimization problems. Each swarm was optimizing a single objective function.

The information of this function is exchanged with neighboring swarms via the exchange of the

best experience of the swarm. The authors experimented with both the single-node (all the swarms

on the same CPU) and the parallel (a single swarm per CPU) approaches using the ring topology.

The parallel implementation provided better execution times. However, increasing the number of

CPUs over six resulted in increased running times due to the communication overhead. The two

swarms case was investigated separately in [36].

The autonomous agent response learning problem was addressed in [37] using a multi-species

PSO (MS-PSO). The award function was divided into several award functions, hence, the response

extraction process is modeled as a multi-objective optimization problem. Each objective function

was solved using a different swarm. The information exchange process occurred between neighbor-

ing swarms and involved the best particles information. This was done after every iteration and

11

the velocity update equation was modified by taking into account the incoming information from

all neighboring swarms.

Another Multi-objective PSO (AMOPSO) was introduced in [38]. In this approach, each sub-

swarm performs a predetermined number of iterations, then the sub-swarms exchange information.

This is done by grouping all the leaders in a single set. This set is again divided into groups, and

each resulting group is assigned to a different swarm. The splitting is done with respect to the

closeness in the decision variable space.

In [39], the authors proposed two different parallel versions of a Multi-Objective PSO (MOPSO).

The basic idea was to have different sub-swarms running on different processors and after a few it-

erations these swarms report their best solutions to a central processor. The central processor then

assigns each sub-swarm a guide and each sub-swarm re-initializes its particles in the local neigh-

borhood of its assigned guide while including the guide in its particles. The authors experimented

with two methods of assigning the guides: Cluster-based (CMOPOS) and Hypervolume-based

(HMOPSO). The Hypervolume-based approach was found to produce better results.

2.2.3 Constrained Optimization

A co-evolutionary PSO for constrained optimization problems was proposed in [40]. The au-

thors transformed the constrained problem into a min-max problem which was solved using a

co-evolutionary approach. Two cooperating swarms were used, one swarm optimizing the min

part of the problem and another swarm optimizing the max part. The two swarms exchanged in-

formation during the fitness evaluation process. In this model, one swarm is active at a time. The

first swarm evolves for a predetermined number of iterations and uses the particles information of

the second swarm during fitness evaluation. Then, this swarm is stopped and the second swarm

evolves in the same manner using the particles information of the first swarm in the fitness eval-

uation process, and so on. However, the authors found it difficult to fine tune the solution using

a uniform distribution. This problem was addressed in [41] by adopting the Gaussian probability

distribution in generating the random numbers for updating the particles velocities. Figure 2.5

illustrates the idea behind this approach.

2.2.4 Other Applications

In [42], the CPSO was used to train product unit neural networks. The solution of the problem was

the vector containing all the weights of the network. This vector was decomposed among several

12

Swarm 2
evolving

Swarm 1
stopped

Swarm 2
stopped Swarm 1

evolving

Particles information

Particles information

First stage

Second stage

Figure 2.5: The co-evolving PSO approach

swarms, each swarm optimizing a specified number of weights. The authors studied the effect of

changing the number of swarms, referred to as the split factor, on the training performance. They

concluded that the training performance improves with increasing the split factor until a critical

ratio is reached. This ratio was found to be W/5, where W is the total number of the optimized

weights.

In [43], improvised music was played using a multi-swarm approach. Each swarm represented

a musical entity and the particles in the swarm were musical events. The system as a whole

was regarded as an improvising ensemble. Each particle was a 3-dimensional vector in the music

space representing loudness, pulse and pitch. The ability of each individual to produce a coherent

improvisation was ensured by the principles of self-organization.

In [44], the authors proposed a co-evolutionary PSO approach for solving the game of seega.

Seega is an Egyptian two-stage board game. In the first stage, the two players take turns in placing

their disks on the board until there is only one empty cell. In the second stage, the players take

turns in moving their disks; if a disk, that belongs to one player, gets surrounded by disks of the

other player, it gets captured and removed from the board. The game was solved by evolving

two independent swarms representing the two players. The system consisted of two parts, the

game engine and the co-evolutionary part. The second part used the game engine in a master-

slave relationship in order to evaluate the particles fitness. The authors used the same approach

proposed in [40] by using one swarm for each player.

13

The authors of [45] proposed a co-evolutionary PSO approach for tuning the parameters of

a 5 degree-of-freedom arm robot torque controller. Two swarms evolved together, one swarm

is optimizing the feedforward controller parameters and the other swarm is searching for the

disturbance values in the worst case. The final solution is generated by both swarms. The two

swarms were implemented in a serial fashion similar to the one used in [40]. Closed-loop simulations

showed that the proposed strategy improved the trajectory tracking ability of a perturbed robot

arm manipulator.

In [46], the authors applied VEPSO to the problem of determining the generator contributions

to a transmission system. The authors used a multi-objective optimization approach to model

the problem of evaluating the generator contributions. The VEPSO was applied using a network

of processors. Although the approach was slower than the analytical methods, it was found to

produce accurate results when compared to them while considering the nonlinear characteristics

of the system as well.

2.3 Classifying the Cooperative PSO Models

The taxonomy proposed in [47] is extended and used to cover the different implementations sur-

veyed. This taxonomy is shown in Figure 2.6.

 Dynamic

Static

Hybrid
Techniques

Explicit
Decomposition

Implicit
Decomposition

Problem
Decomposition

Space
Decomposition

Decomposition
Type

Figure 2.6: Decomposition-Type based taxonomy.

In problem decomposition, the problem itself is divided into several sub-problems, each one

14

is solved using a different swarm. The swarms share the solutions they find with each other in

order to reach a global solution for the problem in hand. This class includes the implementations

in [35–37,46] as each swarm is optimizing a single objective function, [40,41,45] as each swarm is

solving a different part of the problem (min and max parts) and [44] as each swarm is evolving for

a different player.

The implicit space decomposition, where complete solutions are being shared, involves the

decomposition of the search space between different swarms. The name implicit comes from the fact

that the different swarms explore different areas in the search space due to different initial solutions,

different parameter settings or both. It also comes from the fact that the swarms may follow

different gbests in different regions. This class is further divided into static swarms and dynamic

swarms. The static swarms class involves implementations where the swarms are separate, swarm

do not get re-constructed, no introduction of new swarms and no deletion of existing swarms while

the model is running; this class includes the implementations in [10,14,15,20,27,28,34,38,39,43].

The dynamic swarms class includes the implementations involving the continuous re-construction

of existing swarms [21, 22, 25, 26, 29, 31–33], the introduction of new swarms or the deletion of old

swarms as in [23].

In the explicit space decomposition, where partial solutions are being shared, the search space

is explicitly decomposed into sub-spaces. Each swarm searches for a sub-solution in a different

sub-space of the problem. Hence, each swarm provides a partial solution to the problem, these

partial solutions are gathered to provide the complete solution. The implementation falling under

this class is the CPSO reported in [9, 11] and its application to neural network training reported

in [42].

The hybrid approach refers to the idea of having a cooperative system that employs both

methods of space decomposition. This class includes the CPSO H reported in [9] and the hierarchal

cooperative PSO in [16].

2.4 Conclusion

This chapter surveys the different cooperative PSO implementations proposed in the literature.

All the different implementations are categorized according to the application they were used in. A

taxonomy to classify all the surveyed models is proposed. This taxonomy classifies the cooperative

models based on two different aspects: the decomposition approach adopted by the model and the

method used for placing the particles into the different cooperating swarms. The way the search

15

space is decomposed is done by either decomposing the search space or decomposing the problem

in hand. While the particles gets placed in the cooperating swarm either statically or dynamically.

The taxonomy helps in gathering all the proposed models under one roof and understanding the

similarities and differences between these models.

16

Chapter 3

Information Exchange in Cooperative

Particle Swarm Optimizers

This chapter starts by giving a definition of what is meant by a cooperative PSO algorithm based on

the models surveyed in the previous chapter. The given definition helps in identifying key design

decisions (parameters settings) that affect the performance of any cooperative PSO algorithm.

These decisions mainly give answers to four important questions; Which information to share?

When to share it? Whom to share it with? and What to do with it? The chapter summarizes the

design decisions taken by the different surveyed models. A complete empirical study is then carried

on one cooperative PSO model to observe how the performance is influenced by these parameters.

3.1 Definition

Based on the different cooperative PSO models surveyed we can define a cooperative PSO model

as follows: Multiple swarms (or sub-swarms) searching for a solution (serially or in parallel) and

exchanging some information during the search according to some communication strategy. Based

on the exchanged information, an action is taken to effectively continue with the search process.

From the proposed definition, when implementing a cooperative PSO model, one has to decide

upon several design issues in order to get the best performance. These issues are related to the

following:

• Which information to exchange? Most of the cooperative PSO models up to date rely on

exchanging the best experience of the cooperating swarms, referred to as gbest, the best

particle, the attractors, or the leaders.

17

• When to exchange the information? To answer this question we should decide upon a

communication strategy to use. This could be either synchronous or asynchronous. In

synchronous communication, the cooperating modules exchange information with each other

every predetermined number of iterations. On the other hand, asynchronous communication

involves the exchange of information when a certain condition occurs (e.g., when the solution

found by a certain module does not improve for a specified number of iterations).

• Whom to share this information with? In other words, does the communication only occur

between neighboring swarms or do all the swarms share the information among each other?

• What to do with the exchanged information? This defines the approach taken by any

swarm to deal with the received information. Many actions have been proposed to handle

this information including replacing some of its own particles, using it to update its particles

velocities, and re-initializing the whole swarm.

These issues are similar to the ones raised in [48], while adding the fourth issue.

Tables 3.1, 3.2 and 3.3 summarize the cooperative PSO models surveyed in the previous chapter

highlighting their choice of exchanged information, communication strategies (’S’ Synchronous or

’A’ Asynchronous), when the communication occurs (number of iterations or required condition),

and the actions taken after the communication is carried out (based on the exchanged information).

Tables 3.1 and 3.2 show that the static implementations of the model, where the swarms are

fixed, always relies on exchanging the best particle (or list of particles) among the cooperating

swarms and usually adopting the synchronous type of communication. The only exception is

in [28,34], where the asynchronous communication is partially used. While in the dynamic imple-

mentations shown in Table 3.3, since the swarms get continuously reconstructed, the information

exchange step involves all the particles. It is also interesting to note that both the Niche PSO

and the Multi Swarm approaches check whether the swarms are close to each other after every

iteration. However, they operate differently, the first approach merges the close swarms and the

second one re-initializes the swarm following the bad attractor.

3.2 The Which, When, Whom and What Parameters

In order to study the effect of the different choices that could be adopted, a general PSO cooperative

model is taken as a test case. This cooperative model is similar to CONPSO with both swarms

performing the gbest model. The model adopts the sequential algorithm shown in Algorithm

18

Table 3.1: Static cooperative PSO models.

Model Which Comm. When What
strategy

CPSO S Best S Every Updates the
[9, 11,42] Particle iteration context vector

CPSO H [11] Best S Every Replaces a
Particle iteration random particle

CONPSO [10] gbest S Not Follow the
specified better gbest

PPSO [14,15] gbest S Every Mutate and replace
20 iterations poor particles

Diversity-based List of S Every Replaces a list
[17] particles 10 iterations of particles

MCPSO [20] gbest S Every Add to velocity
iteration update equation

MGPSO [27] gbest S Every Repulsion in velocity if necessary
iteration different gbest update

Multi-Swarms I
Attractors

S Every iteration Are attractors close?

[28] A Close Attractors Re-initialize swarm

with bad attractor

Multi-Swarms II
Attractors

S Every iteration Are attractors close?

[34]
A Close Attractors Re-initialize bad

attractor swarm

A Swarms converged? Re-initialize the
worst swarm

VEPSO
gbest S Every Add to velocity

[35,36,46] iteration update equation

MSPSO
gbest S Every Add to velocity

[37] iteration update equation

3.1 using two cooperating swarms while adopting synchronous communication. The information

exchanged is the global best of the two swarms and the action taken is that both swarms follow

the better gbest.

It is necessary to have both swarms use the same PSO algorithm for studying the number of

swarms parameter discussed in this section. If the swarms are using different algorithms, we would

be facing the problem of which swarm to choose to add to the cooperative system.

19

Table 3.2: Static cooperative PSO models, contd.

Model Which Comm. When What
strategy

AMOPSO [38] Swarm’s S Every Re-assign leaders
leaders 5 iterations to swarms

CMOPSO [39] guide S Every Re-initialize sub-swarm
20 iterations in guide′s neighborhood

Co-evolving Swarms All S Every Information used

[40,41,45] particles 10 iterations in fitness evaluation

Swarm Music
Targets

S Every iteration Add to velocity

[43]
update equation

A Swarms converged? Re-initialize the
worst swarm

Table 3.3: Dynamic cooperative PSO models.

Model Which Comm. When What
strategy

Niche PSO All
S Every iteration Swarms close?

[23] particles A Close Swarms Merge Swarms

A No fitness change Create new swarms

DMS-PSO All S Every Re-construct
[21,22] particles 3 iterations sub-swarms randomly

PH-PSO All A A change occurs Splitting hierarchy

[29,31] particles S 10 iterations Re-joining hierachy

PH-PSO-a All
A A change occurs Splitting hierarchy

[29,31] particles A
A swarm contains gbest

Re-joining hierarchy
for 5 iterations

SPSO All S Every Re-construct
[25,26,32,33] particles iteration the swarms

3.2.1 Which Information to Share? and What to do with it?

In the CONPSO model, the two swarms exchange their global bests, a choice usually taken by static

implementations. The swarms then follow the better gbest. In this case, the flow of information

is only from one swarm to the other. The swarm that has the better global best provides new

information to the other swarm without gaining anything. To overcome this disadvantage, another

information sharing mechanism should be adopted. This requires changing the action taken after

the communication step or choosing different information to exchange.

20

Algorithm 3.1 A cooperative sequential algorithm.

Require: Max Function Evaluations

1: Initialize the two swarms

2: Max Iterations = Max Function Evaluations
Num Particles

3: iter number = 1

4: while iter number ≤ Max Iterations do

5: Update swarm 1

6: Update swarm 2

7: if Synchronization then

8: Exchange Information()

9: end if

10: iter number = iter number + 1

11: end while

12: return min(gbest1,gbest2)

The action taken is changed by allowing each swarm to receive the coming gbest and use it to

replace one of its particles. The particle replaced could be either the worst particle or a randomly

chosen particle. The same thing applies for choosing the information to be sent to the other

swarms. One might choose to send the best particle or even send a randomly chosen particle.

This gives rise to four different information exchange approaches that are tested in this work.

The general information sharing mechanism is carried out by selecting a particle from one swarm

(the information chosen) replacing the contents of another particle in another swarm (the action

taken). Different information exchange mechanisms could be adopted by choosing the way a certain

particle is selected or replaced. Theses approaches are:

• Selecting the best particle to replace the worst one (Best-Worst),

• Selecting the best particle to replace a random one (Best-Random),

• Selecting a random particle to replace the worst one (Random-Worst),

• Selecting a random particle to replace a random one (Random-Random).

The method is implemented by replacing the information exchange step in Algorithm 3.1 by

the steps shown in Algorithm 3.2, where N is the number of particles in the swarm and p is the

number of exchanged particles. In the algorithm shown, one swarm chooses its best p particles to

21

replace the worst p particles in the other swarm. All four information exchange approaches are

experimented with in this work and compared with just sharing the same global best.

Algorithm 3.2 Exchanging the particles information both ways.

1: Sort the particles inside each swarm

2: k = 1

3: while k ≤ p do

4: Replace particle N-k in swarm 1 with particle k in swarm 2

5: Replace particle N-k in swarm 2 with particle k in swarm 1

6: k = k + 1

7: end while

It should be noted that there are still many ways available for sharing information. In [49],

the authors experimented with performing the crossover operator between particles that belong to

different sub-populations, which could be regarded as a different type of information exchange.

3.2.2 When to Share Information?

If synchronous communication is used, one has to set the number of iterations after which the

modules exchange information. This parameter is referred to in this work as the synchronization

period. This parameter is being tested while sharing the global best solution between the two

cooperating swarms. Note also that a similar parameter could be identified in asynchronous

communication, which is the number of iterations that a module has to wait for, before performing

the exchange, provided that the solution quality does not improve.

When having a single swarm with 2n particles, these particles are used to update the gbest

value of the swarm after every iteration. Assuming that we have two swarms with n particles

each, and that each swarm performs T iterations. We wish to investigate how the performance of

the two swarms model changes while changing the synchronization period tsync. If tsync is equal

to one, the two swarms will share their global bests after every iteration, hence, we may find

that the performance of the two swarms model is statistically equivalent to the performance of

a single swarm having 2n particles. On the other hand, if tsync > T , the two swarms will never

communicate during their search and the model becomes equivalent to two independent runs of

a single swarm with n particles. It is still unclear how would the cooperative model behave if

1 < tsync < T .

22

3.2.3 Whom to Share Information With?

This question is answered by defining the neighborhood topology of the cooperating swarms. Two

different neighborhood topologies are tested in this work:

• Fully-connected topology: Sharing the global minimum among all swarms,

• Ring topology: Circular communication of the global minimum in a directed ring fashion.

Figure 3.1 shows both topologies, where GBi refers to the global best of swarm i and GB is the

minimum of all global bests.

GB

GB GB

GB1 GB2

GB3

Swarm 1 Swarm 2

Swarm 3

Comparison
Module

(a) Fully-connected topology - global sharing

GB3 GB2

GB1 Swarm 2 Swarm 1

Swarm 3

(b) Ring topology - circular communication

Figure 3.1: Different neighborhood topologies.

Again, this parameter is being tested while sharing the global best among all the cooperating

swarms. To test the ring topology, the information exchange step in Algorithm 3.1 is replaced by

the steps shown in Algorithm 3.3.

3.2.4 Additional Parameters

• Number of cooperative modules: In PSO, if the number of particles is kept fixed, increasing

the number of cooperating swarms decreases the number of particles per swarm, which

could affect the performance of the cooperative model. Previous experiments conducted

in [28], [42], [35] that studied changing the number of swarms, all reached a similar conclusion.

23

Algorithm 3.3 The information exchange step when adopting the ring topology.

1: for each swarm s do

2: Report gbests to swarm s+1

3: end for

4: for each swarm s do

5: gbests = min(gbests, gbests−1)

6: end for

Increasing the number of swarms helps to improve the performance up to a certain limit.

However, in all these experiments, the swarms exchange information after every iteration.

The experiments provided in this thesis are different because the synchronization period and

the number of swarms used are both changing,

• Implementation approach: As stated in [50], cooperative algorithms are still efficient even if

they are sequentially implemented. However, it is interesting to see whether the implemen-

tation approach taken to build the model (serial or parallel) affects the performance. In [35],

the authors stated that the parallel implementation helped in reducing the execution time,

however, they did not refer to the solution quality obtained, which suggests that it was not

affected. A similar conclusion was also drawn in [51].

3.3 Results and Discussions

3.3.1 Experimental Settings

The experiments are run using the benchmark functions shown in Table 3.4. The gbest model

is applied by decreasing w linearly from 0.9 to 0.1 and setting both c1 and c2 to 2. For all

experiments, all the particles have been randomly initialized in the specified domain using uniform

distribution. The experiments are applied to a problem dimensionality of 10, while performing

100000 function evaluations. The results reported are the averages taken over 50.

3.3.2 How are the experiments divided?

Due to the complexity of the experiments and the different number of parameters tested. A brief

introduction is given to show how the experiments will be conducted.

24

Table 3.4: Benchmark functions.
Function Equation Domain Property

Spherical f(x) =
∑n

i=1 x2
i 100 unimodal

Quadric f(x) =
∑n

i=1

(∑i
j=1 x2

j

)2 100 unimodal

Rosenbrock f(x) =
∑n/2

i=1

(
100(x2i − x2

2i−1)
2 + (1− x2i−1)2

)
2.048 unimodal

Griewank f(x) = 1
4000

∑n
i=1 x2

i −
∏n

i=1 cos
(

xi√
i

)
+ 1 600 multimodal

Ackley
f(x) = 20 + e− 20 exp

(− 0.2
√

1
n

∑n
i=1 x2

i

)
30 multimodal

− exp
(

1
n

∑n
i=1 cos 2πxi

)

Rastrigin f(x) =
∑n

i=1

(
x2

i − 10 cos 2πxi + 10
)

5.12 multimodal

Schwefel f(x) = 418.9829 ∗ n +
∑n

i=1−xi sin
√
|(xi)| 500 multimodal

Firstly, a single swarm algorithm will be applied to all the functions with an increasing number

of particles. The aim is to find out the best result achieved by a single swarm for each function as

this will be used as a basis of comparison.

Secondly, the cooperative model is applied using 2 swarms and 10 particles per swarm, which are

arbitrary chosen values. The experiments will be repeated while increasing the synchronization

period allowing different number of communication steps. The experiments aim at finding out

how the model behaves while changing this parameter and how good is the performance of the

cooperative model compared to the single swarm.

Thirdly, the cooperative model is applied using three swarms and 10 particles per swarm. The

experiments will be run using the two neighborhood topologies identified in Section 4.3 across

different synchronization periods. The aim is to find out which of these topologies is better.

Fourthly, the cooperative model is applied while changing the number of swarms with a fixed

25

number of particles. The goal is to find a suitable number of swarms to be used and how would

changing this parameter affect the synchronization period.

Finally, the experiments are repeated for a higher dimensionality to check whether the reached

conclusions still hold.

3.3.3 Results of A Single Swarm

Tables 3.5, 3.6, and 3.7 show the results obtained using a single swarm and performing the same

number of function evaluations while changing the number of particles. The results generally

indicate that the solution improves by increasing the number of particles up to a certain limit,

then the quality of the results tends to deteriorate. Except for the Ackley and the Schwefel

functions where the results still improve.

Table 3.5: Results of a single swarm for the unimodal functions for a dimensionality of 10.
Number of Spherical Quadratic Rosenbrock

Particles Mean Std. Mean Std. Mean Std.

10 2.702e-01 3.700e-01 1.930e+00 2.422e+00 3.147e-01 3.136e-01

20 4.535e-03 1.067e-02 4.814e-02 1.241e-01 6.663e-02 1.258e-01

30 2.849e-05 6.889e-05 3.190e-05 9.683e-05 3.501e-03 1.160e-02

50 8.807e-13 5.747e-12 2.887e-17 1.804e-16 3.835e-05 2.712e-04

100 9.965e-31 6.982e-30 1.224e-50 7.938e-50 8.751e-32 1.590e-31

200 1.495e-47 4.527e-47 1.746e-55 1.171e-54 1.652e-32 2.422e-32

300 2.150e-41 7.758e-41 6.738e-44 1.579e-43 2.465e-32 4.211e-32

Table 3.6: Results of a single swarm for the multimodal functions for a dimensionality of 10.
Number of Griewank Ackley

Particles Mean Std. Mean Std.

10 3.295e-01 1.292e-01 1.532e+00 9.033e-01

20 2.136e-01 1.185e-01 1.456e+00 9.340e-01

30 1.908e-01 1.255e-01 1.238e+00 9.203e-01

50 2.075e-01 1.148e-01 1.143e+00 8.681e-01

100 1.594e-01 9.016e-02 1.103e+00 1.038e+00

200 1.670e-01 1.159e-01 7.787e-01 8.512e-01

300 1.702e-01 1.165e-01 6.423e-01 8.250e-01

26

Table 3.7: Results of a single swarm for the multimodal functions for a dimensionality of 10, contd.
Number of Rastrigin Schwefel

Particles Mean Std. Mean Std.

10 8.289e+00 2.883e+00 9.121e+02 4.175e+02

20 8.433e+00 3.769e+00 8.877e+02 3.767e+02

30 7.125e+00 2.592e+00 9.150e+02 3.691e+02

50 8.179e+00 2.990e+00 8.061e+02 3.512e+02

100 7.920e+00 2.864e+00 7.312e+02 2.528e+02

200 7.048e+00 2.603e+00 7.434e+02 3.101e+02

300 7.403e+00 2.622e+00 6.905e+02 3.248e+02

For the multimodal functions, the results show that PSO is most successful in solving the

Griewank function, followed by the Ackley function, the Rastrigin function, and finally the Schwefel

function. The reason for this is realized by inspecting Figure 3.2, which shows the topology of all

these functions in each dimension.

−5 −2.5 0 2.5 5
0

0.5

1

1.5

2

2.5

x

f(
x)

(a) Griewank

−5 −2.5 0 2.5 5
−2

1

4

7

10

13

16

x

f(
x)

(b) Ackley

−5 −2.5 0 2.5 5
0

15

30

45

x

f(
x)

(c) Rastrigin

−500 −250 0 250 500
0

300

600

900

x

f(
x)

(d) Schwefel

Figure 3.2: Each dimension of the multi-modal functions.

27

The figure shows that the first three functions share the property of having a periodic se-

quence of local minima. The Ackley and the Rastrigin functions have more local minima than

the Griewank function over the same interval . The surface of the Rastrigin function is more

rugged than that of the Ackley function. The Schwefel function has large peaks and basins and

characterized by having the global optimum far from the next best solution.

The experiments are also run using the benchmark functions f6-f14 shown in Table 3.8 that

were proposed in CEC2005 and available at [52]. In order to constrain the particles movement

within the specified domain, any violating particle gets its position randomly re-initialized inside

the specified domain. The results reported for these functions are the error values f(x) − f(x∗),
where x∗ is the global optimum, and are the averages taken over 25 runs.

Table 3.8: CEC05 benchmark functions.
Benchmark

Description
Lower Upper

Function Domain Domain

f6 shifted Rosenbrock -100 100

f7 shifted rotated Griewank without bounds 0 600

f8 shifted rotated Ackley -32 32

f9 shifted Rastrigin -5 5

f10 shifted rotated Rastrigin -5 5

f11 shifted rotated Weierstrass -0.5 0.5

f12 Schwefel -100 100

f13 expanded extended Griewank plus Rosenbrock -3 1

f14 shifted rotated expanded Scaffer -100 100

Tables 3.9, 3.10, and 3.11 show the results of applying the gbest model to these functions. The

results show that increasing the number of particles up to a certain limit improves the performance

as was shown before. The only exception is in f6, where having 10 particles provided the best

solution and in f8 where changing the number of particles did not have a significant effect.

In the following experiments, the results of the cooperative model is compared to a single swarm

performing the gbest model to observe how its performance is changing under the tested factor

with respect to the single swarm performance. The results will not be presented for f8 as this

function has the optimum on the bounds and the topology is similar to the needle-in-hay-stack

problem, the cooperative model did not provide any improvements.

28

Table 3.9: Results of a single swarm for the CEC05 functions for a dimensionality of 10.
Number of f6 f7 f9

Particles Mean Std. Mean Std. Mean Std.

10 3.158e+00 5.593e+00 3.172e-01 1.678e-01 3.423e+00 2.053e+00

20 6.983e+00 1.592e+00 2.318e-01 1.462e-01 2.905e+00 1.882e+00

30 7.980e+00 1.041e+01 2.236e-01 1.858e-01 3.025e+00 1.268e+00

50 1.742e+01 3.874e+01 1.946e-01 9.274e-02 2.348e+00 1.344e+00

100 1.742e+01 3.874e+00 1.403e-1 6.087e-2 2.109e+00 1.124e+00

200 1.823e+01 3.378e+01 1.864e-01 9.808e-02 1.395e+00 9.499e-01

300 1.940e+01 3.273e+01 1.734e-01 7.336e-02 1.672e+00 1.243e+00

Table 3.10: Results of a single swarm for the CEC05 functions for a dimensionality of 10, contd.
Number of f10 f11 f12

Particles Mean Std. Mean Std. Mean Std.

10 1.541e+01 6.025e+00 4.128e+00 1.433e+00 6.073e+03 4.767e+03

20 1.577e+01 6.271e+00 4.242e+00 1.307e+00 6.387e+03 6.341e+03

30 1.445e+01 6.882e+00 3.864e+00 1.434e+00 5.109e+03 3.554e+03

50 1.389e+01 6.302e+00 4.294e+00 1.186e+00 6.417e+03 5.346e+03

100 1.317e+01 6.437e+00 4.456e+00 1.528e+00 6.671e+03 5.256e+03

200 1.166e+01 5.469e+00 4.553e+00 1.778e+00 9.765e+03 7.233e+03

300 1.174e+01 5.532e+00 4.701e+00 1.341e+00 1.032e+04 6.912e+03

Table 3.11: Results of a single swarm for the CEC05 functions for a dimensionality of 10, contd.
Number of f13 f14

Particles Mean Std. Mean Std.

10 6.758e-01 2.171e-01 2.725e+00 4.440e-01

20 6.227e-01 2.000e-01 2.872e+00 3.896e-01

30 6.305e-01 2.358e-01 2.690e+00 4.748e-01

50 6.442e-01 1.622e-01 2.648e+00 4.305e-01

100 5.615e-01 2.171e-01 2.949e+00 4.421e-01

200 5.582e-01 1.798e-1 2.920e+00 4.215e-01

300 6.728e-01 1.920e-01 2.999e+00 4.207e-01

3.3.4 Synchronization Period

In order to keep the number of function evaluations fixed, each swarm performed 50000 function

evaluations when the cooperative model is applied. Hence, if there is any improvement in the

29

results, it should be due to the cooperative nature of the model. The model is re-run with

different synchronization periods and the best results achieved by the cooperative model for all

the functions are shown in Table 3.12. The results shown are the averages obtained over the 50

runs. The column titled “Compared to Single Swarm” is based on a two sample t-test that is

run to verify the results statistical significance, where the null hypothesis is rejected with a 95%

confidence level.

Table 3.12: Results of the cooperative model for a dimensionality of 10.

Benchmark Synchronization
Mean Std.

Compared to
Function Period Single Swarm

Spherical 1 4.193e-03 8.525e-03 No improvement

Quadratic 1 6.329e-02 1.844e-01 No improvement

Rosenbrock 1 4.606e-02 7.997e-02 No improvement

Griewank 1 1.983e-01 1.683e-01 Similar to 50 particles

Ackley 1000 1.108e+00 7.386e-01 Similar to 100 particles

Rastrigin 2000 6.043e+00 2.548e+00 Better

Schwefel 500 6.661e+02 2.549e+02 Better

Figure 3.3 illustrates the model behavior for the unimodal functions for the different synchro-

nization periods. The results show that reducing the synchronization period improves the solution

quality. In fact, the results of the studied model approaches the result of the original PSO al-

gorithm using 20 particles as the synchronization period decreases to 1, as discussed in Section

3.2. The same behavior is noticed for the Griewank function, which has sparse and small sized

peaks causing it to behave like a unimodal one. That is why the single swarm is most successful

in solving this function among all the multimodal ones.

For the other multimodal functions shown in Figure 3.4, increasing the synchronization period

up to a certain limit produces better results because the probability of having the two swarms

stuck at the same local minimum decreases. However, after a certain limit, the results start to

deteriorate.

Since the Rastrigin function is more difficult than the Ackley function, the cooperative model

needed a longer synchronization period, than what was needed for the Ackley function in order to

produce the best results. This indicates that for harder functions more separation is needed.

A two sample t test is run to verify the results statistical significance. The test is run for all

multimodal functions (except the Griewank function) between two samples drawn from the 50

runs. One sample is the output of the single swarm with 20 particles, and the other sample is

30

1 10 25 50 100 250 500 1000 2000 3000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Synchronization Period

f(
x)

(a) Spherical

1 10 25 50 100 250 500 1000 2000 3000
0

0.5

1

1.5

2

2.5

Synchronization Period

f(
x)

(b) Quadratic

1 10 25 50 100 250 500 1000 2000 3000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Synchronization Period

f(
x)

(c) Rosenbrock

Figure 3.3: Synchronization period effect for the unimodal functions for a dimensionality of 10.

the best output of the cooperative model. For all cases, the null hypothesis is rejected with a

95% confidence level indicating that adopting a 2-swarm cooperative model with n particles each

is better than having a single swarm with 2n particles, provided that a suitable synchronization

period is selected.

The experiments are rerun using the CEC05 functions to test if the conclusions reached still

hold. The results in Table 3.13 marked with * show that the cooperative model was able to produce

the best result achieved by a single swarm (often with a higher number of particles). Figure 3.5

and Figure 3.6 show that the cooperative model still has the same behavior as increasing the

synchronization period improves the results.

31

1 10 25 50 100 250 500 1000 2000 3000
0.15

0.2

0.25

0.3

0.35

0.4

Synchronization Period

f(
x)

(a) Griewank

1 10 25 50 100 250 500 1000 2000 3000
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Synchronization Period

f(
x)

(b) Ackley

1 10 25 50 100 250 500 1000 2000 3000
6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

Synchronization Period

f(
x)

(c) Rastrigin

1 10 25 50 100 250 500 1000 2000 3000
650

700

750

800

850

900

Synchronization Period

f(
x)

(d) Schwefel

Figure 3.4: Synchronization period effect for the multimodal functions for a dimensionality of 10.

Table 3.13: Results of the cooperative model for the CEC05 functions for a dimensionality of 10.

Benchmark Synchronization
Mean Std.

Against
Function Period Single Swarm

f6 3000 3.610e+00 5.393e+00 No improvement

f7 3000 1.533e-01 7.546e-02 Similar to 100 particles*

f9 2000 2.518e+00 1.796e+00 Similar to 100 particles

f10 500 1.300e+01 6.905e+00 Similar to 200 particles*

f11 2000 3.728e+00 1.123e+00 Similar to 30 particles*

f12 25 4.533e+03 3.999e+03 Similar to 30 particles*

f13 3000 5.672e-01 1.553e-01 Similar to 200 particles*

f14 100 2.819e+00 4.598e-01 Similar to 50 particles*

32

1 10 25 50 100 250 500 1000 2000 3000
2

4

6

8

10

12

14

16

18

20

22

Synchronization Period

f(
x)

−
f(

x*
)

(a) f6

1 10 25 50 100 250 500 1000 2000 3000
0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

Synchronization Period

f(
x)

−
f(

x*
)

(b) f7

1 10 25 50 100 250 500 1000 2000 3000
2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

Synchronization Period

f(
x)

−
f(

x*
)

(c) f9

1 10 25 50 100 250 500 1000 2000 3000
12.5

13

13.5

14

14.5

15

15.5

16

16.5

17

Synchronization Period

f(
x)

−
f(

x*
)

(d) f10

1 10 25 50 100 250 500 1000 2000 3000
3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Synchronization Period

f(
x)

−
f(

x*
)

(e) f11

1 10 25 50 100 250 500 1000 2000 3000
4500

5000

5500

6000

6500

7000

7500

8000

Synchronization Period

f(
x)

−
f(

x*
)

(f) f12

Figure 3.5: Synchronization period effect for the CEC05 functions.

3.3.5 Neighborhood Topology

This section experiments with the two neighborhood topologies previously identified by increasing

the number of swarms to three.

33

1 10 25 50 100 250 500 1000 2000 3000
5.6

5.8

6

6.2

6.4

6.6

6.8

7

7.2

7.4

Synchronization Period

f(
x)

−
f(

x*
)

(a) f13

1 10 25 50 100 250 500 1000 2000 3000
2.8

2.85

2.9

2.95

3

3.05

3.1

3.15

3.2

Synchronization Period

f(
x)

−
f(

x*
)

(b) f14

Figure 3.6: Synchronization period effect for the CEC05 functions, contd.

Tables 3.14 and 3.15 show the best results obtained by applying both approaches and the

results are also plotted in Figure 3.7. The results show that the circular communication approach

gives better results than the global sharing approach because it maintains the diversity among

the cooperating swarms. When global sharing is used, all the swarms follow the same global best

solution after every synchronization point. This increases the probability of having all the swarms

stuck at the same local minimum.

Table 3.14: Results of the global sharing approach for a dimensionality of 10.

Benchmark Synchronization
Mean Std.

Compared to
Function Period Single Swarm

Griewank 100 2.030e-01 1.272e-01 No Improvement

Ackley 250 1.025e+00 7.407e-01 Similar to 100 particles

Rastrigin 1000 5.327e+00 2.894e+00 Better

Schwefel 500 5.709e+02 2.455e+02 Better

Table 3.15: Results of the circular communication approach for a dimensionality of 10.

Benchmark Synchronization
Mean Std.

Compared to
Function Period Single Swarm

Griewank 50 2.152e-01 1.329e-01 No Improvement

Ackley 100 8.488e-01 8.455e-01 Similar to 300 particles*

Rastrigin 1000 5.027e+00 2.282e+00 Better

Schwefel 1000 5.311e+02 2.093e+02 Better

For the Griewank function, the global sharing mechanism is sometimes better than the circular

34

communication approach behaving more like a unimodal function, when it comes to the cooperative

model. The three swarms needed a longer synchronization period to produce the best result for

the Rastrigin function than the value needed for the Ackley function. This emphasizes that more

separation is needed to solve the Rastrigin function.

10 25 50 100 250 500 1000
0.2

0.22

0.24

0.26

Synchronization Period

f(
x)

Circular Comm.
Global Sharing

(a) Griewank

10 25 50 100 250 500 1000
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Synchronization Period

f(
x)

Circular Comm.
Global Sharing

(b) Ackley

10 25 50 100 250 500 1000
5

5.5

6

6.5

7

7.5

8

8.5

9

Synchronization Period

f(
x)

Circular Comm.
Global Sharing

(c) Rastrigin

10 25 50 100 250 500 1000
500

550

600

650

700

750

800

850

Synchronization Period

f(
x)

Circular Comm.
Global Sharing

(d) Schwefel

Figure 3.7: Comparing two neighborhood topologies for a dimensionality of 10.

A two sample t test is run to verify the significance of the results. The two samples are the 50

runs giving the best overall result for a single swarm and the 50 runs giving the best result of the

3-swarms cooperative model. For all cases, the null hypothesis is rejected with a 95% confidence

level. This means that adopting the 3-swarms technique outperformed the single swarm. The only

exception is the Ackley function at a dimension equal to 10, where the first sample is the output

of a single swarm with 100 particles (since the single swarm is still better with 300 particles).

Table 3.16 shows the best results obtained by applying the circular communication approach

to f6-f14. Again, results marked with * show that the 3-swarms cooperative model was able to

produce the best result achieved by a single swarm (often with a higher number of particles) for

most of the functions. Figure 3.8 and Figure 3.9 illustrate the comparison between the two neigh-

35

borhood topologies, which shows that circular communication provides better results as previously

concluded.

Table 3.16: Results of the circular communication approach for the CEC05 benchmark functions

for a dimensionality of 10.

Benchmark Synchronization
Mean Std.

Against
Function Period Single Swarm

f6 500 4.299e+00 4.852e+00 No Improvement

f7 1000 1.557e-01 9.502e-02 Similar to 100 particles*

f9 1000 2.050e+00 1.168e+00 Similar to 100 particles

f10 1000 1.071e+01 2.259e+00 Similar to 200 particles*

f11 100 3.913e+00 1.521e+00 Similar to 30 particles*

f12 25 5.219e+03 3.708e+03 Similar to 30 particles*

f13 25 5.635e-01 1.738e-01 Similar to 200 particles*

f14 250 2.614e+00 4.659e-01 Similar to 50 particles*

1 10 25 50 100 250 500 1000
0

5

10

15

20

25

30

35

Synchronization Period

f(
x)

−
f(

x*
)

Circular Comm.
Global Sharing

(a) f6

1 10 25 50 100 250 500 1000
0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Synchronization Period

f(
x)

−
f(

x*
)

Circular Comm.
Global Sharing

(b) f7

1 10 25 50 100 250 500 1000
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

Synchronization Period

f(
x)

−
f(

x*
)

Circular Comm.
Global Sharing

(c) f9

1 10 25 50 100 250 500 1000
10

11

12

13

14

15

16

Synchronization Period

f(
x)

−
f(

x*
)

Circular Comm.
Global Sharing

(d) f10

Figure 3.8: Comparing two communication strategies for the CEC05 functions for a dimensionality

of 10.

36

1 10 25 50 100 250 500 1000
3.9

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Synchronization Period

f(
x)

−
f(

x*
)

Circular Comm.
Global Sharing

(a) f11

1 10 25 50 100 250 500 1000
50

55

60

65

70

75

80

85

90

95

Synchronization Period

f(
x)

−
f(

x*
)

/ 1
00

Circular Comm.
Global Sharing

(b) f12

12 10 25 50 100 250 500 1000
0.56

0.58

0.6

0.62

0.64

0.66

0.68

Synchronization Period

f(
x)

−
f(

x*
)

Circular Comm.
Global Sharing

(c) f13

1 10 25 50 100 250 500 1000
2.6

2.65

2.7

2.75

2.8

2.85

2.9

2.95

Synchronization Period

f(
x)

−
f(

x*
)

Circular Comm.
Global Sharing

(d) f14

Figure 3.9: Comparing two communication strategies for the CEC05 functions for a dimensionality

of 10, contd.

3.3.6 Number of Swarms

Changing the number of the cooperating swarms is investigated in this section. When comparing

the performance of the cooperative PSO model with different number of swarms, the number of

particles will be kept fixed. This means that increasing the number of cooperating swarms will

decrease the number of particles per swarm. Hence, raising an important question, is it better to

have a small number of swarms with a large number of particles per swarm? Or is it better to

have many swarms with less number of particles in them?

To test the effect of increasing the number of swarms, experiments are run using 2, 3, 5, and

10 cooperating swarms adopting the circular communication approach. The number of particles

is always kept fixed at 30. Table 3.17 shows the best results produced by every system and the

synchronization period at which this result is produced.

The results show that if the number of swarms is increased, the best solution obtained will be

37

Table 3.17: Varying the number of swarms for the multimodal functions for a dimensionality of

10.

No. of Ackley Rastrigin Schwefel

Swarms S Mean Std. S Mean Std. S Mean Std.

2 250 1.156e+00 8.468e-01 1000 4.873e+00 1.774e+00 3000 6.353e+02 3.001e+02

3 100 8.488e-01 8.455e-01 1000 5.027e+00 2.282e+00 1000 5.311e+02 2.093e+00

5 50 7.580e-01 7.031e-01 250 5.322e+00 1.866e+00 100 4.487e+02 2.059e+02

10 25 9.177e-01 6.975e-01 50 5.760e+00 1.808e+00 100 4.339e+02 2.365e+02

achieved at a shorter synchronization period than usual. This indicates that if more swarms are

used, more communication is needed because the number of particles per swarm is small. Since

the Rastrigin function is harder to solve than the Ackley function, the best results achieved are

obtained at longer synchronization periods. For the Schwefel function, increasing the number of

swarms up to 10 is useful, while having a shorter synchronization period. Due to the long distance

between the two best minima in this function, having more swarms will increase the chance of

having at least one of them reaching the global one.

The results show that increasing the number of swarms while having a long synchronization

period is not beneficial. Increasing the number of swarms will decrease the number of particles per

swarm, while having a longer synchronization period will keep the swarms more separated. This

will make it difficult for the swarms to escape local minima.

Figure 3.10 shows a somehow similar behavior for the Ackley and the Rastrigin functions. For

the Ackley function, increasing the number of swarms up to 5, helped to achieve better results

provided that one uses the appropriate synchronization period. For the Rastrigin function, having

two swarms only gave the best results. However, the synchronization period is rather long. It is

also worth noting that since the Rastrigin function is harder to solve than the Ackley function, the

best results achieved by any number of swarms are obtained at longer synchronization periods.

Tables 3.18, 3.19, and 3.20 show the results for the CEC05 benchmark functions. The results

still show that increasing the number of swarms will usually limit the synchronization period.

Figure 3.11(a) shows the different balancing strategies that could be adopted between the num-

ber of swarms and the synchronization period. As the number of swarms decrease (increasing the

number of particles per swarm) while decreasing the synchronization period as well, the particles

of the different swarms become tightly coupled. One might reach the extreme case when both are

set to one, adopting a single swarm approach. On the other hand, the particles become loosely

38

10 25 50 100 250 500 1000 2000 3000
0.5

1

1.5

2

2.5

3

3.5

4

Synchronization Period

f(
x)

2 Swarms
3 Swarms
5 Swarms
10 Swarms

(a) Ackley

10 25 50 100 250 500 1000 2000 3000
4

6

8

10

12

14

16

18

Synchronization Period

f(
x)

2 Swarms
3 Swarms
5 Swarms
10 Swarms

(b) Rastrigin

0 25 50 100 250 500 1000 2000 3000
400

450

500

550

600

650

700

750

800

850

900

Synchronization Period

f(
x)

2 Swarms
3 Swarms
5 Swarms
10 Swarms

(c) Schwefel

Figure 3.10: Results of increasing the number of swarms.

Table 3.18: Varying the number of swarms for the CEC05 benchmark functions for a dimensionality

of 10.

No. of f6 f7 f9

Swarms S Mean Std. S Mean Std. S Mean Std.

2 3000 2.122e+00 2.163e+00 3000 1.592e-01 7.200e-02 1000 2.109e+00 1.417e+00

3 3000 2.204e+00 2.424e+00 1000 1.557e-01 9.502e-02 1000 2.050e+00 1.168e+00

5 2000 2.489e+00 3.640e+00 500 1.272e-01 7.781e-02 250 1.810e+00 1.361e+00

10 100 6.006e+00 5.202e+00 50 1.617e-01 8.953e-02 100 2.192e+00 1.351e+00

Table 3.19: Varying the number of swarms for the CEC05 benchmark functions for a dimensionality

of 10, contd.

No. of f10 f11 f12

Swrms S Mean Std. S Mean Std. S Mean Std.

2 3000 1.150e+01 5.107e+00 3000 3.944e+00 1.040e+00 25 5.582e+03 4.542e+03

3 1000 1.071e+01 2.259e+00 100 3.913e+00 1.521e+00 25 5.219e+03 3.708e+03

5 3000 9.845e+00 4.200e+00 250 3.725e+00 1.246e+00 25 5.397e+03 3.625e+03

10 2000 1.139e+01 3.740e+00 50 3.979e+00 1.420e+00 50 7.624e+03 4.127e+03

coupled when the number of swarms increase while increasing the synchronization period at the

same time. At the extreme case, this may result in having totally independent particles (one

particle per swarm and no communication).

To summarize the results, Figure 3.11(b) shows how each function is better optimized. The

Griewank, the Ackley, the Rastrigin, and the Schwefel functions are better solved using different

39

Table 3.20: Varying the number of swarms for the CEC05 benchmark functions for a dimensionality

of 10, contd.
No. of f13 f14

Swrms S Mean Std. S Mean Std.

2 2000 5.577e-01 1.515e-01 10 2.664e+00 4.964e-01

3 25 5.635e-01 1.738e-01 250 2.614e+00 4.659e-01

5 25 5.506e-01 1.567e-01 1000 2.688e+00 2.619e-01

10 25 6.214e-01 2.097e-01 50 2.660e+00 2.949e-01

Tightly coupled

Loosely coupled
Synchronization

Period

#Swarms

(a) Different balancing techniques

1 2 3 5 10
1

10

25

50

100

250

500

1000

2000

3000

4000

Swarm

S
yn

ch
ro

ni
za

tio
n

P
er

io
d

A

R

S

F7

F6 F10

F9,F11

F12 F13

F14

G

(b) Where each function is better optimized

Figure 3.11: Balancing techniques.

balancing techniques represented by points G, A, R, and S. The balancing graph could be used to

establish some guidelines that might help in building a successful cooperative model.

The overall results show that half of the functions under study are best solved using 5 swarms.

Another observation is that shifting or shifting-and-rotating a function would require increasing

the number of swarms used in the model (Rastrigin and (F9, F10) or Griewank and (F7, F13)).

This plot could be very useful when trying to optimize a new function. If one can find the closest

one of the functions under study in this work to the new function depending on its underlying

topology, the appropriate settings of the cooperative model to better optimize this function could

be determined.

It is difficult to answer the question raised in the beginning of the section. There are other

factors involved, which are the synchronization period and the topology of the optimized function.

40

3.3.7 Information Exchange

In this section, the model used has two cooperating swarms adopting the lbest model (local best)

[53], where the particles are connected through a ring. This model suffers from a slow flow of

information problem [54]. If one particle has useful information, it might take a while for other

particles to benefit from it. That is why it is interesting to see if the cooperative approach is still

efficient using this model.

The approach is compared to having a single swarm adopting the lbest model. The two coop-

erating swarms have 15 particles each. The neighborhood sizes selected are 2 for the Rastrigin and

the Schwefel functions and 4 for the Ackley function (since these sizes produced the best results

when having one swarm with 15 particles). The results are compared to a single swarm having 30

particles. Results of the single swarm approach are shown in Table 3.21.

Table 3.21: Results of the lbest model for a dimensionality of 10.
No. of No. of Ackley Rastrigin Schwefel

Particles Neighbors Mean Std. Mean Std. Mean Std.

15 2 1.154e+00 7.592e-01 5.974e+00 2.433e+00 6.590e+02 2.799e+02

15 4 9.086e-01 7.735e-01 6.375e+00 2.718e+00 8.428e+02 4.344e+02

15 6 1.133e+00 9.519e-01 6.762e+00 3.696e+00 9.537e+02 4.368e+00

30 2 7.283e-01 6.684e-01 4.081e+00 2.040e+00 6.238e+02 2.911e+02

30 4 3.993e-01 6.663e-01 4.274e+00 1.642e+00 6.699e+02 3.601e+02

30 6 2.931e-01 5.450e-01 5.294e+00 1.949e+00 7.463e+02 3.719e+02

The best results obtained by applying different exchange approaches are shown in Table 3.22.

The four different exchange approaches previously identified are applied by exchanging one particle

(p = 1) both ways.

Table 3.22: Results of different exchange approaches for a dimensionality of 10.

Exchange Ackley Rastrigin Schwefel

Approach S Mean Std. S Mean Std. S Mean Std.

gbest 50 1.621e+00 7.566e-01 250 8.632e+00 2.845e+00 250 5.082e+02 2.025e+02

B-W 100 8.509e-01 8.205e-01 500 4.871e+00 1.927e+00 1000 4.594e+02 2.601e+02

B-R 100 7.768e-01 7.410e-01 1000 4.842e+00 1.821e+00 250 4.733e+02 2.808e+02

R-W 50 8.046e-01 7.827e-01 250 5.038e+00 1.946e+00 250 5.084e+02 1.749e+02

R-R 50 5.148e-01 7.558e-01 50 4.626e+00 1.820e+00 100 4.965e+02 2.828e+02

41

The results show that exchanging any particle information both ways is better than just sharing

the global best. It is also shown that all the different approaches could give comparable results

at different synchronization periods, with the Best-Worst approach giving the best results at long

synchronization periods and the Random-Random approach giving the best results at short syn-

chronization periods. The Rastrigin function still gives the best results at longer synchronization

periods than those needed for the Ackley function.

Figure 3.12 shows the comparison of the four information exchange approaches. The figure

shows a similarity between the behaviors of the Ackley and the Rastrigin functions while the

Schwefel function has a different behavior.

10 25 50 100 250 500 1000
0.5

1

1.5

2

2.5

3

Synchronization Period

f(
x)

Best−Worst
Best−Random
Random−Worst
Random−Random

(a) Ackley

10 25 50 100 250 500 1000
4

6

8

10

12

14

16

18

20

Synchronization Period

f(
x)

Best−Worst
Best−Random
Random−Worst
Random−Random

(b) Rastrigin

10 25 50 100 250 500 1000
400

500

600

700

800

900

Synchronization Period

f(
x)

Best−Worst
Best−Random
Random−Worst
Random−Random

(c) Schwefel

Figure 3.12: Comparing four information exchange approaches.

Despite having the results improved when adopting the both ways sharing strategy, the results

obtained when using a single swarm are still better for the Ackley and the Rastrigin functions. One

approach that might improve the cooperative model performance is to exchange more particles

(p > 1). The results are illustrated in Figure 3.13.

10 25 50 100 250 500
0.5

1

1.5

2

2.5

3

3.5

4

Synchronization Period

f(
x)

One Particle
Two Particles

(a) Ackley

10 25 50 100 250 500
4

6

8

10

12

14

16

18

20

Synchronization Period

f(
x)

One Particle
Two Particles

(b) Rastrigin

10 25 50 100 250 500
500

550

600

650

700

750

800

850

900

Synchronization Period

f(
x)

One Particle
Two Particles

(c) Schwefel

Figure 3.13: Increasing the number of exchanged particles.

Unfortunately, the results show that increasing the number of particles still did not improve

42

the cooperative model performance. Exchanging more particles both ways will cause both swarms

to have more similar particles, which seems not to be beneficial. New information exchange

mechanisms are surely needed, as in [17], to overcome this drawback.

3.3.8 Increasing the Dimensionality

In this section, the experiments are repeated for a problem size of 30 performing 150000 function

evaluations. The single swarm results are shown in Table 3.23. Table 3.24 shows the results of

the cooperative model with 25 particles per swarm, which are plotted in Figure 3.14. The results

show that the same behavior is observed at a higher dimensionality, increasing the synchronization

period improves the performance up to a certain limit.

Table 3.23: Results of a single swarm for a dimensionality of 30.
Number of Ackley Rastrigin Schwefel

Particles Mean Std. Mean Std. Mean Std.

25 5.220e+00 7.920e-1 7.608e+01 1.449e+01 4.913e+03 1.356e+03

50 5.318e+00 8.746e-1 5.648e+01 1.959e+01 4.068e+03 1.145e+03

75 4.733e+00 1.128e+00 5.112e+01 1.502e+01 4.190e+03 8.229e+02

Table 3.24: Results of the cooperative model for a dimensionality of 30.

Benchmark Synchronization
Mean Std.

Compared to
Function Period Single Swarm

Ackley 100 4.590e+00 7.868e-01 Similar to 75 particles

Rastrigin 500 4.555e+01 1.059e+01 Similar to 75 particles

Schwefel 500 3.287e+03 7.182e+02 Better

Since the Rastrigin function is harder than the Ackley function, the cooperative model needed

a longer synchronization period, in both dimensionalities, than what is needed for the Ackley

function in order to produce the best results. This emphasizes that for harder functions more

separation is needed.

As for the communication topology, the results for the higher dimensionality are plotted in

Figure 3.15. The results show the same behavior where the circular communication approach

outperforming the global sharing mechanism.

To study the number of swarms factor, the experiments are run using 2, 3, 5, and 10 cooperating

swarms adopting the circular communication approach, while keeping the number of particles fixed

43

10 25 50 100 250 500 1000
4.5

5

5.5

Synchronization Period

f(
x)

(a) Ackley

10 25 50 100 250 500 1000
45

50

55

60

Synchronization Period

f(
x)

(b) Rastrigin

10 25 50 100 250 500 1000
32

36

40

44

Synchronization Period

f(
x)

/1
00

(c) Schwefel

Figure 3.14: Synchronization period effect for a dimensionality of 30.

10 25 50 100 250 500
4

4.5

5

5.5

Synchronization Period

f(
x)

Circular Comm.
Global Sharing

(a) Ackley

10 25 50 100 250 500
38

40

42

44

46

48

50

Synchronization Period

f(
x)

Circular Comm.
Global Sharing

(b) Rastrigin

10 25 50 100 250 500
30

32

34

36

38

40

42

44

Synchronization Period
f(

x)
/1

00

Circular Comm.
Global Sharing

(c) Schwefel

Figure 3.15: Comparing two neighborhood topologies for a dimensionality of 30.

at 60. The results shown in Table 3.25 show that the relation between the number of swarms

and the synchronization period still holds for the higher dimensionality. The results show that

increasing the number of swarms limits the synchronization period needed for achieving the best

result. Again, the Rastrigin function is better solved at longer synchronization periods than the

Ackley function in all the experiments. For the Schwefel function, the best result is still obtained

by increasing the number of swarms up to 10.

Figure 3.16 illustrates the overall behavior of the cooperative model for the higher dimension-

ality. The same behavior from the previous experiments still holds as the model has a similar

behavior when applied to the Ackley and the Rastrigin functions. For these functions, the results

drastically deteriorate if both the number of swarms and the synchronization period are increased.

As for the the Schwefel function, the overall behavior looks different as shown before.

44

Table 3.25: Varying the number of swarms for the multimodal functions for a dimensionality of

30.
No. of Ackley Rastrigin Schwefel

Swarms S Mean Std. S Mean Std. S Mean Std.

2 50 4.399e+00 6.483e-01 500 4.208e+01 13.772 500 3.337e+03 3.957e+02

3 50 4.256e+00 7.983e-01 500 4.509e+01 9.437 500 3.202e+03 6.926e+02

5 25 4.162e+00 6.351e-01 250 4.450e+01 10.419 250 3.041e+03 5.965e+02

10 10 4.344e+00 5.436e-01 50 4.712e+01 10.722 25 2.879e+03 5.329e+02

10 25 50 100 250 500 1000
4

5

6

7

8

9

10

Synchronization Period

f(
x)

2 Swarms
3 Swarms
5 Swarms
10 Swarms

(a) Ackley

10 25 50 100 250 500 1000
40

50

60

70

80

90

100

110

Synchronization Period

f(
x)

2 Swarms
3 Swarms
5 Swarms
10 Swarms

(b) Rastrigin

10 25 50 100 250 500 1000
2800

3000

3200

3400

3600

3800

4000

4200

4400

4600

Synchronization Period

f(
x)

2 Swarms
3 Swarms
5 Swarms
10 Swarms

(c) Schwefel

Figure 3.16: Results of increasing the number of swarms for a dimensionality of 30.

3.4 Conclusion

This chapter starts by giving a definition of what is meant by a cooperative PSO algorithm based on

the models surveyed in the previous chapter. The given definition helps in identifying key design

decisions (parameters settings) that affect the performance of any cooperative PSO algorithm.

These decisions mainly give answers to four important questions; Which information to share?

When to share it? Whom to share it with? and What to do with it? The chapter summarizes the

design decisions taken by the different surveyed models.

A complete empirical study is then carried on one cooperative PSO model to observe how

the performance is influenced by these parameters. The parameters experimented with are the

synchronization period, the neighborhood topology, the number of cooperating swarms, the type

of exchanged information, and the taken action. The experiments show that the suitable tuning

of these factors can improve the performance of the cooperative model.

The experiments show that increasing the synchronization period up to a certain limit, provides

better results in solving multimodal functions. A different number of conclusions were reached as

45

it was shown that adopting a 2-swarm cooperative model with n particles each is always better

than having a single swarm with 2n particles. Also when adopting a small population 2-swarm

cooperative model, the results obtained could be easily as good as (if not better than) the best

results achieved by a single swarm with a huge population.

When having more than two cooperating swarms, the circular communication strategy provided

better results than global sharing. This strategy increases the probability of the swarms following

different directions in the search and is more suitable for optimizing multimodal functions.

If the number of particles is kept fixed, increasing the number of cooperating swarms while

having a long synchronization period is not a smart choice. The experiments show that increasing

one factor should put a limit on the other as when the number of swarms increases, the best

solution is usually obtained at shorter synchronization periods. Although different functions are

better solved using different settings of the number of swarms and the synchronization period, it is

shown that a reasonable choice when attempting to optimize a new function is to use five swarms,

as this value produced the best results for most of the functions under study. Another option is

to find out the suitable settings for optimizing this function by finding the closest one to it from

the functions under study and use the same settings.

An important behavior that was observed through all the conducted experiments is that more

separation is needed between the cooperating swarms (longer synchronization periods) as the

function being optimized gets harder (from the topology point of view).

For the functions with similar topologies, the Ackley and the Rastrigin functions, the cooper-

ative model under study had similar behaviors against changing the identified parameters. The

Rastrigin function is always better solved in all experiments at longer synchronization periods than

those needed for the Ackley function.

46

Chapter 4

Particle Swarm Optimization Based on

Probabilistic Models

The motivation of the work introduced in this chapter is mainly to investigate the idea of exchang-

ing probabilistic models information between the cooperating swarms instead of the exchange of

gbest information or the exchange of a group of particles that were studied in the previous chapter.

In order to achieve this, the chapter gives a brief introduction to Estimation of Distribution Algo-

rithms (EDAs) and the different methods previously adopted to combine PSO and EDAs. A new

combination approach is also proposed, which borrows ideas from Population-Based Incremental

Learning (PBIL). The new method is implemented and compared against the other PSO and

EDA hybrids. All these models serve as the basis of the cooperative PSO approach that adopts

the migration of probabilistic models introduced in the next chapter.

4.1 Estimation of Distribution Algorithms

Estimation of distribution algorithms (EDAs) [55], are evolutionary algorithms that try to estimate

the probability distribution of the good individuals in the population. EDAs try to estimate this

probability distribution by using selected individuals, from the current population, to construct a

probabilistic model. This model is consequently used to generate a new population replacing the

current one and so on. Hence, EDAs maintain a continuously updated probabilistic model from

one generation to the next. Although, it has been originally introduced to tackle combinatorial op-

timization problems, a recent numerical application has been proposed as well [56–59].The general

steps for an EDA is shown in Algorithm 4.1.

47

Algorithm 4.1 Estimation of Distribution Algorithm (EDA).

1: P ⇐ Initialize the population

2: Evaluate the initial population

3: while iter number ≤ Max iterations do

4: Ps ⇐ Select the top s individuals

5: M ⇐ Estimate a new Model from Ps

6: Pn ⇐ Sample n individuals from M

7: Evaluate Pn

8: P ⇐ Select n individuals from PUPn

9: iter number = iter number + 1

10: end while

4.2 PSO Based on Probabilistic Models

This section surveys the two previous attempts to introduce the concepts of EDAs into PSO in

order to improve its performance.

4.2.1 EDPSO

An estimation of distribution particle swarm optimizer (EDPSO) was proposed by Iqbal and

Montes de Oca [60]. The method borrowed some ideas from a development in ACO for solving

continuous optimization problems [61]. The approach relies on estimating the joint probability

distribution for one dimension at a time using mixtures of weighted Gaussian functions. The

Gaussian functions are defined through an archive of k solutions (pbests of the particles). For each

dimension d, the dimension is either updated using PSO equations or by sampling a Gaussian

distribution selected from the archive. The values of this dimension d across all the solutions

in the archive compose the vector µd, which is the vector of means for the univariate Gaussian

distributions:

µd =< pbest1d, pbest2d, ..., pbestkd > (4.1)

To select one of these distributions, the weights vector w, which holds the weights associated with

each distribution, is calculated. This is done by sorting the solutions according to their fitness,

with the best solution having a rank of 1. A weight is calculated for each solution as follows:

w =< w1, w2, ..., wk >

wl =
1

qk
√

2π
e
− (l−1)2

2q2k2 (4.2)

48

where q determines how much we prefer good solutions and l is the solution rank.

The Gaussian function to be used is selected probabilistically. The probability of selecting a

certain Gaussian function is proportional to its weight. This probability is calculated as follows:

p =< p1, p2, ..., pk >

pl =
wl∑k

r=1 wr

(4.3)

After selecting a certain Gaussian function Gd denoted by its mean pbestgd, where 1 < g < k,

the standard deviation for this functions is calculated as:

σgd = ξ

k∑
i=1

|pbestid − pbestgd|
k − 1

(4.4)

where ξ is a parameter to balance the exploration-exploitation behaviors.

Finally the selected Gaussian function is evaluated (not sampled) to generate a value r in order

to probabilistically move the particle. This is done by generating a uniformly distributed random

number U(0,1). If it is less than r, the particle moves using the normal PSO equations. Otherwise,

the Gaussian function is sampled to move the particle. The steps are shown in Algorithm 4.2.

4.2.2 EDA-PSO

A hybrid EDA-PSO approach was proposed in [62] and shown in Algorithm 4.3. The algorithm

works by sampling an independent univariate Gaussian distribution based on the best half of the

swarm. The mean and standard deviation of the model is calculated in every iteration as:

µ =
1

M

M∑
i=1

xi

σj =

√√√√ 1

M

M∑
i=1

(xij − µj)2, (4.5)

where M = N/2 for a swarm with N particles and i is the particle number.

The choice of whether to update the particle using the normal PSO equations or to sample

the particle using the estimated distribution is made with a probability p, referred to as the

participation ratio. If p = 0, the algorithm will behave as a pure EDA algorithm and if p = 1, it

49

Algorithm 4.2 The EDPSO algorithm.

Require: Max Function Evaluations

1: Initialize the swarm

2: Max Iterations = Max Function Evaluations
Num Particles

3: iter number = 1

4: while iter number ≤ Max Iterations do

5: Update the swarm

6: Rank the particle’s using pbests information

7: Compute weights vector w

8: Compute probabilities vector p

9: for every particle i do

10: for each dimension d do

11: Update vid and xid

12: Select a Gaussian function according to pi

13: Calculate σgd

14: Prob move = σgd

√
2πGd(xid)

15: if U(0, 1) < Prob move then

16: continue

17: else

18: xid = Gauss(sgd,σgd)

19: end if

20: end for

21: end for

22: iter number = iter number + 1

23: end while

24: return gbest

will be a pure PSO algorithm. In the hybrid approach, where 0 < p < 1, each particle is either

totally updated by the PSO equations or totally sampled from the estimated distribution (not on

a dimension-by-dimension basis as in EDPSO). Finally, the particle gets updated only if its fitness

improves. The authors also proposed different approaches in order to adaptively set the parameter

p. These approaches depend on the success rate of both the PSO and EDA parts in improving a

particles fitness:

• The first approach is the Generation based, where the success rates are calculated based on

50

the information gathered during the last generation,

• The second approach is the All historical information, where the success rates are calculated

based on the information gathered during the entire search,

• The final approach is the Sliding window, where the success rates are calculated considering

only the information in the last m generations.

Algorithm 4.3 The EDA-PSO algorithm.

Require: Max Function Evaluations

1: Initialize the swarm

2: Max Iterations = Max Function Evaluations
Num Particles

3: iter number = 1

4: while iter number ≤ Max Iterations do

5: Calculate µ and σ using top N
2

particles

6: for every particle i do

7: if U(0, 1) < p then

8: candidate particle = PSO equations

9: else

10: candidate particle = Gauss(µ,σ)

11: end if

12: if candidate particle has a better fitness then

13: particle i = candidate particle

14: end if

15: end for

16: iter number = iter number + 1

17: end while

18: return gbest

4.3 PSO with Varying Bounds

A population-based incremental learning (PBIL) approach for continuous search spaces was pro-

posed in [57]. The algorithm explored the search space by dividing the domain of each gene into

two equal intervals referred to as the low and high intervals. A probability hd, which is initially

51

set to 0.5, is the probability of gene number d being in the high interval as shown:

xd ∈ [a, b], hd = Probability(xd >
a + b

2
) (4.6)

After each generation, this distribution is updated according to the gene values of the best indi-

vidual using the following formula:

p =

{
0 if xmax

d < a+b
2

1 otherwise
(4.7)

ht+1
d = (1− α) ∗ ht

d + α ∗ p

where α is the relaxation factor and t is the iteration number. If hd gets below hdmin or above

hdmax, the population gets re-sampled in the corresponding interval, [a, a+b
2

] or [a+b
2

, b], respectively.

In this work, the concepts of PBIL are introduced into PSO. At the beginning, the particles are

initialized in the predefined domain. After every iteration, the probability hd of each dimension d

gets adjusted according to the probability of this dimension value being in the high interval of the

defined domain. This probability is calculated using information from all the particles and not only

gbest to prevent premature convergence. When hd gets specific enough, the domain of dimension d

is adjusted accordingly and hd gets re-initialized to 0.5. In this model, different dimensions might

end up having different domains and different velocity bounds which does not happen in normal

PSO.

The steps taken by PSO Bounds is shown in Algorithm 4.4 where xdmin and xdmax refer to

the minimum and maximum bounds for dimension d while vdmin and vdmax refer to the velocity

bounds.

Figure 4.1 [63] illustrates the approaches taken by the different algorithms to model the distri-

bution of good solutions across every dimension.

probability

domain

x1

x2

(a) EDPSO

probability

domain

x1 x2

 µ1 µ2

(b) EDA-PSO

variable

domain

x2

x1
h2

h1

 a1 a2 b1 b2

(c) PSO Bounds

Figure 4.1: Probabilistic models.

52

Algorithm 4.4 The PSO Bounds algorithm.

Require: Max Function Evaluations

1: Initialize the swarm

2: Max Iterations = Max Function Evaluations
Num Particles

3: iter number = 1

4: while iter number ≤ Max Iterations do

5: Update the swarm

6: for each dimension d do

7: Calculate the probability of dimension d

8: update hd

9: if hd < hdmin then

10: xdmax = b = a+b
2

11: Update vdmin and vdmax

12: hd = 0.5

13: else if hd > hdmax then

14: xdmin = a = a+b
2

15: Update vdmin and vdmax

16: hd = 0.5

17: end if

18: end for

19: iter number = iter number + 1

20: end while

21: return gbest

4.4 Results and Discussions

4.4.1 Experimental Settings

Table 4.1 shows the parameter settings used for applying the algorithms under study. For all

experiments, all the particles have been randomly initialized in the specified domain using uniform

distribution. The values for q and ξ are the same as was proposed in [60] and the value for p is set

adaptively using the allhistoricalinformation approach, as it was found to be the best one based

on our experiments. The values for (α, hdmin, hdmax) are changed from (0.01, 0.1, 0.9) in [57] to

(0.1, 0.2, 0.8) to allow a faster process of varying the bounds. The experiments are conducted

for a problem dimensionality of 10, 30, and 50 with 40 particles in the swarm performing 100000,

53

100000, and 200000 function evaluations, respectively. The results reported are the averages taken

over 30 runs.

Table 4.1: Parameter settings.
Model Parameter Value

Normal PSO
w 0.9 to 0.1

c1 and c2 2

EDPSO
q 0.1

ξ 0.85

EDA-PSO p
Adaptive - all

historical information

PSO Bounds

α 0.1

hdmin 0.2

hdmax 0.8

The experiments are conducted using both the classical benchmark functions and the CEC05

benchmark functions f6-f14. In order to constrain the particles movement within the specified

domain for the CEC05 functions, any violating particle gets its position randomly re-initialized

inside the specified domain. The error values f(x) − f(x∗) are reported, where x∗ is the global

optimum.

In [62], the values for µ and σ are calculated using the best half of the swarm. The authors

in [64] proposed calculating σ using the whole population instead, which is found to produce better

results due to the induced diversity avoiding premature convergence. The same approach is used

in this work when applying the EDA-PSO algorithm.

4.4.2 Experimental Results

Tables 4.2 and 4.3 show the results obtained by applying EDPSO, EDA-PSO and PSO Bounds to

the classical and CEC05 functions for different problem sizes. The PSO Bounds algorithm is not

applied for f7 as this function is not bounded by a specified domain (the bounds shown in Table

3.8 are only used as an initialization range).

As shown in Tables 4.2 for the classical functions, both EDPSO and EDA-PSO outperform

PSO Bounds. The reason for this is that the global optimum is at the center of the search space

and the Gaussian model adopted by these algorithms along with the uniform distribution used in

initializing the particles make it very easy for these algorithms to reach better results.

54

Table 4.2: Results of all the algorithms for the classical functions.

Benchmark Dim.
EDPSO EDA-PSO PSO Bounds

Function Mean Std. Mean Std. Mean Std.

Spherical

10

9.881e-324 0 8.400e-266 0 5.087e-03 2.786e-02

Rosenbrock 5.519e-06 1.044e-05 7.827e-02 8.422e-02 7.744e-01 5.857e-01

Griewank 2.084e-02 1.447e-02 7.882e-03 7.325e-03 1.229e-01 5.988e-02

Ackley 5.887e-16 2.006e-31 1.268e+00 2.258e-15 8.606e-02 4.708e-01

Rastrigin 3.051e+00 1.609e+00 4.013e+00 1.998e+00 7.131e+00 2.172e+00

Spherical

30

3.698e-67 2.026e-66 4.234e-141 1.425e-140 5.416e+02 3.674e+02

Rosenbrock 9.562e-01 2.042e-01 1.123e+00 4.552e-01 1.707e+01 4.633e+00

Griewank 1.479e-03 3.462e-03 0 0 4.871e+00 2.021e+00

Ackley 4.378e-015 9.014e-016 1.586e+00 9.034e-16 5.467e+00 1.137e+00

Rastrigin 1.791e+01 4.222e+00 3.4067e+01 2.922e+01 6.799e+01 1.339e+01

Spherical

50

1.104e-59 3.644e-59 2.811e-103 1.539e-102 2.979e+03 1.131e+03

Rosenbrock 2.078e+00 3.954e-01 1.565e+00 2.745e+00 3.131e+01 7.791e+00

Griewank 3.286e-04 1.800e-03 2.132e-03 6.314e-03 2.697e+01 8.899e+00

Ackley 7.694e-15 1.319e-15 1.641e+00 2.258e-16 9.068e+00 9.036e-01

Rastrigin 4.016e+01 8.593e+00 4.630e+01 1.410e+01 1.457e+02 1.891e+01

For the CEC05 functions shown in Table 4.3, the results show that PSO Bounds has much

better performance compared to the other algorithms across the different problem size.

Table 4.4 summarizes the comparison between all the algorithms based on the results shown

in Tables 4.2 and 4.3. The upper bound for the number of cases is 15 (5 functions in 3 problem

sizes) in the classical functions and 21 (7 functions in 3 problem sizes) in the CEC05 functions.

The convergence behavior shown in Figure 4.2 and Figure 4.3 illustrates that PSO Bounds

usually has a slow speed of convergence compared with the other algorithms. It only has the

fastest speed of convergence in both f6 and f9 where it does not produce good results. Convergence

figures also show that both EDPSO and EDA-PSO have a very similar behavior on most of the

functions.

In [65], the authors stated that “modern research performed using only swarms with a global

topology is incomplete at best”. For this reason, the experiments are rerun again for all the

algorithms using the lbest (local best) model [53]. Table 4.5 and Table 4.6 show the obtained

results. The results show that all the algorithms exhibit the same performance compared to each

other as in the case of using the gbest model.

Table 4.7 summarizes the comparison between all the algorithms based on the results shown

55

Table 4.3: Results of all the algorithms for the CEC05 functions.

Benchmark Dim.
EDPSO EDA-PSO PSO Bounds

Function Mean. Std. Mean Std. Mean Std.

f6

10

1.375e+00 4.557e+00 1.123e-02 1.626e-02 1.451e+02 2.218e+02

f7 2.687e-01 2.258e-01 1.927e-01 1.905e-01 - -

f9 3.217e+00 1.604e+00 4.046e+00 2.277e+00 3.454e+00 1.471e+00

f10 1.989e+01 6.327e+00 4.819e+00 3.642e+00 7.543e+00 4.528e+00

f11 3.868e+00 3.859e+00 6.588e+00 1.340e+00 3.529e+00 1.730e+00

f12 2.919e+04 7.054e+03 1.616e+04 6.334e+03 4.243e+03 5.001e+03

f13 1.194e+00 5.372e-01 8.465e-01 3.968e-01 6.904e-01 1.770e-01

f14 2.429e+00 5.255e-01 2.667e+00 5.991e-01 2.365e+00 5.792e-01

f6

30

7.522e+01 1.007e+02 1.716e+01 2.011e+01 6.602e+05 1.841e+06

f7 8.700e-03 5.920e-03 1.300e-02 7.589e-03 - -

f9 1.175e+00 2.044e+00 2.789e+01 6.498e+00 3.315e+01 7.072e+00

f10 1.850e+02 1.348e+01 1.187e+02 6.191e+01 5.556e+01 2.068e+01

f11 4.028e+01 1.676e+00 3.494e+01 2.674e+00 2.849e+01 3.897e+00

f12 1.129e+06 1.266e+05 9.219e+05 2.060e+05 2.941e+05 2.155e+05

f13 1.489e+01 1.497e+00 7.942e+00 4.688e+00 4.333e+00 7.852e-01

f14 1.334e+01 2.309e-01 1.325e+01 2.933e-01 1.245e+01 6.541e-01

f6

50

1.429e+02 2.023e+02 3.725e+01 4.515e+01 3.458e+07 4.913e+07

f7 3.000e-03 5.813e-03 9.867e-03 1.374e-02 - -

f9 1.282e+01 6.519e+00 4.232e+01 1.080e+01 7.047e+01 1.338e+01

f10 3.765e+02 1.520e+01 2.931e+02 8.820e+01 1.222e+02 2.553e+01

f11 7.393e+01 1.266e+00 6.744e+01 3.031e+00 5.778e+02 6.800e+00

f12 5.760e+06 3.738e+05 3.965e+06 1.259e+06 1.254e+05 1.167e+05

f13 3.057e+01 2.701e+00 1.696e+01 1.109e+01 9.327e+00 2.030e+00

f14 2.310e+01 2.551e-01 2.282e+01 3.451e-01 2.237e+01 4.455e-01

Table 4.4: Comparison between all the algorithms using the gbest model.

Algorithm
Classical Functions CEC05 Functions Total Number

No. of Cases Best in No. of Cases Best in of Cases

PSO Bounds - - 15
f11, f12

15
f13, f14

EDA-PSO 7 - 5 f6 12

EDPSO 11
Rosenbrock

5 - 16
Ackley, Rastrigin

56

0 20000 40000 60000 80000 100000
−5

0

5

10

15

20

25

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(a) f6 10

0 20000 40000 60000 80000 100000
0

5

10

15

20

25

30

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(b) f6 30

0 40000 80000 120000 160000 200000
0

5

10

15

20

25

30

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(c) f6 50

0 20000 40000 60000 80000 100000
1

1.5

2

2.5

3

3.5

4

4.5

5

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(d) f9 10

0 20000 40000 60000 80000 100000
0

1

2

3

4

5

6

7

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(e) f9 30

0 40000 80000 120000 160000 200000
2

3

4

5

6

7

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(f) f9 50

0 20000 40000 60000 80000 100000
1.5

2

2.5

3

3.5

4

4.5

5

5.5

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(g) f10 10

0 20000 40000 60000 80000 100000
3.5

4

4.5

5

5.5

6

6.5

7

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(h) f10 30

0 40000 80000 120000 160000 200000
4.5

5

5.5

6

6.5

7

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(i) f10 50

0 20000 40000 60000 80000 100000
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(j) f11 10

0 20000 40000 60000 80000 100000
3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(k) f11 30

0 1000 2000 3000 4000 5000
4

4.1

4.2

4.3

4.4

4.5

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(l) f11 50

Figure 4.2: Convergence behavior of all the algorithms for the CEC05 functions.

in Tables 4.5 and 4.6. The results emphasize that the performance of these algorithms (compared

to each other) is the same regardless of the underlying population topology.

57

0 20000 40000 60000 80000 100000
8

9

10

11

12

13

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(a) f12 10

0 20000 40000 60000 80000 100000
12.5

13

13.5

14

14.5

15

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(b) f12 30

0 40000 80000 120000 160000 200000
11

12

13

14

15

16

17

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(c) f12 50

0 20000 40000 60000 80000 100000
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(d) f13 10

0 20000 40000 60000 80000 100000
1

2

3

4

5

6

7

8

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(e) f13 30

0 1000 2000 3000 4000 5000
2

3

4

5

6

7

8

9

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(f) f13 50

0 20000 40000 60000 80000 100000
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(g) f14 10

0 20000 40000 60000 80000 100000
2.5

2.55

2.6

2.65

2.7

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(h) f14 30

0 40000 80000 120000 160000 200000
3.1

3.12

3.14

3.16

3.18

3.2

3.22

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(i) f14 50

Figure 4.3: Convergence behavior of all the algorithms for the CEC05 functions, contd.

4.5 Conclusion

This chapter gives a brief introduction to Estimation of Distribution Algorithms (EDAs) and sur-

veys the different methods previously adopted to combine PSO and EDAs. The chapter proposes

a PSO algorithm that borrows ideas from PBIL. The proposed algorithm is compared to other

existing PSO and EDA hybrids on a number of well-known benchmark optimization functions.

The proposed algorithm is shown to be better than existing models in the difficult multimodal

optimization functions across the different problem sizes. The experiments also show that the pro-

posed algorithm has a generally slower speed of convergence than the other existing approaches

58

Table 4.5: Results of all the algorithms using the lbest model for the classical functions.

Benchmark Dim.
EDPSO L EDA-PSO L PSO Bounds L

Function Mean Std. Mean Std. Mean Std.

Spherical

10

0 0 3.850e-267 0 3.194e-17 1.722e-16

Rosenbrock 4.019e-03 5.097e-03 1.029e-01 5.276e-02 2.390e-01 1.781e-01

Griewank 1.682e-02 1.194e-02 4.959e-03 7.767e-03 4.881e-02 1.517e-02

Ackley 5.887e-15 2.006e-31 1.268e+00 2.258e-16 5.037e-11 9.260e-11

Rastrigin 3.118e+00 1.5180e+00 3.263e+00 1.885e+00 3.798e+00 1.444e+00

Spherical

30

6.031e-94 3.205e-95 7.020e-141 9.280e-141 5.183e-01 1.811

Rosenbrock 1.076e+00 1.779e-01 1.742e+00 2.524e+00 1.085e+01 3.416e+00

Griewank 2.052e-03 4.970e-03 3.288e-02 1.801e-03 7.657e-02 8.055e-02

Ackley 4.141e-015 0 1.586 3.651e-16 6.166e-01 7.217e-01

Rastrigin 1.523e+01 3.999e+00 4.472e+01 3.057e+01 4.192e+01 7.900e+00

Spherical

50

3.055e-82 1.256e-81 3.700e-11 2.026-10 14.233 33.711

Rosenbrock 2.104e+00 2.490e-01 6.237e+00 1.035e+01 2.356e+01 4.209e+00

Griewank 1.232e-03 3.284e-03 2.919e-03 1.465e-02 6.929e-01 3.780e-01

Ackley 6.865e-15 1.528e-15 1.641e+00 2.258e-16 2.200e+00 6.118e-01

Rastrigin 3.270e+01 7.202e+00 7.481e+01 5.061e+01 9.140e+01 1.469e+01

and that its performance (compared to the other existing approaches) is robust against changing

the underlying population topology.

59

Table 4.6: Results of all the algorithms using the lbest model for the CEC05 functions.

Benchmark Dim.
EDPSO L EDA-PSO L PSO Bounds L

Function Mean Std. Mean Std. Mean Std.

f6

10

6.554e+00 1.936e+01 2.092e-01 7.899e-01 1.497e+01 25.785

f9 2.919e+00 1.566e+00 3.310e+00 1.259e+00 8.025e-01 9.603e-01

f10 1.946e+01 6.939e+00 1.105e+01 5.716e+00 6.712e+00 3.003e+00

f11 7.292e+00 3.473e+00 6.196e+00 8.1308e-1 4.480e+00 1.027e+00

f12 2.729e+04 7.468e+03 1.877e+04 6.712e+3 6.535e+03 2.841e+03

f13 1.435e00 4.549e-01 1.224e+00 3.724e-01 6.422e-01 1.390e-01

f14 2.204e+00 5.145e-01 2.910e+00 2.684e-01 2.777e+00 3.261e-01

f6

30

8.592e+01 1.305e+02 7.063e+01 4.586e+01 8.883e+03 3.632e+04

f9 1.605e+01 5.372e+00 4.208e+01 2.742e+01 2.536e+01 4.694e+00

f10 1.778e+02 9.953e+00 1.608e+02 1.719e+01 1.384e+02 1.864e+01

f11 4.043e+01 1.148e+00 3.641e+01 2.107e+00 3.163e+01 2.479e+00

f12 1.140e+06 1.148e+05 9.571e+05 1.696e+05 4.978e+05 1.443e+05

f13 1.447e+01 1.328e+00 1.156e+01 2.639e+00 4.755e+00 9.558e-01

f14 1.347e+01 1.873e-01 1.327e+01 2.282e-01 1.302e+01 2.674e-01

f6

50

6.550e+01 5.446e+01 6.789e+01 4.228e+01 1.967e+06 1.012e+07

f9 3.250e+01 6.450e+01 5.334e+01 2.326e+01 5.547e+01 9.813e+00

f10 3.629e+02 1.624e+01 3.359e+02 1.660e+01 2.879e+02 4.048e+01

f11 7.381e+01 1.911e+00 6.926e+01 2.552e+00 6.184e+01 4.231e+00

f12 5.631e+06 4.676e+05 4.725e+06 5.695e+05 1.896e+06 3.675e+05

f13 2.738e+01 4.029e+00 2.446e+01 4.217e+00 1.062e+01 2.183e+00

f14 2.316e+01 1.693e-01 2.292e+01 2.184e-01 2.261e+01 2.103e-01

Table 4.7: Comparison between all the algorithms using the lbest model.

Algorithm
Classical Functions CEC05 Functions Total Number

No. of Cases Best in No. of Cases Best in of Cases

PSO Bounds 2 - 16
f10, f11

18
f12, f13

EDA-PSO 7 Spherical 5 f6 12

EDPSO 14
Spherical, Rosenbrock

6 - 20
Ackley, Rastrigin

60

Chapter 5

A Heterogeneous Cooperative Particle

Swarm Optimizer with Migrated

Probability Models

This chapter introduces a new cooperative PSO that is based on the exchange of probability

models. The chapter starts with surveying the different parallel EDAs proposed in the literature

relying on either exchanging individuals or exchanging probability models. The new heterogeneous

cooperative PSO/EDA algorithm is then proposed. The model is considered heterogeneous as

the cooperating PSO/EDA algorithms use different methods to sample the search space. The

behavior of the proposed model is discussed based on the solutions obtained and the convergence

behavior. A simple adaptive version to control the information flow between the cooperating

swarms is also presented. Both the non-adaptive and the adaptive versions are implemented

and compared to existing PSO cooperative approaches using a suite of well-known benchmark

optimization functions.

5.1 Parallel EDAs

A recent research direction in the previous 4 years was to introduce the idea of parallel EDAs with

the migration of the probability models built or the migration of individuals.

In [66], Hiroyaso et al. presented a distributed probabilistic model-building genetic algorithm

(DPMBGA). The correlation between the design variables was handled using the Principal Com-

ponent Analysis (PCA). The authors used the island model where the migration occurred in a

61

directed ring topology. The migrated individuals were randomly chosen and used to replace the

worst individuals in the next sub-population. The authors concluded that using PCA is only useful

when dealing with problems in which the design variables are correlated. Experiments also showed

that using PCA in half of the sub-populations only provided the best results.

Ahn et al. [67] introduced a basic framework for implementing a parallel EDA and applied

it using PBIL. Each island had a resident probability distribution vector (rPV) that estimated

the distribution of the promising resident individuals. At every communication step, each island

received the immigrant PVs (iPV) from the neighboring islands. The evolution of each island

proceeded through three different phases: the generation phase, the selection phase and the update

phase. In the generation phase, each island generated three types of individuals, namely, the

resident individuals created by rPV, the immigrant individuals created by iPV and crossbred

individuals resultant from the crossover of rPV and iPV. In the selection phase, the best individuals

were selected from the whole population in a proportionate approach. Finally, in the update

phase, the selected individuals helped in updating the different PVs. This framework was used

in implementing a discrete parallel EDA based on PBIL referred to as P 2BIL. The introduced

approach was found to produce results that are competitive with multiple-deme parallel GAs.

In [68], de la Ossa et al. proposed an island EDA model with the migration of univariate

distributions to solve combinatorial problems. Each island adopted the Univariate Marginal Dis-

tribution Algorithm (UMDA) [69]. The migrated information between the cooperating islands was

a tuple < M, f >, where M is the probability model and f is the average fitness of the best 10%

individuals of the population. When an island receives an immigrant model Mi, it gets combined

with the resident one Mr using the formula below:

Mr = βMr + (1− β) ∗Mi (5.1)

where β was set to be 0.9. The authors also proposed an adaptive approach for setting this

parameter as follows (for a maximization problem):

β =

{
fr

fi+fr
if fi ≥ fr

0.9 otherwise
(5.2)

where fr and fi are the average fitness related to the resident and immigrant models respectively.

The authors came to the conclusion that migrating a probability model generally gives better

results than migrating a group of individuals.

In [64], the same authors extended the application of island-based parallel EDAs to continuous

domains. The authors experimented with islands that either adopt UMDA or EMNAGLOBAL [55],

62

where the latter is used to capture multivariate dependencies. The normal distribution was used

to model the promising individuals. Instead of the previous combination model proposed in [68],

mixture models were used instead, allowing the combination of single distributions into a joint

model. The mixture model was performed as shown based on a coefficient β adaptively set as in

equation 5.2.

Individual =

{
sample(Mr) if random(0, 1) < β

sample(Mi) otherwise
(5.3)

The experiments showed that the parallelization was more beneficial when using UMDA. When

using EMNAGLOBAL, the islands required huge populations to correctly model the distribution

resulting in a performance deterioration. It was also shown that the migration of a probability

model is better than the migration of individuals especially when setting β adaptively.

Madera et al. [70] proposed the use of a distributed version of EDA (dEDA) and applied

it to both combinatorial and numerical problems. They used the island model in which each

processor executes a UMDA algorithm exchanging information with other processors according

to a certain migration policy. Information exchange was applied by selecting the best individuals

in one population and replacing the worst individuals in another. The experiments showed that

the distributed model was able to solve problems of considerable complexity using a suitable

configuration of the migration parameters. The authors also introduced the idea of implementing

a heterogeneous system where different processors execute different algorithms. However, this

approach was not implemented.

In [71,72], Schwarz et al. proposed the use of a parallel bivariate marginal distribution algorithm

(BMDA). The island model was used in a directed ring topology. The authors proposed two

approaches for combining the immigrant and the resident models. One approach was the mixed

learning of the dependency graphs experimenting with both the max and the random operators.

The other approach was the adaptive learning of dependency graphs employing equations similar

to 5.1 and 5.2. The authors reached the conclusion that the migration of probability models with

adaptation can significantly improve the performance over the migration of individuals. They also

found the sequential BMDA to produce competitive results with the adaptive parallel version but

with increased time complexity.

5.2 Proposed Model

In this chapter, we propose the use of a heterogeneous cooperative particle swarm optimizer that

is based on probability models exchange. The model uses swarms that employ two different PSO

63

and EDA hybrids.

5.2.1 Cooperative Swarms

In the hybrid model shown in Figure 5.1, one swarm is using the PSO Bounds algorithm while the

other uses the EDA-PSO approach. At every communication step, each swarm sends its resident

model to the other swarm along with the average fitness of the best half of its individuals while

receiving the same kind of information back. For the PSO Bounds swarm, the model sent is a

vector containing the lower bound, the higher bound, and the probability of the value being in the

higher half for all the dimensions as shown below, where n is the problem size.

MP SO Bounds =< (a1, b1, h1), (a2, b2, h2), ..., (an, bn, hn) > (5.4)

On the other hand, the EDA-PSO model received is the mean and standard deviation of the

different normal distributions used to sample the different dimensions in the other swarm.

MEDA−P SO =< (µ1, σ1), (µ2, σ2), ..., (µn, σn) > (5.5)

<MPSO_Bounds, fPSO_Bounds>

<MEDA-PSO, fEDA-PSO>

PSO_Bounds

EDA-PSO

Figure 5.1: Hybrid cooperative model.

The model is implemented sequentially by performing the steps shown in Algorithm 5.1 and

the communication approach adopted by the model is the synchronous one

5.2.2 Probability Model Exchange

At every communication step, each swarm has to extract the useful information from the immigrant

model. This is done in two steps, namely, model conversion and model combination.

5.2.2.1 Model Conversion

In the model conversion step, each swarm converts the immigrant model to an equivalent model

that is in the same form of its resident one. For the PSO Bounds swarm, the immigrant model is

64

Algorithm 5.1 The sequential algorithm for the cooperative model.

Require: Max Function Evaluations

1: Initialize the two swarms

2: Max Iterations = Max Function Evaluations
Num Particles

3: iter numer = 1

4: while iter number ≤ Max Iterations do

5: Update PSO Bounds

6: Update EDA-PSO swarm

7: if Synchronization then

8: Exchange probabilistic models information

9: end if

10: iter number = iter number + 1

11: end while

12: return min(gbest1,gbest2)

converted as shown below:

ad = µd − γ ∗ σd

bd = µd + γ ∗ σd

hd = 0.5, (5.6)

For the EDA-PSO swarm, the process starts by checking the value of hd to see whether a larger

number of particles are in the low or the high region of the received interval. The process then

continues by adjusting the received interval and using it to generate an equivalent Gaussian model

according to the following equations, which is equivalent to setting γ equal to 3 in 5.6:

µd =
ad + bd

2

σd =
bd − ad

6
, (5.7)

Figure 5.2 illustrates the model conversion process carried by the PSO Bounds and EDA-PSO

swarms.

5.2.2.2 Model Combination

After the conversion is done, each swarm will have two models in the same form that it needs to

combine. In the PSO Bounds swarm, the model combination step uses the mixture model approach

65

γ*σ

probability

domain a µ b

(a) PSO Bounds model conversion

h<0.5 h>0.5

probability

domain a (a+b) / 2 b

(b) EDA-PSO model conversion

Figure 5.2: Probabilistic models conversion.

adopted in [64] on a dimension-by-dimension basis as shown in Algorithm 5.2 for a minimization

problem where Mr, Mi, and Mres are the resident, immigrant, and resultant models, respectively.

U(0, 1) is a random number uniformly distributed in the range [0,1]. After this step, the swarm

continues with the search process using the resultant combined model.

Algorithm 5.2 The PSO Bounds swarm models combination function.

Require: Mres, fPSO Bounds,Mi, fEDA−PSO

1: if fEDA−PSO < fPSO Bounds then

2: β = fEDA−PSO

fEDA−PSO+fPSO Bounds

3: else

4: β = 0.9

5: end if

6: for every dimension d do

7: if U(0, 1) < β then

8: Md
res = Md

r

9: else

10: Md
res = Md

i

11: end if

12: end for

13: return Mres

For the EDA-PSO swarm, the immigrant model is combined with the resident one following

the same approach. The resultant model is then used to generate a number of new particles to

replace the worst particles in the swarm. The newly generated particles were chosen to be 10% of

the swarm.

66

5.3 Results and Discussions

5.3.1 Experimental Settings

The parameter settings used for applying the algorithms under study are the same as in Chapter 4

highlighted in Table 4.1. For all experiments, all the particles have been randomly initialized in the

specified domain using uniform distribution. The experiments are conducted using the both the

classical benchmark functions and the CEC05 benchmark functions f6-f14. In order to constrain

the particles movement within the specified domain for the CEC05 functions, any violating particle

gets its position randomly re-initialized inside the specified domain. The experiments are run for

a problem dimensionality of 10, 30, and 50 with 40 particles in the swarm performing 100000,

100000, and 200000 function evaluations, respectively. The results reported are the averages taken

over 30 runs and are the error values f(x)− f(x∗), where x∗ is the global optimum.

In the model conversion step of the PSO Bounds swarm, we set the value of γ to 1, which

means that the interval [a, b] should contain 68% of the values that could be generated using the

received Gaussian distribution.

5.3.2 Results of the Proposed Model

The model is applied using 40 particles per swarm, where each swarm performs 50000, 50000,

and 100000 function evaluations (half the number performed by the individual runs reported in

Chapter 4) so as for the whole model to perform the same number of function evaluations as the

individual runs. The model adopted different synchronization periods [10, 25, 50, 100, 250, 500]

allowing [125, 50, 25, 12, 5, 2] communication stages, respectively.

Table 5.1 and Table 5.2 show the results of applying the proposed cooperative model for

problem sizes of 10, 30, and 50. The tables show the best result achieved by the model and the

synchronization period at which this result was obtained. The significance column is based on a

two sample t-test that is run to verify the results statistical significance. If this column indicates

a Yes, it means that the null hypothesis is rejected with a 95% confidence level.

The results show that the cooperative model has a generally not to good performance in the

unimodal functions (the Spherical, the Rosenbrock and f6). The reason for not providing good

results for these functions is due to the poor performance of PSO Bounds in them. In these

functions, PSO Bounds provides results that are worse than the results of EDA-PSO by orders

of magnitude. The results provided by the cooperative model is very promising considering that

67

Table 5.1: Results of the cooperative model for the classical functions.

Benchmark Dimensionality Synchronization Mean Std. Significantly better
Function Period than its components

Spherical

10

10 3.572e-134 1.182e-133 No

Rosenbrock 50 4.562e-02 5.539e-02 The same

Griewank 25 4.598e-03 6.457e-03 The same

Ackley 25 5.887e-16 2.006e-31 The same

Rastrigin 25 1.808e+00 1.243e+00 Yes

Spherical

30

10 3.075e-70 5.927e-70 No

Rosenbrock 100 1.876e+00 3.416e-01 No

Griewank 25 0 0 Yes

Ackley 25 3.431e-15 1.445e-15 Yes

Rastrigin 25 1.343e+01 3.561e+00 Yes

Spherical

50

25 5.406e-92 2.961e-91 The same

Rosenbrock 100 2.488e+00 2.961e-01 The same

Griewank 500 2.465e-04 1.350e-03 The same

Ackley 100 4.141e-015 0 Yes

Rastrigin 10 2.686e+01 6.145e+00 Yes

half of the function evaluations were consumed by the PSO Bounds component. In most of the

multimodal functions, the cooperative model is always able to at least match the solution of the

better performing component, if not improving on it.

The experiments are re-run again for all the algorithms using the lbest model. Table 5.3 and

Table 5.4 show the obtained results. The results show the same trend as the only cases in which

the cooperative model is worse than the better component are in the unimodal functions.

In general, when using the gbest model, the cooperative approach produced better results than

its components in 36% of the studied cases, while maintaining the same quality of solutions as the

better component in 42% of the cases, and failing to do even so in the remaining 22%.

When using the lbest model, the results are a little better. The cooperative approach produced

better results than its components in 47% of the studied cases, while maintaining the same quality

of solutions as the better component in 42% of the cases, and failing to do even so in the remaining

11%.

68

Table 5.2: Results of the cooperative model for the CEC05 functions.

Benchmark Dimensionality Synchronization Mean Std. Significantly better
Function Period than its components

f6

10

100 1.621e-01 1.048e-01 No

f9 10 2.668e+00 1.374e+00 Yes

f10 10 3.488e+00 1.341e+00 The same

f11 10 3.263e+00 2.010e+00 The same

f12 100 2.564e+03 2.402e+03 The same

f13 10 6.377e-01 1.984e-01 The same

f14 10 2.438e+00 4.711e-01 The same

f6

30

250 3.843e+01 4.076e+01 No

f9 50 2.216e+01 4.241e+00 Yes

f10 10 5.568e+01 4.620e+01 The same

f11 10 2.610e+01 6.380e+00 The same

f12 100 2.088e+05 1.683e+05 The same

f13 50 3.301e+00 9.085e-01 Yes

f14 25 1.258e+01 3.972e-01 The same

f6

50

250 5.813e+01 4.700e+01 No

f9 100 5.250e+01 1.296e+01 No

f10 10 8.699e+01 7.753e+01 Yes

f11 10 5.135e+01 9.456e+00 Yes

f12 50 1.565e+05 1.858e+05 No

f13 10 6.003e+00 1.086e+00 Yes

f14 25 2.204e+01 4.483e-01 Yes

5.3.3 Convergence Behavior

The convergence behavior shown in Figure 5.3, Figure 5.4, Figure 5.5, and Figure 5.6 illustrate

an interesting feature as the cooperative model always tries to follow the algorithm that performs

better on the problem in hand:

• For the Spherical, the Rosenbrock, the Griewank, and f6, the cooperative model is always

following the behavior of EDA-PSO as it provides much better results than PSO Bounds.

• For the Rastrigin, f9, f10, f12, and f13, the model starts by following EDA-PSO as it has a

faster convergence in the beginning, once EDA-PSO gets to the part of the search where it

stagnates, the model switches to follow the behavior of PSO Bounds.

69

Table 5.3: Results of all the cooperative model the lbest model for the classical functions.

Benchmark Dimensionality Synchronization Mean Std. Significantly better
Function Period than its components

Spherical

10

500 2.099e-114 6.131e-114 The same

Rosenbrock 50 1.415e-01 5.939e-02 No

Griewank 50 4.600e-03 5.778e-03 The same

Ackley 10 5.888e-16 2.006e-31 Yes

Rastrigin 100 9.464e-01 7.781e-01 Yes

Spherical

30

250 4.109e-61 2.135e-60 No

Rosenbrock 100 2.236e+00 2.643e-01 The same

Griewank 50 0 0 Yes

Ackley 50 2.957e-15 1.703e-15 Yes

Rastrigin 10 1.092e+01 3.817e+00 Yes

Spherical

50

50 2.372e-59 1.235e-56 Yes

Rosenbrock 500 4.420e+00 4.409e+00 The same

Griewank 10 2.465e-04 1.350e-03 The same

Ackley 25 4.144e-15 0 Yes

Rastrigin 10 2.448e+01 6.685e+00 Yes

• For f11 and f14, the model follows PSO Bounds from start to finish as it has the better

performance during the whole search.

5.3.4 Synchronization Period Effect

The effect of changing the synchronization period on the model performance is shown in Figure

5.7, Figure 5.8, and Figure 5.9. The way the performance changes seems to be dependent on the

function under study and is not affected by the problem size.

In general, increasing the synchronization period may cause the performance of the model to

improve up to a certain limit after which the solution starts to deteriorate, which is clear for f6,

f10, f11, f12, and f14.

For f9 and f13, there is a different behavior in which the solution obtained by the model tends

to increase, decrease and finally increase again as the synchronization period is increased. Again,

this behavior is observed for all problem sizes.

70

Table 5.4: Results of the cooperative model using the lbest model for the CEC05 functions.

Benchmark Dimensionality Synchronization Mean Std. Significantly better
Function Period than its components

f6

10

500 1.479e+00 4.890e-01 No

f9 500 1.090e+00 1.198e+00 The same

f10 10 2.913e+00 1.756e+00 Yes

f11 10 5.033e+00 1.299e+00 The same

f12 50 6.089e+03 2.878e+03 The same

f13 25 5.488e-01 1.447e-01 Yes

f14 10 2.631e+00 2.831e-01 The same

f6

30

500 5.701e+01 4.431e+01 The same

f9 100 2.262e+01 6.062e+00 The same

f10 25 6.392e+01 2.773e+01 Yes

f11 10 2.997e+01 2.670e+00 The same

f12 10 4.680e+05 1.040e+05 The same

f13 10 3.831e+00 7.884e-01 Yes

f14 25 1.270e+01 2.383e-01 Yes

f6

50

500 1.106e+02 7.083e+01 No

f9 100 4.897e+01 8.206e+00 Yes

f10 50 1.387e+02 7.613e+01 Yes

f11 10 5.967e+01 4.527e+00 The same

f12 50 1.697e+06 4.267e+05 The same

f13 10 6.614e+00 1.959e+00 Yes

f14 10 2.228e+01 3.520e-01 Yes

5.3.5 Exchanging Particles

Previous research in [64,68,71] all reached a similar conclusion where the migration of probability

models can provide better results than the migration of individuals. In this section, we investigate

this idea by applying the cooperative model while sharing a group of particles. The migration

approach adopted is selecting the best 10% particles in one swarm to replace the worst 10%

particles in the other swarm.

The best results achieved by the cooperative model are shown in Table 5.5. The results show

that there is no migration scheme that outperforms the other in all benchmark functions. While

migrating particles significantly improved the results for both f6 and f12, the results deteriorated

for f9 and f10. For the remaining two functions, both approaches produced similar results.

Figure 5.10 and Figure 5.11 show the performance of the cooperative model across different

71

0 20000 40000 60000 80000 100000
−700

−600

−500

−400

−300

−200

−100

0

100

Function Evaluations

lo
g(

f(
x)

)

EDA−PSO
PSO_Bounds
Coop_Model

(a) Spheircal

0 20000 40000 60000 80000 100000
−350

−300

−250

−200

−150

−100

−50

0

50

Function Evaluations

lo
g(

f(
x)

)

EDA−PSO
PSO_Bounds
Coop_Model

(b) Spherical 30

0 40000 80000 120000 160000 200000
−250

−200

−150

−100

−50

0

50

Function Evaluations

lo
g(

f(
x)

)

EDA−PSO
PSO_Bounds
Coop_Model

(c) Spherical 50

0 20000 40000 60000 80000 100000
−4

−2

0

2

4

6

Function Evaluations

lo
g(

f(
x)

)

EDA−PSO
PSO_Bounds
Coop_Model

(d) Rosenbrock

0 20000 40000 60000 80000 100000
0

1

2

3

4

5

6

7

8

Function Evaluations

lo
g(

f(
x)

)

EDA−PSO
PSO_Bounds
Coop_Model

(e) Rosenbrock 30

0 40000 80000 120000 160000 200000
0

2

4

6

8

10

Function Evaluations

lo
g(

f(
x)

)

EDA−PSO
PSO_Bounds
Coop_Model

(f) Rosenbrock 50

Figure 5.3: Convergence behavior of the three algorithms for the unimodal classical functions.

Table 5.5: Results of cooperative model adopting particles migration for a dimensionality of 10.

Benchmark Syncronization Mean Std. Compared to probabilistic
Function Period models migration

f6 10 5.77e-02 1.91e-01 Better

f9 100 3.65e+00 1.60e+00 Worse

f10 250 6.53e+00 2.79e+00 Worse

f11 25 3.85e+00 1.96e+00 Worse

f12 10 3.30e+02 6.16e+02 Better

f13 100 6.54e-01 1.83e-01 The same

f14 250 2.54e+00 5.054e-01 The same

synchronization periods when it adopts the two migration schemes. Again, the results show that

there is no migration scheme that outperforms the other on all the benchmark functions. In Spher-

ical, Griewank, Rastrigin, f9, and f10 migrating a probability model always gives better results

than migrating particles. While in f12, migrating particles significantly outperforms migrating a

probability model, which is also maintained at higher dimensionalities as shown in Figure 5.12. In

f6, f11, and f13, no approach outperforms the other on all the synchronization periods.

72

0 20000 40000 60000 80000 100000
−6

−4

−2

0

2

4

6

Function Evaluations

lo
g(

f(
x)

)
EDA−PSO
PSO_Bounds
Coop_Model

(a) Griewank

0 20000 40000 60000 80000 100000
−50

−40

−30

−20

−10

0

10

Function Evaluations

lo
g(

f(
x)

)

EDA−PSO
PSO_Bounds
Coop_Model

(b) Griewank 30

0 40000 80000 120000 160000 200000
−10

−5

0

5

10

Function Evaluations

lo
g(

f(
x)

)

EDA−PSO
PSO_Bounds
Coop_Model

(c) Griewank 50

0 40000 80000 120000 160000 200000
−35

−30

−25

−20

−15

−10

−5

0

5

Function Evaluations

lo
g(

f(
x)

) EDA−PSO
PSO_Bounds
Coop_Model

(d) Ackley

0 20000 40000 60000 80000 100000
−35

−30

−25

−20

−15

−10

−5

0

5

Function Evaluations

lo
g(

f(
x)

)

EDA−PSO
PSO_Bounds
Coop_Model

(e) Ackley 30

0 40000 80000 120000 160000 200000
−35

−30

−25

−20

−15

−10

−5

0

5

Function Evaluations

lo
g(

f(
x)

) EDA−PSO
PSO_Bounds
Coop_Model

(f) Ackley 50

0 20000 40000 60000 80000 100000
0

20

40

60

80

100

120

140

Function Evaluations

f(
x)

EDA−PSO
PSO_Bounds
Coop_Model

(g) Rastrigin

0 20000 40000 60000 80000 100000
0

100

200

300

400

500

Function Evaluations

f(
x)

EDA−PSO
PSO_Bounds
Coop_Model

(h) Rastrigin 30

0 40000 80000 120000 160000 200000
0

100

200

300

400

500

600

700

800

Function Evaluations

f(
x)

EDA−PSO
PSO_Bounds
Coop_Model

(i) Rastrigin 50

Figure 5.4: Convergence behavior of the three algorithms for the multimodal classical functions.

5.3.6 A Simple Adaptive Version

As noted before, the cooperative model is not able to produce better results than its components

if one of them has a poor performance in the function under study. One approach to improve the

cooperative model performance is to increase the effect of the component performing better on the

function being optimized. This is investigated in this section by implementing a simple adaptive

version of the cooperative model. The adaptation could be done by:

• Changing the amount of information exchanged during the search.

• Changing the number of function evaluations performed by each component.

73

0 20000 40000 60000 80000 100000
−5

0

5

10

15

20

25

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDA−PSO
PSO_Bounds
Coop_Model

(a) f6

0 20000 40000 60000 80000 100000
0

5

10

15

20

25

30

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDA−PSO
PSO_Bounds
Coop_Model

(b) f6 30

0 40000 80000 120000 160000 200000
0

10

20

30

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDA−PSO
PSO_Bounds
Coop_Model

(c) f6 50

0 20000 40000 60000 80000 100000
0

1

2

3

4

5

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDA−PSO
PSO_Bounds
Coop_Model

(d) f9

0 20000 40000 60000 80000 100000
3

3.5

4

4.5

5

5.5

6

6.5

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDA−PSO
PSO_Bounds
Coop_Model

(e) f9 30

0 40000 80000 120000 160000 200000
3.5

4

4.5

5

5.5

6

6.5

7

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDA−PSO
PSO_Bounds
Coop_Model

(f) f9 50

0 20000 40000 60000 80000 100000
1

2

3

4

5

6

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDA−PSO
PSO_Bounds
Coop_Model

(g) f10

0 20000 40000 60000 80000 100000
4

4.5

5

5.5

6

6.5

7

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDA−PSO
PSO_Bounds
Coop_Model

(h) f10 30

0 40000 80000 120000 160000 200000
4

5

6

7

8

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDA−PSO
PSO_Bounds
Coop_Model

(i) f10 50

0 20000 40000 60000 80000 100000
1

1.5

2

2.5

3

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDA−PSO
PSO_Bounds
Coop_Model

(j) f11

0 20000 40000 60000 80000 100000
3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDA−PSO
PSO_Bounds
Coop_Model

(k) f11 30

0 40000 80000 120000 160000 200000
3.9

4.1

4.3

4.5

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDA−PSO
PSO_Bounds
Coop_Model

(l) f11 50

Figure 5.5: Convergence behavior of the three algorithms for the CEC05 benchmark functions.

74

0 20000 40000 60000 80000 100000
7

8

9

10

11

12

13

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDA−PSO
PSO_Bounds
Coop_Model

(a) f12

0 20000 40000 60000 80000 100000
12

12.5

13

13.5

14

14.5

15

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDA−PSO
PSO_Bounds
Coop_Model

(b) f12 30

0 40000 80000 120000 160000 200000
1

3

5

7

9

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDA−PSO
PSO_Bounds
Coop_Model

(c) f12 50

0 20000 40000 60000 80000 100000
−1

0

1

2

3

4

5

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDA−PSO
PSO_Bounds
Coop_Model

(d) f13

0 20000 40000 60000 80000 100000
1

2

3

4

5

6

7

8

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDA−PSO
PSO_Bounds
Coop_Model

(e) f13 30

0 40000 80000 120000 160000 200000
1

3

5

7

9

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDA−PSO
PSO_Bounds
Coop_Model

(f) f13 50

0 20000 40000 60000 80000 100000
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDA−PSO
PSO_Bounds
Coop_Model

(g) f14

0 20000 40000 60000 80000 100000
2.5

2.55

2.6

2.65

2.7

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDA−PSO
PSO_Bounds
Coop_Model

(h) f14 30

0 40000 80000 120000 160000 200000
3.08

3.1

3.12

3.14

3.16

3.18

3.2

3.22

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDA−PSO
PSO_Bounds
Coop_Model

(i) f14 50

Figure 5.6: Convergence behavior of the three algorithms for the CEC05 benchmark functions,

contd.

• Changing both.

In this work, the first approach is adopted. This is done by observing the performance of both

components in every iteration during the search process. Two counters are used, one for each

component, and when a certain component has a better performance during any given iteration,

its counter gets incremented. To accommodate the fact that these components have different

behaviors during the search, a sliding window approach is taken by resetting these counters every

50 iterations. At the end of every sliding window, the percentage of number of iterations in which

the PSO Bounds had the better performance is calculated. This percentage is used to control the

75

10 25 50 100 250
−310

−305

−300

−295

−290

−285

Synchronization Period

lo
g(

f(
x)

)

(a) Spherical

10 25 50 100 250
−162

−160

−158

−156

−154

−152

−150

−148

Synchronization Period

lo
g(

f(
x)

)

(b) Spherical 30

10 25 50 100 250
−130

−120

−110

−100

−90

−80

Synchronization Period

lo
g(

f(
x)

)

(c) Spherical 50

10 25 50 100 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Synchronization Period

f(
x)

(d) Rosenbrock

10 25 50 100 250
1.5

2

2.5

3

3.5

4

4.5

5

5.5

Synchronization Period

f(
x)

(e) Rosenbrock 30

10 25 50 100 250
2

4

6

8

10

12

14

Synchronization Period

f(
x)

(f) Rosenbrock 50

10 25 50 100 250
4

5

6

7

8

9

10

11
x 10

−3

Synchronization Period

f(
x)

(g) Griewank

10 25 50 100 250
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

−3

Synchronization Period

f(
x)

(h) Griewank 30

10 25 50 100 250
0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−3

Synchronization Period

f(
x)

(i) Griewank 50

10 25 50 100 250
1.8

1.9

2

2.1

2.2

2.3

Synchronization Period

f(
x)

(j) Rastrigin

10 25 50 100 250
13

14

15

16

17

18

19

Synchronization Period

f(
x)

(k) Rastrigin 30

10 25 50 100 250
26

27

28

29

30

31

32

33

34

Synchronization Period

f(
x)

(l) Rastrigin 50

Figure 5.7: Synchronization period effect for the cooperative model.

76

10 25 50 100 250
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Synchronization Period

lo
g(

f(
x)

−
f(

x*
))

(a) f6

10 25 50 100 250
30

40

50

60

70

80

90

100

Synchronization Period

f(
x)

−
f(

x*
)

(b) f6 30

10 25 50 100 250
40

60

80

100

120

140

160

180

Synchroization Period

f(
x)

−
f(

x*
)

(c) f6 50

10 25 50 100 250
2.5

2.7

2.9

3.1

3.3

Synchronization Period

f(
x)

−
f(

x*
)

(d) f9

10 25 50 100 250
22

23

24

25

26

27

Synchronization Period

f(
x)

−
f(

x*
)

(e) f9 30

10 25 50 100 250
52

54

56

58

60

Synchronization Period

f(
x)

−
f(

x*
)

(f) f9 50

10 25 50 100 250
3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

Synchronization Period

f(
x)

−
f(

x*
)

(g) f10

10 25 50 100 250
55

60

65

70

75

80

Synchronization Period

f(
x)

−
f(

x*
)

(h) f10 30

10 25 50 100 250
80

100

120

140

160

Synchronization Period

f(
x)

−
f(

x*
)

(i) f10 50

10 25 50 100 250
3

3.5

4

4.5

5

Synchronization Period

f(
x)

−
f(

x*
)

(j) f11

10 25 50 100 250
26

27

28

29

30

31

Synchronization Period

f(
x)

−
f(

x*
)

(k) f11 30

10 25 50 100 250
50

52

54

56

58

60

62

64

Synchronization Period

f(
x)

−
f(

x*
)

(l) f11 50

Figure 5.8: Synchronization period effect for the cooperative model, contd.

77

10 25 50 100 250
7.8

8

8.2

8.4

8.6

8.8

Synchronization Period

lo
g(

f(
x)

−
f(

x*
))

(a) f12

10 25 50 100 250
12.2

12.4

12.6

12.8

13

13.2

Synchronization Period

lo
g(

f(
x)

−
f(

x*
))

(b) f12 30

10 25 50 100 250
11.8

12.2

12.6

13

13.4

Synchronization Period

lo
g(

f(
x)

−
f(

x*
))

(c) f12 50

10 25 50 100 250
0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

Synchronization Period

f(
x)

−
f(

x*
)

(d) f13

10 25 50 100 250

3.4

3.5

3.6

3.7

3.8

Synchronization Period

f(
x)

−
f(

x*
)

(e) f13 30

10 25 50 100 250
6

6.1

6.2

6.3

6.4

6.5

Synchronization Period

f(
x)

−
f(

x*
)

(f) f13 50

10 25 50 100 250
2.4

2.45

2.5

2.55

2.6

2.65

2.7

Synchronization Period

f(
x)

−
f(

x*
)

(g) f14

10 25 50 100 250
12.5

12.6

12.7

12.8

12.9

Synchronization Period

f(
x)

−
f(

x*
)

(h) f14 30

10 25 50 100 250
22

22.1

22.2

22.3

22.4

22.5

Synchronization Period

f(
x)

−
f(

x*
)

(i) f14 50

Figure 5.9: Synchronization period effect for the cooperative model, contd.

amount of information flow between the two swarms.

To increase the PSO Bounds swarm effect, the number of particles replaced in the EDA-PSO

swarm is increased. On the other hand, to increase the EDA-PSO swarm effect, the calculation of

β is the PSO Bounds swarm is changed as follows:

β =

{
factor ∗ fEDA−PSO

fEDA−PSO+fPSO Bounds
if fEDA−PSO < fPSO Bounds

factor ∗ 0.9 otherwise
(5.8)

where factor controls the influence of the EDA-PSO swarm. Normally factor is set to 1, but

when it decreases this increases the influence of the EDA-PSO swarm.

78

10 25 50 100 250
−320

−300

−280

−260

−240

−220

−200

Synchronization Period

lo
g(

f(
x)

)

Coop_Model
Coop_Model_Par

(a) Spherical

10 25 50 100 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Synchronization Period

f(
x)

Coop_Model
Coop_Model_Par

(b) Rosenbrock

10 25 50 100 250
−6

−5

−4

−3

−2

−1

Synchronization Period

lo
g(

f(
x)

)

Coop_Model
Coop_Model_Par

(c) Griewank

10 25 50 100 250
1

2

3

4

5

6

7

8

9

Synchronization Period

f(
x)

Coop_Model
Coop_Model_Par

(d) Rastrigin

Figure 5.10: Comparing probabilistic model migration vs. particles migration for the classical

functions for a dimensionality of 10.

Algorithm 5.3 shows the steps taken by the adaptive model at the end of each sliding window

where α is the percentage of the PSO Bounds model performing better during the previous window

period. When α is equal to 0.5, the normal information flow is taken. When PSO Bounds is the

better performer, the number of replaced particles is increased from 4(10%) to 8(20%). If the EDA-

PSO has the better performance, the number is decreased to 2(5%) to minimize the PSO Bounds

effect and factor is also decreased to 0.25 to increase the EDA-PSO effect.

Table 5.6 shows the results of the adaptive gbest model across the different dimensions for

the classical functions. The results show that the adaptive version has a significantly better

performance over the non-adaptive version and it’s able to reach the global optimum for different

cases.

Table 5.7 shows the results of the adaptive model across the different dimensions for the CEC05

benchmark functions. The results show that the using the adaptive approach enabled the cooper-

ative model to produce better results than its components for more cases than the non-adaptive

version.

79

10 25 50 100 250
−3

−2

−1

0

1

2

Synchronization Period

lo
g(

f(
x)

−
f(

x*
))

Coop_Model
Coop_Model_Par

(a) f6

10 25 50 100 250
2.5

3.5

4.5

5.5

Synchronization Period

f(
x)

−
f(

x*
)

Coop_Model
Coop_Model_Par

(b) f9

10 25 50 100 250
3

5

7

9

11

Synchronization Period

f(
x)

−
f(

x*
)

Coop_Model
Coop_Model_Par

(c) f10

10 25 50 100 250
3

3.5

4

4.5

5

Synchronization Period

f(
x)

−
f(

x*
)

Coop_Model
Coop_Model_Par

(d) f11

10 25 50 100 250
5.5

6

6.5

7

7.5

8

8.5

9

Synchronization Period

lo
g(

f(
x)

−
f(

x*
))

Coop_Model
Coop_Model_Par

(e) f12

10 25 50 100 250
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Synchronization Period

f(
x)

−
f(

x*
)

Coop_Model
Coop_Model_Par

(f) f13

10 25 50 100 250

2.6

2.8

3

3.2

3.4

Synchronization Period

f(
x)

−
f(

x*
)

Coop_Model
Coop_Model_Par

(g) f14

Figure 5.11: Comparing probabilistic model migration vs. particles migration for the CEC05

benchmark functions for a dimensionality of 10.

Figure 5.13 shows the comparison between the two approaches when applied using both the

gbest and lbest models based on their success rate in producing better results than their com-

ponents. It shows that adapting the information flow between the two components has resulted

in increasing the number of cases in which the cooperative model improves the results. It also

shows that the adaptive model fails to even match the result of the better component in only less

than 10% of the studied cases (most of which are unimodal functions). The results also indicate

that the performance of the adaptive model is robust against changing the underlying population

topology.

80

10 25 50 100 250
−3

−2

−1

0

1

2

Synchronization Period

lo
g(

f(
x)

−
f(

x*
))

Coop_Model
Coop_Model_Par

(a) f6

10 25 50 100 250
30

40

50

60

70

80

90

100

Synchronization Period

f(
x)

−
f(

x*
)

Coop_Model
Coop_Model_Par

(b) f6 30

10 25 50 100 250
40

60

80

100

120

140

160

180

Synchroization Period

f(
x)

−
f(

x*
)

Coop_Model
Coop_Model_Par

(c) f6 50

10 25 50 100 250
5.5

6

6.5

7

7.5

8

8.5

9

Synchronization Period

lo
g(

f(
x)

−
f(

x*
))

Coop_Model
Coop_Model_Par

(d) f12

10 25 50 100 250
9

10

11

12

13

14

Synchronization Period

lo
g(

f(
x)

−
f(

x*
))

Coop_Model
Coop_Model_Par

(e) f12 30

10 25 50 100 250
40

60

80

100

120

140

160

180

Synchroization Period

f(
x)

−
f(

x*
)

Coop_Model
Coop_Model_Par

(f) f12 50

Figure 5.12: Comparing probabilistic model migration vs. particles migration for all dimensional-

ities.

Algorithm 5.3 The adaptive information flow algorithm.

Require: PSO Bounds Counter, EDA-PSO Counter

1: α = PSO Bounds Counter
PSO Bounds Counter+EDA−PSO Counter

2: if α = 0.5 then

3: number of particles to replace = 4

4: factor = 1

5: else if α > 0.5 then

6: number of particles to replace = 8

7: factor = 1

8: else

9: number of particles to replace = 2

10: factor = 0.25

11: end if

12: PSO Bounds Counter = 0

13: EDA-PSO Counter = 0

81

Table 5.6: Results of the adaptive gbest cooperative model for the classical functions.

Benchmark Dimensionality Synchronization Mean Std. Significantly better
Function Period than its components

Spherical

10

10 0 0 Yes

Rosenbrock 10 9.492e-02 8.388e-02 The same

Griewank 10 4.435e-03 6.046e-03 The same

Ackley 10 0 0 Yes

Rastrigin 10 1.556e+00 1.034e+00 Yes

Spherical

30

10 0 0 Yes

Rosenbrock 25 1.888e+00 3.198e-01 No

Griewank 10 0 0 Yes

Ackley 10 0 0 Yes

Rastrigin 10 1.267e+01 3.396e+00 Yes

Spherical

50

10 0 0 Yes

Rosenbrock 100 2.587e+00 8.365e-01 The same

Griewank 500 4.105e-04 2.249e-03 The same

Ackley 25 0 0 Yes

Rastrigin 10 2.806e+01 9.372e+00 Yes

5.4 Comparison with other PSO cooperative models

To test how the proposed adaptive cooperative model performs in comparison with other state-of-

the-art PSO cooperative algorithms, Table 5.8 shows the comparison between our results and the

following approaches:

• CPSO S [9] : A cooperative PSO approach where each dimension is being optimized by a

separate swarm. The approach uses 10 particles per swarm as this was shown in [9] to be

the best.

• DMS-L-PSO [21, 22]: A a dynamic lbest multi-swarm approach in which particles get

randomly and continuously assigned to different swarms. The approach is also combined with

the Quasi-Newton method to improve its local search ability. The approach uses 20 swarms

and 3 particles per swarm. These swarms get randomly re-constructed every 5 iterations and

the Quasi-Newton method is performed on the best 20% particles pbests every 100 iterations.

• TRIBES-D [73]: A parameter free PSO having multiple swarms, referred to as TRIBES.

The tribes share information among them and have the capability to destroy bad particles

and/or randomly generate new ones to form a new tribe. The source code is available at [74].

82

Table 5.7: Results of the adaptive gbest cooperative model for the CEC05 benchmark functions.

Benchmark Dimensionality Synchronization Mean Std. Significantly better
Function Period than its components

f6

10

10 1.529e-01 1.907e-02 No

f9 25 2.361e+00 1.151e+00 Yes

f10 10 2.952e+00 1.578e+00 Yes

f11 10 3.311e+00 1.962e+00 The same

f12 100 1.10e+03 1.229e+03 Yes

f13 25 6.336e-01 2.005e-01 The same

f14 10 2.424e+00 3.885e-01 The same

f6

30

25 2.762e+01 2.778e+01 The same

f9 10 2.302e+01 5.410e+00 Yes

f10 25 2.922e+01 1.931e+01 Yes

f11 50 2.737e+01 6.600e+00 The same

f12 50 1.500e+05 1.726e+05 Yes

f13 25 3.095e+00 7.375e-01 Yes

f14 10 1.259e+01 4.643e-01 The same

f6

50

25 5.582e+01 3.082e+01 No

f9 10 5.479e+01 8.446e+00 No

f10 10 6.204e+01 2.611e+01 Yes

f11 50 4.921e+01 8.997e+00 Yes

f12 50 7.328e+04 6.118e+04 Yes

f13 10 5.518e+00 1.274e+00 Yes

f14 25 2.197e+01 4.094e-01 Yes

Table 5.8 and Table 5.9 show the complete results of theses algorithms for the classical functions

and the CEC05 benchmark functions in all dimensions. Table 5.10 summarizes this comparison

showing the number of cases in which each algorithm was the best out of the 15 cases (5 functions

in 3 dimensions) in the classical functions and the 21 cases (7 functions in 3 dimensions) in the

CEC05 benchmark functions. The comparison also shows the function in which each algorithm

provided the best result in all dimensions. The results show that the adaptive gbest model is very

competitive with the state-of-the-art PSO cooperative algorithms and that there is no algorithm

that outperforms all the others on more than two functions.

83

Models Comparison

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Yes The same No

Significance

S
u

cc
es

s
R

at
e

Non-adaptive model
adaptive model

(a) gbest model

Models Comparison

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Yes The same No

Significance

S
u

cc
es

s
R

at
e

Non-adaptive model
adaptive model

(b) lbest model

Figure 5.13: Non-Adaptive vs. Adaptive Model Performance.

Table 5.8: Results of all the algorithms for the classical functions

Benc. Dim.
Adaptive gbest DMS-L-PSO CPSO S TRIBES-D

Func. Mean Std. Mean Std. Mean Std. Mean Std.

Spherical

10

0 0 3.45e-59 5.72e-59 1.33e-155 5.35e-155 0 0

Rosenbrock 9.49e-02 8.39e-02 6.10e-06 2.27e-05 9.76e-03 1.85e-02 1.73e-03 7.90e-03

Griewank 4.44e-03 6.05e-03 0 0 4.89e-02 2.46e-02 4.30e-02 2.45e-02

Ackley 0 0 2.31e-15 1.08e-15 1.08e-14 4.25e-15 0 0

Rastrigin 1.56+e00 1.03e+00 0 0 0 0 0 0

Spherical

30

0 0 8.98e-27 1.08e-26 4.94e-49 1.48e-48 0 0

Rosenbrock 1.89e+00 3.20e-01 1.72e-07 2.66e-07 3.05e-01 1.05e-01 6.76e-01 3.26e-01

Griewank 0 0 1.48e-16 1.10e-16 2.46e-02 1.88e-02 4.82e-02 4.87e-02

Ackley 0 0 1.12e-12 2.10e-12 4.05e-14 1.24e-14 3.92e-04 8.46e-04

Rastrigin 1.27e+01 3.40e+00 1.78e+01 4.06e+00 0 0 2.29e+00 1.55e+00

Spherical

50

0 0 1.36e-29 1.15e-29 4.56e-57 2.17e-56 0 0

Rosenbrock 2.59e+00 8.36e-01 5.31e-01 1.46e-01 3.64e-01 1.32e-01 9.10e-01 3.04e-01

Griewank 4.11e-04 2.25e-03 1.37e-16 4.78e-17 1.35e-02 1.17e-02 4.90e-02 5.51e-02

Ackley 0 0 3.80e-12 3.66e-12 9.08e-14 6.79e-14 1.26e-04 2.39e-04

Rastrigin 2.81e+01 9.37e+00 3.50e+01 6.95e+00 2.98e-01 5.32e-01 3.12e+00 1.65e+00

5.5 Conclusion

This chapter surveys the different parallel EDAs proposed in the literature relying on either ex-

changing individuals or probabilistic models.

84

Table 5.9: Results of all the algorithms for the CEC05 benchmark functions

Benc. Dim.
Adaptive gbest DMS-L-PSO CPSO S TRIBES-D

Func. Mean Std. Mean Std. Mean Std. Mean Std.

f6

10

1.53e-01 1.91e-02 5.00e-6 1.92e-05 2.45e+01 2.94e+01 13.53e+00 21.53e+00

f9 2.36e+00 1.15e+00 0 0 0 0 0 0

f10 2.95e+00 1.58e+00 4.48e+00 1.27e+00 3.82e+01 1.89e+01 9.65e+00 3.43e+00

f11 3.31e+00 1.96e+00 4.76e+00 6.99e-01 6.67e+00 1.73e+00 4.06e+00 1.08e+00

f12 1.10e+03 1.23e+03 2.48e+00 4.36e+00 4.39e+02 6.69e+02 1.15e+03 6.68e+02

f13 6.34e-01 2.01e-01 3.77e-01 9.26e-02 2.75e-01 1.46e-01 4.27e-01 1.08e-01

f14 2.42e+00 3.89e-01 2.66e+00 2.44e-01 3.80e+00 3.53e-01 2.89e+00 5.09e-01

f6

30

2.77e+01 2.78e+01 7.53e+01 5.63e+01 8.54e+01 7.57e+01 5.87e+01 5.06e+01

f9 2.30e+01 5.41e+00 2.28e+01 5.30e+00 3.32e-02 1.82e-01 3.06e+00 1.73e+00

f10 2.92e+01 1.94e+01 4.46e+01 9.34e+00 1.78e+02 4.35e+01 1.45e+02 3.21e+01

f11 2.74e+01 6.56e+00 3.13e+01 8.98e-01 2.11e+01 3.62e+00 2.96e+01 2.26e+00

f12 1.50e+05 1.73e+05 9.17e+02 1.34e+03 6.60e+03 4.83e+03 1.05e+05 3.85e+04

f13 3.10e+00 7.38e-01 3.05e+00 5.25e-01 1.15e+00 2.25e-01 2.53e+00 7.03e-01

f14 1.26e+01 4.64e-01 1.23e+01 3.36e-01 1.32e+01 4.97e-01 1.29e+01 2.95e-01

f6

50

5.58e+01 3.08e+01 1.31e+00 1.67e+00 1.37e+02 1.52e+02 9.23e+01 8.24e+01

f9 5.48e+01 8.45e+00 5.98e+01 1.15e+01 6.63e-02 2.52e-01 5.47e+00 2.76e+00

f10 6.20e+01 2.61e+01 9.72e+01 1.39e+01 3.43e+02 7.62+01 3.65e+02 7.50e+01

f11 4.92e+01 9.00e+00 6.00e+01 1.31e+00 3.81e+01 5.41e+00 5.39e+01 4.55e+00

f12 7.33e+04 6.12e+04 3.53e+03 3.86e+03 1.40e+04 1.31e+03 4.08e+05 1.12e+05

f13 5.52e+00 1.27e+00 6.03e+00 9.83e-01 2.22e+00 4.51e-01 4.38e+00 1.07e+00

f14 2.20e+01 4.09e-01 2.13e+01 4.42e-01 2.28e+01 5.05e-01 2.25e+01 2.98e-01

Table 5.10: Comparison of all the algorithms

Algorithm
Classical Functions CEC05 Benchmark Functions Total Number

No. of Cases Best in No. of Cases Best in of Cases

Adaptive gbest 7 Spherical,Ackley 6 f10 13

DMS-L-PSO 5 - 8 f12 13

CPSO S 4 Rastrigin 8 f9,f13 12

TRIBES-D 5 Spherical 1 - 6

The chapter proposes a new heterogeneous cooperative PSO/EDA algorithm based on the

exchange of probability models. The model is considered as a heterogeneous approach because the

cooperating PSO/EDA algorithms used different methods to sample the search space.

85

The model utilizes two different algorithms, namely, EDA-PSO and PSO Bounds. The two

algorithms exchanges their probability models every pre-determined number of iterations. Each

algorithm converts the received model into an equivalent model that is in the same form of its

resident one. The PSO Bounds algorithm combines the received model with its resident one and

continues with the search. On the other hand, EDA-PSO uses the combined received-resident

model to generate new particles replacing its worst particles.

The new cooperative model produces better results than its individual components for different

problem sizes. Studying the convergence behavior of the cooperative model, it is shown that the

model has a behavior that is similar to the component performing better in the search, even if

this component changed during the search process. The cooperative model does not produce good

results for a small number of situations where one of its components had a very poor performance

in the function under study.

Migrating a probability model is compared to the classic migration of particles. It is shown

that there’s no migration scheme outperforms the other on all the benchmark function.

Finally, a simple adaptive model is proposed. In this model, the flow of information is adaptively

controlled in a sliding window approach based on its components performance during the search.

The adaptive version significantly improves the results over the non-adaptive version and is able to

increase the number of cases in which it outperforms its components. The adaptive gbest version

is also shown to be very competitive with some state-of-the-art cooperative PSO algorithms when

applied to the benchmark functions under study.

86

Chapter 6

Particle Swarm Optimization for FPGA

Placement

The placement problem in Field Programmable Gate Arrays (FPGAs) is crucial to achieve the

best performance. Simulated annealing has been the main optimization algorithm used to solve it.

In this chapter, two different PSO versions are applied to the FPGA placement problem in order to

find the optimum logic blocks and IO pins locations in order to minimize the total wire-length. One

version solves the the problem entirely in the discrete search space while the other version solves

it in the continuous domain. Different cooperative models of both versions are also investigated.

All the algorithms are implemented and applied to several well-known FPGA benchmarks with

increasing dimensionality. Finally, both EDA-PSO and PSO Bounds are applied to the problem

as well as the cooperative model with probability models migration.

6.1 FPGAs Placement Problem

FPGAs are digital circuits that provide a programmable alternative to Application Specific Inte-

grated Circuits (ASIC) designs for prototyping and small-volume production. The market shares

of FPGAs had witnessed a huge increase recently since FPGA vendors started providing a variety

of FPGA sizes for different applications. The design process of FPGAs involves synthesizing a user

defined circuit and placing it on the programmable resources of FPGAs. The placement problem

in FPGAs has always been the limiting factor for FPGA performance. The FPGA placement

problem is a combinatorial problem where the logic and IO blocks are distributed among the avail-

able physical locations to either minimize the total wire-length or minimize the delay along the

87

critical path. The most widely used optimization algorithm in the FPGA placement problem is

Simulated Annealing (SA) [75].

FPGAs consist of programmable logic resources (logic clusters) embedded in a sea of pro-

grammable interconnects (routing channels), as shown in Figure 6.1. Moreover, programmable IO

pads are distributed along the edges of the fabric (Figure 6.1).

Logic

Clusters

I/O

Pads
Routing

Channels

Figure 6.1: FPGA layout.

The programmable logic resources are configured to implement any logic function, while the

interconnects provide the flexibility to connect any signal in the design to any logic resource.

FPGA logic blocks are made of programmable Look-Up Tables (LUTs). Logic blocks and the

programmable interconnects are controlled by built-in configuration SRAM cells, which control

their operation. The process of programming the FPGA employs transforming the design to a

series of zeros and ones, which are transferred to the configuration SRAM cells and are used to

configure the programmable logic and interconnects.

A typical CAD flow for FPGAs is shown in Figure 6.2. Designs are synthesized by mapping

them to the LUT FPGA architecture. Afterwards, the synthesized LUTs are grouped into a group

of logic clusters that correspond to that of the physical FPGA structure. In the placement design

phase of FPGAs, the logic blocks and the IO blocks of the given design are distributed among

the physical logic blocks and IO pads, respectively, in the FPGA fabric. The connections between

the placed logic clusters are established by programming the routing resources during the routing

phase.

Placement algorithms try to minimize the longest delay along the paths in the circuit and/or

the total wire length. In this work, the cost function is chosen to be the total wire length of the

88

Figure 6.2: FPGA design CAD flow.

design. The wire length is calculated as the length of the bounding box of each wire. For example,

if block i is placed in location (xi, yi) and block j is placed in location (xj, yj), then the length of

the wire connecting them is calculated as

wirelength = |xi − xj|+ |yi − yj|. (6.1)

Simulated-annealing placement algorithms are used by the VPR tool [75]. The logic blocks are

randomly placed in the FPGA fabric. Afterwards, random blocks are selected as candidates for

swapping, a random location is selected and the swap is performed. Swaps that reduce the quality

of the cost function are allowed initially, but the probability of accepting such swaps decreases

with the number of iterations.

In [76], a comparison between the quality of a number of different placement algorithms is

performed. It was found that the VPR-based algorithm results in the best placement quality in

terms of the placement cost function. As a result, in this work, the results obtained by the PSO

placement algorithms will be compared to those achieved by the VPR tool.

6.2 Discrete PSO

Different discrete versions have been proposed for PSO in the literature [54, 77–88]. In [54], a

binary discrete PSO version was proposed where particle trajectories are represented as changes

in the probability that a coordinate will be either ‘1’ or ‘0’, and applied to the five functions of the

De Jong testbed. A discrete PSO was used to solve the task assignment problem in [77], which

achieved better results than a standard genetic algorithm. Another discrete PSO version was also

proposed in [78].

In [79,80], the authors solved the TSP problem using two similar discrete PSO algorithms. Both

89

algorithms located the optimal solutions for the studied problems. However, the TSP instances

solved were of low dimensionality, 14 and 17, respectively.

The authors of [81] proposed a discrete PSO algorithm for solving the generalized TSP (GTSP)

problem. The proposed algorithm had a modified subtraction operator and employed two local

searching techniques for accelerating the speed of convergence and was applied to problems with

up to 40 groups.

In [82] a variant PSO (VPSO) was applied to the steelmaking charge plan problem, where

the authors used a discrete presentation. The charge plan scheduling problem was modeled as a

TSP problem. The particles position was modeled as an array, where the array index is the slab

number and the array element is the charge number. The velocity and position update equations

were implemented as a series of crossover and mutation operators. A group of particles were

updated by subtracting (instead of adding) the velocity in order to change the search direction.

The method was successfully applied to problems with dimensionalities up to 30.

A modified PSO (MPSO) algorithm for solving the TSP problem was proposed in [83]. In

MPSO , each particle moves towards its personal best and either gbest or a randomly selected

particle. At the beginning, there is a higher probability that gbest is not followed. Towards

the end of the search, this probability is decreased and each particle follows the gbest instead.

Velocity mutation was used if the best found solution does not change for a specified number

of iterations. The velocity vector was composed of a sequence of adjustment operators. Each

adjustment operators V (i, j) was applied by removing the node at index i, inserting it at index j

and shifting the rest of the position vector. The method was only applied to two instances of a

dimensionality of 14 and 29 performing a large number of function evaluations, 2×105 and 3×105,

respectively.

A sequential PSO (SPSO) was used for the graphic presentation of Group Method of Data

Handling (GMDH) networks in [84]. The objective was to find the optimum sequence of nodes

which will reduce the number of intersections in the graph for better visualization. The particle

position was a vector containing the nodes to be sorted. The method was applied to a graph

consisting of 20 nodes. However, no details were given about the way the particle position and

velocity were updated and the results were not compared to any other method. The minimum

number function evaluations required to achieve good results was found to be 3× 104.

In [85], a discrete PSO was applied to the weapon-target assignment (WTA) problem. Each

particle position is represented as a vector, where the index is the target and the value is the

weapon assigned to it. The velocity was also a vector found by the permutation of two position

90

vectors. The method was successfully applied to problems up to a dimensionality of 60. However,

the number of function evaluations used in the experiments was not reported.

A dual similar PSO algorithm (DSPSOA) was proposed in [86] for solving the job-shop schedul-

ing (JSS) problem. The authors used the crossover operator between two positions in order to

come up with a velocity vector. The crossover operator was also applied between the current par-

ticles position and velocity to result in the new position. In between, velocity and position vectors

are mutated. The algorithm consisted of two PSO algorithms, referred to as the outer and inner

PSOs. Both algorithms used different operators for the crossover and mutation. The algorithm

was only applied to a small-sized problem consisting of 10 jobs and 5 machines with 600 function

evaluations for the outer PSO and 3000 function evaluations for the inner one.

For a single machine job scheduling problem, a discrete PSO algorithm was proposed in [87].

The particle position was made of a vector of n+ b jobs, where n is the number of jobs and b is the

number of dummy jobs. To update the position, a swap operator is applied to the position with a

certain probability w. Then, a one-cut crossover is applied between the swapped position and the

personal best with a probability c1 to obtain a more updated position. Finally, a two-cut crossover

operator is performed between the updated position and the global best with a probability c2 to

find the new current position. Local search was applied to the gbest at every iteration to improve

the solution quality. Their method was applied successfully to problems having up to 1000 jobs.

The function evaluations performed had a maximum of 1.6 × 104 for the smallest problem and

3× 105 for the biggest one.

PSO was also applied to the Field Programmable Gate Arrays (FPGA) placement problem in

[88]. The authors solved the problem in the continuous search space. Moreover, the algorithm was

only applied to two problems without comparing the results to any other optimization approach,

and the best known solution for these problems were not reported.

In [89] , the authors proposed a discrete PSO algorithm, referred to as SetPSO, to optimize

the structure of RNA molecules. The addition of two particles was defined as the union of the two

sets. On the other hand, the subtraction was defined as the set-theoretic difference of the two sets.

SetPSO was applied to 4 benchmarks of dimensionality 118, 122, 784 and 945 performing 35000

function evaluations. The percentage of the correct pairs detected were 89.%, 76.3%, 36.7%, and

15.9%, respectively.

91

6.3 Discrete PSO Placement Algorithm

In the Discrete PSO (DPSO) version used in this work, which is based on [79], each particle

position corresponds to the available physical locations in the whole FPGA array. For example,

if the FPGA consists of a 10 × 10 array, the particle position is an array of 100 elements, where

each element represents one location in the FPGA array. Hence, the element index is the location

number on the FPGA array and its value is the block number occupying that location. Elements

denoting empty locations have the value of -1. Figure 6.3 shows an example for the DPSO problem

formulation for a 3x3 FPGA array.

3

1

-1

4

2

-1

-1

1

2

3

4

5

6

7

3

-18

2 4

1

-19
Empty

locations

1 2 3

6

98

54

7

Block 3

in position 1

Figure 6.3: DPSO formulation.

In the used DPSO formulation, the particle velocity is represented as a sequence of swaps. For

example, a velocity v = {(1, 4)} represents a swap between the first and fourth elements of the

particle position, i.e., block 3 is swapped with block 2 in Figure 6.3. Since v contains only one swap

operation, then the size of v is equal to 1. The two blocks swapped should be of the same type,

either logic blocks or IO pins, swapping an IO pin with a logic block is not allowed. During particle

initialization, the velocities for each particle are initialized with random velocities of random size

ranging from 0 to Vmax. The value of Vmax is selected by conducting several experiments with

different values for Vmax and examining its impact on the value of the cost function.

6.3.1 DPSO Operations

From the conventional PSO relations given in Chapter 2, the position update procedure consists

of three different operations; addition of a velocity to a position, subtracting two positions, and

multiplying a velocity by a constant.

92

The addition of a velocity v to a position x is carried out by applying the sequence of swaps

defined by v to x. This results in another position, which has the same size as the original position

x. The swaps are applied in the same order as they are listed in v. An example for the addition

operator is depicted in Figure 6.4.

+ =

X V+ = X

3

1

-1

4

2

-1

-1

1

2

3

4

5

6

7

-18

-19

2

-1

-1

4

3

1

-1

1

2

3

4

5

6

7

-18

-19

(1,4)

(7,3)

Figure 6.4: A position plus velocity example.

Subtracting a position vector x1 from another position x2 is performed by identifying the

sequence of swaps v that would transform x1 to x2. The maximum complexity of this operation

is proportional to the position size, which can grow up significantly depending on the problem

size. Hence, the velocity size is clamped to Vmax, to reduce the computational complexity of the

algorithm. As a result, applying the swaps given in v might not result in transforming x1 to x2

exactly, if the distance between them is larger than Vmax.

Multiplying a velocity v by a constant c affects the velocity size. If c is equal to zero, the size

of v is set to zero. If c is less than 1, v is truncated by removing swaps from the end of the vector

such that the size of the resulting velocity is equal to the size of the original v multiplied by c.

If c is larger than one, new swaps are added to the end of v to increase its size by c. The newly

added swaps are extracted from the top of v. Figure 6.5 shows an example for the multiplication

of a velocity by a constant.

6.3.2 DPSO Problem Formulation

In the proposed DPSO problem formulation, each position element corresponds to a unique physical

location on the FPGA, including both logic blocks and IO pins, as explained above. To make sure

that no swaps occur between logic blocks and IO pins, the position vector x of each particle is

divided into two vectors xLogic and xIO. Moreover, the velocity vector v of the particle is also

93

(1,2)

(5,3)
X 0.5 (1,2)

(1,2)

(5,3)
X 1.5

(1,2)

(5,3)

(1,2)

Figure 6.5: A constant times velocity example.

composed of two parts vLogic and vIO. To update the position and the velocity of each particle,

equations (2.1) and (2.2) are applied twice, using the newly defined operators in Section 6.3.1, for

both the logic and IO parts. However, before updating the position, the velocities are mutated by

applying one random swap to both velocity parts as a means for overcoming premature convergence.

In order to evaluate the fitness of the new particle position, both parts are used to construct the

complete position x. This implementation ensures that the dependency between the logic blocks

and IO pins (due to connections between them) is kept intact. The algorithm used for DPSO in

this work is shown in Algorithm 6.1.

6.3.3 Local Minima Avoidance

In [79], the author proposed several approaches to enhance local search ability and avoid premature

convergence for discrete PSO algorithms. If the solution does not improve for a specified number

of iterations, the different particles move back to their Pbest positions and perform a lazy descent

type of search in order to find a better solution for a limited number of iterations. After that, if

the swarm is too small (due to having particles sharing the same position) the swarm is completed

with a newly initialized set of particles. More local search strategies were incorporated as well

such as deep descent and adaptive descent.

In our experiments, only local descent is used as shown in Algorithm 6.2, as other methods

increased the time complexity of the algorithm without resulting in an improvement in the solution

quality. The lazy descent method employed in this work is invoked if the gbest does not improve for

a specific number of iterations. It was found that a threshold of 3 non-improving iterations works

best for a wide range of the benchmarks tested. The lazy descent generates a random velocity

vlazy of size one, i.e., only one swap. vlazy is then added to the particle pbest. If the particles best

solution is improved, the lazy descent terminates and pbest is updated, as well as gbest, if needed.

Otherwise, the above steps are repeated for a specific number of iterations. If no improved position

94

Algorithm 6.1 DPSO implementation.

Require: Max Function Evaluations

1: Initialize the swarm

2: Max Iterations = Max Function Evaluations
Num Particles

3: iter number = 1

4: while iter number ≤ Max Iterations do

5: for each particle i do

6: Update V i
IO, V i

Logic

7: Mutate V i
IO, V i

Logic

8: Update X i
IO, X i

Logic

9: Construct X i = [X i
IO,X i

Logic]

10: Update pbesti

11: end for

12: Update gbest

13: if gbest is not improved then

14: Local Minima Avoidance()

15: Re-initialize velocities

16: if iter number ≥ Max Iterations
2

then

17: Scatter Particles()

18: end if

19: end if

20: iter number = iter number + 1

21: end while

22: return gbest

is found, the lazy descent terminates without changing the original pbest position.

In addition to lazy descent, the velocities of all the particles are re-initialized to explore new

areas of the search space. The work also employs a scattering process to jump over local minima.

Similar to the lazy descent, if the gbest does not change for a specific number of iterations, the

particles positions, not their pbests are re-initialized. Instead of scattering (re-initializing) a big

number of particles, only the particles that are too close to the gbest are scattered. This strategy

has a low computational cost while not compromising the provided solution quality. Moreover,

the scattering algorithm is only invoked after the number of iterations performed exceeds half the

total number of iterations. It was noticed that as the DPSO algorithm progresses, the particles

95

positions tend to group around the gbest, thus they are only scattered towards the end of the

algorithm.

Algorithm 6.2 The lazy descent method for the discrete algorithm.

1: while iter number ≤ 5 do

2: for each particle i do

3: Temp = pbesti

4: Generate Vlazy

5: Temp = Temp + Vlazy

6: if f(Temp) < f(pbesti) then

7: X i = Temp

8: pbesti = Temp

9: Break

10: end if

11: end for

12: iter number = iter number + 1

13: end while

6.4 Discrete Cooperative PSO

The discrete cooperative version investigated is based on decomposing the search space into two

sub-spaces, the Logic sub-space and the I/O sub-space. Two discrete PSO swarms are employed,

each optimizing a different sub-space. The overall solution vector is constructed using the gbest

of each swarm. To update the fitness value for a certain particle i in a swarm, a solution vector is

used with that particle and the gbest the other swarm. This approach was originally proposed for

continuous non-linear function optimization in [9] and was referred to as cooperative PSO (CPSO),

which is illustrated in Figure 6.6.

In FPGA placement, it is not quite clear if splitting the problem search space into the Logic

and I/O spaces would improve the solution since this is closely related to the degree of dependency

between the two sub-spaces. The main advantage though, is that adopting this model will reduce

the computational cost required by the original algorithm since all the mathematical operations

would be performed using small vectors (sub-spaces) rather than a big vector (the overall solution).

Algorithm 6.3 shows the steps taken to apply DCPSO in this work.

96

Logic
Swarm

Logic
Sub-solution

Complete solution

I/O
Sub-solution

I/O
Swarm

Figure 6.6: The discrete cooperative PSO.

Algorithm 6.3 Proposed DCPSO implementation.

Require: Max Function Evaluations

1: Initialize the I/O swarm

2: Initialize the Logic swarm

3: Max Iterations = Max Function Evaluations
Num Particles

4: iter number = 1

5: while iter number ≤ Max Iterations do

6: Update I/O swarm

7: Update the complete solution

8: Update Logic swarm

9: Update the complete solution

10: iter number = iter number + 1

11: end while

12: return The complete solution

6.5 Continuous PSO Placement Algorithm

In the continuous PSO version proposed in this work, each particle element corresponds to an IO

or logical block to be placed in the available physical locations. For example, if there are 9 IO

blocks and 15 Logic blocks to be placed, the particle position is an array of 24 elements, where each

element represents the location number in which this block should be placed. Hence, the element

index is the block number to be placed and its value is the location number it will be placed in.

97

The particle velocity is represented as a vector of real numbers. During particle initialization, the

velocity for each particle is initialized with random values from 0 to Vmax. The value of Vmax is

selected according to the domain size.

Unlike the discrete version, the continuous nature of the particles would sometimes cause their

positions to have an invalid solution, which dictates the use of some repair mechanism. The

method used for this is to check the particle element-by-element, if the location indicated by the

value inside an element is already occupied by another block, a search is started for the closest

empty location (to the left and right of the occupied one) in order to use it to place the block in

hand.

6.5.1 Local Minima Avoidance

In our experiments, the local descent method is the only one used as was done in the discrete

version. The lazy descent method, shown in Algorithm 6.4, is again invoked if the gbest does not

improve for a 3 iterations. In the continuous version, the lazy descent only works with the gbest, it

applies a sequence of local movements until the solution improves or a specific number of iterations

has been reached.

As shown in Algorithm 6.4. There are two different types of local movements. One movement

is to swap two randomly selected IO or Logic elements. While another movement is to mutate a

randomly selected IO or Logic element. The mutation is done by re-initializing the chosen element

to a random number uniformly distributed in the domain.

6.6 Results and Discussions

6.6.1 Experimental Setup

Both the discrete and continuous PSO algorithms are implemented and applied to several standard

FPGA benchmark circuits of increased dimensionality. Table 6.1 lists the benchmark circuits used

and their associated problem sizes, where P (L, I) represents a problem with a total size of P

having L Logic locations and I IO locations.

In this work, the performance of algorithms in minimizing the cost function is compared to

that of the VPR tool. VPR employs an adaptive SA algorithm, where the number of iterations

depends on the problem size. In this work, VPR is left to run until it reports its best found

98

Algorithm 6.4 The lazy descent method for the continuous algorithm.

1: while iter number ≤ numberofparticles do

2: Temp = gbest

3: Generate a random number R

4: if R < 0.25 then

5: Swap two IO elements

6: else if R < 0.5 then

7: Swap two Logic elements

8: else if R < 0.75 then

9: Mutate an IO element

10: else

11: Mutate a Logic element

12: end if

13: if f(Temp) < f(gbest) then

14: gbest = Temp

15: Break

16: end if

17: iter number = iter number + 1

18: end while

solution. In order to have a fair comparison, the PSO algorithms are run to perform the same

number of function evaluations performed by VPR.

In the DPSO algorithm, both c1 and c2 are set to 2, w is equal to 0.5, similar to [79] and

Vmax is set to 50. The lazy descent is applied if the gbest does not improve for 3 iterations and a

maximum of 5 steps are performed every time. The results reported are the averages taken over

10 runs. In the continuous version, the same parameter values used in the previous chapters are

adopted.

Table 6.2 shows the number of function evaluations performed by the PSO algorithms for each

benchmark. After extensive experiments, it is found that the swarm size should be increased with

the problem dimensionality.

99

Table 6.1: Problem sizes for the different benchmarks used.
Benchmark Problem Size

cm42a 36(4, 32)

lion 57(9, 48)

b02 57(9, 48)

daio 57(9, 48)

dk27 80(16, 64)

b01 80(16, 64)

my adder 80(16, 64)

count 80(16, 64)

s208.1 132(36, 96)

b9 132(36, 96)

s832 225 (81, 144)

s967 260 (100, 160)

ex5p 561(289, 271)

apex4 665(361, 304)

6.6.2 Experimental Results

The results of applying VPR and the PSO algorithms on several FPGA benchmarks are shown

in Table 6.3. It can be seen that PSO produces better results than the VPR placement tool in

problems with a dimensionality up to 60. When the dimensionality increases to 80, PSO produces

results that are within a 5% margin from the results supplied by VPR. For larger-sized problems,

the PSO is within 10% of VPR. Another observation from Table 6.3 is that the standard variation

of PSO is less than that for the VPR for the small and medium sized benchmarks. This renders

the PSO algorithm as being more reliable than VPR which is based on SA.

Table 6.4 and Table 6.5 show the results of applying the DCPSO and CPSO algorithms, which

are both based on search space decomposition, as well as the average computational cost in seconds.

The results show that the cooperative versions can maintain the same quality of solutions produced

by the single swarm while minimizing the computational cost of the algorithm. In the discrete

version, the computational cost is minimized by at least 60%. On the other hand, in the continuous

version, the computational cost is minimized by at least 20%.

Figure 6.7, Figure 6.8, and Figure 6.9 plot the convergence behavior of VPR, DPSO and

100

Table 6.2: Swarm size and performed function evaluations.

Benchmark Swarm Size Evaluations

cm42a 40 14378

lion 60 5586

b02 60 5257

daio 60 5400

dk27 80 6832

b01 80 13944

my adder 80 99016

count 80 98210

s208.1 80 31000

b9 80 100000

s832 80 135600

s967 80 204900

ex5p 100 825461

apex4 100 815423

Table 6.3: VPR, DPSO and continuous PSO Results for several FPGA benchmarks.

Benchmark
VPR DPSO Continuous PSO Error

Mean Std. Mean Std. Mean Std. Margin

cm42a 0.4286 0.0067 0.4256 0 0.4256 0 -0.7

lion 0.6088 0.0082 0.6053 0.0056 0.6073 0.0047 -0.57

b02 0.5649 0.0060 0.5603 0 0.5637 0.0056 -0.81

daio 0.6120 0.0175 0.61 0 0.6040 0.0097 -1.31

dk27 0.9659 0.0161 0.9622 0.0006 0.9704 0.0097 -0.38

b01 1.2461 0.0076 1.2509 0.0041 1.2677 0.0037 0.39

my adder 2.091 0.0373 2.168 0.0426 2.2805 0.0460 3.68

count 2.1592 0.0420 2.2581 0.0394 2.24 0.0757 4.58

s208.1 2.973 0.0242 3.0298 0.0359 3.0846 0.0591 1.92

b9 4.4795 0.0325 4.7393 0.1150 4.7640 0.0450 5.80

s832 11.7551 0.0783 12.6215 0.2216 12.9677 0.1575 7.37

s967 18.6722 0.0869 20.3944 0.2994 20.3659 0.3322 9.22

ex5p 103.1914 0.3329 112.5834 1.8520 113.3372 0.7601 9.1

apex4 117.049 0.4911 127.0045 1.4052 131.3854 2.1338 9.3

101

Table 6.4: DCPSO results for several FPGA benchmarks.

Benchmark
DCPSO Time Time

Mean Std. DCPSO DPSO

cm42a 0.4326 0.0048 0.049 0.202

lion 0.6010 0 0.020 0.063

b02 0.5695 0.0049 0.013 0.054

daio 0.6080 0.0042 0.020 0.078

dk27 0.9547 0.0154 0.026 0.097

b01 1.2996 0.0350 0.047 0.150

my adder 2.2080 0.0484 0.577 1.973

count 2.2678 0.0430 0.073 4.580

s208.1 3.1973 0.0937 0.284 1.920

b9 4.8219 0.1128 1.493 4.759

s832 12.8385 0.2668 3.301 9.473

s967 20.3319 0.3960 5.948 17.377

ex5p 111.7615 0.9814 86.618 254.031

apex4 132.8206 8.4403 96.347 248.031

Table 6.5: CPSO results for several FPGA benchmarks.

Benchmark
CPSO Time Time

Mean Std. CPSO Cont. PSO

cm42a 0.4446 0.0032 0.041 0.051

lion 0.6318 0 0.009 0.011

b02 0.5614 0.0007 0.006 0.008

daio 0.6150 0.0053 0.010 0.014

dk27 0.9718 0 0.020 0.020

b01 1.3069 0.0253 0.031 0.042

my adder 2.2590 0.0840 0.725 1.173

count 2.2865 0.0431 0.915 0.938

s208.1 3.1741 0.1464 0.266 0.337

b9 4.7753 0.1052 1.857 2.351

s832 12.6188 0.2768 3.896 4.707

s967 20.3744 0.3165 7.555 9.303

ex5p 113.5838 1.0051 108.8 125.167

apex4 131.5267 1.5720 116.359 134.777

DCPSO for all the benchmarks tested. It can be seen that both DPSO and DCPSO have very

similar behaviors in most of the benchmarks. The DPSO and DCPSO algorithms always start

102

from a better quality solution due to the initialization of a population of candidate solutions. Both

of them quickly identify good regions in the search space and move to these regions much faster

than VPR. However, these algorithms fail to fine tune the final solution using local search. On the

other hand, VPR manages to fine tune the solution better than DPSO and DCPSO because the

SA algorithm is superior in local search.

0 6000 12000 18000
0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

Function Evaluations

B
ou

nd
in

g
B

ox
 C

os
t

DPSO
DCPSO
VPR

(a) cm42a

0 2000 4000 6000
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Function Evaluations
B

ou
nd

in
g

B
ox

 C
os

t

DPSO
DCPSO
VPR

(b) lion

0 2000 4000 6000
0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

Function Evaluations

B
ou

nd
in

g
B

ox
 C

os
t

DPSO
DCPSO
VPR

(c) b02

0 2000 4000 6000
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Function Evaluations

B
ou

nd
in

g
B

ox
 C

os
t

DPSO
DCPSO
VPR

(d) daio

Figure 6.7: Convergence behavior for problems with a dimensionality within 60.

Another cooperative continuous model is applied for this problem, which is a 2-cooperating

swarms approach similar to the one experimented with in Chapter 3. The model is tested using

different synchronization periods. Table 6.6 shows the best result achieved by the model for

every benchmark and the synchronization period at which it was obtained. The results show that

adopting such a cooperative system is generally better than using a single swarm as was concluded

in Chapter 3.

EDA-PSO and PSO Bounds were also applied to solve this problem. The results shown in

Table 6.7 illustrate that PSO Bounds has the better performance as it produces the best results

on most of the benchmarks.

103

0 1000 2000 3000 4000 5000 6000 7000
0.95

1

1.05

1.1

1.15

1.2

1.25

Function Evaluations

B
ou

nd
in

g
B

ox
 C

os
t

DPSO
DCPSO
VPR

(a) dk27

0 2000 4000 6000 8000 10000 12000 14000
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Function Evaluations

B
ou

nd
in

g
B

ox
 C

os
t

DPSO
DCPSO
VPR

(b) b01

0 20000 40000 60000 80000 100000
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

Function Evaluations

B
ou

nd
in

g
B

ox
 C

os
t

DPSO
DCPSO
VPR

(c) my adder

0 20000 40000 60000 80000 100000
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

Function Evaluations

B
ou

nd
in

g
B

ox
 C

os
t

DPSO
DCPSO
VPR

(d) count

Figure 6.8: Convergence behavior for problems with a dimensionality within 80.

The adaptive model using probability models migration is also applied and the results are shown

in Table 6.8. The results begin to deteriorate for larger benchmarks, this could be due to the repair

mechanism adopted for the particles positions. The exchanged information is either on the form of

specific bounds or the mean and standard deviation of a Gaussian distribution. Although the PSO

equations take this information into account when updating the position, this information could

be lost by the repair mechanism. The repair mechanism could replace the position of a certain

block to the nearest empty location, which might be outside the specified bounds or not covered

by the Gaussian distribution.

6.7 Conclusions

This chapter introduces two different versions of the PSO algorithm to be applied to the FPGA

placement problem. The algorithms are tested on several FPGA benchmarks with increased di-

mensionality and compared to the academic VPR placement tool, which is based on adaptive

104

0 5000 15000 25000 35000
2.5

3

3.5

4

4.5

5

5.5

Funtion Evaluations

B
ou

nd
in

 B
ox

 C
os

t

DPSO
DCPSO
VPR

(a) s208.1

0 20000 60000 100000 140000
4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

Function Evaluations

B
ou

nd
in

g
B

ox
 C

os
t

DPSO
DCPSO
VPR

(b) b9

0 40000 80000 120000 160000
11

12

13

14

15

16

17

18

19

20

Function Evaluations

B
ou

nd
in

g
B

ox
 C

os
t

DPSO
DCPSO
VPR

(c) s832

0 50000 150000 250000
18

20

22

24

26

28

30

32

Funtion Evaluations

B
ou

nd
in

g
B

ox
 C

os
t

DPSO
DCPSO
VPR

(d) s967

0 300000 600000 900000
100

110

120

130

140

150

160

170

180

Function Evaluations

B
ou

nd
in

g
B

ox
 C

os
t

DPSO
DCPSO
VPR

(e) ex5p

0 300000 600000 900000
110

120

130

140

150

160

170

180

190

200

210

Function Evaluations

B
ou

nd
in

g
B

ox
 C

os
t

DPSO
DCPSO
VPR

(f) apex4

Figure 6.9: Convergence behavior for problems with a dimensionality above 100.

simulated annealing. The results show that PSO outperforms VPR (providing robust and better

results with a faster convergence rate) for benchmarks with sizes within 60. In larger benchmarks,

the error margin is within 5% for problems with sizes up to 80 and 10% for problem sizes up to

665.

The work also applies two different cooperative models. The use of a cooperative PSO model,

which is based on space decomposition, leads to maintain the same quality of solutions produced

105

Table 6.6: Results of the continuous cooperative model.

Benchmark Synchronization Mean Std. Significantly
Period better

cm42a 10 0.4256 0 The same

lion 50 0.6018 0 Yes

b02 10 0.5603 0 Yes

daio 50 0.6010 0.0032 The same

dk27 25 0.9427 0 Yes

b01 50 1.2601 0.0146 Yes

my adder 50 2.1820 0.0447 Yes

count 10 2.2655 0.0433 The same

s208.1 50 3.0622 0.0822 The same

b9 10 4.7760 0.0531 The same

s832 25 12.8623 0.1941 Yes

s967 100 20.5773 0.3344 No

apex4 10 131.6418 1.9808 The same

ex5p 10 113.6244 1.0926 The same

Table 6.7: PSO, EDA PSO and PSO Bounds results for several FPGA benchmarks.

Benchmark
PSO EDA-PSO PSO Bounds

Mean Std. Mean Std. Mean Std.

cm42a 0.4256 0 0.4256 0 0.4256 0

lion 0.6073 0.0047 0.6018 0 0.6018 0

b02 0.5637 0.0056 0.5672 0.0060 0.5661 0.0061

daio 0.6040 0.0097 0.6140 0.0052 0.6 0

dk27 0.9704 0.0097 0.9487 0.0126 0.9455 0.0044

b01 1.2677 0.0037 1.2871 0.0136 1.2470 0.0006

my adder 2.2805 0.0460 2.2985 0.0676 2.2938 0.0178

count 2.24 0.0757 2.1830 0.0330 2.1950 0.0633

s208.1 3.0846 0.0591 3.0758 0.0355 3.0896 0.0475

b9 4.7640 0.0450 4.8307 0.1369 4.78 0.0987

s832 12.9677 0.1575 12.6060 0.1755 12.9 0.1703

s967 20.3659 0.3322 20.5019 0.31051 20.4259 0.3623

ex5p 113.3372 0.7601 112.9794 1.2631 113.5139 1.3960

apex4 131.3854 2.1338 132.9890 1.5656 132.2794 1.4404

by a single swarm while minimizing the time requirement of the algorithm by at least 60% in the

discrete domain and 20% in the continuous domain. The use of a 2-cooperating swarms model

106

Table 6.8: Results of the adaptive cooperative model based on probability models migration.

Benchmark Synchronization Mean Std. Significantly
Period better

cm42a 25 0.4256 0 The same

lion 10 0.6018 0 The same

b02 25 0.5603 0 Yes

daio 100 0.59 0 Yes

dk27 100 0.9427 0 Yes

b01 25 1.2589 0 No

my adder 100 2.1740 0.0470 The same

count 100 2.2838 0.0762 The same

s208.1 50 3.1089 0.0274 No

b9 100 4.7588 0.1079 The same

s832 100 12.8936 0.1786 No

s967 50 20.7097 0.3558 No

apex4 25 133.8797 1.6885 No

ex5p 50 114.5790 0.8244 No

proved to better than the single swarm version for most of the cases.

As for the PSO and EDA hybrids, PSO Bounds shows to have better performance than EDA-

PSO. However, adopting the cooperative model that is based on probability models migration

suffers in the large-sized problems due to the influence of the repair mechanism.

107

Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis presented a comprehensive survey of all the cooperative PSO models proposed in

the literature, these model were categorized according to the application they were designed for.

A classification scheme was proposed to classify the surveyed models based on the type of the

decomposition adopted by the model and the approach used for placing the particles into the

different swarms.

From this survey, similarities and differences of these models were identified based on four design

key issues that need to be selected when implementing a cooperative model. These decisions gave

answers to the four questions: Which information to share? When to share it? Whom to share it

with? and What to do with it?

The work in the thesis continued by performing a complete experimental study on one of the

cooperative PSO models proposed in the literature in order to understand how the performance

changes under the influence of the design issues previously identified. The addressed issues include

the exchange of the gbest information vs. the exchange of complete particles, changing the num-

ber of iterations between successive communication steps, changing the number of cooperating

swarms, changing the neighborhood topology, changing the method for selection and replacement

of exchanged particles, and changing the number of exchanged particles.

In order to investigate the idea of exchanging probability models instead of particles migration.

A new PSO and EDA hybrid was proposed which was based on PBIL. The proposed method

outperforms other proposed hybrids on the set of shifted and/or rotated multimodal function.

108

The work proposed a new heterogeneous cooperative PSO model, which is based on the ex-

change of probability models rather than the classical migration of particles. In order to accom-

modate the differences between the exchanged models, each swarm performed a model conversion

step on the received probability model to transform it into a model similar to its own and a model

combination step between the resident and received models before continuing with the search.

The proposed model was shown to be competitive with other state-of-the-art cooperative PSO

algorithms.

Finally, two versions of PSO, discrete and continuous, were applied to the FPGA placement

problem. The approaches were compared to the academic tool VPR, which is based on adaptive

simulated annealing. It was shown that both versions outperform VPR (providing robust and

better results with a faster convergence rate) for benchmarks with sizes within 60. In larger

benchmarks, the error margin is within 5% for problems with sizes up to 80 and 10% for problem

sizes up to 665. The work applied a cooperative PSO version where the placement of the I/O and

logic block is being optimized by different swarms. The use of this model maintained the same

quality of solutions produced by a single swarm while minimizing the time requirement of the

algorithm by at least 60% in the discrete domain and 20% in the continuous domain. The use of a

2-cooperating swarms model proved to better than the single swarm version for most of the cases.

For the PSO and EDA hybrids, PSO Bounds showed to have better performance than EDA-PSO.

However, adopting the cooperative model that is based on probability models migration suffered

in the large-sized problems due to the influence of the repair mechanism.

7.2 Future Work

Different future research direction could be followed from this point. One direction is to conduct a

study similar to the one carried out in this thesis but with using an asynchronous communication

approach. This is an important study as many of the best results reached by the cooperative

model was obtained at long synchronization periods indicating that an asynchronous type of

communication would be beneficial.

One disadvantage of PSO Bounds algorithm proposed in this thesis is its poor performance

in unimodal functions. The reason for this is due to the fast convergence of PSO leading the

continuously updated bounds to overlap in some dimensions. When this happens, the movement

in these dimensions will stop causing the algorithm to stagnate. One approach to overcome this

problem is to reset the bounds to the initial domain when the width of the allowable domain of a

109

certain dimension drops under a predetermined threshold. One could also further re-initialize the

particles current positions when this happens keeping their pbests as they are so as not to lose any

useful information.

Another area for possible future research is to improve the performance of the proposed hybrid

cooperative model by employing a better-informed information exchange method. This could be

done by updating the model combination step by only replacing dimensions when the exchange

would seem beneficial, instead of being completely random. Also, instead of having both com-

ponents performing 50% of the function evaluations, the model could adaptively set this ratio

according to each component’s performance during the search.

For the FPGA placement problem, the performance of the PSO algorithms could be enhanced

by incorporating additional approaches to escape local minima. This is expected to improve the

results for large benchmarks by providing the algorithms with fine tuning ability.

110

Bibliography

[1] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proc. of IEEE Interna-

tional Conference on Neural Networks, vol. 4, 1995, pp. 1942–1948.

[2] R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in Proc. of

the 6th International Symposium on Micro Machine and Human Science, 1995, pp. 39–43.

[3] T. G. Craninc, M. Toulouse, and M. Grendeau, “Synchronous tabu search parallelization

strrategies for multicommodity location-allocation with balancing requirements,” Centre de

recherche sur les transports, Universite de Montreal, Tech. Rep. 934, 1993.

[4] T. G. Crainic and M. Grendeau, “Cooperative parallel tabu search for capacitated network

design,” Journal of Heuristics, vol. 8, pp. 601–627, 2002.

[5] M. Nowostawski and R. Poli, “Prallel genetic algorithms taxonomy,” in Proc. 3rd international

Conference on Knowledge-Based Intelligent Information Engineering Systems, 1999, pp. 88–

92.

[6] E. Cantu-Paz, “A survey pf parallel genetic algorithms,” The University

of Illinois, Tech. Rep. IlliGAL 97003, 1997. [Online]. Available: ftp://ftp-

illigal.ge.uiuc.edu/pub/papers/IlliGALs/97003.ps.Z

[7] M. Middendorf and F. Reischle, “Information exchange in multi colony ant algorithms,” in

Proc. 3rd workshop on Biologically Inspired Solutions to Parallel Processing Problems, 2000,

pp. 645–652.

[8] M. Middendorf, F. Reischle, and H. Schmeck, “Multi colony ant algorithms,” Journal of

Heuristics, vol. 8, pp. 305–320, 2002.

[9] F. van den Bergh and A. P. Engelbrecht, “A cooperative approach to particle swarm op-

timization,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 3, pp. 225–239,

2004.

111

[10] S. Baskar and P. N. Suganthan, “A novel concurrent particle swarm optimization,” in Proc.

IEEE Congress on Evolutionary Computation, vol. 1, 2004, pp. 792–796.

[11] F. van den Bergh and A. P. Engelbrecht, “Effect of swarm size on cooperative particle swarm

optimizaters,” in Proc. Genetic and Evolutionary Computation Conference, 2001.

[12] M. A. Potter and K. A. de Jong, “A cooperative coevolutionary approach to function opti-

mization,” in Proc. 3rd Parallel problem Solving from Nature, 1994, pp. 249–257.

[13] T. Peram, K. Veeramachaneni, and C. K. Mohan, “Fitness-distance-ratio based particle swarm

optimization,” in Proc. IEEE Swarm Intelligence Symposium, 2003, pp. 174–181.

[14] J.-F. Chang, S.-C. Chu, J. F. Roddick, and J.-S. Pan, “A parallel particle swarm optimization

algorithm with communication strategies,” Journal of Information Science and Engineering,

vol. 21, no. 4, pp. 809–818, 2005.

[15] S.-C. Chang and J.-S. Pan, “Intelligent parallel particle swarm optimization algorithm,” in

Parallel Evolutionary Computations, N. Nedjah, E. Alba, and L. de Macedo Mourelle, Eds.

Studies in Computational Intelligence, Springer Berlin, 2006, vol. 22, pp. 159–175.

[16] M. El-Abd and M. S. Kamel, “A hierarchal cooperative particle swarm optimizer,” in Proc.

IEEE swarm intelligence symposium, 2006, pp. 43–47.

[17] G. Yen and M. Daneshyari, “Diversity-based information exchange among multiple swarms in

particle swarm optimization,” in Proc. IEEE Congress on Evolutionary Computation, 2006,

pp. 6150–6157.

[18] M. Belal and T. El-Ghazawi, “Parallel models for particle swarm optimizers,” International

Journal on Intelligent Cooperative Information Systems, vol. 4, no. 1, pp. 100–111, 2004.

[19] E. S. Peer, F. van den Bergh, and A. P. Engelbrecht, “Using neighbourhood with guaranteed

convergence pso,” in Proc. IEEE Swarm Intelligence Symposium, 2003, pp. 235–242.

[20] B. Niu, Y. Zhu, and X. He, “Multi-population cooperative particle swarm optimization,” in

Proc. European Conference on Artificial Life, M. C. et al., Ed., 2005, pp. 874–883.

[21] J. J. Liang and P. N. Suganthan, “Dynamic multi-swarm particle swarm optimizer,” in Proc.

IEEE Swarm Intelligence Symposium, 2005, pp. 124–129.

[22] ——, “Dynamic multi-swarm particle swarm optimizer with local search,” in Proc. IEEE

Congress on Evolutionary Computation, 2005, pp. 522–528.

112

[23] R. Brits, A. P. Engelbrecht, and F. van den Bergh, “A niching particle swarm optimizer,” in

Proc. 4th Asia-Pacific Conference on Simulated Evolution and Learning, 2002.

[24] F. van den Bergh, “An analysis of particle swarm optimizer,” Ph.D. dissertation, Department

of Computer Science, Univeristy of Pretoria, South Africa, 2002.

[25] X. Li, “Adaptevily choosing neighbourhood bests using species in a particle swarm optimizer

for multimodal function optimization,” in Proc. The Genetic And Evolutionary Computation

Conference, 2004, pp. 105–116.

[26] S. Bird and X. Li, “Enhancing the robustness of a speciation-based pso,” in Proc. IEEE

Congress on Evolutionary Computation, 2006, pp. 3185–3192.

[27] J.-H. Seo, C.-H. Im, C.-G. Heo, J.-K. Kim, H.-K. Jung, and C.-G. Lee, “Multimodal func-

tion optimization based on particle swarm optimization,” IEEE Transactions on Magnetics,

vol. 42, no. 4, pp. 1095–1098, 2006.

[28] T. Blackwell and J. Branke, “Multi-swarm optimization in dynamic environments,” in Ap-

plications in Evolutionary Computing, G. R. Raidl, Ed. LNCS, Springer-Verlag, 2004, pp.

19–26.

[29] S. Jansen and M. Middendorf, “A hierachical particle swarm optimizer for dynamic opti-

mization problems,” in Proc. Application of Evolutionary Computing, vol. 3005, 2004, pp.

513–524.

[30] ——, “A hierachical particle swarm optimizer,” in Proc. Application of Evolutionary Com-

puting, vol. 3005, 2003, pp. 770–776.

[31] ——, “A hierachical particle swarm optimizer for noisy and dynamic environments,” Genetic

Programming and Evolvable Machines, vol. 7, no. 4, pp. 329–354, 2006.

[32] D. Parrott and X. Li, “A particle swarm model for tracking dynamic peaks in a dynamic

environment using speciation,” in Proc. IEEE Congress on Evolutionary Computation, vol. 3,

2004, pp. 98–103.

[33] ——, “Locating and tracking multiple dynamic optima by a particle swarm model using

speciation,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 4, pp. 440–458,

2006.

113

[34] T. Blackwell and J. Branke, “Multiswarms, exclusion, and anti-convergence in dynamic en-

vironments,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 4, pp. 459–472,

2006.

[35] K. E. Parsopoulos, D. K. Tasoulis, and M. N. Vrahatis, “Multiobjective optimization using

parallel vector evaluated particle swarm optimization,” in Proc. International Conference on

Artificial Intelligence and Applications, 2004, pp. 823–828.

[36] K. E. Parsopoulos and M. N. Vrahatis, “Recent approaches to global optimization problems

through particle swarm optimization,” Journal of Natural Computing, vol. 1, pp. 235–306,

2002.

[37] C. Chow and H. Tsui, “Autonomous agent response learning by a multi-species particles

swarm optimization,” in Proc. Congress on Evolutionary Computation, 2004, pp. 778–785.

[38] G. Toscano and A. C. C. Coello, “Using clustering techniques to improve the performance of

a multi-objective particle swarm optimizer,” in Proc. Genetic and Evolutionary Computation

Conference, 2004, pp. 225–237.

[39] S. Mostaghim, J. Branke, and H. Schmeck, “Multi-objective particle swarm optimization

on computer grids,” in Proc. Genetic and Evolutionary Computation Conference, 2007, pp.

869–875.

[40] Y. Shi and R. A. Krohling, “Co-evolutionary particle swarm optimization to solve min-max

problems,” in Proc. Congress on Evolutionary Computation, vol. 2, 2002, pp. 1682–1687.

[41] R. A. Krohling, F. Hoffmann, and L. S. Coello, “Co-evolutionary particle swarm optimization

to solve min-max problems using gaussian distribution,” in Proc. Congress on Evolutionary

Computation, vol. 1, 2004, pp. 959–964.

[42] F. van den Bergh and A. P. Engelbrecht, “Training product unit neural networks using coop-

erative particle swarm optimisers,” in Proc. IEEE International Joint Conference on Neural

Networks, vol. 1, 2001, pp. 126–131.

[43] T. Blackwell, “Swarm music: Improvised music with multi-swarms,” in Proc. Symposium on

Artificial Intelligence and Creativity in Arts and Science, 2003, pp. 41–49.

[44] A. M. Abdelbar, S. Ragab, and S. Mitri, “Co-evolutionary particle swarm optimization applied

to the 7x7 seega game,” in Proc. IEEE International Joint Conference on Neural Networks,

vol. 1, 2004, pp. 243–248.

114

[45] A. Asmara, R. A. Krohling, and F. Hoffmann, “Parameter tuning of a computed-torque con-

troller for a 5 degree of freedom robot arm using co-evolutionary particle swarm optimization,”

in Proc. IEEE Swarm Inteligence Symposium, 2005, pp. 162–168.

[46] J. G. Vlachogiannis and K. Y. Lee, “Determining generator contributions to transmission

system using parallel vector evaluated particle swarm optimization,” IEEE Transactions on

Evolutionary Computation, vol. 20, no. 4, pp. 1765–1774, 2005.

[47] M. El-Abd and M. S. Kamel, “A taxonomy of cooperative search algorithms,” in Proc. 2nd

International Workshop on Hybrid Metaheuristics, LNCS, vol. 3636, 2005, pp. 32–41.

[48] M. Toulouse, T. G. Craninc, and M. Grendeau, “Communication issues in desiginig cooper-

ative multi-thread parallel searches,” in Meta-Heuristics: Theory and Applications, 1996, pp.

501–522.

[49] M. Lovbjerg, T. K. Rasmussen, and T. Krink, “Hybrid particle swarm optimiser with breeding

and subpopulations,” in Proc. Genetic and Evolutionary Computation Conference, vol. 1,

2001, pp. 469–476.

[50] C. Blum and A. Roli, “Metaheuristics in combinatorial optimization: Overview and concep-

tual comparison,” ACM Computing Surveys, vol. 35, no. 3, pp. 268–308, 2003.

[51] M. El-Abd and M. S. Kamel, “Multiple cooperating swarms for non-linear function optimiza-

tion,” in Proc. 2nd Workshop on Swarm Intelligence and Patterns, 2005, pp. 999–1008.

[52] CEC05 benchmark functions. [Online]. Available:

http://staffx.webstore.ntu.edu.sg/MySite/Public.aspx?accountname=epnsugan

[53] R. C. Eberhart, P. Simpson, and R. Dobbins, Computational Intelligence. PC Tools: Aca-

demic, 1996, ch. 6, pp. 212–226.

[54] J. Kennedy and R. Mendes, “Population structure and particle swarm performance,” in Proc.

of IEEE Congress on Evolutionary Computation, vol. 2, 2002, pp. 1671–1676.

[55] P. Larranaga and J. A. Lozano, Estimation of Distribution Algorithms. A New Tool for Evo-

lutionary Computation. Kluwer, 2002.

[56] S. Rudolph and M. Koppen, “Stochastic hill climbing with learning by vectors of normal

distributions,” in First on-line Workshop on Soft Computing (WSC1), 1996, pp. 60–70.

115

[57] I. Servet, L. Trave-Massuyes, and D. Stern, “Telephone network traffic overloading diagnosis

and evolutionary computation technique,” in Artificial Evolution. Springer-Verlag, LNCS

1363, 1997, pp. 137–144.

[58] M. Sebag and A. Ducoulombier, “Extending population-based incremental learning to con-

tinuous search spaces,” in Proc. of Parallel Problem Solving from Nature, 1999, pp. 418–427.

[59] M. Gallagher, M. Frean, and T. Downs, “Real-valued evolutionary optimization using a flex-

ible probability density estimator,” in Proc. of Genetic and Evolutionary Computation Con-

ference, vol. 1, 1999, pp. 840–846.

[60] M. Iqbal and M. A. M. de Oca, “An estimation of distribution particle swarm optimization

algorithm,” in Proc. of the Fifth International Workshop on Ant Colony Optimization and

Swarm Intelligence, M. Dorigo, L. M. Gambardella, M. Birattari, A. Martinoli, R. Poli, and

T. Sttzle, Eds., 2006, pp. 72–83.

[61] K. Socha and M. Dorigo, “Ant colony optimization for continuous domains,” Universitie Libre

de Bruxelles, Tech. Rep. TR/IRIDIA/2005-037, 2005.

[62] Y. Zhou and J. Jin, “Eda-pso - a new hybrid intelligent optimization algorithm,” in Proc. of

the Michigan University Graduate Student Symposium, 2006.

[63] M. Pelikan, D. E. Goldberg, and F. Lobo, “A survey of optimization by building and using

probabilistic models,” Computational Optimization and Applications, vol. 21, no. 1, pp. 5–20,

2002.

[64] L. delaOssa, J. Gamez, and J. Puerta, “Initial approaches to the application of island-based

parallel edas in continuous domains,” Journal of Parallel and Distributed Computing, vol. 66,

no. 8, pp. 991–1001, 2006.

[65] D. Bratton and J. Kennedy, “Defining a standard for particle swarm optimization,” in Proc.

IEEE Swarm Intelligence Symposium, 2007, pp. 120–127.

[66] T. Hiroyaso, M. Miki, M. Sano, H. Shimosaka, S. Tsutsui, and J. Dongarra, “Distributed

probabilistic model-building genetic algorithm,” in Proc. of Genetic and Evolutionary Com-

putation Conference, 2003, pp. 1015–1028.

[67] C. W. Ahn, D. E. Goldberg, and R. S. Ramakrishna, “Multiple-deme parallel estimation of

distribution algorithms: Basic framework and applications,” in Proc. of International Con-

116

ference on Parallel Processing and Applied Mathematics, Lecture Notes in Computer Science,

vol. 3019, Springer-Verlag, 2004, pp. 544–551.

[68] L. delaOssa, J. Gamez, and J. Puerta, “Migration of probability models instead of individuals:

An alternative when applying the island models to edas,” in Proc. of Parallel Problem Solving

from Nature, 2004, pp. 242–252.

[69] H. Mhlenbein, “The equation for response to selection and its use for prediction,” IEEE

Transactions on Evolutionary Computation, vol. 5, no. 3, pp. 303–346, 1998.

[70] J. Madera, E. Alba, and A. Ochoa, “A parallel island model for estimation of distribution

algorithms,” in Towards a New Evolutionary Comoputation, Advances in the Estimation of

Distribution Algorithms, Studies in Fuzziness and Soft Computing, J. A. Lozano, P. Larraaga,

I. Inza, and E. Bengoetxea, Eds. Springer-Verlag, 2006, vol. 192, pp. 159–186.

[71] J. Schwarz, J. Jaros, and J. Ocenasek, “Migration of probabilistic models for island-based

bivariate eda algorithm,” in Genetic and Evolutionary Computational Conference, vol. 1,

2007, pp. 631–631.

[72] J. Jaros and J. Schwarz, “Parallel bmda with probability model migration,” in Proc. IEEE

Congress on Evolutionary Computation, 2007, pp. 1059–1066.

[73] M. Clerc, Particle swarm optimization. London: ISTE.M, 2006.

[74] A parameter free pso, tirbes-d. [Online]. Available:

http://clerc.maurice.free.fr/pso/Tribes/TRIBES-D.zip

[75] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-Submicron FPGAs.

Norwell, MA: Kluwer Academic Publishers, 1999.

[76] C. Mulpuri and S. Hauck, “Runtime and Quality Tradeoffs in FPGA Placement and Routing,”

in Proc. ACM Intl. Symp. on FPGAs, 2001, pp. 29–36.

[77] A. Salman, A. Imtiaz, and S. Al-Madani, “Discrete Particle Swarm Optimization for Hetero-

geneous Task Assignment Problem,” in World Multiconference on Systemics, Cybernetics and

Informatics (SCI 2001), 2001, pp. 83–91.

[78] E. Ozcan and C. K. Mohan, “Particle swarm optimization: Surfing the waves,” in Proc. IEEE

Congress on Evolutionary Computation, vol. 3, 1999, pp. 1939–1944.

117

[79] M. Clerc, “Discrete Particle Swarm Optimization,” in New Optimization Techniques in En-

gineering. Springer-Verlag, 2004.

[80] K.-P. Wang, L. Huang, C.-G. Zhou, and W. Pang, “Particle Swarm Optimization for Trav-

eling Salesman Problem,” in Proc. IEEE International Conference on Systems, Man, and

Cybernetics, vol. 3, 2003, pp. 1583–1585.

[81] X. H. Zhi, X. L. Xing, Q. X. Wang, L. H. Zhang, X. W. Yang, Z. C. G., and Y. C. Laing, “A

Disrete PSO Method for Generalized TSP Problem,” in Proc. IEEE International Conference

on Systems, Man, and Cybernetics, vol. 4, 2004, pp. 2378–2383.

[82] Y. Xue, Q. Yang, and J. Feng, “Improved Particle Swarm Optimization Algorithm for Opti-

mum Steelmaking Charge Plan Based on the Pseudo TSP Solution,” in Proc. IEEE Interna-

tional Conference on Systems, Man, and Cybernetics, vol. 9, 2005, pp. 5452–5457.

[83] C. Wang, J. Zhang, J. Yang, C. Hu, and J. Liu, “A Modified Particle Swarm Optimization

Algorithm and its Applications for Solving Travelling Salesman Problem,” in Proc. IEEE

International Conference on Neural Networks and Brain, vol. 2, 2005, pp. 689–694.

[84] T. Liu and J. Wang, “A Discrete Particle Swarm Optimizer for Graphic Presentation of

GMDH Network,” in Proc. IEEE International Conference on Systems, Man, and Cybernetics,

vol. 3, 2005, pp. 2329–2333.

[85] X. Zeng, Y. Zhu, L. Nan, K. Hu, B. Niu, and X. He, “Solving Weapon-Target Assignment

Problem Using Discrete Particle Swarm Optimization,” in Proc. IEEE World Congress on

Intelligent Control and Automation, vol. 1, 2006, pp. 3562–3565.

[86] Z. Lian, X. Gu, and B. Jiao, “A Dual Similar Particle Swarm Optimization Algorithm for

Job-Shop Scheduling With Penalty,” in Proc. IEEE World Congress on Intelligent Control

and Automation, vol. 2, 2006, pp. 7312–7316.

[87] Q. Pan, F. Tasgetiren, and Y. Liang, “A Discrete Particle Swarm Optimization Algorithm for

Single Machine Total Earliness and Tardiness Problem With a Common Due Date,” in Proc.

IEEE Congress on Evolutionary Computation, 2006, pp. 3281–3288.

[88] V. G. Gudise and G. K. Venayagamoorthy, “Swarm Intelligence for Digital Circuits Imple-

mentation on Field Programmable Gate Arrays Platforms,” in NASA/DoD Conference on

Evolvable Hardware, 2004, pp. 83–91.

118

[89] M. Neethling and A. Engelbrecht, “Determining RNA Secondary Structure using Set-based

Particle Swarm Optimization,” in Proc. IEEE Congress on Evolutionary Computation, 2006,

pp. 1670–1677.

119

Publications from this thesis

Accepted and Published Journals

• Mohammed El-Abd and Mohamed S. Kamel. ”A Taxonomy for Cooperative Particle Swarm

Optimizers”. The International Journal on Computational Intelligence Research (IJCIR),

special issue on PSO, vol. 4, issue 2, 2008.

Submitted Journals

• Mohammed El-Abd and Mohamed S. Kamel. ”A Heterogeneous Cooperative Particle Swarm

Optimizer with Migrated Probability Models”. Submitted to Swarm Intelligence, 2008.

• Mohammed El-Abd and Mohamed S. Kamel. ”An Empirical Study on Cooperative Particle

Swarm Optimizers”. Submitted to Swarm Intelligence, special issue on PSO, 2008.

• Mohammed El-Abd, Hassan Hassan, Mohab Anis, Mohamed S. Kamel and Mohamed El-

Masry. ”Discrete Cooperative Particle Swarm Optimization for FPGA Placement”. Submit-

ted to the Journal of Applied Soft Computing, Elsevier, 2007.

Book Chapters

• Mohammed El-Abd and Mohamed S. Kamel. ”Cooperative Particle Swarms Optimizers:

A Powerful and Promising Approach”. In Springer-Verlag Studies in Computational In-

telligence (SCI) Series, vol 34, Abraham, Ajith; Grosan, Crina; Ramos, Vitorino (Eds.),

Stigmergic Optimization, pp. 239-260, 2006.

Conference Papers

• Mohammed El-Abd and Mohamed S. Kamel. ”A Particle Swarm Optimizer with Varying

Bounds”. Proceedings of the IEEE Congress on Evolutionary Computation CEC, pp. 4757-

4761, Singapore, September 2007.

120

• Mohammed El-Abd and Mohamed S. Kamel. ”On The Convergence of Information Ex-

change Methods in Multiple Cooperating Swarms”. Proceedings of the IEEE Congress on

Evolutionary Computation CEC, pp. 3797-3801, Vancouver, July 2006.

• Mohammed El-Abd and Mohamed S. Kamel. ”A Hierarchal Cooperative Particle Swarm

Optimizer”. Proceedings of the IEEE Swarm Intelligence Symposium SIS06, pp. 43-47,

Indianapolis, May 2006.

• Mohammed El-Abd and Mohamed S. Kamel. ”A Taxonomy of Cooperative Search Algo-

rithms”. Proceedings of the 2nd International Workshop on Hybrid Meta-Heuristics, LNCS

3636, pp. 32-41, Barcelona, Spain, August 2005.

• Mohammed El-Abd and Mohamed S. Kamel. ”Information Exchange in Multiple Cooperat-

ing Swarms”. Proceedings of the IEEE Swarm Intelligence Symposium SIS05, pp. 138-142,

Pasadena, CA, June 2005.

• Mohammed El-Abd and Mohamed S. Kamel. ”Factors Governing the Behavior of Multiple

Cooperating Swarms”. Proceedings of the Genetic and Evolutionary Computation Confer-

ence GECCO05, vol. 1, pp. 269-270, Washington DC, June 2005.

• Mohammed El-Abd and Mohamed S. Kamel. ”Multiple Cooperating Swarms for Non-Linear

Function Optimization”. Proceedings of the IEEE 4th International Workshop on Soft Com-

puting as Transdisciplinary Science and Technology WSTST 05, 2nd workshop on Swarm

Intelligence and Patterns SIP05, pp. 999-1008, Japan, May 2005.

121

