
Completely Customizing Modern

GUIs Through Command-Driven

Interfaces

by

Jeff Dicker

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2008

c© Jeff Dicker 2008

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

An ideal user interface accommodates the requirements and abilities of its users,

and every user has a specific set of needs that must be fulfilled in order for an inter-

face to be useful. This thesis concentrates on using the post-deployment tailoring

technique of customization in order to ensure that an interface meets a user’s needs

and abilities in a final, user-driven design step. To this end, the more entirely a

UI can be customized, the more perfectly it can be transformed into a state that

best suits its user. Very few systems offer complete customization: allowing the

entirety of an interface to be customized, baring change to its interaction style.

While a few systems do offer complete customization, no fully customizable system

exists that is built using modern widget-based GUI’s. This is the goal of the archi-

tecture described in this thesis, the Interface Manager. It uses interface building

techniques to make cosmetic customizations and a command-driven style similar

to that of Unix shells to make functionality customizations. This system allows in-

terfaces to become well suited to their user, but it also offers open questions about

user-initiated innovation in software and the scaling of visual interface design tools.

iii

Acknowledgements

First, and foremost, I would like to thank Bill Cowan for academic, financial

and moral support. Few share his passion for widening academic discourse.

I thank my readers, Mike Terry and Charlie Clarke for giving their time to

ensure my success. If it wasn’t for Mike’s determination and assistance, I would

have likely taken another semester to finish this thesis.

I would also like to thank my family: Katy, Jerry and Jill. Without them,

I certainly would not be writing this. CGL members also helped keep me sane,

especially Élodie, Cam, Curtis, Eoghan, Vlad, Andrew and Alex.

Finally, I owe this entire journey to Alan Paeth. His belief in my ability is the

reason that I am here.

Last, but not least: go Grad House FC!

iv

Contents

List of Figures vii

Trademarks ix

1 Introduction 1

2 Background 6

2.1 Motivation for Customization . 8

2.2 Completely Customizable Systems 10

2.2.1 Unix CLIs . 10

2.2.2 Oberon . 12

2.2.3 Squeak with Morphic . 13

2.3 Conclusion . 16

3 Designing a Command-Driven GUI 18

3.1 Introduction . 18

3.2 GUI Toolkits and Interface Builders 21

3.2.1 Event-Driven Widget Toolkit 22

3.2.2 User Interface Description Languages 24

3.3 Decoupling Event-Driven Interfaces 26

3.4 Command-driven, Widget-based GUI’s 28

3.4.1 Target Users . 32

3.4.2 Combination and Composition of Commands 32

v

3.5 Command Encapsulation . 34

3.5.1 Applications as Commands Versus Functions as Commands 34

3.5.2 Inter-Application Communication 35

4 Interface Management 38

4.1 Components . 39

4.1.1 The IM Controller . 39

4.1.2 The Pointer Table . 41

4.1.3 The Interface Representation Layer 42

4.1.4 The Visual Editor . 45

4.2 Examples . 47

4.2.1 Application of Multiple Styles 48

4.2.2 Making Copy from Cut and Paste 50

4.2.3 Save with Backup, an Example of Composition 50

4.3 Inadequacies of the Prototype . 52

5 Discussion 54

5.1 Summary . 55

5.2 Significance . 56

5.2.1 Ownership of Interfaces . 56

5.2.2 Tailoring Culture . 57

5.2.3 Development Community 58

5.2.4 User-Initiated Innovation . 58

5.3 Possible Improvements . 61

5.3.1 Implementation Improvements 62

5.3.2 Longitudinal Study . 63

5.3.3 Security Concerns . 64

5.4 Conclusion . 64

References 66

vi

List of Figures

1.1 Spectrum of Customizations . 1

1.2 Oberon vs Automator . 3

2.1 Levels of Customization . 7

2.2 A screenshot of Oberon’s interface 12

2.3 The Morphic widget toolkit being used 14

3.1 Model of widget toolkit based systems 22

3.2 Model of interface description language based systems 24

3.3 The evolving layers of software: the current model 26

3.4 A static controller verses an interface manager 29

3.5 The Glade 3 signal editor . 30

3.6 The evolving layers of software, the command-driven model 31

4.1 How the prototype’s components work together 38

4.2 The IM Controller . 40

4.3 The Pointer Table . 41

4.4 The Interface Representation Layer 43

4.5 An example XML file in the prototype’s UIDL 44

4.6 The interface produced by the XML in Figure 4.5 45

4.7 The Visual Editor . 46

4.8 While being edited, managed interfaces show a variable pane 47

4.9 The prototype’s visual editor with a text editor interface 48

vii

4.10 A screenshot of multiple styles being applied 49

4.11 Flow diagram for composition . 50

5.1 The virtuous cycle . 56

5.2 The flow of software using the Interface Manager 60

viii

Trademarks

The following trademarks are used in this thesis.

• Linux is a registered trademark of Linus Torvalds

• Microsoft and Microsoft Word are registered trademarks of the Microsoft

Corporation in the United States and/or other countries

• Apple is a registered trademark of Apple Incorporated in the United States

and/or other countries

• Adobe is a registered trademark of Adboe Systems Incorporated in the United

States and/or other countries

• Unix is a registered trademark of The Open Group

• CORBA is a registered trademark of the Object Management Group in the

United States and/or other countries

• LabView is a trademark of National Instruments in the United States and/or

other countries

All other products mentioned in this thesis are trademarks of their respective

companies. The use of general descriptive names, trademarks, etc., in this publi-

cation, even if not identified, is not to be taken as a sign that such names may be

used freely by anyone.

ix

Chapter 1

Introduction

An ideal user interface accommodates the requirements and abilities of its users.

Every user has a specific set of needs that must be fulfilled in order for an interface

to be useful, and a specific set of abilities or disabilities, such as enhanced motor

ability or impaired eye-sight. Designing an interface that is perfectly suited to a

hypothetical representative user does not produce an interface well-suited to each

individual user. Instead, post-deployment tailoring of interfaces is required as a

final design step. Post-deployment tailoring can produce an interface both with

which a user is more comfortable and which has a dramatic effect on efficiency. For

example, Gajos, et al. were able to make large gains (between 8.4% and 42.4%)

in usage efficiencies of interfaces by tailoring them post-deployment to suit the

abilities of each motor-impaired user [11]. In this case, tailoring was done using

the technique of interface adaptation: modifying an interface automatically on

behalf of a user. This thesis concentrates on interface customization, the other

primary, complimentary post-deployment technique. The more entirely a UI can

be customized, the more perfectly it can be transformed into a state that best suits

the requirements and abilities of its user.

Following from the desire to customize as much as possible, customization tech-

Broadness of Possible Customizations

Configurations Squeak
Scripting
LanguagesMacros

Command-Line
Interfaces,
Automator

Interface
Manager

Figure 1.1: One way to view where a particular kind of customization sits on the

spectrum of customizations is in terms of broadness: how much can be customized

through particular technique?

1

niques can be placed onto a spectrum in terms of completeness: how much of

an interface can be customized. The most narrow customizations are configura-

tion customizations, which include such customizations as choosing a font size, a

desktop background, and prefered applications. Macros allow users to combine

commonly executed sequences of commands into new atomic commands. This pro-

cess is where the spectrum starts to move into the realm of end-user programming.

Command-line interfaces (CLIs) also allow users to combine sequences of existing

functionality into new functionality, but provides the further advantage of allow-

ing users to make compositions. A CLI composition is made when the input to

a command-line application is redirected to be the output from another applica-

tion. Momentarily skipping over scripting languages, the Squeak environment [9],

using the Morphic [18] GUI and Squeak programming language, provides complete

customization facilities.

A system that provides complete customization allows every part of its interface

to be customized, with the exception of the interaction style. Details of the inter-

action style may be modified, such as single verses double clicks for opening files,

but the actual interaction style, such as a WIMP GUI, will stay the same.

Squeak provides complete customization by providing a live, direct manipula-

tion customization system (through Morphic) and facilities to modify the Squeak

source code (through the Squeak programming language), all of which is available

to end-users. However, except for the most simple customizations, knowledge of the

Squeak programming language is required to make customizations, so this system

has a particularly steep learning curve. Thus, while it is possible to tailor post-

deployment the entirety of Squeak to be well-suited to any user, the process is as

laborious as customizing an open-source system by editing its source code.

This is where we arrive at scripting languages, as they are used to alleviate

this problem, lowering the amount of programming knowledge required to make

complex customizations. They allow users to make a wide variety customizations

by programming, and have a far shallower learning curve. The reason is that

while most scripting languages do resemble (and often are) traditional programming

languages, they have a feature set restricted to a narrow API. Modification and re-

use of existing application functionality is their emphasis, and they are constructed

so that API access takes priority over usability of the programming language. Both

scripting languages and Squeak allow end-users to customize through programming,

but the guided programming provided by scripting languages offers assurance that

users can access application functionality quickly, and restricts the environment

and usage so as to disallow operations detrimental to the actual software. This

2

(a) Oberon (b) Automator

Figure 1.2: Oberon presents commands as a first-class citizen of its GUI, but pro-

vides a programming language as the only tool that operates on them. Automator,

on the other hand, presents a combination and composition tool on top of Apple

Events, but MacOS does not promote Apple Events as first-class citizens of its GUI.

is a fundamental trade-off between power and ease of use: the limited API that

can be used with scripting languages also limits how much customization can be

performed. This philosophy is contrary to Squeak, which freely allows incautious

users to destroy key functionality of both applications and system software.

This thesis proposes to bridge the gab in the customization spectrum between

scripting languages and Squeak. Squeak does not guide customization enough,

while scripting languages guide customization too much. To find a suitable middle-

ground, the concepts of combination, composition and commands, as used in CLIs,

are introduced. In UNIX shells, for example, combination is performed through

order of commands or the && operator, composition is performed through data flow

via the | (pipe) operator and commands are manifest as small, re-usable applica-

tions that form the building blocks of a UNIX system. The platform described

in this thesis, the Interface Manager, bridges the gap between scripting languages

and Squeak by using these concepts to build the functionality of a GUI. There are

existing GUIs that use combination and composition of commands, but none that

allow all three to be used in interface customization. For example, the Oberon

operating system’s GUI is built entirely out of textual commands, as shown in Fig-

ure 1.2(a), but the only tool provided to utilise the command system is the Oberon

programming language [30]. As a result, using Oberon’s GUI often amounts to

3

writing programs in Oberon, which offers too little to a novice user.

Another example, Apple Events, encapsulates interface functionality in MacOS.

There are various customization tools that sit on top of Apple Events. Apple Script

is a scripting language that utilises Apple Events as API calls, providing a broad

method of customizing as with any scripting language, but across all applications

that use Apple Events. Automator, shown in Figure 1.2(b), is an application that

allows Apple Events to be combined and composed exactly as in a CLI. It promotes

combination and composition to first class citizens, but only for Automator’s GUI,

not MacOS’s. The goal of the Interface Manager is to provide a GUI that presents

commands, combination, and composition as first-class citizens in order that cus-

tomization of functionality can be made directly to interface elements, instead of

in between as in Automator.

In doing so, the Interface Manager provides guided customization, as do script-

ing languages, to every part of a UI, as does Squeak. Guided customizations of

functionality are made on an Interface Manager based interface (a managed in-

terface) by specifying combinations and compositions using a visual editor which

more resembles an interface builder than it does Automator. The reason for using

an editor similar to an interface builder is to allow customization of each piece of

an interface, as Morphic does. Thus, an interface can be completely customized

both cosmetically and functionally, through a technique simpler than editing source

code. And, if required, additional commands can be created using traditional pro-

gramming languages. Combination and composition under the Interface Manager

is limited in scope only to the commands provided, as with Apple Events, which

gives the advantage of allowing functionality to be shared system-wide, increasing

the likelihood that existing functionality can support a desired customization. Full

examples of usage scenarios are provided in Chapter 4.

More importantly, managed interfaces are mutable, user-owned objects. This

has important implications to how customization happens within a community of

users. Users can continue to use and modify their own interfaces in a virtuous

cycle regardless of updates to underlying software, an improvement over the way

open source software modification works. This includes novice users because of

the lower barrier to customization provided by the Interface Manager. Further-

more, designers can examine user modified interfaces in order to produce better

default interfaces, requesting developers implement the commands required. This

is a new channel of communication between users and developers much richer than

bug reports or focus groups: users can, through their own customization efforts,

demonstrate to application developers what they want from an interface. Thus,

4

the Interface Manager creates a system of user-initiated innovation in software that

does not currently exist, even in the open source community. Detailed discussion

of this idea is provided in Chapter 5.

Squeak is not the only system to provide complete customization, so other com-

pletely customizable systems will be examined in Chapter 2. Furthermore, provid-

ing system-wide customization of interfaces separately from underlying applications

can be seen as allowing for interface evolution. The method by which CLIs facil-

itate interface evolution will be analysed in depth in Chapter 3. Chapter 4 uses

these techniques to produce the technical requirements for building an Interface

Manager, the implementation of which is described in full, including various exam-

ples of its usage. Finally, discussion of the potential role of an Interface Manager

in computing and drawbacks of the prototype design is found in Chapter 5.

5

Chapter 2

Background

A user interface allows users to interact with software. Having an interface to

software immediately asks the question: what is a good interface? Some of the

many measurements used in determining the benefit of an interface are relatively

objective, such as efficiency, time required to become proficient and whether or not it

allows relevant tasks to be accomplished. Other measurements are more subjective,

such as the interface’s aesthetic quality or how enjoyable it is to use. What is

common to all of these measurements is that they vary both across interfaces and

across users. The goal of interaction design is to produce, of all possible interfaces,

the one with the most qualitative and quantitative utility according to these metrics.

This thesis focuses on a related goal: how an existing interface, designed to be

maximal in various metrics, can change in order to deal with the variability among

users.

Design trade-offs exist because of the variability of users. For example, an

interface that is aesthetically pleasing to one user may be hard to read for another

user with poor eye-sight. An expert user may be held back by an interface that is

very easy to learn, but lacks expert features. Not all users perform the same tasks

with a word processor, for example, so it may be deficient in features for some users,

while perfectly satisfying others. A change making able-bodied users more efficient

may be a serious drawback for motor-impaired users.

A variety of solutions have been proposed for these problems. A brute force

solution would be to ship software with a multitude of static interfaces, one for

each user. In this limit the solution may seem ridiculous, but many interfaces

implement two separate interfaces: a fully featured one for expert users that has

a steep learning curve, and an easy-to-learn, but less powerful interface for novice

users. Unfortunately, this solution does not scale, so making the interface more

6

Level of Customization Example

Configuration preference dialogs, rc files

Composition macros, programming by demonstration

Enablement scripting languages, extensions

Complete Customization CLIs, Oberon, Squeak

Figure 2.1: The levels of customization.

dynamic may be tried. Joerg Beringer describes multiple levels of customization [4]:

configuration, composition and enablement. The simplest of these are configuration

tools such as rc files or preference dialogs, that appear in almost all interfaces.

They are augmented by system level configurations for decisions like font choices.

Configuration is a tool that provides many possible static interfaces from a single

dynamic one. Solutions of this type are very successful: configuration is often the

solution employed to provide interfaces that are well suited to a variety of users.

Suppose, however, a user needs a special feature that is not provided by con-

figuration tools. In order to add new features to an existing interface, enablement

is required. Enablement allows functionality that was omitted during design and

development to be added post-deployment. One of the simplest ways of providing

it is to provide a scripting facility. For example, Emacs can be extended by writing

LISP scripts [32] and Microsoft Word can be extended by writing VBA scripts [12].

Using a scripting language, users can author, or hire somebody else to author, new

features for an existing interface.

But enablement is not always enough. What can be done for a motor-impaired

user who loses efficiency in trade for another user’s aesthetic improvement? A

configuration tool for choosing an alternate layout of interface elements could be

provided to improve efficiency for this user, but no two users have exactly the same

kind of impairment. This problem is similar to that of providing an impossibly

large number of static interfaces: interface designers simply cannot provide enough

configurations to suit the customization needs of every user, not to mention the

increasing difficulty of configuration. Such modifications require a deeper level of

customization, that which I call complete customization. A completely customizable

system allows users to tailor all parts of all interfaces post-deployment, system-wide

if desired. Note that a system need not allow interaction style to be modified in

order to provide complete customization: a CLI may provide complete customiza-

tion though input and output is all necessarily performed through lines of text, and

a WIMP GUI may provide complete customization though it will continue to use

7

windows, icons, menus and pointing.

The next section further details the merits of customization, outlining research

showing the desirability of customization by users. Following this is in depth dis-

cussion of completely customizable systems. These systems include Unix shells and

other shell-like UI’s, command-driven systems like Oberon and Acme, and, finally,

Squeak. Each of these systems contains tools for providing complete customization

that have not been adopted by modern widget-based GUIs, and provides necessary

background for developing the Interface Manager.

2.1 Motivation for Customization

Any user would rather use an interface perfectly tailored to their requirements and

abilities than one that is not. But user-made customizations can be flawed: a

user can easily make customizations detrimental to their efficiency and satisfaction

when using an interface. Providing a solution that guides users to make effective

customizations is outside the scope of this thesis, and readers interested in this topic

are instead refered to other works [6]. Herein, it is assumed that users understand

which customizations will provide interfaces better suited to them.

The desirability of customizations that alter an interface to suit a user’s abilities

is fairly obvious. But such customizations are often not available: difficulties caused

by this missing feature is demonstrated in a study conducted by Gajos, et al. [11].

Motor impaired users were found to be much less efficient than their able-bodied

counterparts when using modern interfaces, such as print dialogs. Their efficiency

increased greatly when using specially tailored interfaces, provided by SUPPLE [10].

SUPPLE is an adaptive platform that can automatically tailor interfaces written

on top of it in various ways, such as accommodating screen size and type. In the

study done by Gajos, et al., SUPPLE was used in conjunction with motor and eye-

sight tests to automatically make widget choices that accommodate deficiencies in

users. It showed great success in increasing performance for motor impaired users,

but SUPPLE does not solve the problem of allowing existing interfaces to have the

required post-deployment tailoring performed, as special, non-functioning interfaces

running on top of it were authored in order to conduct the study. Few systems

perform customization complete enough to perform the tailoring that SUPPLE

does, and without the ability to modify existing interfaces in arbitrary ways, these

automated tailorings are only able to customize contrived interfaces of little to no

value.

8

Also, while it is clear that customizations allowing an interface to suit users

needs are useful, do users desire the ability to customize the functionality of inter-

faces? Arguments against this come naturally, as the desktop metaphor so preva-

lent in modern interfaces was created on the principle that users simply want to

get work done, if possible without introspecting about the interfaces they use [7].

Furthermore, HCI research often judges the utility of an interface largely on the

basis of untrained use, because the success of novices is perceived to be indicative

of intuitiveness. Intuitiveness is a laudable goal, and this thesis recommends that

designers should continue seeking it. The desirability of post-deployment tailoring

is largely the result of good design. A tailor does not waste time modifying a t-shirt,

and users are unlikely to customize a truly inadequate interface.

However, users do wish to customize their interfaces, as research has shown. For

example, in 1996, a group of 101 diverse WordPerfect 6 users were surveyed, and

92% were found to have made customizations to its interface [23]. Another study

conducted by MacLean, et al. at EuroPARC shows that a tailoring culture can be

introduced into an office environment through training. Office workers, the end-

users most often described in literature, were provided with rich, scriptable desktop

“Buttons.” A desktop Button is an object on the desktop interface representing

LISP code that could be executed by a mouse click. The LISP code for each Button

is readily available and can be modified. Eventually, with training, even the most

novice users demanded customizable Buttons [17]. Perhaps most importantly, this

study found that users took ownership of their interfaces. When the study began

users spoke of Buttons on their desktop as though they were foreign, but eventually

made statements such as “I don’t know what I’d do without my Buttons” [17]. This

use of possessive nouns shows, perhaps better than anything else, the desirability

of customization. It may take time, but users ultimately desire the ability to

customize.

Even if MacLean, et al. had shown customization can not be taught to end-

users, it is a poor assumption that end-users alone will be engaged in customizing.

All end-users borrow and modify customizations made by co-workers and other

acquaintances. Co-opting the customizations of peers normally occurs within a tai-

loring culture and is a reasonable way to take advantage of customization and to

learn about making them. The sharing of customizations among users has been ob-

served in studies of real-world instances of user-initiated innovation, such as in the

sport of wind-surfing [37]. As wind-surfers started to build more advanced equip-

ment through customization of their current equipment, many different customized

designs started to appear. The surfers helped each other with their customizations,

9

and pushed the sport of wind-surfing to its current state.

In short, customization is desired by users as a tool for tailoring interfaces post-

deployment. Users benefit in terms of efficiency, and are more engaged with their

computers when they can modify their interfaces to suit their needs and abilities.

2.2 Completely Customizable Systems

Several completely customizable systems exist, all varying in both interaction and

customization style. Older systems that are completely customizable like UNIX and

Oberon do not provide widget-based GUIs as modern systems do. Squeak provides

complete customization of a widget-based GUI, but has its own drawbacks.

2.2.1 Unix CLIs

The command-line interface (CLI) provided by Unix systems is restricted by the

era in which it was created. The primary method of input and output in Unix is

through per-line text-based input followed by textual output. However, the level

of customization it provides is likely the reason that Unix-style shells have such

longevity. To be clear, the CLIs discussed in this thesis refer to this interaction

style and not the applications that are executed by a CLI. A CLI-based application

can present its own UI with quite a different interaction style, and this is not what

CLI is intended to describe here. This property does reveal the most important

customization tool in Unix, though: the text editor. Under the Unix paradigm,

text editors play a role more diverse than a word processor, as they allow scripts

of command-line input to be collected into a single, executable file. When these

files are placed into a central location searched by the command interpreter for

executables, they are virtually indistinguishable from binary applications compiled

from C code. The multiple levels of abstraction provided by script files is one of

the things that makes Unix CLIs so customizable.

However, the real key to Unix’s customizability comes from its use of a command

interpreter. CLIs use a variety of shells, the applications that takes a line of input

(or a script) and transform them into a series of command calls, normally allow com-

mands to be linked together through various means. The default language provided

by nearly all shells is a combination and composition style programming language:

functionality from different pieces of software can be composed together and ex-

ecuted in sequence automatically. Combination is performed through sequence,

10

as commands can be executed in order and composition is performed through the

data-flow language of pipes. With the command interpreter between a query, such

as a combination and composition of commands, and the applications that those

commands represent, the input to the command interpreter can form programs.

Furthermore, customization of how the command interpreter modifies input given

to it allows CLI interaction to be customized. Such tools are commonly called

built-in commands. For example, modern shells have an alias command that al-

lows one string of text to be substituted for another. Its standard usage is to make

short macros for longer commands, such as alias ll=’ls -l’. With this in the

alias table, entering ll into a the shell will execute ls -l. More complex usage of

aliases exists. One example of more complex usage is performed by modern Linux

distributions, where the alias ls=’ls --color=auto’ is inserted into the alias table

by default so that the command ls will give coloured output by default.

Combination and composition is an excellent system of end-user programming

and will be further examined in Chapter 3, but Unix CLIs could provide complete

customization without it. The Bourne again shell (bash) [29] is a popular Linux

shell that descended from the Bourne shell (sh) [5]. They both rely greatly on a

combination and composition language. The C Shell (csh) [1], on the other hand,

provides a shell with a grammar similar to the C programming language so that

it can have more utility to C programmers. Even programming languages like

Python [2] have been known to be used as glue between applications when large

amounts of custom processing between them is required.

This leads to the crutch of Unix’s complete customizable CLI: the scope of its

applications. Each application is supposed to be small, performing a single task,

such that it forms an atomic command. Not only does this allow for combination

and composition, but users that create their own applications, whether they use a

compiled or interpreted language or a shell script, and then integrate them with

existing applications. This is an effective way of providing customization through

enablement, and it works so well due to the nature of Unix. Most GUIs do not use

a command system, so they cannot provide enablement in this way.

But applications in Unix are not necessarily small composable tools. Keeping

applications interoperable is only a guideline, and many modern applications that

can be executed from a CLI break this rule and run a different UI (sometimes a GUI)

by default. This is the greatest weakness of CLIs: as soon as applications break

the guidelines of interoperability, the whole system falls apart. The composability

of applications on CLIs relies upon the fact that they can all supply ASCII input

and output in order to allow composition to work.

11

Figure 2.2: A screenshot of Oberon’s interface.

Oberon and other single-language environments improve upon this flaw by spec-

ifying more clearly what commands are. In addition to this, Oberon provides a GUI.

As such, it is a desirable upgrade, in terms of customization, to CLIs.

2.2.2 Oberon

In 1985 Niklaus Wirth and Jürg Gutknecht began to develop an operating system

and programming language called Oberon [30]. While Oberon had many notewor-

thy features, its most overlooked feature was an unusual and novel GUI. The entire

Oberon interface consists only of text. All text is editable, and any text can be

executed as a command. The result is an interface that has been coined a “full-

screen user-editable menu.” The Acme editor written by Rob Pike [27] is heavily

influenced by this style and provides a similar full-screen editable menu interface.

12

This unorthodox GUI style is shown in Figure 2.2, a screenshot of Oberon.

The most important feature of Oberon’s all-text GUI for this thesis is command

execution. A mouse button is bound to execute text underneath the cursor as a

command, no matter what that text may be. For example, the text can be a

command within a title bar, a demonstration command in a manual or a command

in a list of frequently used operations. A command in Oberon’s UI is any function

exported by an Oberon module, where a module is an atomic piece of software

in the Oberon programming language. The text used to execute a command is

given in the form “Module.functionname.” Thus, when the user presses execute

over text that represents a command, a function from a module is called. The

advantage that this has over a CLI is in scoping: a command is well defined as a

single function. Programming language functions are also naturally limited in size

by maintainability. It is desirable to write a single function for an atomic task in

order to increase understandability and maintainability of code. This feature keeps

the scope of commands reasonable for end-user programming, without requiring as

much discipline in understanding what the limits of a command given to the UI

should be. Instead, a programmer need only think about the common programming

problem of whether a function should be internal or external.

While Oberon has some weaknesses in its implementation, its key weakness is

that it requires its user to be a programmer. This design decision was intentional,

in order that a full-screen customizable menu could be provided, but it means that

novice users without programming experience are left in the cold. Its command

style is better defined than a CLI’s, and it provides a GUI, but it fails to support

the same guidance in customization that the CLI’s combination and composition

language does.

Also, Oberon does not provide its customizations to a modern widget-based

GUI, the most popular modern interaction style. This is not a core problem with

Oberon, but instead one of the reasons why it is important to examine Morphic,

the only completely customizable widget-based GUI.

2.2.3 Squeak with Morphic

The Self programming language [36] was initially conceptualized and developed at

Xerox PARC, but in 1990 Sun Microsystems began funding the Self team to create

a complete environment based on the language [14]. In 1995 Self 4.0 was released,

containing a user interface called Morphic [18]. Morphic was later adopted by an

13

(a) A screenshot of Morphic.

(b) A submorph being rotated.

Figure 2.3: The Morphic widget toolkit provides advanced functionality not found

in modern systems. The window shown here is Squeak’s method inspector. It

has been selected to edit by using the middle mouse button, so a ring of possible

commands is shown around it. In 2.3(b) the middle mouse button has been clicked

again over top of a submorph list to select it and a rotation was performed.

14

open source Smalltalk derivative titled Squeak, and is currently easily downloadable

in that form [9]. Note that the persistant interface provided by Morphic is similar to

that provided by Smalltalk [16], among other systems. In such UIs, each interface

component is a malleable, user-modifiable object. Morphic uses this property of

Squeak in order to provide directness and liveness. No system yet has met it in

terms of these goals: Morphic provides complete customization to all users, for any

interface element, at any time, through direct manipulation.

In Morphic, liveness is attained by allowing all editing to be done at run-time,

and it provides no distinction between running an interface and editing it. Direct-

ness is achieved by allowing direct manipulation of every component of an interface.

In order to facilitate both of these features, a specified mouse button is used as an

edit button. Each widget in Morphic, referred to as a morph, is selected by clicking

the edit button while the mouse is over it. This method of editing is more live

than any other interface builder: it requires no modifier key and can be done post-

deployment. A selected morph has a ring of icons around it representing various

operations that can be performed on it, such as modification of layout and rotation

as shown in Figure 2.3(a). Each subsequent press of the edit button while over top

of a morph allows the user to drill down and select the currently selected morph’s

children (provided the mouse is over a child morph), as shown in Figure 2.3(b).

This allows for live modification of both layout and structure - Figure 2.3(b) shows

a submorph that has been rotated.

The power of modifying a morph is not limited to Morphic’s live editing system.

Each morph has a body of Squeak code underneath it that can be both examined

and modified at run-time. This is where traditional programming knowledge be-

comes required to make edits. A lot of work can be done through Morphic, but

advanced customizations will require a user to program in Squeak.

While Morphic is still ahead of its time in terms of liveness and directness, it has

not been adopted widely. One of the problems with adoption is that it runs on top

of Squeak. With the notable exception of the Squeak based Seaside web server, it

is difficult to find “real world” applications written in Squeak. It is usually thought

of as a toy environment to be used for teaching programming concepts, since that

was largely the reason for its inception [14]. Further flaws with Morphic are more

trivial, including an outdated look and feel. This is partially a problem for adoption

from an aesthetic standpoint, but also in terms of interaction, since modern widget-

based GUIs have become fairly standardized in affordance and operation over the

years in ways Morphic has not changed to accommodate. There are however, more

important problems with Morphic.

15

A more critical flaw in Morphic, unrelated to its incredibly steep learning curve

is the way Morphic implements live editing. On the design of Morphic, John Mal-

oney states that purposefully avoiding the common “run/edit distinction ... has

several advantages,” including removal of need for frequent mode changes and free-

ing cognitive burden required in remembering the current mode [18]. It is difficult

to justify these claims. It is not expected that a user will customize an interface

so frequently that mode changing will provide significant overhead. There are only

two modes, so indicating when a system is in edit mode through visual cues should

not be problematic. In fact, Morphic actually raises problems through its insistence

on liveness in this way. Maloney states himself that “modeless editing of poten-

tially mouse-sensitive composite morphs poses a number of interesting problems.”

The problems he cites are distinguishing editing gestures from operating gestures,

disambiguating spatial references, identifying the operands of an operation, and

manipulating submorphs in place. These problems are indeed interesting, but they

are all introduced as a trade-off simply to avoid the perceived overhead of mode

switching, which produces a far less severe penalty. Disambiguating gestures to af-

ford editing is hard, and in the best case, users might accidentally use a morph that

they wish to edit. Far more grave is the reverse problem: since there is ambiguity

between editing and using, users might accidentally edit a morph they intend to

use. The consequences in this mistake could be critical, as a user could go as far as

accidentally removing features required for a task in progress.

These issues, however, could be fixed with tweaks to Morphic. The biggest

problem with Squeak, as a system of customization, is that it requires users to

program to perform complex customizations. The amount of customization it allows

provides a goal to reach for in terms of providing complete customization, but novice

users are left without an easy way to customize functionality.

2.3 Conclusion

Previous research into completely customizable systems yield promising concepts

not yet fully explored. First, it is clear that users desire customization, even if

it requires programming. Assistance may be required for novice users to perform

desired customizations, but tailoring cultures have been shown to be a natural

extension of the availability and desirability of customization. Along this line of

thought, it is also true that an interface can be better tailored post-deployment if

more of it can be customized.

16

Thus, completely customizable systems exist: they allow customization of all

interface properties, but not interaction style. Unix shells provide a powerful com-

bination and composition language, but rely on applications being atomic oper-

ations, an attribute that is not necessarily true. Oberon and Acme present UI’s

with spacial interaction that retain the concept of interface commands. Almost as

importantly, Oberon better defines the scope of commands to be single functions in

the Oberon programming language. However, both of them require that their user

is a programmer to an extent even further than Squeak, a large barrier to adop-

tion by novice users. Squeak, along with its GUI Morphic, provides a completely

customizable widget-based GUI. Unfortunately, it has a very steep learning curve,

mostly due to the requirement of learning Squeak, partially due to the complexity

of Morphic’s customization facilities.

Nearly all modern systems employ various programming languages either com-

piled to machine code or interpreted at run-time, using event-driven widget-based

GUI toolkits as a UI. With the exception of CLIs, all of these completely customiz-

able systems exist within a single programming language. This is undesirable in a

modern system. And while Morphic is an event-driven widget-based toolkit, it is

far less elegant than modern toolkits (it is, after all, over a decade old).

In an attempt to solve these problems, The Interface Manager introduced in

this thesis provides a completely customizable, modern widget-based GUI that can

use functionality from nearly any programming language. Its visual interface editor

is moded, as to make dangerous operations more difficult to perform, and it uses a

CLI style combination and composition language to reduce the initial learning curve

for modifying functionality. This allows novice users to make compositions without

requiring them to be programmers. In this way, existing functionality can be re-

used through composition and, unlike existing systems like scripting languages,

applied directly to interface elements. This system is described in the following

chapter.

17

Chapter 3

Designing a Command-Driven

GUI

The architecture described herein, the Interface Manager, provides a completely

customizable, modern widget-based GUI. Beneath this GUI, it uses a command

system to allow functionality to be modified more easily than through editing source

code, which is required to make functionality changes in systems like Squeak. This

chapter describes precisely why the Interface Manager is required to provide com-

plete customization for a modern widget-based GUI, and also the pieces that are

required to build one.

3.1 Introduction

To make the desirability of customization more clear, some interfaces benefit from

customization more than others. For example, the interface to a nuclear reactor

revolves around the tasks that the reactor performs. The user of the interface is a

steward of the reactor, performing tasks specific to its operation so as to achieve a

goal known prior to deployment of the interface. The interface style is quite different

from that of desktop applications, such as word processors. They allow many

shallow operations, like adding a character at the cursor. The user applies them as

needed to produce a document, the contents of which cannot be known in advance.

A reactor must have a rigid interface in order to be safe. Combining functionality,

for example, can have unfortunate effects unpredictable to users. But the word

processor’s interface should allow a user to perform tasks specific to the user’s

requirements and abilities, which are known only to that user. Making frequently

18

combined actions a new affordance is both beneficial and appropriate in this case.

Thus, when customization is desired, the more extensive the possible customiza-

tion the better. Only a few systems do offer complete customization of a GUI, in

the sense that all elements of their GUI can be customized by the end-user. Squeak

is the best example of such a system, as it allows modification of every piece of its

interface.

To allow customization, Squeak provides Morphic as its UI. However, Morphic

is unsatisfactory for several reasons: its learning curve is steep, because knowledge

of the Squeak programming language is required to make complex customizations;

it can only run a system using a single programming language; its widget toolkit

is outdated; and it requires that all applications make their source code available.

Like Squeak, the Interface Manager, which embodies the concepts explored in this

thesis, facilitates complete customization, but avoids the problems. In short, it

alleviates the above shortcomings through flexible attachment of a customization

component to a modern widget-based GUI toolkit.

In modern event-driven GUI’s, interfaces are tightly coupled to applications by

event systems, with every user action connected to an entry point in application

code by an event handler. Thus, the operation performed when an event occurs,

such a button click, cannot be modified without modifying source code, which stops

arbitrary changes to application functionality. Scripting languages are often used to

provide enablement customizations in interfaces, but restrict what new features can

be added to an interface by the API available. Furthermore, special tools are usually

required to graft new functionality created in scripting langauge onto an interface.

For example, most modern word processors have a menu and toolbar customization

dialog that allows existing functionality or new scripts to be assigned to menu or

toolbar elements. This method has two drawbacks. First, only menu items and

toolbars can be customized. A user cannot, for example, customize the menu

customization dialog itself in this way. The second drawback is that only existing

functionality or functionality authored using the application’s scripting language

may be assigned to a menu or toolbar element. With a system that decouples

interfaces from applications, any part of the word processor’s interface could have

new features added, including the menu and toolbar customization dialog.

How can interface and application be decoupled? Various methods have been

used to abstract event-handler calls from widgets. For example, user interface de-

scription languages (UIDLs) are a good way of abstracting an event-driven widget

based GUI, but they do not mitigate the problem of tight coupling. They con-

19

veniently abstract widget layout and event handler calls, but fail to loosen the

connection between events and event handlers. Thus, even the most advanced

event-driven GUI implementations still tightly couple application and interface.

This key problem is examined in detail and solved in section 3.3.

Decoupling must go beyond abstracting event handler calls by name. To make

complete customization of event-driven widget-based interfaces possible, interfaces

must be completely separate from applications. Instead of being coupled to an event

handler that exists inside application code, widget events should be coupled only

to descriptions of commands that are interpreted by the Interface Manager using

functionality provided by the application, which is analogous to providing sequences

of commands to a CLI. To allow descriptions of functionality to be used instead

of names of event handlers, the Interface Manager uses a UIDL like any other,

except that event-handling descriptions contain combinations and compositions of

commands instead of event handler function names. This decoupling produces

a command-driven, widget-based GUI, with the Interface Manager acting as the

command interpreter. This structure allows interfaces to evolve without having to

change the application beneath them. In other words, there is no particular piece

of software supporting an interface in this paradigm, only a set of commands that

exercise the functions of the application. For example, the customization dialog

used to modify menu items in a word processor would connect its widgets to event

handlers such that different commands are executed when its “cancel” button is

clicked. Thus, this button could be modified to call a different command that warns

about unsaved changes that would be lost upon execution. This is just one example

of why decoupling an interface from its application is desirable; more examples are

given in section 3.4.

Allowing interface functionality to be modified in this way does not solve all

the problems of Squeak. By the end of this chapter, this style of decoupling will

be shown to solve Squeak’s requirement for both open source code and having that

code come from a single programming language. Also, since modern widget toolkits

are being used by the Interface Manager, it also solves the problem of Morphic’s

out of date widgets. However, it does not lower the steep learning curve of using

Squeak. To this end, a distinctive aspect of the Interface Manager is the use of

a combination and composition language that connects interface components to

application functionality. A combination and composition language is not required

for the command system: any intermediate description of event functionality de-

couples events from application code. Thus, other types of languages could be used

to play this role. A clear example is provided by UNIX shells. The Bourne shell [5],

20

one of the earliest UNIX shells, provides little more than combination and com-

position of commands, while the rc shell [8] provides a well-defined programming

language including the combination and composition offered by the Bourne shell.

Either shell, or any other for that matter, is acceptable for providing an abstraction

layer between application binaries and the CLI above them, but different levels of

knowledge are required to use each effectively. Thus, the Interface Manager can use

any kind of programming language to describe the actions taken when an event is

fired. The reasons for using a combination and composition language are explained

below in section 3.4.2.

The next requisite of a command-driven, widget-based GUI, is a command

system. Modern applications are written in many programming languages: for

inter-application work the different programming languages must export commands

in a standard form. Furthermore, the commands must be well enough defined

that commands can interact without ambiguity. To understand this problem, past

systems of command encapsulation including CLIs, Oberon and inter-application

communication (IAC), are discussed in section 3.5.

Event-driven toolkits with couple interfaces to applications too tightly. Yet the

Interface Manager must be compatible with modern GUI toolkits. To examine this

issue, a selection of GUI toolkits is discussed in the next section. Two essential

aspects of choosing a toolkit style are the existing abstraction between events and

event-handlers and the interface construction tools available. The more loosely

events are coupled to event handlers, the simpler it is to decouple them completely.

Interface construction tools, or interface builders, are important in providing WYSI-

WYG methods of interface modification, and are currently only available for use

at design time. Morphic makes no distinction between editing and use in providing

toolkit-level visual editing at run-time. The Interface Manager instead takes in-

spiration from interface builders to provide moded customization of an interface’s

widget choice and layout at run-time.

3.2 GUI Toolkits and Interface Builders

The Interface Manager uses the widgets of a GUI as the interaction controls of

its command system. UI toolkits have existed for decades and are now a mature

technology for providing modern GUI’s for applications. Most relavant to this

thesis are widget toolkits that can be accessed not just through source code, but

also by interface builders, and user interface description languages (UIDLs). An

21

Widget Toolkit

Application
Creation

Widget Based
Interface

Events
(Callbacks)

User

Input

Output

Figure 3.1: Model of widget toolkit based systems. Creation of the widget-based

interface only happens once. User input and ouput is governed by the widget-based

interface, which calls application code through an event system.

interface builder is a WYSIWYG GUI for building an interface using a particular

toolkit. It normally employs direct manipulation to allow users unfamiliar with

programming languages, such as designers, to build prototype interfaces. Though

intended for designers, the ability of interface builders to support interface building

by novice users is what the Interface Manager must offer to end-users. Complete

post-deployment modification of interfaces by end-users is possible when editing

interfaces. Morphic is successful at providing complete customization because its

users have access to an interface builder based on it widget toolkit. The Interface

Manager does the same, but with moded editing and modern widget toolkits. To

this end, a UIDL is an important abstraction for event-driven widget toolkits. The

Interface Manager needs a representation for command-driven GUI’s, and source

code representations are not accessable enough for easy modification by end-users.

3.2.1 Event-Driven Widget Toolkit

The most popular style of interface design and interaction language yet devised,

event-driven widget toolkits will prove to be as enduring as UNIX shells. Modern

widget toolkits have evolved incrementally since the release of the Xerox STAR in

1981. They kill two birds with one stone: they provide consistency and learning

transfer and they make incorporating these properties easy for developers. They

are tangible, re-usable interface objects that have very obvious metaphors in both

user affordance and also in API. For example, once a user has learned to drag in a

scroll bar (which should be natural due to visual affordances), they will be able to

drag in any scroll bar. Conversely, once a programmer has learned how to place a

scroll bar in an interface, they can implement scroll bars in any situation requiring

one. Widget use coincides with both the adoption of desktop computers by a larger

audience and the adoption of object-oriented programming (OOP) by developers,

and this is not a coincidence.

22

Event-driven widget toolkits have some specific features that make them attrac-

tive to programmers. For one thing, they use a model-view-controller (MVC) style

of encapsulation. The application provides the model, while the widget toolkit pro-

vides a presentation layer incorporating both output and input, in the view and con-

troller, respectively. Programmers need only create widget objects and place them,

then attach events to event handlers in order to provide users with an interface. As

such, using a UI toolkit is much simpler than previous methods of programming

interfaces, like creating a UIMS description [26]. In most toolkits, programming

an event call is highly abstracted. For example, implementing “when the mouse

is over this label, call mouseOverLabelHandler,” so that mouseOverLabelHandler re-

ceives the control flow during interface operation is very simple, with the details

abstracted away. This practice adheres to a principle that is important in design-

ing end-user programming systems: describe what something does, not how it does

it [22]. To be sure, application code is required to set up the event system, but

almost all widget code is encapsulated within an API.

Another advantage of widget toolkits is the availability of WYSIWYG interface

builders. For example, the simple user interface toolkit (SUIT) is an early example

of a widget toolkit with visual design capabilities [25]. Its interface builder explic-

itly created UI code, a feature imitated by modern interface builders, like Glade

2 [34]. Other interface builders, like Visual Basic, implicitly create UI code. Unfor-

tunately, for end user programming code generation is undesirable. When code is

generated, re-compilation is required to produce working changes which lengthens

the edit/test cycle, and requires access to this source code. This problem is com-

mon because interface builders are intended for design, not for post-deployment

modification. However, because interface builders edit interfaces using WYSIWYG

direct manipulation techniques they are said to have a much lower threshold than

editing source code: it is much easier for novice users to modify an interface using

an interface builder than by modifying source code [19]. Furthermore, interface

builders provide the most complete customization possible: they are used to create

an interface, so they can also customize any part of it.

However, using a widget toolkit’s interface builder to perform customizations is

unsuitable because of tight coupling between event-driven toolkits and application

code. The toolkits reside in the same layer of software as applications, and are

coupled to event-handlers in the application using callbacks, as shown in Figure

3.1. The reverse is also true: it is completely possible to take direct control of

interface elements created in an interface builder through source code. Even when

an application does not use this feature, the problem persists because control is

23

Interface
Description

Application
Interpreter

Creation

Widget Based
Interface

Events (Callbacks)

User

Output

Input

Figure 3.2: Model of interface description language based systems.

still necessarily available. The interface must be compiled from source code to an

executable format, so there remains the possibility of interface modification from

source code, not though an interface builder. The end result is that a user cannot

make a change to widget based interface using an interface builder that generates

source code unless they have access to the original development tools. Fortunately,

user interface description languages help remove this problem.

3.2.2 User Interface Description Languages

The drawback of early interface builders was code generation. If the interface

builder produces source code, decoupling model from presentation is possible only

be modifying the source code. A solution to this problem modifies the process

so that the interface builder creates a description (often XML based), which is

interpreted at run-time. User interface description languages (UIDLs) pre-existed

widget toolkits as a component of user interface management systems. Here, they

are associated with widget toolkits. For widget-based interfaces, UIDLs describe

three things: what widgets are chosen from the range of compatible possibilities,

how widgets are configured and laid out, and what actions they initiate when their

events are triggered. Complete customization of a widget-based interface can be

provided by allowing these three things to be customized.

One of the reasons that UIDLs are so desirable for describing interfaces, as

opposed to using an intermediate system like Python as glue between a GUI and

an application, is that they only describe all the properties of an interface. Using

a programming language like Python to glue an interface to an application allows

detrimental operations to be performed, a problem in Squeak that is being avoided

here. Furthermore, it has a steeper learning curve, since the scope of the language

is far wider than creating interfaces, an activity mostly goverened by a toolkit API.

UIDLs, however, are crafted specifically to describe interfaces and are only as broad

as the capabilities of the interfaces they describe. In essence, they are nothing but

24

the toolkit API another language would need to use in order to display an interface,

which makes them far more desirable for this purpose.

Aside from this, there are two primary reasons to use an interface description

language with event-driven driven toolkit. First, UIDL based toolkits explicitly

enforce loose coupling between application and UI. Second, they provide platform

independence. Loose coupling by itself has enough benefit to warrant the imple-

mentation of description languages for event-driven widget toolkits. For exam-

ple, Adobe claims “in sampling one of every 500 bugs in Photoshop’s 20,000-bug

database, roughly half ... of the bugs fell into the interface layer that the property

model targets [24].” The property model is the part of Adobe’s Adam and Eve sys-

tem that manages all interactions between model properties and the presentation

layer. Thus, a perfect implementation of the Adam and Eve UIDL and its inter-

preter would reduce bugs in Photoshop by 50%. Even if perfection is not easier

to obtain in implementing a UIDL instead of fixing bugs, each bug fixed in a poor

UIDL implementation will provide a multitude of fixes in the interfaces that use it.

This is simply in agreement with the advantages of writing modular software. In

the case of the Interface Manager, the UIDL abstracts widget choice, layout and

event actions. The biggest gain made by this is in allowing a command system to

be used to describe event actions instead of event handlers. Furthermore, changes

to any of these properties does not require recompilation or source code to produce

a new interface.

Using a UIDL to perform customization by design is already possible, though

it is unclear if end-user customization using a UIDL was ever intended. For ex-

ample, .nib files for Mac OS interfaces created by the Interface Builder may be

freely opened and edited by end-users using the Interface Builder. Other inter-

face building systems, like QT Designer, provide similar functionality. However,

these systems are still inadequate for customization. The most immediate barrier

to this kind of customization is that a user needs to know that a .nib file exists

for an interface, what it is and how to use an application to edit it in order to

make customizations this way. Once this customization facility is discovered, the

biggest barrier becomes the restriction of functionality that can be used on the

interface. Only event handlers that exist inside of compiled source code, as written

pre-deployment of the interface, may be used to handle events. This is equivalent

to limiting interface functionality to an API. Completely customizable systems like

Squeak were intended to be customized through design tools, so more visible tools

that operate on intermediate descriptions are available. This is what the Interface

Manager does, but it goes one step further to solve the problem of event coupling

25

User

Presentation

Software

Developer
Evolved

User
Evolved

Figure 3.3: The evolving layers of software: the current model.

by underlying its UIDL with a command system, which replaces event handlers

normally called from event-driven UIDLs.

3.3 Decoupling Event-Driven Interfaces

With event-driven toolkit paradigms, user interfaces must take into account three

co-evolving entities, shown in figure 3.3. Note that users evolve according to re-

search done in the field of Psychology. Software evolution is also a field of its own

and will not be examined in any detail. The focus this thesis has on the evolving

layers is the relationship between software evolution and interface evolution.

Event-driven interfaces evolve only when the software implementing them evolves,

despite current customization technologies, mostly shallow, that they make avail-

able to the user. Possible configuration customizations are determined entirely

pre-deployment, since a configuration in its nature is a designer specified choice

that is left up to users. Users can change them, but not add to them. Even enable-

ment of new features (e.g., through scripting languages) don’t allow for arbitrary

changes to be made in an interface: enablement tends to be provided through a

feature extension dialog. For example, scripts can be written and executed from

a list hard-coded into an application’s UI, the elements of which can be neither

changed nor replaced by the end-user. If any part of the interface is to evolve far

enough to perform new functionality, the application code that responds to user

input must be modified, and only decoupling can relax this constraint.

Event-driven widget toolkits implement the model-view-controller (MVC) de-

sign pattern. The model resides in the algorithms of an application, and the con-

troller is melded with the view to form the presentation. For example, a button

appears on screen as the output of a widget (view) and accepts input by mouse

clicks (controller). This paradigm assumes that there is separation between the

26

model and presentation layers and the presentation layer contains only a thin shell

of input/output code encapsulating the behaviour of the widget. The model re-

sides within the application where all the real work is done. However, something

must connect the two layers: event-driven widget toolkits connect the model to the

presentation by an event-system.

In early toolkits, attaching event handlers to events is done bottom up: in source

code a function pointer is added to an event’s list of event handlers. When an event,

such as a button click, is triggered, the event dispatches a signal to all event handler

callbacks connected to it. This style of controller is shown in Figure 3.4(a).

Modern toolkits are a bit better, as coupling is usually performed top to bottom

where event handlers in code are specified by name at the interface level for each

widget event. One way to build this kind of event system is through a user interface

description language (UIDL), which are described in full later. While UIDLs offer

a convenient way to attach events to handlers by function name, they do not loosen

the coupling between application and interface: event handlers must still be named

for each event type. An interface builder using this style of event system is Glade 3,

shown in Figure 3.5, which depicts steps in the editing of a button widget, labeled

“My Button.” The clicked event has been given the name of one event handler,

“myBtnHandler” to call when the clicked event is triggered.

The problems associated with specifying event handlers by name in interface

descriptions were recognized at least as far back as SUIT. During discussion of

SUIT’s interactive design facilities [25], a section on the drawbacks of using an

event system on top of a compiled application appears:

“Interactive widget creation is only for demos and decoration. While

always impressive in a demo, the ability to create new buttons and

sliders on the fly is really not very useful. Items that act merely as

decoration, such as labels, can be added nicely, but most items have

attached functionality that must be specified. Because SUIT is based

on C, run-time binding would be much harder than in a LISP-based

system like Garnet [21]; SUIT would need to compile and link code on

the fly-something that a LISP-based system need not worry about. If

the user creates a button interactively, how does he or she attach a

callback function to it? ...

“At present, the only way to do this is by hand: the programmer

opens up the C source code file and makes a function call that at-

taches a function pointer to the button, referring to the button by its

27

unique string name provided when the widget was created interactively.

Spelling the name incorrectly results in a fatal run-time error.”

As mentioned, previous systems have solved such coupling problems pimarily by

not using a compiled language. Notably, Brad Myers’ Garnet and, earlier, Gilt [20]

provide widget functionality abstractions to reduce coupling through callbacks, but

they only manage to do so by leveraging LISP. This passage states exactly the

customization problem that the Interface Manager solves, as it can use compiled,

closed source code for without trouble.

One solution to decoupling these layers is offered by command interpretation.

On a CLI, a command can be run directly by giving the command interpreter a

command name. This is analogous to calling an event-handler by name, except

that the scope is at a system level, not an application level (separate per command

flags can be used to specify which application functionality is to be called). The ad-

vantage of a CLI is that the command interpreter mediates the interaction between

the interface and commands, so input more complex than single command names

may be given. For example, the command name itself could be aliased such that it

runs a different command entirely, or a composition of two different commands can

be performed. In this way, the Interface Manager is inserted between widget events

and application commands, offering an intermediate combination and composition

language. In accordance with the MVC design pattern, the Interface Manager acts

as a programmable controller, as shown in Figure 3.4(b). When an event is fired

under this new paradigm, commands are interpreted by the Interface Manager in-

stead of calling application code directly. This style of UI is a command-driven,

widget-based GUI, and it performs the decoupling required to allow for complete

customization of an event-driven widget-based GUI.

3.4 Command-driven, Widget-based GUI’s

In a widget-based GUI modified to be command-driven, there are four layers that

co-evolve as shown in figure 3.6. In this paradigm, the presentation layer no longer

depends directly on the application. Instead, a given interface need only know the

names of commands, nothing of their implementation. While complete customiza-

tion of interface layout and widget choice on an event-driven widget-based GUI can

be achieved with a run-time interface builder, complete customization of functional-

ity is not possible. Features that are not already available in the application would

28

Application

Entry Points

Controller
Widgets

Events

(a) Static controller provided by
event-driven widget toolkits

Application

Controller
Widgets

Events

IM:

Commands

Combination and Composition
Language

(b) Programmable controller pro-
vided by the Interface Manager

Figure 3.4: Event-driven widget toolkits implement the controller from the model-

view-controller paradigm through events, whereas an interface manager is a

command-driven programmable controller that affords a combination and com-

position language to end-users.

require re-programming of the application to be made available. Command-driven

widget-based GUI’s allow interfaces to evolve separately from application code so

that their functionality can also be completely customized.

To highlight the differences between an event-driven controller and a command-

driven controller in practice, consider a user who is trying to print a web page on

a printer for which drivers are not locally installed. With an event-driven GUI,

such a task is virtually impossible, because the print button on common printing

dialogs is connected to an event handler that can only print to an installed printer

driver. If sending commands to a remote machine that has the driver installed has

not been supplied as a configuration customization, it is impossible to change the

interface so that it does so. Using a command-driven controller, on the other hand,

a workaround can be written, using a combination of commands. This example

is illustrated using commands available in a Linux shell. Normally printing this

webpage would be done by the following command combination:

1. jadicker$ html2ps webpage.html ./webpage.ps

2. jadicker$ lpr -Pprinter webpage.ps

On line 1, the web page is converted to PostScript, a readily printable format.

29

Figure 3.5: The Glade 3 signal editor. Glade 3 will create a separate interface

description file that is interpreted through its API, libglade, but it still provides

direct ties to software through event-system callbacks.

But with no printer installed, the lpr command on line 2 fails and the page is not

printed. This problem is solved by the following combination:

1. jadicker$ html2ps webpage.html /tmp/webpage.ps

2. jadicker$ scp /tmp/webpage.ps remoteserver :/tmp/webpage.ps

3. jadicker$ ssh remoteserver

4. jadicker$ lpr -Pprinter /tmp/webpage.ps

5. jadicker$ exit

This is a fairly complex combination. The web page is converted to PostScript

on line 1, then copied to a remote computer on line 2. On line 3, the user logs in to

the remote computer, then prints the web page on line 4. Finally, exit returns to

the local computer. This combination requires five different commands in addition

to knowledge about how to print on an accessible remote computer. By contrast,

it is possible, though not necessarily easy, to achieve such a workaround using a

command-driven system. Printing using commands is not tied to the application by

event handlers, so additional steps can be added to the printing process. Therefore,

the Interface Manager can solve this problem by allowing a print button’s onclick

30

User

Presentation

Commands
Developer
Evolved

User
Evolved

Software

Figure 3.6: The evolving layers of software, the command-driven model.

event to contain, instead of the name of an event handler, the first CLI combination

given above. Thus, the print button’s onclick event can be modified to contain the

second combination, if need be.

For the sake of demonstrating compositions, the original operation and its

workaround can be alternatively performed by composition of commands. In this

form, the original is:

jadicker$ html2ps webpage.html | lpr -Pprinter

and the workaround is:

jadicker$ html2ps webpage.html | ssh remoteserver lpr -Pprinter

Workarounds created by modifying interface functionality can be applied any-

where. The Interface Manager controls interfaces system-wide, so presentation is

decoupled from model in general. Interfaces are thus tangible, user-owned parts

of the system. Thus, whether an application has closed or open source code, its

interface connects to it through the Interface Manager, and the functionality of its

interface can be changed by the end user. The method by which an application

exposes functionality as commands is examined in section 3.5.

As mentioned above, combination and composition languages are only one possi-

bility. However, using them has many benefits, none more important than handling

the range of possible users of the Interface Manager, from novices to experts. The

reasons why combination and composition languages scale in terms of power and

ease of use is given in the section following the upcoming description of target users.

31

3.4.1 Target Users

Who are the target users of the Interface Manager? As discussed in Chapter 2,

the Interface Manager is designed to deal with the variability of users in terms of

goals and skills. Therefore, interfaces based on the Interface Manager treat all users

equally: there is no distinction at the interface level between designer, developer

and end-user. Developers and designers still build software and design interfaces,

but any user also has the option of introducing new commands and modifying

interfaces.

The Interface Manager is likely to be managed differently by different users.

Take, for example, replacing the find operation of a text editor with a new, externally-

defined, find operation. How would different kinds of users make this modification?

There are three different depths of customization that can be used to solve this

problem. First, if the user is a programmer, the new find operation can be written

in a traditional programming language, exported to the Interface Manager as a

command, which replaces the old command. Second, if the user is an expert at

using the system, but not a programmer, an existing find command from a dif-

ferent application can be used. Finally, if the user knows nothing about how to

use the customization tools, an experienced friend can send them an improved ver-

sion of the interface via email. Third party developers also play a role here, as

they can be hired to replace any command in the application without having to do

application-specific implementation.

Given that this wide spectrum of users should be able to benefit from the In-

terface Manager, it should use tools that scale from experts’ knowledge to novices’

lack of skill, which is why a combination and composition style command language

is used to link interface functionality to application code.

3.4.2 Combination and Composition of Commands

The principle characteristic of a CLI is that it offers a wide variety of small ap-

plications that can be combined and composed in order to accomplish a variety of

tasks. Combination and composition languages are a powerful customization tool

and are surely responsible for the continued success of CLIs among expert users.

There are real-world roots to the richness and naturalness of such languages.

An example of this comes from a user-initiated innovation anecdote given by

Eric von Hippel regarding high-performance wind surfing [37]. In the 1970’s, wind

32

surfers in Hawaii began to jump from the tops of waves. In action, this is a sequence

of wind surfing, jumping, then wind surfing again, which is just a combination.

There is also composition involved: the act of jumping into the air is performed

while wind surfing. Problems introduced by jumping drove further composition.

Surf boards would frequently leave surfers’ control, as they would fall to the water

without the surfer’s feet. In order to accommodate this composition of actions,

wind surfers latched their feet to the board by composing foot straps with the surf

board.

Another real-world example of combination and composition is fishing. There

is a combination required to fish: cast out the line, make the bait look appetizing

to a fish (shake it around a little), then reel in the line when a fish bites. There

is also a composition: bait and line combined together is the input to casting.

Furthermore, this example presupposes that there is a mechanism to reel in the

line - that mechanism is, in fact, composed with an initial fishing rod and line.

These two concepts apply equally as well to customization in a software envi-

ronment. For example, there was a time when users were provided with only two

of three tools that modern systems use to move text: cut and paste, but not copy.

UNIX shells, for example, normally offer ctrl+K and ctrl+Y keyboard shortcuts for

cut and paste, respectively. The pattern of ctrl+K, ctrl+Y, ..., ctrl+Y emerges

fairly quickly. The first piece, cut then immediately paste, seems like it could be

an atomic action on its own. The copy command was born from this combination,

and is an early example of the usefulness of interface evolution. In practice, the

evolution was performed by developers and released to users in a new version of

the software. The Interface Manager, as is demonstrated in chapter 4, allows this

evolution happen without requiring a new version of software.

What of composition? Mathematically, composition occurs when a function

takes another function as a parameter. For commands, the result of executing one

command is used as a parameter of another command. For example, a user who

wants an application that shows the current CPU temperature graphically can base

it on an existing temperature measurement command. This command is composed

with a new, user created command that takes the temperature as a parameter and

returns an appropriate image. The image is further composed with an image display

widget, creating the desired functionality through two compositions.

Combination and composition have strong natural metaphors in action se-

quences and modular construction, which makes them scale understandably [31].

Once coordinated inter-muscle sequences, in an arm for example, are made atomic

33

by practice, they can themselves be combined into more complex sequence that

carry out actions such as casting out a fishing line. With more practice, casting

a fishing line itself becomes atomic and can be combined with chewing gum or

daydreaming. In software this role is filled by scripts of existing commands. Com-

bination and composition allow layers of increasing complexity to be stacked on top

of one another, abstracting well-understood operations in order to allow more com-

plex operations to be defined. In a software combination and composition language,

as a user increases in understanding and skill, creation and use of new abstractions

is possible, unloading cognition from the user to the computer. Because of this,

combination and composition is an invaluable end-user programming tool that can

be used by novices and exploited by experts.

How should the Interface Manager use combination and composition to provide

a GUI above it and a command system beneath it? Choice of a GUI toolkit has

been thoroughly explored in section 3.2, and the decision to use inter-application

communication with a UIDL-based widget toolkit are justified in the next section.

3.5 Command Encapsulation

The Interface Manager requires a way of encapsulating application functionality

into commands. Commands provided to the Interface Manager need to be system-

wide, so examples of systems which already have system-wide command encapsula-

tion are given in this section. Each is examined with respect to two primary issues:

how are commands encapsulated, and how are they composed?

3.5.1 Applications as Commands Versus Functions as Com-

mands

CLIs build their command system using applications as commands. This decision

was made for many reasons, including performance restrictions during the early

days of UNIX, but the power of this system remains relevant today. The real trick

to using applications as commands is that the applications themselves must be

small, atomic operations that do a single thing, and do it well. This is the UNIX

philosophy, and it is essential for the Unix command system. When programmers

fail to follow this convention, work is duplicated and applications do not contribute

to their own re-use. For example, ls | grep ’text’ searches the directory listing

for the term “text.” Writing an application that performs this operation in one step

34

is not useful, because it is easily written as a single command composition: alias

lsg=’ls | grep’. A problem with this convention, however, is that modern CLI

commands provide their own UI, which makes it unclear how commands should be

combined and composed. This makes the structure of a command ambiguous, a

major drawback of the applications as commands paradigm.

A solution, possible for command systems in single language environments like

Oberon, is to use functions as commands. With functions as commands, the struc-

ture of each command is well defined: it takes a set of parameters and produces

a return value. A single function can indeed have its own UI, but it is easier for

programmers to follow the convention of writing a single function than of writing

an application that acts as one. Partly, it may be the presence of a type system

for catching errors. Enforcing a type system allows every composition to be more

guided. If types do not match, composition produces no result. Type checking is

a property of Microsoft’s Windows Power Shell, where .NET objects are passed

between commands. It is also a property of Apple’s Automator, in which Ap-

ple Events are combined when composition violates type checks. These issues are

described in detail in the next section.

Overall, functions as commands is more useful than using applications as com-

mands. But many systems, like Oberon, that use functions as commands allow

only a single programming language to be used. To allow multiple languages an

inter-application communication protocol is needed.

3.5.2 Inter-Application Communication

Inter-application communication (IAC) is the best way of encapsulating commands

system-wide. It allows applications to share functionality regardless of their pro-

gramming languages, and commands can be functions in a programming language.

In effect, an IAC protocol allows developers to export application functions as com-

mands through a software “bus” so that other developers (or users) are able to call

them over the bus. For example, Apple Events are commands sent between appli-

cations using the Apple Event Manager. IAC differs slightly from its lower-level

cousin inter-process communication (IPC). IPC is more general, as it is designed

for low-level communication that can be used for more complex tasks such as par-

allel programming. General IPC is ignored here, as high-level access to existing

application functionality falls within the scope of IAC.

IAC protocols are numerous, to say the least. On Windows, OLE, COM,

35

COM+, ActiveX (to an extent), and DCOM can be used as IAC protocols. On

MacOS, Apple Events and AEOM are designed as IAC protocols. Linux systems

have a particularly large list, but currently use DCOP and D-Bus. Finally, CORBA

is arguably the most all-encompassing and complex IAC system of them all. This

is merely a sample of such protocols: how to create a universal IAC protocol is an

unsolved problem, and may always be because new standards will certainly emerge

over time. The Interface Manager runs on Linux, so D-Bus, the new standard Linux

desktop IAC protocol, is most desirable of these protocols.

Using an IAC protocol like D-Bus offers solutions to the problems presented in

other command systems. A type system is enforced, so data other than text can

be passed to and from commands. Multiple language bindings are available, so the

Interface Manager is not locked into using commands from a single language. IAC

is also robust: if a command fails or crashes it does not affect the system making

the call as happens in Oberon. The only problem with IAC is that it is complicated.

Plan 9’s Plumber is perhaps the best attempt to make IAC simple, as it infers the

type of data and which application handles that data based on internal resolution

mechanisms [28]. In general, IAC tools are not so elegant, and without mature

tools to abstract the complexity of dealing with a sophisticated communication

bus, developing an application that exports commands can be difficult, as writing

support for the Interface Manager itself is. This problem exists in any heterogeneous

system, and it is a straightforward decision for the Interface Manager to deal with

commands using IAC.

Apple’s Automator can be seen as a compelling proof of concept that a com-

bination and composition system can be built on top of IAC. Apple Script has

traditionally been used to access Apple Events exported by applications, but Au-

tomator has recently been introduced as a graphical tool offering a combination

and composition language for doing so. It guides data flow one step beyond CLIs

by disallowing invalid compositions. For example, a shutdown command takes no

input, therefor it cannot be combined with another command. On a Unix shell,

the command ls | shutdown now is allowed, but ls produces no output: its out-

put is piped to shutdown which ignores it. Automator disallows the composition,

and attempts to produce it instead make the combination ls && shutdown now in

Unix terminology. Automator provides command automation, as its name suggests.

The Interface Manager similarly takes advantage of IAC, but uses combination and

composition to build entire interfaces, not just automation scripts.

The Interface Manager decouples presentation from model in event-driven wid-

get toolkits by modifying the paradigm to a command-driven one. Thus, the func-

36

tionality of an interface can be freely customized. In addition, an interface builder

style visual editor is used for customization of widget choice and layout. Together,

they enable complete customization of modern widget-based interfaces through a

command-driven GUI. Beneath the interface, an IAC protocol allows applications

to export functions as commands, accommodating multiple programming languages

to be used. But how exactly is such a system implemented? The prototype, written

using C++ and gtkmm, along with example usage, is described in the next chapter.

37

Chapter 4

Interface Management

The Interface Manager provides a command-driven abstraction for software beneath

it, and both an interaction and design language to the representation layer above it.

This construction is purposefully architected to facilitate complete customization

by decoupling interface from software so that each can evolve separately. This

chapter describes the C++, gtkmm based prototype.

First, the four components of the prototype are described in detail: the pointer

table, the Interface Manager controller, the interface representation layer and the

visual editor. The overall architecture is shown in Figure 4.1. Three implemented

usage scenarios follow these description in section 4.2.

Pointer
Table

Commands

Developers Designers/End-Users

IM
Controller

Exports
Commands

Command
Invocation

Visual
Editor

Interface
Representation

Layer

GUI

Interface
Edits

Commands

Results
Command

Interpretation

Figure 4.1: How the prototype’s components work together

38

4.1 Components

What, is the Interface Manager? It is not a base window system, nor a window

manager nor a widget toolkit. However, it should be some of all these things. User

interface description languages (UIDLs) offer an initial solution to this identity cri-

sis: the Interface Manager applies a command-driven UIDL to a pre-existing widget

toolkit. It also offers a design language, inspired by existing interface builders. The

choice of design language depends on the choice of widget toolkit. An interface

manager also must provide a command layer. The command layer is the real back-

bone of the implementation: it is straight-forward to provide using a background

process that negotiates inter-application communication (IAC).

In building the prototype, four primary components were implemented, as

shown in Figure 4.1. The visual editor makes changes to interface widget choice,

widget layout and functionality under control of the user. It provides a visual com-

bination and composition language for functionality customization, because it is

expressions, recursive combinations and compositions of commands, that the in-

terface representation layer (IRL) uses to describe functionality. The IRL presents

users with standard gtkmm-based interfaces; it also handles all events and serial-

izes interfaces into an XML UIDL format. The action performed for each event is

described in the IRL as an expression. When an event, such as a button press, is

triggered, the IRL handles it by giving the expression to the IM controller. The

IM controller then interprets it, calling commands through the pointer table. The

pointer table invokes commands by executing the function pointers to shared li-

brary functions mapped to the command name given. If a command produces a

result, the IM controller gives it to the IRL so that the widget takes the resulting

value. These four components are described in detail in this section through the

following scenario: a user loads an existing interface wanting to add a command

written in C++ to it.

4.1.1 The IM Controller

The first thing that must be done to load a managed interface is to start the

Interface Manager process, which runs in the background. This process and all

communication with it is governed by the IM controller, shown in Figure 4.2. The

user executes three Python scripts that connect to the IM controller through its

D-Bus inter-application communication (IAC) backend. They are as follows:

39

IM Controller

User Input
via IAC

Load Commands
Run Interfaces
Run Visual Editor

User Input
via managed
interfaces

Command
Interpretation

Pointer Table

IAC Bus

Figure 4.2: The IM Controller

1. jadicker$ loadlibrary commandlibrary.so

2. jadicker$ runinterface interface.xml

3. jadicker$ visualeditor

The first line runs a script that loads a shared library binary file, commandlibrary.so,

into the pointer table. This library exports functions as commands to make them

available for use by interfaces. The details of this process are given in section 4.1.2.

For the purposes of this scenario, assume that commandlibrary.so contains a C++

function called myFunction which is exported as a command, myCommand.

Line 2 runs an existing managed interface, interface.xml. Its XML file contains

a description of widgets, their layout and functionality. The interface appears

on screen as any other gtk interface would, but it is managed by the interface

representation layer (IRL). This architecture is described in section 4.1.3.

After line 1 executes, the command myCommand becomes available for use in the

visual editor, which is executed in line 3. The visual editor is a separate window used

for editing and constructing interfaces. A screenshot of it is shown in Figure 4.7,

and it is described in section 4.1.4.

This final script, visualeditor, above all the others, should make it clear that

the IM controller does little work: its role is to govern user interaction with the

prototype itself, in the form of running interfaces, loading libraries and executing

the visual editor. All of the real work is done by the other three components of

the prototype. The only other role the IM controller plays, that of a command

interpreter, is explained in section 4.1.3.

40

Pointer Table

Commands

Application A Application B

Functions Functions

Inter-Application Communication Bus

Figure 4.3: The Pointer Table

4.1.2 The Pointer Table

The pointer table owns the commands available to managed interfaces. A command

in the pointer table consists of the following structure:

Command Structure

application name

category name

function name

C++ function pointer

Thus, the command loaded from commandlibrary.so has the fully qualified name

myApplication::myCategory::myCommand. As stated above, invocation of this com-

mand is actually execution of the C++ function myFunction, which is dynamically

loaded from the shared library commandlibrary.so.

The actual process by which myCommand is dynamically loaded from the shared

library consists of 3 steps. First, the user executes the script loadlibrary to tell

the IM controller to tell the pointer table to load all exported commands from

commandlibrary.so. Second, the pointer table calls a special function, im entry,

implemented by the library’s author, as an entry point for the pointer table. This

function returns a list of function names to the pointer table, one function name

for each library function exported as a command. In the final step, the pointer

table uses the list of names to dynamically load all library functions and store the

function pointers in the command structures.

The previous paragraph omits a few details of dynamic loading. To perform the

dynamic loading, the pointer table uses the POSIX dlsym library call, which uses

41

a shared library’s symbol table to find and dynamically load its functions into the

pointer table’s address space. dlsym requires the name of a function to dynamically

load, and returns a function pointer to the dynamically loaded function, if it was

found. This means that the type system is enforced at this step: if a function in

the shared library that is exported as a command does not have the appropriate

function signature, it cannot be called by the pointer table. The required function

signature takes as a parameter a list of IMObject’s, the super class of the prototype’s

polymorphism-heavy type system. The function signature also requires an IMObject

to be returned. This means that a shared library function that is exported as a

command can only use IMObject’s as parameters and return values. The final

ommitted detail is that every C++ function name in the list returned from im entry

must have a corrosponding application, category and function name.

In this way, the pointer table is populated with commands. In what follows,

the term command name refers to the fully qualified command name, of form

myApplication::myCategory::myCommand. A command name, with its parameters,

can now be given to the pointer table, which then returns the result of executing

its corrosponding C++ function pointer.

The decision for the prototype to use dynamic library loading rather than the

D-Bus IAC protocol was made to limit unnecessary complexity. Dynamic loading

has low programming overhead compared with IAC protocols. Because a single

programming language, C++, was used to author the prototype and all commands,

dynamic loading was also adequate for language bindings. The drawbacks of this

design decision are discussed in section 4.3. The decision to use only three levels

names for a fully qualified command name was also made in favour of simplicity:

it too has drawbacks, discussed section 4.3.

Commands must be complemented by interfaces that use them. The next sec-

tion describes the interface representation layer, the component that owns the man-

aged interfaces.

4.1.3 The Interface Representation Layer

When the script runinterface tells the IM controller to execute the managed inter-

face interface.xml, the IM controller tells the interface representation layer (IRL)

to perform this operation. interface.xml is a file authored (by hand or with the

visual editor) in a user interface description language (UIDL). An example interface

in the UIDL used by the prototype is shown in Figure 4.5, with its corrosponding

42

Visual
Editor

Interface
Representations

UIDL File
Representation

XML

Gtkmm
Interface

XML

C++ Objects

Figure 4.4: The Interface Representation Layer

interface in Figure 4.6. Research in UIDLs is complementary to my research on the

Interface Manager: any UIDL including widgets, layout and event handling can be

used by the IRL.

The first responsibility of the IRL is to load XML UIDL representations of man-

aged interfaces from disk. The XML file is parsed, and a C++ object representation

of the managed interface created. This C++ object contains the same information

as the XML file: the choice of widgets, their layout and the combinations and com-

positions of commands to be executed when events are fired. The C++ object is

the managed interface, the XML file a serialization of it. The one thing the C++

object contains that its XML file does not is a gtkmm-based interface.

Gtkmm is a C++ library that wraps the gtk C library. Thus, each C++ object

representing a managed interface in the IRL presents the user with a gtk interface.

An example is shown in Figure 4.8(a). Different from other gtk interfaces, a man-

aged interface is mutable. Upon a request from the visual editor to the IRL that a

running, managed interface is to be edited, the interface is toggled into edit mode,

shown in Figure 4.8(b). In edit mode, the gtk interface is no longer operational as

an interface. Instead, clicking on a widget will select it for editing by the visual

editor. Furthermore, a variable pane is added to the managed interface when in

edit mode. The variable pane holds temporary data that can be used in making

compositions. This is done by placing the result of one command into a variable

widget in order to use it as the parameter for another command. The variable pane

is not visible during use.

In this way, any modification that can be made to a managed interface must

43

<interface name="factorial" serialize="true">

<window name="Fact Win" width="200" height="150"

title="Factorial">

<widget name="mainBox" type="vbox">

<widget type="label" name="fact lbl">Factorial of:

</widget>

<widget type="entry" name="fact txt">5</widget>

<widget type="label" name="is lbl">is:</widget>

<widget type="entry" name="result txt">120

</widget>

<widget type="button" name="compute btn">Compute

<!-- the main vbox contains no information -->

</widget>NULL

</widget>

<vars>NULL <!-- nothing in the variable pane -->

</vars>

</window>

<bindings>

<bind name="fact bind" event="onclick" src="compute btn">

<action app="Test App" category="Math" funcname="uim fact"

target="result txt">

<param srctype="widget" src="fact txt" datatype="int"/>

</action>

</bind>

</bindings>

</interface>

Figure 4.5: An example XML file in the prototype’s UIDL. This particular interface

computes the factorial of the integer in one text box and places it in another.

44

Figure 4.6: The interface produced by the XML in Figure 4.5

be explicitly made possible through modifying its C++ object representation. For

example, when a widget is selected by clicking while in edit mode, the IRL provides

the visual editor with a set of possible modifications for that widget. In other words,

various editing systems could be used to modify an interface, but the modifications

they make must be performed through IRL governed modifications to the C++

object representation of interfaces.

Before the next section, an explaination of why the IM controller is the command

interpreter is given. When an event, such as a button press, triggers a sequence

of commands, they are excecuted by the IM controller. The IM controller either

places the result of each command into a target widget, or executes built-in func-

tionality, such as closing the current window. In CLIs, the shell executes built-in

functionality. For example, the Bourne shell provides aliases as a built-in. Com-

position is done by placing a result in a variable widget used by next command

call, but other implementations are possible. The list of commands to call is passed

atomically to the IM controller from the IRL, so composition can be done without

using variable widgets: they are used to ease the implementation of composition

visualization in the visual editor. Using variable widgets also makes natural the tee

operation supported by most Unix shells.

4.1.4 The Visual Editor

The visualeditor script tells the IM controller to execute the visual editor, which

opens the window shown in Figure 4.7. The visual editor consists of three parts: an

edit button, a widget inspector, and an action inspector. The edit button toggles

a managed interface between use and edit modes, as discussed in the previous

section. This “use/mention distinction” [18] contrasts with the design of Morphic,

eliminating one of its flaws, described in section 2.2.3. The widget inspector is a

45

Figure 4.7: The Visual Editor. It consists of an edit button for toggling the mode

of a managed interface, a widget inspector to change properties of widgets and an

action inspector to explore available commands.

vanilla widget property editor. Properties such as widget text can be changed, and

widgets can be moved within their parent container using up/down or left/right

buttons.

The novel aspect of the visual editor is the action inspector. Available com-

mands can be explored by selecting application and category in the list boxes,

shown in Figure 4.7. This functionality is inspired by Squeak’s (and Smalltalk’s)

system of method inspection, shown in Figure 2.3(a). When a button is selected

when its interface is in edit mode, the action inspector displays the sequence of

commands that are executed when it is clicked. Commands can be removed by

clicking the Remove button to the left of the command, and they can be added

by selecting a new command through the listbox interface, then clicking the Add

button. For every command in a sequence, buttons are given for each parameter

and the return value. After clicking a parameter, a user must click on the interface

46

(a) A managed interface, in use (b) A managed interface, being edit

Figure 4.8: While being edited, managed interfaces reveal a pane containing variable

widgets where information can be stored temporarily. This is a simple method of

providing a visual data-flow programming language.

widget that will provide a value for the parameter. The return value is defined

similarly. Colour is used to denote which parameter is attached to which widget.

Each widget has a unique colour, and a parameter using a widget as an argument

assumes that widget’s colour. Any event can be modified in this way, but only

button click events are mutable in the prototype.

Finally, the user adds the new command myCommand into the UIDL description of

the interface, interface.xml, by making a button call the command. To do so, with

the managed interface in edit mode, the user selects the button that will call the

new command, then uses the action inspector to navigate through myApplication

and myCategory, to find myCommand. With myCommand selected, the Add button adds

it to the list of commands called when the selected button is clicked. In this way,

entirely new, user authored functionality is added to an existing interface using the

prototype.

4.2 Examples

In this section, three examples are given of customization using the dataflow lan-

guage used to allow combinations and compositions of commands in the visual

47

Figure 4.9: The prototype’s visual editor with a text editor interface. The text

editor is in edit mode, so it is augmented with buttons to add new widgets and a

pane for variable widgets.

editor. The interface customized in these examples is that of a simple text editor.

It consists of a text area widget and buttons that italicize, make bold, cut and copy

selected text within the text widget. There is also a save button that writes the text

area’s contents to a text file. When the interface is in edit mode, a widget may be

selected for customization. In Figure 4.9, the Paste button is selected, as denoted

by its green highlight colour. Inside the visual editor window, the widget inspector

allows the button to be moved, deleted or re-labelled. Below the widget inspector,

the action inspector allows the expression executed on an event to be changed. As

described earlier, the visual editor allows exploration of the commands available to

interfaces, including the text editor’s. They are available in the action inspector,

labeled by Word Processing. Below the lists of available commands is the sequence

of commands that is executed when the selected button is clicked. To the left of

each command name are buttons for return values, to the right for parameters,

which are used to choose argument widgets and to place return values. In edit

mode, the text editor interface has an Add a Widget... button for each container,

which adds a new widget from a menu to that container. For the variable pane, an

Add a Variable... button allows the user to add additional variable widgets.

4.2.1 Application of Multiple Styles

Suppose that a user frequently makes text bold, then italicises it. Activating the

combination frequently he may wish to make it the affordance of a single button.

48

Figure 4.10: A screenshot of how example 1 is performed.

To do so, the text editor interface is toggled into edit mode by clicking Edit as

shown in Figure 4.10. The user making this modification may not know what

commands are activated by the italic and bold buttons. The answer is revealed

in the action inspector when they are clicked. Using this information, the user can

combine the two commands into one action. A new button is added by clicking

Add a Widget..., then selecting New button. Clicking on the new button selects

it for editing. The button is given the label, italibold, and moved to its preferred

position. To create its action, the two commands toggleBold and toggleItalic are

combined by selected them sequentially from the table of commands and clicking the

Add button. Both commands act on text selected in the text area widget, toggling

first the bold style, then the italic style. The new button executes toggleBold and

toggleItalic in the order they were added. In this case, the order is irrelevant

because the two commands commute. Though possibly trivial, this button is a new

affordance, created through customization of the interface’s functionality. It is also

easy enough to imagine and implement to be the entry point to customization for

a novice user.

What internal changes are triggered by the editing sequence? Modifications to

button actions, properties and position change the managed interface’s C++ object

in the IRL. The XML representation is modified when the object is serialized. Once

the edit is complete and the text editor interface is put back into use mode, on

clicking the italibold button, the toggleBold and toggleItalic commands are

sent from the IRL C++ object to the IM controller, which interprets them as

commands and executes them using the pointer table. The remaining examples are

49

Return value not needed,
Save text to mytext.txt~

Save

Backup

saveTextViewDialog

getNextBackupName

saveTextView

/u/jadicker/text/mytext.txt

/u/jadicker/text/mytext.txt~0

/u/jadicker/text/mytext.txt

/u/jadicker/text/mytext.txt~0

Buttons Commands Variable WidgetsVariable Widgets

Figure 4.11: Flow diagram for example 3.

executed similarly.

4.2.2 Making Copy from Cut and Paste

A less trivial example adds copy functionality, constructed by combining cut and

paste. copy can be achieved by cutting the selected text to the clipboard, then

pasting it back at its original location, while remaining on the clipboard for pasting

at a new location. When the cut and paste commands are combined in a single

button, copy can executed with one button press. To do so, the user adds a new

Copy button in the text editor interface, then uses the action inspector to add the

cut command, followed by the paste command. Each takes the text widget, with

its selected text, as a parameter. This customization is superficially similar to

the first example, but more interesting for two reasons. First, there is a historical

context. Copy was not a feature of early text editors. The omission was corrected

in the implementations of subsequent software releases. Here the feature is added

by evolving the interface rather than the software. Second, the components of the

copy operation do not commute. This example shows that the combination and

composition language is imperative in style. The next example shows this more

clearly.

4.2.3 Save with Backup, an Example of Composition

The third example illustrates how composition works. In the prototype’s com-

bination and composition language, a hidden pane containing variable widgets is

included in every application window. While editing, the variable pane is visible

and can be used to program by side effect. Information returned from one com-

mand can be temporarily stored in a variable widget of the hidden variable pane,

and are thus available as arguments of future commands.

50

In this example, backup functionality is added to the text editor. A more imag-

inative user will notice that when files are accidentally erased, a backup copy could

replace the lost work. A more skilled user will realize that a new command can be

combined with the two existing commands for saving the text area in order to pro-

duce a backup feature. The first of the two commands is the saveTextViewDialog

command, which presents a dialogue in which the user provides the filename. The

other command, saveTextView, normally bound to the Save button, provides no

dialog and takes the filename as a parameter. Both commands return the filename,

which is placed into a variable widget in the variable pane. This variable wid-

get is initialized to the name of a file upon its first save through use of a dialog.

Suppose that the user creates a C++ function and imports it as a new command,

getNextBackupName, as described in section 4.1.2. This command takes a filename

as a parameter and produces the next unique backup filename based on exist-

ing backup files matching the filename. To create backup functionality, the user

starts by creating a Backup button. Composition is required to perform a backup.

getNextBackupName takes as its argument the content of the variable widget where

the filename has been temporarily stored by saveTextViewDialog, and stores the

unique backup name it returns in another variable widget. Next, the command

saveTextView takes the widget containing the backup filename as an argument,

saving the text to a backup file. In doing so, the getNextBackupName command

has been composed with the saveTextView command. When the Backup button is

pressed, a backup is saved to the next unique backup filename.

This is an awkward method of performing composition, but it demonstrates

the power of a language with composition. Commands supplied as part of a text

editing application are used together with a C++ function written post-deployment

to modify the functionality of an interface at run-time.

Furthermore, the new backup affordance could replace the existing save affor-

dance. Instead of creating a separate button to execute a backup, the user may

prefer that the Save button automatically makes a backup copy. To do so, the

two commands required to perform a backup can be combined directly after the

saveTextViewDialog command used by the Save button. It is also notable that

this composition is itself a new command. It is not currently possible to name a

command created in the visual editor so that it could be re-used, but having such

a feature would be of great benefit.

There are a few other shortfalls of this implementation, and they are discussed

in the following section.

51

4.3 Inadequacies of the Prototype

This prototype is not an ideal implementation of an Interface Manager. A few

features need to be upgraded in a production implementation, including how com-

mands are exported, how commands are looked up by users and the widget toolkit

used.

Ideally, IAC (specifically D-bus) would be used to implement command ex-

port to the pointer table. This would make the command system more resistant

to crashes, remove the dependency on C++ and improve cross-platform support,

since dlsym depends on POSIX. Furthermore, if D-bus was used for IAC, the GOb-

ject type system would be enforced as the standard type system of the interface

manager. The prototype currently uses an ad-hoc, OOP dependent type system,

which hinders non-C++ language bindings, not to mention being inefficient and

inelegant. Using D-bus with GObject would allow robust bindings to nearly any

programming language, with full type system support.

Another problem is how commands are stored and looked up in the pointer

table. Ideally, the pointer table includes meta data for each command. For example,

author, date created, and comments on usage are useful information for finding,

selecting, managing, and sharing commands. The prototype has only application,

category and function name to identify commands, which is not enough. With a

wider selection of meta data, a command can be found by searching this data and

a unique identifier assigned to each command can be used to invoke it.

Toolkit choice is pivotal to any implementation of the Interface Manager. Specif-

ically, the choice of widget toolkit heavily influence the design of the visual editor.

For example, most widget toolkits include interface builders: both consistency and

code re-use argue in favour of using it as the visual editor. The prototype uses the

Gtk widget toolkit, which has Glade 3 as an interface builder. Because both are

open source, Glade seems the obvious choice for the visual editor. However, Glade

was not chosen for the prototype for reasons that are instructive. Glade does not

use the Gtk widget hierarchy, but instead a doppelgänger Glade widget hiearchy,

with a parallel GladeWidget for every GtkWidget. Glade must do this because

Gtk widgets cannot contain arbitrary meta data. Meta data attached to widgets

is important for many reasons: among them, Glade needs extended information

about event calls to facilitate editing. The Interface Manager similarly requires

such data, as each widget needs to store command names for its events. Thus, a

solution similar to Glade’s parallel widget hierarchy was required to implement the

52

visual editor, which is much less elegant that using a widget toolkit that supports

meta data.

In short, it is feasible to build a completely customizable command-driven,

widget-based GUI using existing event-driven widget toolkits and IAC protocols.

Explanations of all components and usage examples have been given. This proto-

type is not complete, but a complete system is easily within reach, though it would

require a large amount of routine work. The biggest open questions about the

Interface Manager are not about implementation, but about how it would change

interface development, whether or not it scales, and how novice users acquire ex-

pertise naturally while using it. These questions are discussed in the next chapter.

53

Chapter 5

Discussion

This thesis began by investigating the shortage of deeply customizable systems.

For example, while Squeak allows everything to be customized, in doing so it lets

dangerous operations be performed too easily, it requires knowledge of traditional

programming languages, and has a steep learning curve, even in its visual editing

system. More guided styles of customization, such as the combination and compo-

sition command language provided by command-line interfaces, provides complete

customization, but in an interaction style that is no longer considered state of the

art.

It then showed how modern event-driven, widget-based GUIs can be modified so

as to decouple the model layer from the presentation layer. The modification inserts

a command interpreter, the Interface Manager, between events and commands so

that a programmable controller is provided to users. The result is a command-

driven, widget-based style of GUI that is completely customizable. Furthermore,

non-cosmetic customization of the interface is achieved by way of a combination and

composition language that should make customization easy enough to bootstrap

novice users. Description of a working implementation and examples of its use

were given in Chapter 4.

This chapter discusses the significance of the Interface Manager in terms of

user-initiated innovation. First, users can take ownership of managed interfaces,

since they are malleable objects. This promotes a virtuous cycle of customization.

Second, allowing interfaces to be customized like this can promote a user-driven

interface tailoring culture similar to existing cultures, such as Linux script sharing.

Third, the work between developer and designer is split such that developers make

commands and designers design interfaces. This means that the user community

54

can provide innovation to designers in the form of modified interfaces, allowing for

user-initiated innovation not yet seen in computing.

Finally, the chapter concludes with possible improvements to be made. These

include implementaion improvements, the possibility of a longitudinal study, and

discussion of security concerns.

5.1 Summary

Squeak, with Morphic, shows that it is possible to provide a completely customiz-

able GUI. The approach Morphic takes to customization, however, is unsatisfactory

for several reasons: its learning curve is steep, because knowledge of the Squeak

programming language is required to make complex customizations; it requires a

system implemented in a specific programming language; its widget toolkit is out-

dated; and it requires that all applications make their source code available. This

thesis provides a solution to these serious difficulties.

The Interface Manager lowers the learning curve of systems like Squeak by

guiding customizations using an interface builder for cosmetic customizations and

a combination and composition language for deep customization that modifies or

adds functionality. This allows existing commands to be re-used as they are in

CLIs. It also allows any programming language to be used, provided that its

implementation uses an IAC protocol for the pointer table. Any widget toolkit can

be used in an implementation of the Interface Manager, though some toolkit-based

difficulties may be encountered during implementation, as discussed in section 4.3.

Finally, closed source applications work with the Interface Manager. As long as the

application exports commands, it can execute applications compiled from closed

source code.

The main contribution of the architecture is demonstrating the utility of insert-

ing a command interpreter between events and event-handlers. In widget-based

systems using the MVC pattern, this decoupling increases the encapsulation of ap-

plications and interfaces. The significance of modifying a system’s architecture so

that events are handled by expressions created from commands are far-reaching.

They are discussed next.

55

Customization:
Investment of
Time + Effort

Pride, Satisfaction

Improved Interface

Figure 5.1: The virtuous cycle that occurs with user-owned interfaces: the more

customizations a user makes, the more satisfaction they receive, the more cus-

tomizations they make.

5.2 Significance

The significance of the Interface Manager goes further than giving a single user

the tools to completely customize an application’s interface. The architecture it

provides changes the evolution of applications and of the communities that use it.

As the first step, the Interface Manager liberates interfaces from applications. An

application that uses the Interface Manager does not have a specific interface, but

an interface created or chosen by the user from a large set of possible interfaces.

Thus, interfaces are user owned. The second step is initiating change in the user

community. Since interfaces are user owned objects, they can be shared, as shell

scripts are, allowing propagation of interface customizations among users and jump

starting a tailoring culture. The final step occurs in the development community.

Splitting development between designers and developers, as managed interfaces

allow may solve a few development problems, but, more important, it offers a wide

bandwidth over which designers and developers can receive suggested changes to

an application. This leads, in the end, to user-initiated innovation in software, a

phenomenon that economists consider to be an important source of innovation, but

that rarely occurs in the software world.

5.2.1 Ownership of Interfaces

The Interface Manager presents users with interfaces as malleable objects. This

changes who owns interfaces. Widget-based interfaces are currently owned by ap-

56

plication developers: evolution occurs only with the release of new versions of the

software, as described in Chapter 3. The Interface Manager turns the tables by

decoupling interfaces from applications: the user begins with a default interface

owned by the developer, and gradually assumes ownership as it evolves. Thus,

ultimately users own managed interfaces. User ownership of interfaces produces a

virtuous cycle: users invest time and effort into modifying interfaces, which deepens

understanding of the application and interface and produces a feeling of ownership

and satisfaction that, in turn, drives users to invest more time and effort into mak-

ing modifications. This cycle is depicted in Figure 5.1. Customization exists to

tailor an interface post-deployment to suit the requirements and abilities of a spe-

cific user, and continuous improvement both feeds and requires this virtuous cycle.

This is the first advantage in terms of user-initiated innovation provided by the

Interface Manager.

5.2.2 Tailoring Culture

The virtuous cycle described above lies within an individual user. How does it

get boostrapped? Clearly, very few novice users come to a managed interface with

the skills required to customize it, which is undesirable, since users cannot realise

the virtuous cycle of investment and reward until they have enough skill to make

modifications to interfaces. To be sure, the Interface Manager lowers the skill

level required to change how an interface functions because it uses a combination

and composition language, which has roots in real-world activities that all users

understand. But, as the word “novice” implies, novice users have not the skill

of expert users. No customization technique is easy enough that there is no skill

barrier to using it.

This is why the “tailoring culture” described by MacLean, et al. [17] is so

important: expert users provide pre-packaged customizations and assistance to

novice users who share them as part of the community. Such a community came

into existence in MacLean, et al.’s EuroPARC study, and occurs widely in Internet

communities. For example, expert users often post Linux shell scripts to web

forums as a solution to problems posed by novice users. In communities like this,

novices take one of two paths: some are content only to borrow customizations

made by other community members; others develop their skills through experience,

increasing their expertise because even the most difficult skills to learn will be much

easier to master within a community context. Thus, the most successful tailoring

communities are not composed only of expert users, only an adequate supply of

57

experts and novices willing to learn to maintain the dynamism of the community.

5.2.3 Development Community

There is a second community invested in managed interfaces: application developers

and designers. When interfaces are managed designers can design interfaces and

script their functionality using commands produced by developers. Both groups are

more skilled even than expert users, so the commands and interfaces they produce

are of a higher quality than those produced by skilled users, even though they

are likely to be less close to users’ actual needs. Relations between developers

and designers is often fraught with misunderstanding because they normally have

disjoint skill sets. With interface design separated from applications by a command

system, designers can focus on producing interfaces exactly how they wish, instead

of asking developers to make changes. This also allows designers to become more

directly involved with user-initiated innovation, as they will have the abilities to

analyse and perfect user made changes to an interface.

5.2.4 User-Initiated Innovation

As von Hippel describes it, wind surfers jumping waves off the beaches of Hawaii

discovered that commercial boards offered inadequate control when airborne [37].

Their response was to improvise straps to fix their feet to the board. This inno-

vation spread among the wind surfers of Hawaii, with improvements to the design

spreading through the community until the innovation was more or less perfected.

At this point, board manufacturers incorporated the innovation into their products,

mastering how to manufacture a new feature economically and reliably.

von Hippel observes, quite rightly, that user-initiated innovation, where man-

ufacturers notice the innovations of users and subsequently incorporate them into

later versions of their products, is very common among firms that gain their com-

petitive advantage by innovation. It is, however, largely absent from application

software and especially from user interfaces. The Interface Manager, among other

benefits, changes this situation. To see how it does so, notice that user-initiated

innovation has three essential requirements. First, the object of innovation, the

board, must be designed and manufactured in such a way that modification is

possible. Second, the skills of the users, drilling screwing and cutting, must be sat-

isfactory for making workable modifications. Finally, there must exist a community

58

of users, the wind surfers of Hawaii, who use, test and improve the modifications

of others.

Command line interfaces, like Linux shells, in communities like system adminis-

trators communicating through web forums, possess all these features. Not surpris-

ingly, user-initiated innovation is common among such groups, and indeed many of

their modifications and inventions have found their way into Linux distributions.

As explained below, the Interface Manager opens up the application and its inter-

face to modification by moderately-skilled users, making user-initiated innovation

possible. First, however, it is necessary to refute recent claims that the open source

software development process has the same effect.

Open source software development is not a good model of user-initiated innova-

tion. Of the three requirements for user-initiated innovation, it satisfies one only:

there is a community of skilled developers that improve open software. These devel-

opers guru programmers [], and there is little room for novices to explore and hone

their skills. Experts have a body of knowledge about a huge code base, libraries,

development practices and more. It takes a long time to enter into this develop-

ment process. Even sharing modifications is difficult, which hinders the entry of

novice users into a user-driven community. For example, a development environ-

ment needs to be set up to produce an application from modified source code, where

the modifications are usually applied through patches. These are just two of the

barriers presented to a novice attempting to adopt a pre-packaged modification to

open source software.

Perhaps the biggest problem with cultivating user-initiated innovation in open

source software is that triggering a virtuous cycle is lengthy and unlikely, for even

the most determined user. Time and effort spent making changes to an open source

application only contribute to a feeling of ownership when they are merged into the

software. Contributions that are not accepted by the software’s maintainers and

incorporated into the “official” code disappear when a new version is released.

Private copies of user made modifications often need to be re-written for the new

version. Thus, a virtuous cycle is only produced in open source software when

contributions are accepted into the software. Naturally, this limits the appeal

of exploration and expertise creation that users undertake, because exploratory

changes rarely persist for long. More importantly, there is no sense of ownership

and the satisfaction and pride that come with it, which reduces the drive to make

modifications to software. Solving this problem is the first of the improvements

made by the Interface Manager.

59

Expert

Novice

Designer

Developer

Figure 5.2: How software flows between four categories of user when software is

based on the Interface Manager. First, on the left side, developers and designers

collaborate to create a new application with its interface, which passes to novice

users, who explore and experiment with it, until they develop expertise. Expert

users then have a new channel for communicating with designers: their own designs.

Finally, developers can implement new commands that have their origin in the

practice of expert users.

Separating interface from application makes interfaces malleable objects that

users can modify. In fact, novice users use interfaces, not software, so it is incorrect

to assume that they even understand what an open source application is, let alone

whether they know enough C to modify it. This satisfies the first require in culti-

vating user-initiated innovation: users can customize interfaces at run-time using

the Interface Manager, exploring however they wish, knowing that their changes

both produce immediate results and persist. The interfaces on their systems belong

to them, so the virtuous cycle of investment into customization is possible.

Communities of users follow quickly. Co-located users, as McLean, et al. ob-

served, form communities easily, Internet-connected users more slowly. Within

them, novice users receive instruction and example interfaces from expert users

and share both amongst themselves in the process, tailoring their interfaces and

learning about them. While tailoring cultures have been observed for software, they

are poorly supported for modern widget-based GUIs. Decoupling the interface from

the application so as to make the interface a user modifiable artifact achieves this

goal, and allows such a community to flourish. But, the most important benefit of

these communities is the channel they create from users to developers.

New designs created by users from old ones can be incorporated into applications

by designers and developers as user-initiated innovations. The process is shown in

Figure 5.2. Normally, innovation in software flows downstream from developer to

user. Designers and developers collaborate on an application and its interface, and

then provide the software to users. Users communicate upstream only through lim-

60

ited options such as bug reports and focus groups. The Interface Manager allows for

user-initiated, or upstream innovation to occur. Users who have invested time and

effort in improving an interface can upload it to designers. They can then general-

ize and tune the design of the interface and improve its functionality by suggesting

new commands for developers to implement. Once the developers and designers are

satisfied with the improved interface and commands, the new interface is released

back to the user community, satisfying needs that the community expressed by

developing new versions of the previous interface. This is another virtuous cycle.

Users are pleased, as the original interface was modifiable such that it was made

to suit users better through customization, and they can submit new designs to

the original designers in order to communicate it. The application developers are

also pleased, because they receive feedback polished by users within the tailoring

community and can thereby produce a better design. Because of this, the improved

design created based on feedback that they release in a polished form is a product

desired by users. Thus, application developers provide a product they know there

is a market for, and users consume a product that has been and can further be

modified to suit their needs.

There is a final requirement that the Interface Manager must meet in order

to cultivate user-initiated innovation: users need to have the skills required to

make customizations. With the Interface Manager, it is probable that most users

have these skills, but it is not certainly so. Using a combination and composition

language along with a visual interface builder should make customization as easy

as possible. Certainly it is easier to customize an interface by using the Interface

Manager than it is by modifying source code. However, the visual editing system

built for the prototype is not adequately featured. In order to make interface

customization as easy as possible, improvements should be made, as discussed in

the next section.

5.3 Possible Improvements

While the prototype implementation of the Interface Manager demonstrates that

implementation is possible, it is far from fully-featured. In this section, additional

features required for a complete implementation are described. The first area for

improvement is the visual programming system used for customizing interfaces.

The second is the packaging of interfaces. The last improvement is the packaging

of commands are packaged.

61

Finally, an improvement to the research, if not the interface, lies in the assump-

tion that novices can and will become experts. Examining this question requires a

large longitudinal experiment.

5.3.1 Implementation Improvements

The component that falls most short of full functionality is the visual editor, which

needs to be extended in several directions. First, the visual editor must be carefully

judged as an interface: powerful enough for expert designers, safe and easy enough

for novices. Providing such a visual programming system is difficult, but the field

of visual programming offers a large, well researched body of work [13].

Specifically for the visual editor, two kinds of editing capability are needed: the

ability to make cosmetic modifications to the interface, such as widget layout and

choice, and the ability to modify interface functionality. Modification of interface

cosmetics is now routine thanks to the maturity of interface builders. Nearly all

interface builders offer a direct manipulation editing system that allows designers

to size and place widgets on an interface using drag-and-drop, a good way to deal

with cosmetic customization. It is more difficult to customize of how an interface

functions. Functionality customizations are performed on managed interfaces by

modifying expressions built from commands. The current technique for doing so

requires the variable widgets which allow programming by side effect. I suggest,

as shown in Figure 4.11, that a dataflow visual programming language be used

instead. Combination and composition are naturally expressed through dataflow,

and the power of such languages can be demonstrated by their wide adoption. Pipes,

for example, are very successful and are implemented in most CLIs. They are a

central concept of dataflow. Commercial software, such as LabVIEW [15], use visual

dataflow programming to give novice users a more intuitive method of programming

for application domains in which data is successively filtered. Interface builders

such as the QT Designer [35] and Interface Builder [3] allow widgets to be linked to

functionality using simple dataflow semantics. Such systems can provide inspiration

to future visual editor designs.

The second feature needed by a full implementation of the visual editor is a

well-organized collection of default interface descriptions for each application. This

is not only the interface to an application as a user first sees it, but a fallback in

case detrimental customizations are performed to an interface. Furthermore, some

system of version control needs to be provided. Version control can provide an

62

undo/redo stack, and allow branching of interfaces so that multiple versions co-

exist gracefully. If small customizations need to be undone, an interface can be

rolled back a little bit, but the default interface will always be available as revision

zero, in case a complete rollback is required.

A third missing feature has to do with sharing of customizations. It should be

possible to take a piece from one interface and place it into another. Internally,

this should not be too difficult to implement: it requires that an XML node and

its children be copied from one description file and added to another. Externally,

such a feature can be difficult to design. An example of such a feature comes from

the Façades system [33], where selection rectangles on screen space can be used to

combine elements from various interfaces into one window. With Façades, these

interface “slices” cannot interact, but they can with the Interface Manager. Thus,

the problem is an old end-user programming problem of deciding the intention

of the interface combination in order to link functionality correctly. Perhaps the

solution is to make the user link functionality explicitely, but the ability to slice

one interface and place its elements into another is desirable regardless.

The final improvement needed in the visual editor is a well-designed namespace

for expressions and commands so that users can create and re-use functionality

easier. This is analogous to naming and making executable a CLI script on a

Unix system. It is essential for re-use of user created commands and sharing of

customizations. Without it, users cannot easily share new commands with other

users. With it, both complete interfaces and individual commands built from ex-

pressions of existing commands and can be shared throughout the community, new

commands built from expressions of existing commands.

5.3.2 Longitudinal Study

Another potential problem with the Interface Manager, and also the visual editor,

is its users. In the previous section, I claimed, on scanty evidence, that novice

users can explore and learn until they become expert users. Is it possible for every

novice user to become an expert? In order to find out how well novices learn to use

such a system, a longitudinal study is required. Ideally, it would measure how a

community of users evolves as skills for interface customization develop and diffuse,

and as novice users become expert users. Such a long-term, difficult to manage,

study is beyond the scope of this thesis, and indeed there is little consensus on how

to do such a study at a reasonable cost. Such a study is a useful goal, along with

an improved visual editor, for future research.

63

5.3.3 Security Concerns

There are certainly security concerns with a platform that allows a community to

share customizations of the entirety of interfaces. However, these issues already

exist within the Linux community, and some have been solved.

Some interface modifications will create dependencies for new commands: how

can it be guaranteed that new commands are not malicious? Since Interface Man-

ager commands are library functions, a solution can be offered from how Linux

distributions deal with dynamic linking dependencies. For example, in Debian-

based distributions, aptitude resolves dynamic libraries dependencies for a desired

software install by installing them first. Security is performed at this step through

authentication by a signing authority, normally the distribution’s owner. Can un-

official functionality be made safe like this? In short, no. This is a trust problem

that cannot be solved other than by using a signing authority, the solution offered

above.

However, when an unsigned customization makes degrative modifications to an

interface there should be some way to insure that it is not catastrophic. The power

of the Interface Manager to cultivate a tailoring community is reliant on the ability

to share customizations, after all, and not all users have the knowledge to sign

customizations. The first step to take in securing the application of customizations

is to sandbox them to a single interface. With sandboxing in place, a malicious

customization can only destroy a single interface. The second step is to ensure

that a version control system is being used to keep track of interface descriptions.

This way an interface can be rolled back to its previous state if it gets damaged

by a downloaded customization. These security measures should insure that both

signed and unsigned customizations can be downloaded without requiring users to

take too much risk.

5.4 Conclusion

Customization is desirable for post-deployment tailoring of interfaces. As the final

phase of interface design, it allows users to adapt interfaces to their individual re-

quirements and abilities. Clearly, the more an interface is customizable, the more

perfectly it can be tailored to the user. But, although complete customization is

clearly desirable, it has been offered to end-users by very few systems. Squeak,

using Morphic, is unique in providing it, in the form of a completely customizable

64

widget-based GUI. However, Morphic is plagued by several problems. Difficult to

use, it has been so little adopted that its potential is impossible to assess. The In-

terface Manager supplies equally complete customization by offering a combination

and composition language for creating expressions from commands, a more acces-

sible method than Squeak’s full-featured programming language. The deployment

of a command-driven interface style lowers the threshold for customizing function-

ality, which allows even novice users to use existing features as components of new

ones. Furthermore, the Interface Manager uses a modern widget toolkit so that it

integrates better with modern computing environments: it accepts closed and open

source applications from any programming language to export commands to it. For

these reasons, it is an improvement over existing completely customizable systems

and a novel approach to supplying customization.

65

References

[1] An Introduction to the C Shell, in Unix User’s Manual, Supplementary Docu-

ments. University of California at Berkeley, 1986. 11

[2] The Python Language Reference Manual. Network Theory Limited, 2003. 11

[3] Apple. Interface builder. http://developer.apple.com/tools/interfacebuilder.html,

2008. 62

[4] Joerg Beringer. Reducing expertise tension. Commun. ACM, 47(9):39–40,

2004. 7

[5] S. R. Bourne. An introduction to the unix shell. Bell System Technical Journal,

1978. 11, 20

[6] Andrea Bunt, Cristina Conati, and Joanna McGrenere. Supporting interface

customization using a mixed-initiative approach. In IUI ’07: Proceedings of

the 12th international conference on Intelligent user interfaces, pages 92–101,

New York, NY, USA, 2007. ACM. 8

[7] Harvey G. Cragon and W. Joe Watson. A retrospective analysis: The ti

advanced scientific computer. IEEE Computer, 22(1):55–64, 1989. 9

[8] T. Duff. Rc – a shell for Plan 9 and Unix systems. In UKUUG. UNIX - The

Legend Evolves. Proceedings of the Summer 1990 UKUUG Conference, pages

21–33 (of xi + 260), Buntingford, Herts, UK, 1990. UK Unix Users Group. 21

[9] The Squeak Foundation. Squeak homepage. http://www.squeak.org, 2008. 2,

15

[10] Krzysztof Gajos and Daniel S. Weld. Supple: automatically generating user

interfaces. In IUI ’04: Proceedings of the 9th international conference on In-

telligent user interfaces, pages 93–100, New York, NY, USA, 2004. ACM. 8

66

[11] Krzysztof Z. Gajos, Jacob O. Wobbrock, and Daniel S. Weld. Improving the

performance of motor-impaired users with automatically-generated, ability-

based interfaces. In CHI ’08: Proceeding of the twenty-sixth annual SIGCHI

conference on Human factors in computing systems, pages 1257–1266, New

York, NY, USA, 2008. ACM. 1, 8

[12] Ken Getz and Mike Gilbert. VBA Developer’s Handbook. Sybex, Indianapolis,

IN, USA, 2001. 7

[13] Ephraim P. Glinert. Visual Programming Environments: Paradigms and Sys-

tems. IEEE Computer Society Press, Los Alamitos, CA, USA, 1990. 62

[14] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. Back

to the future: the story of squeak, a practical smalltalk written in itself. SIG-

PLAN Not., 32(10):318–326, 1997. 13, 15

[15] Gary W. Johnson. LabVIEW Graphical Programming: Practical Applications

in Instrumentation and Control. McGraw-Hill School Education Group, 1997.

62

[16] Alan C. Kay. The early history of smalltalk. In HOPL-II: The second ACM

SIGPLAN conference on History of programming languages, pages 69–95, New

York, NY, USA, 1993. ACM. 15

[17] Allan MacLean, Kathleen Carter, Lennart Lövstrand, and Thomas Moran.

User-tailorable systems: pressing the issues with buttons. In CHI ’90: Pro-

ceedings of the SIGCHI conference on Human factors in computing systems,

pages 175–182, New York, NY, USA, 1990. ACM. 9, 57

[18] John H. Maloney and Randall B. Smith. Directness and liveness in the morphic

user interface construction environment. In UIST ’95: Proceedings of the 8th

annual ACM symposium on User interface and software technology, pages 21–

28, New York, NY, USA, 1995. ACM. 2, 13, 16, 45

[19] Brad Myers, Scott E. Hudson, and Randy Pausch. Past, present, and future of

user interface software tools. ACM Trans. Comput.-Hum. Interact., 7(1):3–28,

2000. 23

[20] Brad A. Myers. Separating application code from toolkits: eliminating the

spaghetti of call-backs. In UIST ’91: Proceedings of the 4th annual ACM

symposium on User interface software and technology, pages 211–220, New

York, NY, USA, 1991. ACM. 28

67

[21] Brad A. Myers, Dario Giuse, Andrew Mickish, Brad Vander Zanden, David

Kosbie, Richard McDaniel, James Landay, Matthews Golderg, and Rajan

Pathasarathy. The garnet user interface development environment. In CHI

’94: Conference companion on Human factors in computing systems, pages

457–458, New York, NY, USA, 1994. ACM. 27

[22] Bonnie A. Nardi. A small matter of programming: perspectives on end user

computing. MIT Press, 1993. 23

[23] Stanley R. Page, Todd J. Johnsgard, Uhl Albert, and C. Dennis Allen. User

customization of a word processor. In CHI ’96: Proceedings of the SIGCHI

conference on Human factors in computing systems, pages 340–346, New York,

NY, USA, 1996. ACM. 9

[24] Sean Parent, Mat Marcus, and Foster Brereton. Adobe Open Source: Overview.

Adobe Software Technology Lab, http://stlab.adobe.com/group asl

overview.html, April 2007. 25

[25] Randy Pausch, Matthew Conway, and Robert Deline. Lessons learned from

suit, the simple user interface toolkit. ACM Trans. Inf. Syst., 10(4):320–344,

1992. 23, 27

[26] Randy Pausch, Robert DeLine, and Matthew Conway. Suit: the simple user

interface toolkit. In CHI ’92: Posters and short talks of the 1992 SIGCHI

conference on Human factors in computing systems, pages 29–29, New York,

NY, USA, 1992. ACM. 23

[27] Rob Pike. Acme: a user interface for programmers. In WTEC’94: Proceed-

ings of the USENIX Winter 1994 Technical Conference on USENIX Winter

1994 Technical Conference, pages 18–18, Berkeley, CA, USA, 1994. USENIX

Association. 12

[28] Rob Pike. Plumbing and other utilities. Technical report, Murray Hill, NJ,

USA, 2000. 36

[29] Chet Ramey and Brian Fox. GNU Bash Reference Manual. Network Theory

Limited, Bristol, UK, 2006. 11

[30] Martin Reiser. The Oberon system: user guide and programmer’s manual.

ACM, New York, NY, USA, 1991. 3, 12

68

[31] Herbert A. Simon. The sciences of the artificial (3rd ed.). MIT Press, Cam-

bridge, MA, USA, 1996. 33

[32] Richard M Stallman. GNU Emacs Manual. Free Software Foundation, Boston,

MA, USA, 2007. 7

[33] Wolfgang Stuerzlinger, Olivier Chapuis, Dusty Phillips, and Nicolas Roussel.

User interface façades: towards fully adaptable user interfaces. In UIST ’06:

Proceedings of the 19th annual ACM symposium on User interface software

and technology, pages 309–318, New York, NY, USA, 2006. ACM. 63

[34] The Glade Team. Glade user interface builder. http://glade.gnome.org, 2008.

23

[35] Trolltech. Gui builder - trolltech. http://trolltech.com/products/qt/features/tools/designer,

2008. 62

[36] David Ungar and Randall B. Smith. Self. In HOPL III: Proceedings of the

third ACM SIGPLAN conference on History of programming languages, pages

9–1–9–50, New York, NY, USA, 2007. ACM. 13

[37] Eric von Hippel. Democratizing Innovation. The MIT Press, Cambridge,

Massachusetts, 2005. 9, 32, 58

69

	List of Figures
	Trademarks
	Introduction
	Background
	Motivation for Customization
	Completely Customizable Systems
	Unix CLIs
	Oberon
	Squeak with Morphic

	Conclusion

	Designing a Command-Driven GUI
	Introduction
	GUI Toolkits and Interface Builders
	Event-Driven Widget Toolkit
	User Interface Description Languages

	Decoupling Event-Driven Interfaces
	Command-driven, Widget-based GUI's
	Target Users
	Combination and Composition of Commands

	Command Encapsulation
	Applications as Commands Versus Functions as Commands
	Inter-Application Communication

	Interface Management
	Components
	The IM Controller
	The Pointer Table
	The Interface Representation Layer
	The Visual Editor

	Examples
	Application of Multiple Styles
	Making Copy from Cut and Paste
	Save with Backup, an Example of Composition

	Inadequacies of the Prototype

	Discussion
	Summary
	Significance
	Ownership of Interfaces
	Tailoring Culture
	Development Community
	User-Initiated Innovation

	Possible Improvements
	Implementation Improvements
	Longitudinal Study
	Security Concerns

	Conclusion

	References

