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Abstract 

The objective of this research is to build a prototype of a carbon nanotube (CNT)-based 

micro X-ray tube array, which can be used in a real-time cone-beam computed tomography 

(CT) scanner for cancer research. The X-ray tube array consists of an electron source, control 

grids, focusing electrodes, and an anode plate. All the experiments have been executed in an 

ultra high vacuum environment at a pressure of 10⁻⁷ Torr. A thin film consisting of multi-

wall carbon nanotubes (MWNTs) was used as the electron source. A diode configuration was 

employed to test the field emission performance of the CNT thin film. The current density 

achieved was 1mA/cm² at 10V/µm. After the initial burn-in process, a relatively steady 

emission current was obtained for duration of 170 hours. The control grid was made of 25% 

opening space stainless steels mesh. Meshes with different wire diameters were tested in a 

triode structure, and some differences were observed. Multi-anode field emission tests and 

multi-tube electric field simulations were executed. Experiments and simulations have 

revealed crosstalk between pixels during field emission. Based on the above experiments and 

simulations, a signal pixel prototype has been fabricated and is being tested. Moreover, some 

potential optimizations that will be used in the second prototype are also discussed. 
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Chapter 1 

Introduction 

1.1 Motivation 

X-ray was discovered more than one century ago, but the structure of an X-ray tube has not 

changed much since the first design. One of the most important components of an X-ray tube 

is the electron source. In traditional vacuum tubes, filaments were employed as a thermo 

electron emitter. The disadvantages of these hot cathodes are the long response time due to 

the thermionic cathodes and the high power consumption.  Furthermore, the cathodes limit 

the lifetime of the tube due to mechanical wear. In addition, the thermionic electrons have 

random spatial distributions. As a result, fine focusing of the electron beam is very difficult 

[1]. 

An alternative mechanism to extract electrons is through field emission [2]. By this 

mechanism, the electrons near the Fermi level can tunnel through the energy barrier and 

escape to the vacuum under the influence of a sufficiently high external electric field. The 

physics of field emission from metallic surfaces is well understood [3]. Several advantages 

are associated with field emission cathodes, e.g., they have a faster response time, consume 

less power and have a longer lifetime.  

Since the discovery of carbon nanotubes by Iijima in 1991 [4], extensive research on carbon 

nanotubes has been conducted. Field emission from carbon nanotubes was first reported in 

1995 [5]. The remarkable field emission properties of carbon nanotubes are attributed to their 
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geometry, high thermal and electrical conductivity, and chemical stability. Field emission 

from carbon nanotubes has been studied extensively since it was discovered [6]. Due to the 

variety of carbon nanotubes, the properties of carbon nanotubes thin film are not understood 

thoroughly. It is still necessary to study the parameters of carbon nanotube thin film emitters 

to obtain the best performance. 

1.2  Objectives 

The main goal of this research is to design a real-time cone-beam CT scanner, which will be 

used to guide high energy radiation beams in cancer treatment [7, 8]. In radiation therapy, the 

precise treatment intent depends on the tumor type, location, and stage, as well as the general 

health of the patient. Radiation beams are commonly applied to tumors, but it is necessary to 

include a margin of normal tissue around the tumor to allow for uncertainties in daily set-up 

and internal tumor motion. To spare normal tissues, such as the skin or organs that radiation 

must pass through in order to treat tumors, shaped radiation beams are aimed from several 

angles to intersect at the tumor, providing a much larger absorbed dose there than in the 

surrounding healthy tissue [9]. With a real-time CT scanner, radiation oncologists can 

monitor the position and shape of tumors and adjust the treatment beams in vivo. The total 

radiation dose can be reduced as a result, which will benefit the patient by decreasing the 

margin of normal tissue exposed. 

This study is focused on the first stage of a project to design the structure of a real-time cone-

beam CT scanner and a micro X-ray tube, and to study the field emission properties of 
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carbon nanotubes. Suggested optimization methods will be included based on our 

experimental results. 

1.3 Thesis Organization 

The content of this thesis can be divided into three parts: (i) related concept and theory; (ii) 

experiment setup design and experiment results; and (iii) optimization methods and future 

works. 

Chapter 2 focuses on the theory of field emission. The Fowler-Nordheim theory is the basic 

model of field emission. However, it cannot fully explain some phenomena, such as spike 

current and vacuum breakdown. As a result, the thesis briefly touches on the Nottingham 

effect and Joule heating as well as the possible reason for vacuum breakdown.  

Chapter 3 gives some related properties of carbon nanotubes, for example, band structure and 

atom structure, the phenomena of field evaporation, and tip melting during field emission 

which have not been widely discussed in the literature.  

Chapter 4 describes the experiment setup. The configuration of the system and the 

experiment circuit are explained, and the SEM images provided give a clear idea of the 

carbon nanotube thin films used in the experiments. 

Chapter 5 presents the experiment results. The voltage-current curve is characteristic of that 

is yielded by the widely accepted Fowler-Nordheim theories. The long-term stability of these 

carbon nanotubes and the phenomena of vacuum breakdown and carbon nanotube 

degradation which have no established supporting theories, are also observed. 
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Chapter 6 discusses the factors of carbon nanotubes that affect field emission performance 

and possible methods to optimize it. These methods focus on the types of carbon nanotubes 

and the forms of the films. 

Chapter 7 summarizes of this thesis and suggested plans for further experiments.  
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Chapter 2  

Field emission 

2.1 History of Field Emission 

In 1897, R. W. Wood became the first person to describe the phenomenon of field emission 

[2], which he observed during experiments with a discharge tube. Initial theoretical insight 

into this process was provided by W. Schottky in 1923. He assumed that the electrons are 

emitted over a potential barrier at the surface lowered by the applied electric field [10].  

In 1928, R.H. Fowler and L. W. Nordheim developed a theory of field emission based on 

quantum-mechanical tunneling of electrons through the surface potential barrier [3]. This 

theory accurately described the dependence of the emission current on the electric field and 

the work function, which is the energy needed to remove an electron from the Fermi energy 

level into a vacuum. It also followed from this theory that no external excitation is required 

for the initiation of this process. A clear evidence to this was obtained by J. E. Henderson et 

al [11] in their studies of the energy distribution of electrons and the measurements of the 

calorimetric effect. 

An important development in the field emission area was the invention of the field emission 

microscope by E. W. Muller in 1936 [10]. The understanding of surface properties of field 

emission has benefited from this invention. 

http://en.wikipedia.org/wiki/Robert_W._Wood
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One of the most important results of the quantum-mechanical theory was the prediction of 

extremely high field emission current densities. In 1940, R. Haefer experimentally proved the 

feasibility of achieving high current densities of ~10⁶A/cm² [10]. In 1950s, W. P. Dyke and 

his group achieved current densities of 10⁷-10⁸A/cm² under pulsed and steady-state 

conditions respectively [12, 13]. A number of important results were obtained by Dyke’s 

group relate to the causes of instabilities and degradation of field emitters. It shows that the 

main cause of the emitter degradation was Joule heating of the tip by the emission current. 

M. I. Elinson and co-workers found that the maximum current values were dependent on the 

emitter geometry and showed that by increasing the tip cone angle, the current density could 

be increased by about an order of magnitude without emitter tip damage [10].  

Further progress in research on field emission at extremely high current densities had been 

conducted by G. N. Fursey et al [10]. In DC experiments, thermal effects due to field 

emission at high current densities were demonstrated. A new type of instability caused by the 

spontaneous change of the cathode surface micro-geometry near the thermal destruction 

threshold was discovered. Current densities of 10⁹A/cm² were observed with nanosecond 

range pulse lengths by G. A. Mesyats and G. N. Fursey [10].  Moreover, Current densities of 

~10¹¹A/cm² were reported by G. N. Fursey et al, in 1998. These current densities are close to 

the theoretical supply limit of a metal’s conduction band when the electron tunneling 

probability is unity [10]. 
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Experimental and theoretical studies have been conducted to increase the stability of the field 

emission current and prevent ion bombardment of the cathode. Recent studies showed that an 

applied microwave field could reduce the intensity of cathode ion bombardment [10].  

The practical applications of field emission began in 1959 by W. P. Dyke whose company 

produced pulsed X-ray apparatus for recording high-speed processes and compact X-ray 

sources for medicine [14]. Subsequently, a related phenomenon referred to as explosive 

emission was discovered [15]. In 1960s, the possibility of using field emitters as an electron 

sources for atomic-scale resolution electron microscope was demonstrated [16]. 

The research of using arrays of field emission cathodes in various microelectronic 

components and devices was suggested by K. R. Shoulders and initiated in the United States 

by C. A. Spindt [17]. The most striking example of the applications of field emission 

cathodes to an area of technological interest is in flat-panel displays. 

In recent years, with the improvement of the experimental techniques, many new phenomena 

were observed, for example, broadening of the energy spectra at high current density [18], 

the presence of additional peak of energy spectra, and the presence of polarized electrons 

from metallic emitters coated with ferromagnetic films [10]. Although some of these 

phenomena cannot be explained by previous field emission theories, Fowler-Nordheim 

model is still the most widely used field emission theory. 
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2.2 Fowler-Nordheim Theory 

The field emission process is a unique type of electron emission as it is exclusively due to 

quantum-mechanical effects. Field emission is the emission of electrons from the surface of a 

solid or liquid into a vacuum due to the presence of high electric fields. In the field emission 

process, electrons tunnel through the potential barrier at the surface, which the high electric 

field sufficiently narrows for the electrons to have a non-negligible tunneling probability. 

Generally, the Fowler-Nordheim theory [19] is used to quantitatively describe the field 

emission process for metals. Quantifying the field emission process involves calculating the 

field emission current density as a function of the electric field. Since this process is 

essentially a tunneling process, both the tunneling transition probability for the electron to 

tunnel through the potential barrier and the number of electrons incident on the potential 

barrier must be found. Integrating these over all energy values gives the desired current 

density. 

Figure 2-1 shows the potential barrier at the surface of a field emitter. Inside the metal, 

electrons occupy the energy band up to Fermi energy level. The potential energy outside of 

the metal is regarded as entirely due to the image forces 
2 / 4e x , where x is the distance 

from the surface of the metal. When an electric field is applied, the field contribution to the 

potential energy is eFx , where F is the strength of electric field. Then, the effective barrier 

can be described by the potential function  
2

( )
4

e
U x eFx

x
    .  
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Figure 2-1: Potential Barrier of Field Emitter 

The Fowler-Nordeim theory is based on the following main assumptions [10]: 

1. The metal obeys the free electron model of Sommerfeld with Fermi-Dirac 

Statistics. 

2. The metal surface is planar, so the one-dimensional problem is considered. 

Thus as long as the potential barrier thickness is several orders of magnitude 

less than the emitter radius, this assumption is justified. 

3. The potential within the metal is a constant; the applied electric field does not 

affect the electron states in the metal. 

4. The calculation is performed for the temperature T=0 K. 
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Under these assumptions, the current density is given by the equation: 

0
( ) ( , )x x xj e n E D E F dE



                                            (2-1)
 

where e  is the electron charge, ( )xn E is the number of electrons per second having energies 

between xE and x xE dE  incident on 1 cm² of the barrier surface from within the metal, 

2 / 2x xE p m
 
is the part of the electron kinetic energy carried by the momentum component 

xp normal to the surface, m is free electron rest mass, D is the barrier transparency and F is 

the applied electron field. 

The barrier transparency is calculated using Wentzel-Kramers-Brillouin approximation [10]. 

For the potential barrier 
2

( )
4

e
U x eFx

x
   , which was described pervious, the transparency 

is given by [3, 10] 

1/2 3/28 (2 ) | |
( , ) exp ( )

3

x
x

m E
D E F y

he F




 
  

                               (2-2)

 

where ( )y is the Nordheim function 

1/2 2 1/2 1/2 2 1/2( ) 2 [1 (1 ) ] [ ( ) {1 (1 ) }] ( )y y E k y K k        , 

having for an argument 

3 1/2( )e F
y


  
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where   is the work function, and 

        
/2 /2

2 2 1/2

2 2 1/20 0
( )         ( ) (1 sin )

(1 sin )

d
E k K k k d

k

 
 


  

   

are complete elliptic integrals of the first and second kinds, with 

2 1/2
2

2 1/2

2(1 )

1 (1 )

y
k

y




  .

 

Put the transparency equation (2.2) into the current density equation (2.1); then, the field 

emission current density at T=0 follows the classic Fowler-Nordheim formula [3, 10]: 

3 2 3/2
7

2
exp 6.83 10 ( )

8 ( )

e F
j y

h t y F




 

 
   

   

4where  3.79 10 /   and  ( ) ( ) (2 / 3)( ( ) / )  .y F t y y y d y dy      
 

The functions ( ) and ( )y t y  have been tabulated by earlier researchers as can be found in 

[10] for instance. 

 

This formula gives an excellent description of the exponential dependence of the emission 

current on work function   and field strength F. 

In the Fowler-Nordheim coordinates, the functional dependence ln (1/ )j f U is a straight 

line. Here, I j S  is the emission current, with S as the emitting area and F U , where   

is a geometric quotient determined by the geometry of the vacuum gap. 
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2.3 Thermal-field Emission 

At nonzero temperatures, some electrons occupy energy levels higher than Fermi level. 

These electrons begin to contribute to the emission current. Emission of this sort is referred 

to as Thermal-Field emission. In this case, the general Fermi function should be used [10]: 

1
( , )

exp(( ) / ) 1
x

x F B

f E T
E E K T


 

 

where FE  is the Fermi energy and BK is the Boltzmann constant. 

At T<1000K, an analytic expression can be obtained [20]. The ratio of ( , )j F T to that at zero 

temperature ( ,0)j F  may be expressed as 

( , )

( ,0) sin

j F T

j F




  

where 

34 2 ( )
9.22 10

mk t y T T

he F F

 
   

.
 

This expression holds as long as ω<0.7, such that ( , ) / ( ,0) 5j F T j F  . At high temperatures, 

when ω>0.7, the emission process moves into the regime of Schottky emission (Thermal-

Field Emission) and higher temperatures will lead to the regime of pure thermionic emission. 
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2.4 Extending the Field Emission Theory 

The model of the bulk metal and its surface in Flower-Nordheim theory is highly simplified. 

With the development of atomically sharp emitters used in tunneling spectroscopy, there 

came a need to understand the degree of localization of the tunneling process. However, there 

is no theory that permits accurate calculation of cathode operation characteristics. Some 

suggested solutions are listed below [10]: 

1. Field Emission from Small-Scale Objects 

Many works show that one-dimensional approximation gives a fair description of the 

field emission process for atomically smooth emitters that have a radius greater than 

0.1 μm. In this case, the width of the potential barrier is significantly less than the 

emitter’s radius of curvature. On the other hand, with field emitters that have a radius 

of curvature close to or less than the barrier width, the assumptions of one-

dimensional barrier and field uniformity over the apex of the tip are no longer 

justified. In particular, it is necessary to solve a three-dimensional Schrodinger 

equation using an asymmetric potential barrier and calculate the behavior of the 

potential near the surface, accounting for its radius and polar angle variations. As 

solving such a problem involves formidable difficulties, only rough calculations are 

made. 
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2. Effect of Fermi Surface Structure 

The Flower-Nordheim theory is based on Sommerfeld’s free electron model, and the 

Flower-Nordheim equation was derived using the Fermi-Dirac energy distribution 

function. Modern electronic theory of metals is based on the idea that electrons in 

metals behave as quasi-particles displaying a complex energy dispersion law. 

Theoretically, the temperature dependence of the field emission differs in principle 

from what is predicted by the free electron model. In this theory, the emission current 

decreases instead of increases as in the free electron model.  

3. Many-Particle Effects 

Fowler-Nordheim theory is essentially a one-electron theory. There are many 

phenomena that cannot be described in terms of the one-electron approximation. With 

the progress made in quantum-field methods due to statistical physics, it became 

possible to develop a multi-electron theory of field emission. Although there have 

been many attempts to apply this approach, the calculation of such a problem 

involves formidable difficulties. At present, the Fowler-Nordheim theory is still the 

most widely used field emission theory. 

2.5 Maximum Field Emission Current Density 

One of the most remarkable results of field emission quantum theory is the prediction of very 

high current density, which is possible due to two factors. First, if electrons exit the solid by a 

tunneling mechanism, no energy is required for maintaining the emission process. Second, 
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there is a very large reservoir of electrons near the Fermi level of a metal. As the density of 

the electrons in the conduction band is of the order of 10²²-10²³cmˉ³, the theoretical limit of 

field emission current density is about 10¹¹A/cm² [10].  

In a limiting case of a potential barrier transparency of 1, the maximum electron current 

density passing through a metal-vacuum interface can be expressed in the free electron model 

as 

3

3

( , ) 0

,
( )

p n

p n d p
j e f p n

m h


   

  
  

 

where, e and m are the electron charge and mass, respectively, p


is the electron momentum, 

n


is the unit vector normal to the emitting surface, and f is the Fermi function. 

At 0T K , ( )f p


 equals unity at the Fermi surface, and ( )f p


 outside it. For a spherical 

Fermi surface,  

2 2
3

30 0 0
sin cos

pFe dp
j d d p

m h

 

         

where pF is the momentum of an electron at the Fermi surface. Integrating this equation, we 

can get a simple relation for the limiting emission current due to conduction band electrons in 

the metal: 

2
9 2 2

3
4.3 10 [ / ]e F

F

em E
j E A cm

h

 
    
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where FE  is the Fermi energy (in eV) measured from the bottom of the conduction band. The 

field emission current density is usually lower than that predicted by this equation because of 

the onset of field emission instability at high current density.   

2.6 Energy Spectra of Field Emission 

The first attempt at measuring an energy distribution of field emitted electrons was made in 

1931. Even though the resolution was very poor, this attempt did show that the electrons 

originated at the Fermi level as Fowler and Nordheim had predicted [21]. 

The potential distribution near the cathode surface (i.e., the potential barrier at the cathode 

micro-roughness) is written so: 

0 0( ) / (4 )x e x U x      

where 0  is work function, 0U  is cathode surface electric intensity, e  is electron charge, x  

is distance from the cathode,   is the field gain factor. As the potential distribution near the 

micro-roughness is essentially nonlinear, the equation should be written as 

0( ) / (4 ) ( )x e x T x     

where ( )T x  is a nonlinear function generally depending on the shape of the micro-roughness. 

Every shape of the micro-roughness has its own form of the function ( )T x . The barrier 

structure and field emission current density and energy spectrum are significantly determined 

by the dimensionless parameters 0 0/M U a , where a  is the micro-roughness height [22]. 
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In a number of papers, the possibility of groups of electrons tunneling into a vacuum, 

correlated in space and time, has been discussed. The first direct measurement of statistical 

field emission events was reported in 1965. A complete investigation of the statistics of field 

emission from tungsten shows that its spectra have a single peak. In G. Fursey’s experiment, 

many-particle effects were not observed. This result infers that the multi-peak spectra 

observed in other’s experiments are connected with parasitic secondary emission from 

intermediate electrodes. In measurements carried out with an intermediate accelerating 

electrode, a secondary emission multi-peak spectrum was obtained. Later, a detailed 

investigation of the field emission statistics for different metals was conducted. The results 

show with a likelihood of 99.9% accuracy that the field emission from certain metals is a 

single particle. 

2.7 Heating in Field Emission  

For many years, it was believed that the major cause of emitter destruction was Joule heating. 

However, some experiments indicate that the dominant contribution to the thermal balance 

during field emission is due to Nottingham effect, which is a purely quantum-mechanical 

energy exchange process. According to this theory, most of the electrons that tunnel through 

the potential barrier are at lower energy levels than the Fermi level. After these electrons 

have been emitted into the vacuum, electrons in the conduction band will replace them. As 

the electrons in the conduction band have higher energy than that of the emitted electrons, 

they transfer energy to the lattice when replacing the emitted electrons. At a high current 
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density, the energy associated with the Nottingham effect could exceed the energy due to 

Joule dissipation. Together with Joule heating, Nottingham heating causes a rapid 

temperature rise in the emitter. After the emitter is heated to a high temperature, most of the 

emitted electrons are at a higher energy level than the Fermi level; the Nottingham effect 

begins to cool the cathode. This specific temperature is referred to as the inversion 

temperature [23]. Joule heating and Nottingham effect together can heat the cathode faster 

than each of can alone. 

The first theoretical analysis of emitter tip self-heating was carried out by W. Dolan et al 

[12]. They calculated the value of the steady-state maximum current density for a one-

dimensional model of an emitter tip. The three-dimensional problem was solved by 

Glasanov, Baskin, and Fursey using calculations conducted for a tip of the form suggested by 

Dyke [10]. These calculations took into account Joule heating, Nottingham and Thomson 

effects, and thermal radiation [24]. The temperature dependence of the resistivity, heat 

capacity, and surface emissivity were tabulated. The most important result of these 

calculations is their description of the overheated core’s formation inside the emitter apex. 

The temperature at the surface may be well below the melting point, while in the internal 

region, it may be equal to several tens of thousands of degrees, leading to enormous 

temperature gradients and the generation of large thermoelastic stresses. The value of 

tangential stresses at the tip surface can exceed 92 10 Pa [25], which can destroy the tip 

before the melting point is reached. 
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It is known that the maximum attainable field emission current density is limited by Joule 

Heating of the lattice and Nottingham effect. Whereas Joule Heat is released throughout the 

bulk of the cathode, the heat produced by Nottingham effect is localized to the near surface 

region whose thickness is of the order of an electron-phonon free path. Above the Debye 

temperature, the Nottingham effect is a surface phenomenon. Lowering the emitter 

temperature causes a significant reduction in Joule heating and a considerable increase in the 

electron-phonon free path, which shifts Nottingham heating to a bulk effect. Therefore, the 

maximum field emission current density can be increased by decreasing the emitter 

temperature [26].  

2.8  Field Emission and Vacuum Breakdown 

Vacuum breakdown is a complicated phenomenon connected with a large amount of 

processes in strong electric fields. It is now firmly established that field emission plays an 

important role in breakdown initiation [27]. In many cases, vacuum breakdown is initiated by 

the thermal explosion of a micro-tip at the cathode surface, caused by the field emission 

current. Emitters heated by field emission currents result in thermal instability and transition 

from field emission to explosive emission and vacuum breakdown [15, 28]. 

Sometimes breakdown is preceded by the appearance of micro-discharges, low-power pulses 

of pre-breakdown current, and peak current. The repetition rate of micro-discharges increases 

with applied voltage. With mass spectrometry, it has been established that micro-discharge 

currents contain not only an electronic component, but also positive and negative ions [29]. 
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One of the most comprehensive studies in which the DC breakdown mechanism has been 

confirmed experimentally is that performed by D. Alpert and co-workers [30]. They showed 

that, taking into account the factor of electron field enhancement at micro-protrusions, local 

breakdown electric field appears to be independent of gap spacing and is unaffected by 

electrode geometry. The additional observation that the electric field at which vacuum 

breakdown takes place is a constant can be interpreted so that breakdown occurs as the 

density of the field emission current from cathode micro-protrusions reaches a certain value 

[29, 31]. 

When a high voltage is applied to a gap for a long time, a variety of processes occur at the 

electrode and in the gap. It is desirable to identify the processes directly responsible for the 

initiation of breakdown and domination of the mechanism. In practice, some pre-breakdown 

processes are either undetectable or they cannot be identified and resolved in space and time.  

In numerous experiments, it has been established that breakdown voltage depends to a large 

measure on electrode material. There is a tendency for the breakdown voltage to increase as 

the melting temperature and mechanical strength of the electrode material increase. The 

breakdown voltage is strongly affected by the duration that the voltage is applied and the rate 

at which voltage is increased. Other factors are also known to influence breakdown voltage, 

namely, the conditioning of the gap by successive breakdowns, the vacuum conditions, the 

parameters of the electric circuit in which the gap is connected, the electrode curvature, area 

and temperature, etc. [28, 29].  
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Chapter 3  

Introduction of Carbon Nanotubes 

3.1 Physics of Carbon Nanotubes 

Carbon Nanotubes were discovered and first characterized in 1991 by Iijima [4] of NEC 

laboratories. Shortly after the discovery of multiwall carbon nanotubes, single wall carbon 

nanotubes were synthesized [32].  

Because the microscopic structure of single wall carbon nanotubes is closely related to that of 

graphene, the tubes are usually labeled in terms of the graphene lattice vectors. This structure 

can be specified by its circumferential vector, as defined by the chiral vector that connects 

two crystallographically equivalent sites on a graphene sheet. In this way, a single wall 

carbon nanotube’s geometry is completely specified by a pair of integers (n,m) denoting the 

relative position of the pair of atoms on a graphene strip. When rolled onto each other, these 

atoms form a tube. In such a tube, a1 and a2 are the unit vectors of the hexagonal honeycomb 

lattice [33, 34].  

Due to periodic boundary conditions along the circumferential direction of the tube, the 

allowed wave vectors “around” the nanotube circumference are quantized: they can take only 

a set of discrete values. In contrast, the wave vectors along the nanotube axis remain 

continuous for infinite tubes. Plotting these allowed vectors for a given nanotube onto the 

Brillouin zone of graphene generates a series of parallel lines. The length, number, and 

orientation of these cutting lines depend on the chiral indices (n,m) of the nanotube. The 
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basic idea behind the zone-folding approximation is that the electronic band structure of a 

specific nanotube is given by superposition of the graphene electronic energy bands along the 

corresponding allowed k lines [35, 36]. 

Figure 3-1 [36] shows the graphene honeycomb network with lattice vectors a1 and a2. The 

chiral vector Ch=5a1+3a2 represents a possible wrapping of the two-dimensional graphene 

sheet into a tubular form. The direction perpendicular to 
hC


is the tube axis. The chiral angle 

is defined by the 
hC


 vector and the 

1a


 zigzag direction of the graphene lattice. Figure 3-1 

represents a (5,3) nanotube under construction, with the resulting tube is illustrated on the 

right. 

 

Figure 3-1: Graphene Honeycomb Network 

Carbon nanotubes have unique electronic properties due to electron confinement in the same 

direction to the axis of the tube as carbon nanotubes consist of a monolayer of graphene 
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sheet. Since their discovery, carbon nanotubes have been regarded as potential molecular 

quantum wires. Their electrical conductivity is about 6 orders of magnitude higher than 

copper [37]. Depending on the details of their atomic arrangement, they behave as metals or 

semiconductors. All (n,n) tubes (armchair type) are metallic, while (n,m) (n≠m) tubes are 

semiconductors. If 2n+m or n+2m are multiples of 3, then it is a narrow-gap semiconductor, 

otherwise it is wide-gap semiconductor.  In multi-wall nanotubes, the electrical properties of 

individual tubes vary greatly from tube to tube mainly because of disorder and localization 

effects. Figure 3-2 shows the atomic structures of (12, 0) zigzag, (6, 6) armchair, and (6, 4) 

chiral carbon nanotubes [36]. 

 

Figure 3-2: Atomic Structures of Carbon Nanotubes 

Carbon nanotubes have some unique mechanical and electrical properties. As the C=C bond 

is considered to be the strongest bond in nature, carbon nanotubes have great strength in the 

direction of the nanotube axis and thus have a very high elastic modulus. Young's modulus is 

of the order of 1 TPa [38], in contrast to, for example, the 70 GPa of aluminum. Carbon 

nanotubes also have high thermal conductivity in their axial direction [39]. It is estimated to 
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be about five times that of the copper. In the case of single-wall carbon nanotubes at low 

temperature, the electronic waves may remain extended along the nanotube over several 

microns, which shows that the motion of electrons are quantum mechanical in nature. 

3.2 Bands Structure of Carbon Nanotube 

As the nanotubes are one dimensional, their Brillouin zone is one dimensional as well. The 

nanotube band structure is therefore represented along the ΓX direction [36]. 

In (5,5) armchair nanotubes, six bands for the conduction and an equal number for the 

valence states are observable. However, four of these bands are degenerate, leading to ten 

electronic levels in each case, consistent with the ten hexagons around the circumference of 

the (5,5) nanotube. The energy bands of all armchair nanotubes exhibit a large degeneracy at 

their zone boundaries because of the absence of dispersion along the segments connecting the 

neighboring centers of the BZ sides, an effect that yields the so-called trigonal warping of the 

bands [40]. 

The 1D dispersion relations E(k) for the (9,0) and (10,0) zigzag nanotubes are illustrated in 

Figure 3-3. As expected, the (9,0) tube is metallic, with the Fermi surface located at Γ, 

whereas the (10,0) nanotube exhibits a finite energy gap at Γ. In particular, in the case of the 

(10,0) nanotube, there is a dispersionless energy band at 0/ 1E    , which gives a 

singularity in the density of states at these particular energies. For a general (n,0) zigzag 

nanotube, when n is a multiple of 3, the energy gap at k=0 (Γ point) becomes zero. However, 

when n is not a multiple of 3, an energy gap opens at Γ. The corresponding densities of states 
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have a zero value at the Fermi energy level for the semiconducting nanotube and a small 

nonzero value for the metallic one. 

The band structure and density of states for different kinds of nanotubes within the zone-

folding model are showed in Figure 3-3 [36]. In these figures, the Fermi level is located at 

zero energy. The corresponding figures are (a) a (5,5) armchair nanotube, (b) a (10,0) zigzag 

nanotube,  (c) a (9,0) zigzag nanotube, and (d) a (8,2) chiral nanotube. 

  

Figure 3-3: Band Structure and Density of States for Nanotubes 

In semiconducting zigzag or chiral nanotubes, the band gap is independent of the chiral angle 

and varies inversely with the nanotube diameter. Density-of-states measurements by 

scanning tunneling spectroscopy provide a powerful tool for probing the electronic structure 
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of carbon nanotubes. It can be shown, indeed, that under some assumptions, the voltage-

current derivative dI/dV is proportional to the density of states [41]. 

The density of states ΔN/ΔE represents the number of available states, ΔN, for a given 

energy interval, ΔE (ΔE→0). This density of states is a quantity that can be measured 

experimentally under some approximations. The shape of the density of states is known to 

depend dramatically on dimensionality. In 1D, the density of states diverges as the inverse of 

the square root of the energy close to band the extremes. These “spikes” in the density of 

states are called Van Hove singularities and manifest the confinement properties in directions 

perpendicular to the tube axis. As carbon nanotubes are one dimensional, their corresponding 

density of states exhibit such spiky behavior at energies close to band edges. The position of 

these Van Hove singularities can be analytically derived from the dispersion relations [36]. 

3.3 Defect and Emission Sites of Carbon Nanotubes 

As with any material, the existence of defects in carbon nanotubes affects those tubes’ 

material properties. Defects can occur in the form of atomic vacancies. A high density level 

of such defects can lower the tensile strength of a carbon nanotube by up to 85%. Another 

form of defect is known as the Stone Wales defect, which creates a pentagon and heptagon 

pair by rearrangement of the bonds. Because of the very small structure of CNTs, their 

tensile strength is dependent on their weakest segment in a similar manner to a chain, where 

a defect in a single link diminishes the strength of the entire chain [42]. 
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The carbon nanotubes’ electrical properties are also affected by the presence of defects [43], 

which often results is lowered conductivity through the defective region of the tube. Some 

defect forms in armchair-type tubes (which can conduct electricity) can cause the region 

surrounding a defect become semiconductor. Furthermore, single monoatomic vacancies 

induce magnetic properties. 

The carbon nanotube's thermal properties are heavily affected by defects [44]. Such defects 

lead to phonon scattering, which, in turn, increases the relaxation rate of the phonons. This 

increase reduces the mean free path and reduces the thermal conductivity of nanotube 

structures. 

The stability of the emission current is important for field emission devices. However, it has 

been reported that either the current becomes highly unstable or that structural damage of 

carbon nanotubes occurs when the current or electric field is high. With respect to the 

stability of the emission current, structural change at the tip of the carbon nanotube is an 

important subject in understanding the mechanism of the current fluctuation. Though it is 

expected that the emission sites are closely related to the form of the tips of the carbon 

nanotubes, the relation between the emission sites and the tip forms is not clear [45]. The 

emission sites of carbon nanotube can be observed using field emission microscope and field 

ion microscope [46]. T. Fujieda et al. observed a bright spot at the tip of a multi-wall carbon 

nanotube during their field emission experiments [47]. The bright spot was assumed to be 

related to the emission site on the multi-wall carbon nanotube. They also reported structural 

changes to the tip, namely, the outer layers of multi-wall carbon nanotubes were peeled off 
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during field emission, and then functioned as second emission sites for the concentration of 

the electric field. Y. Saito et al. observed the tip of carbon nanotubes with field emission 

microscope [48] and reported that capped multiwall carbon nanotubes gave field emission 

patterns consisting of a number of bright solid spots. For open carbon nanotubes, annular 

bright rings were observed. 

The ends of capped carbon nanotubes are capped with curved graphene layers. At least 12 

pentagons are needed to close the hexagonal network of a nanotube [49]. Figure 3-4 [50] 

shows some possible tip structures for carbon nanotubes. In these structures, pentagons are 

included, and the shape of the cones changes as a function of the number of pentagons. A 

pentagon introduces a positives curvature to a hexagonal lattice, and the strain is localized 

around the pentagon. Regions other than pentagons are flat, so the portions where pentagons 

are located extrudes. Since the electric field concentrates on sharp points, the portions where 

pentagons located are the most probable emission site. 

 

Figure 3-4: The Possible Tip Structure with Cone Shape 
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3.4 Energy Spectra of Emitted Electrons 

One important advantage of field emitters is that the energy spread of them is far lower than 

that of thermo emitters [11, 49]. Electron energy analyzers are used to measure the energy 

distributions of emitted electrons.  The full width at half maximum of the distribution is 

typically 0.45 eV for a metal. Many studies show that the field emission energy distribution 

of nanotubes is significantly narrower than that for a metallic emitter. Figure 3-5 shows one 

of the field electron energy spectrums obtained on a multi-wall carbon nanotube film by 

Bonard et al [51]. In their measurement, the full width at half maximum is less than 0.2cV.  

 

Figure 3-5: Field Emission Electron Energy Spectrum 

C. Oshima et al. reported that the shape of the main peak in the spectrum of carbon 

nanotubes is clearly different than that seen in normal tungsten tip emitters [52]. The energy 

spectra peak of carbon nanotubes is broader than those of a tungsten emitter. The broad peak 
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of carbon nanotubes show that the high-energy electrons are injected into the end cap from 

the tube interior, and band bending occurs near the emission sites. 

3.5 Work Function of Carbon Nanotube 

The material’s work function is an important parameter of field emitters. The sidewall and 

the tip of carbon nanotubes have different work functions. The applications of nano-

electronics focus on the work function of the sidewall [53]. In field emission applications, the 

work function of tips and defects are the point of interest because of their emission of 

electrons [52]. Many methods have been developed based on different physical effects to 

measure and calculate work function. These methods are divided into two groups: one is to 

measure the energy of photons emitted or absorbed; the other one is to measure the contact 

potential difference between the sample and a reference electrode.  

Methods based on photoemission and thermionic emissions are generally used to measure the 

work function of carbon nanotubes. It was reported that the work functions of single-wall and 

multi-wall carbon nanotubes are between 4.7 and 5.1 eV [53-56]. However, with these 

methods, we can obtain only the work function of the sidewalls. 

Energy distribution measurement is the only method to determine the work function of a field 

emitter. Many experiments have been conducted to measure the work function of carbon 

nanotubes, but the results are still fragmentary [35]. Most of the reported work functions of 

nanotubes are around 5eV, which is the value of the work function of carbon.   
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Chapter 4  

Experiment Setup 

4.1 Overview 

Figure 4-1 shows the whole setup of our experiments. The system was composed of four 

major sub-systems, i.e., (i) the field emission configuration which is mounted inside the 

vacuum chamber, (ii) the data acquisition and control circuit, (iii) the vacuum pump and 

vacuum chamber, (iv) a high voltage power supply.  

 

Figure 4-1: Experiment Setup 

i 

ii 

iii 

iv 
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Successful field emission production can occur only in an ultra-high vacuum (UHV) 

condition where the emitted electrons can actually reach the anode and avoid colliding with 

air particles [6]. Therefore, a vacuum chamber had to be designed to house the cathode and 

the anode in a vacuum environment. 

The behavior of its cathode is key to obtaining a high performance field emission device. The 

performance of different kinds of field emission cathodes, such as metallic Spindt-type 

emitters [57] and nano-structured diamonds [58], has been studied for a long time. However, 

Spindt-type emitters suffer from a high manufacturing cost and limited lifetime. Their 

failures are often caused by ion bombardment from residual gas species that blunt the emitter 

cones. On the other hand, nano-structured diamonds are unstable at high current densities. 

Carbon nanotubes, an allotrope of carbon, have the potential of being used as cathode 

material in field emission devices. 

4.2 Carbon Nanotubes Film 

The multi-wall carbon nanotube films used for this study were realized by plasma-enhanced 

hot filament chemical vapor deposition (PECVD) at NanoLab Inc. Acetylene ( 2 2C H ) gas 

was used as the carbon source for the growth of carbon nanotubes, and ammonia ( 3NH ) gas 

was used as both a catalyst and as a dilution gas. In this process, the intensity of plasma was 

found to be critical in determining the aspect ratios of CNTs and their range of both site and 

height distributions within a given film. As the plasma intensity was increased, two structural 
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changes were observed: (i) a decrease in average tube diameters and (ii) a significant increase 

in tube lengths. 

Three kinds of multi-wall carbon nanotube films were used in these experiments. The 

specifics of the carbon nanotube thin films are listed in Table 4-1. Film 1 has the highest 

density we were able to obtain from Nano-Lab, and the density of Film 2 and 3 is the 

theoretical optimized density for field emission. The method of calculating the optimized 

density is described in Chapter 6. The length and diameter of the carbon nanotubes listed 

below were measured after the films were fabricated because these values cannot be 

controlled accurately during the process of fabrication 

 

 Film 1 Film2 Film 3 

Substrate Cr-Cu Cr-Stainless Steel Cr-Quartz 

Density(cm ²̄) 1×10⁹ 5-10×10⁶ 3.5×10⁶ 

Length(μm) 10 13 15 

Diameter(nm) 100 50 150 

Shape of Film Round Square Square 

Area 10 mm diameter 8mm×8mm 8mm×8mm 

Table 4-1: Film Specifics  
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In most of our experiments, films with a Cu-Cr substrate and the highest density were 

employed. The current-voltage characteristics and long-term stability experiment results of 

these films are described in the next chapter. The influence of substrate materials on field 

emission and multi-anode crosstalk is also analyzed. The SEM images of carbon nanotube 

films with different densities are shown in the Figure 4-2 and 4-3. 

 

Figure 4-2: SEM Image of High Density Carbon Nanotube Film 
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Figure 4-3: SEM Image of Low Density Carbon Nanotube Film 

4.3 Diode Structure Configuration 

A diode structure configuration consists of three parts: (i) anode; (ii) spacer; and (iii) cathode. 

The anode is a flat metal plate, which is made of either copper or aluminum. The spacer is 

made of dielectical materials. PVC, acrylic, and Teflon were tested in our experiments. The 

best material is Teflon, because it has very low outgassing and excellent dielectric properties. 

The cathode is an aligned carbon nanotube thin film grown on a flat substrate. The substrate 

is coated with a thin layer of chromium, and the carbon nanotubes grown on the chromium 

layer. Copper, stainless steel, and quartz are used as substrates in our experiments separately, 
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but most of the experiments are conducted on carbon nanotube thin films with a copper 

substrate. 

In our experiments, the first challenge is to find a method to measure the distance between 

the anode and the carbon nanotubes. There are many methods to measure the gap, but each 

one has its limitations.  

At the very beginning, a micrometer was used to adjust the gap. The resistance between the 

cathode and anode is measured and used to identify the touch point. The readout of the 

micrometer at the touch point is set as reference zero. Then, the gap was determined by the 

movement of the micrometer. This method has some big disadvantages. First, when the 

anode “touches” the cathode film, the carbon nanotubes may be damaged. Second, the film is 

not perfectly flat; thus, the highest point of the film will determine the touch point, thereby 

affecting the accuracy of the measurement.  

Another method is to measure the capacitance of the structure and to calculate the gap with 

the parallel plate capacitor equation. This calculation is based on an assumption that the 

carbon nanotube film can be viewed as a flat plate. Compared to the first method, this 

method is more accurate but more complex. The problem of this method is that the 

performance of the micrometer affects measurement results. When the thimble is turned, the 

rod moves not only back and forth, but also perpendicular to the rods, which changes the 

constant gap distance between the electrodes and affects accuracy. 
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Spacers are the most commonly used component to determine the gap. The thickness of the 

spacer is the distance between the anode and the substrate. The problem of this method is that 

the actual distance between the carbon nanotube tips and the anode is still unknown because 

the length of the carbon nanotubes is not accurate. Compared to other methods, this is the 

easiest way to control the gap. Figure 4-4 shows the diode structure, where aluminum plate 

was used as the anode, and PVC thin film was used as the spacer.  

Substrate

Anode

Spacer

 

Figure 4-4: Configuration of Diode Structure 

The main problem of this diode structure was that, during the field emission experiments, 

some of the nanotubes were peeled off from the substrate, and then accumulated along the 

spacers, making a conducting path between the anode and the cathode, and causing a short 

circuit. To solve this problem, an improved diode structure is employed.  

In the improved diode structure, the distance between the nanotubes and the spacer and the 

gap between the anode and cathode were increased. This increase effectually avoided the 

accumulation of carbon particles between the cathode and anode. In this structure, some 

conductive adhesives were used to fix the substrate onto the holder.  The thickness of the 

adhesive layer is not uniform, so the distance of the film and anode has a measurement error. 

This error affects the calculation result of the field emission property but will not affect the 
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system structure’s designation. Figure 4-5 shows the improved diode structure, where the 

anode and the cathode holder are made of a copper plate, and the spacer is made of a Teflon 

tube. 

Substrate

Anode

Spacer

Cathode Holder

CNT

 

Figure 4-5: Configuration of improved Diode Structure 

4.4 Triode Structure Configuration 

The final structure of a carbon nanotubes based X-ray tube is a triode configuration. A gate 

electrode is used to attract electrons from the cathode, and the anode is used to accelerate the 

emitted electrons. The purpose of using a gate electrode is to achieve a relatively low control 

voltage. Figure 4-6 shows the structure of a triode setup. In this setup, the target and cathode 

holder were made of a copper plate; the gate electrode was a stainless steel mesh, and the 

spacers were made of a Teflon tube. Meshes with different density were tested to find out the 

best ratio of the anode current to the total emitted current. In these tests, only stainless steel 

woven wire meshes were used. Figure 4-7 shows a microscope picture of a 50X50 mesh. In 

these meshes the diameter of the wire is equal to the distance between the wires, so the 

opening space of the mesh is about 25%. Since different meshes have different wire 

diameters, the thickness of the mesh varies. Furthermore, the surface of the mesh is not flat at 
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all, so the width of the gap cannot be determined accurately. In a rough test, over 40% of 

electrons passed through the mesh.  

Substrate

Target

Spacer

Cathode Holder

CNT

Spacer
Gate

 

Figure 4-6: Configuration of Triode Structure 

 

Figure 4-7: Stainless Woven Wire Steel Mesh 

4.5 Experiment Circuit 

Figure 4-8 shows an abridged general view of the experiment circuit for one testing channel. 

The most important component of this circuit is the wide bandwidth, 3-port high voltage 

isolation amplifier, which provides high accuracy and complete galvanic isolation with both 

signal and power path. In the experiments, all the data were collected by a data acquisition 
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card: i.e., voltage, current, and pressure in the vacuum chamber. Because both the ion 

vacuum pump and high voltage power supply were based on switched-mode power supply, 

they produced a lot of high frequency noise, which imported a significant systematic error 

into the data acquisition card and affected the accuracy of the test results. The frequency of 

these noises is about 150 kHz, which is much higher than the maximum working frequency 

of the isolation amplifier, so the noises could not pass through the amplifier. In this case, the 

amplifier not only isolated the date acquisition card from high voltage, but also filtered the 

high frequency noises. 

CNTHigh Voltage

Amplifier

Isolation

Amplifier

From DAQ

Waveform 

Output

To DAQ 

Input
To DAQ  

Input

Isolation

Amplifier

 

Figure 4-8: Experimental Circuit 

4.6 Outgassing and Dielectric in Vacuum 

Outgassing is the slow release of a gas that has been adsorbed in some material. It is a 

challenge in the creation and maintenance of clean, high-vacuum environments. The rate of 

outgassing increases at higher temperatures because the vapor pressure and rate of chemical 

reaction increases. For most solid materials, the methods of manufacture and preparation can 
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reduce the level of outgassing significantly. Cleaning surfaces or baking individual 

components or the entire assembly before use can drive off volatiles. 

NASA maintains a list of low-outgassing materials to be used for spacecraft. The outgassing 

data can be presented in many ways, but the most commonly used are Total Mass Loss (TML) 

and Collected Volatile Condensable Materials (CVCM). The criteria of outgassing for NASA 

are maximum Total Mass Loss (TML) of 1.0 percent and maximum Collected Volatile 

Condensable Material (CVCM) of 0.10 percent. Table 4-2 [59] lists the Total Mass Loss and 

Collected Volatile Condensable Material of the materials used in our experiments. These 

materials have very low outgassing, and they perform well in our experiment.  

Table 4-2: Outgassing of Materials 

In our design, a 40 kV high voltage is applied to the silver target; the distance between the 

target and other parts is very small, so the dielectric strength of the isolating material is a 

very important parameter. Compared to other materials with high dielectric strength, e.g., 

Material TML(%) CVCM(%) 

Stainless Steel 0.02 0.00 

Glass 0.06 0.00 

Copper 0.17 0.00 

Aluminum 0.02 0.00 

Teflon 0.02 0.01 
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glass and mica, Teflon is much easier to machine, so Teflon is chosen as the dielectric 

material in the prototype fabrication.  
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Chapter 5 

Field Emission Experiment Result 

5.1 Current-Voltage Characteristic 

The experiments were conducted in an ultra-high vacuum environment. A high voltage 

power supply was connected to the anode, and the carbon nanotube film cathode was 

grounded. The current and the voltage were measured using a data acquisition card. The 

output voltage of the power supply was controlled by a computer through the data acquisition 

card. 

Varied configurations of diode structure were used to test the voltage-current characteristic. 

Different gap distances and voltage waveforms were used in the experiments. Figure 5-1 

shows one of the current-voltage curves. In this experiment, the gap is about 150 micrometer; 

the voltage of the anode increases from 0V to 1800V within 20 seconds. There are two 

regions of operation. At low forward bias, there is no forward current. The forward current 

becomes appreciable as the bias voltage is increased above a turn-on voltage. 

Two parameters are chosen to evaluate the field emission performance of the carbon 

nanotubes films: the emission current density and the threshold field, (a point at which an 

emission current density of 10 µA/cm² is drawn). In this experiment, the area of the emitter is 

0.785cm², and the gap is about 150µm, the corresponding threshold is 7.3V/µm. Figure 5-2 

shows the Fowler-Nordheim curve of the experiment described above. The curve fits to a 

straight trend line over a wide range of emission current values.  
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Figure 5-1: I/V Characteristic of Carbon Nanotubes Film 

 

Figure 5-2: Fowler-Nordheim Plot 
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5.2 Long Term Stability 

Figure 5-3 shows the plot of a long-term stability experiment. A constant voltage was applied 

to the anode, and the cathode was grounded. The experiment ran for more than 170 hours. In 

the first few hours, the current decreased very quickly. After 48 hours, the speed of decrease 

slowed and the curve became flat. The long-term current-time curve has a good agreement 

with a logarithm curve, as shown in the equation in Figure 5-3. 

 

Figure 5-3: 170 Hours Stability of Emission Current 

After this long-term experiment, visual inspection showed that some areas of the nanotube 
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nanotube film after the experiment. In this picture, the dark areas are carbon nanotubes and 

the white areas are the copper substrate of the film where nanotubes were totally peeled off. 

 

Figure 5-4: Carbon Nanotubes Film with Destroyed Area 

It was reported that an eight thousand hour field emission was conducted [60], and the 

emission current had no obviously decrease. Due to the diversity of nanotubes, the stability 

of carbon nanotube film needs more investigation. According to the logarithm curve obtained 

in my experiments, the decline of the emission current will be slower and the current will be 

more stable. 
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5.3 Crosstalk Experiment 

The crosstalk experiments were designed to study the possibility of fabricating a multi-pixel 

electron source. This experimental setup has a single nanotube film and four anodes. These 

anodes were mounted on an anode holder, so that the distances between them could be 

changed. The distances between anodes were 1.37 mm, 2.07 mm, 3.23 mm and 4.21 mm, 

separately. The anodes connected to either a high voltage or ground separately. Figure 5-5 

and 5-6 show the current history of the anodes. In Figure 5-5, it can be clearly seen that as 

the current at the powered anode increases, the current collected at the grounded anode also 

increases. It is inferred from this figure that the current is leaking from one pixel to the 

neighboring pixel at a distance of 1.37 mm, and there is crosstalk. In the next experiment, the 

distance between neighboring anodes was increased to 3.23 mm. In Figure 5-6, it can be 

observed that as the distance between anodes was increased, the current collected at the 

grounded anode did not increase when the current at the powered anode increased. Instead, it 

oscillated between a maximum and a minimum, mainly due to noise. It can be concluded that 

the current at the grounded anode was independent of the current at the powered anode. 

Therefore, no crosstalk is observed when the neighboring anodes were 3.23 mm apart.  

This crosstalk phenomenon indicates that there is a limitation of the smallest distance 

between the anodes in a multi-pixel X-ray sources design. Extra shielding between pixels is 

needed to prevent the electrons bombarding another anode. This shielding will increase the 

size of the X-ray tube.  
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Figure 5-5: Crosstalk Current Between Anodes Close to Each Other 

 

Figure 5-6: No Crosstalk Between Anodes Far Apart 
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5.4 Vacuum Breakdown 

During the field emission experiments, vacuum breakdown was observed. The phenomenon 

showed the value of the vacuum pressure increasing by one or two orders and accompanied 

by a high spike current. In our data accusation system, the sample rate was 1 kHz, so the 

details of the current change could not be captured. In most cases, the spike current can make 

the power supply go into over-current protection mode. The output voltage dropped down 

rapidly, and as a consequence, the current decreased. Figure 5-7 shows the vacuum pressure 

and emission current change of a small breakdown. In this breakdown, the spike current is 

not very high; the power supply is in the normal working condition, the change of the 

vacuum pressure is relatively small. 

 

Figure 5-7: Vacuum Breakdown 
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Some researchers think that vacuum breakdown is caused by impurity or the amorphous 

carbon in the film, but others believe the spike current is a micro-arc in the gap. Based on the 

phenomena in our experiments, the explosive emission theory [28] is the best explanation of 

this current spike. When a high voltage is applied, the nanotubes, which are higher than 

others, have a much larger field enhancement factor. These nanotubes have a lower turn-on 

voltage and become the emission centers. The current is concentrated on these localized 

emission sites. Since the effective area of the emitter is so small, the current density becomes 

very high and a lot of heat is generated by Joule heat and Nottingham effect [10]. The 

temperature of the emitter cap can rise to over 3000°C. The high temperature and electrical 

field melt or pre-melt [62] the tips of the emitter, and some of the carbon molecules 

evaporate from the tip of the emitter. The evaporated molecules are ionized by the electrical 

field or the high temperature. These ions build up a discharge channel and cause the 

avalanche breakdown in the gap. After the micro-arc is generated, the tip of the nanotube, 

which is higher than others, is destroyed, and the nanotube is shortened. When the nanotube 

is not the longest in the area, a new emission center is established and a new micro-arc is 

generated. Figure 5-8 shows the stainless steel mesh in a triode structure experiment. It lasted 

for few hours at a relatively high current. Obviously, the metal has been melted by high 

temperature.  

The process of avalanche in a vacuum lasts only few nano-seconds, and the diameter of 

carbon nanotubes is only few nanometers, so direct measurement of the temperature of a 

single nanotube and the quantity of the ions is not doable in my experiments. Although this 
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theory agrees well with the phenomena observed in the experiments, many details cannot be 

experimentally confirmed.  

 

Figure 5-8: Stainless Steel Mesh was Melt 

In the field emission experiments, when the strength of an electric field keeps constant and 

the gap is increased, the total number of breakdowns decreases. According to explosive 

emission theory, this reduction occurs because of the concentration of ions in the gap is not 

high enough to perform a discharge [28]. 

5.5 Degradation 

Figure 5-9 shows the SEM image of the film after a short-time field emission experiment. 

The original state is shown in Figure 4-2. After field emission, the nanotubes were clustered 

and the orientation of the tubes changed from parallel to each other to random. This 

phenomenon may be caused by positive ion bombardment, but so far, there is no 
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experimental confirmation. In my experiments, this change did not affect the performance of 

the field emission much. 

 

Figure 5-9: Nanotubes After Field Emission 

Figure 5-10 shows the top view of the substrate where the carbon nanotubes were peeled off. 

This picture was taken after the 170-hour stability experiment. The substrate of the film is 

copper plate coated by a thick layer of chromium. In the picture, the left side shows some 

nanotubes, and the right side shows the substrate. The joints between nanotubes and substrate 

have bigger thermo and electrical resistivity than nanotubes, and the chemical bond is not as 
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strong as the bonds between carbon molecules. Thus, the temperature at these joint is higher 

than that in the tubes, and in this case, the carbon nanotubes can be peeled off easily [63, 64]. 

This peel off phenomena is also a possible reason for vacuum breakdown. 

 

Figure 5-10: Substrate where the Nanotubes was Peeled Off 

Figure 5-11 and 5-12 show dark spots on an anode after a long term stability experiment. The 

anode is made of copper plate. The dark spots correspond to the areas on the cathode where 

the nanotubes were peeled off. In the experiment, the electric field is controlled in a low 

current range to avoid vacuum breakdown. During the whole experiment, no big spike 
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current was observed. Under a microscope, the dark spots on anode look like small pits. At 

the center of each pit, there is a small gray-white protuberance. The EDX result shows that 

the dark spots are composed of carbon.  

 

Figure 5-11: Dark Spots on Anode 

 

 

Figure 5-12: EDX result of Dark Spots 
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5.6 Other Experiments 

Some other experiments were also conducted to test the performance of thin film emitters. 

1. High voltages with different waveforms or frequency were applied to the diode setup. 

Since the cathode and the anode are metal plates with a very small gap, the 

capacitance is considerable. The equivalent circuit of the diode setup is a capacitor 

parallel to a diode. I-V characteristics of the emitter on different waveforms are the 

same up to a frequency of 10 Hz, and turn-on and turn-off delays of the emitter were 

not observed. But at a frequency higher than 10 Hz, the capacitance caused a 

significant change of the I-V characteristics. This capacitance will affect the 

maximum working frequency of the X-ray tube, so some further experiments are 

necessary to improve the frequency response of the carbon nanotube film emitter. 

2. Nanotubes films with different substrates and different densities were tested.  

In these experiments, the affect of the substrate material was observed.  Film on a 

copper substrate performs best, perhaps because copper has better thermo 

conductivity. In a field emission, a large amount of heat is generated by the Joule 

heating and Nottingham effect. Since carbon nanotubes have good thermo 

conductivity, radiation and convection can be neglected, and the heat generated at the 

tip of the nanotubes will be conducted to the substrate. A copper substrate can 

dissipate heat faster than a substrate made of stainless steel or quartz can, so nanotube 

film on a copper substrate performs better than that on other substrates.  
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In addition, nanotube films of different densities have been tested. Some of the 

samples used in these experiments had the highest density we could obtain from 

Nano-lab; others had an optimized density based on our calculation. Theoretically, the 

low density film should have performed better, but actually, the density of a sample 

made no significant difference. Furthermore, the long-term stability of a high-density 

film is much better than that of a low-density film 

3. A triode configuration was used to test the structure of our X-ray tube. With a 25% 

opened mesh, up to 50% of the total emitted electrons passed through the gate and 

arrived the anode. Meshes of different density were tested, and the results show no 

significant difference 

4. A phosphor screen was used as the anode of the diode setup in an experiment 

designed to determine the distribution of the emitting sites. During field emission, 

most areas of the screen were dark, except for some bright spots. The brightness and 

the position of these spots kept changing. The bright spots corresponded to the 

localized emission sites, and the changes corresponded to the degradation of the 

emitter.  New nanotubes became the emitting center. 
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Chapter 6  

Field Emission Optimization 

6.1 Overview 

In our experiments, carbon nanotubes have shown themselves to be good candidates for a 

field emission electron source. When compared to other electron emitters, however, carbon 

nanotubes apparently need more investigations when being used as a reliable high current 

electron source. 

Because of the variety of carbon nanotube films, many factors affect their performance as 

emitters.  Numerous experiments and simulations have been conducted by researchers 

interested in different aspects of the field of carbon nanotube emitters. There follows a brief 

discussion of important factors that should be considered in any attempt to improve the 

reliability and efficiency of carbon nanotube thin film emitters. 

6.2 Type of Carbon Nanotubes 

Nanotubes are categorized as single-wall nanotubes (SWNTs) and multi-wall nanotubes 

(MWNTs). Most single-wall nanotubes have a diameter of close to only a few nanometers. 

Single-wall nanotubes are a very important variant of carbon nanotubes because they exhibit 

important electric properties that are not shared by the multi-wall carbon nanotube variants 

[65]. Carbon nanotubes are also categorized based on whether their type of cap is closed, 

opened, or catalyst-topped. Bonard et al. tested the performances of four types of carbon 
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nanotube emitters [66]. The turn-on field and threshold field of these nanotube films were 

compared and their characteristic I-V curves are shown in Figure 6-1 [51]. Theoretically, 

since the single-wall nanotubes have the smallest diameter, they should have the best field 

emission performance, but in these experiments, the closed multi-wall carbon nanotubes have 

the lowest turn-on field and threshold field. The researchers believe that this phenomenon 

occurs because single-wall nanotubes are easy to bundle in ropes. 

 

Figure 6-1: Emission Performances of Different Nanotubes 

In my experiments, the films were composed of aligned closed multi-wall nanotubes with a 

diameter of about 100 nm. Compared to the most common nanotubes, the sidewalls of these 

nanotubes are relatively thick, so the field enhancement factor is low. In the following 

experiments, other types of nanotubes are tested to identify the best type for our application. 
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6.3 Density of Carbon Nanotubes 

In order to determine the best density for aligned nanotubes used in field emission testing, 

electrostatic calculations were performed on the field penetration between parallel standing 

tubes. Figure 6-2 shows a 2-D simulation result of the strength of the electrostatic field and 

the equipotential lines for tubes with different distance. In this calculation, the aspect ratio of 

the nanotubes is set to 1000:1; the distance between tubes is 0.25, 0.5,1 and 1.5 times the 

height of the tubes. The equipotential lines and strength of the field are significantly affected 

as the inter-tube distance is decreased. 

 

Figure 6-2: Simulation Result of Different Densities 
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The screening effect between nanotubes decreased the field strength and thus decreased the 

field enhancement factor, β, but a large distance will decrease the density of emitters, and 

thus decrease the total number of emitters. A field emission experiment performed by 

Nilsson et al [67] proved that medium-density nanotube film has better emission performance 

than low- and high-density films. 

Some calculations show that theoretically, the best height vs. distance ratio for the aligned 

nanotube film is about 1:1. In our experiments, no major difference was observed because the 

nanotubes in a film do not have exactly equal length; the longer tubes are not affected by the 

screen effect of neighboring short ones.  Moreover, higher total emitter numbers can make 

these films have a longer lifetime. More experiments are needed to find out the best density 

for nanotubes in a thin film emitter. 

6.4 Diameter of Carbon Nanotubes 

The diameter of carbon nanotubes affects field emission in two ways. Thinner tubes have a 

higher field enhancement factor. That is, the turn-on filed of thin tubes is lower than the thick 

ones. On the other hand, the relationship between Joule heat and diameter is 41/JouleT r . 

The thinner tube needs much lower current to achieve the melting point of the tubes or the 

substrate than thicker tubes need. Since carbon nanotubes have very a high melting point and 

good thermo conductivity, and the weakest point of the films is the joint between the tube 

and substrate, thinner tubes should therefore be easier to peel off from the substrates. Some 

researchers have reported a method for fabricating multistage nanotubes [68], which consist 
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of multi-wall carbon nanotubes grown on a metal substrate and a single-wall carbon 

nanotube grown on each of the multi-wall carbon nanotubes. Since these tubes have the 

advantages of both single-wall and multi-wall nanotubes, they should have perform better 

than other nanotubes. We will try to fabricate these kinds of nanotubes and test their field 

emission performance. 

6.5 Atomic Structure of Emitter Tip 

In metal emitter studies, the cathode’s surface is comprised of different crystallographic 

planes with different work functions and local radii of curvature. By the Fowler-Nordheim 

equation, these distinctions in geometry and work functions result in a variation in emission 

current density over the apex of the emitter tip. Typically, the <110> direction has a 

relatively high work function in additional to creating a relatively large and flat crystal plane 

on the tip, resulting in the emission current density along the tip axis being small. In electron 

optical applications, the most intense electron emission directed along the optical axis is 

preferred. Thus, orientations of <111>, <100> and <310> are always chosen [10]. 

In aligned nanotube film, emitting sites are the tips, and in random films, emitting sites are at 

both the tips and defects. In metal emitter studies, a low work function metal is used to coat 

the emitter and produce an improved metal emitter [69]. We will employ this method in 

future experiments, i.e., coating a thin layer of metal on the surface of carbon nanotube 

emitters to improve their emission properties. 
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Chapter 7 

Summary and Future Work 

7.1 Summary 

The goal of this research is to design stable high performance electron sources for a multi-

pixel X-ray array. Many experiments were conducted to study the field emission properties 

of carbon nanotube film. Certain other research groups have demonstrated their prototype 

carbon nanotube-based X-ray tubes. These studies and my experiments show the feasibility 

of using carbon nanotubes as a field emission electron source. Although field emission 

cathode design is now possible, the stability and lifetime of carbon nanotube-based electron 

sources are not as good as those for conventional designs. 

Conventional field emission theories have studied metal and semiconductor emitters. The 

unique properties of carbon nanotubes mean that many results of field emission experiments 

are inexplicable by those theories. Thus, the mechanism of carbon nanotube field emission is 

not quite clear, and further studies are required. 

Furthermore, it is reported that when compared to traditional thermo emission X-ray tubes, 

the carbon nanotube based cold cathode X-ray tube has some inimitable characteristics. To 

date, in vivo experiments have not been conducted.  It is still unknown how the new design 

will affect the future of medical diagnosis.  
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In conclusion, although carbon nanotube field emission has been studied widely, both carbon 

nanotube-based field emitters and medical devices using them are still in the stage of 

laboratory research. We have a lot of work to do before this technology can be commercially 

produced and used to benefit patients.      

7.2 Future Work 

In previous work, the diode and triode configuration have been tested and the carbon 

nanotube film displays good field emission properties. Based on the results of these 

experiments, the following investigations are planned. 

1. Improve the performance 

Carbon nanotube-based X-ray tubes are still in the laboratory study stage and many 

parameters may affect the performance and lifetime of the emitters and X-ray tubes. 

In this thesis, some possible factors have been discussed. Additional experiments, 

e.g., testing the carbon nanotubes with different density, height, orientation, and cap 

shape and substrate, will be conducted to identify the ways to improve performance. 

Finding other methods to excite electron emission, but which greatly decrease 

emission and control voltages is also central to my planned research. 

2. Focus the electron beam 

One important parameter of the micro-CT scanner is the size of its focal spot. A 

unique advantage of field emission is the very small electron energy spread; the 

emission area is thus small and the beam is highly coherent. This property of field 
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emitters makes focusing the electron beam on a small spot easy. Currently, 

micrometer scale focal spots have been achieved by field emission X-ray tubes. 

In my previous studies, different types of electronic lens have been designed and 

simulated. Each type of electronic lens has its own advantages. The electronic lens 

will be fabricated and tested in the following months. 

3. Address multiple pixels 

One of the bottlenecks of conventional CT scanners is X-ray source. Even with a very 

high rotating speed, the single beam CT scanner still cannot be used in cardiac 

imaging. The biggest advantage of a multi X-ray source CT scanner is not just that it 

has no moving parts, but also that it scans at high speeds. Multiple modulated X-ray 

beams can be emitted synchronously, and the demodulate algorithm can reconstruct 

3D images rapidly [70]. This feature can reduce scanning time significantly. 

Regular addressing methods can light up one pixel at a time. To achieve multiple 

beam scans, a complex multi-pixel addressing system is needed. On the other hand, 

the design of the addressing circuit relies on the method of controlling pixels. To 

allow switching of the high voltage applied to the gate electrodes at high speed, in the 

future, special circuits will be designed and tested. 
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