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Abstract

Quantum information processing has been the subject of countless discoveries

since the early 1990’s. It is believed to be the way of the future for computation:

using quantum systems permits one to perform computation exponentially faster

than on a regular classical computer. Unfortunately, quantum systems that not

isolated do not behave well. They tend to lose their quantum nature due to the

presence of the environment. If key information is known about the noise present

in the system, methods such as quantum error correction have been developed in

order to reduce the errors introduced by the environment during a given quantum

computation. In order to harness the quantum world and implement the theoretical

ideas of quantum information processing and quantum error correction, it is imper-

ative to understand and quantify the noise present in the quantum processor and

benchmark the quality of the control over the qubits. Usual techniques to estimate

the noise or the control are based on quantum process tomography (QPT), which,

unfortunately, demands an exponential amount of resources.

This thesis presents work towards the characterization of noisy processes in an

efficient manner. The protocols are developed from a purely abstract setting with

no system-dependent variables. To circumvent the exponential nature of quantum

process tomography, three different efficient protocols are proposed and experimen-

tally verified. The first protocol uses the idea of quantum error correction to extract

relevant parameters about a given noise model, namely the correlation between the

dephasing of two qubits. Following that is a protocol using randomization and

symmetrization to extract the probability that a given number of qubits are simul-

taneously corrupted in a quantum memory, regardless of the specifics of the error

and which qubits are affected. Finally, a last protocol, still using randomization

ideas, is developed to estimate the average fidelity per computational gates for

single and multi qubit systems.

Even though liquid state NMR is argued to be unsuitable for scalable quantum

information processing, it remains the best test-bed system to experimentally im-

plement, verify and develop protocols aimed at increasing the control over general

quantum information processors. For this reason, all the protocols described in

this thesis have been implemented in liquid state NMR, which then led to further

development of control and analysis techniques.
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Preface

The birth of quantum information processing

Since the arrival of the digital computer in the early 1940’s, nearly all the infor-

mation we have digitally processed has been encoded in the most simplified math-

ematical model: binary calculus. To this day, information is still being processed

using strings of 0’s and 1’s. In the early days of computation, computers used

vacuum tubes as their electronic base and were typically the size of a large room.

In 1948, the development of the transistor launched a race for the miniaturization

of processors which ultimately led to the small and powerful personal computer we

know today.

From the early days of the transistors (1965), the co-founder of IBM, Gordon

E. Moore noticed that the size of transistors decreased by a factor of two every

18 months. Amazingly, Moore’s law has held true since and makes people wonder:

What will happen when the transistor will be the size of an atom? At this critical

limit, the laws of physics are different and quantum mechanical effects need to be

taken into consideration. A certain community decided to accept this fact and tried

to build the smallest transistor possible: the single electron transistor [AL85, FD87].

Another community, lead by the legendary Richard P. Feynman, thought another

venue might be of interest: redefine the entire scheme of computation as we know it

and base the calculations not on the laws of electronics, but on the laws of quantum

mechanics [Fey82, Fey84] . From there, a computer bit could not only be in the

state 0 or in the state 1, but it could also exist in a quantum superposition of the

two states. This quantum mechanical bit was later accepted as the qubit [Sch95].

Using quantum systems to perform calculations would not only open the door to

quantum superposition, but also to other phenomena that do not have classical

counterparts, such as quantum entanglement and wave-function collapse.

In 1985, Feynman demonstrated to the AT&T engineers how it would be pos-

sible to simulate many-body quantum mechanical systems using only a few qubits,

as opposed to the exponential number of bits a classical computer would need to

perform such a task. One of the first quantum algorithms was developed by David
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Deutsch and Richard Jonza in 1992 [DJ92]. The algorithm permits one to deter-

mine whether a function of N numbers is constant or balanced using only one query

to the function, as opposed to the N
2

+1 queries needed classically. Although of little

practical use, it showed that quantum computers could outperform classical com-

puters. The first major discovery had to wait until 1994, when Peter Shor developed

a quantum algorithm that could factorize an n bit number into its primes using only

on the order of log(n)3 operation [Sho94]. Not only did this algorithm demonstrate

the possible insecurity of many cryptosystems (which are usually based on hard

mathematical problems that can be reduced to factoring of the discrete logarithm

problem), but it also showed an algorithm that could exponentially outperform any

known classical factoring algorithm [CP01].

This discovery then sparked the field of quantum computing (QC) and quan-

tum information processing (QIP), which soon led to the development of other

algorithms that outperform their classical counterparts, such as Grover’s search

algorithm [Gro96], the quantum random walk [CCD+02, FG98], etc.

Although there are many different models of quantum computation, such as the

adiabatic quantum computer [FGG+01, FGGS00], the measurement-based quan-

tum computer [RB01] and the topological quantum computer [Kit03], we will re-

strict ourselves to the original circuit model of quantum computation. Just as in

the case of classical computing, a quantum computation typically implements a

series of carefully chosen gates to a known initial state, after which the answer is

retrieved from a measurement of the final state. Because the computational gates

are to be implemented in a quantum mechanical fashion, they have to be reversible

and unitary.

Computing with quantum mechanical systems

Soon after the discovery by Shor, theoretical and experimental physicists were then

trying to answer the simplest of questions: How do we build a quantum computer?

The answer have been partially formulated in 1995 by D. P. DiVincenzo and comes

under a list of five criteria. To be considered as a potential QIP device, a system

must:

1. Be a scalable physical system with well-defined qubits (two level systems).

2. Have a universal set of quantum gates that can implement any quantum

computations.

3. Be initializable to a simple known fiducial state.
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4. Permit reliable, qubit-specific measurements.

5. Have much longer decoherence times than the time to implement a gate.

A multitudes of system have been brought forward as fulfilling all the require-

ments. The list of systems includes, but is not limited to linear optics [KLM01],

trapped ions [CZ95], parallel and vertical quantum dots [LD98], superconducting

circuits [MOL+99, NPT99], optical cavity quantum electron dynamics [THL+95]and

electron spins in diamond [WJ06]. One of the earliest proposals was to use the spins

of the nuclei of a molecule placed in a large magnetic field [GC97, CFH97], also

known as Nuclear Magnetic Resonance, or NMR. Though NMR has issues with the

scalbility criterion [War97], it is known to be an excellent test-bed for the ideas of

quantum computation and quantum control.

The natural dynamics of a quantum system is described through its natural,

(usually) time independent Hamiltonian H0. To perform the computation, exter-

nal elements must be brought in to create a control, (usually) time dependent,

Hamiltonian Hc(t, ~α) which depends on control parameters ~α. If we ignore noise

and other sources of error, the evolution of a general density matrix ρ of the system

follows Liouville’s diffferential equation

ρ̇(t) = −i[H0 +Hc(t, ~α), ρ(t)], (1)

where we have used the convention ~ = 1 for simplicity. The solution to this

equation takes the form

ρ(t) = Uρ(0)U †, (2)

where

U = T̂ e−i
R t
0 dt
′(H0+Hc(t′,~α)) (3)

and T̂ is the time ordering operator. The operator U is unitary and corresponds

to computational gates that are meant to implement a quantum algorithm. The

evolution of a system under a given unitary evolution is also known as a quantum

channel. In experimental QIP, the goal is to find the control Hamiltonians imple-

menting the universal set of gates, while minimizing the effect of noise and control

errors.

Completely isolated quantum systems do not exist in nature. Moreover, access

to this system is important in order to drive the system and perform a computation

through the control handles. Because the system is not isolated, it will interact with

its environment and since we do not have access to the state of the environment, this

interaction will effectively create a probabilistic evolution of the system and cause it
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to lose its purity, i.e. it will introduce “noise” in the system. This phenomenon can

also be describe as the system “losing” its quantum information to the environment,

which cannot be retrieved deterministically. This is known as decoherence [Zur03,

Sch07].

In QIP, and any other science exploiting the quantum mechanical properties

of nature, uncontrollable decoherence is a sworn enemy. The probabilistic nature

of the evolution causes the system to loose it purity and hence become a state

with unknown, or random, information. Understanding and minimizing the effect

of decoherence in a quantum system has been an active area of research since the

early days of QIP, which led to novel ideas such as quantum error correction (QEC)

[Sho95, Ste96] and fault-tolerant (FT) QIP [DS96, Got98]. The threshold theorems

stipulate that if the error per gate in a system is below a given value, arbitrarily

long computation can be achieve with an amount of resources that does not grow

exponentially with the scale of the problem. Therefore, being able to quantify the

level of noise and the quality of control in a system is of primary importance.

Quantum process tomography [CN97, PCZ97, THL+95] can allow one to gain

complete knowledge about any quantum operations on a given system. Unfor-

tunately, since it takes exponentially many parameters to fully describe a quan-

tum process (O(42n) for a n qubit process), an exponential amount of experiments

needs to be performed and this becomes infeasible for more than five or six qubits.

Moreover, imperfect state preparation and readout can introduce error in the re-

constructed process and lead to process breaking quantum mechanical conditions

[WHE+04, BEH+04]. For these reasons, efficient and reliable protocols to char-

acterize the noise and control over a system are paramount to the realization of

QIP.

The goal of this thesis

In the present thesis, we will survey our effort toward developing and testing effi-

cient tools to increase the understanding and the quality of the control over open

quantum systems. Our major contributions arise from the development of scalable

protocols to characterize the noise present in a given system and also to benchmark

the control one has over its qubits. These protocosl are developed from an abstract

point of view and thus applicable to almost any QIP device. To demonstrate their

viability, all the developed protocols are accompanied with experimental implemen-

tations on a liquid state NMR quantum information processor.

Toward this goal, background knowledge will be introduced in Chapters 1 and 2.

Although the exact mechanism of decoherence is beyond the scope of this thesis,
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Chapter 1 will be mostly concerned with how one can describe the effect of deco-

herence on the state of a system. Chapter 2 will briefly introduce NMR and how

it can be used to implement QIP. We also give an overview of the tool we use and

developed to achieve a high degree control in our systems [RNL+08] and briefly

discuss the shortcomings of NMR as a scalable QIP device.

Our first implemented error characterization protocol will be introduced in

Chapter 3. The dephasing noise model during free evolution of a liquid state NMR

system and other systems is well known and well understood [Sli96]. Using an

approach inspired from QIP, we developed a technique to extract the correlation

in the dephasing affecting two near-identical qubits. Using a simple instance of

three qubit quantum error correction, we designed a protocol whose goal was not

to correct the errors introduced by the noise, but to probe properties of the noise

and extract the correlation factor [LSB+07]. This technique is shown to be more

effective than standard NMR protocols since, due to the correcting nature of the

code used, the amount of coherence in the system survives longer and hence more

statistics could be acquired. From the nature of the protocol, it can be generalized

to a multitude of systems with different noise model.

In Chapter 4, we describe an efficient method to extract incomplete but rel-

evant information about the noise present in the implementation of a quantum

channel intended to implement an identity evolution, i.e. a quantum memory or a

time-suspension sequence. In most FT quantum computing architectures, complete

knowledge of a channel is unnecessary, but knowing the probability that a given

number of qubits are corrupted at the same time is sufficient, thereby exponentially

reducing the number of parameters required (if there are n qubit, there is only n

different probabilities). The protocol uses efficient randomization and symmetriza-

tion to estimate those probabilities [ESM+07]. The core of this chapter relies on

the implementation of the protocol on a two qubit processor under three different

types of engineered noise. We also analyze and explain certain modifications to the

usual control techniques in order to increase the precision of our results to within

0.5% of the expected results.

Finally, Chapter 5 describes the efficient randomized benchmarking of the qual-

ity of control on a given system. Inspired by previous work from Emerson et al.

[EAZ05] and Knill et al. [KLR+08], we implemented a protocol on a single qubit

processor to estimate the average fidelity per computational gate. At first, results

were much different than expected, but careful modeling of the expected errors in

the system accurately explained our results and gave us a way to modify our imple-

mentation technique to then successfully obtain a relevant result. We then attempt

to generalize the latter protocol to be suitable to benchmark the control over a

multi-qubit system. We argue several modifications to Emerson et al. protocol to

permit a realistic implementation and also to permit a fair comparison between
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systems of different sizes. This is followed by an implementation on a three qubit

NMR processor [RLL08].

Notation

For the understanding of this thesis, we will list a summary of different notations

used. Since this thesis includes work on quantum information theory and its im-

plementation using NMR, the words “qubit” and “spin” are used interchangeably.

The Pauli matrices are defined as the generators of rotation on a qubit, i.e.

1l =

(
1 0

0 1

)
, X =

(
0 1

1 0

)
,

Y =

(
0 −i
i 0

)
, Z =

(
1 0

0 −1

)
. (4)

Unless otherwise stated, the matrices are explicitly written in the computational

basis, that is, the eigenvectors of the Z matrix, i.e. Z|0〉 = |0〉 and Z|1〉 = −|1〉.
The NOT gate is defined as the X gates since it has the NOT action on the

computational basis, i.e. X|0〉 = |1〉 and X|1〉 = |0〉. The |±〉 = 1√
2
(|0〉 ± |1〉)

states are the eigenstates of the NOT gate, i.e. X|±〉 = ±|±〉. Other gates used

are the Hadamard gate and the two-qubit controlled-NOT (CNOT) gate, i.e.

H =
1√
2

(
1 1

1 −1

)
, CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (5)

It is easy to verify that H|0〉 = |+〉 and H|1〉 = |−〉. The CNOT is so named

because a NOT gate will affect the second qubit if and only if the first qubit is in

the state |1〉. The circuit description of a CNOT is shown in Fig. 1-a. Another

important two qubit interaction is the J-coupling evolution, which has the effect

e−i
θ
2
Z1Z2 . The circuit description for a π/2 and a π/4 coupling is given in Fig. 1-b

and c.

In circuit diagrams and in the text, Rφ(θ) corresponds to a rotation of angle θ

around an axis in the xy plane making an angle φ with the x axis, i.e.

Rφ(θ) = e−i
θ
2

(cosφX+sinφY )

= cos
θ

2
1l− i sin

θ

2
(cosφX + sinφY ). (6)

Moreover, Rx(θ), Ry(θ) and Rz(θ) are short notations to represent a θ rotation

about the x, y or z axis.
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Figure 1: The quantum circuit representation of a) a CNOT b) a π/2 coupling c)

a π/4 coupling.

When working with multi-qubit operators and states, e.g. X ⊗X ⊗ Z or |0〉 ⊗
|1〉 ⊗ |1〉, the ⊗ is often omitted and replaced by indices for the operators, i.e.

X1X2Z3, can compacted for the states, i.e. |011〉. When the situation is clear, the

indices will also be omitted.

A D×D unitary matrix acting on the D× 1 pure state vector of the system is

denoted by an italic capital letter, i.e. U or V . The superoperator acting on the

D ×D density matrix of the system is denoted Λ. In the Liouville representation

(Sec. 1.2.3), the D2 × 1 vector corresponding to a density matrix ρ is written as

|ρ〉〉. The D2 ×D2 representation of U is denoted with a “hat”, i.e. Û , just as the

representation of Λ, i.e. Λ̂. The superoperator Λ will also be referred as a quantum

channel throughout the text.

Finally, we should note that we are using a set of units in which ~ = 1 to

simplify the presentation.

Additional information of the examining commit-

tee

This thesis presents some of the work carried out by the author during the course

of his doctoral studies. In no way does the author claim the originality of all the

work presented in this thesis and below are listed his contributions.

Chapter 1 only contains background information concerning some possible rep-

resentations of decoherence superoperator needed for the comprehension of this

thesis which can be found in the literature [NC00, Hav03, BP02].

Most of Chapter 2 also contains background information about liquid state

NMR. The chapter is loosely based on the review article “Quantum information

processing using nuclear and electron magnetic resonance: review and prospects”

[BCC+07] written by the NMR group at the IQC and MIT. It is available as a
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preprint at arXiv:0710.1447 and published in Physics In Canada - Quantum Com-

puting and Quantum Information Edition 63, no.4 (2007). The present author

solely wrote the liquid state NMR part of the review. The original work about

advanced control techniques presented in Sec. 2.6 have been mainly carried out by

C. Negrevergne and C. A. Ryan based on earlier developments by E. Knill and R.

Laflamme. The present author contributed to this work mostly through idea sharing

and some programming. For this reason, little detail has been included in this thesis

and only the main results used in later sections were given and explained. “Liquid

State NMR as a Test-bed for Developing Quantum Control Methods” [RNL+08]

is available at arXiv:0803.1982 and is published in Physical Review A 78, 012328

(2008).

Chapter 3 in based on the article “Determining the noise model using error cor-

rection” [LSB+07], published in Physical Review A 75, 012331 (2007) and available

at arXiv:quant-ph/0610038. The work was initially carried out by J. Baugh and

D. Simon as a summer project. J.- C. Boileau was then appointed to finish the

experiment. Upon unsuccessful implementation due to the lack of control available

at the time, the project was shelved. After glancing at the project report of D.

Simon, the present author found irregularities in the noise simulation procedure

and argued the sub-optimality of the pulse sequence used. He then redesigned the

entire experiment using a different analysis method, different control techniques

and a different molecule. Moreover, the mathematical justification of the Gaussian

noise model presented in Sec. 3.2 was proven by the author whereas before, the

noise was only assumed to be Gaussian.

Chapter 4 reports the author’s participation in the collaborative work “Sym-

metrized characterization of noisy quantum processes”, published in Science, 317,

p. 1893-1896 (2007) [ESM+07] and available at arXiv:0707.0685 . The protocol was

proposed by J. Emerson and further developed by M. Silva and O. Moussa. Al-

though the mathematical derivation of the protocol is reported, the author wanted

to present his own derivation of the protocol, which is slightly different (and to

the author’s view, simpler) than the one available in the published manuscript.

The author also participated in several discussions and mathematical derivations

proving the invertability of the Ω matrix in Eq. 4.41. The designed and imple-

mentation of the experiment in Sec. 4.6 was carried entirely by the author, with

some technical help of M. J. Ditty for remote control of the spectrometer and the

help of O. Moussa for calculating the values of ~p given in Table 4.2 and 4.3 using

the method of maximum likelihood. A three-spin solid-state NMR experiment was

also conducted by C. A. Ryan and J. Baugh, and was not presented here as the

author did not participate in its implementation. Finally, the SPICE simulator

for the phase transient analysis presented in Sec. 4.6.3 was entirely built by the

author. It was developed for a joint project with C. A. Ryan and J. S. Hodge at
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MIT on the analytical (J. S. Hodges), simulated (present author) and experimental

(C. A. Ryan) analysis of the phase transient occurring during the implementation

of strongly modulated pulses. Details of the simulator and some simulation results

are presented in Appendix C, but are yet unpublished.

The work presented in the final chapter reports the joint effort of the author and

C. A. Ryan to benchmark the control on a single spin and the generalization and im-

plementation of the protocol on a multiple spin processor. The original single qubit

experiment was carried out by E. Knill et al. on a trapped ion processor [KLR+08],

based on a protocol proposed by J. Emerson et al. [EAZ05] and presented in the

author’s own word in Sec 5.2. The generalization to multiple qubit presented in

Sec. 5.3.2 is a joint effort by the author and C. A. Ryan. The simulations of 5.3.3

were carried by the author. The single qubit experiment was essentially imple-

mented by C. A. Ryan, but the analytical model of the super-exponential decay

described in Sec. 5.4.3 was developed solely by the present author. The three-spin

experiment was carried by the author, with the help of C. A. Ryan for characteriz-

ing the molecule, finding, fixing and optimizing the GRAPE pulses. Moreover, the

signal analysis carried in Sec. 5.5.2 was the author’s work, initiated by discussion

with C. A. Ryan. The manuscript, “Randomized benchmarking single and multi-

qubit control in liquid state NMR quantum information processing” is submitted

for peer-review and a preprint is available at arXiv:0808.3973.

The work presented in this thesis only corresponds to the effort of the author

towards the characterization of decoherence and control. The author also par-

ticipated in “Robust Quantum Communication Using A Polarization-Entangled

Photon Pair” [BLLM04], initiated by J.- C. Boileau, by calculating the probability

of success of the protocol under random unitary collective noise. This work is pub-

lished in Physical Review Letters 93, 220501 (2004) and available at arXiv:quant-

ph/0406118. The author also initiated the work presented in “Experimental Im-

plementation of Discrete Time Quantum Random Walk on an NMR Quantum

Information Processor” [RLBL05]. The implementation was a joint effort by the

author and C. A. Ryan, with the help of J.- C. Boileau. This work is published in

Physical Review A 72, 062312 and available at arXiv:quant-ph/0507267.

The article “Time-reversal formalism applied to maximal bipartite entangle-

ment: Theoretical and experimental exploration” [LBL06] was initiated from an

idea of Raymond Laflamme and some earlier thoughts by J. Baugh. The entirety of

the theory and the experiment is the work of the author. The manuscript is avail-

able at arXiv:quant-ph/0510048 and published in Physical Review A 73 032323

(2006). The work with C. A. Ryan and J. S. Hodges on “Protecting nuclear spins

from electron relaxation” have been published in Proceeding of the Asian Quantum

Information Conference 2007. Finally, the work in “ Quantum Reference Frames

and the Classification of Rotationally-Invariant Maps” [BSLB08] was carrier out
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by J.- C. Boileau and L. Sheridan. The present author participated in initiating

and helping with the proof of the representation of covariant maps. The article is

published in Journal of Mathematical Physics 49, 032105 (2008) and is available

at arXiv:0709.0142v2. Finally, the author helped J. Zhang to find the control se-

quences used in “Direct observation of quantum criticality in Ising spin chains”,

available at arXiv:0808.1536.
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Chapter 1

Decoherence in open quantum

system

1.1 The effect of the environment

Standard introductory quantum mechanics textbooks (e.g. [Lib03, Sak85, Tow00])

describe the evolution of a quantum system using the Schrödinger equation or

the Liouville equation (Eq. 1). The solution to these gives a unitary evolution.

A key property of unitary evolution is that the system will not lose purity due

to its internal dynamics. From a quantum information perspective, no quantum

information “leaks” to the outside world, such that the evolution is a reversible

process. For these reasons, the two equations are known as the equations of motion

for a closed quantum system.

The presence of an environment, i.e. the surroundings over which we do not

have any control, will introduce noise into the system and force it to possibly un-

dergo dynamics different from the intended one. This noise will introduce a level of

uncertainty in the quantum evolution. This probabilistic evolution will effectively

make the system slowly lose its coherent quantum nature,hence the term decoher-

ence, also known as relaxation. Therefore, a quantum state in a given superposition

will decay to a statistical mixture of the initially superposed state. This effect of the

environment is know as a dissipative evolution. Many efforts throughout the years

have led to the development of master differential equations for the continuous time

evolution of a given system under its internal coherent dynamics and the external

dissipative noise. Such equations can be written in the Lindblad form [Lin76] or

in the Bloch-Redfield from [Wei99], which give a differential equation for the con-

tinuous evolution of an open quantum system and can be quite involved. These

equations are suitable to describe Markovian or semi-Markovian environment, that
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is the environment has a very short memory, so that the system-environment in-

teraction does not reintroduce information into the system.

In quantum computing, we are mostly interested in the effect of decoherence

for a given amount of time, or for a fixed process. Just like we describe quantum

computing as discrete unitary operators rather than a continuous Hamiltonian evo-

lution, we describe decoherence as an operator acting on the system. Consider our

system of interest to be in the initial state ρs(0), with internal Hamiltonian Hs.

To describe its evolution as an open system, we can expand that system to include

the environment so that the entire system in closed. Suppose the environment has

an internal Hamiltonian HE and interacts with the system through an interaction

Hamiltonian Hint. It is commonly accepted, though some conditions apply as ex-

plained below, that the initial state of the system-environment is separable, i.e.

there is initially no quantum correlation between them. Without loss of generality,

and also for simplicity, the environment can be assumed to be in the state |0E〉〈0E |,
so that ρ(0) = ρs(0)⊗ |0E〉〈0E |. After a time τ , the final state will be

ρ(τ) = e−i(Hs+HE+Hint)τ (ρs(0)⊗ |0E〉〈0E |) ei(Hs+HE+Hint)τ

= U(τ) (ρs(0)⊗ |0E〉〈0E |)U(τ)†, (1.1)

where we defined U(τ) as being the unitary evolution of the system-environment

for a time τ . Since we do not have access to the environment register, the evolution

of the system can thus be described by the partial trace of the above state over

the environment degree of freedom. Assuming the environment is a D dimensional

system with basis states |0E〉, . . . |D − 1E〉, we have

ρs(τ) = TrE [ρ(τ)]

=
D−1∑
k=0

〈kE |U(τ) (ρs(0)⊗ |0E〉〈0E |)U(τ)†|kE〉

=
D−1∑
k=0

Akρs(0)A†k, (1.2)

where we have defined the contracted operator

Ak = 〈kE |U(τ)|0E〉, (1.3)

acting on the Hilbert space of the system alone. From the above equation, we see

that the evolution of the system is described as a statistical mixture of different

operators acting on the initial state ρs(0). Because of this probabilistic evolution,

more uncertainty about the evolution will occur and the system will thus lose purity.

Since the above cannot be described by a simple unitary operator, we denote

the operator Λ, defined as

Λ(�) =
∑
k

Ak�A
†
k (1.4)
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the superoperator describing the open system evolution. Λ can also be referred at

a quantum channel.

Since the exact mechanism of open quantum system is beyond the scope of this

thesis, we will only describe three different ways of representing the action of the

noise on the state of the system.

1.2 Useful representation of decoherence

1.2.1 Kraus representation

Describing an open system evolution for a given time using a set of operators as in

Eq. 1.2 is known as the Kraus representation of an evolution and the operators Ak
are called the Kraus operators.

From Eq. 1.2 and using the fact that successively partially tracing out the

environment and then the system is equivalent to a complete trace of the system-

environment state, we see that

Tr[Λ(ρs(0))] = 1, (1.5)

that is that the evolution in Eq. 1.2 is trace preserving, which is a requirement for

Λ to describe a quantum evolution operation. This also follows from the fact that∑
k

A†kAk =
∑
k

〈0E |U(τ)†|kE〉〈kE |U(τ)|0E〉

= 1ls, (1.6)

where we have used the fact that U †U = UU † = 1l for any unitary operator.

Moreover, since the state of a closed system is always a positive operator, i.e.

〈Ψ|ρ(τ)|Ψ〉 ≥ 0 for any state |Ψ〉 of the system-environment, we also have that

〈ψs|ρs(t)|ψs〉 =
∑
k

〈ψskE |U(τ) (ρs(0)⊗ |0E〉〈0E |)U(τ)†|ψskE〉

≥ 0, (1.7)

so that the evolution is also positive.

Conversely, Kraus demonstrated that if any set of operators Ak satisfying Eq.

1.6 with the assumption that the system and the environment are initially un-

correlated, then Eq. 1.2 will necessarily describe a trace-preserving and completely

positive (CPTP) map [Kra83]. Therefore, any possible quantum evolution on a

given, initially isolated system, must be CPTP and can be described using Kraus
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operators. Moreover, there is formal proof that any CPTP map can be described

as a unitary evolution on a bigger system [Sti55], as intuitively explained above.

It can be shown that a CPTP map on a system of dimension D can be described

using at most D2 Kraus operators. The Kraus representation of a given process is

not unique, but all sets of operators are related through a unitary transformation.

Given {Ak} and {Bk}, there exist a unitary operator V such that

Bj =
∑
i

VijAi. (1.8)

For Kraus theorem to be true, one must make the assumption that the environ-

ment and the system are initially separable. It has been reported that the failure

of such condition can in fact lead to a non-completely positive map [Pec94, SB01,

JSS04, WHE+04].

1.2.2 χ matrix

The χ matrix representation is simply a way to describe the Kraus operators in a

unique fashion. In quantum computing, an n qubit system has dimension D = 2n

and an orthonormal basis for operators acting on such a systems is the set of all

tensor product Pauli operators Pn, since we know that Tr(PiPj) = Dδij. Therefore,

given a set of Kraus operator {Ak}, each operator can be decomposed as

Ak =
∑
i

α
(k)
i Pi, Pi ∈ Pn, (1.9)

where α
(k)
i = 1

D
Tr(AkPi). The effect of the quantum channel on a state ρ is then

written as

Λ(ρ) =
∑
ijk

α
(k)
i α

(k)∗
j PiρPj

=
∑
ij

χijPiρPj, (1.10)

where we have defined χij =
∑

k α
(k)
i α

(k)∗
j .

Because of the unitary equivalence between all the Kraus representations of a

given channel, the elements χij are identical for all representations. Therefore, the

χ matrix gives us a representation of a CPTP map that is uniquely determined by

the choice of operator basis.

From its definition, the χ matrix is a hermitian matrix. It can be shown to be

positive, semi-definite with, Tr(χ) = 1 if and only if it represents a CPTP map

[Eme07].
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1.2.3 Liouville representation

One of the most practical ways of describing the action of a superoperator on

a given state is through the Liouville representation [Blu96]. The superoperator

described by the Kraus operators is a linear function on the space of D×D density

matrices, i.e. a linear operation on a D2 vector space. Therefore, there must exist

a representation in which the state and the superoperator follow the traditional

vectorial multiplication, i.e.

Λ(ρ) ↔ Λ̂|ρ〉〉, (1.11)

where |ρ〉〉 is a D2 × 1 vector representation of ρ and Λ̂ is a D2 × D2 matrix

representation of Λ. It is a well known fact of matrix algebra [HJ91, Lüt96, Hav03]

that if |ρ〉〉 is constructed by stacking the columns of ρ, then

Λ̂ =
∑
k

A∗k ⊗ Ak, (1.12)

where A∗k is the complex conjugate of Ak in the chosen basis for the matrix repre-

sentation. From the definition of |ρ〉〉, it can be shown that

〈〈ρ1|ρ2〉〉 = Tr(ρ†1ρ2). (1.13)

It is possible to relate the Liouville operator Λ̂ and the associated χ matrix since

Λ̂ =
∑
k

A∗k ⊗ Ak

=
∑
ijk

α
(k)∗
i α

(k)
j P ∗i ⊗ Pj

=
∑
ij

χjiP
∗
i ⊗ Pj. (1.14)

1.3 Uncorrelated and correlated noise

In the above section, we presented some representations of the evolution of an

arbitrary number of qubits. This was assuming that we had knowledge, for example,

of all the Kraus operators acting on the system as a whole. In reality, one might only

possess the action of the environment on a single qubit, e.g. dephasing (Sec. 2.7.1).

If we assume that the noise is uncorrelated from qubit to qubit, that is, that the

error happening on qubit a is not influenced, nor is influencing the noise on qubit

b, then the noise operation on the two qubits commutes and can be described

by conjugating the single qubit superoperators. If the noise introduced by the
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environment is described by a single qubit superoperator Λ, then the cumulative

noise Λab on qubit a and b is described by

Λab = Λb ◦ Λa = Λa ◦ Λb. (1.15)

where ◦ denotes the composition of the maps.

For example, on a two qubit system with single qubit noise being described by

the set of Kraus operators {Ai}, the cumulative noise on a joint density matrix ρ12

is given by

Λ12(ρ12 = Λ2 (Λ1(ρ12))

= Λ2

(∑
i

A
(1)
i ρ12A

(1)†
i

)
=

∑
ij

A
(2)
j A

(1)
i ρ12A

(1)†

i A
(2)†

j . (1.16)

From this principle, the Liouville and χ matrix representation can be derived.

If there exists correlations between the noise affecting the qubits, this implies

that if an error hapen on qubit a, an error will also affect qubit b. Because of this

correlation, a full multi qubit representation of the noise is needed and cannot be

inferred from the action on a single qubit alone without knowing the correlation

operators (Chapter 3).

1.4 Coherent, incoherent and decoherent noise

Although we have classified any evolution of a system that includes unwanted in-

teractions with an environment as decoherence, we can find in the literature further

division in the semantics. If we extend the definition of noise to any operation or

evolution that makes the system not perform the exact desired evolution, it can

be argued that there are three different types of noise: decoherent, incoherent and

coherent.

Decoherent noise

As mentioned so far, decoherent noise is the term associated with the unwanted

quantum interaction of a system with its environment that causes the system to lose

purity. Even if we assume a realistic situation of a non-Markovian environment (e.g.

finite temperature bath), there will always be some information that will remain

in the environment and never come back to the system. Hence, decoherence is the

term used to described the intrinsic lost of purity.
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Incoherent error

The term incoherent noise has been introduced to explain the loss of purity of a

quantum system due to classical noise. It will effectively encode quantum infor-

mation into classical degrees of freedom [PBE+03, BEH+04]. It will manifest itself

as a statistical variation of the system’s Hamiltonian [WHE+04]. Ultimately, the

evolution will be described by an averaging of unitary operators over a distribution

of the classical parameters ~u, i.e.

ρ →
∫
d~up(~u)e−iH(~u)tρeiH(~u)t

=

∫
d~~up(~u)U(t, ~u)ρU(t, ~u)† (1.17)

Incoherent errors will also cause a loss of purity of an ensemble of systems, while

each system retains its purity [HGW+07]. This loss of ensemble purity is usually

recoverable by controlling the system appropriately. Examples of interest include

the magnetic field inhomogeneity in NMR (Sec. 2.7.1), which can be refocused

through a Hanh echo [Han50] or a CPMG sequence [CP54, MG58] or the space

dependent control magnetic field in NMR (Sec. 5.4.3), which can be avoided using

optimal control theory [PDR88, DPR90, FPB+02, KRK+05]

Coherent noise

As it name suggest, a coherent noise, or coherent error, make the system undergo

a different evolution, but yet, this evolution does not introduce probabilistic uncer-

tainty in the system and thus does not decrease the purity of the system. That is,

the error can be represented as a single unitary operator. An example of such a

noise could be a systematic calibration error that over rotates a qubit.
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Chapter 2

Liquid state NMR

2.1 Using NMR for quantum information pro-

cessing

The fundamental unit of quantum information is the qubit, which is a two-level

quantum mechanical system. The spin-1/2 property of certain particles is an ideal

candidate for multiple reasons. First of all, they represent a system whose observ-

ables are described using the Pauli matrices and hence are a two level quantum

systems.

In the 1950’s, Purcell, Bloch and their coworkers discovered that once placed in

a magnetic field, the nuclear spins of molecules can be controlled by electromagnetic

excitation at a given frequency, thus leading to nuclear magnetic resonance (NMR)

[Blo46, PTP46]. Since then, NMR has been the subject of intensive research and

development. The technology is now sufficiently advanced to allow accurate control

of the state of nuclear spins. Being able to individually control the spins and also

use their interactions gives the basis for universal control which is essential for QIP.

Finally, nuclear spins are naturally a good candidate for qubits as they do not

significantly interact with other degrees of freedom of the system, such as the orbital

and vibrational modes [Abr83]. At room temperature, the energy gap between the

spin energies and the other degrees of freedom is too large to have an effect on each

other. For these reasons, nuclear spins are naturally protected from decoherence

and demonstrate relatively long coherence times.

As will be explained in more detail, liquid state NMR suffers from the major

caveat of unscalability due to low polarization and the difficulty in creating a fiducial

initial state from the thermal state of the system. Despite these limitations, NMR

still remains to this day the QIP device with the highest degree of control and is a
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perfect test-bed system for developing and benchmarking tools that then could be

used by other scalable devices.

The ability to control liquid state nuclear spin systems has allowed implementa-

tion of a variety of benchmarking experiments and algorithms on small qubit regis-

ters. For example, sufficient control has been developed to implement quantum al-

gorithms [JM98, CVZ+98, LBF98, WLC01, KLMT00, VSB+01, ZLD+04, RLBL05],

quantum error correcting protocols [CMP+98, LSB+07, SCS+00, KLMN01, BVFC05],

the simulation of quantum systems [CYC06, NSO+05, HSVC01, TSS+00, STH+99]

and also the benchmarking of a 12 qubit quantum processor [NMR+06].

2.2 Summary of the magnetic interactions

In the semi-classical picture, the spin of a nucleus behaves like the dipolar moment

of a magnet possessing angular momentum parallel to its magnetic moment. When

placed in a constant magnetic field pointing along a certain direction (customarily

defined as the z direction), the dipolar moment precesses around this axis. The

frequency of this precession is called the Larmor frequency and is dependent on the

external magnetic field, the nuclear isotope and its chemical environment within

the molecule. For quantum information purposes, we can use any spin-1/2 nuclei

(e.g. 1H, 13C, 15N, 19F, 29Si and 31P to name a few).

Placed in magnetic fields generated by modern superconducting magnets, dif-

ferent isotopes of nuclei have differences in Larmor frequency on the order of MHz.

For example, the Larmor frequency of 1H is about 700 MHz in a 16.4 Tesla magnet,

while that of 13C is about 175 MHz. Depending on the symmetry of the molecule,

two nuclei of the same isotop can either have the same Larmor frequency, or can

have a frequency difference ranging from a few Hz to several kHz. Typical liquid

state NMR experiments involve an ensemble of around 1020 identical molecules dis-

solved in a deuterated solvent whose effect on the nuclear magnetic moments of the

molecules can be neglected.

When two spins are spatially close, their dipolar moments interact with each

other through their generated magnetic field. The strength of this coupling is de-

pendent on the distance between the two spins and their relative orientation with

respect to the external magnetic field. In a liquid, the molecules move and rotate

around each other on a much shorter time scale than the interactions occurring

between them. This causes the intermolecular and intra-molecular dipolar inter-

actions to average to zero on the NMR time scale (i.e. the Larmor period time

scale).

Within the same molecule, there are still interactions between the spins in the

liquid state. If the wavefunctions of bonding electrons overlap spatially with a pair
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of nuclear spins, the electron mediates an effective interaction between the nuclear

spins. The average of this interaction is independent of the external magnetic field

and the orientation of the molecule, which inspires its name: scalar coupling (also

called indirect spin-spin coupling, or J-coupling).

2.3 The natural NMR Hamiltonian

As mentioned above, in liquid state NMR the intermolecular spin interactions are

suppressed. This causes the molecules to be effectively isolated from each other, and

therefore a description of the spin dynamics of an ensemble of identical molecules

is well approximated by the spin dynamics of a single molecule. If we consider a

molecule containing N spin-1/2 nuclei, then the natural Hamiltonian of this system

in a large homogeneous magnetic field ~B0 pointing in the z direction is given by

Hnat =
1

2

N∑
i=1

2πνLi Zi +
π

2

∑
i<j

JijZiZj (2.1)

where 2πνLi = ωLi = γi(1 + δi)| ~B0| is the Larmor frequency of the ith nucleus

with gyromagnetic ratio γi (dependent on the isotope only) and chemical shift δi
(dependent on the chemical environment), Jij is the coupling strength between

nucleus i and j and Zi is the Z Pauli matrix of the ith spin. More details about the

different possible nuclear interactions is available in Appendix A

The first term in the Hamiltonian is the Zeeman interaction and describes the

precession of the spins due to their coupling to the external magnetic field, while

the second term describes the J-coupling between pairs of nuclei. This Hamilto-

nian corresponds to the weak coupling limit, where we assume that the difference

in chemical shifts between coupled spins are much greater than their respective

couplings, i.e. |νLi − νLj | � Jij/2. If this approximation is not valid, we need to use

the full exchange coupling operator XiXj +YiYj +ZiZj in place of ZiZj. The exact

values of the Hamiltonian parameters can be determined by fitting experimental

data (see Sec. 2.4.4).

2.4 DiVincenzo criteria in NMR

2.4.1 Defining the qubit

If we refer back to the Preface, the first criterion a potential system must fulfill to

be a suitable quantum information processor candidate is to be a scalable system
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with well-defined qubits. We have already argued that the nuclear spins are well

defined two-level systems. To encode quantum information, we can associate the

computational basis state |0〉 and |1〉 with the up or down projection of a spin

along the z axis. An arbitrary qubit state |ψ〉 = α|0〉+ β|1〉 can be experimentally

described as

α|0〉+ β|1〉 ⇔ α| ↑〉+ β| ↓〉. (2.2)

The scalability criterion implies that one can potentially scale the quantum

computer to virtually any size. Unfortunately, this capability is compromised in

liquid-state NMR due to incapacity of efficiently initializing the system. A deeper

discussion will follow in Sec. 2.5

2.4.2 Universal control

How to reach universality

In order for a quantum device to be deemed a universal quantum computer, it

must be able to perform any possible algorithm. In the circuit model of QIP,

this implies that it is possible to implement any desired unitary operation on a

given system. Although there exist techniques based on optimal control theory to

generate continuous control sequences for a given unitary (Sec. 2.6.2), it is preferable

for scalability and for design purposes to possess a set of generating gates from which

any operation can be performed. As a matter of fact, the optimal control technique

will require optimization of the control handle each and every time an extra qubit

is added or when the algorithm is slightly modified. On the other hand, having

a set of generating gates permits one to determine the control on the system for

each gate only once, and then apply them sequentially to implement the desired

operation.

Unfortunately, decomposing an arbitrary unitary operation into an optimal se-

quence of generating gates is a very hard task, but it is known that given a unitary,

it is always possible to approximate it to arbitrary precision using an efficient

amount of gates [Kit97a, Sol00, HRC02]. Even though there is an infinite number

of universal sets of gates (if fact, almost “any” set is universal [Llo95, DBE95]),

NMR is best suited for the use of single qubit rotations and two-qubit entangling

gates. It is known that if one can perform arbitrary rotation about any axis on

any qubits, as well as performing a controlled-NOT (CNOT) gate between any two

qubits, universal quantum computation is possible [BBC+95].
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Single-spin control

Consider an oscillating magnetic field applied to the sample perpendicular to the

z axis and at the same frequency as the Larmor frequency of a given nucleus. In

the rotating frame of the spin, that is, a reference frame rotating at the Larmor

frequency, this oscillating field will appear constant and the spin will precess about

this axis. Therefore, this will implement a rotation about an axis in the xy plane,

where the effective angle of rotation will be determined by the duration and power

of the pulse, while the phase of the axis of rotation is determined by the phase of

the pulse. From the time scale of NMR (MHz), these pulses are at radio-frequencies

(RF).

From a more mathematical approach, consider the application of a magnetic

field ~B1 perpendicular to the z axis which oscillates at the angular frequency ωrf

with a given phase φ:

~B1 = | ~B1|
(
cos(ωrf t+ φ) ~x+ sin(ωrf t+ φ) ~y

)
. (2.3)

Since the RF pulse is a magnetic field, it will interact with the dipolar moment

of the nuclear spins such that the Hamiltonian associated with this interaction will

be

H = Hnat +Hrf

= Hnat +
∑
i

ωnuti

2

[
cos (ωrf t+ φ)Xi + sin (ωrf t+ φ)Yi

]
, (2.4)

where ωnuti = γi| ~B1| is the nutation frequency of the rotation.

After transforming to a rotating frame with angular frequency ω, the system

will evolve, in that rotating frame, according to the rotating frame Hamiltonian

given by

Hr = Rz(−ωt)HRz(ωt)−
∑
i

ω

2
Zi. (2.5)

If we consider the system in the rotating frame of the pulse (ω = ωrf ), the total

Hamiltonian (pulse and natural) becomes

Hr =
∑
i

[
1

2
(ωLi − ωrf )Zi +

1

2
ωnuti (cosφXi + sinφYi)

]
+
π

2

∑
i<j

JijZiZj. (2.6)

Ignoring the coupling effect for the moment, if the RF pulse is at the same frequency

as one of the spins, say ωrf = ωLk , the spin k will see an effective constant field in
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the xy plane making an angle φ with the x axis, and will precess about it. The

rotation angle θ is determine by the interval τ during which the RF field is applied,

according to θ = ωnuti τ .

The other spins that are not exactly on resonance with the pulse will experience

an additional non-zero z component to the magnetic field. This is called the off-

resonance effect and will make the spins precess about an axis making an angle Θi

with the z axis, such that

tan Θi =
ωnuti

ωLi − ωrf
. (2.7)

The effective nutation frequency is now given by

ωeffi =
√

(ωnuti )2 + (ωLi − ωrf )2. (2.8)

From the above equation, we can conclude that in order to rotate a single spin k

without rotating the other spins, we need ωnuti � |ωLi − ωrf | so that Θ1 ' 0. This

can be achieved by either considering heteronuclear spins, or by using very small

pulse power. In this limit, Eq. 2.8 thus tells us that spin i will be affected by a shift

in its Larmor frequency, ∆BS given by

∆BS =
(ωnuti )2

2(ωLi − ωrf )
. (2.9)

The above shift is known as the transient Bloch-Siegert effect, which will introduce

a phase error on the other spins. Fortunately, such a shift can be calculated in

advance and be accounted for by modifying the phase of subsequent pulses on the

spin, as we will discuss in more detail in Sec. 2.6.1. For example, a nucleus that

is off-resonant by 3kHz will undergo an extra phase shift of ∼ 15◦ during a 1ms π

rotation of the other spins.

From the above treatment, we conclude that pulses on a heteronuclear system

can be achieved by a quick and powerful burst of RF power (“hard” pulse) due to the

large difference in the gyromagnetic ratio. In commercially available spectrometers,

nutation frequencies can attain 10’s of kHz so that π/2 rotations are achievable in

several µs. On this time scale, the coupling effects between the spins are negligible.

On the other hand, for homonuclear systems with chemical shifts on the order of

kHz, very small nutation frequencies are needed, which implies the need for very

weak and long pulses (“soft” pulses). For a π/2 rotation, τ � 1/(ωLi − ωk), hence

introducing potentially large coupling errors. Since these error do not commute

with the RF Hamiltonian, they will corrupt the state of the system and introduced

intractable errors (unlike the Bloch-Siegert shift).

Fortunately, in the linear response regime, we know that frequency-selective

excitation can be achieved through amplitude and phase modulation of a signal
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Figure 2.1: The excitation profile of a 1ms Gaussian shape pulse. The spectrum

is centered at the carrier frequency of the pulse. The initial state of the spin

was pointing along the z axis and the spectrum shows the z (dotted red) and the

quadrature (solid blue) component of the spin after the pulse, with respect to the

off-resonance of the spin.

(Fourier theorem). Even though the NMR excitation is sinusoidal in frequency

(since the pulse Hamiltonian is exponentiated), the linear regime is a good zeroth

order approximation to evaluate the excitation profile of simple shaped pulses. Since

the Fourier transform of a Gaussian function is also Gaussian, we expect an RF

pulse with a Gaussian amplitude envelope to have an almost Gaussian frequency

excitation profile. The excitation profile of a 1ms Gaussian pulse is shown in

Fig. 2.1. Using Gaussian shaped pulses, it is now possible to selectively excite a

single spin using a pulse length of τ ∼ 1/(ωLi −ωk)), and hence reduce the coupling

errors. Unfortunately, there will still be a transient Bloch-Siegert shift on the other

spins, but as mentioned before, it is possible to compensate for it.

For most liquid state experiments on a few spins, where chemical shifts are com-

paratively large and J-couplings are small, the use of Gaussian pulses is sufficient

to achieve very high precision spin rotations. The situation becomes more com-

plicated when there are more homonuclear spins (implying smaller chemical shift

differences on average), or stronger coupling like in solid state [BMR+06] or liquid

crystal environments [HRH+07]. It is still possible to overcome these drawbacks

by considering more complicated pulse shapes and phase modulation as discussed

in Sec. 2.6.2 where we describe how it is possible to find shaped pulses that can
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implement any desired evolution by simulating the full quantum dynamics.

For calibration purposes, it is preferable to implement either a π/2 or a π pulse.

Therefore, RF fields give us the set of all π/2 and π rotations about any axis in the

xy plane. This set of single qubit rotations is sufficient to generate any desired single

qubit rotations. For example, if a rotation of angle ξ is to be performed around the

axis ~n = (sin θ cosφ, sin θ sinφ, cos θ), simple geometrical arguments can be made

to show that

R~n(ξ) = Rz(ξ)Rφ−ξ(π/2)Rφ−ξ−θ(−π/2)Rφ−θ(π/2)Rφ(−π/2), (2.10)

The final z rotation can be implemented instantaneously by updating the phase of

subsequent pulses, e.g.

Rφ(
π

2
)Rz(θ) = Rz(θ)Rφ−θ(

π

2
). (2.11)

Such phase tracking also allows us to instantaneously implement z rotations of

arbitrary angle and, through efficient phase tracking of the pulses, it is possible to

commute all the z pulses to the end of the computation and cancel them during the

post-processing of the measurements [MFM+00]. Since the implementation of the

phase update of a pulse is usually much more accurate than the implementation of

an RF pulse (the phase is updated digitally and is discretized to 1 part in 65536),

it is preferable to modify any pulse sequence to include as many z rotations as

possible, hence reducing the error introduced by the pulses.

To create an RF magnetic field at the sample, the sample is placed in the

inductor (either solenoid or Helmholtz coil) of a resonant LC circuits. More details

about resonant circuits will be described in 4.6.3.

The controlled-NOT operation and its implementation

To complement the selective arbitrary qubit rotation, one also needs a multi-qubit

entangling operation. A useful and widely used two-qubit gate for quantum infor-

mation processing is the controlled-NOT (CNOT), which acts on the computational

basis

|00〉 → |00〉, |10〉 → |11〉
|01〉 → |01〉, |11〉 → |10〉. (2.12)

The operation must flip the target qubit (second qubit above) if and only if the

first qubit is in the state |1〉. In NMR, |0〉 and |1〉 are associated with the state

of the spin pointing up, | ↑〉 or pointing down | ↓〉 respectively. If we look at

the Hamiltonian in Eq. 2.1 for a two-spin system and consider its effect on spin
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Figure 2.2: Implementation of a controlled-NOT gate in liquid state NMR. The

CNOT is equivalent to a J-coupling evolution up to local operations.

2 depending on whether the state of spin 1 is up or down, we obtain an effective

Hamiltonian for the second spin of the form

H2,↑ =
1

2
(ωL2 + πJ12)Z2 (2.13)

H2,↓ =
1

2
(ωL2 − πJ12)Z2. (2.14)

That is, spin 2 will rotate slower or faster depending on the state of spin 1. If the

coupling evolves for a time τ = 1
2J12

, we obtain a controlled-Z rotation of π/2, which

correspond to a relative difference in angle of rotation of π. This controlled rotation

can then be transformed into a CNOT by a few single spin pulses applied before

and after the free evolution (see Fig. 2.2 for the complete sequence to implement

a CNOT). During the coupling evolution, the Zeeman interaction is also present,

but since it commutes with the J-coupling, it is possible to calculate this phase

evolution and include it in the phase-tracking scheme described above.

Once we consider a system with more than two spins, all the other spins will

also couple during the free evolution period. These extra couplings can be refocused

by implementing a series of cleverly chosen π pulses which would effectively create

a time reversal motion for the spins not affected by the CNOT. For example, on a

three spin system, a π pulse on the third spin half-way through and at the end of

the free evolution will effectively decouple it from the rest, i.e.

U(t) = R†x3(π)e−iHτ/2Rx3(π)e−iHτ/2

= (iX3)e−i
πτ
4

(J12Z1Z2+J13Z1Z3+J23Z2Z3(−iX3)e−i
πτ
4

(J12Z1Z2+J13Z1Z3+J23Z2Z3)

= e−i
τ
2

(J12Z1Z2−J13Z1Z3−J23Z2Z3)e−i
τ
2

(J12Z1Z2+J13Z1Z3+J23Z2Z3)

= e−i
πτ
2
J12Z1Z2 , (2.15)

where we have ignored the Zeeman term in the Hamiltonian. Note that the Zeeman

evolution on spin 3 will also be refocused by such a scheme. In reality, the termi-

nating π pulse does not need to be implemented and can be treated as a “virtual”

pulse. Using the identity

Rφ(π/2)Rθ(π) = Rz(γ)Rδ(π/2)

γ = 2(φ− θ)
δ = 2θ − φ− π, (2.16)
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the virtual π pulse can be accounted for by updating the phase of subsequent pulses

and performing phase tracking.

This scheme can be generalized to efficiently decouple m spins from an N spin

system [JK99, LCYY00]. For systems involving up to a three or four spins, pulse

phases and decoupling sequences are derived by hand, but for molecules containing

a greater number of spins, these calculations become tedious and computer assisted

techniques are used, as described in Sec. 2.6.1

2.4.3 State initialization

In order to implement quantum algorithms and extract relevant information, one

must know the initial state of the quantum processor and that state should prefer-

ably be pure. Liquid state NMR does not offer this luxury due to its high tem-

perature and ensemble nature, but techniques have been developed to partially

overcome this limitation.

As already explained, all the molecules in a liquid sample are effectively de-

coupled from each other, so that the dynamics of the ensemble can be treated by

considering only a single molecule. The thermal state ρth of the molecule is given

by the Boltzmann thermal distribution

ρth =
e−βHnat

Tr(e−βHnat)
, (2.17)

where β−1 = kBT . At room temperature, the Zeeman energy of the nuclei is much

smaller than kBT so that we can approximate the thermal state of an N spin

molecule by

ρth '
1

2N
1l− 1

2N
1

kBT

N∑
i=1

ωi
2
Zi, (2.18)

so that the thermal state in liquid state NMR is highly mixed. The non identity

part of the thermal state is called the deviation density matrix. Since quantum

information processing is concerned with the unitary evolution of a system, which

does not affect the identity part of the state, and since this identity is unobservable,

we can only consider the deviation matrix. As far as NMR is concerned, we can

write the (renormalized) initial state as

ρth =
N∑
i=1

ωiZi. (2.19)

To perform quantum algorithms, the system must be initialized in a fiducial pure

state such as ρ(0) = |0〉〈0|⊗N . Since the initial state is highly mixed, we cannot
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use standard NMR techniques to transform the thermal state into that state, but

we can map the deviation matrix into such a state, hence the term pseudopure

state. Several techniques have been developed in NMR to transform the initial

deviation matrix into such a state. These techniques include temporal averaging

[KCL98] and logical labeling [GC97, CGKL98, DAK00]. In our lab, we usually use

the technique of spatial averaging [CFH97, CPH98, KLMT00] which consists of

using spatially varying magnetic fields, or magnetic field gradients, to achieve the

pseudopure state.

The first step is to keep polarization on only one spin, which can be done by

rotating all but one of the spins, say the spin labeled 1, into the plane and using a

strong magnetic field gradient. The initial state (up to normalization) is then

ρ1 = Z1. (2.20)

In order to maximize the amount of signal during the readout (Sec. 2.4.4), it is

desirable to keep the polarization on the spin of isotope with the largest Larmor

frequency (typically 1H).

If we consider a 3-spin molecule for example, applying the encoding part of the

sequence of pulses in Fig. 2.3 will transform the initial state into

ρ2 = −X1X2X3

= −I+I+I+ − I+I+I− − I+I−I+ − I+I−I−

−I−I+I+ − I−I+I− − I−I−I+ − I−I−I−, (2.21)

where I+ = |0〉〈1| and I− = |1〉〈0| and the spin raising and lower operators. This

state comprises all possible coherence terms, where the coherence number is defined

as the number of raising operators minus the number of lowering operators. The

action of applying a magnetic field gradient along the z axis is to modify the

Larmor frequency of a molecule depending on its spatial location in the sample,

hence effectively creating a spatially dependent z rotation on all the spins. For a

given spatial location the angle of rotation will be dependent on the strength of

the gradient at that location and the gyromagnetic ratio of the spin. If we use a

linearly dependent gradient, the rotation angle on spin i would be θ = αzγi for a

given proportionality constant α related to the strength of the gradient field. For

a specific molecule at a given location z, its state after the gradient is

ρ3 = −e−
3iγαz

2 I+I+I+ − e−
iγαz

2 I+I+I− − e−
iγαz

2 I+I−I+ − e
iγαz

2 I+I−I−

−e−
iγαz

2 I−I+I+ − e
iγαz

2 I−I+I− − e
iγαz

2 I−I−I+ − e
3iγαz

2 I−I−I− (2.22)

where we have assumed that γ1 = γ2 = γ3 = γ for simplicity, but the generalization

is straightforward. This gradient pulse is known as the labeling gradient. The two
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Figure 2.3: Circuit to create a three spin pseudopure state on spin 1 using spatial

averaging. The gradients and the decoding part of the circuit are designed to

select only the highest coherence terms generated after the implementation of the

encoding part.

triple coherence terms actually rotate three times faster than the rest of the terms

and we will use this fact to select those maximal coherence terms using the decoding

part of the circuit in Fig. 2.3. After the pulse sequence, the state is

ρ4 = e−
3iγαz

2 I+|00〉〈00|+ e−
iγαz

2 I+|01〉〈01| − e−
iγαz

2 I+|11〉〈11| − e
iγαz

2 I+|10〉〈10|
−e−

iγαz
2 I−|10〉〈10| − ei

γαz
2 I−|11〉〈11|+ e

iγαz
2 I−|01〉〈01|+ e

3iγαz
2 I−|00〉〈00|

(2.23)

If the last step implements another gradient pulse of three times the strength

(or for the appropriate value if the γ’s are different) of the labeling gradient but

with opposite direction, known as the unlabeling gradient, then once averaged over

the entire sample, all the terms with remaining spatially dependent z rotation will

be dephased, hence yielding the final state

ρpp = I+|00〉〈00|+ I−|00〉〈00|
= X|00〉〈00|. (2.24)

Such a process is typically called a gradient echo.

We should recall that only the deviation density matrix of the state will have

the form X|00〉〈00|. Effectively, this means that the state of the entire ensemble of

molecules is still in a highly mixed state, but a tiny fraction of the molecules will

have all the spins, minus one, pointing up.

The spatial diffusion of the molecules between the labeling and the unlabeling

gradients causes an inexact cancelation of the z rotations performed by the labeling

gradient, hence some signal loss is expected between the initial state ρ1 and the final

pseudopure state ρpp. In typical experiments in our lab, we where able to achieve

pseudopure states with approximately 92% of the original signal on three spins

(Chapter 3). NMR shortcoming for scalability essentially resides in the inability to

create large pseudopure states and this fact is addressed in more detail in Sec. 2.5.
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2.4.4 Readout process

Another criterion needed to perform quantum information processing using liquid

state NMR is a way to perform reliable qubit specific measurements. Due to the

ensemble nature of NMR, it is impossible to performed projective measurements.

Fortunately, it is often possible to modify an algorithm to allow ensemble measure-

ments [NKL98, SVC00].

From a semi-classical approach, since nuclei have magnetic moments, they create

magnetic fields. Therefore, a spin that is in the xy plane will create a magnetic field

that rotates around the z axis at the Larmor frequency of the spin. It will in turn

induce an oscillating current in the coil used to produce RF bursts by Faraday’s

principle of magnetic induction. We can therefore detect and measure the current.

From a quantum mechanical approach, if the induction coil is along the (labo-

ratory frame) x axis, it will detect the magnetization of the spins along the x axis,

which is given by

Mx(t) = Tr

[
ρ(t)

∑
i

Xi

]
. (2.25)

In commercially available spectrometers, quadrature detection is performed to

infer the y magnetization. Careful analysis of quadrature detection [Lev01] shows

that only the (-1)-coherence terms are detected so that the signal measured by

the electronics, known as the free induction decay (FID), is proportional to the

measurement

FID ∝
∑
i

ρi−(t)

= Tr

[
ρ(t)

∑
i

I+
i

]
, (2.26)

where ρi− is the sum of all (-1)-coherence terms in the density matrix that has

the coherence on spin i. Due to electronic limitations and the finite excitation

bandwidth of the probe (see Sec. 4.6.3), the detection window rarely exceeds 1

MHz, so that normally only single isotopes can be recorded at once. Moreover,

through signal processing (see Sec. 5.5.2), it is possible to restrict the window to

any bandwidth and any center frequency, within the limitation of signal processing.

An experimental 1H, or proton, FID after applying a π/2 pulse on the thermal

equilibrium state (T = 293K) of the acetyl chloride molecule (Sec. 3.6.2) can be

seen in red in Fig. 2.4. Since the three protons of the methyl group are magnetically

equivalent, they generate the same FID as a single proton. The exponential decay of

the signal is due to the dephasing present in NMR systems (see Sec. 2.7.1), which

31



−200 −150 −100 −50 0 50 100 150 200
Frequency (Hz)

S
ig

n
a
l

0 0.5 1 1.5
time (s)

S
ig

n
a
l

Figure 2.4: Experimental hydrogen FID and spectrum of the acetyl chloride. The

spectrum is obtained by Fourier transforming the FID. Each peak of the spectrum

can be associated with a computational state of the carbons.

causes the polarization to dampen and ultimately disappear. The polarization

then rebuilds along the z axis through the thermalization procedure of amplitude

damping (Sec. 2.7.2).

In practice, we study the Fourier transform of the FID which gives us the spec-

trum in blue in Fig. 2.4. Since the FID contained an exponentially decaying si-

nusoidal function, the Fourier transform gives complex Lorentzian peaks at each

frequency in the FID. Since only the single coherence of the spin (proton here) is

detected, it is possible to associate each peak of the spectrum to a state of the pro-

ton and the state of the other spins (carbons). In the weak coupling limit, a single

coherence term on the proton means that all the other spins must either point up

or down. As already discussed in Sec. 2.4.2, the effective magnetic field seen by the

proton will depend on the state of the neighboring nuclei. Depending on the signs

of the coupling, we can associate the signal of each peak to the state of the rest of

the spins. Moreover, the state of the proton is determined through the phase of the

real part of the Fourier transform, i.e. absorption Lorentzian (real part) for X (as

shown in the figure) and dispersion Lorentzian (imaginary part) for Y .

Since the integral of an dispersion Lorentzian vanishes due to the oddness of the
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function, the integral of a single peak s, say the right most peak in the acetyl choride

spectrum, will therefore be proportional to the coefficient of the term X|01〉〈01| in

the density matrix at the moment the readout process starts, i.e.

s ∝ Tr[ρ(0)(X|01〉〈01|)]. (2.27)

Therefore, in general, the integral of all the resonance peaks of spin i is equivalent

to measuring the observable Xi. Any other Pauli observable in the plane, i.e.

cos θXi + sin θYi can be measured by multiplying the spectrum by a phase eiθ

first and then integrating. By a clever choice of readout pulse [RLBL05], it is

possible to completely reconstruct the original density matrix, which is known as

state tomography [Jon94, VR89].

With today’s technology, such detection is unable to detect single nuclear spins

due to their small magnetic moments. This fact alone explains the need for an

ensemble of molecules in order to amplify the signal to be recorded by the spec-

trometer. Even though more sensitive measurement techniques have been devel-

oped, such as resistive NMR [DKS+88, KDvK+99, GST+05] which can detect a

signal for a few orders of magnitude less molecules. On the other hand, traditional

NMR technologies are extremely reliable and permit us to record a spectrum with

a high signal-to-noise ratio. Moreover, as far as quantum information processing is

concerned, there is no major benefit in reducing the size of the ensemble, unless it

can be reduced to a single molecule.

Finally, from Fig. 2.4, it is possible to extract the value of ωLM as well as the

value of the couplings. By analysis and fitting the thermal spectrum of each nuclei,

it is in principle possible to extract all the parameters of the natural Hamiltonian

of a molecule. Unfortunately, it is not possible to extract the sign of the coupling

from this technique alone and more involved techniques must be used. As a general

rule, the one-bond coupling between nuclei with the same sign of gyromagnetic

ratio will be positive and negative for that of opposite sign [Lev01]. A good rule

of thumb for 1H-13C coupling signs is that it will be positive for an odd number

of bonds, but negative for an even number of bounds. This rule remains true for

acetyl chloride (Sec. 3.6.2) and crotonic acid [KLMT00], but does not hold for the

tri-chloro-ethylene (TCE) [CMP+98].

Finally, as seen in Eq. 2.27, the amount of signal measured during acquisition

is proportional to the state before the acquisition, i.e. the deviation matrix. Since

the “size” of the thermal deviation matrix is proportional to the Larmor frequency

of the nucleus (Eq. 2.17), it is preferable to create a pseudopure state starting with

the polarization on a nucleus with high gyromagnetic ratio, such as 1H of 19F, in

order to increase the signal-to-noise ratio of the output signal.
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2.4.5 Decoherence time

A final requirement for implementing QIP using liquid state NMR is to have qubits

that are long-lived. We thus need a system where the time to implement quantum

gates is significantly shorter than the decoherence time of the system. As mentioned

earlier, the low energies of nuclear spins naturally decouples them from other degree

of freedom, hence isolating them well. To a high order, the only decoherence present

in NMR arises from interactiosn with the other spins (Sec. 2.7.1) or by energy

exchange with the surroundings (Sec. 2.7.2). In liquid state NMR, these processes

are associated with a loss of coherence on the order of 100’s of ms to seconds, while

the longest quantum gates can be implemented on the order of 10’s of ms.

These competing timescales allows us to implement 10’s and even 100’s of gates

before decoherence greatly affects the system.

2.5 Summary and critique of NMR QIP

In the previous sections, we have demonstrated the liquid state NMR capabilities to

implement quantum information processing tasks. Using nuclear spins as qubits is

natural due to the two-level nature of spin-1/2 systems and also due to their weak

couplings to the environment, which lead to long coherence times. RF technologies

and the natural coupling between the spins allows us, in principle, to perform any

unitary operation possible and finally magnetic detection allows us to perform high

performance readout.

A major caveat in liquid state NMR, which is unfortunately fatal, is the scala-

bility issues of such a system. As seen in section 2.4.3, there is very little thermal

polarization available in the system due to the high temperature of the spins. Us-

ing spatial averaging technique to create a pseudopure state, we saw that one must

discard all the different polarization combinations except for one, which means that

all the peaks in Fig. 2.4 must be dephased and only one kept. As the number of

peaks increases exponentially with the number of spins, there is thus an exponential

loss of signal occurring during the state initialization procedure. If one chooses the

temporal averaging technique instead, an exponential amount of experiment needs

to be performed. Therefore, using these two techniques, it is exponentially hard to

build larger and larger quantum computer.

L. Schulman and U. Vazirani [SV99] developed an efficient algorithm that could

allow scalable NMR quantum information processing. They demonstrated that if

the molecules have N spins with initial polarization ε ≈ ω
kBT

< 1, it is possible

to completely (within error) cool, or polarize, O(ε2N) of them. Unfortunately,

on typical available superconducting magnets, ε ∼ 10−5 at room temperature, so
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approximately 1012 spins would be needed to initialize a 100-qubit quantum com-

puter. Such a molecule would be impractical due to the physical limitation on

the addressability of each spins. Furthermore, such a molecule would require un-

physically large coherence time to implement the control sequence necessary for

the state initialization. By passing to solid state NMR quantum information pro-

cessing [BMR+06], it is in principle possible to boost the initial polarization by

cooling the sample to low temperature or by performing dynamic nuclear polar-

ization [AG82]. Such an increase in the initial polarization to, say, ε = 0.1 would

permit us to create 100 fully polarized qubits using molecules with “only” 104 nu-

clei. Note that since Schulman and Vazirani’s proposal, other type of algorithmic

cooling protocols have been introduced, such as the heat-bath algorithmic cooling

[BMR+02, BMR+05, SMW05, Kay07].

Another critique of NMR quantum information processing has to do with whether

or not entanglement is present in the system. Because of the highly mixed nature

of the state of the system at room temperature, the state will always be prov-

ably separable up to about 14 qubits [BCJ+99]. Therefore, even though entangling

operations are performed, no entanglement is present in the system. For larger

molecule, it is unfortunately unclear if entanglement will be present or not.

From the above argument, one could argue that none of the implemented algo-

rithms in NMR was a demonstration of quantum computation. On the other hand,

it is still unknown if entanglement is necessary to outperform classical computation.

If we are computing on pure states, not only it is known that entanglement is nec-

essary [JL03], but “large enough” entanglement in needed [Vid03]. The situation

becomes more complex when considering mixed states. A typical example is the

DQC1 algorithm [KL98], specifically designed for NMR-type systems, in which it

is shown that a highly mixed state can be used to outperform any known classical

algorithm, even though there is no entanglement present in the system.

2.6 Advance control techniques

2.6.1 Efficient error estimation and optimization

Pulse decomposition

As argued in Sec. 2.4.2, a major source of pulse errors are off resonance and cou-

pling errors. Even though the use of Gaussian soft pulses permits us to perform

spin selective rotation in a faster way, there still can be significant dynamics in

the system. During a pulse, coupling errors occur on the targeted spins since the
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Figure 2.5: Representation of a realistic selective pulse by the ideal transformation

and pre- and post-coupling and phase errors. In the limit of small errors, they can

be efficiently estimated through single and pairwise spin simulations.

coupling Hamiltonian to the other spins does not commute with the control Hamil-

tonian, hence introducing errors on all the spins coupled to the target. Moreover,

the other spins still evolve under the Zeeman Hamiltonian and the coupling Hamil-

tonian to the other non-targeted spins. Finally, as shown in Sec. 2.4.2, the action

of pulsing on one spin will induce an extra phase shift on the other spins through

the transient Bloch-Siegert effect.

Fortunately, it is possible to estimate and compensate for these errors by eval-

uating the first-order coupling and phase errors generated by a pulse [RNL+08].

This is done by assuming that the real pulse can be decomposed as the ideal pulse

preceded and followed by phase and coupling errors (see figure 2.5). Since the er-

ror terms all commute with each other, they can be estimated using pairwise spin

simulations, which requires a reasonable amount of computational resources. For

a selective pulse, say on spin 1 of a N spin system, we know the ideal unitary

evolution should be

U = V id
1 ⊗ 1l2 ⊗ . . .⊗ 1lN . (2.28)

where V id
1 is a rotation of the first spin. In practice, we keep track of all the

evolution in a fixed reference frame (not necessarily that of the pulse) so that in

general, the simulated gate has the form

Us = U id
1 ⊗ U id

2 ⊗ . . .⊗ U id
N . (2.29)

where U id
1 is related to V id

1 by a mere change of frame operation (z rotation) and

U id
2 , . . . , U

id
N are the z-rotations corresponding to changing from the spins own ro-

tating frame to the fixed rotating frame.

The zeroth order effect of the pulse on each spin is calculated by simulating the

single spin terms in the full Hamiltonian, which gives a set of N single spin zeroth
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order operator U
(0)
1 , . . . , U

(0)
N . At this point, it is assumed that only the spins of the

same isotope as the targeted spin will be affected by the RF pulse. By modeling

U
(0)
i = Upost

i U id
i U

pre
i , where Upre

i and Upost
i are z rotations, we can efficiently extract

the pre and post zeroth order phase errors arising from the Bloch-Siegert and off-

resonance effects. To extract the angle of each rotation, we optimize the function

Φ = real
[
Tr(U

(0)†
i Upost

i U id
i U

pre
i )
]
. (2.30)

This function is sensitive to the global phase of the unitaries in order to permit a

successful recombination of all the single spin operations into an N spin operation.

The first order effect can now be calculated by simulating the Hamiltonian for all

the pairs of spins and by finding the optimal pre and post phase and coupling errors

using the same optimization procedure as for the zeroth order. Because most of

the phase errors are already accounted for from the zeroth order approximations,

only the difference in the found values to the zeroth order is added.

By performing pairwise simulations only, spin-mediated coupling between qubits

is neglected, i.e. coupling between spin 1 and 3 through spin 2. On the other hand,

we expect such a coupling to be minimal. By making the assumption that the

phase and coupling errors approximately commute with the RF Hamiltonian, we

are therefore assuming that the coupling between the targeted spin and the rest of

the system is small during the time of the pulse, such that τ � 1
J

. Since the direct

coupling is small, we can also assume the spin-mediated coupling to be negligible.

Therefore, the pairwise simulation will capture most of the errors introduced during

a pulse.

We should mention that such a scheme is only valid for simple, spin selective

pulses. It can be generalized if we consider subsystems of spins and extract the

error by performing subsystem simulation [RNL+08] . In all cases, pairs of spins,

or subsystems, are low dimensional and there is only a polynomial amount of pairs

of spins (or subsystems). Therefore the above decomposition is efficient to compute

and give an accurate representation of the pulse (with fidelity higher the 99.99%

for the systems we normally use).

Once we have a representation for each pulse, we can use them as building

blocks to optimize pulse sequences. The phase errors can be tracked through phase

tracking and corrected by modifying the phase of pulses. Since the two-qubit gates

are performed through natural ZZ evolution, the coupling errors can be either

canceled through a cleverly chosen refocusing scheme or by absorbing the extra

couplings during delays of free evolution.

37



Sequence compiler

All the techniques described so far to control a system (phase tracking, refocusing,

virtual π pulses, coupling error absorbtion) have been implemented into a sequence

compiler which takes as input a series of control commands and outputs a pulse

sequence readable by the spectrometer.

The precompiled files comprise commands to be implemented and are described

as a series of computational pulses, couplings and refocusing pulses. Before and

after each computational pulse, the compiler sets goals for the couplings between

the spins depending on previous commands received. By taking into account the

coupling errors introduced by previous and subsequent pulses, it will optimize delays

before and after the location of the refocusing pulses such that the coupling goals

are attained with as little error accumulation as possible. It will also perform the

phase tracking and virtual π cancellation by modifying the phase of the pulses

accordingly.

The main advantages of using such a scheme is for the phase and coupling

tracking. By tracking the phase of all the spins, chemical shift evolution does not

need to be refocused during a coupling evolution, e.g. to implement a CNOT. The

same argument applies for the couplings. For example, if the goal of a coupling on

spin 1 is set to 0 before a pulse, only couplings to spin 1 have to be refocused, e.g.

0 coupling between 1 and 2 and between 1 and 3. The coupling between spin 2 and

3 does not need to be refocused and can be dealt with later.

Such a local optimization scheme is efficient since only pairs of qubits are con-

sidered.

2.6.2 Optimal control for strongly coupled spins

In some cases, spins are so strongly coupled that the approximations of phase and

coupling errors used above is imprecise. In those cases, another technique can be

used: strongly modulating pulses designed using numerical optimal control tech-

niques [FPB+02, KRK+05]. For systems containing roughly less than ten qubits,

we can find extremely high fidelity and robust control by applying optimal control

principles. Quantum optimal control has been used for some time in the context

of driving chemical reactions with shaped laser pulses [RdVRMK00]. There, the

goal is to maximize the transfer from a known initial state to a known final state.

In the context of quantum computing, we do not necessarily know what the input

state will be, and so we must find unitary gates which will work correctly for any

input state.
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The Hamiltonian at any point in time can be written down as

Htot(t) = Hnat +Hrf (t, ~α), (2.31)

where, as before, the (time-dependent) RF Hamiltonian is controlled via parameters

~α (amplitude, phase and frequency of the pulse). The task is to find the sequence

of control fields that will produce the correct unitary evolution. Using a numerical

search algorithm, we can find control sequences with fidelities as high as 0.999999

on small systems.

By discretizing the parameters α into small intervals of constant amplitude,

phase and frequency, it is possible to exactly compute the propagator of a given

pulse by exponentiating the time-independent Hamiltonian (in the rotating frame

of the pulse) of each interval and multiplying the unitaries together to obtain the

simulated unitary Usim. We can then compare it to the desired unitary Ugoal with

the Hilbert-Schmidt measure to obtain a fitness function

Φ =
∣∣∣Tr
(
U †simUgoal

)∣∣∣2 . (2.32)

Such a measure of gate fidelity is equivalent to measuring the state fidelity

of the unitary U †simUgoal (= 1l ideally) averaged over all input states [FPB+02].

By performing an optimization routine on Φ, we can achieve high gate fidelities,

given that the Hamiltonian is well known. If there are uncertainties about either

the natural or the RF Hamiltonian, or both, it is possible to optimize Φ over a

distribution of Hamiltonians to make the pulse robust to the uncertainties in these

parameters.

The first implementation of such an algorithm for QIP purposes was performed

by Fortunato et al. [FPB+02], where they used a MATLAB built-in simplex search

algorithm [Chv83] and cleverly chosen penalty functions on Φ, to avoid excessively

high power for example. Inspired by optimal control technique, Khaneja et al.

developed an algorithm in which the control parameters are modified in a way to

move the fitness function in the steepest ascent direction, hence its name: GRadient

Ascent Pulse Engineering, or GRAPE. They showed that the derivative of Φ with

respect to the control parameter can be approximated solely from the information

already acquired from the simulations, The derivative of Φ will depend on the

derivative of the unitary operators at each time interval with respect to the control

parameters. They showed that this derivative can be estimated by

∂Uj
∂ui(j)

≈ −i∆tHiUj, (2.33)

where ∆t is the time of each interval, Uj is the propagator of the jth interval and

ui(j)(i = {x, y}) is the nutation frequency of the spins due to the RF field along the
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x or y direction during the time interval j. Notice that this differentiation does not

involve finite differencing, nor extra matrix exponentiation, hence can be evaluated

from matrices already calculated. We can connect to our previous pulse notation in

Eq. 2.4 by (ωnut)2 = u2
x + u2

y and tanφ = uy
ux

. From this information, it is possible

to calculate the gradient of the fitness function and change the value of the control

parameters accordingly.

Since each optimization step requires us to calculate the value of the propagator

only once, such a search algorithm is much faster and thus allows for a greater

number of time intervals to be considered, which can greatly improve the quality of

the pulses and allows the identification of smoothly varying pulses, which are more

spectrometer friendly (Sec. 4.6.3).

Strongly modulated pulses drive the state of the spins on a non-intuitive path on

the Bloch sphere and can make use of all the dynamics of the system, i.e. chemical

shift evolution, Bloch-Siegert shift, direct coupling, indirect coupling, etc. On the

other hand, some constraints on the length of the pulses are imposed due to the

natural Hamiltonian and the action of the desired unitary. For example, a selective

pulse should take on the order of the inverse of the smallest chemical shift between

the targeted spin and the others. A CNOT is also expected to take of the order

τ ∼ 1
2J

.

Due to the nonintuitive dynamics of GRAPE pulses, the approximation done

in Sec. 2.6.1 may break down and lead to incorrect representations of the pulse due

to the use of the full dynamics. Fortunately, GRAPE can be used to find pulses

on subsystems of strongly coupled spins, that are weakly coupled with each other.

The effect of the other subsystems can then be approximated by pairwise subsystem

simulations as described in 2.6.1 [RNL+08].

2.7 Noise and decoherence in NMR

2.7.1 Dephasing

One of the major sources of noise in NMR, as well as in many other quantum

computing devices, is the interaction with the surroundings (see Capter 3 for a

mathematical argument), which in turn causes dephasing. Dephasing, or transverse

relaxation, is the phenomenon associated with the decay of the coherence terms (off-

diagonals) in the density matrix. In NMR, since the signal is due to the ensemble

of spins, a coherence term which lasts forever would require all the same spins

of the different molecules to precess about the magnetic field at exactly the same

rate. As previously mentioned, the frequency of a single spin depends on the local

magnetic field, which depends on the external field, and on the field created by the
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surrounding spins. Due to rapid tumbling, the average field over time is the same,

but does vary across the sample at a particular given time. This instantaneous

variation causes the identical spins of all the molecules to slowly desynchronize and

therefore lose coherence across the sample.

From a more quantitative approach, dephasing noise Λd can be understood as

small random z rotation across the sample, so that the state of the system can be

described by a statistical average over a distribution of rotation angles q(θ):

Λd(ρ) =

∫
dθq(θ)e−i

θ
2
Zρei

θ
2
Z . (2.34)

By directly evaluating the above integral, we find that

ρ =

(
ρ00 ρ01

ρ10 ρ11

)
→

(
ρ00 Γρ01

Γ∗ρ10 ρ11

)
, (2.35)

where Γ = 〈e−iθ〉 =
∫
dθq(θ)e−iθ. In liquid state, the environment is assumed to be

isotropic, that is, the distribution q(θ) is symmetric about 0, so that Γ = 〈cos θ〉.

As already seen in Sec. 2.4.4, the FID envelope of a spin decays exponentially,

and hence the single coherence terms do as well. The exponential decay for the

coherences is true for any system with a Markovian environment [Kin63]. In liq-

uid state NMR, the environment consists of the deuterated solvent and the other

molecules. Due to the rapid tumbling and the high temperature of the spin bath,

the environment is therefore highly incoherent and the memory effect of the envi-

ronment can be neglected (Markovian). Therefore,

Γ = e−γ2t = e
− t
T2 , (2.36)

where we have defined the dephasing decay rate and decay time constant γ−1
2 = T2.

From a different approach, if we explicitly expand and multiply the z rotations,

we can also evaluate Eq. 2.34 as

Λd(ρ) = (1− p)|ψ〉〈ψ|+ pZ|ψ〉〈ψ|Z, (2.37)

where p =
∫
dθq(θ) sin2 θ

2
is the probability of the state undergoing a phase flip.

Therefore, dephasing can also be described by the Kraus operators

A0 =
√

1− p1l, A1 =
√
pZ. (2.38)

By direct evaluation and comparison, we find that

p =
1− e−γ2t

2
. (2.39)
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We should note that dephasing channels are also described in the literature [NC00]

using the Kraus operators

A′0 =

(
1 0

0
√

1− p′2

)
A′1 =

(
0 0

0 p′

)
, (2.40)

for p′2 = 1− e−
t
T2 .

The uncorrelated dephasing of multiple spins can be evaluated by concatenating

either the Kraus operators (as in Sec. 1.3) or by evaluating the direct integral of

the random rotations, which gives, for example, a double spin coherence, either a

zero or double coherence, to decay at the sum of the decay rate, e.g.

Λd(|00〉〈11|) → e−γ
(1)
2 t−γ(2)

2 t|00〉〈11|. (2.41)

If we use the integral approach, it is possible to evaluate the effect of correlated

noise. If two spins have a correlated rotation angle distribution q(θ1, θ2), the decay

of their joint state will be evaluated as

Λd(ρ) =

∫
dθ1dθ2q(θ1, θ2)e−

i
2

(θ1Z1+θ2Z2)ρe
i
2

(θ1Z1+θ2Z2). (2.42)

Even though dephasing of the coherence terms does not involve any energy

exchange, it still increases the entropy of the system and since the lost of coherence

is due to a Markovian environment, it is an irreversible process. On the other hand,

since the dephasing of spins arises through the fluctuations of the local magnetic

field created by the surrounding spins, it is also expected that inhomogeneities in

the external magnetic field will also cause dephasing. Fortunately, this dephasing

can be refocused using a series of π pulses. If the spins dephase due to the magnetic

field inhomogeneities for a time τ/2, then applying a π pulse will flip all the spins

with respect to that axis and create a motion reversal of the spins. Therefore, the

spins will undo their precession and evolve back to their original phase. This will

work assuming the inhomogeneities are the same from t=τ/2 to t = τ . This is an

example of incoherent noise (Sec. 1.4). In reality, the inhomogeneities fluctuate in

time, but can still be refocused by applying pulses at shorter intervals during which

the inhomogeneities are almost constant. Such a sequence is called a Carr-Purcell-

Meiboom-Gill (CPMG) sequence [CP54, MG58].

Using the CPMG sequence, it is possible to measure the intrinsic value of T2 by

preparing the spin of a nuclei in the plane, refocusing the field inhomogeneities and

recording the final signal. By plotting the signal as a function of time and fitting

an exponential, one obtains the decay constant.
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These two different dephasing phenomenon will induce two different time con-

stants. T2 is associated with the decay of the coherence due to the intrinsic irre-

versible dephasing, while T ∗2 is associated with the dephasing from the unrefocused

inhomogeneities. When recording an FID as in Fig. 2.4, the spins are typically not

refocused so that the FID decays at the T ∗2 rate. We can thus extract the value of

T ∗2 from the decay envelope of the FID or from the width of the resonant peak of

the spectrum.

2.7.2 Amplitude damping

Dephasing is not the only source of decoherence in NMR. Amplitude damping, also

known as the longitudinal relaxation or the spin-lattice relaxation, is the process

through which the state of the nuclei returns to the thermal state given in Eq. 2.17.

During the RF control sequence, energy is exchanged between the RF field and

the nuclei to create coherences. Over time, this extra energy is then exchanged

back to the environment causing the spins pointing down (high energy state) to

emit energy and relax to the up state (low energy). Probabilistic laws obliged, the

spins can also absorb energy from the environment, creating a up-down flip. The

rethermalization of the system is achieved when the population of up (p↑) and down

(p↓) states are in thermal equilibrium, i.e.

p↑ − p↓ '
ω

kBT
(2.43)

In an inversion recovery experiment, the thermal state of each spin is excited

by a π pulse, hence inverting the population of up and down states. After letting

the system relax for a time t, the spins are tipped into the plane and the signal

recorded. By plotting the signal over time, one measures that the magnetization

along the z axis relaxed according to

Mz(t) = Mz,eq(1− 2e
− t
T1 ), (2.44)

where we have defined the longitudinal decay rate and time constant γ−1
1 = T1.

In a more general approach, if the initial magnetization was Mz(0), the recovery

process follows

Mz(t) = Mz,eq − (Mz.eq −Mz(0))e
− t
T1 . (2.45)

A careful analysis of the master equation of longitudinal relaxation [BP02] leads to

four Kraus operators [NC00] :

A0 =
√
p

(
1 0

0
√

1− η

)
A1 =

√
p

(
0
√
η

0 0

)
A2 =

√
1− p

(√
1− η 0

0 1

)
A3 =

√
1− p

(
0 0
√
η 0

)
, (2.46)

43



where p ' 1
2

(
1− ω

2kBT

)
and η = 1−e−

t
T1 . Intuitively, operators A0 and A1 describe

the down-up flip while A2 and A3 the up-down flip. The probability of each flip p

and 1−p is related to the thermal equilibrium of each population. By calculating the

effect of the above operators on a density matrix, we see that amplitude damping

also causes the coherence terms to decay, i.e.

Λa(ρ) =

(
(ρ00 − ρ̄00)e

− t
T1 + ρ̄00 ρ01e

− t
2T1

ρ10e
− t

2T1 (ρ11 − ρ̄11)e
− t
T1 + ρ̄11

)
, (2.47)

where ρ̄00 and ρ̄11 are the up and down equilibrium population.

2.7.3 General noise in NMR

From the two previous sections, we saw the effect of phase damping and dephasing

separately, hence defining the decay time T1 and T2. In reality, both processes occur

simultaneously. As shown in Appendix B, the complete relaxation of a single spin

in time can be described as

Λ(ρ) =

(
(ρ00 − ρ̄00)e

− t
T1 + ρ̄00 ρ01e

− t
T2

ρ10e
− t
T2 (ρ11 − ρ̄11)e

− t
T1 + ρ̄11

)
. (2.48)

Since the decay of the off-diagonal elements is due to both dephasing and am-

plitude damping, the experimentally measured T2 values thus correspond to the

sum of the decay rate i.e. T−1
2 = 1

2
γ1 + γ2. Upon measuring the value of T1 from

an inversion recovery experiment, it is thus possible to infer the decay rate due to

dephasing alone. Moreover, if dephasing would be completely absent from the sys-

tem, the decay of the coherence would be only due to amplitude damping. We thus

obtain a bound for the maximum value for T2, i.e. T2 ≤ 2T1. In real NMR system,

field fluctuations and ensemble effects prevent the achievement of this bound, and

we often have the situation T2 < T1 and T ∗2 � T1.
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Chapter 3

Quantum error correction and

noise correlation

3.1 The importance of knowing the behavior of

the noise

Recall that quantum computation uses the properties of quantum mechanics to per-

form information processing and computation. Unfortunately, quantum mechanical

systems are extremely fragile and tend to quickly lose their quantum nature because

of noise and decoherence. Over time, decoherence pushes the quantum state of a

system to decohere into a classical probabilistic mixture of quantum state. From a

quantum computing point of view, this means that long and complex computations

are extremely difficult to achieve and decoherence affects the carefully designed

quantum algorithm to yield a random and often useless answer. Fortunately, the

theory of quantum error correction (QEC) has been developed to circumvent this

problem [Sho95, Ste96, BDSW96, KL97]. The basic idea of QEC is to encode the

quantum information of k logical qubits into n physical qubits. The encoding is

specifically designed so that once the encoded state is affected by the decoherence,

it is still possible to recover the initial information through a series of measure-

ments and quantum operations. The threshold theorems [ABO97, Kit97b, KLZ98]

stipulate that if the decoherence, or the noise level, present in the system falls be-

low a certain threshold value for given assumptions, arbitrarily long and complex

quantum computation is possible. A detailed example of a QEC code will be given

in Section 3.5.

One of the standard assumptions in developing a QEC code is that the noise

is independent, or uncorrelated (Sec. 1.3), so that the probability of an error hap-

pening on a given qubit does not depend on the probability of an error happening
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on one of the other qubits. Clearly, knowing if the noise present in a given system

is correlated or uncorrelated is of crucial importance to performing precise, robust

and reliable QIP. As a matter of fact, correlation in the noise can increase the

probability of multi-qubit errors and therefore, jeopardize a computation scheme

developed for a wrong threshold value.

The presence of noise correlation can be deduced by performing quantum process

tomography (QPT) [THL+95, CN97, PCZ97], which is a method of determining

for example, all the coefficients of the χ matrix (Sec. 1.2.2). Although QPT gives a

complete description of the decoherence, it is also not scalable as the χ matrix has

O(42n) parameters and takes the same order of experiments to measure all these

value [CCL01, WHE+04]. When the mechanism of the noise affecting a system

is well understood (as in NMR [McC87]), complete QPT is often not needed to

extract the parameters of the noise model and partial, but crucial, information can

be extracted using scalable techniques.

In this section, we will demonstrate how QEC can be used, not to reduce de-

coherence, but to probe the correlations between the transverse relaxation of two

homonuclear spins in liquid-state NMR (i.e. a T2 relaxation). An experimental

value was extracted from a three-spin processor, which was in accordance with the

value extracted from a standard double coherence decay technique.

3.2 The noise model

As mentioned in the Section 2.7, the major source of decoherence in liquid state

NMR is transverse and longitudinal relaxation (dephasing and amplitude damping).

In a variety of molecules, especially molecules chosen for NMR QIP, the T2 time-

scale will be much shorter then T1. Moreover, since the decay of the coherence terms

of the density matrix are more affected by the dephasing than by the amplitude

damping (γ2 vs. γ1

2
), it is reasonable assume that for a short period of time, only

dephasing is present in the system.

We mentioned that both intramolecular and intermolecular dipolar coupling

average to zero on the NMR time scale due to isotropic molecular rotation. In high

magnetic fields, the dipolar Hamiltonian has the from

HD =
Dij

2
(1− 3 cos2 θij)(2ZiZj −XiXj − YiYj), (3.1)

where θij is the angle between ~rij and the z axis. Dij is called the dipolar constant

and is typically of the order of kHz. It depends on the magnetic moment of the

spins and decays as r−3
ij (see Appendix A).
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Even though the XX +Y Y part of the dipolar Hamiltonian averages to zero to

high order in perturbation theory, the ZZ part can still create transverse relaxation

due to the ensemble effect of neighboring molecules in the sample [Lev01]. As a

simple example, consider a single qubit interacting with a single spin environment

for a given time, yielding an interaction of strength b. Applying the standard

assumption that the state of the system ρs, and the environment ρE , are initially

separable, i.e.

ρ = ρs ⊗ ρE , (3.2)

the final state of the system is given by the partial trace of the global state over

the environment, which gives

Λ(ρ) = TrE
[
e−ibZZEρs ⊗ ρEeibZZE

]
= 〈0|Ee−ibZZEρs ⊗ ρEeibZZE |0〉E

+〈1|Ee−ibZZEρs ⊗ ρEeibZZE |1〉E
= 〈0|ρE |0〉e−ibZρseibZ + 〈1|ρE |1〉eibZρinie−ibZ , (3.3)

We see that the qubit will undergo a phase rotation of b
2

with probability

|〈0|ρE |0〉|2 and a rotation of − b
2

with probability |〈1|ρE |1〉|2, hence yielding uncer-

tainty in the information about the phase of the state, thus giving rise to transverse

relaxation.

In a more general case, consider a single spin interacting with an environment

E of N spins. The propagator of the dipolar coupling between the spin and the

environment is given by

U =
∏
j∈E

e−ibjZZj

= e−i
P
j bjZZj , (3.4)

where bj is the interaction strength between the system spin and the jth spin of

the environment for a certain amount of time. Once we trace over the environment

degrees of freedom, the final state of the single spin is

Λ(ρ) =
∑

a∈{0,1}N
〈a|e−i

P
j bjZZjρini ⊗ ρEei

P
j bjZZj |a〉

=
∑

a∈{0,1}N
〈a|ρE |a〉e−iξaZρinieiξaZ

=
∑

a∈{0,1}N
〈a|ρE |a〉e−iξaZρinieiξaZ , (3.5)

where we have defined ξa =
∑

m bm(−1)am , am being the mth digit of a. In liquid

state NMR using low viscosity solvents, we can assume the environment to be
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isotropic. With this in mind, it is now possible to modify Eq. 3.5 by using a = 0⊗N

and by changing the sum over a to a sum over a symmetric and isotropic distribution

of ~b = (b1 . . . bN). In the limit of large N , this sum becomes an integral. Moreover,

in room temperature liquid state NMR, the deviation of the thermal state from the

completely mixed state is of the order of 10−4, so that 〈a|ρE |a〉 ' 1
2N

. We finally

have

Λ(ρ) =

∫
dαq(α)e−iαZρinie

iαZ , (3.6)

where α =
∑

m bm and q(α) is the distribution of α which takes into account

the distribution of ~b. By making the connection between the above equation and

Eq. 2.34, we have physically argued the presence of dephasing in liquid state NMR

due to dipolar interaction.

To determine more precisely the effect of the dephasing, we need to concentrate

on the distribution of ~b. First, all bj’s have the same distribution, and their values

are given by the dipolar coupling to the single spin and the time of interaction.

From Eq. 3.1, the strength of the couplings has an angular and a radial dependence.

Since the environment is isotropic, the environment spins do not have a preferred

alignment with the qubit. Therefore, by averaging the angular dependence, we

conclude that the average value of bj’s must vanish. Since N is very large and by

the summation property of α, we can invoke the central-limit theorem [Fel45, Spi92]

and conclude that q(α) is well approximated by a Gaussian distribution with zero

average, i.e.

q(α) =
1√
2π
e−

α2

2σ2 , (3.7)

with a given variance σ.

For the completely general case, i.e. for a system with M spins, the same

argument applies and the model generalizes to

Λ(ρ) =

∫
d~αq(~α)e−i~α·

~Zρinie
i~α·~Z , (3.8)

where ~α = (α1, . . . , αM), ~Z = (Z1, . . . , ZM) and p(~α) is the multivariate Gaussian

distribution [Ton90]

q(~α) =
1√

(2π)M |Σ̂|
e−

1
2
~αT ·Σ̂−1·~α. (3.9)

Σ̂ is the covariant matrix, or the correlation matrix, and |Σ| the determinant of the

correlation matrix. This matrix takes the form

Σ̂ii = 〈α2
i 〉

= σ2
i (3.10)

Σ̂ij = 〈αiαj〉, (3.11)
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where σ2
i is the variance of αi. From the Cauchy-Schwartz inequality, we know that

|〈αiαj〉|2 ≤ 〈α2
i 〉〈α2

j〉, (3.12)

so that we can write

〈αiαj〉 = cijσiσj, (3.13)

where −1 ≤ cij ≤ 1 is the correlation factor between αi and αj, which is defined as

cij =
〈αiαj〉√
〈α2

i 〉〈α2
j〉
. (3.14)

3.2.1 Single qubit case

In the case of a single qubit, the situation is simple due to the lack of correlation

factors, and the fact that Σ = 〈α2〉 = σ2 is only a scalar. In the computational

basis, the density matrix of a single qubit is written as

ρ =
∑

k,l={0,1}

ρkl|k〉〈l|. (3.15)

The evolution of each terms goes as

Λ(|k〉〈l|) =
1√

2πσ2

∫
dαe−

α2

2σ2 e−iαZ |k〉〈l|eiαZ

=

 1√
2πσ2

∫
dαe−

α2

2σ2 |k〉〈l| If k = l,

1√
2πσ2

∫
dαe−

α2

2σ2 e±2iα|k〉〈l| If k 6= l.

=

{
|k〉〈l| If k = l,

e−2σ2|k〉〈l| If k 6= l
. (3.16)

For a single qubit, such a noise model will thus affect the state as

|k〉〈l| → e−2σ2(1−δkl)|k〉〈l|. (3.17)

As explain in section 2.7.3, exponential transverse relaxation is described using

the decay time constant T−1
2 = 1

2
γ1 + γ2 := γ. Therefore, we conclude that

σ2 =
γt

2
. (3.18)
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3.2.2 Two qubit case

In the case of 2 qubits, the calculation is slightly more cumbersome. As for the

single qubit case, we will decompose the density matrix in the computational basis

as

ρ =
∑

k,l,
m,n={0,1}

ρ kl
mn
|km〉〈ln|. (3.19)

The covariant matrix takes the form

Σ =

(
σ2

1 cσ1σ2

cσ1σ2 σ2
2

)
, (3.20)

and by using Gauss-Jordan elimination technique [Str03], we find that

Σ−1 =
1

σ2
1σ

2
2(1− c2)

(
σ2

2 −cσ1σ2

−cσ1σ2 σ2
1

)
=

(
1

σ2
1(1−c2)

−c
σ1σ2(1−c2)

−c
σ1σ2(1−c2)

1
σ2

2(1−c2)

)
. (3.21)

Actually, explicitly knowing the form of Σ−1 is not necessary to evaluate 3.8 if we

use the integral identity of multivariate Gaussian integral with linear term, i.e.

1√
(2π)q|A|

∫
dqxe−

1
2
~xT ·A−1·~x+~sT ·~x = e

1
2
~sT ·A·~s, (3.22)

By putting together Eq. 3.9 and 3.8 and analyzing the effect on an arbitrary term

|km〉〈ln|, we see that

Λ(|km〉〈ln|) =
1√

(2π)2|Σ̂|

∫
d~αe−

1
2
~αT ·Σ̂−1·~α · e−i~α·~Z |km〉〈ln|ei~α·~Z , (3.23)

Here, we clearly have a direct analogy A = Σ, ~x = ~α and q = 2 and we only need

to figure out the value of ~s, which will depend on the action of the ~α · ~Z operator

on the matrix |km〉〈ln|.

Out of the 16 terms in the density matrix of two spins, there are essentially five

different cases that will yield inherently different ~s, and those cases are listed in the

Table 3.1. All together, we have that

Λ(|km〉〈ln|) = e−2σ2
1(1−δkl)−2σ2

2(1−δmn)−4cσ1σ2ηklmn|km〉〈ln|, (3.24)
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Condition # of terms ~sT

k = j, m = n 4 (0, 0)

k 6= j, m = n 4 (±2i, 0)

k = j, m 6= n 4 (0, ±2i)

k 6= j, m 6= n, k 6= m 2 ±(2i, 2i)

k 6= j, m 6= n, k = m 2 ±(2i, −2i)

Table 3.1: Different value of the linear term ~s for the multivariate Gaussian integral

for different terms of the density matrix of a two qubit system.

where δab is the usual Kronecker delta function and where we have defined the

function ηabcd for a, b, c, d ∈ {0, 1} as

ηabcd =


0 If a = b or c = d

−1 If a 6= b, c 6= d and a = c (b = d)

1 If a 6= b, c 6= d and a 6= c

, (3.25)

If we include the relations in Eq. 3.18, we have

Λ(|km〉〈ln|) = e−γ
(1)t(1−δkl)−γ(2)t(1−δmn)−2ct

√
γ(1)γ(2)ηklmn|km〉〈ln|. (3.26)

From this equation, we can infer the effect of noise correlation on the error

affecting a system. In the case where c > 0, a double coherence term, e.g. |00〉〈11|
or |11〉〈00| will decay at a rate 2ct

√
γ(1)γ(2) faster than if the noise was uncorrelated.

Therefore, if a quantum computing scheme is designed for independent errors using

an error rate per qubit of Γ = max (γ(1), γ(2)), the whole computation could yield

invalid results due to the fact that double coherence terms decay at a faster rate and

this error might not be compensated for by the designed QEC scheme. Similarly,

if c < 0, the zero coherence terms, e.g. |01〉〈10| or |10〉〈01|, will decay faster.

3.2.3 Interpretation of correlation

Intuitive explanation

The correlation in the noise can be a very complex process to analyze [BP02, GZ04]

and is beyond the scope of this thesis. On the other hand, one can make simple

arguments to understand possible sources of correlation in NMR.

The correlation in the noise affecting two separate spins can be understood

through the distinguishability of the spins. If two spins are indistinguishable, mean-

ing that they have the same Larmor frequency and the same coupling to any other
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surrounding spins in the molecule, then the environment will act identically on

both of them. Therefore, if one spin undergoes a phase rotation due to an inter-

action with a spin from the environment, the other spin should undergo the exact

same rotation. If two spins are completely distinguishable, say two different nuclear

species, then the environment will couple differently to each spin and the noise will

be completely uncorrelated. Spins of the same isotope but with different chemi-

cal shifts can be seen are “near distinguishable” and hence will yield a correlation

factor of −1 < c < 1.

To put some mathematical modeling on the above argument, we will assume

γ(1) = γ(2) = γ for simplicity, but the same argument follows for γ(1) 6= γ(2), and

we will consider the case of c = 0 and c = 1 for the double coherence term |00〉〈11|.

Uncorrelated noise

If the two spins are completely uncorrelated, the probability distribution of ~α will

be separable,

p(α1, α2) = p(α1)p(α2). (3.27)

Eq. 3.8 becomes

Λ(|00〉〈11|) =

∫
dα1α2p(α1)p(α2)e−2iα1−2iα2|00〉〈11|

=

[∫
dαp(α)e−2iα

]2

|00〉〈11|

=
1√
2π

[∫
dαe−

α2

2σ2−2iα

]2

|00〉〈11|

= e−4σ2|00〉〈11|
= e−2γt|00〉〈11|. (3.28)

Therefore, a double coherence term will decay at twice the rate of a single coherence,

which is intuitively sound, since each spin contributes a decay rate of γ.

Completely correlated noise

In the case of completely correlated noise, the spins undergo the same evolution

due to the environment. Therefore the probability distribution now looks like

p(α1, α2) = p(α1)δ(α2 − α1), (3.29)
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That is, the generator of error is now α(Z1 + Z2) and the evolution of the double

coherence goes as

Λ(|00〉〈11|) =

∫
dαp(α)e−4iα|00〉〈11|

= e−8σ2|00〉〈11|
= e−4γt|00〉〈11|, (3.30)

so that the completely correlated double coherence terms decay four times faster.

The above results are in agreement with Eq. 3.26 , which was derived in a much

more abstract way.

3.3 Engineering the noise

3.3.1 Kraus form for correlated dephasing

For purposes that will become clear in Section 3.6.1, we need to experimentally

engineer the above Gaussian noise model. If we explicitly expand Eq. 3.8 we obtain

Λ(ρ) = 〈cos2 α1 cos2 α2〉ρ+ 〈cos2 α1 sin2 α2〉Z2ρZ2

+〈sin2 α1 cos2 α2〉Z1ρZ1 + 〈sin2 α1 sin2 α2〉Z1Z2ρZ1Z2

+〈sinα1 cosα1 sinα2 cosα2〉 (Z2ρZ1 + Z1ρZ2 − ρZ1Z2

−Z1Z2ρ) , (3.31)

where we used the notation 〈f(α)〉 =
∫
dαp(α)f(α). In the Kraus operator formal-

ism, the first four terms of the above equation tells us the probability that spins

undergo no phase flip, single flips or a double flip. Unfortunately, it is hard to

develop an intuition for the last terms. Actually, they are not even in the Kraus

form (i.e. not of the form AρA†). On the other hand, it is possible to find the

Kraus operators yielding such a term.

As seen in section 2.7.1, the Kraus operators for dephasing are {
√

1− p21l,
√
pZ},

with p = 1
2
(1− e−γt). If the noise is independent from qubit to qubit, it is possible

to determine the decohered state of multiple qubits by concatenating the action of

the Kraus operators (Sec. 1.3). For two spins, we have

ρ → Λ2 (Λ1(ρ))

= Λ2((1− p1)ρ+ p1Z1ρZ1)

→ (1− p2)[(1− p1)ρ+ p1Z1ρZ1] + p2Z2[(1− p1)ρ+ p1Z1ρZ1]Z2

= (1− p1)(1− p2)ρ+ p1(1− p2)Z1ρZ1 + (1− p1)p2Z2ρZ2

+p1p2Z1Z2ρZ1Z2. (3.32)
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Therefore, the first 4 terms in Eq. 3.31 describe the action of the uncorrelated part

of the noise. The other terms are thus related to the correlation, which implies that

the Kraus operators for those terms must be proportional to

B = eθ1Z1+θ2Z2 . (3.33)

It is straightforward to verify that if we take B = e−i
π
4

(Z1+Z2), we obtain

BρB† +B†ρB =
1

2
(ρ+ Z1ρZ1 + Z2ρZ2 + Z1Z2ρZ1Z2

+ Z1ρZ2 + Z2ρZ1 − ρZ1Z2 − Z1Z2ρ) . (3.34)

It is therefore possible to rearrange Eq. 3.31 in the Kraus form:

Λ(ρ) = p1ρ+ p2Z1ρZ1 + p3Z2ρZ2 + p4Z1Z2ρZ1Z2

p5e
−iπ

4
(Z1+Z2)ρei

π
4

(Z1+Z2) + p6e
iπ

4
(Z1+Z2)ρe−i

π
4

(Z1+Z2), (3.35)

where the coefficient pi are given in Table 3.2.

Ai pi

1l 1
4

(
1 + e−γ

(1)t + e−γ
(2)t + e−γ

(1)t−γ(2)t−2ct
√
γ(1)γ(2)

)
Z1

1
4

(
1− e−γ(1)t + e−γ

(2)t − e−γ(1)t−γ(2)t+2ct
√
γ(1)γ(2)

)
Z2

1
4

(
1 + e−γ

(1)t − e−γ(2)t − e−γ(1)t−γ(1)t+2ct
√
γ(1)γ(2)

)
Z1Z2

1
4

(
1− e−γ(1)t − e−γ(2)t + e−γ

(1)t−γ(1)t−2ct
√
γ(1)γ(2)

)
e−i

π
4

(Z1+Z2) 1
2
e−γ

(1)t−γ(2)t sinh(2ct
√
γ(1)γ(2))

ei
π
4

(Z1+Z2) 1
2
e−γ

(1)t−γ(2)t sinh(2ct
√
γ(1)γ(2))

Table 3.2: Kraus decomposition for the correlated noise on two qubits. The left

column gives the error operators and their respective probability is given in the

right column.

For reasons that will become apparent in subsequent sections, we will ultimately

need to engineer the noise on three spins such that the noise on the third spin is

uncorrelated with the other spins. Since the added noise in uncorrelated to the

existing noise, we only need to concatenate the Kraus operator as in Eq. 3.32. The

new Kraus operator are given in Table 3.3.

3.3.2 Implementing the noise

From the above decomposition, it is now possible to engineer correlated noise on

three qubits (one of them being uncorrelated) using twelve separate experiments.
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Ai pi

1l 1
8

(
1 + e−γ

(1)t + e−γ
(2)t + e−γ

(1)t−γ(2)t−2ct
√
γ(1)γ(2)

)(
1 + e−γ

(3)t
)

Z1
1
8

(
1− e−γ(1)t + e−γ

(2)t − e−γ(1)t−γ(2)t+2ct
√
γ(1)γ(2)

)(
1 + e−γ

(3)t
)

Z2
1
8

(
1 + e−γ

(1)t − e−γ(2)t − e−γ(1)t−γ(1)t+2ct
√
γ(1)γ(2)

)(
1 + e−γ

(3)t
)

Z3
1
8

(
1 + e−γ

(1)t + e−γ
(2)t + e−γ

(1)t−γ(2)t−2ct
√
γ(1)γ(2)

)(
1− e−γ(3)t

)
Z1Z2

1
8

(
1− e−γ(1)t − e−γ(2)t + e−γ

(1)t−γ(1)t−2ct
√
γ(1)γ(2)

)(
1 + e−γ

(3)t
)

Z1Z3
1
8

(
1− e−γ(1)t + e−γ

(2)t − e−γ(1)t−γ(2)t+2ct
√
γ(1)γ(2)

)(
1− e−γ(3)t

)
Z2Z3

1
8

(
1 + e−γ

(1)t − e−γ(2)t − e−γ(1)t−γ(1)t+2ct
√
γ(1)γ(2)

)(
1− e−γ(3)t

)
Z1Z2Z3

1
8

(
1− e−γ(1)t − e−γ(2)t + e−γ

(1)t−γ(1)t−2ct
√
γ(1)γ(2)

)(
1− e−γ(3)t

)
e−i

π
4

(Z1+Z2) 1
4
e−γ

(1)t−γ(2)t sinh(2ct
√
γ(1)γ(2))

(
1 + e−γ

(3)t
)

ei
π
4

(Z1+Z2) 1
4
e−γ

(1)t−γ(2)t sinh(2ct
√
γ(1)γ(2))

(
1 + e−γ

(3)t
)

e−i
π
4

(Z1+Z2)Z3
1
4
e−γ

(1)t−γ(2)t sinh(2ct
√
γ(1)γ(2))

(
1− e−γ(3)t

)
ei
π
4

(Z1+Z2)Z3
1
4
e−γ

(1)t−γ(2)t sinh(2ct
√
γ(1)γ(2))

(
1− e−γ(3)t

)
Table 3.3: Kraus decomposition for the correlated noise on three qubits. The left

column gives the error operators and their respective probability is given in the

right column.

Initially, we prepare the state ρ. In each different experiment, the operator Ai is

then applied so that ρ → ρi = AiρA
†
i , and the experiment is finalized to yield

the final state ρfi and final measurement mi. The final state of the system under

the influence of the fully correlated noise can now be simulated by summing the

individual states with the appropriate weight defined by a choice of γ(1), γ(2), γ(3)

and c:

ρf =
1∑
i=1

2piρif , (3.36)

and by the linearity of quantum mechanics, the measurements follow the same

relation:

m =
1∑
i=1

2pimi. (3.37)

We should mention that this twelve experiment scheme only works if we desire to

implement the noise at one time step of the computation. If we want to implement

the noise at n time steps, it will require 12n separate experiments.
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3.4 Standard NMR technique to determine the

correlation factor

The standard technique to measure T2 in NMR, or in any other spin device, is to

use a CPMG sequence of pulses [CP54, MG58]. This sequence consists of creating

a single coherence state on the desired spin and then measuring the decay of such

a state as a function of time (Sec. 2.7.1).

A similar sequence can be used to measure the noise correlation between two

spins by measuring the decay of a double coherence state of the form

ρini = |00〉〈11|+ |11〉〈00|
= Î+Î+ + Î−Î−. (3.38)

It is possible to generate this state using phase cycling with two experiments by

creating the state X1X2 and Y1Y2 and subtracting them. Using X = Î+ + Î− and

Y = −i(Î+ − Î−), we have that

X1X2 − Y1Y2 =
(
Î+Î+ + Î+Î− + Î−Î+ + Î−Î−

)
+
(
Î+Î+ − Î+Î− + Î−Î− + Î−Î−

)
= Î+Î+ + Î−Î−. (3.39)

Two spins in a double coherence do not couple with each other, and therefore,

there is no need to use π pulses to refocus the coupling. On the other hand, we still

need to refocus the field inhomogeneities. A crucial observation is to notice that

whenever we apply a single spin π pulse on a double coherence state, it becomes

a zero coherence, e.g. π1|00〉〈11|π†1 = |10〉〈01|. But from Eq. 3.26, if the correlated

double coherence term decays faster than the uncorrelated one, the correlated zero

coherence decays slower by the same amount. Hence, a refocusing scheme using

selective π pulses will most likely yield an erroneous decay curve.

Consider the following pulse sequence:

τ

2
→ π1π2 →

τ

2
. (3.40)

where τ is a certain time delay. The parallel π pulses will refocus the static field

inhomogeneity, while always keeping the state in double coherence. Moreover, these

pulses will decouple the two targeted spins from the rest of the spins in the molecule.

Applying the sequence for a series of time intervals τ and then measuring the

final amount of signal will give a decay curve with exponential decay rate Γ given

by

Γ = −γ(1) − γ(2) − 2ct
√
γ(1)γ(2). (3.41)
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Since in NMR, only single coherence states can be directly detected, a final π/2 pulse

is needed on one of the spins to detect such a state. Upon previously measuring

γ(1) and γ(2) using a CP or CPMG sequence, it is posible to extract the value of c

from the curve.

A caveat of this technique is that a double coherence signal decays exponentially

at about twice the rate of a single coherence one. It is thus difficult to generate

lots of statistics and often, significant amounts of signal averaging will be needed,

rendering the measurement of the correlation factor long and cumbersome.

Finally, if the correlation between two spins is measured in a molecule with other

spins present, these spins must be prepared in a non-coherent state, i.e. either Z

or 1l so that their relaxation does not contribute to the decay curve.

3.5 Three qubit quantum error correction

3.5.1 The circuit and its effect

In the previous section, we saw that the standard technique to measure the corre-

lation factor yields an exponential loss of signal. Since QEC is inherently built to

reduce the effect of the noise, it is expected that a non-exponential decay curve will

result, which could provide more statistics for determining the value of c.

Since the general theory of QEC [KLA+02, NC00, Got97, Kri06, KLM07] is

beyond the scope of this thesis, we will only give the simplest example for a QEC

correcting a single qubit error. The three qubit quantum error correction code

(3QECC) [CMP+98] can correct any single qubit error about a single fixed Pauli

axis. It is highly based on the classical repetition code.

The classical three bit repetition code, as its name suggest, encodes a logical

bit by repeating it three times:

0̄ = 000, 1̄ = 111. (3.42)

If a single error (i.e. bit-flip) happens on any of the bits, the original value of the bit

can be deduced by measuring the three bits and making a majority vote. Therefore,

if the probability of error for a single qubit is p, then the probability of a single

physical error is p1 = 3p(1− p)2, that of two simultaneous error is p2 = 3p2(1− p)
and that of there errors, p3 = p3.

On the other hand, using the repetition code, the probability of a logical qubit

error is thus given by p2 +p3 which is of order O(p2). The correction code decreases

the error probability by one order.
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Figure 3.1: The quantum circuit of the three qubit quantum error correction code

design to correct any single qubit phase errors.

The 3QECC is in direct analogy with the classical code. For our purposes,

we are not interested in correcting for bit flips, but only for phase flip (or any z

rotation). If we let |±〉 = 1√
2
(|0〉 ± |1〉) be the eigenvector of the X Pauli matrix,

we see that Z|±〉 = |∓〉. Thus, the Z Pauli matrix acts as a bit flip in this basis.

Therefore, let’s define the encoded logical qubit basis as

|ψ̄〉 = α|0̄〉+ β|1̄〉
= α|+ ++〉+ β| − −−〉 (3.43)

This state can be created from the initial state |00〉(α|0〉 + β|1〉) using the en-

coding section of the circuit depicted in Fig. 3.1 . Since a generic arbitrary logical

qubit will most likely be represented by an entangled superposition of the states of

the physical qubits, we cannot apply the majority rule as in the classical case since

it will collapse the superposition and hence lose the quantum information. On the

other hand, by reversing the encoding sequence, one effectively disentangles the

three qubits and stores information about the noise that has affected the system in

the two top qubits. By measuring the top qubits, known as the syndrome measure-

ment (which does not affect the superposition of information on the bottom qubit),

we can deduce which error occurred and then apply the corresponding operation

on the bottom qubit to recover the original quantum information. Knowing that

measuring and then performing a classically controlled operation is equivalent to

performing a quantum controlled operation and then measuring the qubit [NC00],

it is possible to perform the error correction step using a Toffoli gate (controlled-

controlled-NOT), as shown in the EC part of Fig. 3.1.

The evolution of a generic encoded state is documented in Table 3.4 for all

possible phase flips considered here, where we have defined the states

|i〉 =
1√
2

(|0〉+ i|1〉)

|̄i〉 =
1√
2

(|0〉 − i|1〉), (3.44)
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as the eigenstates of the Pauli Y matrix. E(ρ3) denotes the effective quantum

operation on the state of the third qubit, i.e. ρ3 = |ψ〉〈ψ|. It is clearly seen that

the state on the third qubit is the same as the original generic state if any single

qubit phase error occurred (yellow part of the table), while it yields an erroneous

state for more then two flips. We should also note that when the Kraus operators

contain correlated π/2 phase errors, there is still a probability of recovering the

original state (orange part of the table).

In conclusion, even though 3QECC does not correct for all errors, it will correct

for any single phase error, hence reducing the effect of dephasing on a given system.

Error Phase Noise Decoding Error Corrected E(ρ3)

1l1l1l α|+ ++〉+ β| − −−〉 |00〉(α|0〉+ β|1〉) |00〉(α|0〉+ β|1〉) ρ3

Z1 α| −++〉+ β|+−−〉 |10〉(α|0〉+ β|1〉) |10〉(α|0〉+ β|1〉) ρ3

Z2 α|+−+〉+ β| −+−〉 |01〉(α|0〉+ β|1〉) |01〉(α|0〉+ β|1〉) ρ3

Z3 α|+ +−〉+ β| − −+〉 |11〉(α|1〉+ β|0〉) |11〉(α|0〉+ β|1〉) ρ3

Z1Z2 α| − −+〉+ β|+ +−〉 |11〉(α|0〉+ β|1〉) |11〉(α|1〉+ β|0〉) Xρ3X

Z1Z3 α| −+−〉+ β|+−+〉 |00〉(α|1〉+ β|0〉) |01〉(α|1〉+ β|0〉) Xρ3X

Z2Z3 α|+−−〉+ β| −++〉 |10〉(α|1〉+ β|0〉) |00〉(α|1〉+ β|0〉) Xρ3X

Z1Z2Z3 α| − −−〉+ β|+ ++〉 |00〉(α|1〉+ β|0〉) |00〉(α|1〉+ β|0〉) Xρ3X

e−i
π
4

(Z1+Z2) α|ii+〉+ β |̄īi−〉 i|ii〉(α|0〉+ β|1〉) |Ψ1〉 3
4
ρ3 + 1

4
Xρ3X

ei
π
4

(Z1+Z2) α|̄īi+〉+ β|ii−〉 -i|̄īi〉(α|0〉+ β|1〉) |Ψ2〉 3
4
ρ3 + 1

4
Xρ3X

e−i
π
4

(Z1+Z2)Z3 α|ii−〉+ β |̄īi+〉 i|ii〉(α|1〉+ β|0〉) |Ψ3〉 3
4
Xρ3X + 1

4
ρ3

ei
π
4

(Z1+Z2)Z3 α|̄īi−〉+ β|ii+〉 −i|̄īi〉(α|1〉+ β|0〉) |Ψ4〉 3
4
Xρ3X + 1

4
ρ3

Table 3.4: Evolution of a generic initial encoded state in the 3QECC circuit. The

values for |Ψi〉 are given in Table 3.5. E(ρ3) gives the final state of the third qubit

after the ancilla qubits are discarded.

|Ψ1〉 [i|00〉 − |01〉 − |10〉] (α|0〉+ β|1〉)− i|11〉 (α|1〉+ β|0〉)
|Ψ2〉 [−i|00〉+ |01〉+ |10〉] (α|0〉+ β|1〉) + i|11〉 (α|1〉+ β|0〉)
|Ψ3〉 [i|00〉 − |01〉 − |10〉] (α|1〉+ β|0〉)− i|11〉 (α|1〉+ β|0〉)
|Ψ4〉 i [−i|00〉+ |01〉+ |10〉] (α|0〉+ β|1〉) + i|11〉 (α|1〉+ β|0〉)

Table 3.5: Error corrected states for correlated π
2

phase error.
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3.5.2 Fidelity of the 3QECC circuit for correlated dephas-

ing

In the above section, we saw the 3QECC can be used to correct single qubit phase

errors but fails at correcting multi qubit errors. As Eq. 3.35 contains both single

and multi-qubit errors and the noise correlation only affects multi-qubit errors, we

expect to be able to extract information about the correlation factor if we can

quantify the failure rate of the protocol. Therefore, we need a way to quantify

how well the protocol preserves information. A useful measure often used in NMR

and in quantum error correction is the fidelity of entanglement, which gives a lower

bound on input-output state fidelity for any initial pure or mixed state [Sch96].

Given a mixed density matrix of a system ρS, it is always possible to extend

this state to an entangled pure state |ΨSR〉 with a reference system R of the same

dimension so that the reduce density matrix is given by ρS, i.e.

TrR(|ΨSR〉〈ΨSR|) = ρS. (3.45)

If the final state of the system is given by E(ρS), then the entanglement fidelity is

defined as

Fe = 〈ΨSR|(1l⊗ E)[|ΨSR〉〈ΨSR|]|ΨSR〉
= Tr(ρSRρ

′
SR), (3.46)

where ρ′SR = (1l ⊗ E)[|ΨSR〉〈ΨSR|], i.e. the initial system-reference state affected

by the noise on the system alone. It can be shown that Fe is independent of the

purification and depends only on the initial state ρS and the final state E(ρS). For

one qubit of information, it is customary to use a standard initial Bell state as the

initial entangled system-reference state [CPM+98, VFP+01, FVH+02]. If we use

the singlet state |ΨRS〉 = 1√
2
(|01〉 − |10〉) and the fact that the density matrix of

the singlet is given by 1
4
(1lR1lS +XRXS + YRYS + ZRZS), we find that

Fe =
1

16
Tr ([1lE(1l) +XE(X) + Y E(Y ) + ZE(Z)]

× [1l1l +XX + Y Y + ZZ])

=
1

8
[Tr (1lE(1l)) + Tr (XE(X)) + Tr (Y E(Y )) + Tr (ZE(Z))]

=
1

4
(f1l + fX + fY + fZ) , (3.47)

where we define fA = 1
2
Tr (AE(A)), i.e., the fidelity of entanglement is equal to the

average polarization left along all the Pauli axes and depends only on the channel

E . To relate to the 3QECC, ρS is the qubit state we want to preserve (third qubit

in Fig. 3.1) and E(ρS) is the final state, once the ancilla qubits are discarded (qubit

1 and 2).
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For the 3QECC, it is possible to evaluate Fe using four separate experiments,

with initial states |00〉〈00|X, |00〉〈00|Y , |00〉〈00|Z and |00〉〈00|1l. From the action of

E given in Table 3.4 , we see that if the qubit is initially in the state |ψ〉 = |0〉, then

the outcome will be an equal mixture of |0〉 and |1〉; similarly for |ψ〉 = |1〉. We

thus conclude that f1l = 1. Also, the states |±〉〈±| will be map to themselves. Since

|±〉〈±| = 1
2
(1l ± X), we also have that fX = 1. By symmetry of the noise and of

the encoded logical state, we also have that fy = fz, so we only have to derive the

expression for one of them. Looking at the last column of Table 3.4 and referring

to Table 3.3, we have that

fZ = p1 + p2 + p3 + p4 − p5 − p6 − p7 − p8 +
1

2
(p9 + p10 − p11 − p12)

=
1

2

[
e−γ

(1)t + e−γ
(2)t + e−γ

(3)t − e−γ(1)t−γ(2)t−γ(3)t cosh(2ct
√
γ(1)γ(2))

]
,

(3.48)

The full fidelity of entanglement thus evolves as

Fe(t) =
1

4

[
2 + e−γ

(1)t + e−γ
(2)t + e−γ

(3)t − e−γ(1)t−γ(2)t−γ(3)t cosh(2ct
√
γ(1)γ(2))

]
' 1− 1

2

(
γ(1)γ(2) + γ(1)γ(3) + γ(2)γ(3) + 2c2γ(1)γ(2)

)
t2 +O(t3). (3.49)

The above equation shows that the short time expansion of the fidelity is of

order t2, showing that the error correction scheme did suppress the noise by one

order and as expected, the correlation factor does appear in the rate of success (or

failure) of the QECC.

3.6 Experimental details

3.6.1 Strategy

The goal of the experiments is to extract the noise correlation factor between two

spins using the 3QECC and compare the results with the factor obtained using

double coherence decay. As seen in Section 3.3, once the T2’s of a system are known

it is possible to engineer the correlated phase noise for any correlation factor on

three qubits using twelve separate experiments.

The strategy will be to first obtain a “real noise” fidelity of entanglement curve;

that is, by letting the system evolve freely during the “Phase Noise” part of the

circuit in Fig. 3.1, and measuring fidelity of transmission fA for the initial states

|00〉〈00|X, |00〉〈00|Y and |00〉〈00|Z (we assume |00〉〈00|1l will have perfect transmis-

sion.
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Once the real noise curve is obtained, we need to build the engineered noise

fidelity curve. Instead of a period of free evolution, a phase operation will be

performed during the noisy part of the circuit and then the fidelity measured for

each input state, and this process will be repeated for each Kraus operator in

Table 3.3. By the linearity of quantum mechanics, the total fidelity will be given

by the weighted sum of all the fidelities.

Finally, it will be possible to extract the value of c by finding the optimal value

for which the engineered noise curve matches the real noise curve.

3.6.2 The molecule

All the theory developed in this chapter assumes we have three qubits, two of which

experience correlated noise while the third one experiences an independent noise.

It has been hinted that such a system could be found in a molecule containing two

spins of the same isotope and a third one of a different isotope. One such molecule

that has been used before for quantum information processing experiments is the

trichloroethylene (TCE) [NKL98, RLBL05, CPM+98, FLMR04] which contains two

carbon and one hydrogen. Even though the couplings are high (H − C1 ∼ 200 Hz

and C1−C2 ∼ 100 Hz, the chemical shift difference of the carbons is comparatively

small (∼ 1200 Hz on a 16.4T magnet), thus rendering the selective carbon pulses

hard to accomplish. Even though methods using periods of chemical shift evolution

have been developed for creating selective pulses [RLBL05], sizable coupling errors

are introduced when using them.

Also, the large coupling-small chemical shift difference breaks the condition

of validity for the weak-coupling regime, implying imperfect refocusing of carbon

coupling using π pulses and making the use of the sequence compiler described in

Sec. 2.6.1 less precise. Finally, we should note that at the time of this experiment,

the GRAPE pulse finding algorithm was not developed yet and only square and

Gaussian shaped pulses were used. For these reasons, TCE was discarded as a

potential spin system.

Instead, the acetyl chloride molecule, a previously unused molecule for NMR

QIP, which also contains two carbons and one hydrogen, was used which offers

large carbon chemical shift difference and significantly large coupling. The struc-

ture, chemical shift, couplings and relaxation times for this molecule on a 16.4T

magnet can be found in Fig. 3.2. The T1 times were measured using an inversion

recovery experiment and the T2’s using CPMG. The T1 times in acetyl chloride are

significantly larger than the T2, hence neglecting the longitudinal relaxation during

the duration of the experiments is justified.

The methyl group in the molecule rotates along its axis at a rate much faster
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M -1884.63
C1 132.72 -5949.48
C2 -7.44 56.2 -29998.18

M C1 C2

T1 (s) 4.0 ± 0.1 7.9 ± 0.4 15.2 ± 0.8
T2 (s) 1.2 ± 0.1 2.1 ± 0.1 0.24 ± 0.03

M

C1 C2

Figure 3.2: Structural and magnetic characteristics of acetyl chloride. The diagonal

elements give the chemical shift with respect to the base frequency of the isotope

(∼700MHz for the hydrogens and ∼176MHz for the carbons), and the off-diagonals

gives the coupling constants in Hz.

Rθ1
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Figure 3.3: Pulse sequence to select the spin-1
2

subspace of a methyl group. After

the implementation of this pulse sequence, the state of the protons have a vanishing

probability to be found in the spin-3/2 subspace.

than the NMR time-scale, so that the three hydrogens composing it are magnetically

identical, hence forming a spin-3
2

and a spin-1
2

subspace among the three protons.

Using the pulse sequence depicted in Fig. 3.3, it can be shown [BY03] that the

spin-3
2

subspace is annihilated, while the spin-1
2

subspace is mapped to itself.

3.6.3 Experimental implementation

In order to implement the 3QECC, each gate in the circuit in Fig. 3.1 had to

translated into a series of π/2 pulses around specific axis in the xy plane, z-pulses

of any angle and J-coupling evolutions. The methyl group protons act as qubit

3, while C1 and C2 are qubit 2 and 1 respectively. The pulse sequence obtained

was then manually optimized to minimize the number of pulses and the number of

couplings. Recall from section 2.4.2 that z pulses are free to implement by changing

the phase of subsequent pulses. Since the coupling between M and C2, i.e. qubit

3 and 1, is small, the second CNOT is impractical to perform. On the other hand,

the fidelity of the 3QECC is independent of which qubit is used as initial and final
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Encoding DecodingPhase Noise

Figure 3.4: NMR pulse sequence to implement the encoding and decoding part of

the 3QECC. The refocusing scheme during the Phase Noise part ensure that the

protons do not couple to the carbons and that the carbons state remains in the

same coherence number throughout. It also allows for the field inhomogeneities to

be refocused on all the spins.

qubit of information. Therefore, we used C1 as the physical qubit and M and C2

as the ancilla. The only difference is that the CNOT’s in Fig. 3.1 are all controlled

from the middle qubit. Moreover, Hadamard gates usually take four π/2 pulses

to achieve. In term of the action on the computational basis, the Hadamard is

essentially the same as a π/2 pulse along the y axis.

In the implementation of the engineered noise, no pulses were actually per-

formed during the noise part of the circuit, but only the phase of subsequent pulses

was changed, depending on which Kraus operator was implemented. During the

real noise delays, for the same reasons explained in Sec. 3.4, the carbon’s field inho-

mogeneity and chemical shift evolution needed to be refocused simultaneously, so

that double coherence terms and zero-coherence terms remained during the whole

duration of the noise. The methyl evolution needed to be refocused too, which can

be done using two π pulses before and after the refocusing of the carbons.

Finally, the Toffoli gate (controlled-controlled-X) is extremely complex to im-

plement [NC00] using only single and two qubit gates. On the other hand, 3QECC

does not need the exact Toffoli gate and still works for a controlled-controlled-iX,

which can be implemented with much fewer gates. Using the commutation relation

intrinsic to the Pauli operators, one can translate the 3QECC circuit into the pulse

sequences depicted in Fig. 3.4 and 3.5.

Contrary to the standard NMR technique of double coherence decay, the car-

bon’s state also contains single coherence terms during the noisy part of the ex-

periment which would couple. As the J-coupling could be hard to refocus without

risking transforming a double coherence into a zero coherence, the duration τ of

the noisy evolutions was chosen so that τ = 1
JC1C2

, i.e. a multiple of a π coupling

evolution.
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Figure 3.5: NMR pulse sequence to implement a modified version of the Toffoli

gate. This sequence will implement a controlled-controlled-iX gate instead of a

controled-controled-X gate (Toffoli).

Due to the large chemical shift difference between the carbons, the available

hard pulses did not have a large enough bandwidth to refocus both carbons si-

multaneously (even for composite pulses). Instead, simultaneous Gaussian pulses

were performed at each frequency. Because of the transient Bloch-Siegert shift,

each carbon experiences a frequency shift due to the RF field applied on the other

carbon and it has been reported that the frequency of each pulse needs to be

adequately changed to perform high-precision control [SVC00]. Fortunately, sim-

ulations showed that the pulse representation in Sec. 2.6.1 were highly accurate

without any frequency update.

Since the couplings during the encoding and decoding part of the pulse sequence

commute with each other, they were implemented simultaneously in order to de-

crease the effect of decoherence. As a matter of fact, performing the couplings

sequentially would take τ ∼ 1
2JMC1

+ 1
2JC1C2

and would require the refocusing of C2

and then of M . To save time and pulses, the two coupling were initiated. Since M

and C1 have a higher coupling constant, the desired evolution was achieved first,

after a time of τ ∼ 1
2JMC1

. C1 and C2 then continue to couple until finished, while

refocusing M . This way, the two couplings were implemented in τ ∼ 1
2JMC1

+ 1
2JC1C2

.

Finally, to ensure the noisy delays and the refocusing scheme was of the exact

length and was not tampered with by the optimization procedure of the pulse

sequence compiler, we forced it to finish all the operations related to the encoding

part of the circuit before beginning the noise delays, and also forced it to start the

decoding part once the delay is finished. This way, the spins started and finished

the noise delays with no ongoing coupling between them. We did however allow

freedom in the chemical shift evolution, since it does not tamper with the decay of

the coherence terms.

The initial states XC1|00〉〈00|MC2 , YC1|00〉〈00|MC2 and ZC1|00〉〈00|MC2 were cre-

ated starting with the methyl polarization, followed by the spin-1/2 subspace pulse
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sequence and then using spatial averaging pseudo-pure state pulse sequence as ex-

plained in Section 2.3.

To evaluate the fidelities fA, we needed to measure the correlation between

the initial state of information AC1 with the final state of information E(AC1),

where E is defined as the quantum channel implemented by the 3QECC circuit,

the measurement and the discarding of the ancilla spins (partial trace). In NMR,

discarding qubits is impossible. On other hand, measuring the observable A on C1

while discarding M and C2 is equivalent to measuring the observable AC11lM1lC2

[NC00]. Therefore, if we denote Λτ the full action of the 3QECC for a noise delay

of τ and without measurements on the three spins, we have

fX(τ) =
1

2
Tr [Λτ (XC1|00〉〈00|MC2)XC1 ]

fY (τ) =
1

2
Tr [Λτ (YC1 |00〉〈00|MC2)YC1 ]

fZ(τ) =
1

2
Tr [Λτ (ZC1|00〉〈00|MC2)ZC1 ] . (3.50)

As seen in Sec. 2.4.4, the observable XC1 will be proportional to the full integral

of the C1 spectrum. If we denote sX(τ) the amount of signal (the integral of the

spectrum) measured for a noise delay of τ and initial state XC1 |00〉〈00|MC2 , then

sX(τ) = NTr [Λτ (XC1|00〉〈00|MC2)XC1 ] , (3.51)

where N is the proportionality constant relating the integral and the measurement.

If the 3QECC is not implemented, Λ(XC1 |00〉〈00|MC2) = XC1|00〉〈00|MC2 so that

sX0, the amount of signal of the pseudopure state is 2N . Therefore,

fX(τ) =
sX(τ)

sX0

. (3.52)

Using the appropriate readout pulses, it is also possible to measure fY (τ) and

fZ(τ) by ensuring that the final state of C1 is along X. Therefore, the fidelity of

each input state can be measured by comparing the signal of each experiment to

the initial experiment, where no delays are implemented. Using such a scheme also

allows one to quantify the fidelity of the implementation of the 3QECC, which is

given by Fe(0)

3.6.4 Experimental results

The experiments were conducted on a 16.4T Bruker Avance spectrometer using a

TCI cryogenic probe. By placing the resonant circuit of the probe in liquid helium,

while keeping the sample at room temperature, the cryprobe provide an enhance
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Figure 3.6: The thermal equilibrium state spectrum of C1 of acetyl chloride com-

pared to the pseudopure state spectrum. The spectra are centered at νLC1
.

signal-to-noise ratio and allow for the use of more diluted samples. The creation

of the pseudopure state on C1 is shown in Fig. 3.6 and is compared to the thermal

state of C1. Since the pseudopure sequence started with the methyl polarization,

and since there is signal loss due to molecular diffusion during the labelling gra-

dients of the pulse sequence, there is no readily available fair comparison for the

spectrum, so they have both been normalized for the sake of qualitative compar-

ison. The presence of the four satellite peaks on the far right and far left of the

thermal spectrum is due to the spin-3/2 subspace of the methyl group in the ther-

mal state (before the sequence in Fig. 3.3 is implemented), which creates a 1:3:3:1

peak intensity pattern [Lev01] (each peak being further split due to the coupling

to C2).

The spectrum for implementing the 3QECC with no noise compared to the

input pseudopure state is shown in Fig. 3.7. The fidelity of entanglement for the

pulse sequence implementation is 0.92±0.01. According to the complete simulation

of initial state preparation and pulse sequence implementation, including T2 relax-

ation but not the spatial diffusion of the molecules during the pseudopure state

preparation, the fidelity should be 0.94 and the simulation spectra is shown in the
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Figure 3.7: Comparison of the initial pseudopure state and the final state spectra

after the implementation of the 3QECC with no noise delay.

inset of Fig. 3.7. The experimental spectrum is qualitatively and quantitatively

comparable to the simulated spectrum, hence we can conclude that our control was

precise and understood to a high degree.

The 3QECC pulse sequence has been implemented on the three initial states

with noisy delay of 1, . . . , 9 complete J-coupling evolutions between the carbons and

the fidelities recorded. After averaging the fidelities, we obtained the entanglement

fidelity decay curve shown by the black dots in Fig. 3.8. To integrate the spectra,

we first fitted the peaks with Lorentzians and then added the amplitudes. The

error bar are the 68% confidence level on the fit.

The twelve experiments needed to engineer to noise were then implemented and

the fidelities added using the appropriate coefficient (Table 3.3) for c = 0 (blue

curve) and c = 1 (red curve). Using a least square fit optimization approach, we

found that c = 0.5 ± 0.2 corresponds best to the experimental curve obtained for

the noisy delays.

By implementing the sequence described in Sec. 3.4, we obtained the double

coherence decay curve. By fitting the decay rate given in Eq. 3.41 using the T2 for
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Figure 3.8: Experimental results for the implementation of the 3QECC for various

noisy delays and engineered noise. The lines correspond to the fidelity decay for

noise correlation factors of 0, 0.5 and 1 as a function of time simulated from the

measured T2’s and the experimental fidelities obtained by implementing engineered

noise. The points are the fidelities when the system is affected by natural noise for

a various amount of time.

C1 and C2 previously measured, we extracted a value of c = 0.3 ± 0.2 which is,

within error, in agreement with the correlation factor found with this new method.

3.7 Analysis and conclusion

The noise correlation factor obtained using quantum error correction is in agree-

ment, within error, to the factor found using standard NMR techniques. One could

argue that the confidence interval on the values found are too large to really con-

clude anything. The present exercise actually served a wider purpose than just

extracting the correlation between the carbons and can be extended beyond what

we reported here.

First of all, by looking at Fig. 3.8, the largest fidelity difference between the
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independent noise and the fully correlated noise is at most 2%. Being able to suc-

cessfully implement such an experiment demonstrates the level of control achievable

in liquid state NMR quantum computing. The entire pulse sequence contained at

least 20 operations, which implies that each operation must be precise to within

0.1%, which was a level unequalled in the QIP literature at the time the experiment

was performed. Therefore, the sensitivity of the protocol explained the large un-

certainty on the value of c. On the other hand, the much simpler NMR technique

does not show any indication of being more precise. Another contribution to the

uncertainty on c comes from the signal to noise ratio in the spectra. If we integrate

the square of the noise over a region corresponding to the width of a peak, we find

the uncertainty on integrating each peak is about 1%, hence contributing to the

uncertainty of Fe.

Moreover, an advantage of using the QEC protocol instead of the double co-

herence decay protocol comes from the intrinsic nature of QEC: as it is designed

to detect and correct the single qubit error, the measured signal then decays at a

slower rate, hence permitting the acquisition of fidelity for a larger amount of time

and thus developing more complete statistics.

Another advantage of the QEC protocol is that it is universal for any QIP

processor. One of the requirements for a scalable QIP device is the ability to

perform fault-tolerant quantum computation, which relies on QEC. Therefore, this

protocol could be implemented in any QIP device to probe their noise.

The strength of this protocol relies on the generalization possibilities. The

protocol implemented here was assuming that only two of the three qubits were

noise correlated. On the other hand, the protocol is still usable to determine the

pairwise qubit noise correlation for a fully correlated system, by redesigning the

refocusing scheme during the noisy part of the protocol. As already mentioned,

every time a single qubit π pulse is applied on a double coherence, it turns it into

a zero coherence, which decays at a different rate than the double coherence. By

referring to Eq. 3.26, if the qubit spends as much time in a zero than in a double

coherence, the part of the decay rate due to the correlation factor cancels out. For

example, if we are trying to measure c23, the correlation factor between spin 2 and

3, we need to refocus spin 1 as in Fig. 3.4 to cancel the possible effect of c12 and

c13.

Once the three c’s are found, it will then be possible to verify the validity of

the Gaussian noise model. By assuming the noise is Gaussian, it ensures that the

correlation is pairwise and any higher order correlations, e.g. 〈α1α2α3〉 ∝ c123,

vanish. Once a QEC decay curve using a refocusing scheme that would not refocus

such a correlation factor is obtained, we can then infer if this assumption is valid

if the curve can be parametrized by the T2’s and the cij only. We should note that

such a curve could also be obtained through triple coherence decay but again, the
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signal-to-noise ratio will become a problem as such a coherence term decays triply

exponentially.

A final generalization could be to analyze the correlation present within a more

general noise. In this chapter, we only considered the case of dephasing noise,

which already corresponds to noise present in many systems. The more general

single qubit noise can be described as a mixture of error about any Pauli axis. To

probe the correlations in such a noise, it should be possible to apply the theory

developed here using QEC codes that correct any single qubit error, such as the

five bit code [LMPZ96, BBP+96], Steane’s seven qubit code [Ste96] or Shor’s nine

qubit code [Sho95]
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Chapter 4

Noise characterization through

symmetrization

4.1 Why rely on symmetrization

In the previous chapter, we already argued the importance of knowing the behav-

ior of the noise model in order to successfully develop quantum error correction

codes that will allow for arbitrarily long computations. The protocol was applica-

ble to a well understood noise model and a specific noise parameter was probed.

New efficient techniques need to be developed in order to extract even more rele-

vant information about the noise, without the overhead of requiring an exponential

amount of resources, or number of experiments, e.g. quantum process tomography.

Active symmetrization of a noise process allows for the characterization of rel-

evant information about the noise by corse-graining the noise into families of inde-

pendent parameters, hence possibly diminishing the amount of experiments needed

to obtain information about the noise.

By identifying a symmetry associated with the families of parameters of interest,

one can operationally conjugate the noise map by the appropriate unitary group and

monitor the action of the effective quantum process on a certain set of initial states.

Information about the coarse-grained parameters can then be extracted through an

appropriate measurement process. Such an average over a unitary group is known

as a twirl [BDSW96, DCEL06].

In this chapter, we will describe how one can coarse-grain the noise using Clifford

twirling and extract information about the weights of the errors. We then report

our effort toward the implementation of such a protocol on a heteronuclear two-spin

NMR processor for three different types of engineered noise. Along the way, we also
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describe and analyze the arguments against the use of hard pulses and point out

the benefits of longer and smoother Gaussian pulses.

4.2 Measuring the weight of the noise

A family of parameters that is of great importance in fault-tolerant quantum com-

putation is the weight w of the errors affecting a system. We define the weight of

a noise operator as being the number of qubits acted on by that operator. Typical

QECCs are described using the notation [n, k, d], which corresponds to a distance

d code encoding k logical qubits using n physical qubits. A distance d code is

capable of detecting and correcting any error of weight t = 1
2
(d− 1) or less on any

qubit. Therefore, the probability of failure pf of a given code is given by

pf =
n∑

w=t+1

pw (4.1)

where pw is the probability of any error of weight w occuring on any set of qubits. If

pf < pth, the threshold error rate, fault-tolerant quantum computation is feasible.

In the spirit of fault-tolerant QIP, being able to efficiently estimate the value of

pw is of great interest and great practicality. Moreover, as we will discuss in Sec. 4.4,

knowing the pw’s can also permit one to determine whether the noise is correlated

or independent. Recall from Sec. 3.1 that most fault-tolerant QIP schemes assume

independent noise from qubit to qubit or between blocks of qubits, so knowing

whether or not the noise is correlated is of fundamental importance.

4.3 Clifford twirling of a single qubit superoper-

ator

We will see in this section that symmetrizing a noisy map Λ such that the weight

parameters of the noise operators are coarse-grained can be achieved through a

twirling of the channel by a subset of the single qubit Clifford operations. To twirl

a given channel, the twirling operation must be applied before and after the action

of Λ, and averaged over the entire group. Therefore, we need to assume that the

noise Λ is not associated with the implementation of the Clifford operators. For

example, Λ can characterize the decoherence happening in a quantum memory,

or during the transmission of photonic qubits in an optical fiber, such that the

Cliffords could be implemented before the qubit is stored, or sent, and after is it

retrieved.
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Operationally, a channel Λ is said to be twirled over subgroup of unitaries G if,

given an initial state ρ, we evaluate

ρ → 1

|G|
∑
i

Ĝ†iΛ
(
GiρG

†
i

)
Gi

= Λave(ρ), (4.2)

for Gi ∈ G and |G| being the cardinality of the group. In the Liouville space, we

can write the averaged superoperator as

Λ̂ave =
1

|G|
∑
i

Ĝ†Λ̂Ĝ

=
1

|G|
∑
i

(GT
i ⊗G

†
i )Λ̂(G∗i ⊗Gi). (4.3)

The one qubit Clifford group is defined as the subgroup of the unitary operations

that are in the normalizer of the one qubit Pauli group P1 = {±1l, ±X, ±Y, ±Z},
that is

C1 =
{
C ∈ U(2) | CPC† ∈ P1

}
. (4.4)

In the case of a single qubit, a full Clifford twirl is equivalent to a symplectic

twirl followed by a Pauli twirl [BDSW96], i.e.

C1
∼= P1S1 (4.5)

where

S1 =
{
e±i

π
4
Q | Q ∈ {X, Y, Z}

}
. (4.6)

The entire single qubit Clifford group contains 48 elements. Due to redundancy,

such as global phase and identical action on the Pauli operators, only 12 carefully

chosen Clifford operations are necessary to implement a full Clifford twirling. In

the Pauli-symplectic equivalence, those 12 elements can be chosen as{
PS | P ∈ P̄1, S ∈ S̄1

}
(4.7)

'{
e−i

π
2
P e−i

π
4
Q | P ∈ P̄1, Q ∈ {X, Y, Z}

}
, (4.8)

where the last equality is up to a global phase and we have defined the sets

P̄1 = {1l, X, Y, Z} (4.9)

S̄1 =
{
e−i

π
4
Q | Q ∈ {X, Y, Z}

}
(4.10)
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Using this equivalence, the full twirling effect can be written as

Λ̂ave =
1

12

∑
P∈P̄1

∑
Si∈S̄1

Ŝ†i P̂
†
j Λ̂P̂jŜi

=
1

3

3∑
i=1

(STi ⊗ S
†
i )

(
1

4

4∑
j=1

(P T
j ⊗ P

†
j )Λ̂(P ∗j ⊗ Pj)

)
(S∗i ⊗ Si). (4.11)

As we saw in Sec. 1.2.3, any channel can be decomposed in the Pauli basis as

Λ̂ =
∑
kl

χklP
∗
l ⊗ Pk, (4.12)

so that

Λ̂ave =
1

3

∑
i

(STi ⊗ S
†
i )

(
1

4

∑
j,k,l

χkl(P
†
j PlPj)

∗ ⊗ (P †j PkPj)

)
(S∗i ⊗ Si). (4.13)

Using the property that P 2
i = 1l, and that any given non trivial Pauli matrix

(X, Y or Z) only commutes with itself and the identity and anti-commutes with

the two others, all the off-diagonal of the χ matrix representing the Pauli twirled

channel must then vanish, i.e.

Λ̂ave =
1

3

∑
i

(STi ⊗ S
†
i )

(∑
k

χkk(P
∗
k ⊗ Pk)

)
(S∗i ⊗ Si)

=
∑
k

χkk

(
1

3

∑
i

(S†iPkSi)
∗ ⊗ (S†iPkSi)

)
(4.14)

A channel represented by a diagonal χ matrix (in the Pauli basis) is called a

Pauli channel. To evaluate the last line of the above equation, let us first consider

the case Pk = 1l. In this case, the sum obviously returns 1l back. For the non-trivial

Paulis, the situation will be symmetric, so we only need to consider Pk = X for

example, which transforms as

X∗ ⊗X →


X∗ ⊗X if Qk = X

Y ∗ ⊗ Y if Qk = Z

Z∗ ⊗ Z if Qk = Y

, (4.15)

which allows us to conclude that

Λ̂ave = χ111l +
1

3

(
4∑

k=2

χkk

)
(X∗ ⊗X + Y ∗ ⊗ Y + Z∗ ⊗ Z) . (4.16)
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which is a depolarizing channel (see Sec. 5.2). The action of the above channel on

a state ρ can be represented in the Kraus form as

Λave(ρ) = χ11ρ+
1

3

(
4∑

k=2

χkk

)
(XρX + Y ρY + ZρZ) . (4.17)

From this simple exercise, we see that performing a single qubit Clifford twirling

has the effect of diagonalizing the χ matrix and averaging the parameters corre-

sponding to different error weights, i.e. p0 = χ11, describing the probability of

undergoing no error, and p1 =
∑4

k=2 χkk, the average probability of any single

qubit error.

We can already see a hint on how to extract p0 and p1. If we probe the channel

with the state ρ = |0〉〈0|, the twirled output state ρout is given by

ρout = p0|0〉〈0|+
1

3
p1 (|1〉〈1|+ |1〉〈1|+ |0〉〈0|)

= =
(
p0 +

p1

3

)
|0〉〈0|+ 2

3
p1|1〉〈1|. (4.18)

By acquiring statistics on the measurements in the computational basis, it is there-

fore possible to directly evaluate p0 and p1.

4.4 Multi-qubit Clifford twirling

It is possible to define the Clifford group on any number of qubits from a simple

generalization. If we denote the n qubit Pauli group by Pn, which is defined as

qubit as

Pn =

{
n⊗
i=1

Pi | Pi ∈ {±1l, ±X, ± Y, ± Z}

}
, (4.19)

the n qubit Clifford group Cn is defined as the subgroup of the 2n × 2n unitary

matrices that is the normalizer of the Pauli group, i.e.

Cn =
{
C ∈ U(2n) | CPC† ∈ Pn, ∀ P ∈ Pn

}
. (4.20)

As we will see in Chapter 5, Clifford twirling is a unitary 2-design, implying that

the averaged channel corresponds to a depolarizing channel, which essentially gives

only two independent parameters: the probability of no error, and the probability

of any error of any weight happening on any qubit. Such twirling coarse-grains the

noise too much and we wish to extract more information.
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On the other hand, it is intuitive to observe that if we perform single qubit

twirling on each qubit, the resulting channel should be coarse-grained according to

the weight of the errors. Since we want to characterize the errors by their weights

independent of which qubit is affected, qubit permutations will also be needed to

ensure that, if the noise if stronger on a certain qubits, it will be distributed to the

others.

To show this fact, we only need to generalize the single qubit procedure. We will

denote the symmetrized single qubit Clifford twirling on n qubits as a C̃⊗n twirling,

where we define

C̃⊗n = C⊗nΣn

=

{(
n⊗
i=1

Ĉi

)
σ | Ci ∈ C1, σ ∈ Σn

}
. (4.21)

Σn is the n qubit permutation group and C⊗n is the tensor product of all the single

qubit Cliffords. A C̃⊗n twirling is therefore a single qubit Clifford twirling on each

qubit, preceded by a permutation twirl of the qubits. The cardinality of C̃⊗n grows

exponentially since |C̃⊗n| = n!48n, but we will see that with randomization, full

twirling is unnecessary. Moreover, since only twelve operations are needed to twirl

a single qubit, n!12n should be enough to separately depolarize each n qubits.

As in the one qubit case, the C⊗n twilring will be equivalent to a symplectic

twirl followed by a Pauli twirl, so that

C̃⊗n ∼= P̄nS̄nΣn, (4.22)

where S̄n and P̄n are defined as all the tensor products of S̄1 and P̄1 operations

respectively. Therefore, a minimum fully symmetrized Clifford twirl of a n qubit

channel can be expressed as

Λ̂ave =
1

|Σn||P̄n||S̄n|
∑
σ∈Σn

∑
P∈P̄n

∑
S∈S̄n

(σ̂†Ŝ†P̂ †)Λ̂(P̂ Ŝσ̂)

=
1

n!4n3n

∑
σ∈Σn

∑
P∈P̄n

∑
S∈S̄n

(σ̂†Ŝ†P̂ †)Λ̂(P̂ Ŝσ̂)

(4.23)

The key observation is that, as in the single qubit case, given a Pauli matrix

in Pn, it will commute with half the Pauli group and anti-commute with the other

half. This fact is easily provable by induction. Therefore, a multi qubit Pauli twirl
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will still transform Λave into a Pauli channel (diagonal), such that

Λ̂ave =
1

n!3n

∑
σ∈Σn

∑
k

χkkσ̂
†

∑
S∈S̄n

(ST ⊗ S†)(P ∗k ⊗ Pk)(S∗ ⊗ S)

 σ̂

=
1

n!3n

∑
k

χkk

∑
σ∈Σn

∑
S∈S̄n

σ̂†Ŝ†P̂kŜσ̂

 . (4.24)

In order to evaluate the effect of the symmetrized symplectic twirl on the

channel, we will consider its effect on an arbitrary Pauli operator Pk such that

w(Pk) = wk. Under the simplectic twirl, Pk will be explicitly (with no addition and

substraction) mapped to 3n terms. These terms will have all possible Pauli oper-

ators on the qubits that Pk had a non-trivial action on. Since there are only 3wk

such terms, it is expected to have recurrence in the explicit expression. Moreover,

the sum over all the permutations will map each term to n! other terms, so that

the explicit expression of the symmetrized twirling will have n!3n terms.

This twirling will therefore map Pk to all possible Pauli operator with weight

wk. There are 3wk
(
n
wk

)
different such terms, so that, in the explicit expression, each

different terms will occur n!3n

3wk(nw)
times. Therefore

∑
σ∈Σn

∑
S∈S̄n

σ̂†Ŝ†P̂kŜσ̂ =
n!3n−wk(

n
wk

) ∑
l∈Iwk

P̂l, (4.25)

where we define Iwk as the set of indices such that w(Pl) = wk ∀l ∈ Iwk . Eq. 4.24

can thus be written has

Λ̂ave =
∑
k

χkk
1

3wk
(
n
wk

) ∑
l∈Iwk

P̂l. (4.26)

By regrouping the terms with respect to their weight, it is possible to rewrite the

above equation as

Λ̂ave =
∑
w

1

3w
(
n
w

) (∑
k∈Iw

χkk

)(∑
l∈Iw

P̂l

)
. (4.27)

Observing that the probability of having any error of weight w affecting any

qubit can be extracted from the χ matrix as

pw =
∑
k∈Iw

χkk, (4.28)
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we can therefore write the full expression for the symmetrized Clifford twirled chan-

nel as

Λ̂ave =
∑
w

pw

3w
(
n
w

) (∑
l∈Iw

P̂l

)
. (4.29)

Therefore, the twirled channel can be described using only n+ 1 parameters, which

is exponentially less than the original channel.

In order to be able to have an estimate of pω, we can probe the channel with the

fiducial initial state |0〉⊗n and perform a projective measurement of the outcome in

the computational basis. As a matter of fact, the twirl channel will map the initial

state to a mixture of states with different Hamming weights ((number of ones in

the state), depending on which error operator affected the qubits. By gathering

statistics on the measurements, we can infer the probability of errors of a given

weight occuring.

Because the computational basis states are eigenstates of the Zi operators, the

measurement of an output state with Hamming weight m only gives the amount

of X and Y operators present in the noise that affected the qubits. Therefore, the

probability qm of measuring any state with Hamming weight m will be a combina-

tion of all the probabilities pw that have exactly m non-Z operators, so that

qm =
n∑

ω=0

Rmωpω. (4.30)

Since m ≤ w, we know that R will be an upper triangular matrix and since none

of the diagonal entries vanishes, it is also invertible. For a given w, there is
(
n
w

)
locations for an error to happen. There will be 2m

(
w
m

)
different terms with m X or

Y error and the remaining ω −m will be Z errors. Therefore,

Rmω =
2m
(
w
m

)
3w

pw. (4.31)

Once the ~q values are experimentally measured, it is then possible to recover ~p

by

~p = R−1~q. (4.32)

Since the initial state is symmetric, the initial permutation operations are no

longer necessary. Moreover, the final permutations can also be ignored if we only

measure the Hamming weight of the output state, regardless of the location of the

1’s.

As we already mentioned before, a complete C⊗n twirling requires an exponential

number of experiments, i.e. n!12n. On the other hand, one can invoke the Chernoff
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inequality to show that it is possible to estimate the value of qm within a precision

of δ using only log(2)
δ2 experiments. Since the amount is logarithmic in the number

of qubits, this protocol is efficient.

In practice, for a given QECC of distance d, we are only interested in knowing

the probability of an error of weight greater than t = 1
2
(d−1) to happen. Therefore,

we only need to estimate the value of p0 . . . pt to estimate a upper bound on the

probability of failure of the QECC.

As a final point, we should mention that knowing the value of ~p can provide

us with a test to determine if noise correlations are present in the system. For

example, if the noise is completely uncorrelated (Markovian), then the p values

should satisfy

pω = pω1 (4.33)

4.5 Modifications for the NMR implementation

In NMR, we do not have access to projective measurements. On the other hand,

NMR being a case of ensemble quantum computing, it is still possible to evaluate

qm. As explained in Sec. 2.4.4, the signal of each absorption Lorentzian peak of a

given spectrum corresponds to the probability of measuring a given computational

basis state on the other spins. By the properties of the twirled channel, the readout

spin should be along the z axis. After the pulse applied on the readout nucleus, the

normalized integral of a given peak (with respect to the thermal state), will also

give us information about the state of the readout nucleus.

For example, on a N + 1 spin molecule, if we consider the output signal of

the peak corresponding to the X|0〉〈0|⊗N state, there will be a positive contribution

from the term in which the nucleus points up (+X|0〉〈0|⊗N readout), and a negative

contribution from the term where it points down (−X|0〉〈0|⊗N readout). Therefore,

since initially the readout nucleus was pointing up, the normalized integral of the

output peaks will give us the probability of the all 0 state minus the probability

of all zero state except for the readout nucleus. Since there is only one state of

Hamming weight 0 and n+ 1 states of Hamming weight 1, the normalized signal s

will give us the value

s0 = q0 −
q1

N + 1
. (4.34)

This example generalizes easily. If we measure the signal of a peak corresponding

a state of the other nuclei of weight m, then the normalized signal corresponds to

sm =
qm(
N+1
m

) − qm+1(
N+1
m+1

) . (4.35)
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It is therefore possible to extract enough independent values from a spectrum

to solve for ~q and thus find ~p. Performing the implementation this way might not

be the most practical route for an increasing number of spins. For example, every

peak corresponding to a given Hamming weight w of the remaining spins (there

are 2(Nw) of them) will have the same signal. Preprocessing will be needed to define

which peak should be used, or an average of all of them will be done. In all cases,

an exponential number of peak will have to be processed.

On the other hand, the initial state of the protocol on n qubit is chosen to be

all 0 state. This fiducial state can be decomposed as

|0〉〈0|⊗n =
1

2n

n∑
w=0

Z̄w, (4.36)

where Z̄w is the sum of all the Pauli operators containing w Z and n−w identities,

which is equivalent

Z̄w =
∑
σ∈Σn

σ†
(
Z⊗w ⊗ 1l⊗(n−w)

)
σ, (4.37)

for all the permutation operations σ. Using again the fact that Pauli operators

either commute or anti-commute with each other, we know that for any Pauli

channel,

Λ(P ) = αPP, for any P ∈ Pn, (4.38)

This says that every Pauli matrix is an eigenoperator of the channel. The value of

αP is given by

αP = Pr(C)− Pr(A) (4.39)

where Pr(C) and Pr(A) is the probability that an operator of the channel commutes

or anti-commutes with P respectively.

By the symmetric property of the twirled channel, αP must be the same for any

Pauli input state of the same weight. If we define the coefficient cw by

cw =
〈
Z̄w
〉

= Tr
[
Λave

(
Z̄w
)
Z̄w
]
, (4.40)

one can show that the c’s and p’s are related via an invertible matrix such that

~p = Ω−1~c. (4.41)
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The proof of this fact is beyond the scope of this thesis, but the matrix Ω is given

by

Ωww′ = −1 +

min (w,w′)∑
L=max (0,w+w′−n)

(
n−w
w′−L

)(
w
L

)(
n
w′

) 3L + (−1)L

3L
(4.42)

Ω−1
ww′ =

3w+w′
(
n
w

)(
n
w′

)
4n

Ωww′ (4.43)

As an example, for the two qubit case, we have

Ω =

1 1 1

1 1
3
−1

3

1 −1
3

1
9

 (4.44)

Ω−1 =
1

16

1 6 9

6 12 −18

9 −18 9

 (4.45)

Each cw can be estimated to within precision δ using only log (2(n+1))
δ2 . It can also

be shown that estimating the values of all cw leads to an uncertainty on the values

of pw that grows only polynomially in n and the degree of the polynomial is linear

in w. This implies that the uncertainties on ~c do not propagate badly to the value

of ~p, as long as we estimate the values for w ≤ t, for fixed t.

The advantage of such a scheme is that, in NMR, the preparation of the com-

putational state |0〉⊗n can be challenging (Sec. 2.3). On the other hand, the prepa-

ration of Z⊗w ⊗ 1l⊗n−w can be easily done through a series of simple pulses and

J-couplings (essentially the same as the encoding part of the pseudo-pure state

preparation). The average over the permutation operations at the beginning and

the end of the protocol will effectively create the initial state Z̄w. The final permu-

tation will ensure that the readout state will be of the form cwZ
⊗w ⊗ 1l⊗n−w.

4.6 Experimental details

4.6.1 The experiment

To demonstrate the feasibility of the twirling protocol, we designed a two qubit

experiment probing three different sources of error. The protocol was tested on

the standard heteronuclear 2-spin molecule used in many other QIP experiments

[CVZ+98, LVZ+99, ZLSD02]: carbon-13 labeled chloroform (CHCl3). The molecule

and its magnetic properties can be seen in Fig. 4.1. Chloroform is an ideal choice
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Figure 4.1: Chemical structure and relevant magnetic properties of chloroform

(CHCl3). The diagonal elements gives the chemical shift of the nuclei with respect

to the carrier frequency of the spectrometer for that particular isotope. The off-

diagonal element gives the H-C coupling.

for NMR QIP as it possesses long coherence times (well over 1s). For the following

sections, we will label H as qubit 1 and C as qubit 2.

The protocol will be tested for the three different engineered noises given by the

Kraus operators

{A(1)
k } =

1√
2
{Z1, Z2} (4.46)

{A(2)
k } = {Z1Z2} (4.47)

{A(3)
k } = e−i

π
4

(Z1+Z2). (4.48)

The first engineered noise corresponds to a 1/2 probability for each spin to

undergo a phase flip and the second corresponds to a certainty of having a two spin

phase flip. The third engineered noise will induce a coherent error of a π/2 rotation

around the z-axis. If we expand this error, we have

e−i
π
4

(Z1+Z2) = e−i
π
4
Z1 ⊗ e−i

π
4
Z2

=
1

2
(1l− iZ1 − iZ1 − Z1Z2) , (4.49)

which will induce a single spin phase flip twice as often as a double, or no, phase

flip. The summary of the expected values of ~c and ~p is available in Table 4.1.

In order to achieve a good proof of principle, a complete twirling of the noise

was performed. Since 12 operations are needed to depolarize each qubit, 144 op-

erations are needed to perform a C⊗2 twirl. Since there are only 2 permutations

(no-operation and a swap), a complete twirling will require 288 experiments.
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exp. # p0 p1 p2 c0 c1 c2

1 0 1 0 1 1
3
−1

3

2 0 0 1 1 −1
3
−1

9

3 1
4

1
2

1
4

1 1
3

1
9

Table 4.1: Expected value of ~p and ~c for the different engineered noises described

in Eq. 4.46.

4.6.2 Pulse sequences

The goal of the experiments is to demonstrate a proof of principle. Since two-qubit

NMR QIP experiments are easily implemented, the ultimate goal of this work was

to demonstrate the quality of the control possible in NMR by achieving the highest

precision possible. The first step toward this realization was to enable a systematic

way of obtaining and comparing the values of cw.

To extract ~c from each experiment, three different input states needed to be

created:

ρ0 = 1l1 ⊗ 1l2 (4.50)

ρ1 = Z1 ⊗ 1l2 (4.51)

ρ2 = Z1 ⊗ Z2 (4.52)

Since ρ0 is undetectable in any NMR experiment, we had to assume that c0 = 1

in all cases. When dealing with ρ1 as an input state, the protocol stipulates that we

had to implement a permutation before and after the Clifford operations in order to

create the effective initial state Z1 + Z2. Unfortunately, this permutation requires

pulses and J-coupling evolutions which might introduce state preparation control

errors. Because of this, measuring the signal when there is a permutation might lead

to a smaller residual signal compared to when no permutation was applied, which in

turn will affect the averaged value of c1. Similarly, ρ2 is already a symmetric state

and the permutation operations are not needed. On the other hand, the obtained

values of c2 would also not take into account the possible errors introduced from

the permutations needed to extract c1.

The solution to this problem was to always concretely apply a permutation pulse

sequence. If no swap was needed, the pulse sequence will effectively implement the

identity. This way, all the different sub-experiments contained the same number of

pulses and any introduced errors were thus, on average, normalized with respect to

each other.

Finally, as in the case of the preceding chapter, since the implemented noise

corresponds to phase flips, the engineered noise was implemented through virtual
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Figure 4.2: Different pulse sequences for the two qubit twirling experiments de-

pending on the desired initial state.

z-rotations, which can be implemented by modifying the phase of subsequent pulses

and possibly the phases of the receiver during the recording of the FID. To create

the random error in experiment #1, the noise was implemented by applying a phase

shift on H for half the experiments and on C for the other half. To be consistent

with the random nature of this noise, the experiments were chosen at random.

The final pulse sequence for the three different sub-experiments (i.e. initial state

ρ1 with and without permutation, and ρ2) can be seen in Fig. 4.2. By implementing

these three different pulse sequences, the initial state preparation and state readout

part of the pulse sequence had the exact same number of pulses and J-couplings;

hence the results of all these sub-experiments can be fairly compared.

Finally, it should be noted that, in order to minimize the number of pulses,

the identity operations and the permutations actually left the state of the spins

in X11l2, 1l1X2 and X1Z2. Since the twirling protocol is entirely symmetric with

respect to the Pauli axes, the modified protocol developed in Sec. 4.5 could have

used any state X̄ω, Ȳω, or any symmetric mixture of X, Y or Z with weight ω.

4.6.3 Electronic analysis

In the previous section, we described a method to treat all the sub-experiments

on the same footing. Unfortunately, as we will shown in Sec. 4.6.4, this was not
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enough to give highly precise results. One major source of error that was previously

ignored was the imperfection of the pulse generation at the sample.

Since chloroform is a heteronuclear 2-spin system, hard pulses are usable for

selective control of the spins. A hard pulse consists of a short burst of RF power

at the frequency of the targeted spin, i.e. a square shaped pulse. As explained is

Sec. 2.4.2, commercially available NMR probehead consist of a LC circuit, where

the RF magnetic field is created at the inductor (L). A resonant circuit has a finite

response to excitation, i.e. since it has a finite resonance frequency bandwidth.

Short, square pulses, which have a wide Fourier spectrum, are never completely

sharp and have a finite rise time.

To implement the twirling experiment, we used a cryo-probe with a very narrow

bandwidth, which leads to large distortions of the square pulses. This probehead has

a double coil that is triple resonant, but the details of the LC circuit are unavailable

due to intellectual property protection. For the sake of analysis and to verify our

claim, we performed signal analysis using a standard single resonance circuit [FR86].

A typical RF resonance circuit is depicted in Fig. 4.3. With commercially available

NMR spectrometers, commands about the frequency, length and shape of the pulses

are digitally sent to the spectrometer, which in turn create the wave form using a

frequency generator and an arbitrary waveform generator. The final wave is then

amplified and sent to the probehead. For simplicity, we will assume that the signal

the spectrometer sends is exactly the shape desired, such that we only analyze the

effect of the RLC circuit.

In the present circuit, Ls is the coil where the RF magnetic field is created, hence

where the sample is located. r is its associated resistance. From basic electronic

circuit analysis [NR04], we know the parallel LCT circuit has a complex impedance

of

Z =
iωLs + r

1− ω2LsC + iωCT r
. (4.53)

The condition for resonance will be given when the imaginary part of the

impedance vanishes, which gives the resonance condition

ω0 =

√
Ls − r2CT
L2
sCT

= 2πf0. (4.54)

Since the induction of Ls is fixed during the building of the probe, CT is therefore a

variable capacitor used to tune the resonance frequency. As a matter of fact, when

changing from one sample to another, the impedance of the sample can modify the

value of Ls and slightly change f0.

In order to achieve matching conditions, the probe must have an impedance

of 50Ω (just as the spectrometer). Since the parallel RLC circuit has a non-zero
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Figure 4.3: Single resonance RLC circuit. The resonant frequency can be tuned

by varying CT and the impedance of the circuit can be matched to that of the

spectrometer (50Ω) by adjusting CM .

resistance, its impedance is complex-valued. Therefore, an extra active circuit

element (capacitor or inductor) is needed to achieve a real impedance. Although

transmission lines can also be used [LE74], it is customary to use an extra variable

matching capacitor Cm.

The quality factor of a resonant circuit is given as the amount of energy stored

in the resonant part of the circuit over the dissipation power, i.e.

Q = 2π
Energy stored

Energy dissipated per cycle
. (4.55)

For any simple linear circuit, the energy is stored in the active elements, i.e. in-

ductors and capacitors, and dissipated by resistors. Since the current through an

inductor is π/2 out of phase with the current through a capacitor, the energy stored

in the LC circuit is given by the maximal energy stored in the inductor so that

Energy stored =
1

2
LI2 (4.56)

The power dissipated by a resistor is P = vi = ri2, where v and i are the

instantaneous potential difference and current in the resistor. On resonance, i =

I sin (ω0t+ φ) for a given phase φ. The energy dissipated per cycle is given by the
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time integral of the dissipation power over an entire cycle of length T = 2π
ω0

:

Energy dissipated per cycle =

∫ T

0

ri2dt

= rI2

∫ T

0

sin2 (ω0t+ φ)

=
1

2
rI2T

=
π

ω0

rI2 (4.57)

Therefore

Q =
ω0L

r
. (4.58)

Full simulations of the probe response to a given driving source have been con-

ducted using a free version of SPICE [NP73], a general purpose simulation program

for electronic circuits. Some details of the simulator are given in Appendix C.

The Bruker spectrometer software, XWin-NMR, has the capability to measures

the reflected power (under a given frequency excitation, of the resonant circuit in

real time. If we plot this reflection as a function of a frequency sweep, a dip is

expected at the resonance frequency. In terms of electric properties of the circuit,

the reflected power takes the expression

Reflected Power =

∣∣∣∣Zc −ZspZc + Zsp

∣∣∣∣ , (4.59)

where Zc is the complex impedance of the LC circuit and Zsp = 50Ω is the

impedance of the source, i.e. the spectrometer. From the reflected power func-

tion of a given circuit, the value of Q can be extracted using

Q =
f0

FWHM
, (4.60)

where the FWHM is the full width of the reflected power dip at half the minimum.

For the simulations, we choose values of L, r, CT and Cm that approximated

the best the conditions of the hydrogen channel on our cryoprobe:

f0 = 700 MHz

Q ≈ 700

Z = 50 Ω. (4.61)

The value of the circuit elements and the simulation of the reflected power as a

function of the frequency can be seen in Fig. 4.4.
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Figure 4.4: Approximated lumped element values and simulated reflected power

as a function of excitation frequency for the cryoprobe resonant circuit depicted in

Fig. 4.3.

One can verify that if we use the values of the lumped elements in Eq. 4.54

and 4.60, we do not obtain the values claimed in Eq. 4.61, but a value somewhat

similar. Although ignored, the presence of the matching capacitor Cm does have

a small effect on the resonance frequency and on the quality factor of the circuit,

phenomenon that we actually observe experimentally.

Using SPICE, we first created a square pulse of 10 µs in length with an arbi-

trary power and recorded the voltage across the inductor Ls. Since the magnetic

field inside an inductor is directly proportional to the voltage across it, we could

reconstruct the RF field at the sample. By demodulating the simulated field with

the same carrier frequency as that of the input pulse, we were able to analyze the

quadrature components of the field at the sample. The input pulse only had an

amplitude in the x quadrature and the simulated hard pulse out of the source is

shown in black in Fig. 4.5. The demodulated x and y components measured at the

sample are in blue and red.

Due to the high quality factor of the probe, the electric circuit takes a long time

to react to a driving voltage, hence explaining the low rise of the pulse. For the
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Figure 4.5: Simulated quadrature components of a short hard pulse measured at

the probehead. Due to the finite response time of the circuit, the pulse at the probe

will contain unwanted quadrature components.

same reason, once the input voltage is turned of, the circuit keeps resonating and

the current dissipates in a finite amout of time. From a Fourier analysis argument,

the high Q of the probe means that it does not resonate as well for frequencies away

from f0. Since high and low frequencies are responsible for shaping the edges of a

pulse, the measured signal is expected to be smoother than the input. The extra

signal in the y quadrature is known as the phase transients and is a well documented

phenomenon in the NMR community [VES+72, AHT76, BMW91, Veg04].

The major problem arising from phase transients is that it will not create exactly

the desired unitary operation. That is, if we want to implement a π/2 degree pulse

around, say, the x-axis, in reality, the unitary transformation will be different. In

an experimental setting, these effects can be hidden during the calibration process.

As a matter of fact, the usual calibration technique is to apply the pulse on a known

initial state and optimize the phase and power of the pulse to maximize the signal

of the final known state. For example, we calibrate a π/2 y pulse by first defining

the x axis. To do so, we apply the possibly mis-calibrated y pulse to the thermal

state Z and rephase the obtained spectrum so that it shows absorption Lorentzian
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Figure 4.6: Simulated quadrature component of a short hard pulse measured at the

probehead. The smoothness of a Gaussian pulse does not require high frequency

components to generate the pulse and no phase transients are observed.

peaks only, hence defining the set of axes for the xy plane. The power is then

optimized to maximize the signal.

Since a pulse with phase transients does not rotate the spins along a constant

axis, the choice of xy could be erroneous. Therefore, using different types of pulses

at different phases for a given sequence will introduce calibration and phase errors,

hence diminishing the fidelity of the operations.

Following the above Fourier argument, we thus expect that a smoother, slowly

varying pulse should have fewer phase transients. Indeed, this conclusion is verified

from the simulation of a 28us Gaussian shaped pulse, discretized over 40 points

with a 3% cut-off. The quadrature component of the input and output pulse can

be seen in Fig. 4.6.

As expected, the measured pulse at the sample is essentially identical to the

input pulse. As a final remark, we should point out that the above simulation does

not exactly correspond to reality. As already mentioned, we do not have access

to the actual electronic circuit of our high Q cryoprobe. We did however, mea-

sure and demodulate the magnetic field at the sample by placing a small coil in a
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test tube and recording the induced voltage using the receiver of the spectrometer.

For hard pulses, we still measured phases transients, but they were much less pro-

nounced than in Fig. 4.5. Nevertheless, the search for high fidelity control forces

us to reconsider the use of hard pulses and migrate towards softer pulses, even for

heteronuclear systems. Unfortunately, soft pulses usually takes longer to implement

and thus errors coming from the natural evolution of the system can jeopardize the

improvements. Ultimately, we want to reach the optimal trade-off between phase

transient effects and unwanted evolution errors.

4.6.4 Experimental results

The reason why the above signal analysis was performed was because the first suc-

cessful implementation of the protocol led to results that were close to the expected

values, but given that the experiment was only on two qubits, we expected much

better results. Once the value of ~c was measured by averaging the spectra of all

the 288 experiments, they were fitted with absorption and dispersion Lorentzian

functions and integrated. The uncertainties of the c’s were estimated from the fit-

ting of the spectra and the signal to noise ratio. The propagation of these errors

to ~p was then calculated using the method of maximum likelihood [vdV98]. The

original results are given in Table 4.2.

exp. # p0 p1 p2 c0 c1 c2

1 0.000+0.026
−0.000

1.000+0.000
−0.025

0.000+0.006
0.000

1 0.36± 0.01 −0.36± 0.02

2 0.00+0.04
−0.00

0.00+0.06
−0.00

1.00+0.00
0.07

1 −0.31± 0.02 0.121± 0.03

3 0.25+0.03
−0.03

0.44+0.06
−0.06

0.30+0.05
0.04

1 0.30± 0.02 0.14± 0.03

Table 4.2: First set of experimental value of ~p and ~c obtained by performing the

experiment using hard square pulses. The large deviation of the experimental values

for ~c from the expected values yield unacceptably large uncertainties on the derived

~p.

Although a quick glance at the results might lead to the conclusion that ~p was

correctly evaluated (at least for the two first experiments), analysis of the value of ~c

does show the imprecision of the implementation. The reason the ~p’s are correctly

derived is simply due to the bounds imposed to their values, which also explained

the large uncertainties. For example, if we use the value of ~c for experiment 1

and the inversion matrix in Eq. 4.44, we obtain the value ~p = (−0.005, 1.05, −
0.045). Since all those values are outside the permitted interval [0, 1], the maximum

likelihood method would then change them to (0, 1, 0).
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The imprecision becomes more obvious when analyzing the third experiment.

In this situation, none of the expected pw were at the boundaries of the allowed

interval, and the value of ~p is clearly far from correct.

By changing from hard pulses to slightly longer, Gaussian shaped pulses, we

have been able to measure the ~p and ~c vectors shown in Table 4.3. This table

shows the improvement on the uncertainties on all the ~p’s and most notably on the

precision of the values for the third experiment .

exp. # p0 p1 p2 c0 c1 c2

1 0.000+0.004 0.991+0.009
−0.015

0.009+0.017
−0.009

1 0.32± 0.01 −0.34± 0.01

2 0.001 +0.006
−0.001

0.004 +0.011
−0.004

0.996 +0.004
−0.011

1 −0.330± 0.005 0.11± 0.01

3 0.254 +0.010
−0.010

0.495 +0.021
−0.020

0.250 +0.019
−0.019

1 0.336± 0.009 0.117± 0.009

Table 4.3: Final set of experimental value of ~p and ~c obtained using soft Gaussian

pulses. The precise ~c and ~p demonstrate the positive consequences of using smooth

pulses (no phase transients) over hard pulses.

From the final results, we see that the largest uncertainties happen for experi-

ment 1. This larger error is actually due not to more control errors, but actually to

statistical errors. As a matter of fact, the 288 experiments completely twirled the

noise in experiment 2 and 3, while it only twirled within an error ε for experiment

1. The error model in experiment 1 is expressed a

ρ → 1

2
Z1ρZ1 +

1

2
Z2ρZ2, (4.62)

which means that in order to engineer such a noise, two separate experiments needed

to be performed (one applying a Z1 error and the other a Z2 error). Since we were

still performing 288 twirling experiments, choosing randomly whether qubit 1 or 2

is flipped, the final channel was just an average of two partially twirled channels.

4.7 Conclusion

In retrospect, we have explained the existence of a scheme that can extract relevant

information about a given quantum channel without the necessity of performing

inefficient quantum process tomography. By performing an approximate C̃⊗n twirl

on a n qubit channel, it is possible to measure the probabilities of errors of any given

weight. This knowledge is necessary and mostly sufficient for developing QECCs,

vital to fault-tolerant quantum computation. The experimental implementation on

a 2 qubit quantum information processor led to three important conclusions:
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1. The theoretically derived protocol is implementable and leads to the expected

results.

2. Smoothly varying pulses should be used for high fidelity control due to the

presence of phase transients in hard pulses.

3. The precision of the results demonstrates the quality of the control and hence

the understanding of the system in liquid state NMR.

As mentioned previously, this scheme is perfect for probing channels that are

intended to perform the identity, such as the time suspension sequences used in

NMR homonuclear decoupling experiments [MG75, CLSW85, CMG90] or the con-

trol sequences used in a quantum memory [MJN+02, FL02, TML03, JSC+04]. In

these cases, the value of p0 would give the fidelity of the implementation of the

identity. A generalization of this protocol can be used to benchmark the quality

of non-trivial, fully coherent quantum operations, such as any computational gates

in a given quantum computation. This protocol will be the subject of the next

chapter.
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Chapter 5

Benchmarking single and

multi-qubit control

5.1 The paradox of benchmarking computational

gates

In chapter 3, we developed a scalable technique for estimating important infor-

mation concerning the behavior of the noise in a given system. In chapter 4, we

described and implemented a protocol based on symmetrization and randomization

to extract parameters of a noisy channel affecting, for example, quantum data stor-

age. In retrospect, these two protocols are excellent for probing the sources of error

when no computation is performed. Simply put, we assumed that the operation

performed in the protocol were perfect so that the only source of noise was that of

the channel.

The same type of assumption was made in the theory of quantum error cor-

rection, until somebody asked: what happens when the operations performed are

themselves faulty? This simple but deep question led to the theory of fault-tolerant

quantum computation [Sho96, Kit97b, CPZ96, ZL96]. Therefore, it is important to

be able to characterize the control one has over their quantum information process-

ing devices in such a way that errors in the implementation of the probing protocol

do not influence the precision of the answer. As already mentioned in previous sec-

tions, quantum process tomography not only suffers from the exponential amount

of resources, but also from errors in state preparation and readout that seriously

affect the analysis and makes it difficult to reconstruct a completely positive map

[BHPC03].

Therefore, if the goal of a probing experiment is to quantify the quality of the

computational gates, we must ensure that errors in state preparation and readout
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are much smaller than the errors per gate. As seen in section 2.3, initial state

preparation can involve many computational gates and is thus considered noisy.

Ultimately, we have the bootstrapping problem of benchmarking noisy computa-

tional gates using noisy computational gates and a protocol is needed to either

overcome the paradoxical situation situation, or to embrace it.

Fortunately, Emerson and colleagues [EAZ05] showed that, under certain condi-

tions, applying noisy but random gates effectively turns the noise into a depolarizing

channel, which can be described using a single parameter. Based on this protocol,

Knill et al. [KLR+08] developed a slightly modified single qubit experiment and

implemented the protocol on a single qubit based on a trapped ion. We also directly

applied the protocol using NMR on a single spin molecule to compare our results

to theirs.

In this Chapter, we report our effort toward the implementation of the single

qubit experiment in liquid-state NMR. Moreover, we discuss a possible generaliza-

tion of the protocol for the benchmarking of multi qubit control, which would permit

a fair comparison between processors of all sizes. This protocol was implemented

on a three qubit liquid-state NMR processor.

5.2 Benchmarking protocol

5.2.1 Haar unitary randomization

In order to quantify the quality of the implementation of a given unitary U , we must

define the concept of average gate fidelity. If we could write only the noise portion

of the implementation as a superoperator, it is intuitive to defined the average gate

fidelity as χ11 = p0, which gives the probability of Λ to affect no qubits. The

strategy of the protocol will be to extract as efficiently as possible this value.

Suppose we wish to implement an ideal gate U . In reality, due to decoherence,

mis-calibration and other sources of error, a faulty, completely positive map, Γ will

be implemented, whose action on a given state ρ can be described using Kraus

operators as

Γ(ρ) =
∑
k

BkρB
†
k. (5.1)

If we define the operators Ak as

Ak = BkU
†, (5.2)
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and we perform a motion reversal on Γ(ρ), we have

U †Γ(ρ)U =
∑
k

U †AkUρU
†A†kU

= U †Λ
(
UρU †

)
U, (5.3)

where we have defined Λ(�) =
∑

k Ak�A
†
k. From the form of the above equation,

we can associate Λ with the superoperator corresponding to the cumulative noise

in the implementation of U . If we choose ρ = |ψ〉〈ψ|, the state fidelity of the gate

U for this arbitrary state is

F (Λ, U, ψ) = 〈ψ|U †Λ
(
U |ψ〉〈ψ|U †

)
U |ψ〉. (5.4)

In order to make the fidelity independent of the input state and hence have an

average gate fidelity, we can simply average over all the pure input states with the

Fibini-Study metric dψ, i.e.

F (Λ, U) =

∫
dψ〈ψ|U †Λ

(
U |ψ〉〈ψ|U †

)
U |ψ〉

=
∑
k

∫
dψ
∣∣〈ψ|U †AkU |ψ〉∣∣2 . (5.5)

The Fubini-Study metric is an invariant metric over the pure states. For exam-

ple, for a one qubit system, the metric is invariant over the Bloch sphere, meaning

that if the Bloch sphere undergoes a given rotation R, the metric is the same, i.e.

dRψ = dψ [BH01, BZ06]. It has been shown that under the invariant metric, the

average gate fidelity only depends on the noise and not on the gate itself as it takes

the form [BOS+02, HHH99, Nie02]

FΛ = F (Λ, U) =

∑
k |Tr(Ak)|2 +D

D2 +D
. (5.6)

If we go back and analyze Eq. 5.5 from a different perspective, since the columns

(or rows) of any unitary operator also correspond to pure quantum states, averaging

over the states |ψ〉 for a given fixed U is equivalent to averaging over the unitary

operators for a fixed state |ψ〉. Therefore, if we assume that the error Λ is gate-

independent, we have

F (Λ, ψ) = F (Λ, U)

=

∫
dU〈ψ|U †Λ

(
U |ψ〉〈ψ|U †

)
U |ψ〉

= 〈ψ|
[∫

dUU †Λ
(
U |ψ〉〈ψ|U †

)
U

]
|ψ〉. (5.7)
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The invariant metric on the unitary operators is known as the Haar measure

and is invariant in the sense dU = d(R1UR2) for fixed unitaries R1 and R2 [Haa01].

If we rewrite the integral portion of Eq. 5.7 in the Liouville space, we obtain∫
dUU †Λ

(
U |ψ〉〈ψ|U †

)
U ∼=

∫
dÛÛ †Λ̂Û |ψ〉〉

= Λ̂ave|ψ〉〉, (5.8)

where we have defined the superoperator

Λ̂ave =

∫
dÛÛ †Λ̂Û . (5.9)

By invoking the invariance of the Haar measure and Schur’s lemma, Emerson

et al. [EAZ05] proved that the averaged operator must cause a depolarizing action,

i.e.

Λave(ρ) = (1− pΛ)ρ+ pΛ
1l

D
, (5.10)

that is, the noise either does not affect the state of the system with probability

p0 = 1− pΛ, or returns a completely mixed state with probability pΛ. The value of

pΛ depends on the noise and an explicit formulation will be given below.

We can finally write, for any state |ψ〉〈ψ| = ρ that the average gate fidelity is

given by

FΛ = 〈ψ|Λave(|ψ〉〈ψ|)|ψ〉
= Tr [|ψ〉〈ψ|Λave(|ψ〉〈ψ|)]
= Tr [ρΛave(ρ)]

= (1− pΛ)Tr(ρ2) +
pΛ

D
(5.11)

= p0 +
1− p0

D
, for pure states. (5.12)

The last line confirmed our intuitive approach. The average gate fidelity is given

by χ11 = p0, but since measuring a maximally mixed state will give the right

answer with probability 1
D

for any measurement, the average gate fidelity is further

enhanced by pΛ. The above equation essentially tells us that estimating the average

gate fidelity is equivalent to estimating the depolarizing factor of the noise averaged

over randomly chosen unitaries.

Using the fact that all operators in the n qubit Pauli group are traceless except

the identity operator, and given that Pn is a complete set of basis operators for the

2n × 2n matrices, we can thus decompose any state ρ as

ρ =
1l

D
+
∑
Pj 6=1l

ρjPj. (5.13)
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Moreover, since Pauli operators commute with half of the Pauli group and anti-

commute with the other half, we have, for any given P 6= 1l∑
k

PkPPk = 0. (5.14)

while ∑
k

Pk1lPk = D21l. (5.15)

so that

1

D2

∑
k

PkρPk =
1l

D
. (5.16)

The Liouville representation of a depolarization operator can thus be written

Λ̂ave = (1− pΛ)1l⊗ 1l +
pΛ

D2

∑
k

P ∗k ⊗ Pk, (5.17)

which implies that

Tr(Λ̂ave) = D2(1− pΛ) + pΛ. (5.18)

The depolarizing factor is thus related to the original noise by

pΛ =
D2 − Tr(Λ̂ave)

D2 − 1

=
D2 − Tr(Λ̂)

D2 − 1

=
D2 −

∑
k |Tr(Ak)|2

D2 − 1
, (5.19)

where we used the fact that

Tr(Λ̂ave) = Tr

(∫
dÛÛ−1Λ̂Û

)
=

∫
dUTr

(
Û−1Λ̂Û

)
=

∫
dUTr(Λ̂)

= Tr(Λ̂) (5.20)

=
∑
k

Tr (A∗k ⊗ Ak)

=
∑
k

Tr(Ak)Tr(Ak)
∗

=
∑
k

|Tr(Ak)|2. (5.21)
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The above results can also be obtained by directly comparing Eq. 5.6 with 5.11.

Under the same assumption of gate independent noise, let us analyze a series

of faulty gates averaged over the Haar measure, i.e. given an initial state in the

Liouville representation |ρ〉〉, the final state after n randomly chosen gates will be

|ρ(n)〉〉 =

∫ [
ΠidÛi

]
Λ̂Ûn . . . Λ̂Û2Λ̂Û1|ρ(0)〉〉. (5.22)

Since the gates are randomly chosen, we can always write Ui = U ′iU
†
i−1 so that the

above averaging reduce to

|ρ(n)〉〉 =

∫ [
ΠidÛi

]
R̂Û

′−1
n Λ̂Û ′n . . . Û

′−1
2 Λ̂Û ′2U

−1
1 Λ̂Û1|ρ(0)〉

= R̂†
[∫

dUÛ−1Λ̂Û

]n
|ρ(0)〉

= R̂†Λ̂n
ave|ρ(0)〉, (5.23)

where R† corresponds to the overall effect of the ideal pulse sequence, i.e. R† =

UnUn−1 . . . U1, so that R is the time-reversal gate, i.e. the recovery gate.

Simple proof by induction shows that the effect of Λn
ave on any state ρ is given

by

Λn
ave(ρ) = (1− pΛ)nρ+ (1− (1− pΛ)n)

1l

D
. (5.24)

From the expression in Eq. 5.11, the average gate fidelity Fn after n gates can

be measured by evaluating the average state-to-state fidelity of the random self-

reversed sequences for a generic initial state ρ(0), i.e.

Fn = Tr
[
ρ(0)Rρ(n)R†

]
= Tr [ρ(0)Λn

ave (ρ(0))]

= (1− pΛ)n
[
Tr(ρ(0)2)− 1

D

]
+

1

D
. (5.25)

This shows us that the function Fn − 1
D

is an exponentially decaying function in

the number of gates.

In the light of the above theory, the protocol to extract the average fidelity per

gate becomes clear:

1. Generate ng sets of N random unitaries.

2. Select a set of numbers of truncation to be implemented l1 < l2 < . . . < lN =

N .
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3. For each truncation li, calculate the recovery gate Rik = U
(k)†
1 . . . U

(k)†
li

, k =

1, . . . , ng.

4. For each truncation, implement each ng sequences for a fixed initial state,

implement the recovery gate record the state fidelity and average the fidelities

over the ng sequences.

5. Plot the average fidelity as a function of the number of gates li.

6. Extract the exponential factor pΛ.

In reality, there will be errors in the state preparation Λp and in the implemen-

tation of the recovery gate ΛR. Since the ng sequences are randomly chosen for

a given li, averaging over the sequence will effectively depolarize the preparation

and recovery errors. If pp and pR are associated with the depolarizing factor of

the initial state preparation and recovery gate respectively, that channel is then

described by

ΛR,ave ◦ Λn
ave ◦ Λp,ave(ρ) = (1− pp)(1− pR)(1− pΛ)nρ

+(1− (1− pp)(1− pR)(1− pΛ)n)
1l

D
. (5.26)

The average gate fidelity is now given by

Fn = (1− pp)(1− pR)(1− pΛ)n
[
Tr(ρ(0)2)− 1

D

]
+

1

D
, (5.27)

so that Fn − 1
D

is still exponential in n, but with a different value at n = 0.

The most important fact about this protocol is that due to the concentration of

measure in large Hilbert spaces [EWLC02], the fidelity decay of a single sequence

becomes exponentially close to the true average as a function of the number of

qubits. Therefore, only a few random sequences needs to be implemented to esti-

mate the depolarizing factor. The advantage of measuring the depolarizing factor

as part of a long sequence of gates reside in the fact that we only need to undo

the computation at the very end of the sequence, hence potentially canceling less

coherent, possibly pulse dependent, errors, as we will explained in more detail in

Sec. 5.3.2.

5.2.2 Clifford randomization

The main concern the experimental implementation of the protocol has to do with

the generation of the unitary matrices. Unitary matrices are a continuous set of
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gates and requires an exponential amount of parameters to describe them. There-

fore, from an experimental point of view, random unitary operators are impractical

and inefficient to implement. There are, on the other hand, ways to efficiently gen-

erate pseudo-random unitary operators by iterating a series of single qubit random

unitaries and fixed two qubit gates [EWS+03], which converge to a Haar distributed

set of gates exponentially fast (in the length of the circuit) [ELL05]. These meth-

ods still use a continuous set of gates (single qubit unitaries) and are not ideal for

experiments, though feasible.

As seen from Eq. 5.7, the average gate fidelity is given by a polynomial of second

degree in U and second degree in U †, also known as a (2, 2) polynomial. The average

over the set of all unitaries can therefore be performed using a unitary 2-design,

that is, a finite set of operators such that the average over the finite set will yield

the same result as the average over the continuous set of Haar distributed unitaries.

It has been shown [DLT02] that averaging over the Clifford operations is an exact

2-designed, that is ∫
dÛ Û−1Λ̂Û =

1

|Cn|
∑
Ĉ∈Cn

Ĉ−1Λ̂Ĉ. (5.28)

Using a finite set of gates is now more realizable experimentally, but there are

still exponentially many, as a function of the number of qubits, Clifford operations.

Fortunately, Dankert et al. [DCEL06] showed that to evaluate the average to within

precision ε, only O(n log ε−1) Clifford operations are needed. Therefore, only a few

randomly chosen Clifford gates will be needed to obtain a fidelity decay curve.

Another strong argument to use the Clifford operations instead of the unitaries

is in the calculation of the recovery map R. For a sequence of random unitaries, it

takes an exponential amount of resources to calculate the overall transformation.

On the other hand, it is known that Clifford operations are efficiently tractable on a

classical computer [Got97] and we know that any Clifford gate can be decomposed

into a scalable number of known one and two qubit gates [AG04, DDM03]. There-

fore, the use of a Clifford randomization will enable us to undo the computation in

very few steps.

Moreover, being able to benchmark the quality of the Clifford gates is of great

importance to measure the ability for a device to implement fault-tolerant QIP

based on stabilized codes [Got97]. Such codes perform their error correction mainly

using Clifford operations. The universality of such an architecture can be com-

pleted by preparing “magic-states”, e.g. states of the form cos π
8
|0〉+ sin π

8
|1〉. The

preparation of a faulty magic-state can be purified solely from the use of Clifford

operations [BK05, Rei05]. Therefore, the performance of a quantum computation

can be significantly increased by the use of higher precision Clifford operations.
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Finally, by extracting the value of the depolarizing factor, we obtain concrete

information about the noise present in the implementation of computational gates.

One could argue that the average gate fidelity is not an appropriate figure of merit

for fault tolerant quantum computation since these schemes have to work in all

scenarios. Instead, the perfect number to use would be the worst case fidelity,

i.e. the minimal state fidelity over the entire Hilbert space. Even though such

fidelity can be evaluated for a known unitary operator [HJ85], it is not clear how to

measure it for a general CP map. On the other hand, since we are measuring the

fidelity of computational gates, we are assuming that those gates have a non-trivial

effect on the state of the system, meaning that during an actual computation the

system will most likely visit different regions of the Hilbert space and be equally

affected by worst case and best case scenarios. Moreover, for most experimental

errors any given device has to deal with, e.g. mis-calibration, dephasing, amplitude

damping, etc., the action of this noise is smoothly distributed across the Hilbert

space. Therefore, the average gate fidelity will never greatly differ from the worst

case fidelity and therefore it is a relevant quantity to know so that the quality of

the control on a system can be assessed.

5.3 Modifications for implementation

5.3.1 Modifying the assumptions

The theory and mathematics leading to the development of the above protocol rely

on a very constrictive assumption: the noise present is independent of the unitary

implemented. Since we are trying to evaluate the control on our system, that is,

how well we are able to implement a given gate, this assumption conflicts with what

we are trying to evaluate.

For example, typical gate independent errors could come from dephasing or

amplitude damping, which are essentially only dependent on the system and its

environment. But when we are implementing a given gate, e.g. a π/2 pulse about

the x axis, miscalibration will introduce a small error corresponding to an over or

under rotation around the x axis. If the pulse would have been about the y axis,

then the error would have been around the y axis. Also, residual couplings can

introduce errors. During a pulse on a qubit coupled to, say, one other qubit, the

error introduced will be different than that introduced if we were implementing the

exact same pulse, but on a qubit coupled to two other qubits.

Simply said, the cumulative error of a given sequence of gates will be strongly

correlated with the particular sequence implemented. In their work, Emerson et.

al. conjectured, based on the fact that the depolarizing factor depends only on the
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strength of the noise measured by Tr(Λ̂), that the strength of the noise for a specific,

yet random gate sequence will concentrate around the average value depending only

on the length of the sequence, as long as all the noise has the same strength, i.e.

if the residual noise coming from applying U is ΛU , then for a specific self-reversed

sequence RUn . . . U1

R̂Λ̂UnÛn . . . Λ̂U1Û1 ' Λ̂n
ave, for large n, (5.29)

where, as before

Λ̂ave(ρ) = (1− pΛ)ρ+ pΛ
1l

D
, (5.30)

and

pΛ =
D2 − Tr(Λ̂Ui)

D2 − 1
, (5.31)

where ΛUi is any gate noise, since they are assumed to all have the same strength.

This conjecture therefore tells us that the noise does not need to be the same for

each gate, but as long as each gate is equally good, or bad, independent of the

action of the noise, the protocol will work. In such a case of gate dependent errors,

we are expecting the asymptotic error to approach the true average value.

5.3.2 Modifying the protocol

Reducing further the set of gates

Using the argument of unitary 2-design theory, we have been able to reduce the set

of gates to average over from a continuous set to a discrete set. Unfortunately, for

more than two qubits, the Clifford operations are still impractical since there are

exponentially many of them, hence an exponential amount of operations to perform

experimentally. We report here our effort toward further reducing the amount

of multi-qubit gates necessary to implement the protocol, while still extracting

relevant information.

On the other hand, we know that only a small number of gates are necessary

to generate any Clifford operation, hence we should be able to generate random

Cliffords using an efficient amount of generating gates. One set of generating gates

is all the single qubit Hadamard and phase gates, and a set of CNOTs affecting all

qubits. The Hadamard gate has been previously defined in Eq. 5, and the phase

gate corresponds to a π/4 rotation about the z axis, i.e.

P = e−i
π
4
Z =

(
e−i

π
4 0

0 ei
π
4

)
'
(

1 0

0 i

)
. (5.32)
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There are maximally O(n2) such operations. Multiplying a reasonable amount

of randomly chosen generating Clifford gates together (polynomially many) is known

to produce uniformly distributed random Cliffords [HL08]. For example, on three

qubits, numerical simulations shows that multiply five randomly chosen generators

will yield a random Clifford gate.

The practical limitation of such an approach relies on the fact that each ran-

domly chosen Clifford will now contain, say, m physical gates, so that the noise on

that random gate will be the cumulative noise of all the physical gates. By invoking

the theory of unitary 2-design for large sequences and large amounts of sequence

averaging, the cumulative noise will converge to the same depolarizing noise. There-

fore, each randomly chosen generating gate can be counted as a random Clifford

operation. This claim will be numerically verified in the next section.

The advantage of using the generating set of gates containing only single and

two qubit operations relies on the fact that we now have a meaningful connection to

the fault-tolerance thresholds. Indeed, fault-tolerance relies on the error per single

and two qubit gates and also the error per wait step. That is, the usual assumption

is that a faulty gate affecting qubit a will only create an error on qubit a, while the

errors on the other qubits will be classified as a wait step error. As argued above,

a gate on a given qubit, or pair of qubits, is likely to induce errors on the other

qubits. In the present work, we decided to eliminate the wait step error category

and include them as part of the error per gate. Therefore, by implementing the

benchmarking protocol using only one and two qubit gates, we quote an average

error per one or two qubit gate that also contains the possible wait step errors.

These errors per gate will therefore correspond to an “average worst case scenario”

compared to quoting three different numbers. Obviously, such a method could be

hiding information about the error as, for example, in the situation where the one

qubit gates are near perfect and most of the errors are from the two qubit gates,

our protocol would not make the distinction. We will explain later how we can

modify the present protocol to extract more coarse-grained information about the

noise.

Changing the initial state

To evaluate Eq. 5.25, we assume that the initial state is a quantum state, i.e.

Tr(ρ) = 1. In order to minimize the error due to state preparation, we should

use a state easily obtainable from the thermal state. As explained before, the

initial thermal state in liquid state NMR is highly mixed and we only care about

the deviation matrix. Using gradient techniques or phase cycling, it is possible to
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transform the initial thermal state into

ρ =
1

D
1l− εZ1

=
1

D
1l− εσ, (5.33)

with virtually no error, so that we can assume that pp = 0 for the liquid state NMR

implementation. Since Tr(σ) = 0, the deviation does not describe a quantum state

per say. On one end, we have from before that

Λn
ave(ρ) = (1− pR)(1− pΛ)nρ+ (1− (1− pR)(1− pΛ)n)

1l

D

=
1l

D
+ ε(1− pR)(1− pΛ)nσ. (5.34)

By the linearity of quantum mechanics we have

Λn
ave(ρ) =

1

D
Λn
ave(1l) + εΛn

ave(σ)

=
1

D
+ εΛn

ave(σ), (5.35)

so we can conclude that

Λn
ave(σ) = (1− pR)(1− pΛ)nσ. (5.36)

We can extract the depolarizing factor using pnΛ = Tr [σΛn
ave(σ)]. If we use

σ = Z1 for example, (1− pΛ)n will be measurable in NMR by comparing the final

amount of signal with the initial amount of signal (Sec. 2.4.4). Since the initial

signal is constant, we can extract the depolarizing parameter by fitting the graph

of the final signal versus the number of gates implemented.

5.3.3 Simulating the protocol

Before going ahead and experimentally implementing the protocol, we decided some

simulations were needed to verify the validity of the conjectures mentioned above,

as well as the viability of the protocol under the estimated error in our NMR system.

First, to analyze the convergence of the scheme and the viability of the Clifford

2-design option, we simulated the fidelity decay curve for a gate-independent noise

on three qubits. The most common such noise, also present in NMR, is the phase

flip noise (similar to dephasing). Given a state ρ,

Λ(ρ) = (1− d) ρ+
d

3
(Z1ρZ1 + Z2ρZ2 + Z3ρZ3), (5.37)
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Figure 5.1: Fidelity decay curve of a phase flip noise under Haar unitary randomiza-

tion. Each different curve represents the fidelity of a given sequence of N randomly

chosen unitary gates. The inset histogram gives the distribution of the measured

depolarizing factor for 200 different complete simulations.

where we used the arbitrary value of d = 0.01. Once the noise is depolarized,

Eq. 5.19 tells us that we should measure a depolarizing factor of p = 0.010158,

yielding an average gate fidelity of 0.991111. Fig. 5.1 shows the fidelity decay for

ng = 32 different computational gate sequences recorded at li = {2, 4, 6, 8, 10, 12,

16, 20, 24, 28, 32, 40, 48, 64, 80, 96}. We see that there is very little variation

from one sequence to another, verifying the conjecture in Eq. 5.29. The asymptotic

average (neglecting ni = {2, 4, 6, 8, 10, 12, 16}) of the curves shown fit to a measured

factor of pm = 0.01010 ± 0.00008, which is very close to the expected value for

the simulated noise. The inset histogram actually shows the fitted depolarizing

factor compared to the expected value for 200 different simulations, i.e. pm−p
p

. The

distribution has virtually no variance, hence demonstrating the concentration of

measure even for a Hilbert space of small dimension.

Fig. 5.2 demonstrates the same simulation, but using random Clifford gates

to depolarize the noise. We see that the fidelity curve for each sequence is more

dispersed, yet followd the right tendency. The simulation shown produced a fitted
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Figure 5.2: Fidelity decay curve of a dephasing noise under Clifford randomization.

Even though the true average curve should be the same, the separate fidelity curves

are more dispersed for a Clifford randomization than a Haar unitary randomization.

It has consequences to yield a less sharp distribution of the measured depolarizing

value over 200 different experiments (inset).

p = 0.0102 ± 0.0002. The inset histogram shows that even for minimal averaging

(ng = 32), the Clifford average will still depolarize the noise to the expected value,

but with a larger variance. The theory of 2-design stipulates that the average will

be the same, but does not specify anything about the moment of the distribution

of the average when performing estimates. Since we are averaging over a smaller

set of gates, it is expected that more averaging will be needed to approach the true

value, but the present simulations shows that, at worst, the value measured will be

away from the true average by 10%. The analysis of the moments of the estimates

is presently under investigation [ME08].

In our recent experiments, we typically designed our pulses using the GRAPE

search algorithm described in Sec. 2.6.2. If we specify to the search engine to

terminate when the simulated gate has, say, a 99.75% gate fidelity with the ideal

gate, then we know that all the gates implemented should have similar strengths

of error.
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The claim by Emerson et al. [EAZ05] is only a conjecture and no numerical

support has been given, so it is important to ensure that such a claim holds for the

noise model we are expecting to encounter. Since the noise model for single qubits

will be analyzed in detail in the next section, we will only verify the conjectures

for a three qubit system. For purposes of analysis, we will assume that the search

terminates when the gate fidelity, with respect to the Hilbert-Schmidt measure, is

99.75%, i.e.

0.9975 =
1

D2
|Tr(UidU

†
sim)|2. (5.38)

We can assume that Usim = V Uid, where V corresponds to the error in the simulated

gate, so that

0.9975 =
1

D2
|Tr(V )|2. (5.39)

Since V is unitary, it can be written as V = We−i
θ
2
Z1W † for a given unitary W .

This shows that any unitary operation is essentially a rotation of angle θ about a

certain axis of the D-dimensional hyper-sphere. Therefore,

0.9975 =
1

D2
|Tr(V )|2

=
1

D2
|Tr(e−i

θ
2
Z)|2

= cos2 θ

2
⇒ θ = 0.1. (5.40)

For the sake of simulation, each computational gate was assigned a random

error of the above strength by randomly generating the unitary V . The random

unitaries were generated from the eigenvectors of a random Gaussian unitary her-

mitian matrix [Haa01]. The expected depolarizing value is p = 0.002537, yielding

an average gate fidelity of 0.997780. Anecdotally, this shows the close relation be-

tween the average gate fidelity and the Hilbert-Schmidt measure. Though the latter

is a well suited figure of merit for the unitary implementation of gates, the former

extends for general CPTP implementation. Fig. 5.3 and 5.4 shows the simulated

experiments for a unitary and a Clifford randomization.

Surprisingly, there is little difference between the unitary and Clifford random-

izations, suggesting that coherence noise is hard to depolarize and that even a

continuous set cannot do it properly for a small amount of sequences.

For the final simulation, each random Clifford was replaced by a randomly

chosen generating gate. The histogram for 200 different measured depolarization

values is shown in Fig. 5.5. We can observe that the variance of the distribution
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Figure 5.3: Fidelity decay curve of a gate dependent unitary noise under Haar

unitary randomization. As expected, even for Haar unitary randomization, coherent

noise is harder to depolarize, as indicated by the dispersion in each separate curve

and by the histogram in the inset showing the depolarizing factor measured in 200

different experiments.

is essentially similar to that of Fig. 5.4, so that using randomly chosen Clifford

generators has the same depolarizing power as random Cliffords. On the other hand,

the average value measured tends to be about 5% greater than the true depolarizing

value. This discrepancy is not very alarming since the present protocol serves to

estimate the average error per gate and the most important information is not

necessarily the number itself, but the order of that number. Therefore, measuring

a number that is within 5 or 10% of the true value is still a very valid number.

Moreover, it is expected that more averaging over longer sequences would improve

the asymptotic convergence of the extracted depolarizing factor to the true value.

From the simulations above, a general observation can be made: it is harder

to depolarize unitary, coherent noise. This is expected since coherent noise is

“stronger” than decoherent noise. If we look at the action of different noises on the

Bloch sphere, we see that a depolarizing noise reduces the sphere in all dimensions.

Decoherent noise reduces the Bloch sphere in some dimensions while coherent noise
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Figure 5.4: Fidelity decay curve of a gate dependent unitary noise under Clifford

randomization. Surprisingly, in the case of coherent noise, the Clifford randomiza-

tion appears to have a similar convergence rate than a Haar unitary randomization.

only rotates the sphere. Said in another way, depolarizing and decoherent noise

reduce the purity of a state while coherent noise does not. Therefore, it is expected

to need more averaging to depolarize a coherent noise, since a larger amount of

purity needs to be lost by the averaging.

5.4 1 qubit experiment

5.4.1 The procedure

The first implementation of the protocol of Emerson et al. [EAZ05] was carried

out by Knill et al. on a single qubit consisting of a single trapped ion [KLR+08].

They reported an average error per gate of 1−F = 4.82± 0.17× 10−3. In order to

compare their system to ours, we decided to first implement the identical protocol.

Since the single qubit Clifford set only contains 48 gates, they decided to use the

entire set and not only the generators as we argued above. As mentioned in Sec. 4.3,

one qubit Clifford gate randomization is isomorphic to a Pauli twirl followed by a
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Figure 5.5: Fitted depolarizing value compared to the expected one for Clifford

generators randomization. The use of random Clifford generators over-estimate the

depolarizing factor by about 5 − 10% on three qubits. Such a biased number is

still significant since, in the worst case, it corresponds to an over-estimation of the

average error per gates.

simplectic twirl or vice-versa, i.e.

C1
∼= S1P1

'
{
e±i

π
4
Qe±i

π
2
P | Q ∈ {X, Y, Z}, P ∈ {1l, X, Y, Z}

}
. (5.41)

That is, each Clifford operation consists of a π pulse (or Pauli operation) followed

by a π/2 pulse ( simplectic operation). The simplectic operations are deemed

the “computationally relevant” operations that advance the computation while the

Pauli operations serve only to redefine the Pauli frame.

The circuit implemented is shown in Fig. 5.6. To perform an approximate

averaging, 4 sequences of 192 computational gates were chosen at random and

truncated at different lengths l = {2, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, 64, 80,

96, 128, 160, 192}. Random Pauli operations were then inserted between each

computational gate. Therefore, each dyad of a π/2 and π pulse was considered

a random gate. In their analysis, Knill et al. [KLR+08] did not really address
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Figure 5.6: Pulse sequence to benchmark the control on a single qubit.

the problem of cumulative noise and were assuming that the error on the Pauli

operations were vanishing. Being true or not, the simulations from above argue for

the validity of their experiment.

The state of the system was tracked through the computational gates. Since we

were using only the simplectic gates as computational gates, the final state of the

system could only be ±X, ±Y or ±Z. The π/2 recovery gate R was easily deter-

mined and chosen to return the state to either +Z or −Z with equal probability.

The state was then read out with a π/2 readout pulse and the fidelity measured by

comparing the integral of the signal to a reference spectrum as argued in Sec. 5.3.2.

For each truncation and sequence, the Pauli operations were randomized 8 times,

giving a number of sequences of ng = 32, and the average fidelity recorded.

5.4.2 The implementation

Chloroform was the molecule chosen to implement the experiment, as used in the

experiments in Chapter 4, but with only the natural abundance (∼ 1%) of 13C. The

measured T1 and T2 of the proton were 7 and 4.5s respectively, while the T ∗2 was

estimated to be 0.45s from the linewidth of the spectrum. As previously argued,

the pulses were implemented using 24µs Gaussian shaped pulse to avoid the phase

transient effects of the high Q cryo-probe.

Cryoprobes are well known to have bad RF-profiles [KSK+04], that is, the

molecules throughout the sample do not see the same RF-field, thus leading to

incoherent noise throughout the sample. For this reason, we decided to implement

each pulse using the BB1 family of composite pulses which are known to be robust

against RF-inhomogeneity [Wim94]. If the RF-field inhomogeneities cause a simple

pulse to implement a rotation with angle ε away from the intended angle, BB1

pulses will implement the same rotation with a reduced error of ε6. The pulses

consist of a compensating block followed by the desired pulse so that a rotation by

an angle θ about the x axis can be replaced by,

Rx (θ) = (180)φ1
(360)φ2

(180)φ1
Rx (θ) . (5.42)

φ1 and φ2 depend on the pulse flip angle according to,

φ1 =
1

3
φ2 = arccos

(
−θ
4π

)
. (5.43)
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Figure 5.7: The RF-profile of the TCI cryoprobe.

Such a composite pulse relies on the fact that phase modulation can dramatically

improve the exitation bandwidth of a pulse [TPC94] .

The RF-profile in our sample is shown in Fig. 5.7 which has been measured

through in a Rabi oscillation experiment. The results for the first round of simu-

lations can be seen on the semi-log graph in Fig. 5.8. As seen, the experimental

curve does not even follow an exponential trend (linear on a semi-log graph) and the

fidelity decays very quickly. To ensure that this misbehavior was not attributed to

experimental problems, such as spectrometer defects or amplifier drifting, we sim-

ulated the entire experiment over the distribution of RF-field in the sample. The

simulation curve in Fig. 5.8 demonstrates that the major source of non-exponential

decay came from the RF-inhomogeneity, even though the pulses were robust against

it. A detailed analysis of the situation will follow in the next section.

To overcome the effect of inhomogeneity in our probe, it is possible to design

pulse sequences that physically select only the spins seeing the appropriate RF

field to, say, 2% of the actual value and completely depolarize all the other spins

[SKBF85, Lev86, Cor93]. In our case, such a pulse has been developed using the

GRAPE algorithm so that all the spins seeing a RF field larger then 2% were rotated

to the xy plane, while the “good” spins were kept along the z axis. The rotated
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Figure 5.8: Semi-log graph of the first set of results of the 1 qubit benchmark-

ing experiment. The presence of RF-inhomogeneities across the sample yield a

superexponential decay due to badly behaving spins that depolarize quickly.

spins were then completely depolarized using a pulsed magnetic field gradient pulse.

To eliminate the errors arriving from the fluctuation of the signal, each exper-

iment was referenced to its own initial signal using stroboscopic observation and

signal processing. The procedure went as followed:

1. Tip the polarization along the x axis.

2. Open the receiver and record the signal for 10ms and close it.

3. Tip the spin back along the z axis.

4. Implement the pulse sequence.

5. Record the remaining signal.

The final FID was then post-processed. Since there is only a single spin and the

receiver acquired the magnetization in the rotating frame of the spin, the reference

signal was essentially flat. The remaining amount of signal was then Fourier trans-

formed and the integral of the spectrum was then divided by the reference signal.
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Figure 5.9: Semi-log graph of the final set of results of the 1 qubit benchmarking

experiment using RF-selection and the BB1 composite pulses. By initially depolar-

izing the bad spins (RF-selection), the remaining spins could be depolarized at the

same rate under the randomize sequences, hence yielding an exponential decay.

The fidelity was then obtained by dividing the obtained ratio by the average refer-

ence signal of all the experiments. Digital filtering was also manually implemented

to reduce the noise, but more details will be given in Sec. 5.5.2 and in Appendix D.

By applying the RF-selection pulse first and then running the experiment, we

obtained the results shown in Fig. 5.9, which fitted nicely to an exponential, yielding

a depolarizing factor of 2.6 ± 0.2 × 10−4 and hence an average error per gate of

1.3± 0.1× 10−4. The black line is the exponential fit and the red lines are the 68%

confidence fit. The error bars on the graph correspond to the 68% confidence level

of the statistical fluctuation of the measured fidelities. Due to the high sensitivity

of the cryo-probe, the fluctuation due to the sensitivity of the probe was less then

0.5%.

Two more experiments have been conducted using simple pulses and GRAPE

optimized pulses. The average error per computational gate was measured to be

2.1 ± 0.1 × 10−4 and 1.8 ± 0.1 × 10−4 respectively. The results obtained are one

order of magnitude smaller that the number obtained for a single trapped ion, hence
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demonstrating again the quality of control in liquid state NMR.

5.4.3 Discussion and analysis

Effects of RF-inhomogeneity

The unexpected results from the experiment without RF-selection have a very in-

tuitive explanation. Namely, the spins that see a field much different than the

intended one are basically seeing the intended gates, followed by a big calibration

error. As the sequence of pulses continues, these spins will depolarize very quickly

and after only a few gates, their state fidelity will approach 0, hence explaining the

fast initial decay. We would thus expect the decay curve to level-off after a large

number of gates as only the spins seeing a near-ideal field will still be polarized.

From a more quantitative point of view, if we apply a RF-field calibrated to

rotate the spins by an angle π/2 about the u-axis (u ∈ {x, y, z}), the density

matrix describing the state averaged across the sample in initial state ρ is:

ρ→
∫
dεg(ε)ΛPu(ε)

(
e−i

π
4
Puρei

π
4
Pu
)
, (5.44)

where ΛPu(ε) is the superoperator describing the error for the spins experienc-

ing a field ε away from the ideal field ( ΛPu(ε)(ρ) = e−iε
π
4
Puρeiε

π
4
Pu), g(ε) is the

RF-distribution and Pu the appropriate rotation matrix. This is an example of

incoherent noise discussed in Sec. 1.4. The error model arising from RF-field inho-

mogeneity is therefore an over- or under-rotation along the same axis as the actual

rotation. With this notation the superoperator describing a specific sequence of the

single qubit experiment is written as (ignoring the recovery gate and assuming the

sequence is self-inverting for simplicity):

Λ̂i(n) =

∫
dεg(ε)Λ̂Sin

(ε)ŜinΛ̂Pin
(ε)P̂in . . . Λ̂Si2

(ε)Ŝi2Λ̂Pi2
(ε)P̂i2Λ̂Si1

(ε)Ŝi1Λ̂Pi1
(ε)P̂i1

=

∫
dεg(ε)Λ̂in(ε)ŜinP̂in . . . Λ̂i2(ε)Ŝi2P̂i2Λ̂i1(ε)Ŝ1P̂i1 , (5.45)

where ΛSij
(ρ) = e−iε

π
4
Qij ρeiε

π
4
Qij , ΛPij

(ρ) = e−iε
π
2
Pij ρeiε

π
2
Pij . Λij(ε) is the cumula-

tive error due to sequentially applying faulty Sij and Pij . In the present case, the

strength of the noise can be parameterized by the tipping angle of Λij(ε) and it

can be easily verified that there are three relevant strengths, depending on whether

Sij and Pij are along parallel, anti-parallel or perpendicular axes, as enumerated in

Table 5.1.
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Strength Axis Probability
3π
2
ε Parallel 1/8

π
2
ε Anti-parallel 3/8

Γ = 2 cos−1[cos (π
4
ε) cos (π

2
ε)] Perpendicular 1/2

Table 5.1: Three possible strength parameters and their probability of occurrence

for the cumulative error of a π pulse followed by π/2 pulse due to RF inhomogeneity.

In terms of the depolarizing action, Eq. 5.45 is equivalent to

Λ̂i(n) =

∫
dεg(ε)P̂ †inŜ

†
in

Λ̂in(ε)ŜinP̂in . . . P̂
†
i2
Ŝ†i2Λ̂i2(ε)Ŝi2P̂i2P̂

†
i1
Ŝ†i1Λ̂i1(ε)Ŝi1P̂i1

=

∫
dεg(ε)

∏
j

P̂ †ij Ŝ
†
ij

Λ̂ij(ε)Ŝij P̂ij . (5.46)

The key observation to make is that each subset of S and P yielding a given

noise strength parameter is sufficient to depolarize that given noise, e.g.

1

|I 3π
2
ε|

∑
S,P∈I 3π

2 ε

P̂ †Ŝ†Λ̂ 3π
2
εŜP̂ = Λ̂ave, 3π

2
ε, (5.47)

where I 3π
2
ε = {SP | S and P are along a parallel axis} and Λ̂ave, 3π

2
ε is the depolar-

ized channel associated with the cumulative noise of strength 3π
2
ε with depolarizing

factor

p 3π
2
ε =

4− 4 cos2 (3π
4
ε)

3
, (5.48)

obtained from Eq. 5.19. Once the randomization is performed, each Λ̂ij in Eq. 5.46

will be randomized to a channel given by a weighted sum of the three different
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depolarizing channels, i.e.

Λ̂ave(n) =
1

|P|n|S|n
∑
i

∫
dεg(ε)

n∏
j=1

P̂ †ij Ŝ
†
ij

Λ̂ij(ε)Ŝij P̂ij

=

∫
dεg(ε)

n∏
j=1

1

|P||S|
∑
ij

P̂ †ij Ŝ
†
ij

Λ̂ij(ε)Ŝij P̂ij

=

∫
dεg(ε)

 1

|Iπ
2
ε|

∑
P̂ ,Ŝ∈Iπ

2 ε

P̂ †Ŝ†Λ̂εŜP̂ +
1

|I 3π
2
ε|

∑
P̂ ,Ŝ∈I 3π

2 ε

P̂ †Ŝ†Λ̂ 3π
2
εŜP̂

+
1

|IΓ|
∑

P̂ ,Ŝ∈IΓ

P̂ †Ŝ†Λ̂ΓŜP̂

n

=

∫
dεg(ε)

[
3

8
Λ̂ave,π

2
ε +

1

8
Λ̂ave, 3π

2
ε +

1

2
Λ̂ave,Γ

]n
.

=

∫
dεg(ε)Λ̂n

ave.

(5.49)

Therefore, the effective averaged channel action is given by

Λave(ρ) = p̄ρ+ (1− p̄)1l

2

p̄ =
3

8
pπ

2
ε +

1

8
p 3π

2
ε +

1

2
pΓ,

(5.50)

The gate fidelity obtained by numerically integrating Eq. 5.49 using a given

RF distribution is compared to an extensive numerical simulation of the gate se-

quences in Fig. 5.10, which clearly demonstrate the super-exponential behavior

of the decay. From this figure, we see that our calculation from above justifies

this super-exponential decay in the presence of incoherent noise arriving from RF-

inhomogeneity. The slight variation of the simulated curve to the analytical curve

is most likely due to incomplete averaging and a complete simulation would take

too many resources to be evaluated.

We should mentioned that such a noise model is not restricted to ensemble

effects. For example, it could apply to a system in which a given parameter, say a

laser power in an ion trap, for the time of a single experiment, but fluctuates from

one experiment to the other.

Analyzing the other sources of errors

Once RF-selection is implemented, one could hope that the source of miscalibration

is gone and only intrinsic decoherence in left in our system. From Sec. 2.7, we know

121



  0 100 200 300 400 500 600 700
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
  1

# of computational gates

F
id

e
li

ty

Simulation
Integration

Figure 5.10: Numerical simulation and analytical prediction of the RF-

inhomogeneity error model. RF-inhomogeneities will creates varying calibration

errors across the sample, hence yielding an average of the depolarizing factor over

the RF profile.
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that intrinsic decoherence in NMR is due to amplitude damping (T1) and dephasing

(T2). The state of a single spin ρ will relax according to

ρ =

(
ρ00 ρ01

ρ10 ρ11

)
→

(
(ρ00 − ρ̄00)e

− t
T1 + ρ̄00 ρ01e

− t
T2

ρ10e
− t
T2 (ρ11 − ρ̄11)e

− t
T1 + ρ̄11

)
.

(5.51)

where ρ̄00 and ρ̄11 are the equilibrium value of the population, so that ρ̄00 − ρ̄11 '
~ω
kBT

. Using the fact that ρ00 + ρ11 = 1, we can rewrite the above density matrix as(
ρ00[e

− t
T1 + ρ̄00(1− e−

t
T1 )] + ρ11ρ̄00(1− e−

t
T1 ) ρ01e

− t
T2

ρ10e
− t
T2 ρ11[e

− t
T1 + ρ̄11(1− e−

t
T1 )] + ρ00ρ̄11(1− e−

t
T1 )

)
(5.52)

By columnizing the above state in the Liouville space, we see that the superoperator

for intrinsic decoherence can be written as

Λ̂ =


e
− t
T1 + ρ̄00(1− e−

t
T1 ) 0 0 ρ̄00(1− e−

t
T1 )

0 e
− t
T2 0 0

0 0 e
− t
T2 0

ρ̄11(1− e−
t
T1 ) e

− t
T1 + ρ̄11(1− e−

t
T1 )

 . (5.53)

We can thus conclude that T1 and T2 noise alone will yield a depolarizing factor of

p = 1− e
− t
T1 + 2e

− t
T2

3
. (5.54)

For the experiment with composite pulses, each random gate composed of a compu-

tational gate and a Pauli gate were 516.8µs long, including pre- and post-delay, as

well as the delays in between the simple pulses used to build the composite pulse.

For this amount of time and using the relaxaton time measured in chloroform, the

expected depolarizing factor should have been 1×10−4, yielding an error per gate of

5× 10−5. If we use T ∗2 instead of the intrinsic T2, the average error per gate climbs

up to 4×10−4. On the other hand, this value corresponds to an over-estimate since

a sequence of random pulses is more likely to refocus the external field inhomogene-

ity [VK05]. Since the intrinsic relaxation in our system only accounts for half of

our measured errors per gate, we can conclude that our control is not decoherence

limited and we should seek control and hardware improvements.

Some possible reasons explaining this discrepancy could arise from the instabil-

ity of the amplifier. We know the BB1 pulses are robust for systematic miscalibra-

tion. But it is known that the amplifier power can fluctuate on a very short time
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scale, so that the mis-calibration error on a spin can vary on the time scale of the

duration of the pulse, hence inducing coherent error in the sample.

The fact that the main sources of error are still the control and hardware be-

come obvious when the expected depolarizing factor is calculated for the simple

pulse. Since the total duration of a random pulse was 95µs, the error per gate due

to decoherence only should have been 1 × 10−5, which is an order of magnitude

away from the measured value. Since the RF-inhomogeneity was mostly discarded

through RF-selection, it gives an extra argument that the source of error arises

from the pulse power fluctuations.

A last surprising observation is that the GRAPE pulses cannot match the result

of the much longer BB1 pulses, even though they were optimized for 100µs at a

fidelity over 99.999% over a range of RF inhomogenity of ±3%. As for the BB1,

GRAPE pulses are robust for systematic power miscalibration, but more sensitive to

fluctuations. But since GRAPE pulses are modulated both in phase and amplitude,

there are twice as many possibilities of amplifier fluctuations, hence explaining the

lower fidelity per gate.

5.5 3 qubit experiment

5.5.1 The procedure

For the single qubit experiment, we implemented the exact same protocol as Knill

et al. Since there are only 48 Clifford operations on a single qubit, we could easily

implement each of them. For three qubits, the set of Cliffords is much larger. More

over, our spectrometer only allows us to define at most 30 different pulse shapes (to

which we can add any global implementation phase). For this reason, we relied on

the arguments presented in Sec. 5.3.2 for benchmarking the control on three qubits.

Working with more qubits than before, more averaging is needed, so we decided

to go with ng = 48 different random sequences of gates drawn from the set of all

the single qubit Hadamard and PHP † and all the nearest neighbor CNOTs. The

reason to use the PHP † gates instead of phase gates will become apparent below.

The procedure to implement the protocol went according to the following steps:

1. 48 different sequences of 120 gates were generated by randomly choosing any

single qubit gates with a probability of 2/3 and any CNOTs with a probability

of 1/3. The spectrometer limitation prevented us from going over 120 gates

for reasons mentioned below.
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2. Each sequence was then truncated to l = {10, 20, 40 ,60, 80, 100, 120} and the

state-to-state evolution of the initial Z1l1l state under each truncated sequence

was efficiently tracked down using the simplectic notation [Got97].

3. The recovery gate was calculated for each sequence to undo the entire evo-

lution. The gate was automatically calculated using a home-made state-to-

state evolution algorithm. To design the recovery step, Hadamard or PHP †

gates were applied to each qubit such that their individual state was ei-

ther 1l or along the z axis, i.e. using the property that HXH = Z and

(PHP †)Y (P †HP ) = Z. This state was then transformed into the final Z1l1l

by finding the minimal amount of CNOTs needed to transfer all the polar-

ization. The constructed algorithm is efficient and general for any number of

qubits and any architecture.

4. The truncated sequences were then parallelized using a simple iterative algo-

rithm checking whether a given gate can be compressed with the next gate.

Such a parallelization will allow a fair comparison between a 3 and 50 qubit

computer. More will be discussed in Sec. 5.6

5. The sequence were implemented and the final amount of X1l1l signal was

compared to the original signal. By plotting the average signal as a function

of the number of gates in the sequence, the average fidelity for one and two

qubit is then extracted by fitting an exponential to the fidelity decay curve.

5.5.2 The implementation

For the processor, we chose a selectively labeled 13C - tris(trimethylsilyl)silane -

acetylene (TMMS) dissolved in deuterated chloroform [HGW+07]. The molecule’s

structure and its Hamiltonian properties can be found in Fig. 5.11. The experiment

was again performed on a 16.4T Bruker Avance spectrometer with a TCI cryoprobe.

The control was achieved through GRAPE optimized pulses. We optimized

all the generating pulses, as well as all their combinations, over a range of RF

power of ±3% from the ideal power, to a fidelity of 99.95%. To achieve this degree

of precision while keeping the average power relatively low to avoid over-heating,

pulses performing single spin gates were 1.2ms long, pulses having a CNOT between

H and C1 (and any gate on C2) were 2.4ms and pulses with a CNOT between C1

and C2 were 4ms long.

For each experiment, the spectrometer could only handle 30 different shape

files and can only receive no more then 1 MB of data. Since each pulse needed

two shape files (one for the proton channel and one for the carbon channel), we

could not independently define the 39 pulses from our generating set and their
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Figure 5.11: Structure and chemical properties of selectively labeled 13C

tris(trimethylsilyl)silane-acetylene. The diagonal give the chemical shift with re-

spect to the spectrometer base frequency of the isotope and the off-diagonals gives

the coupling constant in Hz.

possible combinations. Pre-processing was thus performed to concatenate all the

pulse shapes of a given sequence into one pulse file for the proton and one for the

carbon. To limit the file size of a pulse, while keeping them smooth, a discretization

of 2us per point was chosen. With this procedure, a maximum of 120 consecutive

pulses could be implemented before the spectrometer was overloaded.

As mentioned in Sec. 4.6.3, the pulse implemented at the probe can vary from

the desired shape. Even though the GRAPE pulses were designed to be slowly

varying and thus limit the effect of phase transients, non-linearity in the pulse

generation and amplifier heating can still cause distortion from the ideal shape.

A simple feedback loop was performed by detecting the signal at the probe using

a pick-up coil and then correcting those discrepancies. Only single pulse shapes

were optimized to avoid re-optimizing the concatenated file every time a new set

of experiments was run. By analyzing the shape of the concatenated pulses, we

observed a systematic inverse droop in the rf. power over the time scale of tens of

ms. Since it is a systematic change of power, we expect the RF-robustness of our

pulses to correct for this droop.

The entire experiment was run several times, each time using a different set of

48 sequences. The outcome was highly reproducible and we measured the average

error per gate in our three qubit system to be 4.7± 0.3× 10−3. The decay curve of

a typical run of the experiment is shown in Fig. 5.12 with the exponential fit. Once

again, the error bars are due mostly to statistical fluctuations of an incomplete

averaging and hardware instabilities.
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Figure 5.12: Fidelity decay curve for the control benchmarking of three spin control

using randomly chosen Clifford generators. The error bars are due to the statis-

tical fluctuation due to an incomplete randomization of the noise and hardware

instabilities.
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We mentioned in the one qubit experiment that, to avoid the signal fluctuations

due to hardware instabilities, the signal was referenced to itself using stroboscopic

observation. The fluctuation of the thermal state signal can be seen in Fig. 5.13,

where 500 spectra were sequentially recorded over a period of more than 5 hours.

The signals are normalized to the average amount of signal. One can clearly see

both a short time and long time fluctuation of ±8% hence encouraging us to develop

a readout technique to diminish this effect. Such variations in the amount of signal

is most likely due to the fluctuations of the resonance frequency of our cryoprobe.

Since it has a very sharp resonance frequency, tiny variations in the tuning will

greatly affect the response of the probe, and hence the amount of signal recorded.
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Figure 5.13: Fluctuations of the thermal equilibrium state signal as a function of

time. This variation is most likely due to the fluctuation in the resonance frequency

of the high Q cryoprobe.

In the single spin case, the stroboscopic observation and referencing was a fairly

simple task since there is no evolution during the reference signal acquisition and

the signal is essentially flat. Applying the same procedure to multiple spins is

slightly more involved since the state of the spins do evolve during the stroboscopic

observation of the reference signal. Details of the signal processing methods used

to treat the three spins stroboscopic observation are available in Appendix D.
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By normalizing each experiment with respect to the initial signal, we are remov-

ing the signal fluctuation (assuming the tuning does not change in the course of a

single experiment) and are now expecting results with smaller error bars. The re-

sults are shown in Fig. 5.14 and they fit an exponential decay of 4.6±0.2×10−3. As

expected, the error bars on each averaged fidelity are much smaller as the fluctua-

tions are now mostly due to the statistical fluctuations arising from an approximate

averaging.
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Figure 5.14: Fidelity decay curve for the control benchmarking of three spin control

using stroboscopic observation. In this manner, is was possible to normalize most

of the hardware instabilities, so that the error bars are now mostly due to statistical

fluctuations.

On the other hand, we see that the signal now extrapolates to a fidelity of about

1.1 for no implemented gate. For yet unexplained reasons, the FID part of the

experiments implementing 10 or 20 gates had more signal than the reference FID.

We were able to observe a return of the solvent and other unidentified chemicals

signal, but those should have been removed by the applied digital filtering. We

unsuccessfully tried to apply different and/or stronger filters, such as a Butterworth

filter and a custom design low pass filter. The increase of signal still remains a

mystery.
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5.5.3 Discussion and analysis

As in the single qubit case, some lower bounds on the value of p were expected due

to intrinsic decoherence. Since our control was implemented using GRAPE pulses

that were optimized to 99.95%, we knew from Eq. 5.40 that this corresponded to

a “rotational error” of 0.0447 rad, hence yielding an error per gate of 4.4 × 10−4,

which is an order of magnitude smaller. Therefore, the control errors cannot be

attributed solely to the search algorithm that designed our pulses.

To estimate the error in implementation due to intrinsic T1 and T2 relaxation, we

can apply the same procedure as in the one qubit case. If we make the assumption

that the noise is independent and uncorrelated, we can write the relaxation on the

three qubits as

ρ → ΛC2 ◦ ΛC1 ◦ ΛH(ρ)

⇒ |ρ〉〉 → Λ̂C2 · Λ̂C1 · Λ̂H |ρ〉〉. (5.55)

Since each superoperator only acts on a specific spin, we can thus rewrite, up to

permutations in the representation,

Λ̂C2 ◦ Λ̂C1 ◦ Λ̂H = Λ̂C2 ⊗ Λ̂C1 ⊗ Λ̂H

⇒ Tr(Λ̂) = Tr(Λ̂C2)Tr(Λ̂C1)Tr(Λ̂H). (5.56)

From the probability distribution for choosing our random gates and after the

compression algorithm, we estimated that the average time to implement a gate

was around 2.25ms, which would yield an error per gate of 1.75 × 10−3, hence

contributing to about half the signal loss, just as in the case of the single qubit.

Once again, we conclude that the control over our system is not decoherence

limited and there are still improvements to be made, either on the stability of

the hardware, or by finding ways to design more robust and spectrometer friendly

control pulses.

5.6 Conclusion and outlook

The goal of this work was to develop a protocol to efficiently characterize the quality

of the control one has over their system. The ultimate goal is to provide a simple

experiment that could allow comparison between different types of QIP devices. A

first step toward this direction has been put forward by Knill et al. to benchmark

a single qubit processor, while leaving the door open for generalization.

The multi-qubit protocol developed and implemented here should allow a gen-

eralization of the previous protocol. By limiting the random gates to single and
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double qubit gates, this allows us to quote errors per up to two qubit gates. More-

over, with parallelization, it allows a fair comparison between a 5 and a 50 qubit

processor. As a matter of fact, gates are expected to be more faulty for bigger

architectures due to more leakage and more degrees of freedom, but they are also

expected to be able to perform more gates during a single time step.

Finally, more detailed information about the noise could be obtained by con-

catenating the present protocol with the twirling protocol presented in Sec. 4. For

example, to benchmark the single qubit control on a multi-qubit processor, one

could apply a train of Cliffords on a given qubit, while performing a C̃⊗n−1 twirling

before and after the train on the remaining qubit. The sequence of Cliffords will

dynamically decouple the qubit from the rest of the processor, hence preventing any

non-Markovian effects. By recording the average gate fidelity on that qubit, this

should provide us an estimate for the average gate fidelity on this qubit. The in-

formation arising from twirling the remaining qubits will give us information about

the “wait step” error. This procedure can then be applied to all single qubits to

obtain the worst single gate average error. We can also apply these same steps for

two qubit gates on any pair of qubits. Already having an estimate for the error

per single qubit gate, it should be possible to extract the error per two qubit gates.

Although such a protocol might necessitate more experiments, it is still efficient in

the number of qubits. We are currently investigating such a protocol.
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Appendix A

The NMR Hamiltonians

A.1 Zeeman Hamiltonian

The spin of a nucleus can be regarded as a quantum mechanical dipolar moment

~u = γ(X, Y, Z), whereX, Y and Z are the Pauli matrices and γ is the gyromagnetic

ratio, which is an intrinsic property of the nuclear isotope. Placed in a magnetic

field ~B, the Hamiltonian associated with the dipolar moment, known as the Zeeman

Hamiltonian, is

HZ = −~u · ~B
= −γ

2
(BxX +ByY +BzZ) (A.1)

The field ~B is the local field at the nucleus and is comprised of two parts: the

external applied field along z, i.e. ~Bext = B0ẑ, and the magnetic field created by

the movement of the surrounding electrons participating in the chemical bonds, ~Be.

To a good approximation,

~Be =
↔
δ · ~Bext

= δxzB0x̂+ δyzB0ŷ + δzzB0ẑ, (A.2)

where
↔
δ is known as the chemical shift tensor and is dependent on the orientation

of the molecule with respect to the external field. δij can be understood as the

induced magnetic field at the nuclei in the i direction when a field in the j direction

is applied. In isotropic liquids, rapid tumbling of the molecule creates a motional

averaging on the induced fields so that

~Be ' δB0ẑ, (A.3)

where δ = 1
3
(δxx + δyy + δzz) is the isotropic part of the chemical shift tensor.
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The Zeeman interaction is thus given by

HZ = −γ
2

(1 + δ)B0Z

=
ωL

2
Z (A.4)

Since the Hamiltonian is the generator of rotation around the z axis, ωL is thus

the angular frequency of the spin and defines the Larmor frequency ωL = 2πνL.

For magnetic fields on the order of 10 T, 1
2π
γB0 is on the order of MHz and the

chemical shift 1
2π
δB0 is on the order of Hz to kHz.

A.2 Dipolar Hamiltonian

Since a spin i possess a dipolar moment, it will also generate a magnetic field in its

surrounding. Another spin j at distance rij will thus experience a magnetic field

created by both the external field and the presence of spin i. The direction and

strength of a magnetic field of a magnetic dipole depends on the orientation of the

moment. Therefore, the effective field seen by spin j will depend on the orientation

of spin i, hence creating a coupling between the two spins. This interaction is

called the direct spin-spin coupling, or dipolar coupling. In high ~B field, the dipolar

Hamiltonian takes the form

HD =
u0γiγj~
16πr3

ij

(1− 3 cos2 θij)(2ZiZj −XiXj − YiYj)

=
Dij

2
(1− 3 cos2 θij)(2ZiZj −XiXj − YiYj), (A.5)

where u0 is the vacuum permeability and θij is the angle between ~rij and the external

applied magnetic field axis. Dij is called the dipolar constant and is typically of

the order of kHz of directly bounded nuclei. In the liquid state, the molecules

move around each other and also rotate on a time scale that is much shorter then

the coupling timescale (ns vs. ms). There is thus a motional averaging of the

Hamiltonian, i.e. on the NMR time scale, the spins will experience the average of

the Hamiltonian over all orientations of the molecule, i.e. the angular dependence

of the Hamiltonian will average to∫
dω(1− 3 cos2 θ) =

∫ 2π

0

∫ π

0

dφd(cos θ)(1− 3 cos2 θij)

= 4π − 2π cos θ|π0
= 0 (A.6)

Since the angular average of the dipolar Hamiltonian vanishes, there is no co-

herent dipolar coupling effect in liquid state NMR. Sec. 3.2 demonstrates how the

dipolar coupling can induce decoherence.
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A.3 J-coupling Hamiltonian

Even though the direct coupling has no coherent intramolecular and intermolecular

effect in NMR, spins of the same molecule will still interact with each other. The

bonding electrons in a molecule mediate interactions between nuclear spins by car-

rying information from one spin to another. The J-coupling Hamiltonian between

spin i and j takes the form

HJ =
π

2
J(XiXj + YiYj + ZiZj). (A.7)

J is called the J-coupling constant and is generally less then 300 Hz for 1H and 13C.

If the two spins have a large difference in Larmor frequency, the above Hamiltonian

can be simplified using a secular approximation. By considering the Zeeman and

the J-coupling Hamiltonian, we can explicitly write

H = HZ +HJ

=


ωL1
2

+
ωL2
2

+ π
2
J 0 0 0

0
ωL1
2
− ωL2

2
− π

2
J πJ 0

0 πJ −ωL1
2

+
ωL2
2
− π

2
J 0

0 0 0
ωL1
2

+
ωL2
2
− π

2
J


(A.8)

From the above explicit form of the Hamiltonian, we see that the state | ↑↑〉 and

| ↓↓〉 are still energy eigenstates, but the two remaining energy eigenstates will be

a superposition of | ↑↓〉 and | ↓↑〉. If the condition |ωLi − ωLj | � πJij holds, this

mixing will be minimal, e.g.

H| ↑↓〉 =

(
ωL1
2
− ωL2

2
− π

2
J

)
| ↑↓〉+ πJ | ↓↑〉

'
(
ωL1
2
− ωL2

2
− π

2
J

)
| ↑↓〉 (A.9)

Therefore assuming |νLi − νLj | � Jij/2, which happen for either two different

isotopes, or two homonuclear spins with large difference in chemical shift, the J-

coupling Hamiltonian can be approximated by

Hj '
π

2
JZiZj. (A.10)

Such an approximation is known as the secular approximation and the reduced

Hamiltonian is known as the weak coupling Hamiltonian.
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A.4 Electric Quadrupolar Hamiltonian

A final interaction to consider is the energy shift associated with the interaction of

the nuclei with the electric field gradient generated by the bonding electron cloud.

The electric field gradient (EFG) is a second rank tensor
↔
V , where Vij correspond

the to the gradient if the i direction of the electric field component in the j direction.

The principal axis system (PAS) is the set of axes in which the
↔
V is diagonal. In

high field, a secular aproximation can be performed such that the quadrupolar

Hamiltonian is given by

HQ ' 3eQ

4S(2S − 1)
[Vzz(3S

2
z − S(S + 1)1l)], (A.11)

where S if the spin of the nucleus, Sz is the generalized-spin z matrix, i.e. a diagonal

matrix with value {S, S − 1, ...,−S}. Q is the electric quadupole moment. From

this Hamiltonian, we see that for S = 1/2, S2
z = 1

4
1l = S21l, therefore

HQ =
3eQVzz

4S
, (A.12)

which is constant, and thus providing only a constant shift in all energy state,

Therefore, in high fields, spin-1/2 nuclei do not have a quadrupolar interaction.

138



Appendix B

Lindblad equation and general

noise in NMR

B.1 Master Equation in Lindblad form

The Lindblad equation is the general form in which every master equation de-

scribing a Markovian dynamical map can be written [Lin76]. The effect of the

environment on a quantum system is said to be Markovian if it is assumed that

the environment has no correlation time, i.e. no memory. If the environment has

residual effect on the system described by Λτ for a time τ , then a Markovian map

will satisfy

Λτ1+τ2 = Λτ2 ◦ Λτ1 . (B.1)

Therefore, if the environment is Markovian, then the reduced dynamics on the

system can be written as

∂ρ

∂t
= −i[H, ρ] +

∑
k

(
LkρL

†
k −

1

2
{L†kLk, ρ}

)
= −i[H, ρ] +D(ρ), (B.2)

where [�,�] denotes the commutator and {�,�} the anti-commutator. Lk’s are

called the Lindblad operators and D the dissipator. The solved dynamics can be

obtained by solving B.2 directly or is given in the Liouville representation (Sec.

1.2.3) by the superoperator [Hav03]

Λ̂ = e−iĤ+D̂, (B.3)

where

Ĥ = H∗ ⊗ 1l− 1l⊗H (B.4)

D̂ = −
∑
k

L∗k ⊗ Lk −
1

2
1l⊗ L†kLk −

1

2
LTkL

∗
k ⊗ 1l (B.5)
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B.2 Lindblad operator for dephasing

In Sec. 2.7.1, we saw that the action of dephasing on a given state ρ was

Λd(ρ) = (1− p)ρ+ pZρZ, (B.6)

where p = 1
2
(1 − e−γ2t). If we let Λd act for a small interval ∆t, then p ' γ2∆

2
so

that we can write the above equation as

Λd(ρ) = ρ− γ2∆t

2
ρ+

γ2∆t

2
ZρZ

= ρ+
γ2∆t

2

(
ZρZ − 1

2
{ZZ, ρ}

)
, (B.7)

since Z2 = 1l. Therefore, the time derivative of the density matrix is given by

∂ρ

∂t
' Λd(ρ)− ρ

∆t

=
γ2

2

(
ZρZ − 1

2
{ZZ, ρ}

)
. (B.8)

We conclude that
√

γ2

2
Z is the Lindblad operator for dephasing.

B.3 Lindblad operator for amplitude damping

From Sec. 2.7.2, the T1 process by itself can be described using the Kraus operators

A0 =
√
p

(
1 0

0
√

1− η

)
A1 =

√
p

(
0
√
η

0 0

)
A2 =

√
1− p

(√
1− η 0

0 1

)
A3 =

√
1− p

(
0 0
√
η 0

)
, (B.9)

where p ' 1
2

(
1− ω

2kBT

)
and η = 1 − e−γ1t. Using the notation I+ = |0〉〈1| and

I− = |1〉〈0| and expanding the operators for short time ∆t, we have

A0 '
√
p1l−√pγ1∆t

2
Î−I+ A1 '

√
pγ1∆tI+

A2 '
√

1− p1l−
√

1− pγ1∆t

2
I+I− A3 '

√
1− pγ1∆tI−. (B.10)

By expanding the transformation of a general state to the first order in ∆t, we find

Λa(ρ) = p

(
ρ− γ1∆t

2
I−I+ρ− γ1∆t

2
ρI+I− + γ1∆tI+ρI−

)
+(1− p)

(
ρ− γ1∆t

2
I+I−ρ− γ1∆t

2
ρI−I+ + γ1∆tI−ρI+

)
, (B.11)
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so that the time derivative of the density matrix can be written as

∂ρ

∂t
' pγ1

(
I+ρI− − 1

2
{I−I+, ρ}

)
+(1− p)γ1

(
I−ρI+ − 1

2
{I+I−, ρ}

)
. (B.12)

The Lindblad operators for amplitude damping are therefore given by
√
pγ1I

+

and
√

(1− p)γ1I
−.

B.4 Solving for the general noise

Since dephasing and amplitude damping are two different processes, we can now

combine both their Lindblad operators into the same master equation. Therefore,

a state ρ of an NMR system, under the influence of dephasing and longitudinal

relaxation, will undergo a dynamic governed by

∂ρ

∂t
=

γ2

2

(
ZρZ − 1

2
{ZZ, ρ}

)
+ pγ1

(
I+ρI− − 1

2
{I−I+, ρ}

)
+(1− p)γ1

(
I−ρI+ − 1

2
{I+I−, ρ}

)
(B.13)

If we explicitly evaluate the above superoperator on an arbitrary single qubit

state, we find that(
˙ρ00 ˙ρ01

˙ρ10 ˙ρ11

)
=

(
−(1− p)γ1ρ00 + pγ1ρ11 −(γ1

2
+ γ2)ρ01

−(γ1

2
+ γ2)ρ10 −pγ1ρ11 + (1− p)γ1ρ00.

)
(B.14)

The two off diagonal terms are easily solved to give

ρ01 = e−(
γ1
2

+γ2)tρ01 (B.15)

ρ10 = e−(
γ1
2

+γ2)tρ10. (B.16)

For the diagonal, we can use the fact that ρ00 + ρ11 = 1. Also, by multiplying the

equation by eγ1t, we have

eγ1t
∂ρ00(t)

∂t
+ eγ1tρ00 = eγ1tp

∂

∂t

(
eγ1tρ00(t)

)
= eγ1tp

eγ1tρ00(t) = eγ1tp+ C

ρ00(t) = p+ Ce−γ1t. (B.17)
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At t = 0, ρ00(0) = ρ00, so that C = ρ00. Moreover, ρ00(t→∞) ≡ ρ̄00, which implies

p = ρ̄00. Therefore,

ρ00(t) = ρ̄00 + (ρ00 − ρ̄00)e−γ1t. (B.18)

The same procedure applies in the solution for the evolution of ρ11. The final

density matrix of the system under the full decoherence in NMR is thus given by

Λ(ρ) =

(
(ρ00 − ρ̄00)e−γ1t + ρ̄00 ρ01e

−(
γ1
2

+γ2)t

ρ10e
−(

γ1
2

+γ2)t (ρ11 − ρ̄11)e−γ1t + ρ̄11

)
. (B.19)
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Appendix C

SPICE simulation of RLC circuit

C.1 Overview of SPICE

The SPICE simulator is dedicated to the simulation of lumped circuit elements in

direct (DC) and alternative current (AC). In this appendix, we will describe how

SPICE was used to simulate strongly modulated pulses (SMP) [FPB+02].

SMPs are known to have sharp modulation in phase and iamplitude. Even

though they were simulated with a fidelity above 99.9%, the experimental imple-

mentation of the pulses yielded a loss in fidelity. The goal of the simulations was to

analyze the phase transients due to the finite response time of the probe’s resonant

circuit.

SPICE is a command line simulator that takes an input file describing the circuit

and commands concerning the type of simulation and measurements desired. The

circuit is described by giving the characteristics of the lumped elements and how

they are connected together. For example, the circuit in Fig. C.1 is supposed to

be resonant at 75MHz (carbon Larmor frequency in a 7T magnet) with a quality

factor of Q ∼ 40. It can be written in circuit file as

Vacin 10 0 AC 1 0

Rvacin5 10 1 50

Cmatch 1 2 6.49p

Rmatch 1 2 100MEG

Ctune 2 0 38.66p

Rtune 2 0 100MEG

Lsample 2 3 0.1u

Rsample 3 0 1

.ac lin 10K 50MEG 105MEG
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Figure C.1: RLC circuit resonant at 75 MHz with Q ∼ 40

.print ac v(1) I(Vacin)

.end

This circuit file indicates that the circuit has an AC voltage source with ampli-

tude 1V and phase 0. The large resistors in parallel with the capacitors are there

because SPICE require the capacitors to “leak”. The two last commands of the

file tell the simulator to perform a frequency sweep between 50 MHz and 105 MHz

by increments of 10 kHz, and to print the voltage at node 1 and the current out

of the source. From this knowledge, we can use Eq. 4.59 to verify the tuning and

matching conditions of the circuit and also extract Q.

C.2 Building an arbitrary RF pulse source

During the AC simulation, SPICE only records the amplitude of the voltage and

current. To obtain the voltage or current as a function of time, both the source

and the type of simulation must be changed. For example

Vsin 10 0 sin(0 1 75MEG)

Rvacin5 10 1 50

Cmatch 1 2 6.49p

Rmatch 1 2 100MEG
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Ctune 2 0 38.66p

Rtune 2 0 100MEG

Lsample 2 3 0.1u

Rsample 3 0 1

.tran 20ps 4us 0 20ps

.print tran I(Lsample)

.end

will simulate a sinusoidal source of amplitude 1 with 0 DC component at 75MHz.

It will record the current through the inductor every 20ps for 0 ≤ t ≤ 4µs. In order

to create shaped pulses, a little imagination is needed. SPICE allows you to add,

subtract, multiply or divide different voltage sources. Using this freedom, and the

other types of voltage sources available, one can create virtually any shaped voltage

possible.

In a SMP, there are only time intervals of constant amplitude and of linearly

varying phase. Therefore, we must create the source, namely

V (t) = A(t) sin(ωt+ φ(t)) (C.1)

for A(t) and φ(t) being piece-wise linear. SPICE has a function to create a piece-

wise linear source

V na nb PWL(T1 V2 T2 V2 . . . Tn Vn)

will create a source between node a and node b that has voltage V1 at time T1,

voltage V2 at time T2, and so on. For example, is we define the source part of the

circuit file as

Vamp 100 0 PWL(0 0 4u 0 4u 1 8u 1 8u 0 12u 0)

Vsin 200 0 sin(0 1 75MEG)

Bin 10 0 V(100)*V(200)

Vamp and Vsin are grounded and attached to a node that does not influence the

resonant circuit. Vamp corresponds to a 12us DC pulse with square amplitude

between 4us and 8us. Bin is a non-linearly dependent source controlled by the

voltage of Vamp and Vsin. Therefore, Bin corresponds to a 4us long square pulse

at 75Mhz and constant phase.

If the phase is piece-wise linear too, we cannot use the above trick as there is

no way of controlling the phase. Instead, we can do this:
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Figure C.2: The voltage generated at the source of the resonant circuit compared

to the ideal pulse shape. The figure on the left shows the amplitude profile and the

phase modulation is shown on the right.

Vamp 100 0 PWL(0 0 4u 0 4u 1 8u 1 8u 0 12u 0)

Vphase 200 0 PWL(0 0 4u 0 8u 2pi 8u 0 )

Vtime 300 0 PWL(0 0 12u 12u)

Bin 10 0 V(100)*sin(2pi*75e+06*V(300)+V(200))

Vphase linearly varies from 0 to 2π over the course of the pulse (between 4µs and

8µs). Vtime is just a trick to create a time variable so we can use the non-linear

source to create the actual desired source. With this method, we have been able to

create any shape possible.

By recording the voltage at the sample (V(3)), it is possible to obtain the

phase and the amplitude by demodulating the voltage using the MATLAB function

“demod” with the “qad” option. Upon previously simulating the transfer function

at the sample on resonance, i.e. V (100)/V (1) for a simple square pulse, it was

possible to compare the input voltage with the sample voltage. Since the voltage

across an inductor is proportional to the magnetic field inside it, the recorded

voltage was an exact representation of the RF pulse at the sample.

C.3 Simulating the response of a SMP

The shape file of a strongly modulated pulse performing a controlled-controlled-

NOT on the three carbons of malonic acid [BMR+06] compared to the voltage at

Bin, i.e. V(10) from the SPICE simulation, is shown in Fig. C.2, and the voltage
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Figure C.3: The voltage at the sample from the excitation of a SMP pulse. The

amplitude and phase modulation are shown on the left and right respectively. The

phase transients introduce error in both the amplitude and the phase.

measured at the sample in shown in Fig. C.3. As shown, the finite-time response

of the probe causes the sharp transitions of the pulse to be more noisy due to

phase transient effects. Moreover, there is a clear tendency of the low power to be

overshot and the high power undershot. For this reason, it is important to create

the pulses so they are robust to power variation (RF inhomogeneity).

Since the arrival of the GRAPE algorithm [KRK+05], the search in the pa-

rameter space of the pulse has been accelerated significantly, so that the period

of constant amplitude and phase can be reduced to one discretization point. By

implementing a penalty function forcing the algorithm to smoothly vary the shape

of the amplitude and phase, it is now possible to find smooth pulses which suffer

less from the finite response time of the circuit.
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Appendix D

Signal processing of an FID

D.1 A new readout scheme

The idea of stroboscopic reading is to normalize the fluctuations of the measured

signal over time. Before implementing a given pulse sequence, the readout spin is

rotated in the xy plane and its FID is recorded for a given time (then refocused).

After the implementation, the recorded FID can be normalized by the amount of

initial signal. Typical pulse sequences last on the order of 10’s to 100’s of ms,

compared to severals second between each experiments. Therefore, the large fluc-

tuation in the signal will be normalized and only the rapid and small fluctuations

will remain.

Using the above procedure, we now have all the tools necessary to acquire and

analyze a stroboscopically acquired FID of the TMMS molecule. The implementa-

tion of a pulse sequence now goes as follows:

1. Remove the unwanted signal outside the desired frequency window by using

pulses and gradients.

2. Flip the hydrogen in the xy plane, and open the receiver for 50ms and sample

every 10µs (bandwidth of ±5 kHz).

3. Apply a π pulse on the hydrogen and wait another 50ms to refocus the free

evolution and refocus the chemical shift dispersion.

4. Perform the pulse sequence.

5. Record the remainder of the FID.

Typical advanced acquisition software in commercially available spectrometers

have built-in digital filters so that the processed spectrum from an acquired FID
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does not contain any artifacts from the signal outside the desired windows of fre-

quencies. Unfortunately, such filtering leaves transient effects at the beginning of

the FID as seen in Fig. D.1, which can then corrupt our initial referencing sig-

nal. To overcome this problem, we decided to bypass the spectrometer filtering by

performing an analog acquisition followed by our own signal processing.
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Figure D.1: The transient effects on an FID due to digital filtering.

The Nyquist-Shannon sampling theorem stipulates that in order to perfectly

recover a signal that contains no frequencies higher than ω, the signal needs to be

sampled at a rate of 2ω [Sha49]. On the other hand, if the signal contains frequencies

higher then ω, the fast Fourier transform of the sampled signal (spectrum in the

interval [−ω, ω]) will contain peaks at the mirror frequencies. For example, if the

original signal contains a component at 1.1ω, then the discretized spectrum will

show a peak at 0.9ω. Artifacts due to discretizing a continuous signal are known

as aliasing and the particular problem explained here is known as folding [Lat98].

Due to the possible presence of signal from the solvent or water in the sample, we

needed to perform the analog acquisition using a high sampling frequency (large

spectrum window) so that we do not suffer from aliasing. Ultimately, we wanted to

compare the amount of signal in the reference part of the FID to that of the output

state FID. Therefore, we needed to eliminate all possible contribution to the FID
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from other sources of signal.
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Figure D.2: Thermal equilibrium state (T = 293K) wide spectrum of the TMMS

sample in deuterated chloroform (CDCl3). The inset shows the zoomed region of

the signal of TMMS

D.2 Processing a TMMS FID

By Fourier transforming the thermal equilibrium state (T = 293K) FID obtained

from the hydrogen and acquiring at a high rate, the spectrum now contained an

enormous amount of signal due to the presence of the chloroform and other uniden-

tified chemicals most likely arising from the reaction of the TMMS with the solvent

and the air present in the test-tube (see Fig.D.2). Such signals can be partially

eliminated by performing π/2 pulses at those frequencies and then crushing the

signal using gradient pulses (see the inset of Fig. D.3). Since the remaining signal

is of the same strength as the TMMS, we can now use smooth digital filtering to

get rid of it, which can be done using MATLAB’s built-in infinite-impulse response

(IIR) notch filters at frequencies 1461.6, 1565.5 and -3474.38 Hz (with respect to

the TMMS Larmor frequency). After applying these filters to the FID, the edited

spectrum can be seen in Fig. D.3.
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Figure D.3: Applying IIR notch digital filter to the acquired FID. The TMMS

part of the processed spectrum is unaffected, while the unwanted signal have been

filtered.
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By resampling the signal at a different rate, we narrowed the frequency win-

dows to that of importance. The built-in decimation function in MATLAB also

implements a low-pass filter, which will filter all the other signal left outside the

windows. Decimation is also known to increase the signal-to-noise ratio.

Unlike the single qubit case, the reference signal is no longer a constant, but is

a periodic function with virtually no decay. We will thus have to “fit” a function

to the reference part of the FID. Although we could fit a theoretical FID from our

knowledge of the hamiltonian, we decided to take reference spectra (same procedure,

but the pulse sequence only contained a π/2 readout pulse) every 50 experiments

and use the first portion of these spectra as a basis of comparison. Once all the

experiments were run, the analysis went as follows:

1. For each reference FID, separate the first 5000 points (50ms) and the rest of

the FID.

2. For each obtained pair of FIDs, apply the notch filters and the decimation.

3. Average all the FIDs of the reference spectra. This will give us a reference

5000 points FID and the Fourier transform of the remaining points gives us

a reference spectrum.

4. For each pulse sequence output FID, apply the above separation, filtering and

decimation.

5. For each pulse sequence, find the appropriate multiplicative factor that max-

imizes the overlap of the first part of the FID to the reference FID. Multiply

the remaining part of the outcome FID by this factor, Fourier transform it

and appropriately rephase it.

6. Integrate the obtained spectrum and divide the amount of signal by the in-

tegral of the reference spectrum

7. Average over all the 48 experiments for each sequence truncation.

8. Fit an exponential decay.

The reference FID fit perfectly to the first part of the outcome FID from the

random gate sequences, as seen in Fig. D.4. A final point to mentioned is that, after

applying the fast Fourier transform to the second part of the FID, the spectrum

obtained needed to be rephased. It is well known from signal processing that

every time a point at the beginning of the FID is ignored, the spectrum acquires

a phase of 2π linearly distributed across it. Since we had an FID in two parts,

we could only find the linear rephasing parameter by trial and error (although we
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attempted to build automated phasing algorithm). If S0 is the spectrum obtained

by transforming the FID, then the linearly rephased spectrum S is given by

S = S0e
iθ0+iθ1(ω+ Ω

2
), (D.1)

where −Ω
2
≤ ω ≤ −Ω

2
. By rephasing the second part of the reference FIDs, we

found that θ0 = 0.95rad and θ1 = 3.32rad were optimal.
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Figure D.4: The first part of the reference FID was properly fitting to the first

part of the pulse sequence outcome FIDs.
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