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Abstract

The application of a digital controller to a continuous-time plant results in a closed
loop system that contains both continuous-time and discrete-time signals; such a system

is referred to as a sampled-data system.

In this thesis, we consider finite-dimensional linear time-invariant plants, and the
emphasis is placed on designing low order linear time-varying digital controllers that
are straightforward-to design and easy to implement. We consider two basic controller
structures: static generalized sampled-data hold function (GSHF) controllers and linear
periodic controllers (LPCs) that consist of a sampler, a low order linear discrete-time

compensator, and a zero-order-hold function.

We consider three control problems. The first problem is the combined gain/phase
margin problem, which can be viewed as a robust stabilization problem. We show that
it is possible to design a static GSHF controller, which can be implemented with a
low order LPC, that can provide a gain margin as large as desired and any desired
phase margin up to 90 degrees. An analysis of the tolerance of such a controller to
unstructured uncertainty in the nominal model is also presented. This controller suffers
from poor intersample behaviour, so we also present another low order LPC that has
good intersample behaviour while providing a gain margin as large as desired and any
desired phase margin up to 90 degrees. The second problem is the model reference
contrcl problem (MRCP), where the goal is to track a class of reference signals despite
the presence of noise. We show that there exists a static GSHF controller that solves
the MRCP when the single-input, single-output plant is minimum phase. Finally, in our
third problem we lock at an optimal step tracking problem for an arbitrary multi-input,
multi-output plant. We show that it is possible to design a low order LPC that not only
provides near LQR-optimal step tracking for the nominal plant, but also provides step
tracking when there is some uncertainty in the gain of the plant.
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Chapter 1

Introduction

Control systems play an important role in virtually all areas of technology, from manufac-
turing, computers and communrications, right through to the financial and entertainment
industries. The main objective of a control system is to provide an input or control signal
to a real physical system, so that the output of the system behaves in a desired manner.
To attain this goal, the control system designer typically follows four steps: (1) quantify
the desired behaviour in mathematical specifications, (2) develop an idealized mathe-
matical representation or model for the real system, (3) design a controller based on the
model that meets the specifications, and (4) implement the controller and verify that the
specifications are met. There are three issues that must be kept in mind throughout the

control system design process.

First, while developing an idealized mathematical model, many simplifying assump-
tions (e.g. linearization, order reduction) are typically made and accurate estimates of
the actual parameters of the system are not always available. Hence, there is almost
always some degree of uncertainty in the idealized mathematical model. Designing con-
trollers that account for uncertainty in the model of the system is commonly referred to

as robust control.

Secondly, since most physical systems are analog in nature, the resulting mathematical

1
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model commonly takes the form of a set of differential equations. Furthermore, it is
usually intuitive to express the design specifications - commonly measured by some
performance indez (e.g. a cost function, tracking error) - in the continuous-time or
analog domain. However, with the advent of fast and inexpensive digital technology, it
is desirable to implement the controller digitally. A digital controller typically consists
of three components: a sampling operation, discrete-time signal processing, and a digital
to analog conversion (or hold operation). Conventionally, one fixes the sampling and
hold operations, syhchronizes these operations in time with a fixed sampling period,
and then designs the discrete-time signal processing component (controller). Hence, the
combination of the analog model and the digital controller contains both continuous-time
and discrete-time signals; such systems are commonly referred to as sampled-data systems.
To simplify the model of the system, approximations are typically made so that the model
can be expressed as a finite set of linear time-invariant (LTI) differential equations. To
simplify the controller synthesis, one can restrict the discrete-time controller to be LTI
and only consider the behaviour of the sampled-data system at the sampling instances,
thus yielding an overall closed loop system that is discrete-time LTI. Recently, some
results have been presented where intersample behaviour is taken into account while still
restricting the discrete-time component of the controller to be LTI. In this thesis, we will
consider intersample behaviour and we will not restrict the discrete-time component of

our controller to be LTI.

Finally, the third issue that the control system designer must address is the complexity
of the controller. In order to say that one controller is simpler than another, we must
define a measure of the complexity; a reasonable one is that of the degree of difficulty of
implementation. Since we will be considering linear periodic time-varying controllers, we
will use the order of the controller state and the periodicity of the controller parameters
as our measure of the complexity. In this thesis, we will emphasize the design of low
order controllers, but it will turn cut that the periodicity of the controller parameters is
usually at least as high as the order of the plant. Hence, the overall complexity of the
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controllers we propose will be of the same order as that of the controllers designed using

other LTI techniques.

Therefore, to summarize the above, we will look at designing low order LPCs for LTI
systems in a sampled-data setting, that are in some respects superior to LTI controllers

when looking at issues related to robust control and performance.

1.1 A Brief Literature Survey

Before going on to state the specific objectives of our work, it would be prudent to discuss
some of the motivating and related work that can be found in the literature. First,
one naturally might ask why it would be desirable to use a linear time-varying (LTV)
controller instead of an LTI controller. It was shown by Feintuch and Francis [18] and by
Shamma and Dahleh [46] that for LTI discrete-time systems, LTV controllers do not lead
to any improved performance for problems of uniform optimal control. Furthermore,
Khargonekar et al. [30] showed that under some weak assumptions, if there does not
exists an LTI controller that will stabilize every plant in a specified set (i.e. additive
uncertainty set) then there does not exist a LTV controller that will do so either.

However, LTV controllers have been shown to be superior in attaining other control
objectives. For example, it is well known that given an unstable non-minimum phase
LTI plant, the maximum attainable gain and phase margin provided by an LTI controller
is bounded [33]. However, this limitation is not present if we allow the controller to be
LTV (e.g. continuous-time case [35], discrete-time case [31], sampled-data case [21]).
Note however, that in these approaches, the resulting controller may have a high order,

and by our earlier discussion, can be considered relatively complex.

Motivated by a desire for low order controllers, Kabamba [26] investigated a second
approach to sampled-data control that uses a generalized sampled-data hold function
(GSHF') instead of the classical zero-order-hold function. This gives rise to GSHF con-
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trollers, and the ideas behind this approach can be traced back to work done by Chammas
and Leondes [11]. Kabamba [26] showed that GSHF controllers are useful in the area of
pole assignment, optimal noise rejection, model matching, decoupling and robustness. A
more detailed discussion of the literature related to the application of GSHF controllers
to the gain margin problem and the model matching problem can be found in Chapters 3
and 5, respectively. On a related topic of sampled-data low order controllers, Madievski
and Anderson [36] and Anderson et al.[2] investigate methods for approximating a high
order continuous-time LTI controller by a low order discrete-time LTI controller (with
a sampler and zero-order-hold) using fast multirate sampling and classical order reduc-
tion techniques. For the low order discrete-time periodic pole placement problem, see
[1, 28, 37]. A multi-rate discrete-time periodic controller that can be synthesized to
achieve pole placement was also discussed in [5] and [23].

As noted by Feuer and Goodwin [19], one major limitation of the GSHF controller is
the poor intersample performance that results from the fact that as the sampling period
of the GSHF controller tends to zero, the gain of the hold function, and in turn the
control signal, typically becomes large. Juan and Kabamba {25] and Werner {54] attempt
to improve the intersample behaviour by selecting the hold function in an optimal fashion.
Furthermore, the study of the robustness properties provided by GSHF controllers has
been studied in some detail in the literature [26, 22, 40, 10], but there are no results to our
knowledge that describe what happens to the tolerance of the controller to unstructured
uncertainty in the model as the sampling period of the GSHF controller tends to zero.
We will address this issue in this thesis.

Before leaving this section, we note some other related work that the reader should
be made aware of. There has been a vast amount of work done in the area of optimal
sampled-data control, and we list but a few papers in each specific area. For the case
where the digital controller consists of a sampler, an LTI discrete-time compensator and

a zero order hold, there has been a number of results presented in %, optimal control
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(17, 6], Hoo optimal control [9, 24, 27, 49, 50], and H, optimal control [8, 7, 13, 32]. When
the discrete-time component is allowed to be LTV, there have also been results presented
in the areas of H; and H,, optimal control [53, 52, 14, 42]. A general mathematical tool
that is used in obtaining some of the previous results, commonly referred to as the lifting
technique, has been developed in [50, 56, 8]. Recently, a new discretization-based solution
to the sampled-data H,, control problem that does not directly using the lifting technique
was given in [51]. There the authors relate their technique to the lifting technique and
show that both methods lead to identical synthesis equations. Finally, a survey paper by
Araki [4] provides a comprehensive outline of many of the developments in digital control
theory made previous to 1993.

1.2 Owur Objectives

In this thesis, we would like to find low order sampled-data LPCs that can provide robust
control and/or provide a desired performance. We will propose two different controller
structures to meet our objectives: a static GSHF controller (Chapters 3 and 5), and a
low order LPC that consists of a sampler, a linear periodic discrete-time compensator,
and a zero-order-hold (Chapters 4 and 6). We restrict ourselves to considering finite-
dimensional LTI plants and all of the low order controllers that we propose will be capable
of attaining goals that LTI controllers cannot achieve, but as expected it typically comes

at a cost.

The first problem that we will consider (Chapters 3 and 4) is the robust stabilization
problem commonly referred to as the combined gain/phase margin problem. We know
that for unstable non-minimum phase LTI plants, the maximum attainable gain and
phase margin provided by an LTI controller is bounded [33]. While it has been shown
that it is possible to design a static GSHF controller that can provide a gain margin
as large as desired [58], there are no results in the literature that address the issue of
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designing a static GSHF controller to provide a desired phase margin. In our results,
we use a significantly different approach to that proposed in [58] to incorporate the
phase margin specification into our design, and show that for any n** order multi-input,
multi-output (MIMO) LTI continuous-time plant, it is possible to design a static GSHF
controller that provides a gain margin as large as desired and any desired phase margin
up to 90 degrees. We use the fact that the GSHF controller provides a combined gain and
phase margin to show that the GSHF controller will be capable of tolerating moderate
additive dynamic pérturbations to the nominal model, even as the sampling period tends
to zero. A drawback of this first GSHF controller is that we typically require the sampling
period to be small in order to stabilize even the nominal plant. Hence, we also propose
an alternate GSHF controller that will be capable of stabilizing the nominal model for
almost all sampling periods, and will recover the gain/phase margin properties of the first
GSHF controller as the sampling period tends to zero. We then show that it is possible
to implement each of the proposed static GSHF controllers with a sampler, a low order

n-periodic discrete-time compensator. and a zero-order-hold function.

A major drawback of the static GSHF controller is poor intersample performance,
which can be attributed to the fact that as the sampling period becomes small, the gains
of the hold function, and therefore the input to the plant, becomes large. Hence, we go
on to show that it is possible to design an LPC that consists of a sampler, a low order p-
periodic (p > n) discrete-time compensator, and a zero-order-hold function, that provides
satisfactory intersample behaviour while providing a gain margin as large as desired and
any desired phase margin up to 90 degrees. Unfortunately, while this controller can
be made very tolerant to the structured uncertainty defined in the gain/phase margin
problem, it becomes less and less tolerant to unstructured dynamic uncertainty in the

nominal model as the sampling period becomes small.

We then turn our attention to issues related to performance by considering the track-

ing and disturbance rejection problem commonly referred to as the Model Reference
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Control Problem (MRCP). In the MRCP, the control system designer chooses a reference
model that embodies the desired behaviour and the objective is to find a controller that
makes the plant behave like the reference model. Since we know that for non-minimum
phase LTI plants there are limits to the best achievable closed loop performance even
when the controller is nonlinear and time-varying [38], we will assume that the plant is
minimum phase. Furthermore, we assume that both the plant and reference model are
single-input, single-output (SISO). We then go on to show that it is possible to design
a static GSHF controller that ensures that the plant output tracks the reference model
output as well as desired, and as mentioned before, it is possible to implement such
a controller using a sampler, a first order n-periodic discrete-time compensator, and a
zero-order-hold. Since GSHF controllers typically suffer from poor intersample perfor-
mance, this result is surprising and to our knowledge, is the first result that uses static
GSHF controllers to solve the sampled-data MRCP (e.g. see (26, 41] for the application
of GSHF controllers to solve a weaker discrete-time MRCP).

Finally, we address the issue of tracking for a larger class of plants for a control
problem that is common in industry. Specifically, we will pose an optimal step tracking
problem where we do not assume that the state of the plant can be measured, and the
objective is to track step reference signals in an optimal fashion. The optimality criterion
will be similar to the standard LQR cost function, and we begin by converting the optimal
step tracking problem into the standard LQR problem. We then show that it is possible
to design a low order LPC that can provide near optimal performance for the nominal
plant and can still provide stability, even when there is some uncertainty in the gain of

the plant.
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1.3 Thesis Outline

In Chapter 2 we will introduce notation, state some well known results that will be used
throughout the thesis, and prove some preliminary mathematical results. In Chapter 3
we show that it is possible to design a GSHF controller that can solve the gain/phase
margin problem and that under some mild conditions, this GSHF controller can also
tolerate unstructured uncertainty in the model of the plant. In Chapter 4, we show that
it is possible to design a low order linear periodic controller that can solve the gain/phase
margin problem, while providing satisfactory intersample performance. In Chapter 5 we
show how to design a GSHF controller that solves the MRCP for a SISO minimum phase
plant. In Chapter 6 we pose an optimal step tracking problem and show that there exists
a low order LPC that solves this problem. Moreover, this controller can provide stability
even when there is some uncertainty in the gain of the plant. A summary follows in
Chapter 7 where we outline the contributions made in this work and propose some areas

of future study.



Chapter 2

Mathematical Background

In this chapter, we will introduce some notation and present some preliminary mathe-
matical results that will be used throughout the thesis.

2.1 Notation

Let R denote the set of real numbers, R* denote the set of non-negative real numbers,
C denote the set of complex numbers, C™~ denote the set of complex numbers with a real
part less than zero, Z denote the set of integers, and Z* denote the set of non-negative
integers. Let C™ denote the set of all n x 1 vectors with elements in C, and C**™ denote
the set of all » x m matrices with elements in C. Similarly, let R® and R®*™ denote
the set of n x 1 vectors and » x m matrices with elements in R. We will denote the
n-dimensional identity matrix by I,, or simply I when n is immaterial.

The real and imaginary parts of z € C will be written as Re(z) and Im(z), respectively.
The complex conjugate transpose of A € C**™ will be denoted by A" and the transpose
of A € R™*™ will be denoted by AZ. The set of eigenvalues of A € C™*" will be called
the spectrum of A and will be denoted by sp(A). We say that A is stable if sp(4) C C~;

otherwise, we say that A is unstable.
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If sp(Q) C R, then let

Amin(@) = min{A: A€ sp(Q)},
Aaz(@) = max{A: A€ sp(Q)}.

We say that Q € C™**" is Hermitian if Q = Q~; it is well known that a Hermitian matrix
@ satisfies the following:

i) sp(Q) CR,
ii) for every z € C*, we have Im(z*Qz) = 0,

iii) for every z € C™, we have Apin(Q)z°z < z°Qz < Mgz (Q)z"z.

The matrix Q € R™*" is positive definite if zZQz > 0 for all non-zero z € R™, in
which case we will write @ > 0.

2.2 Norms and Spaces

Let z € C" and denote the i** element of z as z;. We define the p-norm of z € C™ as

n 1/p
(Z Iz.-l") 1<p<o
lzllp ==

=1

max |z| p =oo.

Since all norms on C" are equivalent (e.g. see [15, §I1.2]) we will use the 2-norm (Eu-
clidean norm) on C™ for this work. Namely, for z € C* we will denote

lizll == l|zll2 = V/(2"2);
it is easy to prove that the induced norm of A € C™*" satisfies

Il All := sup{||Az] : z € C*, ||| # 0} = max{v/X: A € sp(A~A)}.
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We denote ¥{R*,R") as the set of all continuous functions mapping R* to R". We
say that f : R* — R™ is piecewise continuous if there exists a sequence 0 < ¢; < £y < +=+
so that

i) lim ¢; = oo,

t—roo

ii}) f is continuous for ¢ € RT — U2 {t;}, and

iii) for each ¢;, the left-hand and right-hand limits of f(¢) as t — ¢; exist and are finite.

If f:R* - C* or f: Rt - C™™, then we can generalize the concept of continuity
and piecewise continuity in the natural way by stacking the real and imaginary parts of
f(+) into one vector. Let the set of all piecewise continuous functions f : R* — C»x™
be denoted as PC(R*,C"*™), or simply PC when R* and C"*™ are immaterial. Now
define

PC, = {f € PC : esssup [[f(¢)] < oo} '
¢ € [0,00)

and PC._ to be the set of those elements f € PC. which are absolutely continuous and

whose derivative® f belongs to PC.,. For such an f, we have

t .
£6) = fito) + [ firydr, t2t0 20,
to
e.g. see Theorem 15 [15, pg. 231].

For what follows, we could consider the more general class of locally (Lebesgue) in-
tegrable functions instead of PC(R*,C"*™), but this would require extra mathematics
which would detract from the clarity of the presentation without significantly gener-
alizing our results. Hence, let the subset %,(R*,C") of PC(R*,C") consist of all
f € PC(R*,C") satisfying

£l ([ wrerra) ¥ 15p<o
-

ess sup ||f(¢)]| < o0 p=oo;
te Rt

AIf f is absolutely continuous, then it is well known that f exists almost everywhere.
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to simplify the notation, we write %,(C") when R* is immaterial and %, when R* and
C" are immaterial. In this thesis, we will primarily be interested in the case when p = 2

and p = co. The £, induced gain of a system

G:PC - PC
is defined by
Gulle
[ 5= sup { L= . € PC e 2 0}

If fe Zo(RY, R."),.then the Laplace transform of f, denoted £ {f} or F(s), is given by

cifti= [ fte,
0

for all s € C for which the integral is defined. Let Ho, be the set of all complex valued
functions F'(s) of a complex variable s which are analytic and bounded in the open right
half-plane Re(s) > 0. and define

Pl := sup{|F(s)| : Re(s) > 0}.
The subset of H,, consisting of real-rational functions will be denoted by RH . If F(s)
is real-rational, then F € RH,, if and only if F(oo) is finite (proper), and F(s) is finite
for Re(s) > 0 (stable). Furthermore, by the Maximum Modulus Theorem, it is well
known that

|Fli = sup{|F(jw)| : w € R}.
Let RLo be the set of real-rational complex valued functions F(s) of a complex variable
s which are analytic and bounded on the imaginary axis Re(s) = 0.

The set of all sequences on Z* taking values in C* will be denotes as S{Z*,C"), and

we write f € HAZ*,C") as {f(k)}. The subspace £,(Z+,C") of A Z*,C") consists of
all f € SAZ*,C") satisfying

a; i/p
(lef(k)ll") <o 1<p<o
k=0

sup |[f(k)|| < oo p = oo;
kezZ+

I fllp ==
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to simplify the notation, we write £,(C") when Z* is immaterial, and £, when Z* and
C" are immaterial. If f € S{R*,R"), then the z-transform of f, denoted Z {f} or F(z),
is given by
0
Z{f}:=)_fk)z"",
k=0

for all z € C for whick the summation is defined.

2.3 Order 6f a Function

We say that the function f(T) is of order T, and write f(T') = O(T7), if there exists a

constant ¢; > 0 and T} > 0 so that
Lemma 2.1
If fi(T) and f3(T) are of order T* and 77, respectively, then
i) A(T) + f(T) = O™t}
i) fi(T)fa(T) = O(T**?), and
i) (I - fi(T)™ = +O(TY).
Proof:
The first two results are straightforward, so we only prove the third result. For
Al <1,
(I-4)"=)" Ak
k=0
Since f1(T) = O(T?), it follows that there exists a ¢; > 0 and T} > 0 so that
“fl(T)" S clTi7 Te (OaTI)a
which means that there exists a T; € (0, T}) so that

IAT <2 Te(0,T)
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Hence, for T € (0,T;) we have

I = A@) =1 =

Y AT
k=1
AT

1- AT
< 2AMDI,

so since fi(T) = O(T?), it follows that (I — f1(T))~' — I = O(T*) as well, and our third
result follows. . (]

IA

2.4 A Simple Convergence Result

Lyapunov type arguments are used in many of the proofs presented in this thesis, so it

will be useful to state the following convergence result.

Lemma 2.2 If there exists a A € R and V € PC? (R*, R) satisfying
V(t) + AV(£) <0, t >0,

then
V(t) < e ™V(0), t > 0.

Proof:
The following proof is based on the results found in Section 3.5.5 of [48]. Since
V € PC.,, it follows that

W(t) := V(t) + AV(2) (2.1)
is an element of PC,,. Solving the first order differential equation (2.1) for V'(¢) we get
V(t) = eV (0) + / t e MW (r)dr, t > 0,
but since W(t) <0 fort > ;, it follows that

V(t) <e™™V(0), t > 0.
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In our results, we choose V(t) > 0 and show that there exists a A > 0 satisfying the con-
ditions of Lemma 2.2. Hence, we can claim that V() approaches zero at an exponential

rate.

2.5 A Riccati Equation Result

In Chapters 3 and 4, we will be using a discrete-time LQR approach to design our con-
trollers. However, we formulate the discrete-time LQR problem so that as the sampling
period tends to zero, the discrete-time solution approaches the solution of a continuous-
time LQR problem. This is basically done by first showing that the discrete-time Riccati
equation can be written as a perturbed continuous-time Riccati equation. Thus we will
need the following result that relates the solution of a Riccati equation to its perturbed

counterpart.

Suppose that (A, B) is controllable and that @ € R**™ and R € R™*™ are positive
definite symmetric matrices. Let P be the unique positive definite symmetric solution of

the continuous-time Riccati equation
PA+ ATP - PBR'BTP+Q =0; (2.2)

the existence of such a P follows from the facts that (\/@,A) is observable and
(A, B) is controllable - e.g. see Theorem 12.2 and Lemma 12.2 in [55]. If we define

F:=—-R'BTp,

then it is well known that A+ BF is stable. Now suppose that Aq € R™*" is symmetric,
but not necessarily positive definite, and satisfies

Q+Aq>0;

since (4/Q + Agq, A) is observable and (A, B) is controllable, we know that there ex-
ists a positive definite symmetric P € R™*" satisfying the perturbed continuous-time



Chapter 2: Mathematical Background 16
algebraic Riccati equation

PaA+ ATPy, — PABTR™'BP, +(Q + Ag) =0. (2.3)
If we define

Fa:=—R7'BTP,,

then it is well known that A + BF, is stable. The following preliminary result states the
intuitive result that if @ + Ag = @, ther Py = P.

Lemma 2.3 There exists a constant ¢; > 0 such that

Pl + a1]lAql| ) }
P, — P|| < max Agll,allA .
Proof:

Consider the equation
w(t) = Aw(t) + Bu(t), w(0) =we € R, (2.4)
and let the nominal and perturbed cost functionals be defined as
S = [T EQu(t) + o) Ru(tle,
Jatw,we) = [ [T(OQ+ Ahult) + v (O Ru(0)]d
From Section 12.3 of {55], we know that the nominal optimal cost
”;nfgz J(v,wo) = wg P,
and the corresponding nominal optimal control law is
v(t) = Fw(t).
Similarly, the perturbed optimal cost
inf, Ja(v, wo) = wg Paw,
v€Zs

and the corresponding perturbed optimal control law is

v(t) = Faw(t).
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Let us first find an upper bound on Apez(Pa — P). To do this, we set
u(t) = Fw(t) = w(t)=eA B iy,
Since this control law minimizes J but not necessarily not J,, it follows that

wl Ppwp < / w['wT(t)(Q + Ag)w(t) + vT(t)Ru(t)]dt
0

( / m[wT(t)Qw(t) +vT(t)Rv(t)]dt) + / ” w7 (t) AgQu(t)dt
0 1]

 of Pug + uf [ / S(A+BF)Te Aqe"‘*"""dt] v
1]

{o -]
< wlPup+ / e A+B 24t || Agl| [l

[ >
N~

—_—

=!C

which means
wy (Pa — Plwo < a1l Aq]| x [fwoll? (2.5)
= Amaz(Pa — P) < a|lAq]l- (2.6)
Note that ¢, is independent of Ag and that since A+ BF is stable. ¢, is finite.

Since Pa — P may not be positive definite, we must show that Anin(Pa — P) is also
bounded below by a function of ||Ag]|. To do this, we set

'U(t) = FAw(t), = w(t) = e(A+BFA)tw0_
Since this control law minimizes Ja but not necessarily not J, it follows that

wfPuy < [ WP (OQu) + v ) Ro(elde

= (["w0@+aqwio + vT(t)Rv(t)]dt) - [" o tagutias

0

00
= wg’PA’IDo + w:f [/ e(‘“'BFA)Tt(—AQ)G(A+BFAJgdt] Wo,
0

which means

o
wg'(P — PA)wo < wg' [/ e(A+BFA)Tg(_AQ)e(A+BFA)gdt] we
0

< lldel / VA BER ey 12 2.7)
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To get a bound on the the last term in the above equation, we note that since

v(t) = Faw(t) optimizes Ja, we have

wl Ppwy = /0°° [wT (E)(Q + Ag)w(t) + vT(t)Ru(t)]dt
> [uTe@+ Aqhute) e

oo
= f wg'e(ﬁ.-i-BFA]Tt(Q + AQ )e(A-G-BFA)twodt
0

e <]
2 dnin(Q+ Bg) [ 4B g,
0
so it follows that

® ((A+BFa)t. 112 wd Pawg
A St vy
wg'PAng
Amin(@) — || Aqll
| 2|l + c1llAqll
~ Amin(Q) — l1Ael|

Combining (2.7) and (2.8) we get

A

<

lwol|®. [by equation (2.5)]

[iPl+eilla
wf(Pa = PYwo > ~ (LELEloal ya g} fuwo?

= Amin(Pa— P) 2 - (GElloaljag)) .

Amin(Q)-[lAqll
Hence, from (2.6) and (2.9) we have

sp(Pa — P) € [ (L2ltaldal o)) il Al

Pll+c; |lA
= ||Pa - P|| < max { ({2L=ldal) aq], e Aql} -

(2.8)

(2.9)

Given Lemma 2.3, it is trivial to prove the intuitive result that if Aq — 0, then the

solution P5 of the perturbed Riccati equation (2.3) approaches the solution P of the

nominal Riccati equation (2.2).
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2.6 The General Closed Loop Configuration

In this thesis, we will consider plants that can be represented by the linear time-invariant
(LTI) differential equation

z(t) = Az(t) + Bu(t) + Ew(t), z(0) =z, € R"

y(t) = Cz(t), (2.10)

e(t) = yres(t) —y(t), t € RY;
here z(t) € R" is the state, u{t) € R™ is the control input, y(t) € R" is the plant
output, w(t) € R is the disturbance, y,.f(t) € R" is the reference signal, e(t) € R" is
the tracking error, and A, B, C and F are constant matrices of appropriate dimensions
with elements in R. We assume that (A, B) is controllable, (C, A) is observable and that

our controller can only measure y and y,.s, and can only excite u.
We say that A € C is a transmission zero of (2.10) if
A-)\ B
rank
C 0

We say that (2.10) is minimum phase if all the transmission zeros are in C~; otherwise,

] < n + min{r,m}.

we say that (2.10) is non-minimum phase. When m = r = 1, the transmission zeros are

the zeros of C(s[ — A)~!B.

Suppose that C(sI — A)~'B is not identically zero, and observe that if s € C is not

an eigenvalue of A, then
Cadj(sI — A)B
det(sI — A)
We say the relative degree of the plant is the order of the plant n less the highest degree

of the elements of Cadj(s] — A)B. It can easily be shown that if the relative degree of

C(sI— A)'B =

the plant is g, then
CB=CAB=---=CA"2B =0, and CA*'B #0.

The linear time-varying (LTV) controllers that we will propose in this thesis can be

viewed as linear operators that map e to u. Hence, with G. denoting the LTV controller
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and P denoting the LTI plant, we will consider the general closed loop configuration
illustrated in Figure 2.1. Since the plant is strictly proper, under a modest restriction

}Z

by
“{l
|
"
Y

. Figure 2.1: General closed loop configuration.

on the controller, the closed loop system is well-posed. In Chapters 3, 4, and 6, we set
w(t) =0, yres(t) = 0, and consider u € PC, which means e €¥. In Chapter 5 we assume
Yref(t) is the output of a strictly proper stable finite-dimensional LTI system driven by
a bounded piecewise continuous input so that y,.; € PC;, w € PC,, and consider

u € PC. Again, this means that e €¥.
The first stage of the controller will always be a sampler S :¥— #which is defined via
n=Se <= nlk]=e(kT), k€ Z*.

In some cases, the last stage of the controller will be the zero-order-hold H : & — PC
which is defined via

y=Hv < y(t)=vlk], te€[kT,(k+1)T).
As a result of the sampling and hold operations, it will turn our that the following
matrices will play an important role in the design of our low order LPC:

T
A;j:=eT B, = / e Bdr.
0

We now state some important properties of these matrices.
Definition 2.1 The sampling period T is said to be pathological if A has two eigenvalues
with equal real parts and imaginary parts that differ by an integral multiple of 2%;
otherwise, the sampling period is non-pathological.
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Theorem 2.1 If the sampling period T is non-pathological, then
(A, B) controllable = (Ag4, By) controllable
(C, A) observable = (C, Aq) observable

Proof:
See Theorem 12 in [29]. .

Theorem 2.2 There exists a Tp > 0 so that for every T € (0,7,) we have (A4, Ba)
controllable and (C, Ay) observable.

Proof:

See Lemma 8 in [21]. ]
With minor modifications to the proof of Lemma 8 in (21], the following result that is
used in Chapter 4 can be proven:

Theorem 2.3 For every integer p > n. there exists a Ty > 0 so that for every T € (0, Tp),
the pair (eAPT, j;(p -7 e“""Bd'r) is controllable.



Chapter 3

Robust Stability: Static GSHF

Controllers

3.1 Introduction

The first step in control system design is usually that of obtaining a mathematical model
of the plant. However, since there are inaccuracies in all measurements, we end up with
a model with uncertainty in the parameters. One of the simplest ways to model this
uncertainty is via an uncertain scalar multiplicative gain. To this end, we consider the
following robust stabilization problem: with Py(s) the nominal finite dimensional linear
time-invariant (FDLTI) plant model, we would like to find (if possible) a linear controller
that will stabilize every system in a set of the form

{¥Po(s): v is a scalar gain uncertainty}.

This setup encompasses the classical gain margin problem, phase margin problem, and
the combined gain/phase margin problem.

Given a single-input single-output (SISO) unstable non-minimum phase plant Po(s),

it was shown by Khargonekar and Tannerbaum [33] that there is a maximum attainable

22



Chapter 3: Robust Stability: Static GSHF Controllers 23

gain margin which can be provided by an LTI controller, and that this maximum is a
function of the right half plane zeros and poles of Py(s). However, it turns out that

time-varying controllers can do better.

In the continuous-time case, Lee, Meerkov, and Runolfsson [35] showed that for a
SISO FDLTI plant, one can design a continuous-time periodic controller to provide a
gain margin as large as desired; the controller order equals that of the plant. In the
discrete-time case, Khargonekar, Poolla, and Tannenbaum [31] showed, among other
things, that for a SISO FDLTI discrete-time bicausal plant with distinct unstable poles,
there exists a discrete-time periodic controller that will provide a gain margin as large

as desired, as well as a phase margin of up to 90 degrees.

In the sampled-data setting, there have been several approaches. Francis and Geor-
giou [21} considered the control of a FDLTI continuous-time plant with a sampled-data
controller composed of a periodic discrete-time compensator and a zero-order-hold; they
showed that for every multi-input multi-output (MIMO) continuous-time plant, there
exists such a controller of suitable period that will provide a gain margin as large as de-
sired. A second approach uses generalized hold functions, which gives rise to generalized
sampled-data hold function (GSHF') controllers, which have been shown to be useful in
the area of pole assignment, optimal noise rejection, model matching, decoupling and
robustness [26, 25]. Yan, Anderson, and Bitmead [57] showed that for a MIMO FDLTI
continuous-time plant, it is possible to design a dynamic GSHF controller to provide a
gain margin as large as desired; indeed, for a given sampling period, they find the GSHF
controller that will provide the maximum attainable gain margin. Motivated by a desire
for low order controllers, Yang and Kabamba [58] showed that one can design a static
GSHF controller to provide a gain margin as large as desired; in fact, they solve a more

general multivariable gain margin problem.

In this chapter we consider the general gain/phase margin problem. We will design
low order LTV controllers, parameterized by the sampling period T, which can provide
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any desired phase margin up to 90 degrees, and have the property that the gain margin
goes to infinity as T — 0; in fact, we can prove that for every p € (0,1], 7 € (1, o), and
e [O, %), for sufficiently small T these controllers will stabilize every system in

{pe™Po(s) : p € [p,7], 6 € -4, 41}
This work can be viewed as an extension of the work of Yang and Kabamba (58] to include
a phase margin specification, although our proof is significantly different. In comparison
to the work of Yan, Anderson, and Bitmead[57], here the controller is less complex and
provides a guaranteed phase margin; on the other hand, it does not provide the maximal

attainable gain margin for a given sampling period.

This chapter is organized in the following manner. We begin in Section 3.2 by formu-
lating the problem in terms of designing a MIMO static GSHF controller for a MIMO LTI
plant. In Section 3.3, we solve the problem posed in Section 3.2 using a continuous-time
approach and illustrate the design method in an example. An improved design algo-
rithm based on a discrete-time approach is presented in Appendix A.1, and through an
example the two approaches are compared in Appendix A.2. Finally, in Section 3.4 it is
shown that all of the MIMO static GSHF controllers presented can be implemented as a
low order sampled-data controller consisting of a sampler, a discrete-time linear periodic

compensator, and a zero-order-hold.

3.2 Problem Formulation

Our nominal plant model is
£(t) = Az(t)+ Bu(t), z(0) ==z,
y(t) = C =),
with z(t) € R™ the state, u(t) € R™ the control input, and y(¢) € R the plant output.
Our standing assumption is that (A, B) is controllable and (C, A) is observable.

(3.1)
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We capture uncertainty in the model by supposing that the actual system is given by
e(t) = A z(t)+ Bu(t), z(0)= =z,

y(t) = v Cz(t),
with 7 € C; we represent this system by the triple (A, B,4¥C). Our parameter v is

(3.2)

assumed to lie in a set of the form

T(p.p.¢) :={pe®: p € [p.7]. 6 € [-4.4]}.

Our goal is to find a controller which will simultaneously stabilize every model in

{(A,B,7C): 7 € T(p,7,9)}.
If ¢ = 0, then we have a gain margin problem; if p = p = 1, then we have a phase margin

problem; the general case is a combined gain and phase margin problem.

We now define the set of controllers that will be considered. With T > 0 the sampling
period of the generalized hold and 7 : R — R™*" piecewise continuous and periodic of

period T', we consider the static GSHF controller
u(t) = F(t) y(kT), t€ [kT,(k+1)T), k€ Z; (3.3)
we represent the controller by the pair (F,T).

Definition 3.1 The GSHF controller (3.3) stabilizes (3.2) if, for every zo € R", we have

lim z(t) = 0.

t—oo
Hence our objective is as follows:

Given the nominal system (A, B,C) and the set I'(p,p, $),findaT >0

and a piecewise continuous T'-periodic function F(t) such that the GSHF
controller (F, T) stabilizes the plant (A4, B,7C) for every v € T(p,7,9).

We will now reformulate our continuous-time problem as a discrete-time problem and

restate our control objective. If we define

T
F:= f eAT-7) B F(r) dr € R™", (3.4)
V]
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then we can combine (3.2) and (3.3) to get the closed loop discrete-time system
z[(k + 1)T) = (eT + yFC) z[kT), k € Z*. (3.5)

It is straightforward to show using (3.2)-(3.5) that z[kT'] — 0 as k — oo if, and only if
z(t) — 0 as t -» oo; hence, it follows that the GSHF controller (3.3) stabilizes (3.2) if

and only if
sp(e’T + yFC)c {z € C:|z| < 1}.

Now our objective can be restated as:

Given the nominal system (A4, B,C) and the set I'(p, 7, ¢), find a T > 0 and
an F € R™" such that for every v € ['(p, p, #), we have

sp(e*” +yFC)Cc{z € C:|z| < 1}.

Since (A, B) is controllable, for every T > 0 and F € R™*" there exists a piecewise
continuous T-periodic function F(t) such that (3.4) is satisfied[26]. For example, with

T
W(T) := / e4" BBTeA " dr,
0
one possible solution is
F(t) = BTeA"T- (W (T))"F. (3.6)

This solution is not unique and in Section 3.4 we will present another solution for F(t)

that is easier to implement in practice.

Remark 3.1 Suppose that for a given A, B, C we have found a T > 0 and an F € R™*"
such that

sp(e’T + FC)c {z € C:|z] < 1}.

i) The upper (lower) gain margin provided by the controller (3.3) is the maximum
P € [1,00) (minimum p € (0, 1]) such that

sp(e*” +pFC)C {z€ C:|z| <1}, pe[L.p] (p€lp1])-

The gain margin provided by the controller is 7/p.
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ii) The phase margin provided by the controller (3.3) is the maximum ¢ € [0, %) such

that
sp(e?T +e®FC)Cc {z€C:|z| <1}, d€[-4 4

If the controller were LTI, then it is straightforward to show that if either the
gain or phase margin is small, then the closed loop system is close to instability; a
Nyquist argument would work. However, even if both the gain and phase margin
are independently large, then the closed loop system may still be close to instability,
e.g. see Figure 3.1 (a) which is motivated by [16, pp. 52-53]; here simultaneous
small changes in the gain and phase of the plant may result in instability.

P =P

(a) (b)

Figure 3.1: The combined gain/phase margin.
However, if the LTI controller provides a large combined gain/phase margin, then
we are guaranteed to have a better overall stability margin, e.g. see Figure 3.1 (b).
Since we are using a linear time-varying controller here, the above arguments are not
directly applicable. However, they are applicable to the LTI discrete-time system
arising from the sampler, plant, and generalized hold combination. Indeed, observe
that if we perturb our continuous-time system model in the frequency domain, the °
discrete-time counterpart is perturbed accordingly. This will be discussed further

in Section 3.5.
a
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3.3 Continuous-Time Approach

Define
Fo:=T'F=T" /o i eMT-7) B F(r) dr.
It follows that the GSHF controller (3.3) stabilizes (3.2) if and only if
sp(e?T +4yTF,C) C {z € C:|z| < 1}.
This first approach is motivated by the observation that for small T', we have
eAT 4 4T FoC ~ [ + T(A + 7FoC) = ATROT,
so if
sp(A+vFC)C CT, (3.7)
then we might expect that
sp(e?T +4TF,C)C {2 € C: 2| < 1}.

Conditions similar to (3.7) are commonly encountered in continuous-time state feed-

back probiems, and hence the motivation for the name of this approach.

However, the above is an approximate analysis, and here we have plant uncertainty,

which further complicates the analysis. To make this precise, we define
A(T):=T Y (eAT — I - AT), T >0, (3.8)
so that
elT + 4TFC = [+ T(A+7F,C + A(T));
notice that A(T) is O(T?). If (3.7) holds and ||A(T)|| is sufficiently small, then
sp(A+7FoC + A(T)) c C” = {s € C: Re(s) <0},
which means that

sp(e*T + YT FoC) = sp{I + T(A+vFoC + A(T))] C {s € C : Re(s) < 1}.
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Unfortunately, this does not imply that
sp(e?T + yTF,C)C {z € C: |z < 1}. (3.9)
However, if we can choose Fy so that sp(A + vFoC + A(T)) lies in a sector of the form
S(0) :={oe : (3 +6) <w < (¥ -0),0>0} (3.10)

(see Figure 3.2), then it can be shown that (3.9) would indeed hold, at least for small
enough T'. This will be investigated in the next subsection.

S(8)

Figure 3.2: The region S (6).

3.3.1 Preliminary Continuous-Time LQR Results

We first investigate how sp(A + pe™®FyC + A(T)) is affected by the perturbation
A(T) € R™*" over different ranges of p and ¢. We will choose F;, using linear quadratic
regulator (LQR) theory. To motivate our approach, recall that in the continuous-time
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setting an LQR optimal controller provides a lower gain margin of , an upper gain mar-
gin of infinity, and a 60 degree phase margin [3, pp. 70-76]. It turns out that we can
increase the phase margin and decrease the lower gain margin by modifying the standard
LQR problem. From the previous section, we saw that the stability of A + vFoC plays a
crucial role. This matrix is stable if and only if AT +yCTF{ is stable; finding an Fp to
achieve this is simply a state feedback problem. Hence, with ¢ € [0, %) and p € (0,1],
we define

= 2cos($)., (3.11)
and consider the auxiliary system

w(t) = ATw(t) + apCTo(t), w(0) = wo;
with @ € R**" and R € R™*™ satisfying

Q>0 . Q=Q7,
R>0 . R=RT,

we wish to find the control law which. for each wo. minimizes

/ ” w(t)TQu(t) + v(t)T Ru(t)dt.

0
Since (1/@, AT) is observable and (AT, aECT) is controllable, it follows from Lemma 12.1

and Theorem 12.2 found in [55], that the optimal control law is of the form

(3.12)

v(t) = Fyw(t),

and we can obtain the optimal gain Fy by first solving the continuous-time algebraic

Riccati equation
APy + P AT — Py(apC)TR ™ (apC)Po + Q@ =0 (3.13)
for the unique positive definite symmetric solution Py, and then setting

Fy = —Py(apC)TR™. (3.14)
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Proposition 3.1 If

Amin(Q)
2/|Roll

then for every p € [p,0) and ¢ € [~4, ] we have

AT <

sp(A + pe?®* FoC + A(T)) C C™.

Remark 3.2 Proposition 3.1 states that an LQR optimal controller can be designed to
simultaneously provide any desired lower and upper gain margin and any desired phase
margin up to 90 degrees, even under small perturbations in the A matrix. 0

Proof:(of Proposition 3.1)
To prove this, we adopt a Lyapunov argument. Let 5 € [1,00), ¢ € [-¢, 4],

An:= AT, B.:=(apC)T, F.:=F], AnT):=A(T),
and consider
W(t) = (An + pe/®BaFa + An(T))w(t), w(0) = wp € C™.
Consider the Lyapunov candidate function V : C® — C:
V(w) == w" Pw.
Since Py = Pf we know that V is real-valued, so
V(w(t)) == &V (w(?))

is also real-valued. Expanding V(w(t)) and using (3.13) and (3.14) to simplify, it follows
that

V(w(t)) = —w(t)"Qu(t)+ (1 - 25 cos(4))w(t)*(PoBaR BT Py)w(t)
+w(t)"(An(T)T Po + PolAn(T))uw(t). (3.15)

Using the bounds on ¢, 7, and the fact that R > 0, it can easily be shown that the second

term on the RHS of equation (3.15) is non positive, so

V(w(t)) < —w(t)"Qult) + w(t)(An(T)" Po + Poln(T))w(t).
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Now for w(t) # 0, it follows that
w(t) Qu(t) 2 Amin(Q)|w(®)]?
> 2| Poll x |An(T)I x lfw(t)|}? (by hypothesis)
2 [|Aa(T)TPo + PolAa(T)|| x [lw(8)||?
2 |w(t) (An(T)TPo + PolAa(T))w(t)],

so for w(t) # 0, we have
V(w(t)) < 0.

Combining this with (3.15) we see that there exists a positive definite symmetric matrix

U € R™**" 5o that

Viw(t) = ~w(t) Vu(t) = W@l < -—Sw%

Therefore,

V(w(®) < I1Poll x ()] < -J%‘;”U)V(w(t)),

so it follows from Lemma 2.2 that
Amin (L
Viw(t)) < e B V(wo), t>0.

Hence, for every wg, V(w(t)) goes to zero as t — oo; since Py is positive definite, it

follows that w(t) goes to zero as £ — oo as well, which means that
sp(An + pe’*B.F, + Aq(T)) C C-
= sp(A+appe’®FoC +A(T)) C C.
But this holds for app € [p, 00}, so for p € [p,00) and ¢ € [—¢, #] we have
sp(A + pe’* Fo,C + A(T)) c C~.

Now we will show that by restricting the perturbation further, we can force the
eigenvalues of A + pe™®FoC + A(T) to lie in the sector S () given by (3.10).
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Proposition 3.2 Let

0 € [0,min {3 -3, tan" (p3# %) - tan ™ (pevrFiaibe=romn) }) -

A < T coste),
then for every p € [p,o0) and ¢ € [—4, §] we have
sp(A + pe?® FoC + A(T)) C S(8).
Proof: '
Let 5 € [L,00), ¢ € [~, 9], and
An:= AT, B,:=(apC)T. F.:=FJ, Aa(T):=A(T)T,
and consider
W(t) = &°(An + pe’® B Fy + An(T))w(t), w(0) =wo € C™. (3.16)
Consider the Lyapunov candidate function V : C* = C:
V(w) 1= w" Pyw.
Since Py = PT, it follows that V and V are real valued. Expanding V(w(t)) and simpli-
fying, we have
V(w(t)) = cos(8yw(t)"(ALP + PoAn)uw(t) + j sin(6)w(t)"(PoAn — A7 Po)uw(t)
+pw(t)"(e~#¢+® FT BT p) + &®+9) P B, F, )w(t)
+w(t) (e An(T)? Py + €9 Py An(T))w(t).
Using (3.13) and (3.14), this can be rewritten as
V(w(t)) = —}§ cos(8)w(t)"Qu(t) + j sin()w(t) (PoAn — A7 Po)u(t)
—} cos(0)w(t)"Qu(t) + (cos(6) 27 cos(8+ ) hw(t)"(PoBaR ™" B PoJu(t)
—1 cos(8)w(t)"Qu(t) + w(t) (e P An(T)T Py + &® By An(T))w(t).

By hypothesis we have

Amin(Q)
3| FoAT — AR

tan(6) < = 305(0)Anin(Q) 2 sin(6)]|Podn ~ AZR,
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SO

s cos(B)w(t)"Qu(t) 2 3 cos(d)Amin(Q)llw(®)I)”
> sin(6)|| PoAn — A Pol| x [()]®
> |sin(f)w(t)"(PoA — A7 Po)uw(t)l. (3.17)
Furthermore,

1an@)l < 228D cos(9) = 2 cos(8)Amin(Q) > 2185l X 14(D
IR 3

so for w(t) # 0, we have
1 cos(0)w(t)"Qu(t) > jcos(8)Amin(@)lw(t)f?
201 Poll x | AT x [lw(e)]I?
le™ An(T) Po + & PoAn(T)|| x Jlo(e)||?
[w(t) (e An(T)T Py + & PoAn(T))w(t)]. (3.18)

v Vv

v

Finally, since 6 + ¢ € (=%, §), it follows that
cos(8) — 2pcos(f + ¢) < cos(f) — 2(cos(8) cos(4) — sin(6) sin(¢))

= cos(f)(1 — écos(cﬁ)) + %sin(ﬂ) sin(¢)
N o’ ¥
23 Vg

< YAalgng,

and from the hypothesis it follows that

Amin(Q)
3¥4=<%|| B, B R-1 BT Py||

> %—cos(ﬂ)z\,n,-,,(Q) > == 0 (9)|| P B R~ BT R,

tan(d) <
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SO

v

1 c08(68) Amin (@) [0 (8)]|?

YA=27 in(9)|| Py B R~ BT Po|| x Jlw(t)||?

(cos(8) — 25 cos(8 + §))| PoBaR™* BT Pa|| x [Ju(t)]?

(cos(8) — 25 cos(8 + ¢))lw(t) (PoBaR ' B Po)u(t)|.
(3.19)

3 cos(8)w(t)"Quw(t)

v IV

v

Therefore, from (3.17)-(3.19) it follows that for w(t) # 0, we have
V(w(t)) < 0.
Arguing as in the proof of Proposition 3.1, we conclude that
sp(¢”°(An + P BoF, + An(T))) C C~
= p(An + pe®BaFo + An(T)) C {06 : (3 -0) <w < (¥ -6),0 >0}

By replacing €® by e~ in (3.16) and modifying the above argument slightly, it can be

shown that
sP(An + p&®BoF + An(T)) C {0 : (3 +6) <w < (¥ +0),0 > 0}
Hence,
SP(An+PE® B Fat Ag(T)) C {06 : (3+8) <w< (2-8),0 >0} = S (6)
= sp(A + pape® FoC + A(T)) C S(9).
But this holds for app € [p, o), so for p € [p,o0) and ¢ € [~4, §], we have

sp(A+ pe?* F,C + A(T)) C S(9). .

3.3.2 Controller Design

In this subsection we will use the results of Subsection 3.3.1 to show that the control
objective of Section 3.2 can be attained. The proof is constructive, and we provide a

design algorithm.
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Theorem 3.1 Let § € [0, %), p € (0,1], and p € [1, 0). Then there exists a Trnaz > 0 50
that for every T € (0, Tmaz), there exists a static GSHF controller (F,T) which stabilizes

every system in
{(4,B,7C): v € (g, 5, #)}-

Proof:
Recall that A(T) has been defined in (3.8) so that

eAT + peTFyC = [ + T(A + p’* FoC + A(T)),

which means that
sp(e?T + pe*TF,C) Cc {z2€C:|z| <1}
o splI+T(A+pe®FC + A(T))] € {z€C:|z| <1}
N sp(A + pe? FoC + A(T)) € {%*:2€C,lz| <1} =D(T).
Let ¢ € [0, =), p € (0,1], and 7 € [1,00). Now choose @ and R to satisfy (3.12), and
let @, Py > 0 symmetric and Fj satisfy (3.11), (3.13), and (3.14). Let

3 x _ 7 -1 Amin(Q) -1 Amin(Q) .
b€ (O*m‘n{z $. tan (suP"‘T—“oA —APon) -tan (s_r"—‘__gza -l—a-llPoC"'R“lCP-oN)}) .

Since ||A(T')|| = 0 as T — 0, we can choose T > 0 so that

’\min(Q)
6] Pol|

From Proposition 3.2 it follows that for every p € [p,), ¢ € [—¢.¢] and T € (0,Ta],

AT <

cos(6), T € (0,Tal

we have
sp(A + pe’® FyC + A(T)) C S (8).
Consider the diagram illustrating S ()ND(T') in Figure 3.3, and define r as illustrated;
it is easily shown that
r = 2T ! sin(6).

It suffices to show that there exists a Tmar € (0,Ta] such that for every p € [p,p],
¢ € [, 9], and T € (0, Tnaz), we have

max{|A| : A € sp(A + p? FC + A(T))} < .
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D
e |1

bt i

- T

e |

Figure 3.3: The region S (6) N D(T).

But
max{|A] : A € sp(A + pe? FyC + A(T)} < [A+ pe*FoC + A(T)||

< (1Al +BIFC) + 2mnl@)

cos(8
S TR

Hence, it is sufficient that

Amin(Q)

r =20 sin(6) > || 4]l + AIIRCI + 5T

cos(f),
so define

Trnaz := min {TA, — 25m(63..,...(0) }
LAl + Pl FoCll + 252t cos(8)

Finally, with T € (0, Tinez) and F = TFy, we find an F(t) which satisfies (3.4). .

Remark 3.3 With ¢ € [0, £), p € (0,1}, and 5 € [1,00), we now summarize an al-
gorithm for constructing a static GSHF controller (F,T) that stabilizes every system

in

{(A,B,¥C): v € T(p.7.$)}-
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i) Choose symmetric positive definite matrices @ and R. With
a = 2cos(¢),

find the unique positive definite symmetric matrix Py satisfying (3.13), and deter-
mine £y from (3.14).

ii) Choose

. s I - Amin(Q -1 Amin(Q
S (O’m‘n {?‘¢’ tan™! (sma —AF;] ) » ban (Sg’a\/é—gjllPoG%R"CPoll)}) :
iit) Find T4 such that for every T € (0, T4, we have

Amin(Q)
61| ol

I13(eAT = I - AT)|| < cos(6);
this is computationally easy to do, especially if A is diagonal.

iv) Define

T = min {T 2sin ) }
maz — A " .
14l + 21| FoC| + 2gi=3) cos(6)

v) With T < Traz, let F = TF; and use any desired method to find an _F—(t) to satisfy
(3.4), e.g. use (3.6).

a

Remark 3.4 The T,,,, obtained in the above algorithm is based on a Lyapunov approach
and hence is typically quite conservative; perhaps a better choice for the Lyapunov can-
didate function in the proof of Proposition 3.2 would result in a less conservative value
of Tinaz. However, from a practical point of view, it might be preferable to compute
the combined gain margin and phase margin for various values of T' > Tpn,. using a 2
dimensional search algorithm, and choose the largest sampling period which achieves the

desired robustness. 0
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3.3.3 An Example

Suppose our nominal plant is

oo )8

with associated transfer function

_ s—1
T (s —=0.5)(s+ 1)
This example is taken from [16, pp. 200-203], where it is shown that an LTI stabilizing

Py(s):=C(sI — A)"'B

compensator can provide at most a phase margin of 38.9°, and the upper and lower gain

margins must satisfy p/p < 4.

Using the algorithm outlined in Remark 3.3, we now construct a static GSHF con-

troller to stabilize every system in

{(A, B,7C) : v € ['(0.75,6,70°)} .

1) Here a = 2cos(70°) = 0.6840403. Let @ = [ and R = 1. Then Py and Fj are

0=

0.4974287 —0.3576478 —0.07171182
—0.3576478  5.218269 ~-2.493646 |

ii) Now

min {5 ~ . tan"* (sp#Shy) on™ (spmr2fiammomy) | = 0194sz

so choose 8 = 0.019.

ii1) It is easily verified that for T € (0, 0.06492000], we have

Amin(Q)

IA(T)]| = || 2(eAT — I — AT)|| < ===~ cos(6) = 0.03176428.
6|| Poll
iv) So Tz = min < 0. 2sin(6) =0. .
iv) So min {o 06491624, ARl e 0.001712
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v) Hence, choose T = 0.0017. As noted in Remark 3.4, this sampling period is quite
conservative, so we now propose a method to approximately determine a less con-
servative sampling period. Using a 2-dimensional bisection search algorithm, we
determine

p.,(T):=min{p € (0,1} : sp(e*” + pe*TFC) C{z € C: || < 1},
p€p.1],0€(-4 4]}
Pee(T) := max{p € [1,00) : sp(e*T + pe®TFC) C {z € C: 2| < 1},
' pe(l,p),6€ (-4 4k
for lack of a better name, we will refer to p_, (T} (P...(T')) as the “combined lower
(upper) gain/phase margin” provided by the GSHF controller (F,T) using the
“continuous-time” approach. A plot of p_, (T') and p.,(T') is provided in Figure
3.4). Observe that for T = 0.041 we achieve the desired gain and phase margin.

Gain Margin vs Sample Period (70 phase margin)

10 il T L]

— Upper Gain Margin

. — — Lower Gain Margin
10 E
10° & 4

Gain Margin
—
[=]

10 4

10° 4
-1

10 5 AL_‘ l_a l.z .-‘ ]
10 10 10 10 0.041 10 10

Figure 3.4: Combined upper and lower gain and phase margin as a function of T
(c.t. approach).



Chapter 3: Robust Stability: Static GSHF Controllers 41

Using (3.6), we can choose

F(t) = —2.415424481(10)%e™(%042-) 1 2 342890355(10)*-5~(0-041-¢),
Figure 3.5 illustrates the response of the closed loop system at the GSHF sample

points when the initial condition zo = [ 1 0 | and the scalar gain uncertainty v = 4.

Static GSHF Controller: Sampled Output y(kT] (x,={1,0F", y=4)

1 T T T T

0.6f .

0.4 b

vikT]

0.2 :

.....
.......
..........
PSR
« o *

PR

.
......

-0-2 '] 1 Il L. ' 1. i I '
0 0.2 04 0.6 0.8 1r 1.2 1.4 16 18 2

Figure 3.5: Sampled output y[kT] when zo = {1 0]T and v = 4 (c.t. approach).

While the GSHF controller provides adequate performance at the sample points, it can
be seen in Figure 3.6 that the intersample performance is quite poor. This is primarily
due to the fact that the generalized hold has large gains.

Remark 3.5 One major drawback of the controller synthesis algorithm presented in
Remark 3.3, is that we typically need T to be small even to stabilize the nominal plant.
In Appendix A, we show how to design a static GSHF controller based on a discrete-
time approach so that for almost all T > 0, our controller will at least be capable
of stabilizing the nominal plant. Moreover, as T — 0, the new GSHF controller will
approach the GSHF controller described in the previous section and inherit its good

gain/phase margin properties. 0
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Static GSHF Controller: Output y(t) (x,={1,0]", Y=4)

40 T T T T v T L1

y()

2% 02 04 06 08 1' 12 14 15 18 2
Static GSHF Controller: Control Signal u(t) (x,={1,0]", y=4)
1000 . : . . ; r . r .
500 :
$ o
-500F 4
~1000 . . . ' ' — . —

] 0.2 0.4 0.6 0.8 1t 1.2 1.4 1.6 1.8 2
Figure 3.6: Output y(t) and control signal u(t):zo = [1 0] and 4 = 4 (c.t. approach).

3.4 Implementation as a Low Order LPC
Up to this point, we have implemented our controller as a pure GSHF. In practice, this
may prove to be difficult to implement, so one might question the benefit of such a control
strategy. Recall however, that given F' € R™*", the solution of (3.4) is not unique. In
this section, we will show how we can pick F(t) to be of a simple form so that it can
be implemented with a sampler, a zero-order-hold, and a low order discrete-time linear
periodic controller. We begin by showing how to implement a SISO GSHF controller as
a first order LPC, and then we will extend the result to the MIMO case.

First suppose that the plant is SISO. The solution (3.6) of equation (3.4) is not unique.
In fact, it is easy to show that for every F € R™*!, for almost all T > 0 there exists a
piecewise constant function F(t) which satisfies (3.4) and takes on at most n different
values in the interval [0, T). Indeed, let T := %, fr € R, and set

F(t) =fk7 te [kT7(k+1)T)1 k=0117"'7(n—l)'
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With

_ - T

A:=e*" B :=[ e Bdr,

0

for (3.4) to hold we need fo,..., fa-1 to satisfy
fo |
F=[Z"BXT'B - B| | 4

o

N~

=B

| ot |
But for most T > 0, and for all T sufficiently small, (4, B) is controllable (Theorem 2.2),
in which case B-is invertible, which means that fo, ... f,—; can be chosen to satisfy (3.4).

Now consider the following implementation of the GSHF controller

[ fw(kT), te(0,T)

w(kT +t) = F(¢) y(kT) = { fiy(kT), fe [T, 2T)

| fa-1y(kT). t€|(n— 1)T.xT).
Define (G(k), H(k), J(k), K (k) by
(01 1701 fO) y k=0

(G(k), H(k), J(k), K(k)) := {
(1,0, f&,0) , k=1,---,(n—1),

and set
(G(k + n), H(k + =), J(k + n), K(k + n)) = (G(k), H(k), J(k), K(k)), k€ Z*.
Then the GSHF controller can be implemented as
zZlk+1] = G(k)z[k] + H(k)y(kT), z[0]=2€R
w(kT +71) = J(k)z[k] + K(k)y(kT), =€[0,T);
we associate this controller with the 5-tuple (G, H, J, K,T). Hence, the T periodic GSHF

(3.20)

controller can be viewed as a first order, n-periodic, discrete-time compensator together

with a sampler and a zero-order-hold of period T = %
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Now suppose that the plant is MIMO. Here we can follow an argument very similar
to that presented above, but we let f; € R™*", and observe that the matrix B has full
rank. Hence, we end up with a controller of the form (3.20) but with z € R™.

Remark 3.6 If the eigenvalues of A are distinct, then we can precondition our MIMO
plant using an approach similar to that used in [37] to convert our MIMO problem to a

SISO one. and then design a first order controller to provide our desired robustness.

3.5 Unstructured Uncertainty

In the previous sections, we showed that it is possible to design a static GSHF controller
that can provide a gain margin as large as desired and any desired phase margin up to 90
degrees. The gain/phase margin problem can be looked upon as a structured uncertainty
robustness problem, since the uncertainty in the plant is parameterized by two scalar
parameters p and ¢. It is not clear if we have tolerance to unmodelled dynramics. To
proceed, consider a common unstructured uncertainty model commonly known as the
additive uncertainty model. in which
o Py(s) is the transfer function for the nominal model,

o W(s) is a fixed stable weighting transfer function,
e A(s) is a variable stable transfer function,

and we assume that our actual plant lies in a set of the form
Pa :={P(s) : P(s) = Po(s) + W(s)A(s), lAll < B}-

If our controller were LTI, then the existence of a combined gain/phase margin could
be used to show such a class of unmodelled dynamics can be tolerated. More specifically,
suppose the LTI controller C(s) stabilizes every system in

{0€®Po(s) : p € [p, Pl € [, 81}
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If we apply C to the dynamically perturbed model Py + WA, we can represent the closed
loop system by the block diagram illustrated in Figure 3.7.

- WA

¥
Q
Y

P

Figure 3.7: Perturbed closed loop system using an LTI controller.

After a loop transformation we obtain the block diagram illustrated in Figure 3.8.

= WA

(I-CPR)~'C |=

Figure 3.8: Transformed perturbed closed loop system (LTI controller).

Since C stabilizes P,, the transfer function (I — C P;)~'C is stable, so by the Small Gain
Theorem we maintain stability for all A € RH satisfying

WAl (I = CP)'Clle < 1.
If C € RL, then this will be the case if

1 1
HAllee < =TT * T=EAT "=

We can get a bound on the last term by looking at the Nyquist plot of —C FPy:
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—C(jw)Po(jw)

S

Z

Figure 3.9: LTI Nyquist plot of —CP,.
Indeed. it can be proven that

I(£ = CR)7HI > min{1/p — 1,1 — 1/p,sin($)};
we omit the details since we will be performing a similar analysis later. Since the con-

troller we will be considering is linear time-varying, the above analysis is not directly

applicable.
In this section, we would like to see how well the static GSHF controller designed

in Section 3.3 tolerates additive perturbations to the nominal plant. We saw in the
previous sections that as the sampling period tends to zero, the gain of the hold function
becomes very large, so intuitively one might expect that as the sampling period becomes
small, the GSHF controller tolerance to unstructured plant uncertainty will tend to zero.
Surprisingly, we will be able show that under some conditions on W(s), this intuition
is wrong. We will show that if the weighting function W is chosen properly, then our
static GSHF controller will tolerate a moderate class of unstructured uncertainty for all
sufficiently small sampling periods.
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It has been shown by Khargonekar et al.[30] that under some conditions on W, if
there does not exist an LTI controller that will stabilize every system in Pg, then there
does not exists a (possibly) nonlinear time-varying controller that will do so either; hence,
our GSHF controller can do no better than an LTI controller. The application of GSHF
controllers to the unstructured uncertainty robustness problem has been studied in some
detail in the literature (e.g. [26, 22, 40, 10]). While it has been shown that a fixed GSHF
controller can tolerate some unstructured uncertainty in the plant, there are few results
that describe what flappens to the tolerance of the controller to unstructured uncertainty
as the sampling period tends to zero. Feuer and Goodwin (19] used amplitude modulation
theory to investigate the robustness properties provided by static GSHF controllers when
the sampling period is small, and showed that GSHF controllers are typically sensitive to
uncertainty found in the high frequency range of the continuous-time frequency response

of P(s) (also see [20]).

The question before us now is. if our static GSHF controller is designed to provide
good gain/phase margins, then how will the stability of the closed loop sampled-data
system be affected by additive perturbations to the nominal plant, as the sampling period
tends to zero. Based on the results of Feuer and Goodwin [19], we expect that our
static GSHF controller will be seasitive to uncertainty in the high frequency range of the
continuous-time frequency response of P(s). Hence, we will impose a condition on W(s)
and A(s) (i.e. W(s) has a relative degree of at least n + 2 and ||Alj« is small enough)
so that for high frequencies, P(jw) = Po(jw).

Since our plant is strictly proper, it is reasonable to assume that the plant uncertainty
goes to zero as the frequency increases. From a practical point of view, however, it is hard
to justify our requirement that the weighting function W have a relative degree greater
than the plant order; unfortunately, it is not clear how to remove this requirement. Note,
however, that even if the condition on W is not met, the tools developed in this section

will allow us to compute a bound on the perturbation A for a fixed sampling period T'.



Chapter 3: Robust Stability: Static GSHF Controllers 48

Before presenting any £esults, let us first outline the approach that will be taken. Let
S and H denote the sampling and generalized hold operators respectively. If we apply
a static GSHF controller of the form (3.3) to P(s) € Pg, then we can represent our
perturbed closed loop system by the block diagram in Figure 3.10.

—~ WA

|’> S r-= H Py
+

Figure 3.10: Perturbed closed loop system.

Y

Since S and H are linear, we can transform the block diagram shown in Figure 3.10 to
the block diagram shown in Figure 3.11. Note that operators SWAH and (I — SPyH)™!

are LTI and can be represented by discrete-time transfer functions.

-~ H WA~ S [--

----»{ SWAH }----- :

g
:
i
-
v

---{ (I—SPH)™" |=--

- e s e e e em e e e s e Am o e e e o - -

Figure 3.11: Transformed perturbed closed loop system.

We can then use the results of Section 3.3 to show that for all sufficiently small sampling
periods, there exists a hold function so that the resulting GSHF controller stabilizes every

system in

{7Po(s) : 7 € T(p, 7. 9)}-
We will then use a discrete-time Nyquist argument to show that for such a hold function,

we have
1 =:7
min{p~! —1,1-5,sin(§)}

I = SPH) oo <
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Then all that remains to be shown is that there exists a 3, independent of T, so that for

every A € RH,, satisfying [|A]le < B, we have
ISWAH||oo <} (3.21)

r?
for then

(SWAH)(I ~ SPoH) oo < ISWAH|loo x (I = SPoH) Moo < 1,

so using the Small Gain Theorem, we can conclude from Figure 3.11 that we have closed
loop stability. Showing that (3.21) holds for sufficiently small T is not trivial. To proceed,
we choose the hold function to be a piecewise constant function, which is not restrictive
since the resulting GSHF controller will be easy to implement (See Section 3.4). Urnfor-
tunately, the H, norm of the frequency response of the resulting hold function blows
up as the sampling period tends to zero. However, we will be able to show that |H(jw)|
is bounded above by a n‘* order polynomial in w, independent of the sampling period.
Hence, if W(s) has a high enough relative degree, i.e. |W(jw)| rolls off at a fast enough
rate, then |H(jw)W (jw)| is bounded, e.g. see Figure 3.12. Therefore, if [|A|lo is suf-
ficiently small, then we would expect that ||[WAH]||, is small enough to ensure that
|SWAH]|  will be less than 1/r.

3.5.1 Choosing the Hold Function

We begin by using the results of Sections 3.3 and 3.4 to choose a specific generalized
hold function F(t) for our GSHF controller. To this end, with p € (0,1] and ¢ € [0, §),
pick positive definite symmetric weighting matrices Q and R, let a, P, and F satisfy
(3.11)-(3.14), and require that F satisfy

T
F=TFy= / eAT-7) BF(r)dr. (3.22)
[1]

Then we know from Theorem 3.1 that for sufficiently small sampling periods, the GSHF
controller (F, T) provides the desired gain/phase margin. Recall that the solution F(r)

of the above equation is not unique. Here we will choose F(7) to be a piecewise constant
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Frequency Response for the Generalized Hold Function
and the Weighting Function

10
Bound on |H(jw)|
10° |
10° | 1
W (jw)l
107h BN
~ -
~
t ~
‘0-4_ N N
Bound on |W(jw)H(jw)|

10-. 1 —LO Il ‘2 3

10° 10 10 10 10

w

Figure 3.12: Frequency response of H(s). W(s) and H(s)W(s).

function taking on n values over each sample period. Namely, with T := T/n, we consider
hold functions of the form
Fit)=fe, te [kT,(k + I)T), k=0,1,---,(n—1). (3.23)

Using the results from Section 3.4, we know that for every F € R™ and for sufficiently
small T, there exists constants f; so that (3.22) is satisfied. In fact, recall from Section
3.4 that with

A= AT, B= /0‘1‘ e*" Bdr,
we have
fo
i | =oT[ZT7'B ... B| R (3.24)
far
We will represent the static GSHF controller of this form by the pair (f;,T).
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3.5.2 Preliminary Results on the Hold Function

We will now examine some properties of the resulting hold function. We know that the
sampling period must be small if our GSHF controller is to provide good gain/phase
margins, so we begin by determining what happens to the time-domain infinity norm
of F as the sampling period tends to zero. From earlier observations, we saw that the
magnitude of the hold function becomes large as the sampling period becomes small, so
the following result -that states that f; = O(T ("_”) should not come as a surprise. We
begin by defining

(i, ) *Z 1),(2_“1),,

and
Brn—1) o Pm1) &
¥ = : : Pl (3.25)
$(Lm—1) - H(L1) 1
This matrix will be needed to relate the discrete-time controllability matrix associated
with the pair (4, B) to the continuous-time controllability matrix associated with the

pair (A, B).

Remark 3.7 Note that ¥ can be written as

w mem  m || =10 (=20 e 0
U= 0!(n1-1)! u(nl-z)! 0 (=1} (-2} ... 0O
B IS I | [

(here 0° := 1) so since the first matrix is upper triangular with nonzero diagonal elements

and the second matrix is a Vandermonde matrix, we can easily show that ¥ is invertible.

a
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Proposition 3.3

fo T
: = n¥-! ) . [An-lg ...
fn—l T
1
Proof:
If we write .
A=eT =3 AT
=0

and

T oo R |

_ A1BT
— AT —

B = /; e”"Bdr = ,-';;1 T

then it can be shown that

T
(7B ... B]=[a—8 - B]

92

B ]—1 Fo + O(T).

v +OT).

T

Substituting this into (3.24) and using the fact that ¥ is invertible (see Remark 3.7), it

follows that
fo T
: WT|[ a1 - B]

fn-l

T

= n¥! [An—lg

-1

v+O(T | Fo
T

8| R+o(@).

We now present some results on the weighted average of the hold function

T
ui(T) == T'l/ r*’F(r)dr, i€ Z*.
0
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We will show that the weighted average of the hold function approaches a constant as
the sampling period tends to zero, and that the constant is easily computable. This
result will be important when we go on to show that the frequency response of the hold
function is bounded above by a n*® order polynomial in w independent of T'.

Proposition 3.4 If

1
“ (~1)1t
— ! -1
= , [B .. a~B] P
Cn—
' (=1)"}(n — 1)!
then
G+O(T) i=0,1,---,n—1
ui(T) = . i
O(Tt-i-l—n) t=n.n+ 1, cen
Proof:
Let us first look at u;(T) for 2 = n,n + 1, ---. By definition
T T
- i - i T T
(T = |7 [ #F(r)dr|| < T f rdr|Fle = 1Pl

But by Proposition 3.3, we know that ||F|ee = O(T-»Y), so it follows that
w(T) = O(T#+1-),

Now let us look at u;(T) for i =0,1,---,n — 1. Write (3.22) as
Tt /OT e 4"BF(r)dr = e AT F,. (3.26)
If we define
Ay(1):= e AT — § !—'—‘-:.1)-, and

Ay(T):=e 4T -1,
then we can write (3.26) as

n-1
T-! / i [Z A A 1‘)] BF(7)dr = (I + Aq(T))Fe
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= TZ:A‘B%%‘ (T“ /0 ! r'?”(r)dr) +T! /0 i Ay(7)BF(r)dr = Fo + Ag(T) Fo,
so along w:';h the definition of u;(T), we have
1 olT)
[ B ... A"'B ] :
Sl | LoD
+77! f Ay(r)BF(r)dr = Fy + As(T) Fo.

. 0
Since A;(7) = O(t") and ||F|le = O(T-"-1), it is possible to show that the second

term on the LHS is of order T. By using the fact that Ax(T) = O(T), it follows that

1 #bo(T')
[B An-IB] : = Fo+ O(T)
L | | sea(T)
#o(T) 1
= : = - ERE A““B]_lFo-i-O(T)-
pin1(T) (~=1)"n — 1)!

We are almost ready to prove the key result that the frequency response of the hold
function is bounded above by an n** order polynomial, independent of T', but we will first
need the following notation and preliminary result relating the gains f; to the frequency
response of the hold function. We define the sampling operator S : € — 5 via

y=Su < y(k)=u(kT),
and the generalized hold operator H : & — PC via
y=Hu <= y(t)=F(t)u(k), t € [kT,(k+1)T).

Let h(t) be the “impulse response” of the generalized hold function and H(s) be the

associated transfer function:
1 _ C'T n-1

H(s)= ——> fi™™;
=0
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e.g. see Lemma 2 in {22].

We can now state our first main Lemma:
Lemma 3.1 There exists constants 7; > 0 and T; > 0 so that

|H(jw)| < T (0 +mw+--- +7aw”), T €(0,Th).

Proof:
We will prove this result by first partitioning H(s) into two parts:
1 _ eﬁi‘ n—1 _
Hy(s):= . Hy(s):=)_ fie T (3.27)
i=0

For the first part, observe that we can write

. . (T
Hy(jw) = 1_;«»? = (TeF) #
2

The second term is the well known sinc function sinc(!g), and it has the property that

Isinc("'zj)l < 1. Hence,
|Hy(je)| < Tle™ ¥ | x [sine(4F)| < T. weR. (3.28)

Let us now look at the second part. We begin by writing

Hy(jw) = Hy0)+ f e g,
0 4=Jwy
W pwy
= Hg(O) +w ‘%ﬂ . +/ f dng!.! . d(dgdu}l
= o Jo s=jwn
= Hy(0)+w 252 et e o) _
w Wrel
'{‘/ .../ 4"33”!:! dwy, -« - dwy, (3.29)
0 0 =jwn
and noting from the definition of Hj(s) that
n—1
- (~BT Y (3-30)

i=0

We will now use Proposition 3.4 to come up with an expression for T ) :",-_"01 i*f;. Now

n-1

T—
po(T) =T /o F(rydr=1)  f;,
=1
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so by Proposition 3.4, it follows that

-Zf.—cO+0(T) = Zf.—nCo+0(T) (3.31)
i=1

Now

n-1 (z+1)T _n-l
,ul(T)=T"‘/ rF(r) d-r-.T"Zf./ =-,12 £i(2i +1)
0 3 i=1

=0 T
_ n-1 _ n=1
=1 ifi=m(M)-£) fi
i=1 . i=1
Hence, by using Proposition 3.4 and (3.31), it follows that
n-1
Y ifi=(a+O(T) + L~ + O(T)) = 1 + O(T)
i=1
n-1

=T ifi=nci +O(T).
=1

In a similar fashion, it can be shown that for & = 2, ~-~-,7n — 1 we have

n-1
T i*f; = new + O(T). (3.32)
i=1
Let us now look at the last term in (3. 29) Since
n—1
l Hz 3 th __1T)n -aT < Z |ﬁl(,‘T)n
=0 i=0

and f; = O(T-"~1}) (see Proposition 3.3), it follows that

d"H'i!a! — O(T),

If we combine (3.29)—(3.33), it follows that
|Ha(jw)| <2 [(Jeol +O(T)) +(Jeal +O(T))w + -+ + (e S@) =t 4 O(T)u"] -

n-1

SO

dun -+ duy = O(T )™ (3.33)

s=jwn

Finally, combining this with (3.28), it can be shown that
()| T [(Jeol + O(T) +(Jeal +O(T Y+ - +{Eok ST o1+ O(T)]  (3.34)

and our result follows. a
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Remark 3.8 There is an interesting relationship between the weighted average of the
hold function u;(T") and the bound on the frequency response of the hold function. As
can be seen in (3.34), for sufficiently small sampling periods, the constants 7; can be
chosen arbitrarily close to the constants $. Recall from Proposition 3.4 that ¢; is the
limiting value of the weighted average of the hold function u;(T'), and that it is easy to
compute. Hence, we know that as the sampling period becomes small, the bound on the

frequency response of the hold function approaches

T (lcol Fleho + oo+ (%,ﬁ;l) Wt + O(T)w") :

3.5.3 Main Results

To prove our main result, it will be easier to break down the problem into two parts. In the
first part (Lemma 3.2), we will show that the GSHF controller designed to simultaneously
provide an upper gain margin of p, a lower gain margin of p, and a phase margin of @,

will also gnarantee that
1
= —=— =T
minlp —L1-7 0 sm@}
Our second result (Lemma 3.3) will show that there exists a constant 3 so that for every

A € RH satisfying ||A|le < B8, we have

I(1 = SPH)™|oo <

ISWAH| < ¢

for sufficiently small T'. Finally, we will combine these two results to get our main result

in Theorem 3.3.
Lemma 3.2 If the GSHF controller stabilizes every system in

{(4,B,1C): v € T(p,p, 9},

then
1

min{p~! — 1,1 — 5}, sin(¢)}

I = SPoH) Hloo <
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Proof:

Define G4 := SPyH and let G4(e’®) be the associated discrete-time frequency re-
sponse. Let », be the number of eigenvalues of A with real parts greater than zero.
Since the GSHF controller stabilizes the nominal plant, it follows that the discrete-time
Nyquist plot of —Gj encircles the —1 point in the complex plane n, times. Now consider

the region defined by
Q:={pe* : p € [-1/p,-1/Pl, ¢ € [-$, 41},

which is illustrated in Figure 3.13.

Figure 3.13: The region Q and # defined.
Since the GSHF controller stabilizes every system in
{(4,B,7C): 7 € T(p, 7, 9},

we know that the Nyquist plot of —Gy lies strictly outside the region , for if it did not
(e.g. see Figure 3.14), then there would exist a p, € [p,5] and ¢; € [, § so that the
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Nyquist plot of —p;e/* Gy would intersect the —1 point, which implies that the closed
loop system is not stable for this choice of p and ¢.

Figure 3.14: Nyquist plot of G4 lies outside .

Define + as the largest radius of a circle centered at —1 that is entirely contained in

Q, i.e. see Figure 3.13; it is straightforward to show that
#:=min{p™! -~ 1,1 — 5 ~},sin(§)}.

Hence, the distance from the —1 point to —G4(e?®) is always greater than #. In particular,
ixa1f| ~- 1+ Gy(®)| > 7,

but

inf| — 14 Ga(e”)| = inf|l - Ga(e”)|

= (St;p in- Ga(e’")]“l)-
= l(1-Ga)MIZ,
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so 1t follows that
1

- _ -1 Pl = Pt
(1 = Ga)leo = (1 = SPoH) oo < min{p=! — 1,1 — 5, sin(9)}

Before presenting our second result, we will first need to relate the frequency re-
sponse of a continuous-time LTI system G(jw) to the frequency response of the associated

discrete-time LTI system (SGH)(e’®). Define the sampling frequency as
w, :=2x [T

Theorem 3.2 The frequency responses G(jw) and (SGH)(e?®) are related by
: L o
(SCH)e™T) = 7 3 Gliw + jkw) H(juw + ko).
k=-00
Proof:

See Theorem 3.3.1 in [12] for the proof, and [12, Section 3.3] for related results. m

We are now ready to state our second result.

Lemma 3.3 For every W (s) of relative degree n+2, and every 7 >0, there exists a >0
and T>0 so that for every T €(0,T) and A € RL,, satisfying ||A[|e <8, we have

[SAW H||o < 7.

Proof:
Fix # > 0, let w, = 27/T, and from Theorem 3.2 it follows that

: l & . L L
(SAWH)eT)| < 7 D |Aliw + jhkw )W (jw + jkw,) H(jw + jkw,)
k=-00

< BBl= 3 Wit + ko)l Hliw + kol

k=—cc
Since W (s) has relative degree n+2, it is easy to show that there exists positive constants

fPo and B, so that

. Bo
L —me_—
W) < [t
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and from Lemma 3.1, it follows that there exists positive constants n; and T) so that
|H(jw)| < T(no + mw +-+- + mw”), T € (0,T1).

Hence, there exists positive constants §; and f; so that

TB.
1+ faw?
which means that for T' € (0,T}), we have

W(w)H(jw)| £ 77——=—+ T €(0,Th),

Lt = Ba
(SAW H)(e7*T)| < [|A ]l ,,;m T3 Bow TR

But for every w € R, there exists an m € Z and w, € [0,w,) so that
W = M, + Wy,

SO

[(SAW H)(e™T))]

B2
< [lAlle k;@ 1+ Bafwr + (m + k)w,]?
_ < /32 — s
- ”A”“’ k:;q; 1+ .BS(U). + klws)z (kl - L)
_ oo ﬁz -1 .32
= 12l (lqz—o 1+ ﬂa(w1 + kiw,)? * k|=z- 1 +ﬂ3(“’1 + klw')z)
< llAlle (hz ﬁm Z 1+ B (kx + 1)w.]2)
_ =B s =
= 18 (,,z T+ Bo(Frwn)? b,;.x 1 +ﬁ=(’°2°’~)’) b
= 2}Alleo T Bsllron)

(=}

ky=
= Ba

2[|Alloo (.32 gm)
= B2

2[}Alleo | B2 + hzz:lﬂ—s(kxwa)’)

= 2 B 1 _
- 2“A"oo (,32 +T mé E) . (U. —21l’/T)

IA

IA
N
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But it is easily shown that

o0
1
E —_—< 2
z— b}
kl.—.lkl

which means

- 2m2,
Hence, the result holds with T = T, and

o . 2 ﬂ') -IA
B:= |2 ﬁz+T1m T.

Finally, we use Lemmas 3.2 and 3.3 to prove our main result.

ISAW Hllo < 2] Al (ﬂz + TZ—‘?’—) . T (0T

Theorem 3.3 For every W (s) of relative degree n + 2, there exists a 3 > 0 and T>0
so that for every T € (0, T), the GSHF controller (f;,T) stabilizes every system in Pg.

Proof:

By Theorem 3.1 and the comments in Section 3.5.1, we know that with p € (0,1],
p € [l,), and ¢ € [0, -’25), there exists a T > 0 so that for every T € (0,7}) the
associated GSHF controller (f:, T) stabilizes every system in

{(A,B,1C): v € I'(p,p, $)}-

Hence, from Lemma 3.2, we know that for every T € (0,T}), the associated GSHF

controller (f;,T) will also guarantee that
1
min{pt —1,1- 7 \sa(@)}
Let 7 := 1/r. Then by Lemma 3.3, we know that there exists a T € (0,77) and 8 > 0 so
that for every T € (0,T) and A satisfying ||Allc < B, we have

I(I = SPoH)  floo <

ISAWH||loc £ 7 =1/r.
Hence, for every T € (0,T) and A satisfying ||A|le < B, we have

I(SWAH)(I — SPoH) oo < |SWAH|joo x |(I — SPoH) oo <1.  (3.35)
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If we consider the block diagram of the closed loop system in Figure 3.10, and the
equivalent block diagram in Figure 3.11, then by the Small Gain Theorem, we conclude
from (3.35) that for every T € (O.f), the associated GSHF controller (f;,T) stablizes

every system in Pg. .

Remark 3.9 Before leaving this section, it should be noted that the assumption that A
be stable was made so that we could easily characterize the set Pg. As done in [34], we

could have relaxed this assumption and assumed that P(s) was in a set of the form

{Ps + AW : [S(P, + AW)H] has the same number of unstable poles as SFPyH,
A € RLx,||Alle < B}-
However, care must be taken to ensure that no unstable poles are cancelled out by

pathological sampling. o

3.6 Summary and Concluding Remarks

It has been known for some time that for unstable non-minimum phase LTI plants, there
is a maximum gain margin which can be provided by an LTI controller [33]. Here we
consider the use of a class of time-varying controllers in solving an extended version of the
gain margin problem. We have shown how to design two static GSHF controllers, both of
which can provide a gain margin as large as desired and any desired phase margin up to
90 degrees; in fact, the both controllers tolerate a combined gain and phase perturbation
in the nominal plant model. The first controller is based on a continuous-time approach
and requires that the sampling period be small to stabilize even the nominal plant®.
The second controller is based on a discrete-time approach and does not suffer from this
drawback. These controllers are easy to design, and can be implemented directly as
a static GSHF, or indirectly using a first order linear periodic discrete-time controller
together with a sampler and a zero-order-hold. We also showed that for a SISO plant,
*These results have been published and can be found in [44].
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the GSHF controller based on the continuous-time approach can tolerate unmodelled

dynamics when an additive unstructured uncertainty model is assumed.

These results complement previous work on the use of static and dynamic GSHF
controllers for the gain margin problem [57], [58]. In our approach, however, we can solve
the more demanding gain/phase margin problem. We took advantage of the fact that our
controller provides a desired phase margin to show that the GSHF controller can tolerate a
moderate amount of unmodelled dynamics as well. Unlike the dynamic GSHF controller
of [57], our controller does not provide the optimal gain margin for a given sampling
period, although it is much simpler to design and to implement. Furthermore, since
the controller gain is typically large, this control strategy suffers from poor intersample

behaviour.

More work is needed to explore the tradeoff in the design parameters, and to see how
sensitive our controller is to other unstructured perturbations in the plant model (e.g.

multiplicative uncertainty, feedback uncertainty).



Chapter 4

Robust Stability: Low Order LPC

4,1 Introduction

One of the main limitations of GSHF controllers is that the control signal tends to be
large and the intersample behaviour poor. In this chapter, we will show how to design
a low order linear periodic controller (LPC) that has satisfactory intersample behaviour,
while providing a gain margin as large as desired and any phase margin up to 90 degrees.
In fact, we will show that if the sampling period is small, then our LPC control law is

very close to a continuous-time state feedback control law.

This chapter is organized in the following manner. In Section 4.2, we formulate the
gain/phase margin problem and we motivate the particular approach that will be taken.
Section 4.3 describes how a low order LPC can be constructed to implement our control
law. The main results follow in Section 4.4, where we show that it is possible to design
a low order LPC that has satisfactory intersample performance, while providing a gain
margin as large as desired and a phase margin of up to 90 degrees. An example illustrating
the low order LPC design method is given in Section 4.5. Additional properties for this
controller are also highlighted in this example. Finally, conclusions are made in Section
4.6.

65
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4.2 Problem Formulation

As in Chapter 3, suppose our nominal model is
(t) = A z(t)+ Bu(t), =(0) = zo,
y(t) = C=(t),
with z(t) € R™ the state, u(t) € R™ the control input, and y(¢) € R" the plant output.
We capture uncertainty in the model by supposing that the actual system is given by
i(t) = Az(t)+7But), z(0)=zo,
y(t) = C z(t);
we associate this system with the triple (A,vB,C). With
(p.7.9) := {pe”® : p € [p,7], 6 € [-4, 9]},

our goal is to find a controller which will simultaneously stabilize every model in

{(A,7B,C): v €(p,7.9)}-

If $ = 0. then we have a gain margin problem: if p = p = L. then we have a phase margin

(4.1)

problem; the general case is a combined gain and phase margin problem. With T' > 0
the sampling rate, we will consider LPCs of the form
zlk+1] = G(k)z[k] + H(k)y(kT), z{0] =2 € R,
w(kT + 1) = J(k)z[k], r€[0,T);
we associate this system with the 4-tuple (G, H,J,T'). Here we let p denote the period

(4.2)

of the controller parameters G, H, and J, so that pT is the period of the controller
(G,H,J,T). Note that (4.2) can be implemented with a sampler, a zero-crder-hold, and
an I** order periodically time-varying discrete-time system of period p (See Figure 4.1).

k
LD, ST
T

G(k)=[F] + HE)er | 2% MZom 1%
J(k)z[k] . —

(']

(k]

Figure 4.1: Implementation with a sampler and a zero-order-hold.
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Here our notion of closed loop stability is the usual one:

Definition 4.1 The LPC (4.2) stabilizes (4.1) if, for every zo € R" and z, € R', we have

|tl_i_’rct;nc’:z:(t) =0,
klim z[k] = 0.

Before presenting any results, let us first provide some motivation for the approach
adopted in this chapter. With F€ R™** p>n, and T :=pT, we consider the control law
0 t€ kT, kT +nT)
{ Fz[kT+nT] te[kT+nT,(k+1)T);
we will denote the intervals [kT,kT + nT) as the Estimation Phase and intervals

(kT + nT,(k + 1)T) as the Control Phase (see Figure 4.2).
u(t)

(4.3)

u(t) =

Fz[nT] ¥+

N

aT

EstimatioL Control
Phase Phase

Figure 4.2: Estimation and control phase of u(t).

Our first result, found in Section 4.3, will show that (4.3) can be implemented by an
m* order LPC of the form (4.2). Then the natural question is how do we choose F, T
and p. Since we are assuming the plant is strictly proper, we know that the plant filters
out the high frequency content of u(t). Hence, for small T’ one might expect that (4.3)
will have the same effect as

u(t) = Ep’—‘Fz(t)
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(See Figure 4.3). If this is the case, then by choosing F appropriately, our low order LPC

A Fz(T + nT]

u(t)

Fz[nT) _ T~ (
-~ =2 Fe(t)
)

.’/ -

nT T T+nT 2T 2T +aT t

Figure 4.3: Control law.

should share some of the desirable properties provided by such a state feedback controller.
In this chapter, F' will be chosen using linear quadratic regulator (LQR) theory since it

is well known that such controllers provide excellent gain and phase margins.

4.3 Control Law Implementation

In this section we will show that given a MIMO plant (4.1), for every fixed integer p > n
and almost all sampling periods T, there exists an m** order LPC of the form (4.2) that
will implement the control law (4.3).

Proposition 4.1 If T >0 is non-pathological, then for every p>n and every F e R™*",
there exists an m** order LPC (G, H, J, T) that will implement the control law (4.3).

Proof:
Let p > n, T = pT and k € Z*. Recall from (4.3) that for r € [kT,kT + nT) we

have u(r) = 0, so for i = 0, 1, -«=-, n, we have

z[kT +iT] = (e*T)'z[kT; (44)
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hence,
y[kT) C
: = : z[kT).
ylkT + (n — 1)T) C(eAT)(-1)

=:Tyr[kT] =C

Since T is non-pathological and (C, A) is observable, it follows from Theorem 2.1 that
the pair (C,eA7) is observable, which implies that rank{C} = =, so

z[kT) = (CTC)~'CTY[kT). (4.5)
Using (4.4) and (4.5), it follows that

Fz[kT + nT] = F(eAT)*(CTC)~'CTY[KT),
so define f; € R™*" via

[fo - fams | = F(eATIm(CTO)CT.

Hence, we can form Fz[kT + nT| by sampling the output during the Estimation
Phase while setting u to zero. During the Control Phase we simply keep u constant at
Fz[kT4nT). To implement this, we choose (G, H, J) € AR™*™) x F(R™*") x F(R™*™)
to be

0,f0,0) k=0
(G, H,J)k) = (I, fe,0) k=1,--,n—1
(1,0,I) k=mn,---,p-—1,

and set
(G(k + p), H(k + p), J(k + p)) = (G(k), H(k), J(K)), ke Z*.

It is routine to verify that in closed loop, the respouse of (G, H, J, T') becomes (4.3).
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4.4 Controller Design

Now that we know how to implement (4.3) as a low order LPC, the next step is to
choose F. It is well known that a continuous-time LQR optimal state feedback controller
provides a lower gain margin of }, an upper gain margin of oo, and a 60 degree phase
margin. Recall from Chapter 3 that in order to design the static GSHF controller that
provided a lower gain margin of less than 1/2 and a phase margin greater than 60 degrees,
we scaled the C' matrix. For the same reason, we now scale the B matrix; with p € (0, 1],
p € [l,00),and ¢ € [0, %), define

a := 2cos(®) (4.6)
and

B .= apB.
With Q € R™*™ and R € R™*™ symmetric and positive definite, we now consider the
auxiliary system

w(t) = Aw(t) + Bu(t), w(0) = wo;
we would like to find the control law which, for each wg, minimizes

|t 0u + o) Rote

0

It is well known that since (/@, A) is observable and (A, B) is controllable, the optimal
control law is of the form v = Fow; we can obtain the optimal gain Fj by first solving

the algebraic Riccati equation
PoA+ AT - RBR'BTR+Q =0 (4.7)
for the unique positive definite symmetric solution Py, and then setting
Fo=—-R1BTP, (4.8)
Not only is

sp(A + BF;) = sp(A + apB) C C~,
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but it can also be shown that

sp(A+ pe*BF;) CC™, p€lp,pl.¢€(-4,9]

It would be nice if we could simply set F' of (4.3) to Fy. However, the control is

turned on for E’;—" of the time, which means that we should scale this gain, i.e., set

F= "P"FO-

-n
While this may work when T is small, the controller will probably not even stabilize the
nominal system when T is large. Hence, instead we will design F using discrete-time LQR
theory so that we can always guarantee stability of the nominal system; since we would
like the controller to inherit the gain and phase margin properties of the continuous-time
LQR controller, we will incorporate the o5 term in the design. To this end, with p > n
we define

(p-n)T
Ag:=e?T By := / eA"Bdr, Fp:= Fe?™T, (4.9)
0
when we apply the control law (4.3) to the plant (4.1), we have
z[(k + 1)T| = (A4 + vBaFr)z[kT].

Hence, we can state our control objective as:

Given the nominal system (A, B,C) and the set P(g,'p',a), finda T > 0,
p > n, and an Fr € R™*" such that for every v € I'(p, p, &), we have
sp(Aa +vBaFr) C{z€ C:|z| < 1}.

Now we will design the discrete-time control law. First, fix p>n; by Theorem 2.3, we
can choose a Ty >0 so that (A4, By) is controllable for T'€ (0, Ty). Let T €(0,Tp), define

B;:= apBy,

and consider the auxiliary system

w((k + 1)T} = Aqw[kT] + Bp[kT), w[0] = wo. (4.10)
We would like to find the control law which, for each wg, minimizes
3 {wT[kT]Qw[kT] + (z,,ﬂ)2 uT[mRv[kT]} : (4.11)

k=0
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It is well known that since (1/@Q, A4) is observable and (Aq4, E) is controllable, the optimal
control is of the form

v[kT) = Frwl[kT); (4.12)
furthermore, the following discrete-time algebraic Riccati equation

o~ [T, = 2 17! 7

Pr - ATPrAq+ ALPrB, [By PrBi + (552) R] By PrA—Q=0 (4.13)

has a unique symmetric positive definite solution Pr and the optimal gain is
/-.1: - 2 =1 T

Fr=- [Bd PrB; + (?) R] By PrAg;, (4.14)
e.g. see the results of exercise 12.7 in [55]. If we set

F = Fp (e*T)7}, (4.15)

then we will be able to show that for sufficiently small 7', our control objective can be

attained.

4.4.1 Preliminary Results

We will require some preliminary results to prove that our new LPC provides good
gain/phase margins with satisfactory intersample performance. Specifically, we would
like to show that the solution of our discrete-time Riccati equation (4.13) approaches the
solution of the continuous-time Riccati equation (4.7) (See Rosen and Wang [43] for a
similar result). The approach that we take here will be analogous to the approach used
in Appendix A, so let us begin with the following:

Lemma 4.1 For every p > n, we have Pr = O(T—l).

Proof:
By our choice of Fr, it follows that when we apply the auxiliary control law (4.12)
to the auxiliary system (4.10), the cost function (4.11) is minimized, and in fact, the

associated optimal cost is w? Prwe.
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Choose F € R™*" so that A + BF is stable and consider the control law
v[kT) = ;2 FulkT), (4.16)
which means that the closed loop auxiliary system is given by
wl(k + 1)T| = (As + ;25 BaFYwl[kT), w(0) = wo.

Since
—— = {p-n)T ~ o~
As+ 2BiF = AT+ 2 eA"BdrF

p-n p-n

= (I+AT+O(T)) + & (H)T[.r + O(r))BdrF
0

= I+T(A+ BF)+0(T),

and A+ BF is stable, it can be shown using a Lyapunov type argument that there exists

aly>0,a>0and A <0 so that

I(Ad + 2= BaFy*|| < a(e*T)*, T € (0,To).

p-n

Hence, for T € (0, Ty), the cost associated with the control law (4.16), which is given by

wj {Z[(Ad + 2:BaF)TI*(Q + FTRF)(Aa + ,4;,-,79:?)“} w,
k=0
is bounded above by

2|Q + FTRF
19 + PR,

=1
=2 I? = OT ) ol

3" (P T)H|Q + FTRF|| - |lwol® =

k=0

this clearly is an upper bound on the optimal cost w3 Prwo. Hence, we have
w§ Prug < O(T) ol
= Pr=0O(T ).

We can now use this to prove the following:
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Lemma 4.2 For every p > n, we have

B:s = (p—n)TB+0O(T?),

PT = "ITPO'I'O(I),
Fr = 2o+ o(T).
Proof:
Since

e = [+ Ar + O(+?),
it follows that
B: = ap / T et Bar
0 ~
= (p—n)TB+O(T?). (4.17)
Define
Ps :=TPp.
From Lemma 4.1, it follows that Po = O(1). Substituting Pr = Pa/T and
Ag=e*T = [ + AT + O(T), (4.18)
into (4.13). we get
_ ([ + AT + O(T’))T 7 (I + AT + O(T’))
+(1+4T+0(T")" % ((p-mTBrO(T?)
x [((p n)TB+O(T’))T (o -n)TB+ oT?) + (~*’;,—“)2 R] B
x ((p_n)TB+0(T=)) % (1+AT+ oT")) -Q@ =0
=% (L} +(ATPa + Pad) + O(T)) + (2P, B + O(T))
« [(SETE B + OT)) + 232 R] ™ (Z2B7Ps + O(T)) - @ =
= —(ATPs + PaA) + O(T)
+(EPaB+OM)) (ErR) (@) +1) ™ (22287 P +O(T)) -Q=
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But by Lemma 2.1 (iii),
(I+0@) ™" = (I+0(T),
so it follows that

ATPy + PAA— PABR'BTP, +Q +O(T) = 0. (4.19)
A
= Q

Since Ag = O(T'), we know that there exists a T} > 0 such that for T € (0,T;) we have
Q+A40q >0

Furthermore, since Pr = PY > 0, it follows that Py = Pz > 0. Then together with the
fact that @) and R are symmetric, it follows from (4.19) that Ag = Ag. Hence, we can

apply Lemma 2.3 to show that for T € (0,T}), there exists a constant ¢; > 0 so that

IPoll + el Al
12a - Pul < max { (121 £el2el ) yag) g}

Since Ag = O(T), it follows that

|Pa — Po|| = ||TPr — Byl = O(T)

= TPp - Py = O(T)

= Pr = 3P+ O(1). (4.20)
Finally, if we substitute (4.17), (4.18), and (4.20) into (4.14), we get

Fr = - [((p-n)TEw(T’))T(T*‘Po+0(1)) ((p-n)T§+0(T’))+f;5ﬁR]
< ((o-m)TB + o) (T P+ 0(1)) (1+ AT + O(T"))
[!?LTBTPOB + 0(1“’)+!?LR] (&2B7R +OT))

= -(I+oM)" (Zrr*) (B2B"R +OM)

= —([+0M) (Zpk") (E2B°R+OT))  (Using Lemma2.1)
2 Fy + O(T).

(pn)

-1
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In order to show that the intersample performance of our LPC is satisfactory, we will

need the following result.
Lemma 4.3 For every 7 € ['(p, 7, ), we have

[eA+mBR|2 < ||l x || B3| x & TSI £ > 0.
Proof:

Fix v € [(p, . $), write 7 = pe’®, let P, and Fy satisfy (4.7)—(4.8), and consider

#(t) = (A + YyBFo)z(t), z(0) = z,.
Consider the candidate Lyapunov function V : C* — C:

V(z) := z" Pyz.
Since Py = PT, we know that V is real valued, so

V(a(t) = SV(=(t)
is also real-valued. Expanding V(z(t)) and using (4.7) and (4.8) to simplify, it follows
that

V(z(t)) = —=z(t)"Qz(t) + ap(ep — (v* +7))z(t)" b BR™* BT Pyz(t)

= —z(t)"Qz(t) + ap(ap — 2p cos())z(t)" PoBR™' BT Pyz(t).

But since cos(¢) > cos(@) = a/2, and p < p, we have

ap — 2pcos(¢) <0,
so along with the fact that R > 0, we have

V(z(t) < -2(t)"Qx(t),

= V(2(t) < —dmin(@llz(®)” = ~1Q~ I I,

= llz@)* < —1Q7*) x V(=(t)).
Hence,

Viz(t) < [Pl x l=()|1?

< =Pl x 1Q7M| x V(=(t)),
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so it follows from Lemma 2.2 that
V(z(t)) < e @ T0RI V().
But
V(2(t)) 2 Amin(Po)llz(@)* = | P51 7 I=(2) 112,
so it follows that
le@F < [ x & TRV (zq)
< B X 1ol x & TR g

= [|eAtrBRg 2 < ||P5| x || Poll x & WA 2o (4.21)

Since this holds for every zo € R™, the result follows.

4.4.2 Robust Stability

We can now use the results of Subsection 4.4.1 to show that if we choose F using (4.15),
then the resulting LPC controller can provide the desired gain and phase margins.

Theorem 4.1 For every integer p > n, there exists a Trhoz > 0 so that for every
T € (0, Tnaz), there exists a m* order pT periodic LPC (G, H,J,T) which stabilizes
every system in

{(4,7B.C): v € T(p, 7, 4)}-
Proof:

Fix p > n. By Theorem 2.3, choose Ty > 0 such that (A4, Ba) is controllable for every

T € (0, To). Recall that @, Pr, and Fy satisfy (4.6), (4.13), and (4.14). With 7€ [g,-, z
and ¢ € [—¢, §], consider

wlk + 1] = (Aq + pe*BaFr)wlk], w[0] =wo € R™.
Fix wo and consider the Lyapunov candidate function V : C* — C:

V(w) := w" Prw.
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Since Pr = P¥ it follows that V is real-valued, so
AV(wlk)) := V(wlk+1]) - V(w(k)

is also real-valued. Expanding AV (w(k]) and using (4.13) and (4.14) to simplify, it follows
that

AV(wlt]) = —wkl"Qulk] + Fulkl"(FfB; PrBaFr)ulk]

+(1 = 25 cos(¢))wlk]"FF (ETPTE; + (352)2 R) Frwlk];

using the definition of a given in (4.6), the bounds on ¢, and the upper bound on p, we
see that

1 — 25 cos(4) <0,
so along with the fact that Pr > 0 and R > 0, we have

ap

AV(wlk]) < ~wlkQulk] + (&) wlky"(FFB: PrBaFr)ulhl. (4.22)

We now go on to show that as T — 0, the second term in the above inequality
is dominated by the first term. From Lemma 4.2, we know that there exists positive

constants ¢y, ¢z, c3, and Ty € (0,7,) so that for T € (0,T;) we have

{Ball < eiT,

Pril < %,
| Frll < cs.
Hence, there exists a constant ¢4 > 0 so that for T € (0,T}) we have
2)’ [wlkl"(FFBa" PrBufryulk]| < el k).
If we let
Trnae < min { 222@), 7,}
then it follows that for T € (0, Tiaz) and w[k] # 0, we have
(Z) okl (FFBL" PrBaFr)ulk]| < Mmen(@l{klI < wlkl"Quik]
= ~ulk"Qulk| + () wlkl"(FF B PrBaFr)ulk <,

ap
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so for T € (0, Trmaz) and w(k] # 0, we have
AV(w[k]) <0.

This means that there exists a positive definite matrix Q so that
AV(wlk]) < —w(k]"Qu(k], T € (0, Tmaz), k= 0.

Hence, for every wq, V(w[k]) goes to zero as k — oo; since Pr is positive definite, it

follows that w[k] goes to zero as k — oo as well, so using the definition of B., we have
sp(Aa+P*BaFr) C {z € C: Jz| < 1}
= sp(Aa + appe’® B4Fr) C {z € C: |z| < 1}.

But this holds for app € [p, 7], so for T € (0, Trmaz), p € [p,P] and ¢ € [, 8], we have
sp(Aa + p&®ByFr) C {z € C: |z| < 1}.

Finally, with T € (0, Tinez) and F := Fr(e“"T)~!, apply Proposition 4.1 to construct the
m*? order pT periodic LPC (G, H, J,T).

4.4.3 Intersample Performance

We will now look at the performance of our LPC controller as T — 0. Consider the

following desired closed loop system:
Z(t) = (A+7BFo)3(t), #(0)=zo € R™ (4.23)
Then our desired state is defined as

Z(t) = elATrBRt g

If we apply the stabilizing LPC constructed in Theorem 4.1 to our plant (4.1), then
the state of the plant satisfies

z{kT] = (Aa + 7BaFr)*zo,
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and for every 7 € I'(p, 7, &), we have

sp(Aa +vBsFr) C {z € C: |z| < 1}.
Theorem 4.2 For every ¢ > 0, for sufficiently small T' > 0 we have

”.’B - E”OO S 5"30"v Y€ P(£~ ﬁva)’

Proof:
Fix p > n, and let 7 € ['(p, 7, ?), T € (0,Trmaz), and zo € R™ be arbitrary. Now
consider .
V(z) := 27 Prz.

With T = pT, it is routine to prove that if T € (0, Tinaz), then V(z[kT']) is monotonically

decreasing and goes to zero (e.g. see the proof of Theorem 4.1). Hence,
sup [2(KTII < 1Pl x 17  lzlf

Since P, is non-singular, and from Lemma 4.2 we have
Pr=2+0(1),

it follows that there exists a constant ¢; > 0 and T} € (0, Trnaz) so that
sup Iz[kT]|| < allzoll, T € (0,Th).

Also by Lemma 4.2 we have
Fr = 2 F + O(T),

which means that there exists a constant c; > 0 and T € (0, T}) so that
lulles < ezllZoll, T € (0, T2).-

Hence, it follows from the differential equation for z that there exists positive constants

c3 and ¢4 so that
Izlle < csllzoll, lIZlleo < callzoll, T € (0,T3). (4.24)
Now let’s look at the difference equation for

E=z—T
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at t =0,T,2T,.... We have

€l(k + )T) = A+ BRITERT] + [(Ag + 7 BaFr) -4+ 2 T2 [T,
But

eAHBRIT — [ | (A ++BF,)T + O(T?),
and using Lemma 4.2, we have that

Ag+vBaFr. = I+ AT+ O(T?) +4[(p —n)TB + O(Tz)][;}n-Fo + O(T)]

= [+ (A++BF)T + O(T?).

Hence, using our bound on z[kT) we have that

[k + 1)T) = 4+ BRITERT] + O(T?)||oll.
Now it follows from Lemma 4.3 that there exist constants ¢s > 0 and A < 0, independent
of v, so that

[el4+7BRa)) < ottt > 0. (4.25)

Hence, there exist constants cg > 0 and T3 € (0,7T3) so that
k—1

IERTI < Y co(eT)e2~"T?[z0ll, T € (0,Tn),

=0
= sup [|E(ATII| < ceZxrllzoll, T € (0, T5).
Since
: Y Gl
11453 reor =0,

we have that z — Z can be made small at ¢ = 0,T, 2T, ... by letting T — 0.

Now let us examine what happens between the samples. For T' € (0,73) and 7 € (0,T)

we have
_ _ kT +r .
kT +7)l < |IERTIN+ f@ ll(2) - 2(¢) |dt
< corSarlizoll + Tlllleo + 1Zlleo)-
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It follows from (4.24) that ||#||« is bounded in terms of ||zol|, while it follows from (4.23)
and (4.25) that

IZlleo < (Al + BU BN % || FollJesllzoll-
Hence, for T € (0, T5) we have
lelleo < [5Tr+epT +es(l14ll + Bl BY x | Foll pT] llzoll

so the result follows. a

If we define the desired output as
(t) := C=(¢),
and note that the actual output is given by
y(t) = Cz(¢),
then the following Corollary is a straightforward result of Theorem 4.2.
Corollary 4.1 For every ¢ > 0, for sufficiently small T > 0 we have
ly(t) = §(t)llo < ellzoll, 7 € T(p, P )-

Remark 4.1 With ¢ € [0, %), p € (0,1], and 7 € [1,00), we now summarize an algo-
rithm for constructing a low order LPC (G, H, J,T') that stabilizes every system in

{(A.B,7C): v €T(p,7,9)}-

i) Choose symmetric positive definite matrices Q and R, let

a = 2cos(d),

and pick p > n.

ii) Find a T such that with

{(p—n)T
Ay:=e*T B, .= / e Bdr,
0
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we have

a) (Aq, Ba) controllable,
b) (C,eAT) observable,
¢) Pp and Fr satisfying (4.13) and (4.14), and

d) p*||Ff B PrBaFr|| < Amin(Q)
(Note that this condition ensures AV in (4.22) is negative, which
is sufficient to ensure the desired robustness).

iii) Let

C
C:= :
C(eAT)“"'

and define f; € R™*" so that
[ fo vor faos ] = Fr(cTe)tCT.

iv) Set

(0, fo,0) k=0
(GvHr‘I)(k):= (nykao) k=17'“,n—’1
(1,0,I) k=mn,---,p—1

0

Remark 4.2 The T obtained in step (ii) of the above algorithm is typically quite con-
servative. Hence, if we were to use this for design, it might be better to compute the
combined gain margin and phase margin for various values of T', and obtain the largest

one which achieves the desired robustness. O
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4.5 An Example

In this section, we will design a first order LPC for the second order SISO plant used in
the examples found in Sections 3.3.3 and A.1.3. Suppose our nominal plant is

oo ([ [ )

with associated transfer function
s—1
(s —=05)(s+1)
Recall that this example was taken from Doyle et.al. [16, pp. 200-203], where it was

Py(s) := C(s] — A)'B =

shown that an LTI stabilizing compensator can provide at most a phase margin of 38.9°,

and the upper and lower gain margins must satisfy 5/p < 4.

4.5.1 Controller Synthesis

Using Remark 4.1. we now construct a first order LPC to stabilize every system in

{(A,B,~C):~v € I'(0.75,6,70°)}.
i) Choose @ =1, R=1, let
a = 2cos($) = 2cos(70°) = 0.684,

and pick p=5>n=2.

ii) Figure 4.4 shows a plot of p?||Fz B] PrBuFr|| vs T. Since
P°||Ff BI PrBiFr|| < Amia(Q) =1, T € (0,0.00002538),

we can choose T = 0.00002. However, as stated in Remark 4.2, this is typically
conservative. So in a similar approach to that used in Sections 3.3.3 and A.1.3,
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10 Determining T, for Low Order LPC

10 L i T ¥

(B [IFT B3 P B, Fill

10°° 107 107

T 10

Figure 4.4: Determining T,,,. for the robust LPC using norm calculations.

we now propose a method to approximately determine a less conservative sampling

period. Using a 2-dimensional search algorithm, determine

21,o(T) :=min{ 5 € (0,1] : sp(As + pe®ByFr) C{z € C: |2| < 1},
p€p 1,6 €[-44i}

Proe(T) := max{p € [1,00) : sp(Ag + pe’®*ByFr) C {z € C: |z| < 1}
p€ll,pl,¢€[-¢4l}

To be consistent with Subsections 3.3.3 and A.1.3, we refer to &F(T) (Pipe(T)) as
the “combined lower (upper) gain/phase margin” provided by the LPC (G, H,J, T).
A plot of &pc(T) and 7,,.(T') is provided in Figure 4.5. Observe that we can achieve
the desired gain and phase margin for every T' < 0.00890.
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Gain Margin vs Sample Period (70° phase margin)
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Figure 4.5: Low order LPC 2-dimensional robustness margin search result.

i) If we pick T = 0.0088, it is easily verified that (Ag, Ba) is controllable and that
(C,eAT) is observable. With this choice of T, the solution Pr of (4.13) is
[ 11.60 31.46

3146 1030 |
and the optimal gain Fr satisfying (4.14) is

Pr =

Fr=1-0.1623 11.23 ] .
Hence, with the definition of C given in step iii) of Remark 4.1, it follows that

[fo ot famr ] = Fr(CTC)7CT = [ —842.5 849.9 ]
(0,-842.5,0) k=0

iv) Set (G, H,J)(k) :={ (1,849.9,0) k=1,
(1,0,1) k=234
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Figure 4.6 shows the output response for the case where v = 4 and zo = {1 0]%. It can
be argued that the intersample performance of this first order LPC is much better than
that of the static GSHF controller presented in the previous Chapter, since here we know
that y(t) — y(t) as T — 0 and in the previous chapter we saw that the intersample

performance degraded as T — 0. (e.g. Compare Figure 4.6 to Figures 3.6 and A.4)
LPC: Output (x,=[1,0]",y=4)

1 1 ¥ 1 L)
—— LPC
0.8 — — Desired A
=0.6f -
=
0.4} .
0.2 .
0 — 1 L 1 L 1 1
0 0.5 1 1.5 2 25 3 3.5 4
t
LPC: Control Signal (x,={1,0]",y=4)
0.05 ] L] L] | I ] 1
0 L-gia 28 aTn aTa 2T aTy S PP PN F Ve g
=-0.05H -
ti W
S 0.1} —LPC | A
- — Desired
-0.15}[] i
_0.2 1 1 1 . L L | -
0 0.5 1 1.5 2 25 3 3.5 4

Figure 4.6: LPC simulation results: v = 4, zo = [1 0]7.
4.5.2 Properties of the Control Signal
In the previous subsection, we arbitrarily fixed p = 5 and then decreased T until our

LPC controller provided the desired gain/phase margins. Since p was fixed, the LPC
control signal was only nonzero for (p — n)/p = 3/5 of the time. Due to the approach
adopted in the design of the LPC, we expected that during the Control Phase, the LPC
control signal would be approximately 5/3 that of the desired continuous-time control
signal. From the second plot in Figure 4.6, we see that this is indeed the case. In this
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subsection, we will qualitatively determine what effect changing the ratio (p — n)/p has
on the LPC control signal.

We will perform simulations on the nominal model (i.e. 7 = 1), and in order to make
the trends more obvious in the simulation plots, we will fix T to be a relatively large
value. We vary the ratio (p—n)/p by decreasing the duration of the Estimation phase by
increasing the value of p. Specifically, with T = 0.1, we let p € {3,5,12}, which means

0.3333 p=3
p—n )
— = 0.6000 p=5
0.8333 p=12.

and T € {0.03333,0.02,0.008333}. The design specifications for our LPC will be p = 0.75,
7=6,6=70° Q=1 and R = 1. The LPC controllers can then be designed using
steps (iii) and (iv) in Remark 4.1. In the following simulation results, we used v = 1 and
zo = [1 0]7. Figure 4.7 shows the LPC control signal for each of the three LPCs, and as

expected, the LPC control signal becomes smaller as E‘;’ﬂ — 1.

Furthermore, note that by fixing T and increasing p, we are effectively decreasing T.
By Corollary 4.1 we expect that as T becomes smaller, the difference between the actual
output y(t) and the desired output #(t) will also become smaller. This trend is verified
in Figure 4.8.

4.6 Summary and Concluding Remarks

In this chapter, we have shown that it is possible to design a low order LPC that will
solve an extended version of the combined gain/phase margin problem. The LPC can
be implemented with a sampler, a zero-order-hold, and a m** order p-periodic (p > n)
discrete-time compensator. Unlike the GSHF controllers of Chapter 3, this controller
also provides satisfactory intersampler performance; in fact, for sufficiently small sam-
pling periods, the LPC control signal has virtually the same effect as that of an ideal
continuous-time state feedback control law. These results have been published and can
be found in [45].
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Control Signal: T=0.1,p=3
_0.2 — LPC Control Signal} |
- — Desired Control Sigfal
-0'3 C 2 I L 1 1 1 L ! L ]
0 0.5 1 1.5 2 2.5 3 3.5 4 45 5
t
Control Signal: T=0.1,p=5

0.1 B T ] 4 ] ] 1 ] T T -{
0

5-01 -

-0.2r -
-0'3 C 1 - ] 1 L 1 1 1 - ]
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
t
Control Signal: T=0.1,p=12
0.1 | ] L] ) I 1 LI ] T LI i
0 - n Tn T rrmrr v vrvrv—v—v
£-0.1F -
-0.2r =
-0.31 1 1 1 1 L N 2 L 1 ]
0 05 1 1.5 2 25 3 35
t

4 45 5
Figure 4.7: LPC control signal for T = 0.1, p € {3,5,12}, v = 1, and zo = [1 0]".
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Figure 4.8: LPC output signal for T = 0.1, p € {3,5,12}, vy =1, and zo = [1 0]”.



Chapter 5

Low Orcier Model Reference Control

5.1 Introduction

Up to this point, our objective has been to design a low order LPC that provides robust
stabilization. In this chapter. we turn our attention to the tracking and disturbance re-
jection problem. where our goal is to make the plant output track a prespecified reference
signal from a class of reference signals, and to attenuate disturbances from another class
of signals. The class of reference signals that we consider is the set of all possible outputs
of a prespecified stable LTI reference model in response to a signal in &,,. The reference
model is chosen by the control system designer to embody a desired behaviour, so by
forcing the plant output to track the reference model output, we are making the plant
behave like the reference model. This problem is commonly referred to as the Model
Reference Control Problem (MRCP).

Specifically, we will consider the use of a static GSHF controller to provide near exact
tracking and disturbance rejection when the strictly proper SISO LTI plant is minimum
phase and the strictly proper SISO LTI reference model is stable. In the literature, static
GSHF controllers have been used to ensure that the plant output tracks the output
of a discrete-time stable LTI reference model [26, 41] but nothing is proven about the

91
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intersample behaviour. As was seen in Chapter 3, good performance at the sample
points does not imply that the intersample performance is satisfactory. Furthermore, if
the plant is non-minimum phase, then there are limits to the best achievable closed loop
performance [38]. Here we consider the case where the plant is minimum phase since
it is well known that LTI compensators can be used to obtain near exact tracking and

disturbance rejection. We will show that the same is true for the static GSHF controller.

This chapter is organized in the following manner. In Section 5.2 we formulate the
MRCP and describe the set of GSHF controllers that we will consider. A brief outline of
the approach that will be adopted is also presented where the overall problem is broken
down into two parts. In Section 5.3 we provide the first preliminary result that deals
with an “ideal” LTI system. The second preliminary result that relates the actual LTV
closed loop system to the ideal LTI system is presented in Section 5.4. These preliminary
results are then used in Section 5.5 where we prove that there exists a static GSHF
controller that provides near exact tracking and disturbance rejection. We address some
computational issues in 5.6 and provide an example in Subsection 5.6.1. Finally, in

Section 5.7 we provide a summary and make some concluding remarks.

5.2 Problem Formulation

Our SISO plant P is described by
£(t) = Az(t) + Bu(t) + Ew(t), =(0) =0,
y(t) = Cz(t),

with z(t) € R™ the plant state, u(t) € R the plant input, w(t) € R the disturbance, and

(5.1)

y(t) € R the plant output. The associated transfer function from u to y is given by
P(s):=C(sI — A)™'B.

We assume that (A, B) is controllable, (C, A) is observable, and P(s) is minimum phase;
we denote the relative degree of P(s) by ¢.
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Our stable SISO reference model P,, is described by
Zn(t) = AnzZa(t) + Bnum(t), zm(0) =0,
Ym(t) = Cmzm(t),
with z,,(t) € R the reference model state, u,(t) € R the reference model input, and

(5.2)

Ym(t) € R the reference model output. The model is chosen to embody the desired

behaviour of the closed loop system.
We now define the set of controllers that will be considered. With
e(t) := ym(t) — y(t) (5.3)

the tracking error, T > 0 the sampling period of the generalized hold, and F: R - R

piecewise continuous and periodic of period T', we consider the static GSHF controller
u(t) = F(t) e(kT), t e [kT,(k+1)T), ke Z*; (5.4)
we represent the controller by the pair (F,T).

The structure of our closed loop system is illustrated in Figure 5.1, and we denote

the closed loop map from [u,, w]T to e as Grrv.

Figure 5.1: MRCP closed loop system.

Our objective can be stated as the following:

Given the minimum phase plant P, the stable reference model P, and an
€ > 0, find a static GHSF controller (F,T) so that

IGLrvile < e.

Before continuing, let us provide some motivation for the choice of how the distur-

bances enter into (5.1). In practice, there is always some input noise d; and output
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d, d;
+
L —”’“—Qf—e— (F’T)_i.{é)_u' P l;:(gll——

Figure 5.2: MRCP closed loop system with input and output noise.

noise d; entering into the closed loop system as displayed in Figure 5.2. However, since
our plant is strictly proper, it is clearly impossible to reject a disturbance d; with step
changes. Hence, we will assume that d; is the output of a strictly proper stable LTI

system W (see Figure 5.3).

d;

l
d W

d;
Um Ym t e = + ¥ u Y +¢ Y1

—_— P. AT_‘(F’T)_:O_. P —:O——h-

Figure 5.3: MRCP closed loop system with assumption on output noise.

If we let

tu(t) = Auzu(t) + Budi(t),

do(t) = Cuzu(t)
be a state space representation for W, and transform the block diagram in Figure 5.3 to
the block diagram shown in Figure 5.4,
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Figure 5.4: Transformed MRCP closed loop system with assumption on output noise.

Um(t)
dat) |’

then we can redefine our reference model to be

i) | [Am 0 || zm®) NES
Ty(2) 0 A Ty (t) 0 B,

o = [on e ]| 7]

and let

z(t) = Az(t)+ Bu(t) + Idy(t)

y(t) = Cz(t).
Hence, except for the fact that the new reference model has two inputs, our reformulated
problem is of the required form. The fact that the reference model has two inputs does
not present any problem in any of the results presented in this chapter, but to simplify

notation we will remain with the original setup.

Before continuing, recall the following fact from {39, Lemma 1]: the minimum phase

system (5.1) of relative degree q admits a state space model of the form

l :t::x(t) ] I: A by ] [ z1(t) } " [ 0 ] u(t) + [ By ] w(t),
z,(t) bicy A2 ( )zz(t) bag E, (5.5)
3] t
y(t) = [ 0 e ] 2a(t)
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with A, stable with eigenvalues at the zeros of P(s), and with Aj, b3, and ¢; of the form

e = |0 --- 0 1]eR1’“1,
1
0
bz = € qu
0 (5.6)
g --- 0 —ag
1 0 —Qa)
Ay = ' € R4,
0 1 —Gg-1

Without loss of generality, we will assume that our plant model is already in this form,

so the plant and reference model combined are given by

&1 (t) A b, 0 z,(t) 0
ga(t) | = | baey A2 O zo(t) | + | gba | ul(t)
Fm(t) 0 0 Am || za(t) 0
0 E, |
+| 0 |un(t)+ | B |w(t) (5.7)
Bm 0 |
et) = [0 —a Cu [ =) |- (5.8)
z3(t)
Zm(t) |

To simplify the controller synthesis and analysis, we will first transform our combined
system to make the error one of the state variables. To this end, define

0

b= | | €RY,
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and apply the transformation

z(t) I 0 0 z1(t)
z(t) | =1 0 I —5:Cn z,(t)
z3(t) 00 I Zm(t)
to yield
=4::Z =:f(t) =: B,
z1(t) . A b bCm z1(¢t) 0
2(t) | = | beer Az AbiCrm —8:CmAm za(t) | + | gba | u(t)
z3(t) 0 0 An z3(t) 0
0 E,
+ | —5,CBm | tm(t) + | E; | w(t). (5.9)
B 0
s N——
=: B, = F
e(t) = [o —cp 0] 2(t). (5.10)
—_.T

Notice that from the form of c; that —e is one of the state variables.

Before delving into the details of our results, let us first outline the approach that
will be taken. The GSHF controller synthesis will be accomplished in two steps. In the
first step (Section 5.3), we will define an ideal LTI system Grrr : [um w]|T — € that is
parametrized by a scalar gain k, and then show that as & — oo, the £, induced gain of
Grrr goes to zero. In the second step (Section 5.4), we fix k and show that it is possible
to design a static GSHF controller parametrized by T', so that when it is applied to the
plant (5.9)—(5.10), the resulting LTV closed loop system [um w]T ~+ e (see Figure 5.1) is
close to the corresponding ideal LTI system when T is small.
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5.3 Ideal Closed Loop System

In this section, we will define the ideal LTI closed loop system Gpr; (parametrized by
the scalar k) based on (5.9)-(5.10), and show that the &, induced gain of this ideal LTI

system approaches zero as k — oo.
If we apply the control law (5.4) to the system (5.9) and let
T R —
F = T"/ e*"B,F(r)dr € R*"™, (5.11)
0

then the closed loop system state satisfies

- —_— T -— — o
z[(k + 1)T] = (e*T + TFC)z[kT] + / e2T-7(B, E] um(7) dr.
0 w(T)
Since (4, B;) is not controllable, there exists an ¥ € R and T > 0 for which no
F(t) satisfying (5.11) exists. However,

(A,B) = )
bzcl Az gbz

is controllable, so if we let
T
F = T'I/ eA" BF(r)dr € R®, (5.12)
0

then it follows from the structure of A, B, and C that the closed loop system state
satisfies
2k +1)T] = (JT+T [ —FC 0 D 2[kT] + / " Ac-n(B, B) !"”‘(’) ] dr;
0 0 0 w(T)
since (A, B) is controllable, for every F € R™ and T > 0 there exists an F(t) satisfying
(5.12). Since A, is stable, we will set the first » — g elements of F' to zero and only use
the last g elements: with F = —[0 FT)T, we have

0 0 0O
—-FC 0 ~
= 0 FCz 0
0o 0

0 0 O
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With this in mind, we define the ideal LTI closed loop system GLT;(f) : (um,w) — € by
(5.9)-(5.10) with the (2,2) element adjusted:

=4
| A, bica 51Cm )
Z(t) = | byey Az+Fey AhyCom—b5:Crdm | 2(2)
0 0 Anm
0 E,
+ | =82CmBm | um(t) + | Ep | w(t), (5.13)
B 0
=B, =E
a) = [0 -a o] (5.14)
—

we label the output as € to distinguish it from the error signal produced when the GSHF

controller is applied.

Since the plant is minimum phase and the reference model is stable, we know that
both A; and A,; are stable. So let us turn our attention to the (2,2) element in A
Specifically, we will show that we can make ||Gm-;(§)||°° small by choosing F so that
the (2,2) element in A has very “fast” eigenvalues. To this end, define

q - -
n(k, s) := (s + k)(s + 2k) ~o+(s + gk) = D _ ek,

=0

and set
ﬂokq — Qo
Fp:= - : . (5.15)

ﬂq—lk = Gg-1
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Then

0 0 —nokq
1 0 —mke?
atha=| "

0 1 —Tg-1 k

= sp(A; + Fic) = {—k, =2k, -+, —qk}.

We are now ready to present the result needed to perform the first main step in our

GHSF controller synthesis.

Proposition 5.1 For every ¢ > 0, there exists a knin > 0 so that for every k > knin,
there exists a Fi, € R9 so that ||Grrr(Fi)|le < €.

Proof:
We first apply a similarity transformation to our ideal LTI system (5.13)-(5.14). Let
- o .
) In.q 0 0
My = S M= 0 om0 |,
¢ 0 0 I,
R 1 o
and set
Z(t) = Mz(¢t).
Then with the notation
- . 0 —m -

1 0 =T
0 .
0
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it can be shown that

A bics 5:Cm
) = | Erbeer FA  MiAybCr —B:CmAn | 2(2)
0 0 An
0 E,
+ | =B2CmBm | um(t) + | MiE, | w(t), (5.16)
Bn 0
a) = [0 -a o]z (5.17)

Since A, A,, and A,, are stable, it is easy to prove that the above system is stable for
large k£ > 0 (a Lyapunov-type argument would work). Proving error regulation is not as
straightforward. We begin by partitioning Z(t) into [2,(t)T Z2(¢)T Za(£)7]T and taking the
Laplace transform of (5.16)-(5.17) to get

2i(s) = (sI — A1) Y (bicaZa(s) + b1CnZs(s) + Erw(s)),

B(s) = (sI—kA)" [GrbaaiZi(s) + (MiA2b:Cm — 5;CmAm)Zs(s)

~b2Cm Bt (8) + My Eyw(s)]
73(s) = (8] — Am) ' Bnum(s),
€(s) = —caza(3).

From these equations, we can construct the block diagram illustrated in Figure 5.5.

[ 5:Cn |
- ) g W
Y
M\E, L3 T (-4

el(s] — An) " Ba pg LR X

(sI—kA) |~ o
Z2

Node 1

Figure 5.5: Ideal LTI closed loop system block diagram.
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By “shifting” Node 2 to Node 1, we can redraw the block diagram in Figure 5.5 so
that we have a feedforward part and a feedback part, as illustrated in Figure 5.6.

—{ B (sl - 4) By —.c

w . =-

%g’r(-’[ - Al)-lb*‘—
" |

€ C ca(sl = kA)~H f——m
——I(sI—Am)‘leHﬁﬂ-(aI—Al)“blC,,.}/ y N - - €

|§

—{(s] — Ap)~' B Mi AsB2C—5:Crm

1 -BlcmBm |

Feedf:rward Fee(ﬁ)ack

Figure 5.6: Transformed ideal LTI closed loop system block diagram.

Let us look at the feedforward part first. Define the intermediate signal { as illustrated
in Figure 5.6. Using the fact that A,, and A, are stable, and the definition of M, it can

be shown that there exists positive constants By and ko so that for k& > ko, we have

Il < Bolllttm @] loo- (5.18)
For the feedback part, we begin by defining G, and G, as illustrated in Figure 5.6. Since
A, is stable, we know that there exists a ; > 0 so that

Gl < grhhr (5.19)
We now show that there exists a constant B, > 0 so that
IGzllec < 2. (5.20)

To see this, first observe that g, := £71 {G.} is given by

g2(t) = coe®At,

Now there exists an a > 0 and A < 0 such that

lle™]l < ae.
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Hence,

1Gallo = llgslls
/IMWW#
0

o0
/ l|c2||ae**dt
0

1
< =t

)

INA

Therefore, from Figure 5.6 and (5.19)~(5.20), it follows that
lelle < lIG2lleo (IG1lles X IElloo + i€ lleo)
< & (el + lICleo) »
= (1-42) el < ZlCllees
so for k > (6182)Y =: k;, we have

e < =y Il (5.21)

Finally, by combining (5.21) and (5.18), it follows that for k& > max{ko, k1 } we have

[l ( F %&))ﬂoll[um 0] |oo,

so our result follows. =

5.4 Low Order GSH Controller

In this section, we will fix k large enough so that the ideal LTI system is stable with an
acceptable level of performance, and then show that it is possible to design a static GSHF
controller (F, T) so that when it is applied to (5.9)-(5.10), the resulting LTV closed loop
system performance approaches that of the ideal LTI closed loop system as T' — 0.

Let us begin by designing the hold function. We assume that & has been chosen large
enough so that with Fj satisfying (5.15), the matrix A defined in (5.13) is stable; by
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Proposition 5.1, we know such a k exists. Now choose an F(t) satisfying

T - 0
/ eAT-"BF(r)dr = . (5.22)
0 -TFk

We know that since (A, B) is controllable, such an F(t) exists. Specifically, we will
choose F(t) to be a piecewise constant function taking on n values over each sample

period. Namely, with T = T/n, we consider hold functions of the form
F(t) = f,,t € [iT, (i + 1)T); (5.23)

we represent this specific GSHF controller by the pair (f;,T). Recall that the corre-
sponding map (um,w) — e was denoted by Grrv; to make the dependence of the map
on T and F} explicit, we write Grrv(T, Fi). From Section 3.4, we know that for every
Fi € R? and for sufficiently small T, there exists constants f; satisfying (5.23), and that
the resulting GSHF controller can be implemented with a sampler, a first order discrete-
time n-periodic compensator, and a zero-order-hold. When examining the intersample
behaviour of our GSHF controller later on, it will be necessary to know what happens to
the magnitude of the gains f; as the sampling period T tends to zero. Hence the following
result:

Lemma 5.1 Given the plant (5.5) and a matrix Fi € R?, if F(t) of the form (5.23)
satisfies (5.22), then f; = O(T*'"9).

Proof:
Since the piecewise constant F(t) satisfies (5.22), it follows from Proposition 3.3 that
with ¥ given by (3.25), we have

1
——FT"—

Jo .. -1 0
. =n\p—1 . [An—lB e B] [ F } +O(T).
—Fi

~ap-

fn-l

(5.24)
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But here A and B have the specific form given in (5.5)-(5.6), so it follows that with

1
J:= € R¥?
1

there exists a A, € R(®~9)*(n=49) apd A, € R?*(n-4) 55 that

[ws B]z[t :}].

Since (A, B) is controllable, we know that [A"~!B --. B] is invertible, so it follows that

-1 0 0
[4~B ... B] = (Note J = J-1).
-F —g ' JFy

Substituting this into (5.24), it follows that

0
fo .
= —n¥! .. g ' JF. + O(T),
foms :
L 1 .
and our result follows. .

Let us now turn to the second main step in the synthesis of our GSHF controller,
namely that of showing that the closed loop LTV system behaves (from an input-output
point of view) like the ideal LTI closed loop system for small T'. If we apply our GSHF
controller to the actual system (5.9)-(5.10), then it can be shown that

=: 1]
- 0 _ (k+1)T _ . ()
z[(k+1)T)=| eAT+T| —F, |C | z[kT)+ / eAle+T-7I[ B, T dr,
0 kT w(r)

(5.25)
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while from (5.13)-(5.14) it follows that

AT (k1T Al(k+1) T~} um(7)
Z|(k+ 1)T] = e” " Z[kT| + /,;T e {B2 E][ i) ]d‘r. (5.26)
Our key observation here is that for small T, we have
0
 ~ I+TA+| -TF. |C
0
A bhe 0Cnm 0
= I+T| | ey A AhiCm—B:Cmdm |+ | =R [ [0 -2 0]
0 o0 A 0
= I+TA
~ AT,

Hence, one might expect that for small T', z[kT] is close to Z[kT], which means that
for small T, e[kT] is close to €[kT’]. Showing that the intersample response is also well
behaved is more complicated and will require the following preliminary result.

Lemma 5.2 If A is stable, then there exists an @ > 0, A < 0 and a Ty > 0 so that
184 < @ (¢T)*, T & (0,T0), k € Z*.

Proof:
Let
AL(T) := & — (I + AT),
and consider the difference equation
w(k + 1) = dw(k) = (I + AT + A(T))w(k), w(0) = wo.

Since A is stable, it follows from [55, Lemma 12.1] that there exists a unique positive
definite matrix P satisfying

ATP+PA+1I=0, (5.27)
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so consider the Lyapunov candidate function
Vw(k)] := w(k)T Pw(k).

Using the fact that A;(T) = O(T?), it can easily be shown that there exists a
Ao(T) = O(T) so that

Viw(k +1)] - Viw(k)] = Tw(k)T[(ATP + PA) + Ay(T)]w(k),
so from (5.27) it follows that
Viw(k + 1)] - Viw(k)] = Tw(k)(~I + Ag(T))u(k).
Since Ay(T) = O(T), it follows that there exists a To > 0 so that
AT < 3, T €(0,To),
which means that for T' € (0, Ty) we have
Viw(k +1)] - V[w(k)] < —Fw(k)Tw(k).

But

Viw(k)] < Amae(P)w(k)Tw(k), = —w(k)Tw(k) < -5t Viw(k)]
so for T € (0,T,) we have

Viw(k +1)] - Viwk)] € ~T z=iepy Viw(k)
N s’
=: =2\

= Viw(k + 1)] < (1 + 2AT)V[w(k)]

= Viw(k +1)] < T V[w(k)]
= Vw(k)] < (*7)* Vwo)

= Jlw(k)]? < dme=tB) (eDT)* |juo]?
N e’

=: a?

k
= [|2*wol® < o? (€¥7)" [[woll®

= [|8*]| < « (*T)".
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We can now use Lemma 5.2 to show the following result.

Proposition 5.2 If k is chosen such that the ideal LTI system (5.13)-(5.14) is stable,
then for every € > 0, there exists a Ty, > 0 so that for every T € (0, Tinaz), the GSHF
controller (f;,T') ensures that

NGrri(Fi) = Grrv(T, Fi)lle < .

Proof:

This proof will-be broken down into three parts. In the first part, we use the fact
that A is stable and & ~ €47 for small T to show z[kT] is bounded for small 7. Then
this is used in the second part to show that z[kT'| approaches z[kT'] uniformly as T — 0,
which means that e[kT] — €[AT] uniformly as ' — 0. Finally, we will combine this with

Lemma 5.1 to show that for sufficiently small T, € — e is small between samples as well.
Since A is stable, it follows from (5.13) that there exists an ag > 0 so that
1Zlleo < atollfim w]" llco- (5.28)

Furthermore. using Lemma 5.2, it follows that there exists an a; > 0, Ag < 0, and a

To > 0 so that for every T € (0,T) we have
I24)) < @ (eM7)".

Combining this with the fact that

f(k-i-l)T eI[(k-I-I)T—f]['Ez E) Um(T) dr = O(T) U
E w(r) w

T

b}

oo

it follows from (5.25) that there exists an a@; > 0 and T; € (0,To) so that for every

T € (0,T:) we have
k-1
12T < 3 aT (7)™ ||t @[Tl

=0

kT]|| < aa—3 Tleo-
= ks;g)b Iz[kT]|| < a7t l|{um w]" e

Since

B e = Rl
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we know that there exists a T € (0,7}) and an a; > 0 so that

Sup (k]| < aslifum @) lleoy T € (0, Ta). (5.29)
Now let’s look at the difference equation for
E=2-2
at t =0,T,2T, . Using (5.25) and (5.26), it follows that

E(k+1)T] = ATERT]+ (57 - @) 2[kT]

(k+1)T , -
A / +1 (eA[(k+1)T—‘r] _ eA[(k+1)'I’-r]) (B, E| um(7) | 4 (5.30)
kT w(r)

Since A is stable, there exists an a4 > 0 and a A; < 0 so that
1A T)*) < aq (MT)°.
If we combine this with

/ Cet-1)T (ei[(k+1)'r-r] _ ei[(k+1)T-fl) (B; E| [ um(7) ]d'r = O(T?)
kT

w(T)

b

7]

use (5.29) to obtain a bound on z[kT}, and use the fact that eAT — & = O(T?), it follows

= ]

that there exists a T3 € (0,T7) and an as > 0 so that for every T € (0, T3) we have
k-1

NERTH < S (asT?as (7)™ Yt w]7luc

i=0

= sup T < asas =S ll[tm ] lleo
= sup [EKT] - elkT]| < asas =L IC1 x [fum @] lloo- (5.31)
Since
. Tﬁ -
lim mesr =0,
we have that € — e can be made small at ¢ = 0, T, 2T, --- by letting T' — 0.

We now begin the final step. With = € [0, T), it follows from (5.13)-(5.14) that

. kT+r = = | tm(8)
S(kT + 1) = Ce™ 3[kT] + / CeAT+-0B, F| ds. (5.32)
kT w(8)
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]

so along with the bound on z given in (5.28), it can be shown that there exists an ag > 0

and a Ty € (0, T3) so that for T € (0,7;), we have

But e4” = I + O(7), which means

kT +r -
/ 6eA(kT+1’-9) [EZ E][ um(oo) ]da — O(T)

- w(8) ’

(- <}

|G(kT + 7) — &(kT)|

< [C(ef .- DT +

[ KT T AT +7-0) (B E) um(®) | 40
kT w(8)

< aeT||fum |"lle, T€[0,T), k€ 2*. (5.33)
When we apply the GSHF controller to the plant (5.9)-(5.10), we have

= 7 T = U (8)
e(kT +7) = Ce " z[kT] + / CeA+T+r-)B, F) df
kT

w(6)
kT+r - - _
+ [ [ Ce‘“"T”")BlF(G)dG] Cz[kT]. (5.34)
kT

But since the plant has relative degree gq, it follows that
CA'B = 0 i=0,1,-+-,9—2
= CAB =0 i=0,1,-+-,q—2

= Ce¥B, = Y2 _,CZA B%=0("),

which means that, along with Lemma 5.1, we have

kT+r _ _ —
f CeAlkT+7-9B F(9)d9
k

T A c— c—
< [ 1T By|d8 |Fllee
T 0

= O(TY||F|l
= O(THO(T'-) = O(T). (5.35)

Combining this with the bound on z[kT] given in (5.29), the fact that €A™ = I+O(r), and

]

it follows that there exists an a7z > 0 and a T5 € (0, T}) so that for T € (0, Ts), we have

9

kT+r
/ ‘C"eA(kT'Pr—O) [§2 E] [ %m (6) }do = O(T)
kT w(8)

o0

(KT +7) — e(kT)| < arT||[um w)7 [, T € [0,T), k € Z*. (5.36)
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Finally, combining (5.31), (5.33) and (5.36), it follows that for every T' € (0,Ts),
7 €[0,T), and k € Z*, we have

[S(RT +7) = e(kT +7)| < (caes|CllSrer + 6T + arT) l[tim ]|,

so our desired result follows. -

5.5 Main Result

We can now summarize our results in the following Theorem.

Theorem 5.1 Given a minimum phase plant P and a stable reference model P,,, for

every € > 0, there exists a static GSHF controller that ensures

IGLrv (T, Fi)lloo < €.

Proof:
By Proposition 5.1, we know that there exists a k so that with F} satisfying (5.15),
we have
[ [ o

Using the results of Section 3.4, we know that there exists a Ty > 0 so that for every
T € (0,Ty), there exists a F(t) of the form (5.23) that satisfies (5.22); this hold function
is associated with the GSHF controller (f;, T'). From Proposition 5.2, we know that there
exists a Tinaz € (0, Tp) so that for every T € (0, Traz), the GSHF controller (f;, T') ensures

IE - elleo < 5llfum @] loo-
Hence, for every T € (0, Tinaz), the GSHF controller (f;,T) ensures that

llelleo < (1€~ ellos + [[Elleo < ellfm ] |[co-
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5.6 Computational Issues

In this section, we address some computational issues related to the synthesis of our

controller and provide an example to demonstrate the design procedure.

Suppose that with ¢ > 0, we wish to design a GSHF controller so that

IGrrv(T, Fi)lle < €.

We will construct the controller in two stages. In the first stage, we determine a large
enough value of k, and the corresponding gain Fj, so that the Z,, induced gain of the
ideal LTI system

IGLrr(Fie)llo < -

Since Grr(F}) is an LTI continuous-time system, this step is not difficult. We then fix
F. and note from Proposition 5.2 that

IGrri(Fe) — GLrv(T, Fie)|lc — 0 (5.37)

as T — 0. Hence, in the second stage we find a sufficiently small T so that with the fixed

gain F}, we have
NGLrv(T, Fe)lleo < €.

Computing [|Grrv(T, Fi)|le is not trivial. Results related to computing the &,
induced gain for sampled-data systems have been obtained for the case where the plant
is a continuous-time LTI system and the controller is composed of a sampler, a zero-
order-hold, and a discrete-time LTI system. For example, in (8, 17, 6] a continuous-time
lifting technique is used to calculate an approximation of the #,, induced gain, while in
[47] an explicit formula for the induced gain is given. Since the discrete-time component
of our controller is time-varying, we can not directly apply these results, but by modifying
the argument of [47], we will be able to derive a formula for ||Grrv (T, Fi)llc-
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To this end, if we define the LTI map

Um
G[,TI : w - e,

u

then it is easily shown that a state space representation for @LT[ is given by

= A =: 2(¢t) =: B, =:@(t) =B,
P A -~ - ~ - ~ ~~ - N e N—
2(t) _ A 0 z(t) . 0 E || um(t) + B u(t),
Zom(t) 0 Am || zm(2) Bm 0 w(t) 0 (5.38)

z(¢t)

et)= |- Cn] :
S— Zm(t)

and that the closed loop time-varying map Grrv (T, Fi) can be represented by the block
diagram illustrated in Figure 5.7.

Curv(T B
[ Um } : :
N _ "¢
w : Grrr
u - e
— _(F.T) [~

Figure 5.7: General framework for GSHF controlled system.

There are two perspectives from which to view our controller (F,T). First, since the
hold F(t) has been chosen to be a piecewise constant function, it follows from Section
3.4 that there exists a controller of the form
vik+1] = G(k)v[k] + H(k)e(kT), v[0]=w€R
w(kT +71) = J(k)v[k]+ K(k)e(kT), T €[0,T),
that implements (F,T) and that this controller consists of a sampler, a zero-order-hold,

and a discrete-time n-periodic linear system (see Figure 5.8(a)). If the discrete-time
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component of the controller were LTI, then we could directly apply the results obtained
in [8, 17, 6, 47|, but this is not the case.

Grrr
u e

ZOHls--{ (G H,J/,K) |a---—d
(a)

sl—— .. F—
w =~
Gerr
u e
Generalized Hold[=-{ 1 --.]
(b)

Figure 5.8: (a) (F,T) as a LPC. (b) (F,T) as a GSHF controller.

The second way of looking at (F,T) is from the GSHF perspective, where the con-
troller consists of a sampler, a generalized-hold, and a unity gain discrete-time component
(see Figure 5.8(b)). By looking at the controller this way, the results of [47] can more
easily be extended to come up with an equation for ||Grrv(T, Fi)||c. Hence, we proceed
with this approach, but since the argument is virtually identical to that given in [47],
most of the details are omitted and only a brief derivation of the formula is provided.

We begin by noting from (5.38) that
Y T -~ -~ T Yy ~
Z((k + 1)T) =eATZ(kT) + f eAT-" B, G(kT+7)dr+ [ eAT-7) Byu (kT +1)dr,
0 ()
but since

w(kT + 1) = F(kT + 7)e[kT] = F(r)CZ[kT),
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it follows from the definition of E, §2, and (5.22) that

T . 0 ~
/ eAT-7) Bou(kT + 7)dr = | ~TF, | CZ[kT).
0
0
Hence, with
0
.=+ | _TR, |C,
0
we have
k—l ~ . T -~ ~
ZkT) = ) _ B+~ / AT B G(T + r)dr. (5.39)
=0 0

Now, for the intersample behaviour we note that

< ¢ ry ~ t - -~
S(kT +t) = eMF[kT]+ / eAt=0) B (kT + 0)d6 + / eAt-0 B u(kT + 0)dé
0 0

-~ t -~ A~ — ~
= (e'“+ / e‘““")BzF(O)Cdo) (kT

0

¢ -~ o~
+f eAt=0 B\ G(kT + 8)dd. te[0,T),
0
so combining this with (5.39), it follows that

e(kT +t) = CZ(kT +1t)

~ v ¢ -~ ~ -~ k-l -~ T -~ -
= C (e‘“-&- f e'“‘-")B{F(o)Cdo)Z@"-l-‘ / eAT-7 B, G(:T +7)dr
1] 0

i=0
¢ -~ -~
+ / CeAlt-9 B w(kT + 9)d6, t € [0,T),
0

which means®

2 T
sup |e(kT+t)|< /
kezgrl ( 4 Z 0

i=1

< t by P -~ bt ~. ™~ ~
[C (e“+ / eAlt-9) B,F(a)Cda) >, Q‘e“r“"Bl] dr
0 . 15

=0

t - -
+ f |[ce4“-°>31]1,-| | ||@lleo, t € [0,T).
0

AWe use the notation {Q];; to represent the (i, j) entry of Q.
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Hence

2

T
= max dr
o = 3 ||

- ¢ - N —— -~ o ~. -~
[6' (e‘“+ f e‘““"BzF(e)CdB) § :«p'eA(T-*’B,]
Q .
13

i=0

‘ -~ -~
+/ [[68'1(‘-0) Bl]ljl dé (5.40)
0

is an upper bound on ||GLrv(T, Fi)||le. Using an argument identical to that found in [47],
we can construct a (t) that shows that g is the least upper bound for ||GLrv (T, Fi)llcos

which means

IGLrv (T, Fi)llo = ctope-

5.6.1 An Example

We now demonstrate the design method with an example. Consider the plant (5.5) with

A1 =—1, b]_ =1, Cy = 18,

o[ 2ol e

E1=1, Eg=1;

it can easily be shown that the transfer function from u to y is given by
s+1

(s—2)(s+3)(s+4)

We will choose our reference model to be
2a(t) = —=b5zn(t) + 5un(t), z(0) =0,
Ym(t) = zm(t),

and the associated transfer function from u,, to y,, is given by

5
s+5

P(s) =
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We choose € =0.1, and our objective will be to design a GSHF controller (f;, T') so that
|Grrv (T, Fi)||le < €=0.1

Step 1
Here we choose a large enough value of k so that |Grri(Fi)lle < €/2 = 0.05. If we
choose k = 60, let

n(k, s) := (s + 60)(s + 120) = s* + 180s + 7200,
and set
7200 + 6 7206
Fk = - = - ,
180 — 4 176
then it can easily be verified that
Sp(Az + FkCz) = {—60, —120},
and

IGLrr(Fe)llo = / [CeAtB,| + |CeAtE|dt = 0.04968 < 0.05.

0

Step 2

We now fix F; and find a sufficiently small T so that
|GLrv(T, Fe)llo < 0.1.

To do this, we use (5.40) to compute agpe = ||GLrv(T, Fi)|loo; as was done in [47], we use
a finite sum approximation for the infinite series in the formula for a.., i.e. we truncate
the sum after the first 10000 terms. It can be verified that for T' = 0.009, we have

|GLzv (T, Fi)llo = aope = 0.09281.

For this value of T, we have T = 0.009/3 = 0.003, and it can be verified that

T
(A4, Ba) = (e“r, / e“’Bdr)
0
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is controllable. Hence, the gains f; satisfy

fo . —1.711472199(10)°
-1

: | =T[43B: 44Bi B [F ] = | 5.074883224(10)°

far ¢ —3.147230015(10)°

We now provide simulation results for the case where
un(t)=1, t>0.

and
w(t) = sin(2t), ¢t >0,

in Figures 5.9 and 5.10. Note in Figure 5.9 that |le|l < 0.1.

Tracking Error when up,(t)=1, w(t)=sin(2t)

L ¥ T ¥

e(t)=y,(h-y(t)

Control Signal when u,(t)=1, w(t)=sin(2t)

I 1 LI ]

0 0.5 1 1.5 2 25

Figure 5.9: Model reference control tracking error and control signal.
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Plant output y(t) (dashed), Reference Model Output y,,(t) (solid)

0.8

o
o))

Ym(l).¥()

o
'Y

0.2

0 X ) ] L 1 1 1 1 L

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
t

Figure 5.10: Plant output and reference model output.

Using the results of Section 3.4, we know that we can implement the GSHF controller
(fi,T) with a first order LPC of the form
vik+1] = G(k)vik] + H(k)e(kT), v[)]=weR
wkT +7) = J(k)lk] + K(k)e(KT), ~e€[0,T),
by choosing
(0,1,0, —1.711472199(10)%) k=0
(G(k), H(k), J(k), K(K)) :== { (1,0,5.074883224(10)*,0) k=1
(1,0,-3.147230015(10)°,0) k=2,
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and
(G(k + 3), H(Kk + 3), J(k + 3), K(k + 3)) = (G(k), H(k), J(k), K(k)), k€ Z;

this LPC can be implemented with a sampler, a linear first order discrete-time 3-periodic

compensator, and a zero-order-hold.

5.7 Summary and Concluding Remarks

In this chapter, we have shown that it is possible to design a static GSHF controller that
provides near exact tracking and disturbance rejection when the strictly proper SISO
LTI plant is minimum phase and the strictly proper SISO LTI reference model is stable.
As far as we are aware, this is the first time that a GSHF controller has been designed
which guarantees nice intersample behaviour in the model matching setting. This GSHF
controller is easy to design and can be implemented with a sampler, a first order n-
periodic discrete-time compensator. and a zero-order hold. Unfortunately, the controller
synthesis is based on high gain control, so if we want the plant output to closely track
the model reference output, then we will typically have large control signals.



Chapter 6

Performance

6.1 Introduction

In the previous chapter, we showed how to use a GSHF controller to provide model
matching for a minimum phase plant. This is inapplicable to non-minimum phase plants
since exact model matching is typically impossible. However, a common problem in
industry is that of step tracking. Hence, here we will use the ideas of Chapter 4 to design
a stable low order sampled-data controller which provides near optimal step tracking in an
LQR sense, even when the plant state cannot be measured. Furthermore, the controller
will be able to recover the gain and phase margin characteristics of the optimal state

feedback control law.

We first pose the optimal step tracking problem and convert it to a standard LQR
problem. Since the optimal LQR control law is linear state feedback, we proceed by
considering a more general problem, in which we are given an arbitrary stabilizing state
feedback control law that provides a given performance, and we would like to find a low
order sampled-data controller that not only provides a performance arbitrarily close to
that provided by the state feedback control law, but also recovers its gain and phase

margin characteristics.

121
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This chapter is organized in the following manner. In Section 6.2, we will pose the
optimal step tracking problem and show that it can be converted to the standard LQR
problem. In Section 6.3 we will formulate our general problem, for which our optimal
step tracking problem is a special case, and provide an outline of the approach that we
will take to achieve our objective. Then some preliminary results are proven in Sections
6.4.1 and 6.4.2 relating the state and control signal of the LPC controlled system to an
“ideal” LTI system. These preliminary results are then used in Section 6.5 to prove the
main result. Finally, an illustrative example is provided in Section 6.6 and concluding

remarks are made in Section 6.7.

6.2 The Optimal Step Tracking Problem

In this section, we will pose an optimal step tracking problem and show that it can be
converted to a standard LQR problem.

Assume that the actual m-input, r-output plant is described by
#(t) = Az(t)+vBu(t), z(0)=0,v€C
y(t) = Cz(t).
We assume that (A, B) is controllable, (C, A) is observable, the nominal plant (i.e. v = 1)

(6.1)

has no transmission zeros at the origin, and that there are at least as many inputs as

there are outputs (m > r).
With y, € R™, we would like to track reference inputs of the form
Yres(t) = yr, £ 20,

in an optimal fashion. There are a number of ways to define optimality; with the tracking
error defined by

e(t) := y(t) — yrer(£),
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v = 1 and R € R™*™ positive definite and symmetric here, we would like to find the
control signal which for each y,, minimizes the quadratic cost function

/; ~ e(t)Te(t) + u(t)T Ra(t)dt; (6.2)
note that we are not considering the cost function

/0 = e(t)Te(t) + u(t)? Ru(t)dt

since the control signal will not typically go to zero when tracking a step reference signal.

To proceed, we consider the augmented state

n(t) := [ () ] ,
e(t)

so that with v(¢) = u(t), the augmented plant can be defined as

=:A =B

rmm—— e
i = |2 2 aw+r| Z e, a0 0

= 174 ) = 0= ;

¥ col™TT TERE ., (6.3)
et) = [0 1]n).

W_—I

=:C

Since (C, A) is observable, it follows that (C, A) is observable. Since (C, A) is observable,
(A, B) is controllable, m > r, and the plant has no transmission zeros at the origin, it

can be shown that (4, B) is controllable. Furthermore, (6.2) becomes
J(mo) := / e(t)%e(t) + u(t)? Ru(t)dt
0

= ‘/:o q(t)T[ 2 g ]n(t) + v(t)T Ru(t)dt.

Since the state weighting matrix is only positive semidefinite and not positive definite,
we will slightly modify the cost function. To this end, with 4 > 0, we consider the cost
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function

Ji(mo) = /o " e(t)Te(t) + 62(8)T(t) + u(t)T Ri(t)dt

= [Taer [ ‘2’ i ] n(8) + ()T Ru(t)de. (6.4)

R ——
=: Qs
It is easy to prove that when y = 1. the optimal Js converges uniformly to the optimal

Jasd—0.
When v = 1, the control law that minimizes (6.4) for every 7o is of the form
v(t) = Fan(t); (6.5)
we can obtain the optimal gain Fj by first solving the algebraic Riccati equation
PA+A Ps— PBBR'B P+ Qs =0
for the unique positive definite symmetric solution Pj, and then setting
F;=—-R'B P;.

Notice that this controller is a proportional-integral state feedback control law and that
when it is applied to (6.1) we have

i(t) = (A +BFs)n(t), 7(0) = no.
Now, not only will this control law minimize the cost function (6.4) when 4 = 1, but it
is well known that it will also provide an infinite upper gain margin, a lower gain margin
of at least 1/2, and a phase margin of at least 60 degrees. Indeed,

T := {y € C: A+ 7BF; is stable} D {pe’® : p € [1/2,00),¢ € [-7/3,7/3]}.

While we should not expect that a sampled-data controller will be capable of providing an
infinite gain margin, for every compact subset I of T', we will show that there exists a low
order LPC that provides near optimal performance for the nominal plant and provides
closed loop stability and step tracking for every v € I.
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To summarize, we assume that with (4, B) controllable and (C, A) observable, we
have determined F; and chosen I' a compact subset of T, and our objective is to find
a low order sampled-data controller which measures only e and provides performance
arbitrarily close that provided by the control law {6.5) when v = 1, as well as closed loop
stability and step tracking for every y € T".

Before leaving this section, let us comment on the implementation of the LPC. Since
we are designing the LPC for the augmented plant (6.3), it follows that the output of
the controller will be v(t). To obtain u(t) from v(t), we can simply use an integrator -

see Figure 6.1.

u_;

Yeet F5% +T [ 1PC [~

Figure 6.1: Implementation of the LPC for optimal step tracking.

- e

Y

Plant

6.3 Problem Formulation

In this section, we formulate our general problem, for which the optimal step tracking
problem of Section 6.2 is a special case. Suppose our nominal model is

£(t) = Az(t)+ Bu(t), z(0) =z,

y(t) = C=(t),
with z(¢) € R" the state, u(t) € R™ the control input, and y(t) € R” the plant output.
We assume that (A, B) is controllable and (C, A) is observable. We capture uncertainty

(6.6)

in the model by assuming that for some v € C, our actual plant is given by

£(t) = Az(t)+vB u(t), z(0) = =z,

y(t) = Cz(t);
we associate the actual plant with the triple (A,yB,C). Suppose we are also given a
stabilizing state feedback matrix F € R™*", and then we define the open set

(6.7)

T :={y € C: A+ 7BF is stable}.
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To provide a measure of the performance of the closed loop system, with @ € R™*" and

R € R™*™ positive definite and symmetric, we define the cost function as

J(zo) := f[z(t)'Qz(t) + u(t)" Ru(t))dt; (6.8)
since Q and R are symmetric, J(zo) is real-valued. Let I be a compact subset of T and
let v € I.

With T > 0 the sampling rate, we will consider LPCs of the form
2k +1] ‘= G(k)z[k] + H(k)y(kT), z[0] = z € R,
u(kT +7) = J(k)z[K], r€[0,T);
we associate this system with the 4-tuple (G, H, J,T). Here we let p denote the period

(6.9)

of the controller parameters G, H, and J, so that pT is the period of the controller
(G,H,J.T). Note that (6.9) can be implemented with a sampler, a zero-order-hold, and
an [** order periodically time-varying discrete-time system of period p (See Figure 4.1).

Since our LPC will be emulating a state feedback control law of the form
“u(t) = Fz(t)", it will be useful to define the following ideal LTI closed loop system:

2(t) = (A +vBF)z(t), £(0) =zo € R™. (6.10)
Then the ideal state is defined as

Z(t) = elAtBPy
the ideal control law is defined as

u(t) = Fz(t), (6.11)
and the ideal cost function is defined as

T = [ Bereze + 2t Raeds

= zT / = eABE)t (0 4 BT RF;)elAtBF) gty
0

since @ and R are symmetric, f(za) is real-valued.
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Hence our objective be stated as:

Given a nominal system (A, B,C), a state feedback gain F, and a set T,
for every compact subset I' of T and every £ > 0, find a low order LPC
(G,H,J,T) so that

|J(20) — J(=o)l < ellzoll®, 7 €T

Before presenting any results, let us first provide some motivation for the approach

that we take in this chapter. In a similar approach to that adopted in Chapter 4, with
F € R™® p>n,and T := pT, we consider the control law
0 te kT, kT +nT)
u(t) =

_ - _ (6.12)
2 Fz[kT+nT| te[kT+nT,(k+1)T).

From Proposition 4.1, it follows that this control law can be implemented by an mth

order controller of the form (6.9). We then want to show that if we apply (6.12) to the
actual plant, then |J(zq) — T (zo)| can be made small by choosing a sufficiently large p
and a sufficiently small T. The fact that we need T to be small is not unexpected given
the discussion and analysis provided in Chapter 4. To see why it is that we need p to
be large here, but not in Chapter 4, consider the following argument. In Chapter 4 we
relied on the fact that for arbitrary p and small T, the average of u over [kT, (k + 1)T)
is approximately equal to the average of @ over [kT,(k + 1)T). Then since the plant is
strictly proper, it turns out that » has approximately the same effect on z as % has on

Z, which was sufficient to show that u could recover the gain/phase margin provided by

%. Note however that u enters into J(zp) in a quadratic fashion, so

T T
/ u(t)T Ru(t)dt = [ u(t)T Ru(t)dt
0 nT

{

(=) /jﬁ(t)rm(t)dt

T
~ () /0 a(e)T Ra(t)dt,
which means we are off by a factor of p/(p — n). Hence, by choosing p sufficiently large,
p/(p — n) can be made arbitrarily close to unity, so we should be able to make J(zo)
arbitrarily close to J| (o).
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6.4 Preliminary Results

To prove our main result, we will break the problem down into two parts. In the first
part, we will show that for an arbitrary p > n, we can make ||z ~ Z|| small by choosing T'
small. In the second part, we show that by picking p sufficiently large and T' sufficiently
small, we can make ||u — u||; small. Finally these two results can be combined to prove

our desired result.

Since we wish to implement the control law (6.12) with an LPC of the form (6.9), we

will need Proposition 4.1, which we repeat here:

Proposition 6.1 If T' >0 is non-pathological, then for every p>n and every F € R™",
there exists an m** order LPC (G, H,J, T) that will implement the control law (6.12).

Remark 6.1 The LPC (G, H, J, T) that is constructed in Proposition 6.1 is stable, in the
sense that when the input to the controller is zero, for every controller initial condition
20 € R™, we have

lim z[k] = 0.

k—rco
To see this, note that G(0) = 0, so it follows that for every zo € R™, we have

z{pl = G(p—1)---G(0)z =0,

which means z[p + k] = 0 for k£ > 0. O

In most of the analysis that will follow, we typically first determine the behaviour at
discrete points in time, and then go on to analyze the intersample behaviour. Hence, we

now introduce the following discrete-time equations. From (6.10), it follows that
2[(k + 1)T] = 4+BPT3(kT), (6.13)
and if we apply the control law (6.12) to the actual plant (6.7), then with the notation

(p-n)T
Ag:=e*T, By:= B e Bdr, Fy:= Fe’™T,
0



Chapter 6: Performance 129

it can be shown that
z[(k + 1)T) = (Aq + 7BaFa)z[kT). (6.14)

We will also require the following result to show that the closed loop system behaves like
the ideal system uniformly over I.

Lemma 6.1

i) There exists an @, > 0 and a A\; < 0 so that
|e(4+BFR|| L et y €T, t>0.
ii) For every p > m, there exists an a; > 0, A2 <0, and a T} > 0 so that
k W AL
I(As+7BaFaH| < a2 (47)", Te(0,T1), 7 €T, ke 2*.

Proof:
We will prove the first result and then use it in a discrete-time Lyapunov argument

to prove the second result. Let
A,:=A+~BF.

For every v € ', A, is stable, so there exists an a, > 0 and A, < 0 such that
e 4+ EFE| < anett, 2 0.

In fact, there exists a neighborhood of v, say N,, so that
[4+7BP| < 20,67, oy € N,

Now {N, : v € I'} is an open cover of ', so by compactness, it has a finite subcover, say
{N'm”'1N'vq}'

Define
a; := max{2a,,t = 1,2,---,q},
A; := max{\,,/2,i =1,2,---,g}.

Therefore,

[€4+737H) < e, 7€
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Now let us use this to prove our second result. For every v € I', A, is stable, so there
exists a unique P, = P > 0 satisfying
AP, + PLA, + I =0; (6.15)
in fact
P = / ” ettetdt,
e.g. see [55, Lmea 12.1]. By applying the first result, it follows that

CO 02
180 < [~ ateide = iy =i o, ver. (6.16)
Now since vy enters (6.15) in a linear fashion, it follows that P, is a continuous function

of 4. Then since I’ is compact and Apin(P,) > 0 for every v € T, it follows that there

exists a constant J; > 0 so that

Amin(Py) 2 81, 7 €T (6.17)

We now use these bounds on P, in a discrete-time Lyapunov argument to prove the

second result. Fix p > n and let T := T/p. If we define

A\(T) := (Aa+vBaFs) — (I + A,T),
then using the fact that 4 is bounded, it can be shown that A;(T) = O(T?). Now
consider the discrete-time equation
w(k+1) = (Aq+yBaFa)w(k)
= [+ AT+ A(T)w(k), w(0) = w,
and define the Lyapunov candidate function V' : C* — C:

(6.18)

V(w) := w" Pyw.
Since P, = Py, it follows that V is real-valued, which means
Viw(k +1)] - V[w(k)]

is also real-valued. Using (6.18) and the facts that A;(T) = O(T?) and P, and 7 are
bounded, it can be shown that there exists a A;(T") = O(T') such that

Viw(k + 1)] - Viw(k)] = Tw(k) [(A5P, + PA,) + Ag(T)ho(k).
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Using (6.15), it follows that there exists a T} >0 so that
Viw(k +1)] - Viw(k)] < -Fw(k)w(k), T €(0,T3).
But
Viw(k)] < [P lo(k)w(k) = —w(k)w(k) < —gyViwk),
sofor T € (0,T1) we have

Viwk +1)] £ (1~ b T) Viw(k)] < & BTV [w(k)]

= VIw(k)] < ( 2 T‘)kV[wol

= Amin P-:

1 T k
= o) < Loy (7)ol
Using the bounds given in (6.16) and (6.17) along with (6.18), it follows that

1=\ —
(A + 7 BaFa)wol® < § (e”“?) lwoll?, ¥ €T, Te(0,Th),

k
= (Aa+1Bafa) < /B (<F7) | ver, Te @)

6.4.1 State Equations

We are now ready to prove our first preliminary result:
Lemma 6.2 For every € > 0 and p > n, there exists an a > 0, Trpae > 0 and A < 0 so
that for every v € I and T € (0, Trmaz) we have
i) =z -2z < ellzoll,
(k+1)T _
0 [ 1O < Tz,
ii) ||(kT + 1) — E(kT + 7)|| < «T(T)*, 7 € [0,T).
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Proof:
Fix p > n and define
E:=z-7Z.
Observe that
leiz = [ neconeae = f‘, / " NET + 7, (6.19)

and that for 7 € [0,T),

— _ (k+1)T .
e6T + < NI+ [ (1@ + 1] . (6.20)

We begin by looking at the first term in (6.20). From (6.13), (6.14) and the definition
of &, it follows that

E[(k + 1)T) = 4T BPTERT) + (A +7BaFa) — 447307 2(kT).
From Lemma 6.1, we know there exists a a; > 0, A\; < 0, and T} > 0 so that
Iz{kT < l(Aa + YBaFa)*||  |lzol| < er(eMT)*|zoll, €T, T € (0,T1). (6.21)

But since 7 is bounded, it can be shown that [(Ag + 7BaFy) — e4+BF)T] = O(T?), so
along with our bound on z[kT), it follows that there exists a T € (0,T1) and an a; > 0
so that
= _
IERTI < 0aT" Y (e 4+ BT~ x (M) x ||zoll, v €T, T € (0,T)-
=0

But also from Lemma 6.1 we know there exists an a3 > 0 and a A\; < 0 so that

"(e(A-l-qBF')T)k-I-t‘“ < as(eAQT)k-l-i, v €T,
0

k-1 .
IERTI < azasT e TED 3 (M=2T) igg||, 7 €T, T € (0,T3).
i=0

Without loss of generality, assume that A; € (A;,0), which means that A; — A2 <0, so

IERTI < azase®T®D—T —slizgl|, v€T, T €(0,Ts).
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Then since

T

Ta0 1=elr=22)T

=0,
it follows that there exists an a4 > 0 and a T3 € (0,T3) so that
EKTIN < aaT(e2T)¥lizoll, v €T, T € (0, Ta). (6.22)
Now let us turn to the second term in (6.20). Since

12Ol < I(A+vBF)| x [|4+8R8) x ||zq|
< @) (A+yBF)|| x ||zoll, 7€T,
and v is bounded, it follows that there exists an as > 0 and a T4 € (0,T3) so that
(+1)T _ _
/— I2(8)lld8 < asT(eT)¥|l2oll, 7 €T, T € (0,Ta). (6.23)
kT
Using the definition of u(t) given in (6.12) it follows that
lw(kT +7)|| < Z:l|Fe™T|| x ||=[kT]|, =€ [0,T),
so along with the bound on z[kT] given in (6.21), it follows that there exists a Ts € (0, Ts)

and ag > 0 so that

lu(kT +7)|| < as(e™T)¥|lzoll, v €T, T € (0,Ts), v € [0,T).
Combining this with the fact that

_ _ kT +r
(kT + 1) = e*"z(kT) + v / eAkT+7=1) By (v)dy,
kT

it follows that there exists a Tg € (0,Ts) and an a7 > 0 so that

lz(kT +7)|| < ar(eMT)*lizoll, v €T, T € (0,Te).

Then it follows from the differential equation for z given in (6.7) and the fact that 7 is
bounded that there exists a ag > 0 so that

I20)]l < as(eT)*zoll, ¥ €T, T € (0,Ts), 8 € [kT, (k+1)T),

(k+1)T = _
= / _ 1£(0)|df < asT(eMT)*||zo)}, v €T, T € (0, Ts). (6.24)
kT
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By combining (6.22), (6.23), (6.24) and (6.20), and recalling that A; € (0, A;,0), it

follows that there exists an ag > 0 so that

IEGT + 1) < aoT(e™T)*|izoll, v €T, T €(0,T), 7 € [0,T).

Hence, for every ¥ € I' and T € (0, T%),

o T _
e = 3 / IE(KT + 7)|1%dr

k=0

o0
< a’Ts (ez.\,i' k Zo|?
9

k=0
= ol —Tollol®.
Since
. ul _
fm o =0,

our results follow from (6.26), (6.23), and (6.25).

6.4.2 Control Law Equations

We now turn to our second preliminary result.

(6.25)

(6.26)

Lemma 6.3 For every € >0, there exists a Tinqz >0 and an integer p>n such that

lis = @ll2 < €l|zoll, 7 ET, T € (0, Trmas)-

Proof:

From the definition of » given in (6.12) and % given in (6.11), it follows that

e -3l = /0 llu(t) - @(e)l*de
(k+1)T

+nT

o kT4+nT o
=) / IFZ(E)I%de+ f | 2 Fz(kT + nT]— FZ(t)||*dt.

s

= Ay(p, T) =: As(p, T)

(6.27)
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We begin by looking at A,(p, T'). Using Lemma 6.1(i), we know there exists an a;; > 0

and \; < 0 so that
IZ(¢)]| € eve*llzoll, v €T, (6.28)

so for every ¥ € I, we have
kT+nT

M. T) < IFIPY. ade?dt||zo||?

k=0 k

0
= aﬂllﬁx'llz (824\1111' _ 1) ze‘b\;kT”zouz

k=0
STt TN
But
sy (1 — e ""ﬂ _ olliFIE  a
To 2N (1- ez.\,’z") IR
50 there exists a py > n so that
22%|||,\—I=:I|E 2 < <. P>p1,

which means that there exists a Tg > 0 so that

M(p,T) < Sllzoll®>, v€T, T€(0,To), p>p1- (6.29)
We now turn to Ay(p,T). With £:=z—%, y€T, and t € [kT+nT, (k+1)T) we have
Ilp—%Fz[kT+ nT] — FZ(t)||

t

< |25 FzlkT +nT] — FEKT +oT]] + /k 13(6)l1d8

T+nT
< ZIFI x €T +nT| + (Bz—1) IF4+2D3T )| x |2(4TY)
(k+1)T |
+ / 13(6)11d6. (6.30)
T

Let us first look at the second term on the RHS. Clearly there exists a Ty € (0,7p) and
an a; > 0 so that

|Fe 4t BRET) < 0, Te(0,Th), p>p1, v€ET,
so combining this with our bound on Z given in (6.28), it follows that

| Fe 4 BT \ZRT)| < araz(eT)¥|zoll, T € (0,T1), p>pr,v €T
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Pick p > p; so that
A
(p—ﬂ_l) = <eyB3-2h

ajag

which means that the second term on the RHS of (6.30) satisfies
(325-1) 1P+ 23T BT < e/ Bl T |lzoll, T € (0,T2), 7 € I.(6:31)
Now that we have fixed p, we turn to the two remaining terms on the RHS of inequal-

ity (6.30). Using Lemma 6.2 (ii) and (iii), it can easily be shown that there exists a
T; € (0,Ty), as > 0, and Az < 0 so that for every ¥ € T and T € (0, T;), we have

(+1)T | _
/ - I12(6)11d8 < asT(e*T)* ||z, (6.32)
&
(| F|| x |€(kT +nT]| < asT(e*T)*||zoll. (6.33)

By combining (6.30), (6.31), (6.32), and (6.33), it follows that for everyy € ', T € (0, T3),
and t € [kT + nT, (k + 1)T) we have

—2_Fz[kT + nT] — FZ(t)|
< (aaT(e"’T)"+€\/-j( AT+ @) oo

= (2T + c/BIA) fzol
= !I;f—;F:r:[kT—!— nT)| — FZ(t)||?
< (4a§~T-2(e2AzT)k + 4aze /1%[’1'-((2(,\;+,\,ﬁ)k + ﬂ;\_;l(eza.f)k) “30"3.

Hence, for every v € ' and T € (0, T:) we have

oo
Az(p,'T) S Z (402?3(82A2T)k +4a3€ “%LI.-T_z(e(‘\l'*'A’)T)k + ez_lzé_xlT-(e2A1?)k) "30"2

k=0

= 4o 7 +4a Al T + 2 2AMT ”z ”2 (6 34)
31 _emT 3€ 2 1_elA+M:)T [pwron '
Since
™ T MT ) _ 2

11.‘_?0 (40‘3 et T 40ae . et T T 1ie3lh ) =0

it follows that there exists a T3 € (0, T;) so that

Az(p,T) S %: Y € P’Te (OaT3)—
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By combining this with (6.29) we have

”"’ - ﬁ[[; < 52"20"2 7€ Fs T € (0" T3)

6.5 Main Result

We can now use the results of Section 6.4 to prove our main result.

Theorem 6.1 For every € > 0, there exists a m** order, p periodic LPC (G, H,J,T)

that ensures
|J(2a) — J(20)| < ellzoll?, ¥ €T
Proof:
With € := z — Z, observe that
J(zo) = f ” [z(8)TQz(t) + u(t)T Ru(t)] dt
Q222 + Bl
(1Q €l + 1Q*El12) + (IRM*(w — D)l|2 + | RME|2)”
1QY2213 + ILRY*&3 + 211Q/*€ll11Q*/*2lla
+HIQY2¢|I3 + 2| RY*(u — @) l2|| R8> + | RV (u — 8|13
= J(zo) +2[1Q"2¢1211Q"*21l2 + 11Q*/*¢II3
+2[|RY*(u — )|z || RY?8]); + | RY*(u — B)|13. (6.35)

A

It follows from Lemma 6.1 that there exists positive constants 8, and S so that for every
v € T, we have

1QY?2l; < Bzllzoll,
|RM?%|3 < Bullzoll-

Now let &; > 0. It follows from Lemma 6.3 that there exists a T, > 0 and an integer

P > n such that

llu — @iz < eallzoll, T € (0, T1).
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It follows from Lemma 6.2 that there exists a T € (0,T}) such that
€llz < exllzoll, T € (0, T2)-

Combining this with (6.35) yields
[J(zo) — T(zo)] < 21Q"2|le1Bellzoll® + 1Q21%3 ] zoll?
+2|| RYV?||e1Bullzoll? + || RM?||2edllzol|?.
Since €; was arbitrary, it follows that
|J(z0) = J(zo)| < €llzoll?, 7 €L.T € (0,T2).

Choose T € (0, T;) so that T := T/p is non-pathological. Hence, we can construct our
m** order, p periodic LPC (G, H, J, T') using Proposition 6.1.
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6.6 An Example

In this section, we provide an example that illustrates the design method. Suppose our

nominal plant is

0 1 0
z(t) = [ ] z(t) + [ :I u(t), z(0) =0,
6 -1 1

ye) = [-1 1]a0)
so the associated transfer function is
s—1
(s =2)(s+3)
We begin by designing our continuous-time state feedback control law using the method

described in Section 6.2. The augmented plant (6.3) is given by

=A =B
~ -~ ~ N
0 1 0 0 0
i(t) = 6 —1 0 |nt)+~]|1|wvt), n0}=n=|0 ],
-1 1 0 0 Yr
e(t) = [0 0 1]n(t)-
| =

=C
Since the plant is SISO, (A, B) is controllable and (C, A) is observable, we have (4, B)
controllable and (C, A) observable. With R = 0.005, § = 0.01® and

éd 00
Qs=|0 4 0},
0 01

we find the control law that minimizes

Js(mo) = [ " a) Qen(e) + ()T Ru(t)dt (6.36)

2This value of R was chosen so that the resulting step response rise time was less than ¢ = 10 and
the value of § was chosen so that |J — J;|/J < 0.001.
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by finding the unique positive definite solution P; of
PA+A Ps- BBR'B Pi+Qs =0,
setting
F; = —R'B" PR,
and letting

v(t) = Fm(t).

Here
7.2909147 0.23292288 —4.02276959
P = 0.23292288 0.076529884 —0.070710678 | »
—4.02276959 -—0.070710678 2.8697629
Fs =] —46.583287 —15.317632 14.143276 ] y

so the optimal cost provided by the continuous-time state feedback is

Js(nmo) = 03 Psno = 2.8697629||y. |-

140

Let us now design a low order LPC so that when y, = 1, the resulting actual cost is
within 1% of the optimal cost. To do so, we chose T sufficiently small and p sufficiently
large so that when y, = 1, the actual cost was less than 1.01 * (2.8697629) = 2.8984605.
Specifically with p = 6, T = 0.1, and T := T/p, the actual cost can be evaluated to
be 2.8980162. We design the LPC using the proof of Proposition 6.1 (i.e. proof of

Proposition 4.1); we define

[fo fi fz] = #R’eiur c
C(eAT)
'5(821‘)2

= [—-8.4215737(10)‘ 1.7273468(10)° —8.8497730(10)‘]
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and construct the LPC (6.9) by choosing

[ (0, -8.4215737(10)*,0) k=0
(1,1.7273468(10)%,0) k=1,
(1, —8.8497730(10)*,0) k=2,

| (1,0,1) k=3,4,5.

(G, H, J)(k) := 4

Figure 6.2 compares the actual output y(t) to the ideal output #(t) and the actual control
signal u(¢) to the ideal control signal %(¢).

Step Response: y(t)=solid,y(t)=dash
1 -5 T T ¥ L) T 4 | ¥ L4

Output

L ] ) L

6 7 8 9 10

Step Response: u(t)=solid,u(t)=dash

8 I T ] 1) l T T ] )

Contro) Signal

Figure 6.2: Optimal step tracking simulation.
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To evaluate the robustness properties of this controller, we use a 2-dimensional search

ermine

to approximately det

(G, H,J,T) stabilizes (A,7B,C)},

{yrecC:

=

the set

ermine

ately det

oxim

and illustrate it in Figure 6.3. For comparison, we also appr

sp(A++BF;) c C7},

{recC:

T =

illustrate it in Figure 6.3, and note that I' C I
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Figure 6.3

Let us now qualitatively investigate the noise properties of this controller. Suppose

that

ise signal

, we introduce the output no

th w, € {10,20,30}

wi

w(t) = 0.01sin(wyt), t > 0,

.
-

to the closed loop system as illustrated in Figure 6.4
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+ ¥
MTC—(G,H,J,T) - (A,B,C) Aié——-

Figure 6.4: Optimal step tracking closed loop system with output noise.

v

- -

The resulting ideal state feedback controlled system response is compared to the
actual LPC controlled system response in Figure 6.5. Note that the tracking performance

degrades as the frequency of the noise becomes large.

6.7 Summary and Concluding Remarks

In this chapter, we posed an optimal step tracking problem for MIMO LTI plants that
are possibly non-minimum phase, and we showed that we could design a stable low order
sampled-data controller that could provide near optimal step tracking in an LQR sense,
even when the state of the plant cannot be measured. This controller is superior to an
LTI controller since it is capable of recovering the gain phase margins of the optimal LQR
continuous-time state feedback control law and the resulting LPC is stable. Unlike the
GSHF controller discussed in Chapter 5, the control signal generated by this LPC does
not become large when the sampling period tends to zero, but approaches the optimal
state feedback control law. Unfortunately, this controller is more sensitive to noise than
the ideal optimal state feedback control law.
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Figure 6.5: Optimal step tracking simulation with output noise.



Chapter 7

Conclusions

7.1 A Summary

We have shown that given a multi-input, multi-output (MIMO) linear time-invariant
(LTT) strictly proper plant, it is possible to design a low order linear periodic controller
(LPC) that can provide any desired gain margin and any desired phase margin up to 90
degrees. If we use a static generalized sampled-data hold function (GSHF') controller to
accomplish this, then the intersample performance is typically poor, but the controller
can tolerate dynamic additive perturbations to the nominal model. If we use the first
order LPC presented in Chapter 4, then the intersample performance is satisfactory,
but the tolerance to unstructured uncertainty in the nominal model deteriorates as the

sampling period tends to zero.

We have also shown that given a single-input, single-output (SISO) LTI strictly proper
plant that is minimum phase together with a SISO LTI strictly proper reference model,
it is possible to design a static GSHF controller that solves the sampled-data model
reference control problem (MRCP). While the GHSF controller can provide arbitrarily
good tracking and disturbance rejection, the control signal can become be very large.

145
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Finally, we have shown that given an arbitrary MIMO LTI strictly proper plant where
measurements of the state are not available to the controller, it is possible to design a
low order LPC that will track step inputs in a near optimal fashion. This controller has
a moderate control signal even as the sample period tends to zero, and can be designed
to provide a gain and phase margin close to that of an optimal state feedback control

law.

All the controllers presented are stable in the sense that if the input to the controller
is zero, then the state of the controller will approach zero as time approaches infinity. In

fact, all the controllers presented are deadbeat.

7.2 Future Research

In Section 3.5, we provided an analysis that showed that the GSHF controller designed
to provide a desired gain and phase margin also tolerated stable additive perturbations
to the nominal plant. First, we are quite certain that it would be possible to show that
the additive perturbation need not be stable, but we would only require that the nominal
plant and the perturbed plant have the same number of unstable poles. Secondly, there
are many other uncertainty models that can be found in the literature, and the tolerance
of the GSHF controller to other types of unstructured uncertainty could be determined.
A complete analysis of the tolerance of the LPC presented in Chapter 4 to unstructured
uncertainty in the nominal model would also be useful.

Khargonekar et al. [31] provided a solution to the problem of simultaneously stabiliz-
ing a finite family of discrete-time LTI bicausal plants using periodic control, while Miller
[37] showed that it is possible to find a single low order discrete-time LPC that simulta-
neously stabilizes a finite set of LTI plants. It may be possible to use some of the ideas
presented in Chapter 6 to come up with a low order LPC that simultaneously stabilizes
a finite set of continuous-time strictly proper LTI plants, while providing performance



Chapter 7: Conclusions 147

arbitrarily close to that provided by an ideal state feedback control law.

For the MRCP, we assumed that the plant was SISO. The result should be general-
izable to the case where the plant is MIMO. Furthermore, recall that the static GSHF
controller that solves the MRCP suffers from large control signals. However, it can be
shown that there exists an ideal continuous-time state feedback control law that solves
the MRCP, and that the magnitude of this control signal is typically smaller than the
GSHF control signal. Hence, using some of the ideas presented in Chapters 4 and 6, we
could perhaps design a low order LPC that emulates this ideal continuous-time control
law. However, those low order LPC’s do not tolerate disturbances well, so the noise

tolerance may be poor.

In Chapter 4 we showed that as the sampling period of the LPC tends to zero,
the output signal of the LPC controlled system approached the output of a desired
continuous-time state-feedback controlled system in the co-norm. In Chapter 6 we showed
that as the sampling period of the LPC tends to zero and the periodicity of the LPC
parameters tends to infinity, both the output and control signal of the LPC controlled
system approaches the output and control signal of a desired continuous-time state-
feedback controlled system in the 2-norm. It would be interesting to determine if similar
results can be shown for the general p-norm case. An approach that might be fruitful
might be to show that similar results holds for the 1-norm and co-norm, which would
imply that our desired result holds for the p-norm [15, pg. 17, Fact 7].

Extending the optimal step tracking problem to that of tracking a more general class
of reference signals, e.g. sinusoids, in an optimal fashion would be a natural extension of
the results of Chapter 6.



Appendix A

Discrete-Time Approach to Robust
Stability: Static GSHF Controllers

A.1 Discrete-Time Approach

In this Appendix, we improve on the design of the static GSHF controller that was
presented in Chapter 3. The controller that we synthesize here is based on a discrete-
time approach, and like the controller in Chapter 3, it will be capable of simultaneously
providing any desired gain margin and any phase margin of up to 90 degrees, as long
as the sampling period is sufficiently small. However, unlike the controller of Chapter 3
where we typically needed the sampling period to be small to even stabilize the nominal
plant, this GSHF controller will be capable of stabilizing the nominal plant for almost
all sampling periods.

Before presenting any results, let us first provide some motivation for this approach.
Recall that

T
F= / e#T=7) B F(r) dr € R™",
0
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and the closed loop discrete-time system satisfies
z{(k + 1)T) = (e*T + yFC) z[kT}, k € Z*.
Following a similar approach to that found in Section 3.3, define

T
Fr:=T"'F = T‘lf eAT-7) B F(r) dr.

0

Then it follows that the GSHF controller (3.3) stabilizes (3.2) if and only if
sp(e*T + 7Fr(TC))Cc {z€ C:|z| < 1}.

We use the notation Fp here and Fp in Chapter 3, since in Chapter 3, Fy was chosen

independent of T while here Fr will depend on the sampling period T.

Given the observable pair (C, A) and a large, but non-pathological T', we know that
(T'C,eAT) is observable, and thus we can directly design Fr such that

sp(eAT + Pr(TC)) Cc {z € C: |z| < 1}

using any one of a number of discrete-time state-feedback controller design techniques;
hence, the motivation for the name of this approach. Thus, we will no longer require
T to be small in order to stabilize the nominal plant. However, we must also ensure
that our choice of Fr will result in a controller that will be capable of providing good
gain/phase margins. Recall from Section 3.3 that F, was defined as the continuous-time
LQR optimal gain, and that by choosing

F=TF

the resulting GSHF controller provided desirable gain/phase margin properties as T

tended to zero. Here, we have chosen
F =TFr,

so if we design Fr so that for small T we have Fr = F,, then we might expect the
resulting GSHF controller will share the desirable gain/phase margin properties of the
GSHF controller designed using the continuous-time LQR approach. Designing Fr in
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this way is accomplished by solving a modified discrete-time LQR problem, which we

discuss in the next subsection.

A.1.1 Preliminary Discrete-Time LQR Results

In this subsection, we first formulate the modified discrete-time LQR problem and then
prove the preliminary result that as T — 0, we have

FT - Fo.

Since we want Fr to approach Fj, we begin by first modifying the C matrix as was
done in Subsection 3.3.1; namely, with ¢ € [0, §), p € (0,1], and

a = 2cos(),
we define
C:= apC. (A.1)

To improve the readability of the following equations, we also introduce the notation
Ag:=eAT.

Now consider the auxiliary system
wlk + 1] = ATw(k] + TCTu[k], w(0) = wy, (A.2)

and using the same positive definite symmetric weighting matrices @ and R as those in

Section 3.3.1, we wish to find the control law which, for each wp, minimizes
Z w[k]T Qu(k] + v[k]T Rulk]. (A.3)
k=0

Using Lemma 12.1' and Theorem 12.2' found in [55, Exercise 12.7], it follows that for
every non-pathological T', the optimal control law is of the form

v[k] = Frwlk]. (A4)
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We can obtain the optimal gain Fr by first solving the discrete-time algebraic Riccati

equation
Pr — AgPr AT + AP (TC)T((TC)Pr(TC)T + RI™M(TC)PrAT - Q=0 (A.5)

for the unique positive definite symmetric solution Pr, and then setting

Fr = —A4Pr(TC)T((TC)Pr(TC)T + R, (A.6)
For convenience, let us rewrite (3.13) and (3.14) here using the above notation:

PoAT + APy — P,CTR'\CP +Q =0, (A.7)

Fo=-P,CTR™. (A.8)

The remainder of this subsection is devoted to proving

'II‘I-IP(.) FT = Fo.
We begin by showing that as T' — 0, the solution Pr of the discrete-time Riccati equation

(A.5) is related to to the solution Py of the continuous-time Riccati equation (A.7) via
].im TPT = P().
T—0

Roughly speaking, this is done by by substituting
Ag=eT = [ + AT + O(T?),

into (A.3), and showing that the resulting equation can be written as

(TPr)AT + A(TPr) — (TPr)CTRC(TPr) + (Q + O(T)) = 0. (A.9)
—
=:Q
Then by comparing (A.9) and (A.7), we expect that since @ — Q as T — 0, we have
TPr — Py as T — 0 as well. Once we have this result, it is straightforward to show that

Fr — Fy as T — 0 by simply using the definitions of Fy and Fr.

Lemma A.1 For every € > 0, there exists a T,.: > 0 such that for every T € (0, Trmaz),
we have
”TPT- PO" < &
"FT _ Fo” < E.
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Proof:
Let T be nonpathological, Pr be the unique positive definite solution of (A.5), and
define

PA = TPT.
We start by showing that Po = O(1). Recall that by our choice of Fr, when the control
law (A.4) is applied to (A.2). the cost function (A.3) is minimized. and in fact the
associated optimal cost is wZ Prwp. Now choose F € R™ so that AT +CTFT is stable; it
is easy to see that AS + TCTFT is stable for small enough T'. Next, consider the control
law

vlk] = FTulk],
so that the closed loop system is

wlk + 1] = (AT + TETFT yw[k], w(0) = wo,
and the associated cost is

wl [Z(Ad +TFC)(Q + FRFT)(AT + TCTFTY*| wo.
k=0
Using a Lyapunov argument, it can be shown that there exists a Ty > 0, @ > 0and A < 0

so that
(Aq + TFC)t|| < a(eT)%, T € (0,To),

so for every T € (0,T5), the cost is bounded above by
a?|Q + FRFT||

= ol = O(T ) ol

)" o (€PT)H|Q + FRFT|| x ||wol* =
k=0

this also is an upper bound on the optimal cost wT Prw,. Hence, we have
wy Pruo < O(T™)|Jwoll?
= Twd Prwo = wl Pawe < O(1)]jwol|?
= Py = O(1).
We now go on to show our desired result. If we substitute Pr = P5 /T and

=eT = [ + AT + O(T?)
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into (A.5), we get
Pa (I + AT +O(T*)22(I + ATT + O(T?))
HI+AT+0O(T?)PaCT(TCPACT + R)CPa(I+ATT+0O(T?)-Q =0
= fa — (B2 + APp + PAAT + O(T))
+(PaCT + O(T))(O(T) + R)(CPa + O(T)) -Q =0
= —APas — PAAT — O(T)
+(PaCT + O(T)RMI + O(T))"M(CPa +O(T)) - Q = 0.
But ([ + O(T))™' = I + O(T), so
APy + PAAT - PACTR'CPy +Q + o) =o.

=:Aq
Since Pr = P}' > 0, it follows that Py = Pz > 0. Then, together with the definition of
Aq and the fact that Q@ = QT and R = RT, it also follows that Ag = AS. Furthermore,

since Ag = O(T), we can choose T} < Tp such that for T € (0,7}), we have
Q+ AQ > 0.
Hence, from Lemma 2.3, there exists a ¢; > 0 such that for every T € (0,T}), we have

| Poll + c1l|Aql| ) }
P — Pyl| = ||T Pr - Py|| < max Agll, alllA .
| Pa oll = ||T Pr oll < {(, Q) - [Aal] lAqll, 1]l Aqll

Since Agq is O(T), it follows that Py — Py is as well, so our first result follows.

Using (A.6) and (A.8) we have
Fr—F, = —APr(TC)T(TC)Pr(TC)T + R + RCTR™?
= —(I+ AT + O(T))PaC*[TCPACT + R™* + RCTR™
—(PaCT + O(T))(O(T) + R)* + R,CTR™!
= —(PACT+O(T))R(I + O(T)) + PCTR™!
= —(Pa—PR)CTR +O(T).

Since Pa — P, is O(T') from above, our last result follows.
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A.1.2 Controller Design

In this subsection we will use the results of Subsection A.1.1 to provide an alternate proof
to Theorem 3.1. Furthermore, we will show that we do not necessarily need T to be less

than some T,z > 0 in order to stabilize the nominal plant.

Proof:(Alternate proof of Theorem 3.1)
This proof is based on a discrete-time Lyapunov approach. Given ¢ € [0, ),

p € (0,1], and 7 € [1,00), define C via (A.1), and choose positive definite symmet-
ric matrices @) and R. Using Theorem 2.2, we can choose a Ty > 0 so that (6, Ag) is
observable for every T € (0,Tp). It follows that for T € (0,7Tp), there exists a unique
positive definite symmetric solution Pr for the discrete-time Riccati equation (A.5), and
the optimal discrete-time LQR gain Fr is given by (A.6). Define

An:=AY, B,:=TCT, F,:=F%,
and with g € [2, f;] and ¢ € [~@, 4], consider

wlk + 1] = (An + pe’® B, Fo)wlk], w[0] = w, € C*.
Fix wo and consider the Lyapunov candidate function V : C* — C:

V(w) := w" Prw. (A.10)
Since Pr = PY we know that V is real-valued, so

AV (wlk]) = V(wlk + 1]) - V(w[k])
is also real-valued. Expanding AV (w(k]) and simplifying, we have

AV(wlk]) = w"[k|(A;PrAa ~ Prywlk] + p*w"(k|(F B PrB.Fa)uw(k]

+pw"[k|(e™* Fy By PrAn + & A7 Pr B Fa)ulk].

Using (A.5) and (A.6), this can be written as

AV(wlk]) = —w'[K]Qu[k]+ (1 — 25 cos($)yw"[k](Fy (B; PrBa + R)Fa)wlk]

+7°w"[k)(F? BY Pr B, F,)wik].
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From the definition of « given in (3.11), the bounds on ¢, and the upper bound on p, we
see that

1 —2pcos(¢) <0,

so since Pr > 0 and R > 0, it follows that
=2

AV(wlk)) < ~w[HQulk] + S5’ [F(Fy B PrBaFuyulk

= —w"[k]Qu[k] + p*w"[k](T*FrC PrCT Ff yw(k].
We now go on to show that as T — 0, the second term in the above inequality is
dominated by the first term. Using Lemma A.l, it follows that there exists positive

constants ¢, ¢z, and T} € (0,75) so that for T € (0,T)) we have

| Frll < e,
I Pril < %-
Hence, for T € (0,Ty) and w(k] # 0, we have
PPw (W(T?FrCPrCT FE ikl < BTN Ell? x I1Prll x [ICIP x [[wlkl]?
< PPTeellCl? x lwlk|*.

If we let

. ’\mm(Q)
Tmaz < mm {TI, —7)28:_1 Cz"C"z} ?

then it follows that there exists a positive definite matrix U so that for T € (0, Tinaz)
AV(wik]) < ~w[k]*Uw[k], k€ Z*.

Hence, for every wq, V(w[k]) goes to zero as k — oo; since Pr is positive definite, it
follows that w[k] goes to zero as k — oo as well, so

&  sp(Ai+Tpe*FrC) c {zeC:|z| <1}

< sp(Aa+ Tappe’*FrC) C {z€C:|z|<1}.
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But this holds for app € [p, 7], so for p € [p,p], and € (-4, 9], we have
sp(Ad + p&*Fr(TC)) c {z € C:|z| < 1}
Finally, with T € (0, Tnaz) and F = T Fy, we find an F(t) which satisfies (3.4).
-

Remark A.1 With ¢ [0, ’5') p€(0.1], and p€ [1,00), we now summarize an alternate
algorithm for constructing a GSHF controller (F, T') that stabilizes every system in

{(A,B,7C): 1 € T(p,5,9)}-
i) Choose symmetric positive definite matrices Q and R. Let a = 2 cos(¢) and

€ := apC.

ii) Determine a value for T so that when Ag = eAT  Pr satisfies
Pr — AqPrAT + AgPr(TC)T(TC)P(TC)T + R™HTC)PrAY — Q =0,
and Fr satisfies
Fr = —A4Pr(TC)T((TC)Pr(TC)T + R,
we have

PT|FrCPrCTFE| < Mmin(Q)-
iii) Let F = TFr and use a method to find an F(t) to satisfy (3.4), e.g. use (3.6).

Remark A.2 The T obtained in the above algorithm is based on a Lyapunov approach,
and hence is typically quite conservative; perhaps a better choice for the Lyapunov can-
didate function (A.10) would result in a less conservative value of T'. However, from a
practical point of view, it might be better to compute the combined gain margin and
phase margin for various values of T, and obtain the largest one which achieves the de-

sired robustness. o
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A.1.3 An Example

Let us consider the same example mentioned in Section 3.3.3. Namely, suppose our

nominal plant is

(23]

with associated transfer function

=

s—=1
(s —0.5)(s+1)
Using the algorithm outline in Remark A.1, we can construct a static GSHF controller

Po(s):=C(sI - A)y'B =

to stabilize every system in

{(A,B,7C) : v € I'(0.75,6,70°)} .
i) Let @ = I and R = 1. Here a = 2cos(70°) = 0.6840403, and

8 =apC = [ 0.6840403 0.6840403 ] :

ii) We determine T by plotting p*T?||FrCPrCTF¥|| vs T. From Figure A.1 we see
that for T < 0.0008774830 we have

PT2|| FrC PpCTFY|| < 0.9833175 < Amin(Q) = 1.

Recall from Remark A.2 that choosing T' = 0.0008774830 is quite conservative. As
was done in Subsection 3.3.3, we now propose a method to approximately determine
a less conservative sampling period. Using a 2-dimensional search algorithm, we

determine

p,, (T) := min{ 5 € (0,1] : sp(e”T + pe*TFyC) C {z € C: |2l < 1},
pelp il o€ (-4}

Pas(T) := max{p € [1,00) : sp(e’T + pe*TFrC) C {z € C: |z| < 1},
pe(l,p. ¢ €(-¢.d}
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12 Determining T, for Discrete-Time GSHF Controller
10 e ————r T e e s

0.0008774830 .

107 107 10" 10
T

10
Figure A.1: Plot of p*T?||FrCPrCTFf| vs T.

to be consistent with Subsection 3.3.3, we refer to p, (T) (P4s.(T)) as the “com-
bined lower (upper) gain/phase margin” provided by the GSHF controller (F,T)
using the “discrete-time” approach. A plot of p,, (T) and g4, (T') is provided in
Figure A.2. Observe that for T = 0.0416000, we achieve the desired gain and phase
margin. For T = 0.04160, we have

—2.475947

| 12.63665 —8.988131
—8.088131 130.7065

[ —0.06979002 J

so we set

—0.002861391
F=TFr=

—0.1015138
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Gain Margin vs Sample Period (70 phase margin)

10° ¢ ——rrrr y—rr —r r
E

— Upper Gain Margin
- -~ Lower Gain Margin

adaaasal

Gain Margin
=

10°° 107 107 T 102 0.04160 10 10
Figure A.2: Combined upper and lower gain and phase margin as a function of T

(d.t. approach).

and from (3.6), we can choose

F(t) = —2.397830(10)*e~(0-9416-t) 1 2 325021 (10)*e5=(0-0416-¢),

Figure A.3 illustrates the response of the closed loop system at the GSHF sample
points when the initial condition zo = [1 0 |7 and the scalar gain uncertainty v = 4.
While the GSHF controller provides adequate performance at the sample points, it can
be seen in Figure A.4 that the intersample performance is quite poor. This is primarily
due to the fact that the generalized hold has large gains.
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Static GSHF Controller: Sampled Output y{kT] (x,={1.0], v=4)

1 T L4 T T
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Figure A.3: Sampled output y[kT] when z¢ = [1 0|7 and v = 4 (d.t. approach).

Static GSHF Controller: Output y(t) (x,={1.0]", y=4)
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Static GSHF Controller: Control Signal u(t) (x={1.0]", y=4)
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Figure A.4: Output y(¢) and control signal u(t): zo = [1 0] and v = 4 (d.t. approach).
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A.2 Comparing the Continuous-time and Discrete-

time Approaches

In this section we will verify, through example, the theoretical results discussed in the
previous sections and compare the GSHF controllers obtained by the continuous-time and
discrete-time approaches. The nominal plant will be the same one used in the examples

found in Sections 3.3.3 and A.1.3:

(A,B,C)=(['1 ’ H ;' ]~[1 ! )
0 05| | -2

Suppose we have the same design objective as that found in the previous examples.

Namely, we wish to design a static GSHF controller that will stabilize every system in
{(A, B,7C) : v € (0.75,6,70°)} .

A.2.1 Verification of Lemma A.1

To verify Lemma A.1, we do the following:

i) Solve for Py and Fj in (3.13) and (3.14).
ii) Pick a value for T so that (C,eAT) is observable.
iii) Solve for Pr and Fr in (A.5) and (A.6).

iii) Evaluate ||Fr — Fy|| and ||TPr — Py||. Then pick another smaller T such that
(C,eAT) is observable and go back to step iii).

Figures A.5 and A.6 show plots of || Fr — Fy|| vs T and ||[TPr — Pol| vs T, respectively,
and as expected,

i ||Fr — Fol =0,

I ||ITPr — Bol| = 0.
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Figure A.5: Plot of ||Fr — Fyl| vs T.
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Figure A.6: Plot of ||TPp — Py|| vs T.
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A.2.2 Advantages of the Discrete-Time Approach

Note that the final GSHF controllers obtained in Section 3.3.3 (Continuous-time ap-
proach) and Section A.1.3 (Discrete-time approach) were very similar. In fact, if we
compare the simulation results of the two GSHF controllers illustrated in Figure 3.6 and
A.4, we see that they are virtually identical.

However, we will now verify that the discrete-time based GSHF controller does provide
better gain margins when the sampling period T is large. We will denote (F, T)... and
(F,T)q.. as the GSHF controllers designed based on the continuous-time and discrete-
time approaches, respectively. For both GSHF controllers, we choose @ = I, R =1, and
$ = 70° (i.e. @ = 0.684) for our GSHF design parameters.

STEP 1: Gain margin for (F,T)...
Set € = [0.684 0.684]. Determine P, and Fj satisfying (3.13) and (3.14). Then for various
values of T' we determine
p (T) = min{7 € (0.1] :sp(e*T + pTFC) C {z € C: |z} < 1},p € [5. 1]},
Pe+(T) = max{p € [l,00):sp(e*” +pTFC) C{z € C:|z[ <1},p € [L,7]}-
STEP 2: Gain margin for (F,T)q..
Set € = [0.684 0.684]. Then for various values of T', let Ag = e4T, determine Pr and Fr
satisfying (A.5) and (A.6), and find
2, (T) = min{7 € (0,1] : sp(e*T + pTFrC) C{z € C: 2| < 1}.p € [7, 1]},
P4:(T) := max{p € [1,00):sp(e*T + pTFrC)C {z€ C:|z| < 1},p €(1,7]}.
STEP 3: Compare gain margins
We plot 7,.(T)/p, (T) and 7,,(T)/p, (T) in Figure A.T.
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Comparing Gain Margins
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Figure A.7: Comparing the gain margins obtained from the continuous-time and discrete-

time approaches.

Note that for T > 2.98 the GSHF controller based on the continuous-time approach does

not stabilize the nominal plant. On the other hand, the gain margin provided by the

GSHF controller that was designed using the discrete-time approach is always greater

than one. Note however that as ' — oo, the gain margin approaches unity, which means

that the GSHF controller cannot tolerate much uncertainty in the gain of the plant when

T is large.
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