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Abstract 

The application of a digital con t rok  to a continuous-time plant rewlts in a dosed 

loop system t hat cont ains bot h continuous-the and disaete-time signals; such a system 

is refmed to as a samppled-data system. 

In this thesis, we consider finite-dimensional linear tirne-invariant plants, and the 

emphasis is placecl on designing low order linear tirne-varying digital controllers that 

are straightforward-to design and easy to implement. We consider two basic controller 

structures: static generalized sampled-data hold h c t i o n  (GSHF) controllers and linear 

periodic controllers (LPCs) that consist of a sampler, a low order linear disaete-time 

cornpensator, and a zereorder-hold fùnction. 

We consider three control problems. The first problem is the combined gainlphase 

margin problem. which can be viewed as a robust stabilization problem. We show that 

it is possible to design a static GSHF controller, which can be implemented with a 

low order LPC. that can provide a gain margki as large as desired and any desired 

phase margin up to 90 degrees. An analysis of the tolerance of such a controller to 

unstructured uncertainty in the nominal model is also presented. This controller sders  

from poor intersampie behaviour, so we rrLM present another low order LPC that has 

good intersample behaviour while providing a gain margin as large as desired and any 

desired phase margin up to 90 degrees. The second problem is the model reference 

contrd problem (MRCP),  where the goal is to track a class of reference signals despite 

the presence of noise. We show that there exists a static GSHF controller that solves 

the MRCP when the single-input, single-output plant is miriimum phase. Finally, in our 

third problem we look s t  an optimal step tracking problem for an arbitrary mdti-input, 

multi-output plant. We show that it is possible to design a low order LPC that not ody 

provides near LQR-optimal step tracking for the nominal plant, but also provides step 

tracking when there is some nncertainty in the gain of the plant. 
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Chapter 1 

Introduction 

Control systems play an important role in virtually all areas of technology, from manufac- 

turing, cornputers and communications, right through to the financial and entertainment 

industries. The main objective of a control system is to provide an input or control signal 

to a real physical system, so that the output of the system behaves in a desired manner. 

TO attain this goal, the control system designer tyyically follows four steps: (1) quanti& 

the desired behaviour in mathematical specifications, (2) develop an idealized mathe- 

matica. representation or model for the real system, (3) design a controller based on the 

modei that meets the specifications, and (4) implement the controkr and verify that the 

speafications are met. There are tkee issues that must be kept in mind throughout the 

control system design process. 

First, while developing an idealized mathematical model, many skplifying assnmp 

tions (e.g. linearization, order reduction) are typicdy made and accurate estimates of 

the actual parameters of the system are not always a d a b l e .  Hence, there is alxnost 

always some degree of nncertainty in the idealized mathematical modeL Designing con- 

trollers that account for txncertainty in the model of the system is commonly reférred to 

as robwt control. 

Secondly, since most physical sys tems are analog in nature, the resalting mathematical 



model commody takes the form of a set of difkrential equations. huthermore, it is 

usually intuitive to express the design specifications - commonly measured by some 

performance index (e.g. a cost function, tracking error) - in the continuous-the or 

analog domain. However, with the advent of fast and inexpensive digital technology, it 

is desirable to implement the controller digitally. A digital controller typicdy consists 

of three components: a sampling operation, discrete-the signal processing, and a digital 

to analog conversion (or hold operation). Conventiondy, one fixes the sampling and 

hold operations, sykhronizes these operations in tirne with a f i ed  sampling period, 

and t hen designs the discrete- tirne signal processing component (controller) . Hence, the 

combination of the analog model and the digital controller contains both continuous-time 

and discrete-time signals; such systems are commonly reférred to as sarnpled-data systems. 

To simplify the modd of the system, approximations are typicdy made so that the model 

can be expressed as a finite set of linear tirne-invariant (LTI) diffaential equations. To 

simplify the controller synthesis, one can restrict the discrete-the controller to be LTI 

and only consider the behaviour of the sarnpled-data system at the sampling instances, 

thus yielding an overall dosed loop system that is discrete-time LTI. Recently, some 

results have been presented where intersample behaviour is taken into account while still 

restricting the discrete-time component of the controller to be LTI. In this thesis. we will 

consider intersample behaviour and we wil l  not restrict the discrete-time component of 

our controller to be LTI. 

Finally, the third issue that the control system designer m a t  address is the complexity 

of the controller. In order to Say that one controller is simpler than another, we must 

define a measure of the complexity; a reasonable one is that of the degree of M d t y  of 

implementation. Since we will be considering linear periodic time-varying controIlers, we 

will use the order of the controner state and the periodicity of the controller parameters 

as our measure of the complexity. In this thesis, we will emphasize the design of low 

order controllers, but it will hun out that the periodiâty of the con t rok  panuneters is 

nsually at l e s t  as high as the order of the plant. Hence, the overd complexity of the 
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controllers we propose will be of the same order as that of the controllers designed using 

ot her LTI techniques. 

Therefore, to summarize the above, we will look at designing low order LPCs for LTI 

systems Ui a sampled-dota setting, that are in some respects superior to LTI controners 

when looking at issues related to robwt control and perfomance. 

1.1 A Brief Literature Survey 

Before going on to state the specüic objectives of our work, it wodd be prudent to discuss 

some of the motivating and related work that can be fonnd in the literature. First, 

one naturdy might ask why it would be desirable to use a linear t h e - m g  (LTV) 

coiitroller instead of an LTI controller. It was shown by Feintnch and Rancis [18] and by 

Shamma and Dahleh [46] that for LTI discrete-time systems, LTV controllers do not lead 

to any improved performance for problems of d o m  optimal control. Furthermore, 

Khargonekar et al. (301 showed that under some weak assamptions, if there does not 

exists an LTI controller that will stabilize every plant in a speded  set (i.e. additive 

mcertainty set) then there does not exist a LTV controller that will do so either. 

However, L W  c o n t r o ~ s  have been shown to be superior in attaining other control 

objectives. For example, it is well known that given an anstable non-minimum phase 

LTI plant, the maximum attainable gain and phase margin provided by an LTI controh 

is bounded [33]. However, this limitation is not present if we allow the controller to be 

LTV (e-g. continuous-time case [Xi], disaete-time case [3l], sampled-dat a case [2Y). 

Note however, that in these approaches, the resulting controller may have a high order, 

and by our earIier discussion, can be considered relatively complex. 

Motivated by a desire for low order controllers, Kabamba [261 investigated a second 

approach to sampled-data control that uses a generalized sampled-data hold fûnction 

(GSHF) instead of the classicd zero-order-hold fanction. This gives rise to GSEF con- 



trollers, and the ideas behind this approach can be traced back to work done by Chammas 

and Leondes [Il]. Kabamba [26] showed that GSHF controlkrs are n s d d  in the area of 

pole assignment, optimal noise rejection, model matching, decoupling and robustness. A 

more detailed discussion of the literatare related to the application of GSHF controllers 

to the gain margin problem and the model matching problem can be found in Chapters 3 

and 5? respectively. On a related topic of sampled-data low order controllers, Madievski 

and Anderson (361 and Anderson et al.[2] investigate methods for approximating a high 

order continuous-tike LTI controller by a low order discretdime LTI controller (with 

a sampler and zerosrder-hold) using fast maltirate sampling and classical order reduc- 

tion techniques. For the low order discret-the periodic pole placement problem, see 

[l, 28, 371. A rndti-rate discrete-time periodic controller that can be synthesized to 

achieve pole placement was also discussed in [5] and [23]. 

As noted by Feuer and Goodwin [19], one major limitation of the GSHF controller is 

the poor intersample performance that results fiom the fact that as the sampling period 

of the GSHF controUer tends to zero, the gain of the hold function, and in tnni the 

control signal, typically becomes large. Juan and Kabamba [25] and Werner (541 attempt 

to improve the intersample behaviour by selecting the hold function in an optimal fashion. 

Furthemore, the study of the robustness properties provided by GSHF controllers has 

been studied in some detail in the literature [26,22,40,10], but there are no resdts to o u  

knowledge that describe what happens to the tolerance of the controlIer to nnstnictured 

uncertainty in the model as the sampling period of the GSHF controller tends to zero. 

We WU address this issue in this thesis. 

B&e Ieaving this section, we note some other related work that the reader shodd 

be made aware of. There has been a vast amount of work done in the area of optimal 

sampled-data control, and we tist but a few papers in each specific ares. For the case 

where the digital controller consists of a sampler, an LTI dismete-time compensator and 

a zero order hold, there has been a namber of r d t s  presented in optimal control 
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[17,6], H, optimal control[9, 24,27,49, 501, and H2 optimal control[8, 7, 13,321. When 

the discrete-the component is allowed to be LTV, there have also been results presented 

in the areas of H2 and H, optimal control [53, 52, 14,421. A general mathematical tool 

that is nsed in ob taining some of the previous results, commonly referred to as the lifting 

technique, has been developed in [50,56,8]. Recently, a new discretization-based solution 

to the sampled-data H, control problem that does not directly nsing the lifting technique 

was &en in [51]. These the authors relate their technique to the lifting technique and 

show that both methods lead to identical synthesis equations. Findy, a survey p a p a  by 

Araki [4] provides a comprehensive outline of many of the developments in digital control 

theory made previous to 1993. 

1.2 Our Objectives 

In this thesis, we would like to find low order sampled-data LPCs that can provide robust 

control andior provide a desired performance. We will propose two different controller 

structures to meet our objectives: a static GSHF controller (Chapters 3 and 5), and a 

low order LPC that consists of a sampler, a linear periodic discrete-the compensator, 

and a zereorder-hold (Chapters 4 and 6). We restrict ourselves to considering finite- 

dimensional LTI plants and ail of the low order controllers that we propose will be capable 

of attaining goals that LTI controllers cannot achieve, but as expected it typically cornes 

at a cost, 

The f is t  problem that we wi. consider (Chapters 3 and 4) is the robust stabilization 

problem commonly reférred to as the combined gain/phase margin problem. We know 

that for anstable non-minimum phase LTi plants, the maximum attainable gain and 

phase margin provided by an LTI controller is boanded [33]. While it has been shown 

that it is possible to design a static GSHF controner that can provide a gain margin 

as large as desired [58], there are no r e d t s  in the Iiterature that address the issue of 
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designing a static GSHF controlIer to provide a desired phase margin. In our resdts, 

we use a sigaificantly merent  approach to that proposed in [58j to incorporate the 

phase margin spedication into our design, and show that for any nth order multi-input, 

multi-output (MIMO) LTI continnous-time plant, it is possible to design a static GSHF 

controuer that provides a gain margin as large as desired and any desired phase margin 

ap to 90 degrees. We use the fact that the GSHF controller provides a combined gain and 

phase masgin to show that the GSHF controller will be capable of tolerating moderate 

additive dynamic p&turbations to the nominal model, even as the sampling period tends 

to zero. A drawback of this first GSHF controlla is that we typicdy require the sampling 

period to be small in order to stabilize even the nominal plant. Hence, we also propose 

an alternate GSHF controller that will be capable of stabilizing the nominal model for 

aknost all sampling periods, and will recover the gain/phase margin properties of the first 

GSHF controuer as the sampling period tends to zero. We then show that it is possible 

to implement each of the proposed static GSHF controllers with a sampler, a low order 

n-periodic discrete-tirne compensator. and a zero-order-hold function. 

A major drawback of the static GSHF controller is poor intersample performance, 

which can be attributed to the fact that as the sampling period becomes smd,  the gains 

of the hold function, and therefore the input to the plant, becomes large. Hence, we go 

on to show that it is possible to design an LPC that consists of a sampler, a low order p 

periodic (p > n) disnete-the compensator, and a zero-order-hold fnnction: that provides 

satisfactory intersample behaviour while providing a gain margin as large as desired and 

any desired phase margin up to 90 degcees. Udortunately, while this controller can 

be made very tolerant to the structnred uncertainty defined in the gain/phase margin 

problem, it becomes less and less tolerant to unstractured dynamic ttncertainty in the 

nominal modd as the sampling perîod becomes srnaIl. 

We then turn our attention to issues related to pedormance by considering the track- 

ing and disturbance rejection problem commonly rderred to as the Mode1 Reference 
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Control Probiem (MRCP). In the MRCP, the control system designer chooses a reference 

model that embodies the desired behaviour and the objective is to fmd a controlla that 

makes the plant behave Iike the reference model. Since we know that for non-minimum 

phase LTI plants there are limits to the best achievable closed loop pedormance even 

when the controller is nonlinear and time-vaFying [38], we wiU assume that the plant is 

minimum phase. Furthemore, we assume that both the plant and reference model are 

single-input, single-output (SISO). We then go on to show that it is possible to design 

a static GSHF controller that ensures that the plant output tracks the reference model 

output as well as desired, and as mentioned before, it is possible to implement such 

a controller using a sampler, a f i s t  order n-periodic discrete-the compensator, and a 

zero-order-hold. Since GSHî? controllers typically s u i f "  fiom poor intersample perfor- 

mance, this resdt is surprishg and to our knowledge, is the first result that uses static 

GSHF controllers to solve the sarnpled-data MRCP (e.g. see [26, 411 for the application 

of GSRF controllers to solve a weaker discretetîme MRCP). 

Findy? we address the issue of tracking for a larger class of plants for a control 

problem that is common in industry. Spedcally, we will pose an optimal step tracking 

problem where we do not assume that the state of the plant can be measared, and the 

objective is to track step reference sipals in an optimal fashion. The optimality criterion 

will be similar to the standard LQR cost fnnction, and we begin by converting the optimal 

step tracking problem into the standard LQR problem. We then show that it is possible 

to design a low order LPC that can provide near optimal performance for the nominal 

plant and can still p r o d e  stability, even when there is some uncertainty in the gain of 

the plant. 
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1.3 Thesis Outline 

In Chapter 2 we will introduce notation, state some well known results that will be ased 

throughout the thesis, and prove some preliminary mathematical resdts. In Chapter 3 

we show that it is possible to design a GSHF controIIer that can solve the gain/phase 

margin probiem and that under some mild conditions, this GSHF controller can &O 

toierate unstnictured uncertainty in the mode1 of the plant. In Chapter 4, we show that 

it is possible to desi* a low or der linear periodic controller t hat can solve the gain/phase 

margin problem, while providing satisfactory intersample performance. In Chapta 5 we 

show how to design a GSHF controuer that solves the MRCP for a SIS0 minimum phase 

plant. In Chaptu 6 we pose an optimal step tracking problem and show that there exists 

a low order LPC that solves t his problem. Moreuver, this controller can provide stability 

ewn when there is some ancertainty in the gain of the plant. A summary follows in 

Chapter 7 where we outline the contributions made in this work and propose some areas 

of future study. 



Chapter 2 

Mat hemat ical Background 

In this chapter, we will introduce some notation and present some preliminary math* 

matical resdts that will be used thronghout the thesis. 

2.1 Notation 

Let R denote the set of real numbers, R+ denote the set of non-negative real numbers, 

C denote the set of complex numbers. C- denote the set of complex nurnbers with a real 

part less than zero, Z denote the set of integers, and II+ denote the set of non-negative 

integers. Let Cn denote the set of ail n x 1 vectors with elements in C, and CnX" denote 

the set of al l  n x m matrices with elements in C. Similady? let Rn and RnXm denote 

the set of n x 1 vectors and n x m matrices with elements in RI We will denote the 

n-dimensional identity matrix by In, or sirnply I when n is bunaterial. 

The real and imagiaary parts of z E C will be written as Re(z) and kn(z), respectiv* 

The complex conjagate transpose of A E CnXm will be denoted by A* and the transpose 

of A E RnX* will be denoted by A=. The set of eigenvalites of A E CnXn wil l  be called 

the spectnun of A and will be denoted by sp(A). We say that A is stable if sp(A) C C-; 

otherwise, we say thak A is unstable. 



We Say that Q E CnXn is Hennitian if Q = Q'; it is well known that a Hermitinn rnatrix 

Q satisfies the following: 

i) S P ( Q ~  C R, 
ii) for every x E Cn, we have Im(xmQx) = 0, 

iii) for every x E Cn, we have Lin(Q)x'x 5 xmQz 5 &(Q)xmx. 

The matrix Q E RnXn is positive definite if x T Q z  > O for all non-zero x E Rn, in 

which case we will write Q > 0. 

2.2 

Let z f 

Norms and Spaces 

Cn and denote the ith element of z as q. We dehe  the pnonn of z E Cn as 

I / n  \ VP 

Since all noms on Cn are eqnivalent (e.g. see [15, §II.%]) we will use the 2-nom (Eu- 

didean nom) on Cn for this work. NameIy? for t E Cn we will denote 

1 1 ~ 1 1  := 11~111 = JO; 
it is easy to prove that the indnced norm of A E CnXn satisfies 
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We denote qR+, Rn) as the set of all continuous functions mapping R+ to Rn. We 

say that f : R+ + Rn is p i e c e d e  continuow if there exists a sequence O 5 t i  < t2 < 
so that 

ii) f is continuous for t E R+ - u gl { t i ) ,  and 

iii) for each ti, the left-hand and right-band bits of f ( t )  as t -t ti exist and are finite. 

If f : R+ -t Cn, or f : R+ -t CnXm, thea we can generalize the concept of continuity 

and piecewise continuity in the natural way by stacking the real and imaginary parts of 

f ( 9 )  into one vector. Let the set of alI piecewise continuous fuactions f : R+ + CnX" 

be denoted as PC (Rf , CnX*), or sMply PC when R+ and CnXm are immaterial. Now 

and PC; to be the set of those elements f E PC, which are absolutely continuous and 

whoae derivative' f belongs to PC,. For such an f ,  we have 

e.g. see Theorem 15 [15, pg. 2311. 

For what follows, we could consider the more general class of locally (Lebesgue) in- 

tegrable functions instead of PC (R+, CnXm ), bat this wodd reqnire extra mathematics 

which wodd detract fÎom the clarity of the presentation without signüicantly gener- 

alizing our results. Hence, let the subset -iP,(R+,Cn) of PC(R+, Cn) consist of all 

.If f is absolutely continuous, then it is w d  known that / exists almost everywhere. 
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to simplify the notation, we write ZP(Cn) when R+ is immaterial and Zp when R+ and 

Cn are immaterial. In this thesis, we will primarily be interested in the case when p = 2 

and p = oo. The 9- induced gain of a system 

is defined by 

If f E (R+, Rn) , then the Laplace transform of f ,  denoted I; { f) or F (s), is given by 

for all s E C for which the integral is defined. Let 31, be the set of all complex vahed 

functions F(s) of a complex variable s which are analytic and bounded in the open right 

half-plane Re($) > 0. and d e h e  

The subset of 'fl, consisting of real-rational fnnctions will be denoted by ZR,. If F ( s )  

is reai-rational, then F E R3c, if and ody if F(oo) is finite (proper), and F(s)  is finite 

for Re($) 2 O (stable). Furthemore, by the Maximum Modulns Theorem, it is well 

known that 

Let RC, be the set of real-rational complex valned hc t ions  F(s) of a complex variable 

s which are analytic and bounded on the imaginary axis Re(8) = 0. 

The set of all sequences on Z+ taki~g values in Cm will be denotes as *Y+, C"), and 

we write f E *Zf, Cn) as {f (k)). The subspace G(Z+, CR) of LSqZf , Cn) consists of 

all f E SP(Zf, Cn) satisfying 



to shplify the notation, we write C(Cn) when Z+ is immaterial, and L, when Z+ and 

Cn aie immaterial. If f E .Y(R+, Rn), then the z-transform of f ,  denoted Z {f) or F ( z ) ,  

for all z E C for whiclr the summation is defined. 

2.3 Order of a Function 

We say that the fanction f(T) is of order Tj ,  and write f (T)  = o ( T ~ ) ,  if there exists a 

constant cl > O and Tl > O so that 

Lemma 2.1 

If f i(T) and f i (T)  are of order T' and Tj ,  respectively, then 

The fVst two resdts are stdghtforward, so we only prove the third r e d t .  For 

Since f - ( T )  = o(T'), it follows that there exists a q > O and Tl > O so that 

which means that there exista a Tz E (O, Tl) so that 
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Hence, for T E (O, T2) we have 

so since fi(T) = O(T') ,  it follows that (1 - fl(T))-' - I = O(Ti) as well, and our third 

r esult follow S. m 

2.4 A Simple Convergence Result 

Lyapunov type arguments are ased in many of the proofs presented in this thesis, so it 

will be us& to state the following convergence r e d t .  

Proofi 

The following proof is based on the resdts fotmd in Section 3.5.5 of 1481. Since 

V E PC;, it follows that 

is an element of PC,. Solving the ks t  order differential equation (2.1) for V ( t )  we get 

but since W ( t )  2 O for t 2 0, it foUows that 
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In our results, we choose V(t ) 2 0 and show that t here exists a A > O satisfying the con- 

ditions of Lemma 2.2. Hence, we can daim that V ( t )  approaches zero at an exponential 

rate. 

2.5 A Riccati Equation Result 

In Chapters 3 and 4, we will be using a discrete-time LQR approach to design our con- 

trollers. However, we formulate the discrete-time LQR problem so that as the sampling 

period tends to zero, the discrete-the solution approaches the solution of a continaous- 

tirne LQR problem. This is basically done by k s t  showing that the discrete-time Riccati 

equation can be written as a perturbed continuons-tirne Riccati equation. Thns we will 

need the following result that relates the solution of a Riccati equation to its perturbed 

counterpart . 

Suppose that (A, B) is controllable and that Q E RnXn and R E Rmxm are positive 

dehi te  symmetric matrices. Let P be the unique positive definite symmetric solution of 

the continuoas-the Riccati equation 

the existence of such a P follows from the facts that (J&rA) is observable and 

(A, B) is controUable - e.g. see Theorem 12.2 and Lemma 12.2 in [55]. If we define 

then it is well known that A+ BF is stable. Now suppose that Aq E RnXn is symmetric, 

but not necessarily positive definite, and satisfies 

Q + A Q  > O ;  

since ( J m , A )  is observable and (A, B) is controbble, we know that there ex- 

ists a positive definite symmetric Pa E RnXn sati-g the perturbed continttous-time 
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algebraic Riccati equation 

then it is well known that A + BFA is stable. The following preliminary result states the 

intuitive result that if Q + Aq Q, then PA = P. 
Lemma 2.3 There exists a constant cl > O such that 

Proofi 

Consider the equation 

and let the nominal and perturbed cost functionals be defined as 

From Section 12.3 of [55], we know that the nominal optimal cost 

inf J(v,w0) = W,TPWO? 
u€Z? 

and the corresponding nominal optimal control law is 

Similady, the perturbed optimal cost 

and the corresponding perturbed optimal control law is 
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Let us first find an upper bound on &(PA - P). To do this, we set 

Since this control law minimises J but not necessarily not JA, it follows that 

which means 

Note that cl is independent of AQ and that since A + BF is stable. cl is finite. 

Since Pa - P may not be positive definite, we must show that hin(PA - P) is also 

bounded below by a fnnction of llAQ 11. To do this, we set 

Since this control law minimizes JA bat not necessarily not J, it follows that 

which means 



To get a bomd on the the last term in the above equation, we note that since 

~ ( t )  = F&w(t) o p t s e s  JA,  we have 

so it follows that 

5 ' l P ' l  + c t " A ~ l l  ~ l w ~ l l ~ .  [by eqnation (2.5)) (2.8) 
&niin((?) - I~AQII 

Combining (2.7) and (2.8) we get 

Given Lemma 2.3, it is trivial to prove the intuitive r d t  that if Aq -+ O, then the 

solution Pa of the pertarbed Riccati equation (2.3) approaches the solution P of the 

nominal Riccati equation (2.2). 
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2.6 The General Closed Loop Configuration 

In this thesis, we will consider plants that can be represented by the linear time-invariant 

( LTI) differential equation 

x(t) = Ax(t)  + Bu@) + Ew(t) ,  z(0) = xo E Rn 

~ ( t )  = W t ) ,  (2.10) 

e V )  = ~ r e f  ( t )  - Y V ) ~  t E R+; 

here z(t) E Rn is the state, u(t)  E Rm is the control input, y(t) E Rr is the plant 

output, w( t )  E Ru is the disturbance, yref(t) E Rr is the reference signal, e(t) E RT is 

the tracking error, and A, B, C and E are constant matrices of appropriate dimensions 

with elements in R. We assume that (A, B) is controllable, (C, A) is observable and that 

our controllet can only measure y and yref, and can only excite u. 

We Say that X E C is a transmission zero of (2.10) if 

We Say that (2.10) is minimum phase if all the transmission zeros are in C-; otherwise, 

we Say that (2.10) is non-minimum phase. When m = r = 1, the transmission zeros are 

the zeros of C ( d -  A)-'B. 

Suppose that C ( s i  - A)-'B is not identically zero, and observe that if s E C is not 

an eigenvalae of A, then 

We Say the nlatàve d e p e  of the plant is the order of the plant n less the highest degree 

of the elements of Cadj(s I - A)B. It can easily be shown that if the relative degree of 

the plant is q, then 

The linear the-varying (LTV) controllers that we will propose in this thesis can be 

viewed as linesr operators that map e to u. Hence, with Ge denoting the LTV controller 
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and P denoting the LTI plant, we will consider the general closed loop coafiguration 

illnstrated in Figure 2.1. Since the plant is strictly proper, under a modest restriction 

Figure 2.1: General dosed loop configuration. 

on the controller, the dosed loop system is well-posed. In Chapters 3, 4, and 6, we set 

w ( t )  = O, yTCf( t )  = O, and consider u E PC, which means e EV. In Chapter 5 we assume 

t ~ l ~ f ( t )  is the output of a strictly proper stable finite-dimensional LTI system driven by 

a bounded piecewise continuous input so that y,.f E PC;, w E PC,, and consider 

u E PC. Again, this means that e EV. 

The fist stage of the controller will always be a sampler S:V+ JPwhich is defined via 

h some cases, the last stage of the controller will be the zereorder-hold H : Y -t PC 

which is dehed via 

As a r e d t  of the sampling and hold operations, it will tarn our that the following 

matrices wi. play an important role in the design of o u  low order LPC: 

We now state some important properties of these matrices. 

Definition 2.1 The sampling period T is said to be pathological if A has two eigendnes 

with equal real parts and imapinary parts that mer by an integral multiple of F; 
otherwise, the sampling period is non-patholoqical, 



Theorem 2.1 If the sampling period T is non-pathological, then 

(A, B) controllable (Ad, Bd) controllable 

(C, A) observable + (C, &) observable 

Proofi 

See Theorem 12 in [29]. 

Theorem 2.2 There exists a To > O so that for every T E (O,To) we have (4, Bd) 
controllable and (C, Ad) observable. 

Proofi 

See Lemma 8 in (211. 

With minor modifications to the proof of Lemma 8 in [21], the following result that is 

used in Chapter 4 cm be proven: 

Theorem 2.3 For every integer p > n. there exists a To > O so that for every T E (O ,  To), 

the pair (@. tp-"IT eAr Bd+ is controllable. 1 



Chapter 3 

Robust Stability: Static GSHF 

Controllers 

3.1 Introduction 

The fist step in control system design is asually that of obtaining a mathematical model 

of the plant. However, since there are i n a c c d e s  in all measurements, we end up with 

a model with nncertainty in the parameters. One of the simplest ways to model this 

uncertainty is via an uncertain scalar multiplicative gain. To this end, we consider the 

following robus t s t abilization problem: with Po ( s ) the nominal finite dimensional linear 

the-invariant (FDLTI) plant model, we would like to find (if possible) a linear controner 

that will stabilize every system in a set of the form 

{yPO(s)  : 7 is a scalar gain uncertainty). 

This setup encompasses the dassical gain margin problem, phase margin problem, and 

the combined gainiphase margin problem. 

Given a single-input si~gle-oatput (SISO) unstable non-minimum phase plant Po(s), 

it was shown by Khargonekar and Tamenbatun [33] that there is a m a x i ~ ~ n m  attainable 
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gain rnarpin which c m  be provided by an LTI controller. and that this maximum is a 

fnnction of the right half plane zaos and poles of Po(+ However, it turns out that 

time-rarying controllers can do better. 

In the continuous-time case, Lee, Meerkov, and Runolfsson [35] showed that for a 

SISO FDLTI plant, one can design a continaous-time periodic controller to provide a 

gain margin as large as desired; the controller order equals that of the plant. In the 

discrete-time case, Khargonekar, Poolla, and Tannenbaum (311 showed, among other 

things, that for a SISO FDLTI discrete-the bicausal plant with distinct unstable poles, 

there exists a disaete-time periodic controller that will provide a gain margin as large 

as desired, as well as a phase margin of up to 90 degrees. 

In the sampled-data setting, there have been several approaches. Rancis and Geor- 

giou [21] considered the control of a FDLTI continuous-the plant with a sampled-data 

controIIer composed of a periodic discrete-time compensator and a zer-order-hold; they 

showed that for every multi-input multi-output (-0) continuous-time plant, there 

exists such a controller of suitable period that will provide a gain nia@ as large as de- 

sired. A second approach uses generalized hold bc t ions ,  which gives rise to generalized 

sampled-data hold function (GSHF) controllers, which have been shown to be u s a  in 

the area of pole assignment, optimal noise rejection, mode1 matching, decouphg and 

robustness [26, 251. Yan, Anderson, and Bitmead [57] showed that for a MIMO FDLTI 

continuons-time plant, it is possible to design a dynamic GSHF controuer to provide a 

gain margin as large as desired; indeed, for a given sampling period, they find the GSHF 

controller that will provide the maximum attainable gain margin. Motivated by a desire 

for low order controllers, Yang and Kabaxnba [58] showed that one can design a static 

GSHF controller to provide a gain margin as large as desired; in fact, they solve a more 

general multivariable gain margin problem. 

In this chapter we consider the general gainlphase margin problem. We will design 

low order LTV controllers, parameterized by the sampling period T, which can provide 
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any desired phase margin up to 90 degrees, and have the property that the gain magin 

goes to infinity as T + O; in fact, we can prove that for every - p E (0,1], P E [1, oo), and 
- 
4 E [O, f) , for sufficiently s m d  T these controllers will stabihe every system in 

This work can be viewed as an extension of the work of Yang and Kabamba [58] to indude 

a phase margin speufication, although our proof is significantly different. In cornparison 

to the work of Yan, Anderson, and Bitmead[5?], here the controller is less complex and 

provides a guatanteed phase margin; on the other hand, it does not provide the maiMial 

at tainable gain margixt for a given sampling period. 

This chapter is orgmized in the following manner. We begin in Section 3.2 by formu- 

lating the problem in terms of designing a MIMO static GSHF controller for a MIMO LTI 

plant. In Section 3.3, we solve the problem posed in Section 3.2 using a continuous-tirne 

approach and illustrate the design method in an example. An irnproved design algo- 

rithm based on a discrete-time approach is presented in Appendix A. 1, and throagh an 

example the two approaches are compared in Appendix A.2. Finally, in Section 3.4 it is 

shom that all of the MIMO static GSHF controllers presented can be implemented as a 

low order sampled-data controuer consisting of a sampler, a discretetime linear periodic 

compensator, and a zereorder-hold. 

3.2 Problem Formulation 

Our nominal plant mode1 is 

with z( t )  E Rn the state, u(t) E Rm the control input, and y ( t )  E RF the plant output. 

Our standing assnmption is that (A, B) is controllable and (C, A) is observable. 
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We capture uncertainty in the model by supposing that the actnal system is given by 

with 7 E C; we represent this system by the triple (A, B, TC). Our parameter 7 is 

assumed to lie in a set of the form 

Our goal is to fuid a controller which will simultaneously stabilize every model in 

If 3 = O, then we have a gain margin problem; if - p = p = 1, then we have a phase margin 

problem: the general case is a combined gain and phase margin problem. 

We now define the set of controllers that will be considered. With T > O the sampling 

period of the generalized hold and F : R + RmXr piecewise continuous and periodic of 

period T, we consider the static GSHF controller 

we represent the controller by the pair (F, T). 

Definition 3.1 The GSHF controller (3.3) stabilizes (3.2) if, for every xo E Rn, we have 

Hence our objective is as follows: 

Given the nominal system (A, B, C) and the set I'(p,ji ,$),  h d  a T > O 
and a piecewise continuous T-periodic fanction F'(t)sach that the GSHF 
controller (F, T) stabilizes the plant (A, B, TC) for every 7 E I' (p,  - 6 a. 

We wili now r e f o d a t e  OLU continuous-tirne problem as a discrete-time problem and 

restate o u  control objective. If we define 
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then we can combine (3.2) and (3.3) to get the closed loop discrete-time system 

z [ ( k  + 1)Tj = (eAT + -IFC) z[kT],  k E Zf. (3-5) 

It is straightforward to show using (3.2)-(3.5) that x[kT]  + O as k -t oo if, and only if 

x ( t )  -t O as t + oo; hence. it follows that the GSRF controller (3.3) stabilizes (3.2) if 

and only if 

Now our object&e can be rest ated as: 

Since (A, B) is controllable, for every T > O and F E RnXr there exists a piecewise 

continuous T-perîodic function F( t )  such that (3.4) is satisfied[26]. For example, with 

oiie possible solution is 

This solution is not unique and in Section 3.4 we will present another solution for F(t)  

that is easier to implement in practice. 

Remark 3.1 Suppose that for a given A, B, C we have found a T > O and an F E RnX' 

such that 

sp(eAT + F C )  c {z E C : II( < 1). 

i) The upper (lower) gain margh provided by the controller (3.3) is the maximum 

P E [1, oo) (minimum p - E (O, 4) sach that 

The gain mapin provided by the controller is plp .  - 
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ii) The phase margin provided by the controller (3.3) is the maximum 3 E [O, f) such 

t hat 

sp(eAT + G#Fc) c { z  E C : 121 < I), 4 E [-&A. 
iii) If the controller were LTI, then it is straightforward to show that if either the 

gain or phase margin is small, then the dosed loop system is close to instability; a 

Nyquist argument would work. However, even if both the gain and phase margin 

are independently large, then the closed loop system may still be close to instability, 

e.g. see Figure 3.1 (a) which is motivsted by [16, pp. 52-53]; here simultaneous 

s m d  changes in the gain and phase of the plant may resdt in instability. 

Figure 3.1: The combined gain/ phase margi.. 

However, if the LTI conhller provides a large cornbined gain/phase margin, then 

we are guaranteed to have a bet ter overd stability margin, e.g. see Figure 3.1 (b). 

Since we are using a linear tirnevarying con t rok  here, the above arguments are not 

directly applicable. However, they are applicable to the LTI discrete-the system 

arising from the sarnpler, plant, and generalized hold combination. hdeed, observe 

that if we perturb oar continaoastime system mode1 in the fkeqaency domain, the 

dismetetirne counterpart is perturbed accordingly. This wiIl be discassed fkther 

in Section 3.5. 
0. 
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3.3 Continuous-Time Approach 

Fo := T-'F = T-' eA(T-r) B F(T) d ~ .  1= 
It foliows that the GSHF controller (3.3) stabilizes (3.2) if and only if 

This first approach 'is motivated by the observation that for small T, we have 

so if 

sp(A + r&C) c C-,  

then we might expect that 

sp(eAT + 7TFoC) c {z E C : 111 < 1). 

Conditions similar to (3.7) are cornmonly eiicountered in continuous-time s tate feed- 

back probiems, and hence the motivation for the name of this approach. 

However, the above is an approlrimate analysis, and here we have plant uncertainty, 

which further compiicates the andysis. To make this precise, we define 

A(T) := ~ - ' ( e ~ *  - I - AT), T > 0, 

so that 

eAT + ?TF& = I + T ( A  + ?FOC + A(T)); 

notice that A(T) is 0(T2). If (3.7) holds and IlA(T)ll is safficiently smd,  then 

sp(A + 7FoC + A(T)) C C- = {s E C : Re($) < O), 

which means that 

sp(em + 7TFoC) = sp[I + T(A + rFoC + A(T))] c {s E C : Re(s) < 1). 
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Unfortunately, t his dues not imply t hat 

sp(eAT + rTFoC) C {z E C : lzl < 1). (3-9) 

However, if we can choose Fo so that sp( A + 7 FOC + A(T) ) lies in a sector of the fom 

S(0):={o&:(f+0)<~<($-0),o>0) (3.10) 

(see Figure 3.2), then it c m  be shown that (3.9) would indeed hold, at least for small 

enough T. This will be investigated in the next subsection. 

Figure 3.2: The region S (O). 

3.3.1 Preliminary Continuous-Time LQR Results 

We first invesügate how sp(A + #+FOC + A(T)) is aected by the perturbation 

A(T) E RnXn over dinerent ranges of p and 4. We will choose Po using linear qtladratic 

regdator (LQR) theory. To motivate our approach, recall that in the contimot~s-tirne 
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setting an LQR optimal controller provides a lower gain margin of !, an upper gain mm- 

gin of infini& and a 60 degree phase margin [3, pp. 70-761. It turns out that we can 

increase the phase rnargin and decrease the lower gain margin by modûying the standard 

LQR problem. Rom the previous section, we saw that the stability of A + 7 FOC plays a 

crucial role. This matrix is stable if and only if A= + r C T ~ z  is stable; finding an Fo to 

achieve this is simply a state feedback problem. Hence. with 5 E [O, 5 )  and p - E (0,1], 

we d e h e  

a := 2 COS($), (3.11) 

and consider the aiuriliary system 

with Q E RnX" and R E Rmxm satisfjring 

Q > O  . Q = Q T .  

R > O  . R = R T ,  

we wish to find the control law which. for each wo. minimizes 

Since (fl, AT) is observable and (AT, aPCT) - is controllable, it follows fkom Lemma 12.1 

and Theorem 12.2 fonnd in [55], that the optimal control law is of the form 

and we can obtain the optimal gain Fo by first solving the continuotiptime dgebraic 

Riccati equation 

for the unique positive definite symmetric solution Po, and then setting 
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Proposition 3.1 If 

- - 
then for every p E [p, - oo) and 4 E [-4,+] we have 

Remark 3.2 Proposition 3.1 states that an LQR optimal controller can be designed to 

simultaneously provide any desired lower and n p p a  gain rnargin and any desired phase 

margin up to 90 degrees, even under small perturbations in the A matrix. 
O 

Proof:(of Proposition 3.1) 
- -  

To prove this, we adop t a Lyapunov argument. Let p  ̂ E [ k ,  oo) , 4 E [-A 41, 

A, := A ~ ,  B, := ( a p ~ ) ~ ,  - F, := F:, An(T) := A ( T ) ~ ,  

and consider 

W ( t )  = (An + F e i O ~ n ~ n  + &(T))w( t ) ,  ~ ( 0 )  = tüo E Cn. 

Consider the Lyapunov candidate function V : Cn i C: 

Since Po = P,T we know that V is real-valued, so 

Y ( w ( t ) )  := j p ( w ( t ) )  

is also red-valued. Expanding ~ ( w ( t ) )  and using (3.13) and (3.14) to simplify, it foflows 

that 

Using the bounds on 3, p, and the fact that R > O, it can easily be shown that the second 

term on the RHS of eqnation (3.15) is non positive, so 
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Now for w(t )  # O, it follows that 

Combining this with (3.15) we see that there exists a positive dehite symmetric matrix 

U E Rn*" so that 

Therefore, 

so it follows from Lemma 2.2 that 

Hence, for every wo, V(w( t ) )  goes to zero as t + ai; since Po is positive defmite, it 

follows that w(t )  goes to zero as t  + oo as w d ,  which means that 

sp(& + Pd4BnF' + &(T)) C C- 

a s p ( ~  + apj?@~~~ - + A(T)) C C-. 
- -  

But this holds for app^ - E Ip, - m), so for p E [p,  - m) and 4 E [-4,4] we have 

Now we will show that by restricting the perturbation fnrther, we can force the 

eigenvalues of A + p&FQC + A(T) to lie in the sector S (O) given by (3.10). 
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Proposition 3.2 Let 

- - 
then for every p E [p, - co) and 4 E [-A 41 we have 

and consider 

Consider the Lyapunov candidate Euiction V : Cn + C: 

Since Po = Pr, it f&ws that V and v are real valued. Expanding ~ ( w ( t ) )  and simpli- 

m g ,  we have 

Using (3.13) aad (3.14), this can be rewritten as 

~ ( z u ( t ) )  = -! cos(8)w(t)*Qw(t) + j sin(6)w(t)'(PoA, - e ~ o ) w ( t )  

- 3 cos(O)u(t)*Qw(t) + (cos(8) - 2 p c o s ( ~  +t#))u>(t)'( Po& R-' B ; P ~ ) W ( ~ )  

-5 cos(@)w(t)'Qw(t) + w(t)*(e- j*&(~)* + ge P ~ & ( T ) ) W ( ~ ) .  

By hypothesis we have 
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Furt hermore , 

so for w(t  ) # O,  we have 

Fincdy, since 8 + # E (- :, :), if follows that 

and from the hypothesis it follows that 
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so 

Arguing as in the proof of Proposition 3.1, we condude that 

sp(@(& + p^g4Bn~' + &(T))) c C- 

* s ~ ( & + F @ B ~ F ~ + A ~ ( T ) )  C {&":(:-8) < W C  ( ? - B ) , Q > ~ ) .  

By replacing de by e-je in (3.16) and m o w i n g  the above argument slightly, it can be 

shown that 

sp(A, + j.%94BnF' + A,(T)) C {cgw : (5  + 0) < w < (y + O), O > 0). 

Hence, 

sp(&+p^ej4B,F,+A,J~)) c { c d w  : (:+8) c w  < (F -O) , c  > O) = S (8) 

+ sp(A +  FOC - + A(T)) c S (8 ) .  
- - 

But this holds for app^ - E [p, - m), so for p E Ip, - co) and q5 E [-#, $1, we have 

sp(A + p@&C + A(T)) c S (0) .  

3.3.2 ControlIer Design 

In this subsection we will use the resdts of Snbsection 3.3.1 to show that the control 

objective of Section 3.2 can be attained. The proof is constructive, and we provide a 

design algorithm. 
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Theorem 3.1 Let 3 E [O, :), p - E (O, 11, and p E (1, m). Then there exists a T,, > O so 

that for every T E (O, Tm), there exists a static GSHF controller (F,  T) which st abilizes 

every system in 

Proof: 

Recall that A(T)  has been defined in (3.8) so that 

which means that 

sp(eAT + peJ4T FOC) C { z  E C : 1 z 1 c 1) 

o sp[I +T(A+pei"FoC + A(T))] C {z E C : 121 < 1) 

e sp(A + pd+FoC + A(T)) c (9 : z E C, It( c 1) =: D(T). 

Let 3 E [O, i), E (0,1], and P E [l,oo). Now choose Q and R to satisfy (3.12), and 

let a, Po > O symmetric and Fo satisfjr (3.11), (3.13), and (3.14). Let 

( { -  
- 

XminiQ) f - &* (311i~!%ll) 'tm-' (39ad4-aZIIACTR-tCPbll - 

Since lIA(T)II + O as T -t O, we can choose Ta > O so that 

'>}> 

COS(@), T E (O,TA]. Il*(T)II < 61, Po,, 
- - 

Fkom Proposition 3.2 it follows that for every p E [p, - oo), 4 E [-#, 41 and T E (O, TA], 

we have 

Consider the diagram illustrating S (B)nV(T) in Figure 3.3, and define T as illustrated; 

it is eady shown that 

It suffices to show that there h t s  a T,, E (O, TA] such that for evay  p E b, - pl, 
--  

4 E [-4, $1, and T E (0,T-), we have 

rnax(lA1 : A E sp(A + H - ~ F ~ C  + A(T))) < t. 
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Figure 3.3: The region S (8) n V(T). 

But 

Bence, it is saCient that 

Findy, with T E (O, T-) and F = TFo, we find an F(t) which satisfies (3.4). H 

Remark 3.3 With E [O, f), p - E (O, 11, and E [l, oo), we now snmmarize an al- 

gorithm for constnicting a static GSHF controller (F, T) that stabilizes every system 

in 
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i) Choose symmetric positive 

a = 2 cos (a), 

GSHF Contmlle~s 

definite matrices Q and R. With 

find the unique positive defuite symmetric matrix Po satisfying (3.13), and deter- 

mine FQ fiom (3.14). 

ü) Choose 

6 E (0;- 

iii) Find Ta such that 

1l+(eAT - I 

for every T E (O, 2'' j , we have 

this is computationally easy to do, especially if A is diagonal. 

iv) Define 

2 sin (8) 1 
v) With T < T-, let F = TFo and use any desired method to h d  an F(t)  to satisfy 

(3.4), e.g. use (3.6). 

O 

Remark 3.4 The T' obtained in the above algorithm is based on a Lyapunov approach 

and hence is typically qnite conservative; perhaps a better choice for the Lyapunov am- 

didate function in the proof of Proposition 3.2 wodd result in a las  conservative d u e  

of T-. Bowever, from a practicd point of view, it might be preferable to compute 

the combined gain margin and phase margin for varioas values of T > T,, k g  a 2 

algorithm, and choose the Iargest sampling period which aehieves the 

desired robustness. 
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Suppose our nominal plant is 

with associated transfer b c t i o n  

This example is taken fiom [16, pp. 200-2031, where it is shown that an LTI stabilizing 

compensator can provide at most a phase margin of 38.g0, and the upper and Iower gain 

margins must satisfy P / p  - 5 4. 

Using the algorithm outlined in Remark 3.3, we now construct a static GSHF con- 

troller to stabilize every systern in 

{ ( A ,  B, TC) : 7 E ï(0.75,6, 70°)) . 

i) Here a = 2 cos(70°) = 0.6840403. Let Q = I and R = 1. Then Po and Fo are 

ii) Now 

so choose 8 = 0.019. 

iü) It is e a d y  verified that for T E (0,0.06492000], we have 

iv) So T,, = min { 0.06491624, ' ~ i }  = 00001712* 
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v) Hence, choose T = 0.0017. As noted in Remark 3.4, this sampling period is quite 

consenrative, so we now propose a method to approximately determine a less con- 

servative sampling period. Using a Zdimensional bisection search algori t hm, we 

de t ermine 

&.,,(T) := m i n { p ~  (O, l] : sp(eAT + pej*TFoC) c { z  E C : 1 1 1  < 1), 

P E lp? 11, 4 E [-&3lh 
pc,,(T) := m a x { P ~  [l,co) : sp(eAT + p&4TFoC) c { z  E C : lzl < 11, 

P E 1 1 7  A, 4 E [-$Y 31); 
for lack of a better name, we will refer to p (2') (p,.,-(2')) as the "combined lower 

4.:. 

(upper) gain/phase rnargin" provided by the GSHF controuer ( F , T )  using the 

"contirmous-tirne" approach. A plot of p 4 . t .  (T) and p,,(T) is provided in Figure 

3.4). Observe that for T = 0.041 we achieve the desired gain and phase margin. 

Figure 3.4: Combined upper and lower gain and phase mugin as a fnnction of T 

(c. t . approach) . 
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Using (3.6), we can choose 
- 
F ( t )  = - 2 . 4 1 5 4 2 4 4 8 1 ( 1 0 ) ~ e - ( ~ * ~ ~ ~ ~ )  + 2.342890355(10)~e~.~'(~*~'-'). 

Figure 3.5 illustrates the response of the dosed loop system at the GSHF sample 

points when the initial condition zo = [ 1 O JT and the scalar gain uncertainty 7 = 4. 

Figure 3.5: Sampled output y[kT] when xo = [l O]= and 7 = 4 (ch. approach). 

While the GSHF controUer provides adequate performance at the sample points, it can 

be seen in Figure 3.6 that the intersample performance is quite poor. This is prirnarily 

due to the fact that the generalized hold has large gains. 

Remark 3.5 One major drawback of the cont~oller synthesis algorithm presented in 

Remark 3.3, is that we typicdy need T to be s m d  even to stabilize the nominal plant. 

In Appendix A, we show how to design a static GSHF controller based on a dismete- 

time approach so that for almost all T > 0, our controller will at least be capable 

of stabiliPng the nominal plant. Moreover, as  T -t 0, the new GSHF controller will 

approach the GSHF controlIer described in the previous section and inherit its good 

gain/phase rnargin properties. 
O 
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Static GSHF Controller: Output y(t) (x&OE y d )  
40 1 1 I 1 1 1 o 1 1 t 1 

Static GSHF Controller: Control Signal u(t) (x , l l ,Orp y=* 
1 O00 L I I I r I 1 1 1 I 

Figure 3.6: Output y(t) and control signal i r ( t ) :xo = [1 O]= and 7 = 4 (c. t. approach). 

3.4 Implementation as a Low Order LPC 
Up to this point, we have implemented our controller as a pure GSHF. Ln practice, this 

may prove to be d E c u l t  to implement, so one might question the benefit of such a control 

strategy. Recall however, that given P E RmXn, the solution of (3.4) is not unique. In 

this section, we will show how we can pi& P ( t )  to be of a simple fonn so that it can 

be implemented with a sampler, a zero-order-hold, and a low order disaete-time linear 

periodic controller. We begin by showing how to implement a SIS0 GSEF controller as 

a first order LPC, and then we will extend the resdt to the MlMO case. 

First suppose that the plant is SISO. The solution (3.6) of equation (3.4) is not unique. 

In fact, it is easy to show that for every F E RnX', for almost all T > O there exists a 

piecewise constant fimction F(t)  which satisfies (3.4) and takes on at most n different 

values in the interval [O, T). Indeed, let T := P,  fk E R, and set 
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With - 
T 

A := e*', 8 := eAr~d7,  

for (3.4) to hold we need fo, . . . , f,-l to satisfy 

-- 
But for most > O, and for dl sufficiently s m d ,  (A, B) is controllable (Theorem 2.2), 

in which case B k  invertible, which means that fo,. . . f,,-l can be chosen to satisfy (3.4). 

Now consider the following implementation of the GSHF controlles 

and set 

Then the GSHF controller can be implemented as 

we associate this controfler with the 5tnple (Gy H, J, K, T). Hence, the T periodic GSHF 

controuer c m  be viewed as a f ~ s t  order, n-periodic, discrete-time compensator together 

with a sampler and a zeroorder-hold of period T = S. 
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Now suppose that the plant is MIMO. Here we can follow an argument very similar 

to that presented above, but we let fi E RmXr , and observe that the matrix B has fidl 

rank. Hence, we end up with a controller of the form (3.20) but with z E Rm. 

Remark 3.6 If the eigenvalues of A are distinct, then we can precondition our MIMO 

plant using an approach similar to that used in [37] to convert our MIMO problem to a 

SIS0 one. and then design a f is t  order controller to provide o u  desired robustness. 

3.5 Unstructured Uncertainty 

In the previous sections, we showed that it is possible to design a static GSHF controller 

that can provide a gain margin as large as desired and any desired phase margin up to 90 

degrees. The gain/phase margin problem can be looked upon as a stïuctured uncertainty 

robustness problem, since the uncertainty in the plant is parameterized by two scalar 

parameters p and #. It is not dear if we have tolerance to unmodded dynamics. To 

proceed, consider a common unstnictured uncertainty modd commonly known as the 

additive uncertainty model. in which 

a Po (s) is the transfer fimction for the nominal model, 

W(3) is a fmed stable weighting transfer hct ion,  

O A(s) is a variable stable t r a d e r  fanction, 

If our contro1le.r were LTI, then the e t e n c e  of a combined gain/phase margin codd 

be used to show such a dass of Mrnodded dynamics can be tolerated. More specifically, 

suppose the LTI controller C(s) stabilizes every system in 

{pe'99(s) : p E [e.Plt  4 E [-W1)- 
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If we apply C to the dynamically perturbed mode1 Po + WA, we can represent the dosed 

loop system by the block diagram illustrated ia Figure 3.7. 

Figure &7: Perturbed dosed loop system using an LTI controller. 

After a loop transformation we ob tain the block diagram illustrated in Figure 3.8. 

Figure 3.8: Bansformed perturbed closed loop system (LTI controller). 

Since C stabilizes Po, the transfer function (1 - C Po)-' C is stable, so by the S m d  Gain 

Theorem we maintain stability for all A E 7 Z G  satisfying 

I l w A l l ~ l l ( ~  - CPo)-'Cllos < 1. 

If C E RC,, then this wiU be the case if 

1 1 
IlAlla < [IWllo.-IICllo. l ,(I-CPo)-l,ls* 

We can get a bound on the Iast term by looking at the Nyquist plot of -CPo: 
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w 

Figure 3.9: LTI Nyquist plot of -C'Po. 

Indeed. it can be proven that 

we omit the details since we d l  be performing a similar analysis later. Since the con- 

troller we will be considering is linear time-varying, the above analysis is not directly 

applicable. 

In this section, we wodd Iike to see how well the static GSHF controller designed 

in Section 3.3 tolerates additive perturbations to the nominal plant. We saw in the 

previous sections that as the sampling period tends to zero, the gain of the hold fanction 

becomes very large, so intaitively one might erpect that as the sampling period becomes 

maIl, the GSHF controller tolerance to unsmictured plant ancertainty will tend to zero. 

Snrprisingly, we will be able show that ander some conditions on W ( s ) ,  this intuition 

is wrong. We d l  show that if the weighting function W is chosen psoperly, then our 

static GSHF controller will tolerate a moderate class of nnstructnred ancertainty for all 
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It has been shown by Khargonekar et al.[30] that under some conditions on W, if 

there does not exist an LTI controller that will stabilize every system in P4, then there 

does not exists a (possibly) nonlinear time-varying controller that will do so either; hence, 

our GSHF controller can do no bet ter than an LTI controller . The application of GSHF 

controllers to the unstructured uncert ainty robustness problem has been s tudied in some 

detail in the literature (e.g. [26,22,40, 101). WhiIe it ha9 been shown that a fixed GSHF 

controller c m  tolerate some unstructured uncertainty in the plant, there are few results 

that describe what happens to the tolerance of the controller to unstructured nncertainty 

as the sampling period tends to zero. Feuer and Goodwin [19] used amplitude modulation 

theory to investigate the robustness properties provided by static GSHF controllers when 

the sampling period is smd ,  and showed that GSHF controllers are typicdy sensitive to 

uncertainty found in the high fiequency range of the continuous-the frequency response 

of P ( s )  (also see [20]). 

The question before us now is. if our static GSHF controller is designed to provide 

good gainlphase margins. then how will the stability of the dosed loop sampled-data 

system be affected by additive perturbations to the nominal plant, as the sampling period 

tends to zero. Based on the results of Feuer and Goodwin [19], we expect that our 

static GSHF controller wiU be sensitive to uncertaiaty in the high fiequency range of the 

continuous-the freqaency response of P ( s ) .  Hence, we will impose a condition on W ( s )  

and A(s) (i.e. W ( s )  has a relative degree of at least n + 2 and IlA Ilo. is mail enough) 

so that for high fiequenues, P ( j u )  = Po( j w  ). 

Since our plant is strictly proper, it is reasonable to assume that the plant nncertainty 

goes to zero as the fiequency increases. Rom a practical point of view, however, it is hard 

to justify our requirement that the weighting h c t i o n  W have a relative degree p a t e r  

than the plant order; unfolctunately, it is not dear how to remove this reqnirement. Note, 

however, that even if the condition on W is not met, the tools developed in this section 

will d o w  us to compnte a bonnd on the perturbation A for a k e d  sampling period T. 
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Before presenting any resdts, let us first outline the approach that will be taken. Let 

S and H denote the sampling and generdhed hold operators respectively. If we apply 

a static GSHF controller of the form (3.3) to P ( s )  E 'PB, then we c m  represent our 

pertnrbed closed loop system by the block diagram in Figure 3.10. 

Figure 3.10: Perturbed ciosed loop system. 

Since S and H are linear, we can transform the block diagram shown in Figure 3.10 to 

the block diagram shown in Figure 3.11. Note that operators SWA H and (1 - S PoH)-' 

are LTI and can be represented by discrete-time transfer hctions. 

Figure 3.11 : Transformed pert urbed closed loop sys tem. 

We c m  then use the resdts of Section 3.3 to show that for all d c i e n t l y  s m d  sampling 

periods, there exists a hold h c t i o n  so that the resnlting GSHF controller stabilizes every 

system in 

We VpiU then 

we have 

llV - 

use a discrete-time Nyqaist argument to show that for sach s hold hct ion,  
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Then aii that remains to be shown is that there exists a 8, independent of T, so that for 

every A E R3t, satisfying llAll.o 5 P, we have 

IlswAHIIm 5 ;, (3.21) 

for then 

so using the Small Gain Theorem, we can conclude fkom Figure 3.11 that we have dosed 

loop stability. showhg that (3.21) holds for snfficiently small T is not trivial. To proceed, 

we choose the hold function to be a piecewise constant fanction, which is not restrictive 

since the resulting GSHF controller will be easy to implement (See Section 3.4). Unfor- 

tunately, the H, nom of the frequency response of the resulting hold h c t i o n  blows 

up as the sampling period tends to zero. However, we will be able to show that IH(iw)l 

is bounded above by a nth order polynomial in w ,  independent of the sampling period. 

Hence, if W ( s )  has a high enough relative de-, i.e. IW(jw)l rolls off at a fast enough 

rate, then IH(jw) W(jw)l is bounded, e.g. see Figure 3.12. Therefore, if I(AI1, is sd- 

ficiently s m d ,  then we wodd expect that IIWAHll- is s m d  enough to ensure that 

llSWAHllm will be less than 1 /T .  

3.5.1 Choosing the Hold Function 

We begin by using the resalts of Sections 3.3 and 3.4 to choose a specific generaliaed 

hold function F(t ) for our GSHF controller. To this end, with p - E (0,1] and 4 E [O, :) , 
pi& positive definite symmetric weighting matrices Q and R, let a, Po and Fo satisfy 

(3.11)-(3.14), and reqriire that F satisfy 

Then we h o w  fkom Theorem 3.1 that for sufüciently s m d  sampling periods, the GSHF 

controller (F, T) provides the desPed gainlphase margin. Recall that the solntion F(r) 
of the above equation is not unique. Here we will choose F(z) to be a piecewise constant 
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Eteqnency b p o n w !  for the Geaer&ed Hold Fùnction 
and the Weighting Fnnction 

id - 

loO - 

IO-= - 
\ 
\ 
\ 

\ 
\ 
\ 

Bound on IW(jw)H(jw)l 

104 
IO-' 1 o" 10' id 10.' 

Figure 3.12: Frequency response of H(s). W (s) and H ( s )  W(s). 

function taking on n values over each sample period. Namely, wit h T : = Tln, we consider 

hold functions of the form 

Using the resnlts from Section 3.4, we know that for every F E Rn and for snfnciently 

s m d  F, there exists constants fi so that (3.22) is satiskd. In fact, r e c d  fkom Section 

that with 

have 

[:] 
fn-i 

We will represent the static GSHF controller of this form by the pair (fc,T). 
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3.5.2 Preliminary Results on the Hold Function 

W e  will now examine some propaties of the resulting hold funetion. We know that the 

sampling period must be s m d  if our GSHF controiler is to provide good gainlphase 

margins, so we begin by determinhg what happens to the time-domain infinity n o m  

of F as the sampling period tends to zero. Rom earlier observations, we saw that the 

magnitude of the hold function becomes large as the sampling period becomes smd,  so 

the following result -that states that fi = o(T ( "- I l ) ,  shodd not corne as a surprise. We 

begin by defining 

and 

This matrix will be needed to relate the dismete-the controllability matrix associated 
--  

with the pair (A, B) to the continuous-the controllability matrix associated with the 

(here 0' := 1) so since the first matrix is upper triangnlar with nonzero diagonal elernents 

and the second mat& is a Vandermonde matrix, we can easily show that !P is invertible. 

Remark 3.7 Note that 9 can be written as 

'Il= 

L - 
1 - 1 1 - ... - 

O!n! l!(n-l)! (n-l)!l! 

1 1 - - ... 
~!(n-l)! l!(n-2)! O 

. 
1 - 0 ... 

O!l! O 
I 
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Proposition 3.3 

then it c m  be shown that 

Substituting this into (3.24) and using the fact that 8 is invertible (see Remark 3.7), it 

follows tbat 

We now present some resnlts on the weighted average of the hold fanction 
T 

r<i(T) := T-' 1 rT(r)dr, i E Zt. 



Chapter 3: Robwt Stability: Statzc GSEF Controllcts 53 

We will show that the weighted average of the hold function approaches a constant as 

the sampling period tends to zero, and that the constant is easily cornputable. This 

result will be important when we go on to show that the kequency response of the hold 

function is bounded above by a nth order polynomial in w independent of T. 

Let us first look at k ( T )  for i = n, n + 1, O .  By definition 

Proposition 3.4 If 

But by Proposition 3.3, we know that IIFII ,  = O(T-("-')), so it follows that 

Now let us look at K ( T )  for i = 0,1, - O - ,  n - 1. W ~ t e  (3.22) as 

[ B  An-lB] -1 Po, [ ] = -  %-1 

At ( r )  := - , and 

- * 

1 

l ) I !  

(-~)~-l (n - l)! - d 

then we can write (3.26) as 
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so dong with the defiiiition of N ( T ) ,  we have 

1 (-l)"-' 
(n-l)! 

rT 

+TL IO A,(T)BF(T)~T = Fo + A2(T)Fo. 

Since A1(r )  = O(rn)  and llFlloJ = O(T-("-')), it is possible to show that the second 

term on the LHS is of order T. By using the fact that A4T)  = O(T) ,  it follows that 

(-l)"-' 
(n- l)! 

We are almost ready to prove the key resdt that the Lequency response of the hold 

htnction is bounded above by an nt" order polynomid, independent of T, bat we aiu first 

need the following notation and preliminary result relating the gains fi to the fiequency 

response of the hold fanction. We d e h e  the sampling operator S : iP + Y via 

and the generalized hold operator E.I : .Y'+ PC via 

Let h(t) be the "impulse response" of the generahed hold fanction and H ( s )  be the 

associated t r d e r  hct ion:  
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e.g. see Lemma 2 in (221. 

We c m  now state our first main Lemma: 

Lemma 3.1 There exists constants qi > O and Tl > O so that 

We will prove this result by first partitionhg H(s) into two parts: 

For 

1 - e*T n-1 

Hl (s) := .- C fie-q 
S 

7 Hz($) -- 
i=O 

the first part, observe that we can write 

The second term is the well known sinc fanction sine($), and it has the property that 

~sinc($)~ 5 1. Henee, 

-& 
I ~ ~ ( j w ) l  ~ T l e  2 1 x lsinc($)l 5 T .  U E R .  (3.28) 

Let us now look at the second part. We begin by writing 

= H2 (O) + Y dq. 1 
#=O 

&2&l 

and noting fiom the dehition of H2(4 that 

n l -k W e  will now use Proposition 3.4 to corne up with an expression for ? t fi. Now 
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so by Proposition 3.4, it follows that 

Now 

=+ $Cifi = r l ( ~ )  -$C fi. 
Hence, by using Proposition 3.4 and (3.31),  it follows that 

In a sirnilar fashion, it c m  be shown that for k = 2, , n - 1 we have 

Let us now look at the last term in (3.29). Since 

and fi = O(T-("-')) (see Proposition 3.31, it follows that 

If we combine (3.29)-(3.33), it follows that 

Findy, combining this with (3.28), it can be shown that 

and our r e d t  folIows. m 
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Remark 3.8 T h a e  is an interesting relationship between the weighted average of the 

hold faction *(T) and the bonnd on the fkequency response of the hold function. As 

can be seen in (3.34), for sufficiently small sampling periods, the constants qti can be 

chosen arbitrarily close to the constants 3. Recall fiom Proposition 3.4 that s is the 

limiting value of the weighted average of the hold fnnction b ( T ) ,  and that it is eary to 

compnte. Hence, we know that as the sampling period becomes s m d ,  the bound on the 

frequency response of the hold function approaches 

T (IQI + I& + + (i%\) un-l + o(qun) 

3.5.3 Main Results 

To prove our main resdt, it wiU be easier to break down the problem into two parts. In the 

first part (Lemma 3.2), we will show that the GSHF controlles designed to simultaneonsly 

provide an upper gain mare+ of jj? a lower gain rnargin of p, - and a phase margin of 9, 
will also piasantee that 

Our second resdt (Lemma 3.3) will show that there &ts a constant so that for every 

A E RNoo satisfying llAllm 5 P,  we have 

IISWAHII.. 5 ! 
for atfficiently s m d  T. Finally, we will combine these h o  r e d t s  to get our main r e d t  

in Theorem 3.3. 
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Proof= 

Defme Gd := SPoH and let Gd(#) be the associated dismete-time kequency re- 

sponse. Let nl be the nuniber of eigenvalues of A with real parts greater than zero. 

Since the GSHF controller stabilizes the nominal plant, it follows that the dismete-time 

Nyquist plot of -Gd encircles the - 1 point in the cornplex plane n 1 times. Now consider 

the region defined by 

- - 
$2 := {p&+ : p E [-llp1-1/P],# E [-#,#])t  

which is illustrated in Figure 3.13. 

Figare 3.13: The region and i defined- 

Since the GSHF contr011er stabfies every system in 

{ (A,  BJC) : r Q 7 P 7  ?)Er 

we know that the Nyquist plot of -Gd lies strictly ontside the region 0, for if it did not 
- - 

(e.g. see Figure 3-14), then there wodd e t  a pl E [p, - p] and & E [-#? #] so that the 
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Nyqaist plot of -pi#Gd wodd intersect the -1 point, which implies that the dosed 

loop system is not stable for this choice of p and 4. 

Figure 3.14: Nyquist plot of Gd lies oatside 52. 

Define f as the largest radius of a &de centered at -1 that is entirely contained in 

Q, i.e. see Figure 3.13; it is straightforward to show that 

Hence, the distance îiom the -1 point to -Gd(@) is always greater than t. In partidar, 
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so it follows that 
T 

Before presenting our second result, we wi. first need to relate the fkequency re- 

sponse of a continuous-time LTI system G(jw) to the fiequency response of the associated 

discret~time LTI system (SGH)(@).  Define the sampling fiequency as 

w, := 2r/T.  

Theorem 3.2 The fkequency responses G ( j w )  and (SGH)(@) are related by 

( sGH)(e - jWT)  = 4 G(jw + jkw8)H( jw + jkw,). 

See Theorem 3.3.1 in [12] for the proof: and [12, Section 3.31 for related results. 

We are now ready to state our second result. 

Lemma 3.3 For every W ( s ) of relative degree n+2, and every + > O ,  t here exists a /3 > O 

and ?>O so that for every TE(O,?) and AERL,  satisfying IlAll&P, we have 

Fix t > O ,  let W .  = 2z /T ,  and fiom Theorem 3.2 it follows that 

1 
00 

I(sAWH)(e-jWT)~ I T IA(jw+ jkw.)W(jw + jk.w.)H(jw+ jkw,)l 
k-00 

Since W ( s )  han relative degree n+2, it is easy to show that there exists positive constants 

PO and so that 
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and kom Lemma 3.1, it follows that there exists positive constants r)i and Tl so that 

Hence, there exists positive constants Pa and P3 so that 

which means that for T E (O, Tl), we have 
30 A 

But for every w E R, there &sts an m E Z and wl E [O,w,) so that 

1 (SA W H) (e-jwT) 1 



But it is easily shown that 

Hence, the result holds with ? = Ti and 

Finally, we use Lemmas 3.2 and 3.3 to prove our main result. 

Theorem 3.3 For every W(s ) of relative degree n + 2, there exists a P > O and TI > O 

so that for every T E (O, T), the GSHF controller (fi:T) stabilizes every system in Pp. 

Proof= 

By Theorem 3.1 and the comments in Section 3.5.10 we know that with p - E (0,1], 

P E [l,a>), and 3 E [O, ;), there exists a Tl > O so that for every T E (O,Tl) the 

associated GSHF controller (fi, T )  stabilizes every system in 

Hence, fiom Lemma 3.2, we know that for every T E (O,T1), the associated GSHF 

controller (fi, T )  will also guarantee that 
1 

Let T := l / r .  Then by Lemma 3.3, we know that there exists a E (O,Tl) and /3 > O 80 

that for every T E (O,?) and A satisfying IlAll.. 5 P, we have 

H m ,  for every T E (O,?) and A satisfying IlAlla p, we have 
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If we consider the block diagram of the dosed loop system in Figure 3.10, and the 

eqnivalent block diagram in Figure 3.11, then by the S m d  Gain Theorem, we condude 

fkom (3.35) that for every T E (O, T), the associated GSHF controller (fi, T )  stabliaes 

every system in Pp. m 

Remark 3.9 Before leaving this section, it should be noted that the assamption that A 

be stable was made so that we could easily characterize the set P@. As done in [34], we 

could have relaxed this assumption and assumed that P ( s )  was in a set of the form 

{Po + A W  : [S(Po + AW)H] has the same number of unstable poles as SPoH, 

A E atm, IlAlloo I P l -  
However, care must be taken to ensure that no unstable poles are cancded out by 

pat hological sampling. O 

3.6 Summary and Concluding Remarks 

It has been known for some time that for unstable non-minimum phase LTI plants, there 

is a maxixnum gain margin which can be provided by an LTI controller [33]. Here we 

consider the use of a dass of time-vatying controllers in solving an extended version of the 

gain margin problem. We have shown how to design two static GSHF controllerss, both of 

which can provide a gain margin as large as desired and any desired phase margin up to 

90 degrees; in fact, the both controllers tolerate a combined gain and phase perturbation 

in the nominal plant model. The f is t  controller is based on a continuoas-the approach 

and requires that the sampling period be srnall to s t a b h e  even the nominal planta. 

The second controller is based on a discrete-time approach snd does not s d e r  fÎom this 

drawback. These contro~ers are easy to design, and can be implemented directly as 

a static GSEF, or indirectly ushg a first order linear periodic discretetime controuer 

together with a sampler and a zero-order-hold. We also showed that for a SIS0 plant, 

aThese r d t s  have been publiahed and c m  be h d  in [Ml. 
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the GSHF controkr based on the continuous-tirne approach can tolerate unmodded 

dynamics when an additive nnstructnred nncertainty model is assumed. 

These results complement previous work on the use of static and dynamic GSHF 

controllers for the gain margin problem [57], [58]. In onr approach, however, we cari solve 

the more demanding gainjphase margin problem. We took advantage of the fact that our 

controller provides a deskd phase rnargin to show that the GSHF controller can tolerate a 

moderate amount of anmodelled dynamics as w d .  Unlike the dynamic GSHF controller 

of [5?], our controller does not provide the optimal gain margin for a given sampling 

period, although it is mach simpler to design and to Mplement. Furthermore, since 

the controller gain is typicdy large, this control strategy suffers &om poor intersample 

behavionr. 

More work is needed to explore the tradeoff in the design parameters, and to see how 

sensitive our controller is to other unstractured perturbations in the plant modd (e.g. 

multiplicative uncertainty, feedback uncertainty) . 



Chapter 4 

Robust Stability: Low Order LPC 

Introduction 

One of the main limitations of GSHF controllers is that the control signal tends to be 

large and the intersample behaviour poor. In this chapter, we will show how to design 

a low or der h e a r  periodic controller (LP C ) t hat has satisfac tory int ersample behaviour, 

while providing a gain margin as large as desired and any phase margin up to 90 degrees. 

In fact? we will show that if the sampling period is smd.  then our LPC control law is 

very dose to a continuou~time state feedback control law. 

This chapter is organized in the following manner. In Section 4.2, we formulate the 

gain/phase margh problem and we motivate the particular approach that wi l l  be taken. 

Section 4.3 describes how a low order LPC c m  be constracted to implement o u  control 

law. The main results follow in Section 4.4, where we show that it is possible to design 

a low order LPC that has satisfactory intersample pedormance, while providing a gain 

marpin as large as desirecl and a phase m a r e  of up to 90 degrees. An exampie illostrating 

the Iow order LPC design method îs given in Section 4.5. Additional properties for this 

controller are h o  highlighted in this example. Finally, condasions are made in Section 

4.6. 
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4.2 Problem Formulation 

As in Chapter 3, suppose our nominal modd is 

x ( t )  = A z ( t )  + B u(t),  x ( 0 )  = xo, 

y(t1 = C 4 t 1 ,  

with x ( t )  E Rn the stste, u( t )  E Rm the control input, and y(t) E R' the plant output. 

We capture uncertainty in the model by supposing that the actual system is given by 

z ( t )  = A x ( t )  + yB u(t) ,  +(O) = xo, 
(4.1) 

y ( t )  = c 4 t h  

we associate this system with the triple (A,+, C). With 

- - 
r ( p , E ? )  - := (~2' : P E [e,P],6 E [-A 411, 

our goal is to find a controller which will simultaneously stabilize evesy model in 

Ifs = O. then we have a gain margin problem: if - p = jj = 1. then wt. have a phase margin 

prob1em; the general case is a combined gain and phase margin problem. With T > O 

the sampling rate, we will consider LPCs of the form 

we associate this system with the 4-tuple (G, H, J, T). Here we let p denote the period 

of the controlIer parameters G, K, and J ,  so that pT is the period of the controller 

(G, HT 3,T).  Note that (4.2) can be implemented with a samplerT a zero-crder-hold, and 

an P order periodicdy the-varying discrete-the system of period p (See Figure 4.1). 

Figure 4.1: Implementation with a sampler and a zeroorder-hold. 
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Here our notion of dosed loop stability is the usnal one: 

Definition 4.1 The LPC (4.2) stabilizes (4.1) if, for every xo E Rn and zo E R', we have 

Before presenting any results, let us first provide some motivation for the approach 

adopted in this chapter. With F€RmXn, p > n ,  and F : = p ~ ,  we consider the control law 

we will denote the intervals [@, BT + nT) as the Estimation Phase and intervals 

Figure 4.2: Estimation and control phase of u(t).  

[kF + nT, (k + 1)T) as the Control Phase (see Figare 4.2). 

4 t )  

Our fitst r e d t ,  fonnd in Section 4.3, will show that (4.3) can be implemented by an 

Fx[nT] - 

m* order LPC of the form (4.2). Then the n a t d  question is how do we choose F, T 

- 

- 

and p. Since we are assnming the plant is strictly proper, we know that the plant filters 

1 nT T t 

ont the high fiequency content of u(t). Kence, for small T one might expect that (4.3) 

will have the same effect as 
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(See Figure 4.3). If this is the case, then by choosing F appropriately, our low order LPC 

nT T T + ~ T  2T 2 T + n ~  t 

Figure 4.3: Control law. 

shodd share some of the desirable properties provided by such a state feedback controller. 

In this chapter, F will be chosen using linear quadratic regulator (LQR) theory since it 

is well known that such controllers provide excellent gain and phase margins. 

4.3 Control Law Implementation 

In this section we will show that given a MlMO plant (4.1), for every fixed integer p > n 

and almost all ssmpling periods T, there exists an mth order LPC of the form (4.2) that 

will implement the control law (4.3). 

Proposition 4.1 If T > O is non-pathological, then for every p > n and every F E  RmXn, 

there exists an ma order LPC (G, H, J, T) that d l  implement the control law (4.3). 

Proofi 

Let p > n, T = pT and k E Zf. R e d  fion (4.3) that for r E [kp, kT + nT) we 

have ~ ( r )  = 0, so for i = 0,1, ,n, we have 

z [kF + iT] = (eAT)'2 [kF]; 
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hence, 

Since T is non-pathological and (C. A) is observable, it follows fiom Theorem 2.1 that 

the pair (C,eAT) is obsenmble, which implies that rank{C) = n, so 

Using (4.4) and (4.5), it follows that 

so define fi E Rm Xr via 

Hence, we can f o m  ~ x [ k p  + nT] by sampling the output during the Estimation 

Phase while setting u to zero. Dnring the Control Phase we simply keep u constant at 

F Z [ ~ T ' - T ] .  Toimplement this, we choose (G, H, 3) E flRmXm)x.Y'(RmXr) xSqRmXm) 

to be 

(O,fo,O) = 0 

( G , H , J ) ( k ) : =  ( I f , O )  k = l , - , n - 1  

( 0 )  k = n , - - , p -  1, 

and set 

It is routine to verify that in dosed bop, the response of (G, H, J, T) becomes (4.3). 
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4.4 Controller Design 

Now that we know how to implement (4.3) as a low order LPC, the next step is to 

choose F. It is w d  known that a continnous-the LQR optimal state feedback controller 

provides a lower gain margin of f , an upper gain margin of m, and a 60 degree phase 

margin. Recd  from Chaptn 3 that in order to design the static GSHF controller that 

provided a lower gain margin of less than 112 and a phase margin greater than 60 degrees, 

we scaled the C matrix. For the same reason, we now scale the B rnatrix; with p E (O, 11, - 
p E [1,oo), and 4 E [O, :), define 

a := 2 cos(?) 

and 
h 

B := apB. - 

With Q E RnXn and 

a d a r y  system 

(4-6) 

R E Rmxm symmetric and positive definite, we now consider the 

A 

we wodd like to h d  the control law which, for each wo, minimires 

It is well hown that since (a, A) is observable and (A, B) is controllable, the optimal 

control law is of the form v = Fow; we c m  obtain the optimal gain Fo by first solving 

the algebraic Riccati equation 

P ~ A  + A ~ P ~  - P , B R - ~ E ~ P ~  + Q = O (4.7) 

for the aniqne positive definite symmetric solution Po, aod then setting 

-1 *T Fo = -R B Po. 

Not ody is 

sp(A + &) = sp(A + a@) C C- , 
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but it can &O be shown that 

It would be nice if we codd simply set F of (4.3) to Fo. However, the control is 

turned on for 7 of the t h e ,  which means that we should scale this gain, i.e., set 

While this may work when T is smail, the controller WU probably not even stabilize the 

nominal system wh& T is large. Hence, instead we will design F using discretetime LQR 

theory so that we can always parantee stability of the nominal system; since we wodd 

Iike the controller to inherit the gain and phase margin properties of the continuous-time 

LQR controller, we will incorporate the & term in the design. To this end, with p > n 

when we apply the controi law (4.3) to the plant (4.1), we have 

Hence, we can state our control objective as: 

Given the nominal system (A ,  B, C) and the set r ( p ,  F~ ?), find a T > 0, 
p > n, and an FT E RmXn such thst for every-y E r(P,hq), - we have 

sp(& + ~ B ~ F T )  C { z  E C : < 1). 
Now we will design the discretetime control law. First , fut p > n; by Theorem 2.3, we 

c m  choose a To > O so that (&, Bd) is controllable for T E (O, To). Let TE (O, To), define 

and consider the auxiliary system 

We wodd U e  to find the control law which, for each wo, minimiRes 
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It is well known that sinee (a, &) is observable aad (&, z) is controllable, the optimal 

control is of the form 

v [ k n  = F=W [kF] ; (4.12) 

fnrt hermore, the following disaet e- time algebraic Riccati equation 
-1 - -T -T 

P T - A : P ~ A ~ + A : P ~ B ~ [ B ~  P ~ ~ + ( ~ ) * R ]  B~ P = & - Q = ~  (4.13) 

has a unique symmetric positive definite solution PT 

e.g. see the results of exercise 12.7 in [55]. If we set 

.l 

and the optimal gain is 

then we wiU be able to show that for sunicientIy s m d  T, our control objective can be 

at tained. 

4.4.1 Preliminary Results 

We will reqnire some preliminary results to prove that our new LPC provides good 

g"/phase marpins wi t h sat S a c  tory intersample performance. S pecifically: we wodd 

like to show that the solution of our discrete-time Riccati equation (4.13) approaches the 

solution of the continuonctime Riccati equation (4.7) (See Rosen and Wang [43] for a 

similar r e d t ) .  The approach that we take here will be analogoas to the approach used 

in Appendix A, so let us begin with the following: 

-1 
Lemma 4.1 For every p > n, we have PT = O(T ). 

Proof= 

By onr choice of FT, it foIIows that w h e .  we apply the a d a r y  control Iaw (4.12) 

to the auxüiary system ('$.Io), the cost fanction (4.11) is minimiaed, and in fact, the 

associated optimal cost is wrPTwo. 
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Choose 8 E RmXn so that A + 83 is stable and consider the control law 

which means that the closed loop a d a r y  system is given by 

and A + ÊF is stable, it can be shown using a Lyapnnov type argument that there exists 

a To > O, a > O and A < O so that 

Hence. for T E (O, To), the cost associated with the control Iaw (4.16), which is given by 

is bounded above by 

this dearly is an upper bound on the optimal cost w;PTwo. Hence, we have 

We can now use this to prove the following: 
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Lemma 4.2 For every p > n, we have 
A 

Bd = ( p - n ) ~ g +  

PT = &PO + 0(1)> 
FT = P-* A F o + O ( T ) .  

it follows that 

From Lemma 4.1, it follows that PA = O(1). Snbstituting PT = pA/T and 

into (4.13). we get 

- (1 + A T + o ( T ' ) ) ~  + ( I + A T + o ( I ~ ) )  T 
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But by Lemma 2.1 (iii), 

so it follows that 

Since Aq = o(T), we know that there exists a Tl > O such that for T E (O,  Tl) we have 

kthermore, since PT = PT > O, it f o h s  that PA = PE > O. Then together with the 

fact that Q and R are symmetric, it follows from (4.19) that Aq = A:. Hence, we can 

apply Lemma 2.3 to show that for T E (O, Ti), there exists a constant cl > O so that 

Since AQ = 8(T) ,  it follows that 

Findy, if we substitute (4.17), (4.18), and (4.20) into (4.14), we get 
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In order to show that the intersample performance of our LPC is satisfactory, we will 

need the following result. 

Lemma 4.3 For every 7 E r ( p ,  P, a, we have - 
1le("*'Bfi)~11~ 2 11 x 1 1  PÔ'II x ë*<, t 2 O. 

Proofi 

Fix 7 E r (p ,  - P.  O), d t e  7 = &*, let Po and Fo satis6 (4.7)-(4.81, and consider 

~ ( t )  = ( A  + + B F ~ ) x ( ~ ) ,  X ( O )  = 20. 

Consider the candidate Lyapmov function V : Cn + C: 

V ( 2 )  := x'Poz. 
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so it follows kom Lemma 2.2 that 

so it follows that 

Since this holds for every xo E Rn, the resdt follows. 

4.4.2 Robust Stability 

We can now use the results of Subsection 4.4.1 to show that if we choose F using (4.15), 

then the resulting LPC controller cm provide the desired gain and phase rnargins. 

Theorem 4.1 For every integer p > n, there exists a T,, > O so that for every 

T E (0,T-), t h e  exists a m* order pT periodic LPC (G, H, J ,T)  which stabilizes 

every system in 

{ (A ,  7B7 Cl : 7 E r(&~7?)1* 
f roof= 

Fix p > n. By Theorem 2.3, choose To > O sach that (&, Bd) is controhble for every 

T E (O, 2'0). Recall that a, PT, and FT sati8fy (4.6), (4.13), and (4.14). With FE [i, 4 
- - 

and 6 E [-q4 41, consider 

FU wo and consider the Lyapnnov candidate hction V : C" + C: 
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Since PT = PT it follows that V is real-valued, so 

is also real-valued. Expanding AV(w [k]) and using (4.13) and (4.14) to simplify, it follows 

t hat 

using the definition of a given in (4.6), the bounds on 4, and the upper bound on p? we 

see that 

1 -  COS($) 5 O, 

so dong with the face that PT > O and R > O, we have 

AT 
A V ( w [ k ] )  < - w [ k I m Q w [ k ]  + ( ' ) 2 w [ k ] ' ( ~ z ~ d  'Y P T ~ F T ) W [ L ] .  (4.22) 

We now go on to show that as T + 0, the second term in the above inequality 

is dominated by the first term. Rom Lemnia 4.2, we know that there exists positive 

constants ci, c2, c3, and Tl E (O,To) so that for T E (O, T t )  we have 

IIZII s c J ,  

Hence, there exists a constant q > O so that for T E (O, Tt) we have 

If we let 

T,, < min {y, TI), 
then it follows that for T E (O, T-) and w[k] # O, we have 
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so for T E (O, T-) and w[k] # O, we have 

This means that t here exists a positive definite rnatrix so that 

Hence, for every WQ, V(w[k] )  goes to zero as k -+ oo; since PT is positive dehite, it 
CI 

folIows that w[k] goes to zero as k + m as w d ,  so using the definition of Bd, we have 

sp(% + P + ~ F T )  c { z  E C : 11.1 c 1) 

- - 
But this holds for opp^ - E [p, - pl, so for T E (O, Tm), p E [fi p] and 6 E [O+, 41, we have 

S ~ ( & + ~ @ B ~ F T )  c { z  E C :  Izl < 1). 

Findy, with T E (O, T-) and F := FT(eAnT)-', apply Proposition 4.1 to constrnct the 

mth order pT periodic LPC (G, H, J, 2"). 

4.4.3 Int ersample Performance 

We will now look at the performance of our LPC controller as T + O. Consider the 

following desind closed loop system: 

s ( t )  = ( A ' + ~ B F ~ ) z ( ~ ) ,  ~ ( 0 )  = E (4.23) 

Then our desired state is defined as 

s(t) = e(A*Bfi)tzo. 

If we apply the stabiliPng LPC constrncted in Theorem 4.1 to our plant (4.1), then 

the state of the plant satisfies 

z[@] = (4 + TB~FT)*%, 
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and for every 7 E r ( - p, p, 3)' we have 

Theorem 4.2 For every e > 0, for sufficiently s m d  T > O we have 

Proofi 

Fk p > n, and let 7 E I' (p ,p ,$) ,  - T E (0,T-), and zo E Rn be arbitrary. Now 

consider 

With T = PT, it is routine to prove that if T E (O, 2'-), then ~ ( r [ k F ] )  is monotonically 

decreasing and goes to zero (e.g. see the proof of Theorem 4.1). Hence, 

it follows that there exists a constant ci > O and Tt E (O, T-) so that 

which means that there enSts a constant c2 > O and T2 E (O, Tl) so that 

Hence, it follows from the differential equation for x that there &ts positive constants 

CS and q so that 

NOW let's look at the diffaence equation for 
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- - 
at t = O,T,2T, .., . We have 

But 

e (AhBFo)T = 1 + ( A  + r ~ ~ o ) T  + o ( T ~ ) ,  

and using Lemma 4.2, we have that 

Hence, ashg our bound on x [ k q  we have that 

C[(k + i)T] = e(A*BPo)T([kT] + 0(T2)11z011. 

Now it folIows from Lemma 4.3 that there exist constants CS > O and X < O, independent 

of 7, so that 

Hence, there exist constants y > O and T3 E (0,T2) so that 

- - 
we have that z - 2 can be made s m d  at t = O, T, 2T, ... by letting T + O. 

Now let us examine witat happens between the samples. For T E (O, TI) and T E (O, T) 
we have 
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It follows fkom (4.24) that llilla is bounded in terms of 1 1 ~ ~ 1 1  , while it follows from (4.23) 

and (4.25) that 

Hence, for T E (O, Ta) we have 

so the result follows. 

If we define the desired output as 

and note that the actual output is given by 

~ ( t )  = W t ) ,  

then the following CoroUary is a straightforward result of Theorem 4.2. 

Coroliary 4.1 For every E > 0, for safficiently s m d  T > O we have 

Remark 4.1 With 3 E [O, :), - p E (O, 11, and p E [l,oo), we now snmmarize an a l p  

rithm for conshPcting a low order LPC (G, H, 3, T) that stabilizes every system in 

i) Choose symmetric positive dehite matrices Q and R, let 

Q =  COS($), 

and pick p > n. 

ü) Find a T snch that with 
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we have 

a) (A, Bd) controllable, 

b) (C,eAT) observable, 

C) PT and FT satisfying (4.13) and (4.14), and 

d) F~IIF,TB,TPTB~FTII < L i n ( Q )  

(Note that this condition ensures AV in (4.22) is negative, which 
is safficient to ensare the desired robustness) . 

iii) Let 

and dehe  fi E RmXr so that 

iv) Set 

(O, f 0 3 )  k = 0 

( G , H , J ) ( k ) : =  (I,fk,0) k = i , * * * , n - 1  

( O ,  1) k = R,-**,p- 1. 

Remark 4.2 The T obtained in step (ii) of the above algorithm is typicdy quite con- 

servative. Hence, if we were to use this for design, it might be better to compute the 

combined gain rn21l:gî.n and phase margin for various values of T, and obtain the largest 

one which achieves the desired robustness. 
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4.5 An Example 

In this section, we wil l  design a first order LPC for the second osder SIS0 plant used in 

the examples foand in Sections 3.3.3 and A.1.3. Suppose onr nominal plant is 

with associated trzrnsfer fnnction 

Recd  that this example was taken from Doyle et.al. [l6, pp. 200-2031, where it was 

shown that an LTI stabilizing compensator can provide at most a phase margin of 38.g0, 

and the upper and lower gain margins must satisfy p / p  - 1 4. 

4.5.1 Controller Synthesis 

Using Remark 4.1. we now construct a k s t  order LPC to stabilize every system in 

{ ( A ,  B,$) : y E I'(0.?5,6,70°)). 

i) Choose Q = I ,  R = 1, let 

and pi& p = 5 > n = 2. 

fi) Figue 4.4 shows a plot of ~ T ~ ~ ~ F ~ B ~ P ~ B ~ F ~ I I  YS T. Since 

we can choose T = 0.00002. However, as stated in Remark 4.2, this is typically 

consesvative. So in a similar approach to that used in Sections 3.3.3 and A.1.3, 
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Figure 4.4: Determining T,, for the robust LPC using n o m  calculations. 

we now propose a method to approximately determine a less conservative sampling 

period. Using a 2-dimensional search aigorith, determine 

To be consistent with Subsections 3.3.3 and A.1.3, we refer to a F ( T )  (&(T)) as 

the "combined lower (upper) gainlphase margin" provided by the LPC (G, 61, J, T). 

A plot of &(T) and &JT) is provided in Figure 4.5. Observe that we can achieve 

the desired gain and phase magin for every T < 0.00890. 
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iii) If we pi& T = 0.0088, it is easily verified that (&, Bd) is controllable and that 

(C, eAT) is observable. With this choice of T, the solution 4 of (4.13) is 

11.60 31.46 

31.46 1030 

and the optimal gain PT satiSfying (4.14) is 

Hence, with the dehition of C given in step üi) of Remark 4.1, it follows that 
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Figure 4.6 shows the output response for the case where 7 = 4 and = [l of. It ean 

be argued that the intersample paformance of this first order LPC is much better than 

that of the static GSHF controller presented in the previous Chapter, since here we know 

that y ( t )  + c(t )  as T + O and in the previous chapter we saw that the intersample 

performance degraded as T + O. (e.g. Compare Figure 4.6 to Figures 3.6 and A.4) 

WC: Output (%=[1 ,0jT,y=4) 
1 1 I I I I 

Desir 

LPC: Control Signal ( ~ [ l  ,01T,,y-4) 
0.05 1 1 1 1 1 1 1 I 

-0.2 I I I 1 1 I 1 I 
O 0.5 1 1.5 2 2.5 3 3.5 4 

t 
Figure 4.6: LPC simulation results: 7 = 4, zo = [l O]*. 

4.5.2 Properties of the Control Signal 
In the previous mbsection, we arbitrarily h e d  p = 5 and then decreased T until our 

LPC controller provided the desired gainlphase mugins. Since p was b e d ,  the LPC 

control signal was only nonzero for @ - n)/p = 315 of the time. Due to the approach 

adopted in the design of the LPC, we expected that dnring the Contr01 Phase, the W C  

control signal wodd be approximately 513 that of the desired continuoas-time control 

sipal. Rom the second plot in Figure 4.6, we see that this is indeed the case. In this 
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subsection, we d l  qualitatively determine what effect changing the ratio @ - n ) / p  has 

on the LPC control signal. 

We d l  peâorm simulations on the nominal mode1 (i.e. 7 = l), and in order to make 

the trends more obvious in the simulation plots, we will fut T to be a relatively large 

value. We vary the ratio (p - n)/p by demeashg the duration of the Estimation phase by 

increasing the value of p. Specifically, with T = 0.1, we let p E {3,5,12), which means 

and T E {0.03333,0.02,0.008333). The design specitications for our LPC will be - p = 0.75, 
- - 
p = 6, 4 = ?O0, Q = 1, and R = 1. The LPC controllers can then be designed using 

steps (iii) and (iv) in Remark 4.1. In the following simulation results, we used 7 = 1 and 

= [l 0IT. Figure 4.7 shows the LPC control signal for each of the three LPCs, and as 

expected, the LPC control signal becomes smaller as 7 + 1. 

Furthermore, note that by fullng T and increasing pl we are effectively decreasing T. 

By Corollary 4.1 we expect that as T becomes smder, the clifference between the actaal 

output y(t) and the desired output s(t) will also become smder. This trend is verified 

in Figure 4.8. 

4.6 Summary and Concluding Remarks 
In this chapter, we have shown that it is possible to design a low order LPC that win 

solve an extended version of the combined gain/phase mmgh problem. The LPC can 

be implemented with a sampler, a zereorder-hold, and a mLh order pperiodic @ > n) 

disaete-tirne compensator. Unüke the GSHF controllers of Chapter 3, this controller 

also provides satisf'actory intersampler pedormance; in fact, for d ù e n t l y  srnaIl sam- 

pling periods, the LPC control signal ha9 W t a d y  the same &ect as that of an ided 

continttous-the state feedback control law. These r d t s  have been pubhhed and c m  

be fonnd in [45]. 
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Contrd Signal: 7~0.1 p=3 

0.1 1 I I 1 I I r I 1 I 

. 
.II. .- - -. .. .I 

O 

3 '5 -0.1 

-02 LPC Control Signal 

Cantrol Signal: f=0.1 ,p=5 

O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
t 

Figure 4.7: LPC control signal for T = 0.1, p E {3,5,12), 7 = 1, and zo = [l O]=. 

0.1 

h C 

5-0.1 

-0.2 

-0.3 

t 

Control Signai: 7~0.1 .pl 2 
I I ï 1 I 

o. 1 

O M Y U r n m w l r Y L . . . . . r .  - - - -  - -  - -  

h CI 

5 -0.1 

4.2 

O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

I I 8 I I 1 I I I - - 

O - r  

- 

t ,  

- 

- - 
1 1 I I I I 1 1 I 

- 

, A ' U  
- - 
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x 1 O-= Difference between Actual and Desired Output: %û.l . p 3  
G r ,  I 1 1 I I 1 

I 1 I 

x 1 o5 Difference between Adual and Desired Output: 7a.l ,p=5 
6 1 I 1 1 I 1 1 1 1 

x lo5 Difference between Actual and Oesired Output: b û . 1  ,pl 2 
6 1 

4 - 

= 2 - 
tx 

I 
h 
C Y = O - 

-2 - 

-4 I 

O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
t 

Figure 4.8: W C  ontput signal for T = 0.1, p E {3,5,12), 7 = 1, and zo = [l OIT. 



Chapter 5 

Low Order Model Reference Control 

5.1 Introduction 

Up to this point, our objective has been to design a low order LPC that provides robust 

stabilization. In this chap ter. we turn our attention to the tracking and disturbance re- 

jection problem? where our goal is to make the plant output track a prespeafied reference 

signal fiom a dass of reference signals, and to attenuate disturbances fiom another dass 

of signas. The class of reference signals that we consider is the set of all possible ontpnts 

of a prespeufied stable LTI refennce model in response to a signal in ?iP,. The reference 

model is chosen by the control system designer to embody a desired behavioar, so by 

forcing the plant output to track the reference model output, we are making the plant 

behave like the refêrence model. This problem is commonly referred to as the Model 

Refkrence Control Problem (MRCP ) . 

SpecificaIly, we wilI consider the use of a static GSEF' controller to provide near exact 

tracking and disturbance rejection when the strictly proper SISO LTI plant îs minimum 

phase and the strictly propa SISO LTI reference modd is stable. In the literature, static 

GSHF controllers have been used to ensare that the plant output tracks the output 

of a dismete-the stable LTI teference model [26, 411 but nothing is proven about the 
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intasample behaviour. As was seen in Chapter 3, good pezformance at the sample 

points does not imply that the intersample performance is satisfactory. Furthetmore, if 

the plant is non-minimum phase, then there are b i t s  to the b a t  achievable closed loop 

performance [38]. Here we consider the case where the plant is minimum phase since 

it is w d  known that LTI compensators can be used to obtain near exact tracking and 

disturbance rejection. We will show that the same is trne for the static GSHF controller. 

This chapter is organized in the following manner. In Section 5.2 we f o d a t e  the 

MRCP and describe the set of GSHF controilers that we wiîl consider. A brief outline of 

the approach that wiU be adopted is also presented where the overd problem is broken 

d o m  into two parts. In Section 5.3 we provide the &st preliminary resalt that de& 

with an "ided" LTI system. The second preliminary result that relates the actual LTV 

dosed loop system to the ideal LTI system is presented in Section 5.4. These preliminary 

results are then ased in Section 5.5 where we prove that there exists a static GSHF 

controller that provides near exact tracking and disturbance rejection. We address some 

computational issues in 5.6 and provide an example in Snbsection 5.6.1. Finally, in 

Section 5.7 we provide a summary and make some concluding remarks. 

5.2 Problem Formulation 

Our SIS0 plant P is described by 

with z(t )  E Rn the plant state, u(t) E R the plant input, w ( t )  E R the disturbance, and 

y ( t )  E R the plant output. The associated trader function fiom u to y  is given by 

We assume that (A, B) is controllable, (C, A) is observable, and P ( s )  is minimam phme; 

we denote the relative degree of P(s)  by q. 
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Our stable SIS0 reference mode1 Pm is desaibed by 

with x,(t)  E Rn" the refizrence model state, h ( t )  E R the reference model input, and 

y,(t) E R the reference model output. The model is chosen to embody the desired 

behaviour of the closed loop system. 

We now defme the set of controllers that will be considered. With 

the tracking error, T > O the sampling period of the generalized hold, and F : R -t R 

piecewise continuous and periodic of period T, we consider the static GSHF controller 

we represent the controuer by the pair (F, T). 

The structure of our dosed hop system is illustrated in Figure 5.1, and we denote 

the dosed loop map fiom [u, wIT to e as GLTV. 

Figare 5.1: MRCP dosed bop system. 

Oiir objective can be stated as the followhg: 

Given the minimum phase plant P, the stable refisence model Pm, and an 
E > O, h d  a static GHSF con t rok  (F, T) so that 

I I G ~ r n l l ~  I E-  

Before conthning, let as provide mme motivation for the choice of how the distur- 

bances enter into (5.1). In pmtice, there is always some input noise di and output 



Figure 5.2: MRCP closed loop system with input and output noise. 

noise d2 entering into the dosed loop system as displayed in Figure 5.2. However, since 

our plant is strictly proper, it is dearly impossible to reject a disturbance d2 with step 

changes. Hence, we will assume that d2 is the output of a strictly proper stable LTI 

system W (see Figare 5.3). 

Figure 5.3: MRCP dosed loop system with assnmption on output noise. 

If we let 

f ( t )  = A z w ( t )  + ~ w & ( t ) ,  

d2(t) = Cwz,(t) 

be a state space representation for W, and t r d o r m  the block diagram in Figure 5.3 to 

the block diagram shown in Figure 5.4, 



Chapter 5: Loto Order Model Refemce Control 

Figure 5.4: Transformed MRCP closed loop system with assumption on output noise. 

then we can redefine our reference model to be 

and let 

~ ( t )  = Az( t )  + Bu(t) + Idl( t )  

y ( t )  = C x ( t ) .  

Hence, except for the fact that the new reference model has two inputs, oar reformulated 

problem is of the reqnired form. The fact that the reference model has two inputs does 

not present any problem in any of the results presented in this chapter, but to simplify 

notation we will remain with the original setup. 

Before continuing, r e cd  the following fact fiom [39, Lemma 11: the minimum phase 

system (5.1) of relative degree q admits a state space model of the form 
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with Al stable with eigenvalues at the zeros of P ( s ) ,  and with Al, b, and c2 of the form 

Without loss of generality, we will assume that our plant model is already in this fom, 

so the plant and reference model combined are given by 

Al b 1 s  

To simpli. the controller synthesis and analysis, we will first transform our combined 

system to make the error one of the state variables. To this end, define 
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and apply the transformation 

Notice that from the form of cl that -e is one of the state variables. 

Before delving into the details of our resdts, let us fUst outline the approach that 

wi l l  be taken. The GSHF controlIer synthesis will be accomplished in two steps. In the 

first step (Section 5.3), we will define an ideal LTI system GtTr : [u, wIT H ë that is 

parametrized by a scalar gain k, and then show that as k + oo, the YO. induced gain of 

GLTI goes to zero. In the second step (Section 5 4 ,  we fix k and show that it is possible 

to design a static GSHF controller paramehized by T, so that when it is applied to the 

plant (5.9)-(5.10), the resdting LTV closed loop system [y, wIT r, e (see Figure 5.1) is 

dose tu the corresponding ideal LTI system when T is small. 
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5.3 Ideal Closed Loop System 

In this section, we will d e h e  the ideai LTI closed loop system GLTI (parametrized by 

the scalar k) based on (5.9)-(5.10), and show that the 2?= induced gain of this ideal LTI 

system approaches zero as k + oo. 

If we apply the control law (5.4) to the system (5.9) and let 

then the closed loop system state satisfies 

--  
Shce (A,  BI) is not controllable, there exists an F E Rn* and T > O for which no 
- 
F ( t )  satisfying (5.11) exists. However, 

is controllable, so if we let 
T 

F = T-l 1 e A r ~ F ( r ) d r  E Rn, 
- - 

then it fdows from the structure of A, Bi and Ci that the closed loop system state 

satisfies 

since (A, B) is controllable, for every F E Rn and T > O there exists an F(t) satisfying 

(5.12). Since Al is stable, we will set the fllst n - q elements of F to zero and only use 

the last p elements: with F = -[O plT, we have 
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With this in mind, we define the ideal LTI dosed loop system G ~ ~ ~ ( F )  : (h. w )  ~f S by 

(5.9)-(5.10) with the (2.2) element adjasted: 

we label the output as i: to distinguish it Born the error signal produced when the GSHF 

Since the plant is minimum phase and the refaence mode1 is stable, we know that 

both Al and A, are stable. So let ns tum our attention to the (2 ,2)  element in A. 
SpecXeaily, we wiU show that we can make I I G ~ ~ ~ ( F ) I I ~  small by choosing F so that 

the (2,2) element in A has very 'fast" eigenvalues. To this end, define 
Q 

~ ( k ,  S) := (s + k ) ( s  + 2k )  ( 8  + pk) = C *kq-'si, 

and set 

Fk := - 
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We are now ready to present the result needed to perform the first main step in our 

GHSF controller synt hesis. 

Proposition 5.1 For every E > O, thae d s t s  a Lin > O so that for every k 2 Lin,  

there exists a Fk E R* so that IIGLTr(Fk)llo. 5 E.  

Proof; 

We fist apply a similarity transformation to our ideal LTI system (5.13)-(5.14). Let 

and set 

L(t) = ME(t).  

Then with the notation 



it can be shown that 

Since A, Al, and A, are stable, it is easy to prove that the above system is stable for 

large k > O (a Lyapunov-type argument would work). Proving error regdation is not as 

straightforward. We begin by partitioning Z(t ) into [Ll(t)T Z2(t)= f3(t)=IT and taking the 

Laplace transform of (5.16)-(5.17) to get 

~ I ( S )  = (SI - Al)-'(b,c&(~) + ~IC&(S) + &w(s)), 
- 

f i(s)  = ($1 - kA)-' [&bzcizI(s) + ( M~A&C, - bzCrn&)Z3(~) 
- 

-b2CmBm%&(4 + Mk&w(s)] , 

S(8) = ($1 - &)-lBm%b), 

z(8) = -c2Z2(8)- 

Rom these eqaations, we can construct the block diagram illnstrated in Figare 5.5. 

(SI - KFH-1 c2 - 
22 -C 

Figure 5.5: Ideal LTI dosed loop system block diagram. 
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By ushifking" Node 2 to Node 1, we can redraw the block diagram in Figure 5.5 so 

that we have a feedforward part and a feedback part, as inastrated in Figure 5.6. 

~eedfckw~d Feedback 

Figure 5.6: Transformed ideal LTI closed loop system block diagram. 

Let us look at the feedforward part fist. Defme the intermediate signal C as illustrated 

in Figure 5.6. Using the fact that R, and Al are stable, and the definition of ML, it can 

be shown that there exists positive constants & and IEg so that for k 2 i@, we have 

IICII- S PoIII% wI~I I= -  (5.18) 

For the feedback part, we begin by defining G1 and G2 as illustrated in Figure 5.6. Since 

Al is stable, we know that there exists a a > O so that 

I lGl lm I &Pi- 
W e  now show that there 

11411a 5 $2- 

To see this, fist observe 

g2(t )  = c2eLbt. 

Now there exkts an CY > 

lpy < adt. 

exists a constant pz > O so that 

that g2 := C-' {Ga) is given by 

O and X < O snch that 



Hence, 

Therefore, fkom Figure 5.6 and (5.19)-(5.20), it follows that 

so for k > (&&)lfq =: kl, we have 

Findy, by cornbining (5.21) and (5.18), it follows that for k > max{b, kt} we have 

so our resuit follows. 

5.4 Low Order GSH Controller 

In this section, we will fix k large enough so that the ideal LTI system is stable with an 

acceptable level of performance, and then show that it is possible to design a static GSHF 

controller (7, T) so that when it is applied to (5.9)-(&IO), the r d t i n g  LTV dosed loop 

system performance approaches that of the ideal LTI dosed loop system as T -+ O. 

Let es begh by designing the hold fnnction. We assume th& k has been chosen large 

enough so that with Fk satisfying (5.15), the matn* 2 defined in (5.13) is stable; by 
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Proposition 5.1, we know such a k exists. Now choose an F( t )  satisfying 

We know that since (A, B) is controllable, snch an F(t )  exists. Spedcally, we will 

choose F ( t )  to be a piecewise constant fimction taking on n values over each sample 

period. Namely, with = Tln, we consider hold functions of the form 

we represent this specific GSHF con t rok  by the pair ( f i ,T ) .  Recall that the corre- 

sponding map (G, w )  H e was denoted by GLTv; to make the dependence of the map 

on T and Fk explicit, we write GLTV(T, A). Rom Section 3.4, we know that for every 

Fk E Rq and for snfnciently s m d  T, there exists constants fi sati-g (5.23), and that 

the resulting GSXF' controlla can be implemented with a sampler, a first order discrete- 

time n-periodic compensator, and a zero-order-hold. When examining the intersample 

behaviour of our GSHF controller later on, it will be necessary to know what happens to 

the magnitude of the gains fi as the sampling period T tends to zero. Hence the following 

Lemma 5.1 Given the plant (5.5) and a matrix Fk E RQ. if F(t)  of the form (5.23) 

satisfies (5.22), then fi = O(TL-9). 

Proofi 

Since the piecewise constant F(t)  satisfies (5.22), it follows fiom Proposition 3.3 that 

with 9 given by (3.25), we have 
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But here A and B have the specific form given in (5.5)-(5.6), so it follows that with 

there exists a Al E R(n-4)x(n-4) and A2 E Rqx("-9) so that 

Since (A, B) is controllable, we know t hat [An-' B B] is invertible, so it follows t hat 

Substituting this into (5.24), it follows that 

and our resdt follows. 

Let us now tarn to the second main step in the synthesis of our GSHF controller, 

namely that of showing that the dosed loop LTV system behaves (fiom an inpnt-ontpnt 

point of view) like the ideal LTI dosed loop system for s m d  T. If we apply our GSHF 

controller to the actnal system (5.9)-(5.10), then it can be shown that 
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while from (5.13)-(5.14) it follows that 

Our key observation here is that for small T, we have 

@ - ( I + T Â , +  l-i.1. 

Hence, one might expect that for s m d  T, z[kT] is dose to qkT] ,  which means that 

for s m d  T, e[kT] is dose to qkT] .  Showing that the intersample response is also well 

behaved is more complicated and will require the following preliminary result. 

Lemma 5.2 If A is stable, then there exists an a > O, A < O and a To > O so that 

AT k I/@*// 5 a (e ) , T E (O ,%) ,  k E z+. 

Proofi 

Let 

A1(T) := <P - ( 1 +  AT), 
and consider the clifference equation 

Since A is stable, it follows h m  [55, Lemma 12-11 that there exists a unique positive 

definite matex P satisfying 

ATP+PA+I=o, (5.27) 
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so consider the Lyapunov candidate function 

Using the fact that Ar(T)  = 0 ( T 2 ) ,  it can easily be shown that there exists a 

A2(T) = O(T) so that 

V[w(k + i ) ]  - V[w(k)]  = T W ( ~ ) ~ [ ( A ~ P  + PA) + &(T)]w(k), 

so fkom (5.27) it foilows that 

V[w(k + l)] - V[w(k)]  = T W ( ~ ) = ( - I  + A2(T))w(k). 

Since A2(T) = O(T) ,  it follows that there exists a f i  > O so that 

IlA*(T)II I f , 2" E (0, To), 

which means that for T E (O, To) we have 

But 

so for T E (O, To) we have 



Chapter 5: Low Oder Model R e f m c e  Contml 

W e  can now use Lemma 5.2 to show the foUowing resalt. 

Proposition 5.2 If k is chosen such that the ideal LTI system (5.13)-(5.14) is stable, 

then for every E > O, there exists a T,, > O so that for every T E (0,T-), the GSEIF 

controller (fi, T) ensures that 

Proof: 

This proof d - b e  broken down into three parts. In the fmt part, we use the fact 

that A is stable and @ z eAT for s m d  T to show z[kT] is bonnded for s m d  2'. Then 

this is used in the second part to show that z[kT] approaches ?[kT] d o d y  as T 4 O, 

which means khat e[kT] -t qkT] d o r m l y  as T -t O. Findy, we will combine this with 

Lemma 5.1 to show that for sufficiently s m d  T, Z- e is s m d  between samples as well. 

Since A is stable, it follows fiom (5.13) that thexe exists an a* > O so that 

Furthemore. using Lemma 5.2. it foilows that there exists an al > O, Xo < 0, and a 

To > O so that for every T E (O, To) we have 

Combining this with the fact that 

it follows from (5.25) that there exists an a2 > O and Tl E (O, To) so that for every 

E (O, TI) we have 
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we h o w  that there exists a T2 E (O, Tl) and an a3 > O so that 

at t = O, T, 2T, -. Using (5.25) and (5.26), it follows that 

Since A is stable, there exists an % > O and a Al < O so that 

If we combine t his with 

ose (5.29) to obtain a bound on z[kT],  and use the fact that e" - = 0 ( T 2 ) ,  it follows 

that there exists a T3 E (O, T2) and an as > O so that for every T E (O, T3) we have 

we have that Z- e can be made small at t = O, T, 2T7 by letting T -t O. 
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But eA' = 1 + O(T),  which means 

so dong with the bound on Igiven in (5.28), it can be shown that there exists an ad > O 

and a TI E ( O .  T3) so that for T E (O,  T4, we have 

When we apply the GSHF controller to the plant (5.9)-(5.10), we have 

But since the plant has relative degree q, it follows that 

which means that, dong with Lemma 5.1, we have 

Combining this with the bound on z [kT] given in (5.29), the fact that eA' = l + O ( r ) ,  and 

it follows that there exists an a7 > O and a Ts E (O, T4) so that for T E (O, Ts), we have 



Finally, combining (5.31), (5.33) and (5.36), it follows that for every T E (O, Ts), 

r E [O,T), and k E Z+, we have 

I z ( ~ T  + r )  - e(LT + 711 s ( c l r ~ l l ~ l l  + wJ' + ad') II [u, w]~II=, 

so our desired result folIows. rn 

5.5 Main Result 

W e  can now snmmarize our resdts in the foilowing Theorem. 

Theorem 5.1 Given a minimum phase plant P and a stable teference model Pm, for 

every E > O, there exists a static GSHF controller that ensures 

IIGLTVV', Fk)ll= 5 

Proof= 

By Proposition 5.1, we know that there exists a k so that with Fk satisfying (5.15), 

we have 

IlelIo. 5 f Il [.n. 4 * l l ~ -  

Using the resdts of Section 3.4, we know that there exists a To > O so that for every 

T E (O, To), there exists a F(t)  of the fonn (5.23) that satides (5.22); this hold fnnction 

is associated with the GSHF controller (fi, T). Rom Proposition 5.2, we know that there 

exists a T,, E (O, To) so that for every T E (O, Tm), the GSHF controller (fi, T) ensnres 

IF- elloo I f Il[% wITlle0- 

Hence, for every T E (O, Tm), the GSHF controller (fi,  T) ensures that 



5.6 Computational Issues 

In this section, we address some computational issues related to the synthesis of our 

controller and provide an example to demonstrate the design procedure. 

Suppose that with E > O, we wish to design a GSEIF controller so that 

We will construct the controller in two stages. In the first stage, we determine a large 

enongh value of k, and the correspondhg gain Fk, so that the Pm induced gain of the 

ideal LTI system 

I I G L T I ( F ~ ) ~ ~ ~  < f 

Since GLTI(Fk) is an LTI continuous-time system, this step is not difEcult. We then fix 

Fk and note fiom Proposition 5.2 that 

IIGLTI(F~) - GLTV(T, Fk) I l o .  + 0 (5.37) 

as T + 0. Hence, in the second stage we find a sufnciently s m d  T so that with the fixed 

gain Fk, we have 

IIGLTv(T, Fk)lI= I 

Computing IIGLTV(T, Fk) 11, is not trivial. Resnlts related to computing the 4Io0 

induced gain for sampled-data systems have been obtained for the case where the plant 

is a continuous-the LTI system and the contro11er is composed of a sampler, a zer* 

order-hold, and a discrete-time LTI system. For example, in [8, 17, 61 a continaoas-time 

lifting technique is used to ca ldate  an approximation of the 2- indaced gain, while in 

[47] an explkit formula for the induced gain is given. Since the discrete-the component 

of our controk is time-varying, we c m  not directly apply these r e d t s ,  but by modifying 

the argument of [47], we wil l  be able to derive s formula for I I  GLTV(T, Fk) 11,. 
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To this end, if we define the LTI map 

A 

then it is easily shown that a state space representation for GLTI is given by 

and that the dosed loop time-varying map GtTv(T, Fk) cari be represented by the block 

diagram austrated in Figure 5.7. 

Figure 5.7: Generd framework for GSKF controlled system. 

Thae are two perspectives fiom which to view our controller (F,T).  First, since the 

hold F(t)  has been chosen to be a piecewise constant fixnction, it follows kom Section 

3.4 t hat there exis ts a controller of the form 

u[k+ l] = G(k)v[k] + ~(k )e (kT) ,  v[O] = vo E R 

u ( ~ F + T )  = J(k)v[k] + K(k)e(kF),  r E [o,T), 
that implements (F, T) and that this controller consists of a sampIer, a zeroorder-hold, 

and a discrete-time n-periodic linear system (see Figure 5.8(a)). If the discrete-time 
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component of the controller were LTI, then we could directly apply the results obtained 

in [8, 17, 6, 471, but this is not the case. 

(b) 

Figure 5.8: (a) (F ,  2') as a LPC. (b) (F,  T) as a GSHF controller. 

The second way of looking at (F,T)  is from the GSEIF perspective, where the con- 

troller consis ts of a sampler , a generalized-hold, and a anity gain discrete-tirne component 

(see Figure 5.8(b)). By looking at the controller this way, the results of [47] can more 

easily be extended to corne ap with an equation for IIGtm(T7 F&. Hence, we proceed 

with this approach, but since the argument is virtndy identicd to that given in [47], 

most of the details are omitted and only a bnef derivation of the formala is provided. 

W e  begin by noting fiom (5.38) that 
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h h 

it follows fiom the definition of A, B2, and (5.22) that 

Hence, with 

we bave 

Now, for the intersample behaviour we note that 

+ .B~-~IB,W(I;T + @)dB. t E [O, T), 

so combining this with (5.39), it follows that 

-- --- 

aWe use the notation mlij to represent the (i, j )  entrJr of Q. 
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Hence 

4 

is an upper bonnd on JI GLTV(T, Fk) 11,. Using an argument identical to that found in [47], 

we can construct a $(t)  that shows that a- is the least npper bound for II GLTV(T, Fk)ll,, 

We now demonstrate the design method with an example. Consider the plant (5.5) with 

it can easily be shown that the transfer fanction fiom u to y is given by 

We will choose our reference mode1 to 

and the associated transfer bction from u, to y, is given by 

5 
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We choose E = 0.1, and our objective will be to design a GSHF controller (fi, T) so that 

Step 1 

Here we choose a large enoogh vahe of k so that II GLTr(Fk) (1, 5 €12 = 0.05. If we 

choose k = 60, let 

and set 

then it can easily be verified that 

sp(A2 + FLC~) = (-60, -1201, 

and 
do - At- IIGLTI(Fx)II~ = JI ICe & 

Step 2 

We now fix Fk and find a safficiently s m d  T so that 

1 1 4 ~ v ( T ,  Fk)11= I 0-1. 

To do this, we use (5.40) to compute %t = IIGtm(T, Fk)ll,; as was done in [47], we use 

a finite s u m  approximation for the infinite series in the formula for %t, i.e. we k c a t e  

the sum after the fmt 10000 terms. It can be verXed that for T = 0.009, we have 

IIGLTv(T, 9) 11, = (I, = 0.09281. 

For this value of T, we have T = 0.009/3 = 0.003, and it can be verified that 
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is conkr01lable. Hence, the gains fi satisfy 

fo 

fn-i 

We now provide simulation results for the case where 

u&) = 1. t 2 0. 

and 

w ( t )  = sin(2t), t 2 O, 

in Figures 5.9 and 5.10. Note in Figure 5.9 that llellrn 5 0.1. 

Tracking Enor when u,(t)=l , w(t)=sin(2t) 

Control Signal when u,(t)=l , w(t)=sin(2t) 

Figure 5.9: Model reference control tracking error and control signd 
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Plant output y (t) (das hed), Reference Model Output y,(t) (solid) 
I 1 I I 1 1 I I I 

O 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
t 

Figure 5.10: Plant output and reference mode1 output. 

Using the results of Section 3.4, we know that we can implement the GSHF controiler 

( f i ,  T) with a fist order LPC of the form 

u[k+ 11 = G(k)u[k] + ~ ( k ) e ( k F ) ,  v[O] = uo E R 

u ( k T + ~ )  = J(k)v[k]  + ~ ( k ) e ( k F ) ,  T E [o,T), 
by choosing 
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and 

(G(k + 3), H ( k  + 3), J ( h  + 3), K(X. + 3)) = (G(k), H ( k ) ,  J(k), K(k)), k E Z+; 

this LPC can be implemented with a sampler, a linear first o r d a  disaete-time tpa iodic  

compensator, and a zereorder-hold. 

5.7 Summary and Concluding Remarks 

In this chapter, we have shown that it is possible to design a static GSHF controller that 

provides near exact t r a c h g  and disturbance rejection when the strictly proper SISO 

LTI plant is minimum phase and the strictly proper SISO LTI reference model is stable. 

As far as we are aware, this is the f i s t  time that a GSHF controller has been designed 

which guarantees nice intersample behaviour in the model matching setting. This GSHF 

controller is easy to design and can be implemented with a sampler, a first order n- 

periodic discrete- t h e  compensator. and a zero-order hold. Unfort unately, the controller 

synthesis is based on high gain control, so if we want the plant output to dosely track 

the model reference output, then we will typicdy have large control signals. 



Chapter 6 

Performance 

6.1 Introduction 

In the previous chapter, we showed how to use a GSHF controller to provide model 

matching for a minimum phase plant. This is inapplicable to non-minimum phase plants 

since exact model rnatching is typically impossible. However, a common problem in 

industry is that of step tracking. Hence, here we will use the ideas of Chapter 4 to design 

a stable low order sampled-data controller which provides near optimd step tradting in an 

LQR sense, euen when the plant state cannot l e  measund. Ftuthermore, the controIler 

will be able to recover the gain and phase margin characteristics of the optimal state 

feedback control law. 

We first pose the optimal step tracLing problem and convert it to a standard LQR 

problem. Since the optimal LQR control law is linear state feedback, we proceed by 

considering a more generd problem, in which we are given an arbitrary stabikng state 

feedback control law that provides a given performance, and we wodd like to &id a low 

order sampled-data con t rok  that not only provides a performance arbitrarily close to 

that provided by the state feedback control law, but also recovers its gain and phage 

margin characteristics. 



This chapta is organized in the following manner. In Section 6.2, we will pose the 

optimal step tracking problem and show that it can be converted to the standard LQR 

problem. In Section 6.3 we will formulate our general problem, for which oar optimal 

step traeking problem is a speeial case, and provide an o u t h e  of the approach that we 

wiIl take to achieve our objective. Then some preliminary resdts are proven in Sections 

6.4.1 and 6.4.2 relating the state and control signal of the LPC controyed system to an 

"ideal" LTI system. These preliminary results are then used in Section 6.5 to prove the 

main result. ~ i n a l l i  an illustrative example is provided in Section 6.6 and conclading 

remarks are made in Section 6.7. 

6.2 The Optimal Step Tracking Problem 

In this section, we will pose an optimal step tradring problem and show that it can be 

converted to a standard LQR problem. 

Assume that the actual m-input, r-output plant is described by 

We assume that (A, B) is controllable, (C, A) is observable, the nominal plant (i.e. 7 = 1) 

has no transmission zeros at the origin, and that there are at least as many inputs as 

there are outputs (m 2 T ) .  

With y, E Rr, we wodd like to track reference inputs of the form 

in an optimal fashion. There are a number of ways to define optimality; with the tracking 

error defined by 



7 = 1 and R E RmXm positive definite and symmetric here, we would like to find the 

control signal which for each y,, m;nimires the qnadratic cost fimction 

note that we are not considering the cost h c t i o n  

since the control signal will not typicdy go to zero when trading a step reference signal. 

To proceed, we consider the augmented state 

su that with u( t )  = ù(t),  the augmented plant can be defined as 

-- 
Since (C, A) is observable, it follows that (C, A) is observabIe. Since (C, A) is observable, 

(A, B) is controiiable, n 2 T ,  aad the plant has no transmission zeros at the origin, it 
-- 

cari be shown that (A, B) is controllable. huthermore, (6.2) becomes 

Since the state weighting matrix is only positive semidefiaite and not positive definite, 

we will slightly modify the cost fnnction. To this end, with d > O, we consider the cost 



It is easy to prove that when +y = 1. the optimal Js converges uniformly to the optimal 

When 7 = 1, the control law that minimises (6.4) for every is of the fonn 

we can obtain the optimal gain Fa by f is t  solving the algebraic Riccati equation 

for the unique positive dehi te  symmetric solution Pd, and then setting 

F~ = - R - ~ B ~ P , .  

Notice that this controller is a proportional-integral state feedback control law and that 

when it is applied to (6.1) we have 

Now, not only will this control law minimixe the cost fimction (6.4) when y = 1, but it 

is well known that it will also provide an infinite upper gain margin, a lower gain margin 

of at leart 112, and a phase margin of at least 60 degrees. Indeed, 

While we should not expect that a sampled-data controller will be capable of providing an 

infinite gain matpin, for every compact sabset I' of r, a e  wül show that there eicists a low 

order W C  that provides near optimal performance for the nominal plant and provides 

dosed loop stabiüty and step traclàng for every 7 E I'. 



-- -- 
To sammarize, we assame that with (A, B) controllable and (C, A) obsavable, we 

have determined Fs and chosen r s compact subset of Î?, and our objective is to fmd 

a low order sampled-data controIIer which measures only e and provides performance 

arbitrarily dose that provided by the control law (6.5) when 7 = 1, as weil as closed loop 

stability and s tep tracking for every 7 E r . 
Before leaving this section, let us comment on the implementation of the LPC. Since 

we are designing the LPC for the augmented plant (6.3), it follows that the output of 

the controlle. will be v(t). To obtain u(t) îkom v(t), we can simply use an inkgrator - 
see Figure 6.1. 

Yref + e LPC Plant Y ,  

-i' 
Figure 6.1: Implementation of the LPC foi optimal step tracking. 

Problem Formulation 
In this section, we f o r d a t e  OUF general problem, for which the optimal step tracking 

problem of Section 6.2 is a special case. Suppose onr nominal model is 

x(t) = A x(t) + B u(t), ~ ( 0 )  = xo, 
(6.6) 

Y@) = C 4t ) ,  

with x ( t )  E Rn the state, u(t) E Rm the control input, and y(t) E RF the plant output. 

We assume that (A, B) is controllable and (C, A) is observable. W e  capture ancertaine 

in the model by assuming that for some 7 E C, our actual plant is given by 

i ( t )  = A x(t) + TB u(t), z(0) = xo, 
(6.7) 

Y@) = C 4t) ;  

we associate the actual plant with the triple (A, 7 B, C) . Suppose we are also given a 

stabilïzing state feedback matrix F E RmXn, and then we define the open set 
- 
I' := {7 E C : A + 7BP is stable). 
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To provide a measure of the performance of the closed loop system, with Q E Rn*" and 

R E RmXm positive dehite and symmetric, we define the cost fnnction as 

since Q and R are symmetric, J ( z o )  is real-valued. Let I' be a compact snbset of F and 

With T > O the sampling rate, we will consider LPCs of the form 

z[k + l] '= G ( k ) z [ k ]  + H ( k ) y ( k T ) ,  %[O] = lp E RL, 

u(kT  + r )  = J ( k ) ~ [ k ] ,  E [O, T); 

we associate this system with the Ctuple (G, H, J, T). Here we let p denote the paiod 

of the controller parameters G, H, and J ,  so that pT is the period of the controller 

(G, H, J. T). Note that (6.9) caa be implemented with a sampler, a zerosrder-hold, and 

an 1'" order periodicdy tirne-varying disaete-time system of period p (See Figure 4.1). 

Since our LPC wiU be emulating a state feedback control law of the form 

"u( t ) = Fx( t )" , it will be usefid to define the following ideal LTI closed loop system: 

Then the ideal state is defined as 

the ideal control law is dehed as 

and the ideal cost h c t i o n  is defined as 



Hence our objective be stated as: 

Given a nominal system (A, B, C), a state feedback gain F, and a set r, 
for every compact snbset r of and every E > O, h d  a 10w order LPC 
(G, H, J, T) so that 

Before presenting any results, let us first provide some motivation for the approach 

that we take in this chapter. In a similar approach to that adopted in Chapter 4, with 

F E RmXn, p > n, qnd T := PT, we consider the control law 

Fkom Proposition 4.1, it follows that this control law can be implemented by an mth 

order controller of the form (6.9). We then want to show that if we apply (6.12) to the 

actual plant, then 1 J ( z o )  - ?(zo)l can be made small by choosing a sdiciently large p 

and a sdiciently small T. The fact that we need T to be small is not tlflexpected given 

the discussion and analysis provided in Chapter 4. To see why it is that we need p to 

be large here. but not in Chapter 4, consider the following argument. In Chapter 4 we 

relied on the fact that for arbitrsty p and small T, the average of u over [@, ( k  + 1 ) T )  

is approxîmately eqaal to the average of Û over [kT, (k  + 1)T). Then since the plant is 

strictly proper, it tarns out that u has approxknately the same &ect on x as û has on 

2, which was sufficient to show that u codd recover the gainlphase margin provided by 

Û. Note however that u enters into J ( z o )  in a quadratic fashion, so 

J / 7 U ( t ) ~ R y ( t ) d t  = L U ( t ) ~ R y ( t ) d t  

which means we are off by a factor of p l@ - n). Hence, by choosing p snfficiently large, 

p / ( p  - n) can be made arbitrarily close to unie, so we should be able to make J( z0 )  

arbitrarily dose to ?(zo). 
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6.4 Preliminary Results 

To prove our main result, we will break the problem d o m  into two parts. In the fkst 

part, we will show that for an arbitrary p > n, we can make llz - $ I l l  s m d  by choosing T 

small. In the second part, we show that by picking p safficiently large and T sufnciently 

small, we can make Ilu - smd. Finally these two results can be combined to prove 

o u  desired result. 

Since we wish to implement the control law (6.12) with an LPC of the form (6.9), we 

will need Proposition 4.1, which we repeat here: 

Proposition 6.1 If T > O is non-pathological, then for every p> n and every FE Rm, 

there exists an mUL order LPC (G, H, J, 2') that will irnplement the control law (6.12). 

Remark 6.1 The LPC (G, H, J, T) that is constructed in Proposition 6.1 is stable, in the 

sense that when the input to the controller is zero, for every controller initial condition 

ZQ E Rm, we have 

lim z[kj = O. 
&+oc 

To see this, note that G(0) = O, so it follows that for every zo E Rm, we have 

which means z[p + k] = O for k 2 O. 

In most of the analysis that will follow, we typically first determine the behaviour at 

disuete points in t h e ,  and then go on to analyze the intersample behaviour. Hence, we 

now introduce the foJlowing discretetime equations. Rom (6.10), it follows that 

and if we apply the conho1 law (6.12) to the actual p h t  (6.7), then with the notation 



it can be shown that 

~ [ ( k  + 1)T] = (% + 7 ~ d ~ d ) ~ [ k 7 w  (6.14) 

We wilI also require the following result to show that the closed loop system behaves like 

the ideal sys tem uniformly over r . 
Lemma 6.1 

i) There exists an al > O and a Al < O so that 

~ l e ( ~ ~ ~ ~ ) ~ l l  i: aleAl', 7 E r, t 2 O. 

ii) For every p > n, there exists an a2 > 0, A2 < O, and a Tl > O so that 

I I ( A ~ + ~ & F ~ ) * ~ I  < a2 (eh~)', T E  (o,T~) ,  7 E r, k E z+. 
Proof= 

We will prove the fist resdt and then use it in a disuete-time Lyapanov argument 

to prove the second result. Let 

R , : = A + y B F .  

For every 7 E î, 4 is stable, so there exists an a, > O and X, c O snch that 

1le(A+7BF)t I I  5 %eA7', t 2 O. 

In fact, there exists a neighborhood of 7, Say N,, so that 

~ l e ( ~ * ~ ~ ) ~ l l  2 + e t t ,  7 E N,. 

Now {N, : 7 E I') is an open cover of I', so by compactness, it ha9 a fiaite mbcover, say 

{N, l*** ,N, , I .  

Deîme 

Al := max{hi/2, i = 1,2, , q). 

T herefore, 

~ l e ( ~ - i r ~ f l ~ l l  5 aleA1', 7 E r. 
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Now let us use this to prove our second result. For every 7 E r, 4 is stable, so there 

exists a unique P, = P; > O satisfyiag 

in fact 

PT = 1- e*;teA7tdt, 

e.g. see [55, Lemma 12.11. By applying the first result, it follows that 

Now since 7 enters (6.15) in a linear fashion, it follows that P, is a continuons fanction 

of 7. Then since r is compact and Lin(P,) > O for every 7 E I', it follows that there 

exists a constant > O so that 

We now use these bounds on P, in a discrete-thne Lyapanov a r p e n t  to prove the 
- 

second result . Fix p > n and let T := T / p .  If we define 

then nsing the fact that 7 is bounded, it can be shown that Al(T)  = 0 ( T 2 ) .  NOW 

consider the discret e- t h e  equation 

w(k + 1 )  = (% + @&)w(k) 
(6.18) 

= [I + &T + &(T)]w(k), w(0)  = wo, 

and define the Lyapunov candidate fanction V : Cn + C: 

Since P, = PT, it follows that V is real-valued, which means 

V[w(k + 1)1 - V[w(k)l 

is &O real-valued. Using (6.18) and the facts that Ai(T) = 0(T2) and P, and 7 are 

bounded, it can be shown that there exists a A2(T) = O(T) sach that 



6.4.1 State Equations 

W e  are now ready to prove our first preliminary result: 

Lemma 6.2 For every e > O and p > n, there exists an a > O, T,, > O and X < O so 

that for every 7 E I' and T E (O, T-) we have 
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Fix p > n and define 

Observe that 

and t hat for T E [O, T )  , 

We begin by Iooking at the first term in (6.20). R o m  (6.13), (6.14) and the definition 

of (, it follows that 

Rom Lemma 6.1, we know there d s t s  a al > O, Al < 0, and Tl > O so that 

But since 7 is bounded, it c m  be shom that [ (A + yBaFd) - dAwBF)7 = 0 ( T 2 ) ,  SO 

dong with our bonnd on x [ k n ,  it follows that there exists a T2 E (O, Ti) and an a2 > O 

so that 

But also kom Lemma 6.1 we know thae &sts an a3 > O a ~ d  a A2 < O so that 

Withoat loss of generality, assnme that X2 E (Al, O), which means that Al - A2 < 0, so 



it follows that there exists an q > O and a 7'' E (O, G) so th& 

Now let us turn to the second term in (6.20). Since 

and 7 is bounded, it follows that there exists an a5 > O and a T4 E (O, 2'3) so that 

Using the definition of u(t )  given in (6.12) it foUows that 

I~U(~T++)II I ,~nllpe~~~~~ x 11x[k91I7 T E  [o,T), 

so dong with the bound on x [ k q  given in (6.21), it follows that there exists a Ts E (O, T4) 

and > O so that 

Combining this with the fact that 

it follows that there exists a T6 E (O, Ts) and an a7 > O so that 

Then it follows kom the differential equation for z g i v a  in (6.7) and the fact that 7 is 

boanded that there exîsts a a8 > O so that 



By combining (6.22), (6.23), (6.24) and (6.20), and recalling that At E (O, Al, O), it 

foUows that there exists an > O so that 

Hence, for every 7 E r and T E (O, TT), 

our results follow fiom (6.26), (6.23), and (6.25). 

6.4.2 Control Law Equations 

We now turn to out second preliminary r e d t .  

Lemma 6.3 For every E > O, thae exists a T' > O and an integer p > n such that 

Proof: 

From the definition of u given in (6.12) and U given in (6.11), it follows that 
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W e  begin by looking at hl (p, T). Using Lemma 6.1 (i) , we know t here exists an al > O 

and XI < O so that 

Ils(t)ll I ~le~~~11xo l l l  7 € r, 
so for every 7 E l?. we have 

But 

so there exists a pl > n so that 

which means that there exists a To > O so that 

Let as first look at the second term on the RES. Clearly there exists a Tl E (O, To) and 

an a2 > O so that 

so combining this with our bound on 2 given in (6.281, it foIIows that 
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Pick p > pl so that 

which means that the second term on the RHS of (6.30) satisfies 

- 1 11 ~e("*'~):'11 x 1 1 ~ [ k n 1  5 q&(e'l")kllxoll, E (O, Tl), 7 E I'.(6.31) 
(p-" ) 

Now that we have fixed p, we tnni to the two remaining terms on the RHS of ineqtxal- 

ity (6.30). Using Lemma 6.2 (ii) and (iii), it can easily be shown that there exists a 

T2 E (O, Tl), a3 > 0; and X2 < O so that for every 7 E r and T E (O, T2), we have 

By combining (6.30), (6.31), (6.32), and (6.33), it follows that for every 7 E I', T E (O, T2), 

and t E [@ + nT, (k + i)F) we have 

Hence, for every 7 E I' and T E (O, Ta) we have 

it foIlows that there &ts a T3 E (O, T2) so that 



6.5 Main Result 

We can now use the results of Section 6.4 to prove our main result. 

Theorem 6.1 For every e > O, there exists a mth orda, p periodic LPC (G, H, J ,T)  

t hat ensures 

I J(x0) - 7(41 I ~ 1 1 2 . 0 1 1 ~ 7  7 E r* 

F, observe that 

It follows fkom Lemma 6.1 that there exists positive constants P, and Pu so that for every 

7 E ï, we have 

l l Q 1 ~ * ~ I l 2  S Allzo 11, 

I I ~ ' / ~ û l l ~  r P~IIXOII. 

Now let €1 > O. It foUows fiom Lemma 6.3 that there exîsts a Tl > O and an integer 

p > n such that 

II. - ZIIz S ~ ~ l l ~ o l l ,  T E (O, TI). 



It follows fiom Lemma 6.2 that there exists a Ta E (O, Tl) su& that 

Choose T E (O, T2) so that T := Tlp is non-pathological. Hence, we can construct our 

mth order, p periodic LPC (G, H, J,  T) using Proposition 6.1. 



In this section, we provide an example that &strates the design method. Suppose our 

nominal plant is 

so the associated trsuisfer fiinction is 

We begin by designing our continuous-time state feedback control law using the method 

described in Section 6.2. The augmented plant (6.3) is given by 
- - 

= A  = B 

-- 
Since the plant is SISO, (A, B) is controllable and (C, A) is observable, we have (A, B) 

-- 
controllable and (C, A) observable. With R = 0.005, b = O.OID and 

we find the control law that minirnizes 

"This value of R was ch- so that the redting rtep response rise time was lese than t = 10 and 

the value of 6 was chosen so that 1 J - Jsl/J 5 0.001. 
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by hding the unique positive definite solution Ps of 

set ting 

F~ = - R - ~ B ~ P ~ ,  

and letting 

Here 

7.2909147 0.23292288 -4.02276959 

0.23292288 0.076529884 -0.070710678 7 

-4.02276959 -0.070710678 2.8697629 1 
so the optimal cost provided by the continuous-time state feedback is 

Let us now design a low order LPC so that when y, = 1, the resulting actnal cost is 

within 1% of the optimal cost. To do so, we chose dficiently srnall and p safficiently 

large so that when y, = 1, the actnal cost was less than 1.01 * (2.8697629) = 2.8984605. 
- - 

Specifically with p = 6, T = 0.1, and T := T l p ,  the actual cost can be evaluated to 

be 2.8980162. We design the LPC using the proof of Proposition 6.1 (i.e. proof of 

Proposition 4.1); we define 

[ f o  f~ f i ]  := & ~ r e ' ~ [  C 1 
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and construct the LPC (6.9) by choosing 

( (O, -8.421573?(10)', O) k = 0 

(1, l.7273468(10)5, O) k = 1, 
(G, H, J ) ( k )  := 

(1, -8.8497730(10)', 0) k = 2, 

Figure 6.2 compares the actual output y (t)  to the ided output c( t )  and the actual control 

signal u(t ) to the ideal control signal Û ( t  ). 

Step Response: y(t)=solid.i(t)=dash 

Step Response: u(t)=solid.Û(t)=dash 
8 1 1 1 1 1 1 1 1 1 

Figure 6.2: Optimal step tracking sixnalation. 
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To evaluate the robustness properties of t his controller, we use a Zdimensional search 

to approximately determine 

l' = (7 E C : (G, H, J, T) stabilizes ( A , y B ,  C)), 

and &strate it in Figure 6.3. For cornparison, we also approximately determine the set 

- r = (7 E c : S ~ ( A + ~ B & )  c C-) ,  

illustrate it in Figure 6.3, and note that I' c r. 

Let us now qualitatively investigate the noise properties of this controller. Suppose 

that with w, E {10,20,30), we introduce the output noise signal 

w( t )  = 0.01 sin(w,,t), t 2 O, 

to the closed loop systern as illustrated in Figure 6.4: 
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Figure 6.4: Optimal step tracking closed loop system with output noise. 

The resulting ideal state feedback controIled system response is compared to the 

actual LPC controlled systern response in Figure 6.5. Note that the tracking performance 

degrades as the fkequency of the noise becomes large. 

6.7 Summary and Concluding Remarks 

In this chapter, we posed an optimal step tracking problem for MIMO LTI plants that 

are possibly non-minimum phase? and we showed that we could design a stable low order 

sampled-data controller that could provide near optimal step tracking in an LQR sense. 

even when the state of the plant cannot be measured. This controller is snperior to an 

LTI controIler since it is capable of recovering the gain phase magins of the optimal LQR 

contirnous-time state feedback control law and the resulting LPC is stable. UnWre the 

GSHF controller discussed in Chapter 5, the control signal generated by this LPC does 

not become large when the sampling period tends to zero, but approaches the optimal 

state feedback control law. Unfortunately, this controller is more sensitive to noise than 

the ideal optimal s tate feedback control law. 



w(t)=O.Ol sin(l0 t) 
1.5. 1 1 8 1 1 1 1 1 1 

1 - 
C 

3 
0 0.5 - - 
a 

O - 
- Actuai Output 

v - - ldeal Output 
-0.5 - 1 I I I I 1 1 I 

- 
O 1 2 3 4 5 6 7 8 9 10 

t 

Figure 6.5: Optimal step tracking sidation with output noise. 
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Conclusions 

7.1 A Summary 

We have shown that given a multi-input, multi-output (MIMO) linear the-invariant 

(LTI) strictly proper plant, it is possible to design a low order linear periodic controller 

(LPC) that c m  provide any desired gain margin and any desired phase rnargin up to 90 

degrees. If we use a static generalized sampled-data hold fimction (GSHF) controller to 

accomplish this, then the intersample performance is typicdy poor, but the controller 

can tolerate dynamic additive perturbations to the nominal model. If we use the first 

order LPC presented in Chapter 4, then the intersample performance is satidactory, 

but the tolerance to unstnictured aacertxinty in the nominal model deteriorates as the 

sampling period tends to zero. 

We have &O shom that given a single-input, singboutput (SISO) LTI strictly proper 

plant that is minimum phase together with a SISO LTI strictly proper rderence mode& 

it is possible to design a static GSHF controller that solves the sampled-data model 

refezence control problem (MRCP). While the GHSF controller can provide arbitrsdy 

good tradàng and disturbance rejection, the control signal can become be very large. 
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Finally, we have shown that given an arbitrary MIMO LTI shictly proper plant where 

measnrements of the state are not available to the controller, it is possible to design a 

low orda LPC that will track step inputs in a near optimal fashion. This controller has 

a modaate control signal even as the sample period tends to zero, and can be designed 

to provide a gain and phase margin close to that of an optimal state feedback control 

law . 

All the controllers presented are stable in the sense that if the input to the controller 

is zero, then the state of the controkr will approach zero as time approaches infinity. In 

fact , all the controUers presented are deadbeat . 

7.2 Future Research 

In Section 3.5, we provided an analysis that showed that the GSEF controller designed 

to provide a desired gain and phase margin also tolerated stable additive perturbations 

to the nominal plant. First, we are quite certain that it would be possible to show that 

the additive perturbation need not be stable, bat we wodd only reqnire that the nominal 

plant and the perturbed plant have the same number of unstable poles. Secondly, there 

are many 0th- ancertainty models that can be found in the fiterature, and the tolerance 

of the GSHF controller to other types of nnstructnred nncertainty codd be determined. 

A complete analysis of the tolerance of the LPC presented in Chapter 4 to unstructured 

uncertainty in the nominal mode1 wodd also be u s d .  

Khargonekar et al. (311 provided a solution to the problern of simdtaneonsly stabiliz- 

ing a finite family of discrete-tirne LTI bicausal plants nsing periodic control, while Miller 

[37] showed that it is possible to find a single low order disaete-time LPC that simdta- 

neody stabhes a f i t e  set of LTI plants. It may be possible to use some of the ideas 

presented in Chapter 6 to corne np with a Iow order LPC that simdtaneous1y stabilizes 

a fiaite set of continuous-the stnctly proper LTI plants, while providing performance 



arbitrarily close to t hat provided by an ideal state feedback control law. 

For the MRCP, we assumed that the plant was SISO. The r e d t  should be general- 

izable to the case where the plant is MIMO. Furthermore, recall that the static GSHF 

controller that solves the MRCP sufFers from large control siepals. However, it can be 

shown that there exists rrn ided continuous-the state feedback control law that solves 

the MRCP. and that the magnitude of this control signal is typically smder  than the 

GSHF control signal. Hence, using some of the ideas presented in Chapters 4 and 6, we 

could perhaps design a low order LPC that emulates this ideal continuous-time control 

law. However, those low order LPC's do not tolerate disturbances well, so the noise 

tolerance may be poor. 

In Chapter 4 we showed that as the sampling period of the LPC tends to zero, 

the output signal of the LPC controUed system approached the output of a desired 

continuous-time state-feedback controlled system in the oo-nom. In Chapter 6 we showed 

that as the sampling penod of the LPC tends to zero and the periodicity of the LPC 

parameters tends to intinity, both the output and control signal of the LPC controlled 

system approaches the output and control signal of a desired continuous-time state- 

feedback controlled system in the 2-nom. It would be interesthg to detennîne if similar 

results can be shown for the generd pnonn case. An approach that might be frtzitfbl 

might be to show that similar results holds for the 1-nom and oo-norm, which wodd 

imply that our desired resdt holds for the pnorm [l5, pg. 17, Fact 71. 

Extending the optimal step tracking probiem to that of tracking a more general dass 

of refkrence signals, e.g. sinnsoids, in an optimal fashion wodd be a natural extension of 

the results of Chapter 6. 



Appendix A 

Discrete-Time Approach to Robust 

Stability: Static GSHF Controllers 

A.1 Discrete-Time Approach 

In this Appendix, we improve on the design of the static GSHF controller that was 

presented in Chapter 3. The controller that we synthesize here is based on a discret* 

t h e  approach, and like the controller in Chapter 3, it will be capable of simnltaneously 

providing any desired gain margin and any phase margin of up to 90 degrees, as long 

as the sampling period is sufficiently small. However, unlike the controller of Chapter 3 

where we typicdy needed the sampling period to be s m d  to even stabilize the nominal 

plant, this GSHF' controller will be capable of stabilizing the nominal plant for slmost 

all sampling periods. 

Before presenting any resdts, let us first provide some motivation for this approach. 

Recall that 

B BF) dr  E R~", 
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and the closed loop discrete-the system satisfies 

Following a similar approach to that found in Section 3.3, define 

Then it follows that the GSHF controller (3.3) stabilizes (3.2) if and only if 

We use the notation FT here and Fo in Chapter 3, since in Chapter 3, Fo was chosen 

independent of T whiie here FT will depend on the sampling period T. 

Given the observable pair (C,A) and a large, but non-pathological T, we know that 

(TC,eAT) is observable, and thus we can directly design FT such that 

asing any one of a namber of discretctime state-feedback controller design techniques; 

hence, the motivation for the name of this approach. Thus, we will no longer require 

T to be srllall in order to stabilize the nominal plant. However, we mast &O ensure 

that our choice of FT will resdt in a controller that will be capable of providing good 

gainfphase margins. Recall from Section 3.3 that Fo was defmed as the continnous-time 

LQR optimal gain, and that by choosing 

the resulting GSHF controller provided desirable gainlphase m a r e  properties as T 

tended to zero. Eere, we have chosen 

so if we design FT so that for s m d  T we have FT c Fol then we might expect the 

redt ing GSHF controller will share the desirable gainjphase margin properties of the 

GSHF controller designed usïng the continuous-time LQR approach. Designhg FT in 
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this way is accomplished by solving a modified discrete-time LQR problem, which we 

discuss in the next subsection. 

A. 1.1 Preliminary Discret e-Time LQR Results 

In this subsection, we first formalate the modified disaet&.tue LQR problem and then 

prove the preliminary result that as T + O, we have 

FT + Fo. 

Since we want FT to approach Fo, we begin by first modifying the C mat& as war 

done in Snbsection 3.3.1; namely, with 3 E [O, r), p - E (0,1], and 

a = 2cos(9), 

we define 

h 

C := apC. - ( A 4  

To iniprove the readability of the following equations. we &O introduce the notation 

Now consider the a d a r y  system 

and using the same positive definite syrnmetric weighting matrices Q and R as those in 

Section 3.3.1, we wish to find the control law which, for each wo, minimires 
00 

w [ k ] * ~ w P ]  + v [kIT~v[k ]*  (A.3) 
k 0  

Ushg Lemma 12.1' and Theorem 12.2' fomd in [55, Faercise 12.71, it fohws that for 

every non-pathological T, the optimal control law is of the form 
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We c m  obtain the optimal gain FT by h s t  solving the discrete-time algebraic Riccati 

equation 

PT - & P ~ A ~  + & P ~ ( T ~ ) ~ [ ( T Ç ) S ( T C ) ~  + R ] - ~ ( T E ) P T A ~  - Q = O 

for the unique positive defmite symmetnc solution PT, and then setting 

FT = - A ~ P ~ ( T C ) ~ [ ( T E )  P ~ ( T ~ ) =  + RId1. 
For convenience, let us rewrite (3.13) and (3.14) here using the above notation: 

P ~ A ~  +APo - P O C ~ R - ~ E P O  + Q  = O ,  

F~ = - p o C T ~ - !  

The remainder of this subsection is devoted to proving 

i;m FT = Fo. 
T4O 

We begin by showing 

(A.5) is related to to 

that as T -t 0, the solution PT of the discrete-the Riccati equation 

the solution Po of the continuons-time Riccati equation (A.?) via 

Roughly speaking, this is done by by substitating 

into (A.5), and showing that the resulting eqaation ws be written as 

=: Q 
Then by comparing (A.9) and (A.7), we expect that since Q -t Q as T -t O, we have 

TPT + Po as T -t O as wd. Once we have this resdt, it is straightforward to show that 

FT + Fo as T -t O by simply nsing the definitions of Fo and FT. 

Lemma A.l For every E > O ,  there exists a T,, > O such that for every T E ( O , T . ) ,  

we have 
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Proofi 

Let T be nonpathological, PT be the unique positive definite solution of (A.5), and 

define 

PA := TPT. 

We start by showing that Pa = 0(1). Recall that by o u  choice of FT, when the control 

law (A.4) is applied to (A.2). the cost fnnction (A.3) is minimizedl and in fact the 

associated optimal cost is w,T PTw0. NOW choose F E Rn so that AT + CTFT is stable; it 
A - 

is easy to see that A; + TC=F= is stable for small enough T. Next, consider the control 

law 

V[Y = FTw[k] 

so that the closed loop system is 

~ [ k  + 11 = (A: + T C ~ F ~ ) W [ ~ ] ,  W ( O )  = wol 

and the associated cost is 

Using a Lyapunov argument, it c m  be shown that there exists a To > O, a > O and X < O 

so that 

so for every T E (O, To), the cost is bounded above by 

this &O is an npper bound on the optimal cost w r  fw0. Hence, we have 

w~PT~O 5 O(T-')llwtlll2 

=+ Tw~PTw0 = wzpAw0 I 0(l)llwol12 

=+ PA = O(1). 

We now go on to show onr desired r d t .  If we snbstitnte PT = Pn/T and 
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But ( I  + O(T))-' = 1 + O(T), so 

APA + - pACT~-'CpA + Q + O ( T )  = O. - 
=:AQ 

Since PT = PT > O, it foUows that PA = Pz > O. Then, together with the definition of 

A. and the fact that Q = QT and R = R ~ .  it also foUows that Aq = A:. E'urthermore, 

since Aq = O(T) ,  we can choose Tl < To such that for T E (O, Tl), we have 

Hence, from Lemma 2.3, there exists a cl > O such that for every T E (O, Ti), we have 

Since AQ is O(T), it follows that PA - Po is as well, so our e s t  result follows. 

Using (A.6) and (A.8) we have 

FT - Po = - % P ~ ( T C ) ~ [ ( T ~ ) P ~ ( T C ) ~  + RI-' + poCT~-l  

= -(r + AT + o ( T ) ) P ~ C ~ [ T C P ~ C ~  + RI-1 + poCT~-l 

= - ( p A F  + o(T))(o(T) + RI-l + p o e T ~ - l  

= - ( p A P  + o(T))R-~(I + o(T)) + poCT~-l 

Since PA - Po is O(T) fkom above, our last resnlt follows. 
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A.1.2 Controller Design 

In this subsection we will use the results of Subsection A.l.l to provide an altemate proof 

to Theorem 3.1. Furthesmore, we will show that we do not necessarily need T to be l a s  

thsn some T,, > O in order to stabilize the nominal plant. 

Proof:(Alternate proof of Theorem 3.1) 

This proof is based on a discrete-time Lyapunov approach. Given 6 E [O, T), 
g E (0,1], and P E [1, oo), define via ( A l ) ,  and choose positive definite symmet- 

ric matrices Q and R. Using Theorern 2.2, we cm choose a To > O so that (Ĉ , &) is 

observable for every T E (O, Ta). It follows that for T E (O, To), there exists a unique 

positive dehite symmetric solution PT for the discrete-tirne Riccati equation (A.5), and 

the optimal discrete-time LQR gain FT is &en by (A.6). D e h e  

An := A:, Bn : = ~ e ~ ,  Fn := F;, 
- -  

and with p  ̂E [i, $1 and q5 E [-4, #], consider 

~ [ k  + 11 = (An + F P B ~ F ~ ) w [ ~ ] ,  w[0] = wo E Cn. 

Fix wo and consider the Lyapnnov candidate fnnction V : Cm + C: 

Since PT = P !  we know that V is real-valned, so 

AV(w[y)  := V(w[k + 11) - V(w[k]) 

is &O real-valaed. Expanding AV(w[k]) and simplifying, we have 

(A. 10) 

AV(w[k]) = -w*[k]Qw[k] + (1 - ~~^COS(~))W'[~](F~(B~P~B~+ R)F,)w[k] 

+fi- [k] (F: B: P~B, ,  F ~ )  w [k] . 
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Rom the definition of o given in (3.11), the bomds on 4, and the upper bonnd on pî we 

see that 

so since PT > O and R > O, it follows that 

We now go on to show that as T -+ 0 ,  the second term in the above inequality is 

dominated by the first term. Using Lemma A.1, it follows that there exists positive 

constants cl, c*, and Ti E ( O ,  To) so that for T E (O, Tl) we have 

Hence, for T E (O, T i )  and w[k] # O, we have 

If we let 

then it follows that there exists a positive definite matrUr U so that for T E (O, T-) 

Hence, for every wo, V(w[k]) goes to zero as k + oo; since PT is positive definite, it 

follows that w[k] goes to zero as k -t a, as w d ,  so 

sp(& + *+B,F,) C {z  E C : 121 < 1) 

e S ~ ( & + T @ ~ + F T ~ )  c { z ~ C : l = l < 1 )  

H sp(&+Tap?eiOFTC) - C { Z  E C : 121 < 1). 
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But this holds for app^ - E Ip, - pl, so for p E [p, - pl, a d  4 E [-% 3, we have 

~ p ( &  + ~ ~ " F T ( T C ) )  c {t E C : lzl < 1). 

Finally, with T E (0,T-) and F = TFo, we h d  an F(t)  which satides (3.4). 

Remark A.1 With SE [O, 5). p - E (O. 11, and [l, os), we now summarize an alternate 

algorit hm for constructing a GSEIF controller (F, 2') that stabilizes every system in 

{ (A  B, 7C) : 7 E Q, P,W* 

i) Choose symmetnc positive 

C := apc. - 

ii) Determine a value for T sa 

dehite  matrices Q and R. Let a = 2 cos(?) and 

that when Ad = eAT, PT satisfies 

and FT satisfies 

we have 

iii) Let P = T FT and use a method to find an F(t) to satisfy (3.4), e.g. use (3.6). 
a 

Remark A.2 The T obtained in the above algorithm is based on a Lyapunov approach, 

and hence is typicdy quite conservative; pahaps a better choice for the Lyapunov can- 

didate fonction (A.lO) wotild r d t  in a less consavative value of T. However, fiom a 

practical point of view, it might be better to compute the combined gain m a r e  and 

phase margin for various values of T, and obtain the largest one which achieves the de- 

sired robnstness. 
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A.1.3 An Example 

Let us consider 

nominal plant is 

the same example mentioned in Section 3.3.3. Namely, suppose our 

with associated transfer function 

Using the algorithm outline in Remark A.1, we can conshct  a static GSHF controller 

to stabilize every system in 

{ (A ,  B ,  TC) : +y E r(0.75,6, 70°)). 

i) Let Q = I and R = 1. Here a = 2 cos(70°) = 0.6840403, and 

ii) We determine T by plotting p2~211~TC~TCTFTII vs T. Rom Figure A . l  we see 

that for T 5 0.0008774830 we have 

Recall from Remark A.2 that choosing T = 0.0008774830 is qnite conservative. As 

was done in Subsection 3.3.3, we now propose a method to approximately determine 

a less conservative sampling period. Using a Zdimensiond search algorithm, we 

determine 
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Determining Tm for Discrete-Time GÇHF Controller 
1 0l2 I I 1 ' ' " " " 1  I . 

Figure A.1: Plot of ~ ' T ~ I I & C P ~ C ~ F ; I (  vs T. 

Co be consistent with Subsection 3.3.3, we refer to h t - ( T )  (&JT)) as the "com- 

bined lower (apper) gain/phase margin" provided by the GSHF controller (F, T) 

nsing the "dismete-time" approach. A plot of p,,(T) and &JT) is provided in 

Figure A.2. Observe that for T = 0.0416000, we achîeve the desired gain and phase 

margin. For T = 0.04160, we have 

so we set 
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Gain Margin vs Sample Period (70 phase margin) 
1 I I i 

1 - 

- 

1 0-1 1 
1 1 1 

1 O*' 1 o4 1 o3 0.04160 IO-' 1 o0 
T 

Figure A.2: Combined upper and lower gain and phase m a r e  as a function of T 

(d. t. approach) . 

and fiom (3.6), we can choose 

Figure A.3 illustrates the response of the dosed loop system at the GSEF sample 

points when the initial condition zo = [ 1 O lT and the scalar gain mcertainty 7 = 4. 

While the GSHF controller provides adeqnate performance at the sample points, it can 

be seen in Figure A.4 that the intersample performance is quite poor. This is pr imdy  

due to the fact that the generdked hold has large gains. 
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Static GSHF Conttdler: Sampled Output ylkn (##,Or, 

Figare A.3: Sampled output y[kT]  when xo = [l 0IT and 7 = 4 (d.t. approach). 

Static GSHF Contmller: Output y(f) (x,ll,Of, y=4) 

Stark GSHF Contrdler: Contrd Signal u(t) (+-[t,OP, y== 
1000 1 1 1 r I b L B I 

Figure A.4: Output y(t) and control signal u(t): zo = [1 O]= and 7 = 4 (d.t. approsch). 
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A.2 Comparing the Continuous-time and Discrete- 

time Approaches 

In this section we wil l  verify, through example, the theoretical results discussed in the 

previons sections and compare the GSHF controllers obtained by the continuous-time aad 

discretetime approaches. The nominal plant will be the same one used in the examples 

found in Sections 3.3.3 and A.1.3: 

Suppose we have the same design objective as that foand in the previous examples. 

Namely, we wish to design a static GSHF controller that will stabilize every system in 

{ ( A ,  B J C )  : 7 E I'(O.75,6, ?O0)). 

A.2.1 Verification of Lemma A.l 

To venfy Lemma A.1, we do the following: 

i) Solve for Po and Fo in (3.13) and (3.14). 

ii) Pick a value for T so that (C, eAT) is observable. 

iii) Solve for PT and FT in (A.5) and (A.6). 

iii) Evaluate llFT - Fo(l and llTPT - Poli. Then pick another smder  T mch that 

(C7eAT) is o b s m b l e  and go back to step iii). 

Fignres A.5 and A.6 show plots of llFT - Foll YS T and llTPT - Pol1 vs  T7 respectively, 

and as expected, 

- = 0, T-bo 

lh llTPT - Poil = O. 
T+O 
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Figure A.5: Plot of II FT - FOll vs 2'. 

T 

Figure A.6: Plot of llTPT - Poli vs T. 
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A.2.2 Advantages of the Discret e-Time Approach 

Note that the final GSHF controllers obtained in Section 3.3.3 (Continuous-time a p  

proach) and Section A.1.3 (Discrete-the approach) were very similar. In fact, if we 

compare the simulation r e d t s  of the two GSHF controllers illastrated in Figure 3.6 and 

A.4, we see that they are virtually identicd. 

However, we will now ver* that the discrete-time based GSHF controller does provide 

bet ter gain margins when the sampling period T is large. We will denote (F, T),, and 

(F? T)ar, as the GSHF controllers designed based on the continuons-time and discrete- 

tirne approaches, respectively. For both GSHF controllers, we choose Q = 1, R = 1, and 
- 
4 = 70" (i.e. a = 0.684) for our GSHF design parameters. 

STEP 1: Gain rnargin for (F, T),t. 

Set CI = [0.684 0.6841. Determine Po and Fo çatisfying (3.13) and (3.14). Then for various 

values of T we determine 

Q.JT) := m i n { P ~  (0.11 : sp(eAT +pTFoC) c {z E C : lzl < l ) , p  E [zi]), 
PJT) := max{p€ [l,ao) :sp(eAT +PTFOC) c {z E C :  I z I  < ~ ) ? P E  [1?p7). 

STEP 2: Gain m a r e  for (F, T)at. 

Set C = [0.684 0.6841- Then for various values of T, let & = eAT, determine PT and FT 

satidying (A.5) and (A.6), and find 
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Comparing Gain Margins 

1 

1 2 3 4 7 8 9 1 O B 
Figure A.?: Comparing the gain margîns obtained from the continuons-time and discrete- 

t ime approaches. 

Note that for T > 2.98 the GSHF controller based on the continnous-the approach does 

not stabilize the nominal plant. On the other haad, the gain margin provided by the 

GSHF controller that was designed txsing the discrete-time approach is always greater 

than one. Note however that as T + w, the gain margin approaehes unity, which means 

that the GSHF controk cannot tolerate much ucertainty in the gain of the plant when 

T is large. 
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