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Abstract

Given a bipartite density matrix p of a quantum state, the Quantum Separability
problem (QUSEP) asks — is p entangled, or separable? In this thesis, we first
strengthen Gurvits’ 2003 NP-hardness result for QUSEP by showing that the Weak
Membership problem over the set of separable bipartite quantum states is strongly
NP-hard, meaning it is NP-hard even when the error margin is as large as inverse
polynomial in the dimension, i.e. is “moderately large”. Previously, this NP-
hardness was known only to hold in the case of inverse exponential error. We observe
the immediate implication of NP-hardness of the Weak Membership problem over
the set of entanglement-breaking maps, as well as lower bounds on the maximum
(Euclidean) distance possible between a bound entangled state and the separable
set of quantum states (assuming P # NP).

We next investigate the entanglement-detecting capabilities of locally invariant
unitary operations, as proposed by Fu in 2006. Denoting the subsystems of p as
A and B, such that pp = Tra(p), a locally invariant unitary operation U® is one
with the property UBpsUB" = pp. We investigate the maximum shift (in Euclidean
distance) inducible in p by applying I @ UZ, over all locally invariant choices of UP.
We derive closed formulae for this quantity for three cases of interest: (pseudo)pure
quantum states of arbitrary dimension, Werner states of arbitrary dimension, and
two-qubit states. Surprisingly, similar to recent anomalies detected for non-locality
measures, the first of these formulae demonstrates the existence of non-maximally
entangled states attaining shifts as large as maximally entangled ones. Using the
latter of these formulae, we demonstrate for certain classes of two-qubit states
an equivalence between the Fu criterion and the CHSH inequality. Among other
results, we investigate the ability of locally invariant unitary operations to detect
bound entanglement.
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Chapter 1

Introduction

Once upon a time, there lived many a prominent physicist who found it difficult
to accept a world in which entanglement existed. In 1935, Einstein, Podolsky and
Rosen stated this mindset in their (in)famous “EPR” paper [22], in which they re-
jected quantum mechanics as a complete physical theory, due to what Einstein liked
to call “spukhafte Fernwirkung” (“spooky action at a distance”). Over 70 years
and many Bell inequalities [5] later, however, it is hard to imagine a quantum world
without entanglement. With continuing applications for entanglement emerging in
the fields of quantum computation and information, researchers are scrambling just
to detect and quantify what is now generally believed to be a valuable resource.
Yet, it turns out that the phenomenon once dubbed “the characteristic trait of
quantum mechanics” by Schrodinger himself [57] is in fact unlikely to be detectable
efficiently by any algorithm (in the general case), unless P = NP [31].

Indeed, since the early 1990’s, it has been observed by the quantum information
and computing community that entanglement lends itself to a number of interest-
ing applications, such as quantum teleportation [7], superdense coding [8], quan-
tum parallelism [58], quantum communication complexity [17, [30], and quantum
cryptography [23]. In response, there has been an endless slew of proposed en-
tanglement detection criteria and measures, such as the Positive Partial Transpose
(PPT) criterion [55], Von Neumann entropy of reduced states [20], entanglement
of formation [10], majorization criterion [54], relative entropy of entanglement [60],
squashed entanglement [15], entanglement cost [10], distillable entanglement [10],
negativity [61], and the first need for positive but not completely positive maps in
physics [35], to name but a few. Yet, the problem of determining in general whether
a given quantum state is entangled or separable, informally dubbed the Quantum
Separability problem (QUSEP), was proven NP-hard by Gurvits in 2003 [31]. This
was accomplished by phrasing it as an instance of the Weak Membership problem,
where the Weak Membership problem over arbitrary convex set K is informally
defined as the problem of deciding whether a given point p is in K, given a certain
allowed margin of error. The hardness result was then shown via a reduction from
the NP-complete problem KNAPSACK to Weak Membership over the (convex) set
of separable quantum states.



In this thesis, we hence address the following. We first discuss the hardness
result of Gurvits [31], specifically in light of an observation made by Aaronson [43]
that Gurvits’ proof has a shortcoming — it demonstrates NP-hardness of Weak
Membership over the set of separable quantum states only if the error margin al-
lowed is at most exponentially small in the dimension of the corresponding Hilbert
space [43], i.e. is “very small”. We thus first strengthen Gurvits’ result by demon-
strating a simple reduction which combines the previous work of Gurvits [31], Toan-
nou [43], and Liu [48], and show that the Weak Membership problem over the set
of separable quantum states remains NP-hard even if the error allowed is as large
as inverse polynomial in the dimension, i.e. is “moderately large”. This translates
to a property known as strong NP-hardness. We remark that this implies imme-
diate lower bounds on the maximum distance possible between a bound entangled
state and the separable set, as well as strong NP-hardness of the Weak Membership
problem over the set of entanglement-breaking maps.

In defense of the many proposed attempts at detecting entanglement, on the
other hand, we reference a spoken quote the author of this thesis finds amusing. As
stated by Christos Papadimitriou in a visit to the University of Waterloo on April
25, 2008: “...proving NP-hardness is only the opening move in an interesting game
between two players”. In this spirit, the second half of this thesis investigates the
abilities of an entanglement detection criterion proposed by Fu in 2006 [25], based
on the concept of locally invariant unitary operations. What makes this criterion
interesting, as we demonstrate, is that it exhibits strange anomalies similar to
those recently observed for non-locality measures [21, [I, 12, 50]. Specifically, we
find that under this criterion, certain non-maximally entangled quantum states are
able to “perform” equally well as maximally entangled ones. Yet, this criterion
is provably not a non-locality measure [25]. Among other results, we also reveal
connections between this criterion and the CHSH inequality [I6] for the case of
two-qubit quantum states.

This thesis is organized as follows. In Chapter [2, we show strong NP-hardness
of the Weak Membership problem over the set of separable quantum states. Chap-
ter |3| investigates Fu’s entanglement detection criterion based on locally invariant
unitary operations, which we remark is based on joint work with Dagmar Brufl and
Hermann Kampermann of the Heinrich-Heine-Universitat Diisseldorf. We close in
Chapter |4 with concluding comments and open problems. We have attempted to
make each chapter as self-contained as possible.

For an introduction to quantum computing and information, we recommend [53].
For detailed background on the quantum separability problem, we refer the reader
to [43]. Good surveys on entanglement and entanglement measures and detection
criteria are [42], [13] [6]. Non-locality measures and the respective anomalies men-
tioned above are discussed in [50].



Chapter 2

Strong NP-Hardness of Weak
Membership Over the Set of
Separable Quantum States

2.1 A Brief History

Given a bipartite quantum state p in Hilbert space H™ @ H", specified in terms
of its density matrix with respect to some known orthonormal basis, it has been a
longstanding open problem to crack the Quantum Separability problem (QUSEP)
— is p separable, or equivalently, unentangled? A natural way to think about
this problem is in terms of membership in a convex set, since the set of separable
quantum states is convex. Let us denote the set of separable bipartite quantum
states in HM @ HY as Syrn. Then, the resulting membership problem is referred
to as Strong Membership over Sy n, denoted SMEM(Sy, n), where the title strong
emphasizes that no margin of error is allowed in determining membership in Sy .

In order to understand QUSEP, one can equivalently study SMEM(Syn). Is
this, however, a computationally sound formulation to consider? Consider as input
a quantum state p € HM ® H", such that p sits directly on the border of Sy x
(therefore p € Sy n). In specifying the entries of the density matrix of p, we must
use some finite precision, meaning that certain entries, such as irrational ones, may
have to be approximated. In doing so, it is entirely possible that p is accidentally
shifted outside Sys v, thus altering the answer to QUSEP, and making the problem
undecidable for such a case. In this vein, it seems computationally natural to allow
some margin of error in deciding membership in Sy;n. We hence consider the
problem of Weak Membership over Sy v (WMEMg(Sarn)), where the name weak
now derives from the fact that we introduce a parameter § quantifying an allowed
margin of error in determining membership in Sas n.

In 2003, it was shown by Gurvits [31] that WMEMg(Sysn) is NP-hard, via a
reduction from the NP-complete problem KNAPSACK, of which the NP-complete



problem PARTITION can easily be seen to be a special case. It was soon pointed
out by Scott Aaronson [43], however, that PARTITION is only weakly NP-hard,
since it can be solved efficiently if the values of its numerical parameters are
polynomially bounded in the dimension (in this case, via a dynamic program-
ming approach [27]). A similar dynamic programming approach also exists for
KNAPSACK [19], making KNAPSACK weakly NP-hard as well. It therefore fol-
lows that hardness for WMEMg(Sys ) following the reduction of [31] holds only
when [ < 1/exp(M,N) [43], leaving open the possibility of an approximation
algorithm when weaker precision is demanded.

A second attempt to strengthen this result was then made by Gurvits [43],
via the following reduction from the NP-complete problem CLIQUE [27], where
RSDF and WVAL,(Sy n) are the problems Robust Semidefinite Feasibility and
Weak Validity over Sys .y, respectively (all necessary formal definitions are given
in Section 2.2 and by <y and <¢, we indicate a Karp and Cook reduction]
respectively):

CLIQUE <x RSDF <y WVAL,(Syn) <¢c WMEMs(Sasn).- (2.1)

This approach fares better, proving strong NP-hardness of WVAL, (Sys n), where
we define a problem as strongly NP-hard if it is NP-hard even if the values of its
numerical parameters are polynomially bounded in the length of its input [27]. In
this case, we have WVAL,, (S n) is NP-hard for o« < 1/ poly(M, N), for « its error
parameter [43]. The only known deterministic polynomial time Turing reduction
from WVAL,(K) to WMEMj(K) for arbitrary choice of o > 0 (for K C R" any
convex set circumscribed in an origin-centered ball of radius R, and containing
an inscribed ball centered at a known point p € K of radius r), however, is via
the Yudin-Nemirovski theorem [67], which is based on the shallow-cut ellipsoid
method (there is, however, a randomized reduction following from the random walk
algorithm for convex optimization of Bertsimas and Vempala [I1]). It turns out that
following this reduction also results in exponential scaling for § [43], leaving us with
the same problem as before — WMEMg (S n) is known to be NP-hard only for
error parameter § < 1/exp(M, N).

The main result we show in this chapter is hence as follows.
Theorem 1. WMEMg(Sys n) is strongly NP-hard, or equivalently, is NP-hard for
B < 1/poly(M,N).

In order to show this result, we observe that there exists a recent non-ellipsoidal
Turing reduction by Liu [48] from the problem Weak Optimization?] (WOPT,(K))

LA Cook reduction is a polynomial time Turing reduction from problem A to B, where, intu-
itively, a Turing reduction demonstrates how to solve A using an algorithm for B possibly multiple
times. A Karp reduction, on the other hand, invokes the algorithm for B once, the output of
which it returns as the solution for A.

2What we call Weak Optimization can actually be shown to be equivalent to the problem Weak
Validity in [29]. We follow the naming convention in [48], however, in order to avoid confusion
when applying the reduction therein.



to WMEMg(K'), which runs in polynomial time if we demand at most “moderate”
precision in solving Weak Optimization, i.e. ¢ > 1/poly(M,N) for e the error
parameter for Weak Optimization. For ¢ = 1/exp(M,N), we remark that the
reduction is no longer poly-time, a point we discuss in further depth later. We thus
begin by following the reduction CLIQUE <y RSDF from Equation 2.1 We then
show a Karp reduction from RSDF to WOPT (Sysn). We finish with the Turing
reduction of Liu from WOPT (K) to WMEMg(K). The modified reduction chain
(in simplified form, for now) is then (where <7 denotes a Turing reduction):

CLIQUE <y RSDF <x WOPT(Sy.x) <7 WMEM4(Sys.v). (2.2)

Since our goal is to prove NP-hardness of WMEMg(Syn) for 8 = 1/ poly(M, N),
note that the precision restriction on the last link (following the Liu reduction) that
e > 1/ poly(M, N) will not be an issue.

We also discuss two possible applications of Theorem [I} First, the hardness
results shown here imply immediate lower bounds on the maximum (Euclidean)
distance possible between a bound entangled [36] state and the separable set, Sy n-
Second, we observe that NP-hardness of Weak Membership over the set of sepa-
rable quantum states immediately implies NP-hardness of determining whether a
completely positive linear map is an entanglement-breaking map [37].

This chapter is organized as follows. In Section we introduce and discuss
necessary definitions for the problems in Equation 2.2l In Section [2.3] we show the
desired reduction from CLIQUE to WMEMg(Sys ). Section discusses applica-
tions of Theorem (1| to bound entanglement and entanglement-breaking maps. We
close in Section with some brief comments and open problems.

2.2 Pertinent Definitions and Discussion

There are six main problems we need to define in order to show our desired reduc-
tion chain: CLIQUE, Robust Semidefinite Feasibility (RSDF), Weak Optimization,
Weak Separation, Weak Membership, and Quantum Separability (QUSEP). We be-
gin by presenting their definitions here, along with pertinent discussion. All norms
are taken as the Euclidean norm (indicated || ||, or || ||, the latter denoting the
Frobenius norm for matrices). We denote a (column) vector v by v, its conjugate
transpose as v', and its ith entry as v;. We use the notation (a) to signify the
number of bits necessary to encode an entity «. Specifically, if a = a/b is rational,
we define (a) = (a) + (b). For a matrix A, we let (A) = >, . (Aj;) (similarly for
vectors).

First, the NP-complete problem CLIQUE is stated as follows.

Definition 1 (CLIQUE). Given a simple graph G on n vertices, and ¢ < n, for
n,c € Z*, decide, with respect to the complexity measure (G) + (c):
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Figure 2.1: An intuitive picture of the sets S(K,d) and S(K, —0d), respectively. We
use the term “—¢” in the latter illustration to stress the fact that K is contracted.

If the number of vertices in the largest set of pairwise adjacent vertices in G
is at least ¢, output “YES”.
Otherwise, output “NO”.

Here, we take (G) = (Ag), where Ag is the n x n adjacency matrix for G, such that
Agli, j] = 1if vertices ¢ and j are connected by an edge, and Ag|[i, j] = 0 otherwise.
Next, let us define the problem Robust Semidefinite Feasibility (RSDF).

Definition 2 (RSDF). Given k rational, symmetric [ x [ matrices By, ..., By,
and ¢,n € Q, with ¢,n > 0, define g(By, ..., Br) = maXycpi |||, 1 S (xTBx)2.
Then, decide, with respect to the complexity measure Ik + 3, ;. (Bi) + () + (n):

If g(By,...,Br) > (+mn, output “YES”.
If g(By,...,Br) < —mn, output “NO”.

Note that we have assumed ¢ > 0 without loss of generality above, since
g(Bi,...,Br) > 0. This will be necessary later in Lemma [, when we need to
take \/g(Bi,...,By). Note also that we have defined RSDF as a promise prob-
lem, meaning we are promised the input falls into one of two disjoint cases which
may separated by a non-zero gap, and we are asked to distinguish between the two
cases. One could equivalently lift the promise and allow input falling in the “gap”
or “error” region (such that ( —n < g(By, ..., By) < (+n) — in this case, for any
such input, we would consider any output to be correct (i.e. “YES” or “NO”), a
point we leverage later.

Moving on, for Weak Optimization, Weak Separation, and Weak Membership,
we first define a few notions related to convex optimization. For any Euclidean
space &£, where we call a space Euclidean if it is a finite dimensional vector space
over C or R with a fixed inner product, a set C C & is called convex if for all x,y € C
and p € [0, 1], we have pz+ (1 —p)y € C. We define an open ball of radius r about a
vector v € £ as B,(v) :={ue€ | |v—u|, <r}. Theset C is then called open if

6



for all v € £, there exists some r > 0 such that B,(v) C C. The complement of such
a set is called closed. Further, the set C is bounded if C C Bg(0), for 0 the origin
and some real R > 0. By the Heine-Borel Theorem [64], C is called compact if and
only if it is closed and bounded. Finally, following the terminology of [29], we call
C well-bounded if it is bounded and centered, the latter meaning C contains a ball
of some radius r > 0, the center of which need not be known. If the center of this
contained ball is some known p € C, however, then C is instead called p-centered.

Let us now put these definitions to use. Let K C R™ be a convex and compact
set, and define the following related sets:

S(K,8) = {xeR"|JyeKst |x—yl, <5} (2.3)
S(K,-d) = {xe K|S(x,§) CK}. (2.4)

Roughly, S(K, §) can be thought of as extending the border of K by ¢ (in Euclidean
distance), and S(K, —4d) can be thought of as taking the core of K, which is § away
from the border of K. We pictorially demonstrate this intuition in Figure For
the problems we define here, we require that K be well-bounded and p-centered,
which ensures that K is bounded and full-dimensional. We will see shortly that
Suy s in fact such a set. Finally, we set the encoding size of K as (K) = m +
(r)+(R)+ (p). Weak Optimization, Weak Separation, and Weak Membership over
the set K are then defined as follows.

Definition 3 (Weak Optimization (WOPT (K))[4g]). Given ¢ € Q™, such that
lc|l, = 1, and v,e € Q, such that error parameter € > 0, decide, with respect to
the complexity measure (K) + (c) + (y) + (€):

If there exists y € S(K, —¢) with ¢ty > v + ¢, then output “YES”.
If for all x € S(K,€), c'x < v — ¢, then output “NO”.

Definition 4 (Weak Separation (WSEP,(K))). Given z € Q™, and error param-
eter v € Q, such that ¥ > 0, respond, with respect to the complexity measure
(K) + (z) + (v):

If z € S(K, —v), then output “YES”.
If z ¢ S(K,v), then return ¢ € Q™, such that vx € S(K, —v), ¢'x < c'z + v,
and ||c||, = 1.

Definition 5 (Weak Membership (WMEMg(K))). Given y € Q™, and error pa-
rameter 3 € Q, such that § > 0, decide, with respect to the complexity measure

(K) + (y) + (B):

If y € S(K,—f), then output “YES”.
If y & S(K,f3), then output “NO”.



Note that all three of these problems are stated as promise problems, and can be
phrased as follows: WOPT,(K) asks whether there exists a point in the “core” of K
that achieves a threshold value slightly higher than ~ for a linear function defined by
c. WSEP, (K) asks us to return an “approximately” separating hyperplane from the
“core” of K if the given point z is not “near” K. WMEM(K) asks to distinguish
whether a given point y is in the “core” of K or “far away” from K. Note that as per
the convention of [48], we define WSEP, (K') such that ||c||, = 1 for the “NO” case,
as opposed to ||c||, = 1, as in [29]. The latter text uses ||c||,, = 1, since if the error
parameter v is “very small”, one must be careful to avoid scaling by an irrational
factor when normalizing c in order to avoid sensitive round-off errors. As mentioned
earlier, however, to utilize Liu’s reduction for WOPT (K) <r WMEMjg(K) [48],
we must restrict error parameter € to be at least inverse polynomial in the length
of the input (from which similar bounds on v and [ follow), and so we can tolerate
slight round-off errors [48], allowing us to set ||c||, = 1.

Let us also note that unlike here, in [4§] the inputs to WOPT (K), WSEP,,(K),
and WMEMg3(K) are real (as opposed to rational), and specified using poly(m)
bits of precisionE], where K C R™. This is because poly(m) bits of precision suffice
if we demand ¢, v, and (3 to be at least inverse polynomial in the input size [4§], i.e.
if the error parameters themselves are not exponentially small (which we shall also
demand here). It is easy to see that we can exactly represent any such poly(m)-bit
real numbers as rational numbers in poly-time using poly(m) bits as well, and hence
the case of [48] can be seen as a special case of our definitions here.

Finally, let us formally define the Quantum Separability problem, and discuss
how it relates to the problems over convex sets we have just defined.

Definition 6 (Quantum Separability Problem (QUSEP)). Let Hj; v denote the set
of Hermitian operators mapping C¥ @C» — CMoCY, M, N > 2. Denote the set of
separable states as Sy vy = conv{xx! @ yy' | x € CM,y € CV, ||x||, = [ly|, = 1},
where conv{S} denotes the convex hull generated by the set S. Then, given quan-
tum state ps p € Hy y, decide:

If pap € Sun, output “YES”.
Otherwise, output “NO”.

As claimed earlier, it is clear from Definition @ that Sy v is indeed a convex set. In
fact, Sy is p-centered and well-bounded, since Sy ny € S(0, R) for 0 the origin
and R = /(MN —1)/MN [6], and S(p,r) C Sy for p = I/MN [6] (where I
denotes the identity) and r = \/1/MN(MN — 1) [32]. Further, Sy is compact,
since the set of pure product states is closed and bounded, and the convex hull
of a convex compact set is also compact [62]. Thus, we can rephrase QUSEP
as WMEMg(Sy ), and investigate hardness of WMEMg(Sys ) in order to draw
conclusions about QUSEP. Thus, we never work with QUSEP directly.

3Tt will be clear later that in our case, we can take m to be polynomial in the encoding size of
the original CLIQUE instance in our reduction chain.



Observe now that WOPT,(K), WSEP, (K), and WMEMg(K) are phrased over
K C R™, whereas Sy v € Hyyn. To bridge this gap, recall that H ) y is isomorphic
to RM*N* and specifically one can write for any quantum state p € H v [45]:

M2N2-1

I 1 Z
= - - . 3 2'
p MN 2 : rl)\l7 ( 5)

=1

where we have chosen as a basis for Hy, y the identity and the traceless orthogonal
Hermitian generators of SU(M N), the latter denoted by A;, and the terms r; € R
denote the components of the Bloch vector corresponding to p, such that component
r; = Tr(pA;). Thus, by setting m = M2N? — 1, we can can work over the space of
Bloch vectors in R™ rather than density matrices in Hy y. We remark that there
is a scaling factor of v/2 in Euclidean distance between two states when switching
between the two spaces (see Appendix A), which does not affect our analysis.

We can finally formally state what is required to show Theorem [I From the
values of r, R, and p for Sy, it follows that (Syn) = m + (R) + (r) + (p) <
poly(M N). Thus, by the complexity measure for Definition , our aim is to show
NP-hardness of WMEM(Sy, v) with respect to MN + (y) + [+], where the [%1

B
term follows from the fact that we wish to prove strong NP-hardness.

2.3 The Reduction

Let us show our main result, Theorem [ To do so, we demonstrate a Turing
reduction from CLIQUE to WMEMg(Sa,n), obtained by a simple Karp reduction
combining previous ideas of Gurvits [31], Ioannou [43], and Liu [48]. Specifically,
we show the following reduction chain (which is a slightly more detailed version of

Equation [2.2)):

CLIQUE <x RSDF <x WOPT . (Sy.n) <7 WSEP,(Symn) <r WMEM;g (S n)
(2.6)
The reduction behind the third link in this chain runs in time polynomial in 1/e,
implying we must be able to choose € > 1/ poly(M, N) in order for the entire chain
to run in polynomial time. We return to this point later.

To begin, the first link in Equation is given as follows. Unless other-
wise stated, by a poly-time reduction, we mean with respect to the encoding
size of the problem instance, as defined in Section 2.2l We use the notation
IT = (input parameters) to denote an instance I of a given problem, with II speci-
fied by the given input parameters.

Lemma 2 (Ioannou [43]). There ezists a poly-time Karp reduction which maps in-
stance Iy = (G, n, c) of CLIQUE to instance Iy = (k,l, By, ..., By, (,n) of RSDF,
such that k = n(n —1)/2, l =n, B; € Q™" and ||B;||z € ©(1) for all 1 <i <k,
¢=0(1), n€Qn™?).



Proof. The proof hinges on the following theorem relating the maximum clique size
to optimization over a square-free quadratic form.

Theorem 3 (Motzkin and Straus [52]). Denote by (i,7) € G an edge in graph
G between vertices i and j, and let k be the order of the mazximal complete graph
contained in G. Let A, denote the simplex A, = {x € R" | z; > 0, ||x[|, = 1}.

Then . .

Note that the term on the left side of Equation [2.7]is indeed a square-free form,
since by the definition of CLIQUE, G is a simple graph. Proving one direction
of Theorem [3|is straightforward — let 1, ..., k denote the vertices in the maximal
clique of size k, and consider vector x € R", with z; = 1/k for 1 <i < k and z; =0
otherwise. Then 37, o aia; > (5)% > 1 (1 - 1). Proving the inequality in the
other direction is slightly trickier. The reader is referred to [52] for further details.

To proceed with our reduction then, note that we can put the expression on
the left side of Equation into the form required by RSDF by writing, where A
denotes the adjacency matrix of G:

n

max XT;r; = Imax XTAX = max yQAyQ
7] =y 147) Iy
n

xE€AR YER™ |lyll,=1 =
i,j=1

(4,9)€G
1 y
= om0 ST IO (28)

€R", =12
y Iyl 1<ici<n

where the second equality follows from a simple substitution of variables, x; = 32,
which we can do over R since each z; > 0. Note that ||x||, = 1 if and only if
lyll, = 1. The third equality is based on straightforward manipulation by defining
each DYV € Q™" to have all zero entries except for Dj; = DY, = A, ;, giving us a
total of n(n — 1)/2 such matrices D%.

To complete the reduction, set the parameters of instance II, of RSDF as follows.
Let each DY be a matrix By, k = n(n —1)/2, 1 = n, ( =1 - 35 — & (ie
the midpoint of interval [1 — é, 1-— ﬂ ), and choose error parameter 7 such that
1 - ﬁ <(—-n<(+n<l- % Then if the maximum clique size is at least
¢, Equations 2.7 and [2.8) yield maxyen y[,=1 2 1<icjcn (Y DYy)* > 1 — ¢, and we
have a “YES” instance of RSDF. The “NO” case is analogous. Observing that the
length of the interval [1— -1 —1] € Q(4) € Q(%) (since ¢ < n) allows us to

conclude n € Q(#), completing the proof. ]

Lemma [ gives us the first link in Equation In order to prove the next link,
RSDF <j WOPT (Sy n), we first require the following lemma relating RSDF to
convex optimization over Sy n.
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Lemma 4 (Curvits [31]). Let {b}Y, be an orthonormal basis for CM. Then,
given (M — 1) real, symmetric matrices Ay, ..., Ay—1 of dimension N x N, define

Hermitian block matriz C € RMN*MN .
0o A Apnr—q
M-l A 0 0
C = (blbHl v bi+1b1> ® A = L @)
— : : . .
Ay, 0 ... 0

\/g(Al,...,AM_l) =  max

x€RN [|x[l;=1

Proof. We follow [31] by beginning with the expression on the right side of Equa-
tion [2.10] and work backwards, in order to provide a more intuitive approach. Let
f(C) = max,es,, y Tr(Cp). Since f(C') is simply linear optimization over a convex
set, the optimum for f(C') occurs, without loss of generality, at an extreme point of
Sun- If we denote the set of extreme points of Sy n as Eyr,n, then by Definition |§|,
we can write

Eun = {ny oxx'|yeCY xeC”, Iyl =[x/, = 1}, (2.11)
and by the observation above, f(C) = max,e¢,, y Tr(Cp).

Now consider matrix H(x) € RM*M guch that x € CV, and with entries
h; = x'A;x as follows:

0 Mm . hara
hy 0 ... 0
Hx)=| = | (2.12)
haoy 0 0

For given p = yy' ® xx' € £y, we have via straightforward manipulation that:

M-1

Tr(Cp) = Z Tr [(bleJr]L + bi+1b1)ny] x' Ax (2.13)
i=1
M—1
= T (Z hi(bibl,, + b,~+1b1)> ny] (2.14)
i=1
= Tr(Hx)y'y) (2.15)

~ VHK)y. (2.16)

It follows that the maximum attainable value for Tr(Cp) is the largest eigenvalue
of H(x), which we denote by Apax(H(x)). We thus have:

max Tr(Cp) = max  Apax (H(X)). (2.17)

PEEM, N x€CN ||x|[|,=1

11



To determine A< (H(x)), we set up the eigenvector equation for H(x) for some
y € CM, such that

S e Y1
h
H(x)y = o A (2.18)
har—11 Ym

Using straightforward substitution to solve the resulting system of equations, we
find that A2 = S22 " h2, from which the claim follows. O

With Lemmal]in hand, we can proceed to prove the second link in Equation [2.6]

Lemma 5. There exists a polynomial time Karp reduction which maps instance

I, = (k,[,By,...,Bg,(,n) of RSDF to instance IIy = (c,7v) of WOPT(Sun),
where we define for convenience A = /2 3% || Bil|%, and such that:

o M =Fk+1

o« N — 1(151) 1

e c=2¢/|e|, € Qm with ||¢|, € O(m'2?A) and m = M?N? — 1

o 7= (VC+n+vC—n)

T /Tr
< ATell,(MN—-1)+1

Proof. Given instance II; of RSDF, we would like to map it to an instance Il of
WOPT(Sy,n). Following the argument in [43], we begin by calling Lemma with
parameters M = k+1, N = 1(151) + 1, and each A; € RY*YN symmetric and all
zeroes except for its upper-left [ x [-dimensional submatrix, which we set to B;,

giving

g(By,...,By) = max Tr(Cp). (2.19)

PESM,N

Thus, II; is reduced to maximizing the linear objective function f(p) = Tr(Cp),
defined in Lemma {4} over all p € Sy . For notational convenience, we define
Jmax = MaXpes,, v f(p). It is easy to see that ||C||p = A, as defined in the statement
of our claim.

Next, use Equation and the fact that Tr(C') = 0 to rephrase f(p) in terms
of Bloch vectors, as required by WOPT(Sy ), such that

M2N2-1

flp) =15 Z ri - Tr(Co;) = &"r, (2.20)

for o; the generators of SU(MN), é; = 3Tr(Co;), and r € RM*N*~1 the Bloch vector
of p. Hence, set m = M?*N? — 1 and ¢ = &/ ||€&||,. Since o;0; = 24;; [45], where 0,

12



denotes the Kronecker delta, it follows from Equation [2.20]and the Cauchy-Schwarz
inequality that ||¢|, € O(m!'/2A). Further, unless C is the zero matrix (i.e. each B;
is a zero matrix), ||¢||, > 0. To account for the normalization[] of c, define modified
objective functions f(r) =cTr, and frax = MaXres,, v f(r), where by r € Sy n, we

denote a Bloch vector corresponding to some separable state p € Sy n-

It hence remains to show the following (for v and e to be chosen): If we have
fmax > €l v/C+ 71, then there exists an r € S(Syn, —€) such that f(r) >~ + €
(i.e. a “YES” instance of RSDF implies a “YES” instance of WOPT (S n)). If
fmax < |l€ll;" v/C =, on the other hand, then for all r € S(Syn,€), f(r) < v —e
(i.e. a “NO” instance of RSDF implies a “NO” instance of WOPT,(Syn)). We
proceed case by case. Set v = m(\/C +n 4+ /¢ —n), and let us choose € as

needed.

o Case 1 fuax > Hélllgm'

Let r* € Sy be such that f(r*) = fmax. To find an 1’ € S(Smn, —€)
such that f(r') > ~+e¢, we first use the fact that for any well-bounded origin-
centered convex set K, it holds that for all x € K, there exists ay € S(K, —¢)
such that ||x —y|l, < 2eR/r [29]. From the definitions of r and R for Sy n
from Section , it follows that there exists an r’ € S(Sy n, —€) such that
' —r*||, < 2(MN — 1)e. Since f is linear, we can then write:

) - Fa)

= !cT(r’ —r")

< llelly I’ = r*ll, < 2(MN — )¢, (2.21)

where the first inequality follows from the Cauchy-Schwarz inequality. Thus,
in order to have f(r') > v + € as desired, it suffices to have

F(r') > faax — 20MN —1)e > 7 + ¢, (2.22)
into which substitution of our values for v and fmax gives that setting

. VE+n—+v(—n
“4lell,(MN-1)+1

(2.23)

suffices to conclude we have a “YES” instance of WOPT (S n).

o CASE 2: fmaxg m\/g_n

Let r* € Synv be such that f(r*) — fuax. To see that for all r’ € S(Smns€),
we have f(r') < y—e¢, let 1’ € S(Spyn,€). Then by the definition of S(Sy v, €),

4Though normalizing & will slightly complicate our expressions, dropping the normalization
requirement in the definition of WOPT(K) will not simplify matters — not only would we have
to account for ||c||, later in this reduction anyway, we would also require slight modifications to the
reduction WOPT,(Sa,n) <c WMEMg(Sy,n) later, and it would negatively impact parameter
scaling for the latter reduction (by a polynomial factor).

13



there exists some r € Sy n such that |r' —r|l, < e. By Equation [2.21] it
follows that

‘f(r’) - f(r)‘ <e (2.24)

Thus, by considering r = r*, we can conclude that f (r') < anaX + ¢ for any
r' € S(Su,n,€). Toachieve f(r') <y —ethen, we set f(r') < frnaxt+€ < 7—F¢,
into which substitution of our values for v and f,.x yields that setting

2|[efl, +2
suffices to conclude we have a “NO” instance of WOPT(Sy/ ).
n
Lemma 5| gives us the second link in Equation RSDF <x WOPT(Sm.n)-
Observe that combining Lemma [2| and Lemma [5| gives M = N = @ + 1,

and by an argument of Ioannou [43], one can in fact have Lemma 5| holding for
M > N [43] by padding the matrix C' (from the proof of Lemma [5)) with extra
N x N-dimensional zero matrices. Thus, the hardness result we will show for
WMEMg(Sys,n) by building on this link will be valid in general for M > N.

Let us also note that we have not lower bounded ||¢[, in Lemma [5] which
appears in the expressions for v and e. This is not a problem, as we are interested
in a lower bound for €, since we need € > 1/ poly(M, N). We return to this point
later, but the curious reader is referred to Appendix [ where we derive an exact
expression for ||¢[|, in the context of our reduction from CLIQUE, from which it is
clear ||¢, > /2 (except in the trivial case of an input graph for CLIQUE with no
edges, in which case ||¢||, = 0).

To show the last two links of Equation [2.6] we now follow the non-ellipsoidal
Turing reduction of Liu [48] of WOPT.(K) <r WSEP,(K) <7 WMEMp(K), which
holds for arbitrary p-centered well-bounded compact convex set K C R™, specified
using parameters R, r, and p (as defined in Section . The first of these two
links is given as follows.

Lemma 6 (Liu [48]). Given instance II = (c,v) of WOPT.(K), for K with as-
sociated parameters (m,R,r,p), 0 < € < 1, and ||c|, = 1, there exists an algo-

rithm which runs in time poly((K), R, [1/€]), and solves Il using an oracle for
WSEP, (K) with v = €/3.

Proof. We follow [48]. Define convex set K := {y € K | ¢y >~}. Note we have
not used the error parameter € in defining K. We first show that one can build an
oracle for WSEPV(K ) using a given oracle for WSEP,,(K), and then use the former
to state the desired algorithm.

~

Consider the following algorithm for constructing an oracle for WSEP,, (K).

14



Algorithm 1 (WSEP,(K)). Given input z € Q™, rational v > 0, and an oracle Q
for WSEP,(K), run @ on input z and v, and respond as follows:

1. If @ outputs “YES”:

(a) If cTz < v, return & = —c.
(b) Otherwise, output “YES”.

2. If @ returns (approximately) separating hyperplane €, return €.

Analysis. If @ answers “YES” (Case 1), then z € S(K, —v), but not necessarily
z € S(K,—v). If ¢"z < v (Case (1a)), in fact, c is a separating hyperplane for
K. To see this, recall that by the definition of WSEPV(K ), we want to return &
such that for all x € S(K,—v), é™x — &z < v. Choosing & = —c hence gives
¢"x — &Tz < 0 for any x € K, as desired. If, on the other hand, ¢z > ~ (Case
(1b)), then z € K, and we can simply output “YES”, since if z € S(k, —v), then
“YES” is the correct answer, and otherwise we are in an “error region” where the
oracle is allowed to answer either way.

If we are in Case 2, on the other hand, meaning () returns an (approxima:cely)
separating hyperplane € for S(K, —v), then z ¢ S(K,v), implying z ¢ S(K,v).
Thus, since K C K, it holds that S(K, —v) C S(K, —v), and € is also an (approx-
imately) separating hyperplane for S(K, —v). O

With Algorithm (I} in hand, we can state the desired algorithm for WOPT (K).

Algorithm 2. Given input ¢ € Q™ with ||c[|, = 1, v € Q, rational € > 0, and an
oracle () for WSEPV(K ), choose rational 0 < v < € and proceed as follows:

1. Let a initially be the origin in Q™ (i.e. a = (0,...,0)).
2. Call @ on input a.

(a) If @ returns “YES”, output “YES” and stop.

(b) Otherwise, () returns (approximately) separating hyperplane ¢. Update
a=a— (e—2v)c.

w

. Go back to line |2 if number of completed iterations is less than {&-‘ )

W

. Output “NO”.

Let us first demonstrate the correctness of Algorithm [2 Consider first the case
of I a “NO” instance of WOPT,(K), meaning c'x < v — ¢ for all x € S(K,e).
We show by contradiction that WSEPV(K ) always outputs “NO”. Suppose that on
input a, Q returns “YES”. This implies a € S(K, v), since WSEP,,(K) can answer
“YES” if a € S(K,—v) or if a is in the “error region” S(K,v)\S(K,—v). Since
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lcll, = 1, however, this gives c'a > v — v, which is a contradiction since v < e.
Thus, Algorithm [2| will return “NO”, as desired.

Now suppose II is a “YES” instance of WOPT.(K'), meaning there exists
y € S(K,—e) with ¢y > v +e. We show that with each iteration of line [2
of Algorlthm ' ly — al|, decreases, and so we will eventually output “YES”. To
do so, let a® be a after i iterations, and examine iteration i + 1. If @) returns
“YES”, then by our argument for the “NO” case, we can safely output “YES” for
WOPT,(K), as desired. If, on the other hand, @ returns hyperplane €, we have by
the definition of WSEP, (K) that for all x € (K, —v), ¢'x < &Ta® + v. Consider
then the following, which follows from straightforward manipulation and the fact
that ||€|, = 1:

[aD —y |l = [|a® — y|[s + (e — 20)% + 2(c — 2v) [¢"(y —a®)] . (2.26)
If we can show [¢"(y —al?)] < —(e — 2v), then we have

a4~y < []a® — y[2 — (e~ 20", 227

so each iteration brings us closer to y, as desired. To show this, consider the point
x = y+(e—v)&. Since by assumption we have ¢y > v+¢ and ||c||, = 1, it is easy to
see that S(y, e) C K, and so it follows that x € S(K, —v). By the definition of &, we
thus have through straightforward manipulation that [&"(y —a®)] < —(e—2v), as
desired. Finally, recalling that (by assumption) K must be contained in an origin-

centered ball of radius R, we know that Ha( yH < R?, and so at most [ﬁ-‘

will suffice to return “YES” (eventually we will fall into S(y,e) C K, at which
point the oracle @ must return “YES”). This completes the correctness argument.

We close by remarking that one can set, for example [48], v = ¢/3 for Algo-
rithm [2] giving a runtime of poly(m, R, [1/€]). O

Recall now our claim at the outset of this section that one must choose € for
WOPT,(K) such that € > 1/ poly(M, N) in order for the entire reduction chain of
Equation to run in polynomial time — the justification for this is now clear due
to the dependence on 1/e¢ in the runtime of Lemma [6] Let us observe that we can
choose € so. Specifically, by Lemma [5, we can set

_ VCHn—vE—n
dflefly (MN =1) +1°

(2.28)

Piecing together Lemma [2] and Lemma [5, we have ¢ € ©(1) and n € Q(1/N). It
follows that /¢ +n—+/C —n € Q(1/N). To see this, recall that for given functions
f(z) and g(z), f(z) € Q(g(x)) if f(z) > cg(xz) > 0 for all x > xy and positive
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constants ¢ and xq [I8]. Then one has, for positive constants ¢;, ¢z, Ny, and Ny:

\/C+7I—\/C—77 > \/014—0—]\7'—\/61—6—]\2[ \V/szaX(Nl,Ng) (229)

(a+F)—(a—2)

_ 2.30
Jar Rt Ja- g .
2
- e _ (2.31)
Nyca+%+a—%
2
e (2.32)

- N(yer+ e+ /a)

where in the first inequality we have used the identity z —y = (2? — y?)/(x + y).
The claim immediately follows. With a little thought, we also have ||&]|, € O(V/'N)
(see Appendix [4)). Thus, we can always solve an instance of CLIQUE by choosing
some € € Q(M~tN~%2) for WOPT(Sy.n), giving a polynomial runtime for the
reduction of Lemma [0}, as desired.

We can now move on to the final link, WSEP,(Syn) <r WMEMg(Sy n),
which is again given by [48], and is in fact based on Lemmas (4.3.3) and (4.3.4)
of [29], with a minor preprocessing step added at the beginning. Specifically, this
last link in Equation [2.6[is more accurately broken up into three sub-links:

WSEP, (Su,n) <¢ WSEP, (Su,n) <7 WMEME, (Sarv) <c WMEMg(Sa,w).
(2.33)
Here, WSEP?,(Sy.x) and WMEM, (Syr,wv) are variants of problems WSEP,(Sy,v)
and WMEM(Sas v ), respectively, defined over an arbitrary convex set K as follows.

Definition 7 (Weak(er) Separation (WSEP?,(K))). Given z’ € Q™, and param-
eters v/, § € Q, such that 0 < v/,§ < 1, respond, with respect to the complexity
measure ((K) + (z') + (/) + (9)):

If z € S(K,—v), then output “YES”.
If z ¢ S(K,v'), then return ¢ € Q™, such that for all x € K,
c'x <c'z +v +46||x—7|,, and ||c|, = 1.

Definition 8 (One-Sided Weak Membership (WMEM},,(K ))). Giveny’ € Q™, and
rational parameter 3’ € Q, such that 5’ > 0, decide, with respect to the complexity
measure ((K) + (y') + (5')):

If y’ € K, then output “YES”.
Ify' ¢ S(K, (), then output “NO”.

WSEP?,(K) is a weaker form of WSEP,(K) — namely, the (approximately)
separating hyperplane c returned in the “NO” case allows a larger margin of error
for points in K which are farther away from the input z’. WMEM},, (Sm,n), on
the other hand, appears at first glance like a stronger version of WMEMg(Sy ),
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in which the error region has been reduced from S(K, 5)\S(K,—0) to S(K,5)\K.
As will be shown later via the last link of Equation [2.33] however, WMEMg3(Sasn)
and WMEM, (Syy,v) are actually equivalent.

The first and third links in Equation [2.33| are fairly straightforward, and will be
discussed next. The second link, however, is quite involved, and is well-established
and detailed in [29]. Hence, we will suffice with stating its result and referring the
reader to [29] for further details. Let us now discuss the first link of Equation [2.33]
WSEP,(Syn) <r WSEP?, (S n).

Lemma 7 (Liu [48]). Given instance Il = (z) of WSEP,(K), for K with associated
parameters (m, R, r,p), there exists a poly-time algorithm which solves 11 using an
oracle for WSEP®,(K) with input 2’ = z, /' = 5, and 6 = ;5.

Proof. We follow [48]. The algorithm is stated as follows.

Algorithm 3. Let 0 = ;% and v/ = v/2. Given an oracle @ for WSEP?,(K),
proceed as follows:

1. If ||z]|, > R, return (approximately) separating hyperplane ¢ =

||Z||2 ’

2. Otherwise, call Q on input z’ = z, and return the result.

Let us show correctness. Note first that if ||z||, > R, then clearly z & S(K, —v),
since K is contained in an origin-centered ball of radius R. The latter point also
implies that ||x|[, < R for all x € K. Thus, ¢ = z/||z]|, is in fact a true (i.e. not
approximate) separating hyperplane, since ¢z > R, while c’x < R for all x € K,
and we can return it, as required.

Suppose then that ||z[[, < R. If Q returns “YES”, we have z € S(K, %) (includ-

ing the “error region” S(K, 5)\S(K,—%)), and so clearly z € S(K,v) and we can
similarly answer “YES”. If, on the other hand, ) returns some c such that for all
x € K, c'x < c¢'2' + v/ + §||x — Z||,, then observing again that ||x —z'|, < 2R

gives

c'x<c'Z+vV+68|x—72|,<c'z+ g - (ﬁ%)(QR) <c'z+v, (2.34)
and we can correctly return ¢ as an (approximately) separating hyperplane. O

Lemma @ gives us the link WSEP,(K) < WSEP’,(K) of Equation [2.33, As
previously discussed, the next link, WSEP?,, (Sun) <r WMEME, (Smv), is given
by a non-ellipsoidal Turing reduction, and is stated as follows, the details of which
can be found in [29] (also outlined in [48]). Note the runtime dependence on
parameter 1/§. In our case, combining Lemmas @ and , we have 0 = 5, for €
the error parameter in Lemma [6] and R the radius of the origin-centered ball in
which K sits. Since we chose € > 1/ poly(M, N), and R € ©(1) for K = Sy n, the

following reduction will also run in polynomial time.
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Lemma 8 (Grétschel et al. [29, 48]). Given instance Il = (z') of WSEP?,(K),
for K with associated parameters (m, R,r,p), and 0 < v/,§ < 1, there exists an
algorithm which runs in time poly((K),(z'), (V) (1/(51), and solves 11 using an
oracle for WMEM, (K) with error parameter 3 = #&ém.

This leaves us with the last link of Equation [2.33 which is also given in [29],
and is written WMEM; (Smn) <r WMEMg(Sy,n). Showing this reduction will
complete the desired chain of Equation [2.6]

Lemma 9 (Grotschel et al. [29]). Given instance Il = (y') of WMEM,(K), for K
with associated parameters (m, R,r,p) and 3 > 0, there exists a poly-time algorithm
which solves 11 using an oracle for WMEMg(K) with 8 = “Z.

Proof.

Algorithm 4. Let y = (1 — %)y' + %p and [ = Z—%. Given an oracle @ for
WMEMj(K), proceed as follows:

L. If [y’ — pl|, > 2R, output “NO”.

2. Otherwise, call @ on input y, and return the result.

To show correctness, suppose first that we have Case 1, ||y’ — p||, > 2R. Then
clearly y’ € K (since by assumption K is circumscribed in a ball of radius R), and
we can safely answer “NO” (including y’ possibly in the error region).

We are left with Case 2. We must show that if y’ € K, then y € S(K,—pf)
(a “YES” instance of WMEM, (K) implies a “YES” instance of WMEMjp(K)),
and if otherwise we have y’ ¢ S(K, ('), then y ¢ S(K,3) (a “NO” instance of
WMEM;(K) implies a “NO” instance of WMEMg(K)).

To show the first, suppose y’ € K. Recall that by assumption, S(p,r) C K.
Since K is convex, and since y is a convex combination of y’ and p with weight
f—R on p, there is a scaled down ball of radius r(f—R) = (8 around y and contained

in K, as depicted by Figure Thus, y € S(K,—/f), and we answer “YES”, as
required.

For the “NO” case, suppose by contrapositive that y € S(K, ). Then there
exists x € K such that [|x —yl|, < . Observe now that
g g

o _ o ~

/8/

=7 (2.35)

since by Line [1] of Algorithm [, we can assume [y’ — pl|, < 2R. Therefore, there
exists x € K such that ||x —y'[[, < 5+ % < [, meaning y’ € S(K, #'), which is a
contradiction. Thus, a “NO” instance of WMEM, (K) implies a “NO” instance of
WMEMj(K), as required. O
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Figure 2.2: Depiction of points y,y’,p € K, the assumed ball of radius r in K

. . . /B,T
centered at p, and by convexity, the resulting ball of radius 7z centered about y.

We have now seen all the links in the reduction chains given by Equation [2.33]
and in turn Equation . Note that a number of these reductions (specifically,
all the Turing reductions) were shown for arbitrary well-bounded p-centered con-
vex set K. Setting K = Sy n for these reductions gives us exactly what we
want — a Turing reduction from CLIQUE to WMEMg(Sy, ) where error pa-
rameter 5 > 1/poly(M,N), the latter following immediately from our choice of
€ > 1/poly(M,N) in Lemma [6] Specifically, we have the following result, from
which Theorem [I| immediately follows:

Theorem 10. Given instance Il = (G, n,c) of CLIQUE, there exists an algorithm
which solves 11 in time poly(n) using an oracle for WMEMg(Sy ) with parameters
M =N = @ + 1 and some B € Qn~"). More generally, for N = @ +1
and any choice of M > N, the result holds for some 3 € Q(M1ON—205),

Theorem 1 (revised). WMEMg(Sys n) is NP-hard for 3 < poly(M~*N~20%) and
M > N, or equivalently, is strongly NP-hard.

We stress the phrase “some 3 € Q(n~")” in the statement of Theorem
above — specifically, we cannot have 8 € O(1) in our reduction, due, for example,
to the expression for € in Lemma [} Moreover, note that after the second link of
Equation 2.6] we had € € Q(M~*N~%/2), whereas our final estimate in Theorem
is f € QM N~205) The main contributor to this parameter scaling is the
reduction of Lemma , where we had for error parameter 3’ of WMEME,(K ) that

g = #2(1%:#)' It would be interesting to determine whether the bound on [
given by Theorem could be improved, perhaps to 5 € O(1), which we discuss

shortly in Section [2.5]

2.4 Applications

We now observe two applications of Theorem First, one immediately has a
lower bound on the maximum distance a bound entangled state can have from Sy .
To see this, recall that bound entangled states are mixed entangled quantum states
from which no pure (state) entanglement can be distilled [36], and are the only
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entangled states whose entanglement is not detected by the Peres-Horodecki Pos-
itive Partial Transpose (PPT) [55], [35] criterion (the converse question of whether
there exist bound entangled states detectable by the PPT test is, however, a ma-
jor open question [I3]). Now, Theorem [l| implies that unless P # NP, any test
of membership for Sy, x must be unable to efficiently resolve Sy, y within distance
B € Q(M~1ON295) of its border in the general case. It follows that unless P = NP,
there must exist bound entangled state(s) pye such that for any separable state psep,
| pve = Pseplly € QUM IONT20%) — if not, one could determine the separability of
any quantum state within this region using the PPT test, contradicting Theorem [I}
For this reason, it would be of interest to determine precisely how large one can
make [ before NP-hardness of WMEM (S, n) ceases to hold.

We next use the known duality between linear operators and linear maps in
order to obtain immediate hardness results involving entanglement breaking maps.
Specifically, let DV denote the (convex) set of density operators corresponding to
quantum states of dimension N. Then, for arbitrary linear map ® : DV — DYV,
one can associate a unique operator pg acting in the larger Hilbert space HY @ HY
via the Jamiotkowski isomorphism[44]:

3: DN DY p= (@] (67 )e). (2:36)

where [¢T) is the maximally entangled state |¢pT) = LN SV E) @ |k). In partic-
ular, if (and only if) ® is completely positive, then pg is positive semidefinite [14],
and if (and only if) ® is trace-preserving, then Tra(pe) = I/N [6]. Leveraging this
isomorphism then, it is known that the (convex) set of separable quantum states
Sy is isomorphic to the (convex) set of super-positive maps [2) [6], also known as
entanglement-breaking maps, acting on the space DV. Intuitively, such maps have
the property that for any input state p € HY @ HY, (® @ I)(p) is separable, but
formally, they can be defined in any of the following equivalent ways:

Definition 9 (Entanglement-Breaking Maps [37]). Given completely positive (but
not necessarily trace-preserving) linear map ® : DV — DV the following are
equivalent:

1. ® is entanglement-breaking (EB).
2. pg is separable.

3. ® can be written ®(p) = >, o, Tr(Fyp), for o}, density matrices and Fj, posi-
tive semidefinite?l

4. ® can be expressed in operator sum form with Kraus operators [46] strictly
of rank 1.

5. 'o® and ® o I' are completely positive for all positive maps T'.

This is sometimes dubbed the Holevo form, as introduced by Holevo [34].
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6. Tr(pepr) > 0 for all positive maps I'.

Point (2)) of Definition [9] and Equation together say the following — if we
assume map P is given to us in its Jamiotkowski representation (i.e. in terms of
pa), then checking whether @ is entanglement-breaking is equivalent to solving the
quantum separability problem. More formally, if we denote the (convex) set of
entanglement breaking maps ® : DV — D as By, then one could consider the
Weak Membership problem over By, denoted WM EMg (By), where the input @
is given in terms of pg. Then, Equation immediately implies the (now trivial)
Karp reduction

WMEMg(Snn) <k WMEMpg(By), (2.37)

where we can clearly take § = 3. Thus, we have the following immediate corollary
to Theorem [1l

Corollary 11. WM EMg (By) is strongly NP-hard.

Observe that Corollary [11]in turn implies that each of the other tasks listed as
equivalent definitions of entanglement-breaking maps in Definition [9] must also be
NP-hard (with respect to their appropriate formal definitions).

We remark that any entanglement-breaking map ® is completely positive [6],
but by Definition [0, ® is not necessarily trace-preserving. An analogous version
of Definition [9] for trace-preserving ®, however, can be made to hold [37] sim-
ply by enforcing {F;} to be a Positive Operator Valued Measure (POVM) in
point (3] TrA (pe) = I/N in point |l} the Kraus operators K; in point ([{)) to sat-
isfy >, K K; =1, and I'" in point (5)) to be trace-preserving. An interesting open
question is thus whether an efficient algorithm for determining whether a map is
entanglement-breaking exists for the special case of ® both completely positive and
trace-preserving, the latter two properties defining what are known as quantum
channels or stochastic maps [6]. Specifically, quantum channels are an important
case of interest, as they correspond to physically realizable processes. Observing
that this question reduces to solving QUSEP for the special case of input p with
a maximally mixed reduced state, one possible approach may be to consider local
filters [28], through which any positive definite density matrix p € HM @ HY can be
transformed into the following (un-normalized) form [47] via invertible operators C'
and D:

M2-1
1
o =C®DpCT® D = STAN <1A®IB+ Z t)\A®)\B> (2.38)

with )\; as in Equation 2.5 Since C' and D are invertible, it follows that p is
separable if and only if p is separable, and so QUSEP for full rank p is reduced
to QUSEP for p’ with maximally mixed subsystems, as desired. Of course, this
prompts the question — is QUSEP still NP-hard when restricted to full rank p?

Finally, we remark that although we have assumed here that the input map ®
is specified in Jamiotkowski form, it is typically straightforward to move to another
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representation, such as the operator sum or Kraus representation [46]. Briefly, the
operator sum representation for a map @ is given as [6] a set of operators K; acting
on the Hilbert space of the input quantum state p, such that ®(p) = >\, KZ-pKZ-T ,
with > 7" KZ-T K; < I. Then, the canonica]ﬁ way to determine a Kraus representation
for ® given the Jamiotkowski form pg is to reshuffle the eigenvectors of pg into
matrices K;. We refer the reader to [6] for further details.

2.5 A Brief Conclusion and Open Problems

We have seen that the problem of Weak Membership over the set of separable
quantum states Sys n is strongly NP-hard, meaning it is NP-hard even if the error
parameter 3 < 1/poly(M,N) (i.e. if § is “moderately” large). As seen in Sec-
tion [2.4] this hardness result immediately also translates into NP-hardness of Weak
Membership over the set of entanglement-breaking maps.

Admittedly, our value of 8 € Q(M~1N~20%) in Theorem [10|is a rather mod-
est one. It would be interesting if this value could be improved, perhaps even to
B € O(1). As discussed in Section [2.4] such a result would have immediate im-
plications to the study of bound entanglement. One approach, as suggested by
Liu [48], may include replacing the algorithm for the reduction WOPT (Syn) <r
WMEMg(Sy,n) in Equation used here with an algorithm based on random
walks (although this alone will not suffice, since an inverse polynomial dependence
on the dimension is already introduced in the first reduction of Lemma . Specif-
ically, there is a recent iterative algorithm of Bertsimas and Vempala [I1] which
solves convex problems using random walks, given an initial point in the convex set
of interest K. At a high level, if we denote by K’ the portion of K which the algo-
rithm believes contains the optimum solution after its most recent iteration, then
given a (strong) membership oracle for K, the algorithm proceeds in each iteration
by sampling random points from K’ via random walk, computing an approximate
centroid for K’, and subsequently returning an optimal solution, or ruling out a
constant fraction of the volume of K’ for the next iteration. Such an approach may
prove advantageous when the given membership oracle is weak for the following
reasons. Since the centroid is estimated using random samples of K”, it is plausible
that, for an appropriately chosen random sampling technique, the algorithm is un-
likely in each iteration to choose many points from the error region surrounding K
(especially if the error region is “sufficiently small”). Further, it is plausible that
a small number of sampling errors per iteration would not drastically impact the
estimate of the centroid in that iteration. It is hence possible that an in-depth
analysis of the robustness of the Bertsimas-Vempala algorithm when given a weak
membership oracle may provide better parameter scaling for 5 than achieved here.
We remark, however, that this alone would not improve our estimate to 5 € O(1)

6We use the term canonical here, as unlike the Jamiotkowski representation, the operator sum
representation is not unique.
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using the reduction chain of Equation [2.6 as an inverse dependence on the dimen-
sion is already introduced in reducing CLIQUE to RSDF (i.e. the first link of the
chain).
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Chapter 3

The Global Power of Locally
Invariant Unitary Operations

3.1 Overview

Having discussed NP-hardness results for the quantum separability problem in
Chapter [2, we now switch roles and investigate one attempt at solving the problem,
based on what we call locally invariant unitary operations. Specifically, let p be a
bipartite quantum state in Hilbert space HM ® H”Y with subsystems denoted by A
and B, such that pg = Tra(p). Then, we define a locally invariant or cyclic unitary

operation UB acting on B as one with the property UBpgUB" = pg. The study of
such unitaries within the context of entanglement detection was first proposed by
Fu in 2006 [25], who posed the question—for given p, cyclic unitary UZ, and for
I* denoting the identity acting on A, what is

1
d(p,U?) = —=lo = (1" @ UP)p(1* @ UP)T|. (3.1)

and can it be used to detect entanglement (where || || denotes the Frobenius norm
for matrices)? Note that the principle underlying this question has long been im-
plicitly harnessed, for example, in superdense coding [8], where applying a Pauli
operator to half of a Bell state gives rise to an orthogonal Bell state.

In this chapter we give a partial answer to Fu’s question by considering the
quantity dmax(p) 1= maxeyeie pz d(p, UP). Specifically, we first derive a closed for-
mula for dpax(p) for the case of (pseudo)pure bipartite quantum states p of the
form p = ec + 17;6[ , for o a pure quantum state of dimension d, and 0 < e < 1. We
place parentheses around the term pseudo here to emphasize the inclusion of pure
states for e = 1. We next give a closed formula for the case of Werner states [63]
of arbitrary dimension. Third, we demonstrate an equivalence between violation of
the CHSH inequality [16] and dy,ax(p) for certain classes of two-qubit states, as well
as show that dyax(p) is generally a weaker entanglement detection criterion than
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the CHSH inequality, both accomplished by deriving a closed formula for dp.x(p)
for the two-qubit case. Finally, we investigate dyax(p) for three distinct construc-
tions of two-qutrit bound entangled states. Let us now elaborate on these points
briefly.

It turns out that dyax(p) cannot be used to define an entanglement measure
(with respect to the set of criteria generally required of an entanglement measure,
as outlined for example in [6]), nor is it quite a non-locality measure. Our closed
formula for (pseudo)pure states immediately reveals the existence of non-maximally
entangled (NME) states which are capable of producing in higher dimensions as
large a shift as maximally entangled (ME) states, hence ruling out the former
possiblity. One may notice, however, that this anomaly is similar to a growing
list of arguments claiming non-locality and entanglement as distinct resources [21
1l 12 [50]—for generalized Bell inequalities for qutrits, or the ability to close the
detection loophole, for example, NME states outperform ME states. One may then
be tempted to claim dp.x(p) is the first example of a non-locality measure in which
NME states perform as well as, but not better than ME ones (as suggested and
subsequently dismissed by Méthot [49]). Unfortunately, it is known that classically
correlated states p.., which are separable by definition and hence local, can achieve
d(pee, UP) > 0 [25]. Here, we define a classically correlated state [63] p.. € HM @HY
as Pec = Yy Pelar)ar| ® |bp)by|, for pp € RY, > pp = 1, and n > 1. Thus,
dmax(p) is not a non-locality measure either, disallowing such a claim. For this
reason, we also dub the effects observed by d(p, UB) “global” effects, as opposed to
“non-local”, the latter being the term originally used by Fu [25].

In light of the fact that dpax(pee) > 0 is possible for classically correlated
states p.., the application proposed by Fu was hence to detect entanglement by
distinguishing between classical and quantum correlations. Specifically, following
an argument of Fu [25], we have dpax(pec) < +/2(M —1)(N —1)/(MN). Un-
fortunately, this bound is meaningless for max(M, N) > 4, but gives a tight
bound of dyax(pec) < 1/ V2 for M = N = 2, achieved, for example, by the state
pec = 3]00}00|+3[11)11| and UP = o, the Pauli X operator. For M = N = 3, this
gives a (likely loose) bound of dpax(pec) < \/% Determining a tight upper bound
for arbitrary dimensions remains at present an intriguing open problem. Here, we
derive a closed formula for dp..(p) for Werner states p,, of arbitrary dimension,
which shows that at least for Werner states, as the dimension grows, the ability
to distinguish between classical and quantum correlations using d.x(p) becomes
negligible.

We next demonstrate for certain classes of two-qubit states an equivalence be-
tween violating the CHSH inequality [I6] and obtaining dpay(p) > 1/v/2, with 1/+/2
the bound on dpax(pec) for classically-correlated two-qubit states stated above. For
the general case of two-qubit states, we show that only one direction of this equiv-
alence holds, implying d.x(p) is a weaker entanglement detection criterion than
the CHSH inequality. These results are achieved by first deriving a closed formula
for dpax(p) for arbitrary two-qubit states.
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Finally, we investigate dpax(p) for three distinct constructions of bound entan-
gled two-qutrit states p, in an attempt to discern whether one can detect bound
entanglement using dpyax(p). In all three cases, we find conclusive or suggestive
evidence that dp.x(p) cannot surpass the bound of dpax(pec) \/_ 9 for classi-
cally correlated two-qutrit states discussed above. Thus, with no better bound on
dimax(pec) currently availble, we cannot conclude that dmax(p) can be used to detect
bound entanglement.

Throughout this chapter, we will often use the term Fu shift interchangeably
with d(p, UP). We proceed as follows. In Section , we briefly define the Fu shift
formally, and discuss its properties. Section [3.3.1| presents our closed formula for
dumax(p) for pseudopure quantum states. Section [3.3.2] gives our formula for dax(p)
for Werner states of arbitrary dimension. In Section [3.4] we investigate connections
between the CHSH inequality and dyax(p) for two-qubit systems. Section briefly
discusses failed attempts in considering variants of d(p, U?) which constitute true
non-locality measures (i.e. d(pe., UP) = 0 for all classically correlated pe.). Finally,
we conclude in Section and pose open questions. This chapter is based on
joint work with Dagmar Brufl and Hermann Kampermann of the Heinrich-Heine-
Universitat Diisseldorf.

3.2 The Fu Shift

Throughout our discussion, we denote by p a bipartite quantum state living in
Hilbert space HM @ HY | with subsystems pa = Trg(p) and pg = Tra(p) of dimen-
sions M and N, respectively. We denote by |/x]|, the Euclidean norm for a vector
x, and by ||Al|p := V ATA the Frobenius norm for a matrix A.

Let us now discuss the definition of the Fu shift from Equation in detail.
Consider a locally invariant, or cyclic, unitary operation UZ, such that one has
UBppUBT = pp. This is equivalent to the condition:

[ps, UP] = 0. (3.2)

To see this, note that UPpp = ppU?f < UBpBUBT = pp, by the unitarity of
UB. For convenience, define p; = (I @ UP)p(I ® UBT). Then, as per Equation ,
the Fu shift d(p, UP) is deﬁned as the (scaled) Euclidean distance between p and
ps [25], such that d(p, UP) = \[ |p = pfllp- This can straightforwardly be rewritten
in the following useful form [25]:

d(p, UP) =/ Tr(p?) = Tr(ppy). (33)

As stated earlier, we denote by dpax(p) the maximum Fu shift attainable for any
choice of cyclic UP on state p, i.e.

dmax(p) := max d(p, UP). (3.4)

cyclic UB
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It is easy to see from Equation that d(p, UP) has range 0 < d(p,U?) < 1,
with the latter inequality saturated if and only if p is pure and orthogonal to ps. It
is not known whether dp,.x(p) > 0 for all entangled p, though our results will show
that for (pseudo)pure states and Werner states, this is indeed the case. It is easy
to show that for any product state p, dmax(p) = 0 [25].

We close this section by remarking that one could instead consider defining
dumin(p) = mings d(p, UB), as opposed to dmax(p). We investigate this notion
briefly in Section in the (dashed) hope of eliminating the issue of classically
correlated p.. achieving dpyax(pec) > 0.

3.3 Maximizing the Fu Shift

3.3.1 Pseudopure States

We now derive a closed formula for d,..(p) for pseudopure states, and follow with
a discussion of its implications. Specifically, consider bipartite pseudopure state p
of the form

1—e¢
I 3.5
g (35)

with o a pure bipartite quantum state of dimension M N, and 0 < ¢ < 1. For
simplicity of exposition, we assume M > N, although the results shown straight-
forwardly hold for arbitrary M and N. By the Schmidt decomposition [53], we
can assume without loss of generality that o = [¢)¢|, where |¢)) is of the form
) = S0 aglkk), with S0 " |ag]> = 1, and where {|k)}, ' are elements of the
respective Schmidt bases for each subsyste

p=€o0+

To begin, we first need the following two lemmas, the first of which follows from
straightforward verification via the cosine law for triangles, and whose proof we
omit.

Lemma 12. Let a, b, and ¢ be the lengths of sides of a triangle, with 0, and 0. the
angles opposite sides b and c, respectively. Then, setting v, = m—0. and y. = 7 —0,
gives a + be + cetre = (.

Lemma 13. Let p be a pseudopure quantum state with € > 0. Then, for any
0 <k <N —1 such that |ag| # |aj| ¥V j # k (i.e. |ag| is an amplitude of unique
absolute value) and unitary UP,

o5, UP]=0 = |UJ|=1 (3.6)

'For notational simplicity, we denote elements of the Schmidt bases for both subsystems by
{|k>},1f=_01, although both bases can in general be different (which does not affect our analysis).
We remark that by Lemma [16]seen later, one can in fact take both Schmidt bases here to coincide
if desired.
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Proof. Let U be an arbitrary N x N matrix, given by UB = S"N"1 (m|UB|n)|m)n|,

m,n=0

for {|m)}~_) the Schmidt basis for subsystem B above. Observe that:

o5, U] =€ Z_ (laml* = lan[*) (m|UZ[n) Im)(n|. (3.7)

m,n=0

Hence, if two amplitudes of |¢)) do not agree in absolute value, the corresponding
entry in UP must be 0 in order for pg and U to commute. If |ay| is distinct then,
it follows that row k and column %k of U” must be all zeroes, except for position
UB;CJC. Since U” is unitary, we thus have |UBM} =1. O

We now show the main result of this section. For the remainder of our discussion,
let a,, = max;|a;|, for a; the amplitudes of |¢)) from the pseudopure state p of
Equation [3.5]

Theorem 14. Let p € HM @ HY be a pseudopure quantum state. Then,

2¢|am|\/1 — |am|? otherwise,
where for e =0, we define ap =0 for 0 < k< N —1.

Proof. Observe first that substituting p into Equation gives for arbitrary U®
(not necessarily cyclic):

N—1 2

> lawl*(k[UP|k)

k=0

d(p,UP) = ey |1 — (3.9)

Thus, d(p, UP) depends only on the diagonal entries of UZ. We hence first consider
the case of diagonal U?, and subsequently show that choosing U” diagonal is in fact
always optimal. We remark that for e = 0, we clearly have d.x(p) = 0, agreeing
with Equation |3.8] and so we henceforth assume e > 0.

Assume then that UP is a diagonal unitary matrix with eigenvalue e on row k.
Then by Equation , maximizing d(p, U?) reduces to minimizing | S~ " |ax|2e .
Since pp is diagonal, any choice of ;s constitutes a commuting unitary operation

U®, and so this minimization problem has a simple geometric solution as follows.

If, for a,, the amplitude of largest absolute value, we have |a,|* <37, |ax|?,
then for N > 3, we can always construct a triangle using each of the lengths |ay|*
exactly once, due to the well known fact that three positive numbers a, b, and ¢
constitute the lengths of sides of a triangle if and only if a < b+ ¢, b < a + ¢, and
¢ < a+b [51]. Specifically, one can sort the |a;|*> in decreasing order (such that
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Figure 3.1: A plot of dyax(p) for pure states as a function of |a,,|, as given by
Equation [3.8

ag = ap), and set the longest side of the triangle to be of length Z;:O lag|* for
1 <¢ < N — 3, such that

A N—-1 i+1 N—-1
Z|ak|2 < Z |ay,|” and Z|ak| > Z |ag|. (3.10)
k=0 k=it1 k=0 k=i+2

Then, applying Lemma (12| gives dp.x(p) = €. Note that if N = 2, setting 6y = 0
and 0; = 7 achieves the same result.

If, on the other hand, we have |a,[* > 37, |ax[*, then clearly no triangle
can be constructed, since the length of the longest side cannot be matched by any
combination of shorter sides into a single line segment. Thus, the best minimization
strategy is simply to set 6,, = 0 and 6, = m, for all £ # m. Then, substituting
into our simplified expression for Equation and repeated use of the identity

Vo ak)? = 1 gives dumax(p) = 2€|am| /1 — |am]?.

Finally, to see that choosing U? diagonal is always optimal, note first that if
@[> < 3744 lax]?, then by our argument above, choosing diagonal U” always
gives the maximum possible value for Equation If am|? > 37, ., laxl?, on the
other hand, clearly |a,| # |ax| for all & # m, and so it follows from Lemma
that |(m|U”|m)| = 1 in Equation 3.9, Thus, the best minimization strategy is to
set 0, = 0, and for all k # m, set [(k|UP|k)| = 1 (i.e. make U” diagonal) and
0, = 7, as we did for the second case above. Recalling that diagonal U? will always
commute with pp for any p of the given form concludes the proof. O

We have plotted Equation for pure states in Figure to highlight the
interesting point Theorem [14f makes—namely, aside from e, the strength of global
effect producible for pseudopure p is dependent only on the relation between |a,,|
and the remaining amplitudes. Specifically, if we let ¢ = 1, it gives the exact
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point at which p fails to achieve a maximal Fu shift of dy.(p) = 1 (namely, when
|| > \%), immediately implying that p need not be maximally entangled in order
to achieve dyax(p) = 1. As mentioned in Section , this is similar to an intriguing
phenomenon seen also in the context of non-locality measures, such as generalized
Bell inequalities in higher dimensions [I]. Due to this property, the Fu shift cannot
be used to define an entanglement measure. From Theorem [14] we remark that it
is also clear that dax(p) > 0 for all entangled pseudopure p.

We further remark that for the two-qubit pure state case, it is known that
dmax(p) = C(p) = 2|apas| [25], where C(p) denotes the concurrence of p [33], to
which Equation here also reduces. Used by Wootters [65] to derive an analytic
formula for the entanglement of formation for arbitrary two-qubit states, and an
entanglement measure in its own right, the concurrence has since been generalized
to higher dimensional systems using various approaches [59] 56| [3 [66, 4]. Thus, we
ask, does Equation [3.8|also reduce to any of these generalized notions of concurrence
for pure states in higher dimensions? Two of the generalizations have simple closed
forms for the case of pure states, which we analyze here.

Let us assume as before that p is of the form given by Equation [3.5| with € = 1,
and let d = min {M, N}. Then, Rungta et al. [56] define the concurrence Cg(p) for

pure states p as Cr(p) = /1 — Tr(p%), where 0 < Cr(p) < \/2(d —1)/d. We can

rewrite this expression as

Crlp) = |2 (1 -3 iak\‘*), (3.11)

from which it is clear that our expression for dya.(p) of Equationdoes not reduce
to (a normalized version of ) Cg(p). For example, take [1) = —=]00) +5[11) + 522),
for which dpax(p) = 1, but Cg(p) ~ 0.9682, where we have normalized the latter by
the maximum value possible for qutrits, 2/ V/3. Next, consider the generalization
of Audenaert et al. [3], which states that for pure p, we have Ca(p) = 25182,
where s; and s, are the first and second largest Schmidt coefficients in the Schmidt
decomposition of [1)). Again, it is clear that our expression from Equation
for dpmax(p) does not reduce to this definition C'4(p) either. As a counterexample,
consider the maximally entangled two qutrit state |¢) = \/%;)( |00) + |11) +|22)), for
which dpax(p) = 1, but Ca(p) = 2/3. Thus, dpax(p) does not reduce to either of

these two generalized notions of concurrence in higher dimensions.

3.3.2 Werner States

We now turn our attention to bipartite Werner states p of arbitrary dimension, for
which we derive a closed formula for dp,.x(p). Letting {|j >}?;5 denote an arbitrary
orthonormal basis for C?, where d > 2, the Werner state p € H? @ H? can be
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defined using the following terms [63]:

Po= Z 71Xkl @ k)] (3.12)

1

Poym = 5(lLe +P) (3.13)
1
P = (e —P) (3.14)
= > _p +(1—p) 2 _p (3.15)
p 7pd2+d sym pd2_d as» .

where I is the d?-dimensional identity matrix, 0 < p < 1, and p is a Werner
state. This state has the following interesting properties. First, it is invariant
under operation U ® U, for any choice of unitary U. Second, it is entangled for
p < 1/2, and separable otherwise. Investigating in terms of Fu shift, we find the
following result.

Theorem 15. Let p € HY @ H? be a Werner state. Then we have

B |2pd — d — 1|

dmax (p) a2 — 1 )

(3.16)

obtained using any traceless d x d choice of unitary U®.

Proof. We begin by setting up Equation using the given definition of p and
arbitrary UP. Observing that Tr(P) = d, Tr(P?) = d?, and defining for convenience

3= Te(P(I ® UB)P(I ® UBY)) = Tr(UB)Tr(UB'), straightforward manipulation

leads us to \/
2pd — d — 1)*(d* — )
d(p,U") = ( : 3.17
Examining the boundary and critical points of the first derivative of Equation [3.17]
we find the two cases of interest are § = —d and 3 = 0. Note, however, that

B = —d implies Tr(UB)Tr(UBT) = —d, which is impossible, since aa* > 0 for all
a € C. Hence, the maximum Fu value is achieved when 3 = 0, implying that U”
is traceless, giving the desired result. O

We now direct the reader’s attention to Figure |3.2) which graphically depicts
dmax(p) for various dimensions, d. For d = 2, recall from Section that for
all classically correlated states pec, we have dpax(pec) < 1/v/2, and hence there are
certain values of p for which the Fu shift can be used to reliably detect entanglement
in Werner states. For arbitrary d, if one is promised that p is a Werner state, but not
given the value of p, then by Figure [3.2] attaining dmax(p) > 1/(d + 1) is sufficient
to conclude p is entangled (seen by setting p = 1).

We remark that examining the critical points of the first derivative of Equa-
tion as d — oo suggests there is a “kink” in the graph at p = 1/2. This is
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Figure 3.2: A plot of dpa.x(p) for Werner states (as defined by Equation |3.12)) of
subsystem dimensions d = 2, 3, 10000, respectively, as given by Equation|3.16| Note
the scale of 1077 for the vertical axis for the case of d = 10000.
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interesting, since p = 1/2 is exactly the boundary between entangled and separable
Werner states. It also suggests that as d — oo, the Fu shifts attainable by quantum
and classical correlations for Werner states tend towards becoming identical, and
coupled with the observation that dyax(p) — 0 as d — oo, that the possibility of
distinguishing between the two if d is large enough vanishes. We close this section
by noting that Equation gives dyax(p) > 0 for all entangled Werner states.

3.4 Connections to the CHSH Inequality

In Section , we derived a closed formula for dy,..(p) for any pseudopure state
p. Consider then the (pseudopure) two-qubit Werner state p = p|¢™)¢+| + 521,
where |¢pT) = \%(|OO> + |11)) [13]. Applying our formula to p immediately gives
us that since dyax(pee) < 1/ V2 for two-qubit classically correlated states p.., we
require p > 1/4/2 in order to reliably detect entanglement in p using the Fu shift.
Strangely, this is the exact same bound we require on p in order to violate the
original CHSH inequality [16] [41]. Hence, we ask, is there a connection between
violation of the CHSH inequality and the ability to reliably detect entanglement
using the Fu shift in the two-qubit case?

In order to answer this question, we need three preliminary building blocks.
The first is the fact that any bipartite state p can be written in what is known as
the Fano form [24]:

M2-1N%-1
PZﬁ <1A®IB+FA.5A®[B+[A®FB.5B+ ZZ; ]z; Eja;q@@af) ,

(3.18)
where M denotes the dimension of subsystem A, I denotes the identity matrix,
denotes the (M? — 1)-dimensional Bloch vector for subsystem A such that entry
ri = ¥ Tr(o{pa), 3" denotes the (M?—1)-component vector of traceless Hermitian
generators for SU(M), and the matrix 7" is a real matrix known as the correlation
matriz, whose entries are given by Tj; = XTr(0; ® 0;p). The definitions for
subsystem B are analogous. We stress that the form above is normalized differently

than that used in [25]. For qubits, however, the two expressions coincide.

With the Fano form in hand, we can express our second building block, a known
necessary and sufficient condition for violation of the CHSH inequality [41]. For a
given input state p, define

M(p) == M\ (TTT) + X\ (TTT), (3.19)

for T the correlation matrix from the Fano form, T7 its transpose, and A\ (TTT)
and \o(TTT) the first and second largest eigenvalues of 77T, respectively. Then,
p can violate the CHSH inequality if and only if

M(p) > 1. (3.20)
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Let us demonstrate the use of this condition on the two-qubit Werner state discussed
earlier, p = pl¢T) "] + %[ . The correlation matrix, T, for p is just a diagonal
matrix with entries p, —p, and p appearing on its diagonal, respectively. Thus,
TTT is also diagonal, and has eigenvalue p? with multiplicity 3. By Equation [3.20]
p hence violates the CHSH inequality if and only if M(p) = 2p* > 1, or when
p > 1/4/2, as stated earlier.

Finally, in order to tie violation of the CHSH inequality to reliable entanglement
detection using the Fu shift, we note that the value of the Fu shift can be rewritten
in terms of the correlation matrix 7" as follows [25]:

2 1
Ap.U") = 3 [ T = ST = #z ER DE A CE
2 2 12 i,

where TZ’; is the entry at position (4,7) in the final version of T after our unitary
U”® has been applied to the second subsystem of our state. We can now proceed to
investigate how the CHSH inequality and dy,.x(p) are related.

3.4.1 Diagonal T and Connections Between CHSH and Fu
Shift

We now investigate connections between violation of the CHSH inequality and the
ability to reliably detect entanglement using the Fu shift. Formally, we would like
to consider the plausibility of the statement:

Mp)>1 dmax(p)>%, (3.22)

with M (p) defined as in Equation [3.19] In order to do so, we first show that,
without loss of generality, one can take the correlation matrix 7' of Equation [3.18]
to be diagonal. We then derive a closed formula for dp.x(p) for any two-qubit state
p with diagonal 7. Finally, using this formula, we show our desired results by
comparing dyax(p) and M(p).

First, to show one can take T" to be diagonal, we require the following lemma.

Lemma 16. For bipartite state p of arbitrary dimension, dyax(p) is invariant under
local unitary operations.

Proof. Let U; and U, be local unitary operations applied to subsystems A and B
of p, respectively. Then, straightforward manipulation of Equation yields that
A(U, @ UppUf @ UL, UB) = d(p, USUBU,). Tt is easy to see that [UsppUs, UB] = 0 if
and only if [pg, UJUPU,] = 0. Thus, since the set of unitary matrices (of fixed di-
mension) forms a group, cycling through all possible choices of UP in d(p, UJUBU,)
gives the desired result. O
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In order to use Lemma [16] to show that we can assume 7' is diagonal, we fol-
low [40] and note that applying a unitary operation U; ® U, to p is the equivalent
of applying orthogonal rotation matrices O; and O, to ¥, 72, and T, such that:

7 = Oy 77 = 0" Ty = O,TO} (3.23)

Thus, given any p, we can ﬁn some U; ® Uy such that p/ = U; ® UQpr ® U2T
has diagonal 7' [40], which, coupled with Lemma , gives us that we can assume
without loss of generality that T is diagonal, as desired.

Given any two-qubit state p with diagonal T" then, we derive a closed expression
for dpax(p).

Lemma 17. Given two-qubit quantum state p with diagonal correlation matrix T,

let \; =T;;. Then

Amax ( \/)\2 —n2) + A3 (1 —n?) + \3(1 — nj), (3.24)

where if pp # 1/2, i = 7/ ||7Bll,, and otherwise n; = 1 for \; = ming A\, (with
7, = 1)-

Proof. Assume for now that pg # /2. We manipulate Equation to achieve
the claimed form. Specifically, in order to characterize 77 in terms of 7' and U?Z,
apply Equation for Uy = I and U, = UP, and note that an explicit formula
for O, in terms U® is given by [26]:

Oy = I+sinfA+ (1 —cosf)A?, where (3.25)
0 —TNy ny
A = N9 0 —MNyo
—n ) 0

Here, 17 = (ng,n1,n2) and @ are the axis and angle of rotation for O,, respectively,
with ||77]], = 1. Now, observe that demanding [UZ, pp] = 0 is equivalent to U”
being a rotation about the Bloch vector of pg. Thus, assuming 7z # 0 (such that
pp # 1/2), any cyclic unitary U® is given by choosing @ = 75/ ||75|,-

In order to next choose a maximizing 6, note that setting 7/ = TOZ'| and using
Equations and allows us to simplify Equation to:

d(p, UP) = Z A2(1 —cosf)(1 —n?) (3.26)

Since ||7i], = 1, we have (1 — n?) > 0, and so this equation is maximized when
cos =—1,o0r 0 =m.

Finally, if pp = I/2, any choice of UP is cyclic, and hence we can choose any
axis of rotation 1 we like. Clearly, choosing n; = 1 for A\; = min A\, is the optimal
choice, as claimed. O

2This holds in the two qubit case due to the existence of a surjective homomorphism from

SU(2) to SO(3).
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We now have a closed expression for dy.x(p). Let us finally show the main
results of this section.

Theorem 18. Let p be a two-qubit quantum state with diagonal correlation matriz
T (and definitions as in Lemma . Then, dyax(p) > 1/v/2 = M(p) > 1, but
M(p) > 1 # dmax(p) > 1/v2.

Proof. Assume without loss of generality that |Ao| > |A1] > |Ao|. First, let us

assume dpay(p) > 1/v/2, and let 7 = (V/€0,\/€1,/€2), where €y + €1 + €, = 1. Then,
substitution into Equation gives

(1 =€)+ (T —e)AT+ (1 —e) A3 > 1, (3.27)

from which it is easy to see that M(p) = A2 + A\? > 1, since setting e, = 1 can only
increase the left hand side of Equation [3.27]

Conversely, consider p = |¢)X¢], where [¢)) = ag|00) 4+ a;1]|11), for ag,a; € R,
and a2 +a? = 1. Then, we have 77 = (0,0, 1), \g = 2a1as, Ay = —2a;as, and Ay = 1.
Thus, M(p) > 1, but dpax(p) < 1/v/2 if ag < 0.3827 or ag > 0.9239. O

Hence, by Theorem , if we can reliably detect entanglement in p using dyax(p),
then we can also violate the CHSH inequality using p. The converse of this state-
ment, however, is not necessarily true, implying the Fu shift is generally a weaker
entanglement criterion (in the two-qubit case) than the CHSH inequality.

Given this relationship between the CHSH inequality and Fu shift, one can next
ask, are there specific classes of states for which for which Equation does hold?
It turns out that this is indeed the case.

Theorem 19. Given two-qubit quantum state p with diagonal correlation matrix
T (and definitions as in Lemma , consider the following conditions:

1. N\ = ming |\g|, and |n;| =1, where i = 75/ ||7B||,, and g # (0,0,0).
2. ol =[] = [Aal.

Then, M(p) > 1 < dumax(p) > 1/v/2 holds if and only if one of these conditions
holds.

Proof. We proceed case-by-case.

1. Suppose without loss of generality that A\ is the eigenvalue of T" of smallest
absolute value, and 77 = (0,0, 1). Then, Equation simplifies to:

1 1
Apax(p) = —=A/ AN+ X2 = —\/M 3.28
(1) = 5\ 4t = S5/ 329
Therefore, achieving M(p) > 1 is equivalent to dmax(p) > 1/4/2, as required.
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2. Suppose |Ag| = |A1] = |A2|. Then, since ||77||, = 1, Equation simplifies to:

() = /N3 =t = = 3) = <=\ /%4 0 = =AM

(3.29)

and we arrive at the same conclusion as in Case 1.

3. Suppose pg = /2. Then by Theorem it straightforwardly follows that we
are reduced to to Case 1.

Finally, in order to show the demonstrated equivalence holds if and only if one
of these conditions hold, assume without loss of generality that [Ag| > |A1] > |[Aaf.
Then, unless |Ag| = |A1] = |X2| (Case 2), the only way to guarantee equivalence
is to have in Equation [3.24] (1 — r%) = 1 and (1 — r?) = 1, which implies that
7 = (0,0,%£1). But such a choice of 75 can only correspond to a cyclic unitary
operation if we have Case 1 or 3 above, as required. ]

Thus, there exist classes of states for which violation of the CHSH inequality
and reliable entanglement detection via dyax(p) are equivalent. Specifically, note
that the Werner state p we considered in the beginning of Section falls into such
a class, since we have pg = I /2 for p. This explains the coincidence observed.

3.5 Bound Entanglement Detection

Let us now investigate the Fu shift for bound entangled states, in an attempt to dis-
cern whether it can be used to detect bound entanglement. Bound entangled states
are mixed quantum states which are entangled, but from which no pure (state) en-
tanglement can be distilled [36]. Discovered in the context of Peres’ Positive Partial
Transpose separability criterion [55, [38], it is known that any entangled state with
a positive partial transpose is undistillable, or equivalently, bound entangled [36]
(the converse of this statement, however, is an intriguing open problem [13]). Due
to their undistillability, bound entangled states are not useful on their own for com-
munication purposes, but it turns out that when used as a resource additional to
free entanglement (i.e. distillable entanglement), they allow feats unachievable by
free entanglement alone (called activation of bound entanglement) [39].

Here, we focus on three distinct constructions of bound entangled states of two
qutrits. Throughout this section, we denote an unknown matrix UZ € C3*3 (not
necessarily unitary) by:

Uy Uz U3
UP =1 wi us ug |. (3.30)
Uy U Ug
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3.5.1 P. Horodecki Construction

We begin by looking at the two-qutrit bound entangled state construction given by
Horodecki [38]. Denote by Py = |1))(| the projector onto any quantum state [¢)),
and the computational basis for qutrits as {|0), |1),]2)}. Then, define, as per [3§]:

2
Q = I®I-(> RePR)-Rok (3.31)
1
U= —([0)®]0) + 1) @ 1) +]2) & |2 3.32
\/§(|>|>|>|>|>|>) (3.32)
3 1
Pent = gP\I/‘i‘_Q (333)
1
o, = |2)®( +a|o o)) (3.34)
. (3.35)
Po = Bat+ 1" " 8a +1 Fa,, '

for 0 < a < 1. Note that pe is entangled, as its partial transpose has a negative
eigenvalue, and Ps, is clearly separable, since ®, is a product state. The state of
interest, p,, is bound entangled for 0 < a < 1 [38]. Observe that for a = 0, p,
reduces to a product state, and hence we know from Section that dyax(po) = 0.
Let us now determine d(p,, U?) in terms of a.

Theorem 20. Let p, be defined as above, restricted to domain 0 < a < 1. Then
diax(pa) = %, obtained, for example, using diagonal unitary matriz UP € C3*3

Proof. Let UP be an arbitrary complex 3 x 3 matrix, as defined in Equation [3.30]
Setting up the commutator relation [pg, UP] gives, for 8 := /1 — a?:

1 Blur — uz) (1 —a)ug + Pusg B(uyg — uy)
——— | w(a—1)—Pug 0 ug(a — 1) — Puy
20+ D)\ By —ug)  (1—a)us+Bus  Blus — ur)

lpp, UP] =

It is easy to see that since 0 < a < 1, in order to have [pp, UP] = 0, we require UP
to be of the form:

Uy 0 Us
UB=1 0 u O
us 0 wuy

Plugging this U? and p, into Equation and enforcing unitary constraints on
the entries of UP gives (where Re(z) denotes the real part of some x € C):

d(pe, UP) = V6 — 2 (Ju1]? + 2 Re(utus)) (3.36)

8+1
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To maximize d(p,, UB), we thus need to minimize |u|?> + 2 Re(ujus). To do so,
set us = —1 and let u; = re® for 0 <r <1,0 ¢ [0, 27]. Then,
lui|* + 2 Re(ulus) = r? — 2r cos(), (3.37)

which clearly achieves a minimum at § = 0 and r = 1, or equivalently for u; = 1
and us = —1, giving the result dyax(pa) = (2v/2a)/(8a + 1), as claimed. It is easy
to see that in fact any diagonal unitary matrix of the form

(751 0 0
UB=| 0 —u 0O |,
0 0 Uq
gives the same optimum value, as required. O

Note that the limiting value for dp,.x(p.) as a approaches 1 is %ﬁ, which is less

than the bound of dpax(pec) < \% for two-qubit classically correlated states pec
(where consider that one could embed a two-qubit state in H* ® H?). Thus, we
cannot detect entanglement in bound entangled states of this specific Horodecki
construction using dpax(pa)-

3.5.2 Horodecki®® Construction

Next, we investigate dyax(p) for a second bipartite one-parameter qutrit bound
entangled class of states due to Pawel, Michal, and Ryszard Horodecki [39]. Define,
for 2 <a <5:

o — é(|01)<01|+|12>(12|+|20><20|) (3.38)
o = %(y1o><10|+\21><21|+|02><oz|> (3.39)
po = el + S+ 2% (3.40)

where |1,) = \%(!0@ + |[11) + |22)). What makes o, interesting is that it is
separable for o € [2,3], bound entangled for a € (3,4], and free entangled for
« € (4,5]. Hence an interesting question is, how does d(p,, U?) react to these
“boundaries” for a?

Note first that Tr(p.) = /3, and so any choice of unitary U? is cyclic. Letting
U”® be some unknown matrix as in Equation [3.30} and substituting into Equation|[3.3]
and simplifying as much as possible using unitary constraints on U, we find:

1
d(pa, UP) = ﬁ\/9042 — 450+ 81 + f(a), (3.41)
where
fla) = (—30z2 +15a— 19)(|u1|2 + |u5|2 + |u9|2) —8(Re(uruz) +Re(uiug) + Re(usug)).
(3.42)
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Figure 3.3: Fu shift values for p, for two choices of UP, as given by Equations
and [3.44] respectively. The horizontal solid line plots the former, and the curved
dashed line plots the latter.

Unfortunately, this is a fairly difficult expression to optimize. By inspection, two
seemingly “good” choices of U?, however, along with corresponding Fu shifts are
given below (with the two unitaries denoted U and UZ, respectively):

4v2
21
B 1 2
up = 0,us = 0,u9g =0 = d(pa,Uy) = ﬁ\/Qa — 450+ 81 (3.44)

u = —lus=lLiug=1 = d(ps,UP) = (3.43)

Here, UP is diagonal, and UP has an all-zero diagonal, as given by Equations
and [3.44] respectively. Figure[3.3|plots the functions d(pa, UF) and d(pa, UP). Note
first that depending on our choice of UZ, we could get a Fu shift which may or may
not be dependent on the mixing parameter . Hence, d(p,, UP) yields a horizontal
line, while d(p,, UP) forms part of a parabola. Second, observe that d(p,, Uf)
has its minimum at o = 2.5, exactly halfway through the range for « in which p,
is separable. It is indeed strange that the Fu shift both decreases and increases
within this separable range. Third, contrary to what one may have expected, for
both plots, there is no jump or strange behavior in the graph as « increases (and
pa correspondingly goes from separable to bound entangled to free entangled). In
fact, for d(pa, UP), the strength of global effect produced is constant regardless of
whether o, is separable, bound entangled, or free entangled, demonstrating just
how drastically the choice of UP can affect the global shift produced. Finally,
for d(p., UP), since the ranges of values for separable, bound entangled, and free

41



entangled states are disjoint, if we are promised p, is a state of the given form, we
can accurately distinguish between all three cases.

Let us make two further points before closing this section. Note that by Fig-
ure , there may not be a single choice for U? which is optimal for all o — as
seen in Figure , each choice of UP has a certain range of o where it outper-
forms the other choice of U”. Second, as in Section [3.5.1] note that the maximum
value achieved for neither d(p., UZ) nor d(p,, UP) is greater than our bound of
Aimax (Pec) < \% for classically-correlated two-qubit states p... Thus, without prior
knowledge that our state is in the form p,, as far as our choices of unitaries here
go, we cannot reliably detect bound entanglement for this construction of bound
entangled states either using the Fu shift.

3.5.3 Unextendible Product Bases Construction

Finally, let us investigate dpax(p) for a class of bound entangled states whose con-
struction is based on wuneztendible product bases (UPB). This construction applies
to arbitrary dimensions, although we restrict ourselves to the case of two-qutrit
states here for simplicity. A UPB is defined as follows:

Definition 10 (Unextendible Product Basis (UPB) [9]). Consider a bipartite quan-
tum system H = H; ® Hs, both subsystems of arbitrary dimension. Define an in-
complete orthogonal product basis (PB) as a set S of pure orthogonal product states
spanning proper subspace Hg of H. Then an unextendible product basis (UPB) is
a PB whose complementary subspace ‘H — Hg contains no product state.

Note that this definition extends straightforwardly to the multipartite case [9].
Using a UPB, one can then systematically construct bound entangled states using
the following theorem.

Theorem 21 (Bennett et al. [9]). Given UPB {|¢);}/—, in a Hilbert space of total
dimension D, the following state is bound entangled:

=5 (I > |wk><wk|> (3.45

Thus, we simply need to find an UPB in Hilbert space H® ® H3, and apply
Theorem [21] to obtain a bound entangled state p to test dpax(p) on. An example
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of such an UPB (and corresponding bound entangled state p) is given by [9]:
1

i) = 5 I0(0) = 1)
i) = —(0) = D)2
) = =) —[2)
i) = ()= )0
a) = (0)+11) + [2))(10) + 1) + [2)

=% |wk><¢k|> :

k=0

e

I

== W =
VR

Let us analyze dyax(p). Letting UP be an arbitrary 3 x 3 complex matrix as per
Equation and investigating the commutator relation [pg, U?], we find that in
order to be cyclic, UP must be of the following form:

Ug usg uz
us 5’LL8 + Uy +ug ug (346)
Uy Uug Ug

Substituting U? into Equation and simplifying as much as possible using unitary
constraints on U?, we have the following:

1 35 1 11
d(p, UB) = 5\/—§ |U8|2 + 5 ‘U/’?’Q - ? RG(U'ﬂI,g) (347)

This again proves difficult to optimize, but we can derive a (loose) upper bound

on d(p, UP) based on Equation which shall suffice for our purposes, as follows.
If we relax the unitary constraints on U” and demand only that |u;| < 1 and
lug| < 1, then by inspection it is always optimal to choose u; = —1 in Equation m,

35 11 . : 1 /35,2, 11 1 s
5 < 5. The resulting expression, 5\/ S Us + 5 ug + 5, is maximized for
22

ug = 3z. Clearly, such choices for u7 and ug give non-unitary U B but they also
give an (unattainable) upper bound on dyax(p) of dmax(p) < 0.7464. Thus, with
our only known bound of dyax(pec) < %ﬁ ~ 0.9428 for classically correlated two-
qutrit states p.., we cannot detect bound entanglement in this construction based
on unextendible product bases either. We close by remarking that for sake of
comparison, by inspection, a “fairly good” choice of U? in this case is

since <

0
UB=10
1

S = O

1
01, (3.48)
0

with which we achieve d(p, UP) = \/TE ~ 0.3536.
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3.6 Can We Avoid Classical Correlations?

We have seen that although dp.x(p) exhibits anomalies similar to those observed
for non-locality measures (as per Section , dmax(p) is itself not a non-locality
measure, since there exist classically correlated states pe. for which dpax(pec) > 0.
We now briefly ask, is there some variant d’'(p) of dp..(p), also based on locally
invariant unitary operations, but for which d’(p..) = 0 for all pe.?

A first attempt is to consider alternate metrics. A simple counterexample,
however, shows that at least for any metric induced by a norm on the given Hilbert
space, avoiding dpax(pec) > 0 is impossible. Consider, for example, classically
correlated state po. = 3|00)00] + 3|11)11], and U® = o,, for o, the Pauli X

operator. Then, we have (I ® UP)pe.(I ® UB") = 1101)(01] + 1[10)(10] # pec, and
so d'(pec) > 0 for any d’(p) based on a norm-induced metric, since by definition,
||Z]|, = 0 if and only if & = 0 for any norm and vector ' [6].

A second attempt is to instead consider duim(p) 1= mingye. gz d(p, UP), where
we must demand UP # I, since otherwise any state p would clearly achieve
dmin(p) = 0. Despite constituting a poor quantification scheme, d,(p) demon-
strates the following interesting point. Consider two-qubit classically-correlated

state pec = 3/00)00] + 3| — —)X— — |, where |—) = \/Li(|0) —|1)). Using the results of
Section specifically Equation , we have 77 = (—\/i57 0, \/Aé)’ Ty =Tss = 3,

Ty = 0, and so the only way to achieve dpi,(p) = 0 is to set # = 0, which implies
UB = I. Thus, there exist classically correlated states which are incapable of not
achieving a global shift under locally invariant unitary operations (unless U? = I),
and 80 dpyin(p) does not possess our desired property either.

3.7 A Brief Conclusion and Open Problems

We have investigated the global power of locally invariant unitary operations,
mostly within the context of entanglement detection and non-locality. Specifically,
we have seen closed formulas for d.x(p) for the bipartite cases of (pseudo)pure
quantum states, Werner states, and two-qubit states. The first of these reveals
the existence of non-maximally entangled states capable of achieving a maximal
global shift, both disallowing one from defining an entanglement measure based
on dpyax(p), and revealing similarities to anomalies seen in non-locality measures.
Since dpax(p) is neither an entanglement measure, nor a non-locality measure, yet
as demonstrated here possesses clear connections to the CHSH inequality in the
two-qubit case, it would be interesting to have a better intuitive understanding of
the correlations (both classical and quantum) that dyax(p) is quantifying, and if
and how the anomalies mentioned above are related to those seen in non-locality
measures.

There are a number of questions which remain open. First, despite the fact that
our formula for dy.x(p) for Werner states demonstrates diminishing distinguisha-
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bility between classical and quantum correlations in Werner states as the dimension
grows, it remains for a tight upper bound on dy..(p) to be found for general classi-
cally correlated states of (subsystem) dimension d > 3 in order to conclusively state
the efficacy of dpax(p) as an entanglement detection criteria. This would also allow
one to extend our analysis here for bound entangled states to higher dimensions.
Second, although we have demonstrated that any entangled pseudopure or Werner
state achieves dpax(p) > 0, it is still not known whether this holds for all entangled
bipartite states. Third, it would of course be of interest to determine whether a
closed formula for d,.x(p) can be derived for mixed states in general, the existence
of which would not contradict known hardness results for the quantum separability
problem [31]. Finally, as mentioned briefly in Section [3.1] the principle behind the
Fu shift is implicitly applied in superdense coding, and we would be curious to know
whether there exist any other applications in quantum computing and information.
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Chapter 4

Conclusion

As we have included concluding comments and open problems at the close of each
chapter, we shall keep our discussion here brief, so as not to duplicate previous
sections. In this thesis, we have discussed both the computational complexity
of the Quantum Separability problem, as well as one specific attempt at solving
it via locally invariant unitary operations. Specifically, we have seen that when
phrased as an instance of the Weak Membership problem over the set of separable
quantum states, the Quantum Separability Problem can be shown to be strongly
NP-hard, meaning it is still a computationally intractable problem (in the general
case, unless P = NP) even when one allows “moderate” or inverse polynomial
error (with respect to dimension). We observed that this implies immediate lower
bounds on the Euclidean distance from the set of separable quantum states in which
bound entangled states are known to exist, as well as strong NP-hardness of Weak
Membership over the set of entanglement-breaking maps.

We next investigated the abilities of locally invariant unitary operations in de-
tecting entanglement, as quantified by what we called the Fu shift. Closed formulas
for this distance for the cases of (pseudo)pure quantum states, Werner states, and
two-qubit states were derived, from which we drew a number of conclusions. The
first of these was that the Fu distance cannot be used to define an entanglement
measure, since there exist non-maximally entangled states capable of achieving
shifts equally large as maximally entangled states. Despite being surprising in it-
self, this latter property is similar to anomalies seen for non-locality measures. We
also showed that for certain classes of two-qubit states, there exists an equivalence
between the Fu distance and the CHSH inequality, but that generally the former
is a weaker entanglement detection criterion than the latter (at least for two-qubit
states).

We close by remarking that both main topics discussed here highlight only the
beginning of what has been and promises to continue being an interesting area of
research for many years to come. With NP-hardness results in place, the chal-
lenge has been extended to researchers to find clever ways of tackling the quantum
separability problem efficiently for special cases of interest. Further, anomalies as
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those seen for non-locality measures, and the similar behavior observed here for the
Fu distance hopefully make it clear that our understanding of entanglement and
non-locality is in many ways still in its early stages of infancy.
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Appendix A

Lemma 22. Gien densilty operators p1 and py of quantum states of dimension N,
with corresponding Bloch vectors a and 3 given by equations p; = % + %& -0 and

po = %+ 13-, respectively, we have V3 o1 — pallg = |1 — Bl
Proof. Via straightforward manipulation, we have:

I 1 N2-1 I 1 N2-1
(vrazen) (2 0)

lpr = pallp =

F

Tr (( Z_ (i — Bi)oi)t( Z_ (o — 5]')‘71))

i—1 j=1

N —
_—

N | —

ELH —

]

Lemma 23. In Chapter[d, Section combining Theorem [ and Lemma [ gives
lefl, € O(VN).

Proof. By definition, we have:

el = (|3 Emcmr, A1)

i=1

where m = M?N? — 1.

Recall now the definition of C' from Lemma [4] of Chapter [2] where in our case,
each A, € RY*N is all zeroes except for its upper left corner, which is set to
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submatrix B; € R™! from Theorem . Each B; in turn is all zeroes, except for
some index (k,l) (and hence (I, k), by symmetry), 1 < k < [ < n, which is set to
the (I, k)th entry of the adjacency matrix Ag of graph G.

We also require an explicit construction for the generators o; of SU(D), where
D = m+ 1, as given for example in [45], where {ai}iDjfl = {Upq, Vpg. W, }, such
that for 1 <p<q¢g<Dand1<r<D-1, and {Xi}D , an orthonormal basis for

Hilbert space HP: B

Upy = XX+ x,x] (A.2)
Vog = —ixpX) + ixgx) (A.3)
9 r
— T T
Wr = m (kz:; kak) - TXT+1XT+1] . (A4)

Due to the symmetry of C' and the fact that Tr(C') = 0, it is clear that only the
generators of the form U,, will contribute to the sum in Equation . Further,
for each edge in G, Tr(CU,,) = 2 for each U,, whose non-zero indices match those
of the entries in C' corresponding to that edge. Since each edge contributes four
(symmetrically placed) entries of 1 to C, we hence have [|¢[|, = 11/(2¢)22 = V2¢,
where ¢ denotes the number of edges in G. Since é € O(n?) (n the number of
vertices in G), and M € ©(n?), we have ¢, € O(vV'M), as required. O
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