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Abstract

The thesis describes new results for several problems in random graph theory.
The first problem relates to the uniform random graph model in the supercritical
phase; i.e. a graph, uniformly distributed, on n vertices and M = n/2 + s edges
for s = s(n) satisfying n2/3 = o(s) and s = o(n). The property studied is the
length of the longest cycle in the graph. We give a new upper bound, which holds
asymptotically almost surely, on this length. As part of our proof we establish a
result about the heaviest cycle in a certain randomly-edge-weighted nearly-3-regular
graph, which may be of independent interest.

Our second result is a new contiguity result for a random d-regular graph. Let
j = j(n) be a function that is linear in n. A (d, d − 1)-irregular graph is a graph
which is d-regular except for 2j vertices of degree d − 1. A j-edge matching in a
graph is a set of j independent edges. In this thesis we prove the new result that a
random (d, d−1)-irregular graph plus a random j-edge matching is contiguous to a
random d-regular graph, in the sense that in the two spaces, the same events have
probability approaching 1 as n →∞. This allows one to deduce properties, such as
colourability, of the random irregular graph from the corresponding properties of
the random regular one. The proof applies the small subgraph conditioning method
to the number of j-edge matchings in a random d-regular graph.

The third problem is about the 3-colourability of a random 5-regular graph.
Call a colouring balanced if the number of vertices of each colour is equal, and
locally rainbow if every vertex is adjacent to vertices of all the other colours. Using
the small subgraph conditioning method, we give a condition on the variance of
the number of locally rainbow balanced 3-colourings which, if satisfied, establishes
that the chromatic number of the random 5-regular graph is asymptotically almost
surely equal to 3. We also describe related work which provides evidence that the
condition is likely to be true.

The fourth problem is about the chromatic number of a random d-regular graph
for fixed d. Achlioptas and Moore recently announced a proof that a random d-
regular graph asymptotically almost surely has chromatic number k − 1, k, or
k + 1, where k is the smallest integer satisfying d < 2(k − 1) log(k − 1). In this
thesis we prove that, asymptotically almost surely, it is not k+1, provided a certain
second moment condition holds. The proof applies the small subgraph conditioning
method to the number of balanced k-colourings, where a colouring is balanced if
the number of vertices of each colour is equal. We also give evidence that suggests
that the required second moment condition is true.
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Chapter 1

Introduction

In this thesis we present several new results about random graphs.
The theory of random graphs is about discovering the typical properties of a

given class of graphs. It was originally used to prove the existence of graphs having
certain properties. Today, random graphs are studied in their own right. Several
different models have been developed and fruitfully explored. Random graphs have
also been applied to other areas of study, including physics and computer science.

One of the earliest and most important models of random graphs is Gn,M , the
probability space of graphs on n labelled vertices and M = M(n) edges, under
the uniform probability distribution. In Chapter 2 we present a new result about
the length of the longest cycle in Gn,M for a particular range of M , known as the
“supercritical phase”.

Another model of random graphs is Gn,d, the probability space of d-regular
graphs on n labelled vertices under the uniform probability distribution. Contiguity
is a type of relationship between probability spaces. In Chapter 3 we prove a new
result that Gn,d is contiguous to a different model of random d-regular graphs.
Finally, in Chapters 4 and 5 we will present some new results about the chromatic
number of Gn,d.

Parts of the research in Chapters 2, 4, and 5 are joint work with Nick Wormald.
The material in Chapter 4 appears in a joint paper [13] with J. Dı́az, A.C. Kaporis,
L.M. Kirousis, X. Pérez and N. Wormald.

In the remainder of this introductory chapter we describe our notation and give
the context and significance for the problems that will be solved.

1.1 Notation and terminology

Our notation and terminology for graphs is standard; see [20]. A pseudograph is
like a graph except that it may have loops and multiple (parallel) edges. Since
most of the results about random graphs describe asymptotically what happens
as the number of vertices n → ∞, we next describe our notation for asymptotics.
We say an event An holds asymptotically almost surely (a.a.s.) if its probability
approaches 1 as n →∞. The associated adjective “asymptotically almost sure” is
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also abbreviated by a.a.s. To define the notation used to state asymptotic results,
let f(n), g(n), and φ(n) be functions satisfying |f | < φg. We write f = O(g) if φ
is bounded. If φ → 0 as n →∞ then we write f = o(g). We define f ∼ g to mean
that f(n) = (1 + o(1))g(n). The notation f = Ω(g) indicates that g = O(f), while
f = Θ(g) means that both f = O(g) and g = O(f) hold.

1.2 Uniform random graph Gn,M

The probability space Gn,M of all n-vertex graphs with M edges under the uniform
distribution is also known as the uniform random graph model. It is one of the
earliest models of random graphs, originating in a simple model introduced by
Erdős [14]. Much of the interest in this model comes from the study of the a.a.s.
properties as the dependence of M upon n is varied. This change from a sparse
graph to a dense graph, as M increases more quickly with n, is called the evolution
of the random graph. One important property is the number L of vertices in the
largest component of Gn,M . (If there is more than one component with the maximum
number of vertices, we use the lexicographically first among largest components.)
When M = cn/2 for constant c, Erdős and Rényi [15] showed that the number
of vertices in the largest component of Gn,M is a.a.s. O(log n), Θ(n2/3), or Θ(n)
according to whether c < 1, c = 1, or c > 1, respectively.

Because of this dramatic change in the structure of Gn,M , we often call M = n/2
a “phase transition”. Further research showed that the phase transition extends
throughout the period M = n/2 + cn2/3 for constant c in the sense that, for this
range of M , L = c′n2/3 with a distribution over the constant c′. As a result, this
range of M is known as the critical period. For s = s(n) satisfying n2/3 = o(s) but
s = o(n), the range M = n/2− s is known as the subcritical phase while the range
M = n/2 + s is known as the supercritical phase. For M in the supercritical phase,
Gn,M a.a.s. has a unique largest component on (4 + o(1))s vertices and every other
component has fewer than n2/3 vertices. A “giant component” has emerged.

1.3 Circumference of Gn,M

Another important graph property is its circumference, the length of its longest
cycle. The circumference l of Gn,M also changes dramatically during the phase
transition, but it is not entirely understood. Let ω = ω(n) →∞. When M = cn/2
for fixed c < 1, the circumference of Gn,M is a.a.s. at most ω ([8], Corollary 5.8).
In the subcritical phase, the circumference l a.a.s. satisfies l/ω < n/s < lω ([20],
Section 5.4). During the critical period M = n/2 + O(n2/3) it a.a.s. satisfies l/ω <
n1/3 < lω ([20], Section 5.5). But for larger M researchers do not have such good
estimates for the circumference. (Of course, when M = n(log n+log log n+ω)/2 the
circumference is a.a.s. equal to n as the graph is a.a.s. Hamiltonian [21].) When
M = cn/2 for fixed c > 1, there are several known a.a.s. lower bounds on the
circumference of the form (f(c) + o(1))n [16, 9, 17]. One of the earliest was given
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by Ajtai, Komlós and Szemerédi [4], who also showed an equivalence between the
problems of finding paths of length (f(c) + o(1))n and finding cycles of length
(f(c) + o(1))n.

In the supercritical phase  Luczak [23] has shown that the circumference of Gn,M

is a.a.s. between (16/3+o(1))s2/n and (7.496+o(1))s2/n. In Chapter 2 we improve
the a.a.s. upper bound to (7 + o(1))s2/n.

1.4 Contiguity for random d-regular graphs

For Gn,d, the space of d-regular n-vertex graphs under the uniform distribution,
many important results have been established using the notion of contiguity. (See

Section 9.5 in [20].) We say that the spaces Gn and Ĝn are contiguous provided that

any sequence of events An is a.a.s. true in Gn if and only if it is a.a.s. true in Ĝn.
This equivalence relation is denoted Gn ≈ Ĝn.

One source of contiguous spaces is probability spaces where the probabilities
are altered according to the value of a random variable, as follows. We use the
notation P for probability and E for expected value. If X is a random variable we
define G(X), the X-weighted space from G, by using the rule

PG(X)(G) =
PG(G)X(G)

EGX

to assign probability to each graph G. It is known (see [36]) that G(Y )
n,d ≈ Gn,d

for all of the following random variables Y that count subgraphs: Hamilton cycles
Hn, perfect matchings Mn, 1-factorisations Tn for d = 3, complete Hamiltonian
decompositions Dn for all even d ≥ 4. (A 1-factorisation is a partition of the edge
set into perfect matchings. A complete Hamiltonian decomposition is a partition
of the edge set into Hamilton cycles.) These decompositions can be used to deduce
or re-derive properties of Gn,d. As a trivial example, Tn > 0 a.a.s. for d = 3 implies
that Gn,3 is a.a.s. 3-edge-colourable.

One example of an X-weighted space comes from combining graphs. If G1 and
G2 are sets of n-vertex graphs with the uniform distribution, define the regular
superposition G1 ⊕ G2 to be the union of a graph drawn at random from G1 with a
graph drawn at random from G2, conditioned on the event that the result is a d-
regular simple graph. Then G1⊕G2 = G(Y ), where Y = Y (G) is the random variable
counting the number of pairs (G1, G2) where G1 ∈ G1, G2 ∈ G2, G1 ∪ G2 = G and
G1 and G2 are edge-disjoint. For example, letting G1 = Gn,1, the space of perfect
matchings, and G2 = Gn,d−1, we see that the random variable Y defined above is
simply Mn, the number of perfect matchings. Thus

G(Mn)
n,d = Gn,1 ⊕ Gn,d−1.

Since we know Gn,d ≈ G(Mn)
n,d , it follows that

Gn,d ≈ Gn,1 ⊕ Gn,d−1.
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This type of result has been used for establishing a.a.s. properties of Gn,d by in-
duction on d. Many other superposition results of this type are known, including
results about random graphs arising from permutations [18].

This is also an area of open problems because there are other models of random
d-regular graphs which are not known to be contiguous to Gn,d. For example, two
such models are the random d-process [30] and the random star d-process [27]. Each
of these processes generates a sequence of graphs, beginning with the edgeless graph
on n vertices. At each step of the random d-process, one edge is added between a
pair of uniformly-chosen nonadjacent vertices whose degrees are less than d. The
final graph produced by this process is a.a.s. d-regular. The random star d-process
uses a different rule for adding edges. At each step, a vertex of minimum degree
δ in the current graph is chosen. Edges are added between this vertex and d − δ
randomly-chosen vertices of degree less than d. The resulting graph is a.a.s. d-
regular. It is an open problem to determine whether these models are contiguous
to Gn,d.

For this thesis, we will prove a new result about a model of random graphs that
is not regular. Define a j-edge matching in a graph to be a set of j independent
edges; i.e. edges whose endpoints are all distinct. We are interested in j growing
like a constant times n; formally we let γ = j/n and assume that γ = γ∗ + o(1)
for some γ∗ ∈ (0, 1/2). Let Jn be the set of j-edge matchings on n vertices. A
(d, d − 1)-irregular graph is a graph which is d-regular except for 2j vertices of
degree d − 1. Let In,d,d−1 be the set of (d, d − 1)-irregular graphs on n vertices.
Let Y be the random variable counting the number of j-edge matchings in Gn,d. In
Chapter 3 we will prove that

Gn,d ≈ G(Y )
n,d . (1.4.1)

Since G(Y )
n,d = Jn ⊕ In,d,d−1, it follows that

Gn,d ≈ Jn ⊕ In,d,d−1; (1.4.2)

i.e. the regular superposition of a random j-edge matching with a random (d, d−1)-
irregular graph is contiguous to Gn,d.

This result is useful because it allows us to deduce facts about In,d,d−1 from
known results about Gn,d. As one instance, if Gn,d is a.a.s. k-colourable, then we
can deduce that In,d,d−1 is a.a.s. k-colourable. For example, it is known that Gn,4

is a.a.s. 3-colourable [32]. It follows that a random graph on n/2 degree-3 vertices
and n/2 degree-4 vertices is also 3-colourable.

1.5 The chromatic number of random d-regular

graphs

The study of the chromatic number χ of a graph has been an important challenge
for graph theory and random graph theory in particular. Several new tools, such as
the vertex exposure martingale [31] of Shamir and Spencer, were developed along
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the way. For a survey of classical and recent results, see [3]. For this thesis we are
interested in χ(Gn,d), the chromatic number of random d-regular graphs.

Using the basic properties of Gn,d one can show that a.a.s. χ(Gn,1) = 2, χ(Gn,2) =
3, and χ(Gn,3) = 3. (See [32].) It required much more effort for Shi and Wormald
[32] to establish that that a.a.s. χ(Gn,4) = 3. Their proof used a differential equa-
tions method to analyze a greedy colouring algorithm. The next significant question
is to determine χ(Gn,5). Dı́az and others [12] have shown that χ(Gn,5) = 3 with prob-
ability bounded away from 0, provided a certain four-variable function has a unique
maximum at a given point in a bounded domain. They also provide extensive nu-
merical evidence to support this “maximum hypothesis”. In their proof, they study
what we will call locally rainbow balanced colourings, where a colouring is balanced
if the number of vertices of each colour is equal, and locally rainbow if every ver-
tex is adjacent to at least one vertex of each of the other colours. They apply a
second-moment inequality to the random variable Y counting the number of locally
rainbow balanced 3-colourings. (A k-colouring is a colouring that uses at most k
colours.) We noticed that we could improve their result by applying the small
subgraph conditioning method (see Section 3.3). The improvement is presented in
Chapter 4, where we show that the conclusion of their result can be strengthened
from “with probability bounded away from 0” to “asymptotically almost surely”.
Thus, provided the maximum hypothesis holds, a.a.s. χ(Gn,5) = 3.

For fixed d in general, the best bounds on χ(Gn,d) are due to Achlioptas and
Moore [2]. They state that if k is the smallest integer satisfying d < 2(k−1) log(k−
1) then asymptotically almost surely (a.a.s.) χ(Gn,d) is k − 1, k, or k + 1. If, in
addition, d > (2k− 3) log(k− 1), then a.a.s. χ(Gn,d) is k or k + 1. In this thesis we
show that χ(Gn,d) a.a.s. cannot be k + 1, provided that a certain second moment
condition holds. Therefore this would reduce the range of possibilities for χ(Gn,d) to
only a.a.s. k− 1 and k, in the first case, and would establish that χ(Gn,d) = k a.a.s.
in the second case. In particular it would provide an alternate proof of the results
of Shi and Wormald [32, 33] that a.a.s. χ(Gn,4) = 3 and χ(Gn,6) = 4. It would also
establish, for example, the previously-unknown result that a.a.s. χ(Gn,10) = 5.

Achlioptas and Moore begin their proof by giving the a.a.s. lower bounds on the
chromatic number stated above; i.e. that the random graph is a.a.s. not (k − 2)-
colourable. (For the second case, not (k − 1)-colourable.) Most of the difficulty
is in establishing the a.a.s. upper bounds on the chromatic number. Achlioptas
and Moore bound the first and second moments of the random variable counting
the number of balanced k-colourings, where a colouring is balanced if the number
of vertices of each colour is equal. These bounds are used in a second moment
inequality to give a lower bound on the probability of the event that Gn,d is k-
colourable. Unfortunately, this bound fails to tend to 1; it only shows that the
probability of the event is bounded away from 0 as n becomes large. Achlioptas
and Moore separately showed that the chromatic number is 2-point concentrated;
i.e. for each d there is a k = k(d) such that χ(Gn,d) ∈ {k, k + 1} a.a.s. Combining
these results with the lower bounds, they obtain the specific range of two or three
possible values given above, permitting k + 1 as a possible chromatic number.

When studying random structures, this failure of the second moment inequality
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bound to tend to 1 can often be overcome by using the small subgraph condition-
ing method which we will see in Section 3.3. Using this method, we show that,
given a weakened second moment condition, Gn,d is a.a.s. k-colourable. This would
eliminate k + 1 and determine two values precisely for 2-point concentration.

A technical concern when studying balanced k-colourings of a graph on n ver-
tices is that such a colouring necessarily requires n to be divisible by k. Nevertheless,
the above results can be extended to show that k-colourings exist for all n. One
method is to adjust the proof to accommodate colourings in which the sizes of the
colour classes are permitted to differ by at most 1. Alternatively, one can prove
that there exists a balanced k-colouring in which the endpoints of a fixed number
of independent edges have colours specified in advance. To k-colour a graph whose
number of vertices is n = 2ak + b, one removes b vertices, adds some edges so that
the graph becomes d-regular again, precolours these new edges, and applies the
strengthened theorem. The details are given in [13].
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Chapter 2

Circumference of Gn,M in the
supercritical phase

2.1 Introduction

In this chapter we present a new a.a.s. upper bound on the circumference of Gn,M for
M in the supercritical phase. Recall that the circumference of a graph is the length
of its longest cycle and that the supercritical phase is M = n/2 + s for s = s(n)
satisfying n2/3 = o(s) but s = o(n). For this range,  Luczak [23] has shown that the
circumference of Gn,M is a.a.s. between (16/3 + o(1))s2/n and (7.496 + o(1))s2/n.
In his proof,  Luczak focuses on the core and kernel of Gn,M . The core of a graph
is its maximal subgraph of minimum degree at least 2. The prekernel of a graph
is obtained from the core by throwing away any cycle components. The kernel of
a graph is obtained from the prekernel by replacing each maximal path of degree-2
vertices by a single edge. We say that a graph is a prekernel (respectively, a kernel)
if it is the prekernel (respectively, kernel) of some graph.

 Luczak’s insight is that, for this range of M , the kernel is much like a random
3-regular graph, and the core is much like the graph formed from the kernel by
randomly subdividing its edges about (8 + o(1))s2/n times.

A random 3-regular graph a.a.s. contains a Hamilton cycle. This gives a cycle
in Gn,M containing about (2/3)× (8 + o(1))s2/n = (16/3 + o(1))s2/n vertices of the
core. This is  Luczak’s lower bound on the circumference.

The upper bound comes from viewing the core as constructed from the kernel
together with a sequence of numbers, summing to (8 + o(1))s2/n, describing how
many degree-2 vertices belong on each edge of the kernel. From probability theory,
the sum of the largest two-thirds of the terms of such a random sequence is at most
(7.496 + o(1))s2/n.

In this thesis we improve upon  Luczak’s upper bound by a more detailed study
of how a cycle can pass through such a structure. We prove the following result.

Theorem 1 Let M = n/2 + s with n2/3 = o(s) and s = o(n). The circumference
of Gn,M is a.a.s. at most (7 + o(1))s2/n.
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Our main tool is the kernel configuration model, introduced in [26] to facilitate
arguments like  Luczak’s.

Following  Luczak’s example, it is helpful to put weights on the edges of the ker-
nel; the weight of an edge tells us how many times the edge should be subdivided to
recover the core. These weights form a random sequence whose asymptotic proper-
ties we investigate in Section 2. In particular, we show that any bounded number of
terms in such a sequence behave like independent random variables with exponen-
tial distribution. We also show that when a function of a bounded number of these
terms is summed over many sets of such terms, the result is concentrated about
its expected value. These properties are needed in Section 3 where we establish an
a.a.s. upper bound on the weight of the heaviest cycle in a pseudograph with ran-
dom edge weights. The upper bound is expressed in terms of a family of constants,
some of which we explicitly calculate in Section 4. In Section 5 we prove an a.a.s.
upper bound on the circumference of a random prekernel with a degree sequence
that resembles a random 3-regular graph with subdivided edges. In Section 7 we
use this result to prove Theorem 1 after, in Section 6, establishing that the degree
sequence of the prekernel of Gn,M indeed shows the required resemblance.

2.2 Random sequences

Let Ω be the probability space, equipped with the uniform distribution, of all
sequences of m positive integers (X1, X2, . . . , Xm) summing to N . We are interested
in the asymptotic value of certain functions of these random variables. Letting
ω = ω(N) → ∞, our asymptotics are in terms of N → ∞, uniformly over all m
satisfying ω < m < N/ω. Write µ = N/m.

Our first result tells us the expected value of certain functions of X1, X2, . . . , Xj

for j bounded.

Lemma 2 Let g be a nonnegative integrable function of a bounded number j of
nonnegative variables. Suppose that for some C and d, g(x1, . . . , xj) ≤ C(x1 + · · ·+
xj)

d for all x1, . . . , xj. Then,

E

[
g

(
X1

µ
, . . . ,

Xj

µ

)]
=

∫ ∞

0

· · ·
∫ ∞

0

g(x1, . . . , xj)e
−x1−x2−···−xjdx1 · · · dxj + o(1).

Since the Xi are identically distributed, the above theorem also holds when
(X1, . . . , Xj) is replaced by (Xσ(1), . . . , Xσ(j)) for any j distinct σ(1), . . . , σ(j) in
{1, 2, . . . ,m}. Furthermore, the error represented by o(1) is independent of σ.

The next result states that when such a function is summed over σ in a suffi-
ciently rich family, the sum is asymptotically almost surely (a.a.s.) concentrated
about its expected value.

Lemma 3 Let f be a nonnegative integrable function of a bounded number k of
nonnegative variables. Suppose that for some C and d, f(x1, . . . , xk) ≤ C(x1 +
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· · ·+ xk)d for all x1, . . . , xk. Define the constant

E∗ :=

∫ ∞

0

· · ·
∫ ∞

0

f(x1, . . . , xk)e−x1−x2−···−xkdx1 · · · dxk.

and assume E∗ > 0. Let S be a set of k-tuples with entries from {1, 2, . . . ,m},
with each k-tuple having distinct components. Let I = I(S) ∈ S × S be the pairs of
tuples which intersect; that is,

I = {(σ, τ) ∈ S × S | {σ(1), . . . , σ(k)} ∩ {τ(1), . . . , τ(k)} 6= ∅}.

If |I| = o(|S|2) then∑
σ∈S

f

(
Xσ(1)

µ
, . . . ,

Xσ(k)

µ

)
= (E∗ + o(1))|S|

a.a.s.; that is, with probability 1−o(1). Furthermore, the o(1) terms may be bounded
independently of S.

These types of concentration results are often proved using martingales or inequal-
ities like Talagrand’s; however, because we are aiming for such a coarse result, a
simple application of Chebyshev’s inequality will suffice for the proof.

2.2.1 Distribution of terms

In this section we establish some preliminary results about the distribution of the
positive terms X1, X2, . . . , Xj for bounded j. It is an exercise in basic counting to
show that the number of sequences in Ω is

(
N−1
m−1

)
. It immediately follows that for

positive integers t1, t2, . . . , tj, the number of sequences in Ω with X1 = t1, X2 = t2,
. . ., Xj = tj is

B(t) :=

(
N − 1− t

m− j − 1

)
where t = t1 + t2 + · · ·+ tj.

Proposition 4 Let x satisfy x <
√

m/ω and x < µ/ω. For positive integers t ≤ xµ
we have

B(t)

|Ω|
= (1 + O(ω−1))µ−je−t/µ.

Proof.

B(t)

|Ω|
=

(
N − 1− t

m− j − 1

)(
N − 1

m− 1

)−1

=
(N − 1− t)!

(N − t + j −m)!

(N −m)!

(N − 1)!

(m− 1)!

(m− j − 1)!

=

m−j−1∏
i=1

(N − t− i)
m−1∏
i=1

(N − i)−1

j∏
i=1

(m− i)

9



=

(
(N − t−O(m))−j−1

m∏
i=1

(N − t− i)

)(
(N −m)

m∏
i=1

(N − i)−1

)

×
j∏

i=1

(m− i)

= N−j−1

(
1− t

N
−O

(m

N

))−j−1

N
(

1− m

N

)
mj

(
1 + O

(
1

m

))
×

m∏
i=1

(
1− t

N − i

)
= µ−j

(
1−O

(xµ

N

)
−O(ω−1)

) (
1−O(ω−1)

) (
1 + O(ω−1)

)
×

m∏
i=1

(
1− t

N −O(m)

)
= µ−j

(
1−O

( x

m

)
−O(ω−1)

)(
1− t

N (1−O(µ−1))

)m

= µ−j
(
1−O(ω−1)

)(
1− t

N
+ O

(
t

N
µ−1

))m

= µ−j
(
1−O(ω−1)

)(
1− t

N
+ O

( x

N

))m

= µ−j
(
1−O(ω−1)

)
exp

(
m

(
− t

N
+ O

( x

N

)
+ O

(
(t + x)2

N2

)))
= µ−j

(
1−O(ω−1)

)
e−t/µ exp

(
O

(
x

µ

)
+ O

(
m

x2µ2

N2

))
= µ−je−t/µ

(
1−O(ω−1)

)
exp

(
O(ω−1) + O

(
x2

m

))
= µ−je−t/µ

(
1−O(ω−1)

)
.

Corollary 5 Let x > 0 be fixed. For any positive integers t1, t2, . . . , tj summing to
t ≤ xµ we have

P[X1 = t1, X2 = t2, . . . , Xj = tj] = (1 + O(ω−1))µ−je−t/µ.

Next we bound the probability of larger terms.

Lemma 6 Let x > 0 be fixed. For positive integers t1, t2, . . . , tj summing to t ≥ xµ
we have

P[X1 = t1, X2 = t2, . . . , Xj = tj] < 2µ−je−x

(
1− 1

2µ

)t−xµ

when N is sufficiently large.
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Proof. If B(t) = 0 then the required probability is zero and we are done. Other-
wise, B(i) is nonzero for all positive integers i ≤ t and the probability which we
must estimate is

B(t)

|Ω|
= |Ω|−1B(bxµc)

t∏
i=bxµc+1

B(i)

B(i− 1)
.

By Proposition 4, the product of the first two terms is (1 + O(ω−1))µ−je−bxµc/µ.
This is less than 2µ−je−x when N is sufficiently large. To bound the remaining
product, we estimate the ratio

B(i)

B(i− 1)
=

(
N−1−i
m−j−1

)(
N−1−i+1
m−j−1

)
=

(N − 1− i)!(N − i−m + j + 1)!

(N − 1− i−m + j + 1)!(N − i)!

=
N − i−m + j + 1

N − i

= 1− m− j − 1

N − i

< 1− m− j − 1

N

< 1− m/2

N

where the last inequality holds for N sufficiently large. So, for N sufficiently large,

t∏
i=bxµc+1

B(i)

B(i− 1)
<

(
1− 1

2µ

)t−bxµc

≤
(

1− 1

2µ

)t−xµ

since decreasing the exponent makes the expression larger. The result follows.

2.2.2 Proof of Lemma 2

By the definition of expected value, we have

E

[
g

(
X1

µ
, . . . ,

Xj

µ

)]
=
∑

g

(
t1
µ

, . . . ,
tj
µ

)
P[X1 = t1, X2 = t2, . . . , Xj = tj]

where the sum is over all positive integer j-tuples t1, t2, . . . , tj.
Fix x > 0. Let us split the sum into two parts, S1(x) being the sum over j-tuples

where each ti < xµ, and S2(x) being the remainder. We will show that, as N →∞,

S1(x) →
∫ x

0

· · ·
∫ x

0

g(x1, . . . , xj)e
−x1−x2−···−xjdx1 · · · dxj,
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while
|S2(x)| < Ke−x/2

for some constant K. As x grows, |S2(x)| approaches 0 and S1(x) is nonnegative
and nondecreasing since g is nonnegative. So, taking x →∞ proves the lemma.

We begin by estimating S1(x). These terms have each ti ≤ xµ, so we use
Corollary 5 to estimate the probabilities as follows.

S1(x) =
∑

t1<xµ

· · ·
∑

tj<xµ

g

(
t1
µ

, . . . ,
tj
µ

)
P[X1 = t1, X2 = t2, . . . , Xj = tj]

=
∑

t1<xµ

· · ·
∑

tj<xµ

g

(
t1
µ

, . . . ,
tj
µ

)
(1 + O(ω−1))µ−je−(t1+···+tj)/µ.

Since O(ω−1) is independent of the ti, this becomes

(1 + O(ω−1))
∑

t1<xµ

· · ·
∑

tj<xµ

g

(
t1
µ

, . . . ,
tj
µ

)
µ−je−(t1+···+tj)/µ.

Letting M = xµ we get

(1 + O(ω−1))
∑

t1<M

· · ·
∑
tj<M

g
(
t1

x

M
, . . . , tj

x

M

)
e−(t1+···+tj)x/M

( x

M

)j

.

As N →∞ we have M →∞ and this expression becomes the Riemann integral∫ x

0

· · ·
∫ x

0

g(x1, . . . , xj)e
−x1−x2−···−xjdx1 · · · dxj

as required.
The terms of the sum S2(x) are indexed by j-tuples t1, t2, . . . , tj with at least

one ti ≥ xµ. Consider such a term, and let t = t1 + t2 + · · ·+ tj. For N sufficiently
large, the absolute value of the term is

g

(
t1
µ

, . . . ,
tj
µ

)
P[X1 = t1, X2 = t2, . . . , Xj = tj] < C

(
t

µ

)d

2µ−je−x

(
1− 1

2µ

)t−xµ

by the hypotheses about g and Lemma 6. The number of terms in S2(x) indexed
by j-tuples summing to t is at most

(
t−1
j−1

)
≤ (t + j)j−1 ≤ (2t)j−1 for N (and hence

t) sufficiently large. Thus, for N large, we have

|S2(x)| <
∑
t≥xµ

(2t)j−1C

(
t

µ

)d

2µ−je−x

(
1− 1

2µ

)t−xµ

= 2e−x C2j−1

µj+d

(
1− 1

2µ

)−xµ ∑
t≥xµ

tj+d−1

(
1− 1

2µ

)t

.
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The factor (1− 1/(2µ))−xµ approaches ex/2 as N →∞. The remaining sum is

∑
t≥xµ

tj+d−1

(
1− 1

2µ

)t

≤
∑
t≥0

(t + 1)(t + 2) · · · (t + j + d− 1)

(
1− 1

2µ

)t

= (j + d− 1)!(2µ)j+d

using the Maclaurin series expansion k!(1−x)−k−1 =
∑

t≥0(t+1)(t+2) · · · (t+k)xt.
Combining this with the previous results, we get the desired estimate. This proves
the lemma.

2.2.3 Proof of Lemma 3

For each σ in S, define the random variable Yσ := f(Xσ(1)/µ, . . . , Xσ(k)/µ). As we
remarked after Lemma 2, each of these variables has the same distribution as the
random variable Y1 := f(X1/µ, . . . , Xk/µ). In particular, the expected value is the
constant E∗, up to an additive error of o(1). We will establish the concentration
of the random variable Z :=

∑
σ∈S Yσ by showing that the variance Var[Z] is

o((EZ)2). The lemma then follows by Chebyshev’s inequality.
We begin by estimating

(EZ)2 =
∑

(σ,τ)∈S×S

EYσEYτ

=
∑

(σ,τ)∈S×S

(E∗ + o(1))(E∗ + o(1))

=
∑

(σ,τ)∈S×S

Θ(1)

= Θ(|S|2)

(using the lower bound assumed on E∗ in the lemma). We can write the variance
as

Var[Z] = E[Z2]− (EZ)2

=
∑

(σ,τ)∈S×S

(E[YσYτ ]− EYσEYτ )

=
∑

(σ,τ)∈I

(E[YσYτ ]− EYσEYτ ) +
∑

(σ,τ)∈(S×S)\I

(E[YσYτ ]− EYσEYτ ).

To study the terms of the second sum, let (σ, τ) ∈ (S × S) \ I. By Lemma 2, we
have

E[YσYτ ]

= E

[
f

(
Xσ(1)

µ
, . . . ,

Xσ(k)

µ

)
f

(
Xτ(1)

µ
, . . . ,

Xτ(k)

µ

)]
13



=

∫ ∞

0

· · ·
∫ ∞

0

f(x1, . . . , xk)f(xk+1, . . . , x2k)e−x1−···−x2kdx1 · · · dx2k + o(1)

=

(∫ ∞

0

· · ·
∫ ∞

0

f(x1, . . . , xk)e−x1−x2−···−xkdx1 · · · dxk

)2

+ o(1)

= EYσEYτ + o(1)

where o(1) is independent of σ and τ . So the second sum is o(|S|2). To study
the terms of the first sum, we can be more crude. By Lemma 2 and the remark
following it, we know that each E[YσYτ ] and EYσEYτ depends only on the tuple
positions where σ and τ intersect, and each value is O(1). So the first sum is O(|I|),
which is o(|S|2) by hypothesis. Combining the two sums, we see that the variance
of Z is o(|S|2), which is o((EZ)2), as required.

2.3 Heavy cycles in a weighted pseudograph

In the introduction we saw that the problem of bounding the circumference of Gn,M

is connected to the problem of bounding the weight of the heaviest cycle in a certain
edge-weighted pseudograph. In this section we study a pseudograph whose m edges
are randomly weighted by positive integers summing to N . The sequence of weights
is chosen uniformly at random from among all such sequences. Equivalently, we can
think of the weights as being generated by the following random process applied
to make a sequence of pseudographs, beginning with the given one. At each step,
choose an edge uniformly at random from the current pseudograph and subdivide
the edge into two edges. Repeat the procedure until the resulting pseudograph has
exactly N edges. For each edge in the original pseudograph, define its weight to
be the number of edges into which it has been subdivided. These weights form a
sequence of m positive integers summing to N . There are exactly (N −m)! ways
that the process can form a given sequence, so the sequence is chosen uniformly at
random from among all such sequences. Another random process for generating the
weights initially gives a weight of 1 to each edge, then selects an edge at random
with probability proportional to the weight of the edge and increments the weight
of the selected edge by 1. The selection and incrementing is repeated until the total
weight is N . It is easy to see that this process is equivalent to the previous one.

Given a subgraph of an edge-weighted pseudograph, we define the weight of the
subgraph to be the sum of the weights on its edges. To establish an upper bound
for the weight of a cycle in a large pseudograph, we will consider the intersection
of the cycle with small trees in the pseudograph. The intersection of the cycle
and the small tree will form a set of vertex-disjoint paths which begin and end
at leaf vertices of the tree. We will use the maximum-weight set of such vertex-
disjoint paths to bound the weight of the intersection. This motivates the following
definitions.

Fix an integer k ≥ 2. A biased tree T on k edges is a tree on k edges with each
non-leaf vertex having degree 3 and each edge ei having a nonnegative number bi
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called its bias. We may assume that the sum of the biases b = (b1, b2, . . . , bk) is 1.
Let P be the set of all maximal subgraphs of T which are a union of vertex-

disjoint paths which begin and end at leaf vertices. Define the function

fT (x1, x2, . . . , xk) = max
P∈P

∑
i:ei∈E(P )

bixi

and the constant

ET =

∫ ∞

0

∫ ∞

0

· · ·
∫ ∞

0

fT (x1, x2, . . . , xk)e−x1−x2−···−xkdx1dx2 · · · dxk. (2.3.1)

If x1, x2, . . . , xk are weights on the edges of T , we can think of f as the maximum
“biased weight” of any graph in P .

We say that the positive constant c∗ is k-admissible if ET < c∗ for some biased
tree T on k edges.

Lemma 7 Fix an integer k ≥ 2. Let the positive number c∗ be k-admissible. Let
G = G(n) be a pseudograph on v = v(n) →∞ (as n →∞) vertices and m = m(n)
edges with minimum degree at least 3. Suppose the subgraph B of G induced by
cycles of length at most k (including loops and parallel edges) and edges incident to
vertices of degree greater than 3 satisfies |E(B)| = o(v). Let N = N(n) be a positive
integer satisfying m = o(N). On the edges of G put weights, a sequence chosen
uniformly at random from among all sequences of m positive integers summing to
N . Then, the heaviest cycle in G has weight a.a.s. at most c∗N .

Proof. Denote the edges of G by w1, w2, . . . , wm and their random weights by
X1, X2, . . . , Xm. We estimate m by recalling that in any graph the sum of the
vertex degrees equals twice the number of edges. Since G has minimum degree at
least 3, we have 2m ≥ 3v. Since G has only o(v) edges incident to vertices of degree
greater than 3, we have 2m ≤ 3v + o(v). Thus m ∼ 3v/2.

For a subgraph S of G, define its k-neighbourhood Γ(S) to be the subgraph of
G reachable from S by paths of length at most k. Recalling that the subgraph
B of G contains all edges incident with vertices of degree greater than 3, its k-
neighbourhood satisfies |E(Γ(B))| ≤ 2k|E(B)| = o(v).

Let C be a cycle in G. Its weight wt(C) is

wt(C) :=
m∑

j=1

XjI(wj ∈ E(C))

=
∑

j:wj∈E(Γ(B))

XjI(wj ∈ E(C)) +
∑

j:wj 6∈E(Γ(B))

XjI(wj ∈ E(C))

where I(α) is the indicator function equal to 1 if α is true and 0 otherwise. The
expected value of each Xj is µ := N/m, so the first sum has expected value at
most |E(Γ(B))|N/m = o(vN/m) = o(N) since m ∼ 3v/2. It follows by Markov’s
inequality that the first sum is a.a.s. o(N). Thus a.a.s.,

wt(C) = o(N) +
∑

j:wj 6∈E(Γ(B))

XjI(wj ∈ E(C)). (2.3.2)
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Since c∗ is k-admissible, there is a biased tree T on k edges with ET < c∗. We
will study the copies of T in the graph G\B. Let S be the set of 1-1 homomorphisms
σ mapping T to G \ B. Since k ≥ 2, each σ is uniquely defined by the mapping it
induces between the edge sets. We write σ = (σ(1), σ(2), . . . , σ(k)) and interpret
σ(i) = j to mean that σ maps edge ei of T to edge wj of G.

Consider the random variable

Z =
∑
σ∈S

k∑
i=1

biXσ(i)I(wσ(i) ∈ E(C)).

Expressing Z in terms of the edges of G we may write

Z =
m∑

j=1

∑
σ∈S

k∑
i=1

biXjI(wj ∈ E(C))I(σ(i) = j)

=
m∑

j=1

k∑
i=1

biXjI(wj ∈ E(C))|{σ ∈ S | σ(i) = j}|.

For each edge wj of G not in E(Γ(B)) the k-neighbourhood of wj is the depth-k tree
with internal vertices of degree 3. Thus, |{σ ∈ S | σ(i) = j}| equals some constant
independent of j. In fact, this constant is a number a, independent of i, because
any σ in this set is determined by choosing one of the 2 ways to embed ei onto
wj and then, moving outward from ei, making one binary choice for each non-leaf
vertex of T . On the other hand, for an edge wj ∈ E(Γ(B)), |{σ ∈ S | σ(i) = j}|
is at most a (by the same argument, recalling that some choices are impossible
because σ maps into G \B), so we have

Z =
∑

j:wj∈E(Γ(B))

O(Xj) +
∑

j:wj 6∈E(Γ(B))

k∑
i=1

abiXjI(wj ∈ E(C))

=
∑

j:wj∈E(Γ(B))

O(Xj) +
∑

j:wj 6∈E(Γ(B))

aXjI(wj ∈ E(C))

since
∑k

i=1 bi = 1. The first sum has o(v) terms, each having expected value
O(N/m), so the sum is a.a.s. o(vN/m) = o(N) by Markov’s inequality. We now
have a.a.s.

Z = o(N) + a
∑

j 6∈E(Γ(B))

XjI(wj ∈ E(C)).

Combining this result with (2.3.2) we get a.a.s.

wt(C) =
1

a
Z + o(N). (2.3.3)

Returning to the definition of Z, we notice that the inner sum is the “biased
weight” of the edges of C passing through the copy of T given by σ. These edges

16



must form vertex-disjoint paths beginning and ending at leaves of the copy of T
given by σ, so this sum is at most fT (Xσ(1), Xσ(2), . . . , Xσ(k)). So

Z ≤
∑
σ∈S

fT (Xσ(1), Xσ(2), . . . , Xσ(k)).

We will estimate this sum by applying Lemma 3 to

1

µ

∑
σ∈S

fT (Xσ(1), Xσ(2), . . . , Xσ(k)) =
∑
σ∈S

fT

(
Xσ(1)

µ
,
Xσ(2)

µ
, . . . ,

Xσ(k)

µ

)
.

To verify the hypotheses of Lemma 3 we first note that fT (x1, x2, . . . , xk) is nonnega-
tive, piecewise linear (and hence integrable), and bounded above by x1+x2+· · ·+xk.
We estimate |S| by

|S| =
∑

j:wj∈E(G)

|{σ ∈ S | σ(1) = j}|

=
∑

j:wj∈E(Γ(B))

|{σ ∈ S | σ(1) = j}|+
∑

j:wj 6∈E(Γ(B))

|{σ ∈ S | σ(1) = j}|

= o(v) +
∑

wj 6∈E(Γ(B))

a

= o(v) + (1 + o(1))ma

∼ ma

using o(v) = o(m). To estimate the cardinality of the set I of pairs (σ, τ) ∈ S × S
for which σ and τ represent intersecting copies of T , consider any edge f in G \B.
As we have seen previously, there are at most a copies of T using f . So, a crude
upper bound for |I| is a2|E(G \ B)| ≤ a2m, giving us |I| = o(|S|2) as required.
Recalling the definition of ET from (2.3.1) we may apply Lemma 3 and conclude
a.a.s.

1

µ
Z ≤ (ET + o(1))|S|

= (ET + o(1))am.

Combining this with Equation (2.3.3) we get a.a.s.

wt(C) ≤ 1

a
µ(ET + o(1))am + o(N)

= (ET + o(1))N + o(N)

< c∗N

as required.

Remark 1. A random 3-regular graph a.a.s. satisfies all of the hypotheses of
Lemma 7. The lemma thus gives an upper bound which holds a.a.s. on the weight
of the heaviest cycle in a randomly-weighted random 3-regular graph.
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Remark 2. There are essentially two ingredients in the proof of Lemma 7.
The first ingredient is a method for bounding the weight of a cycle in a large
edge-weighted 3-regular subgraph. The second ingredient is the argument that the
weight of the heaviest cycle does not change much when the remainder of the graph
is included. This second ingredient is implicit in  Luczak’s proof of his upper bound
on the circumference of Gn,M in the supercritical phase [23]. It is the first ingredient
that is the new contribution.

Remark 3. For the task of bounding the weight of a cycle in a large edge-
weighted 3-regular subgraph, one might suggest investigating the weight of the
lightest-weight matching. Certainly the complement of a Hamilton cycle in a 3-
regular graph forms a perfect matching. But, in general, the maximum-weight
cycle is not necessarily Hamiltonian. Thus, its removal from the graph does not
always form a perfect matching.

2.4 Computing ET

Recall the definitions of fT (x) = fT (x1, x2, . . . , xk) and ET from (2.3.1). In the
previous section we saw that the weight of the heaviest cycle in a certain edge-
weighted pseudograph can be bounded in terms of ET for any biased tree T . In
this section we compute the value of ET for a few small biased trees T . For some
trees T we also determine the biases b which make ET as small as possible. It will be
convenient to assume that each bi > 0; however, the results extend to nonnegative
bi by continuity.

2.4.1 One non-leaf vertex

We begin by computing ET for the biased tree T that has one vertex of degree 3
joined to three leaf vertices. For this T the set P contains three subgraphs, each
being simply a pair of edges, giving us

fT (x) = fT (x1, x2, x3) = max
P∈P

∑
i:ei∈E(P )

bixi

= max{b1x1 + b2x2, b1x1 + b3x3, b2x2 + b3x3}

and

ET =

∫ ∞

0

∫ ∞

0

∫ ∞

0

fT (x)e−x1−x2−x3dx

=

∫ ∞

0

∫ ∞

0

∫ ∞

0

max{b1x1 + b2x2, b1x1 + b3x3, b2x2 + b3x3}e−x1−x2−x3dx.

To help us compute the integral we partition the region of integration into three
parts according to whichever of the arguments of the max function is the largest.
We can disregard the region on which two arguments are equal because it is a set
of measure zero. The part on which

b1x1 + b2x2 > b1x1 + b3x3 and b1x1 + b2x2 > b2x2 + b3x3
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is simply the set of points with positive coordinates satisfying

b2x2 > b3x3 and b1x1 > b3x3

which may be expressed iteratively by{
(x1, x2, x3) | x3 > 0, x2 >

b3x3

b2

, x1 >
b3x3

b1

}
giving us the integral∫ ∞

x3=0

∫ ∞

x2=b3x3/b2

∫ ∞

x1=b3x3/b1

(b1x1 + b2x2)e
−x1−x2−x3dx1dx2dx3

=
b1b2(4b3b1b2 + b3b

2
2 + b2

1b2 + b2
1b3 + b1b

2
2)

b2
3b

2
2 + 2b2

3b2b1 + 2b3b2
2b1 + b2

1b
2
3 + 2b2

1b3b2 + b2
1b

2
2

.

The other two parts of the integral may be obtained by symmetry. When the three
parts are added together, the result is

ET =
(b1 + b2)(b1 + b3)(b2 + b3)

b1b2 + b1b3 + b2b3

.

Recalling that biases b must sum to 1, we substitute b3 = 1− b1 − b2 to find

ET =
(b1 − 1)(b1 + b2)(b2 − 1)

b2
1 − b1 + b1b2 − b2 + b2

2

.

Since the biases b must also be nonnegative, we see that (b1, b2) ranges over the set

B = {(b1, b2) | b1 > 0, b2 > 0, 1− b1 − b2 > 0}.

To minimize ET over B we first see that the partial derivative

∂

∂b1

ET =
b2
2(b2 − 1)(1− 2b1 − b2)

(b2
1 − b1 + b1b2 − b2 + b2

2)
2

equals 0 on B precisely when 2b1 + b2 = 1. By symmetry, the partial derivative
with respect to b2 equals 0 on B precisely when 2b2 + b1 = 1. The solution to these
two equations is b1 = b2 = 1/3, giving a value of 8/9 for ET .

As for the boundary of B, observe that whenever b1, b2, or 1− b1 − b2 equals 0
we have ET = 1. Thus the local extremum at b1 = b2 = 1/3 is the global minimum
over B.

In summary, we have shown the following.

Proposition 8 Let T be a biased tree on one degree-3 vertex and three leaf vertices.
With b1 = b2 = b3 = 1/3 we have

ET =
8

9

and, for this tree, no other choice of biases b yields a lower value of ET .
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2.4.2 Reducing the number of distinct bias values

For the tree in the previous section, we saw that ET was minimized when all of the
bias values are equal. Next we describe another situation when it is best for certain
bias values to be equal.

Proposition 9 Let T be a biased tree with edges e1, e2, . . . , ek. Suppose that e1

and e2 are incident to two leaf vertices and a common non-leaf vertex. Define T ′

from T by replacing the biases b1 and b2 by their average,

b′ =

(
b1 + b2

2
,
b1 + b2

2
, b3, b4, . . . , bk

)
.

Then
ET ′ ≤ ET .

Proof. The integral in the definition of ET may be expressed as the integral over
nonnegative x1, x2, . . . , xk satisfying x2 ≥ x1 of the integrand

(fT (x1, x2, x3, . . . , xk) + fT (x2, x1, x3, . . . , xk)) e−x1−x2−···−xk .

Let x1, x2, . . . , xk be nonnegative reals with x2 ≥ x1. To establish the inequality
of the integrals in the proposition, it therefore suffices to prove the corresponding
inequality of the integrands,

fT ′(x1, x2, x3, . . . , xk) + fT ′(x2, x1, x3, . . . , xk) (2.4.1)

≤ fT (x1, x2, x3, . . . , xk) + fT (x2, x1, x3, . . . , xk).

Recall that fT (x1, x2, . . . , xk) is the maximum of the biased weight of any P ∈ P
when the edges are given biases b1, b2, . . . , bk and weights x1, x2, . . . , xk. Because of
the hypothesis about e1 and e2, the set P is unchanged when e1 is exchanged with
e2. Since b′1 = b′2, it follows that if P0 is the P ∈ P that achieves the maximum
in fT ′(x1, x2, x3, . . . , xk), then the maximum in fT ′(x2, x1, x3, . . . , xk) is achieved
by P1, obtained from P0 by exchanging e1 with e2, and these two maxima are
equal. The left side of Equation (2.4.1) is therefore the sum of the biased weight
W0(b

′) of P0, using weights (x1, x2, x3, . . . , xk) and biases b′, plus the biased weight
W1(b

′) of P1, using weights (x2, x1, x3, . . . , xk) and biases b′. A lower bound for the
right side of Equation (2.4.1) is the sum of the biased weight W0(b) of P0, using
weights (x1, x2, x3, . . . , xk) and biases b, plus the biased weight W1(b) of P1, using
weights (x2, x1, x3, . . . , xk) and biases b. To prove Equation (2.4.1), we will show
W0(b

′)−W0(b) + W1(b
′)−W1(b) ≤ 0.

Clearly P0 must contain at least one of e1 and e2. (If not, the subgraph could
be made heavier by including them.) If P0 contains both e1 and e2 then we have

(W0(b
′)−W0(b)) + (W1(b

′)−W1(b))

= (x1b
′
1 + x2b

′
2 − x1b1 − x2b2) + (x2b

′
1 + x1b

′
2 − x2b1 − x1b2)

= x1

(
2
b1 + b2

2
− b1 − b2

)
+ x2

(
2
b1 + b2

2
− b1 − b2

)
= 0.
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Otherwise, P0 contains exactly one of e1 and e2. Since x2 ≥ x1 and P0 was chosen
to have the greatest biased weight for T ′, P0 must contain e2. We have

(W0(b
′)−W0(b)) + (W1(b

′)−W1(b)) = x2b
′
2 − x2b2 + x2b

′
1 − x2b1

= x2

(
b1 + b2

2
+

b1 + b2

2
− b1 − b2

)
= 0.

2.4.3 Two non-leaf vertices

In this section we study biased trees T on two non-leaf vertices, v and w, and four
leaf vertices. Let e1 and e2 denote the two edges which are each incident to v and
a leaf. Denote by e3 the edge joining v to w, and christen the other two edges as
e4 and e5. We want to compute the minimum value of ET over all bias vectors b.
By Proposition 9, it suffices to consider b in which b1 = b2 and b4 = b5. In fact, we
can simplify the problem further.

Proposition 10 Suppose T is a biased tree on two non-leaf vertices and four leaf
vertices. Suppose its biases are b = (b1, b1, b3, b5, b5). Define T ′ from T by replacing
the biases by b′ defined by

b′ =

(
b1 + b5

2
,
b1 + b5

2
, b3,

b1 + b5

2
,
b1 + b5

2

)
.

Then
ET ′ ≤ ET .

Proof. The proof is similar to the proof of Proposition 9. We begin by rewriting the
integral in the definition of ET , using the region X, the set of points (x1, x2, . . . , x5)
with nonnegative coordinates satisfying x1 + x2 ≤ x4 + x5, as

ET =

∫
X

(fT (x1, x2, x3, x4, x5) + fT (x4, x5, x3, x1, x2)) e−x1−x2−···−x5dx1dx2 · · · dx5.

Let (x1, x2, . . . , x5) ∈ X. To establish the inequality of the integrals in the propo-
sition, it therefore suffices to prove the corresponding inequality of the integrands,

fT ′(x1, x2, x3, x4, x5) + fT ′(x4, x5, x3, x1, x2) (2.4.2)

≤ fT (x1, x2, x3, x4, x5) + fT (x4, x5, x3, x1, x2).

Let P0 be an element of P that attains the maximum value in the definition of
fT ′(x1, x2, x3, x4, x5). Then by the symmetry of T ′ (and b′), an element of P that
attains the maximum in the definition of fT ′(x4, x5, x3, x1, x2) is P1, formed from P0

by exchanging e1 with e4 and exchanging e2 with e5. The left side of Equation (2.4.2)
is then the biased weight W0(b

′) of P0 with weights (x1, x2, x3, x4, x5) and biases
b′, plus the biased weight W1(b

′) of P1 with weights (x4, x5, x3, x1, x2) and biases
b′. A lower bound for the right side of Equation (2.4.2) is the biased weight W0(b)
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of P0 with weights (x1, x2, x3, x4, x5) and biases b, plus the biased weight W1(b) of
P1 with weights (x4, x5, x3, x1, x2) and biases b. Thus to prove Equation (2.4.2) it
suffices to show W0(b

′) + W1(b
′) ≤ W0(b) + W1(b). There are two cases.

If P0 = {e1, e2, e4, e5}, then P0 = P1 and

W0(b)−W0(b
′) = x1(b1 − b′1) + x2(b1 − b′1) + x4(b5 − b′1) + x5(b5 − b′1)

W1(b)−W1(b
′) = x4(b1 − b′1) + x5(b1 − b′1) + x1(b5 − b′1) + x2(b5 − b′1),

giving us
W0(b)−W0(b

′) + W1(b)−W1(b
′) = 0

using the definition of b′.
Otherwise, P0 includes e3, exactly one of {e1, e2} and exactly one of {e4, e5}.

Write P0 = {eL, e3, eR}. We have

W0(b
′) = W1(b

′) = b′1(xL + xR) + b3x3

W0(b) = bLxL + b3x3 + bRxR

W1(b) = bLxR + b3x3 + bRxL

giving us

W0(b)−W0(b
′) = xL(bL − b′1) + xR(bR − b′1)

W1(b)−W1(b
′) = xL(bR − b′1) + xR(bL − b′1).

Since bL + bR = b1 + b5 = 2b′1 we conclude

W0(b)−W0(b
′) + W1(b)−W1(b

′) = 0.

So, it suffices to consider b of the form

b = (b, b, 1− 4b, b, b)

with 0 < b < 1/4.
To evaluate the integral ET we exploit some of its symmetry. It suffices to

integrate over only nonnegative x1, x2, x3, x4, x5 satisfying x1 ≤ x2 and x4 ≤ x5 and
multiply the final result by 4. For such points, only two of the P ∈ P can attain
the maximum in the definition of fT , giving us

fT (x) = fT (x1, x2, x3, x4, x5) = max{bx1 + bx2 + bx4 + bx5, bx2 + (1− 4b)x3 + bx5}.

We split the region of integration into two parts, according to whether

bx1 + bx2 + bx4 + bx5 ≥ bx2 + (1− 4b)x3 + bx5,

i.e. b(x1 + x4)/(1− 4b) ≥ x3. The integrals are∫ ∞

x2=0

∫ ∞

x5=0

∫ x2

x1=0

∫ x5

x4=0

∫ b(x1+x4)
1−4b

x3=0

b(x1 + x2 + x4 + x5)e
−x1−x2−x3−x4−x5dx1dx2 · · · dx5
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and∫ ∞

x2=0

∫ ∞

x5=0

∫ x2

x1=0

∫ x5

x4=0

∫ ∞

x3=
b(x1+x4)

1−4b

(bx2 + (1− 4b)x3 + bx5)e
−x1−x2−x3−x4−x5dx

which, when evaluated, added together, and multiplied by 4, give us

ET =
4(1− 3b)(5b2 − 5b + 1)

(7b− 2)2
.

For example, b = 1/5 puts an equal bias on every edge and gives ET = 8/9, the
same result we saw for the tree on one degree-3 vertex. To give the central edge e3

twice the bias of the other edges we can put b = 1/6; this gives ET = 22/25 = 0.88.
Using calculus, one can find the best possible choice of b, described in the following
proposition.

Proposition 11 Let T be a biased tree on two degree-3 vertices and four leaf ver-
tices. With b the unique zero of 105b3−90b2 +24b−2 on 0 < b < 1/4 and equipping
T with biases b = (b, b, 1− 4b, b, b) we have

ET =
4(1− 3b)(5b2 − 5b + 1)

(7b− 2)2
≈ 0.8797322

and, for this tree, no other choice of biases b yields a lower value of ET .

2.4.4 Three non-leaf vertices

Let T be a biased tree on three non-leaf vertices and five leaf vertices. This is a
complete binary tree on six edges with one additional edge e1 joining the root to
an additional vertex. Denote by e2 and e3 the other edges incident to the root.
Denote by e4 and e5 the edges incident with e2. Denote by e6 and e7 the two edges
incident with e3. We will consider biases of the form

b =

(
b,

1− 5b

2
,
1− 5b

2
, b, b, b, b

)
with 0 < b < 1/5. This puts a common bias b on edges incident with a leaf and
another common bias on the other two edges.

By symmetry we may compute ET by integrating over only x4 ≤ x5 and x6 ≤ x7

and multiplying the final result by 4. In this range, fT is the maximum of four
expressions,

1. b(x4 + x5 + x6 + x7),

2. bx1 + (1− 5b)x2/2 + b(x5 + x6 + x7),

3. (1− 5b)(x2 + x3)/2 + b(x5 + x7), and

4. bx1 + (1− 5b)x3/2 + b(x4 + x5 + x7).
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To compute the integral, the region of integration is divided into four parts,
according to which of the above expressions gives the maximum. We present the
details for the first part only.

The first expression exceeds the other three if and only if bx4 > bx1+(1−5b)x2/2
and bx6 > bx1 + (1− 5b)x3/2. To express the integral over this part as an iterated
integral, we divide the part into two regions, according to whether x4 > x6 or not.
The region on which x4 > x6 gives the integral∫ ∞

x4=0

∫ x4

x6=0

∫ x6

x1=0

∫ 2b(x4−x1)
1−5b

x2=0

∫ 2b(x6−x1)
1−5b

x3=0

∫ ∞

x5=x4

∫ ∞

x7=x6

Idx1dx2dx3dx4dx5dx6dx7

where the integrand is

I = b(x4 + x5 + x6 + x7)e
−x1−x2−x3−x4−x5−x6−x7

which evaluates to
1

100

(73b− 17)b3

(4b− 1)3
.

The region on which x6 > x4 gives

1

100

(73b− 17)b3

(4b− 1)(16b2 − 8b + 1)
.

The other three parts can be expressed and evaluated similarly, giving a final result
of

ET =
726b4 − 601b3 + 245b2 − 55b + 5

5(1− b)(4b− 1)2
.

(See Appendix A for an implementation in Maple.) Setting b = 1/7 puts an equal
bias on every edge and gives ET = 832/945 ≈ 0.8804. To give the central edges
twice the bias of the other edges we can put b = 1/9; this gives ET = 328/375 ≈
0.8747. Using calculus, one finds that the best possible choice of b is the unique
zero of −3993b4 +2765b3 +1452b5−804b2 +105b−5 on 0 < b < 1/5. This produces
ET ∈ (0.8741, 0.8742), giving us the following proposition.

Proposition 12 The number c∗ = 0.8742 is k-admissible for k = 7.

Using the same method, one can show that c∗ = 0.8697 is k-admissible for k = 9.
Computer simulations suggest that the value of c∗ decreases only slightly as k is
increased further so we do not pursue this here.

2.5 Circumference of a random prekernel with

given degree sequence

In the previous sections we have established Lemma 7, an a.a.s. upper bound on
the weight of the heaviest cycle in certain randomly-edge-weighted pseudographs.
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In this section we use that lemma to establish an upper bound on the circumference
of a random prekernel whose degree sequence satisfies certain conditions. In later
sections we will see that the degree sequence of the prekernel of Gn,M a.a.s. satisfies
these conditions, allowing us to use this result to establish an a.a.s. upper bound
on the circumference of the prekernel of Gn,M .

One of the challenges in this section arises because Lemma 7 is a statement about
non-random pseudographs with random edge weightings, while we are proving a
statement about random prekernels. The kernel configuration model of Pittel and
Wormald, described below, allows us to rigorously make this transition. It combines
a pairing model, for generating the kernel, with a random sequence of weights on
the kernel edges.

Another challenge in this section is to show that the conditions on the degree
sequence imply that the hypotheses of Lemma 7 are satisfied. One hypothesis
requires that there are few edges incident with vertices whose degree exceeds 3.
Another hypothesis requires that the number of short cycles in the kernel be small.
In  Luczak’s proof of his upper bound for the circumference of Gn,M in the super-
critical phase, he established the first hypothesis by direct enumeration over degree
sequences. We present an alternative derivation. As for the hypothesis about short
cycles,  Luczak had no need for this. In [7] and [35] there are results about short
cycles arising in this pairing model. However, these results apply only when the
maximum degree is bounded, so they cannot be used for our application.

We are interested in studying prekernels with a given degree sequence d = (di).
We say that d is a prekernel degree sequence if its number of terms v = v(d) is
finite, each term is a positive integer at least 2, and r = r(d) =

∑
i(di − 2) is even.

For j = 2, 3, . . . we define

Dj = Dj(d) = |{i : di = j}|. (2.5.1)

The kernel configuration model H(d) is used to generate prekernels with degree
sequence d. It has been used successfully to calculate improved estimates for the
size of the core, excess, and tree mantle [26]. We describe the model next.

For each i with di ≥ 3 create a set Si of di points. Let P be the set of perfect
matchings on the union of these sets of points and choose P ∈ P uniformly at
random. Then, assign the remaining numbers {i : di = 2} to the edges of the
perfect matching and, for each edge, choose a linear order for these numbers. The
assignments and the linear ordering, denoted by f , are chosen uniformly at random.
The pair (P, f) defines a random configuration in the model H(d).

Each configuration (P, f) corresponds to a prekernel G(P, f) by collapsing each
set Si to a vertex (producing a kernel K(P )) and placing the degree-2 vertices on
the edges of the kernel according to the assignment and linear orderings.

Lemma 13 Let d = d(n) be a prekernel degree sequence satisfying v = v(d) →∞,
r = r(d) →∞, r = o(v), D3 = D3(d) ∼ r, and∑

i:di≥3

(
di

2

)
< 4r.
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Fix a positive integer k ≥ 2 and suppose that the positive constant c∗ is k-admissible.
For a random configuration (P, f) in H(d), the longest cycle in G(P, f) has length
a.a.s. at most c∗v as n →∞.

Proof. Define P∗ to be the set of P ∈ P for which K(P ) has at most
√

r edges in
cycles of length at most k. We will show that a random configuration (P, f) a.a.s.
has P ∈ P∗. Recall that P is a random perfect matching on the points in the union
of the Si. For j ∈ {1, 2, . . . , k}, the number of ways of choosing j pairs of points to
form a cycle is at most

1

2j

(∑
i:di≥3

2

(
di

2

))j

= O
(
rj
)
.

The probability that j given pairs of points appear in the pairing P is asymptotic
to

(
∑

i:di≥3

di)
−j

since j is bounded. Now ∑
i:di≥3

di >
∑

i:di≥3

(di − 2)

=
∑

i

(di − 2)

= r

so the expected number of cycles of length j is O(rjr−j) = O(1). Since k is fixed,
the expected number of edges in such cycles is also O(1). By Markov’s inequality,
the number of edges in cycles of length j is a.a.s. bounded above by any function
ω = ω(n) →∞, in particular

√
r/k. Thus, a.a.s. P ∈ P∗.

Let (P, f) be a random configuration from H(d). Define G′(P, f) to be the edge-
weighted pseudograph whose underlying pseudograph is K(P ) and whose edge-
weight on e, for each edge e, is one more than the number of vertices assigned to
e by f . Let A be the event that the heaviest cycle in G′(P, f) has weight at most
c∗v. Let P0 be the P ∗ minimizing P[A | P = P ∗] over P ∗ ∈ P∗. The minimum
exists because P∗ is finite. Next we verify that, conditioned on P = P0, G′(P, f)
satisfies the hypotheses of Lemma 7. The number of vertices v′ of G′(P, f) is at
least D3 ∼ r → ∞. The minimum degree is at least 3 because it is a kernel. The
number of edges incident to cycles of length at most k (including loops and parallel
edges) is at most

√
r = o(r) = o(v′) since P0 ∈ P∗. The number of edges incident

to vertices of degree greater than 3 is at most∑
j:dj≥4

dj ≤ 2
∑

j:dj≥4

(dj − 2)

= 2
∑

j

(dj − 2)− 2D3

= 2r − 2D3

= o(r)
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which is o(v′). The number of edges m′ satisfies

2m′ =
∑

j:dj≥3

dj

= 3D3 + o(r)

by the previous calculation, so m′ = O(D3) = O(r) = o(v). To see that m′ is
little-oh of the sum N of the edge-weights, observe that N is the number of edges
of G(P, f), which is

∑
j dj/2 ≥ v. Next observe that the edge weights form a

sequence of positive integers that is determined by the assignment f in the random
configuration. There are exactly |{i : di = 2}|! choices for f that produce any given
sequence, so the sequence is chosen uniformly at random. We have shown that
the hypotheses of Lemma 7 hold for G′(P, f) conditioned on P = P0, so we have
P[A | P = P0] = 1− o(1). Now

P[A] ≥
∑

P ∗∈P∗
P[A | P = P ∗]P[P = P ∗]

≥ P[A | P = P0]
∑

P ∗∈P∗
P[P = P ∗]

by the choice of P0. Since we showed P ∈ P∗ a.a.s. we get P[A] = 1− o(1); that is,
the heaviest cycle in G′(P, f) a.a.s. has weight at most c∗v. But if C is a cycle in
G(P, f) of some length l, C corresponds naturally to a cycle in G′(P, f) of weight
l. So the longest cycle in G(P, f) a.a.s. has length at most c∗v.

Corollary 14 Let d = d(n) be a prekernel degree sequence satisfying v = v(d) →
∞, r = r(d) →∞, r = o(v), D3 = D3(d) ∼ r, and∑

i:di≥3

(
di

2

)
< 4r.

Fix k ≥ 2 and suppose that the positive constant c∗ is k-admissible. Let G be chosen
uniformly at random from all prekernels with degree sequence d. The longest cycle
in G has length a.a.s. at most c∗v as n →∞.

Proof. The probability space H(d), conditioned on the event that G(P, f) is a
simple graph, is a uniform probability space on the prekernels with degree sequence
d ([26], Lemma 3). By Lemma 5 in [26], G(P, f) is a.a.s. a simple graph. (In
fact, Lemma 5 in [26] is stated with an additional hypothesis on max di, but this
hypothesis is not used in the proof.) The result now follows from Lemma 13.

2.6 Truncated multinomial distribution

In order to apply Corollary 14 to the prekernel of Gn,M , we must verify the hy-
potheses about properties of the degree sequence. We give a new derivation of
these properties, which will require some facts about the following distribution.
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Let v and t be positive integers. The probability space Multi(v, t) consists of
vectors (d1, d2, . . . , dv) with distribution

P[d1 = j1, d2 = j2, . . . , dv = jv] =
t!

vtj1!j2! · · · jv!

for any vector (j1, j2, . . . , jv) of nonnegative integers summing to t. This is the well-
known multinomial distribution, modelling the number of balls in each bin when
each of t balls is tossed into one of v bins, independently and uniformly at random.
The space Multi(v, t)|≥2 is obtained from Multi(v, t) by conditioning on the event
that each di ≥ 2.

Lemma 15 Let v = v(n) and r = r(n) satisfy v → ∞, r → ∞ and r = o(v). If
the random vector d is distributed as Multi(v, 2v+r)|≥2 then a.a.s. D3(d) ∼ r and∑

i:di≥3

(
di

2

)
< 4r.

Proof. Define the positive number λ by

λ(eλ − 1)

eλ − 1− λ
= 2 +

r

v
.

In [11], the authors show that λ exists and they use it to define a vector of indepen-
dent truncated Poisson random variables which approximate Multi(v, 2v + r)|≥2

as follows. Define the random variable Y taking values j = 2, 3, . . . according to
the distribution

P[Y = j] = pj =
λj

j!(eλ − 1− λ)
.

Consider the probability space formed by vectors Y = (Y1, Y2, . . . , Yv) of v inde-
pendent copies of Y and let Σ be the event that their sum satisfies

∑
i Yi = 2v + r.

For nonnegative integers j1, j2, . . . , jv summing to 2v + r with each ji ≥ 2 we have

P[Y1 = j1, . . . , Yv = jv] =
λ2v+r

(eλ − 1− λ)v

v∏
i=1

1

ji!

so this probability space, conditioned on Σ, is identical to Multi(v, 2v + r)|≥2.
Equation (5.7) in [26] says that

P

[
max

i
Yi < log v or

∑
i:Yi≥3

(
Yi

2

)
≥ 4r | Σ

]
= O(r−1 + rv−1).

The second claim in the lemma follows. Theorem 4(a) in [25] states that for r →∞,

P[Σ] =
1 + O(r−1)√

2πvc(1 + η̄ − c)

28



where c(1 + η̄ − c) ∼ c− k = r/v by Equation (20) in [25]. It follows that

P[Σ]−1 = O(
√

r). (2.6.1)

To establish the first claim in the lemma, we observe that D3(Y) is distributed as a
binomial random variable with v trials and p3 probability of success. By Chernoff’s
bound,

P [|D3(Y)− vp3| > a] < 2 exp(−a2/(3vp3))

for 0 < a ≤ vp3. Recalling (2.6.1), in Multi(v, 2v + r)|≥2 we have

P [|D3(d)− vp3| > a] = O(
√

r) exp(−a2/(3vp3)).

Setting a =
√

vp3 log r (which satisfies a ≤ vp3, as we will see shortly) we get
D3(d) = vp3 + O(

√
vp3 log r) with probability 1 − O(exp(−(log r)2/3)). Now λ ∼

3rv−1 by Theorem 1(a) in [25], so

vp3 = v
λ3

3!(eλ − 1− λ)

= v
λ3

3!(λ2/2 + O(λ3))

=
1

3
vλ(1 + O(λ))

= r(1 + O(rv−1))

giving us D3(d) ∼ r a.a.s. as required.

2.7 Properties of vertex degrees in Gn,M

Now we proceed to establish the properties of the degree sequence of the prekernel
of Gn,M that are required to apply Corollary 14. Recall that we are assuming
M = M(n) = n/2 + s for some s = s(n) satisfying s = o(n) and n2/3 = o(s). For
this range of M , it is well-known that Gn,M a.a.s. has a unique component with
maximum number of vertices [6], which we call the largest component.

We begin by showing a.a.s. there are few vertices in the core that lie outside the
largest component. The next result is part of the proof of Theorem 4 of [23]. Here
we present a slightly more thorough proof.

Lemma 16 Let M = M(n) = n/2 + s for some s = s(n) satisfying s = o(n) and
n2/3 = o(s). The number of vertices in cycles of Gn,M not in the largest component
is a.a.s. at most ωn/s for any ω = ω(n) →∞.

Proof. Let Ḡ be the graph formed from Gn,M by removing its (lexicographically
first) largest component. Let n(Ḡ) and M(Ḡ) represent its number of vertices and
edges, respectively. Let ε > 0 and define S to be the set of ordered pairs (n̄, M̄)
satisfying
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1. (1− ε)4s ≤ n− n̄ ≤ (1 + ε)4s,

2. (1− ε)4s ≤ M − M̄ ≤ (1 + ε)4s, and

3. P[n(Ḡ) = n̄, M(Ḡ) = M̄ ] > 0.

It is known that the largest component of Gn,M has a.a.s. 4s(1 + o(1)) vertices and
4s(1 + o(1)) edges [6, 22]. So a.a.s. (n(Ḡ), M(Ḡ)) ∈ S. For (n̄, M̄) ∈ S we have
M̄ ≤ M − 4s(1− ε) = n/2 + s− 4s(1− ε) and n ≤ n̄ + 4s(1 + ε), giving us

M̄ ≤ n̄/2− s(1− 6ε). (2.7.1)

To estimate the number X of vertices in cycles in Ḡ we let (n̄, M̄) ∈ S and condition
on the non-empty event n(Ḡ) = n̄, M(Ḡ) = M̄ . In the conditioned space, Ḡ is
equally likely to be any graph on n̄ vertices and M̄ edges. For 3 ≤ k ≤ n̄ the
number of such graphs having a cycle of length k is at most(

n̄

k

)
k!

2k

( (
n̄
2

)
M̄ − k

)
so the expected value of X in this conditioned space is

E[X | n(Ḡ) = n̄, M(Ḡ) = M̄ ] ≤
n̄∑

k=3

k

(
n̄

k

)
k!

2k

( (
n̄
2

)
M̄ − k

)((n̄
2

)
M̄

)−1

=
1

2

n̄∑
k=3

n̄!

(n̄− k)!

((
n̄
2

)
−M − k

)
!((

n̄
2

)
−M

)
!

M̄ !

(M̄ − k)!

<
1

2

n̄∑
k=3

n̄kM̄k

(
(

n̄
2

)
− n̄)k

.

Using (2.7.1) this becomes

E[X | n(Ḡ) = n̄, M(Ḡ) = M̄ ] <
1

2

n̄∑
k=3

( n̄
2
− s(1− 6ε)

n̄−1
2
− 1

)k

<
1

2

n̄∑
k=3

(
1− s(1− 6ε)

n̄− 3

)k

<
1

2

∞∑
k=3

(
1− s(1− 6ε)

n̄− 3

)k

=
1

2
× n̄− 3

s(1− 6ε)

which is at most n/s for n sufficiently large. By Markov’s inequality,

P[X ≥ ωn/s | n(Ḡ) = n̄, M(Ḡ) = M̄ ] ≤ E[X | n(Ḡ) = n̄, M(Ḡ) = M̄ ]

ωn/s

<
1

ω
.
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So

P[X < ωn/s] ≥ P[X < ωn/s, (n(Ḡ), M(Ḡ)) ∈ S]

=
∑

(n̄,M̄)∈S

(P[X < ωn/s | n(Ḡ) = n̄, M(Ḡ) = M̄ ]

×P[n(Ḡ) = n̄, M(Ḡ) = M̄ ])

≥
(

1− 1

ω

)
P[(n(Ḡ), M(Ḡ)) ∈ S]

=

(
1− 1

ω

)
(1− o(1))

since a.a.s. (n(Ḡ), M(Ḡ)) ∈ S. Therefore a.a.s. X < ωn/s.

Instead of proving results about the degree sequence of the prekernel of Gn,M

directly, we will actually prove results about the degree sequence of the core. The
next result will allow us to transfer results about the core to the prekernel.

Lemma 17 Let M = M(n) = n/2 + s for some s = s(n) satisfying s = o(n) and
n2/3 = o(s). The core of the largest component of Gn,M is a.a.s. formed from the
core of Gn,M by removing o(s2/n) vertices of degree 2. Also, the prekernel of Gn,M

is a.a.s. formed from the core of Gn,M by removing o(s2/n) vertices of degree 2.

Proof. It is well-known that the largest component of Gn,M is a.a.s. the only com-
ponent that has more than one cycle. (See Theorem 5.12 in [20].) So, the core of
Gn,M is a.a.s. composed of the core of the largest component together with some
cycle components. By Lemma 16 the number of vertices in the cycle components
is a.a.s. at most ωn/s = (s/n2/3)(n/s) = n1/3 = (n2/3)2/n = o(s2/n), since we
may take ω = s/n2/3. Because the largest component of Gn,M a.a.s. contains more
than one cycle, it follows that these cycle components are a.a.s. all of the cycle
components in the core of Gn,M , making the prekernel a.a.s. equal to the core of the
largest component.

Now we establish the required properties of the degree sequence of the prekernel
of Gn,M . Recall the definitions of Dj(d), v(d), r(d) from (2.5.1). The results about
r(d), v(d), and D3(d) in the following lemma were used by  Luczak [23]. He used
the estimate of r(d) from [22] to establish estimates for Dj(d) and v(d) by direct
enumeration over degree sequences. Instead of studying the prekernel directly, he
studied the core of the largest component. Our proof method is different, using the
known estimates of v(d) and r(d) to establish results about the degree sequence of
the core.

Lemma 18 Let M = M(n) = n/2 + s for some s = s(n) satisfying s = o(n) and
n2/3 = o(s). Let d be the degree sequence of the prekernel of Gn,M . Then, a.a.s.
v(d) ∼ 8s2/n, r(d) ∼ D3(d) ∼ 32s3/(3n2), and∑

i:di≥3

2

(
di

2

)
< 4r(d).
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Proof. By Lemma 17 the prekernel differs from the core a.a.s. by o(s2/n) vertices
of degree 2. Thus, it suffices to prove the lemma for the degree sequence d of the
core. Appealing to Lemma 17 again, the core differs from the core of the largest
component a.a.s. by o(s2/n) vertices of degree 2. It is known [26] that the degree
sequence d′ of the core of the largest component a.a.s. has v(d′) ∼ 8s2/n and
r(d′) ∼ 32s3/(3n2), so we must have a.a.s. v(d) ∼ 8s2/n and r(d) ∼ 32s3/(3n2)
also. Letting ε > 0, this means d ∈ S a.a.s. where S is the set of ordered pairs
(v̄, r̄) satisfying

1. (1− ε)8s2/n ≤ v̄ ≤ (1 + ε)8s2/n,

2. (1− ε)32s3/(3n2) ≤ r̄ ≤ (1 + ε)32s3/(3n2), and

3. P[v(d) = v̄, r(d) = r̄] > 0.

We note that for (v̄, r̄) ∈ S we have r̄ = o(v̄) since (s3/n2)/(s2/n) = s/n = o(1)
and both v̄ →∞ and r̄ →∞ since n2/3 = o(s).

To establish the remaining properties of the degree sequence of the core of Gn,M

we use Theorem 2 of [11], which proves the existence of a probability space of
ordered pairs (G, I) in which

1. G, conditioned on the event I = 1, is distributed as the core of Gn,M ,

2. P[I = 1] = Ω(1), and

3. the degree sequence d(G) of G, conditioned on v(d(G)) = v̄ and r(d(G)) = r̄,
is distributed as Multi(v̄, 2v̄ + r̄)|≥2.

(The statement of Theorem 2 of [11] actually includes the hypothesis M ≥ n which
is not satisfied here; however, that hypothesis is not needed for their proof.)

Write v = v(d(G)), r = r(d(G)) and let A be the event that

1. (1− ε)32s3/(3n2) ≤ D3(d(G)) ≤ (1 + ε)32s3/(3n2), and

2.
∑

i:di(G)≥3 2
(

di(G)
2

)
< 4r.

To prove the lemma, we must show P[A | I = 1] = 1 + o(1) or equivalently
P[AC | I = 1] = o(1), where XC denotes the complement of event X. We begin by
writing

P[AC | I = 1] = P[AC , (v, r) ∈ S | I = 1] + P[AC , (v, r) 6∈ S | I = 1].

The second term is at most P[(v, r) 6∈ S | I = 1] which is o(1) because d(G),
conditioned on I = 1, is distributed like the degree sequence of the core of Gn,M .
We write the first term as

P[AC , (v, r) ∈ S | I = 1] =
∑

(v̄,r̄)∈S

P[AC , v = v̄, r = r̄ | I = 1]
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= P[I = 1]−1
∑

(v̄,r̄)∈S

P[AC , v = v̄, r = r̄, I = 1]

≤ P[I = 1]−1
∑

(v̄,r̄)∈S

P[AC , v = v̄, r = r̄]

= P[I = 1]−1
∑

(v̄,r̄)∈S

P[AC , v = v̄, r = r̄]P[v = v̄, r = r̄]

P[v = v̄, r = r̄]

= P[I = 1]−1
∑

(v̄,r̄)∈S

P[AC | v = v̄, r = r̄]P[v = v̄, r = r̄]

≤ P[I = 1]−1P[AC | v = v̂, r = r̂]P[(v, r) ∈ S]

where (v̂, r̂) is the ordered pair maximizing P[AC | v = v̄, r = r̄] over all (v̄, r̄) ∈
S. (The maximum exists because S is finite.) We now use the properties of the
distribution of (G, I) to estimate each of P[I = 1]−1, P[AC | v = v̂, r = r̂],
and P[(v, r) ∈ S]. We have already noted that P[I = 1] = Ω(1), so we have
P[I = 1]−1 = O(1). Since (v̂, r̂) ∈ S we have v̂ → ∞, r̂ → ∞, and r̂ = o(v̂).
We know that, conditioned on v = v̂ and r = r̂, the degree sequence of G is
distributed as Multi(v̂, 2v̂ + r̂)|≥2. Lemma 15 tells us that event A occurs a.a.s. in
this model so we have P[AC | v = v̂, r = r̂] = o(1). Finally, we may crudely estimate
P[(v, r) ∈ S] = O(1). Combining these estimates we get P[AC | I = 1] = o(1) as
required.

2.8 Circumference of Gn,M

Lemma 19 Let M = M(n) = n/2 + s for some s = s(n) satisfying s = o(n) and
n2/3 = o(s). Fix k and suppose that the positive constant c∗ is k-admissible. The
circumference of Gn,M is a.a.s. at most (8c∗ + o(1))s2/n.

Proof. Every cycle in a graph lies in the graph’s core. By Lemma 17 the prekernel
G of Gn,M is formed from the core of Gn,M by removing o(s2/n) vertices of degree
2. So, to prove the lemma, it suffices to show that the circumference of G is a.a.s.
at most (8c∗ + o(1))s2/n.

By Lemma 18 there exists ω = ω(n) →∞ such that the degree sequence d(G)
of G a.a.s. lies in the set D of prekernel degree sequences d satisfying

1. ∑
i:di≥3

2

(
di

2

)
< 4r(d),

2. (1− ω−1)8s2/n ≤ v(d) ≤ (1 + ω−1)8s2/n,

3. (1− ω−1)32s3/(3n2) ≤ r(d) ≤ (1 + ω−1)32s3/(3n2),

4. (1− ω−1)32s3/(3n2) ≤ D3(d) ≤ (1 + ω−1)32s3/(3n2), and
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5. P[d(G) = d] > 0.

Define A to be the event that the circumference of G is at most c∗v(d(G)). We
have

P[A] ≥
∑
d∈D

P[A | d(G) = d]P[d(G) = d].

Suppose that P[A | d(G) = d] is minimized over d ∈ D by d = d∗. (The minimum
exists since D is finite.) Then

P[A] ≥ P[A | d(G) = d∗]
∑
d∈D

P[d(G) = d]

= P[A | d(G) = d∗](1 + o(1))

since a.a.s. d ∈ D.
In general, the number of graphs on n vertices and M edges that have a given

graph as their prekernel depends only on the number of vertices and edges of the
given prekernel. So, conditioning on the event d(G) = d∗, G is equally likely to
be each prekernel with degree sequence d∗. The probability P [A | d(G) = d∗] is
thus the probability that a graph, chosen uniformly at random from all prekernels
of degree sequence d∗, has circumference a.a.s. at most c∗v. Since d∗ ∈ D, we may
apply Corollary 14 to conclude that this probability is 1+o(1). Thus P[A] = 1+o(1).
In other words, the circumference of G is a.a.s. at most c∗v(d(G)). But we have
seen v(d(G)) ∼ 8s2/n a.a.s. so the circumference is a.a.s. at most (8c∗ + o(1))s2/n,
as required.

Proof of Theorem 1. Proposition 12 tells us that c∗ = 0.8742 is k-admissible
for k = 7. By Lemma 19 the circumference of Gn,M is a.a.s. at most (8c∗ +
o(1))s2/n < (7 + o(1))s2/n.
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Chapter 3

A contiguity result for random
d-regular graphs

3.1 Introduction

In this chapter we prove the new contiguity result (1.4.2) for random d-regular

graphs Gn,d. Recall from Section 1.4 that it suffices to show (1.4.1); i.e. Gn,d ≈ G(Y )
n,d

where Y is the random variable counting the number of j-edge matchings in Gn,d.
Before beginning the proof, we introduce some of the tools that will be used.

The pairing model and small subgraph conditioning method are standard tools for
studying random d-regular graphs and they will be used throughout the following
chapters.

3.2 Pairing model

The pairing model or configuration model Pn,d was first introduced by Bollobás [7].
A pairing in Pn,d is a perfect matching on a set of dn points which are grouped into
n cells of d points each. A random pairing naturally corresponds in an obvious way
to a random d-regular pseudograph (possibly containing loops or parallel edges),
in which each cell becomes a vertex. The facts that we need about Pn,d are the
following. (See [20] for proofs or more details.) The restriction of Pn,d to the set
of graphs with no loops or parallel edges gives precisely the uniform distribution
on Gn,d. The event in Pn,d that no loop or parallel edge is formed has probability
bounded away from 0 as n →∞; thus any event that holds a.a.s. in Pn,d also holds
a.a.s. in Gn,d. The model Pn,d is advantageous because it is usually easier to count
pairings having a certain property in Pn,d rather than graphs in Gn,d. For example,
there is no simple expression for |Gn,d|, but it is easy to see that

|Pn,d| = (nd− 1)(nd− 3) · · · 1

which we denote by (nd− 1)!!.
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3.3 Small subgraph conditioning

The small subgraph conditioning method was introduced by Robinson and Wormald
[28, 29] in their proof that random 3-regular graphs are a.a.s. Hamiltonian. See [20,
Chapter 9] and [36] for a full exposition.

The setting for the method is as follows. A random variable, Y = Yn, counts
occurrences of some structure, and depends on a parameter n which tends to ∞.
The expectation EY tends to infinity, and we want to show that P(Y > 0) → 1.
The small subgraph conditioning method actually establishes a contiguity result.
The method applies when the variance of Y is of the same order as (EY )2. The
main computation required is the asymptotic value of some joint moments of the
numbers of certain small subgraphs and the random variable Y . The result which
the method depends on can be stated as follows (a consequence of [36, Corollary
4.2]). (We use [x]m := x(x − 1) · · · (x − m + 1) to denote falling factorials and
∧k∈KEk to denote the intersection of the events {Ek : k ∈ K}.)

Theorem 20 Let λk > 0 and δk ≥ −1 be real numbers for k = 1, 2, . . . and suppose
that for each n there are random variables Xk = Xk(n), k = 1, 2, . . . and Y = Y (n),
all defined on the same probability space G = Gn such that Xk is nonnegative integer
valued, Y is nonnegative and EY > 0 (for n sufficiently large). Suppose furthermore
that

(i) For each j ≥ 1, the variables X1, . . . , Xj are asymptotically independent Pois-
son random variables with EXk → λk,

(ii) if µk = λk(1 + δk), then

E(Y [X1]m1 · · · [Xj]mj
)

EY
→

j∏
k=1

µmk
k (3.3.1)

for every finite sequence m1, . . . ,mj of nonnegative integers,

(iii)
∑

k λk δk
2 < ∞,

(iv) E(Y 2)/(EY )2 ≤ exp(
∑

k λk δk
2) + o(1) as n →∞.

Then Ḡ ≈ Ḡ(Y ), where Ḡ denotes the space G conditioned on the event E =
∧k:δk=−1{Xk = 0}. In particular, P(Y > 0 | E) → 1.

3.4 Outline of proof of (1.4.1)

The proof applies the small subgraph conditioning method (Theorem 20) to the
number of j-edge matchings in a random d-regular graph.

We make our calculations in the pairing model Pn,d. A j-edge matching in a
pairing P ∈ Pn,d is a set of j pairs in P that project to a j-edge matching in the
pseudograph associated with P ; i.e. with the property that no two points in these
pairs lie in the same cell.
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To apply small subgraph conditioning we will need the following asymptotic
estimates.

Lemma 21 Let Y be the random variable counting the number of j-edge matchings
in Pn,d. For i = 1, 2, . . . let Xi be the number of cycles of length i in Pn,d. Then,
letting γ = j/n,

(a)

EY ∼

√
1

2πnγ(1− 2γ)

(
(d− 2γ)d/2−γ

dd/2−2γ2γγγ(1− 2γ)1−2γ

)n

,

(b) for every finite sequence of nonnegative integers m1, m2, . . . ,mk,

E(Y [X1]m1 · · · [Xk]mk
)

EY
∼

k∏
i=1

(λi (1 + δi))
mi

where λi = (d− 1)i/(2i) and δi = (−2γ)i(d− 2γ)−i for i = 1, 2, . . ., and

(c)
E(Y 2)

(EY )2
∼ d− 2γ√

8γ2 − 4γ2d− 4γd + d2
.

In the remainder of this chapter we perform the calculations to verify Lemma 21
and then use small subgraph conditioning to prove (1.4.1).

3.5 Proof of Lemma 21(a) and (b)

To determine EY we enumerate all possible j-edge matchings in Pn,d and the pair-
ings that contain them. A j-edge matching is determined by choosing 2j of the n
cells to be the cells of the matching, then choosing one of the d points in each of
these cells, and finally choosing a perfect matching on these 2j points. This gives(

n

2j

)
d2j(2j − 1)!!

possible j-edge matchings. Once a j-edge matching has been chosen, the pairing is
completed by putting a perfect matching on the remaining dn− 2j points, thus

EY =
1

|Pn,d|

(
n

2j

)
d2j(2j − 1)!!(dn− 2j − 1)!!. (3.5.1)

Substituting |Pn,d| = (dn − 1)!! and using Stirling’s formula establishes Lemma
21(a).

Next we prove a special case of Lemma 21(b). Let i ∈ {1, 2, . . .}. We will show

E(Y Xi)

EY
∼ λi(1 + δi). (3.5.2)
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To determine E(Y Xi) we will enumerate, for each j-edge matching M , and each
rooted oriented cycle C compatible with M , all of the pairings that contain M and
C. Using rooted oriented cycles introduces a factor of 2i into the counting.

In general, at this stage in the method of small subgraph conditioning, one must
enumerate pairings that contain a given cycle and some other structure. Usually it
is advantageous to group the terms according to the interaction between the cycle
and the other structure. This interaction is often represented by a sequence. The
enumeration proceeds using generating functions or other methods. We will use a
method of Janson which simplifies these computations. Janson’s method uses a se-
quence similar to a sequence of states in a Markov chain. The enumeration proceeds
by finding the eigenvalues of a related matrix. (See the note following the proof of
Theorem 4.5 in [36].) It is not trivial to apply Janson’s method, however, because
new sequences must be defined depending on the types of structures involved.

Let M be a j-edge matching. As we saw earlier, the number of ways of choosing
M is (

n

2j

)
d2j(2j − 1)!!.

Next we count all rooted oriented cycles C compatible with M . Observe that each
directed edge of C is one of three types:

1. in the matching,

2. not in the matching, nor is its head incident with a matching edge, or

3. not in the matching, but its head is incident with a matching edge.

Label each edge by the number 1, 2 or 3 according to its type. Define the
intersection type of C to be the sequence of labels on the edges of C. Suppose we
are given an intersection type having a 1’s, b 2’s, and c 3’s. To enumerate all C
with this intersection type, first we choose the cells for the heads of edges of type 3.
The number of ways of doing this is asymptotically (2j)c. This determines all cells
of the cycle except those which are the heads of edges of type 2. These remaining
cells are chosen in one of asymptotically (n− 2j)b ways. Next we choose the points
within the cells that are used by C. The points for edges of type 1 are determined
by M . There are d choices for the head of each edge of type 2 (because any point
in the cell may be chosen) and (d− 1) choices for the head of each edge of type 3
(because one point is already used by the incident matching edge), giving a factor
of db(d − 1)c. It remains to choose the points for the tails of edges of type 2 or
3. There are (d − 1) choices for each of the a edges that follow an edge of type
1. There are (d − 2) choices for each of the c − a edges that follow a cell that is
incident with a matching edge not in the cycle. Finally, there are (d − 1) choices
for each of the remaining b + c− (a + c− a) = b edges. To create the remainder of
the pairing, we must put a perfect matching on all of the dn points except for the
2j that were already chosen in M and the additional 2b + 2c points that are heads
and tails of edges of type 2 or 3 in C. The number of ways of doing this is

(dn− 2j − 2b− 2c− 1)!! ∼ (dn− 2j − 1)!!

(dn− 2j)b+c
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Combining these factors, we have

|Pn,d|E(Y Xi)

∼ (d− 1)i

2i

∑
T

(
n

2j

)
d2j+b(2j − 1)!!(2j)c(n− 2j)b(d− 2)c−a (dn− 2j − 1)!!

(dn− 2j)b+c

where the sum is taken over the set of intersection types T and we have simplified
a + b + c = i. Comparing this expression with (3.5.1) we have

E(Y Xi) ∼ λiEY
∑
T

(2j)c(n− 2j)bdb(d− 2)c−a(dn− 2j)−b−c

∼ λiEY
∑
T

(
1

d− 2

)a(
d(1− 2γ)

d− 2γ

)b(
2γ(d− 2)

d− 2γ

)c

.

To evaluate the sum S in the above expression, we think of each T ∈ T as a sequence
of i states. Each term in the sum is a product of the i factors corresponding to the
states in T . We can think of the factors as being introduced individually during
the “transitions” between the states. Transitions are allowed between all pairs of
states subject to the restriction that edges of type 1 or 2 must be followed by edges
of type 2 or 3. If we let M be the following “transition” matrix 0 1

d−2
1

d−2

0 d(1−2γ)
d−2γ

d(1−2γ)
d−2γ

2γ(d−2)
d−2γ

2γ(d−2)
d−2γ

2γ(d−2)
d−2γ


then S = tr(M i). One can show that M has eigenvalues 0, 1, and (−2γ)(d−2γ)−1,
thus S = 1 + δi. This establishes (3.5.2).

Lemma 21(b) can be proved in a similar manner as follows. The expected value
E(Y [X1]m1 · · · [Xk]mk

) is expressed as a sum enumerating all pairings that contain
a given j-edge matching and ordered set of cycles. We group the terms according
to the number of vertices ν and edges µ of the isomorphism type of the ordered set
of cycles. If the isomorphism type has all cycles cell-disjoint, we have µ = ν = ν0,
defined by

ν0 =
∑

j

mj.

In this case, the enumeration is a direct generalization of the above argument for
E(Y Xi), producing the asymptotic value for Lemma 21(b). It remains to show
that the terms in the remaining cases are negligible. For the remaining cases we
have ν < µ. The enumeration proceeds as in the first case, but with the following
significant differences. Compared to the first case, we lose a factor of O(nν0−ν) when
choosing the cells for the cycle and we gain a factor of O(nν0−µ) when choosing the
pairs of the pairing. Thus, the net change is O(nν−µ) = O(n−1). As there are O(1)
isomorphism types, this shows that the terms in the remaining cases are negligible
compared to those of the first case.
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3.6 Proof of Lemma 21(c)

To determine E(Y 2) we enumerate, for each ordered pair of (not necessarily distinct)
j-edge matchings (M1, M2), all pairings P ∈ Pn,d containing M1 and M2. First we
compute the number N(k, l) of (M1, M2) sharing exactly k pairs and 2k + l cells
(0 ≤ k ≤ j, 0 ≤ l ≤ 2j). The pair (M1, M2) can be chosen as follows. First, choose
the points in the k common pairs. This is done by selecting 2k of the n cells, then
choosing one of d points in each of these selected cells, and then putting a perfect
matching on the 2k chosen points. This gives a factor of(

n

2k

)
d2k(2k − 1)!!.

Next we choose the remaining j−k pairs of M1. By the same argument, the number
of choices is (

n− 2k

2j − 2k

)
d2j−2k(2j − 2k − 1)!!.

We subsequently choose the additional l cells for M2 that are incident with M1.
These must be chosen from cells of M1 that do not contain the common pairs,
giving us (

2j − 2k

l

)
.

The corresponding points can be chosen in one of (d− 1)l ways. In total, 2j of the
cells have been used so far. Next, the remaining 2j − 2k − l cells of M2 and their
corresponding points are chosen from among the n−2j unused cells, giving a factor
of (

n− 2j

2j − 2k − l

)
d2j−2k−l.

Finally, there are (2j − 2k − 1)!! ways to put a perfect matching on the points of
M2 not in common with points of M1. This completes the choice of (M1, M2). We
have shown

N(k, l) =

(
n

2k

)
d2k(2k − 1)!!

(
n− 2k

2j − 2k

)
d2j−2k(2j − 2k − 1)!!

×
(

2j − 2k

l

)
(d− 1)l

(
n− 2j

2j − 2k − l

)
d2j−2k−l(2j − 2k − 1)!!.(3.6.1)

The chosen pair (M1, M2) uses 2j − k points, so the pairing P is completed in one
of (dn− 2j − k − 1)!! ways. Thus,

|Pn,d|E(Y 2) =
∑
k,l

N(k, l)(dn− 2j − k − 1)!! (3.6.2)

By considering the binomial coefficients in the expression for N(k, l), we see that
k and l must satisfy

2j − 2k − l ≥ 0
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n− 4j + 2k + l ≥ 0

k ≥ 0

l ≥ 0.

Recall that Stirling’s formula may be expressed as x! = (x/e)x
√

2πη(x) where η
satisfies η(x) ∼ x if x → ∞ and η(x) = Θ(x + 1) for all x. Putting γ = j/n,
κ = k/n, and λ = l/n, basic manipulations using Stirling’s formula applied to
(3.6.1) and (3.6.2) show that

E(Y 2) ∼ 1

2π2n2

∑
κ,λ

Q(n, κn, λn)F (κ, λ)n (3.6.3)

where

Q(n, k, l) =
n5/2

2

η(2j − 2k)

η(j − k)η(2j − 2k − l)
√

η(k)η(l)η(1− 4j + 2k + l)

and

log F (κ, λ) = g0(κ, λ) +
6∑

i=1

aifi(κ, λ) log fi(κ, λ)

with the fi and ai defined by

a1 = −2 f1(κ, λ) = 2γ − 2κ− λ
a2 = −1 f2(κ, λ) = 1− 4γ + 2κ + λ
a3 = −1 f3(κ, λ) = κ
a4 = −1 f4(κ, λ) = λ
a5 = 1/2 f5(κ, λ) = d− 4γ + 2κ
a6 = 2 f6(κ, λ) = γ − κ

and

g0(κ, λ) =

(
4γ − 2κ− λ− d

2

)
log d + λ log(d− 1) + (2γ − 3κ) log 2.

The sum in (3.6.3) is taken over (κ, λ) which are integer multiples of 1/n lying in
the set R defined to be the pairs (κ, λ) satisfying

2γ − 2κ− λ ≥ 0 (3.6.4)

1− 4γ + 2κ + λ ≥ 0 (3.6.5)

κ ≥ 0 (3.6.6)

λ ≥ 0. (3.6.7)

To estimate the sum in (3.6.3) we study the behaviour of F (κ, λ) over its domain
R, following the approach in [5]. To search for critical points on the interior of R
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we set equal to zero the partial derivatives of log F with respect to κ and λ, then
exponentiate, to get the two simultaneous equations

(d− 4γ + 2κ)(2γ − 2κ− λ)4 − 8κ(γ − κ)2d2(−1 + 4γ − 2κ− λ)2 = 0

−(d− 1)(2γ − 2κ− λ)2 − dλ(−1 + 4γ − 2κ− λ) = 0.

Using computer algebra software such as Maple, we find that the resultant of the
above two polynomials, with respect to λ, is the following polynomial in κ,

−8(2dκ + 4γ − 4κ− d)2d4(−1 + 2γ)4(γ − κ)2(dκ− 2γ2),

whose roots are
d− 4γ

2(d− 2)
, γ,

2γ2

d
.

Since γ < 1/2, the first root is greater than 1/2. In R we have κ ≤ γ < 1/2 , so
κ cannot equal this first root. We discard the second root because κ = γ is on the
boundary of R (see (3.6.4) and (3.6.7)) and we are searching for critical points on
the interior. This leaves κ = κ∗ = 2γ2/d as the only remaining possibility. To find
the corresponding value of λ we substitute (3.6.8) into (3.6.8),

(d− 4γ + 2κ)
d2λ2

(d− 1)2
(−1 + 4γ − 2κ− λ)2 − 8κ(γ − κ)2d2(−1 + 4γ − 2κ− λ)2 = 0

cancel the factor of (−1 + 4γ − 2κ − λ)2 (since this is on the boundary (3.6.5) of
R),

(d− 4γ + 2κ)
d2λ2

(d− 1)2
− 8κ(γ − κ)2d2 = 0,

substitute κ = 2γ2/d, and solve for λ to get λ = ±4γ2(d − 1)/d. Since λ ≥ 0 on
R so we discard the negative solution and put λ = λ∗ = 4γ2(d − 1)/d. We have
shown that (κ∗, λ∗) is the only possible critical point of log F in the interior of R.
Next we verify that (κ∗, λ∗) actually lies in the interior of R. Clearly κ∗ > 0 and
λ∗ > 0. Along the other boundaries (3.6.4) and (3.6.5) we have

2γ − 2κ∗ − λ∗ = 2γ(1− 2γ) > 0

λ∗ − 4γ + 2κ∗ + 1 = (2γ − 1)2 > 0

using 0 < γ < 1/2. So, (κ∗, λ∗) lies in the interior of R. To show that it is indeed
a critical point, one verifies that κ = κ∗ and λ = λ∗ satisfy (3.6.8) and (3.6.8). We
omit the details.

Using computer algebra software such as Maple, one can determine that the
Hessian of log F at (κ∗, λ∗) is a 2-by-2 matrix with upper-left entry

h1,1 =
−(1− 2γ)2d3 − 8γ2d (2d(1− 2γ) + (d− 3) + 4γ2)− 32γ3(1− γ)

2γ2(d− 2γ)2(1− 2γ)2

and determinant

detH(κ∗, λ∗) =
(8γ2 − 4γ2d− 4γd + d2)d2

8(d− 1)(1− 2γ)2(d− 2γ)2γ4
. (3.6.8)
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Since 0 < γ < 1/2 and d ≥ 3, it is easy to see that each term in the numerator of
h1,1 is negative, and, because the denominator is nonnegative, thus h1,1 < 0. To
see that detH(κ∗, λ∗) > 0, we bound the numerator

(8γ2 − 4γ2d− 4γd + d2)d2 > (0− d− 2d + d2)d2 = d3(d− 3) ≥ 0

and observe that the denominator is nonnegative. It follows that this Hessian is
negative definite. Thus, the maximum of log F (κ, λ) and hence of F (κ, λ) over the
interior of R is attained uniquely at (κ∗, λ∗). By substitution, one can show that
the maximum value is

Fmax := F (κ∗, λ∗) =

(
(d− 2γ)d/2−γ

(1− 2γ)1−2γγγdd/2−2γ2γ

)2

. (3.6.9)

To study the behaviour of F (κ, λ) on the boundary ∂R of R we use the following
lemma from [5], applied to the functions F , g0, and fi defined after (3.6.3).

Lemma 22 (Lemma 4 in [5]) Let R be a closed set in Rr and let ∂R be the
boundary of R. Assume that every point in ∂R is the endpoint of an interval in
R \ ∂R. For i = 1, . . . ,m let fi(x) be an affine function such that fi(x) > 0 for all
x ∈ R \ ∂R. Define F to be a function on R such that

F (x) = g0(x) +
m∑

i=1

aifi(x) log fi(x)

with ai < 0 for i ≤ m0 ≤ m. Suppose that for every x ∈ R the directional derivative
of g0 at x in any direction is bounded. Let x0 ∈ ∂R such that fi(x0) = 0 for at least
one i ≤ m0 and fi(x0) > 0 for all m0 < i ≤ m. Then x0 is not a local maximum of
F on R.

It is easy to check that the lemma shows that no point on ∂R is a local maximum
of F on R except possibly the point (γ, 0), where the lemma does not apply. By
substitution, one can show that F (γ, 0) =

√
Fmax < Fmax. Therefore, (κ∗, λ∗) is

the unique global maximum of F (κ, λ) on R.
Let δ = n−2/5. Then nδ2 → ∞ and nδ3 → 0. Let B(δ) represent the ball of

radius δ about the point (κ∗, λ∗). Write the sum in (3.6.3) as S1 + S2, where S1 is
the sum of the terms indexed by (κ, λ) in B(δ) and S2 is sum of the other terms.

For (κ, λ) ∈ B(δ), one can show Q(n, κn, λn) ∼ α(κ, λ) where

α(κ, λ) = (2γ − 2κ− λ)−1(κλ(1− 4γ + 2κ + λ))−1/2,

and in fact, Q(n, κn, λn) ∼ α(κ∗, λ∗). We also estimate

F (κ, λ)n = F (κ∗, λ∗)n exp

(
1

2
n(κ− κ∗, λ− λ∗)H(κ− κ∗, λ− λ∗)T + O(nδ3)

)
(3.6.10)
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where H is the Hessian of log F at (κ∗, λ∗). Putting σ =
√

n(κ − κ∗) and τ =√
n(λ− λ∗), we have

S1 ∼ α(κ∗, λ∗)F (κ∗, λ∗)n
∑

exp

(
1

2
(σ, τ)H(σ, τ)T

)
where the sum is taken over σ, τ that are integer multiples of n−1/2 with absolute
value at most

√
nδ. The above sum is a Riemann sum for

n

∫ n1/10

−n1/10

∫ n1/10

−n1/10

exp

(
1

2
(σ, τ)H(σ, τ)T

)
dσdτ

whose main asymptotic term is simply

n

∫ ∞

−∞

∫ ∞

−∞
exp

(
1

2
(σ, τ)H(σ, τ)T

)
dσdτ

by a proof similar to the one given for Proposition 39 in the appendix. Evaluating
the integral, we get that S1 is asymptotic to

α(κ∗, λ∗)(Fmax)nn2π|detH(κ∗, λ∗)|−1/2 ∼ 2π2n2 d− 2j√
8j2 − 4j2d− 4jd + d2

(EY )2

using the definition of α(κ, λ), (3.6.8), (3.6.9), and Lemma 21(a). Recalling the
expression for E(Y 2) given in (3.6.3), this proves Lemma 21(c), provided we can
show that S2 = o(S1). This can be shown as follows. Since (κ∗, λ∗) is the unique
global maximum of F , any term of (3.6.3) indexed by (κ, λ) ∈ R \ B(δ) can be
bounded above, up to a polynomial factor, by the largest of the terms indexed by
(κ, λ) ∈ ∂B(δ). For (κ, λ) ∈ ∂B(δ), the exponential factor of (3.6.10) is O(e−nδ2

) =

O(e−n1/5
) (since we showed that H is negative definite), which produces terms

that are exponentially smaller than F (κ∗, λ∗). Since Q(n, κn, λn) is bounded by a
polynomial in n and the number of terms in S2 is bounded by a polynomial in n
we have S2 = o(S1), as required.

3.7 Proof of (1.4.1)

We will apply the method of small subgraph conditioning as stated in Theorem 20.
It is well-known (e.g. see [36]) that condition (i) of the theorem holds with

λi = (d− 1)i/(2i). Condition (ii) holds by Lemma 21(b). Next we compute

∞∑
i=1

λiδ
2
i = log

(
d− 2γ√

d2 − 4γ2d− 4γd + 8γ2

)
which establishes Condition (iii) and, in view of Lemma 21(c), Condition (iv).

Noting that δi 6= −1 for all i, we apply the theorem to conclude that P(Y )
n,d ≈ Pn,d.

Since Gn,d is formed from Pn,d by conditioning on the event that no loops or parallel
edges are formed, and this event has probability bounded away from 0, it follows
that G(Y )

n,d ≈ Gn,d by Proposition 9.50 in [20].
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Chapter 4

Locally rainbow balanced
3-colourings of Gn,5

4.1 Introduction

In [12], the authors study the number Y of locally rainbow balanced 3-colourings of
Pn,5. (Recall that a colouring is balanced if the number of vertices of each colour is
equal, and locally rainbow if every vertex is adjacent to at least one vertex of each
of the other colours.) The second moment E(Y 2) is expressed in the form

E(Y 2) ∼ h(n)
∑
D

q(n,d)enf(d) (4.1.1)

for some functions f , h, q. The sum is taken over multiples of 1/n in the bounded
domain D. The function f is infinitely differentiable and the function q(n,d) is
bounded by a polynomial in n, in much the same way as we expressed the second
moment of the number of j-edge matchings in Chapter 3.

The authors define a four-variable function F (w, x, y, z) on a bounded domain
and give numerical evidence to support the following hypothesis.

Hypothesis 23 (Maximum Hypothesis) At the point (1/9, 1/9, 1/9, 1/9) the
function F (w, x, y, z) has a unique global maximum over its domain.

(For a self-contained exposition of the definition of F , see Section 7 in [13].) It
is shown that, under the Maximum Hypothesis, the function f(d) in (4.1.1) has a
unique global maximum at a point d∗ in its domain. Thus, as we saw in Chapter 3,
the asymptotic value for E(Y 2) can be determined by integrating over a region near
d∗. The result is

E(Y 2) ∼ 22319516

76117792
√

13 · 17

1

(2πn)2

(
25

24

)n

, (4.1.2)

provided the Maximum Hypothesis holds. Using this, they prove that, under the
Maximum Hypothesis, χ(Gn,5) = 3 with probability bounded away from 0. In
this chapter we use small subgraph conditioning (Theorem 20) to strengthen their
conclusion as follows.
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Theorem 24 Under the Maximum Hypothesis, the chromatic number of Gn,5 is
a.a.s. 3.

Proof. Assume that n is divisible by 3, which is a necessary condition for balanced
3-colourings to exist. We apply Theorem 20 using the probability space Gn =
Pn,5 with Y counting the number of locally rainbow balanced 3-colourings and Xk

counting the number of k-cycles for fixed k ≥ 1. We next discuss how conditions
(i)-(iv) of Theorem 20 are verified.

It is well-known (e.g., see [36]) that condition (i) is satisfied by λk = 4k/(2k).
In (4.2.1) and (4.2.2) we will see that condition (ii) holds for the function

δk = 15−k + 2(−5)−k + 2(−3)−k. (4.1.3)

Substituting this function into conditions (iii) and (iv), we see that the sum is∑
k

λkδ
2
k =

∑
k

(5− 1)k

2k

(
15−k + 2(−5)−k + 2(−3)−k

)2
=

∑
k

1

2k

(( 4

225

)k

+ 4

(
−4

45

)k

+ 4

(
−4

75

)k

+ 4

(
4

9

)k

+ 8

(
4

15

)k

+ 4

(
4

25

)k )
.

Using the identity
∑

k
1
2k

xk = −1
2

ln(1− x), this sum becomes

∑
k

λkδ
2
k =

−1

2
ln

((
221

225

)(
49

45

)4(
79

75

)4(
5

9

)4(
11

15

)8(
21

25

)4
)

= ln

(
313513

76114792
√

13 · 17

)
. (4.1.4)

To verify condition (iv), we will need the asymptotic values of the first and
second moments of Y . Although the asymptotic value of EY was established in [12],
we prefer to derive it again because it illustrates the method which we will apply
in more complicated situations. The result is

EY ∼

√
223653

113

1

(2πn)2

(
25

24

)n

. (4.1.5)

Under the Maximum Hypothesis, the second moment is given by (4.1.2). We com-
pute the ratio

E(Y 2)

(EY )2
∼ 313513

76114792
√

13 · 17
,

which matches (4.1.4), establishing condition (iv). Having verified the four condi-
tions, we may apply the small subgraph conditioning method to conclude P(Y >
0 | E) → 1, where E is the event ∧δk=−1{Xk = 0}.
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To interpret the event E in the conclusion, we note that δ1 = −1 and for k ≥ 2
we have

|δk| ≤ 15−2 + 2(5)−2 + 2(3)−2

< 1.

So the conclusion reads P (Y > 0 | X1 = 0) → 1. Because P (X2 = 0) is bounded
away from 0 for large n, it follows that Y > 0 a.a.s. for the simple graphs Gn,5. This
proves Theorem 24.

4.2 Joint moments

The goal of this section is to compute asymptotic values of some joint moments for
the random variables which count locally rainbow balanced 3-colourings and short
cycles in random regular graphs.

On the space Pn,5, let Y be the random variable counting the number of locally
rainbow balanced 3-colourings. We begin by computing the asymptotic value of
EY .

Lemma 25

EY ∼
(

n

n/3, n/3, n/3

)
(5n/6)!3

|Pn,5|
A(n)

where

A(n) =

(
3
√

2√
11πn

30n/3

)3

.

Proof. To compute this expected value we must count, for each of the
(

n
n/3,n/3,n/3

)
ways to assign vertices to equal-sized colour classes, the number of pairings which
make the colouring locally rainbow and balanced. All these assignments are equiv-
alent, so fix one of them. Because the three colour classes have equal size, the
number of edges between any two colours classes must be 5n/6. In our discussion,
the points in a vertex inherit the colour of that vertex.

To count the pairings which make the colouring locally rainbow and balanced
we proceed in two steps. First, at each vertex v, we choose for each point in v the
colour of the point it is paired with. This must be done carefully to ensure that
each vertex will be adjacent to at least two colours and that the number of edges
between the colour classes will be 5n/6 as required. Then, for each pair of colour
classes, we pair up the appropriate points between these classes in one of (5n/6)!
ways. Thus, the second step gives us a factor of (5n/6)!3.

To determine the number of choices in the first step, we observe that each colour
class produces an equivalent contribution. We fix one colour class, say colour 1,
and construct the ordinary generating function which counts the number of ways
of choosing the colour of the neighbour of each point within the class, with the
indeterminate x marking one of the two possible colours. At each vertex, each of
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the 5 points can be assigned a mate (i.e. the other point in its pair) of either one of
the two colours, provided that not all of the points are assigned to the same colour.
Thus the contribution of each vertex to the generating function is (x+ 1)5−x5−1,
giving us the generating function(

(x + 1)5 − x5 − 1
)n/3

.

Exactly 5n/6 of these choices must be for the colour marked by x, so the total
number of choices for the first step is (letting square brackets denote extraction of
a coefficient)

N = [x5n/6]
(
(x + 1)5 − x5 − 1

)n/3

for each colour class. Combining these results, we have

EY =

(
n

n/3, n/3, n/3

)
(5n/6)!3

|Pn,5|
N3.

Using the saddle-point method (see e.g. Section 12.1 in [24]) we will estimate
N using a contour integral along the path |z| = 1. This is a standard method
for determining the asymptotic value of the coefficient of a generating function.
However, the method must be customized for each application, depending on the
integrand. Often it is not trivial to show that the integrand is small when the
argument is far from the saddle-point, nor is it always trivial to determine the
relevant second-order approximation. It can be especially challenging to use this
method in the multivariate case, as we will see in later chapters.

We begin by substituting z = exp(iθ) and expanding in θ.

N =
1

2πi

∫
|z|=1

((z + 1)5 − z5 − 1)
n/3

z5n/6
dz

=
1

2π

∫ π

−π

e−iθ5n/6
(
(eiθ + 1)5 − eiθ5 − 1

)n/3
dθ

=
1

2π
(25 − 2)n/3

∫ π

−π

exp

(
−45 + 4(5)− (5 + 1)21+5

24(25 − 2)2
nθ2 + O(nθ3)

)
dθ

=
1

2π
30n/3

∫ π

−π

exp

(
−11

72
nθ2 + O(nθ3)

)
dθ.

For |θ| ≤ n−2/5, the contribution to the above is asymptotically

I =
1

2π
30n/3

∫ ∞

−∞
exp

(
−11

72
nθ2

)
dθ

=
1

2π
30n/3

√
72π

11n

=
3
√

2√
11πn

30n/3.
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For |θ| > n−2/5, we estimate∣∣(eiθ + 1)5 − e5iθ − 1
∣∣

=
∣∣5eiθ + 10e2iθ + 10e3iθ + 5e4iθ

∣∣
=

∣∣eiθ
∣∣ ∣∣5 + 10eiθ + 10e2iθ + 5e3iθ

∣∣
=

∣∣4 + 1 + eiθ + 9eiθ + 10e2iθ + 5e3iθ
∣∣

≤ 4 +
∣∣1 + eiθ

∣∣+
∣∣9eiθ

∣∣+
∣∣10e2iθ

∣∣+
∣∣5e3iθ

∣∣
= 28 +

∣∣1 + eiθ
∣∣

= 28 +

√
(1 + eiθ)(1 + eiθ)

= 28 +
√

(1 + eiθ)(1 + e−iθ)

= 28 +
√

2 + eiθ + e−iθ

= 28 +
√

2 + 2 cos θ

≤ 28 +
√

2 + 2 cos(n−2/5)

= 28 +

√
2 + 2

(
1− 1

2
n−4/5 + O(n−8/5)

)
= 28 +

√
4− 2

1

2
n−4/5 + O(n−8/5)

= 28 + 2

√
1− 1

4
n−4/5 + O(n−8/5)

= 28 + 2

(
1− 1

8
n−4/5 + O(n−8/5)

)
= 30− 1

4
n−4/5 + O(n−8/5)

and so the absolute value of
(
(eiθ + 1)5 − eiθ5 − 1

)n/3
is at most(

30− 1

4
n−4/5 + O

(
n−8/5

))n/3

= 30n/3 exp

(
n

3
ln

(
1− 1

120
n−4/5 + O

(
n−8/5

)))
= 30n/3 exp

(
− 1

360
n1/5 + O

(
n−3/5

))
,

which is o(I). Therefore the expression for I gives the correct asymptotic estimate
for N , which is

N ∼ 3
√

2√
11πn

30n/3.

Combining this with our above results, we get Lemma 25.
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From Lemma 25 it is easy to deduce the asymptotic value of EY as stated
in (4.1.5). Simply substitute |Pn,5| = (5n)!/(25n/2(5n/2)!) and apply Stirling’s
formula. We omit the calculations.

We now move closer to our goal of computing joint moments for locally rainbow
balanced 3-colourings and short cycles. For fixed k ≥ 1, let the random variable Xk

count the number of k-cycles in Pn,5. We will actually work with rooted oriented
cycles, which introduces a factor of 2k into the counting. It will be helpful to have
the following definition. For a rooted oriented cycle in a coloured graph, define its
colour type to be the sequence of colours on its vertices. To calculate the expected
value of Y Xk, we will count, for each locally rainbow balanced 3-colouring and each
rooted oriented k-cycle, the number of pairings which contain this cycle and respect
this colouring.

As before, there are
(

n
n/3,n/3,n/3

)
ways to choose the balanced 3-colouring. All

are equivalent, so fix one. To enumerate the cycles and pairings which respect this
colouring, we will sum over all colour types T . Once a colour type has been chosen,
each vertex of the cycle can be placed in the pairing model by choosing a vertex of
the correct colour and an ordered pair of points in that vertex to be used by the
cycle. Hence, in total, there are asymptotically (5× 4× n/3)k ways to place the
rooted oriented cycle in the pairing model. We now have

E(Y Xk) ∼ 1

2k

(
n

n/3, n/3, n/3

)(
20n

3

)k
1

|Pn,5|
∑

T

f(T ),

where f(T ) is the number of pairings which respect a fixed colouring and fixed
rooted oriented cycle of colour type T and make the colouring locally rainbow.

To estimate the function f(T ), we will again fix one colour class j and construct
an ordinary generating function. The generating function will count the number of
ways of choosing the colour of the neighbour of each point within the class, with
the indeterminate x marking one of the two possible colours.

For j = 1, 2, 3, let αj(T ) count the number of j-coloured vertices in colour
type T whose two neighbours in the cycle have different colours. Let α′j(T ) count
the number of j-coloured vertices in colour type T whose two neighbours in the
cycle both have the colour marked by x. Let α′′j (T ) count the remaining j-coloured
vertices in T . We also define βj(T ) = α′j(T ) + α′′j (T ).

For any vertex through which the cycle does not pass, the contribution to the
generating function is, as before, (x + 1)5 − x5 − 1. For a cycle vertex whose
neighbours in the cycle have different colours, we can assign the neighbour colours
for the remaining points in any way, giving us (x+1)3. But for a cycle vertex whose
neighbours in the cycle have the same colour, we must ensure that this vertex gets
at least one neighbour of a different colour so that the colouring is locally rainbow.
This gives us (x + 1)3 − x3 if the neighbours have the colour marked by x, and
(x + 1)3− 1 otherwise. Combining these functions, the number of ways of choosing
the neighbour of each point within colour class j is given by the coefficient of x5n/6

in the expression(
(x + 1)5 − x5 − 1

)n/3−αj(T )−α′j(T )−α′′j (T ) (
(x + 1)3

)αj(T )
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×
(
(x + 1)3 − x3

)α′j(T ) (
(x + 1)3 − 1

)α′′j (T )
.

Earlier in this section we used the saddle-point method to estimate a similar coef-
ficient. A simple comparison with that previous application makes it easy to see
that the current coefficient is asymptotically

30n/3−αj(T )−βj(T )8αj(T )7βj(T )3
√

2√
11πn

.

After the colour of the neighbour of each point has been chosen, it remains to
pair up the points between each two colour classes. Since the k pairs in the cycle
have already been chosen, the number of ways to do this is asymptotically

(5n/6)!3

(5n/6)k
.

Putting α(T ) = α1(T ) + α2(T ) + α3(T ) and β(T ) = β1(T ) + β2(T ) + β3(T ), we
conclude that

f(T ) ∼ 30n−α(T )−β(T )8α(T )7β(T )33
√

2
3(√

11πn
)3 × (5n/6)!3

(5n/6)k

= A(n)
(5n/6)!3

(5n/6)k

(
8

30

)α(T )(
7

30

)β(T )

.

Letting cα = 8/30 and cβ = 7/30, it remains to estimate

S =
∑

T

cα(T )
α c

β(T )
β

where the sum is taken over all colour types T . In other words, we need to enumerate
the colour types, introducing a factor of cα for each cycle vertex whose neighbours
have different colours, and a factor of cβ for each of the remaining cycle vertices.

It is helpful to view each colour type as a sequence of ordered pairs of colours:
the colours at the endpoints of each edge, taken in the order induced by the rooted
orientation of the cycle. One could consider each possible pair to be a state in a
Markov chain. Number the states as follows.

state pair of colours
1 12
2 21
3 31
4 13
5 23
6 32

Each colour type on k vertices then corresponds to a sequence of k + 1 states
where the first state equals the last state. For example, consider the colour type
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with colour sequence 1, 2, 3, 2. It corresponds to the state sequence 1, 5, 6, 2, 1.
The transition from state 1 to state 5 represents to a vertex (of colour 2) whose
neighbours in the cycle have different colours (1 and 3); hence it should introduce
a factor of cα. Thus, in the matrix below, the entry at position (1, 5) is cα. In this
way we can construct a matrix which accounts for all possible transitions, and use
it to obtain the desired enumeration. The above sum S equals Tr(Mk), where Tr
denotes the trace, and M is the “transition” matrix

0 cβ 0 0 cα 0
cβ 0 0 cα 0 0
cα 0 0 cβ 0 0
0 0 cβ 0 0 cα

0 0 cα 0 0 cβ

0 cα 0 0 cβ 0

 .

The eigenvalues of this matrix are cβ + cα, −cβ + cα, −1
2
cα + 1

2

√
−3c2

α + 4c2
β,

and −1
2
cα − 1

2

√
−3c2

α + 4c2
β. The last two eigenvalues have multiplicity 2. Thus

S = (cβ + cα)k + (−cβ + cα)k

+ 2

(
−1

2
cα +

1

2

√
−3c2

α + 4c2
β

)k

+ 2

(
−1

2
cα −

1

2

√
−3c2

α + 4c2
β

)k

.

Since cβ + cα = 7/30 + 8/30 = 1/2, we may write

S =
1

2k
(1 + δk)

where
δk = 15−k + 2(−5)−k + 2(−3)−k (4.2.1)

which is (4.1.3).
We conclude that

E(Y Xk) ∼ 1

2k

(
n

n/3, n/3, n/3

)(
20n

3

)k
1

|Pn,5|
A(n)

(5n/6)!3

(5n/6)k
S,

and hence, combining this result with the previous lemma,

E(Y Xk)

EY
∼ 1

2k
8kS

∼ 4k

2k
(1 + δk) .
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The above argument is easily extended to work for higher moments, as follows.
The expected value E(Y [X1]m1 · · · [Xj]mj

) is expressed as a sum enumerating all
pairings consistent with a given colouring and ordered set of cycles. We group the
terms according to the number of vertices ν and edges µ of the isomorphism type of
the ordered set of cycles. If the isomorphism type has all cycles cell-disjoint, then
we have µ = ν = ν0, defined by

ν0 =
∑

k

mk.

In this case, the enumeration is a direct generalization of the above argument for
E(Y Xk). Next we argue that the terms in the remaining cases are negligible. For
the remaining cases we have ν < µ. The enumeration proceeds as in the first
case, but with the following significant differences. Compared to the first case,
we lose a factor of O(nν0−ν) when choosing the cells for the cycle and we gain a
factor of O(nν0−µ) when choosing the pairs of the pairing. Thus, the net change
is O(nν−µ) = O(n−1). As there are O(1) isomorphism types, this shows that the
terms in the remaining cases are negligible compared to those of the first case, and
we obtain the following result, as required for (3.3.1) in accordance with (4.1.3):

E(Y [X1]m1 · · · [Xj]mj
)

EY
∼

j∏
k=1

(
4k

2k
(1 + δk)

)mk

. (4.2.2)
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Chapter 5

Balanced colourings of a random
d-regular graph

5.1 Introduction

Let Y be the random variable counting the number of balanced k-colourings of Pn,d.
(Recall that a colouring is balanced if each colour class contains the same number
of vertices.) We use the method of small subgraph conditioning (Theorem 20) to
determine conditions which imply that Y > 0 a.a.s.

To apply the small subgraph conditioning method in this setting we need to
calculate the expected number of balanced k-colourings, as well as joint moments
of the number of such colourings and the number of short cycles. We assume that
n is a multiple of k for feasibility.

Theorem 26 Fix integers d, k ≥ 3. Let Y be the number of balanced k-colourings
of a random d-regular pseudograph Pn,d. For m ≥ 1, let Xm be the number of
m-cycles in Pn,d. Then

E(Y ) ∼ kk/2

(
k − 1

2π(k − 2)

)(k−1)/2

n−(k−1)/2kn

(
1− 1

k

)dn/2

and

E(Y [X1]p1 · · · [Xj]pj
) ∼

j∏
m=1

(λm (1 + δm))pm E(Y )

where

λm =
(d− 1)m

2m
, and

δm =
(−1)m

(k − 1)m−1
.

We next compute∑
m≥1

λmδ2
m = (k − 1)2 log

(
k − 1√

k2 − 2k + 2− d

)
.
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The small subgraph conditioning method then gives the following result.

Corollary 27 Let Y be the number of balanced k-colourings of a random d-regular
pseudograph Pn,d. If

E(Y 2)

(EY )2
=

(
k − 1√

k2 − 2k + 2− d

)(k−1)2

+ o(1) as n →∞

then Gn,d is a.a.s. k-colourable.

In this chapter we also give some evidence showing why the second moment con-
dition in the hypothesis of the corollary is likely to be true. The small subgraph
conditioning method has been used for many problems on random regular graphs
where a certain value of the variance was required, and indeed it was established.
For the current problem, Achlioptas and Moore [2] showed that E(Y 2) is within a
constant factor of the value required by the condition. We express E(Y 2) as a sum,
and show that, provided the summands have a certain form, the asymptotic value
of the sum is exactly the value required by the corollary.

Let C1 and C2 be balanced k-colourings of a pairing P ∈ Pn,d. The colour count
of (C1, C2) is the k-by-k matrix M = [mij] where mijn/k is the number of cells
coloured i in C1 and coloured j in C2. Since the colourings are balanced, we must
have M ∈ M, where M is the set of nonnegative k-by-k matrices with each row
sum and column sum equal to 1. Define T (M) to be the set of triples (P, C1, C2)
where P ∈ Pn,d and (C1, C2) is a pair of balanced k-colourings of P having colour
count M . Then,

E(Y 2) =
∑

M∈M∩ k
n

Zk2

|T (M)|
|Pn,d|

We show the following result.

Theorem 28 Let k ≥ 3 and d ≥ 3 be fixed integers satisfying k2 − 2k− d + 2 > 0.
Suppose for M ∈M∩ k

n
Zk2

we can write

|T (M)|
|Pn,d|

= h(n)q(n, M)enf(M)

for some functions f(M), g(M), h(n) and q(n, M) where, for some ε > 0,

1. f(M) is infinitely differentiable over M = [mi,j] ∈M satisfying maxi,j |mi,j−
(1/k)| < ε, and f(M) and has a unique global maximum over M at M =
(1/k)Jk where Jk is the k-by-k matrix of ones,

2. q(n, M) = O(poly(n)),

3. q(n, M) ∼ g(M) for M ∈M satisfying maxi,j |mi,j − (1/k)| < ε, and

4. g(M) is infinitely differentiable for M ∈M satisfying maxi,j |mi,j − (1/k)| <
ε.
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Then as n →∞

E(Y 2)

(EY )2
=

(
k − 1√

k2 − 2k + 2− d

)(k−1)2

+ o(1)

and, in view of Corollary 27, Gn,d is a.a.s. k-colourable.

The form of the sum in the above theorem may seem esoteric but, in fact, it is
the same form that was used to express the second moment in the problems of
Chapters 3 and 4. Furthermore, in practically every application of small subgraph
conditioning in the literature, the second moment was expressed as a sum in this
form. The purpose of condition 3 is to ensure that q(n, M) has no significant
dependence on n near the value of M that produces the maximum of f . In this
way, the dependence on n is factored out into the h(n) function and we can treat
q(n, M) and f(M) as (asymptotically) independent of n near the maximum.

The proofs of Theorems and 26 and 28 are presented in the remainder of this
chapter. In each case, the relevant combinatorial objects are enumerated in terms
of the coefficient of a generating function, which is estimated using the saddlepoint
method. Some of the more technical results are presented as separate propositions.

5.2 Some basic combinatorial results

The enumeration of the joint factorial moments in the proof of Theorem 26 will
require the following proposition about the number of sequences having certain
properties.

Proposition 29 For m ≥ 1 let Am be the set of m-element sequences with elements
from {1, 2, . . . , k} in which no two consecutive elements are equal. Let Bm ⊆ Am

be the set of sequences with the additional restriction that the first element is not
equal to the last element. Then

|Bm| = (k − 1)m + (k − 1)(−1)m.

Proof. Let Cm ⊆ Am be the subset containing sequences whose first element equals
the last element. Since Am is the disjoint union of Bm and Cm we have

|Bm|+ |Cm| = |Am| = k(k − 1)m−1. (5.2.1)

For m ≥ 2 the sequences in Cm correspond bijectively to the sequences in Bm−1

by removing the last element, giving |Cm| = |Bm−1|. Substituting this into (5.2.1)
gives the recurrence

|Bm|+ |Bm−1| = k(k − 1)m−1.

With the initial condition |B1| = 0, the solution of the recurrence is

|Bm| = (k − 1)m + (k − 1)(−1)m.

In preparation for the proof of Theorem 28, the saddlepoint method will be
applied in Proposition 35. The application will require the following result.
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Proposition 30 Let δ ∈ (0, 2π/5) and fix an integer k ≥ 3. For each 1 ≤ p, q ≤ k,
let −π ≤ θp,q ≤ π. Suppose maxp,q |θp,q| > δ and minp,q |θp,q| < π − δ. Then there
exist p, q, r, and s with p 6= r and q 6= s such that

δ

2
≤ |θp,q + θr,s| ≤ 2π − δ

2
.

Proof. There are two cases. In the first case, suppose δ < |θp,q| < π − δ for some
p and q. Let S be the set of pairs

S = {(r, s) | 1 ≤ r ≤ k, r 6= p, 1 ≤ s ≤ k, s 6= q}.

The set S is nonempty as k ≥ 2. If there exists (r, s) ∈ S with |θp,q + θr,s| > δ/2
then

δ

2
< |θp,q + θr,s| ≤ |θp,q|+ |θr,s|

< π − δ + π

< 2π − δ

2

and we are finished. Otherwise, all θr,s with (r, s) ∈ S satisfy |θp,q + θr,s| ≤ δ/2;
i.e. they are all within δ/2 units of −θp,q, and so, because δ < |θp,q| < π − δ, they
all have the same sign and satisfy δ/2 ≤ |θr,s| ≤ π − δ/2. Now let (r, s) ∈ S and
choose any (t, u) with t ∈ {1, 2, . . . , k} \ {p, r} and u ∈ {1, 2, . . . , k} \ {q, s}. This
is possible because k ≥ 3. Since (t, u) ∈ S we have, using the above observations,
δ < |θr,s + θt,u| < 2π − δ, which implies the required result.

For the remaining case, we must have |θp,q| ∈ [0, δ]∪[π−δ, π] for all 1 ≤ p, q ≤ k.
We claim there exist p, q, r, s with p 6= r, q 6= s, |θp,q| ∈ [0, δ], and |θr,s| ∈ [π− δ, π].
If we prove the claim then we are finished because

δ

2
< π − 2δ ≤ ||θp,q| − |θr,s|| ≤ |θp,q + θr,s| ≤ |θp,q|+ |θr,s| ≤ δ + π < 2π − δ

2
.

Assume for contradiction that the claim is false. By the hypothesis of the propo-
sition there exist p and q with |θp,q| < π − δ. Since |θp,q| ∈ [0, δ] ∪ [π − δ, π] for
every 1 ≤ p, q ≤ k we must have |θp,q| ∈ [0, δ]. Since we are assuming that the
claim is false, we must have |θr,s| ∈ [0, δ] for the (k− 1)2 pairs (r, s) with r 6= p and
s 6= q. But the hypothesis of the proposition also gives us (t, u) with |θt,u| > δ, so
an argument analogous to the previous one shows there must exist (k − 1)2 pairs
(v, w) with |θv,w| ∈ [π− δ, π]. Since (k− 1)2 + (k− 1)2 exceeds k2, the total number
of ordered pairs, we have a contradiction, as required.

5.3 Basic linear algebra results

In the statement of Theorem 28, there is a sum indexed by matrices. Several
definitions and properties related to matrices will be useful in preparation for the
proof of this theorem. In this section, k represents a positive integer.
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We let Ik denote the k-by-k identity matrix and Jk denote the k-by-k matrix of
ones. Write AT and tr(A) for the transpose and trace of the matrix A, respectively.
We use 1 to represent the k-dimensional vector of ones, while 1(i) represents the
k-dimensional vector with entry 1 at position i and 0 elsewhere.

Doubly stochastic matrices are nonnegative matrices whose row and column
sums are equal to 1.

Let A = [aij] be an m-by-n matrix and B = [bij] a p-by-q matrix. The Kronecker
product A⊗B of A and B is the block matrix

A⊗B :=

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 .

Let α be a scalar and let A, B, and C be matrices of the same dimensions. We
will freely use the following properties of the Kronecker product.

1. α(A⊗B) = (αA)⊗B = A⊗ (αB).

2. (A + B)⊗ C = A⊗ C + B ⊗ C.

3. A⊗ (B + C) = A⊗B + A⊗ C.

We also define A⊗2 = A⊗A. See ([19], Section 4.2) for more information about
the Kronecker product.

For an m-by-n matrix A = [aij], define

vecA := [a11, . . . , am1, a12, . . . , am2, . . . , a1n, . . . , amn]T .

In other words, vecA is formed by stacking the columns of A to form a single
column vector.

The next proposition can be verified by routine matrix multiplication.

Proposition 31 An orthonormal basis of eigenvectors for the matrix Jk is the set
of vectors f (1), f (2), . . . , f (k), defined by

f (p) =
√

p√
p+1

(
−1
p

∑p
l=1 1(l) + 1(p+1)

)
, 1 ≤ p ≤ k − 1

f (k) = 1√
k
1

with corresponding eigenvalues

λp = 0, 1 ≤ p ≤ k − 1
λk = k.

Eigenvectors for the matrix Jk are also eigenvectors for the matrix Jk + Ik, giving
us the next proposition.

Proposition 32 The eigenvalues of Jk + Ik are

λp = 1, 1 ≤ p ≤ k − 1
λk = k + 1.
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Proposition 33 (a) Let the vectors f (1), f (2), . . . , f (k) be defined as in Proposi-
tion 31. Define f (p,q) = f (p) ⊗ f (q) for 1 ≤ p, q ≤ k. Then, an orthonormal
basis of eigenvectors for the matrix (Jk − Ik)⊗2 + (k − 1)2Ik2 is given by
{f (p,q)}k

p,q=1 with corresponding eigenvalues

λp,q = k2 − 2k + 2, 1 ≤ p, q ≤ k − 1
λp,k = (k − 1)(k − 2), 1 ≤ p ≤ k − 1
λk,q = (k − 1)(k − 2), 1 ≤ q ≤ k − 1
λk,k = 2(k − 1)2.

The smallest of these eigenvalues is (k − 1)(k − 2).

(b) The eigenvalues of (Jk + Ik)⊗2 are 1 with multiplicity (k − 1)2, k + 1 with
multiplicity 2(k − 1), and (k + 1)2 with multiplicity 1.

Proof. In Proposition 31 the vectors f (1), f (2), . . . , f (k) are shown to be an or-
thonormal basis of eigenvectors for Jk with eigenvalues 0, 0, . . . , 0, k. Thus they also
form an orthonormal basis of eigenvectors for Jk−Ik with corresponding eigenvalues
−1,−1, . . . ,−1, k − 1. For any real symmetric k-by-k matrix A with orthonormal
basis of eigenvectors v1, v2, . . . , vk and corresponding eigenvalues µ1, µ2, . . . , µk, an
orthonormal basis of eigenvectors for A⊗2 is (see [19], Theorem 4.2.12)

vp ⊗ vq, 1 ≤ p, q ≤ k

with corresponding eigenvalues µpµq, (1 ≤ p, q ≤ k). Thus an orthonormal basis of
eigenvectors for (Jk − Ik)⊗2 (and hence for (Jk − Ik)⊗2 + (k − 1)2Ik2) is given by

f (p,q) = f (p) ⊗ f (q), 1 ≤ p, q ≤ k.

The corresponding eigenvalues for (Jk − Ik)⊗2 + (k − 1)2Ik2 are

λp,q = (−1)2 + (k − 1)2 = k2 − 2k + 2, 1 ≤ p, q ≤ k − 1
λp,k = (−1)(k − 1) + (k − 1)2 = (k − 1)(k − 2), 1 ≤ p ≤ k − 1
λk,q = (k − 1)(−1) + (k − 1)2 = (k − 1)(k − 2), 1 ≤ q ≤ k − 1
λk,k = (k − 1)2 + (k − 1)2 = 2(k − 1)2.

as required. It is easy to see that the smallest of these eigenvalues is (k− 1)(k− 2).
The eigenvalues of (Jk + Ik)⊗2 are computed from the eigenvalues of Jk + Ik

(given in Proposition 32) similarly.

Proposition 34 Let A = [ai,j] be a k-by-k matrix whose rows and columns each
have sum 0. Define Ã to be the submatrix formed from A by deleting the last row
and column. Let {f (i,j)}k

i,j=1 be the orthonormal basis defined in the statement of
Proposition 33. Then,

(a) (vecA)T f (i,k) = (vecA)T f (k,j) = 0 for 1 ≤ i, j ≤ k,
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(b)
k−1∑
i=1

k−1∑
j=1

(
(vecA)T f (i,j)

)2
=

k∑
i=1

k∑
j=1

a2
i,j, and

(c)

(vecÃ)T (Jk−1 + Ik−1)
⊗2vecÃ =

k∑
i=1

k∑
j=1

a2
i,j.

Proof. We begin by proving (a). Let j ∈ {1, 2, . . . , k}. Since f (k,j) = f (k) ⊗ f (j)

is a linear combination of terms of the form 1 ⊗ 1(q) =
∑k

p=1(1
(p) ⊗ 1(q)), (1 ≤

q ≤ k), we have that (vecA)T f (k,j) is a linear combination of terms of the form∑k
p=1(vecA)T (1(p)⊗1(q)) =

∑k
p=1 aq,p = 0 since the row sums of A are 0. A similar

argument shows (vecA)T f (i,k) = 0 for i ∈ {1, 2, . . . , k} using the fact that the
column sums of A equal 0.

To prove (b) we apply (a) to write

k−1∑
i=1

k−1∑
j=1

(
(vecA)T f (i,j)

)2
=

k∑
i=1

k∑
j=1

(
(vecA)T f (i,j)

)2
,

which is the sum of the squares of the coordinates of vecA in the basis given by
{f (i,j)}k

i,j=1. Since the basis is orthonormal, this expression is simply the square of

the norm of vecA with respect to the standard basis,
∑k

i=1

∑k
j=1 a2

i,j.
To prove part (c) we begin by writing

k∑
i=1

k∑
j=1

a2
i,j

= a2
k,k +

k−1∑
i=1

a2
i,k +

k−1∑
j=1

a2
k,j +

k−1∑
i=1

k−1∑
j=1

a2
i,j

=

(
k−1∑
i=1

k−1∑
j=1

ai,j

)2

+
k−1∑
i=1

(
−

k−1∑
j=1

ai,j

)2

+
k−1∑
j=1

(
−

k−1∑
i=1

ai,j

)2

+
k−1∑
i=1

k−1∑
j=1

a2
i,j.

Since (
k−1∑
i=1

k−1∑
j=1

ai,j

)2

= (vecÃ)T J⊗2
k−1vecÃ,

k−1∑
i=1

(
k−1∑
j=1

ai,j

)2

= (vecÃ)T (Jk−1 ⊗ Ik−1)vecÃ,

k−1∑
j=1

(
k−1∑
i=1

ai,j

)2

= (vecÃ)T (Ik−1 ⊗ Jk−1)vecÃ,
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k−1∑
i=1

k−1∑
j=1

a2
i,j = (vecÃ)T I⊗2

k−1vecÃ,

and (Jk−1 +Ik−1)
⊗2 = J⊗2

k−1 +(Jk−1⊗Ik−1)+(Ik−1⊗Jk−1)+I⊗2
k−1, part (c) is proved.

5.4 Asymptotic calculations for Theorem 26

In this section, we estimate the coefficient of the generating function that will be
used to estimate the first moment and factorial moments in the proof of Theorem 26.

Proposition 35 Let k, d, a1, a2, . . . , ak be fixed integers with k ≥ 3, d positive, and
s =

∑k
j=1 aj even. As n →∞, for dn even, the coefficient of

x
dn/k+a1

1 x
dn/k+a2

2 · · ·xdn/k+ak

k

in the generating function exp(
∑

1≤j<l≤k xjxl) is asymptotic to

C(s) = (2π)−k

(
k(k − 1)

dn

)(dn+s)/2

× 2edn/2(2π)k/2

(
k(k − 1)

dn

)k/2

(2k − 2)−1/2(k − 2)−(k−1)/2.

Proof. We will use the saddlepoint method. First we use Cauchy’s formula to
express the required coefficient as an integral over the product of circles zj = reiθj ,

−π ≤ θj ≤ π for j = 1, 2, . . . , k, where r =
√

dn/k(k − 1), giving us

1

(2πi)k

∫
|z1|=r

· · ·
∫
|zk|=r

exp
(∑

j<l zjzl

)
z

dn/k+a1+1
1 · · · zdn/k+ak+1

k

dz1 · · · dzk

=
1

(2π)k

∫ π

−π

· · ·
∫ π

−π

exp
(∑

j<l(re
iθj )(reiθl)

)
(reiθ1)dn/k+a1 · · · (reiθk)dn/k+ak

dθ1dθ2 · · · dθk

=
1

(2π)krdn+s

∫ π

−π

· · ·
∫ π

−π

exp(r2
∑

j<l e
i(θj+θl))

exp(i
∑

j(dn/k + aj)θj)
dθ1 · · · dθk.

Let g(θ) denote the integrand in the last expression above. Letting 1 denote the
vector of 1’s, consider the image of g(θ) under the transformation θ 7→ θ + π1. It is
clear that the numerator is fixed by this transformation. The denominator becomes

exp(i
∑

j

(dn/k + aj)(θj + π)) = exp(i
∑

j

(dn/k + aj)θj) exp(i(dn + s)π)

= exp(i
∑

j

(dn/k + aj)θj)
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since dn and s are both even. So g(θ) is fixed by this transformation. Letting
δ = log n/

√
n, this means that the integrals of g(θ) over regions {θ : |θj| ≤ δ, j =

1, 2, . . . , k} and {θ : π− δ ≤ |θj| ≤ π, j = 1, 2, . . . , k} are equal. We will prove that
the integral of g(θ) over each of these regions is asymptotically equal to

I = edn/2(2π)k/2

(
k(k − 1)

dn

)k/2

(2k − 2)−1/2(k − 2)−(k−1)/2

= K exp

(
dn

2
− k

2
log n

)
,

where K is a constant, and we will show that the integral over the remaining regions
is asymptotically smaller. From these results the proposition follows.

To prove that the integral over vectors θ in the remaining regions is asymptot-
ically smaller, there are two cases: either |θj∗| ≤ δ and π − δ ≤ |θl∗| ≤ π for some
distinct j∗ and l∗, or δ ≤ |θj∗| ≤ π − δ for some j∗.

In the first case, suppose that |θj∗| ≤ δ and π − δ ≤ |θl∗| ≤ π for some distinct
j∗ and l∗. Then π − 2δ ≤ |θj∗ + θl∗| ≤ π + 2δ and hence cos(θj∗ + θl∗) ≤ 0. So

|g(θ)| = exp

(
r2
∑
j<l

cos(θj + θl)

)

≤ exp

(
r2(

(
k

2

)
− 1) + r2 cos(θj∗ + θl∗)

)
≤ exp

(
r2(

(
k

2

)
− 1)

)
= exp

(
dn

2
− dn

k(k − 1)

)
= o(I).

In the second case we suppose that δ ≤ |θj∗| ≤ π − δ for some j∗. If there is a
value of l∗ for which |θj∗ + θl∗| > δ/2 then δ/2 < |θj∗ + θl∗| < 2π− δ/2. This means

cos(θj∗ + θl∗) < cos(δ/2) = 1− δ2

8
+ O(δ4)

and hence

|g(θ)| = exp

(
r2
∑
j<l

cos(θj + θl)

)

≤ exp

(
r2(

(
k

2

)
− 1) + r2 cos(θj∗ + θl∗)

)
= exp

(
r2(

(
k

2

)
− 1) + r2(1− δ2

8
+ O(δ4))

)
= exp

(
r2

(
k

2

)
− r2 δ2

8
+ O(r2δ4)

)
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= exp

(
dn

2
− d(log n)2

8k(k − 1)
+ o(1)

)
= o(I).

Otherwise, there is no such l∗. That is, for all l∗ not equal to j∗ we have
|θl∗ − (−θj∗)| ≤ δ/2. This implies that all θl with l 6= j∗ have the same sign and
satisfy δ/2 ≤ |θl| ≤ π − δ/2. Since k ≥ 3 we can choose two distinct such l, say l∗

and l∗∗, and deduce
δ ≤ |θl∗ + θl∗∗| ≤ 2π − δ.

Using the same argument as above, it follows that |g(θ)| = o(I).
This completes the proof that the integral of g(θ) over these regions is asymp-

totically negligible, as claimed.
It remains to show the integral of g(θ) over the region {θ : |θj| ≤ δ, j =

1, 2, . . . , k} is asymptotically equal to I. We begin by expanding

log g(θ) = r2

(
k

2

)
+ i
(
r2(k − 1)− dn/k + O(1)

) k∑
j=1

θj −
1

2
r2
∑
j<l

(θj + θl)
2

+ O

(
r2

k∑
j=1

|θj|3
)

= r2

(
k

2

)
− 1

2
r2
∑
j<l

(θj + θl)
2 + o(1)

since r2 = dn/(k(k − 1)) and |θj| ≤ δ = log n/
√

n for all j.
By Proposition 39 (which is stated in the appendix), for some constant c > 0

we have ∫ δ

−δ

∫ δ

−δ

· · ·
∫ δ

−δ

exp

(
−1

2
r2
∑
j<l

(θj + θl)
2

)
dθ1dθ2 · · · dθk

=

∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞
exp

(
−1

2
r2
∑
j<l

(θj + θl)
2

)
dθ1dθ2 · · · dθk + O(e−c log2 n)

=

∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞
exp

(
−1

2
θTAθ

)
dθ1dθ2 · · · dθk + O(e−c log2 n).

Here, θT denotes the transpose of the column vector θ and A is the matrix A =
r2(11T + (k − 2)Ik), where Ik is the k-by-k identity matrix. It is well-known (see
Equation 4.6.3 in [10]) that such integrals have the value (2π)k/2(detA)−1/2, giving
us ∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞
exp

(
−1

2
r2
∑
j<l

(θj + θl)
2

)
dθ1dθ2 · · · dθk

= (2π)k/2
(
r2k(2k − 2)(k − 2)k−1

)−1/2
.
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We conclude ∫ δ

−δ

∫ δ

−δ

· · ·
∫ δ

−δ

g(θ)dθ1dθ2 · · · dθk

∼ er2(k
2)(2π)k/2

(
r2k(2k − 2)(k − 2)k−1

)−1/2

∼ edn/2(2π)k/2

(
k(k − 1)

dn

)k/2

(2k − 2)−1/2(k − 2)−(k−1)/2

= I

as claimed.

5.5 Proof of Theorem 26

Let Y be the number of balanced k-colourings of a random d-regular pseudograph
Pn,d. For m ≥ 1, let Xm be the number of m-cycles in Pn,d. We estimate the
expected value of Y by enumerating all balanced k-colourings of all pseudographs
in Pn,d. There are

(
n

n/k,n/k,...,n/k

)
ways to choose the k colour classes. These choices

are all equivalent so fix one. Suppose there are bij edges between colour class i and
colour class j (i, j ≥ 1). The colours of the neighbours of all of the points of colour
class i can be then chosen in

(
dn/k

bi1,bi2,...,bik

)
ways. After this determination is made,

edges are constructed by putting a perfect matching between the corresponding
points in each pair of classes, in one of

∏
i<j bij! ways. Thus we have

|Pn,d|E(Y ) =

(
n

n/k, n/k, . . . , n/k

)∑
{bij}

(∏
i

(
dn/k

bi1, bi2, . . . , bik

))∏
i<j

bij!

=

(
n

n/k, n/k, . . . , n/k

)
(dn/k)!k

∑
{bij}

1∏
i<j bij!

=

(
n

n/k, n/k, . . . , n/k

)
(dn/k)!k

[
k∏

l=1

x
dn/k
l

]∏
i<j

∑
l≥0

(xixj)
l

l!

=

(
n

n/k, n/k, . . . , n/k

)
(dn/k)!k

[
k∏

l=1

x
dn/k
l

]
exp

(∑
i<j

xixj

)

∼
(

n

n/k, n/k, . . . , n/k

)
(dn/k)!kC(0). (5.5.1)

The last line in the above array follows from Proposition 35 where the function C
is defined. After some basic manipulations using Stirling’s formula we obtain the
estimate for E(Y ) stated in the theorem.

Next we estimate the expected value of Y Xm where Y is the number of balanced
k-colourings and Xm the number of length-m cycles. It is more convenient to count
rooted oriented cycles, which introduces a factor of 2m into our calculations. It
will be helpful to have the following definitions. For a rooted oriented cycle in a
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coloured graph, define its colour type to be the sequence T of colours on its vertices.
For j = 1, 2, . . . , k, let αj(T ) denote the number of vertices in T which have colour
j. Note that the sum

∑
j αj(T ) is m.

To calculate the expected value of Y Xm, we will count, for each balanced k-
colouring and each rooted oriented m-cycle, the number of pairings which contain
this cycle and respect this colouring.

As before, there are
(

n
n/k,n/k,...,n/k

)
ways to choose the balanced k-colouring. All

are equivalent, so fix one. To enumerate the cycles and pairings which respect this
colouring, we will sum over all colour types T . Once a colour type has been chosen,
each vertex of the cycle can be placed in the pairing model by choosing a vertex of
the correct colour and an ordered pair of points in that vertex to be used by the
cycle. Hence, in total, there are asymptotically (d(d− 1)n/k)m ways to place the
rooted oriented cycle in the pairing model. We now have

E(Y Xm) ∼ 1

2m

(
n

n/k, n/k, . . . , n/k

)(
d(d− 1)n

k

)m
1

|Pn,d|
∑

T

f(T ),

where f(T ) is the number of pairings which respect a fixed balanced k-colouring
and fixed rooted oriented cycle of colour type T . To count these pairings, suppose
there are bij edges between colour class i and colour class j (i, j ≥ 1), excluding
the edges of the prescribed cycle. The colours of the neighbours of all of the
unmatched points of colour class i can be then chosen in

(
dn/k−2αi(T )
bi1,bi2,...,bik

)
ways. After

this determination is made, edges are constructed by putting a perfect matching
between the corresponding points in each pair of classes, in one of

∏
i<j bij! ways.

Thus we have

f(T ) =
∑
{bij}

(∏
i

(
dn/k − 2αi(T )

bi1, bi2, . . . , bik

))∏
i<j

bij!

=
∑
{bij}

∏
i(dn/k − 2αi(T ))!∏

i<j bij!

∼ (dn/k)!k

(dn/k)2m

∑
{bij}

1∏
i<j bij!

=
(dn/k)!k

(dn/k)2m

[
k∏

l=1

x
dn/k−2αl(T )
l

]∏
i<j

∑
l≥0

(xixj)
l

l!

=
(dn/k)!k

(dn/k)2m

[
k∏

l=1

x
dn/k−2αl(T )
l

]
exp

(∑
i<j

xixj

)
.

By Proposition 35 the asymptotic value of the coefficient in the last expression is
C(−2m), making the entire expression independent of T . The number of colour
types T is (k − 1)m + (k − 1)(−1)m by Proposition 29, so we have

E(Y Xm) ∼ 1

2m

(
n

n/k, n/k, . . . , n/k

)(
d(d− 1)n

k

)m
1

|Pn,d|
(dn/k)!k

(dn/k)2m

× ((k − 1)m + (k − 1)(−1)m)C(−2m).
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Comparing this expression with (5.5.1) we see that

E(Y Xm)

E(Y )
∼ 1

2m

(
d(d− 1)n

k

)m
((k − 1)m + (k − 1)(−1)m)

(dn/k)2m

C(−2m)

C(0)

∼ 1

2m

(
d(d− 1)n

k

)m
((k − 1)m + (k − 1)(−1)m)

(dn/k)2m

(
k(k − 1)

dn

)−m

∼ (d− 1)m

2m

(
1 +

(−1)m

(k − 1)m−1

)
.

∼ λm(1 + δm).

These arguments generalize to higher moments, as we have seen in previous
chapters, giving us the theorem.

5.6 Generating function for Theorem 28

In the introduction, we saw that the second moment E(Y 2) is related to the quantity
|T (M)|. As the first step toward estimating this quantity, we express it as the
coefficient of a generating function.

Lemma 36 Fix positive integers d and k ≥ 3. Assume 2 divides dn, k divides n
and let M = [mp,q] be a k-by-k doubly stochastic matrix whose entries are integer
multiples of k/n. Let T (M) be the set of triples (P, C1, C2) where P ∈ Pn,d and
(C1, C2) is a pair of balanced k-colourings of P having colour count M . Then,
letting square brackets denote the extraction of a coefficient,

|T (M)| = n!
k∏

p=1

k∏
q=1

(dmp,qn/k)!

(mp,qn/k)!

×

[
k∏

p=1

k∏
q=1

xdmp,qn/k
p,q

]
exp

1

2

k∑
p=1

k∑
q=1

k∑
r=1
r 6=p

k∑
s=1
s 6=q

xp,qxr,s

 .

Proof. For all 1 ≤ p, q ≤ k we must choose mp,qn/k cells to be assigned the colour
p in the first colouring and q in the second colouring. We say that such a cell
and its points have label (p, q). The number of ways of doing this is given by the
multinomial coefficient

n!∏k
p=1

∏k
q=1(mp,qn/k)!

.

Suppose we know the number bpqrs of edges from points labelled (p, q) to points
labelled (r, s) for all 1 ≤ p, q, r, s ≤ k with p 6= r and q 6= s. Then we choose, for
each ordered pair of labels ((p, q), (r, s)), which bpqrs of the points labelled (p, q) will
be paired with points labelled (r, s). The number of ways of doing this is

k∏
p=1

k∏
q=1

(dmp,qn/k)!∏k
r=1
r 6=p

∏k
s=1
s 6=q

bpqrs!
.
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Finally, for each unordered pair of labels {(p, q), (r, s)}, we choose a bijection be-
tween the points labelled (p, q) and the points labelled (r, s) that were designated
to be paired with each other. The number of ways of doing this is

k∏
p=1

k∏
q=1

k∏
r=p+1

k∏
s=1
s 6=q

bpqrs!.

Thus, the total number of triples is

|T (M)| = n!

(
k∏

p=1

k∏
q=1

(dmp,qn/k)!

(mp,qn/k)!

) ∑
{bpqrs}

k∏
p=1

k∏
q=1

k∏
r=p+1

k∏
s=1
s 6=q

1

bpqrs!
.

This is the expression used in [2]. We rewrite the inner sum in terms of the natural
generating function∑

{bpqrs}

k∏
p=1

k∏
q=1

k∏
r=p+1

k∏
s=1
s 6=q

1

bpqrs!

=

[
k∏

p=1

k∏
q=1

xdmp,qn/k
p,q

]
k∏

p=1

k∏
q=1

k∏
r=p+1

k∏
s=1
s 6=q

∞∑
i=0

(xp,qxr,s)
i

i!

=

[
k∏

p=1

k∏
q=1

xdmp,qn/k
p,q

]
k∏

p=1

k∏
q=1

k∏
r=p+1

k∏
s=1
s 6=q

exp (xp,qxr,s)

=

[
k∏

p=1

k∏
q=1

xdmp,qn/k
p,q

]
exp

 k∑
p=1

k∑
q=1

k∑
r=p+1

k∑
s=1
s 6=q

xp,qxr,s


=

[
k∏

p=1

k∏
q=1

xdmp,qn/k
p,q

]
exp

1

2

k∑
p=1

k∑
q=1

k∑
r=1
r 6=p

k∑
s=1
s 6=q

xp,qxr,s

 .

This proves the result.

5.7 Asymptotic calculations for Theorem 28

In this section we make an asymptotic estimate of |T (M)| in preparation for the
proof of Theorem 28. Recall the definition of the Kronecker product A ⊗ B from
Section 5.3.

Lemma 37 Fix positive integers d and k ≥ 3. Assume 2 divides dn, k divides n
and let M = [mp,q] be a k-by-k doubly stochastic matrix whose entries are integer
multiples of k/n satisfying

mp,q =
1

k
+ o(n−1/2 log n).
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Define the matrix A = A(M) = [ap,q] by A = M − (1/k)Jk and let Ã be the matrix
obtained from A by removing its last row and column. Let T (M) be the set of
triples (P, C1, C2) where P ∈ Pn,d and (C1, C2) is a pair of balanced k-colourings of
P having colour count M . Then,

|T (M)|
|Pn,d|

∼ γ(k)
(k − 1)dn

nk2/2−1/2kdn−2n
e
−n k2−2k−d+2

2(k2−2k+2)
(vecÃ)T (Jk−1+Ik−1)⊗2vecÃ

where γ(k) is the constant

γ(k) =
kk2

(k − 1)k(k−1)

(2π)k2/2−1/2(k2 − 2k + 2)(k−1)2/2(k − 2)k−1
.

Proof. From Lemma 36 we have

|T (M)|
n!

=
k∏

p=1

k∏
q=1

(dmp,qn/k)!

(mp,qn/k)!

[
k∏

p=1

k∏
q=1

xdmp,qn/k
p,q

]
exp

1

2

k∑
p=1

k∑
q=1

k∑
r=1
r 6=p

k∑
s=1
s 6=q

xp,qxr,s

 .

(5.7.1)
We begin by estimating the ratio of factorials. Recall that one can write Stirling’s
formula as x! =

√
2πη(x)(x/e)x where η is a function satisfying η(x) ∼ x as x →∞

and η(x) = Θ(x + 1) for all x ≥ 0. Thus,

k∏
p=1

k∏
q=1

(dmp,qn/k)!

(mp,qn/k)!
=

k∏
p=1

k∏
q=1

√
2πη(dmp,qn/k)(dmp,qn/(ke))dmp,qn/k√

2πη(mp,qn/k)(mp,qn/(ke))mp,qn/k

=
k∏

p=1

k∏
q=1

√
η(dmp,qn/k)√
η(mp,qn/k)

ddmp,qn/k
(mp,qn

ke

)(d−1)mp,qn/k

= ddn
( n

ek

)(d−1)n∏
p,q

√
η(dmp,qn/k)√
η(mp,qn/k)

e(n(d−1)/k)
P

p,q mp,q log mp,q

where in the final step we used
∑k

p=1

∑k
q=1 mp,q = k which holds because M is

doubly stochastic. For mp,q = 1/k + ap,q with ap,q = o(1) we have√
η(dmp,qn/k)√
η(mp,qn/k)

∼
√

dmp,qn/k√
mp,qn/k

∼
√

d

for 1 ≤ p, q ≤ k, and we expand∑
p,q

mp,q log mp,q =
∑
p,q

(
1

k
+ ap,q

)(
log

1

k
+ log (1 + kap,q)

)

=
∑
p,q

(
1

k
+ ap,q

)(
− log k + kai,j −

k2a2
p,q

2
+ o(a3

p,q)

)
=

∑
p,q

(
−1

k
log k +

k

2
a2

p,q + o(a3
p,q)

)
= k

(
− log k +

1

2
(vecÃ)T (Jk−1 + Ik−1)

⊗2vecÃ

)
+ o(1)

68



where we used Proposition 34(c) to rewrite
∑

p,q a2
p,q in the final step. Combining

these estimates we have
k∏

p=1

k∏
q=1

(dmp,qn/k)!

(mp,qn/k)!
∼ ddn

( n

ek2

)(d−1)n

d
k2

2 en d−1
2

(vecÃ)T (Jk−1+Ik−1)⊗2vecÃ. (5.7.2)

Next we use the saddlepoint method to estimate the coefficient

C =

[
k∏

p=1

k∏
q=1

xdmp,qn/k
p,q

]
exp

1

2

k∑
p=1

k∑
q=1

k∑
r=1
r 6=p

k∑
s=1
s 6=q

xp,qxr,s


in (5.7.1). Using Cauchy’s integral formula, C can be written in terms of an integral
around the product of circles zp,q = ρp,q exp(iθp,q), −π ≤ θp,q ≤ π, (1 ≤ p, q ≤ k),
as follows,

C =
1

(2πi)k2

∫ exp
(

1
2

∑
p 6=r
q 6=s

zp,qzr,s

)
∏

p,q z
dmp,qn/k+1
p,q

∏
p,q

dzp,q

=
1

(2π)k2
∏

p,q ρ
dmp,qn/k
p,q

×
∫

θ∈[−π,π]k
2

exp
(

1
2

∑
p 6=r
q 6=s

ρp,qρr,se
i(θp,q+θr,s)

)
exp(i

∑
p,q θp,qdmp,qn/k)

∏
p,q

dθp,q. (5.7.3)

Viewing θ = vec([θp,q]) as a k2-dimensional vector, let g(θ) denote the integrand in
the above expression. Consider

g(θ + π1) =
exp

(
1
2

∑
p 6=r
q 6=s

ρp,qρr,se
i(θp,q+θr,s+2π)

)
exp(i

∑
p,q θp,qdmp,qn/k + iπ

∑
p,q dmp,qn/k)

=
exp

(
1
2

∑
p 6=r
q 6=s

ρp,qρr,se
i(θp,q+θr,s)

)
exp(i

∑
p,q θp,qdmp,qn/k + iπdn)

= g(θ),

which holds since
∑

p,q mp,q = k and dn is even. Setting δ = log n/
√

n, this tells us
that the integral over the region {θ | |θp,q| ≤ δ for 1 ≤ p, q ≤ k} equals the integral
over the region {θ | π − δ ≤ |θp,q| ≤ π for 1 ≤ p, q ≤ k}. Set each ρp,q to be the
common value

ρp,q = ρ =

√
dn

k(k − 1)
.

We will see that the integral over each of these regions is asymptotic to

I =
edn/2

√
2

(
2π

dn

)k2/2 kk2
(k − 1)k(k−1) exp

(
−nd(k−1)2(vecÃ)T (Jk−1+Ik−1)⊗2vecÃ

2(k2−2k+2)

)
(k2 − 2k + 2)(k−1)2/2(k − 2)k−1

= K exp

(
dn

2
− o((log n)2)

)
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(using ai,j = o(n−1/2 log n)) where K is a constant. We will also show that the inte-
gral over the remaining region is o(I). The lemma then follows since by combining
this with (5.7.1), (5.7.2), (5.7.3), the Stirling-formula estimate n! ∼

√
2πn(n/e)n,

and the well-known formula for the number of pairs on dn points,

|Pn,d| = (dn− 1)!! =
(dn)!

(dn/2)!2dn/2
∼
√

2
( e

dn

)dn/2

,

we have

|T (M)|
|Pn,d|

∼
√

2πn
(n

e

)n

ddn
( n

ek2

)(d−1)n

d
k2

2 en d−1
2

(vecÃ)T (Jk−1+Ik−1)⊗2vecÃ

× 1

(2π)k2
∏

p,q ρdmp,qn/k
2I|Pn,d|−1

∼ γ(k)
(k − 1)dn

nk2/2−1/2kdn−2n
e
−n k2−2k−d+2

2(k2−2k+2)
(vecÃ)T (Jk−1+Ik−1)⊗2vecÃ

.

To see that the integral over the remaining region is o(I), let θ be any vector in
this region. By the definition of this region we must have minp,q |θp,q| < π − δ
and maxp,q |θp,q| > δ. By Proposition 30 there exist p∗, q∗, r∗, s∗ ∈ {1, . . . , k} with
p∗ 6= r∗ and q∗ 6= s∗ such that

δ

2
≤ |θp∗,q∗ + θr∗,s∗| ≤ 2π − δ

2
.

Now

cos(θp∗,q∗ + θr∗,s∗) < cos

(
δ

2

)
= 1− δ2

8
+ O(δ3)

so the absolute value of the integrand is

|g(θ)| =

∣∣∣exp
(

1
2

∑
p 6=r
q 6=s

ρ2ei(θp,q+θr,s)
)∣∣∣∣∣∣exp(i

∑
p,q θp,qdmp,qn/k)

∣∣∣
= exp

1

2

∑
p 6=r
q 6=s

ρ2 cos(θp,q + θr,s)


≤ exp

(
1

2
ρ2
(
(k2(k − 1)2 − 1)1 + cos(θp∗,q∗ + θr∗,s∗)

))
= exp

(
1

2
ρ2

(
(k2(k − 1)2 − 1)1 + 1− δ2

8
+ O(δ3)

))
= exp

(
1

2
ρ2k2(k − 1)2 − ρ2 (log n)2

16n
+ O(ρ2n−3/2(log n)3)

)
= exp

(
dn

2
− d(log n)2

16k2(k − 1)2
+ o(1)

)
= o(I)
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recalling that we chose ρ = k−1(k − 1)−1
√

dn and δ = log n/
√

n.
It remains to show that ∫

θ∈[−δ,δ]k
2
g(θ)dθ ∼ I.

For θ ∈ [−δ, δ]k
2

we have

log g(θ) = ρ2 1

2

∑
p 6=r
q 6=s

(
1 + i(θp,q + θr,s)−

(θp,q + θr,s)
2

2
+ O(|θ|3)

)
− i

dn

k

∑
p,q

θp,qmp,q.

Regrouping the terms and substituting mp,q = k−1 + ap,q this becomes

log g(θ) =
ρ2

2
k2(k − 1)2

+
∑
p,q

θp,q

(
2i(k − 1)2ρ2

2
− i

dn

k

(
1

k
+ ap,q

))

− ρ2

2

(k − 1)2
∑
p,q

θ2
p,q +

∑
p 6=r
q 6=s

θp,qθr,s


+ O(ρ2|θ|3)

Let c be the constant c = d/(2k2(k − 1)2). Recalling ρ = k−1(k − 1)−1
√

dn we find

log g(θ) =
dn

2
− i

dn

k
(vecA)T θ − cnθT Bθ + O(n−1/2(log n)3) (5.7.4)

where B is the matrix

B = (k − 1)2Ik2 + (Jk − Ik)⊗2.

Define h(θ) = −i(dn/k)(vecA)T θ − cnθT Bθ. Proposition 33 gives us an orthonor-
mal basis {f (p,q)}k

p,q=1 of eigenvectors for B and corresponding sequence of eigen-
values (λp,q)

k
p,q=1. Introduce the new variables (τp,q)

k
p,q=1 to perform the change of

basis θ =
∑

p,q f (p,q)τp,q. This gives

h(θ) = −i
dn

k
(vecA)T

∑
p,q

f (p,q)τp,q − cn
∑
p,q

λp,qτ
2
p,q

=
∑
p,q

(
−i(dn/k)(vecA)T f (p,q)τp,q − cnλp,qτ

2
p,q

)
.

Let p, q ∈ {1, . . . , k}. Using the identity∫ ∞

−∞
eax−bx2

dx =

√
π

b
exp

(
a2

4b

)
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(for b > 0), we have that
∫

[−∞,∞]k
2 exp(h(θ))dθ is a product of terms of the form∫ ∞

−∞
exp

(
−i

dn

k
(vecA)T f (p,q)τp,q − cnλp,qτ

2
p,q

)
dτp,q

=

√
π

cnλp,q

exp

(
−d2n((vecA)T f (p,q))2

4ck2λp,q

)
.

So by Proposition 39, for some constant c′ > 0 we have∫
[−δ,δ]k

2
eh(θ)dθ =

∫
[−∞,∞]k

2
eh(θ)dθ + O(e−c′(log n)2)

=
∏
p,q

√
π

cnλp,q

exp

(
−d2n((vecA)T f (p,q))2

4ck2λp,q

)
+ O(e−c′(log n)2)

∼
∏
p,q

√
π

cnλp,q

exp

(
−d2n((vecA)T f (p,q))2

4ck2λp,q

)
since the entries of A are o(n−1/2 log n). Recalling (5.7.4) we now have∫

[−δ,δ]k
2
g(θ)dθ ∼ edn/2

∏
p,q

√
π

cnλp,q

exp

(
−d2n((vecA)T f (p,q))2

4ck2λp,q

)
(5.7.5)

We will simplify the above product using the values of λp,q given in Proposition 33.
First, the contribution to the product from 1 ≤ p, q ≤ k − 1 is

k−1∏
p=1

k−1∏
q=1

√
π

cnλp,q

exp

(
−d2n((vecA)T f (p,q))2

4ck2λp,q

)

∼
(√

π

cn(k2 − 2k + 2)

)(k−1)2 k−1∏
p=1

k−1∏
q=1

exp

(
−d2n((vecA)T f (p,q))2

4ck2(k2 − 2k + 2)

)

=

(√
π

cn(k2 − 2k + 2)

)(k−1)2

exp

(
−d2n(

∑k−1
p=1

∑k−1
q=1(vecA)T f (p,q))2

4ck2(k2 − 2k + 2)

)

=

(√
π

cn(k2 − 2k + 2)

)(k−1)2

exp

(
−d2n(vecÃ)T (Jk−1 + Ik−1)

⊗2vecÃ

4ck2(k2 − 2k + 2)

)

where the last step used Propositions 34(b) and 34(c). The contribution to the
product when exactly one of p or q equals k is(√

π

cn(k − 1)(k − 2)

)2(k−1)

since Proposition 34(a) tells us that ((vecA)T f (p,q))2 = 0 when p = k or q = k.
When p = q = k the contribution to the product is√

π

2cn(k − 1)2
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Substituting these contributions into (5.7.5) we get∫
[−δ,δ]k

2
g(θ)dθ

∼ edn/2
( π

cn

)k2/2 exp
(
−nd2(vecÃ)T (Jk−1+Ik−1)⊗2vecÃ

4ck2(k2−2k+2)

)
(k2 − 2k + 2)(k−1)2/2 ((k − 1)(k − 2))k−1

√
2(k − 1)

= edn/2

(
2πk2(k − 1)2

dn

)k2/2 exp
(
−nd(k−1)2(vecÃ)T (Jk−1+Ik−1)⊗2vecÃ

2(k2−2k+2)

)
(k2 − 2k + 2)(k−1)2/2 ((k − 1)(k − 2))k−1

√
2(k − 1)

=
edn/2

√
2

(
2π

dn

)k2/2 kk2
(k − 1)k(k−1) exp

(
−nd(k−1)2(vecÃ)T (Jk−1+Ik−1)⊗2vecÃ

2(k2−2k+2)

)
(k2 − 2k + 2)(k−1)2/2(k − 2)k−1

= I,

as required.

5.8 Proof of Theorem 28

We want to estimate the sum

E(Y 2) =
∑

M∈M∩ k
n

Zk2

|T (M)|
|Pn,d|

. (5.8.1)

We begin by estimating the sum of the terms near M = (1/k)Jk. For δ > 0 and
any positive integer p, let Bp(δ) be the set of p-by-p matrices M = [mij] for which
maxi,j |mij − (1/k)| < δ. For a (k − 1)-by-(k − 1) matrix M define M to be the
k-by-k matrix formed from M by adding a new row and column so that every row
sum and column sum is 1. Define Bp(δ) = {M | M ∈ Bp(δ)}.

Proposition 38 If M ∈ Bk−1(δ) then M ∈ Bk((k − 1)2δ).

Proof. Write M = [mi,j] and M = [mi,j]. We must verify that |mi,j − 1/k| <
(k − 1)2δ for 1 ≤ i, j ≤ k. For 1 ≤ i, j ≤ k − 1 we have mi,j = mi,j, making the
result immediate. For 1 ≤ i ≤ k − 1 and j = k we have∣∣∣∣mi,k −

1

k

∣∣∣∣ =

∣∣∣∣1−mi,1 −mi,2 − · · · −mi,k−1 −
1

k

∣∣∣∣
=

∣∣∣∣(1

k
−mi,1

)
+

(
1

k
−mi,2

)
+ · · ·+

(
1

k
−mi,k−1

)
+

1

k
− 1

k

∣∣∣∣
< (k − 1)δ

since M ∈ Bk−1(δ). The result for i = k and 1 ≤ j ≤ k − 1 follows by symmetry.
For i = j = k we have∣∣∣∣mk,k −

1

k

∣∣∣∣ =

∣∣∣∣1−m1,k −m2,k − · · · −mk−1,k −
1

k

∣∣∣∣
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=

∣∣∣∣(1

k
−m1,k

)
+

(
1

k
−m2,k

)
+ · · ·+

(
1

k
−mk−1,k

)
+

1

k
− 1

k

∣∣∣∣
< (k − 1)(k − 1)δ

by the above result.

Now we set

δ =
1

(k − 1)2
min

(
ε,

1

2k

)
and consider M for M ∈ Bk−1(δ) ∩ k

n
Z(k−1)2 . By Proposition 38, M ∈ Bk(1/(2k)),

so M is nonnegative and hence M ∈ M. Furthermore, the entries of M are in k
n
Z

because they are integer linear combinations of k/n and 1 = k
n
× n

k
, using the fact

that k divides n. This shows that

|T (M)|
|Pn,d|

is a term in the sum (5.8.1), suggesting that we express (5.8.1) as E(Y 2) = S1 + S2

where

S1 :=
∑

M∈Bk−1(δ)∩ k
n

Z(k−1)2

|T (M)|
|Pn,d|

and S2 is the sum of the remaining terms. By the hypothesis of the theorem, each
term in S1 has the form

|T (M)|
|Pn,d|

= h(n)q(n, M)enf(M).

By Proposition 38 we have M ∈ Bk(ε), so q(n, M) ∼ g(M), and hence

S1 ∼ h(n)
∑

M∈Bk−1(δ)∩ k
n

Z(k−1)2

g(M)enf(M)

By iterating the Euler-Maclaurin summation formula (see [1], p. 806),

S1 ∼
(n

k

)(k−1)2

h(n)

∫
M∈Bk−1(δ)

g(M)enf(M)dM.

We make some observations about this integrand in preparation for using Laplace’s
method. This integrand is infinitely differentiable on the region of integration.
Since f has a unique global maximum over M at (1/k)Jk, it follows that f(M) has
a unique global maximum over Bk−1(δ) at M = M∗ = (1/k)Jk−1. Lemma 37 gives
us the expansion, valid for A = o(n−1/2 log n)Jk−1,

|T (M∗ + A)|
|Pn,d|

∼ γ(k)
(k − 1)dn

nk2/2−1/2kdn−2n
e
−n k2−2k−d+2

2(k2−2k+2)
(vecA)T (Jk−1+Ik−1)⊗2vecA
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but we also know

|T (M∗ + A)|
|Pn,d|

∼ h(n)g(M∗ + A)enf(M∗+A)

so we must have

h(n)g(M∗)enf(M∗) ∼ γ(k)
(k − 1)dn

nk2/2−1/2kdn−2n

and the Hessian H of f(M) at M = M∗ must be

H = −k2 − 2k − d + 2

2(k2 − 2k + 2)
(Jk−1 + Ik−1)

⊗2.

Using Proposition 33 for the eigenvalues of (Jk−1 + Ik−1)
⊗2 we deduce that H is

negative definite and has determinant

− k2k−2

(
k2 − 2k − d + 2

k2 − 2k + 2

)(k−1)2

. (5.8.2)

(Here we used the assumption that k2 − 2k − d + 2 > 0.) Now we may apply the
multidimensional Laplace method (see [34, Theorem IX.5.3]) to conclude

S1 (5.8.3)

∼
(n

k

)(k−1)2 (2π/n)(k−1)2/2

|detH|1/2
h(n)g(M∗)enf(M∗) (5.8.4)

∼ n(k−1)2

k(k−1)2

(2π/n)(k−1)2/2

|detH|1/2
γ(k)

(k − 1)dn

nk2/2−1/2kdn−2n

=
(2π)−k+1n−k+1k2k−1−dn+2n(k − 1)k2−k+dn

|detH|1/2(k2 − 2k + 2)(k−1)2/2(k − 2)k−1

=
kk−1(k − 1)k2−2k+1

|detH|1/2(k2 − 2k + 2)(k−1)2/2

kk(k − 1)k−1n−(k−1)k2n(k − 1)dn

(2π(k − 2))k−1kdn
.

Comparing the above expression to E(Y ) given in Theorem 26 and substituting
(5.8.2) we have

S1 ∼ k1−k

(
k2 − 2k − d + 2

k2 − 2k + 2

)−(k−1)2/2
kk−1(k − 1)k2−2k+1

(k2 − 2k + 2)(k−1)2/2
E(Y )2

= (k2 − 2k − d + 2)−(k−1)2/2(k − 1)k2−2k+1E(Y )2

=

(
k − 1√

k2 − 2k + 2− d

)(k−1)2

E(Y )2.

To prove the theorem it suffices to show S2 = o(S1). Let M be an index of
any term of S2. This implies M 6∈ Bk−1(δ), so we must have M ∈ M \ Bk(δ)
since Bk(δ) ∩M ⊆ Bk−1(δ). But M \ Bk(δ) is a compact set, so the continuous
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function f must attain its maximum value, say α, on this set. Since M∗ ∈ Bk(δ)
is the unique global maximum for f on M, we must have α < f(M∗) and hence
β := (α + f(M∗))/2 < f(M∗). Now

|T (M)|
|Pn,d|

= h(n)q(n, M)enf(M)

≤ h(n)q(n, M)enα

= h(n)o(enβ) (5.8.5)

since q(n, M) = O(poly(n)). The number of terms in S2 is bounded by a polynomial
in n, so by comparing (5.8.5) to (5.8.4) we see that S2 = o(S1).
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Chapter 6

Conclusion

In this thesis we have studied several properties of various models of random graphs.
New results were obtained, and many more questions were raised.

For the circumference of the random graph Gn,M in the supercritical phase, a
new a.a.s. upper bound was obtained. It seems likely that this technique can be
used to obtain slightly better upper bounds. It would be interesting to know what
is the best upper bound that can be produced by this technique. It would also be
interesting to extend this technique to the range M = cn for constant c.

The contiguity result for Gn,d was established for j-edge matchings where j grows
linearly with n. It should be possible to extend this work to other functions j.

The results on the chromatic number of Gn,d and Gn,5 are conditional on hy-
potheses. It may be possible to slightly weaken them, but it seems that a new
technique will be required to prove them completely.

It is significant that the method of small subgraph conditioning was used to
establish these results about colouring. Previously, this method was usually used
for problems about spanning subgraphs. This novel use suggests that the small
subgraph conditioning method might be applicable to other problems, opening new
avenues of inquiry for many other important problems in random graph theory and
beyond.
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Appendix A

Maple code for Section 2.4.4

In this appendix we present Maple code for evaluating the integral in Section 2.4.4.
The region of integration is split into four parts according to the description in
Section 2.4.4. Some of the parts are split into smaller regions in order to express
them as iterated integrals.

Instead of using the bias values

(b, (1− 5b)/2, (1− 5b)/2, b, b, b, b),

we use the simpler set
(1, α, α, 1, 1, 1, 1).

This introduces a scaling factor of 5 + 2α into the computation.

restart;

> assume(alpha,posint);

> pd:=exp(-x1-x2-x3-x4-x5-x6-x7);

>

> # PART 1

> igrnd:=x4+x5+x6+x7;

> I1 := int(int(int(int(int(int(int(igrnd*pd,

> x7=x6..infinity),

> x5=x4..infinity),

> x3=0..(x6-x1)/alpha),

> x2=0..(x4-x1)/alpha),

> x1=0..x6),

> x4=x6..infinity),

> x6=0..infinity)

> +int(int(int(int(int(int(int(igrnd*pd,

> x7=x6..infinity),

> x5=x4..infinity),

> x3=0..(x6-x1)/alpha),

> x2=0..(x4-x1)/alpha),
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> x1=0..x4),

> x4=0..x6),

> x6=0..infinity);

>

> # PART 2

> igrnd:=x1+alpha*x2+x5+x6+x7;

> I2 := int(int(int(int(int(int(int(igrnd*pd,

> x7=x6..infinity),

> x5=x4..infinity),

> x3=0..(x6+alpha*x2-x4)/alpha),

> x4=0..x6+alpha*x2),

> x6=0..x1),

> x2=0..x1/alpha),

> x1=0..infinity)

> +int(int(int(int(int(int(int(igrnd*pd,

> x7=x6..infinity),

> x5=x4..infinity),

> x3=0..(x6+alpha*x2-x4)/alpha),

> x4=0..x1+alpha*x2),

> x6=x1..infinity),

> x2=0..x1/alpha),

> x1=0..infinity)

> +int(int(int(int(int(int(int(igrnd*pd,

> x7=x6..infinity),

> x5=x4..infinity),

> x4=0..x6+alpha*x2-alpha*x3),

> x3=0..(x6+x1)/alpha),

> x6=0..x1),

> x2=x1/alpha..infinity),

> x1=0..infinity)

> +int(int(int(int(int(int(int(igrnd*pd,

> x7=x6..infinity),

> x5=x4..infinity),

> x4=0..alpha*x2-x1),

> x3=0..(x6+x1)/alpha),

> x6=x1..infinity),

> x2=x1/alpha..infinity),

> x1=0..infinity)

> +int(int(int(int(int(int(int(igrnd*pd,

> x7=x6..infinity),

> x5=x4..infinity),

> x3=0..(x6+alpha*x2-x4)/alpha),

> x4=alpha*x2-x1..x1+alpha*x2),

> x6=x1..infinity),

> x2=x1/alpha..infinity),
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> x1=0..infinity)

> ;

>

> # PART 3

> igrnd:=alpha*x2+alpha*x3+x5+x7;

> I3 := int(int(int(int(int(int(int(igrnd*pd,

> x7=x6..infinity),

> x5=x4..infinity),

> x6=0..alpha*x3-x1),

> x4=0..alpha*x2-x1),

> x1=0..alpha*x3),

> x2=alpha*x3/alpha..infinity),

> x3=0..infinity)

> +int(int(int(int(int(int(int(igrnd*pd,

> x7=x6..infinity),

> x5=x4..infinity),

> x6=0..alpha*x3-x1),

> x4=0..alpha*x2-x1),

> x1=0..alpha*x2),

> x2=0..alpha*x3/alpha),

> x3=0..infinity);

>

> # PART 4

> igrnd:=x1+alpha*x3+x4+x5+x7;

> I4 := int(int(int(int(int(int(int(igrnd*pd,

> x7=x6..infinity),

> x5=x4..infinity),

> x6=0..alpha*x3+x4-alpha*x2),

> x2=0..(alpha*x3+x4)/alpha),

> x3=0..x1/alpha),

> x4=0..x1),

> x1=0..infinity)

> +int(int(int(int(int(int(int(igrnd*pd,

> x7=x6..infinity),

> x5=x4..infinity),

> x6=0..alpha*x3+x4-alpha*x2),

> x2=0..(x1+x4)/alpha),

> x3=x1/alpha..infinity),

> x4=0..x1),

> x1=0..infinity)

> +int(int(int(int(int(int(int(igrnd*pd,

> x7=x6..infinity),

> x5=x4..infinity),

> x2=0..(alpha*x3+x4-x6)/alpha),

> x6=0..alpha*x3+x1),
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> x3=0..x1/alpha),

> x4=x1..infinity),

> x1=0..infinity)

> +int(int(int(int(int(int(int(igrnd*pd,

> x7=x6..infinity),

> x5=x4..infinity),

> x2=0..(x4-x1)/alpha),

> x6=0..alpha*x3+x1),

> x3=x1/alpha..infinity),

> x4=x1..infinity),

> x1=0..infinity)

> +int(int(int(int(int(int(int(igrnd*pd,

> x7=x6..infinity),

> x5=x4..infinity),

> x6=0..alpha*x3+x4-alpha*x2),

> x2=(x4-x1)/alpha..(x1+x4)/alpha),

> x3=x1/alpha..infinity),

> x4=x1..infinity),

> x1=0..infinity)

> ;
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Appendix B

A Gaussian-like integral

The following integral often arises when we integrate a function whose logarithm
we have approximated by its second-order Taylor expansion.

Proposition 39 Let k be a positive integer. Define the function f : Rk → C by

f(θ) = −ic1naT θ − c2nθT Bθ

where i is the imaginary unit, a is a fixed k-dimensional vector, B is a fixed k-by-k
positive definite matrix, and c1 and c2 > 0 are constants. Let δ = c3n

−1/2 log n for
some constant c3 > 0. Then, as n →∞,∫

[−δ,δ]k
ef(θ)dθ =

∫
[−∞,∞]k

ef(θ)dθ + O(e−c(log n)2)

for some constant c > 0.

Proof. The difference between the integrals is∣∣∣∣∫
[−∞,∞]k\[−δ,δ]k

ef(θ)dθ

∣∣∣∣ ≤
∫

[−∞,∞]k\[−δ,δ]k

∣∣ef(θ)
∣∣ dθ

=

∫
[−∞,∞]k\[−δ,δ]k

e−c2nθT Bθdθ

≤
∫

θ:|θ|>δ

e−c2nθT Bθdθ.

Since B is positive definite we have θT Bθ ≥ λ|θ|2 where λ > 0 is the smallest
eigenvalue of B. Thus,∫

θ:|θ|>δ

e−c2nθT Bθdθ ≤
∫

θ:|θ|>δ

e−c2nλ|θ|2dθ

=

∫
r>δ

e−c2nλr2

O(rk−1)dr

= O(e−c4λnδ2

)

for some c4 > 0. This final expression is O(e−c(log n)2), as required.
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