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Abstract

This thesis contributes toward understanding fundamental limits of multi-user

fading channels and random wireless networks. Specifically, considering different

samples of channel gains corresponding to different users/nodes in a multi-user

wireless system, the maximum number of channel gains supporting a minimum

rate is asymptotically obtained.

First, the user capacity of fading multi-user channels with minimum rates is

analyzed. Three commonly used fading models, namely, Rayleigh, Rician and Nak-

agami are considered. For broadcast channels, a power allocation scheme is pro-

posed to maximize the number of active receivers, for each of which, a minimum

rate Rmin > 0 can be achieved. Under the assumption of independent Rayleigh

fading channels for different receivers, as the total number of receivers n goes to

infinity, the maximum number of active receivers is shown to be arbitrarily close

to ln(P ln n)/Rmin with probability approaching one, where P is the total transmit

power. The results obtained for Rayleigh fading are extended to the cases of Rician

and Nakagami fading models. Under the assumption of independent Rician fading

channels for different receivers, as the total number of receivers n goes to infinity,

the maximum number of active receivers is shown to be equal to ln(2P ln n)/Rmin

with probability approaching one. For broadcast channels with Nakagami fading,

the maximum number of active receivers is shown to be equal to ln(ω
µ
P ln n)/Rmin

with probability approaching one, where ω and µ are the Nakagami distribution pa-

rameters. A by-product of the results is to also provide a power allocation strategy

that maximizes the total throughput subject to the rate constraints. In multiple-

access channels, the maximum number of simultaneous active transmitters (i.e.

user capacity) is obtained in the many user case in which a minimum rate must

be maintained for all active users. The results are presented in the form of scaling

laws as the number of transmitters increases. It is shown that for all three fading

distributions, the user capacity scales double logarithmically in the number of users

and differs only by constants depending on the distributions. We also show that a
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scheduling policy that maximizes the number of simultaneous active transmitters

can be implemented in a distributed fashion.

Second, the maximum number of active links supporting a minimum rate is

asymptotically obtained in a wireless network with an arbitrary topology. It is

assumed that each source-destination pair communicates through a fading channel

and destinations receive interference from all other active sources. Two scenarios

are considered: 1) Small networks with multi-path fading, 2) Large Random net-

works with multi-path fading and path loss. In the first case, under the assumption

of independent Rayleigh fading channels for different source-destination pairs, it

is shown that the optimal number of active links is of the order log N with prob-

ability approaching one as the total number of nodes, N , tends to infinity. The

achievable total throughput also scales logarithmically with the total number of

links/nodes in the network. In the second case, a two-dimensional large wireless

network is considered and it is assumed that nodes are Poisson distributed with

a finite intensity. Under the assumption of independent multi-path fading for dif-

ferent source-destination pairs, it is shown that the optimal number of active links

is of the order N with probability approaching one. As a result, the achievable

per-node throughput obtained by multi-hop routing scales with Θ( 1√
N

).
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Chapter 1

Introduction

“I have acquired that much knowledge to realize I do not know anything.”

-Ibn Sina (Avicenna)

Nowadays, Wireless communications plays an important role in our daily life,

although it has been a topic of study since the 1960’s. Two fundamental aspects of

wireless communications make it challenging and interesting. First of all, the time-

varying nature of the underlying channel due to small-scale and large-scale fading is

one of the most significant problems in designing wireless communication systems.

Secondly, unlike wired communications in which each transmitter-receiver pair is

isolated and can be thought of as a point-to-point link, wireless communication users

suffer from interference made by all other active users sharing the same transmission

medium. A lot of effort has been done to improve the performance of wireless

communication systems in the presence of fading and interference and this field is

still attracting many researchers. In this thesis, some multi-user wireless systems

are analyzed in the presence of fading and interference.
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This chapter contains of some background knowledge used throughout this the-

sis. First of all, two notions of Shannon capacity are defined and the corresponding

capacity regions for fading broadcast and multiple-access channels are reviewed,

Then, rate-constrained fading broadcast channels are introduced and their capac-

ity region is characterized. Finally, some basic features of wireless networks are

reviewed.

1.1 Capacity Regions of Multi-User Channels

Two notions of Shannon capacity have been developed for multi-user channels:

ergodic capacity and outage capacity. Ergodic capacity and outage capacity are

two different performance measures. Ergodic capacity deals with long-term rates

averaged over all fading states and takes advantage of channel variations by allocat-

ing higher transmission rates to users with strong channels, while outage capacity

achieves a constant rate in all non-outage fading states subject to an outage prob-

ability.

Considering random communication channel h, the channel capacity is defined

as

C(h) = max
fX(x)

I(X; Y )

where I(X; Y ) denotes mutual information between received signal Y and trans-

mitted signal X, and fX(x) represents the transmitted signal’s probability density

function (pdf). As the channel capacity is a function of channel gains, it is random.

Considering Gaussian fading channels, ergodic capacity and outage capacity are

defined as follows.

Definition 1.1.1 x% outage capacity is the data rate, R, that can be supported

with x%. That is,

P(R > C(h)) ≤ x%

Zero-outage capacity refers to outage capacity with x = 0.
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Definition 1.1.2 Ergodic capacity is given by

C = E (C(h))

In a multi-user channel, the capacity is not a scalar and we are dealing with the

capacity region.

In [1], the ergodic capacity region of fading multiple-access channels with Gaus-

sian noise is characterized. In [1], it is shown that each point on the boundary of

the region can be achieved by successive decoding. Moreover, the optimal rate and

power allocation in each fading state can be explicitly obtained in a greedy manner.

The solution can be viewed as the generalization of the water-filling construction

for single-user channels to multiple-access channels with arbitrary number of users,

and exploits the underlying polymatroid structure of the capacity region. In [2],

the ergodic capacity region of an M -user fading broadcast channel is derived for

code division (CD), time division (TD), and frequency division (FD), assuming

that both the transmitter and the receivers have perfect channel side information

(CSI). It is shown in [2] that by allowing dynamic resource allocation, TD, FD,

and CD without successive decoding have the same ergodic capacity region, while

optimal CD has a larger region. Optimal resource allocation policies are obtained

for these different spectrum-sharing techniques. A simple sub-optimal policy is also

proposed in [2] for TD and CD without successive decoding that results in a rate

region quite close to the ergodic capacity region.

In [3], the outage capacity region of fading broadcast channels is derived, as-

suming that both the transmitter and the receivers have perfect CSI. This capacity

region and the associated optimal resource allocation policies are obtained for CD

with and without successive decoding, for TD, and for FD. It is shown in [3] that

in an M -user broadcast system, the outage capacity region is implicitly obtained

by deriving the outage probability region for a given rate vector. Given the re-

quired rate of each user, a strategy which bounds the outage probability region

is presented for different spectrum-sharing techniques. The corresponding optimal
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power allocation scheme is a multi-user generalization of the threshold-decision rule

for a single-user fading channel. Also discussed is a simpler minimum common out-

age probability problem under the assumption that the broadcast channel is either

not used at all when fading is severe or used simultaneously for all users. In [4],

the outage capacity region of an M -user fading multiple-access channel is derived

under the assumption of perfect CSI at the transmitters and the receiver. Given

a required rate and average power constraint for each user, a successive decoding

strategy and a power allocation policy are proposed in [4] that achieve points on

the boundary of the outage probability region. The scenario where an outage must

be declared simultaneously for all users (common outage) and when outages can be

declared individually (individual outage) for each user are discussed.

1.2 Rate-Constrained Multi-User Channels

Many businesses are now seeking the collaboration and productivity benefits offered

by mobile voice and video. To support these applications, information technology

organizations must design a wireless network that is multimedia ready. In fact,

health-care companies and retail industries, in particular, are already deploying

voice and video for mission-critical applications. In health-care, some examples

include voice communications between hospital staff, physicians and nurses, as well

as sharing imaging files such as X-ray and Magnetic Resonance Imaging (MRI) fies

between staff members. In retail, these applications include Push-To-Talk appli-

cations for employee collaboration and streaming media for digital display units

in stores. When voice and video are added to a wireless network, a number of

challenges arise. Because voice and video are latency-sensitive, they require higher

levels of priority, predictability, and reliability than data applications. The same

packet loss that would not significantly affect a data file can be completely disrup-

tive to a voice call or video stream [7]. Hence, all users need to transmit/receive

information with a rate greater than a threshold. In this section, broadcast channels

as a simple example of multi-user wireless systems are chosen and some technical
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aspects of supporting a minimum rate in such a system are introduced.

1.2.1 Broadcast Channels with Minimum Rates

For a system with delay-sensitive data, neither the ergodic capacity nor the outage

capacity is optimal because it is not desirable to shut off users for a long period of

time. In [6], ergodic capacity is maximized subject to minimum rate requirements

for all users in all fading states in a broadcast channel.

In a rate-constrained broadcast channel, all receivers must support a minimum

rate. Hence, some transmit power is used to maintain the minimum rates in all

fading states, while the remaining power is used to maximize the average sum rate.

In this case, users are never completely cut off due to the minimum rate requirement.

However, the amount of power allocated to each user still depends on its channel

variations. Users having good channel conditions receive more extra power and are

able to transmit with higher rates, while less transmit power is allocated to those

receivers experiencing poor channel conditions.

1.2.2 Minimum-Rate Capacity Region

In [6], the minimum-rate capacity region of K-user broadcast channels is defined as

the region of all achievable average rate vectors subject to an average power con-

straint P̄ and minimum-rate constraints R∗ = (R∗
1, R

∗
2, · · · , R∗

K). Throughout this

thesis, vectors are indicated by bold face letters. The minimum-rate constraint ba-

sically forces each receiver’s instantaneous rate to be at least equal to the minimum

rate in all fading states. Assume Rj(n) and Rj denote respectively the instan-

taneous and the average rate of user j at time slot n. Hence, according to the

minimum-rate constraint, Rj(n) ≥ R∗
j , j = 1, · · · , K, ∀n. Note that we are dealing

with slow or block fading channels that are assumed to be constant during each

time block. Let Cmin(P) denotes the set of achievable average rates in excess of the
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minimum rates for power policy P [6]

Cmin(P) = {Rj : R∗
j ≤ Rj ≤ En (Rj(P(n))) ; j = 1, · · · , K} (1.1)

and Rj(P(n)) is given by

Rj(P(n)) = log















1 +
Pj(n)

nj +
K

∑

k=1

Pk(n)1[nj>nk]















where Pj(n) denotes transmitted power allocated to the jth receiver at time n,

and nj refers to the background noise variance at receiver j. As (1.1) indicates,

Cmin(P) does not include rates below the given minimum rates. To ensure that the

minimum-rate constraints are satisfied, the set of feasible power policies must be

tightly restricted. Define F as the set of all power policies satisfying the minimum-

rate constraints and the average power constraint P̄ in each fading state [6]

F ≡
{

P : En

(

K
∑

k=1

Pk(n)

)

≤ P̄ , Rj(P(n)) ≥ R∗
j ∀j, n

}

(1.2)

Definition 1.2.1 The minimum-rate capacity region of a fading broadcast channel

with perfect CSI at the transmitter and receivers, average power constraint P̄ , and

the minimum-rate constraints R∗ = (R∗
1, R

∗
2, · · · , R∗

K) is [6]

Cmin(P ,R∗) = Co

(

⋃

P∈F
Cmin(P)

)

(1.3)

where Co denotes the convex hull operation. Achievability of this region can be

proved using achievability of the ergodic capacity region and time sharing argu-

ments.

The minimum-rate capacity region is basically a combination of the ergodic capac-

ity and zero-outage (i.e. the probability of outage is zero) capacity regions. In the
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(a)
 (b)

Figure 1.1: Ergodic, zero-outage, and minimum-rate capacity regions for (a) small
minimum rates, and (b) large minimum rates [6]

minimum-rate capacity region, a fraction of transmitted power is used to maintain

the minimum rates in all fading states, while the remaining power is used to achieve

higher rates in excess of the minimum rates. As the minimum rates must be main-

tained in all fading states, the minimum rates vector should be located inside the

zero-outage capacity region. Let Cergodic and Czero denote the ergodic capacity and

zero-outage capacity regions respectively. It can be shown that [6]

Czero ⊆ Boundary{Cmin(P ,R∗)} ⊆ Cergodic

Figure 2.3 shows this relationship for two minimum rates vectors. It can be seen

that increasing minimum rates results in a smaller set of achievable rates because a

large fraction of transmitted power is required to maintain the minimum rates for

all receivers. If the minimum rates of all users are zero, the minimum-rate capacity

region is the same as the ergodic capacity region. As Figure 2.3 indicates, the

minimum rates vector is located in the zero-outage capacity region; therefore, it is

achievable in all fading states with probability one.
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Figure 1.2: A wireless ad-hoc network

1.3 Wireless Ad-Hoc Networks

Wireless ad-hoc networks (e.g. Figure 1.2) are wireless networks without any infras-

tructure or decentralized wireless networks. In this network, each node is capable

of transmitting information to other nodes in the network and selecting the nodes

forwarding data to their destinations is made dynamically based on the network

connectivity. This is in contrast to wired networks in which routers perform the

routing task or to managed wireless networks (i.e. wireless networks with an in-

frastructure) in which a base station or an access point manages communication

among the nodes.

1.3.1 Network Architecture

A wireless ad-hoc network is a collection of autonomous nodes or terminals commu-

nicating with each other by forming a multi-hop (see Figure 1.3) radio network and

maintaining connectivity in a decentralized manner. Since the nodes communicate

over wireless links, they have to contend with the effects of radio communication,

such as noise, fading, and interference. In addition, the links typically have less

bandwidth than those in a wired network. Each node in a wireless ad-hoc network
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1

1
2 2

Figure 1.3: Single-hop (source 1 to destination 1) and multi-hop (source 2 to des-
tination 2) transmissions in a wireless ad-hoc network

functions as both a host and a router, and the control of the network is distributed

among the nodes. The network topology is in general dynamic, because the con-

nectivity among the nodes may vary with time due to node departures, new node

arrivals, and the possibility of having mobile nodes. Hence, there is a need for

efficient routing protocols to allow the nodes to communicate over multi-hop paths

consisting of possibly several links in a way that does not use any more of the

network ”resources” than necessary.

1.3.2 Applications of Wireless Ad-Hoc Networks

The decentralized nature of wireless ad-hoc networks makes them suitable for a

variety of applications where having central nodes is impossible or central nodes

can’t be relied on. Ad-hoc wireless networks can be further classified into the

following categories based on their applications:

• Mobile ad-hoc networks

• Sensor networks

• Mesh networks

9



(a) (b)

Figure 1.4: Mobile ad-hoc networks (MANETs) for (a) emergency/rescue opera-
tions, and (b) military applications [8]

A. Mobile Ad-Hoc Networks

In the next generation of wireless communication systems, there will be a need

for the rapid deployment of independent mobile users. Significant examples include

establishing survivable, efficient, dynamic communication for emergency/rescue op-

erations (e.g. Figure 1.4.a), disaster relief efforts, and military networks (e.g. Figure

1.4.b). Such network scenarios cannot rely on centralized and organized connectiv-

ity, and can be conceived as applications of mobile ad-hoc networks (MANETs).

A MANET is an autonomous collection of mobile users that communicate over

relatively bandwidth constrained wireless links. Since the nodes are mobile, the

network topology may change rapidly and unpredictably over time. The network is

decentralized, where all network activity including discovering the topology and de-

livering messages must be executed by the nodes themselves; in other word, routing

functionality will be incorporated into mobile nodes [8].

B. Sensor Networks

A wireless ad hoc sensor network consists of a number of sensors spread across

a geographical area. Each sensor has wireless communication capability and some

level of intelligence for signal processing and networking of the data. Some examples

of sensor networks are the following [8]:

1. Military sensor networks to detect and gain as much information as possible

10



about enemy movements, explosions, and other phenomena of interest.

2. Sensor networks to detect and characterize Chemical, Biological, Radiological,

Nuclear, and Explosive (CBRNE) attacks and material.

3. Sensor networks to detect and monitor environmental changes in plains, forests,

oceans, etc.

4. Traffic sensor networks to monitor vehicle traffic on highways or in congested

parts of a city.

5. Surveillance sensor networks for providing security in shopping malls, parking

garages, and other facilities.

6. Parking lot sensor networks to determine which spots are occupied and which

are free.

The above list suggests that sensor networks offer certain capabilities and enhance-

ments in operational efficiency in civilian applications as well as assist in the na-

tional effort to increase alertness to potential terrorist threats.

The basic goals of a sensor network generally depend upon the application, but

the following tasks are common to many networks [8]: 1) Determine the value

of some parameter at a given location (e.g. in an environmental network, the

temperature, atmospheric pressure, amount of sunlight, and the relative humidity

at a number of locations), 2) Detect the occurrence of events of interest and estimate

parameters of the detected events (e.g in the traffic sensor network, detecting a

vehicle moving through an intersection and estimate the speed and direction of the

vehicle), 3) Classify a detected object (e.g. in a traffic sensor network, a vehicle

crossing the intersection is a car, a mini-van, or a bus), 4) Track an object (e.g. in

a military sensor network, track an enemy tank). In these four tasks, an important

requirement of the sensor network is that the required data be disseminated to the

proper end users. In some cases, there are fairly strict time requirements on this

communication. For instance, the detection of an intruder in a surveillance network

should be immediately communicated to the police so that action can be taken.

11



Figure 1.5: Three-level architecture for wireless mesh networks [9]

B. Mesh Networks

A mesh network is a wireless network made up of radio nodes organized in a mesh

topology. A wireless mesh network is a fully wireless network that employs multi-

hop communications to forward traffic to and from wired Internet entry points.

Different from flat ad-hoc networks, a mesh network introduces a hierarchy in the

network architecture with the implementation of wireless routers providing wireless

transport services to data traveling from users to either other users or access points

(access points are special wireless routers with a high-bandwidth wired connection

to the Internet backbone) [9]. Figure 1.5 shows a three-level architecture for wire-

less mesh networks. Several emerging and commercially interesting applications of

wireless mesh networks are the following [9]:

• Integrated public transportation systems

• Public safety

• public Internet access

12



1.4 Thesis Objective and Outline

The objective of this thesis is on analyzing some fundamental limits of fading multi-

user channels and random wireless networks. Specifically, considering different

samples of channel gains corresponding to different users/nodes in a multi-user

wireless system, the maximum number of channel gains supporting a minimum

rate is asymptotically obtained.

First, the user capacity of fading multi-user channels with minimum rates is

analyzed. Three commonly used fading models, namely, Rayleigh, Rician and Nak-

agami are considered. For broadcast channels, a power allocation scheme is proposed

to maximize the number of active receivers, for each of which, a minimum rate can

be achieved. In multiple-access channels, the maximum number of simultaneous

active transmitters (i.e. user capacity) is obtained in the many user case in which

a minimum rate must be maintained for all active users.

Second, the maximum number of active links supporting a minimum rate is

asymptotically obtained in a wireless network with an arbitrary topology. It is

assumed that each source-destination pair communicates through a fading channel

and destinations receive interference from all other active sources. Two scenarios are

considered: 1) Small networks with multi-path fading, 2) Large Random networks

with multi-path fading and path loss. In the first case, independent Rayleigh fading

channels for different source-destination pairs are assumed. In the second case, a

two-dimensional large wireless network is considered and it is assumed that nodes

are Poisson distributed with a finite intensity.

The rest of the thesis is organized as follows: In Chapter 2, the user capacity of

rate-constrained fading broadcast channels is obtained. Chapter 3 presents the same

analysis for fading multiple-access channels with minimum rates. In Chapter 4, a

random wireless ad-hoc network is considered and the maximum number of active

source-destination pairs is asymptotically achieved for small and large networks.

Finally, Chapter 5 concludes thesis contributions and presents future work.
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Chapter 2

User Capacity of

Rate-Constrained Broadcast

Channels

In a broadcast system where the transmitter can allocate different portions of its

total transmit power to different receivers according to their channel states, there is

a basic trade-off between the total throughput and the minimum rate achievable for

all the receivers. To increase the total throughput, it is always favorable to allocate

more power to receivers with better channel states, while in order to increase the

minimum rate, obviously, more power should be allocated to receivers with worse

channel states. In this chapter, a power allocation scheme is proposed to maximize

the number of active receivers (i.e. user capacity) in broadcast channels, for each

of which, a minimum rate Rmin > 0 can be achieved. Three commonly used fading

distributions, namely, Rayleigh, Rician, and Nakagami, are considered and the user

capacity of rate-constrained broadcast channels is asymptotically analyzed.

14



2.1 Literature Review

In a dynamic environment, where the channel states are time-varying, opportunistic

power allocation schemes can be exploited to increase the total throughput while

maintaining an average rate constraint for each receiver. The basic idea is to adapt

the power allocation to the variations of the channel states. The transmission rate

for a receiver is increased when its channel state becomes better, thus higher rates

can be achieved using less power. However, in delay-sensitive applications, it may

not be admissible for a receiver to wait too long before its rate increases. Basically,

this raises an issue of the trade-off between ergodic capacity and outage capacity,

for which, extensive studies have been given in [2, 3, 6] in the context of broadcast

channels.

In a rate-constrained broadcast channel, all receivers must maintain a minimum

rate. The idea of broadcast channels with minimum rates is originally proposed in

[6] and the capacity region and the optimal power allocation scheme for a block

fading broadcast channel with minimum rates are derived. As mentioned in Section

1.2.2, [6] presents the relationship between the minimum-rate capacity region with

the ergodic and zero-outage capacity regions. Other papers dealing with single-

antenna or multi-antenna rate-constrained broadcast channels are as follows: In

[10], the optimal transmit strategy is studied for a multi-antenna Gaussian broad-

cast channel in which each user requires a specific rate. These rate requirements

correspond to the respective service the receiver is using. This problem leads to

the non-degraded multi-antenna Gaussian broadcast channel. An algorithm is pro-

posed to fulfill the rate requirements of all receivers and maximizes the minimum

rate factor which is defined as the quotient of the available rate and the required

rate for each user. The proposed algorithm balances the rate factors until an equi-

librium is reached. In [11], a joint power and rate allocation scheme is proposed

for the downlink wireless data services in Code Division Multiple Access (CDMA)

networks. The goal is on maximizing the total utility while maximizing the utility

of each mobile user. A distributed allocation algorithm is presented based on dy-
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namic pricing. The algorithm is composed of three processes, user selection, power

allocation and rate allocation. Moreover, the optimization model and algorithm

considering users’minimum-rate constraints are established to provide Quality of

Service (QoS) for mobile users. In [12], Dynamic Resource Allocation (DRA) has

been developed to improve the total throughput by taking the benefit of channel

variations among users in a multi-carrier system. For practical use, it is important

for DRA algorithms to be both fair and efficient. In [12], resource allocation algo-

rithms are measured in terms of fairness and efficiency and then, a new scheduling

algorithm (called the MRR algorithm) considering users’ QoS provision is proposed.

The MRR algorithm is designed to meet individual users minimum required rate

while maximizing fairness and efficiency of the whole system. In [13], the optimal

solution is presented to the problem of allocating bandwidth and power across users

for downlink transmission in wireless systems when multiple users can be scheduled

for transmission simultaneously. Maximum and minimum rate per user constraints

and a maximum rate per unit bandwidth constraint are included in the formula-

tion. When only the constraint of a maximum rate per unit bandwidth is imposed,

[13] shows that scheduling at most two users simultaneously is sufficient for opti-

mality. In [14], a method having a low computational complexity is proposed for

fast broadcasting with minimum rate constraints, suited for transmissions over Or-

thogonal Frequency Division Multiplexing (OFDM) channels. Results obtained by

computer simulations show that the novel scheme performs close to the optimum

throughput. In [15], a downlink resource allocation problem is considered in an

OFDM system. The resource allocation problem is modeled as a cooperative game

where a fairness criterion is enforced in the bargaining outcome of the game. Given

a minimum rate requirement for each user, Nash bargaining model ensures all users

to attain their minimum rate requirements. If a set of maximum rate require-

ment is also provided, Raiffa-Kalai-Smorodinsky bargaining model regulates the

bargaining outcome to consider both the minimum and maximum requirements of

all users. The main interest of the cooperative game is to achieve a Pareto optimal

outcome. In [15], a reduced complexity algorithm is proposed to achieve transmis-
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sion rates as close as possible to the Pareto optimal rates. In [16], the downlink

of a multi-cell OFDMA system is considered. Rate Adaptive Optimization is in-

vestigated with a minimum-rate constraint in presence of co-channel interference

and a low-complexity sub-carrier allocation scheme is proposed. A particular pro-

cedure provides limitation of co-channel interference by dynamically adapting the

sub-carrier reuse factor. A rate requirement violation threshold is introduced to

decide whether or not the interference limitation procedure is to be used. In [17],

downlink user capacity is asymptotically derived in a single-cell with successive in-

terference cancellation using order statistics. It is assumed that all the users have

a common target date rate. In [17], user capacity is defined as the expected num-

ber of simultaneously active receivers and a complicated expression in terms of the

normal distribution function is presented for the downlink user capacity. In [18],

the weighted sum rate problem is solved for an OFDM broadcast channel under

a sum power constraint, if minimum rates have to be guaranteed in each fading

state and perfect CSI is assumed at the base station and the receivers. The prob-

lem is subdivided into two problems. First, the problem of feasibility is tackled,

which occurs since the system is power limited and not all required rates might

be supportable. Subsequently, the optimal resource allocation in case of feasibility

is derived. In [19], the aforementioned results are also extended to Multiple-Input

Multiple-Output (MIMO) OFDM broadcast channels. In [20], optimal resource

allocation is proposed for parallel Gaussian broadcast channels. In other words,

the maximization of a weighted sum of rates is studied where a rate constraint

over all parallel Gaussian channels has to be met for each user in each time instant

with limited sum power. The derived algorithms can be interpreted as primal-dual

algorithms, where one has an appealing interpretation as rate water-filling. In [21],

scheduling in a broadcast channel based on partial channel state information at the

transmitter is carried out in an opportunistic way, where several orthogonal beams

are randomly generated at the transmitter to simultaneously deliver several users

with their intended data. Within a more practical perspective of the opportunistic

systems, [21] presents a transmission scheme where a minimum rate per user is
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required for each scheduled user. This minimum rate is demanded by each user

to properly decode and manage its received signal, which stands as a possible QoS

indicator for the system behaviour. Then, [21] considers an imperfect CSI situa-

tion where robust schemes are required to meet the QoS restrictions. Two robust

opportunistic transmission philosophies are presented through a power allocation

over the transmitting beams, and they are efficiently solved via convex optimization

tools. In [22], the problem of maximizing the overall spectral efficiency is investi-

gated for the downlink of multi-user OFDM systems while maintaining users’ QoS

requirements, including bit error rate and individual minimum rate requirements.

Under the assumption of equal power allocation, an efficient algorithm is proposed

to obtain the suboptimal solution of the resource allocation. In this algorithm,

first, some positive multipliers are introduced, one for each user, according to their

minimum rate constraints, and then a parallel subcarrier-and-bit allocation scheme

is designed using these multipliers with low complexity. As providing multimedia

services is particularly challenging in wireless networks such as high speed downlink

packet access (HSDPA) systems, [23] presents a generalized scheduling algorithm

which allows controlling over users’ fairness as well as balancing fairness-throughput

trade-offs. Furthermore, in [23], it is shown that the generalized algorithm can well

support a minimum rate for delay-sensitive services, which is important in provid-

ing QoS for multimedia services over HSDPA. In [24], the impact of Space Division

Multiple Access (SDMA) on access layer channel allocation is captured. This im-

pact obtains different twists in Time Division Multiple Access (TDMA), CDMA

and OFDM due to different natures of co-channel and cross-channel interference

and different interactions of user spatial channel characteristics with system chan-

nels, namely, time slots, codes and sub-carriers. In [24], heuristic algorithms are

proposed for channel allocation, downlink beamforming and transmit power control

so as to increase total provisioned system rate and provide QoS to users in the form

of minimum rate guarantees.

18



2.2 Motivation and Objective

In this chapter, we consider a power allocation scheme with a minimum-rate con-

straint Rmin > 0. Since for a fixed Rmin, in a time-varying fading environment, it

may not be always possible for all receivers to achieve this minimum rate simulta-

neously, we propose a scheme to maximize the number of active receivers, for each

of which, such a minimum rate can be supported, while allocating no power to the

other inactive receivers.

By adjusting the value of Rmin, different trade-offs between the total throughput

and the delay can be achieved. Specifically, by increasing Rmin, transmitted power

is shared among fewer receivers with relatively better channel states, resulting in

higher total throughput; However, this also results in delay for more inactive re-

ceivers; therefore, longer delay for each receiver on average. On the other hand,

choosing Rmin small enough, it is possible to make it simultaneously achievable for

all the receivers, resulting in no delay for any receiver; However, it may be too

costly to let receivers at extremely bad channel states transmit data.

While the number of supportable active receivers depends on the specific channel

states, the asymptotic behavior is analyzed when the total number of receivers n

is large for three commonly used fading distributions, namely, Rayleigh, Rician,

and Nakagami. These fading distributions cover the commonly used models for

wireless communication channels. For example, if there are multiple indirect paths

between transmitter and receiver, with no distinct dominant path, Rayleigh fading

is appropriate from the central limit theorem. If there is a dominant component,

say line-of-sight (LOS), in addition to indirect paths, the Rician distribution is

appropriate. Nakagami fading occurs in the case of relatively large delay-time

spreads, with different clusters of reflected waves. Within any one cluster, the

delay times are approximately equal for all waves, and as a result the envelope

of each cumulated cluster signal is Rayleigh distributed. Since the average time

delay differs significantly between clusters, Nakagami fading follows from a sum of

multiple Rayleigh-faded signals [25].
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Figure 2.1: A fading broadcast channel

The rest of this chapter is organized as follows: In Section 2.3, the broadcast

channel model is introduced. Section 2.4 presents the proposed power allocation

scheme. In Section 2.5, the user capacity of rate-constrained fading broadcast

channels is asymptotically analyzed for Rayleigh, Rician, and Nakagami fading

models. Finally, simulation results are shown in Section 2.6.

2.3 System Model

Consider a broadcast channel with one transmitter and n receivers with the follow-

ing channel model in the time block t = 1, 2, . . . , T :

Yi(t) = giX(t) + Zi(t), i = 1, 2, . . . , n, (2.1)

where X(t) ∈ C is the signal sent by the transmitter, and Yi(t) ∈ C is the signal

received by receiver i. Noise Zi(t) ∈ C, i = 1, . . . , n, t = 1, . . . , T are assumed

to be independent and identically distributed (iid) complex Gaussian distributed

according to CN (0, 1). The channel gains gi ∈ C, i = 1, . . . , n are assumed to be

constant during this time block, and known to the transmitter and all the receivers.
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Equivalently, as shown in Figure 2.1, the model (2.1) can be written as

Y ′
i (t) = X(t) + Zi(t)/gi, i = 1, 2, . . . , n (2.2)

= X(t) + ωi(t)

where noise Zi(t)/gi is still complex Gaussian distributed, but with variance 1/|gi|2.

Let Ni = 1/|gi|2. Without loss of generality, assume that N1 ≤ N2 ≤ · · · ≤ Nn.

It is well known [26, Sec.14.6] that the broadcast channel (2.2) is stochastically

degraded, and the capacity region is given by

Ri < ln

(

1 +
Pi

∑i−1
j=1 Pj + Ni

)

, i = 1, . . . , n (2.3)

where Ri is the achievable rate for receiver i, to which, the power Pi ≥ 0 is allocated

by the transmitter under the total transmit power constraint
∑n

i=1 Pi = P .

2.4 Power Allocation

Different rates can be achieved by different power allocation schemes in (2.3). To

increase the total throughput,
∑n

i=1 Ri, it is always favorable to allocate more power

to receivers with smaller Ni, as demonstrated by the following lemma.

Lemma 2.4.1 For any two power allocation schemes {Pi, i = 1, . . . , n} and {P ′
i , i =

1, . . . , n} in (2.3), where for some 1 ≤ i1 < i2 ≤ n and ∆ > 0, P ′
i1

= Pi1 + ∆, and

P ′
i2

= Pi2 − ∆, and Pi = P ′
i for any i /∈ {i1, i2}, the following inequality always

holds:

n
∑

i=1

ln

(

1 +
Pi

∑i−1
j=1 Pj + Ni

)

≤
n

∑

i=1

ln

(

1 +
P ′

i
∑i−1

j=1 P ′
j + Ni

)

(2.4)

where “=” holds if and only if Ni1 = Ni1+1 = · · · = Ni2 .

Proof 2.4.1 By induction, we only need to prove the case when i2 = i1 + 1, for
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which, (2.4) is equivalent to

i1+1
∑

i=i1

ln

(

1 +
Pi

∑i−1
j=1 Pj + Ni

)

≤
i1+1
∑

i=i1

ln

(

1 +
P ′

i
∑i−1

j=1 P ′
j + Ni

)

which is equivalent to

(

1 +
Pi1

∑i1−1
j=1 Pj + Ni1

) (

1 +
Pi1+1

∑i1−1
j=1 Pj + Pi1 + Ni1+1

)

≤
(

1 +
Pi1 + ∆

∑i1−1
j=1 Pj + Ni1

) (

1 +
Pi1+1 − ∆

∑i1−1
j=1 Pj + Pi1 + ∆ + Ni1+1

)

which is equivalent to

∑i1
j=1 Pj + Ni1

∑i1
j=1 Pj + Ni1+1

≤
∑i1

j=1 Pj + Ni1 + ∆
∑i1

j=1 Pj + Ni1+1 + ∆

which holds obviously for any ∆ > 0 and Ni1 ≤ Ni1+1, where “=” holds if and only

if Ni1 = Ni1+1. ¤

In order to maximize the total throughput, all power should be allocated to the

best receiver, which has the maximum channel gain |g1|, or the minimum equiv-

alent noise variance N1. However, in order to maintain a trade-off between the

throughput and delay, the following power allocation scheme is considered:

max{m} (2.5)

subject to ln

(

1 +
P1

N1

)

≥ Rmin (2.6)

ln

(

1 +
Pi

∑i−1
j=1 Pj + Ni

)

= Rmin, 2 ≤ i ≤ m (2.7)

m
∑

i=1

Pi = P (2.8)

where Rmin > 0 (in nats) is a pre-set minimum-rate constraint for all active re-

ceivers.
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The reason for setting “=” instead of “≥” in (2.7) is that once the minimum

rate is satisfied, any redundant power should be given to the best receiver in order

to maximize the total throughput, as implied by Lemma 2.4.1.

A simple algorithm to solve the optimization problem (2.5)-(2.8) is as follows:

First, the maximum m can be determined by recursively defining P ′
i , i = 1, 2, . . .,

according to the following equations:

Rmin = ln

(

1 +
P ′

i
∑i−1

j=1 P ′
j + Ni

)

, i = 1, 2, . . . , (2.9)

until some integer m such that
∑m

i=1 P ′
i ≤ P but

∑m+1
i=1 P ′

i > P , or m = n.

Then, after the maximum m is determined, the optimal power allocation can be

obtained by letting Pi = 0 for i = m+1, . . . , n, and choosing Pi, i = m,m−1, . . . , 2

recursively according to the following equations:

Rmin = ln

(

1 +
Pi

P − ∑m
j=i Pj + Ni

)

, i = m, . . . , 2,

and at last, setting P1 = P − ∑m
j=2 Pj.

Obviously, with fixed P and Rmin, the maximum number of active receivers

completely depends on the equivalent noise variance Ni = 1/|gi|2, i = 1, . . . , n.

When the channel gains gi obey some statistical distribution, asymptotic behavior

of the maximum m can be determined when the total number of receivers n becomes

large.

2.5 Asymptotic Analysis

Let Mn denote the maximum number of simultaneous active receivers (out of n

receivers) that can be supported with a rate greater than or equal to Rmin. Note,

Mn is random which depends on the channel gains. Assuming the total number of

receivers is large enough, the distribution of Mn can be obtained using the central

limit theorem. In this section, some characteristics of this distribution is analyzed.
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2.5.1 Rayleigh Fading

Consider independent Rayleigh fading channels for different receivers, i.e., the gains

gi, i = 1, . . . , n are independent realizations of the complex Gaussian distribution

CN (0, 1). We have the following theorem.

Theorem 2.5.1 Under the assumption of independent Rayleigh fading channels

for different receivers with the gain gi ∼ CN (0, 1) and for any ǫ > 0, the maximum

number of active receivers Mn determined by (2.5)-(2.8) is bounded as:

P(⌊ν(n) − ǫ⌋ ≤ Mn ≤ ν(n) + ǫ) → 1, as n → ∞, (2.10)

where n denotes the total number of receivers, and

ν(n)
∆
= ln(P ln n)/Rmin. (2.11)

Proof 2.5.1 Consider the broadcast channel (2.1), with the independent gains

gi ∼ CN (0, 1), for i = 1, . . . , n. For the equivalent model (2.2), the noise variance

Ni = 1/|gi|2 is of the following distribution function:

F (y) = P(Ni < y) = P(1/|gi|2 < y) = P(|gi|2 > 1/y)

=

∫ ∞

1/y

e−xdx = e−
1
y , for y > 0.

For any fixed N0 > 0, we can characterize the number of “good” channels with

the equivalent noise variance Ni less than N0 as the following. Let p0 = F (N0) =

e
− 1

N0 . Then, with probability p0, a channel is good. Consider Bernoulli sequence

xi =







1, with probability p0

0, with probability 1 − p0

for i = 1, 2, . . . , n. Then, the number of good channels has the same distribution

as Mn =
∑n

i=1 xi, which satisfies the binomial distribution B(n, p0).

24



Now, consider the following power allocations for the m best receivers.

Pi =
c

αm−i
, for i = 1, . . . ,m,

where α = eRmin > 1, and c = (1 − 1/α)P . It is easy to check that the total power

constraint is satisfied. That is,

m
∑

i=1

c

αm−i
= c

1 − (1/α)m

1 − 1/α
≤ c

1

1 − 1/α
= P.

If max1≤i≤m Ni ≤ P/αm, we have the following uniform lower bound for Signal-

to-Interference-plus-Noise Ratios (SINR’s) at all these m receivers. For i = 1,

P1

N1

≥ c/αm−1

P/αm
= α − 1,

and for any i = 2, . . . ,m,

Pi
∑i−1

j=1 Pj + Ni

≥ c/αm−i

∑i−1
j=1 c/αm−j + P/αm

=
1/αm−i

(1/α)m−i+1−(1/α)m

1−1/α
+ (1/α)m

1−1/α

= α − 1.

Hence, the minimum-rate constraint is satisfied for all these m receivers, since

ln (1 + (α − 1)) = ln α = Rmin.

Next, we show that for any ǫ > 0, if m ≤ ν(n) − ǫ, max1≤i≤m Ni ≤ P/αm holds

with probability approaching one as n tends to infinity. Let N0 = P/αm. Then,

p0 = F (N0) = exp

(

−αm

P

)

≥ exp

(

−αν(n)−ǫ

P

)

= exp
(

−α−ǫ ln n
)

= n−λ,
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where λ = α−ǫ < 1. Since m ≤ ν(n) − ǫ and np0 ≥ n1−λ, it can be seen that as

n → ∞,
1

2p0

(np0 − m + 1)2

n
∼ n2p2

0

2np0

=
np0

2
≥ n1−λ

2
→ ∞. (2.12)

As m− 1 ≤ np0, the Chernoff bound for independent Poisson trials can be used as

[27, page 70]:

P(Mn ≤ m − 1) ≤ exp

(

− 1

2p0

(np0 − m + 1)2

n

)

.

or

P(Mn ≥ m) ≥ 1 − exp

(

− 1

2p0

(np0 − m + 1)2

n

)

. (2.13)

Hence, by (2.13), max1≤i≤m Ni ≤ P/αm with probability approaching one as n →
∞.

Therefore, we proved that as n → ∞, with probability approaching one, there

are at least Mn = ⌊ν(n) − ǫ⌋ good channels satisfying the minimum rate.

Next, we prove the upper bound; in other words, Mn ≤ ν(n) + ǫ holds with

probability approaching one. First, we show that for any δ > 0, for sufficiently large

m, the best receiver should have the equivalent noise variance N1 ≤ Pδ/α
m, with

Pδ
∆
= P + δ. Otherwise, if min1≤i≤n Ni > Pδ/α

m, by the minimum-rate constraint,

Pi
∑i−1

j=1 Pj + Ni

≥ α − 1, for i = 1, 2, . . . ,m,

we have

P1 ≥ (α − 1)N1 > (α − 1)Pδ/α
m,

and inductively, for i = 2, . . . ,m,

Pi ≥ (α − 1)
(

∑i−1
j=1 Pj + Ni

)

> (α − 1)
(

∑i−1
j=1(α − 1)Pδ/α

m−j+1 + Pδ/α
m

)

= (α − 1)Pδ/α
m−i+1,
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which violates the total-power constraint since

m
∑

i=1

Pi >
m

∑

i=1

(α − 1)Pδ/α
m−i+1 = (1 − 1/αm)Pδ > P

for sufficiently large m.

Therefore, to show that

P(Mn ≤ ν(n) + ǫ) → 1,

or

P(Mn > ν(n) + ǫ) → 0,

we only need to show that

P(N1 ≤ Pδ/α
ν(n)+ǫ) → 0.

Let p1 = F (Pδ/α
ν(n)+ǫ). Then, (1− p1)

n is the probability that all the receivers

have equivalent noise variance greater than Pδ/α
ν(n)+ǫ. Hence,

P(N1 ≤ Pδ/α
ν(n)+ǫ) = 1 − (1 − p1)

n, (2.14)

which tends to zero if and only if

(

1 − exp

(

−αν(n)+ǫ

Pδ

))n

→ 1. (2.15)

Since
(

1 − exp

(

−αν(n)+ǫ

Pδ

))exp

(

αν(n)+ǫ

Pδ

)

→ e−1,

(2.15) holds if

n · exp

(

−αν(n)+ǫ

Pδ

)

= n · exp

(

−Pαǫ ln n

P + δ

)

→ 0, (2.16)
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which holds by choosing δ < (αǫ − 1)P . ¤

Corollary 2.5.1 The lower and upper tail distribution in (2.10) are given by

P(Mn < ⌊ν(n) − ǫ⌋) = o

(

exp

(

− n1−λ

2 + σ̃

))

(2.17)

and

P(Mn > ν(n) + ǫ) = o
(

n1− 1
λ(1+σ̃)

)

(2.18)

where λ
∆
= e−ǫRmin < 1, and σ̃ > 0 can be arbitrarily small.

Proof 2.5.2 Following the proof of Theorem 2.5.1, especially noting (2.13), to

prove (2.17), we only need to show that for m = ⌊ν(n) − ǫ⌋,

1

2p0

(np0 − m + 1)2

n
≥ n1−λ

2 + σ̃
, for sufficiently large n,

which actually follows from (2.12) with the following modification

1

2p0

(np0 − m + 1)2

n
≥ n2p2

0

(2 + σ̃)np0

, for sufficiently large n.

To prove (2.18), noting (2.14), we have

P(Mn > ν(n) + ǫ) ≤ P(N1 ≤ Pδ/α
ν(n)+ǫ)

= 1 −
(

1 − exp

(

−αν(n)+ǫ

Pδ

))n

= O

(

n · exp

(

−αν(n)+ǫ

Pδ

))

= O

(

n · exp

(

− P ln n

λ(P + δ)

))

= o
(

n1− 1
λ(1+σ̃)

)

,

where, σ̃ > 0 can be arbitrarily small, since δ > 0 can be arbitrarily small. ¤

Remark 2.5.1 Theorem 2.5.1 states that the number of active receivers is close to

ν(n) with high probability. Actually, for any ǫ < 1
2
, there are at most two integers
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during the range ⌊ν(n) − ǫ⌋ ≤ m ≤ ν(n) + ǫ. An interesting observation of the

equation (2.11) is that the number of active receivers will almost double by halving

Rmin, with the total power P and the total number of receivers n fixed.

Basically, Theorem 2.5.1 states a double logarithmic scaling law. That is, the

maximum number of active receivers scales double logarithmically with the total

number of receivers. This is a rather slow scaling, and is basically determined by

the tail of the Rayleigh distribution. Comparatively, (2.11) can also be written as

ν(n) = (ln P + ln ln n)/Rmin

which shows that the maximum number of active receivers scales logarithmically

with the total transmit power, and as remarked before, is inversely proportional to

the minimum-rate constraint.

Remark 2.5.2 According to Theorem 2.5.1, there are about ν(n) active receivers,

for each of which, a minimum rate Rmin can be achieved. Hence, the total through-

put scales at least as

ν(n)Rmin = ln(P ln n). (2.19)

It is interesting to compare (2.19) with the maximum achievable total throughput

when all the power is allocated to the best receiver, which can be shown to be upper

bounded with probability approaching one by

ln(1 + βP ln n) (2.20)

where the constant β > 1 can be arbitrarily close to one.

Proof 2.5.3 First, it follows from (2.14)-(2.16) that for any 0 < δ < (αǫ − 1)P

P(N1 ≤ Pδ/α
ν(n)+ǫ) → 0.
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Hence,

P(N1 > Pδ/α
ν(n)+ǫ) → 1.

Since

Pδ/α
ν(n)+ǫ = (P + δ)/αν(n)+ǫ = (αǫP − η)/αν(n)+ǫ

where η = (αǫ − 1)P − δ > 0 can be arbitrarily small, the maximum achievable

total throughput is upper bounded with probability approaching one as

ln

(

1 +
P

N1

)

< ln

(

1 +
P

Pδ/αν(n)+ǫ

)

(2.21)

= ln

(

1 +
Pαν(n)+ǫ

αǫP − η

)

(2.22)

= ln
(

1 + βαν(n)
)

(2.23)

= ln (1 + βP ln n) (2.24)

where β = αǫP
αǫP−η

> 1 can be arbitrarily close to one. ¤

Clearly, as n increases, the difference between (2.19) and (2.20) decreases to

ln β, which can be made arbitrarily small. The essential reason for such a negligible

difference is that for large n, the gains of the best ν(n) receivers are very close to

each other. It should also be pointed out that the smaller lnβ is, the slower the

probability converges to one, as can be seen from the proof.

Besides Rayleigh fading, one can also consider Rician and Nakagami fading

models. The analytic techniques developed for the Rayleigh distribution can be

similarly applied.

2.5.2 Rician Fading

Consider independent Rician fading channels for different receivers; in other words,

channel gains gi, i = 1, . . . , n are independent realizations of the complex Gaussian

distribution CN (µ, 2).
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Theorem 2.5.2 Under the assumption of independent Rician fading channels for

different receivers with channel gains |gi| ∼ Rice(1, µ), i = 1, . . . , n and for any

ǫ > 0, the maximum number of active receivers Mn is bounded as:

P(⌊ν1(n) − ǫ⌋ ≤ Mn ≤ ν1(n) + ǫ) → 1, as n → ∞, (2.25)

where

ν1(n)
∆
= ln(2P ln n)/Rmin. (2.26)

Remark 2.5.3 In Theorem 2.5.2, the channel gain variance equals two because the

resulting distribution (i.e. the non-central Chi-square distribution with two degrees

of freedom) is easy to work with; however, this theorem can be easily generalized

to any arbitrary variance by normalization.

Proof 2.5.4 Consider the broadcast channel (2.1) with independent gains gi ∼
CN (µ, 2), for i = 1, · · · , n; as a result, |gi| ∼ Rice(1, µ) and |gi|2 ∼ NCχ2

2(µ
2)

(i.e. non-central Chi-square distribution with two degrees of freedom) with the

cumulative distribution function

FNCχ2
2
(x; 2, µ2) =

∞
∑

j=0

e−µ2/2 (µ2/2)j

j!

γ(j + 1, x/2)

Γ(j + 1)

where Γ(a) and γ(a, x) are defined as

Γ(a) =

∫ ∞

0

ta−1e−tdt

γ(a, x) =

∫ x

0

ta−1e−tdt (2.27)

and

lim
x→∞

γ(a, x) = lim
x→∞

[Γ(a) − Γ(a, x)] = Γ(a). (2.28)
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Furthermore, if a is an integer,

Γ(a, x) = (a − 1)!e−x

a−1
∑

k=0

xk

k!
(2.29)

For the equivalent model (2.2), the noise variance Ni = 1/|gi|2 is of the following

distribution function:

F (y) = P(Ni < y) = P(1/|gi|2 < y) = P(|gi|2 > 1/y). (2.30)

Hence, for any fixed N0 > 0, we can characterize the number of “good” channels

with the equivalent noise variance Ni less than N0 as the following. Let p0 = F (N0).

Then, a channel is good with probability p0. Consider a Bernoulli sequence

xi =







1, with probability p0

0, with probability 1 − p0

(2.31)

for i = 1, 2, . . . , n. Then, the number of good channels has the same distribution

as Mn =
∑n

i=1 xi, which satisfies the binomial distribution B(n, p0).

Now, for any integer m, consider the following power allocation for the m best

receivers:

Pi =
c

αm−i
, for i = 1, . . . ,m, (2.32)

where α = eRmin > 1, and c = (1− 1/α)P . As shown in the previous section, using

this power allocation in the broadcast channel, the total power and the minimum-

rate constraints are satisfied.

Next, we show that for any ǫ > 0, if m ≤ ν1(n) − ǫ, max1≤i≤m Ni ≤ P/αm

holds with probability approaching one as n tends to infinity. Let N0 = P/αm and

λ = α−ǫ < 1. Then, using 2.28 and 2.29,

p0 = F (N0) = 1 − FNCχ2
2
(αm/P ; 2, µ2)

≥ 1 − FNCχ2
2
(αν1(n)−ǫ/P ; 2, µ2)
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= 1 − e−µ2/2

∞
∑

j=0

(µ2/2)j

j! Γ(j + 1)
γ (j + 1, λ ln n)

= 1 − e−µ2/2

∞
∑

j=0

(µ2/2)j

j! Γ(j + 1)
[Γ(j + 1) − Γ (j + 1, λ ln n)]

= e−µ2/2

∞
∑

j=0

(µ2/2)j

j! Γ(j + 1)
Γ(j + 1, λ ln n)

= n−λe−µ2/2

∞
∑

j=0

(µ2/2)j

j!

j
∑

k=0

(λ ln n)k

k!
(2.33)

It is clear that as n → ∞,

1

2p0

(np0 − m + 1)2

n
∼ n2p2

0

2np0

=
np0

2
(2.34)

≥ n1−λ

2
e−µ2/2

∞
∑

j=0

(µ2/2)j

j!

j
∑

k=0

(λ ln n)k

k!
→ ∞.

As m − 1 ≤ np0, the Chernoff bound on the sum of Poisson trials can be used as

P(Mn ≥ m) ≥ 1 − exp

(

− 1

2p0

(np0 − m + 1)2

n

)

. (2.35)

Hence, the probability of max1≤i≤m Ni ≤ P/αm approaches one as n → ∞.

Therefore, we proved that with probability approaching one, there are at least

Mn = ⌊ν1(n)− ǫ⌋ good channels for which the minimum-rate constraint is satisfied.

Next, we prove Mn ≤ ν1(n)+ǫ holds with probability approaching one. First, for

any δ > 0 and for sufficiently large m, the best receiver should have the equivalent

noise variance N1 ≤ Pδ/α
m, with Pδ := P + δ. Otherwise, if min1≤i≤n Ni > Pδ/α

m,

as shown for Rayleigh fading channels, the total power constraint or the minimum-

rate constraint is violated.

Therefore, to show that

P(Mn ≤ ν1(n) + ǫ) → 1,
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we only need to show that

P(N1 ≤ Pδ/α
ν1(n)+ǫ) → 0.

Let p1 = F (Pδ/α
ν1(n)+ǫ). Then, (1−p1)

n is the probability that all the receivers

have equivalent noise variance greater than Pδ/α
ν1(n)+ǫ. Hence,

P(N1 ≤ Pδ/α
ν1(n)+ǫ) = 1 − (1 − p1)

n, (2.36)

which tends to zero if and only if

(

1 − F (Pδ/α
ν1(n)+ǫ)

)n
= FNCχ2

2
(αν1(n)+ǫ/Pδ; 2, µ

2)n

=

(

1 − e−µ2/2

∞
∑

j=0

(µ2/2)j

j! Γ(j + 1)
Γ

(

j + 1,
P ln n

λPδ

)

)n

= (1 − h(n))n → 1.

As n → ∞, h(n) → 0 and (1 − h(n))h−1(n) → e−1. Hence, (2.36) tends to zero if

nh(n) = ne−µ2/2

∞
∑

j=0

(µ2/2)j

j! Γ(j + 1)
Γ

(

j + 1,
P ln n

λPδ

)

(2.37)

= ne−µ2/2

(

c ln n
∑

j=0

(µ2/2)j

j! Γ(j + 1)
Γ

(

j + 1,
P ln n

λPδ

)

+
∞

∑

j=c ln n

(µ2/2)j

j! Γ(j + 1)
Γ

(

j + 1,
P ln n

λPδ

)

)

→ 0.

where c < P
λPδ

is selected such that the following expansion of the incomplete

gamma function for large x can be applied to the first summation [28, page 263].

Γ(a, x) ∼ e−xxa−1

(

1 +
a − 1

x
+

(a − 1)(a − 2)

x2
+ · · ·

)

(2.38)

Hence, using j! ≥ (j/2)j/2 and defining j0 = 2
(

µ2P
P−λPδ

)2

, the first summation in
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(2.37),

nh1(n) = ne−µ2/2

c ln n
∑

j=0

(µ2/2)j

j! Γ(j + 1)
Γ

(

j + 1,
P ln n

λPδ

)

∼ n
1− P

λPδ e−µ2/2

c ln n
∑

j=0

(µ2P ln n
2λPδ

)j

j! j!

≤ n
1− P

λPδ e−µ2/2

j0
∑

j=0

(

µ2P ln n
2λPδ

)j

(

√

j
2

)j

j!

+ n
1− P

λPδ e−µ2/2

∞
∑

j=j0

(

µ2P ln n
2λPδ

)j

(

√

j0
2

)j

j!

∼ n
1− P

λPδ e−µ2/2

∞
∑

j=0

(

(P−λPδ) ln n
2λPδ

)j

j!

= e−µ2/2 n
1
2
(1− P

λPδ
) → 0 (2.39)

which holds by choosing δ < (αǫ − 1)P . Using Stirling’s approximation for suffi-

ciently large c ln n, the second summation in (2.37),

nh2(n) = ne−µ2/2

∞
∑

j=c ln n

(µ2/2)j

j! Γ(j + 1)
Γ

(

j + 1,
P ln n

λPδ

)

= n
1− P

λPδ e−µ2/2

∞
∑

j=c ln n

(µ2/2)j

j!

j
∑

k=0

(

P ln n
λPδ

)k

k!

∼ ne−µ2/2

∞
∑

j=c ln n

(µ2/2)j

j!

∼ ne−µ2/2

∞
∑

j=c ln n

1

jj

≤ ne−µ2/2

∫ ∞

c ln n

dx

xx

≤ ne−µ2/2 1

(c ln n)(c ln n−2)

∫ ∞

c ln n

dx

x2

= ne−µ2/2 c ln n

(c ln n)(c ln n)

∼ ne−µ2/2 1

(c ln n)(c ln n)
. (2.40)
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which tends to zero since

ln n

(c ln n)ln(c ln n)
→ 0. (2.41)

Hence, according to (2.39) and (2.40), (2.37) holds by choosing δ < (αǫ − 1)P . ¤

2.5.3 Nakagami Fading

The results obtained for Rayleigh fading channels can be also extended to Nakagami

fading channels with a constant shift which is a function of the minimum rate

and distribution parameters. Consider independent Nakagami fading channels for

different receivers.

Theorem 2.5.3 Under the assumption of independent Nakagami fading channels

for different receivers with channel gains |gi| ∼ Nakagami(µ, ω), i = 1, . . . , n and

for any ǫ > 0, the maximum number of active receivers Mn is bounded as:

P(⌊ν2(n) − ǫ⌋ ≤ Mn ≤ ν2(n) + ǫ) → 1, as n → ∞, (2.42)

where

ν2(n)
∆
= ln(

ω

µ
P ln n)/Rmin. (2.43)

Proof 2.5.5 In Nakagami fading channels, the cumulative distribution function of

|gi|2 is given by

F (x; µ, ω) =
γ(µ, µ

ω
x)

Γ(µ)

where µ denotes the shape parameter and ω controls distribution spread.

Defining Bernoulli random variable (2.31) and using power allocation (2.32),

as shown for Rayleigh fading, the sum-power and minimum-rate constraints are

satisfied. Now, we show that for any ǫ > 0 and integer m, if m ≤ ν2(n) − ǫ,

max1≤i≤m Ni ≤ P/αm holds with probability approaching one. Let N0 = P/αm.
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Using (2.38),

p0 = 1 − F (αm/P ; µ, ω) = 1 − γ(µ, µαm

ωP
)

Γ(µ)

≥ 1 − γ(µ, µαν2(n)−ǫ

ωP
)

Γ(µ)

=
Γ(µ, λ ln n)

Γ(µ)

∼ n−λ(λ ln n)µ−1

Γ(µ)
(2.44)

Based on the fact ln n = o(nǫ) for any ǫ > 0, it is clear that as n → ∞,

1

2p0

(np0 − m + 1)2

n
∼ np0

2
≥ n1−λ(λ ln n)µ−1

2 Γ(µ)
→ ∞. (2.45)

As m − 1 ≤ np0, the Chernoff bound can be used as

P(Mn ≥ m) ≥ 1 − exp

(

− 1

2p0

(np0 − m + 1)2

n

)

. (2.46)

Therefore, we proved that with probability approaching one, there are at least

Mn = ⌊ν2(n)− ǫ⌋ good channels for which the minimum-rate constraint is satisfied.

Next, we prove the upper bound; in other words, Mn ≤ ν2(n) + ǫ holds with

probability approaching one. The same as Rayleigh fading channels, to show that

P(Mn ≤ ν2(n) + ǫ) → 1,

we only need to show that

P(N1 ≤ Pδ/α
ν2(n)+ǫ) → 0.

Let p1 = F (Pδ/α
ν2(n)+ǫ). Then, (1−p1)

n is the probability that all the receivers

have equivalent noise variance greater than Pδ/α
ν2(n)+ǫ. Hence,

P(N1 ≤ Pδ/α
ν2(n)+ǫ) = 1 − (1 − p1)

n, (2.47)
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which tends to zero if and only if

(

1 − F (Pδ/α
ν2(n)+ǫ)

)n
= F (αν2(n)+ǫ/Pδ; µ, ω)n

=

(

1 −
Γ(µ, P

λPδ
ln n)

Γ(µ)

)n

=
(

1 − h̃(n)
)n

→ 1. (2.48)

Using (2.38), (2.48) holds if

nh̃(n) = n
Γ(µ, P

λPδ
ln n)

Γ(µ)

∼ n
1− P

λPδ

(

P
λPδ

ln n
)µ−1

Γ(µ)
→ 0 (2.49)

which holds by choosing δ < (αǫ − 1)P . ¤

Remark 2.5.4 From Theorems 2.5.2 and 2.5.3, it can be seen that the total

throughput scales at least as ln ln n. This result can be compared to the broadcast

channels sum capacity upper-bounded as ln(β ln n) where the constant β > 1 can be

arbitrarily close to one. The proof is identical to the one for remark 2.5.2. Clearly,

as n increases, the difference decreases to ln β, which can be made arbitrarily small.

That is, a set of rates arbitrary close to the boundary of the capacity region can

be achieved. It should thus be noted that the total throughput scaling laws are

the same for Rayleigh, Rician, and Nakagami distributions modulo some constants

that depend on the distributions. The reason is that the scaling law only depends

on the distribution tail which decays exponentially.

2.6 Simulation Results

Consider a system with noise variance σ2 = 1, and channel bandwidth B = 50K

samples/second. Then, a transmission rate of 100K bits per second is equivalent

to 100K/2B = 1 bits per sample. For Rayleigh fading channels, |hi|2 ∼ NCχ2
2(µ

2),
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and for Rician fading channels, |hi|2 ∼ Exponential(1).

Figure 2.2 shows the optimal number of active receivers versus the total number

of users for both fixed (P = 104, or equivalently, SNR = 40 dB for model (2.1)) and

linearly increasing (P = n, or equivalently, SNR = 10 log10 n dB) transmit power.

The value of ν(n) given by (2.11) is also indicated in Figure 2.2. As shown in

Figure 2.2 and mentioned in Remark 2.5.1, the number of active receivers is almost

doubled as Rmin is halved. For further illustration, Figure 2.3 shows that as the

total number of users increases, the estimate of the number of active receivers is

sharply concentrated around the theoretical value. Figure 2.3 is sketched by 10000

simulation runs. The optimal number of active receivers versus different Rmin for

fixed SNR = 40dB and n = 1000 is shown in Figure 2.4, where the curve of ν(n) is

also drawn.

Figure 2.5 shows the optimal number of active receivers versus the total number

of receivers for Rician fading broadcast channels with Rmin = 50, 100 Kbps and

SNR = 40 dB at the transmitter. In Figure 2.5.a, µ = 2 and in Figure 2.5.b,

µ = 0.8. The value of ν1(n) given by (2.26) is also indicated in Figure 2.5. As

shown in Figure 2.5, the number of active receivers is almost doubled as Rmin is

halved. The same relationship also exists for Nakagami fading broadcast channels.
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Figure 2.2: The optimal number of active receivers versus the total number of users
for Rayleigh fading broadcast channels and Rmin = 50, 100 Kbp, (a) Fixed total
transmit power: P = 104, or equivalently, SNR = 40 dB, (b) Linearly increasing
transmit power: P = n, or equivalently, SNR = 10 log10 n dB.
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Figure 2.3: The histogram of the number of active receivers for Rayleigh fading,
Rmin = 50 Kbps, SNR = 40 dB, and (a) n = 30, and (b) n = 1000.
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Figure 2.4: The optimal number of active receivers versus the minimum rate for
Rayleigh fading, n=1000 and SNR = 40 dB.
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receivers for Rician fading broadcast channels with Rmin = 50, 100 Kbps, SNR =
40 dB at the transmitter, (a) µ = 2, and (b) µ = 0.8.
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Chapter 3

User Capacity of

Rate-Constrained Multiple-Access

Channels

In a wireless environment, channel gains vary dynamically and users experience

different fading conditions. As a result, some users have high channel gains while

other users experience poor channel conditions. Delay-sensitive applications such as

video and voice need users to maintain a minimum rate. Due to limited transmission

power, it is not always possible for all users to maintain a minimum rate. A

reasonable strategy is to allow users with good channel conditions to be active while

others remain silent during each time slot. This is often referred to as opportunistic

scheduling. In a multiple-access channel, it is desirable to have an opportunistic

scheduling policy that maximizes the number of active transmitters satisfying the

minimum-rate constraint. In this chapter, the results presented in Chapter 2 for

broadcast channels are extended to fading multiple-access channels.
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3.1 Literature Review

A multiple-access channel consists of several transmitters communicating to a single

receiver. The capacity region and optimal scheduling schemes for single-antenna

or multi-antenna multiple-access channels are well studied. The properties of the

capacity region in the case of deterministic time-invariant multiple-access chan-

nels with additive white Gaussian noise was initially given in [29], where it was

shown that the solution has an interesting interpretation as a multi-user water-

filling method. The extension to random channels was then derived in [1], whereas

the generalization to MIMO flat-fading channels was given in [30].

In rate-constrained multiple-access channels, all active transmitters maintain a

minimum rate. The results presented in [6] for broadcast channels with minimum

rates are extended to multiple-access channels in [31] using the duality (see [32])

of broadcast and multiple-access channels. Precisely, the minimum-rate capacity

region, optimal power allocation, and the optimal decoding order are obtained in

[31] for rate-constrained multiple-access channels. Some papers addressing single-

antenna or multi-antenna multi-user systems with minimum-rate constraints in the

uplink are as follows: In [33], optimal power and rate allocation policies that max-

imize the weighted sum rate while satisfying the minimum-rate and average-power

constraints are obtained for fading multiple-access channels. The highest allocated

rate corresponds to the user having the highest weight and channel gain. In [34], a

method is proposed to compute each user’s power and codes for wideband multiple-

access channels in order to maximize the rates of all the users, under the constraint

of maximum total (rather then individual) available power, guaranteeing a desired

rate profile. In [34], it is shown that under which conditions this optimization prob-

lem admits a unique set of rates. Then, a simple iterative strategy is proposed to

compute the capacity region under the constraint that total power in the network is

bounded, but each user can adapt its power. In [35], the problem of transceiver de-

sign with individual rate constraints is investigated for multi-user MIMO systems.

Linear processing with two design goals is considered: one is to maximize the mini-
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mum rate per user under a total-power constraint, and the other is to minimize total

transmit power while maintaining certain rate requirements. The optimization is

carried out in an alternating manner in both virtual uplink and downlink channels

in [35]. Each iteration contains the optimization of uplink power allocation, and

uplink and downlink Minimum Mean Square Estimation (MMSE) receive filters.

3.2 Motivation and Objective

In multiple-access channels, the total throughput increases by the number of active

transmitters. As in the downlink case, although delay-sensitive applications need

transmitters to maintain a minimum rate, it is not always possible for all users to

keep this minimum rate due to limited transmission power.

In this chapter, user capacity of fading multiple-access channels in which a

minimum rate must be maintained for all active transmitters is asymptotically

analyzed. The joint decoding scheme is used at the receiver since it is well known

that this decoding scheme maximizes the total throughput. In this case, messages

sent by all transmitters are simultaneously decoded at the receiver. Note that

because of joint decoding at the receiver and individual power constraints at each

transmitter, the duality of broadcast and multiple-access channels can not be simply

used to extend the results of chapter 2 to the uplink, although the asymptotic results

follow the same scaling law. Three fading distributions, namely, Rayleigh, Rician,

and Nakagami are considered. While the number of active transmitters in each slot

depends on the specific channel states, the asymptotic behavior can be precisely

characterized when the total number of transmitters n is large.

The rest of this chapter is organized as follows: In Section 3.3, the system model

is introduced. In Section 3.4, the scheduling policy maximizing the number of active

transmitters is proposed. Section 3.5 presents the asymptotic analysis of the user

capacity for Rayleigh, Rician, and Nakagami fading channels. In Section 3.6, the

effect of path loss on the user capacity scaling law is analyzed. Section 3.7 presents

implementation issues. Finally, simulation results are shown in Section 3.8.
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Figure 3.1: A fading multiple-access channel

3.3 System Model

Consider a multiple-access channel shown in Figure 3.1 with one receiver and n

transmitters. The receiver and all transmitters are each equipped with single an-

tenna and are assumed to know channel state information perfectly. Then, the

received signal is represented by

Y (t) =
n

∑

i=1

hi(t) Xi(t) + Z(t) (3.1)

where Xi(t) denotes the ith user’s transmitted signal, Y (t) refers to the received sig-

nal, Z(t) ∼ CN (0, σ2), and hi(t) denotes the time-varying channel gain of the path

from transmitter i to the receiver and t is the time index. Note that hi, i = 1, . . . , n

are assumed to be constant during each time block. Without loss of generality, as-

sume |h1| ≤ |h2| ≤ · · · ≤ |hn|. Joint decoding is exploited at the receiver. This

decoding scheme maximizes the sum rate and achieves a set of rates satisfying the

following conditions:

Ri ≤ ln

(

1 +
Pi |hi|2

σ2

)

; i = 1, . . . , n (3.2)
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Ri + Rj ≤ ln

(

1 +
Pi |hi|2 + Pj |hj|2

σ2

)

; i, j = 1, . . . , n (3.3)

...
n

∑

i=1

Ri ≤ ln

(

1 +

∑n
i=1 Pi |hi|2

σ2

)

(3.4)

where Ri and Pi denote the ith user’s achievable rate (in nats) and transmitted

power respectively.

3.4 Scheduling Policy

As in the case of broadcast channels, to decrease delay in a multiple-access channel,

a minimum rate constraint could be considered for all active transmitters. That is,

each transmitter maintains a minimum rate or remains silent during each time slot.

Due to time-varying channel states and limited transmitted power, it is not always

possible for all transmitters to keep minimum rate Rmin. Hence, the following

scheduling policy is proposed to maximize the number of active transmitters.

max{m} (3.5)

subject to Ri ≥ Rmin, i = n − m + 1, . . . , n (3.6)

Pi = P, i = n − m + 1, . . . , n. (3.7)

That is, users with high channel gains are allowed to transmit data while other

transmitters are inactive. As messages sent by all active transmitters are decoded

simultaneously, each user’s signal is not affected by interference from other active

transmitters. Hence, all users are allowed to transmit data with maximum power.

For simplicity, it is assumed that all transmitters have the same power constraint;

however, different individual power constraints can be considered without much

difficulty.

With fixed P and Rmin, the maximum number of active transmitters completely

depends on the channel gains hi, i = 1, . . . , n. In general, these are not known a
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priori since they are random. However, when the distribution of channel gains is

known, the asymptotic behavior of the maximum number of active users can be

obtained when the total number of transmitters is large enough. This asymptotic

behavior is determined even without knowledge of the exact channel gains for each

transmitter, although channel gains are required for scheduling active transmitters.

3.5 Asymptotic Analysis

Let Mn denote the maximum number of simultaneous active transmitters (out of

n transmitters) that can be supported with a rate greater than or equal to Rmin.

3.5.1 Rayleigh Fading

Consider independent Rayleigh fading channels for different transmitters; in other

words, the channel gains hi, i = 1, . . . , n are independent realizations of the complex

Gaussian distribution; as a result, |hi|2, i = 1, . . . , n are independent realizations

of the exponential distribution.

Theorem 3.5.1 Under the assumption of independent Rayleigh fading channels

for different transmitters with channel gains hi ∼ CN (0, 1), i = 1, . . . , n , for any

ǫ > 0, the maximum number of active transmitters, Mn, satisfies

P (⌊ν̃(n) − ǫ⌋ ≤ Mn ≤ ν̃(n) + ǫ) → 1, as n → ∞, (3.8)

where n is the total number of transmitters, and

ν̃(n) =
1

Rmin

ln

(

P ν̃(n)

σ2
ln n

)

. (3.9)

Remark 3.5.1 In Theorem 3.5.1, the channel gain variance equals one; however,

this result can be easily generalized to any arbitrary variance by normalization.

That is, dividing the channel gain by its variance results in a channel gain with the

normal distribution.

49



Proof 3.5.1 Consider the multiple-access channel (3.1) with independent channel

gains hi ∼ CN (0, 1), for i = 1, . . . , n; as a result, |hi|2 ∼ Exponential(1). For

any fixed h0 > 0, we can characterize the number of “good” channels with |hi|2

greater than h0 as the following. Let p0 = 1 − P(|hi|2 ≤ h0) = e−h0 . That is, with

probability p0, a channel is good (i.e. a user can be activated). Consider a Bernoulli

sequence:

xi =







1, with probability p0

0, with probability 1 − p0

(3.10)

for i = 1, 2, . . . , n. Then, the number of transmitters having good channels has

the same distribution as Mn =
∑n

i=1 xi, which satisfies the Binomial distribution

B(n, p0).

For any large integer m, if minn−m+1≤i≤n |hi|2 ≥ σ2emRmin/(mP ),

ln

(

1 +
P |hi|2

σ2

)

≥ ln

(

1 +
emRmin

m

)

≥ Rmin ; i = 1, · · · ,m

ln

(

1 +
P |hi|2 + P |hj|2

σ2

)

≥ ln

(

1 + 2
emRmin

m

)

≥ 2Rmin ; i, j = 1, · · · ,m

...

ln

(

1 +
P

∑m
i=1 |hi|2
σ2

)

≥ ln
(

1 + emRmin
)

≥ mRmin. (3.11)

Clearly, based on (3.2)-(3.4), the minimum-rate constraint is satisfied for all m

active transmitters.

Next, we show that if m ≤ ν̃(n) − ǫ, |hn−m+1|2 ≥ σ2emRmin/(mP ) holds with

probability approaching one. Let h0 = σ2emRmin/(mP ). Then,

p0 = 1 − P(|hi|2 ≤ h0) = exp (−h0) = exp

(

−σ2emRmin

mP

)

(3.12)

∗
≥ exp

(

−σ2eRmin(ν̃(n)−ǫ)

P (ν̃(n) − ǫ)

)

= exp

(

−λ ln(n)
ν̃(n)

ν̃(n) − ǫ

)

∼ n−λ
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where λ = e−ǫRmin < 1. Inequality ∗ holds for any sufficiently large m and n. Since

m ≤ ν̃(n) − ǫ and np0 ≥ n1−λ, it can be readily seen that as n → ∞,

1

2p0

(np0 − m + 1)2

n
∼ n2p2

0

2np0

=
np0

2
≥ n1−λ

2
→ ∞. (3.13)

As m − 1 ≤ np0, using the Chernoff bound on the sum of independent Poisson

trials,

P(Mn ≥ m) ≥ 1 − exp

(

− 1

2p0

(np0 − m + 1)2

n

)

. (3.14)

Thus, from (3.13), we proved that as n → ∞, with probability approaching one,

there are at least Mn = ⌊ν̃(n) − ǫ⌋ transmitters for which the minimum rate con-

straint is satisfied and can be activated.

Next, we prove Mn ≤ ν̃(n) + ǫ holds with probability approaching one. Con-

sider a multiple-access channel with m active transmitters. First, we show that

for any δ > 0, the best transmitter should have the channel gain |hn|2 ≥ h́0 =

σ2emRmin/(mPδ), with Pδ = P + δ. Otherwise, if maxn−m+1≤i≤n |hi|2 < h́0,

ln

(

1 +

∑n
i=n−m+1 P |hi|2

σ2

)

< ln

(

1 +
mPh́0

σ2

)

(3.15)

= ln

(

1 +
PemRmin

Pδ

)

∼ ln

(

PemRmin

Pδ

)

< mRmin

which violates (3.4). Hence, to show that

P(Mn ≤ ν̃(n) + ǫ) → 1,

we only need to show that

P

(

|hn|2 ≥
σ2e(ν̃(n)+ǫ)Rmin

Pδ(ν̃(n) + ǫ)

)

→ 0.

Define p1 = 1 − P(|hi|2 ≤ h́0) = e−h́0 with h́0 = σ2e(ν̃(n)+ǫ)Rmin/(Pδ(ν̃(n) + ǫ)).
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The probability that all the transmitters have channel gains less than h́0 equals

(1 − p1)
n. Hence,

P

(

|hn|2 ≥
σ2e(ν̃(n)+ǫ)Rmin

Pδ(ν̃(n) + ǫ)

)

= 1 − (1 − p1)
n, (3.16)

which tends to zero if and only if

(

1 − exp(−h́0)
)n

=

(

1 − exp

(

−σ2e(ν̃(n)+ǫ)Rmin

Pδ(ν̃(n) + ǫ)

))n

→ 1. (3.17)

Since
(

1 − exp

(

−σ2e(ν̃(n)+ǫ)Rmin

Pδ(ν̃(n) + ǫ)

))exp

(

σ2e(ν̃(n)+ǫ)Rmin
Pδ(ν̃(n)+ǫ)

)

→ e−1,

(3.17) holds if

n · exp

(

−σ2e(ν̃(n)+ǫ)Rmin

Pδ(ν̃(n) + ǫ)

)

= n · exp

(

− P ln(n) ν̃(n)

λPδ(ν̃(n) + ǫ)

)

∼ n
1− P

λPδ → 0

which holds by choosing δ < (eǫRmin − 1)P . As ν̃(n) is given by a nonlinear fixed-

point equation, finding a closed-form expression for this function is complicated.

However, ν̃(n) can be computed by iterative fixed-point algorithms. ¤

Remark 3.5.2 In chapter 2, the maximum number of active receivers in broadcast

channels with Z(t) ∼ CN (0, σ2) was shown to be given by

1

Rmin

ln

(

P

σ2
ln n

)

(3.18)

where P denotes total transmitted power. In multiple-access case with each trans-

mitter having power P , P ν̃(n) is total transmitted power of the system. Thus, the

result has the the same interpretation as for broadcast channels, since (3.9) can be

also written as

1

Rmin

ln

(

Ptotal

σ2
ln n

)

(3.19)
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where Ptotal denotes total transmitted power in the system.

We can also use the results mentioned in Theorem 3.5.1 to characterize the

convergence rate which is of importance in determining how large n should be in

order to have an accurate estimate of Mn. These are given by the rate of decay of

the upper and lower tail distribution of Mn.

Corollary 3.5.1 The lower and upper tail distribution of Mn satisfy

P(Mn < ⌊ν̃(n) − ǫ⌋) = o

(

exp

(

− n1−λ

2 + σ̃

))

(3.20)

and

P(Mn > ν̃(n) + ǫ) = o
(

n1− 1
λ(1+σ̃)

)

(3.21)

where λ = e−ǫRmin < 1, and σ̃ > 0 can be arbitrarily small.

Proof 3.5.2 To prove (3.20), we only need to show that for m = ⌊ν̃(n) − ǫ⌋,

1

2p0

(np0 − m + 1)2

n
≥ n1−λ

2 + σ̃
(3.22)

As m = o(n), for sufficiently large n,

(np0)
2

(2 + σ̃)np0

≤ 1

2p0

(np0 − m + 1)2

n
≤ (np0)

2

2np0

Hence, with the following modification, (3.22) is proved.

(np0)
2

(2 + σ̃)np0

=
n1−λ

2 + σ̃

To prove (3.21), noting (3.16),

P(Mn > ν̃(n) + ǫ) ≤ P

(

|hn|2 ≥
σ2(e(ν̃(n)+ǫ)Rmin)

Pδ(ν̃(n) + ǫ)

)

= 1 −
(

1 − exp

(

−σ2(e(ν̃(n)+ǫ)Rmin)

Pδ(ν̃(n) + ǫ)

))n
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= O

(

n · exp

(

− P ln(n) ν̃(n)

λPδ(ν̃(n) + ǫ)

))

= O
(

n
1− P

λPδ

)

= o
(

n1− 1
λ(1+σ̃)

)

.

¤

3.5.2 Rician Fading

Consider independent Rician fading channels for different transmitters; in other

words, channel gains gi, i = 1, . . . , n are independent realizations of the complex

Gaussian distribution CN (µ, 2).

Theorem 3.5.2 Under the assumption of independent Rician fading channels for

different transmitters with channel gains hi ∼ CN (µ, 2), i = 1, . . . , n and for any

ǫ > 0, the maximum number of active transmitters, Mn is bounded as

P(⌊ν̃1(n) − ǫ⌋ ≤ Mn ≤ ν̃1(n) + ǫ) → 1, as n → ∞, (3.23)

where n is the total number of transmitters, and

ν̃1(n) =
1

Rmin

ln

(

2P ν̃1(n)

σ2
ln n

)

. (3.24)

Remark 3.5.3 In Theorem 3.5.2, the channel gain variance equals two because the

resulting distribution (i.e. the non-central Chi-square distribution with two degrees

of freedom) is easy to work with; however, this theorem can be easily generalized

to any arbitrary variance by normalization.

Proof 3.5.3 Consider multiple-access channel (3.1) with independent gains hi ∼
CN (µ̄, 2), for i = 1, · · · , n; as a result, |hi| ∼ Rice(1, µ̄) and |hi|2 ∼ NCχ2

2(µ
2)

(i.e. non-central Chi-square distribution with two degrees of freedom) with the
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cumulative distribution function

FNCχ2
2
(x; 2, µ2) =

∞
∑

j=0

e−µ2/2 (µ2/2)j

j!

γ(j + 1, x/2)

Γ(j + 1)

where γ(a, x) and Γ(a) are defined as

Γ(a) =

∫ ∞

0

ta−1e−tdt

γ(a, x) =

∫ x

0

ta−1e−tdt (3.25)

and

lim
x→∞

γ(a, x) = lim
x→∞

[Γ(a) − Γ(a, x)] = Γ(a). (3.26)

Furthermore, if a is an integer,

Γ(a, x) = (a − 1)!e−x

a−1
∑

k=0

xk

k!
(3.27)

Defining Bernoulli random variable (3.10), we show that for any ǫ > 0, if m ≤
ν̃1(n)−ǫ, minn−m+1≤i≤n |hi|2 ≥ σ2emRmin/(mP ) holds with probability approaching

one. Let h0 = σ2emRmin/(mP ). Then,

p0 = 1 − P(|hi|2 ≤ h0) = 1 − FNCχ2
2
(h0; 2, µ

2)

= 1 − FNCχ2
2
(
σ2emRmin

mP
; 2, µ2)

⋄
≥ 1 − FNCχ2

2
(
σ2eRmin(ν̃1(n)−ǫ)

P (ν̃1(n) − ǫ)
; 2, µ2)

= 1 − e−µ2/2

∞
∑

j=0

(µ2/2)j

j! Γ(j + 1)
γ

(

j + 1, λ ln n
ν̃1(n)

ν̃1(n) − ǫ

)

∼ 1 − e−µ2/2

∞
∑

j=0

(µ2/2)j

j! Γ(j + 1)
γ (j + 1, λ ln n) . (3.28)

Inequality ⋄ holds for any sufficiently large m and n. Using (3.26) and (3.27), it is
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clear that as n → ∞,

p0 ≥ 1 − e−µ2/2

∞
∑

j=0

(µ2/2)j

j! Γ(j + 1)
[Γ(j + 1) − Γ (j + 1, λ ln n)]

= n−λe−µ2/2

∞
∑

j=0

(µ2/2)j

j!

j
∑

k=0

(λ ln n)k

and

1

2p0

(np0 − m + 1)2

n
≈ np0

2
≥ n1−λ

2
e−µ2/2

∞
∑

j=0

(µ2/2)j

j!

j
∑

k=0

(λ ln n)k → ∞. (3.29)

Hence, using (3.14), we proved that as n → ∞, with probability approaching one,

there are at least Mn = ⌊ν̃1(n) − ǫ⌋ transmitters for which the minimum rate

constraint is satisfied.

Next, we prove Mn ≤ ν̃1(n)+ ǫ holds with probability approaching one. Similar

to the proof of Theorem 3.5.1, we only need to show that

P

(

|hn|2 ≥
σ2(e(ν̃1(n)+ǫ)Rmin)

Pδ(ν̃1(n) + ǫ)

)

→ 0

which tends to zero if and only if

n g(n) = n (1 − FNCχ2
2
(
σ2(e(ν̃1(n)+ǫ)Rmin)

Pδ(ν̃1(n) + ǫ)
; 2, µ2))

= n e−µ2/2

∞
∑

j=0

(µ2/2)j

j! Γ(j + 1)
Γ

(

j + 1,
P ln n

λPδ

ν̃1(n)

ν̃1(n) − ǫ

)

∼ n e−µ2/2

∞
∑

j=0

(µ2/2)j

j! Γ(j + 1)
Γ

(

j + 1,
P ln n

λPδ

)

= ne−µ2/2

(

c ln n
∑

j=0

(µ2/2)j

j! Γ(j + 1)
Γ

(

j + 1,
P ln n

λPδ

)

+
∞

∑

j=c ln n

(µ2/2)j

j! Γ(j + 1)
Γ

(

j + 1,
P ln n

λPδ

)

)

→ 0. (3.30)

Assume c < P
λPδ

is selected such that (2.38) can be applied to the first summation.
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Hence, using j! ≥ (j/2)j/2 and defining j0 = 2
(

µ2P
P−λPδ

)2

, the first summation in

(3.30),

n g1(n) = ne−µ2/2

c ln n
∑

j=0

(µ2/2)j

j! Γ(j + 1)
Γ

(

j + 1,
P ln n

λPδ

)

∼ n
1− P

λPδ e−µ2/2

c ln n
∑

j=0

(µ2P ln n
2λPδ

)j

j! j!

≤ n
1− P

λPδ e−µ2/2

∞
∑

j=0

(

µ2P ln n
2λPδ

)j

(

√

j
2

)j

j!

≤ n
1− P

λPδ e−µ2/2

j0
∑

j=0

(

µ2P ln n
2λPδ

)j

(

√

j
2

)j

j!

+ n
1− P

λPδ e−µ2/2

∞
∑

j=j0

(

µ2P ln n
2λPδ

)j

(

√

j0
2

)j

j!

∼ n
1− P

λPδ e−µ2/2

∞
∑

j=0

(

(P−λPδ) ln n
2λPδ

)j

j!

= e−µ2/2 n
1
2
(1− P

λPδ
) → 0 (3.31)

which holds by choosing δ < (eǫRmin − 1)P . For sufficiently large c ln n, the second

summation in (3.30),

n g2(n) = ne−µ2/2

∞
∑

j=c ln n

(µ2/2)j

j! Γ(j + 1)
Γ

(

j + 1,
P ln n

λPδ

)

= n
1− P

λPδ e−µ2/2

∞
∑

j=c ln n

(µ2/2)j

j!

j
∑

k=0

(

P ln n
λPδ

)k

k!

≤ ne−µ2/2

∞
∑

j=c ln n

(µ2/2)j

j!
. (3.32)

Using Stirling’s approximation, the right-hand side of (3.32) is asymptotically equal
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to

ne−µ2/2

∞
∑

j=c ln n

(e µ2/2)j

jj
√

2πj
∼ ne−µ2/2

∞
∑

j=c ln n

1

jj

≤ ne−µ2/2

∫ ∞

c ln n

dx

xx

≤ ne−µ2/2 1

(c ln n)(c ln n−2)

∫ ∞

c ln n

dx

x2

= ne−µ2/2 c ln n

(c ln n)(c ln n)
(3.33)

which tends to zero since

ln n + ln ln n

(c ln n)ln(c ln n)
∼ ln n

(c ln n)ln(c ln n)
→ 0. (3.34)

Hence, according to (3.31) and (3.34), (3.30) holds by choosing δ < (eǫRmin − 1)P .

¤

3.5.3 Nakagami Fading

The results presented in this chapter for Rayleigh and Rician fading models can be

extended to the Nakagami distribution as follows.

Theorem 3.5.3 Under the assumption of independent Nakagami fading channels

for different transmitters with channel gains |hi| ∼ Nakagami(µ, ω), i = 1, . . . , n

and for any ǫ > 0, the maximum number of active transmitters, Mn, is bounded as

P(⌊ν̃2(n) − ǫ⌋ ≤ Mn ≤ ν̃2(n) + ǫ) → 1, as n → ∞, (3.35)

where n is the total number of transmitters, and

ν̃2(n) =
1

Rmin

ln

(

ωP ν̃2(n)

µσ2
ln n

)

. (3.36)

Proof 3.5.4 In Nakagami fading channels, the cumulative distribution function of
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|hi|2 is given by

F (x; µ, ω) =
γ(µ, µ

ω
x)

Γ(µ)

where µ denotes the shape parameter and ω controls distribution spread. Defining

Bernoulli random variable (3.10), we show that for any ǫ > 0, if m ≤ ν̃2(n) − ǫ,

minn−m+1≤i≤n |hi|2 ≥ σ2emRmin/(mP ) holds with probability approaching one. Let

h0 = σ2emRmin/(mP ). Then,

p0 = 1 − P(|hi|2 ≤ h0) ≥ 1 − F

(

σ2eRmin(ν̃2(n)−ǫ)

P (ν̃2(n) − ǫ)
; µ, ω

)

= 1 −
γ

(

µ, λ ln n ν̃2(n)
ν̃2(n)−ǫ

)

Γ(µ)

∼ 1 − γ(µ, λ ln n)

Γ(µ)

=
Γ(µ, λ ln n)

Γ(µ)

∼ n−λ (λ ln n)µ−1

Γ(µ)
. (3.37)

Using the fact ln n = o(nǫ) for any ǫ > 0, it is clear that as n → ∞,

1

2p0

(np0 − m + 1)2

n
≈ np0

2
≥ n1−λ (λ ln n)µ−1

2Γ(µ)
→ ∞. (3.38)

Hence, by (3.14), we proved that as n → ∞, with probability approaching one, there

are at least Mn = ⌊ν̃2(n) − ǫ⌋ transmitters for which the minimum rate constraint

is satisfied.

Next, we prove the upper bound; in other words, Mn ≤ ν̃2(n) + ǫ holds with

probability approaching one. Similar to the proof of Theorem 3.5.1, we only need

to show that

P

(

|hn|2 ≥
σ2(e(ν̃2(n)+ǫ)Rmin)

Pδ(ν̃2(n) + ǫ)

)

→ 0.
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which tends to zero if and only if

n ĝ(n) = n

(

1 − F

(

σ2(e(ν̃2(n)+ǫ)Rmin)

Pδ(ν̃2(n) + ǫ)

))

= n



1 −
γ

(

µ, P ln n
λPδ

ν̃2(n)
ν̃2(n)+ǫ

)

Γ(µ)





∼ n



1 −
γ

(

µ, P ln n
λPδ

)

Γ(µ)





= n
Γ

(

µ, P
λPδ

ln n
)

Γ(µ)

∼
n

1− P
λPδ

(

P
λPδ

ln n
)µ−1

Γ(µ)
→ 0. (3.39)

which holds by choosing δ < (eǫRmin − 1)P . ¤

Thus, the result presented in Theorem 3.5.1 is valid for Rician and Nakagami

fading channels with a constant shift; in other words, the maximum number of

active transmitters scales double logarithmically with the total number of trans-

mitters in Rician and Nakagami fading multiple-access channels.

3.6 Path-Loss Effect on the Scaling Laws

In Section 3.5, the channel model for each transmitter-receiver pair only consists

of a multi-path fading term. Accounting for both multi-path and path loss, the

channel between transmitter i and the receiver is determined by

|hi|2 = |fi|2 d−α
i

where di denotes the distance between transmitter i and the receiver, |fi|2 ∼
Exponential(1); i = 1, . . . , n, and α represents the path-loss exponent. In this

section, it is shown that the user capacity scaling laws do not change in the pres-

ence of path loss if dmin ≤ di ≤ dmax; i = 1, · · · , n, where dmin and dmax denote
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respectively the minimum and the maximum distance between any transmitter and

the receiver. Note that this assumption is valid in many wireless systems including

cellular communications and small wireless ad-hoc networks in which the path-loss

term is bounded. Hence, Theorem 4.5.1 changes as follows.

Theorem 3.6.1 Under the assumption of independent Rayleigh fading channels

for different transmitters with channel gains hi ∼ CN (0, 1); i = 1, . . . , n and dmin ≤
di ≤ dmax; i = 1, · · · , n, for any ǫ > 0, the maximum number of active transmitters,

Mn satisfies:

P{⌊νL(n) − ǫ⌋ ≤ Mn ≤ νH(n) + ǫ} → 1, as n → ∞, (3.40)

where n is the total number of transmitters, and

νL(n) =
1

Rmin

ln

(

PνL(n)

σ2dα
max

ln n

)

(3.41)

νH(n) =
1

Rmin

ln

(

PνH(n)

σ2dα
min

ln n

)

. (3.42)

Proof 3.6.1 Adding the path-loss term changes the channel distribution. Hence,

in the proof of Theorem 4.5.1, only those parts dealing with the channel distribution

must be modified. Assuming dmin ≤ di ≤ dmax, the activation probability, p0, is

calculated as

p0 = P(|fi|2 d−α
i > h0) ≥ P

(

|fi|2 > dα
maxh0

)

= exp (−dα
maxh0)

= exp

(

−dα
maxσ

2emRmin

mP

)

≥ exp

(

−dα
maxσ

2eRmin(νL(n)−ǫ)

P (νL(n) − ǫ)

)

= exp

(

−λ ln(n)
ν(n)

ν(n) − ǫ

)

∼ n−λ. (3.43)

Hence, as n → ∞, with probability approaching one, there are at least Mn =

⌊νL(n)− ǫ⌋ transmitters with |hi|2 ≥ σ2emRmin/(mP ), for which the minimum rate
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constraint is satisfied and can be activated.

To prove the upper bound, considering dmin ≤ di ≤ dmax, we have

P

(

|hn|2 ≥
σ2e(νH(n)+ǫ)Rmin

Pδ(νH(n) + ǫ)

)

≤ P

(

|fn|2 ≥
dα

minσ
2e(νH(n)+ǫ)Rmin

Pδ(νH(n) + ǫ)

)

.

Hence, we only need to show

P

(

|fn|2 ≥
dα

minσ
2e(νH(n)+ǫ)Rmin

Pδ(νH(n) + ǫ)

)

→ 0. (3.44)

(3.44) holds if

n · exp

(

−dα
minσ

2e(νH(n)+ǫ)Rmin

Pδ(νH(n) + ǫ)

)

= n · exp

(

− P ln(n) νH(n)

λPδ(νH(n) + ǫ)

)

∼ n
1− P

λPδ → 0

which holds by choosing δ < (eǫRmin − 1)P .

As a result, if the path-loss term is bounded, the user capacity of Rayleigh fading

multiple-access channels still scales double logarithmically with the total number

of transmitters and the difference is only a constant. However, in this case, the

upper bound does not meet the lower bound and the gap depends on the physical

size of the system. If the path-loss term is not bounded, the user capacity scaling

laws will be different depending on the transmitters distribution in the space which

determines the distribution of the path-loss term. The aforementioned result can

be similarly extended to Rician and Nakagami fading multiple-access channels.

3.7 Implementation Issues

The implication of the result is that in a scenario with a large number of transmit-

ters, with high probability the maximum number of simultaneous transmissions in

a slot will be of the order ln ln n. A natural question is whether it is possible to find

a scheduling scheme that will maximize the number of simultaneous transmitters
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while maintaining the minimum rate. We now address this issue.

A scheduling policy activating transmitters can be easily implemented in a dis-

tributed fashion. Consider a multiple-access channel with a sufficiently large num-

ber of users (e.g. n ≥ 50 based on simulation results shown in Section 3.8). Suppose

each transmitter knows the noise variance at the receiver (i.e. σ2) and its channel

gain by either applying channel estimation algorithms directly or receiving channel

state information through a feedback from the receiver. Note that the maximum

number of active transmitters can be calculated as the fixed-point of:

m =
1

Rmin

ln

(

Pm

σ2
ln n

)

.

Thus, the transmitter compares its channel gain with threshold h0 (see (3.11)) given

by

h0 =
σ2emRmin

mP
.

If the channel gain is above the threshold, the transmitter becomes active; other-

wise, it remains inactive during the current time slot. In the scenario of a large

number of users, following such a policy will lead to selecting the optimum number

of transmitters with high probability.

3.8 Simulation Results

Consider a system with noise variance σ2 = 1, and channel bandwidth B = 50K

samples/second. For the Rayleigh fading distribution, |hi|2 ∼ χ2
2, and for the Rician

fading distribution, |hi|2 ∼ NCχ2
2(µ

2).

For Rayleigh fading, Figure 3.2 shows the optimal number of active transmitters

versus the total number of transmitters for SNR = 20 dB at each transmitter. The

value of ν̃(n) given by (3.9) is calculated by an iterative fixed-point algorithm and

shown in Figure 3.2. As shown in Figure 3.2, the number of active transmitters is

almost doubled as Rmin is halved. To illustrate the convergence rate, the histogram

of the number of active transmitters is shown in Figure 3.3 for SNR = 20dB, Rmin =
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Figure 3.2: The optimal number of active transmitters versus the total number
of transmitters for Rayleigh fading, Rmin = 50, 100 Kbps and SNR=20 dB at each
transmitter.

50 Kbps, and n = 20, 5000. It is clear that the convergence rate goes to zero

as n tends to infinity. Figure 3.3 is sketched by 5000 simulation runs. For a

further comparison, the optimal number of active users versus different Rmin for

SNR = 20dB and n = 5000 is shown in Figure 3.4, where the curve of ν̃(n) is also

drawn.

For Rician fading, Figure 3.5 shows the optimal number of active transmitters

versus the total number of transmitters for the Rician fading distribution for µ =

0.8, 2 and for SNR = 20 dB at each transmitter. The value of ν̃1(n) given by (3.24)

is also indicated in Figure 3.5. Similar to Rayleigh fading channels, the number of

active transmitters shown in Figure 3.5 is almost doubled as Rmin is halved.
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Figure 3.3: The histogram of the number of active transmitters for Rayleigh fading,
Rmin = 50 Kbps, SNR = 20 dB, (a) n = 20, and (b) n = 5000.
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Figure 3.5: The optimal number of active transmitters versus the total number
of transmitters for Rician fading, Rmin = 50, 100 Kbps and SNR = 20 dB at each
transmitter, (a) µ = 2, and (b) µ = 0.8.
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Chapter 4

Rate-Constrained Random

Wireless Networks

One of the important issues in understanding the performance of wireless ad-

hoc networks is capacity. As the capacity region of general wireless networks is still

unknown, scaling laws are useful to understand their performance limits. In this

chapter, the ideas presented in previous chapters for fading multi-user channels are

generalized to wireless ad-hoc networks. In particular, the maximum number of

active links supporting a minimum rate is obtained in a random wireless network

with an arbitrary topology when the number of nodes is large. It is assumed that

each source-destination pair communicates through a fading channel. Two scenar-

ios are considered: 1) Small networks with multi-path fading, 2) Large Random

networks with multi-path fading and path loss. A by-product of these results is

per-node throughput scaling laws for random wireless networks.
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4.1 Literature Review

After the pioneering work by Gupta and Kumar [36], many researchers have tried to

consider more realistic situations and present tighter throughput bounds. However,

different network and channel models result in differing conclusions.

Assuming a power-law path-loss model for each source-destination pair channel,

[36] and [37] show that the per-node throughput scales with O( 1√
N

) in both arbitrary

and random wireless networks, where N denotes the total number of nodes in the

network. In [38], it is shown that for the relatively high-attenuation case, the

transport capacity scales as O(N). In particular, the transport capacity is Θ(N),

for regular planar networks where the nodes are situated at integer lattice sites

in a square. In a low-attenuation regime, there exist networks that can provide

unbounded transport capacity for fixed total power, yielding zero-energy-priced

communication. When nodes lie on a straight line, there are networks which can

even attain super-linear scaling Θ(N θ) for θ < 2. In [39], the capacity scaling

of extended wireless networks is studied with an emphasis on the low-attenuation

regime and it is shown that in the absence of small-scale fading, the low-attenuation

regime does not behave significantly different from the high-attenuation regime.

Introducing multi-path fading effects, in [40], each channel gain is a product of

a path-loss term and a non-negative random variable modeling multi-path fading

and having an exponentially-decaying tail. In this case, the achievable per-node

throughput scales with O

(

1√
N(log N)3

)

. In [41], upper bounds on the transport ca-

pacity of wireless networks are derived. The bounds obtained are solely dependent

on the geographic locations and power constraints of the nodes. In [42], under the

assumption of having only a mild time-average type of bound on the multi-path fad-

ing process, it is shown that the transport capacity can grow no faster than O(N),

even when the CSI is available non-causally at both transmitters and receivers.

This assumption includes common models of stationary ergodic channels, constant

frequency-selective channels, flat rapidly-varying channels, and flat slowly-varying

channels. In the second assumption set, which essentially features an independence,
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time average of expectation, and a non-zero fading process, it is shown in [42] how

to achieve transport capacity of Ω(N) even when the CSI is unknown to both

transmitters and receivers, provided that every node has an appropriately nearby

node. This assumption set includes common models of independent and identically

distributed (iid) channels, constant flat channels, and constant frequency-selective

channels. In [43], the authors assume that the channel gains are drawn indepen-

dently and identically distributed from a given probability density function (pdf).

As particular examples, [43] shows that the throughput scaling law of the Rayleigh

fading channel is logarithmic and if the given pdf obeys a power law decay, almost

linear throughput can be obtained. As can be seen, the last result is substantially

different from the one obtained for a geometric power-decay network in [36] and

[37]. The reason is that although inter-node distances in a random network can be

assumed independent (note that this assumption is valid for some network models

including (4.1)), they are not identically distributed. Ignoring this fact leads to

the unrealistic linear throughput scaling law. In [44], the same channel model as

in [40] is considered and it is shown that for a path-loss exponent α > 2 and any

absorption modeled by exponential attenuation, a per-node throughput of the order

Ω( 1√
N

) is achievable.

4.2 Motivation and Objective

In this chapter, a wireless network is considered in which all active links are required

to provide a minimum rate. This is motivated by the requirements of delay-sensitive

applications. Due to limited transmitted power and interference from other active

source-destination pairs, it is not always possible for all nodes to keep this minimum

rate. Hence, we allow nodes with good channel conditions to be active while others

remain silent during each time slot. Thus, an on/off power allocation scheme can be

exploited to maximize the number of active links while maintaining the minimum-

rate constraint.

The objective of this chapter is on analyzing the maximum number of active
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links supporting a minimum rate in random wireless networks. Whereas [40] and

[44] consider a square-shape network of area N and divide it into small sub-squares

with a particular link activation scheme based on a node exclusive model, in this

chapter, this assumption is relaxed and a wireless network with an arbitrary topol-

ogy is assumed. Two different scenarios are considered: 1) Small networks with

multi-path fading, 2) Large Random networks with multi-path fading and path loss.

In the first case, due to the small size of the network, a single-hop routing strategy

can be exploited. Under the assumption of independent Rayleigh fading channels

for different source-destination pairs, the optimal number of active links is asymp-

totically obtained. In the second case, a large wireless network is considered and

it is assumed that nodes are Poisson distributed with a finite intensity. Similar

to the channel model in [40] and [44], fading channels between different source-

destination pairs are modeled by product of path-loss and multi-path fading terms.

Unlike many papers in the literature, the multi-path fading distribution is assumed

to be arbitrary with a finite mean and variance. Under the assumption of indepen-

dent multi-path fading for different source-destination pairs, the optimal number

of active links is achieved as the network area goes to infinity.

The rest of this chapter is organized as follows: In Section 4.3, the wireless

network model is introduced. In Section 4.4, the problem is formulated. Section

4.5 presents asymptotic results for both small networks with multi-path fading and

large random networks with both multi-path fading and path loss.

4.3 Wireless Network Model

Consider a wireless network with N nodes located randomly in the plane. It is

assumed that source i is connected to destination i through a fading channel.

Throughout this chapter, by sources and destinations, we mean transmitting nodes

and receiving nodes respectively. Destinations are conventional receivers without

multi-user detectors; in other words, no broadcast or multiple-access channel is em-

bedded in the network. Every node has a receiver and a transmitter but it cannot
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Figure 4.1: A wireless network with active links (−) and interference channels (−−)

transmit and receive signals simultaneously. The nodes are randomly paired into

n = ⌊N/2⌋ source-destination pairs without any consideration on their respective

locations. Nodes transmit signals with maximum power of P or remain silent during

each time slot. Then, the received signal at node i, Yi(t), is given by

Yi(t) = hii(t) Xi(t) +
m

∑

j=1

j 6=i

hji(t) Xk(t) + Zi(t) (4.1)

where hii(t) denotes the link fading channel (i.e. the fading channel between source

i and destination i), hki(t) represents an interference channel for destination i, m

refers to the number of active links, and Zi(t) ∼ CN (0, σ2) represents background

noise at node i. Hence, the achievable rate (in nats) of link i can be written as

Ri ≤ ln



















1 +
P |hii|2

σ2 +
m

∑

j=1

j 6=i

P |hji|2



















(4.2)
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4.4 Problem Formulation

In delay-sensitive applications, each active link needs to support a minimum rate.

Due to limited transmitted power and interference from other active source-destination

pairs, it is not always possible for all nodes to keep this minimum rate. Hence, we

allow nodes with good channel conditions to be active while others remain silent

during each time slot. Consider the wireless network (4.1). Without loss of gener-

ality, assume |h11| ≤ · · · ≤ |hnn|. In this case, the maximum number of active links

supporting the minimum rate is given by the following optimization problem.

max{m} (4.3)

subject to Ri ≥ Rmin, i = n − m + 1, . . . , n (4.4)

where m denotes the maximum number of active links. Clearly, with fixed P and

Rmin, the maximum number of active links completely depends on the channel

gains |hji|2; i, j = 1, . . . , ⌊N/2⌋. When the channel gains obey some statistical

distribution, asymptotic behavior of the maximum m can be determined when the

total number of links is large enough.

4.5 Asymptotic Analysis

Let Mn denote the maximum number of simultaneous active links (out of n links)

that can be supported with a rate greater than or equal to Rmin. In this section, the

distribution of Mn and its features are asymptotically obtained using the central

limit theorem and Cramer’s theorem.

4.5.1 Small Networks with Multi-Path Fading

We first consider small networks where fading rather than path loss is important.

This corresponds to situations within a single-cell in which path loss between any

pair of nodes is bounded and thus, can be ignored.
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Consider a wireless network with an arbitrary topology and assume that there

are independent Rayleigh fading channels between different source-destination pairs;

in other words, the channel gains hij; i, j = 1, . . . , ⌊N/2⌋ are independent realiza-

tions of the complex Gaussian distribution; as a result, |hij|2; i, j = 1, . . . , ⌊N/2⌋
are independent realizations of the exponential distribution.

Theorem 4.5.1 Under the assumption of independent Rayleigh fading channels

for different source-destination pairs with channel gains hij ∼ CN (0, 1); i, j =

1, . . . , ⌊N/2⌋, and for any ǫ > 0 arbitray close to zero, the maximum number of

active links, Mn, determined by (4.3)-(4.4), is bounded as

lim
n→∞

P (⌊β1(n)⌋ ≤ Mn ≤ β2(n)) = 1, (4.5)

where

β1(n) =
ln n

(1 + ǫ) eRmin − (1 − 2ǫ)
(4.6)

β2(n) =
ln n

(1 − ǫ)eRmin − (1 + 2ǫ)
. (4.7)

Proof 4.5.1 Consider the wireless network (4.1) with independent channel gains

hij ∼ CN (0, 1), for i, j = 1, . . . , ⌊N/2⌋; as a result, |hij|2 ∼ Exponential(1). For

any activation threshold h0 > 0, the number of “good” link channels can be char-

acterized with |hii|2 greater than h0 as follows. Let p0 = 1 − P(|hii|2 ≤ h0) = e−h0 .

That is, with probability p0, a link can be activated. Consider Bernoulli sequence

xi =







1, with probability p0

0, with probability 1 − p0

(4.8)

for i = 1, 2, . . . , n. Then, the number of activated links has the same distribution

as Mn =
∑n

i=1 xi, which satisfies the Binomial distribution B(n, p0).

Let h0 = m
(

(1 + ǫ)eRmin − (1 − ǫ)
)

for any integer m. Then, we show that

74



minn−m+1≤i≤n |hii|2 ≥ h0 holds with probability approaching one if m ≤ β1(n).

p0 = 1 − P(|hii|2 ≤ h0) = exp (−h0)

= exp
(

−m
(

(1 + ǫ)eRmin − (1 − ǫ)
))

≥ exp
(

−β1(n)
(

(1 + ǫ)eRmin − (1 − ǫ)
))

= exp

(

− (1 + ǫ)eRmin − (1 − ǫ)

(1 + ǫ)eRmin − (1 − 2ǫ)
log n

)

= exp (−η ln(n)) = n−η (4.9)

where η = (1+ǫ)eRmin−(1−ǫ)

(1+ǫ)eRmin−(1−2ǫ)
< 1. Since m ≤ β1(n) and np0 ≥ n1−η, it is clear that

1

2p0

(np0 − m + 1)2

n
∼ n2p2

0

2np0

=
np0

2
≥ n1−η

2
→ ∞ ; as n → ∞. (4.10)

Moreover, as m ≤ np0 + 1, the Chernoff bound on the sum of independent Poisson

trials can be used as

P(Mn ≥ m) ≥ 1 − exp

(

− 1

2p0

(np0 − m + 1)2

n

)

. (4.11)

Thus, we proved that as n goes to infinity, with probability approaching one, there

are at least Mn = ⌊β1(n)⌋ link channels with |hii|2 ≥ h0.

Next, we show that the minimum-rate constraint is satisfied asymptotically

almost surely for m channel gains if minn−m+1≤i≤n |hii|2 ≥ h0. For any large integer

m and ǫ > 0 small, define event An as

An
∆
=















ω :

∣

∣

∣

∣

∣

∣

∣

∣

1

m − 1

m
∑

k=1
k 6=i

|hki|2 − E
(

|h11|2
)

∣

∣

∣

∣

∣

∣

∣

∣

< ǫ















. (4.12)

From Cramer’s theorem [45],

P(Ac
n) = P









∣

∣

∣

∣

∣

∣

∣

∣

1

m − 1

m
∑

k=1
k 6=i

|hki|2 − E
(

|h11|2
)

∣

∣

∣

∣

∣

∣

∣

∣

≥ ǫ









∼ e−(m−1)I(ǫ) (4.13)
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where I(x) is called the rate function and defined as

I(x) = sup
θ>0

[θx − λ(θ)] = x − ln x − 1

λ(θ) = ln E(eθx) = ln
1

1 − θ
; 0 < θ < 1.

Define

Xn
∆
= ln



















1 +
P |hii|2

σ2 +
n

∑

k=n−m+1
k 6=i

P |hki|2



















. (4.14)

Then,

Xn(ω)1[minn−m+1≤i≤n |hii|2≥h0](ω) = (4.15)

(

Xn(ω)1[An](ω) + Xn(ω)1[Ac
n](ω)

)

1[minn−m+1≤i≤n |hii|2≥h0](ω).

Note that according to (4.11), minn−m+1≤i≤n |hii|2 ≥ h0 holds with probability

approaching one. Clearly, on An, we have

(m − 1)
(

E[|h11|2] − ǫ
)

≤
n

∑

k=n−m+1
k 6=i

|hki|2 ≤ (m − 1)
(

E[|h11|2] + ǫ
)

.

From (4.13), for any ǫ > 0, P(Ac
n) goes to zero exponentially as m → ∞. Hence,

for channel gains satisfying |hii|2 ≥ h0, on An, we have,

ln



















1 +
P |hii|2

σ2 +
n

∑

k=n−m+1
k 6=i

P |hki|2



















≥ ln

(

1 +
Ph0

σ2 + P (m − 1)
(

E(|h11|2) + ǫ
)

)

76



= ln

(

1 +
Pm

(

(1 + ǫ)eRmin − (1 − ǫ)
)

σ2 + P (m − 1)(1 + ǫ)

)

∼ ln

(

1 + eRmin − 1 − ǫ

1 + ǫ

)

≥ Rmin . (4.16)

Now, for ǫ > 0 small, noting that Xn ≤ ln(1 + ln n
σ2 ) with high probability since it

can be shown that

lim
n→∞

P
(

|hji|2 ≤ ln n
)

= 1,

we have

E
(

Xn 1[Ac
n](ω)

)

= E(Xn) P(Ac
n) ≤ ln ln n e−c ln n → 0 ; as n → ∞

where c is a constant depending on ǫ and Rmin. Hence,

P

(

lim inf
n→∞

Xn ≥ Rmin

)

= 1.

Clearly, based on (4.2), the minimum-rate constraint is satisfied for these m channel

gains. As a result, we proved that as n → ∞, with probability approaching one,

there are at least Mn = ⌊β1(n)⌋ link channels with |hii|2 ≥ h0, for which the

minimum rate constraint is satisfied and can be activated.

Next, we prove Mn ≤ β2(n) holds with high probability. Considering m active

links, first of all, we show the best active link should have channel gain |hnn|2 ≥
h́0 = m

(

(1 − ǫ)eRmin − (1 + ǫ)
)

; otherwise, if |hnn|2 < h́0, on An,

ln



















1 +
P |hii|2

σ2 +
n

∑

k=n−m+1
k 6=i

P |hki|2



















< ln

(

1 +
Ph́0

σ2 + P (m − 1)
(

E(|h11|2) − ǫ
)

)

= ln

(

1 +
Pm

(

(1 − ǫ)eRmin − (1 + ǫ)
)

σ2 + P (m − 1)(1 − ǫ)

)

∼ ln

(

1 + eRmin − 1 + ǫ

1 − ǫ

)

< Rmin (4.17)
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which violates (4.2). Note that the same probabilistic argument as the one in the

lower bound proof can be also used here to show that channel gains belong to the

set An with probability approaching one.

Hence, to show that

P(Mn ≤ β2(n)) → 1,

or

P(Mn > β2(n)) → 0,

we only need to show that

P
(

|hnn|2 ≥ β2(n)
(

(1 − ǫ)eRmin − (1 + ǫ)
))

→ 0.

Define p1 = 1 − P(|hii|2 ≤ h́0) = exp(−h́0). The probability that all links have

channel gains less than h́0 equals (1− p1)
n. As h́0 = β2(n)

(

(1 − ǫ)eRmin − (1 + ǫ)
)

,

P
(

|hnn|2 ≥ β2(n)
(

(1 − ǫ)eRmin − (1 + ǫ)
))

= 1 − (1 − p1)
n (4.18)

which tends to zero if and only if

(

1 − exp(−h́0)
)n

=
(

1 − exp
(

−β2(n)
(

(1 − ǫ)eRmin − (1 + ǫ)
)))n → 1. (4.19)

Since
(

1 − exp(−h́0)
)exp(h́0)

→ e−1,

(4.19) holds if

n · exp
(

−β2(n)
(

(1 − ǫ)eRmin − (1 + ǫ)
))

= n · exp

(

−
(

(1 − ǫ)eRmin − (1 + ǫ)
)

((1 − ǫ)eRmin − (1 + 2ǫ))
ln n

)

= n1−γ → 0 (4.20)

which holds as γ =
((1−ǫ)eRmin−(1+ǫ))
((1−ǫ)eRmin−(1+2ǫ))

> 1. ¤
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Corollary 4.5.1 (Convergence rate) Based on the Berry-Esseen theorem [46], the

probability distribution of Mn converges asymptotically to the normal distribution.

Precisely,

sup
x

∣

∣

∣

∣

∣

P

(

Mn − np0
√

np0(1 − p0)
≤ x

)

− Φ(x)

∣

∣

∣

∣

∣

≤ c
√

np0 (1 − p0)
3
2

≤ c√
n1−η (1 − p0)

3
2

(4.21)

where c is a purely numerical constant.

Remark 4.5.1 Note that using Corollary 4.5.1, higher-order moments of Mn can

be easily calculated. In fact, Theorem 4.5.1 and Corollary 4.5.1 together say that

as n → ∞, the distribution of the normalized Mn converges at a rate less than

1√
n1−η

to the normal distribution concentrated between ⌊β1(n)⌋ and β2(n).

Remark 4.5.2 According to Theorem 4.5.1, the total throughput of the wireless

network is lower-bounded as

Rsum ≥ Rmin

eRmin − 1
log n (4.22)

In [47]-[48], a rate-constrained single-hop wireless network with Rayleigh fading

channels is considered. An upper bound on the maximum number of active links

is calculated as

m <
log n

Rmin

(4.23)

Based on the threshold-based link activation strategy (TBLAS) presented in [48],

the maximum number of active links and the total throughput are given by

mTBLAS =
log n

eRmin − 1

RTBLAS =
Rmin

eRmin − 1
log n (4.24)

Although the maximum number of active links achieved by the TBLAS is equal to
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the one obtained by Theorem 4.5.1, it can be seen that the upper bound presented

in [48] is not very tight. [48] also presents a centralized double threshold-based link

activation strategy (DTBLAS) to reach the upper bound in (4.23); however, they

cannot provide closed-form expressions for optimal thresholds and numerically show

that DTBLAS reaches this upper bound at Rmin = 0 or ∞ which are not practical.

Hence, Theorem 4.5.1 compared to [48] has two advantages: First of all, a tighter

upper bound is provided. Second, the upper bound meets the lower bound with

probability approaching one.

4.5.2 Large Random Networks with Multi-Path Fading and

Path Loss

Consider an extended wireless network consisting of N nodes Poisson-distributed

with finite intensity λ. Model path loss with a simple attenuation function d−α
ji ,

where dji denotes the Euclidean distance between source i and destination i, and

α represents the path-loss exponent. To model multi-path effect, independent fad-

ing channels between different source-destination pairs are considered. Accounting

both multi-path and path loss, the channel between source i and destination i is

determined by

|hji|2 = |fji|2 d−α
ji .

For Poisson-distributed nodes, the pdf of the distance between an arbitrary node

and its kth nearest neighbor in a two-dimensional network is given by [49]

fdk
(x) = e−λπx2 2(λπx2)k

xΓ(k)
(4.25)

and the corresponding cumulative distribution function (cdf) is written as [49]

Fdk
(x) = 1 − Γ(k, λπx2)

k!
. (4.26)
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If node j is the kth nearest neighbor of node i, for simplicity, dα
k is substituted for

dα
ji. Then, the pdf of d−α

k is calculated as

fd−α
k

(x) = e−λπx−2/α 2(λπx−2/α)k

xαΓ(k)
. (4.27)

The expected value and the variance of dα
k are also given by [49]

E(dα
k ) =

(

1

2πλ

)α
2

(k)α
2

(4.28)

Var(dα
k ) =

(

1

2πλ

)α Γ(k)Γ(k + α) − Γ2(k + α
2
)

Γ2(k)
(4.29)

where the Pochhammer sequence (k)q is calculated by the series expansion [50]

(k)q = kq (1 − O(1/k)) .

Theorem 4.5.2 (Interference Bound) In a two-dimensional large wireless network

of Poisson-distributed nodes with a finite intensity and for α > 2, interference from

m source nodes at any arbitrary destination node i, denoted by Ii,m, is bounded

almost surely as m goes to infinity. That is,

P

(

lim
m→∞

Ii,m < ∞
)

= 1. (4.30)

Proof 4.5.2 Assume there are m active links (i.e. m source nodes transmitting

data), where m ≤ n can be any large integer. Based on (4.2), interference at

arbitrary node i is given by

Ii,m = P

n
∑

j=n−m+1

j 6=i

|hji|2 = P

n
∑

j=n−m+1

j 6=i

|fji|2 d−α
ji (4.31)

As the path-loss and multi-path fading terms are independent, using the Kol-
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Figure 4.2: Concentration of random variable d−α
k as k → ∞

mogorov convergence criterion [46, page 286], as m → ∞,

n
∑

j=n−m+1

j 6=i

Var(|hji|2) < ∞ ⇒ P









n
∑

j=n−m+1

j 6=i

(

|hji|2 − E(|hji|2)
)

< ∞









= 1.

(4.32)

Considering E(|fji|2) = µf < ∞ and Var(|fji|2) = σ2
f < ∞ and

n
∑

j=n−m+1

j 6=i

Var(|hji|2) = (µ2
f + σ2

f )
n

∑

j=n−m+1

j 6=i

Var(d−α
ji ) + σ2

f

n
∑

j=n−m+1

j 6=i

E2(d−α
ji ) ,

we need to show that as m → ∞,



































n
∑

j=n−m+1

j 6=i

Var(d−α
ji ) < ∞

n
∑

j=n−m+1

j 6=i

E2(d−α
ji ) < ∞.

(4.33)

The worse-case interference happens when interferers are the first to the (m−1)th

nearest neighbors of node i. Hence, it is sufficient to show that
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





















m−1
∑

k=1

Var(d−α
k ) < ∞

m−1
∑

k=1

E2(d−α
k ) < ∞.

(4.34)

Applying Stirling’s approximation to (4.29),

Var(dα
k ) ∼

(

1

2πλ

)α
α2

2
kα−1 ; k → ∞.

Let σ̃
∆
=

√

Var(dα
k ). For any ǫ > 0 arbitrary close to zero, if ck = O(k

1
2
−ǫ),

ckσ̃ = ck O(k
α
2
− 1

2 ) = o(k
α
2 ) = o(E(dα

k )).

Then, it can be shown that dα
k is concentrated between [E(dα

k ) − ckσ̃,E(dα
k ) + ckσ̃]

with probability approaching one as k → ∞. That is, using Chebyshev’s inequality

[46]

P (|dα
k − E(dα

k )| > ckσ̃) ≤ 1

c2
k

→ 0 ; as k → ∞.

As Figure 4.2 illustrates,

E(d−α
k ) ≤ 1

E(dα
k ) − ckσ̃

∼ 1

E(dα
k )

= (2πλ)
α
2 k−α

2 ; as k → ∞.

Hence, for 2 < α ≤ 4, as m → ∞,

m−1
∑

k=1

k−α <
m−1
∑

k=1

k−α
2 < ∞ ⇒

m−1
∑

k=1

E2(d−α
k ) <

m−1
∑

k=1

E(d−α
k ) < ∞. (4.35)

As Figure 4.2 indicates, the variance of d−α
k can be also upper-bounded as

Var(d−α
k ) ≤ 1

4

(

1

E(dα
k ) − cσ̃

− 1

E(dα
k ) + ckσ̃

)2

∼
(

ckσ̃

E2(dα
k )

)2

= O
(

k−α−2ǫ
)

;
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therefore,

m−1
∑

k=1

Var(d−α
k ) < ∞ ; as m → ∞. (4.36)

Then, using (4.32), (4.35), and (4.36),

P









lim
m→∞

m
∑

j=1

j 6=i

(

|hji|2
)

< ∞









= 1. (4.37)

¤

Let Mn denote the maximum number of simultaneous active links (out of n

links) that can be supported with a rate greater than or equal to Rmin.

Theorem 4.5.3 In a large wireless network of N Poisson-distributed nodes with

finite intensity λ, under the assumption of independent fading channels for different

links, and for any ǫ > 0 arbitrarily close to zero, the maximum number of active

links supporting the minimum rate is bounded as

lim
n→∞

P (⌊p0 − ǫ⌋n ≤ Mn ≤ n) = 1

Proof 4.5.3 Consider the wireless network (4.1) with independent channel gains

hji; i, j = 1, . . . , ⌊N/2⌋. Suppose node j is the kth nearest neighbor of node i and

|fji|2; i, j = 1, . . . , ⌊N/2⌋ is drawn from a given distribution with a finite mean and

variance.

For any fixed activation threshold h0 > 0, the number of “good” link channels

can be characterized with |hii|2 greater than h0 as follows. Let p0 = P(|hii|2 ≥ h0).

That is, with probability p0, a link can be activated. Consider Bernoulli sequence

4.8. Then, the number of links having good channels has the same distribution as

Mn =
∑n

i=1 xi, which satisfies the Binomial distribution B(n, p0).
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Define Cm
∆
= supi Ii,m; for i = n − m + 1, · · · , n. According to Theorem 4.5.2,

P

(

lim
m→∞

Cm < ∞
)

= 1.

Let h0 = (σ2 + Cm)(eRmin − 1)/P . For any sufficiently large integer m, we show

that if minn−m+1≤i≤n |hii|2 ≥ h0, the minimum-rate constraint is satisfied for these

m channel gains. That is,

log



















1 +
P |hii|2

σ2 +
n

∑

j=n−m+1

j 6=i

P |hji|2



















≥ log

(

1 +
Ph0

σ2 + Cm

)

= Rmin. (4.38)

Clearly, based on (4.2), the minimum-rate constraint is satisfied for these m channel

gains.

Then, we show that for any ǫ > 0 arbitrary close to zero, if m ≤ (p0 − ǫ)n,

minn−m+1≤i≤n |hii|2 ≥ h0 holds with probability approaching one. Using (4.26) and

(3.27) and substituting xf for
(

|fii|2 /h0

)
1
α ,

p0 = P(|hii|2 ≥ h0) = P(|fii|2 · d−α
ii ≥ h0) (4.39)

= E



P



dii ≤
(

|fii|2
h0

) 1
α









= E

(

1 −
Γ(k, λπx2

f )

k!

)

= E

(

1 − e−λπx2
f

k

k−1
∑

l=0

(λπx2
f )

l

l!

)

> 0.

Now, as n → ∞,

1

2p0

(np0 − m + 1)2

n
≥ (nǫ + 1)2

2np0

∼ nǫ2

2p0

→ ∞. (4.40)

As m− 1 ≤ np0, the Chernoff bound on the sum of independent Poisson trials can
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be used as

P(Mn ≥ m) ≥ 1 − exp

(

− 1

2p0

(np0 − m + 1)2

n

)

(4.41)

which approaches one based on (4.40). Thus, we proved as n → ∞, with probability

approaching one, there are at least ⌊p0 − ǫ⌋n good channels with |hii|2 ≥ h0, for

which the minimum rate constraint is satisfied. ¤

Corollary 4.5.2 (Convergence rate) Based on the Berry-Esseen theorem, the prob-

ability distribution of Mn converges asymptotically to the normal distribution.

That is,

sup
x

∣

∣

∣

∣

∣

P

(

Mn − np0
√

np0(1 − p0)
≤ x

)

− Φ(x)

∣

∣

∣

∣

∣

≤ c
√

np0 (1 − p0)
3
2

(4.42)

where c is a purely numerical constant.

Remark 4.5.3 All moments and statistics of Mn can be easily calculated using

Corollary 4.5.2. In fact, Theorem 4.5.3 and Corollary 4.5.2 together say that as

n → ∞, the distribution of the normalized Mn converges at a rate less that 1√
n

(Note that p0 does not depend on n.) to the normal distribution concentrated

between ⌊p0 − ǫ⌋n and n.

Remark 4.5.4 Note that Theorems 4.5.2 and 4.5.3 are proved for any multi-path

fading distribution satisfying the following conditions:

1. E(|fji|2) < ∞,

2. Var(|fji|2) < ∞,

In [40] and [44], to bound the capacity of wireless ad-hoc networks, it is assumed

that the multi-path fading distribution has an exponentially-decaying tail (e.g. com-

monly used fading distributions, namely, Rayleigh, Rician and Nakagami). Here,

this assumption is relaxed and the results hold for any distribution satisfying the

aforementioned conditions. In fact, the interference bound and the throughput
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scaling laws are generalized to a variety of distributions with a finite mean and

variance.

Corollary 4.5.3 (Throughput scaling law) In a two-dimensional large wireless net-

work of N Poisson-distributed nodes with a finite intensity and for α > 2, under

the assumption of independent fading channels for different links, the achievable

per-node throughput obtained by multi-hop routing scales with Θ
(

1√
N

)

.

Proof 4.5.4 According to Theorem 4.5.3, almost all links can be activated simul-

taneously in a large random wireless network with fading channels. In general, to

transmit information from each node to its final destination, single-hop or multi-

hop routing can be selected. However, for n random samples of channel gains

drawn from a fading distribution having an exponentially decaying tail, including

Rayleigh, Rician, and Nakagami,

lim
n→∞

P
(

|fji|2 ≤ log n
)

= 1.

Hence, as Theorem 4.5.1 indicates, only log n multi-path fading gains are large

enough to support a single-hop transmission. For n−log n channel gains, multi-path

fading gains cannot compensate signal attenuation due to path loss and information

needs to be sent in multiple hops to its final destination. Note that at each time slot,

some destination nodes are just relaying information to other neighboring nodes in

the network.

In [37], it is shown that the average number of hops is O(
√

N) in a square-

shaped wireless network with side dimension
√

N . We show that the same average

number of hops holds for the wireless network (4.1). For example, consider N nodes

Poisson-distributed and a circle of radius
√

N . The circle contains N nodes with

probability approaching one and nodes are uniformly distributed inside the circle.

Hence, the average distance between any node pair is of the order
√

N . Based on

(4.28), the average distance between a node and its nearest neighbor equals O(1).

Hence, using the nearest neighbor routing protocols, the average number of hops
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required to reach from any arbitrary source node to its final destination is O(
√

N).

Denoting the maximum possible transmission rate by Rmax < ∞, based on

Theorem 4.5.3, the achievable per-node throughput obtained by multi-hop routing,

T (N), is bounded as











T (N) = 1
N

Rsum ≥ 1
N

Ω(
√

N) Rmin

T (N) = 1
N

Rsum ≤ 1
N

Ω(
√

N) Rmax

⇒ T (N) = Θ

(

1√
N

)

(4.43)

¤

Comparing the aforementioned result with the one in [44], the achievable per-

node throughput has the same asymptotic order; however, Corollary 4.5.3 also

provides a tight upper bound on the achievable throughput of rate-constrained

wireless networks using multi-hop routing. Recently, using the laws of physics in

communication channels, [52] obtains an upper bound on the per-node communica-

tion rate that all nodes can achieve simultaneously and it shows that the per-node

throughput is upper-bounded by

O

(

(log n)2

√
n

)

.

Hence, in terms of asymptotic ordering, Corollary 4.5.3 also confirms the upper

bound presented in [52].

Remark 4.5.5 According to Theorem 4.5.2, interference power is bounded; there-

fore, the central limit theorem cannot be invoked to conclude interference is Gaus-

sian. Hence, the Shannon’s capacity formula only provides a lower bound on the

rate and the throughput upper bound presented in Corollary 4.5.3 is only an achiev-

able rate.

88



Chapter 5

Conclusion and Future Work

This thesis addresses the asymptotic and probabilistic analysis of the maximum

number of active users/links supporting a minimum rate in a multi-user wireless

system. In this chapter, all contributions mentioned throughout the thesis are

summarized and some directions for future work are presented.

5.1 Research Contributions

This thesis presents a novel idea and analysis in the context of multi-user channels

and random wireless networks. Particularly, the thesis contributions are as follows:

• Rate-constrained Broadcast Channels: A power allocation scheme is

proposed to maximize the number of active receivers, for each of which, a

minimum rate Rmin > 0 can be achieved. Three fading distributions, namely,

Rayleigh, Rician, and Nakagami are considered. Under the assumption of in-

dependent Rayleigh fading channels for different receivers, as the total num-

ber of receivers n goes to infinity, the maximum number of active receivers is
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shown to be arbitrarily close to ln(P ln n)/Rmin with probability approaching

one, where P is the total transmit power. The results obtained for Rayleigh

fading are extended to the cases of Rician and Nakagami fading models.

Under the assumption of independent Rician fading channels for different

receivers, as the total number of receivers n goes to infinity, the maximum

number of active receivers is shown to be equal to ln(2P ln n)/Rmin with prob-

ability approaching one. For broadcast channels with Nakagami fading, the

maximum number of active receivers is shown to be equal to ln(ω
µ
P ln n)/Rmin

with probability approaching one, where ω and µ are the Nakagami distribu-

tion spread and shape parameters respectively. A by-product of the results is

to also provide a power allocation strategy that maximizes the total through-

put subject to the rate constraints.

• Rate-constrained Multiple-Acess Channels: User capacity of fading

multiple-access channels in which a minimum rate must be maintained for

all active transmitters is asymptotically analyzed. The joint decoding scheme

is used at the receiver since it is well known that this decoding scheme max-

imizes the total throughput. Three fading distributions, namely, Rayleigh,

Rician, and Nakagami are considered. Under the assumption of independent

Rayleigh fading channels for different transmitters, the maximum number

of active users, ν̃(n), is shown to be arbitrarily close to 1
Rmin

ln
(

P ν̃(n)
σ2 ln n

)

with probability approaching one as the total number of users n goes to in-

finity, where P denotes each transmitter’s power and σ2 is the background

noise variance. As it can be seen, the number of active transmitters is given

by a non-linear fixed-point equation. Under the assumption of independent

Rician fading channels for different transmitters, the maximum number of

active users, ν̃1(n), is shown to be equal to 1
Rmin

ln
(

2P ν̃1(n)
σ2 ln n

)

with proba-

bility approaching one. For multiple-access channels with Nakagami fading,

the maximum number of active transmitters, ν̃2(n), is shown to be equal to

1
Rmin

ln
(

ωP ν̃2(n)
µ σ2 ln n

)

with probability approaching one.
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• Rate-constrained Random Wireless Networks: The maximum number

of active links supporting a minimum rate is asymptotically obtained in a

wireless network with an arbitrary topology. It is assumed that each source-

destination pair communicates through a fading channel and destinations re-

ceive interference from all other active sources. Two scenarios are considered:

1) Small networks with multi-path fading, 2) Large Random networks with

multi-path fading and path loss. In the first case, under the assumption of

independent Rayleigh fading channels for different source-destination pairs,

it is shown that the optimal number of active links is of the order log N with

probability approaching one as the total number of nodes, N , tends to infin-

ity. The achievable total throughput also scales logarithmically with the total

number of links/nodes in the network. Comparing to [48], the analysis pre-

sented in this thesis has two advantages: First of all, a tighter upper bound is

provided. Second, the upper bound meets the lower bound with probability

approaching one. In the second case, a two-dimensional large wireless net-

work is considered and it is assumed that nodes are Poisson distributed with

a finite intensity. Under the assumption of independent multi-path fading

for different source-destination pairs, it is shown that the optimal number of

active links is of the order N with probability approaching one. As a result,

the achievable per-node throughput scales with Θ( 1√
N

) bits per second with

a multi-hop routing strategy. This result complements those in [44] on the

asymptotic throughput of multi-hop wireless networks and have the follow-

ing contributions: 1) The assumption of the network topology is relaxed. 2)

The multi-path fading distribution does not need to have an exponential tail;

in other words, the results hold for any distribution with a finite mean and

variance. 3) In [44], interference at any arbitrary node is upper-bounded by

a constant times log N . Here, it is shown that interference from all active

sources at any arbitrary destination is bounded. 4) The proof presented in

Section 4.5.2 is only based on the probability theory and is simpler.
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5.2 Future Research Directions

The work presented in this thesis answered some questions and perhaps raises new

questions. At this point, some ideas that can be of interest for future research are

as follows:

• MIMO Multi-User Channels and Wireless Networks: In this thesis,

all transmitters and receivers are equipped with single antenna. It is well-

studied that using multiple antennas at transmitters and receivers increases

the channel capacity. Hence, the MIMO rate-constrained multi-user channels

and random wireless networks can be considered and the maximum number of

simultaneously active users/nodes can be asymptotically analyzed. Note that

this extension is not very straightforward in general as we are now dealing

with channel matrices instead of scalar channel gains that can be simply

sorted.

• Path-Loss Effect in Rate-Constrained Multi-User Channels: To an-

alyze the user capacity of broadcast and multiple-access channels, only the

multi-path fading effect is considered in Chapters 2 and 3. To model the com-

munication channel more precisely, the path-loss effect should be also taken

into account. If it is assumed that the distance between each transmitter-

receiver pair, d, is bounded as dmin ≤ d ≤ dmax, it can be easily shown

that the user capacity scaling laws do not change for rate-constrained multi-

user channels. Note that this assumption is valid in small wireless networks

and cellular communications in which the distance is limited by the cell size.

However, in the scenarios that this assumption is violated, the user capacity

scaling laws change as the channel distribution and statistics are now different.

• Three-Dimensional Rate-Constrained Wireless Networks: A two-

dimensional random network of Poisson-distributed nodes is considered in

Chapter 4. If the nodes are assumed to be Poisson-distributed inside a

three-dimensional region, the distribution of inter-node distances will change.

92



Hence, the maximum number of active links supporting the minimum rate

and the per-node throughput may have different scaling laws.

• Embedding Multi-User Coding in Wireless Networks: In Chapter

4, all transmitters and receivers are only capable of point-to-point coding.

In other words, no broadcast and multiple-access channel is embedded in the

wireless network. If each node is equipped with a multi-user encoder/decoder,

the network analysis will be more complicated. However, one can assume a

particular number of multi-user channels are embedded in the network and

investigate the problems mentioned in Chapter 4.

• Interference Bound for Other Wireless Networks: One of the con-

tributions mentioned in Chapter 4 is the interference bound presented in

theorem 4.5.2 for two-dimensional large random wireless networks of Poisson-

distributed nodes with a finite intensity. The similar interference bound can

be also calculated for other wireless networks (e.g. cognitive networks) with

different assumptions and topologies.
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[41] A. Jovičić, P. Viswanath, and S. R. Kulkarni, “Upper bounds to transport

capacity of wireless networks”, IEEE Trans. Information Theory, vol. 50, no.

11, pp. 2555-2565, November 2004.

[42] F. Xue, L.-L. Xie, P. R. Kumar, “The transport capacity of wireless networks

over fading channels”, IEEE Trans. Information Theory, vol. 51, no. 3, pp.

834-847, March 2005.

[43] R. Gowaikar, B. Hochwald, and B. Hassibi, “Communication over a wireless

network with random connections”, IEEE Trans. Information Theory, vol. 52,

no. 7, pp. 2857-2871, July 2006.

99



[44] Y. Nebat, “A lower bound for the achievable throughput in large random

wireless networks under fixed multipath fading”, Intern. Symp. Modeling and

Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), pp. 1-10,

Boston, USA, April 2006.

[45] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications,

Second Edition, Springer, 1998.

[46] A. Gut, Probability: A Graduate Course, Springer, 2005.

[47] M. Ebrahimi, M. A. Maddah-Ali, and A. K. Khandani, “Interference-limited

versus noise-limited communication over dense wireless networks,” 10th Cana-

dian Workshop on Information Theory, pp. 172-175 , Edmonton, Canada, June

2007.

[48] M. Ebrahimi, M. A. Maddah-Ali, and A. K. Khandani, “Rate-constrained

wireless networks with fading channels: Interference-limited and noise-limited

regimes,” Submitted to IEEE Trans. Information Theory, October 2007.

[49] M. Haenggi, “On distances in uniformly random networks”, IEEE Trans. In-

formation Theory, vol. 51, no. 10, pp. 3584-3586, October 2005.

[50] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics: A

Foundation for Computer Science, Second Edition, Reading, Massachusetts:

Addison-Wesley, 1994.

[51] V. K. Rohatgi, An Introduction to Probability Theory and Mathematical Statis-

tics, John Wiley & Sons, Inc., New York, 1976.

[52] M. Franceschetti, M. D. Migliore, and P. Minero, “The capacity of wireless

networks: Information-theoretic and physical limits”, 45th Annual Allerton

Conf. Communication, Control, and Computing (Allerton07), Monticello, USA,

September 2007.

100


