INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality $6^{\prime \prime} \times 9^{\prime \prime}$ black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

UMİ

Bell \& Howell Information and Leaming

ON THE LOCUS OF DUAL-TASK INTERFERENCE DURING ENCODING

by
Carolyn Elizabeth Plourde
A thesis
presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Doctor of Philosophy in Psychology
Waterloo, Ontario, Canada, 1999

National Library of Canada

Acquisitions and Bibliographic Services 395 Wellington Street Ottawa ON KIA ONA Canada

Bibliothèque nationale du Canada

Acquisitions et services bibliographiques

395, rue Wellington Ottawa ON K1A ON4 Canada

The author has granted a nonexclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

L'auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

L'auteur conserve la propriété du droit d'auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

The University of Waterloo requires the signatures of all persons using or photocopying this thesis. Please sign below, and give address and date.

Abstract

Jolicoeur \& Dell'Acqua (1998) demonstrated that encoding a few briefly presented masked characters for later report can produce significant interference in a concurrent speeded tone task. This result implies that encoding requires a capacity limited cognitive mechanism also required for the tone task. Six experiments explore the nature of this capacity limited cognitive mechanism using the locus of cognitive slack logic (Pashler \& Johnston, 1989; McCann \& Johnston, 1992). The combined results indicate that the capacity limited cognitive mechanism involved in encoding takes the form of a processing bottleneck that affects a stage after rudimentary perceptual processing but before response selection. A model is proposed which assumes a processing bottleneck at the stage where implicitly coded stimulus information is explicitly coded by the observer, a stage referred to as 'short-term consolidation' (STC). The implications of these flydings on other phenomena in the dual-task literature are also discussed.

ACKNOWLEDGEMENTS

My sincerest thanks to Pierre Jolicoeur for his support and guidance throughout the years. I would also like to thank Marg Ingleton and the other members of the Jolicoeur lab, past and present, for helping make even the biggest crisis seem surmountable.

TABLE OF CONTENTS

Abstract iv
Acknowledgements v
Dedication vi
List of Tables viii
List of Figures ix
Introduction 1
Experiment 1 33
Method. 34
Results 37
Discussion 41
Experiment 2 42
Method 44
Results 46
Discussion 48
Experiment 3 49
Method. 52
Results 53
Discussion 58
Experiment 4 59
Method 60
Results 61
Discussion 64
Experiment 5 64
Method 65
Results 66
Discussion 69
Experiment 6 69
Method 70
Results 71
Discussion 74
General Discussion 75
The present model 86
The present model and the PRP paradigm 89
The present model and the AB priming paradigm 91
Can RS postpone STC (and vice versa)? 93
What produces the effect of SOA on ignore trials? 95
Implications for our understanding of the relationship between the PRP and AB effects 96
A final word regarding the issue of selective control 96
Conclusions 97
References 98
Appendix 103

List of Tables

Table 1. Task 2 response times and proportions correct for Experiment 1 104
Table 2. Task 1 proportions correct for Experiment 1 105
Table 3. Task 2 response times and proportions correct for Experiment 2 106
Table 4. Task 1 response uimes and proportions correct for Experiment 2 107
Table 5. Task 2 response times and proportions correct for Experiment 3 108
Table 6. Task 1 proportions correct for Experiment 3. 109
Table 7. Task 2 response imes and proportions correct for Experiment 4 110
Table 8. Task 1 response times and proportions correct for Experiment 4 111
Table 9. Task 2 response times and proporions correct for Experiment 5 112
Table 10. Task 1 proportions correct for Experiment 5 113
Table 11. Task 2 response times and proportions correct for Experiment 6 114
Table 12. Task 1 proportions correct for Experiment 6 115

List of Figures

Figure 1. Predictions of processing botleneck models (1) 8
Figure 2. Predictions of processing bottleneck models (2). 9
Figure 3. Predictions of capacity sharing models. 11
Figure 4. De Jong's (1993) argument for a bottleneck at response execution 20
Figure 5. The paradigm used in Jolicocur \& Dell'Acqua (1998), Experiment 4 22
Figure 6 The results of Jolicoeur \& Deil'Acqua (1998), Experiment 4 24
Figure 7. Jolicoeur \& Dell'Acqua's (1998) Central Interference Theory 27
Figure 8. A bottleneck at short-term consolidation, selective control, or both 32
Figure 9. The paradigm used in Experiment 1 (Control block) 35
Figure 10. Mean RTs and proportions correct for Experiment 1 (1) 38
Figure 11. Mean RTs and proportions correct for Experiment 1 (2) 39
Figure 12. Mean RTs and proportions correct for Experiment 2 47
Figure 13. Capacity sharing models can predict effects of SOA on task 1 accuracy 51
Figure 14. Mean RTs and proportions correct for Experiment 3 (1) 54
Figure 15. Mean RTs and proportions correct for Experiment 3 (2) 55
Figure 16. Mean RTs and proportions correct for Experiment 4 62
Figure 17. Mean RTs and proportions correct for Experiment 5 67
Figure 18. Mean RTs and proportions correct for Experiment 6 72
Figure 19. Example of a typical attentional blink effect. 77
Figure 20. The paradigm used in Shapiro et al. (1997), Experiment 1 79
Figure 21. The results of Shapiro et al. (1997), Experiment 1 81
Figure 22. The results of Shapiro et al. (1997), Experiment 2 83
Figure 23. The present model applied to the encoding paradigm 87
Figure 24. The present model applied to the PRP paradigm 90
Figure 25. The present model as applied to the attentional blink paradigm 92
Figure 26. Evidence for the independence of STC and RS 94

Introduction

Most cognitive tasks require encoding and for this reason there are obvious incentives for psychologists to understand not only how encoding operates, but how it may be affected by concurrent processing demands. The present work explores both the extent of the involvement of capacity limited cognitive mechanisms in encoding, and the nature of these capacity limitations.

The role of capacity limited cognitive mechanisms in encoding

The results from several of the earlier experiments conducted in this area indicated that encoding does not involve a capacity limited cognitive mechanism. In an experiment that has since become a classic, Posner and Boies (1971) examined the role of a capacity limited cognitive mechanism in letter encoding. Parricipants were presented with two letters, separated by a short interval, and were required to decide whether the letters were the same or different (letter matching task). The first letter remained on the screen throughout the trial. A probe tone was presented at various stages during the letter matching task to which participants made a simple speeded response. Posner and Boies (1971) argued that if letter encoding required a capacity limited cognitive mechanism also required for the tone task, simple RTs to the tone would be elevated during the encoding interval immediately following the onset of the first letter, as compared to at other points during the trial. The results from this experiment, however, showed tone RTs to be shorter during the encoding interval than in the inter-trial interval before the first letter was presented, which served as the baseline measure. Posner and Boies (1971) concluded that letter encoding does not require a central capacity limited cognitive mechanism. Posner and Boies' (1971) finding has been replicated a number of times (e.g. Posner \& Klein, 1973; Proctor \& Proctor, 1979).

Other researchers have provided support for Posner and Boies' (1971) conclusions using different experimental paradigms. For example, Pashler (1993a) presented participants with a high or low pitched tone followed, at an SOA of 50,150 , or 650 ms , by a Phillips display (so called because it was first employed by Phillips, 1974), consisting of a random 4×4 array of eight black and eight red squares. Participants made a speeded response to the tone and encoded the array. The Phillips display was presented for either 100 or 300 ms and then masked for 100 ms by a 4×4 array of alternating black and red squares. After an interval of 500 ms another Phillips display was presented which was either identical to the first or different by one square and participants indicated at their leisure whether it was the same or different as the one presented earlier in the trial. Pashler's (1993a) logic was similar to that of Posner and Boies (1971); if encoding requires the same capacity limited cognitive mechanism required for the tone task then the tone task will postpone encoding, and because the array is presented briefly and masked, ultimately reduce accuracy in the matching task. Pashler (1993a) found no effect of SOA on accuracy for the matching task and concluded that the encoding of visual information up to and including short-term memory does not require the same capacity limited cognitive mechanism associated with response selection.

However the conclusions of Posner and Boies (1971) and Pashler (1993a) are undermined by the results of several other experiments. Ogden, Martin, and Paap (1980), Comstock (1973), and Johnson, Forester, Calderwood, and Weisgerber (1983) used the same basic paradigm as Posner and Boies (1971) but presented the first letter only briefly and followed it with a mask, thus forcing participants to encode the letter as soon as it was presented. Ogden et al. (1980), Comstock, (1973), and Johnson et al. (1983), all found probe RTs during the encoding intervals to be significantly longer than baseline, implying that encoding does indeed involve a capacity limited cognitive meehanism. It seems plausible that Posner and Boies (1971) failed to find
interference between the encoding task and the tone task because the first letter remained on the screen until the response, and participants were able to avoid encoding the letter and responding to the tone simultaneously. In addition, Ogden et al. (1980) found that probe RT during the inter-trial interval (ITI), which served as a baseline in Posner \& Boies (1971), is sensitive to the probability that a tone will be presented during this interval, and thus the presence or absence of interference in the paradigm used by Posner \& Boies (1971) may be more dependent on participant alertness than on the processing demands of the primary task (Paap \& Ogden, 1981).

When Jolicoeur and Dell'Acqua (in press) used the same paradigm as Pashler (1993a) they found a significant effect of SOA on Pashler's Phillips display matching-task accuracy, with accuracy 7\% higher at the longest SOA than at the shortest SOA. In addition, when Jolicoeur and Dell'Acqua (in press) made the first task more difficult by increasing the tone task from a 2 alternative discriminations (2AD) task to a 3 alternative discrimination (3AD) task the effect of SOA on accuracy was even greater, accuracy rose 20% across SOAs. Jolicoeur and Dell'Acqua (in press) hypothesized that Pashler (1993a) may have failed to find an effect of SOA on matching task accuracy because the tone task was not sufficiently difficult to interfere with encoding.

Thompson (1987) found converging evidence that encoding requires a capacity limited cognitive mechanism. In Thompson (1987) participants performed a visual search task (sometimes searching for a single feature, sometimes for a conjunction of features) while performing a concurrent simple response to a tone. At the end of the trial participants were presented with two stimulus arrays and had to decide which array they had just seen. As with Ogden et al. (1980, Exp. 3), Comstock (1973), and Johnson, et al. (1983), Thompson (1987) found simple RT to the tone was slowest when the tone was presented immediately following the
presentation of the first array, and fastest prior to the presentation of the first array, again implying that a capacity limited cognitive mechanism is involved in encoding.

Although the results of Ogden et al. (1980), Comstock (1973), Johnson et al., (1983), Jolicoeur and Dell'Acqua (in press) and Thompson (1987) indicate that a capacity limited cognitive mechanism is involved in the encoding task, a number of other unrelated cognitive processes, such as anticipating the second stimulus, preparing to perform the match, or preparing to respond, could also be contributing to the observed interference. Thus corroborating evidence from experiments with better controlled paradigms is needed before these results can be considered evidence that encoding requires a capacity limited cognitive mechanism.

Jolicoeur and Dell'Acqua (1998) developed a paradigm that avoids many of the interpretive pitfalls inherent to earlier experiments that have examined the role of capacity limited cognitive mechanisms in encoding. Jolicoeur and Dell'Acqua's (1998) paradigm is adapted from the well known and widely used psychological refractory period (PRP) dual-task paradigm (Welford, 1952, 1980).

The Psychological Refractory Period (PRP) Paradigm

The PRP paradigm was originally designed to examine basic performance deficits incurred under dual-task conditions but has since been developed into a powerful tool not only for detecting the involvement of capacity limited cognitive mechanisms, but also for assessing how the capacity limited cognitive mechanism constrains processing. In the PRP paradigm (Welford, 1952,1980) participants are presented with two stimuli, (S1 and S2) at varying SOAs and are required to make a speeded response to each (R1 and R2). Results from PRP paradigm experiments consistently show increases in task 2 response times (RTs) with decreasing SOA, 2 phenomenon referred to as the 'PRP effect' (see Pashler, 1994, for a review). Because RTs
increase with increased task overlap, the PRP effect shows that the same capacity limited cognitive mechanism is required for some aspect of the processing for both tasks.

Three different descriptions of the capacity limited cognitive mechanism responsible for the PRP effect have been proposed in the literature: Processing bottleneck models, capacity sharing models, and strategic bottleneck models. Proponents of processing bottleneck models conceptualize the capacity limited cognitive mechanism responsible for the PRP effect as a processing bottleneck that can only process information relevant to one task at a time. When two concurrent tasks must complete a stage of processing that requires the capacity limited cognitive mechanism, or botleneck, processing of the bottleneck stage in task 2 must wait until processing at the bottleneck stage for task 1 has been completed (Pashler, 1994; 1998). Because increasing task overlap increases the likelihood that task 2 processes will encounter a busy botdeneck, mean task 2 RTs are longer at shorter SOAs than at longer ones, which would explain the PRP effect.

Proponents of capacity sharing models (e.g. Kahneman, 1973) instead conceptualize the capacity limited cognitive mechanism as a limited resource that can be allocated to various processing requirements. It is assumed that when less of the resource is allocated to a given task, processing efficiency for that task is reduced. When two tasks simultaneously require this capacity limited resource for one or more stages of processing less of the resource is allocated to each task and processing of both tasks may be slowed to some degree. There are a number of different variations on this basic theme, some capacity sharing models assume that capacity is divided equally between concurrent tasks while others assume that the division of the resource between tasks is flexible and may vary according to a number of factors, such as instructions or
the objectives of the participants'. In both types of capacity sharing models some slowing will be observed for both task 1 and task 2, and the amount of slowing will be proportional to task overlap, and thus capacity sharing models are also consistent with the basic PRP effect.

Meyer and Kieras (1997) instead propose a 'strategic bottleneck' explanation of dual-task interference. Meyer and Kieras (1997) argue that although the cognitive system is capable of processing any combination of stages in parallel, participants may 'lock-out' task 2 processing during specific stages in order to cope with the specific demands of a given paradigm. Meyer and Kieras (1997) argue that because PRP paradigm experiments require a response to task 1 before a response to task 2 , participants may 'lock-out' task 2 processing around response selection to ensure that a response to task 1 is made before a response to task 2. According to Meyer and Kieras (1997) the lock-out point may occur at any point during processing and will depend upon specific task instructions, a participant's goals, an prior experience. Meyer and Kieras (1997) thus argue that the PRP effect is the result of participants strategically postponing task 2 response selection so as to guarantee that task 1 is always responded to first. At short SOAs, task 2 response selection will be 'locked out' for longer, and hence response times will be larger than at longer SOAs.

Because all three classes of models predict increased task 2 RTs with decreasing SOAs, it is necessary to look to more complex effects to distinguish between the three accounts of the PRP effect. Each type of model makes different predictions about how manipulations of the duration of various stages of processing will affect task 2 RTs in a PRP paradigm experiment, which can be compared to the results of actual experiments employing the PRP paradigm.

[^0]The basic logic behind the main predictions of processing bottleneck models is shown in Figure 1. In all panels of Figure 1 a processing botteneck is assumed to affect stage B of both tasks such that processing of stage B in task 2 must wait for processing of stage B of task 1 to be complete. The first, and arguably the most diagnostic, prediction made by processing bottleneck models is that manipulating the duration of a pre-bottleneck stage of task 2 processing will result in an underadditive interaction with decreasing SOA (see Panel A of Figure 1). In the present context an interaction is considered to be underadditive when the shape of the function converges as SOA is decreased, and when the function instead diverges as SOA is decreased the interaction is considered to be overadditive. The basic logic behind this prediction is shown in Panel A of Figure 1, where the durarion of stage A processing for task 2 is manipulated. At short SOAs the bottieneck produces a period of 'cognitive slack' during which task 2 processing of stage A must wait for task 1 processing of stage B to be complete. This period of cognitive slack effectively absorbs the durational difference in the processing of stage A such that task 2 response times for the two conditions are the same. At long SOAs, however, there is no period of cognitive slack to absorb the durational difference in stage A processing, and the full extent of durational differences in the two conditions of task 2 will be reflected in task 2 RTs. Thus, if a pre-bottleneck stage of processing is manipulated there will be no difference in RTs between the two conditions at short SOAs accompanied by differences in the two conditions at long SOAs, which will result in an underadditive interaction with decreasing SOA.

A second prediction of processing bottleneck models is that manipulating the duration of a post-bottleneck stage of task 2 will have additive effects across SOAs. In Panel B of Figure 1 the duration of processing for stage B of task 2 is manipulated. Because there is no period of cognitive slack when a stage at or after the bottleneck is manipulated, the full extent of

A.

Task 1

Task 2

No difference at short SOAs, difference at long SOAs

TIME

B.

Task 1

Task 2

Same difference at short and long SOAs

TIME

Figure 1. Predictions made by processing bottleneck models based on the locus of cognitive slack logic. Stage B is assumed to constitute a processing bottleneck. Panel A illustrates the predicted outcome of manipulating a pre-bottleneck stage of processing. At short SOAs differences in processing time are absorbed into the period of 'cognitive slack', leading to an underadditive interaction with decreasing SOAs. Panel B illustrates the predicted outcome of manipulating a stage at or after a processing bottleneck. Here the manipulation affects a stage after the period of cognitive slack and thus the full extent of processing time differences are reflected in tone RTs at all SOAs, producing additive effects.

A.

Task 1

Task 2

Short SOA	Easy Hard
Long SOA	Easy
	Hard

Difference at short SOAs, no difference at long SOAs

TIME
B.

Task 1

Task 2

Figure 2.. Predictions made by processing bottleneck models based on the locus of cognitive slack logic. Stage C is assumed to constitute a processing bottleneck. Panel A illustrates the predicted outcome wben a pre-bottleneck stage of task 1 is manipulated. At sbort SOAs the manipulation will propagate onto tone RTs, whereas at long SOAs the manipulation will not affect task 2 RTs. Panel B illwstrates the predicted outcome of manipulating a stage at or after the bottleneck in task 1. Because the manipulation will not affect task 2 postponement, the manipulation will not affect task 2 RTs.
processing time differences between the two conditions will be reflected in task 2 RTs at all SOAs resulting in additive effects.

A third prediction stemming from processing bottleneck models is that increasing the duration of a pre-bottleneck or bottleneck stage of task 1 processing will result in an overadditive interaction with decreasing SOA in task 2 RTs (see Panel A of Figure 2). In panel A of Figure 2 the durarion of stage B in task 1 is manipulated. At short SOAs stage B of task 2 will be postponed until all pre-bottleneck and bottleneck processing of task 1 has been completed, and hence any manipulation which increases the duration of pre-bottleneck or bottleneck processing of task 1 will be propagated onto task 2 RTs. At long SOAs, however, task 1 processing will be complete before task 2 processing begins and hence a manipulation of the duration of task 1 processing will have no effect on task 2 RTs.

Finally, processing bottleneck models predict that increasing the duration of a post-bottleneck stage of task 1 processing will result in increases in task 1 RTs but not task 2 RTs (see Panel B of Figure 2). In Panel B of Figure 2 the duration of stage C of task 1 processing is manipulated. Because increasing the duration of post-botleneck stages of task 1 does not add to the postponement of task 2, no difference in task 2 processing times will be observed under these conditions. Processing bottleneck models also predict that there will be no effect of SOA on task 1 accuracy or response times in any conditions because task 1 processing is not affected by the demands of performing task 2.

The prediction made by capacity sharing models as to how a task 2 difficulty manipulation will affect RT depends upon the extent to which the stage of task 2 processing affected by the difficulty manipulation overlaps with task 1 processing.

Figure 3 illustrates the predictions of capacity sharing models when the duration of a stage of task 2 processing is manipulated. Panel A illustrates the predicted outcome when the
A.

Short SOA Easy

Long SOA Easy

TIME

B.

Short SOA Easy

Long SOA

Hard

TIME
Figure 3. Predictions made by capacity sharing models when a difficulty manipulation is employed in task 2. Tb areas labeled 'task 1' and 'task 2' represent the total resources required for the task. The beigbt of each area represents the proportion of resources allocated to that task and the width represents the amount of time needed for task completion. The ligbt gray area represents the manipulated stage. Panel A: the predicted autcome when the manipulated stage overlaps completely with task 1 at sbort SOAs. At sbort SOAs thedurational difference will be exaggerated compared to at longer SOAs because more time is needed for processing when less resources are available. Panel B illustrates the predicted outcome when tbe task 2 difficulty manipulation affects a stage that dot not overlap with task 1. Here the effect of the difficulty manipulation will be the same regardless of SOA and additive effects are instead predicted.
manipulated stage completely overlaps with task 1 processing at short SOAs while Panel B illustrates the predicted outcome when the manipulated stage of task 2 never overlaps with task 1 processing. The enclosed areas labeled "Task 1" and "Task 2" represent the total amount of processing resources required for the completion of each task. The height of these regions represents the proportion of resources assigned to the task, and the width represents the amount of processing time required. Because it is assumed that completing a given task always requires the same total amount of resources, the area of the region representing each task (calculated by multiplying the proportion of resources allocated to the task by time) must remain constant across conditions. Thus reducing the proportion of resources allocated to a given task must be matched by an increase in the amount of processing time required for the task (and vice versa). The light gray areas represents the stage of task 2 processing affected by the difficulty manipulation. When $S 1$ is presented, the capacity limited resources are allocated exclusively to task 1 processing until S 2 is presented. At short SOAs processing of task 1 will not be complete at the onset of S 2 , and the resources must be divided between the two tasks. This results in a reduction in the proportion of resources allocated to task 1 (represented by the decrease in height of the region) with a simultaneous increase in the proportion of resources allocated to task 2. When task 1 processing is complete, all of the resources are allocated to task 2. At long SOAs boch task 1 and task 2 are completed with exclusive access to the full extent of the resources. Panel A illustrates the predicted outcome when the stage of task 2 processing affected by a difficulty manipulation completely overlaps with task 1 processing at short SOAs but not at long ones. There is a larger effect of the difficulty manipulation at short SOAs than at longer ones because the duration of processing time for the manipulated stage must be increased at short SOAs to compensate for the decrease in the proportion of the resources allocated to task 2. Thus an overadditive interaction with decreasing SOA is predicted by capacity sharing models
when the stage of task 2 processing that is manipulated completely overlaps with task 1 processing. Panel B illustrates the predicted outcome when the manipulated stage of task 2 processing never overlaps with task 1 processing. Here, the difference in processing time for the two conditions is the same at all SOAs, because the manipulated stage of task 2 is always completed when task 2 has exclusive access to the resources. This results in additive, instead of overadditive, effects with SOA. Thus depending on whether the manipulated stage overlaps with task 1 processing (Panel A) or does not (Panel B) different patterns may be observed in task 2 RTs ${ }^{2}$.

One important distincrion between the capacity sharing account that predicts additive effects between a task 2 difficulty manipulation and SOA (Panel B of Figure 3) and the account submitted by processing bottleneck models is that this capacity sharing account predicts significant effects of SOA on task 1 RTs, while the processing bottleneck model predicts no effect of SOA on task 1 processing when additive effects on task 2 processing are observed. A capacity sharing account which predicts a decrease in resources assigned to each task during the period where both tasks require the capacity limited mechanism necessarily predicts an increase in task 1 RTs at short SOAs, because RTs will be slowed as a result of having fewer resources assigned to task 1 processing, and the probability of such slowing increases as SOA decreases. Processing bottieneck models, on the other hand, predict that in all situations, including when additive effects are observed, task 1 processing will be unaffected by all task 2 manipulations, and thus task 1 RTs should remain constant across SOAs. Thus when additive effects are observed, we argue that an examination of the corresponding pattern in task 1 RTs may be used to

[^1]distinguish between a processing bottleneck account and a capacity sharing account of the interference. It is important to note that although a capacity sharing model may be used to account for either an overadditive interaction or additive effects between a task 2 difficulty manipulation and SOA, a capacity sharing model cannot be reconciled with an underadditive interaction with decreasing SOA.

One clear prediction of Meyer and Kieras (1997) is that if response order constraints are removed in a PRP paradigm experiment, such that participants may respond to each stimuli in the order they please, that no interference will be observed. This is because inherent to Meyer and Kieras' (1997) model is the assumption that "lock-out" points, which produce bottleneck-like interference, are only imposed in the PRP paradigm because of strict response-order instructions given to participants before the experiment. However, in a recent study conducted in our lab participants were presented with a letter and a tone in random order at varying SOAs and were required to make a speeded forced choice response to each. Participants were given no instructions to respond to one task stimulus before the other. In fact because stimulus order was random participants had an incentive to respond to the first stimulus that was presented, rather than the letter first on all trials or the tone first on all crials. Meyer and Kieras (1997) clearly predict no interference in this paradigm, because response order is not specified. The results from two experiments of this type show clear and substantial PRP effects for both stimulus order conditions. Participants responded to the first stimulus that was presented on 90% of the trials, and hence were clearly not pre-imposing a strategic "lock-our" point at response selection for a specific stimulus, and yet clear evidence of dual-task interference was still observed. This finding cannot be reconciled with Meyer and Kieras (1997) who predict no interference under these circumstances, and for this reason Meyer and Kieras' (1997) model of the PRP effect may be rejected.

The vast majority of empirical evidence indicates that the capacity limited cognitive mechanism responsible for the PRP effect takes the form of a processing bottleneck. All of the predictions that stem from processing bottleneck models have been bome out empirically. The best evidence for a processing bottleneck comes from the large number of experiments that have produced underadditive interactions between a task 2 difficulty manipulation and decreasing SOA, implying that the capacity limited cognitive mechanism responsible for the PRP effect takes the form of a processing bottleneck. Such interactions could not be produced if capacity sharing was the source of the PRP effect, because these models predict additive or overadditive (depending on the specific instanciation of the model), but not underadditive, effects with increased task overlap.

The pattern of additivity and interactions across a wide variety of PRP paradigm experiments further implies that the processing botdeneck responsible for the PRP effect occurs sometime after the completion of rudimentary perceptual processing and before the completion of response selection. Experiments in which the duration of task 2 perceptual processing is manipulated consistently produce underadditive interactions with decreasing SOA, placing the locus of the bottleneck sometime after this perceptual processing has been completed (see Panel A of Figure 1). Experiments in which a variable believed to affect the duration of task 2 response selection is manipulated, however, typically produce additive effects with SOA. McCann and Johnston (1992) manipulated the compatibility of the S-R mapping in a PRP paradigm experiment. On each trial participants were presented with a high or low pitched tone followed, at varying SOAs, by either an arrow pointing left or right (easy condition), or the letter M or T (hard condition) at fixation. Participants made a speeded response to the pitch of the tone followed by a speeded response to the visual stimulus. In the easy S-R mapping condition participants pressed the left hand key if the arrow pointed left, and the right hand key if the arrow
pointed right. In the hard S-R mapping condition participants pressed the left hand key if the letter was an T , and the right hand key if the letter was a M. McCann and Johnston (1992) found the S-R mapping manipulation to produce additive effects with SOA, implying that the locus of the PRP bottleneck precedes the completion of response selection. Pashler and Johnston (1989), who manipulated response reperition in task 2 and Pashler (1989), who manipulated response modality (vocal/manual) in task 2 also found additive effects with SOA. These patterns of additivity between manipulations of the duration of response selection and SOA imply that the processing bottleneck occurs at or before response selection (see Panel B of Figure 1).

However, there is some debate in the literature as to whether the processing bottleneck affects a stage before the completion of response selection, or later at the response execution stage. Some researchers have argued against a response execution botteneck based on the additive effects of response selection manipulations and SOA (e.g. Pashler, 1989; Pashler \& Johnston, 1989; McCann \& Johnston, 1992) because if the postponement was occurring later, at response execution, then manipulations that affect the duration of response selection should produce underadditive, not additive, effects with decreasing SOA. In addition, although response selection manipulations for task 1 variables have been found to propagate onto task 2 RTs in a number of experiments, response execution manipulations for task 1 have not, implying that response selection occurs at or before the PRP bottleneck, whereas response execution occurs after the PRP bottleneck (Pashler, 1994). Karlin and Kestenbaum (1968) manipulated the number of response alternatives in task 1 and found the manipulation to produce roughly equivalent increases in task 1 and task 2 processing, however Van Selst and Jolicoeur (1997) failed to replicate this result. Other experiments which have manipulated the difficulty of executing the task 1 response (e.g. Pashler \& Christian, 1994), have found only a slight impact of these manipulations on task 2 RTs. Because processing bottleneck models clearly stipulate that
increasing the duration of pre-bottleneck or bottleneck stages of task 1 processing will be reflected in task 2 RTs whereas manipulations of post-bottleneck stages will not, the results of Karlin and Kestenbaum (1968) indicate that the processing bottleneck is at or before response selection and the results of Pashler and Christian (1994) indicate that the processing bottleneck occurs before, but not at, response execution.

When Karlin and Kestenbaum (1968) manipulated the number of response alternatives in task 2 of a PRP paradigm experiment, such that task 2 involved simple RT in some blocks and a 2AD in other blocks, an underadditive interaction between the response selection manipulation and decreasing SOA was observed, implying that the response selection manipulation affected a stage before a processing bottleneck. However there is experimental evidence that strongly suggests that Karlin and Kestenbaum's (1968) result may have been an artifact of using simple RT. Van Selst and Jolicoeur (1997) and Schubert (1996) replicated the paradigm utilized by Karlin and Kestenbaum (1968) but included a 3AD condition in task 2 in addition to simple RT and 2AD. Although there was some suggestion of an underadditive interaction with decreasing SOA between the simple RT and 2AD conditions (as was found in Karlin and Kestenbaum's experiment) the results from the 2 AD and 3 AD conditions were clearly additive. Van Selst and Jolicoeur (1997) speculate that Karlin and Kestenbaum's (1968) observation of underadditivity may have resulted from participants making anticipatory responses to the tone in the simple RT condition at long SOAs (when the participant could be certain that the presentation of the tone was imminent). Indeed Van Selst and Jolicoeur (1997) found a dramatic increase in the number of anticipatory responses made in the simple RT condition at long SOAs. The authors argue that such anticipatory responses could have reduced mean RTs for the simple RT condition at long SOAs in Karlin and Kestenbaum's (1968) experiment, resulting in a larger difference between the simple RT and 2 AD conditions at long SOAs and an underadditive interaction with decreasing

SOA. In $2 A D$ and $3 A D$ conditions, however, ancicipatory responses are rare (the stimulus must be presented before an appropriate response can be made in tasks involving choice) and thus the results from these conditions are more likely to reflect actual processing constraints. Van Selst and Jolicoeur (1997) thus conclude that Karlin and Kestenbaum's (1968) finding of underadditivity between a response selection manipulation and decreasing SOA are not reliable.

Better evidence for a processing bottleneck at response execution is provided by De Jong (1993). De Jong (1993) conducted four PRP paradigm experiments in which participants made a speeded response on some trials ('go' trials) and no response on other trials ('no-go' trials). The identity of S1 determined whether a given trials was a 'go' trial or a 'no-go' trial (for example, in Experiment 1 participants made a speeded response when $S 1$ was a ' B ' and no response when $S 1$ was a 'D'). De Jong (1993) reasoned that if response execution, like response selection, required a capacity limited cognitive mechanism then more interference will be observed on a 'go' trial, where response execution is required, than on a 'no-go' trial where response execution is not engaged. Indeed, in all four experiments De Jong (1993) observed smaller PRP effects on 'no-go' trials than on 'go' trials indicating that response execution contributes to the interference observed in PRP paradigm experiments. In order to reconcile this finding with others in the literature which clearly show response selection manipulations to be additive with SOA (implying that the last encountered botleneck is at response selection where the S-R manipulation exerts its effect) De Jong (1993) developed a dual-botteneck model that includes a processing bottleneck at both response selection and response execution. Because the response selection bottieneck and the response execution bottleneck are assumed to affect consecutive stages, the dualbottleneck model predicts that the response execution bottleneck will only be encountered when the duration of task 1 response execution is longer than the duration of rask 2 response selection (see Figure 4). Thus an underadditive interaction between a response selection manipulation and
decreasing SOA is predicted when task 1 response execution takes more time than task 2 response selection, and additive effects between a response selection manipulation and SOA are predicted when task 1 response execution takes the same or less time than task 2 response selection. Assuming that the model shown in Figure 4 is accurate, the duration of response execution can be estimated by calculating the average inter-response interval when the second task involves simple RT. Based on the results of Karlin and Kestenbaum, De Jong (1993) calculates the average inter-response interval to be about 200 ms . Thus according to De Jong (1993) response selection must take less than 200 ms in order for the response execution bottleneck to be encountered and underadditive effects with decreasing SOA observed. De Jong (1993) notes that while Karlin and Kestenbaum (1968) clearly satisfy this condition, with average simple RTs of 199 ms (indicaring that response selection must have taken less than 200 ms), Pashler (1989), Pashler and Johnston (1989), and McCann and Johnston (1992) all found total RTs in the simplest condition to be in excess of 500 ms , making it unlikely that response selection took less than 200 ms to complete. De jong (1993) thus concludes that a dualbottleneck model is completely consistent with all the effects observed in PRP paradigm experiments and that it may be premature to argue that response execution does not constitute a botteneck simply because response selection manipulations do not, typically, go underadditive with decreasing SOA.

In summary, work using the PRP paradigm reveals that a capacity limited cognitive mechanism, in the form of a processing bottleneck, is involved in some aspect of the period of processing between rudimentary perceptual processing and the completion of the response selection stage. In the PRP paradigm this processing bottleneck typically postpones task 2 response selection, resulting in increased task 2 RTs at short SOAs. If De Jong (1993) is correct, there is also a subsequent processing bottleneck at response execution, however this bottleneck

Figure 4. The logic bebind De Jong's (1993) argument that tbe bottleneck at response execution (RE) will only be encountered when task 1 RE takes longer than task 2 repponse. selection (RS). De Jong (1993) uses this logic to explain why some experimenters bave found RS difficulty manipulations to produce underadditive interactions witb decreasing SOAs (indicating a processing bottleneck after RS) while others have found additive effects (indicating that the bottleneck at or before RS).
will only affect task 2 processing in those cases where task 2 response selection is very short, and will therefore not be relevant in the vast majority of PRP paradigms where task 2 involves a choice response.

Jolicocur and Dell'Acqua (1998)

By simply switching the first task from a speeded choice response task to a delayed report encoding task Jolicoeur and Dell'Acqua (1998) adapted the PRP paradigm to study the role of capacity limited cognitive mechanisms in encoding. There were a number of reasons for their choice. First, this type of paradigm controls for the pitfalls of earlier letter matching experiments, including the influence of extraneous factors such as anticipating the second stimulus or preparing to make a match, and the possibility that simple RT is not sensitive enough to detect interference. Second, Jolicoeur and Dell'Acqua (1998) were curious to see if the same capacity limited cognitive mechanism that produces interference in the PRP paradigm was involved in encoding, and by using the same second task as in the PRP paradigm, this comparison would be possible.

Jolicoeur and Dell'Acqua's (1998) basic paradigm, shown in Figure 5, is similar to the PRP paradigm, except that instead of a speeded first task, participants encoded or ignored a few simple characters which they report at the end of the trial. Like in most PRP paradigms, the second task was a speeded response to the pitch of a tone. Relatively long SOAs were utilized to help ensure that perceptual processing of the first stimulus was completed by the time that the second stimulus was presented. Jolicoeur and Dell'Acqua (1998) argued that this paradigm helps ensure that the only processes that will be active following the presentation of the first stimulus will be directly involved in encoding, and hence any interference observed in the tone task can be attributed to a capacity limited cognitive mechanism required both for encoding and for the tone task.

Figure 5. The paradigm used in Experiment 4 of Joticoeur and Dell Acqua (1998)(encode condition sbowm).

In Experiment 4 Jolicoeur and Dell'Acqua (1998) presented participants with a 250 ms masked display of one or three items (letters on half the trials, keyboard symbols on the other half of the trials) followed, at an SOA of $350,500,650,800$, or 1200 ms , by a high or low pitched tone. Half of the participants encoded the letters and ignored the symbols while the other half encoded the symbols and ignored the letters. On every trial participants made a speeded response to the pitch of the tone. If it was an encode trial participants then typed in the letters or keyboard symbols they had seen, if it was an ignore trial participants simply pressed the space bar. Mean RTs to the tone served as the main dependent variable.

The results from Jolicoeur and Dell'Acqua (1998, Experiment 4) support the claim that encoding requires a capacity limited cognitive mechanism also required for the tone task. The significant three-way interaction between encode/ignore, SOA, and number of items is shown in Figure 6. When participants had to encode the items, the effect of SOA on tone responses was greater in the three item condition than in the one item condition. When participants instead ignored the items, however, the effect of SOA was much smaller and did not differ in the three and one item conditions. Very similar results were found in the other experiments conducted by Jolicoeur and Dell'Acqua (1998). In every experiment in Jolicoeur and Dell'Acqua (1998) task 2 RTs were slower on encode trials than on ignore trials and the effect of SOA was always greater on encode trials than on ignore trials. In addition, task 2 RTs always showed an effect of number of items on encode trials but not on ignore trials. Further, similar results were found when letters, digits, or keyboard symbols were encoded. Because the interference is greater on encode trials than on ignore trials, and because more encoding results in more interference in this paradigm, the results from this experiment imply that the process of encoding is producing the majority of interference with the tone task.

Figure 6. Results from Jolicoeur ©o DellA Acqua (1998, Experiment 4).

Jolicoeur and Dell'Acqua (1998) argue that a number of other possible sources for the interference can also be ruled out. First, early perceptual processing is not likely the source of the interference both because the letter presentation was always complete before the tone was presented and because S1 and S2 were presented in different modalities. Also, early sensory processing presumably took place on ignore trials of Experiment 7 but the effects of SOA were negligible in that experiment. Second, response selection can be ruled out as the source of the interference because no online response was needed for the encoding task. Third, the retention of the material is an unlikely source for the interference because retaining material produces a constant demand on cognitive resources, yet task 2 RTs decrease significantly with increasing SOA. Thus Jolicoeur and Dell'Acqua (1998) concluded that their resuits are most consistent with the locus of interference at the encoding stage, which they refer to as 'short-term consolidation.'

Note, however, that there is a small but significant effect of SOA on ignore trials in Jolicoeur and Dell'Acqua (1998, Experiment 4) (see Figure 6). To establish that this effect was not the result of participants accidentally encoding the items on a small proportion of ignore trials, Jolicoeur and Dell'Acqua (1998) conducted Experiment 4a in which participants were unexpectedly asked to report the identity of the items on their very last trial, which was always an ignore trial. Participants performed at chance for letter report and only slightly above chance for symbol report ${ }^{3}$. In both cases report was significantly less than in the encode condition. The results imply that accidental encoding on some trials is not a likely source for the interference in the ignore condition of Experiment 4. Jolicoeur and Deli'Acqua (1998) found converging evidence for the conclusion that a process other than accidental encoding on some trials was

[^2]responsible for the effect of SOA observed for ignore trials in Experiment 4 in Experiment 7, where blocking encode and ignore trials eliminated the effect of SOA for ignore trials. Jolicoeur and Dell'Acqua (1998) also argue that the interference is not occurring at a perceptual level because the results from a number of pilot experiments show no effect of SOA on ignore trials when the visual stimulus was never encoded. Jolicoeur and Dell'Acqua (1998) suggest that the effect of SOA observed for ignore trials is the result of the decision to encode or ignore a given stimulus, a process they refer to as 'selective control' (SC). Further, based on the results from the PRP literature, Jolicoeur and Dell'Acqua (1998) conclude that the same capacity limited cognitive mechanism required for selective control and short-term consolidation is also required for response selection in speeded tasks. These conclusions are formalized in Jolicoeur and Dell'Acqua's (1998) Central Interference Theory.

Central Interference Theory Oolicoeur \&\&Dell'Acqua, 1998)

Jolicoeur and Dell'Acqua (1998) propose a model of task interactions termed 'Central Interference Theory', shown in Figure 7, to account for the results from their experiments as well as the existing literature. The component stages for this model are sensory encoding, perceptual encoding, selective control, short-term consolidation, durable storage, response selection, and response execution. Three of these stages, selective control, short-term consolidation, and response selection, are assumed to require the same capacity limited cognitive mechanism which Jolicoeur and Dell'Acqua (1998) refer to as 'central mechanism.' Processing of one of these stages in one task will interfere with processing of any of these stages in any concurrent tasks. Which stages are encountered during the completion of a given task depend on the specific task requirements.

Encoding task

Encode condition

Speeded tone task

TIME

Encoding task

Ignore condition

Speeded tone task

TIME

Figure 7. Jolicoeur and Delf'Acqua's (1998) Central Interference Theory applied to the paradigm used in Experiment 4 Panel A illustrates the encode condition, Panel B, the ignore condition. In the visual encoding taste (task 1) the stimulus first passes through sensory encoding (SE) and perceptual processing (PE) and then selective control (SC) evaluates the output of $P E$ in order to determine whetber the stimulus is to be encoded. If selected, the output of PE is passed on to sbort-term consolidation (STC), STC tben produces a copy of the output of PE in durable storage (DS). SC and STC require a central mechanism wbich prevents response selection for task 2 wbile SC and STC are engaged.

Sensory encoding

Sensory encoding (SE) is assumed to be a massively parallel stage that provides the input for subsequent stages of processing. Basic perceptual features including colour, motion, and stereopsis result from SE (e.g. Zeki, 1993; Cavanaugh, 1988; Treisman \& Gelade, 1980). Representations at this stage are susceptible to masking but are not susceptible to interference from other sensory modalities.

Perceptual encoding

The output from sensory encoding is subjected to perceptual encoding (PE). Output from this stage includes pattern information, such as letter identives, and likely the activation of associated long-term memories (see Pashler \& Carrier, 1996). The output of PE is no longer maskable but will fade rapidly without continued bottom-up support (e.g., Chun \& Potter, 1995; Potter, 1976, 1993).

Selective control

Selective control (SC) determines which outputs from PE will be encoded into short-term memory. Perceptual items that are selected by SC will be subjected to short-term consolidation, perceptual items that are not selected will decay quickly. Selective control is one of the three stages assumed to require the central mechanisms. Jolicoeur and Dell'Acqua (1998) argue that it is interference between task 1 selective control and task 2 response selection that produced the effect of SOA observed for ignore trials in Experiment 4, based primarily on their finding of null effects of SOA in Experiment 7, where encode and ignore trials were blocked.

Sbort-term consolidation

Short-term consolidation (STC) is only engaged when the stimulus must be encoded. Output of PE selected for encoding is subjected to short-term consolidation (STC). Short-term consolidation copies the selected material into durable storage (DS), the short-term memory
store (Coltheart, 1982, 1984). Once in DS material must be rehearsed or it will be lost. The results from Jolicoeur and Dell'Acqua (1998) show that STC takes time, that STC takes more time when more items need to be encoded, and that STC requires the same capacity limited cognitive mechanism required for the tone task, the so-called central processor.

Response selection

Response selection is engaged when a speeded response is required. Output from PE is subjected to response selection (RS) whenever a speeded response is required. The duration of RS will depend on the complexity of the contingency berween stimulus and response. Response selection is assumed to require central processing mechanisms.

Response execution

Response execution follows response selection when a speeded response is needed. Output from RS is subjected to response execution (RE) where the appropriate motor pathways are recruited and the overt response made.

Figure 7 illustrates the assumed stages of processing for an unspeeded encoding task such as that used for task 1 in Jolicoeur and Dell'Acqua (1998, Experiment 4). The visual stimulus first passes through SE and PE, where simple and complex perceptual features are extracted. Selective control uses the output of PE to determine whether to encode a given stimulus or ignore it (based on category membership). If the stimulus is to be ignored no further cognitive operations are performed on the output of PE and the representation simply decays. If the stimulus is to be encoded, however, the output of PE is copied into DS where is can be maintained until the end of the trial. According to the Central Interference Theory, the completion of selective control and short-term consolidation will both require central mechanisms and will interfere with the processing of any stages of a concurrent task that also
require central mechanisms, namely selective control, short-term consolidation, or response selection.

Figure 7 also illustrates the assumed stages of processing for a speeded tone task such as that used for task 2 in Jolicocur and Dell'Acqua (1998, Experiment 4). Like with unspeeded tasks, the stimulus is first processing through SE and PE. However, when the task is speeded, and the stimulus does not need to be stored in durable storage (DS), processing instead proceeds directly to RS and RE. According to the Central Interference Theory, the completion of response selection will require the central processing mechanism and will interfere with the processing of any stages of a concurrent task that also require central processing.

Jolicoeur and Dell'Acqua (1998) used computer simulations to test whether the pattern in mean RTs observed in Experiments 4, 6, and 7 were consistent with a processing bottleneck account of dual-task interference (see Jolicoeur \& Dell'Acqua, 1998, for details). The results of simulations of Experiments 4,6 , and 7 all provide an excellent fit to Jolicoeur and Dell'Acqua's (1998) data, implying that a processing bottleneck account of the interference is consistent with the experimental data.

However the success of jolicoeur and Dell'Acqua's (1998) simulations do not provide proof that the capacity limited cognitive mechanism involved in encoding constitutes a processing bottleneck, they merely show that a processing botteneck account is consistent with the existing data. Indeed Jolicoeur and Dell'Acqua (1998) concede that their experiments provide no actual test as to the precise nature of the capacity limited cognitive mechanism involved in encoding. In Experiments 2 through 6 of this thesis the nature of the capacity limited cognitive mechanism involved in encoding is explored in great detail using the locus of cognitive slack logic (Pashler \& Johnston, 1989; McCann \& Johnston, 1992).

First, however, we test the validity of Jolicoeur and Dell'Acqua's (1998) conclusion that the decision to encode or ignore requires a capacity limited cognitive mechanism. The reasons for this are twofold. First, Jolicoeur and Dell'Acqua (1998) provide no direct evidence for a capacity limitations in the selective control stage, and thus a test of their assumption is desirable. Second, what we may conclude about encoding using the locus of cognitive slack logic will be greatly reduced if selective control and short-term consolidation both require a capacity limited cognitive mechanism also required for a speeded choice tone task. Figure 8 shows that if selective control is capacity limited in some way, then it will be difficult to use the locus of cognitive slack logic effectively, because the pattern in the data could potentially reflect either the nature of the limitation at selective control or the nature of the limitation at short-term consolidation. For example, Figure 8 illustrates how an underadditive interaction between a manipulation of an early stage of task 2 processing and decreasing SOA could reflect a bottleneck at selective control, short-term consolidation, or both. Similarly, additive effects could reflect a bottleneck at selective control, short-term consolidation, or both. The same problem with interpretation does not arise if capacity sharing is the source of the interference, however because the PRP effect has been shown to be the result of a processing bottleneck, and because the encoding paradigm is very similar to the PRP paradigm there is a very real possibility that the capacity limited cognitive mechanism involved in encoding constitutes a processing bottleneck as well. It is therefore critical that we employ experimental controls that will permit an accurate depiction of the locus of a processing bottleneck in the event that evidence for one is found.

Recall that Jolicoeur and Dell'Acqua (1998) came to the conclusion that selective control, the stage at which decisions to encode or ignore specific outputs from perceptual encoding are made, involves a capacity limited cognitive mechanism because of the appearance of effects of SOA on ignore trials in the experiments they conducted in which encode and ignore trials were mixed.

A. Encoding task

| SE | PE | STC STC | SS |
| :--- | :--- | :--- | :--- | :--- |

B. Bottleneck at STC or SC and STC SHORT SOA

LONG SOA
easy
hard
C. Bottleneck at SC

Figure 8. Predicted impact of a processing bottleneck at selective control (SC), sbort-term consolidation (STC) or both on task 2 response times (RTs). Stages of processing are sensory encoding (SE), perceptual encoding (PE), selective control (SC), sbort-term consolidation (STC, response selection, (RS) and response execution (RE). Sbaded stages are postponed by a processing bottleneck Panel A sbows the putative stages of processing for the encoding task used in Jolicoeur and Dell'Acqua (1998, Experiment 4). Panel B illustrates that an underadditit interaction is predicted if the duration of PE is manipulated if eitber STC or both STC and SC require central mechanisms. Panel C illustrates that an underadditive interaction is also predicted if onty SC requines the central mecbanism.

Jolicoeur and Dell'Acqua (1998) argued that the effect of SOA on ignore trials was not the result of occasionally accidentally encoding stimuli on ignore trials. Jolicoeur and Dell'Acqua (1998) concluded that because participants had to decide whether to encode or ignore on both encode and ignore trials, a capacity limited cognitive mechanism may be involved at the decision, or selective control, stage. However it is also plausible that having to switch between two sets of task protocols may have produced the effect of SOA observed for ignore trials, as a number of researchers have found evidence for interference due to task switching (e.g. Rogers \& Monsell, 1995). Experiment 1 examined Jolicoeur and Dell'Acqua's (1998) claim that a capacity limited cognitive mechanism is involved in selective control by comparing the extent of interference on trials where online selection was required to performance on trials where no online selection was required. A brief overview of all of the present experiments is shown in Appendix B.

Experiment 1

In Experiment 1 Jolicoeur and Dell'Acqua's (1998) hypothesis that selective control requires a capaciry limited cognitive mechanism is tested. The basic paradigm, shown in Figure 9, is the same as that used by Jolicoeur and Dell'Acqua (1998), however whether or not selective control was required was manipulated across blocks.

In 'Selection' blocks participants must make an online decision to encode or ignore one, two, or three briefly presented and masked red or green random consonants based on their colour while simultaneously performing a speeded choice tone task. After responding to the tone, participants typed the letters they saw if it was an encode trial or simply press the space bar if it was an ignore trial. In 'Control' blocks participants were informed ahead of time, by the presentation of either a solid or dashed fixation box before each trial, wherher to encode or ignore the red or green random consonants while performing the same speeded tone task as in 'Selection' blocks. If the fixation box was solid participants encoded the letters and reported
them at the end of the trial, if the fixation box was dashed participants ignored the letters and pressed the space bar after making their tone response. In 'Selection' blocks selective control must have occurred during the trial whereas in 'Control' blocks the decision was made before the onset of the letters. If the decision to encode or ignore requires a capacity limited cognitive resource also required for the tone task, as proposed by Jolicoeur and Dell'Acqua (1998), then tone response times should be different in 'Selection' blocks, where an online decision was made, and 'Control' blocks, where it was not. If, on the other hand, selective control does not required a capacity limited cognitive mechanism also required for the tone task then tone response times should instead be similar in 'Selection' and 'Control' blocks. The purpose of this experiment was to assess the capacity demands of online selective control.

Method

An illustration of the paradigm used in Experiment 1 is shown in Figure 9.

Participants

Sixteen University of Waterloo students were paid $\$ 6.00$ for their participation in this experiment. All participants reported normal hearing and normal or corrected-to-normal vision. Apparatus

Visual stimuli were presented on a black background on a SVGA colour computer screen controlled by a 386 or 486 CPU. Tones were presented through the computer speaker. A standard computer keyboard was used to collect responses.

Visual Stimuki

The visual stimuli consisted of one, two, or three consonants (excluding Y and Z) randomly selected without replacement on every trial, such that a letter was not repeated within a given trial. On half the trials the letters were red and on the other half of the trials the letters were green. Red letters had a luminance of $8.8 \mathrm{~cd} / \mathrm{m}^{2}$ and green letters had a luminance of $9.5 \mathrm{~cd} / \mathrm{m}^{2}$.

Figure 9. The paradigm used in Control blockes of Experiment 1 One, two, or three red or green letters are presented and masked. Partiapants encode the letter(s) that follow a solid-line fixation bax and ignore the letter(s, that follow a dasbed fixation box for report at the end of the trial. In Selection blocks (not shown) trials are identical except the fixation box is always solid and participants encode or ignore the letters based on their colour (red or green). Participants make a speeded response to the pitch of the tone and tben report the letters (or press th. space bar on ignore trials)

The mask consisted of ' 0 's superimposed onto ' $\$$'s and was presented in the same colour as the stimulus. Each letter subtended 0.66 degrees of visual angle in width and 1.00 degrees of visual angle in height. The letters on each trial were centred at fixation. The fixation box extended 0.53 degrees of visual angle to the left and right of the letters and 0.50 degrees of visual angle beyond the top and bottom of the letters.

Auditory stimuli
The auditory stimuli consisted of a 400 Hz tone ('low' tone) and a 1200 Hz tone ('high' tone) presented through the computer speaker. There were an equal number of trials for each tone condition.

Procedure

Participants were seated approximately 60 cm from the computer monitor in a dark room with a computer keyboard situated in front of them.

There were two block types in this experiment. In 'Control' blocks participants encoded or ignored the letters based on the style of the fixation box. Participants were instructed to encode the letters that followed a fixation box composed of solid lines and ignore the letters that followed a dashed Exxation box. In 'Selection' blocks participants encoded or ignored the letrer(s) depending on their colour. Half of the participants were instructed to encode the red letters and ignore the green ones ('red' group), and the other half of the participants were instructed to encode the green letters and ignore the red one ('green' group). Fixation boxes in 'Selection' blocks were always composed of solid lines.

Each trial began with the presentation of a fixation box in the centre of the screen. Participants initiated each trial by pressing the space bar which caused the fixation box to disappear. After a 400 ms delay the visual stimulus was presented for 250 ms and then masked for 100 ms . The tone was presented at a stimulus onset asynchrony (SOA) of $300,400,500,600$,
entered into a 5 (SOA) $\times 2$ (tone localization difficulty) repeated measures ANOVA. The main effect of tone localization difficulty was significant, $\mathrm{E}(1,13)=5.2, \mathrm{p}<.05, \underline{\mathrm{MSE}}=0.00137$.

Tone responses were more accurate in the easy tone localization condition than in the hard tone localization condition.

Discussion

The results from Experiment 5 replicate those from Experiment 3. The effect of tone localization difficulty was additive with SOA and there was no effect of SOA on task 1 accuracy, which provides converging evidence for the claim that the capacity limited cognitive mechanism involved in encoding takes the form of a processing bottleneck. What's more, the finding that a second perceptual difficulty manipulation produced additive effects with SOA undermines Jolicoeur and Dell'Acqua's (1998) claim that only short-term consolidation is subject to a processing bottieneck in the encoding paradigm, because the additive effects imply that some perceptual processing is also being postponed by the bottleneck.

Experiment 6

The main evidence that a perceptual factor is affecting the bottleneck stage comes from the additive effects observed in Experiments 3 and 5. One possibility, however, is that we observed additivity in these experiments because the SOAs used were not sufficiently short. In Experiments 3 and 5 we made the shortest SOA 200 ms to avoid any interference that may result from the abrupt onset of the tone when the letters were still visible. However, in our PRP paradigm experiments, most of the convergence in the underadditive interactions between task 2 difficulty manipulations and decreasing SOA occurs within the first 150 ms ; if the two shortest SOAs were removed the pattern in the results from Experiments 2 and 4 would appear additive (see Figures 12 and 16). Thus we may observe additive effects in the encoding paradigm simply because we were not probing early enough during the encoding process. In Experiment 6 we

Figure 10. Mean resonse cimes (top panee) and proportions correct (bottom parel) as a function of block tppe, encode/ignors, and stimulus onset aymectrony (SOA) for the tone task in Experinent 1.

Figur 11. Mean resonse cimes (top panel) and proportions correct f(bottom panel) as a function of encocde/ignore, number of letters, and stimulus onset asymbrong (SOA) for the tone task in Experiment 1.
lower boundaries. These boundaries are established based on the number of observations in a cell, the adjusted cell mean, and cell variance. This analysis removed 2.89% of the data.

Mean RTs and corresponding proportions of correct tone responses are shown in Table 1. Mean tone RTs were entered into a 2 (control/select) $\times 2$ (encode/ignore) $\times 3$ (number of letters) x 6 (SOA) repeated measures analysis of variance (ANOVA). The main effect of block type was significant, $\underline{F}(1,15)=5.46, \underline{p}<05, \underline{M S E}=13965.10$, tone responses were 10 ms slower on Control trials than on Selection trials, however block type did not interact with any other factor (see Figure 10). There was a significant 3-way interaction between SOA, encode/ignore, and number of letters, $\mathrm{E}(2,30)=2.80, \mathrm{p}<.0001, \mathrm{MSE}=5458.72$ which is shown in Figure 11 . Increasing the number of letters increased the effect of SOA for encode trials but not for ignore trials. The 2-way interaction between encode/ignore and number of letters was significant, $\underline{E}(2,30)=23.9, \mathrm{p}<.0001, \underline{\mathrm{MSE}}=38935.22$. Mean tone RT increased with the number of letters for encode trials but not for ignore trials. There was a significant 2-way interaction between SOA and number of letters, $\underline{E}(10,150)=4.86, p<.0001, \underline{M S E}=3759.37$. The effect of SOA on tone RT was greater when more letters were presented. There was also a significant 2-way interaction between SOA and encode/ignore, $\underline{E}(5,75)=10.94, \mathrm{p}<.0001, \underline{\mathrm{MSE}}=6507.11$. The effect of SOA was greater for encode trials than for ignore trials. Tone responses were slower at shorter SOAs than at longer ones $\mathbb{E}(5,75)=30.56, \mathrm{p}<.0001, \mathrm{MSE}=12518.63)$, slower on encode trials than on ignore tuials $(\mathbb{E}(1,15)=29.85, \mathrm{p}<.0001, \mathrm{MSE}=196896.93)$ and slower when more letters were presented $(\mathbb{E}(2,30)=19.64, \mathrm{p}<.0001$, MSE $=45563.35)$.

Accuracy Results

All experimental trials were included in the accuracy analyses.

Letter task

Mean proportions of correctly reported letters across conditions are shown in Table 2. The mean proportion of letters correctly identified were entered into a 2 (control/select) $\times 3$ (number of letters) x 6 (SOA) repeated measures ANOVA. This analysis revealed a significant 2-way interaction between block type and number of letters, $\underline{\mathrm{E}}(2,30)=5.02, \mathrm{p}<.05, \underline{\mathrm{MSE}}=344.21$. For Control blocks the mean proportion of letters correctly reported increased as the number of letters increased, while in Selection blocks the mean proportion of letters correctly reported decreased as the number of letters increased.

Tone task

Mean proportion of correct tone responses are shown in Table 1. The mean proportion of correct tone responses were entered into a 2 (control/select) $\times 2$ (encode/ignore) $\times 3$ (number of letters) $\times 6$ (SOA) repeated measures ANOVA. There was a significant 4-way interaction between block type, SOA, encode/ignore and number of letters, $\mathrm{E}(10,150)=2.19, \mathrm{p}<.05$, MSE $=0.00253$. There was also a significant 3-way interaction between block type, SOA, and encode/ignore, $\mathrm{E}(5,75)=2.35, \mathrm{p}<.05, \mathrm{MSE}=0.002943$.

Discussion

The results of Experiment 1 replicate Jolicoeur and Dell'Acqua (1998, Experiment 4). There is a significant three-way interaction in task 2 RTs in which the effect of SOA increases significantly with the number of letters on encode trials but not on ignore trials. Most importantly, however, tone responses on Selec trials are not significantly slower than tone responses on Control trials (see Figure 10). In fact, task 2 RTs are slightly slower in Control blocks, where no online decision was needed, as compared to Selection blocks where participants decided to encode or ignore based on the colour of the letters. When taken together these results imply that selective control does not require a capacity limited cognitive mechanism, and that it is
some aspect of processing that follows the decision to encode or ignore in the encoding task (in other words some aspect of encoding) that is producing the interference. This conclusion is inconsistent with Jolicoeur and Dell'Acqua's (1998) claim that selecting material for encoding requires a capacity limited cognitive mechanism, and suggests that their Central Interference Theory should be modified to exclude selective control as requiring the central mechanism. In addition, there was a significant effect of SOA on ignore trials in Control blocks, implying that the effect of SOA on ignore trials observed in Jolicoeur and Dell'Acqua (1998, Experiment 4) was not the result of the online decision to encode or ignore requiring the same capacity limited cognitive mechanism required for the tone task.

Experiment 2

The nature of the capacity limited cognitive mechanism involved in encoding

In Experiment 2 and the next several experiments the locus of cognitive slack logic was applied to a combination of PRP paradigm and encoding paradigm experiments to determine the source of the interference observed during the encoding task. According to the locus of cognitive slack logic, the most diagnostic finding is a task 2 difficulty manipulation that results an underadditive interaction with decreasing SOA, which can only be produced when the task 2 difficulty manipulation affects the duration of a stage of processing that precedes a bottleneck (see Introduction). It is thus desirable to use a task 2 difficulty manipulation that affects an early stage of processing because such a manipulation is most likely to produce an underadditive interaction with decreasing SOA if the capacity limited cognitive mechanism producing the interference constitutes a processing bottleneck. One way to establish that the manipulation affects an early stage is to first employ it in a PRP paradigm experiment. A myriad of PRP paradigm experiments have revealed a processing bottleneck that affects a stage at or around response selection. Thus if a task 2 difficulty manipulation produces an underadditive interaction
with decreasing SOA in a PRP paradigm experiment it may be concluded that the manipulation affects a relatively early stage before the onset of response selection (see Introduction). In Experiment 2 a task 2 tone loudness manipulation was employed in a PRP paradigm experiment. A perceptual difficulty manipulation (loudness) was chosen for task 2 because, according to CIT, perceptual processing is complete before the locus of the capacity limited cognicive mechanism at STC in the encoding paradigm. Loudness was chosen as the perceptual difficulty manipulation because PRP paradigm experiments in which the contrast of the second stimulus is manipulated typically result in underadditive interactions with decreasing SOA (e.g., De Jong, 1993; Pashler, 1984; Pashler \& Johnston, 1989).

In Experiment 2 participants were presented with an H, O, or S at fixation followed, at an SOA of $50,111,245,542$, or 1200 ms by a high or low pitched tone presented through headphones. On half the trials the loudness of the tone was reduced to slightly above threshold. Participants made a speeded response to the identity of the letter followed by a speeded response to the pitch of the tone. If the loudness manipulation produces an underadditive interaction with decreasing SOA we may conclude that both tasks require the same capacity limited cognitive mechanism that constitutes a processing bottleneck at a stage after the locus of the loudness manipulation. Such a finding would be parricularly diagnostic because underadditivity with decreasing SOA cannot be reconciled with a capacity sharing account of dual-task interference. If the loudness manipulation produces an overadditive interaction with decreasing SOA we may account for the interference using a capacity sharing model. If the loudness manipulation instead produces additive effects with SOA we will use the pattern in task 1 RT across SOAs to determine whether a processing bottleneck account or a capacity sharing account is most appropriate. If no effect of SOA is observed on task 1 RTs, we may conclude the additive effects were the result of a processing bottleneck at or before the locus of the tone difficulty
manipulation. If task 1 RTs are instead significantly longer at short SOAs, and postponed to a degree comparable to task 2 RTs, we will instead conclude that the observed interference is the result of capacity sharing.

Method

Participants

Eight University of Waterloo students were paid $\$ 6.00$ for their participation in this experiment. All participants reported normal hearing and normal or corrected-to-normal vision. Apparatus

The apparatus used in Experiment 2 was identical to that of Experiment 1 except that tones were presented to participants through a standard pair of stereo headphones

Visual Stimuli

The visual stimuli consisted of the letters H, O, or S presented individually at fixation. The letters were always gray with a luminance of $21 \mathrm{~cd} / \mathrm{m}^{2}$ and each subtended 0.76 by 0.86 degrees of visual angle.

Auditory stimuli

The auditory stimuli consisted of a 400 Hz tone ('low' tone) and a 1200 Hz tone ('high' tone) presented through headphones. There were two loudness conditions. In the 'loud' condition the tones were clearly audible. In the 'quier' condition the loudness was calibrated for each individual participant prior to the beginning of the experiment.

Procedure

Participants were seated approximately 60 cm from the computer monitor in a dark room with a computer keyboard situated in front of them. Subjects were given headphones and adjusted them until they were comfortable. Participants were presented with high and low pitched tones
at the normal loudness until they were familiar with them. Participants then began the loudness calibration phase.

Loudness calibration

Participants were told that the goal of the calibration was to reduce the loudness of the tone to the quietest possible level where the participant could still accurately identify the pitch. Participants pressed the space bar to hear a sample tone. After hearing the tone they could choose to make it louder, quieter, to hear it again, or to accept it. To accept the tone they simply pressed the space bar. If they chose to make the tone louder, the control value used to control loudness in MEL was increased by 2% relative to the loudness control value of the tone used in the 'loud' condition, if they chose to make it quieter the loudness control value was reduced by 2%, relative to the loudness of the tone used in the 'loud' condition, and if they chose to hear it again the loudness was not altered. A tone was then presented at the chosen loudness level. This procedure was repeated until the participant determined the minimum loudness level where they could still discriminate between the high and low pitched tones. After selecting that loudness the participant was presented with detailed instructions concerning how each trial would progress.

Each trial began with a fixation marker in the centre of the computer screen. Participants pressed the space bar to initiate the trial. The fixation marker disappeared and following a 400 ms delay an H, O, or an S , was presented in the centre of the screen. Participants were instructed to indicate the idenvity of the letter as quickly and accurately as possible by pressing the '<,' key with the index finger of their right hand if the letter was an H, the ' $>$.' key with the middle finger of their right hand if the letter was an O, or the ?/' key with the third finger on their right hand if the letter was an S . The letter remained on the screen until a valid response was made. The tone was presented to both ears through the headphones at an SOA of $50,111,245,542$, or 1200 ms from the onset of the letter. Each of the five SOAs, three letters, two tone difficulty conditions,
and two tone pitches were utilized an equal number of times. Participants were instructed to indicate the pitch of the tone as quickly and accurately as possible by pressing the ' A ' key for the high tone and the ' Z ' key for the low tone. Participants had to enter a response to the letter before they could enter a response to the tone. After a valid response was given for both letter and the tone, the fixation marker for the next trial was presented. The marker consisted of two variable symbols which reflected letter and tone accuracy on the previous trial. The symbol on the left described letter accuracy with a ' + ' or ' - ' and the symbol on the right described tone accuracy with a ' + ' or ' - . Participants completed one block of thirty practice trials and eight blocks of sixty experimental trials.

Results

Preliminary analyses revealed no effect of tone pitch on mean RT, letter accuracy, or tone accuracy. Data were collapsed across these variables in the following analyses.

RT Results

Only trials in which both responses were correct were included in the RT analyses. Correct letter RT data and correct tone RT data and letter RT data were subjected, sequentially, to the modified recursive outlier analysis suggested by Van Selst and Jolicoeur (1994) (see Experiment 1). This analysis removed 2.65% of the data based on tone responses, and a further 3.052% of the remaining data was removed based on letter responses. When an RT, in either task, was rejected as an outlier, the entire trial was rejected (i.e., both RTs were rejected).

Tone task

Mean RTs to the tone and the corresponding proportions of correct tone responses are shown in Figure 12 and Table 3. Mean RTs to the tone were entered into a 2 (tone difficulty) $\times 5$ (SOA) repeated measures ANOVA. There was a significant 2-way interaction between tone difficulty and $\operatorname{SOA}, \mathrm{E}(2,5)=8.04, \mathrm{p}<.0001, \mathrm{MSE}=1057.63$ which is plotted in Figure 12. This

Figure 12. Mean nsonse times (upper panel) and proportions correct (lower panel) as a function of tone cask difficuly and stimulus onset aymchrony (SOA) or the ktter task (task 1) and ibe tone task (taske 2) in Experiment 2.
interaction is clearly underadditive with decreasing SOA; the difference in tone RTs for the easy and the hard tone conditions increases from only 6 ms at the shortest SOA to 46 ms at an SOA of 1200 ms . Tone responses were slower in the hard tone difficulty condition than in the easy tone difficulty condition $(\mathbb{E}(1,10)=57.16, \underline{p}<.0001, \underline{M S E}=1081.01$), slower at shorter SOAs $(\underline{E}(4,10)=79.76, \mathrm{p}<.0001, \underline{\mathrm{MSE}}=3947.88)$.

Letter task

Mean RTs to the identity of the letter and the corresponding proportions of correct letter responses are shown in Figure 12 and Table 4. Mean RTs to the letter were entered a 2 (tone difficulty) $\times 5$ (SOA) repeated measures ANOVA. There were no effects of the experimental manipuiation on RTs to the letter.

Accuracy Results

Tone task

Mean proportion of correct tone responses are shown in Figure 12 and Table 3. Mean proportion of correct tone responses were entered into a 5 (SOA) $\times 2$ (tone difficulty) repeated measures ANOVA. The analysis revealed no effect of the experimental manipulations on tone task accuracy.

Letter task

Mean proportions of correct letter responses are shown in Table 4. Mean proportion of correct letter responses were entered into a 5 (SOA) $\times 2$ (tone loudness) repeated measures ANOVA. The analysis revealed no effect of the experimental manipulations on letter task accuracy.

Discussion

The results from Experiment 2 reveal a highly significant underadditive interaction between the task 2 tone difficulty manipulation and decreasing SOA, indicating that the tone difficulty
manipulation affected a stage before a processing bottleneck (see Figure 12). Thus in future experiments we can be certain not only that this tone task requires a capacity limited cognitive mechanism, but also that this capacity limited cognitive mechanism affects a stage after the locus of the tone difficulty manipulation in the PRP paradigm.

The purpose of Experiment 2 was simply to confirm both that our tone task required a capacity limited cognitive mechanism, and that the difficulty manipulation was affecting an early stage of processing. We can now use the same tone task in an encoding paradigm experiment to determine if the process of encoding is subject to constraint from a similar capacity limited cognitive mechanism.

Experiment 3

In Experiment 3 participants were presented with one or three red or green letters which they encoded or ignored based on their colour, followed, at varying SOAs, by a loud or quiet high or low pitched tone. Participants made a speeded response to the tone and then entered the letters if it was an encode trial or press the space bar if it was an ignore trial.

If the tone difficulty manipulation produces an underadditive interaction with decreasing SOA we may conclude that encoding requires a capacity limited cognitive mechanism that produces a processing bottleneck somerime after the locus of the tone difficulty manipulation. If the tone difficulty manipulation produces an overadditive interaction with decreasing SOA we may instead conclude that the capacity limited cognitive mechanism involved in encoding slows, but does not halt, processing of all stages of boch tasks that require the capacity limited cognitive mechanism. If the effects of SOA and the tone difficulty manipulation are additive, the appropriate conclusion would be less clear. While an overriding assumption of capacity sharing models is that RTs will be slowest when task overiap is greatest (which predicts an overadditive interaction with decreasing SOA), capacity sharing models are also consistent with additive effects under
some conditions (see Figure 3). Recall that in the PRP paradigm we are able to distinguish between additive effects resulting from a processing bottleneck and additive effects resulting from capacity sharing by examining the effects of SOA on task 1 RTs; a significant effect of SOA on task 1 RTs is predicted by the capacity sharing account but inconsistent with the processing bottleneck account. In the present encoding paradigm, however, task 1 is not speeded, and therefore task 1 RTs may not be used to discriminate between the models if additive effects are found. However, the pattern in task 1 accuracy may serve to distinguish between the two models in the encoding paradigm. The logic behind this assertion is shown in Figure 13. Suppose that capacity sharing is responsible for the interference between the encoding task and the tone task. The capacity sharing model that would have to be adopted to account for additive effects is shown in Panel B of Figure 13. At short SOAs, when task 1 and task 2 must share the capacity limited resource, less processing of each rask can be completed during a given period of time than at long SOAs when each task has exclusive access to the resource. Thus when a stimulus is presented briefly and masked, such as the task 1 stimulus in the encoding paradigm, less processing of the stimulus will be possible at short SOAs, and thus more errors in stimulus report are predicted. Capaciry sharing models therefore predict more errors in task 1 report at short SOAs than at long SOAs in the encoding paradigm. Processing bottleneck models, on the other hand, predict no impact of SOA on task 1 processing in the encoding paradigm. Thus if additive effects are observed in the present encoding paradigm, the pattern of task 1 accuracy may be used to determine whether a processing bottleneck or capacity sharing account of the interference is most appropriate.

Figure 13. A capacity sharing model adapted to account for additive effects of a task 2 difficulty manipulation in an encoding paradigm experiment. At short SOAs task 1 encoding is intermupted by the onset of task 2, reducing the capacity allotted to task 1 encoding. Because the letters are presented briefly and masked the reduction in capacity allotted to task 1 during encoding results in more errors in letter report.

Method

Participants

Sixteen University of Waterloo students were paid $\$ 6.00$ for their participation in this experiment. All participants reported normal hearing and normal or corrected-to-normal vision.

Visual Stimuli

The apparatus was identical to that used in Experiment 2. The visual stimuli consisted of 1 or 3 consonants (excluding Y and Z) randomly selected without replacement on every trial. There were an equal number of 1 and 3 letter crials. On half the trials the letters were red while on the other half they were green. Red letters had a luminance of $8.8 \mathrm{~cd} / \mathrm{m}^{2}$ while green letters had a luminance of $9.5 \mathrm{~cd} / \mathrm{m}^{2}$. The mask consisted of '0's superimposed onto ' $\&$'s and was presented in the same colour as the stimulus. Each letter subtended 0.76 degrees of visual angle in width and 0.86 degrees of visual angle in height. The visual stimuli was centred ar fixation.

Auditory stimuli

The auditory stimuli were identical to those used in Experiments 2. Participants completed a calibration procedure identical to that used in Experiment 2 to determine the appropriate tone intensity for the 'quiet' condition.

Procedure

Half the participants ($\mathrm{N}=8$) were instructed to encode red letter(s) and ignore green letter(s) while the other half of the participants $(\mathrm{N}=8)$ were instructed to encode green letter(s) and ignore red letter(s). The experimental procedure was the same as in 'Selection' blocks in Experiment 1, with the exception of the SOAs which were either 200, 261, 395, 692, or 1350 ms in Experiment 3. Participants completed one block of thirty practice trials and six blocks of eighty experimental trials.

Results

Preliminary analyses revealed no effect of wherher subjects were in the 'red' or the 'green' group or tone pitch on mean RT, letter accuracy, or tone accuracy. Data were collapsed across these variables in the following analyses.

RT Results

Only trials on which both responses were correct were included in the RT analyses. Correct tone RT data were first subjected to the modified recursive outlier analysis suggested by Van Selst and Jolicoeur (1994). This analysis removed 3.56% of the data.

Mean RTs and corresponding proportions of correct tone responses are shown in Table 5. Mean tone RTs were entered into a 2 (encode/ignore) $\times 2$ (number of letters) $\times 5$ (SOA) $\times 2$ (tone difficulty) repeated measures ANOVA. There was a significant 3-way interaction between SOA, encode/ignore, and number of letters, $\underline{F}(4,84)=7.15, \mathrm{p}<.0001, \underline{\mathrm{MSE}}=13331.89$ which is shown in Figure 14. Increasing the number of letters increased the effect of SOA for encode trials but not for ignore trials. There was a significant 2-way interaction between encode/ignore and tone difficulty, $\bar{E}(1,21)=9.78, p<.01, \underline{M S E}=8281.26$ which is shown in Figure 15. Increasing the tone difficulty had a larger effect on tone RTs on encode trials than on ignore trials. There was a significant 2-way interaction between SOA and encode/ignore, $E(4,84)=$ 9.16, $\mathrm{p}<.0001, \mathrm{MSE}=15379.39$. The effect of SOA was greater for encode trials than for ignore trials. The 2-way interaction between encode/ignore and number of letters was significant, $\mathrm{E}(1,21)=36.42, \mathrm{p}<.0001, \mathrm{MSE}=64742.69$. Mean tone RT increased with the number of letters for encode trials but not for ignore trials. Finally, there was a significant 2-way interaction between SOA and number of letters, $\mathrm{E}(4,84)=9.63, \mathrm{p}<.0001, \mathrm{MSE}=20767.09$. Increasing the number of letters increased the effect of SOA on tone RT. Tone RTs were longer at shorter SOAs $\boldsymbol{E}(4,84)=48.83, p<.0001, \underline{M S E}=32195.37$, longer in the three letter

Figure 14. Mean resonse times (top panel) and proportions correct as a function of encode/ignore, number of ketters, tone task difficuly, and stimulus onset agynctrony (SOA) for the tone task in Experiment 3.

Figure 15. Mean resonse cimes (top panel) and proportions correct (bottom parre) as a function of encode/ignone, tone task difficulty, and stimulus onset asynctrony (SOA) for the tone task in Experiment 3. Tase 1 accuracy is plosted in the bottom panel.
condition than in the one letter condition $(\mathbb{E}(1,21)=32.08, \mathrm{p}<.0001, \underline{\mathrm{MSE}}=61549.68)$, longer in the encode condition than in the ignore condition $\mathbb{F}(1,21)=48.22, \mathrm{p}<.0001, \underline{\mathrm{MSE}}=$ 125747.47), and longer in the hard tone difficulty condition than in the easy tone difficulty condition $(\underline{F}(1,21)=10.16, \mathrm{p}<.01, \underline{\mathrm{MSE}}=211028.81)$.

In order to apply the locus of cognitive slack logic we also conducted separate ANOVAs on the encode and ignore trial data. The nature of the capacity limited cognitive mechanism involved on encode trials is of primary interest.

Encode trials

We entered the encode data into a 5 (SOA) $\times 2$ (number of letters) $\times 2$ (tone difficulty) repeated measures ANOVA. The 2-way interaction between SOA and number of letters was significant, $\mathrm{F}(4,84)=12.49, \mathrm{p}<.0001, \underline{M S E}=21587.77$. The effect of SOA was greater in the three letter condition than in the one letter condition. Tone responses were slower at shorter SOAs $\mathbb{E}(4,84)=48.53, \mathrm{p}<.0001, \underline{M S E}=26584.77)$, slower in the three letter condition than in the one letter condition $(\mathbb{F}(1,21)=40.38, p<.0001, \underline{M S E}=107080.49)$, and slower in the quiet condition than the loud condition $(\underline{E}(1,21)=8.38, \mathrm{p}<.01, \underline{\mathrm{MSE}}=83049.76)$. There was no indication of a 2-way interaction between SOA and tone difficulty (i.e. the effects were additive, \mathbf{F} < 1) (see Figure 15).

Ignore trials

The data from ignore trials was entered into a 5 (SOA) $\times 2$ (number of letters) $\times 2$ (tone difficulty) repeated measures ANOVA. The interaction between SOA and tone difficulty was significant, $\underline{E}(5,2)=3.43, \underline{p}<.05, \underline{M S E}=12727.73$. This interaction was caused by an unusually small difference between tone RTs on quiet and loud trials at an SOA of 395 ms compared to at other SOAs (see Table 5). Tone response times were slower at shorter SOAs $\mathbf{E}(1,21)=8.39$, p
$<.01, \underline{\text { MSE }}=83049.76)$ and in the hard condition than in the easy tone difficulty condition $(F(1,21)=11.23, \underline{p}<01, \underline{M S E}=136260.31)$.

Accuracy results

Letter task

Mean proportions of letters correctly reported are shown in Table 6. Mean proportion of correct letter responses were entered into a 5 (SOA) $\times 2$ (number of letters) $\mathbf{x} 2$ (tone difficulty) repeated measures ANOVA. The effect of SOA on the proportion of letters correctly reported was not significant, $\underline{E}(4,84)=1.39, \underline{p}<0.24, \underline{M S E}=0.00137$. Letter report accuracy was thus not affected by task overlap. There was a significant effect of number of letters on the proportion of letters correctly reported, $\underline{E}(1,21)=13.22, \mathrm{p}<0.01, \underline{\mathrm{MSE}}=0.01435$. Participants reported 98% of the letters on one letter trials and 94% of the letters on three letter trials.

Tone task

Mean proportions of correct tone responses are shown in Figure 14 and in Table 5. Mean proportion of correct tone responses were entered into a 5 (SOA) $\times 2$ (encode/ignore) $\times 2$ (number of letters) $\times 2$ (tone difficulty) repeated measures ANOVA. The analysis revealed a significant 2-way interaction between encode/ignore and number of letters, $\mathrm{E}(1,21)=10.52, \mathrm{p}<$ $.01, \underline{\text { MSE }}=0.00199$. In the one letter condition participants were more accurate on encode trials than on ignore trials, however in the three letter condition participants were more accurate on ignore trials than on encode trials. The main effect of tone difficulty was also significant, $\mathbf{E}(1,21)$ $=6.15, \mathrm{p}<0.05, \mathrm{MSE}=0.00222$. Participants correctly reported the pitch of the tone 97% of the time on quiet trials and 98% of the time on loud trials.

Separate analyses were also conducted on encode and ignore trials. Mean proportions of correct tone responses for encode trials were entered into a 5 (SOA) $\times 2$ (number of letters) $\times 2$ (tone difficulty) repeated measures ANOVA. The analysis revealed no effect of the experimental
manipulations on tone report accuracy. Mean proportions of correct tone responses for ignore trials were entered into a 5 (SOA) $\times 2$ (number of letters) $\times 2$ (tone difficulty) repeated measures ANOVA. There was a significant main effect of number of letters, $\mathrm{E}(1,21)=8.67, \underline{p}<0.01$, $\underline{\mathrm{MSE}}=0.00163$. Tone responses were more accurate in the three letter condition (mean $=.98$) than in the one letter condition (mean $=.97$). There was also a significant main effect of tone difficulty, $\mathrm{E}(1,21)=6.37, \mathrm{p}<0.05, \underline{\mathrm{MSE}}=0.00167$. Tone responses were more accurate in the easy tone condition (mean $=.98$) than in the hard tone condition (mean $=.97$)

Discussion

The goal of Experiment 3 was to assess the nature of the capacity limited cognitive mechanism involved in the encoding paradigm using the locus of cognitive slack logic (Pashler \& Johnston, 1989). The results of Experiment 3, shown in Figure 15, reveal additive effects of a task 2 tone difficulty manipulation and SOA. Because Experiment 2 revealed an underadditive interaction with decreasing SOA using an extremely similar paradigm, it is argued that Experiment 3 had sufficient power to detect an interaction, and that the absence of the interaction is not likely the result of a type II error. In addition, there was no effect of SOA on letter report accuracy. A capacity sharing model of these additive effects would have to predict an effect of SOA on task 1 accuracy, and thus a capacity sharing account is not, in this case, consistent with the pattern of interference. Meyer and Kieras' (1997) strategic bottleneck model may also be rejected to the extent that peripheral processes, such as phonological recoding and translation of motor codes, are not involved in the interference. The results are instead most consistent with the conclusion that the tone difficulty manipulation affects a stage at or after a processing bottleneck, and that it is this processing bottleneck that produces interference in the encoding paradigm.

The question remains as to the locus of the processing bottleneck in the encoding paradigm. According to Jolicoeur and Dell'Acqua's (1998) Central Interference Theory, the processing bottleneck is at short-term consolidation, the stage that copies selected outputs of perceptual encoding to durable storage, the short-term store, for later report. As it stands, Central Interference Theory asserts that perceptual processing is complete before short-term consolidation begins, and thus cannot easily be reconciled with the result from Experiment 3, which implies that the tone difficulty manipulation affects a stage at or after the bottleneck stage. One possibility is that the tone loudness manipulation used in Experiments 2 and 3 is somehow distinct from other perceptual difficulty manipulations and that typically perceprual factors affect perceptual encoding, a stage before the bottleneck. In this case we should be able to find a task 2 manipulation that produces an underadditive interaction with decreasing SOA in an encoding paradigm. Another possibility is that the encoding stage is not distinct from some complex perceptual processing. Indeed, there is evidence from PRP paradigm experiments that some complex perceptual discriminations occur at stages after initial perceptual encoding (e.g. McCann \& Johnston, 1992).

Experiment 4

In Experiment 3 we found a tone loudness manipulation to produce additive effects with SOA in the encoding paradigm, implying that the tone loudness manipulation affects a stage at or after a processing bottleneck. This finding is inconsistent with Jolicoeur and Dell'Acqua's (1998) CIT which predicts that perceptual processing is complete before the bottleneck at STC is engaged. To resolve this issue we replicated Experiments 2 and 3 using a different task 2 perceptual difficulty manipulation. These experiments serve three important purposes. First, and most obviously, we may be able to replicate the results from Experiment 3 and provide further support for our argument that the capacity limited cognitive mechanism involved in encoding takes the
form of a processing bottleneck. Second, by using a different perceptual difficulty manipulation in Experiment 5 we can determine if perceptual manipulations typically affect the bottleneck stage in an encoding paradigm, and adjust our conceptualization of the bottleneck stage accordingly. Finally, if our new perceptual manipulation produces an underadditive interaction with decreasing SOA in an encoding paradigm, we will have extremely compelling converging evidence that the capacity limited cognitive mechanism involved in encoding takes the form of a processing bottleneck.

In Experiment 4 we use a PRP paradigm identical to that of Experiment 2, except that the second stimulus was two 800 Hz tones presented at different loudness' to both ears simultaneously. The participant perceived a single tone localized on the side of the louder of the two tones. Participants made a speeded response to the identity of a letter and then a speeded response to the apparent locus (left or right) of the tone. The difficulty of the localization task was manipulated by varying the relative loudness of the two tones; in the 'hard' tone localization condition the loudness of the two tones was more similar than in the 'easy' tone localization condition. If we find an underadditive interaction between the tone localization difficulty manipulation and decreasing SOA we can then use this same task 2 difficulty manipulation in an encoding paradigm to further our understanding of the processing bottleneck involved in encoding.

Method

Participants

Fifteen University of Waterloo students were paid $\$ 6.00$ for their participation in this experiment. All participants reported normal hearing and normal or corrected-to-normal vision. Visual Stimuk

The apparatus and visual stimuli were identical to those used in Experiment 2.

Auditory stimuli

The auditory stimuli consisted of a 800 Hz tone presented to both ears simultaneously through headphones. One tone was always presented more loudly than the other, which created the perceptual of a single tone originating from the side of the louder tone. The loudness of the louder of the two tones was constant across trials, on 'easy' tone localization trials the control value for the loudness of the quieter tone was set to 30% of the control value for the loudness of the louder tone, on 'hard' crials the control value for the loudness of the quieter tone was set to 70% of the control value for the loudness of the louder tone. There were an equal number of trials with the louder tone in the right and left ear.

Procedure

The procedure was identical to Experiment 2 with two exceptions. First, there was no loudness calibration phase. Second, task 2 involved making a speeded response to the apparent locus of a tone; parricipants pressed the ' Z ' key with the middle finger of their left hand if they heard a tone to the left and the ' X ' key with the index finger of their left hand if they heard a tone to the right.

Results

Preliminary analyses revealed no effect of tone pitch on mean RT, letter accuracy, or tone accuracy. Data were collapsed across these variables in the following analyses.

RT Results

Only trials in which both responses were correct were included in the RT analyses. Correct letter RT data and correct tone RT data were subjected, sequentially, to the modified recursive outier analysis suggested by Van Selst and Jolicoeur (1994). This analysis removed 3.5\% of the data was removed based on tone responses, and a further 2.75% of the remaining data was

Figure 16. Mean resonse bimes (xpper panel) and proportions comet (lower panel) fas a function of tome task difficulty and stimulus onset aynucbromy (SOA) or the letter task (task 1) and the tone task (task 2) for the tome task in Expeniment 4.
removed based on letter responses. When an RT, in either task, was rejected as an outlier, the entire trial was rejected (i.e., both RTs were rejected).

Tone task

Mean RTs to the tone and the corresponding proportions of correct tone responses are shown in Table 7. Mean RTs to the tone were entered into a 2 (tone localization difficulty) $\times 5$ (SOA) repeated measures ANOVA. There was a significant 2 -way interaction between tone difficulty and SOA $(\mathbb{E}(4,56)=9.43, p<.0001$, MSE $=1447.07$), plotted in Figure 16, which is clearly underadditive with decreasing SOA; the difference in tone RTs for the quiet and the loud tone conditions increases from only 35 ms at the shortest SOA to 145 ms at an SOA of 1200 ms . Tone responses were slower in the hard tone localization difficulty condition than in the easy tone localization difficulty condition $(\mathrm{F}(1,14)=53.74, \underline{\mathrm{p}}<.0001, \underline{\mathrm{MSE}}=7763.15)$, and slower at shorter SOAs $(\mathbb{E}(4,56)=58.09, \mathrm{p}<.0001, \underline{\mathrm{MSE}}=4917.80)$.

Letter task

Mean RTs to the identity of the letter and the corresponding proportions of correct letter responses are shown in Table 8. Mean RTs to the letter were entered a 2 (tone localization difficulty) $\times 5$ (SOA) repeated measures ANOVA. There was a significant interaction between tone localization difficulty and SOA, $\mathrm{E}(4,56)=6.84, \mathrm{p}<.0001, \underline{\mathrm{MSE}}=664.94$. The effect of SOA was greater in the hard tone localization difficulty condition than in the easy tone difficulty condition. Finally, letter responses were slower at shorter SOAs $(\mathbb{E}(4,56)=6.84, p=0.0001$, $\underline{\mathrm{MSE}}=1361.15$)

Accuracy Results

Tone task

Mean proportions of correct tone responses are shown in Table 7. Mean proportion of correct tone responses were entered into a 2×5 repeated measures ANOVA. There were no effects of the experimental manipulations on tone response accuracy.

Letter task

Mean proportions correct for the letter task are shown in Figure 8. Mean proportion of correct letter responses were entered into a 2×5 repeated measures ANOVA. Letter responses were less accurate at shorter $\operatorname{SOAs}(\mathbb{E}(4,56)=5.28, \mathrm{p}<.01, \underline{\mathrm{MSE}}=0.000450)$.

Discussion

The results from Experiment 4 reveal an underadditive interaction between the tone localization difficulty manipulation and decreasing SOA (see Figure 16). This result indicates that the tone localization difficulty manipulation affects a stage before the PRP bottleneck. We can now replicate Experiment 3 in Experiment 5 using this new perceptual difficulty manipulation.

Experiment 5

In Experiment 5 participants encoded or ignored three consonants based on their colour and then make a speeded response to the apparent location of a tone. On half the trials localizing the tone is made more difficult. If we observe an underadditive interaction between the tone localization difficulty manipulation and decreasing SOA we will also have converging evidence for the claim that the capacity limited cognitive mechanism involved in encoding is a processing bottleneck, and the conclusions of Jolicoeur and Dell'Acqua (1998) regarding the processes involved in the bottleneck stage need not be challenged. If additive effects between the tone localization task and SOA are observed in Experiment 5, accompanied by no effect of SOA on letter report accuracy, we will also have converging evidence that the capacity limited cognitive
mechanism involved in encoding takes the form of a processing bottleneck, and that the tone localization task affects a stage at or after this bottleneck. However, this evidence that a second perceptual difficulty manipulation affects the bottleneck stage in an encoding task will force the re-evaluation of Jolicoeur and Dell'Acqua's (1998) assumption that the capacity limited stage in encoding is only responsible for copying the output of perceptual encoding to the short-term store. Finally, if an overadditive interaction between the task 2 difficulty manipulation is observed it may be concluded that capacity sharing is responsible for the interference observed in the encoding paradigm.

Method

Participants

Fourteen University of Waterloo students were paid $\$ 6.00$ for their participation in this experiment. All participants reported normal hearing and normal or corrected-to-normal vision. Visual Stimuli

The apparatus was identical to that in Experiment 2. The visual stimuli were identical to those used in Experiment 3 except three consonants were presented on every trial.

Auditory stimuli
The auditory stimuli were identical to those used in Experiments 4.

Procedure

Half the participants ($\mathrm{N}=7$) were instructed to encode the red letters and ignore the green letters while the other half of the participants ($\mathrm{N}=7$) were instructed to encode the green letters and ignore the red letters. The experimental procedure was identical to that of Experiment 3 except there was no loudness calibration phase.

Results

Preliminary analyses revealed no effect of whether subjects were in the 'red' or the 'green' group, or tone pitch on mean RT, letter accuracy, or tone accuracy. Data were collapsed across these variables in the following analyses.

RT Results

Only trials on which both responses were correct were included in the RT analyses. Correct tone RT data were first subjected to the modified recursive outlier analysis suggested by Van Selst and Jolicoeur (1994). This analysis removed 3.51% of the data.

Mean RTs and corresponding proportions of correct tone responses are shown in Table 9. Mean tone RTs were entered into a 2 (encode/ignore) x 5 (SOA) $\times 2$ (tone localization difficulty) repeated measures ANOVA. There was a significant 2-way interaction between SOA and encode/ignore, $\underline{E}(4,52)=2.90, \mathrm{p}<.05, \underline{M S E}=14540.94$, which is shown in Figure 17. The effect of SOA was greater for encode trials than for ignore trials. Tone responses were slower at shorter SOAs $(\mathbb{E}(4,52)=14.6, p<.0001, \underline{M S E}=18667.35)$ slower for encode trials than for ignore trials $\mathbb{F}(1,13)=32.87, \underline{p}<.0001, \underline{M S E}=60175.47$), and slower in the hard tone localization difficulty condition than in the easy tone difficulty manipulation $\mathcal{E}(1,13)=24.63$, p $<.001$, MSE $=102409.40)$.

In order to apply the locus of cognitive slack logic we also conducted separate ANOVAs on the encode and ignore trial data. We are primarily interested in the nature of the capacity limited cognitive mechanism involved on encode trials.

Encode trials

Mean response times for encode trials were entered into a 5 (SOA) $\times 2$ (tone localization difficulty) repeated measures ANOVA. Tone responses were slower at shorter SOAs $\mathbf{(E}(4,52)=$ 11.55, $\mathrm{p}<.0001, \mathrm{MSE}=22609.983$), and slower in the hard tone localization condition than in

Figure 17. Mean resonse dimes (top panel) and proportions correct (Bottom panel) as a function of encode/ignors, tone taske dificuty), and stimutus onset aynchromy (SOA) for the tone task in Experiment 5. Task 1 accuragy is plotted in the bottom panel.
the easy tone localization condition $(\mathbb{E}(1,13)=33.69, \mathrm{p}<.0001, \underline{\mathrm{MSE}}=474927.62)$. The interaction between tone localization difficulty and SOA was not significant (i.e., additive effects were observed, $\mathrm{F}<1$).

Ignore trials

The data from ignore trials was entered into a 5 (SOA) $\times 2$ (tone localization difficulty) repeated measures ANOVA. Tone response times were slower at shorter SOAs $\mathbb{E}(4,52)=5.05$, $\mathrm{p}<0.01, \underline{\mathrm{MSE}}=10598.32$) and slower in the hard tone localization condition than in the easy tone localization condition $(\underline{F}(1,13)=17.23, \mathrm{p}<.001, \underline{\mathrm{MSE}}=74978.39)$.

Accuracy Results

Letter task
Mean proportions of letters correctly reported are shown in Table 10. Mean proportion of correct letter responses were entered into a 5 (SOA) $\times 2$ (tone localization difficulty) repeated measures ANOVA. The analysis revealed no effect of the experimental manipulations on letter task accuracy.

Tone taste

Mean proportions of correct tone responses are shown in Table 9. Mean proportion of correct tone responses were entered into a 5 (SOA) $\times 2$ (encode/ignore) $\times 2$ (tone localization difficulty) repeated measures ANOVA. There was a main effect of tone localization difficulty, $\mathbf{E}(1,13)=$ 4.57, $\mathrm{p}<.05, \underline{\mathrm{MSE}}=0.003388$. Tone responses were more accurate in the easy tone localization condition than in the hard localization difficulty condition.

Separate analyses were also conducted on encode and ignore trials. Mean proportions of correct tone responses for encode trials were entered into a 5 (SOA) $\times 2$ (tone localization difficulty) repeated measures ANOVA. There were no effects of the experimental manipulations on tone localization accuracy. Mean proportions of correct tone responses for encode trials were
entered into a 5 (SOA) $\times 2$ (tone localization difficulty) repeated measures ANOVA. The main effect of tone localization difficulty was significant, $\underline{E}(1,13)=5.2, \mathrm{p}<.05, \underline{\mathrm{MSE}}=0.00137$. Tone responses were more accurate in the easy tone localization condition than in the hard tone localization condition.

Discussion

The results from Experiment 5 replicate those from Experiment 3. The effect of tone localization difficulty was additive with SOA and there was no effect of SOA on task 1 accuracy, which provides converging evidence for the claim that the capacity limited cognitive mechanism involved in encoding takes the form of a processing botleneck. What's more, the finding that a second perceptual difficulty manipulation produced additive effects with SOA undermines Jolicoeur and Dell'Acqua's (1998) claim that only short-term consolidation is subject to a processing bottleneck in the encoding paradigm, because the additive effects imply that some perceptual processing is also being postponed by the bottleneck.

Experiment 6

The main evidence that a perceptual factor is affecting the bottleneck stage comes from the additive effects observed in Experiments 3 and 5. One possibility, however, is that we observed additivity in these experiments because the SOAs used were not sufficiently short. In Experiments 3 and 5 we made the shortest SOA 200 ms to avoid any interference that may result from the abrupt onset of the tone when the letters were still visible. However, in our PRP paradigm experiments, most of the convergence in the underadditive interactions between task 2 difficulty manipulations and decreasing SOA occurs within the first 150 ms ; if the two shortest SOAs were removed the pattern in the results from Experiments 2 and 4 would appear additive (see Figures 12 and 16). Thus we may observe additive effects in the encoding paradigm simply because we were not probing early enough during the encoding process. In Experiment 6 we
replicated Experiment 3 using the same SOAs as employed in Experiments 2 and 4. If additive results are again found, our conclusion that some perceptual processing is occurring at the bottleneck stage in the encoding paradigm will be supported. If an underadditive interacrion with decreasing SOA is observed we will instead conclude that the processing bottleneck occurs after perceptual processing. Finally, if an overadditive interaction with decreasing SOA is observed, it may be concluded that the interference is the result of capacity sharing.

Method

Participants

Ten undergraduates from the University of Waterloo were paid $\$ 6.00$ for their participation in this experiment.

Visual stimuli

The apparatus was idencical to the one used in Experiment 2. The visual stimuli were identical to those used in Experiment 3.

Auditory stimuli

The auditory stimuli were identical to those used in Experiment 3.

Procedure

The procedure was identical to that of Experiment 3 except that we instead used the SOAs from Experiments 2 and 4, which were 50, 111, 245, 542, and 1250 ms . Unlike in Experiment 3, in Experiment 6 the letters would still be present on the screen when the tone was presented on about half the trials (those trials where the SOA was less than the $\mathbf{2 5 0} \mathrm{ms}$).

Results

Preliminary analyses revealed no effect of whether subjects were in the 'red' or the 'green' group or tone pitch on mean RT, letter accuracy, or tone accuracy. We were therefore able to collapse across these variables in the following analyses.

RT Results

Only trials on which both responses were correct were included in the RT analyses. Correct tone RT data were first subjected to the modified recursive outlier analysis suggested by Van Selst and Jolicoeur (1994). This analysis removed 3.156% of the data.

Mean RTs and corresponding proportions of correct tone responses are shown in Table 11. Mean tone RTs were entered into a 2 (encode/ignore) x 5 (SOA) $\times 2$ (tone difficulty) repeated measures ANOVA. The 3-way interaction between SOA, encode/ignore, and tone difficulty is significant, $\mathrm{E}(4,36)=4.53, \mathrm{p}<.01, \mathrm{MSE}=1921.94$ (see Figure E6 F1). The effect of SOA was much more dramatic on encode crials, particularly in the hard tone difficulty condition. The 3way interaction between encode/ignore, number of letters, and SOA was also significant, $E(4,36)$ $=4.0, \mathrm{p}<.01, \mathrm{MSE}=3583.73$. The effect of SOA was greater in the three letter condition than in the one letter condition for encode trials but not ignore trials. The 2-way interaction between SOA and encode/ignore was significant, $\mathrm{E}(4,20)=6.02, \mathrm{p}<.001, \underline{\mathrm{MSE}}=4833.67$. The effect of SOA was greater on encode trials than on ignore trials. The 2-way interaction between encode/ignore and number of letters was also significant, $E(1,9)=11.46, p<.01$, MSE $=13471.8$. Tone RTs were slower in the three letter condition than in the one letter condition for encode trials but not for ignore trials. Tone responses were slower at shorter SOAs $(F(4,20)$ $=14.5, \mathrm{p}<.0001, \mathrm{MSE}=18993.43)$, slower in the encode condition $(\mathbb{E}(1,5)=35.8, \mathrm{p}<.001$, $\mathrm{MSE}=31913.900)$, and slower in the hard tone difficulty condition $(\mathrm{E}(1,9)=19.98, \mathrm{p}<.01$, MSE $=24981.23$)

In order to apply the locus of cognitive slack logic we also conducted separate ANOVAs on the encode and ignore trial data. We are primarily interested in the nature of the capacity limited cognitive mechanism involved on encode trials.

Figure 18. Mean nsonse times (top panel) and proportions correct (bottom panel) as a finction of incode/ignore, tone task difficuty , and stimulus onset asynchrony (SOA) for the tone task in Experiment 6. Task 1 accuray is plotted in the bottom pabel.

Encode trials

Mean correct response times were entered into a 5 (SOA) $\times 2$ (number of letters) $\times 2$ (tone difficulty) repeated measures ANOVA. Most importantly, the 2-way interaction between SOA and tone difficulty was not significant (i.e., the effects were additive, $\mathrm{F}(4,36)=1.34, \mathrm{p}<0.27$). The 2-way interaction between SOA and number of letters was also significant, $\underline{E}(4,36)=3.96, p$ $<.01, \underline{\text { MSE }}=5110.63$. The effect of SOA was greater on three letter trials than on one letter trials. Tone responses were slower at shorter SOAs than at longer $\operatorname{SOAs,~} \mathbb{E}(4,36)=12.96, p<$ $.001, \underline{\text { MSE }}=17955.54$), slower in the three letter condition than in the one letter condition, $\underline{F}(1,9)=10.66, \mathrm{p}<.01, \underline{M S E}=28972.13$, and slower in the hard tone difficulty condition than in the easy tone difficulty condition, $\mathbb{F}(1,9)=15.89, p<.01$, MSE $=18076.01)$.

Ignore trials

Mean correct response times were entered into a $5(\mathrm{SOA}) \times 2$ (number of letters) $\times 2$ (tone difficulty) repeated measures ANOVA. Most importantly, the 2-way interaction between SOA and tone difficulty was not significant $(\mathbb{F}(4,36)=1.4, \underline{p}<0.256)$. Tone responses were slower at shorter SOAs than at longer SOAs $(\mathbf{E}(4,20)=4.79, \mathrm{p}<0.01, \underline{\mathrm{MSE}}=8288.24)$, and slower in the hard tone difficulty condition than in the easy tone difficulty condition $\mathbb{F}(1,9)=24.11, p<.001$, $\underline{\mathrm{MSE}}=8896.04$).

Accuracy Results

Letter accuracy

Mean proportions of letters correctly reported are shown in Table 12. Mean proportion of correct letter responses were entered into a 5 (SOA) x 2 (tone localization difficulty) repeated measures ANOVA. There was a significant effect of number of letters on the proportion of letters correctly reported, $F(1,9)=19.98, p<0.01$. A larger proportion of the letrers were reported on three letter trials than on one letter trials.

Tone accuracy

Mean proportion of correct tone responses were entered into a 5 (SOA) $\times 2$ (encode/ignore) x 2 (tone difficulty) repeated measures ANOVA. Tone responses were less accurate in the hard tone difficulty condition than in the easy tone difficulty condition $(\mathbb{E}(1,9)=5.12, \mathrm{p}<0.05)$.

Encode trials

Mean proportions of correct tone responses for encode trials were entered into a separate 5 (SOA) $\times 2$ (number of letters) $\times 2$ (tone difficulty) repeated measures ANOVA. There were no effects of the experimental manipulations on tone report accuracy for encode trials.

Ignore trials

Mean proportion of correct tone responses for encode trials were entered into a separate 5 (SOA) $\times 2$ (number of letters) $\times 2$ (tone difficulty) repeated measures ANOVA. Tone responses were less accurate in the hard tone difficulty condition than in the easy tone difficulty condition $\underline{E}(1,5)=9.60, \mathrm{p}<.05, \mathrm{MSE}=0.00384)$.

Discussion

The results from Experiment 6 show that a task 2 perceptual difficulty manipulation still produces additive effects with SOA even when the SOAs are very short (see Figure 18). Thus it may be concluded that the stage being affected by the perceptual difficulty manipulations occurs at or after, and not before, a processing bottleneck.

The goal of the present series of experiments was to gain an understanding of the role of a capacity limited cognitive mechanism in encoding and to establish a locus for the mechanism. The experiments establish that encoding requires a capacity limited cognitive mechanism and that this mechanism takes the form of a processing bottleneck (Experiments 3, 5, and 9). We now turn to the theoretical implications for these findings.

General Discussion

In Experiments 2 to 6 we found that the same perceptuai difficulty manipulations that produced underadditive interactions with decreasing SOA in the PRP paradigm experiments (Experiments 2 and 4) produced additive effects with SOA and no effects of SOA on task 1 accuracy in the encoding paradigm experiments (Experiments 3,5 and 6). When the locus of cognitive slack logic (Pashler \& Johnston, 1989; McCann \& Johnston, 1992) is applied, these results imply that the tone difficulty manipulations used in the present experiments exert their effects at or after a processing bottleneck (based on the additivity in Experiments 3, 5, and 6) and that this bottleneck is both before the PRP bottleneck at response selection (based on the underadditive interactions with decreasing SOA in Experiments 2 and 4) and differentfrom the PRP bottleneck at response selection (based on the fact that the PRP bottleneck is not encountered in the encoding paradigm experiments because no speeded response is required for task 1). In addition the results from Experiment 1 imply that making a decision to encode or ignore based on colour does not require a capacity limited cognitive mechanism and thus some rudimentary sensory processing must occur before the bottleneck stage.

The results from the present experiments thus clearly indicate the presence of a processing bottleneck with a locus somewhere between rudimentary sensory processing and the onset of response selection. Further, the locus of this bottieneck is at or before the locus of the tone difficulty manipulations used in Experiments 3, 5, and 6, as these tone manipulations produced additive effects across SOA in encoding paradigm experiments. A number of recent studies that have employed the attentional blink (AB) paradigm (e.g., Broadbent \& Broadbent, 1987; Raymond, Shapiro, \& Amell, 1992) suggest that a capacity limited cognitive mechanism is involved in the conversion of implicitly coded stimulus features into explicitly coded stimulus features. It seems plausible that such a stage could also constitute a processing bottleneck in the
encoding paradigm. If so, then Jolicoeur and Dell'Acqua's (1998) Central Interference Theory (CIT) may be adapted to include a processing bottleneck which postpones the translation of implicitly coded stimulus information during short-term consolidation (STC)

Encoding and the Attentional Blink (AB) paradigm

In the attentional blink (AB) paradigm participants are presented with multiple targets embedded among non-targets in a rapid serial visual presentation (RSVP) stream, which displays a succession of brief stimuli in the same location at a rate of about 10 stimuli per second. Targets are typically distinguished from non-targets by colour, shape, or alphanumeric class. Participants are required to make judgments about the targets for report at the end of the trial. Targets are presented with a varying number of intervening non-targets. Results from $A B$ paradigm experiments consistendy show marked decreases in target detection accuracy during the 500 ms following the presentation of a preceding target, a phenomenon referred to as the 'attentional blink' (see Figure 19).

Like the PRP effect, the attentional blink may be attributed to a capacity limited cognitive mechanism, as task overlap increases the magnitude of the effect. Originally, the capacity limited cognitive mechanism involved in the attentional blink was assumed to prevent all processing of subsequent stimuli for a brief period of time, much in the same way that visual input is temporarily blocked when we blink our eyes (Raymond, Shapiro, \& Amell, 1992). However subsequent research has revealed that although the attentional blink may indeed serve to interfere with certain types of processing, other types of processing may proceed unhindered during the blink interval.

Shapiro, Driver, Ward, and Sorenson (1997) were among a group of researchers who speculated that the 'eye blink' analogy used to describe the AB phenomenon may be too simplistic and that certain types of implicit stimulus processing may still be possible during the

Figure 19. Example of a ypical attentional blink (AB) effect (eg. Raymoned et al, 1992). On Control trials onby T2 is reported. On Experimental trials both T1 and T2 must be reported. For Experimental trials, but not Control trials, T2 report accuracy is significanty lower when the T1-T2 lag is short than when the lag is long.
blink interval, even if stimuli presented during this interval were not explicitly coded by the observer (for a review of other AB models see Jolicoeur, 1998). To test this hypothesis, Shapiro et al. (1997) studied the extent to which a target presented during the blink interval that can not be accurately reported, serves to prime subsequent targets in an $A B$ paradigm experiment. If all processing of subsequent stimuli is prevented during the blink interval then targets presented during the blink that cannot be reported by the participant should not prime subsequent targets.

In Experiment 1, which is illustrated in Figure 20, Shapiro et al. (1997) presented participants with 13 to 23 stimuli in an RSVP stream. Each stimulus was presented for 15 ms , with an interstimulus interval (ISI) of 75 ms (11 stimuli/second). In each stream there were three targets referred to as $\mathrm{T} 1, \mathrm{~T} 2$, and T 3 . T1 was a white digit, T 2 was a black upper case letter, T 3 was a black lower case letter that either had the same name as T2 (match condition) or a different name than T2 (mismatch condition). The remaining non-targets were all black digits. Participants were required to report $\mathrm{T} 1, \mathrm{~T} 2$, and T 3 at the end of each trial. A random number of distractors, ranging from seven to fifteen, preceded T1. T1 served to produce a 'blink' for T2, which was always the third stimulus that followed T1 (thus T2 was always presented 270 ms after T 1) and T3 was always the sixth stimulus to follow T 2 (thus T 3 was always presented 540 ms after T 1). If the original assumption about the attentional blink is accurate, and processing of incoming stimuli is halted during the blink interval, then when T2 is missed T2 should not be sufficiently processed to prime T3 and thus there should be no difference between T3 accuracy on T2-match and T2-mismatch trials (i.e., no priming). If, on the other hand, complex information is implicitly coded during the blink, then missed T2s may still affect T3 processing, and T3 accuracy will be higher on match trials than on mismatch trials (i.e., priming will occur).

Figure 20. An illustration of the paradigm used in Sbapirv et al (1997, Experiment 1), Each stimulus was presented for 15 ms followed by a 75 ms blank interval. Seven to fifteen stimuti preceded T1. T3 was always the third stimulus to follow T1, T3 was always the sixtb stimulus to follon T2. Participants reported tbe identities of T1 T2, and T3 at the end of each trial. Tbis illustration sbows a 'matcb' trial. On a 'mismatch' trial T3 may instead b $a^{\prime} b$.

The results from Shapiro et al. (1997, Experiment 1) are shown in Figure 21^{4}. As is clear from the figure, Shapiro et al. (1997) found a very different pattern in T3 accuracy when T2 was missed than when T2 was reported accurately. When T2 was missed (33% of the trials), T3 accuracy was significantly higher in the match condition than in the mismatch condition, indicating that T 2 s that couldn't be reported because of the blink were still able to prime T3. Thus Shapiro et al. (1997) concluded that T2s that were not explicitly coded were still implicitly coded to the level of meaning during the attentional blink.

When T2 was reported accurately (67% of the trials), however, T3 accuracy was higher in the mismatch condition than in the match condition, an effect referred to as 'repetition blindness' (RB). Reperition blindness is often observed in experiments which use RSVP streams consisting of simple alphanumeric characters (Shapiro et al., 1997). Kanwisher (1987) argues that RB results from the participants' inability to create two separate episodic tokens (i.e., specific instances of a category such as the capital letter ' A ' or the lower case letter ' b ') of stimuli of the same type (i.e., abstract category such as the letter A or the letter B) in rapid succession. Thus Shapiro et al. (1997) speculate that RB was observed in Experiment 1 because coding the token for T 2 (e.g.,., an upper case ' A '), interfered with coding the token for a subsequent target of the same type (e.g., a lowercase ' a '), which resulted in more errors when T2 and T3 were the same type (had the same name, match condition) than when T2 and T3 were different types (had different names, mismatched condition).

In Experiment 2 Shapiro et al. (1997) used a similar AB paradigm as in Experiment 1, with the exception that in Experiment 2 the stimuli consisted of words instead of letters and digits, and T2

[^3]

Figure 21. Results from Shapiro, Driver, Ward, Ev Sorenson (1997, Experiment 1). Proportion of T3s correcthy reported across conditions. When T2 was reported correcty, more T3s aere neported correcty in the mismatch condition than in the match condition. Wben T2 was reported incorrecty, more T3s mere reported correctly in the match condition than in the mismatch condition.
was either semantically related to T3 (related condition) or not semantically related to T3 (unrelated condition). All related pairs of words were shown to produce significant facilitatory priming in an unrestricted viewing paradigm (Shelton \& Martin, 1992). When T2 was missed in Experiment 2, accuracy at detecting T3 was again higher in the related condition than in the unrelated condition, implying implicit semantic coding even in stimuli outside of the participants awareness (see Figure 22). Unlike in Experiment 1, however, when T2 was reported correctly, T3 accuracy was higher in the related condition than in the unrelated condition (i.e., priming occurred). This discrepancy is, however, consistent with Kanwisher (1987) who suggests that RB only occurs when two successive stimuli are different tokens from the same type, because T2 and T3 in Experiment 2 were never of the same type. Shapiro et al. (1997) concluded that stimuli that cannot be reported due to the attentional blink are still implicitly coded to the level of meaning.

Maki, Frigen, and Paulson, (1997) also used an AB-priming paradigm to examine the extent to which stimuli presented during the blink are processed implicitly. Maki et al. (1997) always used words as both the targets and the distractors, and included a condition in some experiments where a semantically related distractor preceded a target. In addition to replicating the basic findings of Shapiro et al. (1997), namely that targets that cannot be reported by the participant can still prime subsequent targets that are semantically related, Maki et al. (1997) demonstrated that semantically related distractors, if presented immediately preceding a target, could also prime the target, although distractor priming only lasted for 100 ms , as compared to 400 ms found when a target primed another target. Thus Maki et al.'s (1997) findings further illustrate that even briefly presented distractors are processed semantically and coded implicilly.

The results from electrophysiological experiments support the claims of Shapiro et al. (1997) and Maki et al. (1997). Luck, Vogel, and Shapiro (1996) examined whether the N400 peak, 2

Figure 22. Results from Shapirn, Driver, Ward, © Sorenson (1997, Experiment 2). Proportion of T3s correctly reported across conditions. Even wben T2 was reported incorrecth, responses to T3 were still more accurate in the match condition than the mismatch condition.
peak associated with semantic processing, can be elicited during the attentional blink. The N400 peak (which appears 400 ms after the stimulus) is unique in that it is only observed when there is a mismatch between a word and a previously established semantic context (Luck et al., 1996). For example a N400 peak would be produced after the sentence "Giraffes have brown spots and long kettles" but not after the sentence "Giraffes have brown spots and long necks." Because the N 400 peak results from semantic processing, a stimulus that evokes an N 400 peak must have been processed to semantics. Luck et al. (1996) measured participants' ERPS during trials in an $A B$ experiment which used words as the critical stimuli. At the beginning of each trial participants were presented with a context word (e.g., 'CHAIR') to set the semantic context of the trial. Participants were presented with RSVP streams of twenty seven-character strings of consonants or digits at a rate of one stimulus every 83 ms . The distractors were seven randomly selected consonants presented in blue (e.g., 'GTRWPLK'). T1, which served to produce a 'blink' for T2, was a digit repeated seven times (e.g., '3333333') and T2 was a three to seven letter word presented in red which was either related to the context word (e.g., 'TABLE') or unrelated to the context word (e.g., 'KITE'). T1 was either the first, the seventh or the tenth stimulus in the RSVP stream and T2 was either the third the or seventh string to follow T1. There was both an experimental condition, in which participants reported the identity of T 1 and T 2 at the end of the trial and a control condition in which participants ignored T1 and only reported T2. ERPs were recorded at fifteen standard electrode sites. Luck et al., (1996) found the typical 'blink' pattern in T2 accuracy for experimental trials, and substantial N400 peaks on unrelated trials in both the experimental and the control conditions. Most importantly, there was no effect of $\mathrm{T}^{\circ}-\mathrm{T} 2$ lag on the size of the N400 peaks, indicating that stimuli presented during the blink, indicating which often cannot be reported by the participant, are still processed to semantics. Luck et al.'s (1996) findings were replicated by Vogel, Luck, and Shapiro (1998).

Thus the results from Shapiro et al. (1997), Maki et al. (1997) and Luck et al. (1996) all indicate that complex stimulus information is coded implicily even when participants possess no explicit code of the stimulus features. In addition, the results indicate that it is the development of explicit codes that is prevented during the attentional blink, implying that the development of explicit codes requires a capacity limited cognitive mechanism. The primary tasks in both the $A B$ paradigms used by Shapiro et al. (1997), Maki et al. (1997), and Luck et al. (1996) and the encoding paradigm used in Experiments 3, 5, and 6 of the present work, are essentially the same; in both paradigms participants must select a stimulus for encoding based on colour or alphanumeric class and must encode it for report at the end of the trial. It is thus reasonable to conclude that the capacity limited cognitive mechanisms involved in target processing in the $A B$ paradigm will also be involved in the encoding task of the encoding paradigm used in Experiments 3, 5, and 6, and thus that the encoding task used in the encoding paradigm also requires a capacity limited cognitive mechanism for the conversion of implicitly coded stimulus information into explicit codes. Because the encoding task in the encoding paradigm interferes with completion of the tone task, the tone task may also be assumed to require this same capacity limited cognitive mechanism for the transformation of implicitly coded tone information into explicit codes.

To account for the results of the present experiments I propose a revised version of Jolicoeur and Dell'Acqua's (1998) Central Interference Theory in which it is assumed that converting implicit codes to explicit codes requires a capacity limited cognitive mechanism that produces a processing bottleneck. One way to modify the model is to modify the definition of short-term consolidation (STC) to include the transformation of implicit codes to explicit codes. Because we also assume that the duration of STC will be directly related to how quickly explicit codes may be formed, the tone difficulty manipulations may be assumed to have their locus at STC; more
ambiguous implicit codes formed in the hard tone conditions will take longer to consolidate than a tone with stronger implicitly activated codes (in the easy tone condition). Thus the new model is entirely consistent with the additive effects between the tone difficulty manipulations and SOA found in Experiments 3, 5, and 6.. The model can also account for a wide variety of findings in both the PRP and the AB literatures.

The present model

The present model assumes a similar set of stages as Jolicoeur and Dell'Acqua's (1998) Central Interference Theory (CIT), which are shown in Figure 23. Stimuli are first processed through sensory encoding (SE) and perceptual encoding (PE) which implicitly codes stimulus characteristics up to the level of meaning. At this point stimulus information is not explicitly available to the observer. This assumption is strongly supported by the results of Shapiro et al. (1997), Maki et al. (1997), and Luck et al. (1996), who found that stimuli that could not be reported were coded implicitly to the level of meaning during the attentional blink. It is assumed that explicit coding is required before controlled processes, such as response selection, may be engaged. Selecrive control (SC) serves to select a subset of the implicit codes to be passed through short-term consolidation (STC) which translates the implicit codes into explicit codes. The results from Experiment 1 imply that the SC stage does not require a capacity limited cognitive mechanism, contrary to the suggestions of Jolicoeur and Dell'Acqua (1998). Selective control may operate on any feature implicitly coding during SE/PE, selectively passing stimuli that meet a preset criteria through short-term consolidation (STC). Short-term consolidation translates the selected subset of the implicit codes into explicit codes, and the output becomes part of short-term memory. Short-term consolidation constitutes a processing bottleneck which postpones STC for subsequent stimuli until STC for the current stimuli has been completed. The duration of STC will depend on the relative strength of the implicit codes being transformed

Encoding task (Encode trial)

Encoding task (Ignore trial)

Tone task
Short SOA
Easy
Hard

Long SOA

TIME

Figure 23. Ilbustration of the model wben applied to the encoding paradigm used in Experiments 3, 5, and 6. Tbe top panel nepresents the assumed interaction between tasks for an encoding trial Because the locus of the tone difficuly manipulation is asswomed to be at sbort-terme consolidation (STC), the locus of the bottlenecke, the tone difficuly manipulation produces additive effects across SOA. No bottleneck on ignore trials (bottom panel) also results in additive effects.
such that more highly activated implicit codes may be translated more quickly than implicit codes with less acrivation. Thus factors that affect the strength of implicit coding, such as stimulus contrast or loudness, will have their locus at STC. The output of STC becomes part of shortterm memory, however active maintenance is necessary for the stimulus to remain part of shortterm memory for more than a few seconds. Once a stimulus is coded explicitly, controlled processes may be performed. If it is a speeded task, the output of STC forms the basis for response selection (RS). Response selection also constitutes a processing bottleneck (the 'PRP bottleneck') such that the system can only select a response to one stimulus at a time. After RS is complete, response execution (RE) may be performed. Note that all stimuli whose features must be explicitly known to the participant are assumed to be processed through the bottleneck stage ar STC regardless of whether a speeded or unspeeded response is required. Thus this model predicts interference between any two tasks that both require a stimulus to be explicitly coded.

Figure 23 shows the presumed interaction between tasks on an encode trial in the encoding paradigm. The encoding stimulus is presented first. The letters are implicitly coded to the level of meaning in SE and PE. Selective control then selects stimuli matching the pre-set colour criterion for explicit processing. Once selected, the stimulus enters STC and is explicitly coded. While the system is occupied performing STC on the visual stimulus, STC of the tone is postponed. After the completion of STC the visual stimulus is part of short-term memory and may be reported, however ongoing maintenance is required if the delay between encoding and report is more than a few seconds. At shorr SOAs the tone is presented before STC of the visual stimulus has been completed, and thus STC for the tone is postponed until STC for the visual stimulus has been completed. At long SOAs tone processing may proceed unhindered. As soon as STC is available, STC for the tone takes place and implicit tone features become explicitly available for further processing. Short-term consolidation in the easy tone condition will take less
time than STC in the hard tone conditions because tones in the easy condition will have more implicit activation than tones in the hard condition. Because the tone manipulation is affecting a stage at or after the bottleneck, the full extent of processing time differences in the two conditions will be observed in RTs both at short and long SOAs. Thus the model predicts that a tone difficulty manipulation will produce additive effects across SOAs on encode trials. Panel B of Figure 23 shows the presumed interaction between an encoding task and a speeded tone task when participants instead ignores the encoding stimulus. Like on encode trials, the encoding stimulus is implicitly coded up to the level of meaning by SE and PE. However these implicit codes are not selected for explicit coding by SC and simply fade after a few hundred milliseconds. Because no bottleneck is encountered on ignore trials (because STC is not necessary for the ignore task) the tone may be fully processed upon arrival without postponement. The difference in tone RTs in the easy and hard conditions will again be additive, however overall RTs are much faster in the ignore condition than in the encode condition.

The present model and the PRP paradigm

The present model can easily be reconciled with the underadditive interaction between the tone difficulty manipulation and decreasing SOA observed in Experiment 2 and 4 (see Figure 24). The difficulty manipulation produces an underadditive interaction with decreasing SOA because at short SOAs the differences in the duration of STC for the two difficulty manipulations is absorbed in the period of cognitive slack produced by the processing bottleneck at response selection. At longer SOAs both bottlenecks have passed before the presented of the second stimulus and the full extent of durational differences between the two tasks with be reflected in task 2 RTs, and an underadditive interaction between the difficulty manipulation and decreasing SOA is observed. In any dual-task experiment the effect of a difficulty manipulation will always reflect the relationship between the locus of the difficulty manipulation and the last processing

Letter task

TIME

Figure 24. An illustration of the model when applied to the PRPparadigm used in Experiments 2 and 4. Two bottleneck are encountered in the PRP paradigm, one at short-term consolidation (STC) and one at r3esponse selection (RS). The tone difficulty manipulations are assumed to affect STC. At sbort SOAs, differences in processing time for the easy and bard tone conditions are absorbed into the period of cognitive slack between STC ank RS. At long SOAs, both bottlenectes will bave passed before the tone is presented and the full extent of processing time differences will be reflected in tone task RTs.. This will result in an underadditive interaction with decreasing SOA.
bottleneck encountered while completing the task. In the PRP paradigm the botlleneck at response selection is always the last bottleneck encountered and thus all manipulations that affect a stage before response selection will produce an underadditive interaction with decreasing SOA, even manipulations such as those in Experiments 2 and 4 which are presumed to affect STC, a stage which produces a processing bottleneck itself. Thus the present model is consistent with the results of Experiments 2 and 4, as well as other results from the PRP literature which show underadditive interactions between pre-response selection factors and decreasing SOA.

The present model and the $A B$ priming paradigm

The revised CIT model is also consistent with the results of Shapiro et al. (1997), Maki et al., (1997), and Luck et al. (1996). An illustration as to how the model can account for the results of Shapiro et al.'s (1997) Experiment 1 is shown in Figure 25. The first few stimuli processed implicitly but are not selected because they do not meet the preset criteria for encoding. Finally, T1 is presented and meets the selection criteria (white digit) and is thus passed to STC for translation into an explicit code and short-term memory. Short-term consolidation produces a processing bottleneck which prevents subsequent stimuli from being translated to explicit codes and be encoded until STC for T1 is complete. This bottleneck is the 'attention blink'. T2 is presented 270 ms after T1. T2 is processed to the level of meaning implicitly, however T1 still occupies STC and thus STC for T2 is prevented and T2 is not coded explicitly and cannot be reported later on. When T3 is presented some 500 ms after T2, the STC bottleneck is free and T3 can be encoded. Previous implicit activation of T3 by a related T2 serves to increase T3 accuracy. At the end of the trial T1 and T3 will have had exclusive access to STC and thus they car be reported. T2, however, was presented while STC was being performed on T1 and thus could not be processed by STC and is not explicitly encoded and consequently cannot be reported.

Figure 25. Sbort-term consolidation (STC) of T1 produces a 'blink' for T2. Wben T2 is presented features are implicity coded but cannot be explicity coded because the system is still performing STC on T1. When T3 is presented, STC is again passible and the stimubus is encoded. Features of T2, altbougb not explicitly available, still prime processing of T3 increasing T3 accuracy wben T2 and T3 are semantically related.

Can RS postpone STC (and vice versa)?

In the present model both short-term consolidation (STC) and response selection (RS) are assumed to constitute processing bottlenecks. One question concems the extent to which the capacity limited cognitive mechanisms involved in RS and STC are related to one another. Jolicocur (1998) posits, in an adaptation of CIT to fit AB models, that RS in one task can postpone STC in another. Jolicoeur's (1998) argument for the postponement of STC by RS is based on the results of several AB paradigm experiments which showed larger attentional blinks when T1 was speeded than when T1 was unspeeded (T2 was always unspeeded). Jolicoeur (1998) asserts that because an unspeeded $T 2$ can be affected by requiring $R S$ in $T 1, R S$ in $T 1$ must somehow interact with STC in T2. However the combined results of Experiments 2 to 6 of the present work imply that STC and RS produce independent bottlenecks, as a very different pattern in task 2 RTs are observed when both STC and RS are required (underadditive interactions with decreasing SOA in Experiments 2 and 4) compared to when only STC was required (additive effects in Experiments 3, 5, and 6). As is shown in Figure 26, if STC and RS required the same capacity limited cognitive mechanism additive effects of the tone manipulation are predicted in both the PRP paradigm experiments and the encoding paradigm experiments, however our PRP paradigm experiments produced highly significant underadditive interactions with decreasing SOA. When the results from Jolicoeur (1998) are carefully examined it appears as though requiring a speeded response to T 1 produces a deeper (although not longer) attentional blink. This result indicates that requiring a speeded response to T1 reduced the likelihood of detecting T2 considerably without affecting the duration of the interference. If RS produced additional stage of postponement, however, then the duration of the attentional blink should have been increased. A plausible explanation of the effect of $R S$ on the attentional blink may be that maintaining response mappings in a speeded task reduces processing efficiency at short

Letter task

TIME

Encoding task (Encode trial)

tIME

Figure 26. The predited outcome in a PRP paradigm experiment (top) and an encoding paradigm experiment (bottom) if response selection (RS) could postpone short-term consolidation (STC). Tbe tone manipulation producas additive effects in both paradigms. This prediction is inconsistent with the results of Experiments 2 and 4 wbich show underadditive interactions in PRP paradigm experimentr.

SOAs which results in a general decrease in the likelihood of detecting T2. This argument is supported by a wide variety of dual-task experiments which show mild but consistent interference resulting from increasing the complexity of task preparation (e.g. De Jong, 1993). For the moment we thus maintain that STC and RS require separate capacity limited cognitive mechanisms.

What produces the effect of SO A on ignore trials?

Experiment 1 was designed to determine whether the decision to encode or ignore the stimulus (selective control) produced the significant effect of SOA on ignore trials in Jolicoeur and Dell'Acqua (1998, Experiment 4). As is shown in Figure 10, trials that required online selection ('Select' trials), did not take longer or produce more interference with the tone task than trials where no online selection was required ("Control' trials), indeed 'Select' trials were an average of 10 ms faster than 'Control' trials. This result implies that selection based on colour does not produce postponement, and thus cannot be responsible for the effect of SOA on ignore trials. In addition, even in 'Control' blocks when the decision to encode or ignore was not made on line there was still a significant effect of SOA on ignore crials. This finding strongly suggests that the effect of SOA observed on ignore trials in Jolicoeur and Dell'Acqua (1998, Experiment 4), as well as in the encoding paradigm experiments in this thesis, was not the result of a capacity limited cognitive mechanism being involved in selective control. When Jolicoeur and Dell'Acqua (1998, Experiment 7) blocked encode and ignore trials, the effect of SOA on ignore trials was eliminated. Because the effect of SOA on ignore trials is dependent upon having to perform an encode/ignore task in conjunction with a tone task, it is plausible that the effect of SOA on ignore trials results from having to switch between two different sets of task requirements. There is ample empirical evidence which indicates that switching between tasks can have significant effects on performance (see Rogers \& Monsell, 1995).

Implications for our understanding of the relationship between the PRP effect and the $A B$ effect

For a number of years after the attentional blink was first observed, researchers typically assumed that the attentional blink and the PRP effect were unrelated. This conclusion was not wholly unfounded as evidence at that time suggested that the PRP effect occurred solely as the result of a processing bottleneck at response selection, and thus was apparently not relevant to the results of $A B$ paradigm experiments which had always used unspeeded responses. More recent work, however, has found a number of commonalties between the pattern in interference resulting from the $A B$ paradigm and the PRP paradigm. In addition, the results from the experiments reported here suggest that the same bottleneck stage of processing, STC , is required for both the unspeeded tasks used in the AB paradigm and the speeded tasks used in the PRP paradigm.

A final word regarding the issue of selective control

Thus far the present model has been applied to paradigms where the decision to encode or ignore a stimulus is based on highly learned categorical feature of the stimulus, such as the stimulus' colour or its alphanumeric class. In these situations the model predicts that the decision to encode or ignore may be completed by selective control (SC) because the selection feature will be coded by sensory encoding (SE) and perceptual encoding (PE). However if the selection criterion is sufficiently complex, the stimulus may need to pass through short-term consolidation (STC) before the selection feature may be classified. For example, if participants were asked to encode numbers whose name starts with a consonant (e.g. ' 3 ', 21 ') and asked to ignore numbers whose name starts with a vowel (e.g. ' 1 ', '18') selective control per se may not be possible, as short-term consolidation (STC) of the number may be needed before the participant would be able to determine if the number's name started with a consonant or a vowel. Because both to-beencoded and to-be-ignored stimuli will require STC in complex selection situations, the model
predicts that a complex selection criterion will produce more similar interference in ignore trials and encode crials than a highly learned selection criterion. However encode trials will likely still show more interference, particularly at long SOAs, because of the capacity demands of maintaining stimuli for later report. The model thus predicts that in complex selection criterion situations irrelevant stimuli (e.g. stimuli that do not need to be encoded) may not be ignored. It may be interesting to test this prediction empirically.

Conclusions

The present series of experiments explored the nature and extent of dual-task interference during encoding. It was found that the same task 2 difficulty manipulations that produced underadditive interactions with decreasing SOA in the PRP paradigm experiments produced additive effects in the encoding paradigm experiments. Because there is no converging evidence for a capacity sharing account of this interference (there was never an effect of SOA on task 1 accuracy in the encoding paradigm experiments), these results are interpreted as evidence for a processing bottleneck at a stage after the completion of rudimentary perceptual processing but before the onset of response selection. In the present model it is proposed that this bottleneck affects short-term consolidation, the stage which translates implicit stimulus codes into explicit form. Because it is assumed that a stimulus must be consolidated to be accessible in short-term memory and available for the application of controlled processing, the present model predicts that a vast number of cognitive tasks will be susceptible to producing or being postponed by this processing bottleneck in dual-task situations.

References

Broadbent, D. \& Broadbent, M. (1987). From detection to identification: Response to multiple targets in rapid serial visual presentation. Perception er Psychophysics, 42, 105-113.

Cavanaugh, P. (1988). Pathways in early vision. In Z. Pylyshyn (Ed.), Computational processes in buman vision: An interdisciplinary perspective (pp. 239-261). Norwood NJ: Ablex.

Chun, M. \& Potter, M. (1995). A two-stage model for multiple target detection in rapid serial visual presentation. Journal of Experimental Psychology: Human Perception and Performance, 21, 109-127.

Coltheart, M. (1982). Iconic memory and stable persistence. Perception \&r Psychophysics, 27, 183-228.

Coltheart, M. (1984). Sensory memory: A tutorial review. In H. Bouma and D.G. Bouwhuis (Eds.), Attention and Performance X, Control of language processes (pp.259-285). Harmondsworth, Middlesex, England: Penguin.

Comstock, E. (1973). Processing capacity in a letter-match task. Joumal of Experimental Psychology, 100, 63-72.

De Jong, R. \& Sweet, J. (1994). Preparatory strategies in overlapping task performance. Perreption and Psychopbysics, 55, 142-151.

De Jong, R., (1993). Multiple bottlenecks in overlapping task performance. Journal of Experimental Psychology: Human Perception and Performance, 19, 965-989.

Johnson, P., Forester, J., Calderwood, R., \& Weisgerber, S. (1983). Resource allocation and the demands of letter encoding. Journal of Experimental Psychology, 122, 616-638.

Jolicoeur \& Dell'Acqua (in press). Attentional and structural constraints on visual encoding. Psychological Research.

Jolicoeur, P. \& Dell'Acqua, R. (1998). The demonstration of short-term consolidation. Cognitive Psycbology, 36(2), 138-202.

Jolicoeur, P. (1998). Modulation of the attentional blink by on-line response selection: Evidence from speeded and unspeeded Task-sub-1decisions. Memory and Cognition,.26(5), 1014-1032.

Kahneman, D. (1973). Attention and Effort. Englewood Cliffs, NJ: Prentice Hall.
Kanwisher, N. (1987). Repetition blindness: Type recognition without token individuation. Cognition, 27, 117-143.

Karlin, L., \& Kestenbaum, R. (1968). Effects of number of alternatives on the psychological refractory period. Quarterly Journal of Experimental Psychology, 20, 167-178.

Luck, S., Vogel, E., \& Shapiro, K. (1996). Word meaning can be accessed but not reported in the attentional blink. Nature, 382, 616-618.

Maki, W., Frigen, K., \& Paulson, K. (1997). Associative priming by targets and distractors during rapid serial visual presentation: Does word meaning survive the attentional blink?. Joumal of Experimental Psychology: Human Perception and Performance, 23(4), 1014-1034.

McCann, R. \& Johnston, J. (1992). Locus of the single-channel bottleneck in dual-task interference. Journal of Experimental Psychology: Human Perception and Performance, 18, 471-484.

Meyer, D. \& Kieras, D. (1997). A computational theory of executive cognitive processes and multiple-task performance: Part 2. Accounts of psychological refractory-period phenomena. Psycbological Revien, 104(4), 749-791.

Ogden, W., Martin, D., \& Paap, K. (1980). Processing demands of encoding: What does secondary task performance reflect? Journal of Experimental Psycbology: Human Perception and Performance, 6, 355-367.

Paap, K., \& Ogden, W. (1981). Letter encoding is an obligatory but capacity-demanding operation. Joumal of Experimental Psycbology: Human Perception and Performance, 7(3), 518-527.

Pashler, H., \& Carrier, M. (1996). Structures, processes and the flow of information. In E.L. Bjork \& R.A. Bjork (Eds.), Memory (pp. 3-29). New York: Academic Press.

Pashler, H. \& Christian, C. (1994). Bottlenectes in planning and producing manual, vocah, and foot responses. Manuscript submitted for publication.

Pashler, H. (1984). Processing stages in overlapping tasks: Evidence for a central botleneck. Journal of Experimental Psychology: Human Perception and Performance, 10, 358-377.

Pashler, H. (1989). Dissociations and dependencies between speed and accuracy: Evidence for a two-component theory of divided attention in simple tasks. Cognitive Psycbology, 21, 469-514.

Pashler, H. (1993). Dual-task interference and elementary mental mechanisms. In D.E. Meyer \& S. Komblum (Eds.), Attention and performance XIV: Synergies in experimental psychology, artificial intelligence, and cognitive neurascience (pp. 245-269). Cambridge MA: MTT Press.

Pashler, H. (1994). Dual-task interference in simple tasks: Data and Theory. Psychological Bulletin, 116, 220-244.

Pashler, H. (1998). The Psychology of Attention, Cambridge, MA: MIT Press.
Pashler, H. \& Johnston, J. (1989). Chronometric evidence for central postponement in temporally overlapping tasks. Quarterly Joumal of Experimental Psychology, 41A, 19-45.

Phillips, W. (1974). On the distinction between sensory storage and short-term visual memory. Perception and Psychopbysics, 16(2), 283-290.

Posner, M., \& Boies, S. (1971). Components of attention. Psychological Reviex, 78, 391-408.
Posner, M. \& Klein, R. (1973). On the function of consciousness. In S. Kornblum (Ed.), Attention and Performance IV (pp. 21-35). New York: Academic Press.

Potter, M. (1976). Short-term conceptual memory for pictures. Journal of Experimental Psychology: Human Learning and Memory, 2, 509-522.

Potter, M. (1993). Very short-term conceptual memory. Memory Cognition, 21, 156-161. Proctor, R. \& Proctor, J. (1979). Secondary task modality, expectancy, and the measurement of attentional capacity. Journal of Experimental Psycbology: Human Perception and Performance, 5, 610-624.

Raymond, J., Shapiro, K., \& Amell, K. (1992). Temporary suppression of visual processing in an RSVP task: An attentional blink? Journal of Experimental Psychology: Human Perreption and Performance, 18, 207-231.

Rogers, R.\& Monsell, S. (1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psycbology: General, 124(2), 207-231.

Schubert, T. (1996). Some more evidence for a central bottleneck in dual-task performance. Poster at the $9^{\text {th }}$ conference of the European Society for Cognitive Psychology. September 4-8, Wurtzburg, Germany.

Shapiro, K., Driver, J., Ward, R., \& Sorenson, R. (1997). Priming from the attentional blink: A failure to extract visual tokens but not visual types. Psycbological Science, 8, 95-100.

Shapiro, K, Raymond, J., \& Arnell (1994). Attention to visual pattern information produces the attentional blink in rapid serial visual presentation. Journal of Experimental Psychology: Human Perception and Performance, 20, 357-371.

Shelton, J. \& Martin, R. (1992). How semantic is automatic semantic priming? Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 1191-1210.

Thompson, L. (1987). Central resource involvement during the visual search for single features and conjunctions of features. Arta Pyycbologica, 66, 189-200.

Treisman, A., \& Gelade, G. (1980). A feature integration theory of attention. Cognitive Psybology, 12, 97-136.

Van Selst, M., \& Jolicoeur, P. (1997). Decision and response in dual-task interference. Cognitive Psychology, 23, 266-307.

Van Selst, M. \& Jolicoeur, P. (1994). A solution to the effect of sample size on outlier elimination. Quarterly Joumal of Experimental Psycbology, 47A, 631-650.

Vogel, E., Luck, S., \& Shapiro, S. (1998). Electrophysiological evidence for a post-perceptual locus of suppression during the attentional blink. Joumal of Experimental Pychology: Human Perception and Performance, 24(6), 1656-1674.

Welford, A. (1980). Reaction times. Orlando, FL: Academic Press.
Welford, A. (1952). The "psychological refractory period" and the timing of high speed performance-A review and a theory. British Journal of Psycbology, 43, 2-19.

Zeki, S. (1993). A vision of the brain. Oxford, England: Blackwell Scientific Publications.

Appendix A

Table 1. Task 2 response times (RTs) and proportions correct for Experiment 1.

SOA (ms)		300	400	500	600	800	1000	Mean
Control blocks								
RT (ms)	Encode 3	850.02	753.75	700.51	748.95	657.66	526.23	706.19
	Encode 2	670.37	572.02	565.44	582.43	496.11	469.10	559.24
	Encode 1	663.29	505.99	516.31	514.64	452.90	429.33	513.74
	Ignore 3	500.39	448.26	444.43	436.26	392.81	395.76	436.32
	Ignore 2	534.83	455.16	463.46	431.04	404.17	396.67	447.56
	Ignore 1	501.54	438.67	440.81	448.23	420.67	395.44	440.90
Proportion correct	Encode 3	0.938	0.962	0.969	0.988	0.992	0.992	0.974
	Encode 2	0.992	0.992	0.977	0.993	0.983	0.984	0.987
	Encode 1	0.984	0.975	0.966	0.988	0.992	0.973	0.980
	Ignore 3	0.979	0.984	0.987	0.938	0.969	0.973	0.972
	Ignore 2	0.992	0.945	0.993	0.972	1.000	0.973	0.979
	Ignore 1	0.992	0.969	0.961	0.977	0.984	0.977	0.977
Selection blocks								
RT (ms)	Encode 3	863.17	738.40	626.80	695.10	604.20	492.35	670.00
	Encode 2	644.18	568.17	533.58	523.86	467.55	454.01	531.89
	Encode 1	567.87	488.09	488.96	517.29	436.01	436.53	489.13
	Ignore 3	510.01	428.15	420.21	436.58	392.39	402.14	431.58
	Ignore 2	472.70	437.48	438.64	413.79	391.86	411.45	427.65
	Ignore 1	512.83	432.71	433.82	431.94	381.89	381.16	429.06
Proportion correct	Encode 3	0.993	0.982	0.993	0.964	0.980	0.951	0.977
	Encode 2	0.982	0.960	0.984	0.988	0.988	0.946	0.975
	Encode 1	0.979	0.984	0.961	0.961	0.980	0.984	0.975
	Ignore 3	0.982	0.980	0.989	0.961	0.980	1.000	0.982
	Ignore 2	0.977	0.990	0.977	0.996	0.955	0.974	0.978
	Ignore 1	0.978	0.968	0.956	0.972	0.977	0.974	0.971

Table 2. Task 1 proportions correct for Experiment 1.

SOA (ms)		300	400	500	600	800	1000	Mean
Proportion	Control 1	0.762	0.985	0.775	0.868	0.988	0.899	0.880
Correct	Control 2	0.923	0.915	0.969	0.872	0.866	0.929	0.912
	Control 3	0.863	0.946	0.986	0.973	0.981	0.950	0.950
	Select 1	0.988	0.982	0.812	0.994	0.898	0.986	0.943
	Select 2	0.926	0.986	0.915	0.889	0.925	0.979	0.936
	Select 3	0.819	0.928	0.982	0.923	0.811	0.911	0.896
	Mean	0.880	0.957	0.906	0.920	0.911	0.942	

Table 3. Task 2 response times (RTS) and proportions correct for Experiment 2.

SOA (ms)		50	111	245	542	1200	Mean
RT (ms)	Easy	762.68	698.63	611.82	506.65	428.08	601.57
	Hard	767.52	723.00	655.38	618.15	495.51	651.91
	Mean	765.10	710.81	633.60	562.40	461.80	
Proportion	Easy	0.928	0.927	0.924	0.928	0.882	0.918
Correct	Hard	0.907	0.888	0.891	0.876	0.889	0.890
	Mean	0.917	0.907	0.907	0.902	0.885	

Table 4. Task 1 response times and proportions correct for Experiment 2.

SOA (ms)		50	111	245	542	1200	Mean
RT (ms)	Easy	542.83	548.33	566.44	591.28	651.18	580.01
	Hard	535.44	538.70	564.84	589.95	643.86	574.56
	Mean	539.13	543.52	565.64	590.61	647.52	
Proportion Correct	Easy	0.958	0.959	0.977	0.977	0.968	0.968
	Hard	0.969	0.968	0.969	0.971	0.977	0.971
	Mean	0.963	0.964	0.973	0.974	0.972	

Table 5. Task 2 response times (RTs) and proportions correct for Experiment 3.

| SOA (ms) | | 200 | 261 | 395 | 692 | 1350 | Mean |
| :---: | :---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RT) (ms) | Encode 3 hard | 1150.91 | 1111.28 | 1040.42 | 929.08 | 724.92 | 955.55 |
| | Encode 3 easy | 1076.42 | 1053.93 | 962.05 | 833.25 | 641.91 | 913.40 |
| | Encode 1 hard | 884.59 | 828.35 | 786.57 | 786.26 | 688.33 | 758.68 |
| | Encode 1 easy | 804.63 | 746.19 | 722.73 | 662.34 | 631.54 | 719.79 |
| | Ignore 3 hard | 857.68 | 838.34 | 696.34 | 689.58 | 635.80 | 698.74 |
| | Ignore 3 easy | 709.24 | 667.68 | 632.63 | 564.86 | 536.48 | 676.49 |
| | Ignore 1 hard | 852.08 | 797.14 | 722.50 | 742.56 | 630.32 | 716.06 |
| | Ignore 1 easy | 664.66 | 658.98 | 639.62 | 622.85 | 585.75 | 392.65 |
| | | | | | | | |
| Proportion | | | | | | | |
| | Encode 3 hard | 0.953 | 0.957 | 0.976 | 0.960 | 0.980 | 0.972 |
| | Encode 3 easy | 0.981 | 0.973 | 0.973 | 0.985 | 0.989 | 0.981 |
| | Encode 1 hard | 0.985 | 0.972 | 0.980 | 0.992 | 0.985 | 0.980 |
| | Encode 1 easy | 0.980 | 0.977 | 0.992 | 0.980 | 0.980 | 0.986 |
| | Ignore 3 hard | 0.972 | 0.966 | 0.977 | 0.992 | 0.989 | 0.979 |
| | Ignore 3 easy | 0.985 | 0.981 | 0.981 | 0.996 | 0.985 | 0.976 |
| | Ignore 1 hard | 0.969 | 0.966 | 0.965 | 0.962 | 0.972 | 0.975 |
| | Ignore 1 easy | 0.963 | 0.972 | 0.977 | 0.988 | 0.988 | 0.583 |

Table 6. Task 1 proportions correct for Experiment 3.

SOA (ms)		200	261	395	692	1350	Mean
Proportion correct	Encode 3 hard	0.943	0.925	0.953	0.954	0.941	0.943
	Encode 3 easy	0.932	0.937	0.937	0.952	0.947	0.941
	Encode 1 hard	0.988	0.979	0.988	0.976	0.983	0.983
	Encode 1 easy	0.976	0.985	0.992	0.977	0.992	0.984
	Mean	0.960	0.956	0.968	0.965	0.966	

Table 7. Task 2 response times (RTs) and proportions correct for Experiment 4.

SOA (ms)		50	111	245	542	1200	Mean
RT (ms)	Easy	545.93	537.01	551.45	563.47	583.50	556.27
	Hard	526.54	537.74	552.72	580.98	559.92	551.58
	Mean	536.24	537.37	552.09	572.23	571.71	
Proportion Correct	Easy	0.949	0.968	0.977	0.972	0.977	0.969
	Hard	0.961	0.971	0.973	0.973	0.979	0.971
	Mean	0.955	0.969	0.975	0.972	0.978	

Table 8. Task 1 response times (RTs) and proportions correct for Experiment 4.

SOA (ms)		50	111	245	542	1200	Mean
RT (ms)	Easy	545.93	537.01	551.45	563.47	583.50	556.27
	Hard	526.54	537.74	552.72	580.98	559.92	551.58
	Mean	536.24	537.37	552.09	572.23	571.71	
Proportion Correct	Easy	0.949	0.968	0.977	0.972	0.977	0.969
	Hard	0.961	0.971	0.973	0.973	0.979	0.971
	Mean	0.955	0.969	0.975	0.972	0.978	

Table 9. Task 2 response times (RTs) and proportions correct for Experiment 5.

SOA (ms)		200	261	395	692	1350	Mean
RT (ms)	Encode hard	937.26	911.23	882.95	794.31	734.61	852.07
	Encode easy	772.70	755.30	687.26	586.30	521.17	664.55
	Ignore hard	715.80	705.22	724.43	681.45	604.52	686.28
	Ignore easy	555.72	517.20	494.79	458.99	444.01	494.14
Proportion	Encode hard	0.795	0.851	0.787	0.803	0.856	0.818
correct	Encode easy	0.991	0.997	0.991	0.997	0.994	0.994
	Ignore hard	0.777	0.804	0.842	0.766	0.804	0.798
	Ignore easy	0.991	0.988	0.991	0.984	0.994	0.990

Table 10. Task 1 proportions correct for Experiment 5.

SOA (ms)		200	261	395	692	1350	Mean
Proportion	Encode 3 hard	0.933	0.936	0.935	0.941	0.935	0.936
correct	Encode 3 easy	0.921	0.931	0.938	0.928	0.926	0.929
	Mean	0.927	0.933	0.936	0.935	0.930	

SOA (ms)		50	111	245	542	1200	Mean
RT (ms)	Encode 3 hard	817.48	784.33	794.65	682.19	623.05	740.34
	Encode 3 easy	755.88	686.54	717.79	654.31	541.07	671.12
	Encode 1 hard	754.26	753.21	653.05	582.68	598.39	668.32
	Encode 1 easy	679.92	632.13	593.94	519.17	504.66	585.97
	Ignore 3 hard	635.15	620.88	582.21	568.72	547.80	590.95
	Ignore 3 easy	574.37	572.47	522.68	463.91	507.47	528.18
	Ignore 1 hard	664.17	610.39	599.37	552.30	542.10	593.67
	Ignore 1 easy	567.11	573.33	521.61	485.63	479.51	525.44
Proportion correct		50	111	245	542	1200	Mean
	Encode 3 hard	0.983	0.958	0.975	0.950	0.950	0.963
	Encode 3 easy	0.975	0.992	0.975	0.933	0.975	0.970
	Encode 1 hard	0.975	0.950	0.942	0.967	0.950	0.957
	Encode 1 easy	0.967	0.967	0.975	0.983	0.992	0.977
	Ignore 3 hard	0.958	0.958	0.942	0.983	0.942	0.957
	Ignore 3 easy	0.967	0.942	0.992	0.975	0.975	0.970
	Ignore 1 hard	0.950	0.975	0.967	0.958	0.925	0.955
	Ignore 1 easy	0.983	1.000	1.000	0.975	0.983	0.988

Table 12. Task 1 proportion correct for Experiment 6.

SOA (ms)		50	111	245	542	1200	Mean
Proportion	Encode 3 hard	0.933	0.892	0.929	0.929	0.933	0.923
correct	Encode 3 easy	0.896	0.917	0.925	0.900	0.917	0.911
	Encode 1 hard	0.996	0.996	0.996	0.992	1.000	0.996
	Encode 1 easy	0.996	1.000	0.992	0.992	1.000	0.996
	Mean	0.955	0.951	0.960	0.953	0.963	

```
Experiment 1: Nean response times for the tone task (task 2)
model is
--> sj (16)
    soa (6)
    blktype (2)
    rem_ny (2)
    nlet ( 3)
KEY:
        soa (1)=300(2)=400 (3)=500 (4)=600(5)=800(6)=1000
        blktype (1) = Control (2) = Select
        rem_ny (1) = ignore (2) = encode
        nlet}\quad(1)=1(2)=2(3)=
soa (6)
    607.60064 522.23680 506.08087 515.00898 458.18469 432.51231
blktype ( 2 )
    517.32365 496.55111
soa (6)
blktype ( 2 )
    620.07470 528.97458 521.82735 526.92603 470.71906 435.42020
    595.12658 515.49901 490.33438 503.09193 445.65032 429.60441
remny (2)
    435.50931 578.36545
soa (6)
rem_ny (2)
    505.38400 440.07145 440.22811 432.97335 397.29768 397.10125
    709.81728 604.40214 571.93362 597.04461 519.07170 467.92336
blktype (2)
rem_ny (2)
    441.58952 429.42909
    593.05778 563.67312
soa ( 6 )
blktype ( 2 )
rem_ny (2 )
    \overline{5}12.25504 447.36585 449.56717 438.51166 405.88294 395.95449
    498.51297 432.77706 430.88904 427.43504 388.71243 398.24802
    727.89436 610.58332
    691.74019 598.2209
        594.08752
        549.77972
        615.34040 535.55518 474.88591
        578.74881 502.58822 460.96081
nlet ( 3 )
    468.20642 491.58445 561.02127
soa (6)
nlet ( 3 )
    561.38463 466.36492 469.97730 478.02561 422.87119 410.61486
    580.51781 508.20633 500.27840 487.77865 439.92104 432.80450
    680.89949 592.13914 547.98690 579.22267 511.76185 454.11756
blktype (2)
```

```
nlet ( 3)
    477.32000 459.09284
    503.39875 479.77016
    571.25221 550.79032
```

soa (6)
blktype (2)
nlet (3)
582.41754
540.35171
602.59882
460.40052
513.58992
558.43679
502.82274
675.20774
686.59124
601.00452
583.27375
478.56430
461.39029
514.45061
486.10619
572.46713
523.50667
rem_ny (2)
nlet (3)
434.97728
501. 43555
437.60264
545.56627
433.94800
688.09453
soa (6)
rem ny (2)
niet (3)
507.18750
615.58175
503.76319
657.27242
. 68977
497.04007
446.31964
505.20132
570.09302
856.59766
438.20495
blktype (2)
rem_ny (2)
nlet (3)
440.89518
429.05939
513.74482
489.12629
447.55503
427.65025
559.24247
531.89006
431.57764
$436.31836 \quad 431.57764$
$706.18607 \quad 670.00300$
472.32932
481.43471 474.61652 506.73363 468.82366 592.60975 565.83560
474.61652
506.73363
506.73363
468.82366
592.60975
412.38616 408.84356 432.88170 432.72731 460.99275 447.24237
432.88170
432.72731
460.99275
447.24237
481.43471
474.61652
506.73363
468.82366
592.60975
565.83560

[^4]437.31808
440.08743
502.63651
515.96380

$\begin{array}{ll}451.04901 & 422.41276 \\ 549.50779 & 553.14453\end{array}$
$\begin{array}{ll}451.04901 & 422.41276 \\ 549.50779 & 553.14453 \\ 432.31723 & 436.41987\end{array}$
388.29688
444.45
432.93285
45833
398.01283
404.05841
436.41987
481.82924
461.55060
398.94847
549.50779
432.31723
392.59617
722.02548
398.94847
630.92753
509:28664
663.65657
401.28404
388.29688 $444.45833 \quad 432.93285$ 398.01283404 .05841 $\begin{array}{ll}481.82924 & 461.55060 \\ 392.59617 & 398.94847\end{array}$ 663.65657
$440.81362 \quad 448.23289$ $433.82254 \quad 431.94196$ 516.31499514 .63653 488.95804517 .29107 $463.46245 \quad 431.03757$ $438.63557 \quad 413.78795$ $565.43876 \quad 582.42969$ 533.57682523 .85938 $444.42545 \quad 436.26451$ 420.20902436 .57522 700.50882748 .95499 626.80432
420.67411
395.43862 $381.89397 \quad 381.15513$ 452.90179429 .33371 $436.01488 \quad 436.53199$ 404.16964396 .66741 $391.85603 \quad 411.44940$ $496.10603 \quad 469.09598$ $467.55246 \quad 454.00521$ $392.80506 \quad 395.75744$ 392.38728 657.65774 402.13951 526.22805 492.34524

```
soa (6)
    DF SS
        5 3523001.179520
        75 7166427.299777
        704600.235904
                            95552.363997
F(5,75) = 7.373970 p <= 0.000011
blktype (2)
    DF SS
        1 124271.641116
        MS
        124271.641116
    15 130227.415242 8681.827683
F(1,15)=14.313995 p <= 0.001803
soa ( 6 )
blktype ( 2)
    DF SS MS
    5 20982.890772 4196.578154
    75 347389.396187 4631.858616
F(5,75)=0.906025 p<=0.481832
remmy ( 2 )
        I 5877468.779594 5877468.779594
    15 1772866.972700 118191.131513
F(1,15) = 49.728509 p <= 0.000004 ****
soa (6)
rem ny (2)
    DF SS MS
        5 502112.358396 100422.471679
    75 1536702.038947 20489.360519
E(5.75) = 4.901201 p <= 0.000619
blktype (2)
rem_ny (2)
    DF SS
                                    MS
        1 21360.550964 21360.550964
    15 80363.479153 5357.565277
F(1,15)=3.986988 p <= 0.064332
soa (6)
blktype ( 2 )
rem_ny ( 2 )
    DF SS MS
        5 6572.156266 1314.431253
        75 355191.124004 4735.881653
F(5,75)=0.277547 p<< 0.924061
nlet ( 3)
\begin{tabular}{rlcc} 
DF & SS & MS \\
2 & 1789772.837809 & 894886.418904 \\
30 & 954861.844958 & 31828.728165
\end{tabular}
F(2,30) = 28.115683 p <= 0.000000 ****
soa (6)
nlet ( 3 )
    DF SS
MS
```

```
    10 205131.287130 20513.128713
    150 1138998.445012 7593.322967
E(10,150) = 2.701469 p <= 0.004492 ****
blktype ( 2)
nlet ( 3 )
        DE SS MS
            2 1414.322455 707.161227
            30 93228.285487 3107.609516
F(2,30)=0.227558 p <= 0.797838
soa (6)
blktype ( 2)
nlet ( 3)
            DF SS MS
            10 49132.701326 4913.270133
            150 635712.754774 4238.085032
E(10,150) = 1.159314 p <= 0.322749
rem_ny (2)
nlet ( 3)
            DE SS MS
            2 1866208.632332 933104.316166
            30 904858.851235 30161.961708
F(2,30)=30.936460 p<< 0.000000
soa (6)
rem_ny ( 2 )
nle\overline{t ( 3)}
            DF SS MS
            10 197743.281510 19774.328151
    150 991875.901201 6612.506008
F(10,150) = 2.990444 p <= 0.001819 ****
blktype ( 2)
rem_ny (2)
nlet ( 3)
            DF SS MS
            2 7619.134143 3809.567072
            30 184516.373372 6150.545779
F(2,30)=0.619387 p}<=0.54501
soa ( 6 )
blktype (2)
rem_ny (2)
nlet ( 3)
            DF SS MS
            10 74429.664290 7442.966429
    150 860548.571858 5736.990479
F(10,150) = 1.297364 P < 0.236797
```

Experimant 1: Maan reaponse times for IGNORE trials (task 2)
model is
--> sj (16)
KEY:
soa (1) = 300 (2) = 400 (3) = 500 (4) = 600 (5) = 800 (6) = 1000
blktype (1) = Control (2) = Select
rem_ny (1) = ignore (2) = encode
nlet (1) = 1 (2) = 2 (3) = 3
blktype (2)
439.53661 431.48201
soa (6)
475.38335 462.97401
426.62439
410.74474
422.76083
414.56853
blktype (2)
soa (6)
475.69260 475.07409
461.56877 464.37924
433.89923 419.34955
420.36496 401.12453
430.22718 415.29448
415.46692 413.67014
nlet (3)
434.97728 437.60264 433.94800
blktype (2)
nlet (3)
435.50739 434.44717
446.84865 428.35663
436.25379 431.64221
soa (6)
nlet (3)
474.88694 472.38798
482.93343
468.32967 473.29152 420.53397 410.26715 420.09144 411.17426
443.24252
429.67247 407.30134
418.12612
407.48884
468.32967 473.29152 420.53397 410.26715 420.09144 411.17426
429.66674 414.66574
430.06493 425.04249
blktype (2)
soa (6)
nlet (3)
461.74189 488.03199
478.49025 466.28571
432.68646 426.65848
407.85268 406.75000
425.55320 410.69903
406.71987
487.68326
440.14464
470.2535
459.18348
420.12388
400.15000
409.20759

```
```

 442.94382 417.18604
 431.01280 419.07217
 477.65264 459.00670
 466.07143 480.51161
 409.82775 431.24018
 433.11830 387.41600
 422.18452 417.99836
 408.66810 413.68043
 blktype (2)
DF SS
MS
1 9342.237763 9342.237763
15 202448.640467
13496.576031
F(1,15) = 0.692193 p <= 0.418468
soa (6)
DE SS
5 349201.343136 69840.268627
75 444334.273367 5924.456978
F(5,75)=11.788468 p <= 0.000000 ****
blktype (2)
soa (6)
DF SS MS
5 10250.941399 2050.188280
75 307004.248614 4093.389982
E(5,75) = 0.500853 p<= 0.774668
nlet (3)
DF SS MS
2 1363.731811 681.865905
30 133434.270259 4447.809009
E(2,30) = 0.153304 p<< 0.858537
blktype (2)
nlet (3)
DF SS MS
2 8146.339415 4073.169708
30 107002.255348 3566.741845
F(2,30) = 1.141986 p <= 0.332671
soa (6)
nlet (3)
DF SS MS
10 31526.256237 3152.625624
150 470744.011138 3138.2934U8
F(10.150)=1.004567 p <= 0.442268
blktype (2)
soa (6)
nlet (3)
DF SS MS
10 42544.522645 4254.452265
150 750020.911916 5000.139413
F(10,150) = 0.850867 p <= 0.580667

```
model is
--> sj ( 16 )
    blktype ( 2 )
    soa ( 6 )
    rem_ny ( 2 )
    nlet ( 3 )
```

KEY:

soa	$(1)=300(2)=400(3)=500(4)=600(5)=800(6)=1000$
blktype	$(1)=$ Control $(2)=$ Select
remny	$(1)=$ ignore (2)= encode
nlet	$(1)=1(2)=2(3)=3$

blktype (2)
$0.97796 \quad 0.97635$
soa (6)

$$
\begin{array}{llllll}
0.98079 & 0.97429 & 0.97621 & 0.97476 & 0.98176 & 0.97512
\end{array}
$$

blktype (2)
soa (6)
0.979710 .98186
$0.97134 \quad 0.97724$
$0.97560 \quad 0.97681$
$0.97576 \quad 0.97377$
$0.98676 \quad 0.97677$
$0.97859 \quad 0.97165$
rem_ny (2)
$0.97638 \quad 0.97793$
blktype (2)
rem_ny (2)
$0.97576 \quad 0.97700$
$0.98016 \quad 0.97570$
soa (6)
rem ny (2)

0.98332	0.97272	0.97728	0.96912	0.97742	0.97843
0.97826	0.97587	0.97514	0.98040	0.98610	0.97181

blktype (2) soa (6) rem_ny (2)	
0.98778	0.97885
0.96621	0.97923
0.98039	0.97417
0.96187	0.97638
0.98438	0.97046
0.97396	0.98291
0.97164	0.98487
0.97648	0.97526
0.97082	0.97946
0.98965	0.97115
0.98914	0.98307

```
\(0.98322 \quad 0.96040\)
nlet ( 3)
    0.97555 0.97977 0.97614
blktype ( 2 )
nlet ( 3 )
    0.97821 0.97289
    0.98309 0.97646
    0.97258 0.97970
soa ( 6 )
nlet ( 3)
\begin{tabular}{ll}
0.98343 & 0.97410 \\
0.98579 & 0.97168 \\
0.97315 & 0.97711
\end{tabular}
    0.97315
        0.97711
\begin{tabular}{lll}
0.97424 & 0.98340 & 0.97711 \\
0.98730 & 0.98148 & 0.96932 \\
0.96274 & 0.98040 & 0.97893
\end{tabular}
blktype ( 2 )
soa (6)
nlet ( 3)
    0.98828 0.97857
    0.97219 0.97600
    0.96360 0.95843
    0.98208 0.96641
    0.98828 0.97852
    0.97483 0.97938
    0.99219 0.97938
    0.96875 0.97461
    0.98524 0.98090
    0.98230 0.99230
    0.99152 0.97145
    0.97852 0.96013
    0.95867 0.98763
    0.97309 0.98112
    0.97796 0.99110
    0.96289 0.96259
    0.98047 0.98034
    0.98242 0.97545
rem_ny (2)
nlet ( 3)
    0.97364 0.97745
    0.97863 0.98091
    0.97686 0.97542
blktype ( 2)
rem_ny ( 2 )
nlet ( 3 )
    0.97659 0.97070
    0.97983 0.97507
    0.97913 0.97814
    0.98704 0.97479
    0.97157 0.98216
    0.97360 0.97725
soa (6)
rem_ny (2)
```

```
nlet ( 3 )
        0.98499 0.96828
        0.98186
        0.98438
        0.98720
    0.98058
    0.96571
0.96828
0.97991
0.96745
0.97591
0.98242
0.97179
0.95843
0.96360
0.98524
0.98090
0.98816
0.98090
blktype ( 2 )
soa (6 )
rem_ny ( 2 )
nlet ( 3 )
    0.99219 0.97780
    0.96894 0.96763
    0.96094 0.95592
    0.97656 0.97188
    0.98438 0.97656
    0.97656 0.97439
    0.98438 0.97935
    0.97545 0.98438
    0.96627 0.96094
    0.98760 0.96094
    0.99219 0.98047
    0.97309 0.98438
    0.99219 0.97656
    0.94531 0.98958
    0.99306 0.97743
    0.97154 0.99632
    1.00000 0.95461
    0.97266 0.97433
    0.99219 0.98220
    0.99219 0.95964
    0.97743 0.98438
    0.99306 0.98828
    0.98303 0.98828
    0.98438 0.94593
    0.97896 0.98220
    0.98438 0.98047
    0.98717 0.98915
    0.93750 0.96094
    0.96875 0.98021
    0.97266 1.00000
    0.93837 0.99306
    0.96181 0.98177
    0.96875 0.99306
    0.98828 0.96424
    0.99219 0.98047
    0.99219 0.95089
blktype (2)
    DF ss
        1 0.000745 0.000745
    15 0.181066 0.012071
F(1,15)=0.061750 p}<=0.80712
soa
        (6)
        DF SS
    MS
```

0.97422
0.97427
0.98393
0.99067
0.94922
0.97626

0.98047	0.97548
0.98633	0.97873
0.97731	0.97349
0.98566	0.96515
0.97448	0.98633
0.98633	0.97154

$5 \quad 0.010246$		0.002049
$75 \quad 0.214369$		0.002858
$E(5,75)=0.716944$	p <	0.612685
blktype (2)		
soa (6)		
DF SS		MS
50.008505		0.001701
750.223031		0.002974
$F(5,75)=0.572034$	$\mathrm{p}<=$	0.721171
rem_ny (2)		
10.000691		0.000691
150.056620		0.003775
$E(1,15)=0.182948$	p <	0.674929
blktype (2)		
$\operatorname{rem}_{\bar{D} F}^{n y} \quad\left(\begin{array}{ll} & 2 \end{array}\right)$		MS
10.002332		0.002332
150.056431		0.003762
$F(1,15)=0.619945$	$p<=$	0.443332
soa (6)		
$\operatorname{rem}_{\bar{D} E} \quad(2)$		MS
$5 \quad 0.013065$		0.002613
$75 \quad 0.243621$		0.003248
$F(5,75)=0.804425$	p <	0.550078
blktype (2)		
soa (6)		
rem_ny (2)		
DF SS		MS
50.034561		0.006912
$75 \quad 0.220694$		0.002943
$F(5,75)=2.348994$	$p<=$	0.048953
nlet (3)		
DF SS		MS
20.004019		0.002009
$30 \quad 0.152434$		0.005081
$E(2,30)=0.395452$	$\mathrm{p}<=$	0.676834
blktype (2)		
nlet (3)		
DF SS		MS
20.011056		0.005528
$30 \quad 0.091434$		0.003048
$F(2,30)=1.813828$	$\mathrm{p}<=$	0.180455
soa (6)		
nlet (3)		
DF SS		MS
100.047887		0.004789
1500.411646		0.002744

```
F(10,150)=1.744954 p <= 0.075695
blktype ( 2 )
soa (6)
nlet ( 3 )
    DF SS MS
    10 0.022578 0.002258
    150 0.382440 0.002550
F(10,150)=0.885570 p<= 0.548214
rem_ny (2)
nlet ( 3)
    DF SS
        2 0.001400 0.000700
    30 0.044569 0.001486
F(2,30)=0.471299 p<< 0.628734
blktype ( 2 )
rem_ny (2)
nlet ( 3)
    DF SS
        2 0.001907 0.000954
        30 0.081307 0.002710
F(2,30)=0.351857 p}<=0.70624
soa (6 )
rem_ny (2)
nlet ( 3)
        DF SS
        10 0.016474
        0.001647
    150 0.567792 0.003785
F(10,150) = 0.435218 p <= 0.927308
blktype ( 2)
soa (6 )
rem_ny (2)
nlet (3)
            DF SS MS
            10 0.055517 0.005552
    150 0.379743 0.002532
F(10,150)=2.192936 p<= 0.021071
                                    END
```

model is
--> sj (16)
biktype(2)
soa (6)
nlet (3)
KEY:
soa $\quad(1)=300(2)=400(3)=500(4)=600(5)=800(6)=1000$
blktype $(1)=$ Control (2) $=$ Select
rem_ny $(1)=$ ignore $(2)=$ encode
nlet $(1)=1(2)=2(3)=3$
blktype (2)
$0.9138 \quad 0.9256$
soa (6)
0.8802
0.957
0.9064
0.9197
0.9112
0.9424
blktype (2)
soa (6)

0.8494	0.911
0.9485	0.9655
0.9099	0.903
0.9044	0.9351
0.9446	0.8779
0.9263	0.9586

nlet (3)
$0.9115 \quad 0.9243 \quad 0.9227$
blktype (2)
nlet (3)

0.8796	0.9434
0.9121	0.9364
0.9498	0.8957

soa (6)
nlet (3)
0
0.9242
0.9635
0.9505
0.7937
0.9417
0.9839
0.9312
0.88
0.9479
0.9436
0.8953
0.8958
0.9425
0.8411
0.9369
0.9479
0.9308
blktype (2)
soa
(6)
nlet (3)

0.7623	0.9861
0.9849	0.982
0.7757	0.8121
0.8683	0.9941
0.9875	0.8978
0.8991	0.986
0.9228	0.9255
0.9147	0.9864
0.9688	0.9145
0.8715	0.8886

```
\begin{tabular}{ll}
0.8656 & 0.925 \\
0.9294 & 0.9785 \\
0.863 & 0.8193 \\
0.9458 & 0.928 \\
0.9856 & 0.9822 \\
0.9733 & 0.9225 \\
0.9807 & 0.8109 \\
0.9503 & 0.9112
\end{tabular}
blktype (2)
DF SS MS
11.8461 .846
\(15 \quad 87.295 .81\)
\({ }^{\prime} F(1,15)=0.317213 \quad p \quad<=0.581609\)
soa (6)
DF SS MS
\(5 \quad 3567.163917 \quad 713.432783\)
7536573.06529487 .640871
" \(F(5.75) "=1.463029 \quad p \quad<=0.212049\)
blktype(2)
soa (6)
DF SS MS
\(5 \quad 2350.021468 \quad 470.004294\)
\(75 \quad 29346.04524391 .280603\)
\({ }^{*} F(5.75)=1.201195 \quad p \quad<\quad 0.316916\)
nlet (3)
DF SS MS
\(2 \quad 187.991688 \quad 93.995844\)
\(30 \quad 6771.804939225 .726831\)
\({ }^{n} F(2.30)^{n}=0.416414 \quad p \quad<\quad 0.66316\)
blktype(2)
nlet (3)
DF SS MS
\(2 \quad 3457.594638 \quad 1728.797319\)
3010326.33299344 .2111
" \(F(2,30)\) " \(=5.022491 \quad p \quad 0.01314\)
soa (6)
nlet (3)
DF SS MS
\(10 \quad 9037.489504903 .74895\)
\(150 \quad 102874.4398685 .829598\)
" \(E(10.150)\) " \(=1.317746 \quad p \quad 0.225764\)
blktype(2)
soa (6)
nlet (3)
DF SS MS
\(10 \quad 4672.061531467 .206153\)
\(150 \quad 77472.42286 \quad 516.482819\)
" \(F(10.150)=0.904592 \quad p \quad 0.53066\)
```

\qquad

```
model is
--> sj ( 10 )
    vollh ( 2 )
    soa (5)
```

KEY:
vollh (1) = quiet (2) = loud
soa $(1)=50(2)=111(3)=245(4)=542(5)=1200$
volih (2) 574.55888580 .01037
soa (5) $539.13322 \quad 543.51686 \quad 565.64117 \quad 590.61494 \quad 647.51695$
vollh (2)
soa (5)
535.44042542 .82602
538.70365548 .33006
564.83792566 .44443
$589.95368 \quad 591.27619$
643.85873651 .17516
vollh (2)
DE SS MS
$1742.968553 \quad 742.968553$
$9 \quad 8199.327613 \quad 911.036401$
$F(1,9)=0.815520 \quad p<=0.390023$
soa (5)
DF SS MS
4 $156832.756387 \quad 39208.189097$
$36 \quad 788995.835219 \quad 21916.550978$
$E(4,36)=1.788976 \quad p<=0.152445$
vollh (2)
soa (5)
DF SS
MS
$4 \quad 282.405266 \quad 70.601316$
$36 \quad 23459.918741 \quad 651.664409$
$F(4,36)=0.108340 \quad p<=0.978846$

```
model is
--> sj ( 10 )
    vollh ( 2 )
    soa (5)
KEY:
vollh (1) = quiet (2) = loud
soa (1)=50(2)=111 (3)=245 (4)=542 (5)=1200
vollh ( 2 )
    0.89009 0.91769
soa (5 )
    0.91736
                0.90731
                0.90743
                0.90201
                                    0.88535
vollh ( 2 )
soa (5 )
    0.90674 0.92799
    0.88796 0.92666
    0.89062 0.92424
    0.87615 0.92787
    0.88899 0.88171
vollh ( 2 )
    DF SS
                                    MS
        1 0.019049 0.019049
        9 0.119090 0.013232
F(1,9)=1.439550 p <= 0.260842
soa (5)
    DF SS
                                    MS
        4 0.011058 0.002765
        36 0.090570 0.002516
F(4,36)=1.098866 p <= 0.372001
vollh ( 2 )
soa (5)
        DF SS
                                MS
        4 0.009991 0.002498
    36 0.082506 0.002292
F(4,36)=1.089851 p<=0.376198
    END
```

```
model is
--> sj (10)
    vollh ( 2 )
    soa (5)
KEY:
vollh (1) = quiet (2) = loud
soa (1)=50 (2)=111 (3)=245 (4)=542 (5)=1200
vollh ( 2 )
    0.97072 0.96787
soa ( 5 )
    0.96350
                0.96392
                    0.97307
                                    0.97377
                                    0.97221
vollh (2)
soa ( 5 )
    0.96915 0.95784
    0.96841 0.95942
    0.96869 0.97745
    0.97076 0.97678
    0.97659 0.96784
volih (2)
    DF SS
                                    MS
        1 0.000203 0.000203
        9 0.003358 0.000373
F(1,9)=0.545003 p <= 0.479174
soa (5)
    DF SS
                                    MS
        4 0.002107 0.000527
        36 0.027803 0.000772
F(4,36)=0.682080 p<= 0.608952
vollh (2)
soa (5)
    DF SS MS
        4 0.001789 0.000447
        36 0.014439 0.000401
F(4,36)=1.115030 p}<=0.36457
    END
```

```
Experimant 3: Nean reaponse times for the tone tagk (task 2)
model is
--> sj ( 22 )
    soa ( 5 )
    nlet ( 2 )
    remny (2)
    vol\overline{h} (2)
KEY:
    soa (1)=200(2)=261 (3)=395 (4)=692 (5)=1350
    nlet (1) = 1 (2) = 3
    rem_ny (1) = ignore (2) = encode
soa ( 5 )
    875.02581 837.73571 775.35773 728.84804 634.38262
nlet (2)
    722.89974 817.64023
soa (5)
nlet ( 2 )
    801.48977 757.66359 717.85592 703.50426 633.98515
    948.56184 917.80782 832.85954 754.19183 634.78009
remny (2)
    687.25529 853.28468
soa ( 5 )
rem ny (2)
    770.91466 740.53466 672.77280 654.96309 597.09123
    979.13696 934.93675 877.94267 802.73300 671.67401
nlet ( 2 )
remny (2)
        691.64678 682.86380
        754.15270 952.41665
soa (5)
nlet ( 2 )
rem_ny (2)
        758.36975 728.05882 681.05824 682.70770 608.03938
        783.45956 753.01050
        844.60979 787.26837
            664.48736
            627.21848
                            724.30083
                586.14308
                            754.65360
                                659.93092
    1113.66412 1082.60514 1001.23173 881.16518 683.41711
vollh ( 2)
        819.65325 720.88671
soa ( 5 )
    936.31309 893.77748 811.45918 786.87206 669.84445
    813.73852 781.69393 739.25629 670.82403 598.92079
        123 112 72 126 73 ms
nlet (2)
```

```
vollh ( 2 )
    771.87014 867.43637
    673.92934 767.84408
soa ( 5 )
nlet ( 2 )
vollh (2)
        868.33245
    1004.29373
        734.64709
        892.82996
            812.74219
                                974.81277
                                702.58499
                                860.80288
```

754.53748 868.38088 681.17437 797.33821
764.41346
659.32509 809.33066 642.59506 699.05300
680.36381
608.64521
589.19637

```
remny (2)
volih ( 2)
        746.23582 893.07069
        628.27476 813.49867
soa ( 5 )
rem_ny (2)
vollh ( 2)
        854.87871
    1017.74747
        686.95060
                817.74077
                969.81419
            709.42274
            716.07221
            633.06466
                                663.32855
                            913.49562
                            857.67191
                            706.62425
                        940.52645
                    900.05931
                                593.85397
                                    561.11780
nlet ( 2 )
rem_ny ( 2)
volih ( 2)
        748.92135
        794.81892 991.32245
                        73.55028
        634.37220 622.17731
        713.48648 913.51086
soa (5)
nlet (2)
rem_ny (2)
volIh (2)
        852.07961
        857.67780
            797.13664
                            696.34442
                                786.57390
            1040.41733
                            639.61543
                            632.63030
                            722.73331
                                962.04612
            742.56474
            630.32470
                        838.34490
                    828.34775
                            689.57968
                786.26219 688.32548
            635.80461
        884.58528
    1150.90965
            1111.28063
                929.08163 724.92301
                786.26219 688.32548
                929.08163 724.92301
                622.85065 585.75406
                564.85728 536.48154
        664.65988 658.98099
        709.24132 667.67610
        804.63430 746.18898
    1076.41860 1053.92965
                662.33946 631.53636
                833.24873 641.91120
```

722.50106

```
soa (5)
    DF SS
    MS
        1572227.499392
        4 6288909.997566 15% 1572227.49939
F(4.84)=48.833963 p <=0.000000
nlet (2)
DF \(\quad\) SS
1974667.153044
MS
1974667.153044
61549.678855
\(F(1,21)=32.082493 \quad p<=0.000013\)
```

```
soa ( 5 )
nlet ( 2 )
    DF SS MS
    4 800503.653977 200125.913494
    84 1744435.593786 20767.090402
F(4,84)=9.636685 p <= 0.000002 ****
rem_ny (2)
    DF SS
        MS
        21 2640696.167295 125747.436538
F(1,21)=48.227360 p<= 0.000001 ****
soa ( 5)
rem_ny (2)
    DF SS MS
        4 563777.239776 140944.309944
    84 1291868.470607 15379.386555
E(4,84)=9.164495 p <= 0.000003 ****
nlet ( 2 )
rem_ny (2)
    SS MS
    1 2357763.776863 2357763.776863
    21 1359596.031851 64742.668183
F(1,21)=36.417464 p<= 0.000005
soa ( 5 )
nlet ( 2 )
rem ny ( 2)
    DF
        4 381541.882031 95385.470508
    84 1119879.032254 13331.893241
F(4,84) = 7.154683 p < 0.000052
vollh ( 2 )
    DF SS MS
        1 2146062.384493. 2146062.384493
    21 4431604.925689 211028.805985
F(1,21)=10.169523 p}<=0.00441
soa ( 5 )
vollh ( 2 )
    DF SS MS
        4 111041.406298 27760.351575
    84 1227734.851821 14615.891093
F(4,84)=1.899327 p <=0.118109
nlet ( 2)
volih (2)
    DF SS MS
    1 150.008399 150.008399
    21 250391.494152 11923.404483
F(1,21)=0.012581 p}<<=0.91175
soa (5)
```

```
nlet ( 2)
vollh (2)
    DF SS MS
        4 25001.032676 6250.258169
    84 1034495.889589 12315.427257
F(4,84)=0.507515 p<< 0.730313
remny ( 2 )
vol\overline{h} (2)
    DF SS MS
        1.81054..534139 81054.534139
    21 173906.501849 8281.261993
F(1,21)=9.787703 p <= 0.005078 ****
soa ( 5 )
rem_ny (2)
volIh ( 2)
    DF SS MS
        4 90060.683944 22515.170986
    84 948952.720707 11297.056199
F(4,84)=1.993012 p<< 0.102979
nlet ( 2 )
rem_ny (2)
vol\overline{hn (2)}
    DF SS MS
        1 1471.419049 1471.419049
    21 173731.805828 8272.943135
F(1,21)=0.177859 p<< 0.677505
soa (5)
nlet ( 2 )
rem_ny (2)
vF
    4 19029.201220 4757.300305
    84 781234.821887 9300.414546
F(4,84)=0.511515 p<< 0.727406
END
```

```
smperiment 3: Mean response times for the tone task (ENCODs trials)
model is
--> sj ( 22 )
    soa ( 5 )
    nlet ( 2)
    vollh ( 2)
KEY:
    soa (1) = 200 (2)=261 (3)=395 (4)=692 (5) = 1350
    nlet (1) = 1 (2) = 3
    rem_ny (1) = ignore (2) = encode
soa ( 5 )
    979.13696 934.93675 877.94267 802.73300 671.67401
nlet ( 2 )
    754.15270 952.41665
soa ( 5 )
nlet ( 2 )
    844.60979 787.26837 754.65360 724.30083 659.93092
    1113.66412 1082.60514 1001.23173 881.16518 683.41711
vollh ( 2 )
    893.07069 813.49867
soa (5)
vollh ( 2 )
    1017.74747 969.81419 913.49562 857.67191 706.62425
    940.52645 900.05931 842.38972 747.79409 636.72378
nlet ( 2 )
vollh ( 2 )
    794.81892 991.32245
    713.48648 913.51086
soa ( 5)
nlet ( 2 )
volih ( 2 )
    884.58528 828.34775 786.57390 786.26219 688.32548
    1150.90965 1111.28063 1040.41733 929.08163 724.92301
    804.63430 746.18898 722.73331 662.33946 631.53636
    1076.41860 1053.92965 962.04612 833.24873 641.91120
soa ( 5 )
    DF SS MS
        4 5161356.548979 1290339.137245
        84 2233120.331913 26584.765856
F(4.84)=48.536788 p <= 0.000000
nlet ( 2 )
    DF SS MS
        1 4323945.449175 4323945.449175
    i1 2248690.242479 107080.487737
F(1,21)=40.380330 p <= 0.000003
```

```
soa ( 5 )
nlet ( 2 )
    DF SS MS
    4 1078657.041841 269664.260460
    84 1813372.740453 21587.770720
F(4.84)=12.491529 p <= 0.000000
vollh ( 2 )
    DF SS MS
        1 696487.617841 696487.617841
    21 1744044.861483 83049.755309
F(1.21) = 8.386390 p <= 0.008644
soa ( 5 )
vollh ( 2 )
    DF SS
        MS
            4 26082.295391 6520.573848
    84 1107558.205108 13185.216727
F(4.84)=0.494537 p <= 0.739749
nlet (2)
volih (2)
    DF SS
        1 340.899701 340.899701
        21 200757.021698 9559.858176
F(1,21)=0.035659 p <= 0.852033
soa ( 5 )
nlet ( 2 )
vollh ( 2 )
        DF SS
        MS
        4 12490.841246 3122.710312
    84 1049493.332310 12493.968242
F(4,84) = 0.249937 p <= 0.908946
```

```
Experiment 3: Mang response timas for the tone task (IGNORS trials)
model is
--> sj (22)
KEY:
    soa (1)=200(2)=261 (3)=395(4)=692(5)=1350
    nlet (1) = 1 (2) = 3
    rem_ny (1) = ignore (2) = encode
soa (5)
    770.91466 740.53466 672.77280 654.96309 597.09123
nlet ( 2 )
    691.64678 682.86380
soa ( 5 )
nlet ( 2)
    758.36975 728.05882 681.05824 682.70770 608.03938
    783.45956 753.01050 664.48736 627.21848 586.14308
vollh ( 2 )
    746.23582 628.27476
soa (5)
vollh (2)
    854.87871 817.74077 709.42274 716.07221 633.06466
    686.95060 663.32855 636.12287 593.85397 561.11780
nlet ( 2 )
vollh ( 2 )
    748.92135 743.55028
    634.37220 622.17731
soa ( 5)
nlet ( 2 )
vollh ( 2 )
    852.07961 797.13664 722.50106 742.56474 630.32470
    857.67780
    709.24132 667.67610 632.63030 564.85728 536.48154
soa (5)
    DF SS MS
        4 1691330.688363 422832.672091
        84 1763159.194083 20989.990406
F(4.84) = 20.144491 p <= 0.000000 ****
nlet ( 2 )
        DF SS MS
        1 8485.480732 8485.480732
        21 403449.045317 19211.859301
F(1,21)=0.441679 p <= 0.513545
```

```
soa ( 5 )
nler ( 2 )
    DF SS
        4 103388.494167
        MS
    84 1050941.885587 12511.212924
F(4.84) = 2.065917 p < 0.092514
vollh ( 2 )
    DF SS
        1 1530629.300792
        MS
        1530629.300792
    21 2861466.566054 136260.312669
F(1,21)=11.233126 p <= 0.003022
soa (5 )
vollh (2)
    DF SS
                            MS
            4 175019.794851
                                43754.948713
    84 1069129.367420 12727.730565
F(4,84)=3.437765 p<< 0.011858
nlet ( 2 )
vollh ( 2)
        DF SS
                                MS
        1 1280.527746 1280.527746
    21 223366.278281
    10636.489442
F(1,21)=0.120390 p <= 0.732065
soa ( 5 )
nlet ( 2 )
vollh (2)
    DF SS
        MS
        4 31539.392650 7884.848162
    84 766237.379166 . 9121.873561
F(4,84)=0.864389 p <= 0.488871
```

model is

```
--> sj ( 22 )
    soa ( 5 )
    nlet ( 2 )
    rem_ny (2)
    vol\hh (2)
```

KEY:
soa $(1)=200(2)=261(3)=395(4)=692(5)=1350$
nlet $\quad(1)=1(2)=3$
rem ny $(1)=$ ignore $(2)=$ encode
volin (1) = quiet (2) = loud
soa (5)
$\begin{array}{lllll}0.97347 & 0.97047 & 0.97760 & 0.98196 & 0.98336\end{array}$
nlet (2)
$0.97730 \quad 0.97745$
soa (5)
nlet (2)
$0.97434 \quad 0.97176$
0.97844
0.98054
0.98139
$0.97261 \quad 0.96918$
$0.97676 \quad 0.98339 \quad 0.98533$
rem_ny (2)
$0.97720 \quad 0.97755$
soa (5)
rem_ny (2)
0.97217
0.97107
0.97478
0.98459
0.98337
$\begin{array}{lllll}0.97478 & 0.96987 & 0.98042 & 0.97934 & 0.98335\end{array}$
nlet (2)
rem_ny 12)
$0.97224 \quad 0.98216$
0.982360 .97275
soa (5)
nlet (2)
rem_ny (2)
0.96607
0.97827
0.96901
0.97090
0.97865
0.98598
0.97486

0.97503	0.98017
0.99415	0.98657
0.98605	0.98261
0.97262	0.98409

vollh (2)
$0.97343 \quad 0.98131$
soa (5)
vollh (2)

0.96977	0.96522	0.97441	0.97650	0.98127
0.97718	0.97572	0.98079	0.98743	0.98545

nlet (2)
vollh (2)

```
0.97475 (llym
0.97475 (llym
0.97475 (llym
0.97475 (llym
0.97475 (llym
\begin{tabular}{cc}
0.97710 & 0.96901 \\
0.96243 & 0.96143 \\
0.97158 & 0.97452 \\
0.98278 & 0.97693 \\
& \\
\((2)\) & \\
0.97278 & 0.97408 \\
0.98161 & 0.98102
\end{tabular}
0.97475 (llym
\begin{tabular}{lll}
0.97242 & 0.97624 & 0.98409 \\
0.97641 & 0.98433 & 0.98433 \\
0.98447 & 0.99053 & 0.98657
\end{tabular}
\(\begin{array}{ll}0.97475 & 0.97212 \\ 0.97985 & 0.98278\end{array}\)
```

```
soa (5)
nlet ( 2 )
```

DF SS
40.001585
$84 \quad 0.144714$
$F(4,84)=0.229963$
remny (2)
10.000028
$21 \quad 0.039050$
$F(1,21)=0.014979 \quad p<=0.903755$
soa (5)
remny (2)
$\overline{D F} \quad \mathrm{SS}$
40.002951
$84 \quad 0.160900 \quad 0.001915$
MS
0.000738
$F(4,84)=0.385209 \quad p<=0.818656$
nlet (2)
rem_ny (2)
$\overline{D F} \quad$ SS
MS
$1 \quad 0.0209720 .020972$
$21 \quad 0.041853 \quad 0.001993$
$F(1,21)=10.522725 \quad p<=0.003886$
soa (5)
nlet (2)
rem_ny (2)
$\overline{D F} \quad$ SS
$4 \quad 0.005388$
$84 \quad 0.107390 \quad 0.001278$
$F(4,84)=1.053613 \quad p<=0.384707$
vollh (2)

$D E$	SS	MS
1	0.013665	0.013665
21	0.046671	0.002222
$F(1,21)$	6.148513	$p<=$
0.021712		

soa (5)
vollh (2)
DF SS
$4 \quad 0.001424$
$84 \quad 0.156223 \quad 0.001860$
MS
0.000356
$E(4,84)=0.191379 \quad p<=0.942285$
nlet (2)
vollh (2)
DF \quad SS
MS
$10.001700 \quad 0.001700$
$21 \quad 0.037325 \quad 0.001777$
$E(1,21)=0.956648 \quad p<=0.339167$
soa (5)
nlet (2)

```
vollh (2)
    DF SS MS
    4 0.008804
        0.002201
    0.001875
F(4,84) = 1.174024 p<=0.328170
rem_ny (2)
volinh (2)
    DF SS
    MS
        1 0.000197 0.000197
    21 0.034943 0.001664
F(1,21) = 0.118279 p<=0.734329
soa (5)
remny (2)
volih (2)
    DF SS
        MS
        4 0.001753
        0.000438
    84 0.131452 0.001565
F(4,84)=0.280059 p<=0.890128
nlet (2)
rem_ny (2)
volĭh (2)
    DF SS
    MS
        1 0.005766
        0.005766
    21 0.056406 0.002686
F(1,21) = 2.146611 p<= 0.157697
soa (5)
nlet (2)
rem ny (2)
volih (2)
    DF SS
        4 0.007250 0.001813
        MS
        84 0.141091 0.001680
F(4,84) = 1.079160 p<=0.372088
```

model is
--> sj (22)
soa (5)
nlet (2)
vollh (2)

```

KEY:
soa \(\quad(1)=200(2)=261(3)=395(4)=692(5)=1350\)
nlet \((1)=1(2)=3\)
rem_ny (1) = ignore (2) = encode
soa ( 5 )
\(\begin{array}{lllll}0.97254 & 0.96970 & 0.97822 & 0.98011 & 0.98201\end{array}\)
nlet (2)
\(0.98106 \quad 0.97197\)
soa (5)
nlet (2)
\(\begin{array}{cc}0.97917 & 0.97348 \\ 0.96591 & 0.96591 \\ (2) & \\ 0.97348 & 0.97955\end{array}\)
soa ( 5 )
vollh (2)
0.96780
0.96402
0.97538
0.97727
0.98295
0.97727
0.97538
0.98106
0.98295
0.98106
nlet (2)
vollh (2)
\(0.98182 \quad 0.96515\)
\(0.98030 \quad 0.97879\)
soa (5)
nlet (2)
vollh ( 2 )
\begin{tabular}{lllll}
0.98485 & 0.96970 & 0.97727 & 0.99242 & 0.98485 \\
0.95076 & 0.95833 & 0.97348 & 0.96212 & 0.98106 \\
0.97348 & 0.97727 & 0.99242 & 0.98106 & 0.97727 \\
0.98106 & 0.97348 & 0.96970 & 0.98485 & 0.98485
\end{tabular}
soa ( 5 )
\(\begin{array}{cc}\text { DF } & \text { SS } \\ 4 & \text { MS }\end{array}\)
\(84 \quad 0.180050 \quad 0.002143\)
\(F(4,84)=1.111851 \quad p<=0.356435\)
\begin{tabular}{ccr} 
nlet \\
DF & SS & \\
1 & 0.009091 & MS \\
21 & 0.044381 & 0.009091 \\
\(F(1,21)\) & \(=4.301560\) & \(p<=0.002113\)
\end{tabular}
```

soa (5)
nlet (2)
DF SS
MS
4 0.003851 0.000963
84 0.116288 0.001384
F(4,84)=0.695434 p}<<=0.59720
vollh (2)
DF SS
MS
1 0.004040 0.004040
21 0.050821 0.002420
F(1,21)=1.669568 p}<=0.21035
soa (5)
vollh (2)
DF SS
4 0.002273
84 0.144255
F(4,84) = 0.330853
p <= 0.856502
nlet (2)
vollh (2)
DF SS
MS
10.006313
0.006313
21 0.069381 0.003304
F(1,21)=1.910825 p <= 0.181398
soa (5)
nlet (2)
vollh (2)
DF SS
4 0.012626
MS
0.003157
84 0.147790
0.001759
F(4,84)=1.794107
p<= 0.137631
END

```

```

soa (5)
nlet (2)
DF SS
4 0.002999
0.153251
F(4,84) = 0.410919
p<= 0.800315
vollh (2)
DF SS
10.010669
0.010669
21 . 0.035164
0.001674
F(1,21) = 6.371683
p <= 0.019717
soa (5)
vollh (2)
DF SS
4 0.001168
MS
84 0.157860
0.000292
0.001879
F(4,84)=0.155371 p<< 0.960072
nlet (2)
vollh (2)
DF SS
MS
1 0.002273
.002273
21 0.017172 0.000818
F(1.21)=2.779449 p}<=0.11032
soa (5)
nlet (2)
vollh (2)
DF SS
4 0.007039 0.001760
MS
84 0.157544 0.001876
F(4.84) = 0.938292 p<= 0.445943
END

```
```

model is
M-> sj (22)
KEY:
soa (1) = 200 (2) = 261 (3) = 395 (4) = 692 (5) = 1350
nlet (1) = 1 (2) = 3
rem_ny (1) = ignore (2) = encode
soa (5)
0.95960 0.95640 0.96752 0.96490 0.96581
nlet (2)
0.98362 0.94208
soa (5)
nlet (2)
0.98189
0.98168
0.9373
0.93111
0.99001

0.97672	0.98778
0.95308	0.94385

vollh (2)
0.96298 0.96271
soa (5)
volih (2)
0.96526
0.95191
0.97066
0.96506
0.96201
0.95395
0.96089
0.96437
0.96474 0.96962
nlet (2)
vollh (2)
0.98280 0.94316
0.98444 0.94099
soa (5)
nlet (2)
vollh (2)
0.98788
0.94264
0.97851
0.98795
0.97617
0.98347
0.92530
0.95337
0.94055
0 . 9 7 5 9 0
0.98485
0.95395
0.99208
0.97727
0.99208
0.93200
0.93693
0.93666
0.95220
0.94715
soa (5)

```
\begin{tabular}{cc}
DF & SS \\
4 & 0.007
\end{tabular} MS
\(4 \quad 0.007650 \quad 0.001913\)
\(84=0.115340 \quad 0.001373\)
\(F(4,84)=1.392877 \quad p<0.243444\)
nlet (2)

\(10.189806 \quad 0.189806\)
\(21 \quad 0.301399 \quad 0.014352\)
\(F(1,21)=13.224750 \quad p<=0.001544\)
```

soa (5)
nlet (2)
DF SS
4 0.009426
84 0.128263
F(4,84)=1.543302
vollh (2)
DF SS
1 0.000008
21 0.028017
F(1,21)=0.005862
soa (5)
vollh (2)
DE SS
4 0.006727
0.001682
84 0.165128
0.001966
F(4,84)=0.855480
p <= 0.494237
nlet (2)
volih (2)
DF SS
MS
1 0.000400
0.000400
21 0.029828 0.001420
F(1,21)=0.281281 P}<=0.60142
soa (5)
nlet (2)
vollh (2)
DF SS
4 0.002221 0.000555
MS
84 0.085089 0.001013
F(4,84)=0.548197 p <= 0.700821

```

\section*{Experiment 4: Mean response times for the tone task (task 2)}
```

model is
--> sj (15)
soa (5)
tone_eh (2)

```
KEY:
    soa \(\quad(1)=50(2)=111(3)=245(4)=542(5)=1200\)
    tone_eh (1) = easy (2) = hard
soa ( 5 )
    \(720.08552 \quad 614.74412 \quad 540.26933 \quad 533.74925 \quad 462.94563\)
tone_eh (2)
    \(5 \overline{2} 1.61900 \quad 627.09854\)
soa ( 5 )
tone eh ( 2 )
    \(\begin{array}{llllll}7 \overline{0} 2.92466 & 560.37482 & 485.61569 & 469.10054 & 390.07931\end{array}\)
    \(\begin{array}{llllll}737.24638 & 669.11343 & 594.92297 & 598.39795 & 535.81195\end{array}\)
soa (5)
    DF SS
        MS
        \(4 \quad 1142741.208348 \quad 285685.302087\)
    \(56 \quad 275396.830436 \quad 4917.800543\)
\(F(4,56)=58.092088 \quad p<=0.000000\)
tone_eh (2)
    DF \(\bar{F}\) ss
        \(1417222.433230 \quad 417222.433230\)
    \(14 \quad 108684.116318 \quad 7763.151166\)
\(F(1,14)=53.743953 \quad p<=0.000004\)
soa ( 5 )
tone_eh ( 2 )
    DF SS MS
        \(4 \quad 54572.347426 \quad 13643.086856\)
    \(56 \quad 81036.083048 \quad 1447.072912\)
\(F(4,56)=9.428058 \quad p<=0.000007\)
```

Experiment 4: Mean response times for the letter task (task 1)
model is
--> sj (15)
soa (5)
tone_eh (2)
KEY:
soa (1)=50 (2)=111 (3)=245 (4)=542(5)=1200
tone_eh (1) = easy (2) = hard
soa (5)
536.23969 537.37486 552.08504 572.22748 571.70616
tone_eh (2)
556.27319 551.58010
soa (5)
tone eh (2)
5\overline{45.93483 537.00868 551.45487 563.47255 583.49503}
526.54455 537.74105 552.71521 580.98242 559.91729
soa (5)
DF SS MS
4 37236.398784 9309.099696
56 76224.464752 1361.151156
E(4,56)=6.839137 p <= 0.000148
tone_eh (2)
DF
MS
1 825.939992 825.939992
14 12474.454615 891.032472
F(1,14) = 0.926947 p <= 0.351993
soa (5)
tone eh (2)
DF SS
4 8478.655594 2119.663899
56 37236.836396 664.943507
F(4,56)=3.187735 p<= 0.019832

```
model is
--> sj (15 )
    soa (5)
    tone_eh ( 2 ;
KEY:
    soa (1) = 50 (2) = 111 (3) = 245 (4) = 542 (5) = 1200
    tone_eh (1) = easy (2) = hard
soa ( 5 )
    0.92130 0.91365 0.92708 0.92153 0.92164
tone_eh (2)
    0.92749 0.91459
soa ( 5 )
tone_eh (2 )
\begin{tabular}{lllll}
0.93487 & 0.91545 & 0.94048 & 0.92822 & 0.91844 \\
0.90774 & 0.91185 & 0.91368 & 0.91484 & 0.92484
\end{tabular}
soa ( 5 )
    DF SS
    MS
        4 0.002753 0.000688
        56 0.240727 0.004299
F(4,56)=0.160095 p<= 0.957583
tone eh (2)
D \(\bar{F}\) Ss
                                    MS
        1 0.006242
                                0.006242
    14 0.183870 0.013134
F(1,14) = 0.475273 p<= 0.501839
soa ( 5 )
tone_eh (2)
    DF ss
                                    MS
        4 0.006409 0.001602
F(4,56) = 0.302296 p<< 0.875217

Expariment 4: Mean proportions correct for the letter task (task 1)
```

model is
--> sj (15)
soa (5)
tone_eh (2)
KEY:
soa (1)=50 (2)=111 (3)=245 (4)=542 (5)=1200
tone_eh (1) = easy (2) = hard
soa (5)
0.95513 0.96924 0.97487 0.97245 0.97807
tone_eh (2)
0.96856 0.97135
soa (5)
tone_eh (2)

0.94895	0.96779	0.97712	0.97203	0.97690
0.96131	0.97070	0.97263	0.97287	0.97925

soa (5)
4 0.009499 0.002375
56 0.025183 0.000450
F(4,56)=5.280902 p <= 0.001112
tone_eh (2)
DF
MS
1 0.000294 0.000294
14 0.003424 0.000245
F(1,14) = 1.200421 p <= 0.291728
soa (5)
tone eh (2)
D\overline{F}
4 0.001115 0.000279
56 0.018447 0.000329
F(4,56)=0.846317 p<= 0.501868

```
Experiment 5: Mean response times for the tone task (task 2)
model is
--> sj (14)
    soa (5)
    rem_ny (2)
    tone_eh (2)
KEY:
        soa (1)=200 (2)=261 (3)=395 (4)=692(5)=1350
soa (5)
    745.37084 722.23574 697.35879 630.26308 576.07784
rem_ny ( 2 )
    5}90.21307 758.30944
soa ( 5 )
rem_ny ( 2)
    635.76247 611.20897 609.61089 570.21973 524.26330
    854.97921 833.26250 785.10669 690.30642 627.89238
tone eh ( 2 )
    579.34440 769.17811
soa ( 5 )
tone_eh ( 2 )
    6\overline{6}4.21193 636.24904 591.02626 522.64542 482.58935
    826.52975 808.22243 803.69131 737.88073 669.56633
rem_ny (2)
tone_eh (2)
    494.14136 664.54744
    686.28478 852.07144
soa (5)
rem_ny (2)
tone eh (2)
    5\overline{55.72286 517.19928 494.79024 458.98599 444.00844}
    772.70100 755.29880 687.26228 586.30486 521.17026
    715.80208 705.21865 724.43153 681.45348 604.51816
    937.25742 911.22620 882.95109 794.30797 734.61450
soa (5)
    DF SS
        4 1090176.786667 272544.196667
        52 970702.515646 18667.356070
F(4.52)=14.600043 p <= 0.000000 ****
rem_ny (2)
    DF SS
        1 1977947.206272 1977947.206272
        .13 782281.155293 60175.473484
F(1,13)=32.869658 p}<=0.00006
```

```
soa ( 5 )
rem ny (2)
    DF SS
    4 168565.328630 42141.332157
    52 756129.042770 14540.943130
F(4,52) = 2.898115 p <= 0.030649
tone_eh ( 2)
    DE SS
    I 2522578.473216 2522578.473216
        MS
    13 1331322.295888 102409.407376
F(1,13)=24.632292 p <= 0.000259
soa (5)
tone_eh (2)
    D\overline{F}
        4 31511.020173 7877.755043
    52 250382.882038 4815.055424
F(4,52) = 1.636067 p <= 0.179170
rem_ny ( 2 )
tone eh ( 2)
    D\overline{F}
        1 373.433511 373.433511
    13 118324.399995 9101.876923
F(1,13)=0.041028 p <= 0.842619
soa (5)
rem_ny ( 2 )
tone eh (2)
    DF SS MS
        4 17875.539245 4468.884811
    52 332997.145119 6403.791252
F(4,52)=0.697850 p<=0.596914
```

Experiment 5: Mean response times for the tone task (ENCODE trials)
model is
--> sj (14)
soa (5)
tone_eh (2)
KEY:
soa (1)=200(2)=261 (3)=395 (4)=692(5)=1350
rem_ny (1) = ignore (2) = encode
tone_eh (1) = easy (2) = hard
soa (5)
854.97921 833.26250 785.10669 690.30642 627.89238
tone_eh (2)
664.54744 852.07144
soa (5)
tone eh (2)
772.70100 755.29880 687.26228 586.30486 521.17026
937.25742 911.22620 882.95109 794.30797 734.61450
soa (5)
DE SS
MS
4 1044795.327748
261198.831937
52 1175719.123139 22609.983137
F(4,52)=11.552367 p <= 0.000001
tone eh (2)
D\overline{F}
MS
I 1230783.685024 1230783.685024
13 474927.622194 36532.894015
F(1,13)=33.689740 p <= 0.000061 ****
soa (5)
tone_eh (2)
DF SS MS
4 18786.398774 4696.599693
52 289952.479786 5576.009227
F(4,52)=0.842287 P}<=0.50476

```
Experiment 5: Mean reaponse times for the tone task (IGNORE trials)
model is
--> sj ( 14 )
    soa ( 5 )
    tone_eh (2)
KEY:
    soa (1) = 200 (2) = 261 (3) = 395 (4) = 692 (5) = 1350
    rem_ny (1) = ignore (2) = encode
    tone_eh (1) = easy (2) = hard
soa ( 5 )
    635.76247 611.20897 609.61089 570.21973 524.26330
tone_eh ( 2 )
    494.14136 686.28478
soa (5)
tone eh ( 2 )
    555.72286 517.19928 494.79024 458.98599 444.00844
    715.80208 705.21865 724.43153 681.45348 604.51816
soa (5)
    DE SS
                                MS
        4 213946.787549 53486.696887
    52 551112.435278 10598.316063
F(4,52)=5.046717 p <= 0.001636
tone_eh ( 2 )
    D\overline{F}
        1 1292168.221702 1292168.221702
    13 974719.073689 74978.390284
E(1,13)=17.233875 p <= 0.001138 ****
soa ( 5 )
tone_eh ( 2 )
    DF SS MS
        4 30600.160644 7650.040161
    52 293427.547371 5642.837449
F(4,52)=1.355708 p}<=0.26204
```

```
Experiment 5: Maan proportions correct for the tone task (task 2)
model is
--> sj ( 14 )
    soa (5)
    rem_ny (2)
    tone_eh (2)
KEY:
soa (1) \(=200(2)=261(3)=395(4)=692(5)=1350\)
rem_ny (1) = ignore (2) = encode
tone_eh (1) = easy (2) = hard
soa ( 5 )
\(\begin{array}{lllll}0.91592 & 0.91890 & 0.92113 & 0.91369 & 0.92411\end{array}\)
rem_ny (2) \(0.95238 \quad 0.88512\)
soa ( 5 )
rem_ny (2)
0.95982
0.87202
0.95238
0.88542
0.95536
0.88690
0.93452
0.95982
0.89286
0.88839
tone_eh ( 2 )
\(0.92619 \quad 0.91131\)
soa ( 5 )
tone_eh (2)
\begin{tabular}{lllll}
0.93452 & 0.92560 & 0.92857 & 0.91667 & 0.92560 \\
0.89732 & 0.91220 & 0.91369 & 0.91071 & 0.92262
\end{tabular}
rem_ny (2)
tone_eh (2)
\(\begin{array}{ll}0.95952 & 0.89286 \\ 0.94524 & 0.87738\end{array}\)
soa ( 5 )
rem_ny (2)
tone_eh (2)
\begin{tabular}{lllll}
0.97619 & 0.96131 & 0.97024 & 0.93452 & 0.95536 \\
0.89286 & 0.88988 & 0.88690 & 0.89881 & 0.89583 \\
0.94345 & 0.94345 & 0.94048 & 0.93452 & 0.96429 \\
0.85119 & 0.88095 & 0.88690 & 0.88690 & 0.88095
\end{tabular}
soa ( 5 )
DF SS
MS
\(4 \quad 0.003807 \quad 0.000952\)
\(52 \quad 0.113728 \quad 0.002187\)
\(F(4,52)=0.435173 \quad P<=0.782580\)
rem_ny (2)
\(\overline{D F} \quad\) SS
MS
\(10.316691 \quad 0.316691\)
\(13 \quad 2.059871 \quad 0.158452\)
\(F(1,13)=1.998662 \quad p<=0.180936\)
```

```
soa ( 5 )
rem_ny ( 2 )
    DF SS
        4 0.015340
        MS
    52 0.168862
        0.003835
        0.003247
F(4,52)=1.180948 p}<=0.33005
tone eh ( 2 )
    D\overline{F}
                            MS
        1 0.015501
        0.015501
    13.0.044048
        0.003388
F(1,13)=4.574867
p <= 0.052000
soa (5)
tone_eh (2)
    DF SS
        4 0.010107
    52 0.090067
        0.002527
        0.001732
F(4,52)=1.458756 p <= 0.228145
rem_ny ( 2 )
tone_eh (2)
    DE SS
        1 0.000025
        MS
        1 0.000025 0.000025
    13 0.020288 0.001561
F(1,13)=0.015890 p<< 0.901617
soa ( 5 )
rem_ny (2)
tone eh (2)
    DF
        4 0.006114 0.001528
    52 0.110727 0.002129
F(4,52)=0.717770 p<=0.583641
    END
```

```
model is
--> sj (14)
    soa (5)
    tone_eh ( 2 )
KEY:
    soa (1)=200(2)=261(3)=395(4)=692(5)=1350
    tone_eh (1) = easy (2) = hard
soa (5)
    0.87202 0.88542 0.88690 0.89286 0.88839
tone_eh (2)
    0.89286 0.87738
soa ( 5 )
tone eh ( 2)
\begin{tabular}{lllll}
0.89286 & 0.88988 & 0.88690 & 0.89881 & 0.89583 \\
0.85119 & 0.88095 & 0.88690 & 0.88690 & 0.88095
\end{tabular}
soa ( 5 )
```



```
        4 0.006870
    52 0.206324
F(4,52)=0.432865 p<< 0.784239
tone_eh ( 2 )
    DE
            10.008383
    13 0.046478 0.003575
        0.008383
F(1,13)=2.344692 P <=0.149676
soa ( 5 )
tone_eh ( 2 )
    D\overline{F}
        4 0.006870
    52 0.115352
F(4,52)=0.774238 p}<=0.54696
                                    END
```


Experimant 5: Man proportions correct for the tone task (IGNORE trials)

model is

```
--> sj ( 14 )
    soa ( 5 )
    tone_eh ( 2)
```

KEY:
soa $\quad(1)=200(2)=261(3)=395(4)=692(5)=1350$
tone_eh (1) = easy (2) = hard
soa (5)
$\begin{array}{lllll}0.95982 & 0.95238 & 0.95536 & 0.93452 & 0.95982\end{array}$
tone_eh (2)
0.959520 .94524
soa (5)
tone eh (2)
0.97619
0.96131
0.97024
0.93452
0.95536
0.94345
0.94345
0.94048
0.93452
0.96429

```
soa (5)
```

DE SS
MS
$4 \quad 0.012277 \quad 0.003069$
$52 \quad 0.076265 \quad 0.001467$
$F(4,52)=2.092672 \quad p<=0.095025$
tone eh (2)
DF SS
MS
10.0071430 .007143
$13 \quad 0.017857 \quad 0.001374$
$F(1,13)=5.200010 \quad p<=0.040093$
soa (5)
tone_eh (2) $D \bar{E} \quad 5 S$
$4 \quad 0.009350 \quad 0.002338$
$520.085441 \quad 0.001643$
$E(4,52)=1.422635 \quad p<=0.239541$

```
Experimant 5: Mean proportions correct for the encode task (task 1)
model is
--> sj ( 14)
    soa ( 5)
    tone_eh (2)
KEY:
    soa (1) = 200(2)=261 (3)=395 (4)=692 (5)=1350
    tone_eh (1) = easy (2) = hard
soa (5)
    0.92704 0.93335 0.93628 0.93486 0.93005
tone_eh (2)
    0.93599 0.92865
soa ( 5)
tone_eh (2)
\begin{tabular}{lllll}
0.93339 & 0.93615 & 0.93452 & 0.94134 & 0.93452 \\
0.92069 & 0.93054 & 0.93804 & 0.92838 & 0.92558
\end{tabular}
soa (5)
    DF SS MS
        4 0.001574 0.000394
    52 0.040330 0.000776
F(4,52)=0.507438 p <= 0.730434
tone eh ( 2)
    D\overline{F}
    MS
        1 0.001885 0.001885
        13 0.005793 0.000446
F(1,13)=4.231204 p<= 0.060331
soa ( 5 )
tone_eh ( 2 )
    D\overline{F}
        4 0.001285 0.000321
    52 0.028464 0.000547
F(4,52)=0.586931 P}<=0.67352
END
```

```
Experiment 6: Maan response timas for the tone task (task 2)
model is
-m sj (10)
KEY:
    soa (1) = 50 (2)=111 (3)=245 (4)=542 (5)=1200
    nlet (1) = 1 (2) = 3
    rem_ny (1) = ignore (2) = encode
    volIh (1) = quiet (2) = loud
soa ( }
    681.04350 654.15780 623.16363 563.61361 543.00517
nlet ( 2 )
    593.34642632.64706
soa (5)
nlet ( 2 )
    666.36468 642.26260 591.99398 534.94708 531.16379
    695.72231 666.05301 654.33328 592.28014 554.84655
rem_ny ( 2 )
    559.55821 666.43528
soa (5)
remny (2)
    \overline{6}10.20206 594.26477 556.46780 517.63907 519.21732
    751.88493 714.05084 689.85945 609.58815 566.79301
nlet (2)
rem_ny ( 2 )
    559.55103 559.56538
    627.14182 705.72874
soa ( 5 )
nlet ( 2 )
rem_ny ( 2 )
        615.64019
        604.7639
        717.08917
        560.49015
            518.96790
                510.80101
        615.64019
                                596.67364
                552.44545 516.31023
                                527.63364
                                623.49780 550.92625
                                551.52657
        786.68069 735.43238 756.22110 668.25006 582.05946
vollh (2)
        648.31855
        577.67493
soa ( 5 )
vollh ( 2 )
    717.76510 692.19984 657.32113 596.47225 577.83443
    644.32189 616.11577 589.00613 530.75497 508.17590
glet (2)
vollh (2)
```

```
    630.99139 665.64570
    555.70145 599.64841
soa (5)
nlet (2)
vollh ( 2 )
    709.21269
    726.31751
        681.79823
        702.60145 688.42945
        602.72697 557.77515 502.40394 492.08455
        629.50457 620.23711 559.10600 524.26726
rem_ny ( 2 )
vol\overline{h ( 2 )}
    592.30842 704.32868
    526.80799 628.54188
soa (5)
rem_ny (2)
volInh ( 2)
    649.66163
    785.86857
    570.74250
        0.7919
        723.85028
        522.14364
        655.86863
        560.50909
        544.94730
        615.63212
        768.76756
        572.89742
        659.33411
        632.43541
        474.76904
        610.72157
        493.48735
        586.74090 522.86446
nlet (2)
remny (2)
volih (2)
    593.66561 590.95123
    668.31718 740.34018
    525.43645 528.17953
    585.96645 671.11730
soa ( 5 )
nlet ( 2 )
rem_ny (2)
volIूh ( 2)
    664.16977
            635.15348
    610.38667
            599.37348
            552.30278
            542.09535
                620.87758
                    582.21C45
                        568.71540
                                547.79924
    754.25561
                                753.20980
                                653.05212
                                582.67765
                                598.39071
                                682.19316 623.05242
                                682.19316 485.63303 479.50667
    567.11061 573.32515 521.60682
                                784.32532 794.64844
        463.90505
                                507.46803
    574.37439
        5 7
    679.92273
        572.46970 522.68045
        463.90505
        504.66242
    755.87985
        632.12879 593.94348
        654.30695 541.06649
soa (5)
    DF SS
        MS
        275309.475894
        4 1101237.903576
    36 683763.525451 18993.431263
F(4,36) = 14.494984 p <= 0.000000 ****
nlet (2)
    DF SS
        MS
            I 154453.981001 154453.981001
            9 161381.937593 17931.326399
F(1,9) = 8.613639 p <= 0.016624 ****
```

```
soa ( 5 )
nlet ( 2 )
    DF SS MS
        4 28785.942812 7196.485703
    36 127514.243115 3542.062309
F(4.36) = 2.031722 p<0.110605
rem_ny (2)
    DF SS
        1 1142270.820294 1142270.820294
        9 287225.108397 31913.900933
F(1,9)=35.792266 p <= 0.000207
soa (5)
rem_ny ( 2 )
    DF SS MS
        4 116412.140484 29103.035121
    36 174012.165754 4833.671271
F(4,36)=6.020897 p<= 0.000814 ****
nlet ( 2 )
remny (2)
    DF SS
        1 154341.240360 154341.240360
        9 121246.180818 13471.797869
F(1,9)=11.456618 p}<<=0.00806
soa ( 5 )
nlet ( 2 )
remny ( 2)
    DF SS
        4 57227.736936 14306.934234
    36 129014.592939 3583.738693
F(4,36)=3.992181 p<< 0.008812
vollh (2)
    DF SS
        MS
        1499052.048156 499052.048156
        9 224831.110443 24981.234494
F(1,9) = 19.977077 p <= 0.001556 ****
soa ( 5 )
vollh ( 2 )
    DF SS MS
        4 1361.958837 340.489709
    36 170316.413844 4731.011496
F(4,36)=0.071970 p<< 0.990161
nlet (2)
volih (2)
    DF SS MS
    1 2158.832086 2158.832086
    9 34531.290799 3836.810089
F(1,9)=0.562663 p <= 0.472342
soa (5)
nlet ( 2 )
```

```
vollh ( 2 )
    DF 
    36 95749.835463 2659.717652
F(4,36)=0.232686 p <= 0.918159
rem ny ( 2 )
volIूh ( 2)
    DF SS MS
        1 2645.234310 2645.234310
        9 17917.312346 1990.812483
F(1,9)=1.328721 p <= 0.278729
soa (5)
rem ny (2)
vollh ( 2 )
    DF SS MS
        4 34842.315284 8710.578821
        36 69189.999812 1921.944439
F(4,36)=4.532170 p <= 0.004556
nlet ( 2 )
rem_ny ( 2 )
volinh (2)
    DE SS MS
        1 367.718466 367.718466
        9 28191.931036 3132.436782
F(1,9)=0.117391 p <= 0.739748
soa (5 )
nlet (2)
rem ny ( 2 )
vollh ( 2 )
        DF SS MS
        4 10382.319008 2595.579752
    36 228399.170455 6344.421402
F(4,36)=0.409112 P <= 0.800857
```

Experiment 6: Maan response times for the tone task (ENCODE trials)
model is
--> sj (10)
soa (5)
nlet (2)
vollh (2)
KEY:
soa (1) = 50 (2)=111 (3)=245 (4)=542 (5)=1200
nlet (1) = 1 (2) = 3
vollh (1) = quiet (2) = loud
soa (5)
751.88493 714.05084 689.85945 609.58815 566.79301
nlet (2)
627.14182 705.72874
soa (5)
nlet (2)
717.08917 692.66929 623.49780 550.92625 551.52657
786.68069 735.43238 756.22110 668.25006 582.05946
vollh (2)
704.32868 628.54188
soa (5)
vollh (2)
785.86857 768.76756 723.85028 632.43541 610.72157
717.90129 659.33411 655.86863 586.74090 522.86446
nlet (2)
vollh (2)
668.31718 740.34018
585.96645 671.11730
soa (5)
nlet (2)
vollh (2)
754.25561 753.20980
653.05212 582.67765
598.39071
817.48153
794.64844
682.19316
623.05242
679.92273 632.12879 593.94348
755.87985 686.53944 717.79377 654.30695 541.06649
soa (5)
DF SS
4 931110.127898 232777.531974
36 646399.327518 17955.536875
F(4,36)=12.964109 p}<=0.00000
nlet (2)
DF SS MS
1 308795.211071 308795.211071
9 260749.127819 28972.125313
F(1,9)=10.658355 p <= 0.009765

```
```

soa (5)
nlet (2)
DF SS MS
4 81047.479886 20261.869972
36 183982.652600 5110.629239
F(4,36)=3.964653 p < 0.009118
vollh (2)
DF SS
SS MS
1 287181.953773 287181.953773
9 162684.057184 18076.006354
F(1,9)=15.887467 p < 0.003177
soa (5)
vollh (2)
DE SS
MS
23054.007032 5763.501758
36 154356.081139 4287.668921
F(4,36)=1.344204 p}<=0.27254
nlet (2)
vollh (2)
DF SS MS
1 2154.253627 2154.253627
9 46334.882928 5148.320325
E(1,9)=0.418438 p<= 0.533865
soa (5)
nlet (2)
vollh (2)
DF SS MS
4 3910.977612 977.744403
36 216728.728685 6020.242463
F(4,36)=0.162409 p <= 0.955995

```
Experiment 6: Mean response times for the tone task (IGNORE trials)
model is
--> sj ( 10 )
    soa (5)
    nlet ( 2 )
    vollh ( 2 )
KEY:
    soa (1)=50 (2)=111 (3)=245 (4)=542 (5)=1200
    nlet (1) = 1 (2) = 3
    vollh (1) = quiet (2) = loud
soa ( 5 )
    610.20206 594.26477 556.46780 517.63907 519.21732
nlet ( 2 )
    559.55103 559.56538
soa ( 5 )
nlet ( 2)
    615.64019 591.85591 560.49015 518.96790 510.80101
    604.76394 596.67364 552.44545 516.31023 527.63364
vollh ( 2 )
    592.30842 526.80799
soa ( 5 )
vollh ( 2 )
    649.66163 615.63212 590.79197 560.50909 544.94730
    570.74250 572.89742 522.14364 474.76904 493.48735
nlet (2)
vollh ( 2 )
    593.66561 590.95123
    525.43645 528.17953
soa ( 5 )
nlet ( 2 )
vollh ( 2 )
    664.016977 610.38667 599.37348 552.30278 542.09535
    635.15348 620.87758 582.21045 568.71540 547.79924
    567.11061 573.32515 521.60682 485.63303 479.50667
    574..37439 572.46970 522.68045 463.90505 507.46803
soa ( 5 )
    DF SS
        4 286539.916163 71634.979041
    36 211376.363687 5871.565658
F(4,36) = 12.200320 p <= 0.000002 *****
nlet ( 2)
    DF SS MS
    1 0.010290 0.010290
    9 21878.990592 2430.998955
E(1,9) = 0.000004 p<= 0.998403
```

```
soa (5)
nlet (2)
    DF SS MS
    4 4966.199862 1241.549966
    36 72546.183454 2015.171763
F(4,36)=0.616101 p <= 0.653850
vollh ( 2 )
    DF SS
        I 214515.328692 214515.328692
        9 80064.365605 8896.040623
F(1,9)=24.113573 p}<=0.00083
soa (5)
vollh ( 2 )
    DF SS MS
        4 13150.267089 3287.566772
    36 85150.332517 2365.287014
F(4,36)=1.389923 p}<=0.25694
nlet ( 2 )
vollh ( 2)
    OF SS MS
        1 372.296924 372.296924
        9 16388.338907 1820.926545
F(1,9)=0.204455 p <= 0.661850
soa ( 5 )
nlet ( 2 )
vollh (2)
    DF SS
        4 8946.855355 2236.713839
    36 107420.277233 2983.896590
F(4,36) = 0.749595 p<< 0.564806
```

model is
--> sj (10)
soa (5)
nlet (2)
rem_ny (2)
vol\overline{h}}(2

```

KEY:
\begin{tabular}{ll} 
soa & \((1)=50(2)=111 \quad(3)=245(4)=542(5)=1200\) \\
nlet & \((1)=1(2)=3\) \\
rem_ny & \((1)=\) ignore \(\quad(2)=\) encode \\
volin & \((1)=\) quiet \(\quad(2)=\) loud
\end{tabular}
soa ( 5 )
\(\begin{array}{lllll}0.96979 & 0.96771 & 0.97083 & 0.96563 & 0.96146\end{array}\)
nlet (2)
\(0.96917 \quad 0.96500\)
soa ( 5 )
nlet ( 2 )
\begin{tabular}{lllll}
0.96875 & 0.97292 & 0.97083 & 0.97083 & 0.96250 \\
0.97083 & 0.96250 & 0.97083 & 0.96042 & 0.96042
\end{tabular}
rem_ny (2)
\(0.96750 \quad 0.96667\)
soa (5)
rem_ny (2)
0.96458
0.97500
0.96875
0.97500
\(0.97292 \quad 0.95625\)
nlet ( 2 )
rem_ny (2)
\(0.97167 \quad 0.96333\)
\(0.96667 \quad 0.96667\)
soa (5)
nlet (2)
rem_ny (2)
\begin{tabular}{lllll}
0.96667 & 0.98750 & 0.98333 & 0.96667 & 0.95417 \\
0.96250 & 0.95000 & 0.96667 & 0.97917 & 0.95833 \\
0.97083 & 0.95833 & 0.95833 & 0.97500 & 0.97083 \\
0.97917 & 0.97500 & 0.97500 & 0.94167 & 0.96250
\end{tabular}
voilh (2)
0.957920 .97625
soa ( 5 )
vollh (2)
0.96667
0.97292
\(0.96042 \quad 0.95625\)
\(0.96458 \quad 0.94167\)
0.97500
0.98542
0.96667
0.98125
nlet (2)
vollh (2)
```

 0.95583 0.96000
 0.98250 0.97000
 soa (5)
nlet (2)
vollh (2)

0.96250	0.96250	0.95417	0.96250	0.93750
0.97083	0.95833	0.95833	0.96667	0.94583
0.97500	0.98333	0.98750	0.97917	0.98750
0.97083	0.96667	0.98333	0.95417	0.97500

rem_ny (2)
volinh (2)
0.95583 0.96000
0.97917 0.97333
soa (5)
remny (2)
volin (2)
0.95417
0.97917
0.97500
0.95417
0.95417
0.95833
0.93333
0.97500 0.97083
0.99583
0.97083 0.97917
0.97500
0.95833 0.95000
0.95833 0.95000
0.95833 0.98333
nlet (2)
rem ny (2)
volih (2)

0.95500	0.95667
0.95667	0.96333
0.98833	0.97000
0.97667	0.97000

soa (5)
nlet (2)
rem ny (2)
vol\overline{h}(2)
0.95000
0.95833
0.97500
0.96667

0.95833	0.92500
0.98333	0.94167
0.96667	0.95000
0.95000	0.95000
0.97500	0.98333
0.97500	0.97500
0.98333	0.99167
0.93333	0.97500

soa (5)

$D F$	$S S$	MS
4	0.004444	0.001111
36	0.137569	0.003821
$F(4,36)$	$=0.290764$	$p<=$

nlet (2)
DF
F(1,9)=1.249995 p<=0.292507

```
```

soa (5)
nlet (2)
DF SS
SS
MS
0.000694
0.003482
F(4,36)=0.199445 p <= 0.937014
rem_ny (2)
DF SS
MS
10.000069
0.000069
9 0.028055
0.003117
E(1,9)=0.022276 p<=0.884645
soa (5)
rem_ny (2)
DF SS
4 0.010000
0.002500
36 0.052153 0.001449
F(4,36)=1.725708 p <= 0.165702
nlet (2)
rem_ny (2)
SS
1 0.001736
MS
0.001736
9 0.040278
0.004475
F(1,9)=0.387928 p<= 0.548845
soa (5)
nlet (2)
rem_ny (2)
DF SS
4 0.030556
0.007639
36 0.135764
0.003771
F(4,36)=2.025574 p <= 0.111508
vollh (2)
DF SS
10.033611
0.059097
0.006566
F(1,9)=5.118683 p}<=0.04997
soa (5)
vollh (2)
DF SS
4 0.019861
MS
0.004965
36 0.140903
0.003914
F(4,36)=1.268604 p}<=0.30027
nlet (2)
vollh (2)
DE SS
1 0.006944
0.028819
0.006944
0.003202
F(1,9)=2.168676 p <= 0.174936
soa (5)
nlet (2)

```
```

vollh (2)
DE SS MS
4 0.001389 0.000347
36 0.077430 0.002151
E(4,36)=0.161435 . p <= 0.956462
rem ny (2)
volih (2)
DE SS
MS
1 0.002500 0.002500
9 0.020764 0.002307
F(1,9)=1.083609 p<=0.325047
soa (5)
rem_ny (2)
volih (2)
DE SS
MS
4 0.007917
0.001979
36 0.072986
0.002027
F(4,36)=0.976209 p <= 0.432623
nlet (2)
rem_ny (2)
volIh (2)
DE SS
1 0.000278 0.000278
9 0.018819 0.002091
F(1,9)=0.132841 p <= 0.723921
soa (5)
nlet (2)
rem_ny (2)
volIh (2)
DF SS
40.008056
MS
0.002014
36 0.097847 0.002718
F(4,36)=0.740950 p}<=0.57034

```
```

model is
--> sj (10)
soa (5)
nlet (2)
vollh (2)

```
KEY:
    soa \((1)=50(2)=111(3)=245(4)=542(5)=1200\)
    niet \(\quad(1)=1(2)=3\)
    vollh (1) = quiet \((2)=\) loud
soa ( 5 )
    \(\begin{array}{lllll}0.95521 & 0.95104 & 0.96042 & 0.95312 & 0.96250\end{array}\)
nlet ( 2 )
    0.995830 .91708
soa ( 5 )
nlet (2)
    \(\begin{array}{lllll}0.99583 & 0.99792 & 0.99375 & 0.99167 & 1.00000\end{array}\)
    \(\begin{array}{lllll}0.91458 & 0.90417 & 0.92708 & 0.91458 & 0.92500\end{array}\)
vollh ( 2 )
    \(0.95958 \quad 0.95333\)
soa ( 5 )
vollh (2)
    \(\begin{array}{lllll}0.96458 & 0.94375 & 0.96250 & 0.96042 & 0.96667\end{array}\)
    \(\begin{array}{lllll}0.94583 & 0.95833 & 0.95833 & 0.94583 & 0.95833\end{array}\)
nlet ( 2 )
vollh (2)
    \(0.99583 \quad 0.92333\)
    0.995830 .91083
soa ( 5 )
niet ( 2 )
vollh (2)
\begin{tabular}{lllll}
0.99583 & 0.99583 & 0.99583 & 0.99167 & 1.00000 \\
0.93333 & 0.89167 & 0.92917 & 0.92917 & 0.93333 \\
0.99583 & 1.00000 & 0.99167 & 0.99167 & 1.00000 \\
0.89583 & 0.91667 & 0.92500 & 0.90000 & 0.91667
\end{tabular}
soa (5)
\begin{tabular}{ccc} 
DF & SS & MS \\
4 & 0.003767 & 0.000942 \\
36 & 0.043976 & 0.001222
\end{tabular}
\(F(4,36)=0.771032 \quad p<=0.551215\)
\begin{tabular}{ccr} 
nlet & ( 2 ) & \\
DF & SS & \multicolumn{1}{c}{ MS } \\
1 & 0.310078 & 0.310078 \\
9 & 0.139661 & 0.015518 \\
\(F(1,9)\) & \(=19.981953\) & \(p<=\)
\end{tabular}
```

soa (5)
nlet (2)
DF SS
MS
4 0.003941
0.000985
36 0.052830 0.001467
F(4.36) = 0.671384 p<=0.616121
vollh (2)
DF SS
1 0.001953
MS
0.001953
g 0.014800 0.001644
F(1,9) = 1.187686 p <= 0.304115
soa (5)
vollh (2)
DF SS
4 0.006684
MS
0.001671
36 0.062934 0.001748
F(4,36) = 0.955865 价 0.443422
nlet (2)
vollh (2)
DF SS
1 0.001953
MS
0.001953
g 0.018967 0.002107
F(1,9) = 0.926786 p <= 0.360850
soa (5)
nlet (2)
vollh (2)
DF SS
MS
4 0.005469
0.001367
36 0.049566 0.001377
F(4.36) =0.992996 p<=0.423873

```
Experiment 6: Mean proportions correct for the tone task (mNCODE trials)
model is
--> sj ( 10)
    soa (5)
    nlet (2)
    vollh (2)
KEY:
```

soa
$(1)=50(2)=111(3)=245$
$(4)=542$
$(5)=1200$
nlet
(1) $=1(2)=3$
vollh
(1) = quiet
$(2)=$ loud

```
soa ( 5 )
0.97500
0.96837
0.96629
0.95792
0.96549
nlet (2)
0.96671
0.96652
soa (5)
nlet ( 2 )
0.97083
0.96174
0.95795
0.97417
0.96886
0.97917
0.97500
0.97462
0.94167
0.96212
vollh (2)
0.959210 .97402
soa ( 5 )
vollh (2)
\begin{tabular}{lllll}
0.97917 & 0.95379 & 0.95795 & 0.95750 & 0.94765 \\
0.97083 & 0.98295 & 0.97462 & 0.95833 & 0.98333
\end{tabular}
nlet ( 2 )
vollh (2)
\(\begin{array}{ll}0.95539 & 0.96303 \\ 0.97803 & 0.97000\end{array}\)
soa ( 5 )
nlet ( 2 )
vollh (2)
0.97500
0.94924
0.96500
0.94606
0.98333
0.95833
0.97424
0.95000
0.94924
0.96667
0.97424
0.97424
0.98333
0.99167
0.97500
0.99167
0.97500
0.93333
0.97500
soa (5)
\begin{tabular}{rcc} 
DF & SS & MS \\
4 & 0.006017 & 0.001504 \\
36 & 0.066208 & 0.001839
\end{tabular}
\(F(4,36)=0.817913 \quad p<=0.522254\)
\begin{tabular}{rcc} 
nlet & \((2)\) & \\
DF & SS & MS \\
1 & 0.000002 & 0.000002 \\
9 & 0.035382 & 0.003931 \\
\(E(1,9)\) & 0.000493 & \(p<=\) \\
& & 0.982762
\end{tabular}
```

```
soa (5)
nlet (2)
    DF SS
        4 0.016245
        0.004061
        36 0.112327
        0.003120
F(4,36)=1.301606 p <= 0.287869
vollh ( 2 )
    DF SS
        MS
        1 0.010956
        0.010956
        9 0.039907 0.004434
F(1,9)=2.470927 P <= 0.150419
soa ( 5 )
vollh (2)
    DF SS
                        0.01
        36 0.108284
        0.003440
        36 0.108284 0.003008
F(4,36)=1.143792 p <= 0.351682
nlet ( 2 )
vollh (2)
        DF SS
        I 0.003068
        MS
        0.003068
        9 0.039010 0.004334
F(1,9)=0.707826 p <= 0.421957
soa ( 5 )
nlet ( 2)
vollh ( 2 )
    DF SS
        MS
        4 0.003684 0.000921
    36 0.069709 = 0.475629 0 < 0.001936
F(4,36)=0.475629 p}<=0.75331
```

model is
--> sj (6)
soa (5)
nlet (2)
vollh (2)
KEY:

soa	$(1)=50(2)=111(3)=245(4)=542(5)=1200$
nlet	$(1)=1(2)=3$
vollh	$(1)=$ quiet $\quad(2)=$ loud

soa (5)
0.97058
0.97816
0.97816
0.97715
0.95006
nlet (2)
0.97480 0.96684
soa (5)
nlet (2)

0.96338	0.97778	0.99306	0.97652	0.96326
0.97778	0.97854	0.96326	0.97778	0.93687

vollh (2)
0.95328 0.98836
soa (5)
vollh (2)

0.94811	0.96326	0.95631	0.97715	0.92159
0.99306	0.99306	1.00000	0.97715	0.97854

nlet (2)
vollh (2)
0.95263 0.95394
0.99697 0.97975
soa (5)
nlet (2)
vollh (2)

0.92677	0.95556	0.98611	0.96818	0.92652
0.96944	0.97096	0.92652	0.98611	0.91667
1.00000	1.00000	1.00000	0.98485	1.00000
0.98611	0.98611	1.00000	0.96944	0.95707

soa (5)
DF SS MS
4 0.013886 0.003471
20 0.076478 0.003824
F(4,20)=0.907839 p<=0.478275
nlet (2)

DF	SS	MS
1	0.001898	0.001898
5	0.012152	0.002430
$F(1,5)$	$=0.781031$	$p<=0.417289$

```
```

soa (5)
nlet (2)
DF SS
MS
0.002216
20 0.035344 . 0.001767
F(4,20)=1.253907 p <= 0.320649
vollh (2)
DF SS
MS
1 0.036909
0.036909
5 0.019226
0.003845
E(I,5)=9.598725 p<< 0.026909
soa (5)
vollh (2)
DF SS MS
4 0.011448 0.002862
20 0.054058 0.002703
F(4,20)=1.058879 p <= 0.402474
nlet (2)
vollh (2)
DF SS
MS
1 0.002577 0.002577
5 0.007425 0.001485
F(1,5)=1.735256 p<= 0.244875
soa (5)
nlet (2)
vollh (2)
DF SS
MS
4 0.012146 0.003036
20 0.045354 0.002268
F(4,20)=1.338992 p <= 0.290122

Appendix B

Overview

Experiment 1 examined whether the decision to encode or ignore a stimulus based on colour required a capacity limited cognitive mechanism. In this experiment performance on blocks of trials where an online decision to encode or ignore was required was compared to performance on blocks of trials where no online decision to encode or ignore was required. The results revealed no additional interference on blocks where an online decision was required and thus it may be concluded that the decision to encode or ignore based on colour does not require a capacity limited cognitive mechanism.

Experiments 2 through 6 employ the locus of cognitive slack logic as a means of assessing the nature of the capacity limited cognitive mechanism involved in the encoding task. In Experiment 2 a tone loudness manipulation was employed in task 2 of a PRP paradigm experiment to confirm that the manipulation affected a relatively early stage of processing. As expected, a significant PRP effect was observed, however more importantly, the tone loudness manipulation produced a highly significant underadditive interaction with decreasing SOA, indicating both that the tone task was susceptible to interference and that the tone loudness manipulation affected a sage before the PRP bottleneck. In Experiment 3 the same tone loudness manipulation was employed in task 2 of an encoding paradigm experiment. In this experiment the tone loudness manipulation produced additive effects of SOA in the absence of an effect of SOA on task 1 accuracy. The results from Experiment 3 imply that the dual-task interference observed in the encoding paradigm is the result of a processing bottleneck with a locus at or before the locus of the tone loudness manipulation. Further, because the same tone loudness manipulation that produced underadditivity in a PRP paradigm experiment (Experiment 2) produced additivity in an encoding paradigm experiment (Experiment 3) it may be reasoned that the so-called PRP bottleneck and the bottleneck encountered in the encoding
paradigm are distinct. Experiments 4 and 5 replicated Experiment 2 and 3 using a tone localization difficulty manipulation in task 2. The results from Experiments 4 and 5 mirror those of Experiments 2 and 3; an underadditive interaction between the tone localization difficulty manipulation and decreasing SOA was observed in the PRP paradigm experiment (Experiment 4) while additive effects between the tone localization difficulty manipulation and SOA in the absence of an effect of SOA on task 1 were instead observed in the encoding paradigm experiment (Experiment 5). Experiment 6 replicated Experiment 3 using shorter SOAs and additive effects of the task 2 difficulty manipulation and SOA in the absence of an effect of SOA on task 1 accuracy were again found. The results from Experiments 4, 5, and 6 thus lend additional weight to the conclusion that the interference observed in the encoding paradigm results from a processing bottleneck that is distinct from the PRP bottleneck.

[^0]: I Note that a processing bottieneck model is essentially a capacity sharing model that devotes 100% of eapacity to the first task.

[^1]: 2. The intermediate case, where there is partial overiap between the manipulated stage of task 2 and task 1 processing, which is not illustrated, can produce either additive effects like in the no overlap condition or partial overadditivity.
[^2]: ${ }^{3}$ Mean number of letters reported $=.58$, chance $=.48,95 \%$ confidence interval for chance letter report was .14 to 1.02 ; mean number of symbols reported $=1.38$, chance $=1.0,95 \%$ confidence interval for chance symbol report was 1.11 to 1.64. Ten of sixteen participants performed at chance in the symbol report.

[^3]: +The data shown in Figure 21 was corrected to allow for possible case-confusion errors (see Shapiro et al, 1997). Although this adjustment reduced accuracy estimates in all conditions, the pattern of significant effects was not changed.

[^4]: 436.78795
 408.95443 450.13783 429.70424 525.23140 498.29230
 450.13783
 429.70424
 525.23140
 498.29230

