Providing Context in WS-BPEL

Processes

Allen Ajit George

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2008

©Allen Ajit George 2008

AUTHOR’S DECLARATION

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions, as accepted by my examiners.

[understand that my thesis may be made electronically available to the public.

ii

ABSTRACT

Business processes are increasingly used by organizations to automate their activities. Written in
languages like Web Services Business Process Execution Language (WS-BPEL), they allow a com-
pany or an institution to describe precisely its internal operations and identify the actors and
processing steps involved in completing them. As the pace of change increases, however, both
organizations and their internal processes are required to be more flexible; they have to account
for an increasing amount of externally-driven environment state, or context, and modify their be-
havior accordingly. This puts a significant burden on business-process programmers, who now
have to source, track, and update context from multiple entities, in addition to implementing and
maintaining core business logic. Implementing this state-maintenance logic in a WS-BPEL busi-
ness process is involved. This is because WS-BPEL business processes are modeled as if they were
the only thing operating in, and making changes to, the business environment. In this mental
model all environment state is changed by the business process - either as a result of its activities,
or a query it makes to external entities. This mental model does not reflect the real world, where
organizations and entities depend on state that is outside their control - state that is modified
independent of, and concurrent with, the organization’s activities. The WS-BPEL language is,
however, implicitly designed around this mental model, and the idea that all environment state
and the variables they are stored in are updated and maintained by the process itself. This makes
it hard for business-process programmers to write context-dependent processes in a concise

manner.

This thesis presents a solution to this problem based on the notion of a context variable for WS-
BPEL business processes. It describes how the WS-BPEL language-extension mechanism was used
to design context variables, and how these variables can be used in business processes. This thesis
outlines an architecture for offering context in the web services environment that uses constructs
from the WS-Resource Framework specification. It shows how changes in context can be propa-
gated from these context sources to WS-BPEL context variables using WS-Notification-based
publish/subscribe. The proposed design also includes a standards-compliant method for extend-

ing web-service response messages with pointers to context sources. Finally, a prototype validat-

iii

ing these extensions and the overall system is described, and enhancements for increasing the

utility of context variables proposed.

The solution outlined in this thesis offers significant advantages: it builds on established prac-
tices and well-understood message-exchange patterns, leverages widely used languages, frame-
works and specifications, is standards compliant, and has a low barrier-to-entry for business-
process programmers. Moreover, when compared to either polling or onEvent handlers, this solu-
tion requires significantly less process logic and fewer interface changes to maintain constantly
changing environment state. This makes it much simpler for business-process programmers to

write flexible WS-BPEL business processes.

v

ACKNOWLEDGEMENTS

First, I would like to thank both Kamran Jamshaid and Cecil Reid for their friendship, support,

and for the times they simply listened. They have enriched my time at Waterloo.

Next, [would like to thank both Professors Jay P. Black and Krzysztof Czarnecki for agreeing to
read my thesis. I enjoyed the classes I took with them, and have learned a lot from the way they

looked at research problems.

I would be remiss if I did not acknowledge the many contributions of my supervisor, Professor
Paul A.S. Ward. His support and encouragement during the course of my research was invaluable.
I thank him for the many times I walked away from our one-on-one meetings with a head full of
ideas and possibilities, and with a new appreciation for the joy in research. He has taught me a lot
about the research process and how to develop ideas, and he gave me considerable flexibility in

how I worked towards the solutions. I greatly appreciate his many insights during my years here.

Finally, I would like to thank my parents, for their love and understanding, and for their unend-

ing support. They have done so much for me.

DEDICATION

To conversations, photography, and weights.

vi

TABLE OF CONTENTS

LISt Of FIGUIES ..ottt ettt sttt b et s bt et s bt et e bt et e s be et e nbeenbenaesnneseenseseeens X
Chapter 1 INtrOAUCHION.ovuiiiieeieieeeetes ettt ettt ettt s bt et e s st et e saeentesaeentenseeneenee 1
11 CONEIIDULIONS ...ttt ettt 2
1.2 ThesiS OTaniZaAtiONce.eeuiruirieiirtiriententertestestestete st etetet et et et eseeseeseesesseesessessessessessessessesensansenes 3
Chapter 2 Background and Related WOTKccocoeiriiinininiiieeeeeeeeee e 4
21 COMEEXE. et nutieiiieeeiee et e et e e ettt e st e e et e et e e s bt e e s uteesaateeeabee e steesaseessabaesasteesaseeenneaesasaeesaseaseeanntaesan 4
2.2 PTEVIOUS WOTK ...ttt ettt e e st e e seeseessenseessenaeeseensenes 5
2.3 WISDIL Lttt ettt ettt e e et et e st e et e e e h e e e s bt e e at e e e bt e e e bt e beeeentaenane 9
2.4 WS-BPEL ..ottt b ettt b e a et a et a e re e 1
2.5 WS-AAATESSING ...ttt ettt ettt ettt ettt be bt e b b s b sbe b nbens 14
2.6 WS-NOHICATION ..ttt ettt ettt et sae b 16
2.7 WS-ReSOUTICE FTamMEWOTKcc.oiiiiiiiiiiicieceeiece ettt ettt ettt ve e e e e eve e aeeeaaeeareenes 18
Chapter 3 Context in WS-BPELcc.oooiiiiiiieee ettt st 20
3.1 MOtivating SCEONATIOcoueiiiiiiiiiiiieiet ettt st 20
3e2 POIIINIE ettt sttt ettt ea et e st et ne et e aeenees 22
3.3 Message Handlingcocooueiiiiiiiiieicee ettt sttt 22
3.4 Proposed APPIOAChcuiiiiiiiieieee ettt as 24
Chapter 4 SOIUtION OULHINEcveieieieiieieeeeeeeeeee ettt ettt ettt ettt eae s seeaesseseas 27
4.1 Modeling CONLEXt SOUICESccueueruiieiirieiinieieieteterteeteteeet ettt ettt se s naenes 28
4.2 Context-Source REfEIEINCES.co.iiuiriiriiiiierieeeee et 33
4.3 EXtending WS-BPEL........cccooiiiiiiiiieee ettt ettt st 40
4-3.1 LangGUAZEe SUPPOTT ..cc.ueiriiiiiiiieiieeeerie ettt ettt sttt ettt essaesne s beesseesareeas 40
4.3.2 WS-BPEL Engine ENhancementsccccoeviririnininieniieeieeeeceeeeeeeeee e 44

4.4 OVETAIl SYSTOIMviiiiiiiiiiiiie ettt ettt ettt ettt beebe b eees 46
CRaPLer 5 PIOTOLYPE ...ttt sttt ettt ettt ettt s e e b b e 48
5.1 WSRF-Based Context Source Frameworkcoccooieiiniiiiininienieeececseeseeie e 48
5.1.1 APACKHE IMIUSE ...ttt sttt et s et e bt et esbe et e naeeneas 49

5.1.2 Managed RESOUICES.........oeueeiiriiiieriieiet ettt ettt ettt et e st et e bt e e be et e naeeneas 52
5.1.2.1 CONtext-SoUrce FACtOTYc.c.coiiiiiiiiiiieiee ettt st 54

5.1.2.2 CONTEXE SOUTCE. ... ittt ettt et e sttt e e et e s bt e e s beeesmeeesbeeenas 54

5.1.2.3 ServiceGroup and ServiceGrOUPENLIYccccecuevieiiriiiiinieiesee et 57
5.1.2.4 SUDSCIIPLION IMANAZET ...c..eeuieiuieieeiieiiriteie ettt ettt sie et st e st st ebesae e tesseeaesseensesaeens 59

5.1.3 Development IMPreSSiONScccuevirieriieienieiere ettt sttt saeenees 60
5.2 Intermediate WeD SEIVICEcoiiiiiiieiieiiceeieeeetee ettt sttt e sae e e e saeennens 61
5.2.1 Programming Modelcccooiiiriiriiiiiieeeeeee e 62
5.2.2 INEEITACE ..ouvieiiiieiecte ettt ettt e e e st e e aa e be e st e beessesae e st e seesseseesaenseenas 65
5.2.3 IMPIEMENTALION ..ottt ettt ettt 70
5.2.3.1 Interacting with the InVOKIing Service...........ccveviriririnininieieseeeeeeeeeeeeee 71
5.2.3.2 Interacting with the Context-Source SyStem...........cccecererererininenenenesesene e 73
5.2.4 Development IMPreSSIONScceviriririerierieierietee ettt 75
5.3 Modified WS-BPEL Process ENGINeccccoevuiiiriinieniiiiiieieieieeeteeeteeeeeieeie e 75
5.3.1 ACLIVEBPEL 4.1 ..ottt ettt s s e e 76
5.3.2 EXtension Validationccoeeeiiririieniieieneeese ettt 78
5.3.3 Generating Runtime StruCtures..........c.ccocvevvieiiiiiiiiiniecieeceeeeeee e 8o
5.3.4 Processing Extended RESPONSEScceeiiviiriiiiiniiiecceiescee ettt 83
5.3.5 SUbSCIibing t0 CONEXt SOUICESeruviiieiiiiieiieieeitesieetete ettt st be et e saeeneas 84
5.3.5.1 Creating WSN NotificationCONSUMETS..........cccevrieieirierieineeieeesesiesreseessesiesiessesseees 85
5.3.5.2 SUDSCIIDINE ..ottt s et eae b s eees 93
5.3.6 Processing NOtIfICAIONScoivuiriiriiriirieierieterieee ettt 96
5.3.6.1 Propagating Notifications to a Process Instance............coccecevevuenenineneneneneneseeneenen 97
5.3.6.2 Updating the Context Variable............ccccooiiiiiiiiiiiiiiii e 99
5.3.7 Development IMPIeSSIONScoeeueriiriirieriirieierieieteseete ettt ettt ee 99
50k T@SE SEEUP ..eeneiiinieiiieiieee ettt ettt et ettt st e bt e st e st e s b e e bee st e sabeebeenseesaseeareanes 100
5.5 Prototype LIMItationsccceeviiiiiriiiieeeeeecteree ettt st s s s 101
Chapter 6 EVAlUALIONcovieieiieieieeieiceee ettt ettt s et aese e eaesseentesseensesseensasseensens 102
Chapter 7 ENNANCEMENLScc.ovuiiiiiriieieriieieeeeesteete ettt ettt ettt esaesaeetesseesesseensesseensensean 106
7.1 The <conditionWithTimeout> EXtension ACHIVILYccccecuereeriererrienenieneeierie e 106
7.2 CoNteXt HANALETSoovviiiiieeeeeeee ettt et e aae e e eteeeete e etaeeereeeeareeennes 110
7.3 Context Handoffccooiiieeee ettt 12

7.4 Context SOUrces With SEMANTICScccvcciiiieicieceecie ettt et et ere e te e beesateeabe e beens 13
7.5 Other ENNanCemMENEScccueviiriiiiirieieeieieeee ettt sttt sttt ettt sbe et e e eneas 15
Chapter 8 CONCIUSIONS.oouiiiiriiieeiteeeee ettt sttt ettt ettt e s bt e tesbeetesbeensesseentesaeensens 16
12310) H e 4 =1 0] 1) AR SE R S PR SRRSRR n8

X

LIST OF FIGURES

Figure 1 WSDL <message> defiNitionccccociiiiiriiiiinineneseseeceeeeee ettt 9
Figure 2 WSDL OPETAtIONoouviiiiiiiiiiiieiieeeceeete ettt ettt sttt et s e s saeesne e neesaee e 10
Figure 3 WSDL POTt TYP@ ..coiuiiiiieeeeee ettt sttt et sanesne e ne e e e 10
Figure 4 Relationship between WS-BPEL Partner Links and Port Types.......cccccccevvvirinininencncnnens 1
Figure 5 Sample WS-BPEL Partcer Link and Partner Link Typecccccceoeviniiinininiieineccnes 1
Figure 6 Sample WS-BPEL DUSINESS PIOCESSc..evuerieriieieniieierieeitenieeteie ettt st e eaesneas 13
Figure 7 XML representation of WSA EPR........ccooiiiiiiiiiieeeeeeeee et 14
Figure 8 WSA EPR with single Reference Parameter...........ccoccoviriininieniinienienieieceesceeeseeieen 15
Figure 9 WSA SOAP-Binding message-information header blocks..........cccoccoeirioincnniniincnncnn. 15
Figure 10 Translation of EPR reference parameters to SOAP-header elements..........cccccceeuerueuenneee. 16
Figure 1 WSN NotificationProducer offering a set of topics in a TopicNamespace.............cccce....... 17
Figure 12 Interaction between NotificationProducer, NotificationConsumer and Subscriber 17

Figure 13 WS-Resource with a set of WS Resource Properties in a WS Resource Properties

DOCUMEIIL ...t s a e b s 18
Figure 14 Sample SCENATIOcccruiruiiiiiiieiee ettt ettt 20
Figure 15 Example of WS-BPEL onEvent handlers and pollingccccecevereninininininencneneniene 21
Figure 16 High-level conceptual model of context variablesc.ccceoererininiinininininencrceeee 25
Figure 17 High-level interaction between SCENArio aCtOrScocevierieieieiiieineneeeee e 27
Figure 18 Design of the Shipment CONtEXt SOUICEco.eruirierieriirieieieieeeteeet et 29
Figure 19 Context variable system using WSRF CONStIUCESccceverveuerieireninencincieereeeneeeeenes 30
Figure 20 Two EPRs differentiated using reference parameters.............ccccoevueveerienienienienineneeeneenenn 31
Figure 21 Two different mappings between EPRs are WS-Resource instances..........c..ccccecevereruennee 31
Figure 22 Sample message flow for context source creationccceceeveeererenereneneneneneneneeees 32
Figure 23 Elements in a context variable linked to diffierent context sources...........ccccocevvereeruennnee. 35
Figure 24 Context parameter SChEeMA.........c.ooiiiiriiierieeeee et 37
Figure 25 Use of <StatefulParameterNamME ™ ettt ettt see s sae e ees 39
Figure 26 Functionality a WS-BPEL engine needs to support context variablesc..ccccccceueueenee. 44
Figure 27 High-level message flow for context variable Setupccccccevieiririnvinenincnenercncees 45
Figure 28 Routing notifications from a context source to a WS-BPEL processc.cccccevevverveennee 46

X

Figure 29 ShipmentCondition CONLEXEt tYPe.......ccoiiiiiiiiiiiiiiiiiiiiiiieie s 48

Figure 30 Apache Muse high-level design..........ccccocoiiiiriiiiiiiiiiee s 49
Figure 31 Port Type with both a specification-defined and custom operation...........c..ccccecevereruenne. 51
Figure 32 Mapping between a WSA Action URI and the Muse receiving class..........ccccccecercennencne 51
Figure 33 Interaction between MUSE TESOUICESc.ccveruerierierierieieieieteteteeee et e e ssessessessessenees 52
Figure 34 Business interaction to create Shipment CONteXt SOUICES.....c.ccceerverrrreernueeennreernveersvenns 53
Figure 35 Capabilities for the MainInterface Muse resource (context-source factory).............. 53
Figure 36 WS Resource Properties Document for ShipmentTracker .o ncrnennenecenneennes 55
Figure 37 Capabilities for ShipmentTracker Muse resource (context SOUIrCe).........ccceevrvrverenenen 56
Figure 38 Capabilities for the ShipmentResourceGroup Muse resource............ccceeeeveuerueneenene 58
Figure 39 Capabilities for the ShipmentResourceGroupEntry Muse resource.............oeueeneee. 58

Figure 40 Relationship between NotificationConsumer, context source
(NotificationProducer), SubscriptionManager and Subscription WS-Resource.....59
Figure 41 Capabilities for SubscriptionManager MUSE I€SOUICEccccoveriereereenreeiereereeniennns 59

Figure 42 Interaction between the supplier web service, the WS-BPEL engine and the context-

SOUTCE SYSEEIYY ...eeeuutieiuteeeiteeatteeautte ettt eeuteesmeteeabeesameeesabeeeeabeesaseeeeasee e sbeesaseeeeaseesneeesaseeeanneesnaeesasesareeanns 61
Figure 43 Relationship between an SEI, SIB, Port Component and the WSDLc.ccccccvvvrennee. 62
Figure 44 Request-message structure for purchaseItem Operationccceceveeeieneeeenerreeneenne 65
Figure 45 Relationship between message, part, element and parameters.........c..cocceevererenieneennenne. 66
Figure 46 Type hierarchy for the intermediate web service’s response message..........c..cccceceeueeunee. 69
Figure 47 Relationship between ActiveBPEL *Def, * Impl objects and process instances 77
Figure 48 Simple WSN NotificationCONSUMET SELUP.....cceerreuerreeruerieririenirreeeenieienreeereseenesseesseeenes 86
Figure 49 Alternative WSN NotificatioNCONSUMET SELUPc.evveurruereeuerienirieieienieienieeereeereseeesseeenes 87
Figure 50 Relationship between Axis services and Muse reSOUrces..........c..coceeeeererreneenenienieneeneennes 89
Figure 51 The BPELConsumer Muse resource in the service/resource heirarchycccocceceeecee. 89
Figure 52 PurchaseItemResSponse reSponse MESSAZE.cccevuiruueruerienuiiiesueiiesieiiessessessessessesns 93
Figure 53 Format of a WSN notification MeSSagecccoueruerierierienieiieieieeeteceiesieeieeee e 96

Figure 54 Example of NotificationMessage routing to Muse resources that implement the
NotificationMessageListener INEITACE ...ttt ereenreeens 97

Figure 55 Scenario message flow required to create a Shipment context SOUICEc.cceveueruenene 102

X1

Figure 56 Java-EE web service reSponse messagecoevuerueruerienienienieienieieeeeeeeieeieeie e 103

Figure 57 Response-message cONtext PArameterccccevieriiireieenieniiernieereeneenre e esneeseesreeneenees 103
Figure 58 Pseudocode for "blocking condition with timeout" scenario process logic.................... 106
Figure 59 Scenario process logic using pollingccccecerieiiiniiiinieiereeereee e 107
Figure 60 Scenario process logic using context variables and standard activities only.................. 108
Figure 61 Design of <conditionWithTimeout> extension activity........ccccocevrververrencncnenennens 109
Figure 62 Scenario process logic using context variables and <conditionWithTimeout>....... 110
Figure 63 Design of the <contextHandler> aCtiVilyccomirrererinennenieeneeineeeeseeseeeeeeeene 110
Figure 64 High-level view of context variable handoffcccooenenerieieneie 112
Figure 65 Use of modelReference attribute with ShipmentCondition context type 114

xii

Chapter 1

INTRODUCTION

Business processes are integration programs that tie together various entities, both within and
between organizations, to achieve business goals. They are ideally suited to implementation in a
Service-Oriented Architecture (SOA), where functionality is provided by services with well-
defined interfaces. The problems they target often require extensive I/O, data mediation, and
knowledge of relevant environment state. As organizations demand greater efficiency from their
operations, adaptability in the face of competitive forces, and nuanced responses to clients, the
code required to perform these tasks only increases. Business processes are then no longer a rote
repetition of steps: they have to find and account for changes in the business environment,
choose a concrete entity from several alternatives and route task requests to them, etc. This poses
challenges when it comes to evolving current business process languages like Web Services Busi-

ness Process Execution Language (WS-BPEL) 2.0 [39].

WS-BPEL 2.0 (hereafter, WS-BPEL) is a business process language tailored to integrating web-
services. It is designed to run in a business-process engine, a virtual machine that abstracts away
much of the implementation minutiae of addressing, format conversion, persistence, etc. WS-
BPEL allows programmers to think of a business process’s constituent services only in terms of
XML messages and WSDL [67] interfaces, not implementation technology or details. As WS-BPEL
business processes are tasked with being more flexible, they will need knowledge of their envi-
ronment state to customize their actions. However, WS-BPEL business processes are modeled as
if they were the only thing operating in, and making changes to, the business environment. This
mental model does not reflect the real world, where organizations and entities depend on state
that is outside their control - state that is modified independent of, and concurrent with, the or-
ganization’s activities. The WS-BPEL language itself is built around this assumption - that all re-
levant environment state is sourced and updated by the process itself, and at its discretion. Thus,
if a WS-BPEL business process is interested in a piece of environment state, its designer has to
pick the state source at design time, decide the state-update interval, define state update and fault
compensation activities within the process, etc. The amount of work the programmer must do to

achieve this may be tolerable when the process is small, the relevant state is static, or when only

one or two pieces of state have to be sourced and maintained, but it becomes a significant burden
when multiple pieces of changing environment state are sourced from many entities, each with
different interfaces, characteristics and Message-Exchange Patterns (MEP). Forcing the program-
mer to implement and maintain all this state-maintenance logic distracts from their core task:

implementing the business goal.

Simplifying state maintenance in WS-BPEL is challenging, but it delivers a number of benefits:
it becomes easier and faster to write adaptable business processes, since programmers no longer
need to define state-maintenance activities for each piece of relevant state; it allows these
processes to be written with greater clarity since state-maintenance activities will no longer be
scattered throughout the process logic; and it raises the abstraction level in thinking about envi-
ronment state — programmers can think of state and its effects on their business process instead
of the minutiae of locating, updating and propagating changes in this state. There is a range of
problems that would benefit from the simplification of state maintenance, including applications

in health care, transit, and logistics.

State maintenance in WS-BPEL is hard because while WS-BPEL has excellent support for the
pull-style interactions, where environment state is collected by the process on its timeline at its
behest, it has extremely poor support for push-style interactions. This omission is glaring when
one considers that most changes in a process’ business environment occur independent of its ex-
ecution, on an often unpredictable schedule. Thus, if business processes are to be more flexible,
then WS-BPEL needs substantially better support for externally driven environment-state

changes.

1.1 CONTRIBUTIONS

This thesis presents a solution for dealing with a large amount of changing environment state, or

context. It centers on the idea of a context variable for WS-BPEL. In our approach we:

1. Describe context as it applies to business processes;
2.Model context sources for web services using WS-Resource-Framework (WSRF) [43] WS-

Resources;

3.Use publish/subscribe (pub/sub), as provided by WS-Notification (WSN) [38], to propagate
context changes from context sources to WS-BPEL context variables;
4.Demonstrate a standards-compliant way of extending web-service messages with references
to context sources.
The solution outlined in this thesis offers significant advantages: it builds on established practices
and well-understood message-exchange patterns, leverages widely used languages and frame-
works, is standards compliant, and has a low barrier-to-entry for business-process programmers.
It allows these programmers to write processes that rely on external state using substantially few-
er activities and interface changes than either polling or onEvent message handlers. We also
demonstrate the feasibility of the proposed solutions by constructing a prototype using a mod-
ified standards-compliant WS-BPEL engine, a Java Platform Enterprise Edition 5 (Java EE) web

service, and a WSREF toolkit.

1.2 THESIS ORGANIZATION

This thesis begins by describing context and reviewing previous research into integrating context
with WS-BPEL. It then covers Web Services Description Language (WSDL), WS-BPEL and other
relevant specifications. Chapter 3 presents the motivating scenario used throughout the thesis,
describes how the environment state in this scenario can be updated using constructs in WS-
BPEL, the limitations of these approaches, and ends with a proposal based on context variables. In
the following chapter the context-variable approach and its supporting architecture is described
in detail. Chapter 5 then describes how the proposed solution was implemented in the prototype.
Finally, the thesis closes with an evaluation of the work in Chapter 6, and outlines some en-

hancements to the core concept in Chapter 7.

Chapter 2

BACKGROUND AND RELATED WORK

Our context-variable solution draws on developments from both academia and industry. On the
academic side, it builds on research into context, and context-aware and adaptable WS-BPEL
processes. The solution architecture was designed to be standards compliant and, as a result,
builds on various web-services standards, including WS-BPEL, WSRF, WSN, etc. In the following
sections we first cover research that informed the design of context variables. We then outline the

specifications used to design the solution architecture and relevant constructs within them.

2.1 CONTEXT

As individuals, before we act we consider various ‘relevant factors’ and modify our behavior ac-
cordingly; this allows us to be flexible, and adapt to changing situations. These relevant factors
form the context for an action and ensure that our responses are appropriate to the situation. In
the computing community context awareness has been interpreted as applications “adapting their
behavior based on information sensed from the physical or computational environment” [2]. With
context awareness, systems would be able to incorporate user preferences, knowledge of device
capabilities, and environmental factors in their decision-making, all in a manner transparent to
users, thus enabling a new generation of highly responsive, yet minimally intrusive applications.
Initial research into context often focused on the user’s location [1, 70]. Schilit expanded this to
include other aspects as well, including available resources, the people around the user, and even
the activity or social situation in which the user was involved [53]. Since then, extensive work has
been done to incorporate context in application areas from ad-hoc communication [71] and tele-
com [26], to web services [24, 72] and mobile devices [16]. Despite this, there is yet to be a univer-
sally accepted definition of context since it varies by domain and application. The most cited one
is Dey and Abowd’s [19], in which they state:

Context is any information that can be used to characterize the sit-

uation of an entity. An entity is a person, place or object that is

considered relevant to the interaction between a user and an appli-
cation, including the user and the application themselves.

This definition is very broad and provides developers little guidance as to what qualifies as con-
text in their application. Recognizing this, many researchers have tried to define relevant context
and ways of representing context in specific application areas [28, 30, 35]. However, none of these

have been used widely.

There is also research on how to use context to adapt application behavior. This can be sepa-
rated into two parts: acquiring and processing context from multiple sources, and using it in con-
text-aware software. Research into the former has led to context middleware frameworks, the
most well-known of which are Gaia [52] and the Context-Broker Architecture (CoBrA) [17]. These
frameworks abstract away the variances in how context is sourced. There are many projects in
which context is used to adapt application behavior. For example, Ranganathan and McFaddin
present a system in which an individual’s context is used to guide service selection and populate a
Business Process Execution Language for Web Services (BPEL4WS) business process [51]. In their
Semantic Web Services paper Mcllraith et al. describe how context can be used to influence goal-
based automated service composition [37]. While in the mobile devices space, Lemlouma and
Layaida describe their Negotiation and Adaptation Core (NAC) prototype in which the capabili-
ties of the target platforms influence service composition [32]. These are but a few examples of

how researchers have leveraged context to improve the flexibility of their solutions.

2.2 PREVIOUS WORK

The work in this thesis builds on concepts in context-aware computing, event-driven systems, and
distributed shared data in general. It is closest to research into context-aware and adaptable WS-

BPEL processes.

Researchers have recognized that using context effectively is key to building more flexible, inte-
roperable web services [36, 54]. Kiedl and Kemper present a context framework for web services in
which context parameters like location and client device type are carried in Simple Object Access
Protocol (SOAP) header blocks [28]. Separate context services then modify a web service’s request
and response messages based on the contents of those blocks. However, since their approach only
deals with messages to/from a service, their project cannot use context to modify its internal op-

eration. This is a major difference from our proposal.

Subsequently, modifying a service’s internal operation has been explored. Many projects have
used context to modify BPEL4WS [4] or WS-BPEL business processes, workflows and other ser-

vice-composition languages. Context is often used to:

e Determine what tasks (and thus the services performing them) are used in the composition

¢ Choose between multiple service implementations for a given task

¢ Determine whether a service should participate in future compositions

In their research Vukovic and Robinson use context information — which they define as a user’s

location, network capabilities, device constraints, etc. - to determine which constituent tasks
should be performed in a composition to meet a given goal [61]. This context information is used,
along with other parameters, as input into a Simple Hierarchical Ordered Planner 2 (SHOP2)
planner in order to generate a BPEL4WS business process. Using context up-front to generate an
executable process is also pursued by Ranganathan et al., who describe an architecture for coor-
dinating web services in a pervasive computing environment [51]. There, BPEL4WS workflow
templates are specified in advance, and context is automatically gathered from the environment
to determine which service implementations should be chosen for the placeholders in the tem-
plate. In both these projects context is only used at the composition stage; once the executable
business process is created, changes in context no longer affect process execution. Other solutions
have gone further, using Quality of Service (QoS) or other monitored information to modify a
process information at runtime [9, 27]. In their system, Karastoyanova et al. use a BPEL4WS lan-
guage extension and architecture support to create a “find-and-bind” mechanism through which
service instances can be substituted at runtime in response to infrastructure failures, a process’
execution domain, etc. [27]. Baresi and Guinea use context for a different purpose. In their system,
independent monitoring rules are combined with a proxy-based service invocation approach to
modify process instances [9]. These solutions address flexibility by treating it as a service selection
and composition problem. While promising, they do not use context within control structures or
structured activities to change the process’ execution path, only the specific services invoked in
that path. In fact, a common theme running through these projects is that to modify the process
you modify the services invoked - by changing constituents the overall composition can be made

to run faster, slower, account for user preferences, etc. Again, this approach differs from ours. We

do not use context to drive service selection, but instead make it available to WS-BPEL constructs,

thus allowing it to influence process control flow.

More complex workflow adaptation has been explored in projects like eFlow [13]. There,
workflows are viewed as a graph consisting of service, event and decision nodes, with user prefe-
rences and other context information used to drive composition both at the preliminary stage and
at runtime. What differentiates eFlow from the above projects is its notion of event nodes - points
at which a composition may send and receive events. These nodes are subsequently explored by
Casati and Shan [14]. In that work they acknowledge that workflows depend on data that changes

independent of its own execution. They then:

1. Propose an event model, describing the different kinds of events the eFlow architecture ge-
nerates and responds to
2.Decompose event nodes into publish and request process nodes - points at which a compo-
sition halts, and then generates or waits for an event
In eFlow, the developer has to explicitly define points in the composition (request nodes) where
execution halts and the composition waits for events. Variables can only be updated at these
nodes, not whenever an event occurs. Moreover, programmers must define a capturing rule with-
in the request node to copy an event’s value into a composition’s variable. Finally, eFlow is based
on a custom language and engine, not on WS-* standards, communication protocols and compo-
sition languages like WS-BPEL. Our context-variable proposal, while sharing many of the same
concepts and concerns as eFlow, is a much lighter-weight approach that builds on existing stan-

dards, frameworks and toolkits.

The idea of using pub/sub during workflow execution has also been explored extensively.
Projects like LEAD [50] explore how event subscription and notification can be used to guide the
execution of grid-based workflows. It uses WS-Eventing [11] and the idea of a centralized event
channel to which a workflow instance’s invoked services can publish status and other metadata.
This workflow engine then uses this information to guide an instance’s execution. In [29], the au-
thors present the idea of workflow engine having a separate notification channel to its invoked
services. This channel would be used by the services to inform the engine of their processing

state. In both of these projects events and notifications are used to communicate a service’s ex-

7

ecution state, not transfer data between executing services or workflows. Recent work has taken
the use of pub/sub even further: in NINOS [33], a BPEL4WS process is executed in a distributed
fashion on the PADRES [21] distributed content-based pub/sub routing infrastructure. There, a
process is devolved into its constituent activities, each of which is executed by a light-weight ac-
tivity agent. These activity agents are all publish/subscribe clients that use the PADRES infra-
structure. NINOS is primarily concerned with showing how distributed control flow can be
achieved using pub/sub primitives — subscriptions and notifications. It also briefly describes how
these primitives can be used for variables as well: activities use PADRES primitives to subscribe
to, and notify others of, changes to variables in which they are interested. Though NINOS uses
pub/sub for process variables, the semantics governing these variables remain unchanged: a vari-
able’s value is only modified by in-process activities or explicit request/response interactions with
external web services. This is in contrast to our work, in which we recognize the limitations of
standard WS-BPEL variables in reflecting externally-driven state, and show how our pub/sub-

based context-variable design can simplify this task.

This idea of shared data or resources has a long history. In fact, context can be thought of as
shared data that a WS-BPEL process can access, but not modify. There are a number of research
projects and standards that explore this concept in the web services arena. One of these is WS-
Context [41], an OASIS specification in which the concept of an activity is used to group interac-
tions between a set of web services. An activity is analogous to the idea of a shared session. The
WS-Context specification identifies each activity instance using a context. Note that this notion of
context is not the same as ours: it is best thought of as a shared session. Since all the services par-
ticipating in the activity use a context identifier in their messages’ header block, they can access
shared resources implicitly. They can also use a Context Manager to retrieve and set data asso-
ciated with the activity instance. Unlike our approach, WS-Context’s view of shared data is still a
request/reply-oriented one. Shared data must be explicitly set by the service generating changes,
and explicitly retrieved by services using them. As a result, this specification does not address the
concerns highlighted in this thesis. Researchers have also explored how web services can leverage
a shared session, or space, in their execution. In the WSSecSpace project [34], services in a com-
position execute not as a result of direct service invocations, but by watching a shared space for

data on which they are dependent. This project extends work in Linda [22] and adapts it to the
8

<types>
<schema targetNamespace="http://examplel.xsd"
xmlns="http://www.w3.0rg/2000/10/XMLSchema">
<element name="GetPrice">
<complexType>
<all>
<element name="ItemCode" type="string"/>
</all>
</complexType>
</element>
</schema>
</types>

<message name="GetPriceRequest">
<part name="wrapper" element="pr:GetPrice"/>
</message>

Figure 1 WSDL <message> definition

web services arena with additional support for security. In the Active Shared Space project [49], a
shared space is used not just to facilitate execution, but monitoring as well. Both of these projects
focus on the data that is generated, or changed, as a result of service execution, and use it to in-
itiate behavior in other, dependent services. Unlike our approach they do not consider the ques-
tion of how to change a service implementation - e.g., a WS-BPEL process - to transparently pick

up these changes.

Finally, external variables as defined by Chandy et al. [15] come close to our notion of context
variables. They are, however, limited when compared to context variables since each one has to be
linked to a different real-world source. Further, it is not described how these variables are popu-
lated at runtime. External variables have been added to WS-BPEL by Baresi et al. [8], who use
them in monitoring rules outside a WS-BPEL process. In their design the variables are populated
using ad-hoc, RPC-style WSDL operations, and their values are not used within the process. This
differs from our approach in that context variables are used within the business logic, we describe
the design of the standards-based entities that provide context, and we use WSN pub/sub to de-

liver their values.

2.3 WSDL

Web Services Description Language (WSDL) is the de facto XML format for defining web service
interfaces. A WSDL interface includes a set of data types, and abstract definitions of messages and

operations. It also defines how to bind these abstract messages and operations to specific message

<operation name="GetPrice">
<input message="tns:GetPriceRequest"/>
<output message="tns:GetPriceResponse"/>
</operation>

Figure 2 WSDL operation

<portType name="RetailerPortType">
<operation name="GetPrice">

</operation>
<operation name="GeQuantity">

</é§ération>
</portType>
Figure 3 WSDL Port Type

formats and protocols. For the purposes of this thesis we shall cover only a few key features of
WSDL. For more details, the WSDL specification from the W3C should be consulted [67]. The
WSDL <types> element contains a list of XML-Schema type definitions that are used within
WSDL messages. Other, pre-existing schemas can also be referenced within the <types> element.
A WSDL <message> is an abstract definition of the data that is transferred in a WSDL operation.
Each <message> consists of one or more parts, each referencing an XML Schema type or element.
In this thesis messages with only a single part are considered. An example of a <message> defini-

tion is shown in Figure 1.

A WSDL interface can contain an arbitrary number of messages. Messages are transmitted to,
and from, a web service by WSDL operations. The WSDL specification defines four operation
styles, of which one-way and request-response are the most widely used and supported. Each op-
eration defines an input and/or output message, as well as an error message that may be returned
as a result of the operation. The input message is defined using the <input> element, the output
message using the <output> element, and the error message using the <fault> element. A sam-
ple of a WSDL operation is shown in Figure 2. Since WSDL operations are defined as a set of mes-

sage exchanges, they are also referred to as Message-Exchange Patterns or MEPs.

A set of WSDL operations and messages are bundled into a WSDL Port Type. Port types define
an abstract endpoint, the operations offered by this endpoint, and the messages used by these op-
erations. Each port type can be thought of as a named interface to the web service. An example of

a port type is shown in Figure 3.

10

WS-BPEL Process External Web Service
[ProcessName] [WebServiceName]
q Z: [PT1] PortType | PartnerLink
[PLT]

~N
Roles: [Z] E

i — Operation [Op7]

PartnerLink A: [PT2] PortType hﬁ g Operation [Op2]

[Pname2] =

=
Roles: [A, B] | B: [PT3] PortType q E

PartnerLink
[Pname3]

Roles: [X] X: [PT4] PortType

External Web Service
[WebServiceName]

Operation [Op7]
Operation [Op2]

PortType [PT4

Figure 4 Relationship between WS-BPEL Partner Links and Port Types

2.4 WS-BPEL

WS-BPEL is an XML-based programming language for business processes that describes how
these processes are specified and the model governing their operation. A WS-BPEL business
process orchestrates interactions with web service partners to achieve a business goal. Each part-
ner has a WSDL interface with at least one port type; a WS-BPEL process also exposes a WSDL

interface with at least one port type, thus allowing itself to be included in even larger composi-

<partnerLinks>
<partnerLink name="Store"
partnerLinkType="emp:eCommerceStoreType"
partnerRole="eCommerceStore" />

<partnerLink name="Notification"

partnerLinkType="not:NotificationServiceType"

partnerRole="NotificationServiceProvider" />
</partnerLinks>

In referenced WSDL:
<plnk:partnerLinkType name="eCommerceStoreType">

<plnk:role name="eCommerceStore" portType="stor:RetailerPortType" />
</plnk:partnerLinkType>

Figure 5 Sample WS-BPEL Partcer Link and Partner Link Type

11

tions. The relationship between a partner service and a WS-BPEL business process is codified in a
mandatory Partner Link; each partner link has up to two roles, and declares which port type each
role requires and that the communicating services should satisfy, for the interaction to occur. The
relationship between a WS-BPEL process, external web services, partner links and port types is
shown in Figure 4. A sample of a partner link is shown in Figure 5 Neither the port type nor the
partner link specify message formats or transport-specific information about the web-service
partners. This concrete binding information is set at design-time in an implementation-specific

manner, or at runtime through the use of endpoint references.

The WS-BPEL specification fully outlines the grammar of the WS-BPEL language. All business
processes are written in process-definition files, or process definitions. Each process definition is
loaded and run on a WS-BPEL engine, a virtual machine that abstracts away much of the minu-
tiae in communicating with web services and executing long-running business processes. Process
logic is performed through the use of activities, which come in two forms: basic and structured.
Activities are represented in process definitions as XML elements, with their properties described
as attributes or child elements. Certain activities may contain child activities, and all activities are

themselves children of <process> element, which is the root of a WS-BPEL process.

Structured activities in WS-BPEL describe control-flow logic and have analogs in common pro-
gramming languages. They include constructs like <if>, <while>, and <repeatUntil> (similar
to do . .. while). On the other hand, basic activities describe the “elemental steps of the process
behavior” and include <invoke>, the <receive>/<reply> pair, <assign> and <wait>. The <in-
voke> activity is used to call an operation in an external web-service; <receive> allows an opera-
tion offered by a WS-BPEL business process to be invoked by an external entity, and <reply> al-
lows the process to respond with the results of an operation execution. The <wait> activity
enables programmers to pause process execution either for a certain duration, or until a deadline
is reached. Finally, <assign> is used to copy values to WS-BPEL constructs. A sample WS-BPEL

process with a few activities is shown in Figure 6.

In addition to the activities above, the language also includes scoping constructs (<scope>),
and supports parallel execution (<f1low>). WS-BPEL differs from popular programming platforms

like Java and .NET in that it does not include a suite of libraries and APIs. In fact, it does not even

12

_n

<bpel:process . . . name="purchase" nsd4:isStateful="yes"
suppressJoinFailure="yes"
targetNamespace="http://ece.uwaterloo.ca/aag/internalpurchase/purchase">
<bpel:extensions>
<bpel:extension mustUnderstand="yes"
namepace="http://ece.uwaterloo.ca/aag/statefulbpel"/>
</bpel:extensions>

<bpel:partnerLinks>
<bpel:partnerLink name="eCommerceStoreLink"
partnerLinkType="nsl:eCommerceStorelLT" partnerRole="eCommerceStore"/>
</bpel:partnerLinks>

<bpel:flow>
<bpel:links>
<bpel:link name="1L4"/>

</bpel:links>

<bpel:invoke inputVariable="purchaseltemRequest"
operation="Purchaseltem" outputVariable="purchaseItemResponse"
partnerLink="eCommerceStorelLink" portType="ns2:Purchase">
<bpel:targets>

<bpel:target linkName="L3"/></bpel:targets>

<bpel:sources>

<bpel:source linkName="L4"/>

</bpel:sources>

</bpel:invoke>

<bpel:receive createlnstance="yes" operation="issuePurchaseOrder"
partnerLink="purchaseProcessLink" portType="ns3:InternalPurchase"
variable="issuePurchaseOrderRequest">
<bpel:sources>
<bpel:source linkName="1L2"/>
</bpel:sources>
</bpel:receive>

</bpel:flow>
</bpel:process>

Figure 6 Sample WS-BPEL business process

have the concept of libraries; any functionality not offered by the language must be provided by

external web-services, expression languages, or extensions to WS-BPEL itself.

WS-BPEL variables represent the state of a business process. They come in three types: WSDL

message type, XML-Schema type, and XML-Schema element. WSDL message-type variables refer-

ence type definitions in either the process’ or its partners’ WSDL interfaces. It is often used to

store the result of a web service invocation or send an invocation message. The other variable type

13

<wsa:EndpointReference>
<wsa:Address>xs:anyURI</wsa:Address>
<wsa:ReferenceProperties>... </wsa:ReferenceProperties> ?
<wsa:ReferenceParameters>... </wsa:ReferenceParameters> ?
<wsa:PortType>xs:QName</wsa:PortType> ?
<wsa:ServiceName PortName="xs:NCName"?>xs:QName</wsa:ServiceName> ?
<wsp:Policy> ... </wsp:Policy>*

</wsa:EndpointReference>

Figure 7 XML representation of WSA EPR

that needs explanation is the XML-Schema-element variable type. If one imagines an XML-
Schema type definition as a structure then variables of type XML-Schema element refer to a com-

ponent in that structure.

The WS-BPEL language was designed to be extensible. The standard allows namespace-
qualified attributes to be added to any WS-BPEL element and also allows elements from other
namespaces to appear within existing WS-BPEL elements. The extensions a process uses are listed
within its <extensions> element, with each extension designated as optional or mandatory; this
list of extensions allows the WS-BPEL processor to decide whether to load the process definition

at all, process extended elements, or ignore them altogether.

WS-BPEL is central to the research and prototype described in this thesis. For more details on
the language, the WS-BPEL 2.0 specification [39] and the WS-BPEL 2.0 Primer [40] should be

consulted.

2.5 WS-ADDRESSING

The WS-Addressing (WSA) specification [12] defines a transport-neutral way of addressing web
services and web-service messages. This thesis is primarily concerned with the WSA Endpoint
Reference (EPR) construct and how an EPR is translated into SOAP [64] header elements. A WSA
EPR has the XML representation shown in Figure 7. The wsa:EndpointReference/wsa:Address
element is the only mandatory element, and is the transport or logical Universal Resource Iden-
tifier (URI) that identifies the endpoint. Also of interest is the
wsa:EndpointReference/wsa:ReferenceParameters element. Reference parameters are op-
tional and each EPR can contain as many of them as necessary. They are issued by the entity that
generates EPRs and are associated with the endpoint represented by an EPR. Reference parame-

ters are meant to be opaque to the consuming entity - there is no standardized way to determine

14

<wsa:EndpointReference xmlns:wsa="..." xmlns:retailer="...">
<wsa:Address>http://www.example.com/retailer</wsa:Address>
<wsa:ReferenceParameters>
<retailer:CustomerOrderCart>Cart-7668</retailer:CustomerOrderCart>
</wsa:ReferenceParameters>
</wsa:EndpointReference>

Figure 8 WSA EPR with single Reference Parameter

<wsa:MessageID>xs:anyURI</wsa:MessageID>

<wsa:RelatesTo RelationshipType="..."?>xs:anyURI</wsa:RelatesTo>
<wsa:To>xs:anyURI</wsa:To>

<wsa:Action>xs:anyURI</wsa:Action>
<wsa:From>endpoint-reference</wsa:From>
<wsa:ReplyTo>endpoint-reference</wsa:ReplyTo>
<wsa:FaultTo>endpoint-reference</wsa:FaultTo>

Figure 9 WSA SOAP-Binding message-information header blocks

the organization of the underlying system using these reference parameters. Moreover, the speci-
fication does not codify the relationship between reference parameters and endpoints. For exam-
ple, an endpoint may be addressable through multiple EPRs each with different sets of reference
parameters, etc. This means that the association between reference parameters and endpoint is
implementation specific. An example of an EPR with a single reference parameter called <re-

tailer:CustomerOrderCart> is shown in Figure 8.

When a message needs to be sent to an EPR-addressed endpoint, the properties of the EPR
must be bound to the message format. In web services, SOAP is the de facto message format, and
the WS-Addressing Technical Committee (TC) has defined a SOAP Binding for WSA [66]. This
binding defines the message-information header blocks in Figure 9. These header blocks appear
as SOAP header elements. Of these header blocks only wsa:To and wsa:Action are mandatory.
The value of wsa:To is the same as the value of the wsa:EndpointReference/wsa:Address
element in the XML representation of an EPR. The wsa:Action element contains a URI identify-
ing the semantics associated with the message. Section 3.3 of the WSA specification outlines how
WSA-action URIs are associated with WSDL operations [12]. The most common approach is to
associate a WSA Action URI with the input and output message for each WSDL operation as

shown below:

<portType name="RetailerPortType">
<operation name="GetPrice">
<input message="tns:GetPriceRequest" wsa:Action="http://retailer/GetPrice"/>
<output message="tns:GetPriceResponse" wsa:Action="http://retailer/Price"/>
</operation>
</portType>

15

<!-- EPR -->
<wsa:EndpointReference xmlns:wsa="..." xmlns:retailer="...">
<wsa:Address>http://www.example.com/retailer</wsa:Address>

<!-- Reference parameter -->

<wsa:ReferenceParameters>
<retailer:CustomerOrderCart>Cart-7668</retailer:CustomerOrderCart>

</wsa:ReferenceParameters>

</wsa:EndpointReference>

<!-- SOAP Header Equivalent -->
<wsa:MessageID>UUID:gg</wsa:MessageID>

<wsa:To> http://www.example.com/retailer</wsa:To>
<wsa:Action> http://retailer/GetPrice </wsa:Action>

<!-- SOAP translation of reference parameter -->
<retailer:CustomerOrderCart wsa:IsReferenceParameter="true”>
Cart-7668

</retailer:CustomerOrderCart>
Figure 10 Translation of EPR reference parameters to SOAP-header elements

When it comes to reference parameters, each parameter element in the EPR is translated into a

separate SOAP header element. An example of this translation is shown in Figure 10.

2.6 WS-NOTIFICATION

WS-Notification (WSN) is a set of standards and white papers describing a web-services approach
to topic-based publish/subscribe (pub/sub). It details the entities participating in these pub/sub
interactions, a set of standard MEPs for providing and consuming notifications, WSDL interfaces,
the XML topic model, etc. For more information on WS-Notification, the Publish-Subscribe Noti-
fication for Web services white paper [23], the WS-BaseNotification specification [38] and the

WS-Topics specification [48] should be consulted.

This thesis uses only the basic architectural constructs and MEPs of WS-N. The key entities that
we are concerned with are the NotificationProducer (notification producer, or producer), Notifica-

tionConsumer (notification consumer, or consumer) and Subscriber (subscriber).

A NotificationProducer is a web service that implements the standardized NotificationPro-
ducer WSDL interface and provides a set of WS-Topic Topics. A Topic is the basic unit for which
a NotificationMessage is generated. An external entity subscribes to a Topic offered by a Noti-

ficationProducer to receive a NotificationMessage whenever a situation occurs, and message is

16

WSN
NotificationProducer
Topic Namespace:
http://example/nsi

| Topic1

— Topic2

— Topic#

Figure 11 WSN NotificationProducer offering a set of topics in a TopicNamespace

requests subscription

S

WSN WSN Subscriber WSN
NotificationConsumer NotificationProducer
subscribes

(on behalf of WSN NotificationConsumer)

notifies

Figure 12 Interaction between NotificationProducer, NotificationConsumer and Subscriber

generated. A diagram demonstrating the abstract design of a WSN NotificationProducer is shown

in Figure 11.

The eventual destination of a NotificationMessage is a NotificationConsumer web service.
Every NotificationConsumer in this thesis implements the standard NotificationConsumer
WSDL interface, which exposes a single Notify operation. A NotificationConsumer uses a Sub-
scriber to subscribe to a Topic offered by a NotificiationProducer. The interaction between Notifi-
cationProducer, NotificationConsumer, and Subscriber is shown in Figure 12. The WSN specifica-
tion states that each subscription (the result of a Subscribe operation a Subscriber performs on
behalf of a NotificationConsumer on a NotificationProducer) results in a subscription resource.
This resource represents the relationship between the producer, consumer and topic, as well as

other information. The NotificationProducer maintains a list of subscription resources.

17

WS-Resource

WS Resource Properties
Document

ns_prefix:property_1
ns_prefix:property_2
ns_prefix:property_3
contains/references | ns_prefix: . . .

ns_prefix:property_n

WS Resource Properties

Figure 13 WS-Resource with a set of WS Resource Properties in a

WS Resource Properties Document

2.7 WS-RESOURCE FRAMEWORK

WS-Resource Framework (WSRF) is a set of specifications standardizing web services” interac-
tions with state. It is based around the idea of a stateful resource as a collection of state compo-
nents. Stateful resources are how WSRF models state; each resource has a set of state compo-
nents, of which a subset is exposed through web services. In WSRF, when a web service is asso-
ciated with a stateful resource the resulting composition is called a WS-Resource. In this setup the
resource’s state components are exposed as resource properties in a WS-Resource properties doc-
ument, a set of XML types and values corresponding to individual properties. A reference to this
WS-Resource properties document is embedded as an attribute in the WS-Resource’s port type.
Figure 13 shows how a WS-Resource is composed. Programmers can place additional constraints
on these resource properties by referencing a WS-Resource Metadata Descriptor (WSRMD) [45]

in the same port type as the WS Resource Properties Document.

WS-Resource instances are identified using WSA EPRs. This allows messages to those instances
to be differentiated using WSA-message-information header blocks in the message header, as op-
posed to explicit instance identifiers in a WSDL operation’s input-message parameters. By using
EPRs requesters can access a specific WS-Resource instance and through it, its underlying stateful

resource.

WSREF defines a set of standard WSDL MEPs like GetResourceProperty and SetResource-
Property for interacting with WS-Resources. Each WS-Resource must provide the mandatory

operations defined in the spec; it can, however, also offer its own, custom operations. By defining

18

a set of standardized operations for WS-Resources, the WSRF specification makes it easier for de-
velopers to interact with different types of WS-Resources, and for tooling to automate these inte-

ractions.

WS-Resources also do not have to exist in advance: they can be created by a WSRF WS-
Resource Factory — a web service that creates WS-Resources. The interface and implementation of
a WS-Resource Factory is not standardized. WSRF also defines a number of other constructs for
organizing WS-Resources, of which this thesis only uses ServiceGroup and ServiceGroupEntry. A
ServiceGroup allows administrators to automatically group WS-Resources using custom, pre-
defined criteria, while a ServiceGroupEntry represents a WS-Resource’s inclusion in a Service-

Group.

The WSREF specification also describes how WSN can be integrated with a WS-Resource to pro-
vide notifications on changes in the values of its resource properties. In a WS-Resource/WSN con-
figuration each WS-Resource acts as a notification producer. The WS-Resource exposes each re-
source property in its WS Resource Properties Document as a WS-Topic subscription topic of the
same name. A WSN NotificationConsumer can then use a WSN Subscriber to subscribe to

the WS-Resource instance for change notifications from one, or many, resource properties.

For more details on the WSRF documents used in this thesis the Web services Resource
Framework Primer vi.2 whitepaper [44] and the WSRF WS-Resource vi.2 [42], WSRF WS-
Resource Properties vi.2 [46], WSRF WS-Service Group v1.2 [47] and WSRF WS-Resource Metada-

ta Descriptor v 1.0 [45] specifications should be consulted.

19

Chapter 3
CONTEXT IN WS-BPEL

WS-BPEL can be used to create business processes in application areas from logistics to adminis-
tration, healthcare, and transit. In all these areas the flexibility and responsiveness of business
processes can be increased if context awareness is incorporated. In this chapter we present a mo-
tivating scenario and use it to illustrate what context is in a business process. We then examine
two methods for accessing and manipulating context in a WS-BPEL process - polling and onEvent
message handlers - and describe their design and limitations. Finally, we outline our context-
variable solution and show how it incorporates the advantages of the existing WS-BPEL ap-
proaches to interacting with context, while discarding the need for extensive in-process logic to

manage these interactions.

3.1 MOTIVATING SCENARIO

Our motivating scenario is based on a common business application: a shipping situation in
which three entities interact to deliver goods to a customer. Consider a business that offers its
customers strict product-delivery guarantees. Each product uses multiple sub-assemblies for
which there are a number of approved suppliers. As the company receives new purchase requests
it orders the constituent sub-assemblies from its suppliers, which are then shipped to it by a

third-party delivery service.

client order find l1;0r eachbI
sub-assemblies sub-assembly

v

item—p
purchase Supplier A
sub-assembly «—shipment—|
check !
EstimatedDeliveryDate R U
:ElapsedTransitTime
- CurrentLocation
EstimatedDeliveryDate
contact Use alternate
sales-rep supplier

Figure 14 Sample Scenario

20

onEvent handler waits for
an incoming state update
message pushed by a / -+
service; the message must

conform to a pre-specified

) type and arrive over a Q Scope
Repeat Untl pre-specified operation

polling interval

If

pull current state from a
service using an operation
in its pre-specified query
interface

check current state and
perform any activities
as necessary

Figure 15 Example of WS-BPEL onEvent handlers and polling

Not every shipment will arrive on time. Instead of finding this out when the sub-assembly fails
to arrive at the loading dock on the expected delivery date, the company would like advance
warning so alternate arrangements can be made. To do this they track the shipment’s estimated
delivery date and, if it exceeds a certain threshold, perform a compensating activity (reschedule
assembly, purchase from an alternate supplier, etc.) A high-level diagram of this process is shown
in Figure 14. Note that this process relies on EstimatedDeliveryDate, a piece of external state
whose value it cannot affect, and which changes unpredictably, but which still influences its ex-

ecution.

We now demonstrate how the value of EstimatedDeliveryDate is transferred to a WS-BPEL
process using two existing methods: polling and onEvent message handlers. First, we describe the
limitations of these approaches. We then outline a solution architecture that enables program-
mers to access this externally driven environment state within business processes without having

to write extensive in-process logic.

21

3.2 POLLING

Polling is a conceptually simple and frequently used way of maintaining environment state. Based
on the pull paradigm, it assumes that state sources provide an interface with a state query opera-
tion that can be invoked in a control loop to retrieve a snapshot of the current state. Polling is at-
tractive for a number of reasons: it presents a simple mental model because it occurs synchron-
ously with the main process logic, it is easy to code, and most state sources implicitly support this

paradigm by offering a state query interface.

Despite its widespread use, polling is not ideal. First, the choice of polling interval is not ob-
vious: it changes based on state, and its rate of change may vary over its lifetime; what may be an
appropriate polling interval at one point may be too fast or too slow at another. This presents a
major issue for WS-BPEL programmers: the simpler their approach to dealing with a state’s dy-
namic behavior, the less responsive their system is, but the more factors they consider, the more
complex the logic for dealing with it - logic that has nothing to do with the business problem they
are trying to solve. Also, as state updates occur within the main process, loop and invoke activities
(i.e., state-maintenance code) are scattered throughout the code, making the business logic hard-
er to identify and the process harder to maintain. The situation worsens when the process uses
multiple pieces of state sourced from disparate entities requiring different polling intervals — what
was manageable before becomes untenable now. Tight coupling between process and state source
is a second problem. Since the process calls a specific operation in a specific port type at a specific
endpoint, any interface changes will break it. Finally, polling is expensive for the WS-BPEL engine
and queried service. Engines have to continually wake processes to perform queries, even though
most will report no actionable change. Queried services can also be heavily loaded if multiple
process instances request updates. While hardware addresses this, it comes at a cost - for the
equipment, its use, and its administration. A high-level view of polling using WS-BPEL activities

is shown in Figure 15.

3.3 MESSAGE HANDLING

WS-BPEL offers a push-based alternative that enables an event-driven approach to writing busi-
ness processes: onEvent message handlers. Every scope can have its own set of message handlers -

one per message type — each defined separately from the main process activities. These handlers

22

can be triggered by a message at any point in their associated scope’s lifetime, and run in parallel
with their associated scope’s activities. Although an event-driven design offers many advantages,
its support in the form of WS-BPEL onEvent handlers has many issues, with the first being coupl-
ing. Ideally, message handlers would be loosely coupled, i.e. defined only in terms of the incoming
message type. This is not the case in WS-BPEL, where programmers have to specify the operation
and the partner link for each onEvent message handler. This requires modifying the process’
WSDL and adding a new operation, its input and/or output messages, and the XML Schema types
for the message contents. Furthermore, this operation is the “operation that is invoked by the
partner in order to cause the event” (Section 12.7.1, WS-BPEL specification [39]). The resulting
coupling is extremely problematic: state sources now need advance knowledge of the operations
and port types of the business processes they will be delivering state-update messages to before
they can send notifications. As a result, if a state-update source has to notify a variety of WS-BPEL
processes — each with a different onEvent message handler - its programmers have to implement
custom notification code for each one. This also means that any change to the process’ interface

without a corresponding change to the state source breaks state delivery.

Moreover, process programmers are still forced to define extra non-business logic when using
onEvent handlers. They need partner links with roles for every state-update port type used - yet
another coupling point. In addition, though the wait, invoke, and repeatUntil activities re-
quired for polling are no longer necessary, assign activities are still required to copy state up-
dates from the handler to the main process. Maintainability is yet another concern. While onE-
vent handlers allow process programmers to separate concerns, this separation, and their concur-
rent execution, makes it harder to understand the overall process flow. Furthermore, the rules
governing variable access in WS-BPEL onEvent handlers are insufficiently specified and can vary
by implementation. In Section 12.7.1 [39] the WS-BPEL specification outlines the rules on variable
referencing, but not modification; and even if modification of variables outside an onEvent hand-
ler's immediate scope were allowed, it is unclear what the semantics of concurrent access and up-
date are. All these conceptual and practical issues reduce the attractiveness of onEvent handlers.

A high-level view of a WS-BPEL onEvent message handler is shown in Figure 15.

23

3.4 PROPOSED APPROACH

Existing methods clearly have significant drawbacks when dealing with externally-driven envi-
ronment state: polling is poorly suited to dynamic-state behavior, intersperses state-maintenance
activities with the business logic, and scales poorly; onEvent handlers introduce excessive coupl-
ing, are non-trivial to understand, and have insufficiently specified semantics. Both complicate
process design by making programmers concentrate on the state-maintenance mechanisms in-
stead of the business logic. These limitations spring from assumptions around which the WS-

BPEL language itself.

WS-BPEL processes are modeled as if they were the only thing operating in, and making
changes to, the business environment. In this mental model all environment state is changed by
the business process - either as a result of its activities, or a query it makes to external entities.
This mental model does not reflect the real world, where organizations and entities depend on
state that is outside their control - state that is modified independent of, and concurrent with, the
organization’s activities. This is evident in our scenario, where the environment state the process

is interested in (EstimatedDeliveryDate) changes independent of the process’ own actions.

EstimatedDeliveryDate is an example of context, and demonstrates characteristics that are

common to all kinds of context over a range of business processes:

1. It is state that is driven and maintained outside the business process
2.Its value cannot be directly affected by a business process; i.e., the process cannot use activi-
ties like <assign> to change its real value
3.1ts value changes unpredictably, and independent of the business process’ lifecycle
4.1t influences process execution
Note that the relationship between a WS-BPEL process and context is similar to the relationship

between events and event-based systems.

Unlike previous research, this thesis does not categorize context into a hierarchy or define what
constitutes relevant context for various applications. We believe that a more feasible, and more
widely applicable approach, is to allow WS-BPEL programmers to declare within their business
process what qualifies as context. This provides visibility into what environment state is influen-

cing the overall business logic; it also allows a programmer to show how context is represented
24

Process P14

<wsbpel:variable name="v1" ...
ns1:isContextual="yes”|/>

manages | Propagates

WS-BPEL Engine

i Notification-consumer
/" interface

subscribes
Context provided: .
P Web Service
ContextType1
ContextType2 (context source)

notifies _/ Sensor

Figure 16 High-level conceptual model of context variables

using XML data types, and where it influences process execution. Once the programmer has iden-
tified what they consider context in their business process, we can offload the minutiae of main-

taining this context to the WS-BPEL engine. The tasks involved in this are:

¢ Sourcing context and storing it into the process’ syntactic representation
¢ Monitoring it for changes and updating affected references when it occurs
e Facilitating comparisons between compatible context

What would be ideal is a solution for using context in a WS-BPEL process that:

1. Combines the conceptual simplicity and synchronicity of polling with the loose coupling
and reduction in non-business logic of event handlers

2.Makes it simple for the WS-BPEL engine to achieve the above tasks in an automated fashion
This thesis proposes context variables as a way of representing context in a WS-BPEL business
process. Context variables are not populated by the process, but by an external pub/sub context
source. A context source contains a set of context types, and each variable subscribes to one or
more of these types. Whenever the value of that context type changes its source publishes an up-
date, which is then propagated to the variable. Figure 16 shows the conceptual model of a context

variable.

25

Context variables combine the best aspects of polling and onEvent message handlers. They can
be accessed inline like standard WS-BPEL variables, so a process can be viewed as a single flow of
control. WS-BPEL programmers no longer have to scatter state maintenance code throughout
their process, and they can introduce additional context variables without having to write extra
non-business logic. Coupling is also reduced since context variables depend only on the context
type, not on the source providing the update, the operation generating it, or the partner link it
arrives over. Finally, by building on pub/sub, context variables are ideally suited to dynamic state
behavior. This proposal also allows context be handled consistently across WS-BPEL processes,
obviating the need for ad-hoc solutions. Moreover, MEPs are associated with sourcing context, so
context-source interactions can be automated and managed by a WS-BPEL engine. All these cha-
racteristics allow programmers to concentrate on implementing their business logic, making con-

text variables ideal for incorporating externally-driven state in WS-BPEL processes.

26

Chapter 4

SOLUTION OUTLINE

The motivating scenario was used to guide the high-level design. In the scenario a manufacturer’s
WS-BPEL process invokes a supplier’s web service and receives a reference to the shipment con-
taining its order. The question is, then, how can the manufacturer’s process be modified to use

context variables without changing the process’ activities? To do so requires the following:

¢ In the WS-BPEL process the output variable for the invoke activity used to call the supplier’s

) Context-Source
WS-BPEL Engine System
C
’ context-source
Web Service instances instance of
Process ot .
P1a*

Context
Source

Engine core

i I
SOAF7/Stack /
] I

[web-accessible| WS-BP

Figure 17 High-level interaction between scenario actors

Invoke external web service (Business logic - specified by WS-BPEL programmer in WS-BPEL process code)
Send invocation message to external web service

Invoke context-source factory to create context source

Create context source

Return EPR of context source

Return context-source EPR as response-message parameter

OV A WoN e

Send notification message

Propagate notification-message contents to appropriate process instance
Update context variable

o=

27

web service would be defined as a context variable
¢ Shipments would be modeled as context sources and their properties (EstimatedbDelive-
ryDate, etc.) would be exposed as context types
e On receiving an order the supplier’s web service would contact the shipping company to
create a Shipment. It would then return the current values of the Shipment’s context types,
as well as parameters the invoker could use to subscribe to the Shipment for updates to
these types
e The WS-BPEL engine would use the subscription parameters in the response message to
subscribe to the Shipment for updates to its context types
The scenario requires three entities to interact for a WS-BPEL process to use context variables:
the context source, the invoked web service, and the WS-BPEL engine. Figure 17 shows these enti-
ties, and the high-level message flows between them that are required to setup and populate con-
text variables. An even simpler setup is possible - one in which a WS-BPEL process communicates
directly with context sources - but this cannot be expected of all WS-BPEL processes. In many
cases it is more likely, and in line with current practice, for processes to call intermediate web ser-
vices that return links to managed context sources. This thesis considers the more complex setup

show in Figure 17, which leads to the following design challenges:

1. How are context sources modeled in a web-services environment?

2.Both WS-BPEL processes with context variables and those without can invoke the same web
service. How can this web service return links to context types in its responses without mak-
ing major interface changes, while allowing both types of WS-BPEL processes to function
correctly?

3. What changes have to be made to the WS-BPEL language to support context variables?

The sections below describe these problems and the solutions designed to solve them.

4.1 MODELING CONTEXT SOURCES

Context sources are entities that expose a collection of environment state parameters, or context.
They organize and present different types of context at a single endpoint, thus simplifying inte-
ractions for context users. Our design challenge is to translate this conceptual model of context
sources to the web-services space in a natural manner while satisfying the following criteria:

28

¢ Context sources have to be uniquely addressable
e There needs to be a way to create and return new context sources, or references to existing
context sources, on demand
That these characteristics are needed is evident in our scenario: Shipments are not interchangea-
ble - they are instances of the same kind of entity, but differ in one or more ways (e.g. their con-
tents, current location, or estimated delivery date); and they do not exist a priori: they result from
business activities. Given these requirements, this thesis proposes a context-source system based

on constructs in WSRF.

To build context sources we return to the WSRF model of a stateful resource and its state com-
ponents. Note that this is very similar to the idea of a context source offering a collection of con-
text. For example, a Shipment can be thought of as a stateful resource, with its state components
including ‘estimated delivery date’, ‘current location’, etc. Now, WSRF exposes stateful resources
as web services by using the concept of a WS-Resource; it also dictates that the state components
of this resource become XML Schema types in the WS-Resource’s Resource Properties Document.
Since context sources can be viewed as a type of stateful resource, and context types as the state
components of this resource, they can also be exposed in the web-services environment using the
WS-Resource and WS Resource Properties Document patterns. Figure 18 shows how the ship-

ment context source can be represented using a WS-Resource and WS-Resource Properties.

WSREF places no constraints on the nature of a WS-Resource — whether it should represent a
single real-world resource or a composition of real-world resources. This flexibility is essential

when designing context sources, for while certain context sources — a Shipment, for example —

ShipmentTracker
WS-Resource

context .
iource) WS Resource Properties
Document
WS Resource Properties
wsnt:FixedTopicSet (context types)

. wst:TopicSet _44;44,,,//////
contains______ysnt:TopicExpression

wsnt:TopicExpressionDialect
ship:ShipmentCondition

Figure 18 Design of the shipment context source

29

Process Instance C

Process Instance A -~

\ WSN NotificationConsumer

Process Instance B

D WS-BPEL
~-----1 Process
1

WS-BPEL
Process
2

L

man?es

WS-BPEL

Process
n

-~

notifies

Context Source

WSN NotificationProducer

WS-BPEL Engine

WSN Subscriber

subscribes
(on behalf of Process Instance C)

Figure 19 Context variable system using WSRF constructs

may represent a single resource, others may not.

The design of context variables envisions that each variable be subscribed to one or more con-
text types at a context source, and receive updates whenever the values of those context types
change. This design goal can be achieved using WSN. In a combined WSRF/WSN configuration a
WS-Resource exposes each of its resource properties as a WS-Topic with the same name; external
entities can then invoke the subscribe operation on the WS-Resource to receive notifications for
changes to its resource properties. This setup can be translated to the model of context variables,

context sources, and context types. In this translation it is envisioned that:

1. Each context source acts as a WSN provider

2.Each context type in a context source is exposed as a WS-Topic in the source’s XML names-
pace

3.Each WS-BPEL process that contains the context variables to be subscribed to the context
types acts as a WSN consumer

4.The WS-BPEL engine act as a WSN subscriber, and subscribes to context types at a context
source on behalf of a WS-BPEL process

This setup is shown in Figure 19.

30

<wsa:EndpointReference xmlns:wsa="..." xmlns:retailer="...">
<wsa:Address>http://www.example.com/retailer</wsa:Address>
<wsa:ReferenceParameters>
<retailer:CustomerOrderCart>Cart-7668</retailer:CustomerOrderCart>
</wsa:ReferenceParameters>
</wsa:EndpointReference>

<wsa:EndpointReference xmlns:wsa="..." xmlns:retailer="...">
<wsa:Address>http://www.example.com/retailer</wsa:Address>
<wsa:ReferenceParameters>
<retailer:CustomerOrderCart>Cart-7879</retailer:CustomerOrderCart>
</wsa:ReferenceParameters>
</wsa:EndpointReference>

Figure 20 Two EPRs differentiated using reference parameters

WS-Resource WS-Resource WS-Resource WS-Resource
=1 Instance F~o Instance Instance Instance
1 2 3

T
|
|
I
! |
|
]
1

|

Assigned EPRs Assigned EPRs

Figure 21 Two different mappings between EPRs are WS-Resource instances

Modeling context sources as WS-Resources also allows the first criteria to be satisfied, since, as
noted in Section 2.7, each WS-Resource is uniquely addressable using WSA EPRs. In this way a
WS-BPEL process can access a specific context-source instance and the specific context-type val-
ues for that instance. This approach can be used to differentiate Shipment context sources in the
motivating scenario. It is obvious that one Shipment is not the same as another, so EPRs can be
used to differentiate them. This allows each WS-BPEL process instance to query, manipulate and
share the Shipment context-source that its business activities created. The exact way in which
these EPRs will be differentiated is implementation specific, but it is likely that most WSRF
frameworks will do so using reference parameters, as shown in the example in Figure 20. The

WSREF specification does not dictate the relationship between EPRs and WS-Resource instances.

31

create context source——»

managed

WS-Resource Factory T WS-Resources

Context
Source 1
Context
Source 2
Context
Source 3
4
/

-4—return context source’s EPR—

~—— . creates™

Figure 22 Sample message flow for context source creation

While certain situations may call for a 1:1 correspondence between an EPR and a WS-Resource
instance, there may be others where multiple EPRs are aliased to the same WS-Resource instance.
Figure 21 shows these two possible relationships. This flexibility allows implementers of context
sources to structure and address their system as they see fit in order to achieve administrative or
business objectives. From the perspective of a developer using a context source, the relationship
between an EPR and the context source is a non-issue; they simply request a context source, re-
ceive a reference to it, and query or manipulate it as necessary. Whether other users have received
a reference to the same context source is not the developer’s concern - the system’s implementers

are responsible for mediating access to context-source instances.

WS-Resources also do not have to exist in advance - they can be created by a WSRF WS-

Resource Factory. This means that a developer can:

1. Invoke an operation on a WS-Resource Factory to create the WS-Resource corresponding to
a context source

2.Receive an EPR identifying it

3.Use this EPR to interact with that context source

A sample message flow for this interaction is shown in Figure 22.

There is no standardized WSDL for a WS-Resource Factory, so its create operation is imple-
mentation specific. Also, the semantics of that operation will vary by context-type. In some situa-
tions a new context source will be instantiated on every invocation of the WS-Resource Factory;

this would occur in a factory that manages Shipment context sources. In other situations invok-
32

ing the WS-Resource Factory multiple times would return a reference to a singleton context
source; e.g., a factory that returns references to an Environment context source — one that

represents the temperature, weather conditions, etc., in a region.

There are many advantages to using WSRF constructs to represent context sources. First, the
design builds on existing practices in the web services community. Many web services offer a view
of a managed item’s state in addition to other functionality; a WS-Resource represents the logical
next step: it represents only the managed item. Also, by using WS-Resources designers no longer
have to worry about how to expose context sources as web services. They are also freed from de-
fining the MEPs and mechanics for context-source interactions, since WSRF standardizes the
WSDL operations for manipulating resource properties in a WS-Resource. This obviates the need
for ad-hoc solutions, and allows context-type query, retrieval, etc. to be automated. This allows
developers to focus on the core issues in providing context through web services: the context

types each source exposes, their XML representation, and their lifecycle.

From the perspective of a developer using context sources, the approach outlined above is ex-
tremely advantageous. First, the mental model of a context source as WS-Resource and context
types as its resource properties is simple to understand. Instead of having to learn a custom speci-
fication for context awareness, they can leverage their knowledge of, and extensive resources
available for, established specifications like WSRF. Moreover, the standardized MEPs for WS-
Resources also simplify interactions with different types of context sources. While each source
may represent a different real-world construct, and offer different context types, the broad out-
lines of its web-service representation, and the WSDL operations for manipulating its context
types, remain the same. This allows developers to use the same programming logic in interacting
with a range of context sources and makes it easier to implement basic context awareness in WS-

BPEL.

4.2 CONTEXT-SOURCE REFERENCES

While some WS-BPEL processes will contact context sources directly, others will receive refer-
ences to them from invoked web services. These web services have to return messages that can be

used and validated by WS-BPEL engines supporting context variables and those that do not. A

33

standard engine would only expect and use a snapshot of context types; those supporting context

variables would expect both this snapshot and additional context-source subscription parameters.

There are multiple ways to support both types of WS-BPEL engines. The first, and simplest ap-
proach, is to expose two different WSDL operations - a basic one that returns only the context
types’ current values, and a context-enabled one that returns those values along with references
to context sources. This is, however, a maintenance burden. The time and effort involved in syn-
chronizing the message schemas for each operation pair, and for programming their logic, in-
creases drastically with the number of operations in a WSDL. Simply put, this solution does not
scale. Another option is to define a two-step MEP, where the snapshot of the context types is sent
in the first message, followed by references to those context types in a second message. In this
approach, when the WS-BPEL engine receives the first message it would automatically invoke a
second operation on the sending web service that requested references to the context types.
Again, this approach is inconvenient: implementers of the web service have to add significant log-
ic to ensure that the reference-generating operation is invoked in the correct order, and that it
returns the correct context-source/context-type references. Yet another option is the use of out-
of-band signaling, where a separate message containing links to the context sources is sent in pa-
rallel with the operation response to a special interface on the WS-BPEL engine. This however,
does not conform to web service best practices, and requires that all WS-BPEL engines implement

a proprietary interface to support this signaling.

There is a lower overhead, standards-compliant alternative. This is to have the web service use a
single WSDL operation and XML-Schema defined response that both engine types could validate.
This response would include parameters that would allow a WS-BPEL process to subscribe to the

relevant context types of a context source.

In designing this solution, the first challenge is deciding what parameters are required. Re-

member that:

1. Each context source is implemented as a WS-Resource and also acts as a WSN producer
2.The context types that this source offers are exposed as WS-Topics

3.The WS-BPEL engine acts as a WSN subscriber on behalf of a WS-BPEL process instance

34

Context Source 1

Context_Type_1

Context_Variable_1 Context_Type_2
(WS-BPEL Message Type Variable)
<var_name> Context_Type_3
<var_element_1 . . />
<var_element_2 . . . />

Context Source 2

Context_Type_1

<var_element_n . . . /> Context_Type_2
</var_name>

Context_Type_3

Context Source 3

Context_Type_1
Context_Type_2

Context_Type_3

Figure 23 Elements in a context variable linked to diffierent context sources

In this configuration, if a WS-BPEL engine wishes to receive notifications of context type changes,

it has to invoke the subscribe operation on the context source using the message below:

<wsnt:Subscribe>
<wsnt:ConsumerReference>wsa:EndpointReferenceType</wsnt:ConsumerReference>
<wsnt:Filter>
<wsnt:TopicExpression Dialect="xsd:anyURI">
ns:anyTopicName
</wsnt:TopicExpression>

</wsnt:Filter> ?

</wsnt:Subscribe>

This subscribe message requires the engine to have:

1. The topic corresponding to the context type

2.The context-type topic’s namespace

3.The EPR of the context source

4.The EPR of the business process
Since the process’ EPR is already known to the engine, 1, 2 and 3 have to be supplied by the in-
voked web service in its responses. Web-service response messages will vary by application. This

thesis considers messages that conform to the guidelines outlined in the WS-Interoperability

35

(WS-I) Basic Profile. The WS-I Basic Profile is a best-practices paper that clarifies the inconsisten-
cies resulting from multiple interpretations of the WSDL and SOAP specifications. By following
these recommendations web services can be created and consumed regardless of toolkit used.
WS-I dictates that Basic-Profile-compliant WSDL interfaces use the document/literal-wrapped
binding style. One of the requirements of this style is that SOAP message parameters be grouped
under a single ‘wrapper’ element that is the only direct child of the SOAP body. An example of a

response message using such a style is show below:

<soap:envelope>
<soap:body>
<ns2:purchaseltemResponse . . .">
<ns2:return xsi:type="ns2:ExtendedReturn">
<ns2:itemCode>Stapler-101</ns2:itemCode>
<ns?2:purchaseStatus>SUCCEEEDED</ns2:purchaseStatus>
</ns2:return>

</soap:body>
</soap:envelope>

In this example <purchaseItemResponse> is the wrapper element. Contained within <purcha-
seltemResponse> are a number of child elements that represent the return values of the invoked
operation. As shown in Figure 23, only some of the values of one or more of these elements may

be snapshots of context types at context sources.

If a WS-BPEL process wants to use this response to populate context variables, then the re-
sponse message needs to include the three parameters listed earlier - the WS-Topic correspond-
ing to the context type, its namespace, and the EPR of the context source - for each element that
may be linked to a context type. Thus, using the example in Figure 23, <var element 1> and

<var element n> need these extra parameters.

The first approach considered was adding these parameters as attributes to each affected ele-
ment. Closer investigation revealed that XML Schema does not allow complex types as attributes
(Section 3.2.1, XML Schema Part 1: Structures specification [69]). A second option was to add the
context-type subscription parameters as SOAP header elements in the response message. This is
similar to the approach taken by WS-Addressing to bind an EPR’s properties to a SOAP message.

Although this appeared to be a promising approach two issues arose:

36

Context
L»CbntextParameter (*)
ContextParameter

StatefulParameterName: string
NotificationTopicNamespace: XSD anyURI
NotificationTopic: WS-T TopicType
ServiceEPR: WSA EndpointReferenceType

Figure 24 Context parameter schema

1. There did not seem to be a clean way to reference specific elements in the response message
from within SOAP-header elements
2.Many toolkits return only the response message’s SOAP body to the WS-BPEL process. This
makes it difficult to access the context-type subscription parameters and complicates the
task of a programmer who wants to take their own approach to dealing with context sources
Given that neither of the approaches is suitable, we are left with one option: adding the con-
text-type subscription parameters as elements in the response. Unfortunately it is not possible to
simply add these parameters as extra elements to a response (without defining them in the sche-
ma) because strict parsers will reject them. So this thesis defines a solution that uses XML Schema
type-derivation. Using the <extension> element, interface-designers can append extra attributes
or elements to the base type used for the response-message element; when the service sends its
response to invokers it indicates the element’s concrete type with an xsi:type attribute. End-
points using only the base type will ignore the additional elements, preserving backwards-

compatibility.

Consider the schema for the following complex type:

<xsd:complexType name="Student">
<xsd:sequence>
<xsd:element name="Faculty" type="xsd:String" />
</xsd:sequence>
</xsd:complexType>

Let this be the base type that a schema designer wishes to extend. Base types can be built-in types,

simple types, or complex types. By using the <extension> element a designer can derive a new

37

type from the base type by adding new elements after those already defined in the base type’s con-
tent model. This is a key point: new elements in the extended type cannot be interleaved with
those already defined in the base type — they must be added at the end. We would have preferred
an approach where the required information could be added to, or immediately after, each re-
sponse element in the base type - but this is not possible. The following schema fragment shows

how <extension> is used to derive a new type from <student>:

<xsd:complexType name="EngineeringStudent">
<xsd:complexContent>
<xsd:extension base="tns:Student">
<xsd:sequence>
<xsd:element name="EngmailID" type="xsd:String"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

As noted earlier concrete types are identified in an instance document using the xsi:type

attribute. Instances of both the base type and extended type from the example are shown below:

<!-- Instance of base type -->

<ns2:CurrentStudent xsi:type="ns2:Student" xmlns:xsi=" . . .">
<ns2:Faculty>Math</Faculty>

</ns2:CurrentStudent>

<!-- Instance of extended type -->

<ns2:CurrentStudent xsi:type="ns2:EngineeringStudent" xmlns:xsi=" . . .">
<ns?2:Faculty>Engineering</ns2:Faculty>
<ns2:EngmailIlD>noidperp</ns2:EngmailID>

</ns2:CurrentStudent>

A more complete description of the <extension> element and its use is given in Sections 4.2 and

4.3 of the XML Schema Part o: Primer Second Edition [68].

Our solution isolates the subscription parameters to the schema fragment shown in Figure 24.
Interface designers can simply append this fragment to the bottom of the content model of their

base type. An example of the fragment’s use is shown below:

38

<xsd:complexType name="ExtendedReturn">
<xsd:complexContent>
<xsd:extension base="tns:BaseReturn">
<xsd:sequence>
<xsd:element name="Context" maxOccurs="unbounded" minOccurs="1"
type="tns:ContextParameter" />
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Since a derived type’s elements can only be appended after those already defined in the base type,
we use StatefulParameterName to link a set of subscription parameters in the extension with its
associated element in the base type. This is best demonstrated in Figure 25, where the base type
in the response message has three elements, but only CurrentLocation is exposed as a context

type:

WSDL Message:

<CurrentLocation ... />
<ElapsedTransitTime ... />
<EstimatedDeliveryDate ... />
<Context>

<StatefulParameterName>
CurrentLocation
</StatefulParameterName>
<!—-- Context source subscription elements -->
</Context>

Figure 25 Use of <StatefulParameterName>

The value of statefulParameterName in the Context element indicates that these subscrip-
tion parameters are associated with CurrentLocation. By using the <extension> element a web

service can define two messages:

1. A base type containing only a snapshot of the context types

2.A derived type that contains references to context sources
This allows a web service to send a response message containing the derived type to any WS-BPEL
engine — whether it supported context variables or not — and have it validate properly. As a result,
backwards compatibility is maintained. For its part, the WS-BPEL engine does not have to send
any extra information when it invokes an operation on a web service using this approach. The so-

lution outlined above also minimizes interface changes and is standards-compliant.

39

4.3 EXTENDING WS-BPEL

Implementing context variables in WS-BPEL consists of two parts:

1. Using the language extensibility features of WS-BPEL, defined in the WS-BPEL standard, to
support context variables
2.Defining the interactions WS-BPEL engines need to implement to setup and update these

variables

4.3.1 LANGUAGE SUPPORT

In WS-BPEL a variable’s value cannot be constantly updated by an external entity. It can be popu-
lated indirectly by an external entity through an <invoke>, a message handler, etc., but once po-
pulated no link is maintained between the variable and the entity. Thus, to implement context
variables we have to extend the WS-BPEL language. This is common practice. As stated in Section
2.4, the WS-BPEL language is built to be extensible, and its specification clearly dictates (Sections
5.3, 8.4, 10.9, 14, WS-BPEL specification [39]) how language extensions are to be designed and
used. This allows the language to adapt to concerns that may not have been foreseen at the time
of its creation. In fact, the web-services community has already taken advantage of WS-BPEL’s
extension support to create, among others, the BPEL4People extension [3] and the WS-BPEL 2.0

Extensions for Sub-Processes [25].

Before defining our extension syntax tokens and deciding where they were to be added, the fol-

lowing principles were created and used to drive the design of the context-variable extension:

1. Programmers should be able to specify within a process definition if a WS-BPEL variable is a
context variable or not
2. After initialization a context variable’s value cannot be changed by any in-process activities
The other characteristics of WS-BPEL variables were retained (scoping rules, etc.) so that pro-
grammers could think of context variables as another type of variable, not as a different construct

altogether.

The first step in creating a WS-BPEL extension is to declare its namespace. As defined in the

WS-BPEL specification, the presence of an extension in a process is indicated by a child <exten-

40

sion> element under the <extensions> element in a process definition. This child <extension>

element contains:

1. The namespace of the extension
2.An attribute indicating whether the WS-BPEL processor must understand the semantics of
the extension element

The <extension> element chosen for the context variable extension is shown below:

<bpel:extensions>
<bpel:extension mustUnderstand="yes"
namespace="http://ece.uwaterloo.ca/aag/statefulbpel” />
</bpel:extensions>

Simply adding an <extension> declaration does not change the behavior of a WS-BPEL process
or its constituent activities - it only determines whether the WS-BPEL engine can load the

process definition for execution or not. For behavior to change:

. an extension syntax token, in the form of an element or
attribute qualified by the URI value of a namespace attribute in an
<extension> element that is used outside of an <extension>
element MUST appear in the WS-BPEL process definition . . . It is

this extension syntax token, rather than the extension declaration,
that indicates that the new semantics apply. [39]

In short, for an extension to change process behavior, extension-namespace qualified attributes or

elements have to be added to one or more predefined WS-BPEL elements.

It was decided that the context variable extension syntax token would be a namespace-qualified
attribute called isstateful. The presence of this token on a predefined WS-BPEL element
should cause the WS-BPEL engine to change the behavior of that element and all elements in its
subtree. Having defined the extension syntax token, we met the first design principle by adding
the isStateful="yes” attribute to <variable> elements to denote context variables. An exam-

ple of a context variable is shown below:

<bpel:variable messageType="ns2:PurchaseltemResponse" name="purchaseltemResponse"
ns4:isStateful="yes"/>

A WS-BPEL variable with this attribute is subscribed by the WS-BPEL engine to a context type at

a context source. Its value can only be updated by that context source — not by any other activities

4

within the process definition. This link between a context source and a context variable can only

be terminated when the WS-BPEL process itself terminates, either normally or through a fault.

This thesis defines one way of initializing context variables and receiving the parameters re-
quired for its subscription: through an extended response message from an external web service.
In practice, this requires that the context variable must be used as the output variable of the <in-
voke> activity used to interact with this web service. An example of an <invoke> activity using

the purchaseltemResponse context variable as its output variable is shown below:

<bpel:invoke inputVariable="purchaseltemRequest" operation="PurchaseIltem"
outputVariable="purchaseItemResponse" partnerLink="eCommerceStoreLink"
portType="ns2:Purchase">
<bpel:targets>
<bpel:target linkName="L3"/>
</bpel:targets>
<bpel:sources>
<bpel:source linkName="L4"/>
</bpel:sources>
</bpel:invoke>

In the future other ways of initializing context variables may be defined.

Prior to this <invoke> activity being executed by the WS-BPEL engine, the variable’s elements
will not be subscribed to any context types and will not receive any notifications. Once the engine
receives a response message containing context-type subscription parameters, it matches each
context-type subscription parameter to the appropriate element in the output variable and per-
forms the necessary subscriptions. A child element in a context variable can only be subscribed to
one context type at a context source. If however, a context variable has multiple elements, not all
of them have to be linked to a context type. Moreover, if a context variable has multiple elements,
each element may be subscribed to context types at different context sources - there is no re-
quirement that all the elements in a context variable should only be subscribed to context types at

a single context source. An example of this is seen in Figure 23.

Section 4.2 describes how a response message can contain context-type subscription parameters
for any or all of its elements. If the <invoke> activity’s output variable is a WSDL message type,
then the WS-BPEL engine must subscribe all elements with a corresponding context parameter to
the appropriate context-type/context-source. This may result in a variable in which certain ele-

ments will be updated by a context-source, while others will be static. This can be seen in Figure
42

23. The WS-BPEL engine must ensure that once a variable has any element that is subscribed to a
context source, none of its elements (whether linked to a context source or not) must be modified

by other WS-BPEL activities.

WS-BPEL also allows two other variable types: XML Schema type (simple or complex) or XML
Schema element, both of which can be used to create the output variable for an <invoke> activi-
ty. In either case, once the WS-BPEL engine receives a response message that contains context-

type subscription parameters, it must:

1. Determine if the response message elements/types they reference are present in the output
variable
2.Perform subscriptions for any element in the output variable with a context-type subscrip-
tion parameter in the response
It may be the case that none of context-type subscription parameters apply to the elements in the
output variable. When this occurs the WS-BPEL engine should perform no subscriptions, but

should still prevent the variable from being updated by other in-process activities.

Satisfying the principle that no in-process activity be able to modify the value of a context vari-
able required that the same extension attribute be added to <process> as to <variable>. This is
because Section 14 of the WS-BPEL specification states: “An extension syntax token can only af-
fect WS-BPEL constructs within the syntax sub-tree of the parent element of the token.” As our
second design principle governs other activities’ behavior, their containing element, <process>,
has to be changed. Note that adding isStateful="yes” to <process> only affects those process
activities using context variables. If an activity uses regular variables it is unaffected, and if a

process has no context variables it behaves like a process without the extension attribute.

The WS-BPEL language extension this thesis proposes is minimally intrusive: by retaining most
characteristics of <variable> and <process>, WS-BPEL programmers do not have to learn all-
new semantics for context variables; it minimizes the changes needed in WS-BPEL engines to
support context variables; and it conforms to the language extension rules in Section 5.3 of the
WS-BPEL specification. Moreover, the addition of isStateful="yes” to <variable> and
<process> elements is a minimal change and allows graceful downgrading; in unmodified en-

gines a <variable> with the extension attribute will function as normal, but will not be linked to

43

Route notifications
to
WS-BPEL Process Instance 1

2

Update
context variable

WS -BPEL
Process
Instance

WS-BPEL
Process
Instance

WS-BPEL
Process
Instance

parse response |
for |
R
context parameters 4 N i

\
B \ manages \ /

receive

invocation response//////’gﬁ“‘
WS-BPEL Engine Context Source

for
EE— WS-BPEL
Process Instance 1
A c k\\\\\\\‘¥¥‘¥7i~l~,//////////
generate EPR notify
for
WS-BPEL
Process Instance 1 subscribe

on behalf of WS-BPEL Process Instance 1
using newly-generated EPR

D

Figure 26 Functionality a WS-BPEL engine needs to support context variables

context sources; in unmodified engines a <process> with the extension attribute executes in ex-
actly the same way as a WS-BPEL process without context variables. Finally, since the only change
this extension requires in the process definition is the addition of the isStateful="yes”
attribute to the <variable> and <process> elements, programmers can continue to use their
existing WS-BPEL development environments. This is a major advantage, since developers do not

have to abandon their existing methodologies and development tools to use context variables.

4.3.2 WS-BPEL ENGINE ENHANCEMENTS

Existing WS-BPEL engines must be modified to support context variables. First, the WS-BPEL
engine must be changed so that it can parse and load process definition files containing the lan-
guage extension defined in Section 4.3.1. Then it needs to implement the MEPs and logic neces-
sary to link a context variable to a context-source, and update the value of this variable on receiv-

ing notifications from the context source. For the latter, a WS-BPEL engine must, at minimum:

e Intercept and parse invocation responses for context parameters

e Subscribe context variables to context sources using the WSN subscribe operation and the
information in these parameters

e Route WSN Notify messages containing context changes to the appropriate context variable

in a process instance

44

WS-BPEL Engine

14 NotificationConsumerResource 9
o '

associated
. 12

Web Service
Process
P1,*

NotificationConsumerResource
Factory

Nt

WSRF System

WS-Resource

i

(WS-Resource Factory

...... instance of

WS-Resource
instances

5
6 ’
ServiceGroup aggregates

14

1. Invoke external web service (Business logic - specified by WS-BPEL programmer in WS-BPEL process code)

2. Send invocation message to web service

3. Request address for stateful resource instance of a given type

4. Forward request to WS-Resource Factory that handles resources of that type

5. Create/get a WS-Resource

6. Add WS-Resource reference to the appropriate ServiceGroup

7. Return WS-Resource EPR and list of its notification topics (i.e. WS-Resource Properties)

8. Respond to web service with WS-Resource EPR and notification topics to web service

9. Create mapping between web-service response-message elements and the WS-Resource notification topics and publisher address

10. Return invocation response

11. Forward invocation response to the invoking process instance

12. Inspect returned message for subscription information elements

13. Request a NotifcationConsumer WS-Resource instance associated with this process instance

14. Create a NoficiationConsumer WS-Resource

15. Return the EPR of the NotificationConsumer WS-Resource associated with the process instance

16. Create subscription request using the NotificationConsumer WS-Resource EPR as the listener and returned WS-Resource EPR as|
publisher

17. Send subscription message to the WS-Resource EPR

18. Route subscription request to correct WS-Resource instance

19. Record the subscription (consumer, watched topics, etc.)

20. Return subscription response

21.

T

>

17
‘ SOAV-@J Stack | | ‘
/] |
1T

f
(web—accessiblé \l\NS—BP

1

VY
‘ SOAF\}?\tack ‘

b-accessible WSRF system \

.

|
T
l.engine

Figure 27 High-level message flow for context variable setup

Forward subscription response to process

e Update the context variable with the new values in these notifications

While the exact implementation of this functionality will vary depending on the WS-BPEL en-
gine being changed, all modified engines will have to support the high-level message flow out-
lined in Figure 26. In Figure 26, lines A - D outline the steps required to link a context variable to
a context source, while lines 1 - 3 denote those necessary to update the context variables in a
process instance.

45

WS-BPEL Engine

context %\ s
_souce g _— 2 T &
4 8T [T|WsRF g
| wsN /%D/ o || [System e)
|| producer || =2 O associated)
| o || > - =9
N / E 0 E a

%) @ S
1 m 3
5| % g
m Engine Process 2
'- P1 2
o core A 2
=] . c
= I TP manages’ g
3 4 Y

Figure 28 Routing notifications from a context source to a WS-BPEL process

4.4 OVERALL SYSTEM

Using these solutions we now create the integrated system shown in Figure 27. Consider the mes-
sage flow that occurs when a WS-BPEL process uses context variables and subscribes to a context
type. The WS-BPEL process definition contains an invoke activity that calls a WSDL operation in
an external web-service. When this activity is executed the invoked web service creates a context
source using the WSRF system. It then returns subscription parameters to the relevant context
types as extensions in its response message. On receiving this response the WS-BPEL engine
creates a NotificationConsumerResource WS-Resource as a facet of the destination process.
This WS-Resource is a WSN consumer, and the engine subscribes to the context sources in the
response message using its EPR as the consumer endpoint. Note that the only step the process
programmer has to specify is the first: invoking the web service and defining its output to be a
context variable; the rest are executed by our solution infrastructure. Although the resulting sys-
tem flow is involved, this is a reasonable tradeoff: by burying a feature’s complexity in the infra-
structure, the productivity of many target developers is improved. Figure 28 shows the message
flow for context-type updates. Notifications are addressed to the NotificationConsumerRe-
source WS-Resource of the process with context variables. When the resource receives these no-
tifications it extracts the new values of the context types and sends them to its associated process,

which then propagates them to the relevant variables.

This design does not rely on any vendor-specific features and can be constructed using any WS-

BPEL engine, application server hosting a web service, and WSRF-capable system. It is based on a

46

simple conceptual model, and process programmers do not have to add non-business process log-
ic to use context variables. It uses accepted standards and MEPs, so context sources can be
created using existing toolkits, and the difficulty of modifying a WS-BPEL engine is reduced.
Moreover, the WS-BPEL engine, web service, and context-source system do not have to support
any non-standard communication patterns. Finally, being push-based, it imposes low overhead

on the WS-BPEL engine.

47

Chapter 5

PROTOTYPE

A prototype for our WS-BPEL context architecture was developed using free, open-source, well-
maintained toolkits. It demonstrates that existing development frameworks can be leveraged to
build the proposed system, and that such a system achieves its design purpose. The prototype was

implemented using:

e The ActiveBPEL 4.1 WS-BPEL engine, which we modified

e AJava EE 5 web service

e An Apache Muse 2.2.0 WSRF/WSN system for context sources
The initial implementation functions as a proof of concept. It features only basic functionality,
and highlights the challenges developers face in developing architectures across multiple frame-
works. In the following sections we describe how the high-level requirements described in
Chapter 3 are put into practice. We highlight interesting implementation details and discuss the
impact each toolkit’s design had on the architectural entity that was implemented on it. Finally,
note that nothing in the high-level architecture is toolkit-specific — an architecture for supporting
context variables can be built using any WS-BPEL engine, web-services toolkit and WSRF/WSN

system. This is simply one example.

5.1 WSRF-BASED CONTEXT SOURCE FRAMEWORK

The proposed system uses WSRF WS-Resources as context sources. Context sources expose con-

<xsd:schema elementFormDefault="qualified"
targetNamespace="http://delivery.company/shipping/Shipment">

<xsd:element name="ShipmentCondition" type="xsd:string"/>

<xsd:element name="ShippingResourceProperties">
<xsd:complexType>
<xsd:sequence>

<xsd:element ref="ship:ShipmentCondition" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Figure 29 shipmentCondition context type

48

Capability
1

Capability
2

Resource Manager
Resource Type 1

Isolation Layer
Muse Resource Router
Web Service

Resource Type 2

Capability
1

Capability
2

Figure 30 Apache Muse high-level design

text types as resource properties in their WS Resource Properties document. These context

sources may exist a priori, or result from business activities.

It is impossible to build an abstract WS-Resource. Instead, one has to build a WS-Resource that
exhibits the behavior and characteristics of interest in the system being exercised. For this reason
the context source in the prototype is the one described in the motivating scenario: the ship-
ment. It exposes only a single context type that is described using the XML schema in Figure 29.

This single context source is the simplest one possible that highlights:

1. The WSREF entities are required to create a working WSRF context-source system
2.The design considerations that have to be accounted for when creating real-world context

sources

5.1.1 APACHE MUSE

We used Apache Muse 2.2.0, a WSRF/WSN/Web Services Distributed Management (WSDM)-
compliant framework, to create our context-source system. Apache Muse (hereafter, Muse) is

structured as a resource manager that sits on top of a SOAP stack, and runs as a web application

49

(webapp) in common servlet containers like Apache Tomcat. Each Muse resource type has its own
WSDL interface, and is constructed by aggregating a number of Java capabilities. Together, these
capabilities implement the operations and store the properties described in the Muse resource-
type’s interface. Instances of these resource types are created at runtime (one can think of re-
source types as templates and resource-type instances as concrete instantiations) and are addres-

sable through WSA EPRs.

Muse affords programmers a lot of flexibility over the design of managed resources. Resources
can be singletons or have many instances; they can be persisted across application restarts; they
can represent both real-world or virtual entities. This flexibility allows Muse a wide range of ap-

plication requirements to be supported.

At a high level Muse is a router for managed resources, and it has the structure shown in Figure

30. A brief description of the major components follows:

e Capability: A Java class composing a set of properties and operations that are exposed via
web services. Capabilities are aggregated to create a resource type, and provide the functio-
nality for that resource type. They are either written by the programmer or are default im-
plementations of the operations and behavior specified by WSRF, WSN or WSDM.

e Resource Type: An aggregation of capabilities that is exposed as a web service. Each re-
source type is described by a WSDL interface. A resource type can have many runtime in-
stances which are addressable using WSA EPRs.

e Resource Manager: Maintains a list of known resource types and their constituent capabili-
ties. Also functions as the component through which resources can be located, set up, and
shut down, etc. from within Muse.

¢ Resource Router: Uses the EPR and WSA Action headers to route incoming web service re-
quests to the appropriate resource-type instance.

e Isolation Layer: An abstraction over the communication and deployment artifacts of a given
deployment environment. Components above this layer are insulated from implementation-
specific constructs, allowing Muse to be ported between environments without changes to
the code in the managed resource types.

A full description of Muse’s design is given in Apache Muse - Programming Model [7].

50

<wsdl:portType name="ShipmentTrackerPortType"
wsrf-rp:ResourceProperties="ship:ShippingResourceProperties"
wsrmd:Descriptor="ShipmentResourceMetadata"
wsrmd:DescriptorLocation="ShipmentResource.rmd">

<!-- Specification defined operation -->
<wsdl:operation name="GetMetadata">
<wsdl:input wsa:Action="http://schemas.xmlsoap.org/ws/2004/09/mex/GetMetadata"
name="GetMetadataMsg" message="tns:GetMetadataMsg"/>
<wsdl:output
wsa:Action="http://schemas.xmlsoap.org/ws/2004/09/mex/GetMetadataResponse"
name="GetMetadataResponseMsg" message="tns:GetMetadataResponseMsg"/>
</wsdl:operation>

<!-- Custom operation -->
<wsdl:operation name="GetShipmentContents">
<wsdl:input wsa:Action="http://delivery.company/GetShipmentContents"
message="tns:GetShipmentContentsRequest" />
<wsdl:output wsa:Action="http://delivery.company/ShipmentContents"
name="GetShipmentContentsResponse" message="tns:GetShipmentContentsResponse"/>
</wsdl:operation>

</&sal;portType>
Figure 31 Port Type with both a specification-defined and custom operation

Any resource can offer a mixture of WSRF, WSDM, WSN and custom functionality using opera-
tions in its WSDL interface. This interface always consists of a single port type with a set of speci-
fication-defined and custom operations. Specification-defined operations are simply copied from
the WSDL interfaces defined in the corresponding standards. A simple example of a port type

having both a specification-defined and custom operation is shown in Figure 31.

When a SOAP message is sent to a Muse-managed resource, two levels of routing take place.

The first is performed by the SOAP stack. From its perspective Muse is one of many web services

<serviceGroup>
<service name="MainInterface">
<parameter locked="false" name="ServiceClass">
org.apache.muse.core.platform.axis2.AxisIsolationLayer
</parameter>
<parameter name="useOriginalwsdl">true</parameter>
<operation name="handleRequest">
<messageReceiver
class="org.apache.axis2.receivers.RawXMLINOutMessageReceiver"/>
<actionMapping>
http://delivery.company/MainInterface/ShipmentTrackingRequest
</actionMapping>
</operation>
</service>
</serviceGroup>

Figure 32 Mapping between a WSA Action URI and the Muse receiving class

51

///rSubscriptionManagerA4manages>» Subscription

Context-Source <<
(NotificationProducer)

SubscriptionManager —manages® Subscription

creates

1 SubscriptionManager
> and Subscription
resource per
NotificationConsumer
subscription

Context-Source | 7
Factory

represented by represented by represented by

ServiceGroupEntry

ServiceGroupEntry

ServiceGroupEntry

Figure 33 Interaction between Muse resources

utilizing the stack. As a result, the programmer has to define a mapping between any incoming
WSA Action URIs and the Java web-service class handling the SOAP messages with which they
are associated. As the prototype WSRF system uses Apache Axis2 for its SOAP stack, this mapping
is defined in Axis2’s services.xml filee.. An example mapping from
http://delivery.company/MainInterface/ShipmentTrackingRequest (the URI) to
org.apache.axis?2.receivers.RawXMLINOutMessageReceiver (the Java web-service class) is
shown in Figure 32. The second level of routing occurs within Muse itself. Once it receives the
web service request from the SOAP stack it has to determine which resource instance, and capa-
bility within that instance, should service the request. The capabilities within a resource type are

specified in the Muse deployment descriptor muse . xml [6].

Muse uses code generators to simplify the development process. As usual, however, these are

best used with simple resource designs, and are poorly suited to iterative development.

5.1.2 MANAGED RESOURCES

In the prototype context-source system Muse runs as an Axis2 web service on Apache Tomcat
5.5.x. The system uses five resource types: a context source, a context-source factory, a Service-
Group, a ServiceGroupEntry, and a SubscriptionManager. The context-source factory is in-

voked by an external web service to create a context-source instance. This context-source is in-

52

create Shipment—m

MainInterface
(WS-Resource —
Factory)

Supplier
Web Service

Shipment

Instance 1
d Shipment
mqnage Instance 2
Shipments
Shipment
Instance 3

return EPR for |
Shipment Instance 3

----creates-~"_

Figure 34 Business interaction to create shipment context sources

MyCapability
(Custom)

MainInterface

Figure 35 Capabilities for the MainInterface Muse resource (context-source factory)

serted into a ServiceGroup and its presence in the group denoted by a ServiceGroupEntry.
When an external entity subscribes to a context-source instance to receive notifications when the
source’s context types change, a subscription WS-Resource is generated; this resource is managed

by the SubscriptionManager. The relationship between these resources is shown in Figure 33.

The simplest way to create Muse resources is by using the “start from WSDL” approach. In this
approach the programmer first designs the WSDL interface. They compose a port type from a mix
of specification-defined and custom operations, then add the necessary XML-Schema types,
WSDL messages and faults, and finally, specify any resource properties and resource metadata, as

required. This WSDL interface is then used fed into the Muse code generator, which:

1. Creates the files required for an AXIS2 web-service deployment

2.Uses the operation names and namespaces to generate the appropriate capabilities

3.Creates the muse . xm1 deployment descriptor
The operation of this code generator is detailed in Apache Muse - WSDLz2Java Tool [8]. This
process is repeated for each resource type that needs to be hosted on Muse. Note that a new Axis2
services.xml and muse.xml deployment descriptor is created each time a new resource type is
created, and must be manually combined to list all the resource types hosted in a single Muse in-

53

stance. If the WSDL interface is later changed, the best course of action is not to rerun the code
generator, but to create the required capabilities manually and add the appropriate entries to the
existing services.xml and muse.xml files. This approach was used to create all the resource
types in the prototype context source system. We describe these resource types in the following

sections.

5.1.2.1 CONTEXT-SOURCE FACTORY

The context source factory is represented by a Muse resource type named MainInterface, which
functions as an entry point into the context-source system. In the motivating scenario MainIn-
terface represents the shipping company’s web service. It is invoked by the supplier’s web ser-
vice to create a Shipment (also a context source) from the supplier to the manufacturer. The

business interaction between these three entities is detailed in Figure 34.

MainInterface is @ WS-Resource factory. There is only one instance of a MainInterface, and
that is created when Muse starts up. Since it is a singleton, it was decided that its WSA EPR would
not include any reference parameters. As a result, all SOAP messages directed to it only have the
mandatory WSA Action and Address header elements. MainInterface exposes a custom WSDL
with a single operation: TrackShipment. When this operation is invoked the MainInterface
instance creates a new ShipmentTracker resource instance to represent the Shipment. It then
returns the EPR of this newly created resource instance and the notification topics representing
its context types to the invoking web service. As shown in Figure 35, this resource type is imple-
mented using a single custom capability. It uses a custom serializer to generate the XML for its

web service response messages.

5.1.2.2 CONTEXT SOURCE

A Muse resource type named ShipmentTracker acts as the context source. ShipmentTracker is
a WS-Resource: it exposes a set of resource properties in a WS Resource Properties Document,
and each instance is addressed using a unique WSA EPR. Each ShipmentTracker represents a
real-world context source - a shipment - in the scenario and is created on each non-faulting invo-
cation of the TrackShipment operation on MainInterface. There is only one ShipmentTracker

per shipment, and each shipmentTracker represents only one shipment.

54

<wsdl:types>

<!-- Resource Properties -->
<xsd:schema elementFormDefault="qualified"
targetNamespace="http://delivery.company/shipping/Shipment">

<xsd:element name="ShipmentCondition" type="xsd:string"/>

<xsd:element name="ShippingResourceProperties">
<xsd:complexType>
<xsd:sequence>
<!-- Required for NotificationProducers by WS-Notification spec -->
<xsd:element ref="wsnt:FixedTopicSet"/>
<xsd:element ref="wst:TopicSet" minOccurs="0"/>
<xsd:element ref="wsnt:TopicExpression" minOccurs="0"
maxOccurs="unbounded" />
<xsd:element ref="wsnt:TopicExpressionDialect" minOccurs="0"
maxOccurs="unbounded" />
<xsd:element ref="ship:ShipmentCondition" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>
</wsdl:types>

Figure 36 WS Resource Properties Document for shipmentTracker

The resource properties contained by the shipmentTracker WS-Resource represent the con-
text types it offers. We have defined only a single resource property, a shipmentCondition, of
type xsd:string. A ShipmentTracker also includes additional metadata about this resource
property. This is done by adding links to a WS-Resource Metadata Descriptor to its port type us-
ing the wsrmd:Descriptor and wsrmd:DescriptorLocation attributes. This descriptor allows
programmers to provide extra information about each resource property in a WS Resource Prop-
erty Document. It can include mutability constraints, valid values for each property, its initializa-
tion value, etc. Using a WSRMD allows the programmers of the invoking web service to under-
stand which resource properties can be changed, what changes are valid, what the WS-Resource’s
default state is, etc. In the prototype, the WS-Resource Metadata Descriptor is only used to set the
initial value for ShipmentCondition. A ShipmentTracker also includes four other resource
properties: TopicSet, FixedTopicSet, TopicExpression, and TopicDialect. These properties
are included because shipmentTracker acts as @ WSN notification producer, and the WSN speci-
fication states that notification producers must provide the TopicExpression, FixedTopicSet,

and TopicDialect properties. TopicSet is included because the resource could not be generated

55

SimpleQueryCapability SimpleSetCapability SimpleMetadataExchange

(Muse-Supplied) (Muse-Supplied) (Muse-Supplied)
ShipmentTracker
SimpleGetCapability SimpleNotificationProducer MyCapability
(Muse-Supplied) (Muse-Supplied) (Custom)

Figure 37 Capabilities for shipmentTracker Muse resource (context source)

without it. The full WS Resource Properties Document for ShipmentTracker is shown in Figure

36.

The shipmentTracker WS-Resource exposes a custom WSDL interface with eight operations.
One, GetResourceProperty, must be provided by every WS-Resource (Section 5, WS Resource
Properties specification [46]). Two, Subscribe and GetCurrentMessage must be provided by
every WSN notification producer (Section 4, WS-BaseNotification specification [38]). The other
five are optional WS-Resource-Properties and WSRMD operations: GetResourcePropertyDocu-
ment, GetMultipleResourceProperties, QueryResourceProperties, SetResourceProper-
ties and GetMetadata. We have included these because Muse supplies capabilities implement-
ing these operations, so there is no developer overhead incurred in including them. In addition,
SetResourceProperties is required by the test framework to change the value of the ship-
mentCondition context type. Now, a WS-Resource is not limited to these operations - develop-
ers can add custom operations for application-specific behavior. A ShipmentTracker could, for
example, include a CompleteDelivery operation that automatically changes the value of ship-

mentCondition from Undelivered to Delivered.

As shown in Figure 37, the ShipmentTracker resource type is implemented using five Muse-
supplied capabilities that implement the WSRF, WSN and WSRMD operations, and a single cus-
tom capability. The custom capability manages the state and lifecycle of the ShipmentCondition

resource property.

56

Each shipmentTracker instance acts as a WSN notification producer. It generates a notifica-
tion when the value of shipmentCondition changes. This notification message is automatically
created and sent by the Muse-supplied SimpleNotificationProducer capability, which listens
for changes to the properties of the resource type it is included in. When an external entity wants
to subscribe for notifications from a shipmentTracker it invokes the Subscribe operation on a
specific ShipmentTracker instance using an EPR (received from MainInterface or an interme-
diate web service). shipmentTracker is the only resource type that is persisted when the context

source system restarts.

5.1.2.3 SERVICEGROUP AND SERVICEGROUPENTRY

A designer can get away with minimal organization in a small context-source system with a single
context-source type. In systems with multiple context sources or context-source types it is useful
to have flexible organizational structures that can model a variety of grouping requirements. Ad-
ministrators in context-source systems may want to group instances by type, by the value of their
resource properties, or by invoking web service. This compartmentalization can simplify adminis-
trative tasks or facilitate external interactions. For example, the supplier web service in the moti-
vating scenario may want to query the shipping company for all outstanding shipments and their
delivery dates. In an unorganized context-source system, such a query could be expensive, but in
a system where grouping is supported the query would be substantially faster and less resource

intensive.

WSREF provides the ServiceGroup and ServiceGroupEntry WS-Resources for organization,
and the prototype uses both. The Muse resource types corresponding to these two WS-Resources
are ShipmentResourceGroup and ShipmentResourceGroupEntry. A ServiceGroup represents
a collection of member WS-Resources whose membership in the group is constrained by the val-
ue of its MembershipContentRule resource property. ShipmentResourceGroup uses a WSRMD
file to specify its constraints. In this file a MembershipContentRule/@ContentElement indicates
that members of the ShipmentResourceGroup must have a namespace-qualified resource prop-
erty named ShipmentCondition. As before, this WSRMD file is linked to the port type of ship-
mentResourceGroup using the wsrmd:descriptor and wsrmd:descriptorLocation attributes.

ShipmentResourceGroup exposes a WSRF-defined serviceGroup WSDL interface with five op-

57

SimpleQueryCapability SimpleMetadataExchange
(Muse-Supplied) (Muse-Supplied)

ShipmentResourceGroup

SimpleGetCapability SimpleServiceGroup
(Muse-Supplied) (Muse-Supplied)

Figure 38 Capabilities for the SshipmentResourceGroup Muse resource

SimpleGetCapability SimpleMetadataExchange SimpleEntry
(Muse-Supplied) (Muse-Supplied) (Muse-Supplied)

ShipmentResourceGroupEntry

Figure 39 Capabilities for the ShipmentResourceGroupEntry Muse resource

erations; the only changes made to this interface were a change in its name, and adding a link to

the WSRMD file in its port type.

As shown in Figure 38, shipmentResourceGroup is implemented as a Muse resource type us-
ing four Muse-supplied capabilities. No custom capabilities were used because no custom opera-
tions were defined. An example of a custom operation that could have been included is Check-
OutstandingShipments, which would return each outstanding shipments and its associated sta-

tus to the supplier.

A WS-Resource’s membership in a serviceGroup is represented by a ServiceGroupEntry.
Like serviceGroup, it too is a WS-Resource. In the prototype shipmentResourceGroupEntry
exposes a WSRF-defined serviceGroupEntry WSDL interface with five operations; only its name
was changed. ServiceGroupEntry (Figure 39) is implemented as a Muse resource type that uses

three Muse-supplied capabilities.

In the prototype the intermediate web service and WS-BPEL engine interact only with the con-
text source and context-source factory, not with the serviceGroup or ServiceGroupEntry. This

reflects the simplified nature of the scenario and the prototype. Nevertheless, these resource types
58

. | SubscriptionManager
WSN NotificationConsumer assoglated WS-Resource
A ““notifies ﬂlth |
(manages
I
Subscription Represents the
Context Source WS-Resource subscription for
WSN NotificationConsumer
) | subscription properties A
1
]
WSN NotificationConsumer l¢_notifies associated
B with
I
|
Subscription
Subsa;lztlonManageP | manages—| WS-Resource Represents the
-Resource L . subscription for
Subscription properties WSN NotificationConsumer
B

Each SubscriptionManager manages one, and only one,
subscription WS-Resource

Figure 40 Relationship between NotificationConsumer, context source (NotificationPro-

ducer), SubscriptionManager and Subscription WS-Resource

SimpleGetCapability SimpleImmediateTermination
(Muse-Supplied) (Muse-Supplied)

SubscriptionManager

ScheduledResourceTermination SimpleSubscriptionManager
(Muse-Supplied) (Muse-Supplied)

Figure 41 Capabilities for SubscriptionManager Muse resource

are included to show how they fit into a context-source system, and we expect them to be used

extensively in more full-featured scenarios.

5.1.2.4 SUBSCRIPTION MANAGER

When a subscriber invokes the subscribe operation on a WSN notification producer a subscrip-
tion resource is created. The EPR of this resource is returned to the subscriber along with the EPR
of a SubscriptionManager, an entity for managing subscription resources. A SubscriptionMa-
nager allows external entities to manipulate their subscriptions - for example, terminating or

pausing them. When a programmer creates a WSN notification producer WS-Resource in Muse

59

the code-generator automatically creates an associated SubscriptionManager resource type; no

work is required on the developer’s part.

The relationship between SubscriptionManager instances and subscription resources is im-
plementation specific. For example, the framework could use a single subscriptionManager in-
stance to manage all subscription resources, regardless of which notification-producer instance or
notification-producer resource type with which they are associated. Alternatively, it could use a
single subscriptionManager per notification-producer resource type. Muse uses a single Sub-
scriptionManger instance per subscription resource. To clarify: when a subscriber invokes the
Subscribe operation on a notification-producer instance, a subscription resource is created. Si-
multaneously, a new SubscriptionManager instance is created to manage this subscription re-
source. The EPRs of both the subscription resource and the subscriptionManager instance are
then returned to the subscriber. Invoking subscribe again on another notification-producer in-
stance (or even the same instance) results in the creation of a new subscription resource and a
new SubscriptionManager instance. This is shown in Figure 40. This means that in Muse, each

SubscriptionManager instance manages only a single subscription resource.

Muse’s implementation of the SubscriptionManager resource type is unusual. Since it
represents subscription resources as WS-Resources, the SubscriptionManager resource-type’s
WSDL interface does not implement the operations defined in either the WSN-defined sub-
scriptionManager or PausableSubscriptionManager port types. Instead, a Subscription-
Manager instance exposes the standard WSRF resource-properties operations (GetResourcePro-
perty, etc.) so that external entities can retrieve the subscription WS-Resource it manages, and
manipulate or terminate the subscription directly. The SubscriptionManager resource type is

implemented using four Muse-supplied capabilities, as shown in Figure 41.

5.1.3 DEVELOPMENT IMPRESSIONS

The WSRF-based context-source system above is not the most minimal, but it contains all the
resources needed to support a range of requirements. In building the system the goal was to un-
derstand how much developer effort was required to get a single context source, along with its

supporting entities, up and running. Notable challenges included:

60

—purchase subcomponent—»| —create ShipmentTrackers

Context-enabled Muse
WS-BPEL Java EE Context-Source
Engine Web Service System

(manufacturer) (supplier) (shipping company)

<t—purchase confirmation— r«—ShipmentTracker EPR——

Figure 42 Interaction between the supplier web service, the WS-BPEL engine and the con-

text-source system

¢ Understanding how WSA Action headers influenced routing to a capability’s methods, and
changing the code and deployment artifacts to reflect this
e Composing a WSDL interface for a Muse resource-type. Including the correct XML schemas,
schema references, etc., was far more involved than expected
e Maintaining the mapping between the muse.xml deployment descriptor, the WSDL inter-
face, and the Java capabilities
The Muse programming model is relatively straightforward and did not pose many difficulties in
implementing the relatively simple system above. It is possible that in a configuration with a more
constraints — for example, a single WS-Resource that represented multiple real-world resources,
or a WS-Resource that composed multiple pre-defined schema and WSDL operations - that this

would no longer be the case.

5.2 INTERMEDIATE WEB SERVICE

While some business processes will interact with context sources directly, most will receive refer-
ences to context sources through intermediate web services. In fact, it is this configuration - the
manufacturer receiving a reference to a shipment from its supplier’s web service - that is used in
the motivating scenario. There, an intermediate web service plays the role of the supplier. It rece-
ives an order from the manufacturer, contacts the shipping company to create a shipment and its
associated context source, and returns a reference to this context source to the manufacturer. The

interaction between these high-level components is shown in Figure 42.

In Section 4.2 we describe how xsd:extension can be used to add a mapping between the re-
sponse-message parameters, the context-source EPR, and context-type WS-Topic in such a way

that any WS-BPEL engine could process it. Of course, many designs function well in theory but

61

Java EE 5 Web

WSDL ~ - Application @—— — — — — — — — — — — — — — |
| Container

<service> Port Component |

<port/><F-——- | I |

<port/> b |

</service>]aLa biew Service cervice I

of a Endpoint S implements-—] Implementation

WSDL port Interface Bean |

P (SEI) (SIB) |

L I

Figure 43 Relationship between an SEI, SIB, Port Component and the WSDL

fail in practice. To test the feasibility of this method, we implemented the supplier web service

using Java EE 5, JAXB 2.x and JAX-WS 2.x.

Java EE 5 (henceforth Java EE) is the latest in a line of Java enterprise-centric middleware
frameworks. It is one of the broadest and oldest enterprise frameworks, and its predecessors (J2EE
1.4,]2EE 1.2, etc.) have been used in many organizations for a wide range of applications. As a re-
sult, there is a considerable developer experience and legacy code tied up in it. Java EE is also
supported by most major software vendors and has a healthy open-source community surround-
ing it. These factors make it likely that Java EE (or some subset of it) will continue to be heavily
used in the near future. The following sections detail the basics of the JAX-WS 2.x and JAXB 2.x
programming model, and describe the various implementation components of the prototype web-

service.

5.2.1 PROGRAMMING MODEL

Java EE is a large framework comprising a number of specifications [10, 55-60]. It includes solu-
tions for a number of application areas such as persistence, transactions, web-application devel-
opment, web-service development, etc. The prototype only uses a subset of the web services tech-
nologies provided by the framework. It would be impossible for this thesis to detail all the inner
workings of Java EE’s web services support, so only a broad outline is provided. To implement the

prototype an understanding of the following specifications is necessary:

¢ JSR 224: The Java API for XML-Based Web Services (JAX-WS)
62

e JSR 222: The Java Architecture for XML Binding (JAXB)

¢ JSR 181: Web Services Metadata for the Java Platform (WS-Metadata)
In addition, some knowledge of JSR 67: SOAP with Attachments API for Java (SAAJ) is also re-
quired. It is not crucial to have in-depth knowledge of the all the above JSRs - in fact it is unlikely
that any developer will require all the capabilities they provide. At minimum, however, they need

to know:

¢ The development process for implementing web services in Java EE
e What artifacts (code, WSDL interfaces, XML schemas, etc.) are required
e Wow SOAP messages are mapped to Java methods
e The request/response framework
¢ The basics of how XML<->Java data binding works
In its simplest, most automated configuration, a JAX-WS web service consists of a Plain Old Ja-
va Object (POJO) annotated with @wWebService, with one or more of its public methods anno-

tated with @WwebMethod. An example of such a service follows:

package example;

import javax.jws.WebService;
import javax.jws.WebMethod;

@WebService
public class StudentFunctions {

@WebMethod
public String getGreeting (String name) {
return “Hello” + name;
}
}

It is also possible to implement a web service as a stateless EJB; this approach was tried in the pro-
totype but could not be made to work, as a result of a bug in the implementation or a subtlety of

which we are unaware.

When the web service is packaged appropriately - for example, in a web archive (.war) - and
loaded into a Java-EE-compliant application server like Glassfish 2.0, the Web-Services-for-Java-
EE container (web-service container) generates additional code artifacts, a WSDL interface for the

service, and then waits for incoming requests.

63

A Java EE web service exists as a port component in a container. There is a different port com-
ponent for each port in a WSDL interface. This port component consists of a Service Endpoint
Interface (SEI) and an @WebService-annotated Service Implementation Bean (SIB). The SEI is a
Java mapping of a WSDL port type that is generated using the JAX-WS rules for WSDL<->]Java
mapping. It defines the methods implemented by an underlying SIB. This SIB contains the busi-
ness logic of the web service. It has the same methods as those in the SEI but does not have to
implement (the Java implement keyword) the SEI. The relationship between WSDL, port compo-
nent, SEI and SIB is shown in Figure 43. When developing and packaging a Java EE web service,
only the SIB is required. Including the WSDL and SEI is optional, since the container will generate
the missing artifacts using annotations in the code and the default binding and mapping rules.

Section 5 of JSR 109 has a complete overview of the server-side view of Java EE web services [60].

The mapping between WSDL operations and Java methods, and XML Schema types and Java
objects/types, is governed by the JAX-WS WSDL<->]Java mapping and JAXB XML<->Java binding
rules, respectively. These rules are detailed in JSR-224 [55], JSR-222 [56, 57], and JSR-181 [10]. A
programmer has some flexibility in how these rules are applied through the use of annotations,
custom binding files and extension elements in a WSDL. When a web-service operation is in-
voked, or a web-service response needs to be sent, the container’s JAX-WS and JAXB runtimes use
the annotations and default binding rules to choose which method in a port component to call,

how to serialize/deserialize XML/Java, etc.

The Java EE toolchain makes extensive use of code generation. There are three major approach-

es to web-service development:

e Start from WSDL: The developer has a pre-defined WSDL and needs to write Java code to
implement its operations

e Start from Java: This is the approach shown in the example above, and is the one used in
most tutorials. The developer starts with the implementation objects and annotates them as
necessary. The WSDL interface is generated automatically

e Meet in the middle: The developer has existing Java code, but needs to conform to a pre-
defined WSDL. This is, by far, the hardest approach and involves a lot of iterative experi-

menting, tweaking annotations and code generation

64

<wsdl:definitions . . .>
<wsdl:types>

<xsd:schema>
<xsd:element name="PurchaselItem" type="tns:PurchaseItem" />

<xsd:complexType name="PurchaseItem">
<xsd:sequence>
<xsd:element name="ItemCode" type="xsd:string"
minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>
</wsdl:types>

<wsdl:message name="PurchaseltemRequest">
<wsdl:part element="tns:Purchaseltem" name="wrapper" />
</wsdl:message>

</wsdl:definitions>
Figure 44 Request-message structure for purchaseItemoperation

The prototype used the “Start from WSDL” approach with some constraints on the generated SEI

method signatures.

5.2.2 INTERFACE

Java-EE web services are advertised using WSDL interfaces. Although it is possible to start from

Java and have the container generate a WSDL automatically, this approach was not ideal because:

1. We were not fluent in the JAX-WS/JAXB mapping and binding rules, so were unsure what
the generated WSDL would look like

2.Changing the Java method signatures and data-type structures so that the generated WSDL
would meet our requirements would be a tedious, iterative and error-prone task

3.We had very specific requirements for the structure of the return messages (the use of
xsd:extension, for example)

4.0ur context parameters made use of XML-Schema-defined types, like the WSN TopicType,
which had no Java equivalent. It would have been hard to quickly write mapping classes for
these pre-defined XML types

5.In the scenario our supplier (the Java-EE web service) interacts with an ordering WS-BPEL
business process. Writing this process would be simpler if we had a known WSDL with

which to work

65

wsdl:types

Ve
I <xsd:element . . .>
I This ‘wrapper’
| element
| contains all <xsd:element . . .

the operation
| parameters
| <xsd:element . . .

This part

| references a
| ‘wrapper’
~ element

defined in the
WSDL’s <types>
section

Contains a <wsdl:message>

single ‘part’
which must be
an element <wsdl:part element = > . . .” />

Figure 45 Relationship between message, part, element and parameters

These factors made us choose the “Start from WSDL” approach. With this approach, a pre-
existing WSDL is fed into a tool like wsimport, which generates the corresponding SEI and Java
data structures. As noted above, the design of the WSDL interface has a major impact on how the
generated code looks - from the names of operations, to the data types and method signatures. In
creating a WSDL interface the developer must first decide what WSDL style they will use. The
choice of style determines how a web service maps SOAP messages to operations. There are three
alternatives: rpc/literal, document/literal and document/literal wrapped, and their details can be
found in Section 3 of the WSDL specification [67]. As mentioned in Section 4.2, for interoperabili-
ty reasons this thesis only considers those web services that conform to the WS-I Basic Profile.
This necessitates the use of the document/literal-wrapped WSDL style for the supplier web ser-

vice. Briefly, this binding style requires that:

1. Messages carry data that conforms to the XML-Schema types defined in a WSDL’s <types>
section
2.The parameters in a SOAP message are grouped under a single ‘wrapper’ element that is the
only direct child of the SOAP body
The use of document/literal wrapped also brings into play other conventions that must not be

forgotten since they affect the Java artifacts generated during the WSDL<->]Java mapping phase.

66

Using document/literal wrapped has its advantages and disadvantages. While it allows schema-
type validation, it also makes both the WSDL and the SOAP messages very verbose. For a novice
developer it can be hard, when designing the schema and WSDL, to keep in mind which element

is the wrapper, the contained type, etc.

The supplier web service has a single port type named Purchase with only one operation: pur-
chaseItem. This operation’s request message has the structure show in Figure 44. Some of the
document/literal wrapped conventions come into play here. The message can contain only a sin-
gle part which must be an element, not a type (Section 2.3.1.2, JAX-WS specification [55]). This
element is the wrapper element and must have a local name that corresponds to the name of the
operation it is used in (Section 2.3.1.2 (ii), JAX-WS specification [55]) - so, PurchaseTItem. This
element is defined using XML Schema in the WSDL inerface’s <types> section, and it contains
the actual parameters for the operation. These parameters are, in turn, mapped to Java method
parameters in the SEI. The relationship between message, part, element, and parameters is shown

in Figure 45.

Creating the WSDL entries for the operation’s return types was more involved. PurchaselItem
had to return two types of messages: one with a snapshot of relevant properties from the ship-
mentTracker context source (BaseReturn), and another that included the context parameters as

well (ExtendedReturn). BaseReturn was defined as a complex type with the following schema:

<xsd:complexType name="BaseReturn">
<xsd:sequence>
<xsd:element name="ItemCode" type="xsd:string" />
<xsd:element name="PurchaseStatus" type="xsd:string" />
<xsd:element name="ShipmentStatus" type="xsd:string" />
</xsd:sequence>
</xsd:complexType>

Extended return included these elements as well as the context parameters shown in Figure 24. It

used the xsd:extension element and had the following schema:

67

<xsd:complexType name="ExtendedReturn">
<xsd:complexContent>
<xsd:extension base="tns:BaseReturn">
<xsd:sequence>
<xsd:element name="Context" maxOccurs="unbounded" minOccurs="1"
type="tns:ContextParameter" />
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Remember that the document/literal-wrapped WSDL style stipulates that a message part refer
to a wrapper element, not an XML-Schema type. This requirement made it impossible to simply
reference the BaseReturn type above. Instead, a three-layer hierarchy was used. First, a wrapper
element named PurchaseItemResponse was created. It contained a single element of type Base-
Return. Using xsd:extension a new ExtendedReturn type was derived from BaseReturn, allow-

ing the response message to contain either type. The schema for PurchaseItemResponse is:

<xsd:element name="PurchaseItemResponse">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Return" type="tns:BaseReturn" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>

The hierarchy formed by the wrapper element and the two return types is shown in Figure 46.

68

<PurchaseItemResponse>

contains
E— <Return>

is
of type
\
<: <BaseReturn> :>
A
1..%
<ExtendedReturn> <ContextParameter>

Figure 46 Type hierarchy for the intermediate web service’s response message

One final consideration had to be made in defining the schema for PurchaseItemResponse.
The element of type BaseReturn was originally named ResponseContents. When the WSDL
interface incorporating this schema was fed into wsimport it generated an SEI with Java method

signatures with the following form:

public void purchaselItem (Holder<BaseReturn> ResponseContents, String itemCode) ;

Note that PurchaseItem has a void return type and uses Holder<T> parameters, where <T> is
the class hierarchy created by BaseReturn and ExtendedReturn. Using a void return is not
standard Java practice if a method has only one return type. After investigation it was discovered
that Section 2.3.2 of the JAX-WS specification states:

If there is a single out wrapper child then it forms the method re-

turn type, if there is an out wrapper child with a local name of “re-

turn” then it forms the method return type, otherwise the return
type is void. [55]

As a result, we changed the name of the contained element from ResponseContents to Return,

as shown in the following schema fragment:

69

<!-- Before -->
<xsd:element name="PurchaseIltemResponse'">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="ResponseContents" type="tns:BaseReturn" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<!-- After -->
<xsd:element name="PurchaseItemResponse">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Return" type="tns:BaseReturn" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>

This resulted in the following Java method signature:

public BaseReturn purchaseltem(String itemCode) ;

Once the supplier’s schema and WSDL interface was created, and acceptable SEI and data

structures for the web service created, all that was left was its implementation.

5.2.3 IMPLEMENTATION

This web service was implemented as a single SIB that referenced an SEI with a single operation.
Since the web service needed to support WS-Addressing and the XML-Schema xsd:extension
element, it needed to use the JAX-WS 2.1.x Reference Implementation (RI) and the JAXB 2.1.x RI.
The 2.0.x versions of these RIs did not support either WS-Addressing or XML-Schema type exten-

sion.
Although using an SEI is optional, including it has many advantages. It allows a developer to:

1. Follow standard practice by separating interface from implementation
2.Separate most of the annotations concerning method behavior, JAXB data binding behavior,
etc. from the web service’s implementation code
3.Better control the public interface of the web service
Using an SEI however, has its own idiosyncrasies. First, the SIB’s
@WebService/endpointInterface annotation must reference the SEI's fully-qualified name

even though the interface and class are linked through the use of the Java implements keyword.

70

Second, although the SEI may have been generated from a pre-existing WSDL interface, it does
not reference this WSDL interface by default. This means that when the web service’s WSDL is
requested, it will not return the hand-created one used to generate the SEI. Instead, it will return
a congruent WSDL that is auto-generated by the web service runtime. Not linking the SEI to the
hand-created WSDL caused unexpected behavior with the prototype web service - a situation in
which the web service .war could not be loaded into the container. It was fixed by annotating the

SEI with ewebService/wsdlLocation and setting it to the location of the pre-existing WSDL:

package ca.uwaterloo.ece.aag.ecommercestore.purchase;

import .

@WebService (name = "Purchase",

targetNamespace = "http://ece.uwaterloo.ca/aag/ecommercestore/purchase",
wsdlLocation = "WEB-INF/wsdl/Purchase.wsdl"

)

@Addressing ()

@XmlSeeAlso ({

ca.uwaterloo.ece.aag.ecommercestore.purchase.ObjectFactory.class,
org.oasis open.docs.wsn.t 1l.0bjectFactory.class

1)

public interface Purchase {

: .

We also added the @addressing annotation to the SEI. This is because Muse uses WSA headers

to route SOAP messages, not the the soapaction HTTP header field.

As shown in Figure 42 the supplier web service in the prototype has to interact with both the
context source system and the invoking WS-BPEL process. Its implementation can be split along

those lines, with a different approach used for both.

5.2.3.1 INTERACTING WITH THE INVOKING SERVICE

The WS-BPEL process invokes the supplier by calling its PurchaseItem operation. The invoca-
tion request is sent in a SOAP message. The SIB implementing the supplier web service leverages
the JAXB data-binding system in interactions with this WS-BPEL process. From a Java developer’s
perspective, using JAX-WS/JAXB is extremely convenient since it allows them to ignore the un-

derlying use of XML, any issues associated with its parsing and processing, etc. In fact, they deal

71

only with Java data types. For example, the BaseReturn complex type is translated into the fol-

lowing Java class:

package ca.uwaterloo.ece.aag.ecommercestore.purchase;
import

public class BaseReturn {
protected String itemCode;
protected String purchaseStatus;
protected String shipmentStatus;

public String getItemCode () {
return itemCode;

}

public void setItemCode (String value) {
this.itemCode = value;

}

public String getPurchaseStatus() {
return purchaseStatus;

}

public void setPurchaseStatus (String value) {
this.purchaseStatus = value;

}

public String getShipmentStatus () {
return shipmentStatus;

}

public void setShipmentStatus (String value) {
this.shipmentStatus = value;

}

Note that the code snippet above does not include all the annotations added by JAXB during code

generation. These annotations are required, and classes used in the prototype contain them.

The invoked PurchaseItem operation returns a snapshot of the Shipment parameters. Since
JAX-WS/JAXB is used, web service responses are simple: the developer simply returns an instance

of the BaseReturn type in the standard way:

public class PurchaseService implements Purchase {
public BaseReturn purchaseltem(String itemCode) {

return new BaseReturn;

72

Correspondingly, to return the ExtendedrReturn XML type, the developer simply creates an in-
stance of the ExtendedReturn Java class (which corresponds to its namesake in the WSDL) and

returns that instead:

public class PurchaseService implements Purchase {
public BaseReturn purchaseltem(String itemCode) {

return new ExtendedReturn;

XML serialization, matching the response up to the appropriate operation, and other logistical
tasks are handled by the JAXB and JAX-WS runtimes. This is the closest-to-ideal Java web-service
development experience, since the developer does not have to care about the underlying XML

mechanics.

5.2.3.2 INTERACTING WITH THE CONTEXT-SOURCE SYSTEM

The supplier SIB interacts with the context source system through the MainInterface Muse re-
source type. It invokes the MainInterface resource’s TrackShipment operation, receiving a ref-
erence to the newly-created ShipmentTracker context source and a list of its notification topics

in return. The structure of the response message is as follows:

<xsd:element name="TrackingResponse">
<xsd:element name="ShipmentDetails">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="ShipmentUpdateService"
type="wsa:EndpointReferenceType" />
<xsd:element name="ShipmentNotificationTopics" type="tns:TopicList"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:element>

When the SIB requests a ShipmentTracker from MainInterface it acts as a web-service
client. A Java-EE web-service client can use the Service abstraction, detailed in Section 4 of the
JAX-WS specification, to make requests, and receive responses from, web-service providers [55].
Using this approach involves leveraging JAX-WS/JAXB to create Java interfaces and data-types
from the WSDL interface of the invoked web service. This, however, poses a problem in dealing

with Muse resources. Note that the Muse code generator’s default behavior is to merge the all the

73

referenced schemas into a single WSDL interface. Feeding this merged WSDL interface into the
JAX-WS/JAXB code generator would result in hundreds of Java data types being created — most
unnecessary. Moreover, it was unclear if the JAXB data binding rules would work for all the sche-
ma types or, even if they did, whether sensible Java versions of the XML schema types would be
generated. Given the simplicity of the TrackShipment message schema and the potential for er-

ror when using JAXB, working directly with the request/response XML seemed the safer option.

JAX-WS allows web-service clients to use the low-level Dispatch API to interact with clients.
This API allows programmers to work at the XML level and deal with protocol-specific message
structures. With this flexibility, however, comes the requirement that programmers fully under-
stand what the request/response message and payload structure look like. The SIB uses the soap-
Message version of the Dispatch API - Dispatch<SOAPMessage> — with WS-Addressing sup-
port. Dispatch<SOAPMessage> allows a SOAP message - both body and headers - to be con-
structed from scratch. The prototype implementation uses SAA] to construct the request message.
Although there was some time lost in learning another API, the effort was worth it: the resulting
implementation was lightweight in comparison to the alternative. Note that this was, at least in
part, because of the simple message schema for the Trackshipment operation. Using the full ca-
pabilities of JAXB and JAX-WS would be a better move if the service provider had a large WSDL

interface with multiple operations and a complex XML schema.

The response message from TrackShipment was parsed using XML Document Object Model
(DOM) and XML Path Language (XPath). The content of the SOAP body was extracted as a DOM

tree, and the notification topics and context-source EPR retrieved using XPath expressions:

<!-- Prefix assignment -->
xmlns:mainInt="http://delivery.company/MainInterface”

<!-- Expression to retrieve the EPR -->
//mainInt:ShipmentUpdateService

<!-- Expression to retrieve the notification topics -->
//mainInt:Topic

Note that using XPath required creating a NamespaceContext object that mapped namespace

prefixes to URIs, since without it expression matching failed. After these notification topics and

74

context-source EPRs were retrieved, they were inserted into JAXB data types and returned to the

invoking WS-BPEL service.

5.2.4 DEVELOPMENT IMPRESSIONS

Developing web services using Java EE was a mixed experience. While the amount of Java code
that to be written was fairly low, getting to the point where one could write all that code was

quite involved. In developing the prototype service there were two major sources of frustration:

1. The effort required to create Java data types and method signatures with the structure we
wanted. This often required close reading of the JAX-WS and JAXB specifications to under-
stand which rules were being applied for a given circumstance and why. Note that it is en-
tirely possible to have valid XML schema and WSDL interfaces, but be unable to generate
Java implementations of the same

2. Trying to figure out which APIs (for XML processing, etc.) to use in the SIB implementation.
While in many cases it was possible to use more than one API for a task, it was often unclear
what the tradeoffs in choosing one API over the other were

Finally, the framework’s heavy reliance on code generation complicated iterative development.
Changes to the WSDL interface meant re-running the JAXB/JAX-WS mapping/binding tool, figur-
ing out what classes had been added or modified, and updating the project piecemeal. Although

one got used to the process, it was error prone and far from fluid.

5.3 MoDIFIED WS-BPEL PROCESS ENGINE

Neither Muse nor the Java EE framework had to be modified to support context sources and ex-
tended web-service responses. This is because the architecture outlined in Chapter 4 leverages
existing constructs and functionality within WSRF and the WS-* standards. The same cannot be
said for a WS-BPEL engine that has to support context variables. Introducing context variables to
WS-BPEL requires extending the WS-BPEL language. It also requires the engine to support addi-
tional messaging, implicit interaction with external entities, and other non-standard behavior.
These requirements necessitate significant changes to an existing standards-compliant WS-BPEL

engine. At a minimum, supporting context variables requires the following:

e Validating WS-BPEL process files with the context variable extension

75

¢ Generating runtime structures for the extended activities and variables
e Intercepting and retrieving context parameters from extended web service responses
¢ Creating code structures to receive notifications
e Subscribing to context sources
¢ Linking subscriptions for a context type to a specific process and variable
¢ Routing notifications to the recipient process
¢ Propagating changes in context-type values to the appropriate context variable
These changes are not implementation specific, and have to be made to any WS-BPEL engine that

implements the context-variable extension described in this thesis.

5.3.1 ACTIVEBPEL 4.1

The open-source ActiveBPEL engine was modified for the prototype. Written in Java, ActiveB-
PEL 4.1 supports both BPEL4WS 1.1 and WS-BPEL 2.0. It is implemented using over 2300 classes
and interfaces comprising several million lines of code. ActiveBPEL is meant to run as a web-
application in a variety of popular servlet containers including Apache Tomcat 5.5.x, JBoss 4.0.5
and Websphere 6.1. The prototype configuration had the ActiveBPEL engine running as the ac-
tive-bpel webapp on Apache Tomcat 5.5.25. Our modifications required changes and/or addi-

tions of over 10,000 lines of code.

When Tomcat loads the active-bpel webapp, a number of startup tasks take place. Key
among them is the creation of a singleton ActiveBPEL engine (AeBusinessProcessEngine) that
manages WS-BPEL process instances. The engine functions as the interface between a process
and the external world, isolating it from the logistics of communication, message sequencing and
routing, persistence, failure handling, etc. To create a WS-BPEL process the programmer first de-
fines it in a .bpel process definition file. The process definition is then packaged into a Business
Process Archive (.bpr) along with ActiveBPEL-specific deployment artifacts. When this .bpr is
deployed in the ActiveBPEL webapp the engine parses the process definitions it contains and
creates a set of activity-definition objects (not to be confused with WS-BPEL activities) for each
WS-BPEL process. There is an activity definition object for each WS-BPEL construct - for exam-
ple, a WS-BPEL <variable> element has a corresponding RAevariableDef, a WS-BPEL <in-

voke> element has an AeActivityInvokeDef, a <process> element has an AeProcessbDef, and

76

WS-BPEL Process
Instance 1

Ae*Impl_Object_1

[
I
I
I
I

Ae*Impl_Object_2

Process Definition

File Ae*Def_Object_1 Ae*Impl_Object_3

s — |::> Ae*Def objects are N
used as templates to T — — — — — — — — -
create corresponding
processed Ae*Impl objects for ?i;:zﬁtepgocess
Ae*Def_Object_3 each runFlme WS-BPEL e e =
process instance N

(
| Ae*Impl_Object_1
I
I
| Ae*Impl_Object_2

Ae*Impl_Object_3

Figure 47 Relationship between ActiveBPEL *Def, *Impl objects and process instances

so on. Together, these activity-definition objects form the model of a WS-BPEL process. After all
these objects are created the engine validates them, checking for unrecognized attributes and ex-

tensions. Validation failures abort . bpr deployment.

A WS-BPEL process instance is created when one of its start activities is triggered. When this
occurs the engine treats the activity-definition object model as template and uses it to create a
congruent activity-implementation object model. For example, returning to <variable>, <in-
voke>, and <process>, their corresponding implementation objects are Aevariable, AeActivi-
tyInvokeImpl, and AeBusinessProcess, respectively. While there is only one set of activity de-
finition objects, there may be many sets of activity-implementation objects — one per process in-

stance. This relationship is shown in Figure 47.

The engine itself does not directly handle tasks like messaging or persistence - instead, it dele-
gates these other constructs in lower layers or to handlers. ActiveBPEL has a variety of these and

the relevant ones will be discussed as necessary.

77

The modified ActiveBPEL engine was exercised using a simple WS-BPEL process with five activ-
ities and a single context variable. This process assumed the role of the manufacturer in the moti-
vating scenario and was exposed through a purchaseProcessLT partner link type that had the

following definition:

<wsdl:definitions>

<wsdl:portType name="InternalPurchase">
<wsdl:operation name="issuePurchaseOrder">
<wsdl:input message="tns:issuePurchaseOrderRequest" />
</wsdl:operation>
</wsdl:portType>

<plnk:partnerLinkType name="purchaseProcessLT"
xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype">
<plnk:role name="purchaseProcess" portType="tns:InternalPurchase" />
</plnk:partnerLinkType>
</wsdl:definitions>

Only a single role, purchaseProcess, is defined, and this is assumed by the process itself.

The scenario process offers a single one-way operation: issuePurchaseOrder. When invoked
by an external entity — the test framework in our case - the process invokes the supplier’s web
service, receives context parameters in the response, subscribes for notifications from the relevant
context sources, and then waits for incoming notifications. This is a concrete realization of the
ideas expressed in Figure 16. In the following sections we describe how ActiveBPEL 4.1 was mod-
ified to run the scenario process. Note that all operation descriptions apply to ActiveBPEL'’s
processing of WS-BPEL 2.0 process definitions. Class names may differ when the engine deals

with BPEL4WS 1.1 process definitions.

5.3.2 EXTENSION VALIDATION

The WS-BPEL specification requires using an <extension> element in a process definition to
signal the presence of an extension. This declaration alone does not change the behavior of a WS-
BPEL process or activity - it simply advertises the extension namespace; it is the use of attributes
or elements belonging to the extension’s namespace within a WS-BPEL construct that changes
the process’ or activity’s behavior. Our process definition indicates its use of context variables

through the following declaration:

78

<bpel:extensions>

<bpel:extension mustUnderstand="yes"
namespace="http://ece.uwaterloo.ca/aag/statefulbpel"/>
</bpel:extensions>

The WS-BPEL specification allows an engine considerable leeway in dealing with extensions.
Each extension declaration includes a mustUnderstand attribute. Based on the value of this

attribute (yes/no) and whether the engine supports the extension, the engine has the option of:

1. Rejecting the process definition

2.Accepting the process definition but ignoring any usages of the extension

3.Accepting the process definition and applying the rules associated with the extension
ActiveBPEL simply ignores the use of any extensions marked optional - i.e., extension declara-
tions with mustUnderstand="no”. On the other hand, process definitions with unrecognized, yet
mandatory, extensions, are immediately rejected. Since we did not want to change how ActiveB-
PEL processed optional extensions, we simply marked the extension declaration in the scenario

process as mandatory and worked on implementing the necessary functionality within the engine.

ActiveBPEL uses an AeWSBPELDefReaderRegistry to associate WS-BPEL constructs in a
process definition with the appropriate *Def class. It then uses double dispatch and the visitor
pattern to create a set of activity-definition objects for this process definition. When aeDispat-
chReader calls configureChild () on each definition object, they in turn call the visit () me-
thod of AeWSBPELReaderVisitor. AeWSBPELReaderVisitor has a visit () method for each
type of *Def object. It uses the getAttribute () or getAttributeBooleanNS () methods to
consume all recognized attributes in the WS-BPEL construct and add them to a set of consumed
attributes. After the method completes, this set is compared with the list of attributes present in
the original *Def object. If any unconsumed attributes are present they are each added as an
AeExtensionAttributeDef to the *Def object. After this phase the definition objects are tra-
versed again using a validation visitor - AeWSBPELDefToValidationVisitor - to create a valida-
tor for each *Def object. These validators are then executed. If any *Def object has an AeExten-
sionAttributeDef its associated AeWSBPELExtentionAttributevValidator immediately flags

that extension usage as not understood, causing validation to fail and aborting deployment.

79

The context-variable extension described in Section 4.3 requires that the isStateful="yes”

attribute be added to:

e The root <process> element

e The <variable> element denoting the context variable
To support this, both the reProcessDef and AevariableDef objects were modified to include
fields denoting the presence of this attribute. AelSPBELReaderVisitor was also changed so that

its visit () methods for AeProcessDef and AeVariableDef:

1. Consumed the isStateful attribute using the getAttributeBooleanNs () method

2.Set the corresponding fields in the *De £ objects on consuming this attribute
Consuming the isStateful extension attribute prevented AeExtensionAttributeDef objects
from being created, and thus, avoided automatic failure during validation. Finally, the vali-
date () methods in AeWSBPELProcessValidator and AeVariablevalidator were changed to
recognize usages of the context variable extension. Once the *Def objects were created and vali-
dated, it was possible to deploy a scenario process definition that used the context-variable exten-

sion.

5.3.3 GENERATING RUNTIME STRUCTURES

ActiveBPEL uses activity implementation objects to represent a runtime WS-BPEL process in-
stance. Each set of implementation objects is isolated from all others and has its own collective

state. To support context variables these implementation objects have to be changed:

e <variable>
e <process>
e <invoke>
Standard WS-BPEL variables are implemented using the revariable class. A context variable
has functionality beyond that of a regular variable: it has to be able to update its value based on
the contents of a notification message, maintain a mapping between a subscription EPR and a

child element within the variable, etc.

The implementation object that corresponds to a WS-BPEL process is AeBusinessProcess. A

process containing context variables needs to maintain a list of these variables and may even be

8o

responsible for enforcing the rules concerning their modification. It is also the entity that receives
notifications for context types. Having the process perform these tasks (as opposed to the variable
implementation objects) is a logical choice. In ActiveBPEL the process and engine are tightly con-
nected, with the process using the engine as its interface to the outside world and the engine for-
warding results to the process. In fact, the engine has no knowledge of the implementation ob-
jects within a process. By having processes receive notifications and handle subsequent routing to
context variables, we maintain this relationship, and prevent the engine from knowing anything
about the WS-BPEL structures and activities within a process. Moreover, some optimizations are
easier to implement, since the process has a global view of the type and state of its internal struc-
tures. For example, if two context variables subscribe to the same context type at the same con-
text source the process can recognize this and use the same subscription EPR for both, instead of

subscribing a second time.

An AeActivityInvokeImpl is the implementation object for an invoke activity. In ActiveBPEL
invoke responses are routed to, and processed by, the invoke implementation object making the
request. If an invoke activity has as its output variable a context variable, it has to process res-
ponses differently: when a web service responds with context parameters the implementation ob-
ject needs to determine which context types have to be subscribed to, initiate the subscriptions,

handle subscription responses and failures, etc.

Although it would have been possible to simply add the necessary functionality to Aevariable,
AeBusinessProcess and AeActivityInvokeImpl, the decision was made to create separate
context-variable aware objects whenever possible. This is the standard OO practice of subclassing.

Each context-variable aware implementation object:

1. Extends the standard implementation object

2.Implements new interfaces with methods specific to context variables
The context-enabled versions of Aevariable and AeActivityInvokeImpl are AagStatefulVa-
riable and RagActivitySubscriptionInvokeImpl respectively. As described earlier in this
section, AeBusinessProcess and AeBusinessProcessEngine are intimately linked. Although
subclassing was considered, the extra logic involved and interface changes required were extreme-

ly high. As a result, simplicity dictated that context-variable-specific changes were made directly

81

to AeBusinessProcess. Whenever appropriate however, context-variable specific methods were

listed in a new interface.

To generate this set of implementation objects ActiveBPEL followed the same double-dispatch
and visitor patterns used with definition-model creation and validation. Specifically, an aeDef-
ToWSBPELImplVisitor is used to visit the set of definition objects and create a set of correspond-
ing implementation objects. The visit () methods in AeDefToWSPBELImplVisitor for the
process, variable and invoke definition objects were modified to create context-aware versions of
the implementation objects. The following rules were enforced before a context-variable-aware

implementation object was created:

e A context-variable-aware AeBusinessProcess is only created if AeProcessDef has an isS-
tateful="yes” attribute
e An AagStatefulvariable is created only if the variable and its containing process element
contain the isStateful="yes” attribute
e An RagActivitySubscriptionInvokeImpl is created only if its containing process ele-
ment and its output variable contain the the isstateful="yes” attribute
Note that the presence of the isStateful="yes” attribute is not checked by examining the
process definition XML. Instead, each definition object has a field denoting the presence of this

attribute.

There are opportunities to improve this implementation-object creation. For example, it would
be wise to create a context-variable-aware AeBusinessProcess object only if the process defini-
tion contained variables with the context-variable extension - regardless of whether the process
element itself had the isStateful="yes” attribute. Alternatively, uses of isStateful in a <va-
riable> without the attribute also appearing in <process> could be caught during validation.

That said, the simpler approach above was taken for the purposes of prototyping.

Once a set of implementation objects is created the WS-BPEL process instance can start execut-
ing. The following sections detail the tasks these new implementation objects have to perform to

support context variables.

82

5.3.4 PROCESSING EXTENDED RESPONSES

When a web service returns context parameters in its response message there are a variety of ways
in which a WS-BPEL engine can process them. Engines with no context-variable support can
simply receive the response, validate it, and transfer all its elements to the invoke activity’s output
variable. It does not treat the context-source reference parameters specially. If the engine sup-
ports context variables but either the process or the invoke activity’s output variable is missing
the isstateful="yes” attribute, then again, the above behavior applies. An argument can be
made that in the second case the WS-BPEL engine should remove the context parameters, but
this is flawed. It may be that the programmer does not want to use context variables - in this case
parameter removal is a non-issue; but it could also be that they have opted for a “roll-your-own”
approach to dealing with context sources. Since programmer control was a key criterion in de-
signing context variables, we decided that it was best to leave the parameters in. Finally, we must
consider the case where the WS-BPEL engine receives a response with context parameters for an
invoke activity whose output variable is a context variable. In this case the engine cannot just

copy the response contents to the output variable. Instead, it has to perform the following tasks:

¢ Determine which response parameters have to be copied to the output variable
e Determine if any of the context parameters correspond to these copied parameters
e For each context-parameter and response-parameter match, subscribe to the appropriate
context type/ context source
ActiveBPEL invoke implementation objects use a callback pattern to receive invocation res-
ponses. Each AeActivityInvokeImpl object implements the IAeMessageReceiver interface
which includes an onMessage () method. The process’s execution queue calls onMessage () on
the appropriate implementation object (in this case an AeActivityInvokeImpl) whenever an
incoming web service message is received. In an AeActivityInvokeImpl object, onMessage ()

performs the following tasks:

o It validates the message
e It initiates or validates correlation sets
e It uses an object of type IAeMessageDataConsumer (specifically AevariableMessageDa-

taConsumer) to copy the contents of the message to the output variable

33

e It completes its own execution and queues the next implementation object for execution
Remember that when an invoke activity’s output variable is a context variable, an AagActivi-
tySubscriptionInvokeImpl is created instead of an AeActivityInvokeImpl. AagActivity-
SubscriptionInvokeImpl implements the onMessage () method, overriding the one in AeAct-
vitityInvokeImpl. It, like the default implementation, validates the message, initiates/validates
correlation sets, and uses a message data consumer to copy the message contents to the output

variable. It also does the following:

e Determines if the response message contains context parameters
e For each context parameter in the response, uses the queueSubscribe () in AeBusines-
sProcess to queue a Subscribe request to the relevant context source
Unlike AeActivityInvokeImpl, the onMessage () method in AagActivitySubscriptionInvo-
keImpl only terminates the invoke activity if the response message contains no context parame-
ters. If these parameters exist, the invoke implementation object is ‘live’, and it remains on the

execution queue until all subscriptions are completed.

5.3.5 SUBSCRIBING TO CONTEXT SOURCES

Using context variables in a WS-BPEL process requires the WS-BPEL engine to act as a WSN sub-
scriber and the process instance to act as a WSN consumer. To subscribe, the engine sends out a
WSN subscribe message to a WSN notification producer. An abbreviated version of this mes-

sage is shown below:

84

<soapenv:Envelope . . .>
<soapenv:Header>

<!-- EPR parameters to identify the WSN producer being subscribed to -->
<wsa:To . . .>http://localhost:5050/TestDest</wsa:To>
<wsa:Action . . .>
http://docs.oasis-open.org/wsn/bw-2/NotificationProducer/SubscribeRequest
</wsa:Action>
<wsa:MessageID . . .>uuid:c7e5654c-7cde-7d19-d7a8-c27b12812dc9</wsa:MessagelD>
<wsa:From . . .>
<wsa:Address>http://testaddr</wsa:Address>
<wsa:ReferenceParameters>
<aag:statefulSubscribe . . .>TestRefParam</aag:statefulSubscribe>
</wsa:ReferenceParameters>
</wsa:From>
<!-- End of EPR parameters -->

</soapenv:Header>
<soapenv:Body>

<wsnt:Subscribe . . .>
<!-- WSN Consumer EPR -->
<wsnt:ConsumerReference>
<wsa:Address . . .>http://testaddr</wsa:Address>
<wsa:ReferenceParameters . . .>
<aag:statefulSubscribe . . .>TestRefParam</aag:statefulSubscribe>

</wsa:ReferenceParameters>
</wsnt:ConsumerReference>
<!-- End of WSN Consumer EPR -->

<!-- WS-Topic the consumer is subscribing to -->
<wsnt:Filter>
<wsnt:TopicExpression

xmlns:="http://ece.uwaterloo.ca/aag">testProperty</wsnt:TopicExpression>
</wsnt:Filter>
<!-- End of WS-Topic the consumer is subscribing to -->

</wsnt:Subscribe>
</soapenv:Body>
</soapenv:Envelope

Note that the Subscribe message requires a ConsumerReference, i.e. the EPR of the WSN con-
sumer. Generating this EPR depends on how WSN consumers are implemented within a WS-
BPEL engine. Below, we describe two possible implementations, and then fully detail the one used

in our prototype.

5.3.5.1 CREATING WSN NOTIFICATIONCONSUMERS
This thesis considers two alternatives to implementing WSN consumers and dealing with notifi-

cations in a WS-BPEL engine. The first requires the engine to:

1. Generate an EPR for each WS-BPEL process instance
85

A

Route notifications
to 2
WS-BPEL Process Instance 1

WS-BPEL
Process
Instance

WS-BPEL
Process
Instance

WS-BPEL

Process
|
_ Instance I
request |
subscription ! !
for | |
context variable | \\\ !
\ \ |
\ manages \ /)
N | /
\\\ _7
///,4.» WS-BPEL Engine Context Source
generate EPR 1
for notify
WS-BPEL

Process Instance
1

B
subscribe
on behalf of WS-BPEL Process Instance 1
using newly-generated EPR

C

Figure 48 Simple WSN NotificationConsumer setup

2.Route notifications directly to the process instance

This setup is shown in Figure 48. An advantage of this approach is its conceptual simplicity. Im-

plementing it however, requires the WS-BPEL engine to:

¢ Generate a valid and unique EPR for each process instance

¢ Maintain a mapping between each EPR and its corresponding process instances

¢ Handle WSA headers for incoming and outgoing SOAP messages. This requires the engine
to handle other tasks like Universally-Unique-Identifier (UUID) generation, message se-
quencing, etc.

e Function as a router, directing SOAP messages with WSA headers to the appropriate
process instances

e Implement MEPs for the WSN subscribe and Notify operations

e Handle WSA and WSN related faults

What at first seems like a simple design decision actually requires turning the WS-BPEL engine

into an EPR-based resource router. It also requires that the engine support (at minimum) the

86

C
propagate values

associated

WSN
Notification-
Consumer
1

WS-BPEL
Process
Instance

WS-BPEL
Process
Instance

WS-BPEL

3 |
te WSN NotificationC 1 ‘ Process |
route create otificationConsumer request | Instance
notification WS-Resource for est ! i
WS-BPEL Process Instance 1 subscription !
B for 5 ‘
context variable ! N |
\ \ !
\ manages Y !
\\ \1 ///
L
WSRF System return EPR WS-BPEL Engine
4
generate EPR 1\\ //)
 for request EPR for
WSN NotificationConsumer 1 WS-BPEL Process Instance 1
3 2
notify
A subscribe

on behalf of WS-BPEL Process Instance 1
using newly-generated EPR

Context Source
I
5

Figure 49 Alternative WSN NotificationConsumer setup

WSN subscribe and Notify MEPs, along with their associated fault handling logic. This is a sig-

nificant amount of code.

There is an alternative that uses Apache Muse. Muse already functions as an EPR-based re-
source router and supports the WSN and WSRF MEPs. It has been developed for a number of
years and is used in a variety of production environments. Moreover, since Muse was used to im-
plement the prototype’s context sources, we have a reasonable understanding of its architecture,
major code artifacts and development process. To incorporate a WSRF system like Muse into a

WS-BPEL engine, a design is required that:

1. Explains how the Muse webapp and the active-bpel webapp can be integrated

87

2.Shows what entities are created for a WSN subscription and how these are linked to a
process instance
3.Shows which entities receive notifications and how notification messages or values are
routed to a process instance
A design that addresses these concerns is shown in Figure 49. Here, the process-
implementation object does not act as a WSN consumer. Instead, a separate Muse-managed re-
source — a WSN-consumer resource type - is created and associated with the process implementa-
tion object. Muse automatically assigns an EPR to this WSN consumer resource, and SOAP mes-
sages with this EPR are routed by Muse, not the ActiveBPEL engine. When it receives such a
SOAP message, Muse first determines which resource should process it. After the message is
processed by the resource in question, it forwards the message’s contents to its associated process
instance. The difference in routing is clear when considering notification messages. In the first
approach the WS-BPEL engine would receive these notifications and route them to the process
instance itself. In the second, Muse would receive these notifications, route them to a WSN con-

sumer resource, which would then forward them to its associated process instance.

Although this design is simple its implementation is not. The first challenge was integrating
both web applications. In their default configuration both ActiveBPEL and Muse run as separate
webapps in a servlet container, each using their own SOAP stacks. In the prototype the ActiveB-
PEL engine runs as the active-bpel webapp on Tomcat. On startup the engine initiates its inte-
grated Axis 1.x SOAP stack. It then deploys each available process definition as a web service on
top of this stack. When SOAP messages are sent to a WS-BPEL process they are first routed to
ActiveBPEL by Tomcat, then processed by Axis 1.x to retrieve all the headers and set up messaging
structures, and finally, routed to the appropriate process instance by the engine. Apache Muse
uses the same webapp and SOAP stack setup as ActiveBPEL, but with Axisz instead of Axis 1.x.
This posed a problem: first, it was not clear if two SOAP stacks could coexist in the same web ap-
plication; second, it was unclear if different servlets in a web application shared the same clas-
sloader. The second is more serious because it prevents Muse-managed resources from accessing
ActiveBPEL classes like an AeBusinessProcess. This would make it impossible for us to use me-
thod calls to propagate notifications from a WSN-consumer resource to a process implementation

object.
88

ActiveBPEL Engine

Integrated Axis 1.x

AdminService

Apache Muse 2.2.x

Version

MuseService

BPELConsumer

BPELConsumerFactory

Figure 50 Relationship between Axis services and Muse resources

ActiveBPEL Engine

Integrated Axis 1.x

AdminService
Apache Muse 2.2.x
Version
MuseService BPELConsumer <}::::::::::::j

BPELConsumerFactory

Figure 51 The BPELConsumer Muse resource in the service/resource heirarchy

Given these concerns it was decided to:

1. Reimplement the Muse IsolationLayer module on top of the ActiveBPEL Axis 1.x SOAP

stack

2.Use the ActiveBPEL startup framework to load Muse as a web service in parallel with dep-

loyed WS-BPEL process definitions

89

This ensured that ActiveBPEL and Muse resources shared the same classloader and removed the

potential for conflicts between the two SOAP stacks.

Modifying Muse to use ActiveBPEL’s SOAP stack required fairly localized changes — namely,
implementing its SoapClient, Environment, and IsolationLayer interfaces on Axis 1.x. Having
ActiveBPEL'’s integrated Axis 1.x SOAP stack load Muse as a web service required changing the
Axis-web-service-deployment-descriptor ae-server-config.wsdd to include the following stan-

Za:

<service name="MuseService" provider="java:MSG">
<!-- Class that implements the web service -->
<parameter name="className"
value="ece.uwaterloo.ca.aag.platform.abaxis.server.AagABAxisIsolationLayer"/>

<!-- Method in that class to which the incoming message should be sent -->
<parameter name="allowedMethods" value="handleRequest"/>
</service>

This stanza indicates that any URI with the service path Museservice should be routed to the
handleRequest () method in the AagABAxisIsolationLayer class for processing. AagABAxisI-
solationLayer is the new Axis-1.x-based isolation layer class we built for Muse. While this
should have worked, it did not - in fact, it resulted in an unanticipated problem. As shown in Fig-
ure 50, Muse resources are not exposed as Axis-1.x-managed services, but as Muse-managed ones.
To route SOAP messages to these resources Muse requires that the destination URI include the
name of the target resource. Consider the BPELConsumer WSN-consumer-resource in Figure 51.
For SOAP messages to be received by the correct BPELConsumer instance both the transport URI
and the WSA To header need the following form:

<transport URI>/<context path>/<servlet path to AXIS 1l.x>/

<Muse service name>/<Muse-hosted resource>
A real-world example of such a URI is shown below:

http://localhost:9ogo/active-bpel/services/MuseService/BPELConsumer

Axis 1.x also routes SOAP messages web services using the invocation URI. It however, uses the
last part of the URI as the name of the target service. Axis 1.x inspects its list of services, finds the
service that matches this name and routes the SOAP message to it. While this routing behavior

works in many situations it fails here, since Axis determines the target service to be Museser-

90

vice/BPELConsumer, while we would simply like it to be MuseService. This problem was solved
by inserting a handler into Axis 1.x handler chain (Handlers and the Message Path in the Axis Ar-
chitecture Guide [5]) that inspects the transport URI for all incoming SOAP messages. If a mes-
sage’s transport URI contains the name of the integrated Muse service (MuseService), its Messa-
geContext object’s targetService field is simply set to MuseService, ensuring that the mes-
sage is sent to Muse for further routing. This handler was added to the Axis handler chain by add-

ing the following stanza to ae-server-config.wsdd:

<transport name="http">

<requestFlow>
<handler type="java:ece.uwaterloo.ca.aag.platform.abaxis.handlers.
AagABAxisMuseRedirectionHandler" />
</requestFlow>
</transport>

The second challenge in implementing the combined Muse-and-ActiveBPEL design involved
creating the WSN-consumer resource type itself. This resource type was modeled using a very
simple WSDL interface with the WS-BaseNotification NotificationConsumer port type. It had a
single operation - Notify - and was implemented using two capabilities: a Muse-provided Noti-
ficationConsumer, and a custom capability that implemented the NotificationMessageLis-
tener interface. The original plan envisioned that the engine created this resource by calling a
createConsumerResource () method in the integrated Muse service. It would supply the 1D and
OName of the process instance with which the WSN-consumer resource would be associated, and

receive an EPR in return. Unfortunately, two problems scuttled this:

1. Muse needs an incoming SOAP message to initialize the framework
2.The ActiveBPEL project structure and build process resulted in a circular build dependency
between the resource faCtOI'y, AeBusinessProcessEngine, and AeBusinessProcess that
could not be resolved
Given this situation only one solution sufficed: turn the resource factory into a web service and
have the WS-BPEL engine invoke a WSDL operation on it (by sending it a SOAP message) when-

ever it wanted to create a new WSN-consumer resource for a process instance.

o1

Having the resource factory act as a web service meant modeling it as a Muse resource type.
Named BPELConsumerFactory, the WSN-consumer-resource factory was implemented as a sin-
gleton resource type using only one custom capability. It exposed a very simple WSDL with a sin-
gle operation: CreateBPELConsumer. As input this operation took a ProcessID as xsd:long and
a ProcessQName as xsd:QName. It returned BPELConsumerEPR — the EPR of the newly created

WSN-consumer resource.

Now that WSN-consumer resources can be created, we present a brief overview of the steps the
modified ActiveBPEL engine takes to accomplish this. When AagActivitySubscriptionInvo-
keImpl calls queueSubscribe () on AeBusinessProcess, the process checks if it has an EPR for
its associated WSN consumer resource. If it does not, the method blocks, and a request to create
this resource is sent using the addCreateConsumer () method in AeBusinessProcessEngine.
The engine propagates this request into the lower layers, where a custom Axis handler constructs
and sends the required SOAP message to BPELConsumerFactory. When BPELConsumerFactory
responds with the EPR of the WSN consumer resource, the EPR is returned to the process in-
stance that requested it. Since each WSN consumer resource is linked to a process instance, the

returned EPR reflects this by including two reference parameters: the ProcessID and Pro-

cessQName

Closely tied to the issue of creating these consumer resources was the issue of getting the trans-

port URI for:

e Messages to the Muse consumer-resource resource factory

e the WSA To header
The ActiveBPEL engine insulates process instances from many low-level concerns (such as the
engine’s transport URI). This is a logical and defensible design choice, but it causes problems
when trying to address SOAP messages to the integrated Muse service. After investigation it was
determined that the transport URI was present in an incoming message’s MessageContext object
all the way through the Axis handler chain. However, while most of the information in the Mes-
sageContext object was transferred into an AeExtendedMessageContext object on reaching the

ActiveBPEL engine, the transport URI was not. This necessitated:

092

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

<S:Body>
<PurchaselItemResponse . . .>
<Return xsi:type="ExtendedReturn" . . .>

<ItemCode>Stapler-101</ItemCode>
<PurchaseStatus>SUCCEEEDED</PurchaseStatus>
<ShipmentStatus>IN PROGRESS</ShipmentStatus>
<Context>
<StatefulParameterName>ShipmentStatus</StatefulParameterName>
<NotificationTopicNamespace>
http://delivery.company/shipping/Shipment
</NotificationTopicNamespace>
<NotificationTopic final="false" name="ShipmentCondition"/>
<ServiceEPR>
<ns3:Address>
http://#.#.#.#/deliverycompany/services/ShipmentTracker
</ns3:Address>
<ns3:ReferenceParameters>
<muse-wsa:Resourceld . . .>MuseResource-10</muse-wsa:Resourceld>
</ns3:ReferenceParameters>
</ServiceEPR>
</Context>
</Return>
</PurchaseItemResponse>
</S:Body>
</S:Envelope>

Figure 52 PurchaseItemResponse response message

1. Changing AeBpelHandler to place the transport URI into a new field in AeMessageCon-
text
2.Retrieving the contents of that field inside ActiveBPEL’s AeAbstractReceiveHandler and
using it to set the base transport URI for the engine
Once this base URI was set, the URI for the integrated Muse service could easily be composed as

<base URI>/MuseService.

5.3.5.2 SUBSCRIBING

Once the WSN consumer resource is created, the subscription can be initiated within the Acti-
veBPEL engine. As described in Section 5.3.4, an invoke implementation object receives response
messages in its onMessage () method. If this implementation object’s output variable is a context
variable it initiates a subscription for each context parameter in the response. Although WSN al-
lows an entity to subscribe for notifications from multiple topics in a single Subscribe message,
the prototype uses a single Subscribe message per context parameter. This is done for simplicity:
the engine’s subscription logic can remain the same regardless of whether the context parameters

share the same context source or not. Also, this allows the logic for propagating notification val-

93

ues to be simplified. Note however, that nothing in the high-level design stipulates this, and im-
plementers can optimize subscriptions as appropriate. The prototype’s default behavior can be
seen in the example below. Consider the response in Figure 52. This message has three response
elements and one context parameter. If the output variable is of type message, it contains a copy
of all three elements, one of which has to be linked to the context type and source in the context
parameters. So, for parameter shipmentCondition, a subscribe request is made to the WS-Topic

ShipmentCondition at the context source with EPR:

<ServiceEPR>
<ns3:Address>
http://#.#.#.#/deliverycompany/services/ShipmentTracker
</ns3:Address>
<ns3:ReferenceParameters>

<muse-wsa:ResourceId . . .>MuseResource-10</muse-wsa:Resourceld>

</ns3:ReferenceParameters>

</ServiceEPR>

To make this subscribe request the AagActivitySubscriptionInvokeImpl calls the AeBusi-
nessProcess object’s queueSubscribe () method, and passes it the above EPR and context type,
as well as a reference to itself. When the subscribe succeeds (or faults) this reference is used to
call the initiating AagActivitySubscriptionInvokeImpl object’s onSubscribeResponse () Or
onSubscriptionFault () methods. Note that this callback pattern parallels the one used by

AeActivityInvokeImpl to receive invocation responses.

Once queueSubscribe () is called, the subscription phase is initiated; the invoke implementa-
tion object has nothing to do with the rest of the subscription process. AeBusinessProcess
queues the subscription request with AeBusinessProcessEngine using the addSubscribe ()
method. The engine then sends this request to its QueueManager — a construct for sequencing
requests and responses to and from external entities. This QueueManager locates the class han-
dling subscribe requests and hands it the request for asynchronous processing. After QueueMa-
nager hands off this request, control returns to the process instance which can execute other, pa-
rallel activities, while waiting for the response. Subscribe messages are sent, received and
queued for return by two classes: an AagSubscriber and an AagSubscribeHandler. The latter
uses a Muse NotificationProducerClient to subscribe to the context source. Since Muse sup-

ports the WSN standard, the XML for the subscribe messages and the MEPs involved in this op-

94

eration are generated and handled by Muse. The ActiveBPEL classes use Java method calls to in-

voke the Subscribe operation and receive its response. A SubscribeResponse has the form:

<soapenv:Envelope . . .>
<soapenv:Header>
<!-- EPR for the WSN subscriber -->

</soapenv:Header>
<soapenv:Body>
<wsnt:SubscribeResponse . . .>

<!-- EPR of the subscription resource representing the subscription -->

<wsnt:SubscriptionReference>
<wsa:Address>http://#.#.#.#/Service/SubscriptionManager</wsa:Address>
<wsa:ReferenceParameters>

<muse-wsa:ResourceId . . .>MuseResource-300</muse-wsa:Resourceld>

</wsa:ReferenceParameters>

</wsnt:SubscriptionReference>

<!-- End of subscription reference EPR -->

<wsnt:CurrentTime>2008-02-26T22:14:35-05:00</wsnt:CurrentTime>
</wsnt:SubscribeResponse>
</soapenv:Body>
</soapenv:Envelope>

AagSubscribeHandler retrieves the EPR of the subscription resource, the Muse Java class
representing the subscription, and the response parameter name to which these are linked, and
returns it to the process instance that requested the subscription. When AeBusinessProcess
receives this response in its dispatchSubscribeData () method it locates the invoke implemen-
tation object that initiated the subscription request and uses its execution queue to call this in-
voke object’s onSubscribeResponse () callback method. When onsubscribeResponse () is ex-

ecuted, the invoke implementation object:

1. Notifies the output variable of this subscription

2.Notifies the process of this subscription
When the process implementation object is notified it adds an entry to a table that maps sub-
scription EPRs to context variables. This is later used to propagate changed values from notifica-
tions to the appropriate context variables. When the output variable is notified, it registers a
mapping between the same subscription EPR and the specific element within its structure that
the subscription refers to. Once these two mappings - in both the process and variable implemen-
tation objects — are complete, the subscription phase is finished. Once all outstanding subscrip-

tions have completed the AagActivitySubscriptionInvokeImpl object terminates.

95

5.3.6 PROCESSING NOTIFICATIONS

Context sources send notifications to the consumer EPR included in the subscribe request. In
the prototype this EPR is that of a WSN consumer resource associated with a process instance.

WS-BaseNotification states that a notification consumer may receive two types of notifications:

1. One containing application-specific notification content only

<soap:Envelope xmlns:soap="http://www.w3.0rg/2003/05/soap-envelope">

<soap:Header>
<wsa:To . . .>
http://#.#.#.#/active-bpel/services/MuseService/BPELConsumer
</wsa:To>

Other WSA parameters
</soap:Header>
<soap:Body>

<wsnt:Notify . . .>
<wsnt:NotificationMessage . . .>
<!-- EPR of the subscription associated with this notification -->

<wsnt:SubscriptionReference>
<wsa:Address>http://#.#.#.#/ Service/SubscriptionManager</wsa:Address>
<wsa:ReferenceParameters>
<muse-wsa:Resourceld>MuseResource-300</muse-wsa:Resourceld>
</wsa:ReferenceParameters>
</wsnt:SubscriptionReference>

<!-- WS-Topic this notification is being generated for -->
<wsnt:Topic . . .>ship:ShipmentCondition</wsnt:Topic>

<!-- EPR of the WSN producer generating the notification -->
<wsnt:ProducerReference>
<wsa:Address>http://#.#.#.#/ Service/ShipmentTracker</wsa:Address>
<wsa:ReferenceParameters>
<muse-wsa:Resourceld>MuseResource-Shipl</muse-wsa:Resourceld>
</wsa:ReferenceParameters>
</wsnt:ProducerReference>

<!-- Content of the notification message -->
<wsnt:Message>
<wsrf-rp:ResourcePropertyValueChangeNotification>
<wsrf-rp:0ldvalues>
<ship:ShipmentCondition>Condition-300-1</ship:ShipmentCondition>
</wsrf-rp:01ldvalues>
<wsrf-rp:NewValues>
<ship:ShipmentCondition>Condition-300-2</ship:ShipmentCondition>
</wsrf-rp:NewValues>
</wsrf-rp:ResourcePropertyValueChangeNotification>
</wsnt:Message>

</wsnt:NotificationMessage>
</wsnt:Notify>
</soap:Body>
</soap:Envelope>

Figure 53 Format of a WSN notification message

96

2.Notification data using the NotificationMessage format
The first approach complicates the implementation of a generalized notification receiving and
processing framework within the WS-BPEL engine, since each context variable would require spe-
cific data types and formats. We took the second approach, which uses a standardized message,

and allows us to implement a generalized notification receiver in the engine.

The format of a notification message is shown in Figure 53. In this message, the Notifica-
tionMessage/SubscriptionReference element contains the EPR of the subscription resource
for which the notification was generated. Note that this EPR is the same one returned during the
subscription phase described in Section 5.3.5.2. The actual notification content is embedded in
the NotificationMessage/Message element. The following sections describe how the prototype
routes notifications to a process instance, and how the changed value in this notification is used

to update a context variable.

5.3.6.1 PROPAGATING NOTIFICATIONS TO A PROCESS INSTANCE

Notification messages are routed by Muse to a WSN-consumer resource based on the EPR in the
message header. As detailed in Section 5.3.5.1, this resource is implemented using two capabilities:
a Muse-provided NotificationConsumer, and a custom capability that implements the Notifi-

cationMessageListener interface. The NotificationConsumer capability allows a resource to

NotificationMessage

- Listener
-
/
matches Muse Resource #1
I
1
| /.yNotificationMessage
/ v .
| matches Listener
-
;.
[
incomin s . v
— g NotificationMessage 4
message \

\ Muse Resource #2
\ NotificationMessage)///,
\ Listener

NotificationMessage

Listener
\ Muse Resource #3

~ NotificationMessage
Listener

Figure 54 Example of NotificationMessage routing to Muse resources that implement the

NotificationMessageListener interface

97

register one or more listeners, each of which executes whenever it receives a notification match-
ing its criteria. Listeners implement the NotificationMessageListener interface, which pro-

vides the following methods:

e public boolean accepts (NotificationMessage message)

e public void process (NotificationMessage message)
Criteria matching is performed in the accepts() method. When Muse determines which re-
source instance should receive a notification, it calls accepts () on each capability within that
resource instance that implements the NotificationMessageListener interface. If a capability
is interested in processing the message it signals its interest by returning true, after which its
process () method is called. As shown in Figure 54, this allows programmers considerable flex-
ibility in determining how to respond to incoming notification messages. They can separate mes-
sage processing code into manageable portions - each in a different class — or they can define
multiple listeners, each for a different NotificationMessage. The prototype processes all notifi-

cations. The content of the NotificationMessage/Message element is as follows:

<wsnt:Message>
<wsrf-rp:ResourcePropertyValueChangeNotification>
<wsrf-rp:0ldvalues>
<!-- Content of old value of resource property -->
</wsrf-rp:01ldvalues>
<wsrf-rp:NewValues>
<!-- Content of new value of resource property -->
</wsrf-rp:NewValues>
</wsrf-rp:ResourcePropertyValueChangeNotification>
</wsnt:Message>

The context type’s new and old values are contained in the ResourcePropertyvalueChangeNo-
tification element. The Newvalues element contains the serialized version of the new value of
the context type. Although the Newvalues element can have more than one child element (cor-
responding to multiple new values) we do not support this. This is because there is a 1:1 corres-
pondence between subscription and context type, so NewValues should only ever have a single

child element per notification message.

When the listener capability receives a notification in its process () method it extracts the
content of the Newvalues element. It does not deserialize the changed value into a Java type. This

choice is implementation-specific: ActiveBPEL variable implementations can be updated using

98

XML DOM, so this approach minimizes data-conversion problems. The capability then sends this
updated value to the process instance with the 1D and gName with which it is associated. To do so,

it uses the updateStatefulvariable () in AeBusinessProcessEngine, passing it the:

1. Subscription reference for this notification

2.Changed values for the context type

3.Process ID
The engine uses the process ID to locate the appropriate process instance. It then calls the process
implementation object’s updateStatefulvVariable () method, passing it the changed values and
the subscription EPR. Note that a process instance has only one WSN-consumer resource. This
means that all context-variable related notifications for that process instance are handled by a

single resource.

5.3.6.2 UPDATING THE CONTEXT VARIABLE

When AeBusinessProcess receives a notification update in its updateStatefulvVariable ()
method it uses its table of subscription EPR to context-variable mappings to determine which
context variable to update. Since there is a 1:1 correspondence between subscription EPR and con-
text variable, only one variable will be changed per notification. Once this variable is located, ae-
BusinessProcess then calls the variable’s updatevalue () method. Each ragStatefulvaria-
ble contains a mapping between the subscription EPR and the child element to which it applies.

When the variable’s updatevalue () method is called, the following takes place:

1. The variable’s mappings are checked to determine the child element to which the subscrip-
tion EPR is mapped
2.The variable’s content is converted into a normalized DOM document
3.The contents of the referenced child element are replaced by the new value
Once the last step is complete, the value of the context variable has changed - without interven-

tion on the part of the programmer, or extra process logic.

5.3.7 DEVELOPMENT IMPRESSIONS
Adding the above functionality to ActiveBPEL was a non-trivial task because its size, and com-

plexity of its internal structure. Also, as is common in many large pieces of software, the architec-

99

ture documentation describing major functionality was limited. As a result, before any changes
could be made it was necessary to reverse engineer ActiveBPEL’s operation, and understand the
major classes, method flows and architectural constructs being used. In addition, ActiveBPEL'’s
separation into multiple projects and the resulting build sequence limited where new classes
could be created and how new layers could be integrated. It was also unclear at times which arti-
facts (deployment descriptors, etc.) to modify to achieve certain goals, and where they were lo-

cated in the project structure.

5.4 TEST SETUP

The open source soapUI [20] tool was used extensively during prototype development. soapUI is a
web-service-testing tool with support for functional testing, service mocking, load testing, etc. It
allows a developer to import WSDL interfaces and exercise the operations in their port types by
creating sample requests and responses and defining test cases. soapUI also allows a developer to
create mock services based on these WSDL interfaces. This allows, among other things, for mock
services to return scripted responses when their operations are invoked. Only the very basic fea-

tures of soapUI were used to test the prototype.

The WSDLs for the WS-BPEL process in the scenario and the supplier web service were im-
ported into soapUI, and sample requests generated. This allowed each entity to be tested inde-
pendently. Mock services proved very useful during development. First, running three different
application servers on a development machine taxed hardware resources. It also slowed down de-
velopment during initial stages since we did not have full control over response contents. Moreo-
ver, it caused complications, since three entities — some with incomplete functionality - were in-
teracting. Given these issues mock services were substituted for the architectural entities not un-
der test. They were created for the supplier web service and shipmentTracker. The supplier web
service was set up to respond to invocations with a range of context parameters (none, one, and
many), each with EPRs pointing to the ShipmentTracker mock service. The ShipmentTracker
mock service acted as a sample context source and implemented the WSN Subscribe and Noti-
fy operations; it allowed a WS-BPEL process to subscribe to a context type and receive notifica-
tions. Although these notifications were pre-defined they were sent manually. This was a major
limitation of our test setup - that it required human intervention. For example, the endpoints

100

that Subscribe messages were sent to were hardcoded; they should, instead, be linked to the
transport URI in the Subscribe request that was sent to the ShipmentTracker mock service.
Dependencies like this can be automated by using soapUTI's Groovy [18] scripting support. For ex-
ample, a script could be written that extracts the transport URI from a Subscribe message, stores
it, and uses it as the endpoint in future notifications. It would also be advisable to implement ac-

tual test cases to simplify further development and flag regressions.

5.5 PROTOTYPE LIMITATIONS

As can be imagined the prototype has a number of limitations. First, it implements only minimal
fault handling. In a real-world environment subscription requests could fail, context sources may
disappear, or the integrated MuseService might shut down. The WS-BPEL engine must be able
to recover from these failures and propagate an appropriate exception or notification to the
process instance if required. Next, context parameters can only be retrieved from docu-
ment/literal wrapped responses. While this decision was made for WS-I compliance, many web
services do not conform to this WSDL style. It would be useful to use context parameters with
web services written in other WSDL styles. There is also no way to advertise that a WSDL opera-
tion may return context variables - it would be advisable to add a WSDL extension attribute that
denotes this. As for ActiveBPEL itself, currently only WS-BPEL variables of type Message are al-
lowed to be context variables. Since WS-BPEL supports other variable types, both context va-
riables and parameter subscription should be made to work with these variable types as well. Fi-
nally, adding context variable functionality to ActiveBPEL required adding significant amounts of
new code, changing internal interfaces, etc., and some of these changes do not make the best use
of the ActiveBPEL architecture. Also, parts of the context-variable functionality are not cleanly
separated from that of ‘normal’ WS-BPEL operation. Both these factors could complicate further
extension of the prototype engine. Finally, the ShipmentTracker context source does not gener-
ate notifications itself. Instead, another Java program changes its context type through the web-

service interface, utilizing Muse’s default behavior to generate notifications. This should be sim-

plified.

101

Chapter 6

EVALUATION

As described in the previous chapter, we have implemented the scenario described in Section 3.1

to exercise our proposed architecture. It consists of three components:

1. A WS-BPEL business process that represents the manufacturer’s purchase process
2.A Java EE web service that serves as the component supplier
3.A WSRF-based context-source system that functions as the shipping company
The scenario is initiated when we invoke the PurchaseItem operation on the WS-BPEL busi-
ness process. The process then invokes the PurchaseItem operation on the Java-EE web service,
which invokes the TrackShipment operation on the context-source factory. This factory creates a
new ShipmentTracker context source that represents the shipment containing the order and

returns it to the Java EE web service. The message flow we have just described is shown in Figure

55 below.

PurchaseItem—»

InternalPurchaseProcess eCommerceStore

(WS-BPEL process) (Java EE web service)
response with |
context parameters
ShipmentTracker .
PurchaseItem (EPR + Topics) TrackShipment
MainInterface
(WSRF Resource Factory)
Figure 55 Scenario message flow required to create a Shipment context source

When it receives the information pertaining to the shipmentTracker, the Java-EE web service

responds to the WS-BPEL process with the message in Figure 56. The process copies this response

102

<S:Envelope . . .>

<S:Body>
<PurchaselItemResponse . . .>
<Return xsi:type="ExtendedReturn" . . .>

<ItemCode>ItemCode 1</ItemCode>
<PurchaseStatus>SUCCEEEDED</PurchaseStatus>
<ShipmentStatus>IN PROGRESS</ShipmentStatus>
<Context>
<StatefulParameterName>ShipmentStatus</StatefulParameterName>
<NotificationTopicNamespace>
http://delivery.company/shipping/Shipment
</NotificationTopicNamespace>
<NotificationTopic final="false" name="ShipmentCondition"/>
<ServiceEPR>
<ns3:Address>
http://#.#.#.#/deliverycompany/services/ShipmentTracker
</ns3:Address>
<ns3:ReferenceParameters>
<muse-wsa:ResourceId . . .>MuseResource-10</muse-wsa:Resourceld>
</ns3:ReferenceParameters>
</ServiceEPR>
</Context>
</Return>
</PurchaseItemResponse>
</S:Body>
</S:Envelope>

Figure 56 Java-EE web service response message

<Context>
<StatefulParameterName>ShipmentStatus</StatefulParameterName>
<NotificationTopicNamespace>
http://delivery.company/shipping/Shipment
<NotificationTopicNamespace>
<NotificationTopic final="false" name="ShipmentCondition"/>
<ServiceEPR>
<ns3:Address>
http://#.#.#.#/deliverycompany/services/ShipmentTracker
</ns3:Address>
<ns3:ReferenceParameters>
<muse-wsa:ResourcelId . . .>MuseResource-10</muse-wsa:Resourceld>
</ns3:ReferenceParameters>
</ServiceEPR>
</Context>

Figure 57 Response-message context parameter

to its purchaseItemResponse message-type variable. This response contains an extended return

type with the single context parameter shown in Figure 57. This context parameter contains:

1. The EPR of the newly-created Shipment context source
2.A context-type — ShipmentCondition

3.The response-message parameter that shipmentCondition is linked to, namely sShip-

mentStatus

103

The WS-BPEL engine uses the contents of the <ContextParameter> element to subscribe the
scenario process’s purchaseItemResponse variable to the ShipmentCondition context type.

After this, purchaseItemResponse is transparently updated when shipmentCondition changes.

The purchaseItemResponse variable can also be updated using polling or onEvent message
handlers. With polling, programmers would first have to specify a partnerLinkType and a part-
nerLink that codifies the relationship between the ShipmentTracker context-source’s Ship-
mentTrackerPortType and the purchase process’s InternalPurchase port type. They would
then have to implement the polling loop using one each of the <repeatuntil>, <wait>, <in-
voke>, and <assign> activities. In this polling loop, the <wait> activity is of type duration - but
the choice of update interval is not obvious. To receive updates for ShipmentCondition the <in-
voke> activity would have to invoke the GetrResourceProperty WSDL operation on the Ship-
mentTracker WS-Resource, using ShipmentCondition as the input parameter. The <assign>
activity would be used to copy the value of SshipmentCondition to the purchaselItemRes-
ponse/ShipmentStatus element. As noted earlier, using polling to implement state update re-
quires an additional six constructs. It also increases coupling since the name of the port type and
the operation to be invoked on the context source have to be known in advance. Note that this is
the case when the scenario process depends on only one piece of externally-driven environment
state; if the process depended on state from multiple context sources the number of state-

maintenance constructs required would increase linearly.

As with polling, using an onEvent handler also requires a partnerLinkType and partnerLink
that links the process’ and the context-source’s port types. The process also needs an onEvent

handler, which has the following form:

<process name="purchaseProcess" ...>
<eventHandlers>
<onEvent partnerLink="purchasing" operation="findOrderStatus" ...>
<scope>. . . Activities for event handler logic . . .</scope>
</onEvent>
<onEvent partnerLink="purchasing" operation="terminateOrder" ...>
<scope>. . . Activities for event handler logic . . .</scope>
</onEvent>
</eventHandlers>
</process>

104

The operation attribute is the name of the operation that the external entity invokes on the process
to deliver state updates. This is stated in Section 12.7.1 of the WS-BPEL specification: “the port-
Type and operation attributes define the port type and operation that is invoked by the partner in
order to cause the event.” Thus, to support this one onEvent message handler, the programmer
has to modify the process’ WSDL interface and define a new operation, its input and/or output
messages, and the corresponding XML-Schema types for their contents. Note also, that the proto-
type ShipmentTracker context source does not support processes using onEvent handlers for
notifications. This is because ShipmentTracker does not contain custom code for invoking dif-
ferent operations for different recipient processes. As for the onEvent handler itself, it contains a
<scope> activity and a child <assign> activity; <scope> is required because the specification
demands it, and <assign> is required to copy the current value of ShipmentCondition to the
purchaseIltemResponse/ShipmentStatus element. Considering the factors above, we see that
for a programmer to update a single externally-driven state variable using WS-BPEL onEvent

message handlers, they have to:

1. Make significant changes in the process’ WSDL
2.Ensure that the context source is modified to call the correct operation on the process to de-
liver notifications

3.Add an additional five constructs to the process logic
With context variables none of the above state-maintenance activities, process interface changes,
or increased coupling is required. Also, in-process state-maintenance logic is significantly reduced
- from six constructs in the commonly used polling version to none when using our approach.
The programmer also does not have to deal with issues like extending state-source WSDLs with
partner link types, choosing a wait interval, accounting for state dynamism, or concurrent varia-
ble-modification semantics, all of which are orthogonal to the business logic. Note also that we
have only considered a very simple scenario. In a more complex one the reduction in state main-
tenance code is much higher, as the complexity of maintaining external state information grows

with the number of state items being maintained.

105

Chapter 7

ENHANCEMENTS

The full potential of context variables cannot be realized using existing WS-BPEL activities and
constructs. This is because the WS-BPEL language was designed around process-updated state
and variables to store them in, not on variables containing state that is updated by external enti-

ties. This thesis proposes three WS-BPEL extensions that would:

1. Allow programmers to write shorter, simpler process logic based on context variables
2.0pen simpler ways to share externally-driven state with other business processes
These extensions are: a <conditionWithTimeout> activity, context handlers and context variable
handoff. In addition, this thesis also proposes an enhanced context source that incorporates se-

mantic information for each of its context types.

7.1 THE <CONDITIONWITHTIMEOUT> EXTENSION ACTIVITY

Programmers cannot fully realize the power of context variables if they use the standard condi-
tional activity — <if>. This is because <if> evaluates the variables in its condition expression
immediately; it cannot block until the condition becomes true. This behavior is consistent with
the mental model underlying WS-BPEL, viz. that the environment state and the variables
representing it are changed by the business process itself. This assumption no longer holds when
context variables are used. The consequences of this design decision can be demonstrated by re-
turning to the sample scenario, where part of the process logic can be expressed using the pseu-
docode shown in Figure 58. This logic can be described as a “blocking condition with timeout,” a

common programming construct in many I/O-dependent systems. Examples of such conditions

IF
Shipment.EstimatedDeliveryDate >
InternalDeliveryCutoffDate
OR
CurrentDate =
InternalDeliveryCutoffDate

THEN
// execute compensatory business logic

Figure 58 Pseudocode for "blocking condition with timeout" scenario process logic

106

<!-- Wait until the shipment is late or cutoff date is reached -->

<repeatUntil>
<condition>
<!-- Main condition -->
($currShip/nsl:Shipment/EstimatedDeliveryDate >
$InternalDeliveryCutoffDate)
or
<!-- Timeout -->
($CurrentDate > $InternalDevliveryCutoffDate)
<condition>

<sequence>
<wait>
<!-- Polling delay -->
</wait>

<!-- Invoke web service and update value of
Shipment.EstimatedDeliveryDate —-->
<invoke/>
</sequence>
</repeatUntil>

<!-- Check for timeout or late shipment and execute compensatory logic -->
<if>
<condition>
($currShip/nsl:Shipment/
EstimatedDeliveryDate >
$InternalDeliveryCutoffDate)
</condition>
<elseif>
<condition>...</condition>
</elseif>

</if>

Figure 59 Scenario process logic using polling

include socket sends and reads, condition waits in threads, etc. This construct cannot be ex-

pressed cleanly using standard WS-BPEL activities; <wait> is the only activity that explicitly

blocks, but unlike <if> or <while> it cannot evaluate arbitrary boolean expressions. Without

context variables, the desired behavior can be approximated using the polling code shown in Fig-

ure 59. This approach allows the process to respond to whichever situation occurs first - a change

in estimated delivery date or the timeout.

With shipment as the context variable the code shown in Figure 60 can be used. Note that we

no longer have to explicitly update the state variable using <invoke>; in fact, if a state update ar-

107

<!-- Wait until the shipment is late or cutoff date is reached -->

<repeatUntil>
<condition>
<!-- Main condition -->
($currShip/nsl:Shipment/EstimatedDeliveryDate >
$InternalDeliveryCutoffDate)
or
<!-- Timeout -->
($CurrentDate > $InternalDevliveryCutoffDate)
<condition>

<wait>
<!-- delay -->
</wait>
</repeatUntil>

<!-- Check for timeout or late shipment and execute compensatory logic -->
<if>
<condition>
($currShip/nsl:Shipment/EstimatedDeliveryDate >
$InternalDeliveryCutoffDate)
</condition>
<elseif>
<condition>...</condition>
</elseif>

</if>
Figure 60 Scenario process logic using context variables and standard activities only

rives while the process is waiting, the process engine transparently updates the variable’s value.
Consequently, the logic no longer looks like polling, but more like a condition wait in a thread.
Although this is an improvement, since only the standard WS-BPEL activities have been used, the
semantics of “block until condition met or timeout” still cannot be expressed cleanly. Note also
that while the context variables’ values can be updated transparently prior to the execution of a
conditional activity, once the activity is reached, its condition expression is evaluated immediately

and the appropriate code branch taken - the process cannot block within the activity itself.

Given the limitations of using only the standard activities, this thesis proposes adding a block-
ing condition and timeout construct to WS-BPEL. The proposed approach uses the <extensio-
nActivity> activity type defined in Section.10.9 of the WS-BPEL specification. An <extensio-
nActivity> wraps non-standard activities and places minimum restrictions on the semantics and

grammar of its contained elements, making it ideal for the proposed construct; an example of its

108

<conditionWithTimeout standard-attributes>
standard-elements
<blockingCondition expressionlLanguage="anyURI”?>boolean-
expression</blockingCondition>
<timeout>
(
<after expressionLanguage="anyURI”?>duration-expr</after>
|
<at expressionLanguage="anyURI”?>deadline-expr</at>
)
</timeout>
activity
<else>?
activity
</else>
</conditionWithTimeout>

Figure 61 Design of <conditionWithTimeout> extension activity

use is the <peopleActivity> activity type defined in the BPEL4People[3] specification. The new
activity we propose is loosely based on the standard <if> (Section 1.2, WS-BPEL specification
[39]) and <wait> (Section 10.7, WS-BPEL specification [39]) activities and has the structure
shown in Figure 61. It consists of a timed conditional branch defined using the <conditionwith-
Timeout> element, followed by an optional <else> element. The timed conditional branch has

two parts:

1. The blocking condition itself
2.Its associated timeout
The former is similar to the <if> activity’s <condition> and is defined in the <blockingCondi-

tion> element.

This extension activity blocks until the condition is true or the timeout defined in the <time-
out> element is reached. If the condition is met the activity under <conditionWithTimeout> is
executed; if the timeout is reached and the blocking condition is still false, the activity in the
<else> branch is executed. Timeouts can be expressed as a delay (using the <after> element) or
a deadline (using the <at> element). As in Section 10.7 of the WS-BPEL specification, if the speci-
fied duration in <after> is zero or negative, or a specified deadline in <at> has already been
reached or passed, then the <blockingCondition> is immediately evaluated and the appropriate

code branch executed.

109

<conditionWithTimeout>
<blockingCondition>
$currShip/nsl:Shipment/EstimatedDeliveryDate >
$InternalDeliveryCutoffDate
</blockingCondition>

<timeout>
<at>$InternalDeliveryCutoffDate</at>
</timeout>

<!-- Execute this activity if condition met before timeout -->
activity

<else>
<!-- Execute this activity if condition not met before timeout -->
activity
</else>
</conditionWithTimeout>

Figure 62 Scenario process logic using context variables and <conditionWithTimeout>

Using <conditionWithTimeout> the pseudocode in Figure 58 can be expressed using the code
in Figure 62. Note that this proposed extension activity significantly reduces the number of activi-
ties required to model the process logic and captures its semantics correctly. Since blocking con-
ditions with timeouts are fairly common in current I/O-dependent programs, <conditionWith-

Timeout> allows WS-BPEL to model a much wider range of I/O behavior.

7.2 CONTEXT HANDLERS

A context handler is an event handler that executes on context changes. Unlike WS-BPEL mes-
sage-based event handlers, context handlers are not exposed as a WSDL operation in a process’
port type. They are also not executed by external web services. Instead, they are similar to event
listeners in GUI toolkits. But while event listeners execute code on user or system events (like

clicking a mouse button or refreshing a window), a context handler executes when there is a

<contextHandlers>?
<contextHandler contextVariable="BPELVariableName”>*
<condition expressionLanguage="anyURI”?>bool-expr</condition>?

<correlations>?
<correlation set="”NCName” initiate="yes|join|no”? />+
</correlations>
<scope . . . > . . .</scope>
</contextHandler>

</contextHandlers>
Figure 63 Design of the <contextHandler> activity

110

change in the context variable to which it is linked. It has the structure shown in Figure 63.

Each scope (any <scope> and the <process> itself) can have its own set of context handlers.
Each handler references, or is linked to, a single context variable through the contextvariable
attribute. Programmers can define multiple context handlers for a single context variable. They
can also limit the changes to which each handler responds by specifying a boolean condition in its
optional <condition> element. This affords them a fair bit of flexibility in designing these han-
dlers, allowing them to specify which ones should be executed on a context change. Context han-
dlers can contain child activities. Like WS-BPEL event handlers, the single child of a context
handler MUST be a <scope> activity, which can itself contain other activities. A context handler
can also define and use correlation sets in its <correlations> and <correlation> elements.
When it comes to correlations, context handlers follow the same guidelines as those defined for

WS-BPEL onEvent handlers in Section 12.7.1 of the WS-BPEL specification [39].

The design of context handlers diverges from that of WS-BPEL event handlers in two significant

ways:

1. Restrictions on the access and use of in-process variables
2.Concurrent execution of handlers
First, each context handler can query or modify all the variables in all its ancestor scopes. It is
up to the WS-BPEL engine to use good concurrency practices to ensure that this variable access is
done properly. Note that this differs from the rules governing variable access in WS-BPEL onE-
vent handlers. When it comes to onEvent handlers, the WS-BPEL specification states that “varia-
ble references are resolved to the associated scope only and MUST NOT be resolved to the ances-

tor scopes”. Our approach to variable access has two advantages:

1. It is in line with how other WS-BPEL activities treat process variables
2.t increases the utility of context handlers
The second divergence in behavior concerns the execution of context handlers. WS-BPEL al-
lows multiple event handlers and multiple instances of the same event handler to execute simul-
taneously. Although this approach is extremely open-ended, it makes it difficult for process pro-
grammers to visualize how their processes will react to incoming messages. Consequently, we
propose an alternative: only a single context handler instance should execute at a time when a

111

<variable name="var_1
isStateful . . .>
(context variable)

<receive variable="var_2"
-
(context variable)

contains

invokes using
var_1 as

contains

var_2 1is automatically Llinked
to the same context types as var_1

Process
Instance

an argument

Process
Instance

Context Source

context_type_1

~

! -
mandges manages conteXt_type_2
\\ //
N 1
WS -BPEL WS -BPEL
Engine Engine

is Linked to

Figure 64 High-level view of context variable handoff

context variable changes. If multiple context handlers can execute per change, then their execu-

tions should be serialized. This however, raises the following issues:

e How should handler execution be serialized if multiple context handlers fire on a context-
variable change?

e How much control over serialization order should we give programmers?

e How should context handlers respond if the variable they’re linked to changes multiple

times during a handler execution sequence?

Clearly much more research into current designs in GUI toolkits, event-based systems and event-

based WS-BPEL is required before we can fully specify this aspect of context-handler execution.

7.3 CONTEXT HANDOFF
Another enhancement is context variable handoff. This occurs when a WS-BPEL process transfers
or copies its subscription to a context source by sending a context variable as input in a WSDL

operation invoked on another process. The high-level operation of context variable handoff is

shown in Figure 64.

112

Consider the following use case for this enhancement. Imagine a teleradiology business process
where radiology tests can be sent for analysis to a variety of external partners offering different
levels of service based on a patient’s condition. A business process that orchestrates interactions
with these partners can view the patient’s health status as context, and use a context variable to
represent this health status within the process; it can then upgrade or downgrade the service level
based on changes to this variable. Imagine that once analysis results are received from the exter-
nal service, they are forwarded to another business process in the patient’s local health unit. If
context variable handoff is implemented, this second process does not have to initiate another
subscription to the context type representing the patient’s health status. Instead, the invoking
process simply transfers its own subscription by including the context variable in the invocation

message.

Although describing context variable handoff is simple, it is not obvious how to implement it in
a standards-compliant manner. Remember that the link between a context source and a WSN
consumer (the WS-BPEL engine) is represented using a subscription resource. The WSN specifi-
cation does not support a standardized way to change the consumer endpoint in a subscription,
so this would require the specification to be extended. Alternatively, context variable handoff
could be implemented by reusing the “web service parameter extension” detailed in Section 4.2.
Since the WS-BPEL engine already has the context source addresses and context types used in the
context variable, it can embed these details as context parameters in the outgoing message. This,

as with regular web services, would require changes in the process’ WSDL schema.

Context variable handoff turns a WS-BPEL process and engine into more than a consumer of
context information - it creates another web service that provides links to context sources, and
thus expands the number of context-enabled services available. This builds a context-aware web-

services environment from the ground up.

7.4 CONTEXT SOURCES WITH SEMANTICS

A major advantage to using WS-Resources to model context sources is that it places few restric-
tions on the format of resource properties. Resource properties do not have to conform to a hie-
rarchy or ontology, are not limited to pre-existing types, and are not required to have machine-

interpretable semantics. Beyond a few limitations on how the Resource Properties Document is
13

<xsd:schema elementFormDefault="qualified"
targetNamespace="http://delivery.company/shipping/Shipment"
xmlns:sawsdl="http://www.w3.0org/ns/sawsdl">

<xsd:element name="ShipmentCondition" type="xsd:string"
sawsdl :modelReference="http://www.retailer.com/ontology/shipment#status"/>

<xsd:element name="ShippingResourceProperties">
<xsd:complexType>
<xsd:sequence>

<xsd:element ref="ship:ShipmentCondition" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Figure 65 Use of modelReference attribute with ShipmentCondition context type

declared, the WS-ResourceProperties specification gives programmers considerable flexibility in
defining the structure and content of each resource property. This allows a WS-Resource to act as
a base on which to build further enhancements. One such enhancement is the idea of semantical-

ly-marked-up context sources.

Our context source design does not describe how machine-interpretable semantics can be asso-
ciated with a context source’s context types. Instead, each context type’s meaning is communi-
cated in the same way as with many APIs - through the use of developer documentation. As ser-
vices become more flexible however, and the variety and complexity of the compositions they par-
ticipate in increases, developer documentation alone will not suffice. Instead, explicitly indicating
the semantics of data and having the underlying architecture automatically check it (akin to type
checking) will become increasingly important. This would prevent semantic mismatches when
composing services, reduce programmer error, and open the door to some automated service

composition.

We draw on research from METEOR-S [31] to create semantically-marked-up context sources.
METEOR-S outlines a method of adding semantic annotations to WSDL using the WSDL extensi-
bility mechanism; their annotations are later codified in the SAWSDL specification [63]. SAWSDL
describes how semantic annotations can be added to WSDL operations and WSDL-contained
XML-Schema types using the modelReference and schemaMapping extension attributes. Of the
two we are interested in modelReference, full details of which are in Section 4 of the SAWSDL

specification [63]. The modelReference attribute allows WSDL designers to annotate a schema-

14

defined element, complex type or simple type with one or more URIs linking them to existing
concepts in a semantic model. It would be a simple step to combine the modelReference
attribute with the context types in a context source’s Resource Properties Document. The code
sample in Figure 65 shows how modelReference can be used to add semantics to the Shipment-
Condition context type used in our scenario. For each context type, the modelReference
attribute would contain URIs linking that context type to concepts in various ontologies. This
would allow automated reasoning systems to match context sources to WS-BPEL processes, com-

pare context types from different context sources, etc.

Although this method of adding semantics to context sources is not as expressive as alternatives
built on OWL-S [62] or WSMO [65], it has a number of advantages. First, it requires minimal
changes to existing WSDL interfaces. Current tooling can also be used. Moreover, developers do
not have to learn a completely new interface language like OWL-S or WSMO; they can use the
development toolchain theyre comfortable with, and can build on their existing knowledge of
web-service standards. Finally, semantic annotations can be used piecemeal, since not all context
types require semantic information. Consequently, developers can add the modelReference
attribute on an “as needed” basis, linking context types to concepts in new and existing ontologies

as the situation demands.

7.5 OTHER ENHANCEMENTS

There are, of course, many possible enhancements that utilize context variables. One is context-
variable history where, through the use of an expression language, the programmer could retrieve
snapshots of a context variable’s previous value. Another enhancement is a WSDL extension
attribute for an operation’s output message which, when used, would indicate that the message
contained context parameters. All the enhancements in this chapter can be implemented and tri-

aled on the prototype developed for this thesis.

15

Chapter 8

CONCLUSIONS

As organizations are tasked with speedily responding to changes in their business environment,
their WS-BPEL business processes will have to account for more and more externally-driven envi-
ronment state, or context. Current methods of sourcing and maintaining context in WS-BPEL are
limited: they intersperse too many state maintenance activities within the process, require sub-
stantial interface changes, and introduce excessive coupling between the process and the context
source. They also require a priori knowledge of the context source or the process interface. This

causes a number of problems:

1. It limits a developer’s ability to design one context source and have it be used by multiple
business processes

2.1t is difficult to write WS-BPEL processes that interact with context sources discovered at
runtime

3.As the amount of context used by a process increases, the state-maintenance activities re-
quired to source and update this context obscures the business logic, making the process
harder to read and maintain

These problems make it substantially harder for WS-BPEL programmers to implement concise,

yet highly-adaptable business processes.

This thesis presents a solution to this problem based on the idea of a context variable. Context
variables are designed using the WS-BPEL language extension mechanism. Each context variable
represents a piece of context in a WS-BPEL process. Context variables use the pub/sub MEP for
updates: each one is subscribed to a context type at an external context source; when the value of
that context type changes, a notification is delivered to the variable and its value is automatically
updated - without intervention from the programmer or the use of additional in-process activi-
ties. This allows WS-BPEL programmers to write business processes that depend on many pieces
of external state while minimizing the use of a of state-maintenance activities. Furthermore, this

thesis shows how context sources can be built in a standards-compliant manner using:

1. Constructs from WS-Resource Framework

116

2.Pub/sub as provided by WS-Notification
It then presents a standards-compliant context-parameter extension to web-service messages that
allows other web services to send context-source references to WS-BPEL processes. Together,
context variables, context sources and context-parameter extensions form an integrated system
that allows developers to build generic context sources for use by different context-dependent

WS-BPEL processes, while simplifying the development of these processes.

This thesis concludes by detailing the prototype used to validate the proposed solutions. Built
using a modified, standards-compliant WS-BPEL engine, a JaveEE web service and a WSRF
framework, this prototype demonstrates that the integrated system can be realized using existing
technologies. A simple three-actor scenario with a manufacturer’s WS-BPEL process, a supplier’s
web service, and a shipping company’s context-source system, was used to exercise this prototype.
The scenario shows that using context-variables in WS-BPEL processes requires substantially few-
er state-maintenance activities and WSDL interface changes than either polling or onEvent mes-
sage handlers. It also demonstrates how the proposed architecture allows state maintenance to be
automated in WS-BPEL, making it easier for processes to interact with context sources without

programmer intervention.

The approach outlined in this thesis offers a number of advantages: it is based on a simple con-
ceptual model, builds on current frameworks, languages and standards, and substantially reduces
in-process state delivery and maintenance logic when compared to either polling or onEvent mes-
sage handlers. These factors make it much easier for business-process programmers to write con-
cise, yet flexible WS-BPEL business processes. Finally, since it is standards compliant, the outlined

approach can be easily used with existing toolkits and frameworks.

17

BIBLIOGRAPHY

[1] Abowd, G., Atkeson, C., Hong, J., Long, S., Kooper, R., and Pinkerton, M.: Cyberguide: A mo-
bile context-aware tour guide, Wireless Networks, vol. 3, iss. 5, pp. 421-433, 1997.

[2] Abowd, G.D., and Mynatt, E.D.: Charting Past, Present, and Future Research in Ubiquitous
Computing, ACM Transactions on Computer-Human Interaction, vol. 7, iss. 1, pp. 29-58, 2000.

[3] Active Endpoints Inc., A.S.I., BEA Systems Inc., IBM Corp., Oracle Inc., and SAP AG. WS-BPEL
Extension for People (BPEL4People), Version 1.0.
http://www.ibm.com/developerworks/webservices/library/specification/ws-bpel4people/, 2007.
[4]) Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller, D.,
Smith, D., Thatte, S., Trickovic, 1., and Weerawarana, S. Business Process Execution Language for
Web Services version 1.1. http://www.ibm.com/developerworks/library/specification/ws-bpel/,
2003.

[5] Apache Axis. Axis Architecture Guide. http://ws.apache.org/axis/java/architecture-guide.html,
2005.

[6] Apache Muse. Apache Muse - Deployment Descriptor.
http://ws.apache.org/muse/docs/2.2.0/manual/architecture/deployment-descriptor.html, 2007.
[7] Apache Muse. Apache Muse - Programming Model.
http://ws.apache.org/muse/docs/2.2.0/manual/architecture/programming-model.html, 2007.

[8] Apache Muse. Apache Muse - WSDL2Java Tool.
http://ws.apache.org/muse/docs/2.2.0/manual/tools/wsdlzjava.html, 2007.

[9] Baresi, L., and Guinea, S.: Towards Dynamic Monitoring of WS-BPEL Processes, ICSOC, 2005,
pp- 269-282.

[10] BEA Systems. Web Services Metadata for the Java Platform.
http://jcp.org/en/jsr/detail?id=181, 2005.

[11] Box, D., Cabrera, L.F., Critchley, C., Curbera, F., Ferguson, D., Geller, A., Graham, S., Hull, D,
Kakivaya, G., Lewis, A., Lovering, B., Mihic, M., Niblett, P., Orchard, D., Saiyed, J., Samdarshi, S.,
Schlimmer, J., Sedukhin, 1., Shewchuk, J., Smith, B., Weerawarana, S., and Wortendyke, D. Web
Services Eventing (WS-Eventing). http://www.w3.org/Submission/WS-Eventing/, 2004.

[12] Box, D., Christensen, E., Curbera, F., Ferguson, D., Frey,]J., Hadley, M., Kaler, C., Langworthy,
D., Leymann, F., Lovering, B., Lucco, S., Millet, S., Mukhi, N., Nottingham, M., Orchard, D.,
Shewchuk, J., Sindambiwe, J., Storey, T., Weerawarana, S., and Winkler, S. Web Services Address-
ing (WS-Addressing). http://www.w3.org/Submission/ws-addressing/, 2004.

[13] Casati, F., lInicki, S., Jin, L., Krishnamoorthy, V., and Shan, M.-C.: Adaptive and Dynamic Ser-
vice Composition in eFlow, CAiSE, 2000, pp. 13-31.

[14] Casati, F., and Shan, M.-C.: Event-Based Interaction Management for Composite E-Services in
eFlow, Information Systems Frontiers, vol. 4, iss. 1, pp. 19-31, 2002.

[15] Chandy, K.M., Aydemir, B.E., Karpilovsky, E.M., and Zimmerman, D.M.: Event-driven archi-
tectures for distributed crisis management, PDCS, 2003, pp. 803-808.

[16] Chen, G., and Kotz, D.: Solar: An Open Platform for Context-Aware Mobile Applications, vol.,
iss.

[17] Chen, H., Finin, T., and Joshi, A.: An ontology for context-aware pervasive computing envi-
ronments, The Knowledge Engineering Review, vol. 18, iss. 3, pp. 197--207, 2003.

[18] Codehaus Foundation. Groovy. http://groovy.codehaus.org, 2008.

18

[19] Dey, A.K.: Understanding and Using Context, Personal and Ubiquitous Computing, vol. 5, iss.
1, pp. 4--7, 200L.

[20] eviWare. The Web Service, SOA and SOAP Testing Tool - soapUI. http://www.soapui.org,
2008.

[21] Fidler, E., Jacobsen, H.A., Li, G., and Mankovski, S.: The PADRES Distributed Pub-
lish/Subscribe System, ICFI, 2005, pp. 12-30.

[22] Gelernter, D.: Generative Communication in Linda, ACM Transactions on Programming Lan-
guages and Systems, vol. 7, iss. 1, pp. 80-112, 1985.

[23] Graham, S., Niblett, P., Chappell, D., Lewis, A., Nagaratnam, N., Parikh, J., Patil, S., Samdar-
shi, S., Sedukhin, 1., Snelling, D., Tuecke, S., Vambenepe, W., and Weihl, B. Publish-Subscribe No-
tification for Web Services. http://www.ibm.com/developerworks/library/ws-pubsub/WS-
PubSub.pdf, 2004.

[24] Gu, T., Pung, H.K., and Zhang, D.Q.: A service-oriented middleware for building context-
aware services, Journal of Networking and Computing Applications, vol. 28, iss. 1, pp. 1--18, 2005.
[25] IBM, and SAP AG. WS-BPEL 2.0 Extensions for Sub-Processes.
http://www.ibm.com/developerworks/library/specification/ws-bpelsubproc/, 2005.

[26] Jacco Brok, B.K.E.M.H.].B.: Enabling new services by exploiting presence and context infor-
mation in IMS, Bell Labs Technical Journal, vol. 10, iss. 4, pp. 83-100, 2006.

[27] Karastoyanova, D., Houspanossian, A., Cilia, M., Leymann, F.A.L.F., and Buchmann, A.A.B.A.:
Extending BPEL for run time adaptability, EEDOC, 2005, pp. 15-26.

[28] Keidl, M., and Kemper, A.: Towards context-aware adaptable web services, WWW, 2004, pp.
55--65.

[29] Klingemann,]., Wasch,]., and Aberer, K.: Adaptive Outsourcing in Cross-Organizational
Workflows, CAiSE, 2000, pp. 417-421.

[30] Korpipaa, P., Mantyjarvi, J., Kela, J., Keranen, H., and Malm, E.J.: Managing context informa-
tion in mobile devices, Pervasive Computing, IEEE, vol. 2, iss. 3, pp. 42-51, 2003.

[31] Large Scale Distributed Information Systems (LSDIS). METEOR-S: Semantic Web Services
and Processes. http://lsdis.cs.uga.edu/projects/meteor-s/, 2005.

[32] Lemlouma, T., and Layaida, N.: Context-aware adaptation for mobile devices, MDM, 2004,
pp. 106-111.

[33] Li, G., Muthusamy, V., and Jacobsen, H.A.: NINOS: A distributed service oriented architec-
ture for business process execution, Middleware Systems Research Group, Toronto, ON, Technic-
al Report, July 2007.

[34] Lucchi, R., and Zavattaro, G.: WSSecSpaces: a secure data-driven coordination service for
Web Services applications, ACM Symposium on Applied Computing, 2004, pp. 487-491.

[35] Maamar, Z., Narendra, N.C., and Sattanathan, S.: Towards an ontology-based approach for
specifying and securing Web services, Information and Software Technology, vol. 48, iss. 7, pp.
441-455, 2006.

[36] Martin, D.: Putting Web Services in Context, Electronic Notes in Theoretical Computer
Science, vol. 146, iss. 1, pp. 3-19, 1/24, 2006.

[37] Mcllraith, S.A., Son, T.C., and Zeng, H.: Semantic Web Services, in Editor (Ed.)*(Eds.): ‘Book
Semantic Web Services’ (2001, edn.), pp. 46-53

[38] OASIS. Web Services Base Notification 1.3. http://docs.oasis-open.org/wsn/wsn-

ws_base notification-1.3-spec-o0s.pdf, 2006.

119

[39] OASIS. Web Services Business Process Execution Language Version 2.0. http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html, 2007.

[40] OASIS. Web Services Business Process Execution Language Version 2.0 Primer.
http://docs.oasis-open.org/wsbpel/2.0/Primer/wsbpel-v2.0-Primer.htm, 2007.

[41] OASIS. Web Services Context Specification Version 1.0. http://docs.oasis-open.org/ws-caf/ws-
context/vi.o/wsctx.html, 2007.

[42] OASIS. Web Services Resource 1.2 (WS-Resource). http://docs.oasis-open.org/wsrf/wsrf-
ws_resource-1.2-spec-0s.pdf, 2006.

[43] OASIS. Web Services Resource Framework 1.2. http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsrf, 2006.

[44] OASIS. Web Services Resource Framework - Primer vi1.2. http://docs.oasis-
open.org/wsrf/wsrf-primer-1.2-primer-cd-o2.pdf, 2006.

[45] OASIS. Web Services Resource Metadata 1.0 (WS-ResourceMetadataDescriptor).
http://docs.oasis-open.org/wsrf/wsrf-ws resource metadata descriptor-1.0-spec-cs-o1.pdf, 2006.
[46] OASIS. Web Services Resource Properties 1.2 (WS-ResourceProperties). http://docs.oasis-
open.org/wsrf/wsrf-ws_resource properties-i.2-spec-o0s.pdf, 2006.

[47] OASIS. Web Services Service Group 1.2 (WS-ServiceGroup). http://docs.oasis-
open.org/wsrf/wsrf-ws_service group-1.2-spec-os.pdf, 2006.

[48] OASIS. WS-Topics 1.3. http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf, 2006.
[49] Pawan, C., An, L., Jeng, J.J., and Chen, S.K.: Enterprise integration and monitoring solution
using active shared space, ICEBE, 2005, pp. 665-672.

[50] Plale, B., Gannon, D., Huang, Y., Kandaswamy, G., Pallickara, S.L., and Slominski, A.: Coope-
rating Services for Data-Driven Computational Experimentation, Computing in Science & Engi-
neering, vol. 7, iss. 5, pp. 34-43, 2005.

[51] Ranganathan, A., and McFaddin, S.: Using workflows to coordinate Web services in pervasive
computing environments, ICWS, 2004, pp. 288-295.

[52] Roman, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R.H., and Nahrstedt, K.: Gaia:
a middleware platform for active spaces, SSIGMOBILE Mobile Computing Communications Review,
vol. 6, iss. 4, pp. 65--67, 2002.

[53] Schilit, B., Adams, N., and Want, R.: Context-Aware Computing Applications, IEEE Workshop
on Mobile Computing Systems and Applications, 1994, pp. 85-90.

[54] Stal, M.: Web services: Beyond Component-Based Computing, Communications of the ACM,
vol. 45, iss. 10, pp. 71-76, 2002.

[55] Sun Microsystems. The Java API for XML-Based Web Services (JAX-WS) 2.1.
http://jcp.org/en/jsr/detail?id=224, 2007.

[56] Sun Microsystems. The Java™ Architecture for XML Binding (JAXB) 2.o.
http://jcp.org/en/jsr/detail?id=222, 2006.

[57] Sun Microsystems. The Java™ Architecture for XML Binding (JAXB) 2.1.
http://jcp.org/en/jsr/detail?id=222, 2006.

[58] Sun Microsystems. Java™ Platform, Enterprise Edition (Java EE) Specification, vs.
http://jcp.org/en/jsr/detail?id=244, 2006.

[59] Sun Microsystems. SOAP with Attachments API for Java™ (SAAJ) 1.3.
http://jcp.org/en/jsr/detail?id=67, 2005.

[60] Sun Microsystems. Web Services for Java EE, Version 1.2. http://jcp.org/en/jsr/detail?id=109,
2006.

120

[61] Vukovic, M., and Robinson, P.: Adaptive, planning based, web service composition for context
awareness, International Conference on Pervasive Computing, 2004, pp.

[62] W3C. OWL-S: Semantic Markup for Web Services. http://www.w3.org/Submission/OWL-S/,
2004.

[63] W3C. Semantic Annotations for WSDL and XML Schema. http://www.w3.org/TR/sawsdl/,
2007.

[64] W3C. Simple Object Access Protocol (SOAP) 1.1 http://www.w3.0rg/TR/2000/NOTE-SOAP-
20000508/, 2000.

[65] W3C. Web Service Modeling Ontology (WSMO). http://www.w3.org/Submission/WSMO/,
2005.

[66] W3C. Web Services Addressing 1.0 - SOAP Binding. http://www.w3.org/TR/ws-addr-soap/,
2006.

[67] W3C. Web Services Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl, 2001.
[68] W3C. XML Schema Part o: Primer. http://web4.w3.org/TR/xmlschema-o/, 2004.

[69] W3C. XML Schema Part 1: Structures. http://web4.w3.org/TR/xmlschema-1/, 2004.

[70] Want, R., Hopper, A., Falcdo, V., and Gibbons, J.: The active badge location system, ACM
Transactions on Information Systems (TOIS), vol. 10, iss. 1, pp. 91-102, 1992.

[71] Yau, S.S., Karim, F., Wang, Y., Wang, B., and Gupta, S.K.S.: Reconfigurable Context-Sensitive
Middleware for Pervasive Computing, Pervasive Computing, IEEE, vol. 1, iss. 3, pp. 33-40, 2002.
[72] Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., and Chang, H.: QoS-Aware
Middleware for Web Services Composition, IEEE Transactions on Software Engineering, vol. 30,

iss. 5, pp. 311-327, 2004.

121

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

