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Abstract 

Rolling-element bearings are widely used in various mechanical and electrical applications. 

Accordingly, a reliable bearing health condition monitoring system is very useful in industries to 

detect incipient defects in bearings, so as to prevent machinery performance degradation and 

malfunction. Although several techniques have been reported in the literature for bearing fault 

detection and diagnosis, it is still challenging to implement a bearing condition monitoring system for 

real-world industrial applications because of the complexity of bearing structures and noisy operating 

conditions. The objective of this thesis is to develop a novel intelligent system for more reliable 

bearing fault diagnostics. This system involves two sequential processes: feature extraction and 

decision-making. The proposed strategy is to develop advanced and robust techniques at each 

processing stage so as to improve the reliability of bearing condition monitoring. First, a novel 

wavelet spectrum analysis technique is proposed for the representative feature extraction. This 

technique applies the wavelet transform to demodulate the resonance signatures that are related to 

bearing health conditions. A weighted Shannon function is proposed to synthesize the wavelet 

coefficient functions to enhance feature characteristics. The viability of this technique is verified by 

experimental tests corresponding to various bearing health conditions. Secondly, an enhanced 

diagnostic scheme is developed for automatic decision-making. This scheme consists of modules of 

classification and prediction: a novel neuro-fuzzy classifier is developed to effectively integrate the 

strengths of the selected fault detection techniques (i.e., the resulting representative features) for a 

more accurate assessment of bearing health conditions; a novel multi-step predictor is proposed to 

forecast the future states of bearing conditions, which will be used to further enhance the diagnostic 

reliability. The investigation results have demonstrated that the developed intelligent diagnostic 

system outperforms other related bearing fault diagnostic schemes. 
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Chapter 1 
Introduction 

1.1 Overview 

The development of reliable monitoring systems has been the focus of various undertakings in a wide 

array of industries involving rotary machinery to prevent machine performance degradation and 

malfunction, or even catastrophic failures [1, 2]. A reliable monitoring system can be applied to 

schedule preventive and predictive maintenance operations without the need of periodic shutdowns 

for routine inspections. It can reduce costly repairs by quickly identifying the faulty components 

without examining all of the related components. 

Most machine failures are related to mechanical transmission systems such as gears and bearings 

[1]. To date, a series of effective investigations have been conducted for gear fault diagnosis and 

prognosis [3-9]. Thus, this thesis is focused on the condition monitoring of rolling element bearings. 

From a mechanical structure standpoint, a bearing is different from a gear in that a bearing is a 

complex system which consists of two rings and a set of elements running in the tracks between the 

rings. The rolling elements may be balls, cylindrical rollers, tapered rollers, needles, or barrel rollers, 

encased in a cage that provides equal spacing and prevents internal strikes. From the signal 

processing perspective, a gear signal is periodic with the shaft rotation, which can be differentiated, in 

theory, by the technique of time synchronous average filtering [10]. The bearing signal is non-

periodic in nature because of the slippage occurring between the mating components. Each bearing 

rotary component generates vibratory signals, and each component can experience damage. The 

signals generated by a bearing are non-stationary, especially when slipage occurs among the rotating 

elements (e.g., the rolling elements and ring raceways) [2]. Therefore, compared with a gear system 

analysis, a bearing fault diagnosis is an even more challenging task in condition monitoring, 

especially when the machine is operating in a noisy environment. 

Bearing defects can be categorized into distributed and localized faults. Typical distributed 

bearing defects include surface roughness, waviness, misaligned races, and off-size rolling elements, 

which are usually caused by design and manufacturing errors, improper mounting, wear, and 

corrosion [11]. Localized bearing defects include cracks, pits, and spalls on the rolling surfaces, 

which are usually caused by plastic deformation, brinelling, and material fatigue [12]. Both 

distributed and localized bearing faults increase the noise and vibration levels, and can cause 



 

 2 

machinery malfunction. From the standpoint of health condition monitoring, localized defect 

diagnostics are more important, because the spalling of races or rolling elements is the dominant style 

of the failure of rolling element bearings in real-world applications whereas many distributed faults 

originate from a localized spalling [13]. Consequently, the research in this thesis is focused on 

bearing systems with localized bearing faults. 

1.2 Literature Review 

This section reviews the state of the art related to bearing fault feature extraction, diagnostic 

decision-making, and machine fault state forecasting techniques. 

1.2.1 Bearing Fault Detection Techniques 

Several techniques have been reported in the literature for bearing fault detection. Based on the 

type of signals, they can be classified into acoustic signal analysis, temperature measurement, 

lubricant analysis, electrical current analysis, and vibration measurement [13]. 

The most effective acoustic-based bearing health monitoring is acoustic emission [18]. It is a 

transient impulse generated by the rapid release of strain energy in solid material under mechanical or 

thermal stress. The detection of cracks is the prime application of acoustic emission; therefore, this 

technique can be used as a tool for the detection of bearing faults and shaft cracks. Typically, the 

accuracy of these methods depends on the sound pressure and sound intensity data [143]. 

Bearing distributed defects generate excessive heat in the rotating components [20, 144]. 

Monitoring the temperature of a bearing housing or lubricant is the simplest method for fault 

detection in rotary machines. In wear debris analysis, the presence of metallic particles in the 

lubricant is detected by sensitive sensors [19, 145]. Furthermore, the analysis of the different metallic 

elements in the lubricant can facilitate the location of the fault.  

The operating conditions of a machine can also be monitored by analyzing the spectrum of the 

motor current [21]. The changes in the electric signals are associated with the changes in the 

mechanical components of the machine; therefore, bearing faults can be detected by using the motor 

current related signal processing techniques [146]. 

Since the abnormal vibration of rotary machines is the first sensory effect of rotary component 

failure, vibration analysis is widely employed in various industries [14-16]. The vibration signal is 

generated by the interaction between the bearing defect and its mating component. Consequently, a 

vibration analysis can be employed for the diagnosis of all types of faults, either localized or 
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distributed. In this work, vibration measurement is applied for the detection of incipient bearing faults 

due to the ease of measurement and analysis [17]. 

A vibration-based signal analysis can be performed in the time domain [15, 18], the frequency 

domain [22, 23], or the time-frequency domain [24, 25]. In the time-domain analysis, a bearing fault 

is detected by monitoring the variation of some statistical indexes such as the root mean square 

(RMS) value, the crest factor, or the kurtosis. A bearing is believed to be damaged when a monitoring 

index exceeds thresholds; however, it is usually difficult to determine the appropriate thresholds 

because they may vary in different applications. 

Frequency-domain methods may be the most commonly used approach in bearing fault detection, 

by which the bearing defects are detected based on the analysis of spectral information. The main 

advantage of the frequency-domain analysis over the time-domain analysis is that it is relatively 

easier to identify and isolate certain frequency components of interest [13]. The bearing health 

conditions are assessed by examining the fault-related characteristic frequency components in the 

spectra [26] or in some extended spectral expressions such as bispectrum or cepstrum maps [27, 28]. 

Frequency-based techniques, however, are not suitable for the analysis of non-stationary signals that 

are generally related to machinery defects [2]. 

Non-stationary or transient signals can be analyzed by applying time-frequency domain 

techniques such as the short-time Fourier transform (FT) [29], the Wigner-Ville distribution [30], and 

the wavelet transform (WT) [4]. In fault detection, the WT is the most popular time-frequency 

domain technique because of its more flexible multi-resolution [25, 29]. According to the signal 

decomposition paradigms, the WT can be classified as the continuous WT [7], the discrete WT [31], 

the wavelet packet analysis [32], and those WTs with post-processing schemes such as the singularity 

analysis, the FT, and the energy density analysis. In [33], for example, the singularity analysis was 

performed across all scales of the continuous WT to identify the temporal location of defect-induced 

bursts in the vibration signals. An approach based on the combination of the wavelet and FT was 

suggested for feature extraction in [34, 35]. A time-energy density analysis approach based on the 

WT was presented in [36], which could extract the fault related features by analyzing the energy 

distribution over different frequency bands. 

Although a number of WT-based approaches have been reported in the literature for feature 

extraction, no technique has been proposed to deal with the deployment of WTs over a designated 

frequency band, and also no method has been suggested to effectively integrate the contributions from 
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various WT processes. To date, effectively extracting representative features related to initial bearing 

defects still remains a challenging task, particularly in real-world industrial applications [2, 37]. 

1.2.2 Diagnostic Decision-Making Techniques 

Fault detection and diagnosis is a sequential process involving two steps: feature extraction and 

decision-making (diagnosis). Feature extraction is performed by the use of appropriate signal 

processing and/or post-processing techniques; it is a mapping process from the signal space to the 

feature space. The decision-making is a process to classify the obtained features into different 

categories. The traditional approach of fault diagnostics relies on human expertise to relate the 

extracted features to the faults, which is usually time-consuming and unreliable, particularly when 

multiple features are applied for fault diagnostics and when the data are noise affected [38, 39]. The 

alternative is to use automatic diagnoses. Several automatic decision-making techniques have been 

reported in the literature, which can be broadly classified into mathematical model-based methods 

[40] and data-driven approaches [41]. The latter is employed in this research because an accurate 

mathematical model is usually difficult to derive for complex mechanical systems, especially as the 

machine operates in uncertain and noisy environments.  

The commonly used data-driven methods include pattern recognition methods and inference-

based classification approaches. The pattern recognition methods include statistical classifiers, 

geometric methods, and polynomial classifiers [42], which have been implemented in certain fault 

detection applications [43-45]. However, these approaches cannot be used for time-varying systems, 

because they rely on the statistic measurements (e.g., density and probability) of the vibration data. 

Data driven (or inference-based) diagnostic classification can be performed by intelligent tools such 

as neural networks (NNs) [16, 46], fuzzy logic [47, 48], and synergetic schemes [49-51]. 

Neural classifiers are less affected by noise, and have been extensively applied in machine fault 

diagnostic applications [52-55]. After being properly trained, the NNs can represent the complex 

relationship between features and faults, and the extracted features can be processed in parallel. In 

[46], for example, a radial basis function (RBF) network was developed based on features from both 

the time and frequency domains; it was stated that a combination of the mean of the envelope signal 

and the 14th spectral amplitude from the power spectrum can lead to a satisfactory fault classification. 

An expert system based on fuzzy classification and linear membership functions (MFs) was presented 

in [48] for bearing fault detection, in which the input features were extracted by using the kurtosis 

method, the crest factor method, and the high frequency resonance technique. An NN-based system 
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was studied in [57] to detect the bearing faults based on the acoustic signals in a wayside environment; 

eighty-eight statistical features were generated from discrete wavelet transform coefficients, whereas 

thirteen optimal features were chosen by a genetic algorithm for classification. However, the 

disadvantages of NNs are that their internal layers are opaque to the users, and the convergence of 

learning is usually slow and not guaranteed [58]. 

Fuzzy logic reasoning deals with system uncertainties and ambiguities in a way that mimics 

human reasoning [59]. Fuzzy classification starts from highly formalized insights about the structure 

of categories, and then formulates expert knowledge in a linguistic form. The fuzzy diagnosis is 

conducted through adequate fuzzy operations [60, 61]. Due to their concise form, fuzzy classifiers 

have been applied in some real-world applications [47, 48, 62-66]. However, fuzzy systems do not 

have much learning capability, and it is usually cumbersome to establish an optimal inference rule 

base when more input variables are utilized [58]. 

To reap the benefits of both NNs and fuzzy logic techniques, they can be combined into 

synergism schemes, in which the NNs provide fuzzy systems with learning abilities, and the fuzzy 

logic provides NNs with a structural framework having a high-level fuzzy IF-THEN rule thinking and 

reasoning. In [67], for example, a neural fuzzy (NF) scheme was suggested for the diagnosis of 

localized defects in a ball bearing; the features were extracted from the standard deviation ratio of the 

wavelet decomposed signals of the testing and reference conditions. The adaptive network-based 

fuzzy inference system (ANFIS) was applied for bearing fault diagnosis in [68], and the input features 

are derived from the kurtosis analysis and spectrum peak ratios. A genetic algorithm based feature 

optimization technique was proposed by Liu (the author of this thesis) et al. for bearing fault 

diagnostics, in which an NF system is utilized for the decision making process [69]. 

Each of these aforementioned techniques, however, has its own merits and limitations, and can be 

used for some specific bearing applications only [1, 2, 59]. When a condition monitoring system is 

employed in real-world industrial applications, the critical issue is its reliability. Unreasonably missed 

alarms (i.e., the monitoring system cannot pick up existing faults) and false alarms (i.e., the 

monitoring system triggers an alarm because of noise, not real faults) can seriously mitigate the 

system’s validity [41]. To this end, a more advanced diagnostic system is in demand to provide the 

industries a more accurate assessment of bearing health conditions. 
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1.2.3 Machine Fault State Forecasting Techniques 

Machinery condition prognosis entails the use of current and previous machinery conditions to 

predict the future states of a mechanical system (or a component) of interest. Currently, several 

techniques have been reported in the literature for time series predictions [70]. The classical 

approaches for nonlinear time series predictions are the use of stochastic models such as the 

autoregressive (AR) model [71], the threshold AR model [72], the bilinear model [73], the projection 

pursuit [74], the multivariate adaptive regression splines [75], and the Volterra series expansion [76]. 

These approaches have found some applications in machinery system prognosis [11, 77-79]. 

However, it is usually difficult to develop an accurate analytical model for a complex mechanical 

system [80]. 

Recent interest in time series prediction has been focused on the use of flexible models such as 

NNs and fuzzy systems. The NNs have two typical connection architectures: the feedforward and the 

recurrent networks, and both have been employed in time series forecasting applications [81-87]. 

From the modelling perspective, a feedforward network is a special case of nonlinear AR models, 

whereas a recurrent network is a nonlinear AR moving average model. Consequently, it can be 

inferred that the recurrent NN predictors have an advantage over the feedforward NN predictors in a 

similar way that the AR moving average models have over the AR models. This conclusion has been 

quantitatively verified in [88] by simulations and practical tests. 

Fuzzy predictors employ linguistic rules for system behaviour forecasting [89]. They begin with a 

formulated insight into the dynamic behaviours of the system, and then the expert knowledge is 

formulated into IF-THEN rules, in a way that mimics humans to perform a forecasting task. However, 

as stated before, fuzzy systems lack a learning capability, and sometimes, it is difficult to properly 

establish the fuzzy forecasting inference rules. 

A solution to overcome these limitations is to use synergetic systems such as NF schemes in 

which a forecasting operation is performed by fuzzy logic, whereas fuzzy system parameters are 

trained by NN-based algorithms. In [90], the ANFIS predictor was implemented for time series 

prediction; the simulation results revealed that the ANFIS predictor provided a higher forecasting 

accuracy than both the classical AR models and the feedforward NNs. The research in [6, 8] 

demonstrated that if an NF predictor is properly trained, it even outperforms those based on recurrent 

NNs. 

Although the NF predictors have demonstrated some superior properties to other classical 

forecasting tools, advanced research still needs to be done in the following aspects before it can be 
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applied to real-world industrial applications [90, 91]: 1) improving the convergence properties, 

particularly for multi-step-ahead predictions; and 2) enhancing the adaptive capability to 

accommodate time-varying system conditions. 

1.3 Objectives 

To tackle these challenges as discussed in the previous section, an advanced intelligent system is 

developed in this thesis in order to provide a more accurate assessment of bearing health conditions. 

As schematically illustrated in Figure 1.1, this intelligent system consists of two modules: the 

representative feature extraction by using the proposed signal processing technique and the decision-

making by applying the suggested diagnostic scheme. The strategy is to develop advanced and more 

robust techniques at each processing stage to improve the reliability of bearing condition monitoring. 

The specific approaches are summarized as follows: 

 

1) To develop a more reliable signal processing technique for bearing fault detection. The emphasis 

is placed on feature extraction and the analysis of non-stationary signatures that are generated, for 

example, by the faults on the rolling elements and rotating rings of bearings. 
 

2) To develop an enhanced diagnostic (ED) scheme for automatic diagnostic decision-making. The 

suggested ED scheme consists of two modules: 

• A novel NF classifier is proposed to effectively integrate the strengths of several signal 

processing techniques for a more accurate assessment of the health condition of bearings. 

• A new multi-step predictor is developed and integrated into the ED scheme to forecast the 

future states of the bearing health condition, and to further enhance the diagnostic reliability. 
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Figure 1.1. Schematic diagram of the developed intelligent system for bearing condition 

monitoring. 
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1.4 Experimental Setup 

An experimental setup is employed in this research to collect the vibration signals for two 

purposes: to study the vibration signatures generated by incipient bearing faults, and to verify the 

techniques to be developed. This experimental setup is shown in Figure 1.2. The system is driven by a 

3-hp induction motor, with the speed range between 20 and 4200 r/min. The shaft rotation speed can 

be controlled by a speed controller (Delta VFD-PU01). An optical encoder is used for shaft speed 

measurement. Thus, the shaft rotation speed is known directly from the reading of this speed 

controller, which can be further verified by applying the FT on the signals from the optical encoder. A 

flexible coupling is utilized to damp out the high-frequency vibration generated by the motor. Two 

ball bearings are fitted into the solid housings. Accelerometers (ICP-IMI, SN98697) are mounted on 

the housing of the tested bearing to measure the vibration signals along two directions. Considering 

the structure properties, the signal that is vertically measured is utilized for analysis, whereas the 

signal that is horizontally measured is used for verification. A static load is applied by two disks, and 

a variable load is applied by a magnetic brake system (Placid Industries, B150-24-H) through a bevel 

gearbox and a belt drive. A data acquisition board (NI PCI-4472) is employed for signal collection, 

which has built-in anti-aliasing filters with the cut-off frequency set at half of the sampling rate.  
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Figure 1.2. Experimental setup: (1)-digital encoder; (2)-variable speed control; (3)-enclosure; 

(4)-motor; (5)-flexible coupling; (6)-ICP accelerometer; (7)-bearing housing; (8)-tested bearing; 

(9)-hardened shaft; (10)-load disc; (11)-belt drive; (12)-alignment adjustor; (13)-base; (14)- 

magnetic load system; (15)-bevel gearbox. 

 

The ball bearings of type MB ER-10K are utilized. Four bearing health conditions are considered: 

healthy bearings, bearings with outer race defects, bearings with inner race defects, and bearings with 

rolling element faults. Three sets of faulty bearings with different fault sizes are prepared and tested. 

The fault types and the corresponding fault dimension (in diameter) are listed in Table 1.1. Each 

bearing is tested under seven different shaft speeds (600, 900, 1200, 1500, 1800, 2100, and 2400 

r/min) and two load levels (1.2 and 2.3 N·m), respectively. When a bearing is running at a specific 

shaft speed and load level, five segments of vibration signals are collected. 
 

Table 1.1. Fault type and size 

 Outer Race Defect Inner Race Defect Rolling Element Defect 

SET 1  (mm) 0.35 0.41 0.29 

SET 2  (mm) 0.39 0.47 0.35 

SET 3  (mm) 0.44 0.56 0.38 



 

 11 

1.5 Thesis Outline 

Chapter 2 presents a new signal processing technique, the wavelet spectrum analysis, to extract 

the representative features that are related to the bearing health conditions. The investigation results 

demonstrate that this new signal processing technique is an effective bearing fault detection method, 

which is especially useful for non-stationary feature extraction and analysis. 

In Chapter 3, a novel NF classifier is discussed. This classifier can integrate the strengths of the 

two suggested signal processing techniques, the wavelet spectrum analysis technique and the kurtosis 

ratio method, for a more reliable bearing fault diagnosis. 

A multi-step NF predictor with a variable input pattern is proposed in Chapter 4 for dynamic 

system state forecasting. The performance of this new predictor is evaluated, in terms of the input 

pattern, structure, and the training algorithm, by simulations with both benchmark data sets and 

experimental data sets. 

In Chapter 5, the newly-developed intelligent tools, the NF classifier and the NF predictor, are 

integrated to construct the ED scheme for comprehensive fault diagnostics in rolling element 

bearings. 

Finally, the conclusion remarks and some future research topics are summarized in Chapter 6. 
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Chapter 2 
A Wavelet Spectrum Analysis Technique 

2.1 Problem Definition 

Typically, the bearing defects arise during the operation. Therefore, the detection of these defects at 

their early stage without machine disassembly is pivotal in bearing condition monitoring. The 

magnitudes of the vibration signatures generated by these incipient bearing defects are related to the 

fault size, dynamic load, and the shaft speed [2]. To date, effectively extracting the representative 

features associated with incipient bearing defects still remains a challenging task, particularly in real-

world industrial applications [37]. In this work, the bearing defects of three sizes as given in Table 1.1 

in Chapter 1 will be analyzed, and a wavelet spectrum analysis (WSA) technique is proposed in 

Section 2.2 to extract the representative features for bearing fault detection. 

2.2 Theory of Wavelet Spectrum Analysis 

Whenever a fault occurs on a bearing component, stationary and/or non-stationary impacts are 

generated, which excite the bearing and its support structures. As a result, resonance signatures [26] 

are generated, which are usually buried in other high-amplitude vibration signals. In the proposed 

WSA technique, the first step is to find these resonance signatures; the second step is to synthesize 

the resulting wavelet coefficient functions by applying the proposed weighted Shannon function; the 

third step is to construct the autocorrelation spectrum of the synthesized function to highlight bearing 

characteristic frequencies [27]; finally, an averaging process is taken in the frequency domain to 

eliminate some random noises that are related to the variations in operating conditions. 

2.2.1 Determination of Wavelet Functions 

Given a rolling element bearing, the defect usually occurs on the fixed ring race first because the 

fixed ring material is subject to more dynamic load cycles [13]. Consider a bearing with a fixed outer 

ring, and suppose that a defect (e.g., a fatigue pit) has happened on the outer ring race. Each time a 

rolling element rolls over the pit, an impulse is generated due to the impact. This impulse excites the 

vibration resonance of the bearing and the around structures. In theory, the excited transient modes 

due to an outer race defect do not vary because the defect angular position remains the same as each 
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impact occurs. On the other hand, if a defect occurs on a rolling element or an inner ring race, the 

generated impulse transient modes will change in properties because the impact occurs at a different 

angular position as the bearing components rotate. Figure 2.1(a) shows a typical vibration signal 

generated by a bearing with an inner race defect. Because the defect is at its initial stage, it is difficult 

to directly recognize the bearing fault from the measured vibration signal without an appropriate 

signal processing technique. Figure 2.1(b) shows the residual signature that is obtained by high-pass 

filtering the original vibration data with a cut-off frequency 1000 Hz, in which the bearing fault 

related features are highlighted; these features can be further enhanced by using the proposed WSA 

technique as discussed below. It is also seen that the magnitudes of the impulse transients and the 

excited resonance modes vary over time, due to the variation of the angular positions of the impacts. 

Correspondingly, it is more suitable to apply the WT to analyze these non-stationary resonance 

signatures, which enables a higher time-resolution solution at high frequencies and vice versa [93]. 

Also for comparison, a typical vibration signal generated by a bearing with an outer-race defect, 

running at the same shaft speed under the same load level as what in Figure 2.1, is shown in Figure 

2.2. It is seen that the signatures generated by outer-race defect bearing is stronger in magnitude than 

that by inner-race defect bearing, due to the difference in signal transmission pathway and  the nature 

of resonance modes. Therefore, extracting the representative features for an inner-race defect bearing 

is more challenging than that for an outer-race defect bearing under the same operating condition. In 

the following context, the WT will be applied to analyze these non-stationary signatures generated by 

incipient bearing faults for feature extraction. 
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Figure 2.1. (a) vibration signal of a bearing with an inner race defect running at shaft speed 30 

Hz and load level 2.3 N•m; (b) signature obtained by using a high-pass filter. 

 

500 1000 1500 2000 2500 3000
-0.3

0

0.3

V
ib

ra
tio

n 
si

gn
al

 (V
)

(a)

500 1000 1500 2000 2500 3000
-0.3

0

0.3

Sample points

V
ib

ra
tio

n 
si

gn
al

 (V
)

(b)

 

Figure 2.2. (a) vibration signal of a bearing with a outer race defect running at shaft speed 30 

Hz and load level 2.3 N•m; (b) signature obtained by using a high-pass filter. 
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Given a time-domain signal )(tx , the wavelet coefficients are determined by 

 

 ( ) ( ) ( )( )∫
+∞

∞−

−−= τττ dtswsxstWTx
*, , (2.1) 

 

where )(* tw  denotes the complex conjugation of mother wavelet function )(tw ; s and t are the scale 

and time variables, respectively, which produce dilation and translation [92]. 

The choice of an appropriate mother wavelet depends on the signal properties and the purpose of 

the analysis. In bearing fault detection, the interest is to obtain the resonance features that are induced 

by a localized bearing fault. The selection of Morlet wavelet as the mother wavelet for the signal 

analysis is well accepted in the field of machinery fault detection [2, 4, 96]. The Morlet wavelet is a 

modulated Gaussian function [92] 
 

 ( )tfj
b
ttw 02
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2

2exp
2

exp)( π⎟⎟
⎠
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⎝

⎛
−= , (2.2) 

 

where 0b  is the spread of the Gaussian function and 0f  is the centre frequency of the pass-band of the 

mother wavelet. The real and imaginary parts of a complex-valued Morlet wavelet are shown in 

Figure 2.3.  
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Figure 2.3. Real (solid line) and imaginary (dashed line) parts of the Morlet wavelet. 

 

Given a mother wavelet, the following WT admissibility should be satisfied [92]: 
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( )

∞+<< ∫
∞+

∞−

df
f
fW 2

0 , (2.3) 

 

where )( fW  is the FT of )(tw . Because )(tw decays over time, the admissibility (2.3) is equivalent 

to the requirement [93]: 
 

 ( )∫
+∞

∞−

= 0dttw , (2.4) 

 

Strictly speaking, the Morlet wavelet does not satisfy the zero-mean requirement. However, the mean 

can become infinitely small if the term 00 fb  is sufficiently large. As 00 fb  increases, the duration of 

the wavelet expands, and the time resolution will decrease correspondingly. As a result, the obtained 

mother wavelet )(tw  may not be suitable to analyze fast-decaying transient signatures. Based on the 

above reasoning, the product of the spread and the scaled centre frequency is kept as a constant in this 

work, i.e., 
 

 ( )
2ln2

1
2

2 00
000

0 ====
π

π fb
fbsf

s
b

fb i
i

ii , (2.5) 

 

where 2ln22 00 ππ =fb  was given in [92]; is  represents the ith selected scale; ib and if  are the 

corresponding ith spread and centre frequency, respectively. Based on the relation between ib  and if  

as in (2.5), the mean of the obtained mother wavelet )(tw  remains at a level as low as 1210−  in this 

work, and the effective support will vary with the scaled centre frequency to accommodate the 

variation of the signatures of interest.  

The FT of the mother wavelet )(tw  in (2.2) is given by 

 

 ( ) ( )( )2
0

22
00 2exp2 ffbbfW −−= ππ . (2.6) 

 

Thus, the FT of the dilated wavelet )(stw  becomes 

 

 ( ) ( )( )2222exp2 iiis ffbbfW −−= ππ . (2.7) 
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For the chosen mother wavelet, the following equation holds, )()(* stwstw =− . Therefore, (2.1) can 

be implemented by using 
 

 ( ) ( ) ( )[ ]fWfXFsstWT sx
1, −=   (2.8) 

 

where ][1 ⋅−F  denotes the inverse FT, )( fX is the FT of )(tx , and )( fWs is given by (2.7). In the 

implementation of (2.8), )( fX  is calculated only once, whereas )( fWs  is calculated for all values 

of the scale variable s. 

2.2.2 Strategy for Deployment of Wavelet Center Frequencies 

High resonance signatures of the bearing structure are usually amplitude modulated by the 

bearing defect [26], thus the analysis of these resonance signatures plays an important role in bearing 

fault detection. The frequency band of interest is chosen as ]56.2,[ st fNf  to reduce the interference 

effects from the low-frequency noisy components, where tf  is the shaft speed, N is the order of shaft 

harmonics, and tNf  represents the lower bound frequency, the signal under which will not be 

considered for feature extraction; sf  is the sampling frequency, and the constant 2.56 is usually 

selected instead of 2 in industries [94] to avoid aliasing. The centre frequencies of the wavelet should 

be deployed to implement the WT over this designated frequency band, without the overlapping 

between the wavelet frequency bands. Based on (2.8), the 3-dB [147] bandwidth iBW  for the ith 

centre frequency if  is derived as follows: 

 

 [ ] ii fBW λλ +−= 1,1 , (2.9) 

 

where πλ 22ln= . Beginning with the lower bound frequency tNf , the centre frequencies can be 

recursively calculated by 
 

 
( )
( ) ti

i

i Nff
λ
λ
−
+

=
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1
1 1

,                     i = 1, 2, …, m-1 (2.10) 
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 ( )⎥⎦
⎤

⎢⎣
⎡ ++= − λ1

56.22
1

1i
s

i f
f

f ,       i = m (2.11) 

 

where m is the number of the selected scales. The bandwidth between 1−mf  and the upper bound 

frequency 56.2sf  may be smaller than the 3-dB bandwidth of mf , thus the middle point is utilized 

in (2.11). 

2.2.3 A Weighted Shannon Function for Synthesizing Wavelet Coefficient Functions 

Based on (2.10) and (2.11), the wavelet coefficients ( )ix stWT ,  over seven bandwidths are 

derived and partly shown in Figures 2.4(c) – (i), and the corresponding time-domain vibration 

signatures are reproduced in Figures 2.4(a), (b). By comparing these figures, it is seen that the fault 

related features are usually reflected over several wavelet bands due to the variation of the transient 

modes. In the literature [34], one-scaled WT like those shown in Figure 2.4(e) is usually applied to 

demodulate the resonance vibration signatures for feature extraction. Consequently, the useful 

information from other frequency bands [e.g., Figures 2.4(c), (d), (f) – (i)] is missed. Accordingly, in 

this work, a weighted Shannon function is proposed next to integrate the contribution from the 

vibration signature of each frequency band for a more effective feature extraction. 
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Figure 2.4. Vibration signatures (a) – (b) and wavelet coefficients: (c) – (i) obtained from seven 

frequency bands; (j) integrated using the proposed Shannon function (2.12). 
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This technique is proposed, based on an extended Shannon entropy function. The Shannon 

entropy in information theory is a measure of the degree of uncertainty that is associated with a 

random variable [95, 96]. In this study, a modification is made to that function to highlight the fault-

related features and to minimize the interference information, 
 

 ( ) ( ) ( )[ ]∑
=

=
m

i
ikxikxk stWTstWTth

1
,log, β , (2.12) 

 

where i = 1, 2,  . . ., m; k = 1, 2, . . ., n; n is the number of discrete points of signal )(tx ; β  is the 

selected logarithm base that may vary from 2 to 10 (β =2 in this study); and the normalized wavelet 

coefficient ( )ikx stWT ,  is given by 

 

 ( ) ( )
i

ikx
ikx

stWT
stWT

σ
,

, = , (2.13) 

 

where iσ  represents the spread estimate of ( )ix stWT , .  

For a wavelet scale is , the term ( ) ( )ikxikx stWTstWT ,log, β  is used to highlight the coefficients 

( )ikx stWT ,  whose magnitudes are larger than iβσ , and diminish the others. The fault related 

features will correspond to the coefficients of higher magnitudes, which are derived from the 

resonance features that closely ‘match’ the dilated (i.e., is ) wavelets. The threshold for determining 

whether the derived wavelet coefficients are bearing condition related depends on the selection of the 

design parameter β , such that a wavelet coefficient with a magnitude larger than iβσ  is assumed to 

be bearing condition related. In operations, some noise effects may be also taken into the process over 

a specific bandwidth, however, these effects can be diminished in the “additive” operation (2.12). 

Figure 2.4(j) shows the integrated wavelet coefficients by which the bearing condition-related 

features are highlighted. 

It can also be observed from Figure 2.4 that the bearing condition-related features become more 

prominent over some bandwidths [e.g., Figures 2.4(d), (e), (h), and (i)] and less pronounced over 

others [e.g., Figures 2.4(c), (f), and (g)]; each frequency band corresponds to a wavelet scale as in 

(2.9). If these wavelet coefficients are integrated for a lower-dimensional (1-D) feature representation, 
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their contribution to the feature extraction will differ from one centre frequency to another. To find an 

indicator to represent such an effect, the magnitude of the wavelet coefficient function is treated as a 

discrete random variable in this case, whereas its probability distribution corresponding to different 

scales is examined and plotted in Figure 2.5. It is seen that the tail length of the probability density 

function varies with respect to the wavelet scale is . This is because the characteristic defect frequency 

of a bearing is usually carried by resonance signatures generated by the impact as a rolling element 

strikes a defect. However, similar types of features may also be generated by other vibratory sources 

such as inherently varying compliance, misalignment, and imbalance [13]. When applying the WT to 

process the overall vibration signal from a faulty bearing, the coefficients ( )ix stWT ,  obtained from 

the non-defect-related resonance signatures (or noise) usually exhibit the characteristics of lower 

amplitude and longer duration (counting for the major part of the total energy). On the other hand, the 

WT coefficients corresponding to the defect-related resonance signatures usually exhibit the 

characteristics of higher amplitude but with a much shorter duration (counting for a minor part of the 

overall energy) [26]. Fault detection is to extract the representative features related to machinery 

defects from a collected signal. From signal property standpoint, if a bearing is damaged, the 

magnitude distribution of the wavelet coefficients should have a longer tail, which indicates that fault 

related features buried in the resonance signatures have been enhanced. This long tail is induced by 

some coefficients with high magnitudes, whereas the magnitudes of most of coefficients are located 

around the sample mean. Therefore, a higher degree of asymmetry in the probability density function 

(pdf) of the wavelet coefficients is desirable for a faulty bearing condition since the resonance 

features generated by the faulty bearing are enhanced and manifested by the presence of the peaks in 

the coefficient functions. The asymmetric property of the probability distribution of the wavelet 

coefficients can be characterized by the skewness measure of the pdf of the resulting wavelet 

coefficients, i.e., 
 

 
( )( )

3

3 ],[

i

iix
i

stWTE
σ

μ
γ

−
= , (2.14) 

 

where ][ ⋅E denotes the expectation function, iμ  and iσ  represent the mean and the spread 

of ( )ix stWT , , respectively. Figure 2.6 plots the values of the index iγ   computed from the 

distributions as illustrated in Figure 2.5. It is clear that this proposed skewness measure takes higher 
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values at scales 2s , 3s , 6s , 7s ,  and the corresponding wavelet coefficients over these scales are 

partly shown in Figures 2.4(d), (e), (h), and (i), respectively. 

The suggested index iγ  is employed to measure the capability of the WT in extracting fault-

related features, which can be implemented into the extended Shannon function (2.12), 
 

 ( ) ( ) ( )[ ]∑
=

=
m

i
ikxikxik stTWstTWtH

1
,log, βγ . (2.15) 
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Figure 2.5. Probability distribution functions of magnitude of the wavelet coefficients 

corresponding to seven wavelet scales ( 1s to 7s ); probability is evaluated by using its relative 

frequency of the occurrence with 1000 bins and 491520 sample points (partly shown in Figure 

2.4). 
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Figure 2.6. The trend of the proposed skewness measure iγ   corresponding to an inner race 

defect bearing (the signature is partly shown in Figure 2.1) when the wavelet scales varies from 

1s  to 7s . 

2.2.4 Averaged Autocorrelation Spectrum 

Once the synthesized wavelet coefficients are obtained, the next step is to detect the characteristic 

defect frequency by calculating the averaged autocorrelation spectrum. The autocorrelation spectrum 

analysis takes two processes: do the autocorrelation on the synthesized wavelet 

coefficients )(tH given by (2.15) to enhance the involved periodic features, and conduct the spectral 

analysis (FT) for periodic feature extraction. Specifically, 
 

 ( ) ( ) ( )][ * ltHtHElrxx += ,       l = 1, 2, …, n-1 (2.16) 

 ( ) ( )[ ]lrFfR xx=  (2.17) 

 

where l is the lag index and ][ ⋅F  denotes the FT. The autocorrelation spectrum is defined as: 

 

 ( ) ( ) ( )fRfRf *=Φ . (2.18) 

 

In implementation, the spectrums obtained by (2.18) from J segments of measured signals will be 

an averaged to reduce the effects of random noise, 
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where j = 1, …, J. Bearing health conditions are estimated by analyzing the related characteristic 

frequency components on the resulting spectra, to be discussed in Section 2.3. 

2.3 Performance Evaluation 

The proposed WSA technique is applied in this section for bearing fault detection. Its 

performance will be compared with several related classical methods: the max-envelope approach 

[35], the envelope analysis [26], and the one-scaled WT [34]. In the max-envelope approach, only the 

maximum wavelet coefficient over the selected frequency bands given by (2.9) is selected as the 

resultant value. The envelope analysis [26] is applied to the signal bandpass-filtered around the 

system’s resonant frequency [1500 2500] Hz, as shown in Figure 2.7. The one-scaled WT is 

performed with the centre frequency at 2000 Hz which is the middle of the system’s resonant 

frequency band. Correspondingly, the vibration signatures within the resonance frequency band [1000 

8000] Hz will be analyzed for bearing fault detection [26]; the lower bound frequency is chosen as 

1000 Hz to eliminate the effects of shaft-related low-frequency components. 
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Figure 2.7. System’s resonance frequency response. 
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The bearing fault is diagnosed by examining the related characteristic frequencies and their 

harmonics, whose theoretical values can be calculated based on the geometry of the bearing and the 

shaft speed [27]. For example, for a bearing with a fixed outer ring, the characteristic frequency for an 

inner race defect is 
 

 ⎟
⎠
⎞

⎜
⎝
⎛ += αcos1

2 D
dZf

f t
id  (2.20) 

 

where Z is the number of rolling elements, d is the rolling element diameter, D is the bearing pitch 

diameter, a is the contact angle (a = 0 in this case), and tf  is the shaft speed.  

The characteristic frequency for a rolling element defect is 
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The characteristic frequency for an outer race defect is 
 

 ⎟
⎠
⎞

⎜
⎝
⎛ −= αcos1

2 D
dZf

f t
od . (2.22) 

2.3.1 Experimental Data Preparation 

To verify the effectiveness of the WSA technique in bearing fault detection, a large number of 

tests have been conducted and the experimental setup that is employed for these tests is described in 

Section 1.4 in Chapter 1. In the tests, four bearing health conditions are considered: healthy bearings, 

bearings with outer race defects, bearings with inner race defects, and bearings with rolling element 

faults. Three sets of faulty bearings with different fault sizes are prepared and tested, as listed in Table 

1.1. Each bearing is tested under seven shaft speeds (600, 900, 1200, 1500, 1800, 2100, and 2400 

r/min) and two load levels (1.2 and 2.3 N·m), respectively. Thus, totally 42 different test cases have 

been conducted. In the following Section 2.3.2, the processing results from two cases (Case I and II) 

will be shown in figures to give the readers some institutive impressions, where Case I refers to 

bearings in SET 1 in Table 1.1 operating at shaft speed 32 Hz with a load 1.2 N·m, and Case II 

represents bearings in SET 2 operating at shaft speed 40 Hz with a load 2.3 N·m. Then in Section 

2.3.3, the processing results from all the 42 cases will be summarized into a series of tables and 
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figures to show the effectiveness of the proposed WSA technique and the effects of the load, shaft 

speed, and the fault size on feature extraction. 

2.3.2 Demonstrative Examples of Processing Results 

1) Synthesized Wavelet Coefficients: Figure 2.8 shows parts of measured vibration signals at 

shaft speed 1920 r/min (32Hz) with the sampling frequency 20,480 Hz, from which the bearing 

imperfections cannot be directly recognized. Figure 2.9 plots some examples of the synthesized 

wavelet coefficients )(tH  calculated from (2.15) corresponding to different bearing health 

conditions. It can be seen that the bearing condition-related features are extracted from the weak 

vibration signatures. As shown in Figure 2.9(a), for a healthy bearing, the features related to the shaft 

rotation speed (power input) can be extracted clearly. The representative features are spaced by an 

interval of 640 sample data, corresponding to a repetition rate of 32 Hz and a sampling frequency 

20,480 Hz. It is also seen that the features from outer race defects are stationary which is relatively 

easier to be extracted as shown in Figures 2.9(b) and (c). However, as seen in Figures 2.9(d) – (g), it 

is challenging to extract representative features from bearings with inner race defects or rolling 

element defects because the related resonance signatures are non-stationary. 
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Figure 2.8. Vibration signals: (a) from a healthy bearing; (b) from an outer race defect bearing; 

(c) from an inner race defect bearing; (d) from a rolling element damaged bearing. 
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Figure 2.9. Synthesized coefficients where the repetition of the bearing condition related 

features is indicated using sampling intervals and the features are pointed by arrows: (a) from a 

healthy bearing; (b) from an outer race defect bearing in Case I; (c) from an outer race defect 

bearing in Case II; (d) from an inner race defect bearing in Case I; (e) from an inner race defect 

bearing in Case II; (f) from a rolling element damaged bearing in Case I; (g) from a rolling 

element damaged bearing in Case II. 
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2) Healthy Bearing: Bearing components generate vibratory signals that are related to the speed 

of shaft rotation (the power input). In theory, the shaft speed related resonance features can be 

recognized by the proposed technique. In industrial monitoring applications, the examination is 

mainly based on directly visual inspection of the resulting spectra. The following analyses are in 

terms of the recognition of the dominant frequency component in the spectra under an identical 

resolution. Figure 2.10 shows the processing results for a healthy bearing by using the WSA 

technique and three classical techniques. It is seen from Figure 2.10(a) that, based on the proposed 

WSA technique, the dominant spectral component is the shaft speed ( tf = 32 Hz). This high-

resolution shaft speed information can be used not only as a healthy indicator of the bearing of 

interest, but also as a digital encoder in system condition monitoring and control applications. 

This shaft speed can also be recognized in the spectra from the max-envelope approach [Figure 

2.10(b)], although its resolution is lower than in Figure 2.10(a) due to the presence of some other 

spectral components. The results from the one-scaled WT [Figure 2.10(c)] and the envelope analysis 

[Figure 2.10(d)], however, may lead to an incorrect fault detection (i.e., a false alarm) because the 

third harmonic of shaft speed (96 Hz) is very close to the outer race defect characteristic frequency 

( odf = 97.67 Hz ). 
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Figure 2.10. Healthy bearing processing results: (a) using the WSA method (2.19); (b) using the 

max-envelope approach [35]; (c) using the one-scaled WT [34]; (d) using the envelope analysis 

[26]. 
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3) Outer Race Fault Detection: If the bearing is damaged, in theory, the corresponding 

characteristic defect frequency and/or its harmonics will appear in its spectra. As stated earlier, outer 

race fault detection is relatively easier because the defect resonance modes do not change 

dramatically. Figure 2.11 shows the processing results in test Case I by using the related techniques, 

and Figure 2.12 shows the processing results corresponding to test Case II, where the difference in 

Case I and Case II is given in Table 1.1 in Chapter 1. It is seen that each technique can recognize the 

presence of this bearing fault. It is also seen that the spectral component related to shaft speed 

disappears in this case because its spectral magnitude is much lower than these defect frequency 

components. 
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Figure 2.11. Outer race fault detection in Case I: (a) using the WSA method (2.19); (b) using the 

max-envelope approach [35]; (c) using the one-scaled WT [34]; (d) using the envelope analysis 

[26]. 
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Figure 2.12. Outer race fault detection in Case II: (a) using the WSA method (2.19); (b) using 

the max-envelope approach [35]; (c) using the one-scaled WT [34]; (d) using the envelope 

analysis [26]. 
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4) Inner Race Fault Detection: As discussed in Section 2.2, the detection of a fault on a rotating 

ring (bearing inner race in this work) and a rolling element is more challenging than on a fixed ring 

because the modes of the generated resonance signatures vary over time. Figures 2.13 and 2.14 show 

the processing results corresponding to the bearing signals with inner race defects. The characteristic 

frequencies idf = 158.33 Hz in Case I and idf = 197.91 Hz in Case II can be identified clearly in 

Figures 2.13(a) and 2.14(a), respectively, by using the WSA technique. However, when the max-

envelope approach is applied, the defect frequency component becomes the third or fourth highest 

spectral component, as shown in Figures 2.13(b) and 2.14(b). This makes it difficult to detect this 

bearing defect based on the spectral analysis. Similar results can be seen in Figures 2.13(c), (d), and 

Figures 2.14(c), (d) by using the one-scaled WT and the envelope analysis, respectively. Unclear 

processing results may lead to false alarms or missed alarms in monitoring applications. 
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Figure 2.13. Inner race fault detection in Case I: (a) using the WSA method (2.19); (b) using the 

max-envelope approach [35]; (c) using the one-scaled WT [34]; (d) using the envelope analysis 

[26]. 
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Figure 2.14. Inner race fault detection in Case II: (a) using the WSA method (2.19); (b) using 

the max-envelope approach [35]; (c) using the one-scaled WT [34]; (d) using the envelope 

analysis [26]. 
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5) Rolling Element Fault Detection: Figures 2.15 and 2.16 illustrate two examples of the 

processing results corresponding to rolling element defects in test Case I and Case II, respectively. It 

is clear that the WSA technique is the only method that can recognize the existence of the bearing 

faults from weak resonance signatures ( rdf = 127.48 Hz in Case I; rdf = 159.34 Hz in Case II). Other 

three methods have missed the bearing faults under these test conditions.  
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Figure 2.15. Rolling element fault detection in Case I: (a) using the WSA method (2.19); (b) 

using the max-envelope approach [35]; (c) using the one-scaled WT [34]; (d) using the envelope 

analysis [26]. 
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Figure 2.16. Rolling element fault detection in Case II: (a) using the WSA method (2.19); (b) 

using the max-envelope approach [35]; (c) using the one-scaled WT [34]; (d) using the envelope 

analysis [26]. 
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2.3.3 Summary of Processing Results 

What are shown in Section 2.3.2 are only some examples for illustration purpose. In this work, a 

total of 42 different test cases (three fault sizes, 7 shaft speeds, and 2 load levels, as given in Table 

1.1) have been examined, to check the effectiveness of the proposed WSA technique in feature 

extraction and the effects of the load, shaft speed, and the fault size on its performance. In the test, the 

resulting spectrum magnitude )(,,,, fS c
jsldm  corresponding to each bearing characteristic frequency 

has been recorded, where c denotes the specific bearing health condition (h: healthy; o: outer-race 

defect; i: inner-race defect; and r: rolling element defect); d denotes the fault size ( 1d : the smallest 

fault size in the tests; 2d : the medium fault size in the tests; 3d : the largest fault size in the tests); m 

denotes the mth method applied in this comparison study ( 1m : the WSA technique by (2.19); 2m : the 

max-envelope approach [35]; 3m : the one-scaled WT [34]; and 4m : the envelope analysis [26]); l 

represents the load level ( 1l : 1.2 N·m; 2l : 2.3 N·m); s represents the shaft speed ( 1s : 600 r/min; 2s : 

900 r/min; 3s : 1200 r/min; 4s :1500/min; 5s : 1800 r/min; 6s : 2100 r/min; 7s : 2400 r/min); j denotes 

the jth run under the same bearing operating condition (j = 1, 2, …, 5). Next, these processing results 

will be summarized into a series of tables and figures in the following way: 
 

1) Finding the spectrum magnitude of the bearing characteristic frequencies. The spectrum 

corresponding to the bearing healthy (normal) condition ( h
jsldmS ,,,, ), outer-race defect ( o

jsldmS ,,,, ), 

inner-race defect ( i
jsldmS ,,,, ) and rolling element defect ( r

jsldmS ,,,, ) can be found from the resulting 

spectra, 
 

 ( )( ) [ ] [ ]tolttolttolttolt
h

jsldm fffffffffffS +−∪+−∈Φ= 2,2,,max)(,,,,  (2.23) 

 ( )( ) [ ] [ ]tolodtolodtolodtolod
o

jsldm fffffffffffS +−∪+−∈Φ= 2,2,,max)(,,,,  (2.24) 

 ( )( ) [ ] [ ]tolidtolidtolidtolid
i

jsldm fffffffffffS +−∪+−∈Φ= 2,2,,max)(,,,,  (2.25) 

 ( )( ) [ ] [ ]tolrdtolrdtolrdtolrd
r

jsldm fffffffffffS +−∪+−∈Φ= 2,2,,max)(,,,,  (2.26) 

 

where tf  is the shaft speed; rdf , idf , odf  are the theoretical characteristic frequencies of a 

bearing calculated by (2.20), (2.21), and (2.22), respectively; tolf  is the frequency tolerance 
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which depends on the spectral resolution fΔ  and shaft speed variation, fff ttol Δ+×= %4  is 

used in this work. 
 

2) Obtaining the normalized spectrum magnitude c
jsldmS ,,,, corresponding to each bearing 

characteristic frequency, 
 

 
))(),(),(),(max(
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,,,,,,,,,,,,,,,,

,,,,
,,,, fSfSfSfS
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jsldm
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h
jsldmh

jsldm =  (2.27) 
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,,,, fSfSfSfS

fS
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jsldm
o

jsldm
h

jsldm

r
jsldmr

jsldm =  (2.30) 

 

3) Analyzing these normalized spectrum magnitudes )(,,,, fS c
jsldm  by calculating the mean and 

standard deviation of each data group of interest. For example, to investigate the effectiveness of 

the proposed WSA technique with respect to other classical approaches, the following statistical 

indices can be examined, 
 

 )( mean)( ,,,,,,,
fSf c

jsldmjsld

c
m =μ  (2.31) 

 )( stddev)( ,,,,,,,
fSf c

jsldmjsld

c
m =σ  (2.32) 

 

To investigate the effect of the fault size on the performance of a specific method in feature 

extraction, the following statistical indices can be examined, 
 

 )( mean)( ,,,,,,, fSf c
jsldmjsl

c
dm =μ  (2.33) 

 )( stddev)( ,,,,,,, fSf c
jsldmjsl

c
dm =σ  (2.34) 
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To investigate the effect of the shaft speed on the performance of a specific method in feature 

extraction, the following statistical indices can be examined, 
 

 )( mean)( ,,,,,,, fSf c
jsldmjld

c
sm =μ  (2.35) 

 )( stddev)( ,,,,,,, fSf c
jsldmjld

c
sm =σ  (2.36) 

 

To investigate the effect of the load on the performance of a specific method in feature extraction, 

the following statistical indices can be examined, 
 

 )( mean)( ,,,,,,, fSf c
jsldmjsd

c
lm =μ  (2.37) 

 )( stddev)( ,,,,,,, fSf c
jsldmjsd

c
lm =σ  (2.38) 

 

The processing results from all the test cases are summarized in Tables 2.1 – 2.9 and Figures 2.17 

– 2.20. From Tables 2.1 – 2.3, it is observed that the proposed WSA technique ( 1m ) performs better 

than other three classical approaches ( 2m : the max-envelope approach [35]; 3m : the one-scaled WT 

[34]; and 4m : the envelope analysis [26]) in feature extraction. Especially for inner-race fault 

diagnosis, the WSA technique can detect this bearing fault in all the tested cases. From Table 2.4, it 

can be seen that each fault detection technique can recognize the outer-race faults in the tested 

bearings. Correspondingly, Figure 2.17 plots the values of )( fc
mμ given by (2.31) with respect to 

each bearing fault detection approach. 

 

Table 2.1. Testing results of healthy bearings by (2.31) and (2.32) using four approaches 

 
1m  2m  3m  4m  

)( fh
mμ  0.9605 0.7879 0.6123 0.6490 

)( fh
mσ  0.1670 0.3194 0.3836 0.3701 

)()( ff h
m

h
m σμ  5.7500 2.4666 1.5963 1.7538 
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Table 2.2. Testing results of rolling-element defect bearings by (2.31) and (2.32) using four 

approaches 

 
1m  2m  3m  4m  

)( fr
mμ  0.8153 0.2321 0.7721 0.7126 

)( fr
mσ  0.1867 0.2206 0.3098 0.3490 

)()( ff r
m

r
m σμ  4.3676 1.0522 2.4923 2.0415 

 

  

Table 2.3. Testing results of inner-race defect bearings by (2.31) and (2.32) using four 

approaches 

 
1m  2m  3m  4m  

)( fi
mμ  1.0000 0.0597 0.6532 0.7052 

)( fi
mσ  0.0000 0.0700 0.2835 0.2682 

)()( ff i
m

i
m σμ  INF 0.8516 2.3037 2.6293 

INF: infinite number 

 

Table 2.4. Testing results of outer-race defect bearings by (2.31) and (2.32) using four 

approaches 

 
1m  2m  3m  4m  

)( fo
mμ  1.0000 1.0000 1.0000 1.0000 

)( fo
mσ  0.0000 0.0000 0.0000 0.0000 

)()( ff o
m

o
m σμ  INF INF INF INF 

INF: infinite number 
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Figure 2.17. Effects of different fault detection approaches on the derived )( fc
mμ : square, 

healthy bearing; circle, rolling-element defect bearing; triangle, inner-race defect bearing; star, 

outer-race defect bearing. 

 

The WSA technique can detect the inner-race bearing faults and outer-race bearing faults in all 

the tested cases; but can not achieve this high reliability when the bearing is healthy or rolling-

element defective. To further investigate how the fault size, shaft speed, and the load affect the 

performance of the WSA technique in feature extraction, the processing results from these 42 test 

cases are summarized into several groups of interest, as given in Tables 2.5 – 2.9. Correspondingly, 

Figures 2.18 – 2.20 show the values of )( fc
dμ , )( fc

sμ , )( fc
lμ  for each interested group. 

From the processing results in Tables 2.5 and 2.6, it is observed that the fault size affects the 

effectiveness of the WSA technique in the condition monitoring of healthy bearings and rolling-

element defect bearings. As the fault size increases, it becomes easier for the WSA technique to 

recognize the current bearing health condition. 
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Table 2.5. Testing results of healthy bearings by (2.33) and (2.34) corresponding to three 

different fault sizes when the WSA technique is applied 

 
1d  2d  3d  

)( fh
dμ  0.9122 0.9782 0.9911 

)( fh
dσ  0.2606 0.0978 0.0615 

)()( ff h
d

h
d σμ  3.5010 9.9982 16.1181 

 

 

Table 2.6. Testing results of rolling-element defect bearings by (2.33) and (2.34) corresponding 

to three different fault sizes when the WSA technique is applied 

 
1d  2d  3d  

)( fr
dμ  0.8089 0.8113 0.8257 

)( fr
dσ  0.1885 0.1828 0.1920 

)()( ff r
d

r
d σμ  4.2914 4.4362 4.2996 
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Figure 2.18. Effects of different fault sizes on the derived )( fc
dμ  when the proposed WSA 

technique (2.19) is applied: square, healthy bearing; circle, rolling-element defect bearing. 
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From the processing results in Table 2.7 and Figure 2.19, it can be seen that for a healthy bearing, 

the bearing condition can be recognized when the shaft speed is over 15 Hz ( 2s ); however, for the 

inner-race defect bearings, no uniform patterns can be observed from Table 2.8 and Figure 2.19. This 

is mainly because that for ball bearings, the rolling-element fault interacts with its mating components 

randomly. 

 

Table 2.7. Testing results of healthy bearings by (2.35) and (2.36) corresponding to seven 

different shaft speeds when the WSA technique is applied 

 
1s  2s  3s  4s  5s  6s  7s  

)( fh
sμ  0.6840 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

)( fh
sσ  0.3771 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

)()( ff h
s

h
s σμ  1.8138 INF INF INF INF INF INF 

INF: infinite number 

 

Table 2.8. Testing results of rolling-element defect bearings by (2.35) and (2.36) corresponding 

to seven different shaft speeds when the WSA technique is applied 

 
1s  2s  3s  4s  5s  6s  7s  

)( fr
sμ  0.8563 0.7826 0.8816 0.8149 0.7470 0.7977 0.8221 

)( fr
sσ  0.3786 0.0327 0.0878 0.1165 0.0664 0.1362 0.2614 

)()( ff r
s

r
s σμ  2.2615 23.8994 10.0319 6.9934 11.2435 5.8540 3.1451 
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Figure 2.19. Effects of different shaft speeds on the derived )( fc
sμ  when the proposed WSA 

technique (2.19) is applied: square, healthy bearing; circle, rolling-element defect bearing. 

 

In the tests, two levels of load are applied. Table 2.9 and Figure 2.20 show the processing results 

of )( fc
lμ  with respect to each load level. It can be seen that the load affects the performance of the 

WSA technique. A heavier load generates a vibration signature of high amplitude and the related 

spectral component will be more obvious.  

  

Table 2.9. Testing results of healthy and rolling-element defect bearings by (2.37) and (2.38) 

corresponding to two different loads when the WSA technique is applied 

 1l  2l   1l  2l  

)( fh
lμ  0.9514 0.9696 )( fr

lμ  0.7869 0.8436 

)( fh
lσ  0.1812 0.1524 )( fr

lσ  0.2065 0.1609 

)()( ff h
l

h
l σμ  5.2522 6.3629 )()( ff r

l
r
l σμ 3.8105 5.2421 
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Figure 2.20. Effects of different loads on the derived )( fc
lμ  when the proposed WSA technique 

(2.19) is applied: square, healthy bearing; circle, rolling-element defect bearing. 

 

2.4 Summary 

A new signal processing technique, the wavelet spectrum analysis, is proposed in this chapter for 

bearing incipient fault-related feature extraction. This technique applies the WT to demodulate the 

resonance signatures over selected frequency bands to extract the representative features. A strategy 

is suggested for the deployment of the wavelet centre frequencies. A weighted Shannon function is 

proposed to synthesize the wavelet coefficient functions to enhance feature characteristics, whereas 

the applied weights are from a statistical index that quantifies the effect of different wavelet centre 

frequencies on feature extraction. An averaged autocorrelation spectrum is adopted to highlight the 

feature characteristics that are related to bearing health conditions. The performance of this proposed 

technique is examined by a series of experimental tests corresponding to different bearing conditions. 

The test results show that this new signal processing technique is an effective bearing fault detection 

method, which is particularly useful for non-stationary feature extraction and analysis. 

The presented wavelet spectrum analysis technique in this chapter is to achieve the first research 

objective in Section 1.3: 1) to develop a more effective signal processing technique for feature 

extraction in bearing fault detection. 
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Chapter 3 
A Novel Neural Fuzzy Classifier 

In this chapter, a novel neural fuzzy (NF) classifier is developed to effectively integrate the strengths 

of the selected signal processing techniques (or the resulting representative features) for a more 

accurate assessment of the bearing health conditions.  

3.1 Overview 

Several signal processing techniques have been reported in the literature for bearing fault 

detection [14, 17, 22-25]. Each technique, however, has its own advantages and limitations, and 

cannot be used independently for bearing applications [2, 37]. Although the proposed wavelet 

spectrum analysis (WSA) technique in Chapter 2 has demonstrated its superiority over other related 

classical techniques in enhancing feature characteristics, it is still challenging to reliably recognize 

some bearing health conditions such as healthy bearing condition and rolling-element defect bearing 

condition, based on dominant characteristic frequency analysis. If many techniques (or features) are 

applied for fault diagnosis, however, it is more possible to result in a conflicting result due to their 

limitations in robustness. Furthermore, most currently available fault diagnosis systems lack the 

adaptive capability to accommodate various bearing conditions in terms of load and speed variations. 

To approach these challenges, a NF classifier is developed in this chapter to integrate the strengths of 

the selected signal processing techniques for a more reliable bearing fault diagnosis. 

3.2 Monitoring Indices 

Two signal processing techniques are adopted in this bearing fault diagnosis: one is the WSA 

technique that has been presented in Chapter 2, and the other is the kurtosis ratio method [114] that 

will be discussed next. 

3.2.1 Kurtosis Ratio Method 

Statistical indicators have been widely investigated in machinery condition monitoring [15, 18, 

103-106, 115, 116]. Recent studies have showed that the kurtosis ratio with a proper signal 

preprocessing can provide a compelling diagnosis of incipient bearing faults; this method is defined 

as the ratio of a standard kurtosis to a robust estimate of the kurtosis [114], 
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 4

4}){(
)(

x

xxE
xKur

σ
μ−

= , (3.1) 

 
)(
)()(

txKur
xKurxKR = , (3.2) 

 

where x is the high-pass filtered signal; tx  is the trimmed signal from x by removing the outlying 

samples [114]; Kur and KR denote the kurtosis and kurtosis ratio, respectively. Fault related 

signatures are usually modulated by the signals at high resonance frequencies of the bearing and 

surrounding structures [26, 97], thus a 1000Hz ( 100035 ≈= tt fNf Hz) cut-off frequency is selected 

in this work to eliminate the effects of low-frequency noisy components. The monitoring indices, mK  

and dK , are employed in this application for bearing fault diagnosis, where mK  is the mean of the 

kurtosis ratios over five segments of the measured signals, and dK  is the corresponding standard 

derivation. Figure 3.1 shows an example of the processing results for both mK  and dK  

corresponding to different bearing conditions. It is seen that the damaged bearings usually lead to a 

higher mK  than the healthy ones, and this phenomenon is even more obvious for the inner-race 

damaged bearings. It is also seen that the values of dK  from the healthy bearings and the bearings 

with inner-race or outer-race defects are usually small, whereas the bearings with rolling-element 

defects tend to have a higher dK . 

3.2.2 Monitoring Indices 

The monitoring indices derived from the WSA technique are the normalized spectrum 

magnitudes c
jsldmS ,,,,  given by (2.27) – (2.30) in Section 2.33, whereas the monitoring indices derived 

from the kurtosis ratio method are mK  and dK . These monitoring indices will be regarded as the 

inputs to the NF classifier to be developed, 

 

 )( ,,,,1 fSx h
jsldm= ,   )( ,,,,2 fSx r

jsldm= ,   )( ,,,,3 fSx i
jsldm= ,    

 )( ,,,,4 fSx o
jsldm= ,   mKx =5 ,                dKx =6 .  (3.3) 
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In bearing fault diagnoses, each of the first four indices, 1x  to 4x , will cooperate with the last two 

indices, 5x  to 6x , to examine a bearing health condition. The implementation procedure of this 

classifier is discussed in the following section. 
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Figure 3.1. Reference functions Km and Kd: square, healthy bearing; circle, bearing with 

rolling-element defects; triangle, bearing with inner-race defects; star, bearing with outer-race 

defects. 

 

3.3 The Developed NF Classifier 

3.3.1 Structure of NF Classifier 

The proposed NF classier is to combine the features from the two selected techniques (with six 

monitoring indices as discussed in Section 3.2) to yield a more accurate assessment of the bearing 

health conditions. The diagnostic classification reasoning is conducted by fuzzy logic whereas the 

fuzzy system parameters are optimized by using the suggested training algorithm. 
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The conditions of a bearing are classified into two categories: healthy ( 1C ) or damaged ( 2C ). 

The damage may occur on a rolling element ( 21C ), inner race ( 22C ), or outer race ( 23C ).  Taking the 

monitoring indices 1x  to 6x  as the input vector, the diagnostic classification, in terms of the 

diagnostic indicator y, can be formulated in the form of 

 

ℜ j : IF ( 1x  is jA1 ) AND ( 2x  is jA2 ) AND  …  AND ( 6x  is jA6 ) THEN ( jCy ⊂  with jw  ) (3.4) 

 

where j
iA  is the membership function (MF); =i  1, 2, …, 6, and j  = 1, 2, . . ., J; J denotes the 

number of the rules; jw  is the weight factor to represent the contribution of the feature association in 

jℜ  to the diagnostic operation; jC  is one of states 1C  and { }2322212 CCCC = , depending on a 

specific pattern association. The number of the rules depends on classification operations and expert 

diagnostic knowledge, for example: 

 

1) Based on the analysis in Chapter 2, it is found that outer-race fault detection is relatively easier 

than other types of bearing fault detection because the related resonance modes are stationary 

(e.g., Figures 2.11 and 2.12, Table 2.4). Accordingly, one MF is assigned to the input variable 4x . 

2) The fault detection on a rotating ring or a rolling-element is more challenging because the 

generated resonance signatures are time-varying. However, the test results in Chapter 2 show that 

the proposed WSA technique performs better than other related techniques, and can also 

recognize the existence of an inner-ring defect due to its feature enhancement effect (e.g., Figures 

2.13 – 2.16, Tables 2.2 and 2.3). Thus, two MFs are designated to the input variable 2x  whereas 

one MF is for 3x . 

3) Whenever a defect occurs on a rolling element (e.g., a ball), the pitted position may or may not 

strike or be struck by a ring, depending on the ball orientation. The resulting impact resonance 

modes become random in nature [13]. Advanced studies [114] have revealed that a defect on a 

rolling element usually leads to a higher dK , as illustrated in Figure 3.1. Accordingly, three MFs 

are assigned to the input variable 6x . 
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4) The most important task is to detect if the bearing of interest is healthy or faulty, no matter which 

component is damaged. The investigation results in Chapter 2 have showed that when the bearing 

is healthy, the WSA technique usually detects the shaft speed as the dominant spectral component 

whereas other spectral components are significantly suppressed; and also the kurtosis ratio mK  is 

at a low level (close to 1). However, when an incipient inner-race or outer-race fault occurs in 

bearings, the characteristic defect frequency will become dominant in the spectra (e.g., Figures 

2.13 – 2.16, Tables 2.2 and 2.3), and mK will correspondingly increase. To this end, two MFs 

are designated to the input variables 1x  whereas three MFs are for 5x . 

Based on the above observations, the fuzzy IF-THEN rules are formulated and listed in Table 3.1, 

in which Si , Mi and Li represent, respectively, the Small, Medium and Large MFs for the ith input, 

=i  1, 2, …, 6. 
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Table 3.1. Fuzzy IF-THEN rules in the developed NF classifier 

1ℜ :   IF ( 1x  is S1) AND ( 5x  is S5) AND ( 6x  is S6) THEN  ( 1Cy ⊂  with   1w ) 

2ℜ :   IF ( 1x  is S1) AND ( 5x  is S5) AND ( 6x  is M6) THEN  ( 1Cy ⊂  with   2w ) 

3ℜ :   IF ( 1x  is S1) AND ( 5x  is M5) AND ( 6x  is S6) THEN  ( 1Cy ⊂  with   3w ) 

4ℜ :   IF ( 1x  is S1) AND ( 5x  is M5) AND ( 6x  is M6) THEN  ( 1Cy ⊂  with   4w ) 

5ℜ :   IF ( 1x  is L1) AND ( 5x  is S5) AND ( 6x  is S6) THEN  ( 1Cy ⊂  with   5w ) 

6ℜ :   IF ( 1x  is L1) AND ( 5x  is S5) AND ( 6x  is M6) THEN  ( 1Cy ⊂  with   6w ) 

7ℜ :   IF ( 1x  is L1) AND ( 5x  is M5) AND ( 6x  is S6) THEN  ( 1Cy ⊂  with   7w ) 

8ℜ :   IF ( 1x  is L1) AND ( 5x  is M5) AND ( 6x  is M6) THEN  ( 1Cy ⊂  with   8w ) 

9ℜ :   IF ( 2x  is S2) AND ( 5x  is M5) AND ( 6x  is M6) THEN  ( 21Cy ⊂  with  9w ) 

10ℜ :  IF ( 2x  is S2) AND ( 5x  is M5) AND ( 6x  is L6) THEN  ( 21Cy ⊂  with 10w ) 

11ℜ :  IF ( 2x  is S2) AND ( 5x  is L5) AND ( 6x  is M6) THEN  ( 21Cy ⊂  with 11w ) 

12ℜ :  IF ( 2x  is S2) AND ( 5x  is L5) AND ( 6x  is L6) THEN  ( 21Cy ⊂  with 12w ) 

13ℜ :   IF ( 2x  is L2) AND ( 5x  is M5) AND ( 6x  is M6) THEN  ( 21Cy ⊂  with 13w ) 

14ℜ :  IF ( 2x  is L2) AND ( 5x  is M5) AND ( 6x  is L6) THEN  ( 21Cy ⊂  with 14w ) 

15ℜ :  IF ( 2x  is L2) AND ( 5x  is L5) AND ( 6x  is M6) THEN  ( 21Cy ⊂  with 15w ) 

16ℜ :  IF ( 2x  is L2) AND ( 5x  is L5) AND ( 6x  is L6) THEN  ( 21Cy ⊂  with 16w ) 

17ℜ :   IF ( 3x  is L3) AND ( 5x  is M5) AND ( 6x  is S6) THEN  ( 22Cy ⊂  with 17w ) 

18ℜ :   IF ( 3x  is L3) AND ( 5x  is M5) AND ( 6x  is M6) THEN  ( 22Cy ⊂  with 18w ) 

19ℜ :   IF ( 3x  is L3) AND ( 5x  is L5) AND ( 6x  is S6) THEN  ( 22Cy ⊂  with 19w ) 

20ℜ :   IF ( 3x  is L3) AND ( 5x  is L5) AND ( 6x  is M6) THEN  ( 22Cy ⊂  with 20w ) 

21ℜ :   IF ( 3x  is L4) AND ( 5x  is M5) AND ( 6x  is S6) THEN  ( 23Cy ⊂  with 21w ) 

22ℜ :   IF ( 3x  is L4) AND ( 5x  is M5) AND ( 6x  is M6) THEN  ( 23Cy ⊂  with 22w ) 

23ℜ :   IF ( 3x  is L4) AND ( 5x  is L5) AND ( 6x  is S6) THEN  ( 23Cy ⊂  with 23w ) 

24ℜ :   IF ( 3x  is L4) AND ( 5x  is L5) and ( 6x  is M6) THEN  ( 23Cy ⊂  with 24w ) 
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The network architecture of this proposed NF classifier is schematically shown in Figure 3.2. 

Unless specified, all the network links have unity weights. The input nodes in layer 1 transmit the 

monitoring indices { 1x , …, 6x } to the next layer directly. Each node in layer 2 acts as an MF. The 

nodes in layer 3 perform the fuzzy T-norm operations. If a product operator is used, the firing strength 

of the rule jℜ  is 
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where )( ij
iA

xμ , i = 1, …, 6, denotes the MF grade. 

All the nodes in layer 3 form the rule base as listed in Table 3.1. The nodes in layer 4 and 5 

perform the defuzzification operations: the belongingness grades to 1C , 21C , 22C , 23C  are, 
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The total belongingness grade to the damaged bearing condition 2C  is 2322212 yyyy ++= . 

Accordingly, the normalized classification indicator will be )( 211 yyyy += . 
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Figure 3.2. The network architecture of the developed NF classifier. 

 

3.3.2 Training of NF Classifier 

1) MF Parameter Training: The MF parameters of the NF classifier are optimized by using a 

recursive Levenberg Marquardt (LM) method. For a training data set, { }Tm
d

m yx )()( , the input is 

)(mx  = { }Tmm xx )(
6

)(
1 L ; m = 1, 2, …, M; M is the total number of the training data sets; )(m

dy  is 

the desired output in the form of 
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The objective function for all the M training data sets is defined as 
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where )(
1

my , )(
21
my , )(

22
my , )(

23
my are the class belongingness indicators computed by (3.6) to (3.9), 

respectively. The sigmoid MFs, )])(exp[1(1)( )()( s
i

m
i

s
i

m
iA

bxaxu s
i

−−+=  (i = 1, 2, …, 6; s = 1, 2), 

are utilized in this work, where 01 <ia  and 02 >ia  represent a Small and a Large MF, respectively. 

The Medium MFs for the inputs )(
5

mx  and )(
6

mx  are described by the Gaussian functions, 

])2()(exp[)( 22)()(
ii

m
i

m
iA cxxu

i
σ−= , where i = 5, 6. In training, the following constraints are 

applied to guarantee that the optimized NF classifier is linguistically interpretable, i.e., 21
iii bcb ≤≤ , 

where i = 5, 6.  

In this work, the classical LM method is implemented recursively to improve the convergence 

properties of the NF classifier and to enhance its adaptive capability to accommodate the time-

varying bearing conditions. The computation of the inverse Hessian matrix in the classical LM is 

time-consuming and impractical for real-time applications [90]. In this case, a remedy is to apply the 

matrix inversion lemma [117] to avoid the direct inversion of Hessian matrix. Instead of adding the 

qq×  matrix Im)(μ  at each step, only one diagonal element is added at a time. As a result, the 

nonlinear MF parameters of the NF classifier are recursively updated by 

 

 ))1(ˆ,())1(ˆ,()1()1(ˆ)(ˆ −Θ−Θ−−−Θ=Θ mmmmmRmm T εϕ , (3.12) 
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where 10 ≤< λ  is the forgetting factor; Θ̂  denote the set of the nonlinear parameters, 1ˆ ×∈Θ qR ; ε  

is the classification error vector, 14×∈ Rε ; Θ= ddεϕ  is the Jacobian matrix; R  is the inverse of an 

approximated Hessian matrix, and R(0) is chosen as an identity matrix INα  with a constant 

]1010[ 53∈Nα ; *ϕ  and *Λ  are, respectively, given by 
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The LM parameter )(mμ  conversely affects the trust region radius [90], which should be adaptively 

modified based on the performance of the updated parameters. The following strategy is applied in 

this work: the initial value )1(μ is set to 50; if the objective function in (3.11) decreases as the 

parameters are updated, enlarge the )(mμ  by )(mκμ ; otherwise, if the objective function increases 

as the parameters are updated, reduce )(mμ  by κμ )(m , where κ is a design parameter (κ = 1.005 

in this case). The detailed development of this recursive LM is found in Section 4.3. 

2) Determination of Rule Weights: When multiple monitoring indices are employed for 

diagnostic classification, the contribution of each index association to the final decision varies, to a 

large degree, according to the situation under which the diagnostic decision is made.  Such a 
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contribution can be represented by a weight factor for each rule [7]. Rule weights can be determined 

by several approaches such as choosing empirically [9], using information measures [62], or applying 

some training algorithms [119]. When the rule weights are updated by generally-used training 

methods, sometimes the results are unreasonable and difficult to interpret. For example, if a negative 

rule weight is obtained, this rule will never contribute to the classification output when a maximum 

inference operator is employed. In this work, the rule weight factor is determined by a statistical 

process, and then normalized within each classification category. 

For a Small or a Large sigmoid MF, the critical point is selected as s
ib  (i = 1, 2, …, 6, and s = 1, 

2) by which the membership grade is 0.5; whereas for a Medium Gaussian MF, the critical points are 

chosen as iic σ2ln2± . In order to determine if the current input vector satisfy a specific rule, each 

input is checked to see if it drops within the specified critical region, i.e., [0 1
ib ] for a Small MF, 

[ 2
ib ∞+ ] for a Large MF, and [ iic σ2ln2−  iic σ2ln2+ ] for a Medium MF. The rule weight is 

determined from the conditional probability of the correct classification 
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For example, for the rule 10ℜ  in Table 3.1, the diagnosis is based on the active monitoring 

indices, 2x , 5x  and 6x ; thus, the rule weight, 10w , is calculated by 

 

]|)()2ln22ln2()[(Prob
]|)()2ln22ln2()[(Prob

21
2
6655555

1
22

1
2
6655555

1
22

10 CCxbxcxcbx
Cxbxcxcbx

w
∪∈>∩+<<−∩<

∈>∩+<<−∩<
=

σσ
σσ  (3.17) 

 

The rule weights are then normalized within each classification category as in (3.6) to (3.9). 
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3.4 Performance Evaluation 

The performance of the developed NF classifier is evaluated in a comparison with two related 

diagnostic schemes based on experimental tests. 

3.4.1 Data Preparation 

The experimental setup employed in this work is shown in Section 1.4. The tests are taken with 

the ball bearings of type MB ER-10K. Four bearing conditions are considered: healthy bearings ( 1C ), 

bearings with rolling element faults ( 21C ), bearings with inner race defects ( 22C ), and bearings with 

outer race defects ( 21C ). Three sets of faulty bearings with different fault sizes are prepared as in 

Table 1.1. Each bearing is tested under seven shaft speeds (600, 900, 1200, 1500, 1800, 2100, and 

2400 r/min) and two load levels (1.2 and 2.3 N·m). A total of 720 sets of data are collected under 

different operating conditions, which are listed in Table 3.2. 
 

Table 3.2. Test conditions and collected data sets 

Test Conditions 
Total Data 

Sets 

Training 

Data Sets 

Checking 

Data Sets 

Testing Data 

Sets 

Healthy bearings 288 100 44 144 

Bearings with rolling element defects 144 50 22 72 

Bearings with inner-race defects 144 50 22 72 

Bearing with outer-race defects 144 50 22 72 

 
 

To properly train an NF scheme, sufficient representative training data sets, usually more than 

five times the number of the parameters to be updated, must be prepared for training [90]. The 

developed NF classifier has 48 parameters to be updated (24 fuzzy MF parameters and 24 rule 

weights). 250 data pairs are randomly chosen for training, whereas 110 pairs are randomly selected to 

check the validity of the updated models to prevent overfitting. The remaining data sets (360 pairs) 

are employed to test the resulting diagnostic scheme. 
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3.4.2 Performance Evaluation 

The developed NF scheme (called Scheme-1 in this case) is compared with two other related 

diagnostic classifiers to verify its effectiveness, as described below. 

Scheme-2: A Pure Fuzzy Scheme with Unity Weights. The IF-THEN rules of this fuzzy scheme is 

the same as those in Scheme-1, which are listed in Table 3.1; the MF parameters in this scheme are 

valued based on the expertise; all the rule weights are set to be unity. 

Scheme-3: An NF Scheme with Unity Weights. This scheme is the same as Scheme-2 except that 

the MF parameters are initially valued based on the expertise and then trained by using the developed 

recursive LM method. 

Scheme-1 and Scheme-3 are properly trained using the data sets as listed in Table 3.2. The 

diagnostic results are summarized in Table 3.3. It is seen that Scheme-1 provides the best diagnostic 

results (with 93.2% reliability under these specific test conditions); this is because Scheme-1 can 

optimize the fuzzy parameters and rule weights effectively, and possess the adaptive capability to 

accommodate different operating conditions. The worst performance is given by Scheme-2: with 

eleven false alarms and seven missed alarms, and the overall reliability is only 83.4%. This poor 

performance is mainly due to: 1) the lack of learning capability, such that the fuzzy MF parameters 

can not be optimized; and 2) a coarse fuzzy partition. Each input variable utilizes a few MFs 

compatible with Scheme-1. A further investigation shows that if a finer fuzzy partition is employed, 

the diagnostic performance of Scheme-2 does improve to some extent; however, it still can not 

outperform other two schemes. The classification performance is improved from Scheme-2 to 

Scheme-3 when the MF parameters are optimized using the developed recursive LM method. 
 

Table 3.3. Diagnostic testing results using different classification schemes 

Diagnostic Scheme False Alarms Missed Alarms 
Overall 

Accuracy 

Scheme-1 4 3 93.2% 

Scheme-2 11 7 83.4% 

Scheme-3 5 6 88.5% 

 

Considering the effects of different fuzzy partitions (rules) on classification, tuned rule weights, 
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instead of unity weights, can highlight the contribution from some specific rules. Table 3.4 illustrates 

the tuned rule weights in Scheme-1 based on a statistical process in (3.20). It is seen that the rules 3ℜ , 

4ℜ , 5ℜ , 8ℜ , 9ℜ , 11ℜ , 13ℜ , 15ℜ contribute to the final decision less than the other rules in the rule 

base . Each signal processing technique (or the representative feature) has a limited capability in fault 

diagnostics. Even if the firing strengths of two fuzzy rules are identical, their diagnostic reliabilities 

may be different under different bearing test conditions. Therefore, rule weights play an important 

role in the diagnostic classification operations. 

The diagnostic reliability of this proposed NF classifier can be further enhanced by incorporating 

the forecasting results from a multi-step predictor, which is discussed in Chapter 4 and 5. 
 

Table 3.4. Rule weights before and after training 

Rule 

Weights 1w  2w  3w  4w  5w  6w  5w  8w  9w  10w  11w  12w  

Before 

Training 
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

After 

Training 
0.99 0.98 0.24 0.22 1.0 0.99 0.86 0.71 0.49 1.00 0.58 1.00 

Rule 

Weights 13w  14w  15w  16w  17w  18w  19w  20w  21w  22w  23w  24w  

Before 

Training 
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

After 

Training 
0.64 1.00 0.81 1.00 0.94 0.92 1.00 0.98 0.96 0.95 1.00 0.99 

 

3.5 Summary 

A neural fuzzy classifier is developed in this chapter to integrate the merits of two selected signal 

processing techniques (six resulting representative features) for a more reliable bearing condition 

monitoring. Expertise knowledge can be conveniently incorporated. To signify the effects of different 

fuzzy rules on classification, statistically-tuned rule weights are proposed. A training algorithm is 

suggested to fine-tune fuzzy system parameters and to improve the adaptive capability of this 
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classifier to accommodate different bearing conditions. The effectiveness of this classifier is verified 

by experimental tests corresponding to different bearing conditions. Test results show that the 

developed classifier is superior to other related diagnostic schemes in terms of prediction accuracy. 

The work presented in this chapter is to achieve the research objective described in Section 1.3: a 

NF classifier is proposed to effectively integrate the strengths of several signal processing techniques 

for a more accurate assessment of the health condition of bearings. 
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Chapter 4 
A Novel Multi-Step Predictor for Dynamic System Forecasting 

A multi-step predictor with a variable input pattern is developed, based on a weighted recurrent NF 

paradigm, to forecast the future states of bearing health condition with the purpose to further enhance 

the diagnostic reliability. This chapter will first describe the structure and training of this predictor, 

and then evaluate its performance based on the benchmark data sets [132] and the gear fault state data 

sets [6, 7].  

4.1 Overview 

System state forecasting utilizes available observations to predict the future states of a dynamic 

system. For example, given a function 
 

 ( ))1(),2(,),1(),()1( +−+−−=+ ntfntftftfFtf L , (4.1) 

 

where )1( +tf  is the system output at a future time instant t+1, and )( ⋅F  means that the future state 

)1( +tf  is an unknown function of the current and previous observations, i.e., )(tf , )1( −tf , …, 

)1( +− ntf . The system state forecasting is to use the information of the current observation )(tf  

and the previous observations )1( −tf , …, )1( +− ntf  to predict the future system state )1( +tf . 

Several approaches have been reported in the literature for time series prediction [70]. The 

classical approaches are based on stochastic or related dynamic models [121-123]. However, an 

accurate analytical model is usually difficult to derive for a complex dynamic system, especially 

when the system operates under noisy and/or uncertain environment such as in real-world industrial 

applications. Since the last decade, more interests in time series forecasting have been focused on the 

use of data-driven flexible models such as various neural networks (NNs) [124, 125] and neural fuzzy 

paradigms [126, 127]. Jang [90, 128] proposed an ANFIS for time series forecasting; by simulation, it 

was found that the ANFIS performs better than both the stochastic models and the feedforward NNs. 

Wang et al. developed several flexible model-based predictors for machinery applications [6, 8]; their 

investigation results showed that if a NF predictor is properly trained, it performs better than both the 

feedforward and the recurrent network forecasting schemes. 
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Although an NF predictor has demonstrated some superior properties to other classical 

forecasting tools, advanced research still needs to be done in the following aspects before it can be 

applied to real-world industrial applications [91]: 1) improving the convergence properties, 

particularly for multi-step-ahead predictions; and 2) enhancing the adaptive capability to 

accommodate time-varying system conditions. In this chapter, an adaptive NF predictor is developed 

for multi-step forecasting applications, which is new in the following aspects: 1) a weighted recurrent 

NF paradigm is proposed for multi-step-ahead prediction; 2) a variable-step input pattern is suggested 

for multi-step forecasting operations; 3) a hybrid learning technique is adopted for the network 

training, which is based on a recursive LM algorithm and a recursive least squares estimate (RLSE). 

4.2 The NF Multi-Step Predictor 

Let n input states )(tf , )1( −tf , …, )1( +− ntf be simply represented by }{
110 −nrrr xxx L , 

which are normalized into [0, 1]. Also, let the future state )1( +tf  be simply represented by rx+ , 

where r denotes the prediction step. r = 1 is for a single-step prediction whereas r > 1 corresponds to 

a multi-step prediction. The subscript ir  ( 1,,1,0 −= ni L ) means that the input index is a function 

of the prediction step. In the literature, uniform input patterns are usually applied; that is, the input 

state vector is given as }{ )1(20 rnrr xxxx −−−− L , which represents the current ( 0x ) and the 

previous states of a dynamic system [6, 8, 126-128]. Such a uniform input pattern is easy to 

implement; however, its disadvantage is that the information weights are paid equally to the previous 

states. To highlight the importance of recent state information, a variable-step input pattern is 

introduced in this work for the developed NF predictor. In implementation, 1) if r is an even number, 

the input variables are given as { Lrrr xxxx 32320 −−− }; 2) if r is an odd number, the input 

variables take { L)3()23()2(0 rFrFrF xxxx −−− }, where )(⋅F  is a floor function to round the 

decimal towards an upper infinity. 

To simplify illustration, two MFs, small and large, are assigned to each input state variable. The 

r-step-ahead state of the dynamic system rx+  can be formulated by 

 

jℜ :  If  (
0r

x  is jA0 )  and  (
1r

x  is jA1 ) and  …  and  (
1−nr

x  is j
nA 1− )  then jr fx =+ ,  (4.2) 
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where jℜ  denotes the jth fuzzy rule,  j = 1, 2, …, n2 ; j
iA  is the activated fuzzy set of 

ir
x  in  the jth 

rule. The predictor (4.2) represents a forecasting scheme to estimate the future state of a single 

variable using the inputs in the form of a 1-D state vector. The consequent structure jf  can take 

different reasoning forms. To make it comparable with those reported in [6, 8, 70], a first-order TSK 

model is employed in this work, which has been proven to be more flexible in modeling, 
 

 j
nr

j
nr

j
r

j
j cxcxcxcf

n
++++=

−− 110 110 L , (4.3) 

 

where j
ic  are constants. 

The network architecture of the proposed NF predictor is schematically shown in Figure 4.1. It is 

a six-layer network in which each node performs a particular activation function on the incoming 

signals. The links have unity weights unless specified. The nodes in layer 1 transmit the input signals 

to the next layer. Each node in layer 2 acts as an MF. Different from the general predictors as reported 

in [6, 8, 128], this predictor has a weighted feedback link to each node in layer 2. These feedback 

links can deal with time explicitly as opposed to representing temporal information spatially. The 

context units copy the activations of the nodes from the previous time step, and allow the network to 

memorize the clues from the past, which forms a context for the current processing.  
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Figure 4.1. The network architecture of the proposed multi-step NF predictor. 

 

 

The sigmoid MFs with parameters }{ s
i

s
i ba  are utilized in this case, in which 0>s

ia  and 

0<s
ia , respectively, correspond to a large and a small MF. At time instant t, the node output is  
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where i = 0, 1, …, n-1; s = 1, 2; 
)(t

ri
x is the input 

ir
x at time t. 
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Each node in layer 3 performs a fuzzy T-norm operation. If a max-product operator is applied in 

this case, the rule firing strength is 
 

 ∏
−

=

=
1

0

)(
n

i
rAj is

i
Xuu ,   j = 1, 2, …, n2 . (4.6) 

 

A weighted feedback link is applied to each node in this layer. The firing strength from the previous 

step is partially employed to provide more information to the network so as to improve the 

forecasting accuracy. The output of each node becomes 
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All the rule firing strengths are normalized in layer 4. After a linear combination of the input 

variables in layer 5, the predicted output rx+  is computed by using the centroid defuzzification: 
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where ∑
=

=
n

j
jjj UUU

2

1
 is the normalized firing strength of the jth rule. The fuzzy system 

parameters are optimized by a hybrid adaptive training algorithm as discussed below. 

4.3 Hybrid Adaptive Training Algorithm 

The multi-step NF predictor as developed in Section 4.2 should be properly trained to generate an 

optimal input/output mapping. For offline training, the representative training data should cover all 

the possible application conditions [129-131]. Such a requirement is difficult to achieve in real-world 

applications because most machinery operates in noisy and/or uncertain environments. Usually, the 

classical forecasting schemes are employed for time-invariant systems or systems with slowly-

varying model parameters. However, machinery dynamic characteristics may change suddenly, for 

example, just after repair or regular maintenance. In this section, a hybrid adaptive training technique 

is adopted to train this multi-step predictor to accommodate time-varying system conditions. 

The data sets in the training database are represented as 
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where )(td denotes the actually observed output value at time step t. For an input data set 
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The optimization target is to minimize the following error function with respect to the adjustable 

parameters }{ j
ij

s
i

s
i

s
i cgwba=Θ , 

 

 ),(
2
1)(

2
1)( 2

1

2)()(

1
Θ=−=Θ ∑∑

=

−
+

=

− τελλ
τ

τττ

τ

τ
t

t
r

t
t

t dxV , (4.11) 

 

where ∈λ [0, 1] is the forgetting factor, 19.0 << λ  is used in this work to avoid possible 

convergence instability. The point forecasting error ),( Θtε  is a linear function of the consequent 

parameter j
ic  and a nonlinear function with respect to other parameters. Correspondingly, the 

recursive LM method is applied to optimize the nonlinear parameters 1×∈Θ Nq
N R , and the RLSE 

method is employed to fine-tune the linear parameters 1×∈Θ Lq
L R . 

4.3.1 Optimization of Nonlinear Parameters 

Let )1(ˆ −Θ tN  be the optimal estimate at time step t–1, which minimizes )(1 NtV Θ− and leads to 

0))1(ˆ(1 =−Θ′− tV Nt . It is desired to derive )(ˆ tNΘ  to minimize )( NtV Θ . This can be done by 

differentiating the Taylor-series expansion of )( NtV Θ  around )1(ˆ −Θ tN , that is, 
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where Nq
Nt RtV ×∈−Θ′ 1))1(ˆ( . The first derivative of (4.10) with respect to NΘ  gives 
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where NNN dtdt ΘΘ=Θ ),(),( εϕ is the Jacobian matrix and Nq
N Rt ×∈Θ 1),(ϕ . The second 

derivative of (4.10) with respect to NΘ  yields 

 

 ),(),(),(),())(())(( 1 N
T

NN
T

NNtNt tttttVtV ΘΘ′′+ΘΘ+Θ′′=Θ′′ − εεϕϕλ . (4.14) 

 

Substituting )1(ˆ −Θ tN  for )(tNΘ  gives 
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where NN qq
t RV ×∈⋅′′ )( is the Hessian matrix. The term ))1(ˆ,())1(ˆ,( −Θ−Θ′′ tttt N

T
N εε  is 

approximated to zero as t increases. This is because when NΘ  approaches its true value, 

),( Nt Θε will be white noise [117]; therefore, ),( Nt Θε  may be considered to be of zero mean and 

independent of the states at time step t-1. In particular, it would be independent of ),( Nt Θ′′ε . 

Therefore, (4.15) becomes 
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Since 0))1(ˆ(1 =−Θ′− tV Nt , (4.13) becomes 
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Combining (4.12), (4.16) with (4.17) yields 
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where )(tH is the approximation of the Hessian matrix ))1(ˆ( −Θ′′ tV Nt and NN qqRtH ×∈)( . The LM 

method can properly process some ill-conditioned matrices, such as ))1(ˆ,())1(ˆ,( −Θ−Θ tttt N
T

N ϕϕ , 

by altering (4.19) to 
 

 ])())1(ˆ,())1(ˆ,([)1()( IttttttHtH N
T

N μϕϕλ +−Θ−Θ+−= , (4.20) 

 

where NN qqRI ×∈  is the identity matrix. Equations (4.18) and (4.20) together constitute the recursive 

LM algorithm, whereas )(tμ  is the LM parameter to be discussed later. The computation of the 

inverse Hessian matrix, however, is time-consuming and makes (4.17) impractical for real-time 

applications. A remedy is to apply the matrix inversion lemma [117] to avoid the direct inversion of 

Hessian matrix, which is given as 
 

 1111111 )()( −−−−−−− +−=+ VAUVABUAAUBVA , (4.21) 

 

provided that A and UVAB 11 −− +  are both invertible. 

Instead of adding the NN qq ×  matrix It)(μ  at each step, only one diagonal element is added at 

a time. Let )(tJ
Nq be a matrix whose t(mod Nq )+1 diagonal element is 1 and the other elements are 

all zero. Over a period of Nq  time samples, (4.20) can be rewritten as 
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which can be further expressed as 
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where 2* ))1(ˆ,( ×∈−Θ NqT
N Rttϕ  and 22* )( ×∈Λ Rt  are, respectively, given as 
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Let )1( −= tHA λ , T
N ttU ))1(ˆ,(* −Θ= ϕ , )(* tB Λ= , )1(ˆ,(* −Θ= ttV Nϕ , (4.18) and (4.23) can 

be expressed as 
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where )()( 1 tHtR −= . (4.26) and (4.27) are employed to update the nonlinear parameters in this NF 

predictor. Some related implementation issues are listed as follows: 

 

1) Initialization of )0(ˆ
NΘ  and R(0): A reasonable estimate can be applied to )0(ˆ

NΘ . In this 

work,{ }s
i

s
i ba  take { }5.05−  and { }5.05 −  for initial Small and Large MFs, respectively. 

The initial feedback link weights are all set to zero. R(0) are chosen as an identity matrix INα  

with the large positive constant ]1010[ 53∈Nα . 

 

2) Determination of )(tμ : The LM parameter )(tμ  conversely affects the radius of the trust region 

[90]. )(tμ  can be adaptively modified based on the performance of the updated parameters. The 

following strategy is applied in this work: the initial value )0(μ is set to 100; if the objective 

function in (4.11) decreases as the parameters are updated, enlarge the )(tμ  by )(tκμ . 
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Otherwise, if the objective function increases as the parameters are updated, reduce )(tμ  by 

κμ )(t , where κ is a design parameter and κ = 1.005 in this case. 

 

3) The Jacobian matrix Nq
N Rt ×∈Θ 1),(ϕ for the developed recursive LM in (4.26) and (4.27) is 

defined as N
t
rNNN ddxdtdt Θ=ΘΘ=Θ +
)(),(),( εϕ . The nonlinear parameters NΘ  include 

the premise parameters s
ia , s

ib , and the link weights s
iw , jg . Thus, this Jacobian matrix 

contains the partial derivative of the network output )(t
rx+  with respect to each of these nonlinear 

parameters. Suppose at time t the sampled training data set is }{ )()()()(
110
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r

t
r

t
r dxxx

n−
L ; if, 

for example, the sigmoid MFs with parameters { }s
i

s
i ba  are applied, then 
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The following equations can be derived: 
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From (4.6): 
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Equations (4.7) and (4.8) yield 
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Then the Jacobian matrix should be in the form of 
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4.3.2 Optimization of Linear Parameters 

The linear parameters LΘ  in the predictor are optimized by applying RLSE method [6, 8, 90, 

128]: 
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where LL qqRtP ×∈)( is the covariance matrix, IP Lα=)0( , and ]1010[ 62∈Lα is a constant; the 

vector 1×∈ Lq
u RC  is given by 
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In training, the predictor consequent linear parameters are optimized in the forward pass of each 

training epoch based on (4.38) and (4.39); whereas the premise nonlinear parameters are fine tuned in 

the backward pass based on (4.26) and (4.27). The training process is terminated as long as the 

training error is sufficiently small (e.g., less than 510− ) or the number of training epochs reaches a 

predefined level. 
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4.4 Performance Evaluation 

The performance of the proposed multi-step NF predictor is evaluated, in terms of the input 

pattern, structure and the training algorithm, by simulations with two benchmark data sets and gear 

fault-state data sets. The performance of this NF predictor is compared with those based on 

feedforward NNs [53], recurrent NNs [54] and the ANFIS scheme [128]. The ANFIS predictor has a 

similar architecture as shown in Figure 4.1 but without the weighted feedback links; the ANFIS is 

trained by a commonly-used gradient-LSE hybrid algorithm. To make the number of parameters 

compatible among different predictors, the feedforward NN predictor has two hidden layers with 

eight nodes for each layer, while the recurrent NN predictor has a similar structure to the feedforward 

NN except those weighted feedback links from the output layer to the second hidden layer. All the 

predictors have four input state variables. 

4.4.1 Sunspot Activity Forecasting 

A commonly used benchmark data set in forecasting research is the sunspot activity series, which 

has the natures of non-Gaussian and non-stationary. The available annual sunspot activity record is 

from years 1700 to 2007, which has a mean of 49.904 and a standard deviation of 40.430 (SIDC, 

http://sidc.oma.be/index.php3). The first 250 data sets are used for training, whereas the remaining 

data sets are for testing. Table 4.1 summarizes the processing results corresponding to several 

forecasting steps. It is seen that the predictors with a variable input pattern perform much better than 

those based on the uniform input pattern. This is because the predictors can pay more attention to 

recent system information for the establishment of input/output mapping. This property is more 

important for prediction over multiple steps. On the other hand, it is also observed that the proposed 

NF predictor outperforms other classical predictors due to its flexible reasoning structure and adaptive 

training capability. 

Table 4.1. Prediction RMSE based on a sunspot activity record 

 Feedforward NN Recurrent NN ANFIS Proposed Predictor 

+ r uniform variable uniform variable uniform variable uniform variable 

+ 2 45.50 36.74 73.83 69.78 66.63 47.67 19.83 17.65 

+ 3 95.21 67.59 89.78 36.24 35.76 25.95 23.30 18.85 

+ 4 112.36 73.42 54.55 38.43 53.12 58.73 20.01 12.66 

+ 5 84.34 61.71 62.35 55.83 59.68 57.64 25.95 15.80 

http://sidc.oma.be/index.php3
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4.4.2 Mackey-Glass Data Forecasting 

Another commonly used benchmark data set in forecasting research is Mackey-Glass data series 

given by (4.41) [132], 
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10 tx

tx
tx
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≈
τ
τ

 . (4.41) 

 

Corresponding to the initial conditions 30=τ , 1=dt , 2.1)0( =x , and 0)( =tx  for t < 0, 1200 

data sets are selected, in which the first 600 data sets are used for training whereas the remaining data 

sets for testing the identified model. After 100 training epochs, the processing results from the related 

predictors are listed in Table 4.2. It is clear that all the predictors based on variable-step input patterns 

provide a better forecasting performance than those based on uniform-step input patterns. 

Furthermore, it is seen that the proposed NF predictor performs much better than other classical 

forecasting schemes, due to its adaptive training and specific reasoning architecture. The recurrent 

nodes in the NF predictor can store previous system information, which is important for an accurate 

forecasting operation, particularly for multi-step predictions based on only limited input state 

variables. 
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Table 4.2. Prediction RMSE based on Mackey-Glass differential equation 

 Feedforward NN Recurrent NN ANFIS Proposed Predictor 

+ r uniform variable uniform variable uniform variable uniform variable 

+ 2 0.008 0.006 0.015 0.007 0.008 0.005 0.007 0.005 

+ 3 0.026 0.014 0.044 0.021 0.024 0.013 0.020 0.014 

+ 4 0.051 0.035 0.051 0.033 0.049 0.037 0.043 0.029 

+ 5 0.097 0.056 0.069 0.048 0.076 0.061 0.066 0.045 

+ 6 0.130 0.069 0.096 0.069 0.120 0.088 0.081 0.057 

+ 7 0.082 0.068 0.097 0.067 0.11 0.076 0.070 0.054 

+ 8 0.035 0.026 0.029 0.024 0.053 0.030 0.035 0.021 

 

4.4.3 Gear Fault State Forecasting 

A few examples related to gear condition monitoring from the previous works [6] are used as an 

instance to further examine the performance of the developed NF predictor for multi-step machinery 

forecasting applications. The experimental setup is described in [6] and the fault prognosis of the gear 

system is conducted gear by gear. The signal generated by each gear is first differentiated by applying 

a time synchronous filtering process [4, 10]. In machinery condition monitoring, a monitoring index 

should be sensitive to pattern modulation due to machinery faults but insensitive to noise. In this case, 

a wavelet amplitude-based index is applied and its derivation can be found in [6, 7]. Three types of 

gear faults are tested in that study, as represented in Figure 4.2: worn gears, chipped gears, and 

cracked gears. The analysis is for the gear with 16 teeth. The time step is chosen as 10 min. Table 4.3 

summarizes the processing results based on the ANFIS and the proposed NF predictors. 

 

 

Figure 4.2. Gear conditions tested: (a) worn gear, (b) chipped gear, (c) cracked gear. 
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Table 4.3. Prediction RMSE in gear fault state forecasting 

 Worn Gear Chipped Gear Cracked Gear 

+ r ANFIS Pro. Predictor ANFIS 
Pro. 

Predictor 
ANFIS Pro. Predictor 

+ 2 0.08 0.06 0.41 0.28 2.39 0.44 

+ 3 0.08 0.06 0.60 0.43 4.86 3.21 

+ 4 0.15 0.08 0.68 0.65 1.26 0.73 

+ 5 0.27 0.12 0.87 0.74 2.31 0.78 

+ 6 0.28 0.21 0.69 0.53 4.12 0.88 

+ 7 0.55 0.43 1.78 0.74 4.15 1.12 

+ 8 0.72 0.64 1.33 0.92 6.06 1.87 

 

 

1) Gear Wear Monitoring: Wear is a common fault type particularly in exposed gear systems. 

The proposed NF predictor is initially trained using data sets from the Mackey-Glass equation. Table 

4.3 summarizes the processing results over several steps, and Figure 4.3 demonstrates an example of 

the performance comparison between the ANFIS and the proposed NF predictors in a five-step-ahead 

forecasting, where each time step is 10 min apart between two consecutive measurements. It is clear 

that the NF predictor can capture and track the system behavior more effectively than the ANFIS. 
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Figure 4.3. The five-step-ahead forecasting results in the worn gear test (solid curve): (a) by 

using the ANFIS predictor (dotted curve); (b) by using the proposed NF predictor (dotted 

curve). 

 

 

2) Chipped Gear Monitoring: The predictors are trained using the previous worn-gear data sets, 

and then they are tested using the chipped-gear data sets. The processing results are listed in Table 4.3 

whereas an example in two-step-ahead predictions is shown in Figure 4.4. It is seen that the output of 

each predictor match the actual state accurately in the period corresponding to the healthy gear 

condition (early section). After the chipped fault is introduced, the proposed NF predictor can catch 

up the new dynamic characteristics of the system quickly. However, the ANFIS predictor can not 

adapt itself effectively to the new system dynamics, and generates more errors in tracking the 

dynamic behavior of the system after the fault is introduced. 
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Figure 4.4. The two-step-ahead forecasting results in the chipped gear test (solid curve): (a) by 

using the ANFIS predictor (dotted curve), (b) by using the proposed NF predictor (dotted 

curve). 

 

 

3) Cracked Gear Monitoring: After the predictors are trained by using the new data sets from 

the above chipped gear testing, they are applied to forecast the data sets corresponding to cracked 

gear testing. From the processing results as summarized in Table 4.3, apparently the NF predictor can 

outperform the ANFIS predictor in forecasting the future states of the tested gear system. Figure 4.5 

demonstrates another example of six-step-ahead prediction performances from both predictors. It is 

clear that the NF predictor works accurately in this case; it can capture the system’s dynamic behavior 

effectively. Unfortunately, the ANFIS predictor fails in tracking the system properties in this test due 

to its lack of the adaptive capability to accommodate time-varying system conditions. 
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Figure 4.5. The six-step-ahead forecasting results in the cracked gear test (solid curve): (a) by 

using the ANFIS predictor (dotted curve), (b) by using the proposed NF predictor (dotted 

curve). 

4.5 Summary 

A neural fuzzy predictor has been developed in this chapter for multi-step-ahead forecasting of 

dynamic system properties. The forecasting reasoning is performed based on a novel weighted 

recurrent neural fuzzy paradigm, while the system parameters are adaptively updated by a hybrid 

training technique. This training technique combines the recursive Levenberg-Marquart Method and 

the recursive least square estimate algorithm. A variable-step input pattern is applied to highlight the 

importance of recent state information in multi-step input/output data mapping. Comparison studies 

using two benchmark data sets have shown that the proposed multi-step predictor has a better 

convergence and a higher forecasting accuracy than the classical predictors. This predictor is also 

implemented for gear system monitoring. Test results have demonstrated that this predictor is a 

reliable forecasting tool. It can capture the system’s dynamic behavior quickly and track the system’s 

characteristics accurately. 
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The work presented in this chapter is to achieve the research objective described in Section 1.3: a 

multi-step predictor is developed and integrated into the ED scheme to forecast the future states of 

the bearing health condition, and to further enhance the diagnostic reliability. 
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Chapter 5 
An Enhanced Diagnostic Scheme for Decision-Making 

The proposed NF classifier in Chapter 3 can effectively integrate six representative features from two 

selected signal processing techniques for a more accurate assessment of bearing health condition. The 

proposed NF predictor in Chapter 4 has been proven to be a reliable forecasting tool and can provide 

multi-step-ahead forecasting of dynamic system properties. In this chapter, these two intelligent tools 

are integrated to construct an enhanced diagnostic (ED) scheme so as to further improve the bearing 

fault diagnostic reliability.  

5.1 Final Decision-Making Procedures 

The developed intelligent system is reproduced in Figure 5.1, in which the proposed ED scheme 

is employed for the final decision making. This ED scheme consists of both the classification and 

prediction modules: the NF classifier is applied to estimate the current bearing health indicator y 

based on the derived monitoring indexes; the multi-step predictor is then employed to forecast the 

future states of the bearing health condition y’ based on the preceding diagnostic indicator states 

obtained in previous processing steps. The final decision regarding the health condition of the bearing 

is made by using the following inference: 
 

 '
1ℜ : IF ( 1Cy ⊂ ) AND ( 1Cy ⊂′ ) THEN (Bearing is healthy) (5.1) 

 '
2ℜ : IF ( 2Cy ⊂ ) AND ( 2Cy ⊂′ ) THEN (Bearing is damaged) (5.2) 

 '
3ℜ : OTHERWISE, (Bearing is possibly damaged) (5.3) 

 

If the bearing is damaged ( '
2ℜ ), an alarm signal is triggered. If the bearing is possibly damaged 

( '
3ℜ ), care should be taken to this bearing during the following monitoring operations, and the final 

decision should be made according to the next-step diagnostic results. 
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Figure 5.1. Schematic diagram of the developed intelligent system for bearing condition 

monitoring. 

 

5.2 Performance Evaluation 

A series of tests, corresponding to various bearing health and operating conditions, have been 

conducted; the details of the data preparation process can be seen in Section 3.4.1. The developed ED 

scheme is compared with other three related diagnostic schemes in terms of diagnostic reliability. 

System-1 refers to the developed NF classifier in Chapter 3; System-2 is a pure fuzzy scheme with 

unity weights; and System-3 is an NF scheme with unity weights. The detailed descriptions of these 

related diagnostic schemes can be found in Section 3.4.2. 
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The processing results are summarized in Table 5.1. It is seen that although the developed 

System-1 in Chapter 3 can provide a more reliable bearing health condition monitoring than System-2 

and System-3, four false alarms and three missed alarms are still resulted in these tests with the 

overall reliability 93.2%. It also shows that the ED scheme can accurately diagnose all the related 

bearing health conditions (with 100% reliability under these specific test conditions). The proposed 

ED scheme outperforms all the other related schemes. This is because, on one hand, the ED scheme 

can optimize the fuzzy parameters and rule weights, and possess the adaptive capability to 

accommodate different operating conditions; on the other hand, the integrated multi-step NF predictor 

can effectively enhance the diagnostic reliability by employing more information related to the future 

states of the bearing health conditions. 
 

Table 5.1. Diagnostic testing results using different classification schemes 

Diagnostic Scheme False Alarms Missed Alarms 
Overall 

Accuracy 

Scheme-1 4 3 93.2% 

Scheme-2 11 7 83.4% 

Scheme-3 5 6 88.5% 

The Proposed ED Scheme 0 0 100% 

 

5.3 Summary 

An enhanced diagnostic system is developed in this chapter for bearing fault diagnostics. This 

system comprises of two modules: 1) A novel neural fuzzy classifier, as described in Chapter 3, is to 

effectively integrate the merits of several signal processing techniques for a more positive assessment 

of bearing health condition; 2) A multi-step predictor, as described in Chapter 4, is integrated into the 

enhanced diagnostic system to forecast the future state of the bearing health condition, and this result 

is employed to further enhance the diagnostic reliability. Experimental tests corresponding to 

different bearing health conditions have demonstrated the superior fault diagnostic capability of the 

proposed technique over other related diagnostic schemes. 

The work presented in Chapters 3, 4, and 5 is to achieve the research objective described in 

Section 1.3: to develop an enhanced diagnostic scheme for automatic diagnostic decision-making. 
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Chapter 6 
Conclusions and Future Works 

6.1 Conclusions 

Although several techniques have been reported in the literature for bearing fault detection and 

diagnosis, it is still challenging to implement a reliable condition monitoring system for real-world 

industrial applications because of complex bearing structures and noisy operating conditions. The 

theme of this thesis is to develop a novel intelligent system to tackle these related challenges. The 

strategy is to develop more robust techniques at each processing stage to improve the condition 

monitoring reliability. 

First, a new signal processing technique, the wavelet spectrum analysis, is proposed to extract the 

representative features that are related to the incipient bearing faults. A strategy is suggested for the 

deployment of wavelet centre frequencies. To enhance the feature characteristics, a weighted 

Shannon function is proposed to synthesize the wavelet coefficient functions; the applied weights are 

determined by a statistical index to quantify the effect of the wavelet bandwidth on feature extraction. 

An averaged autocorrelation power spectrum is adopted to highlight the bearing characteristic 

features in the spectra. A series of experimental tests, corresponding to various bearing health 

conditions, demonstrate the superior capability of the proposed wavelet spectrum technique to the 

related classical bearing fault detection methods in non-stationary feature extraction and analysis. 

Secondly, an enhanced diagnostic (ED) scheme is proposed for the final decision making on the 

bearing health conditions. This scheme consists of two modules: a classifier and a multi-step 

predictor. The novel neuro-fuzzy classifier is developed to integrate the merits of the two selected 

signal processing techniques (the developed wavelet spectrum analysis technique and the kurtosis 

ratio method) for a more positive assessment of the bearing health condition. The diagnostic 

reliability of this classifier is further enhanced by integrating the information from the developed 

multi-step predictor. In addition, a hybrid training technique is proposed to fine-tune the fuzzy system 

parameters and to improve the adaptive capability of the ED scheme to accommodate different 

bearing conditions. Simulations, based on both the benchmark data sets and gear fault-state data sets, 

demonstrate that the developed multi-step predictor is an accurate and robust forecasting tool. The 

effectiveness of the proposed ED scheme is verified by experimental tests corresponding to different 
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bearing conditions. The test results show that the developed ED scheme is a reliable diagnostic tool, 

and it outperforms other related diagnostic schemes. 

6.2 Future Works 

The future research works should be conducted in the following subjects: 
 

1) The proposed bearing fault detection techniques and decision-making schemes will be 

applied to other mechanical systems such as gearboxes and engines. 

2) More investigation related to the diagnoses of advanced bearing faults and distributed bearing 

defects will be conducted. 

3) A structure-evolving neural fuzzy system will be explored for machinery condition 

monitoring. The rule base will be established using a fuzzy clustering algorithm, by which the 

noise-affected rules (clusters) can be properly removed whereas the structure of the rules can 

be adaptively updated according to different machinery conditions. 

4) Implement the developed monitoring tools for real-world industrial monitoring applications, 

so as to improve production quality and to reduce costs. 

5) A novel nonlinear mapping technique will be developed to map any separable nonlinear 

function into a fuzzy logic framework. Some primary investigation has been undertaken and 

summarized in Appendix A. Such a mapping frame will provide an alternative approach to 

designing a fuzzy system. It can guarantee that the synthesized fuzzy system has an identical 

performance to its crisp-domain counterpart. It will provide insight into relationship between 

the input vector and the output functions. Once the primary fuzzy frame is established, its 

performance can be optimized by offline expert knowledge and online system training. 

6) A genetic programming based technique has been developed in Appendix B for feature 

reconstruction, which would be useful to specific fault diagnostic applications. However, 

advanced research needs to be conducted to investigate the analytical relationships between 

the classical features and the formulated features such that these constructed features can be 

physically interpretable. 
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Appendix A 
Mapping Separable Nonlinear Functions into a Fuzzy Framework 

 

A.1 Overview 

Designing a fuzzy logic system (FLS) is usually time-consuming and there is no guarantee that the 

resulting system can provide a desired performance [59]. Therefore, to facilitate the FLS design 

process, a lot of research has been conducted to investigate the transformation relations between 

conventional system and FLS. Early works in [134, 135] demonstrated that an FLS can be 

constructed roughly from a conventional linear function. Subsequent development showed that the 

output from an FLS can be simply represented by a linear parametric function of the inputs [136, 

137], from which the synthesis of the FLS could be more straightforward. This method was further 

improved in [138], and the fuzzy partition of the universe of discourse of the inputs was taken 

arbitrarily depending on the design requirements. A more general strategy was proposed by Kubica et 

al. [139], whereby virtually any linear system with finite dimension can be transformed to an 

equivalent FLS. 

In contrast to the synthesis strategies for linear systems, the research in constructing FLS from 

nonlinear functions remains a challenge. Although a few methods were reported in the literature [140-

142], the FLS designed using these methods is only an approximated version of the existing nonlinear 

system, thus the performance of the initially-synthesized FLS cannot be accurately predicted. In this 

work, a novel method is proposed to effectively design FLS which can generate the prescribed 

performance of the system so as to provide a well-defined prototype for the FLS [143, 144]. The 

developed technique extends the related previous work in [139] to include the nonlinear systems. 

 

A.2 A Novel Fuzzy Framework for FLS Design 
The FLS design process requires establishing the rule-base, determining appropriate shapes and 

spans of the input and output fuzzy sets, and selecting appropriate inference and defuzzification 

methods. The technique proposed in this section prescribes an automated and efficient procedure for 

the FLS design, which in turn ensures that the performance of the FLS is exactly identical to that of 

the given nonlinear system. The class of nonlinear systems considered in this study is mathematically 

described in the form of 
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 ( ))(,),(),(),,,( 221121 nnn xfxfxfFxxxu LL =  (A.1) 

 

where u is the system output, )( ii xf is a sub-function of the state variable xi  (input) within the 

universe of discourse, and )( ⋅F is a parametric function of )( ii xf that is formed by conventional 

arithmetic operators. It is seen that (A.1) represents a class of nonlinear systems. The procedure for 

constructing an FLS using the proposed methodology is described in the following subsections. 

 

A.2.1. Fuzzy Input Sets and Fuzzification 
The proposed FLS design technique applies singleton fuzzification, whereas the input MFs are 

constructed such that the sum of the membership grades for a particular input is unity, i.e., 
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where )( is
iA

xμ  are the MFs, i designates the ith input, s denotes the sth fuzzy set, iz is the number of 

fuzzy sets spanning the universe of discourse of input ix , and n represents the number of the inputs. 

To take the nonlinear aspects of the given nonlinear system into the FLS and to realize the exact 

mapping, semi-prescribed MFs are employed. The MFs for an arbitrary input ix  are specified based 

on the property of sub-function )( ii xf , i.e., 
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where )(1, is
iA

xμ  represents the right-side of the MF of input fuzzy set s
iA  and )(0,1 is

iA
x+μ  is the 

left-side of the MF of fuzzy set 1+s
iA . In addition, )( s

ii Af and )( 1+s
ii Af  are the sub-functions 

evaluated at the input points s
iA  and 1+s

iA  (i.e., modal points) that correspond to the input values by 

which the membership grade is unity, as depicted in Figure A.1.  
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Figure A.1. Input membership functions. 

 

A few issues need to be addressed: 1) particular attention is given to the modal points in the input 

space whose membership grades are unity; 2) the fuzzy sets defined here are usually asymmetric, thus 

two independent sides of the MFs are utilized to describe the shape of a fuzzy set; c) for each real-

valued crisp input, at most two fuzzy sets have nonzero membership grades; d) if the sub-function 

)( ii xf  is not monotonic, the resulting MF may exhibit unusual characteristics, i.e., the membership 

grades at those points farther away from the modal point are greater than the grades at closer points; 

however, it can be realized that if the modal points are selected at the positions where the slope 

changes polarity, the resulting MFs will be monotonic. 

In [139], it was shown that a linear system can be cast into a fuzzy framework which can achieve 

an identical functionality as the original system. The proposed technique in this work extends the 

approach in [139] to include nonlinear systems. For example, if )( ii xf in (A.1) is in the form of 

 

 ( ) a
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the MFs of input ix  can be simplified as 
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Specially, if a = 1, (A.1) and (A.5) represent a linear system and the resulting MFs are triangular in 

shape, which were systematically analyzed in [139].  

The following analysis is valid with any number of fuzzy sets ( 2≥iz ). However, at a given time 

instant, only two fuzzy sets for each input will have nonzero membership grades under the 

aforementioned conditions. Therefore, without loss of generality, the following analysis will only 

consider two fuzzy sets with nonzero membership grades spanning over each input space such that 

the subsequent explanation can be represented in a more tractable manner. 

 

A.2.2 Rule Base and Fuzzy Inference 
The rule base contains the regionalized linguistic mapping from the input fuzzy space to the 

output fuzzy space. Using a T-norm, for example, a fuzzy rule can be represented as: 
 

 ( ) ( ) ( )uxux lBlBl
nAlAlBl
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LL
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Consider an arbitrary set of inputs defined on X, represented by the fuzzy set XP . Each entry in the 

rule base generates an output fuzzy set l
X RP o  based on the composition inference, i.e., 

 

 ( ) ( ) ( )],*[
1

max uxxu lBl
nAlAXPXxlRXP →××∈=

Lo
μμμ . (A.9) 

 

A product operator is applied in (A.9). This is because that the designed FLS is desired to be 

functionally identical to the original nonlinear system. To accomplish this, the input sets are modeled 

with respect to the original nonlinear system and are “scaled” by the output sets. This “scaling” 

requires a “multiplication” between the input and output sets.  

The rule base should be fully populated, which contains all possible fuzzy associations. Hence, 

the total number of rules M is equal to the product of the number of fuzzy sets spanning each of the n 

inputs, i.e., ∏ == n
i izM 1 . Since only two fuzzy sets have nonzero membership grades for a given 

input (let these sets be 0
iA and 1

iA , i.e., s
ii AA =0 , and 11 += s

ii AA  as ix  drops between s
iA  and 
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1+s
iA ), the total number of contributing fuzzy rules for a system with n inputs would be n

cM 2=  at 

a particular time instant. For simplicity, a technique proposed in [139] is employed here to ensure that 

only the contributing fuzzy rules are considered in the analysis. Let a contributing fuzzy rule be 

represented by an (n+1)-tuple of the form );,,,( 2
2

1
1

lnb
n

bb BAAA L , where }1,0{∈ib and ib
iA is a 

fuzzy set in the antecedent of the lth rule, 10 −≤≤ cMl . Consider the ib  terms as digits in an n-bit 

binary number, then the contributing rule number l in a base-10 number system can be constructed as 
 

 ( ) 221
02

2
1

1 222 −
−− =×++×+×= basenn

nn bbbbbbl LL . (A.10) 

 

where 1b  is the Most Significant Bit and nb  is the Least Significant Bit. Thus, a convenient way to 

ensure that only those rules with nonzero output membership grades are considered in the analysis is 

to list the binary equivalence of the rule numbers ( 120 −≤≤ nl ). For example, consider a 3-input 1-

output system, there should be 823 ==cM  rules in the rule base as illustrated in Table A.1, where 

“∗ ” denotes T-norm. 

 

Table A.1. Bitwise rule base construction 

Rule No. (Rule No.)base-2 Fuzzy Rule 
0 0  0  0 )(** 00000

1
0
1

0
1 BBAAA →  

1 0  0  1 )(** 00111
1

0
1

0
1 BBAAA →  

2 0  1  0 )(** 01020
1

10
1 BBAAA →  

3 0  1  1 )(** 01131
1

1
1

0
1 BBAAA →  

4 1  0  0 )(** 10040
1

0
1

1
1 BBAAA →  

5 1  0  1 )(** 10151
1

0
1

1
1 BBAAA →  

6 1  1  0 )(** 11060
1

1
1

1
1 BBAAA →  

7 1  1  1 )(** 11171
1

1
1

1
1 BBAAA →  
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A.2.3 Fuzzy Output Sets and Defuzzification 

The output fuzzy sets are chosen to be symmetrical and unimodal with their centers located at lB , 

where lB  is defined as 
 

 ( ))(,),(),( 211
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l

n
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The net result of these output sets is that the output sets are effectively singletons at lB  when a 

centroidal defuzzification method is applied. From (A.11), it is seen that special attention is given to 

those points in the input space that satisfy the rules exactly, i.e., 
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In the cases in which the rules are fully satisfied, the consequent of each fuzzy rule is assigned to a 

unique output set. The centroid of each output set is positioned so as to provide the same output as by 

the given nonlinear system with the same set of inputs. On the other hand, the input MFs are specified 

such that the membership grades vary nonlinearly between input sets; this nonlinearity remains the 

same characteristics as in the given nonlinear system, which in turn can guarantee that the FLS output 

is a nonlinear interpolation of the original nonlinear system when a rule in the rule base is not 

satisfied exactly. The output of the constructed FLS is determined by a weighted average of the 

output singletons lB of the participating fuzzy rules: 
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where )(xu N  and )(xu D , respectively, denote the numerator and denominator of the FLS output and 

will be employed in the following section for theoretical verification. 
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A.3 Theoretical Verification 
Based on the technique discussed in Section A.2, an FLS can be constructed from the given 

nonlinear system in (A.1). The objective of this section is to prove that the proposed methodology can 

guarantee the resulting FLS performs identically to the original nonlinear system. 

 

A.3.1 Demonstrative Example 
Consider a 3-input 1-output system described as 

 

 ( ) TxxxxxfxfxfFxu ],,[,)(),(),()( 321332211 ==  (A.14) 

 

where )( ii xf is a sub-function of the state variable ix , i = 1, 2, 3. Assume that two fuzzy sets cover 

the possible input space ][ 10
ii AA  for each input ix . Based on the proposed technique, the input MFs 

are constructed as per (A.3) and (A.4), 
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The centroids of output fuzzy sets are computed as per (A.11), 
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The FLS output )(xu  is calculated as per (A.13) where )(xu D = 1 for any input x (the proof can be 

found in [139]). Thus, )()( xuxu N=  and )(xu can be subsequently derived as 
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Then, the following two cases will be considered: 

 

1) Sub-functions )( ii xf  in (A.14) are manipulated by the operator “addition”: In this case, 

the consequent of each rule in (A.16) is represented by 
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The output of the designed FLS in (A.17) becomes 
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It is seen from (A.19) that the constructed FLS is functionally identical to the given nonlinear system, 

i.e., )()()()( 332211 xfxfxfxu ++= . 

 

2) Sub-functions )( ii xf in (A.14) are manipulated by the operator “multiplication”: In this 

case, the consequent of each rule in (A.16) is represented by 
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Consequently, the output of the designed FLS in (A.17) becomes 
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Again, it is seen from (A.21) that the constructed FLS is functionally identical to the given nonlinear 

system, i.e., )()()()( 332211 xfxfxfxu ××= . 

 

A.3.2 Generalized Nonlinear Systems Described in (A.1) 

For the general case, )(xu D = 1 still holds and thus )()( xuxu N= . The output of the constructed 

FLS with n inputs is derived as 
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Equation (A.22) can be represented in a concise form as: 
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where λ  is the number of the input indices that do not appear in the term ∏ 0
iA

μ , i = 1, 2, …, n.  

The combination without repetition ⎟⎟
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The validation for the generalized nonlinear systems described in (A.1) is addressed via the 

following two steps: 

 

1) Sub-functions ( )i if x  in (A.1) are manipulated by the operator “addition”: In this case, the 

consequent of each rule in (A.11) can be represented by 
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The output of the constructed FLS in (A.23) becomes 
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When the mth combination of ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ
n

 is chosen, the left ( )λ−n  bits can be combined in terms of any 

possible ( λ−n )-th binary assembly ]11,00[1 LLL ∈−λncc , where jc corresponds to a bit in 

]11,00[1 LLL ∈nbb  and points to a particular ( )ib
ii Af  (as per (A.24), now denoted as ( )jc

jj Af  in 

each designated rule consequent. It can be seen that when 20 −≤≤ nλ , the summation 
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This leads the FLS output )(xu in (A.25) to be 
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2) Sub-functions ( )i if x  in (A.1) are manipulated by the operator “multiplication” In this 

case, the consequent of each rule in (A.11) can be represented by 
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The output of the constructed FLS in (A.23) becomes 
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By substituting 0
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 as per (A.3), and by some mathematical manipulations, 

(A.28) becomes 
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 (A.29) 

 

From the results of (A.26) and (A.29), it is seen that the constructed FLS is functionally equivalent to 

the given nonlinear system as described in (A.1). 
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Appendix B 
A GP-Based Feature Reconstructed Approach 

A genetic programming based technique has been developed in this work to further enhance the 

feature’s characteristics. This technique would be useful to specific fault diagnostic applications. 

However, more advanced research needs to be conducted to make these reconstructed features 

physically interpretable. 

 

B.1 Overview 

In recent years, some research efforts have been devoted to the feature reconstruction by using the 

evolutionary computing tools, such as genetic algorithms [99], particle swarm optimization [100], and 

genetic programming (GP) [101]. Although the formulated features are constructed by some data-

driven “blackbox” procedures, the investigation results show that they can provide more 

discrimination information than the classical features [102] to the problems of fault detection. In this 

work, a new GP-based feature reconstruction technique is proposed for bearing fault detection. To 

facilitate demonstration, the feature reconstruction is based on two classical monitoring indexes: the 

kurtosis and the RMS [13, 37]. The investigation results show that although these two monitoring 

indexes have been used for some special bearing applications [15, 18, 103-106], they are not robust 

yet and cannot provide consistent bearing fault detection information, particularly when the machine 

operates in noisy environments. By the proposed GP-based technique, the formulated features can be 

robust in certain applications, that is, they are more sensitive to faulty signatures but less sensitive to 

variations in the speed, load, and the geometry of bearings. 

 

B.2 Tested Bearing Conditions 

The experimental setup used in this work is shown in Figure 1.4. Both the ball bearings (MB ER-

10K) and the cylindrical roller bearings (NJ 303 ECP) are tested. To simplify analysis, only the cases 

as summarized in Table B.1 are considered in this work: healthy (HY), inner-race defect (ID), and 

outer-race defect (OD) for the ball bearings; HY, ID, and rolling element damage (RD) for the roller 

bearings. 
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Table B.1. Fault type and size 
 

 Fault Type Fault Size (mm) No.  Fault Type Fault Size (mm) No. 

HY no fault 1 RD 0.89 7 

ID 0.56 2 0.43 8 

0.44 3 0.56 9 

ball 

bearing 
OD 

0.57 4 0.84 10 

roller 

bearing 
HY no fault 5 

roller 

bearing ID 

1.12 11 

 

B.3 Performance Evaluation of Classical Features 

Bearings will generate vibrations due to the interactions between bearing components and 

possible defects [13, 37]. If the bearing is damaged, whenever a local defect on a bearing element 

strikes or is struck by the corresponding mating element, an impulse is generated. This impulse in 

turn excites structural resonances. Indicators such as the kurtosis and RMS have been applied for 

bearing fault detection in the literature [15, 18, 103-106]. The kurtosis essentially describes the shape 

of the probability density function of a signal, and can be estimated using 
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4
1

4

σ
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=

−
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N

i
ix

kurtosis , (B.1) 

 

where N is the total number of the samples, μ  is the sample mean, and σ  is the sample standard 

deviation. The RMS is the square root of the sample variance representing the energy level of the 

signal. RMS can be calculated using 
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Fault related signatures are usually modulated by the signals at resonance frequencies of the 

bearing and its surrounding structures, and these resonance signals may cover a wide bandwidth [26]. 

To investigate the effects of signals of different frequency band to the performance of these two 
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classical indicators, in this work, the signals will be processed by using the low-pass, band-pass, and 

the high-pass filters, respectively. These filters are in eighth order Butterworth IIR type, and their 

bandwidths are determined by examining the full spectra of the vibration signals and the 

characteristic defect frequencies of the bearings [27]. The filter characteristics are summarized in 

Table B.2. 

 

Table B.2. Filters used for signal preprocessing 
 

Filters Raw Signal LP HP LP HP 

Cutoff Frequency (Hz) [0 8000] 300 300 1000 1000 

Filters LP HP BP BP 

Cutoff Frequency (Hz) 2500 2500 [1000  2500] [300  3000] 

  LP: low-pass; HP: high-pass; BP: band-pass. 
 

Two accelerometers are employed to measure vibration along the horizontal direction ( 1S ) and 

the vertical direction ( 2S ), around the tested bearing. A new signature is constructed by 2
2

2
1 SS + . 

Furthermore, because the signals are usually amplitude modulated by defects, the signal envelope is 

extracted by using the Hilbert transform [107], 
 

 ( ) ( ) τ
τ
τ

π
d

t
StS ∫

+∞

∞− −
=

1
 , (B.3) 

 

where )(tS  is a real-valued signal. The analytic signal of )(tS  is determined by )()( tSjtS + . The 

envelope of the signal )(tS  is the magnitude of this analytic signal, 

 

 ( )( ) ( ) ( )( ) 2122 tStStSH += . (B.4) 

 

Table B.3 summarizes the signatures to be investigated in this work, where 1S  and 2S  are the 

rectified vibration signals. 
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Table B.3. Signatures used to calculate the classical features 

1S  2S  2
2

2
1 SS +  1S  2S  ( )1SH  ( )2SH  

 

 

A comprehensive investigation has been conducted in this work corresponding to various bearing 

health and operation conditions. The analysis results show that although the kurtosis and RMS can 

provide some useful diagnostic information under certain situations, these classical indexes are not 

robust and reliable for bearing fault detection and fault type classification, no matter which signal-

filtering combination is applied. As an example, the best classification result from the kurtosis is 

illustrated in Figure B.1, and the following observations can be obtained: 
 

• It is possible to distinguish a damaged bearing from the healthy one for ball bearings. There is a 

clear separation between curve 1 and the curves 2, 3 and 4. This distinction is insensitive to load 

and speed. 

• For a roller bearing, however, it is possible to detect faults in the bearing only if the fault 

dimension is sufficiently large, such as the curves 10 and 11. 

• It is impossible to diagnose the fault type for both the ball bearings and roller bearings. 

 

Correspondingly, the best classification result based on RMS is demonstrated in Figure B.2, and it 

can be observed that: 
 

• The RMS is highly dependent on the shaft speed. 

• The RMS for the healthy ball bearings is quite different from that of the healthy roller bearings. 

• For all the tested bearings, if the defect size is small, the RMS is close to that of the healthy 

bearing. 
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Figure B.1.  Kurtosis trends for the ball and roller bearings with high-pass filtered (1000 Hz) 

signal 1S : 1-4, ball bearings; 5-11, roller bearings; each number represents one bearing 

condition as listed in Table B.1. 
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Figure B.2. RMS trends for the ball and roller bearings with high-pass filtered (2500 Hz) 

signal ( )1SH : 1-4, ball bearings; 5-11, roller bearings; each number represents one bearing 

condition as listed in Table B.1. 

 

In the following section, a GP-based feature reconstruction technique is proposed so as to 

enhance the discrimination properties of these classical indexes. 

 

B.4 A GP-Based Feature Reconstruction Approach 
The GP paradigm has been genetically applied to breed computer program populations thanks to 

its domain-independent characteristics [108]. The GP employs three basic operations to produce a 

new generation: tree reproduction, crossover, and mutation. In tree reproduction, one individual tree 

(i.e., a computer program) is entirely selected, with a probability based on a fitness measure for the 

direct inclusion in the next generation of the population. In tree crossover, two random nodes are 

chosen from both parent trees, and the respective branches are then swapped to create the offspring; 

there is no bias towards choosing internal or terminal nodes at the crossing sites. In tree mutation, a 
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random node is chosen from the parent tree and substituted by a new random tree with the terminals 

and functions available. The generated random tree also obeys the size/depth restrictions imposed on 

the trees created for the initial generation. Some detailed description of the GP can be found in [108]. 

The GP has been applied to fault detection in some simplified mechanical systems [101, 109, 

110]. For example, features were reconstructed in [101] by changing the GP parameters, such as 

generations, population size, and maximum tree depth. This method, however, was subjective; no 

algorithm was given for the optimization of these parameters. In this work, a novel GP-based 

approach is suggested to integrate the features from two classical indicators for a more robust feature 

formulation. An automatic adaptation procedure is applied to compute genetic operation probabilities 

of occurrence [111]. Each suggested fitness function prompts GP to differentiate one bearing 

condition from the others, which can lead to a more discriminatory feature. The data obtained from 

the kurtosis and RMS will be regarded as the GP terminals. The functions to dynamically manipulate 

the terminals are summarized in Table B.4. 

 

Table B.4. GP operators 

Operator Description Operator Description 

plus ),( ba  add a and b log )(a  natural logarithm: 0 if a=0; )ln( a  (otherwise) 

minus ),( ba  subtract a from b sqrt )(a  square root: 0 (if a<=0); sqrt )(a  (otherwise) 

times ),( ba  multiply a and b sin )(a  trigonometric function: sin )(a  

abs )(a  absolute value of a cos )(a  trigonometric function: cos )(a  

negator )(a  negation: -a tan )(a  trigonometric function: tan )(a  

square )(a  power 2: 2a   divide ),( ba division: a (if b=0); ba  (otherwise) 

 
The critical procedure in implementing a GP algorithm is how to appropriately set up the fitness 

measure, which acts as a primary mechanism to communicate between a high-level statement of the 

requirements and a problem’s solution to the GP paradigm. In this work, the Fisher criterion [112] is 

adopted to design the fitness functions. The index ρ  is suggested as 
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=   (B.5) 



 

 110 

where m and 2σ represent the mean and variance of the samples, respectively, and the subscripts 

denote the classes to be classified. Each class represents one of the four bearing health conditions: 

HY, RD, ID or OD. Correspondingly, three new features will be reconstructed to separate these four 

classes. The samples used to calculate the mean 
icm  and the variance 2

icσ  are the data resulted from 

the candidate GP program (nonlinear mathematical manipulation of candidate terminals and candidate 

operators) on the vibration signatures corresponding to the ic th bearing condition. The index ρ  is 

applied to maximize the distance between the geometric centers of two classes while minimizing the 

variances within each class. Therefore, ρ  can represent the degree of class separability. The fitness 

measures are proposed as 
 

 ( ) ( ) ( )[ ]( )4131211 ,,,,, ccccccMinp ρρρ= , (B.6) 

 ( ) ( )[ ]( )42322 ,,, ccccMinp ρρ= ,  (B.7) 

 ( )433 ,ccp ρ= ,  (B.8) 

 

where ip , i = 1, 2, 3, is the fitness measure when the ith new feature is formulated, and 

)( ⋅Min  is the function to find the minimum scalar in a vector. A greater ip  corresponds to a 

more pronounced class separation. The first class 1c  is chosen as OD, which can be 

differentiated from the other classes more possibly as discussed in Chapter 2. The classes 3c , 

4c  are chosen to represent RD and ID in this case, because the diagnostics of these two types 

of defects are more challenging due to the non-stationary resonance features generated [26, 

98]. The purpose of designing such fitness functions is to facilitate the generation of new 

features that can make each class of bearing conditions differentiable from the others. This 

method has a potential to be an effective fault detection technique especially when the 

bearing conditions cannot be easily classified by using the classical techniques. 

Figure B.3 shows that the OD condition can be clearly recognized by using the first reconstructed 

feature; its robustness against the speed and load variations is also demonstrated.  

Figure B.4 shows the performance of the second formulated feature by which the healthy bearing 

conditions can be separated from the RD and ID bearing conditions.  
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The most challenging task in this case is how to properly separate the RD bearing condition from 

the ID condition. This task is eventually accomplished by the third formulated feature, as illustrated 

in Figure B.5. For the purpose of illustration, the second reconstructed feature is demonstrated in 

Figure B.6. 

To further validate these generated features, a new set of vibration signals are collected at the 

shaft speed of 32 Hz and the loads of 1.5 and 2.0 N·m, respectively. These signals are subsequently 

processed using the GP programs to reconstruct new features. The verification results are 

demonstrated in Figure B.7. It can be seen that the four bearing conditions can be classified clearly. 
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Figure B.3.  Classification results using the first formulated feature by (B.6): solid lines, HY 

bearings; dashed lines with stars, RD bearings; dotted lines, ID bearings; solid lines with 

circles, OD bearings. 
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Figure B.4.  Classification results using the second formulated feature by (B.7): solid lines, HY 

bearings; dashed lines with stars, RD bearings; dotted lines, ID bearings. 
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Figure B.5.  Classification results using the third formulated feature by (B.8): dashed lines with 

stars, RD bearings; dotted lines, ID bearings. 
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Figure B.6.  Program tree that generates the second formulated feature by (B.7). 
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Figure B.7.  Classification results using the newly-formulated features by (B.6) - (B.8). 

 

 

The proposed technique in Section B.4 provides a promising approach to reconstructing features 

which would be useful to specific fault diagnostic applications. This technique can be used as a post 

processing technique to further enhance the feature characteristics. However, advanced research 

needs to be conducted to investigate the analytical relationships between the classical features and the 

formulated features such that these constructed features can be physically interpretable. 
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