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Abstract

We propose an information theoretic framework for scheduling the transmissions

in a two-way multi-hop network. First we investigate some long standing open

problems that were encountered during the course of the research. To illustrate their

difficulty, we describe some failed attempts at resolving them. We then introduce

the two-way one-relay channel. It turns out that the achievable rate region of this

network has a nice interpretation, especially when viewed in the context of the open

problems examined earlier. Motivated by this observation, we attempt to extend

this achievable region to the two-way two-relay channel. In the process, we expose

a fundamental deadlock problem in which each relay needs to decode before the

other in order to enable mutual assistance. Our most important contribution is a

resolution to this deadlock problem; we add an additional constraint that ensures

some relay can decode at least one message before the other relay. Furthermore,

we also introduce several coding schemes to prove that the additional constraint is

indeed sufficient. Our schemes also show that information theory provides unique

insight into scheduling the transmissions of multi-hop networks.
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Chapter 1

Introduction

Sixty years ago Claude Shannon surprised the world with his paper “A mathemat-

ical theory of communication” [1]. In the paper, Shannon argued,

The fundamental problem of communication is that of reproducing at

one point either exactly or approximately a message selected at another

point.

The schematic in figure 1.1 duplicates the type of system considered by Shannon. A

significant feature in this scheme is the unidirectional flow of information; messages

are transmitted from a single source to a single destination.

Shannon’s most astonishing result was to show that it was possible to transmit

information at a positive rate across the noisy channel with a vanishing probability

of error. This rate, also known as the capacity of the channel, is the maximum rate

at which information can be sent with as small a frequency of errors or equivocation

as desired. To prove his result, which he called the fundamental theorem for a

discrete channel with noise, Shannon introduced several ingenious ideas, including

a way of measuring the “surprise” of a random variable from its probability mass

function. He termed this measure the entropy of the random variable, and defined

it as shown in (1.1).

H(X) = −
∑
x

p(x)logp(x) (1.1)

Furthermore, Shannon also introduced an associated concept of the mutual in-

formation between two random variables, which he defined as the entropy of a
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Figure 1.1: Schematic diagram of a general communication system

random variable that is reduced given knowledge of the other. The mutual infor-

mation of two random variables X and Y is given in (1.2).

I(X;Y ) = H(X)−H(X|Y ) (1.2)

=
∑
x,y

p(x, y)log
p(x, y)

p(x)p(y)

The significance of the mutual information in (1.2) is revealed in the funda-

mental theorem for a discrete channel. For any noisy channel whose dynamics

are modeled by the probability transition matrix p(y|x), the channel capacity C is

defined as follows,

C = max
p(x)

I(X;Y ) (1.3)

That is, at all rates below the capacity, information can be transmitted as

reliably as desired. But at rates higher than the channel capacity, the probability

of error goes to one. The concepts of entropy and mutual information have had a

profound impact on the design of modern day communication systems, most notably

in the areas of data compression and error correcting codes. Shannon’s paper later

renamed “The Mathematical Theory of Communication” became the foundation

of information theory - an area of mathematics that intersects fields ranging from

statistical physics to computer science. Shannon himself is often called the father

of information theory.
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1.1 The Rise (and Fall) of Multi-User Informa-

tion Theory

Approximately a decade after his famous paper, Shannon decided to revisit the

communication model in figure 1.1 that he had originally considered [2]. In his new

model, he allowed both nodes to transmit and receive simultaneously.

This two-way channel, now recognized as the first multi-user information theory

problem in which multiple sources communicate to multiple destinations, was too

difficult for Shannon to solve completely. Instead Shannon was able to determine

inner and outer bounds to the capacity region as shown in table 1.1.

The inner bound, or the rates under which communication can be made arbitrar-

ily reliable, closely parallels the result for the one-way channel in (1.3). However,

the outer bound, or the rates over which reliable communication is impossible,

contains a fundamental difficulty; it permits arbitrary input distributions p(x1, x2)

whereas the inner bound permits independent input distributions p(x1)p(x2). This

distinction appears deceptively trivial, but it is actually quite significant. There

are channels for which the inner bound is zero; no communication can take place

unless the two sources co-operate. Since each source is carrying new information,

they have no obvious way of knowing the other’s transmission ahead of time, so co-

operation is precluded. For the past forty-seven years, Shannon’s inner and outer

bounds for the two-way channel have remained virtually unchanged. Despite sus-

tained attention, researchers have been unable to either improve the inner bound or

tighten the outer bound. This is the longest standing open problem in multi-user

information theory.

Several other multi-user channel problems were formulated after the two-way

channel. The most significant include the multiple-access channel [3][4], the broad-

cast channel [5], the relay channel [6], and the interference channel [7][8], all de-

picted in figure 1.2. Of these, the capacity region is completely known only for the

Table 1.1: Inner and outer bounds for the two-way channel

Inner Bounds Outer Bounds

For some p(x1)p(x2), For some p(x1, x2),

R1 < I(X1;Y2|X2) R1 < I(X1;Y2|X2)

R2 < I(X2;Y1|X1) R2 < I(X2;Y1|X1)
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Figure 1.2: Basic Multi-user Channels

multiple-access channel, and then only if the sources are independent.

During the seventies and early eighties the information theory community was

preoccupied with fully characterizing the capacity regions of the aforementioned

channels. Although there were some prominent advances, a complete character-

ization remained an elusive and distant goal. Perhaps due to the slow progress,

and the computational requirements for application, interest in multi-user informa-

tion theory subsequently dried up. There was a near two-decade drought during

which communication systems and protocols were developed outside of a multi-user

information theoretic framework.

1.2 An Information Theoretic Revival

Today, multi-user information theory is experiencing a renaissance. The old ob-

stacles still remain but a new technological landscape has emerged. In particular,

there is a massive consumer demand for wireless broadband connectivity. The in-

ternet has become an indispensable aspect of every day life while the possibilities of

4



unlimited and unfettered access to its content provide tantalizing prospects to con-

sumers and businesses alike. Despite its imperfections, information theory provides

some unique insights into the phenomena that occur in wireless systems.

Fortunately, in the last decade, there has been some progress in the information

theoretic study of wireless networks: new measures of system performance, such as

throughput and transport capacity have been introduced [9][10]; traditional coding

techniques have been extended and improved [11]; and new coding techniques have

been developed [12]. Finally, there have been triumphs with new perspectives on

the classical problems; in 2006 the capacity region of the gaussian MIMO broadcast

channel was fully characterized [13][14].

1.3 The Purpose of this Thesis

The purpose of this thesis is to add further information theoretic insights to the

design of wireless multi-hop networks. We begin in chapter two by discussing some

simple yet fundamental questions that have yet to be answered. These problems

were encountered during the course of the research, and to illustrate their difficulty

we also describe some failed attempts at resolving them. In chapter three we return

to the two-way channel that was introduced earlier in this chapter, except we add

a relay to the network. Ostensibly, the additional relay makes the problem more

difficult. But interestingly, we gain new insight from this two-way relay channel

that does not appear in the two-way channel. In chapter four, we extend the

ideas from chapter three to the two-way two-relay channel. In the process, we

expose a fundamental “deadlock” problem, of which its resolution is the major

contribution of this thesis. We hope that the interpretation of this solution will

neatly tie together all of the ideas discussed in the previous chapters and illustrate

the beauty and practicality of applying information theory to wireless networks.

5



Chapter 2

The Problem of Interference

There are many unresolved obstacles that prevent information theory from making

its full impact on the design of wireless networks. Earlier, we encountered one such

fundamental difficulty in the two-way channel where it is not known whether two

separate nodes can cooperate when transmitting independent information. Unsur-

prisingly, this problem resurfaces when we examine the two-way relay channel in

chapter three. In this chapter we focus on another challenge; the optimal strategy

of dealing with interference. We say that a source causes interference if it transmits

a message that cannot be decoded, either by the destination, or by an intermediate

node endeavoring to assist the transmission. There are two problems we examine:

• Suppose a receiver is interested in decoding a message from a source. How

should the receiver deal with interference from another sender if the receiver

knows the codebook of this sender?

• Suppose a relay node would like to help a source transmit its message to a

destination. How can the relay help if it knows the codebook but cannot

decode the message?

2.1 The one-sided interference channel

Consider the one-sided interference channel depicted in figure 2.1. In this network,

there are two transmitters (or sources) and one receiver (destination). The receiver

is only interested in obtaining the message from the first transmitter but knows the

6
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Figure 2.1: The One-Sided Interference Channel

codebooks of both sources. It is known that if the rates lie within the multiple-

access region of (2.1)-(2.3), the destination can decode both sources and throw away

the message from the second source.

R1 < I(X1;Y |X2) (2.1)

R2 < I(X2;Y |X1) (2.2)

R1 +R2 < I(X1, X2;Y ) (2.3)

The advantage of this strategy is that interference from the second transmitter

can be completely removed. Now suppose that R1 still satisfies (2.1) but R2 no

longer satisfies (2.2). That is, the message of the second source cannot be fully

decoded by the receiver. Currently, the state of the art decoding strategy treats

the transmission from this source as interference or noise. Under this scheme, the

destination can decode sender 1 if its rate, R1, satisfies,

R1 < I(X1;Y ) (2.4)

We ask the following question: Can the destination use the codebook

from the second source to partially reduce the interference?

To answer this question we propose a new decoding strategy that uses the

codebooks of both sources even if the second source is transmitting at a rate greater

than (2.2). We wish to determine if the performance of this scheme is superior to

that of treating the source as noise in (2.4). Before proceeding we introduce the

concept of “typical sequences” that was pioneered by Shannon in his original 1948

paper.
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2.1.1 Typical Sequences

The typical sequences argument is the foundation underlying most information

theoretic proofs. The notion of a typical sequence is made precise in definition

2.1.1.

Definition 2.1.1 The set A
(n)
ε of ε-typical n-sequences (x1,x2, . . . ,xm) is defined

by

A(n)
ε (Z1, Z2, . . . , Zm)

:=

{
(z1, z2, . . . , zm) :

∣∣∣∣− 1

n
log Prob(s)−H(S)

∣∣∣∣ < ε, ∀S ⊆ {Z1, Z2, . . . , Zm}
}
,

where each zi = (zi,1, zi,2, . . . , zi,n) is a n-vector, i = 1, 2, . . . ,m, and s is defined as

follows: If S = (Zi1 , Zi2 , . . . , Zi`), then s = (zi1 , zi2 , . . . , zi`) and

Prob(s) = Prob(zi1 , zi2 , . . . , zi`) =
n∏
t=1

p(zi1,t, zi2,t, . . . , zi`,t)

.

It turns out that typical sequences have important properties that will be ex-

ploited in the decoding strategies throughout this thesis. The most relevant ones

are given in lemma 2.1.1

Lemma 2.1.1 For any ε > 0, the following hold for sufficiently large n:

(i) Let a n-sequence (z1, z2, . . . , zm) be generated according to

n∏
t=1

p(z1,t, z2,t, . . . , zm,t)

Then

Prob
(
z1, z2, . . . , zm) ∈ A(n)

ε (Z1, Z2, . . . , Zm)
)
≥ 1− ε.

(ii) Let a n-sequence (z1, z2, . . . , zm) be generated according to

n∏
t=1

p(z1,t|z2,t, . . . , zm−1,t)p(zm,t|z2,t, . . . , zm−1,t)p(z2,t, . . . , zm−1,t)

Then

Prob
(
(z1, z2, . . . , zm) ∈ A(n)

ε (Z1, Z2, . . . , Zm)
)
< 2−n(I(Z1;Zm|Z2,...,Zm−1)−6ε)

The proof of lemma 2.1.1 follows immediately from Theorems 14.2.1 and 14.2.3

in [15].
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2.1.2 Mitigating the Interfering Source

We are ready to describe a scheme that might reduce the interference from the

“unwanted” source. First we define our probabilistic model for the one-sided inter-

ference channel, as well as our notions of error probabilities and achievable rates.

Definition 2.1.2 A one-sided interference channel consists of three alphabets, X1,

X2, and Y and a probability transition function p(y|x1, x2).

Definition 2.1.3 A (2nR1 , 2nR2) code for the one-sided interference channel con-

sists of

1. two sets of integers W2 = {1, 2, . . . , 2nR1} and W2 = {1, 2, . . . , 2nR2}, called

the message sets with P (W1 = w1) = 1
2nR1

,P (W2 = w2) = 1
2nR2

for every

w1 ∈ {1, 2, . . . , 2nR1} and w1 ∈ {1, 2, . . . , 2nR2} respectively

2. two encoding functions, X1 : W1 → X n
1 and X2 : W2 → X n

2

3. a decoding function g : Yn → W1

4. the average probability of error:

P (n)
e =

1

2nR1

∑
w1,w2

Pr{g(Y n) 6= w1|W1 = w1,W2 = w2}

Definition 2.1.4 A rate R1 is said to be achievable for the one-sided interference

channel if there exists a sequence of ((2nR1 , 2nR2), n) codes with P
(n)
e → 0 for all

R2.

Now consider the following coding scheme. Fix p(x1, x2) = p1(x1)p2(x2) so the

sources are independent.

Codebook Generation

Generate 2nR1 independent codewords X1(i), i ∈ {1, 2, ..., 2nR1}, of length n, gen-

erating each element i.i.d
∏n

t=1 p(x1,i). Similarly, generate 2nR2 independent

codewords X2(j), j ∈ {1, 2, ..., 2nR2}, of length n, generating each element i.i.d∏n
i=1 p(x2,i). These codewords form the codebook, which is revealed to the senders

and the receiver.

9
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Figure 2.2: Decoding Strategy for the One-sided Interference Channel

Encoding

To send index i, sender 1 sends the codeword X1(i). Similarly, to send j, sender 2

sends X2(j).

Decoding

Let A
(n)
ε (i) denote the set of typical (x1(i),x2,y) sequences. The receiver chooses

the index i such that
∣∣∣A(n)

ε (i)
∣∣∣ > ∣∣∣A(n)

ε (j)
∣∣∣ for i 6= j. Figure 2.2 gives a visual

interpretation of this decoding strategy.

The rows and columns in figure 2.2 correspond to the indices (or codewords)

of sender 1 and 2 respectively. The receiver chooses the row that contains the

largest number of typical codeword pairs. Intuitively it would seem that if the rate

of sender 1 satisfies (2.1) then the corresponding row (or message index) would

contain the largest number of typical codewords.
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Probability of Error

The analysis of the probability of error is given in appendix A. The result shows that

the probability of error goes to zero if the rate of sender 1 satisfies the inequality

in (2.5).

R1 < I(X1;Y ) (2.5)

Unfortunately comparing inequalities (2.4) and (2.5) shows that our coding

strategy does not perform better than that of treating sender 2 as noise. In fact, the

performance remains unchanged. Therefore, we are unable to exploit the knowledge

of the second sender’s codebook to reduce its interference.

Comments on the one-sided interference channel

The coding strategy that was suggested for the one-sided interference channel rep-

resents a failed attempt by the author to mitigate the interference from a source

transmitting above channel capacity. The problem of dealing with “non-decodable”

interference is one of the many unsolved mysteries in multi-user information theory.

It will reappear later in this thesis.

2.2 The Discrete Memoryless Relay Channel

We are now ready to discuss a second problem that has confounded information

theorists for two decades. Consider the seemingly simple discrete memoryless relay

channel in figure 2.3. The operation of this channel is made precise in the following

definitions.

11



Definition 2.2.1 The discrete memoryless relay channel consists of three alpha-

bets, X , Y1, and Y2 and a probability transition function p(y1, y2|x). Here Y1 and

Y2 are conditionally independent and conditionally identically distributed given X.

That is p(y1, y2|x) = p(y1|x)p(y2|x). Also, the channel from Y1 to Y2 does not

interfere with Y2.

Definition 2.2.2 A 2nR code for this discrete memoryless channel consists of

1. one set of integers W = {1, 2, . . . , 2nR} called the message set with P (W =

w) = 1
2nR

, for every w ∈ {1, 2, . . . , 2nR}

2. two encoding functions, f : W → X n and f1 : Yn1 → 2nC0

3. a decoding function g : 2nC0 × Yn2 → W

4. the average probability of error P
(n)
e = 1

2nR

∑
w

Pr{g(f1(Y
1
n ), Y 2

n ) 6= w|W = w}

Definition 2.2.3 A rate R is said to be achievable for the discrete memoryless

channel if there exists a sequence of ((2nR, n) codes such that P
(n)
e → 0.

Now suppose the relay knows the source codebook but is unable to decode

the message. In this scenario the only known strategy is called “compress-and-

forward”, in which the relay quantizes its observations Y n
1 and sends them over the

digital link to the destination. Unfortunately the performance of compress-forward

is generally quite poor. We wish to devise a better strategy that makes use of the

relay’s knowledge of the sender’s codebook. We ask the following question: Can

the relay use the source codebook to help the destination decode the

message?

This problem is similar to the one-sided interference channel, except the relay

is now interested in helping the destination decode the source message, and not in

decoding the message for itself.

A Possible Encoding Strategy

We suggest the following encoding scheme. After the source has finished transmit-

ting a message x(w), w ∈ {1, 2, . . . , 2nR}, let the relay make a list of all the possible

codewords that are typical with its received sequence, L(Y n
1 ). The relay sends this

list to the destination.

12



Analysis of the Encoding Strategy

Since the relay has a digital link to the destination, we can send at most 2nC0

possible lists. Therefore this scheme is only feasible if the number of lists grows at

most exponentially with n. Unfortunately, the actual number of lists will depend

on the probabilistic structure of the channel and the transmissions. With the hope

of arriving at a general result, we use Stirling’s formula to obtain a coarse upper

bound to the number of lists. Using the basic properties of typical sequences we

know that,

• The expected number of codewords in a specific list,|L(Y n
1 )| is given by the

product of the total number of codewords and the probability that a random

codeword is typical with the received sequence. That is,

|L(Y n
1 )| = 2nR2−nI(X;Y1). (2.6)

• The number of lists is at most equal to the number of ways of choosing |L(Y n
1 )|

codewords from the total of 2nR in the codebook.

Combining the two items above, we see that the total number of lists is at most,(
2nR

2nR2−nI(X;Y1)

)
This combinatorial can be upper bounded using lemma 2.2.1 below

Lemma 2.2.1 For 0 < p < 1, q = 1− p, such that np is an integer,

1√
8npq

≤
(
n

np

)
2−nH(p) ≤ 1

√
πnpq

Lemma 2.2.1 corresponds to Lemma 17.5.1 in [15]. Using this lemma we arrive

at the following, (
2nR

2nR2−nI(X;Y1)

)
≤ 1√

π2nRpq
2−2nRH(p)

where,

p = 2−nI(X;Y1),

q = 1− 2−nI(X;Y1)

13



Letting n become large, we have

1√
π2nRpq

2−2nRH(p) → 1√
π

2n(I(X;Y1)2n(R−I(X;Y1))−0.5(R−I(X;Y1))) (2.7)

The expression in (2.7) shows that if the relay is unable to decode the source

(ie. R > I(X;Y1)), the number of lists of typical codewords L(Y n
1 ) can potentially

grow at a doubly exponential rate with respect to n. As a result we are unable to

show that
(

2nR

2nR2−nI(X;Y1)

)
≤ 2nC0 for some C0 <∞. Therefore our coding scheme for

this channel may not be feasible.

The discrete memoryless relay channel illustrates the difficulty of determining

an appropriate coding strategy when the relay is unable to fully decode the source.

A version of this problem was first proposed twenty years ago in [16] has remained

unsolved ever since.

2.3 Summarizing Remarks

In this section we encountered two problems that demonstrated the challenges of

dealing with a source whose message cannot be decoded, but whose codebook is

known. This fundamental difficulty motivates us for the remainder of this thesis to

impose conditions that guarantee every node in the network will be able to fully

decode the message intended for it. Although it’s not possible to prove the necessity

of these conditions, our preceding discussions show why alternative strategies have

yet to be discovered.
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Chapter 3

The Two-Way One-Relay Channel

In this chapter we return to the two-way channel that was introduced in chapter

1, with the addition of a relay to the network. The two-way one-relay channel

(hereafter the TWORC), depicted in figure 3.1, seems at first glance to be an even

more imposing problem than the original two-way channel considered by Shannon.

Indeed, the capacity regions for the two-way channel and the relay channel, special

cases of the TWORC, have separately been unknown for several decades. It would

seem that combining the two networks would merely present more unresolved issues.

There is some truth to this assertion, but it also turns out that the TWORC offers

its own unique insights that we will encounter shortly. Therefore in some sense, the

TWORC is greater than the sum of its parts.

3.1 Network Coding and Random Binning

What is our incentive for studying the TWORC? Simply put, this channel illustrates

the advantages of network coding [12], a relatively recent research topic, but one

that is expected to bring about fundamental changes to the design of communication

systems. The basic idea of network coding can be explained through a simplified

 
Node 1 (w1) 

Node 2 
Node 3 (w3)  

Figure 3.1: The Two-Way One-Relay Channel
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version of figure 3.1. Suppose node 1 and node 3 each have one bit of information,

b1 and b3 respectively, to send each other with the help of a relay node 2. Instead of

transmitting each bit separately node 2 can help both destinations simultaneously

by sending b1⊕b3. Since node 1 and node 3 know their previously transmitted bits,

each can recover the other’s bit by computing (b1⊕b3)⊕b1 = b3 and (b1⊕b3)⊕b3 = b1

respectively. An interesting feature of this scheme, is that although only one bit

is transmitted by node 2, two different bits are recovered at nodes 1 and 3. This

strategy is particularly appealing in a wireless setting, because the relay is exploiting

the common channel between itself and nodes 1 and 3 [17]. Furthermore, the

XOR operation can easily be implemented with minimal complexity. However, the

success of this scheme and network coding in general, depends on the availability

of side information at each destination, in this case the side information being the

previously sent bits.

3.1.1 Achievable Rates Using Network Coding

In this paper, we address a more general framework, where motivated by wireless

communications, the TWORC is described through the following definitions.

Definition 3.1.1 The two-way one-relay channel consists of three input alphabets

X1, X2, and X3, three output alphabets Y1, Y2, and Y3, and a probability transition

function p(y1, y2, y3|x1, x2, x3). Assume that each node i ∈ {1, 2, 3} sends xi,t and

receives yi,t at time t.

Definition 3.1.2 A (2nR1 , 2nR3) code for the two-way one-relay channel consists

of

1. two sets of integers W1 = {1, 2, . . . , 2nR1} and W3 = {1, 2, . . . , 2nR3}, called

the message sets with P (W1 = w1) = 1
2nR1

,P (W3 = w3) = 1
2nR3

for every

w1 ∈ {1, 2, . . . , 2nR1} and w3 ∈ {1, 2, . . . , 2nR3} respectively

2. two encoding functions, X1 : W1 → X n
1 and X3 : W3 → X n

3

3. a causal relay encoding function, f2,t : Yn2 → X n
2 with a one-step time delay

to account for the signal processing time so that for all t,

x2,n = fi,t(y2,t−1, y2,t−2, ...)

4. two decoding function g1 : Yn1 → W3 and g3 : Yn3 → W1
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5. the average probability of error

P (n)
e =

1

2nR1

1

2nR3

∑
w1,w3

Pr{g1(Y
n
1 ) 6= w3

⋃
g3(Y

n
3 ) 6= w1|W1 = w1,W3 = w3}

Definition 3.1.3 A rate pair (R1, R3) is said to be achievable for the two-way one-

relay channel if there exists a sequence of (2nR1 , 2nR3 , n) codes such that P
(n)
e → 0.

Now an immediate question is whether the idea of network coding can be applied

to this more general framework, and if so, what are the corresponding achievable

rates. It turns out that network coding is a specialized version of random binning,

a classical technique in multi-user information theory.

Theorem 3.1.1 For the two-way one-relay problem defined above, fix some p(x1)p(x2)p(x3).

For node 1 and 3 to decode each other’s message the rate pair (R1, R3) must satisfy

the following two inequalities:

R1 < I(X1, X2;Y3|X3) (3.1)

R3 < I(X2, X3;Y1|X1) (3.2)

Furthermore, for node 2 to decode both messages from node 1 and 3, (R1, R3) must

also satisfy:

R1 < I(X1;Y2|X2, X3) (3.3)

R3 < I(X3;Y2|X1, X2) (3.4)

R1 +R3 < I(X1, X3;Y2|X2) (3.5)

A detailed proof of theorem 3.1.1, including a discussion of the relationship between

network coding and random binning first appeared in [18].

Comments on the Network Coding Region

Network coding is an example of the “decode-and-forward” strategy for relay net-

works, in which the relay must fully decode all the messages in order to help. An

interesting feature of the decode-and-forward scheme for the TWORC is that there

is no interference in the entire network; all signals either carry information that

must be decoded or is known a priori.

Network coding is a particularly attractive decode-and-forward scheme because

it can easily be implemented using the XOR function as described earlier. Further-

more, its achievable region has a nice interpretation for the following reasons:
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Remark 3.1.1 At nodes 1 and 3, the cut-set bounds are sufficient for each node

to decode the other’s message. The cut-set bounds refer to the outer-bounds of the

capacity region; no rate pairs outside of the cut-set bounds are achievable.

Remark 3.1.2 At node 2, the multiple access region is sufficient for the relay to

decode both messages. No rates outside of this region are achievable if the relay is

to decode both messages.

Unfortunately, decode-and-forward schemes in general (and network coding in

particular) have their drawbacks as well. First of all, the relay need not decode the

messages from the sources in order to help so we cannot prove that (3.3)-(3.5) are

necessary. Compress-forward is an example of a scheme that does not fall into the

decode-and-forward category. In this scheme, the relay blindly helps the destination

by sending quantized versions of its observations. However, this strategy is not

desirable; its performance is generally poor, and there are no interesting situations

for which it is optimal.

In chapter 2 we described some attempts to find attractive coding strategies

that did not require the relay to fully decode the message. Our aim was to exploit

the relay’s knowledge of the codebook to mitigate the interference caused by an

unknown message. Ultimately, all of our attempts were unsuccessful. In general,

there is no desirable alternative to the “decode-forward” strategy in which the

relay must decode the message before helping. Therefore the constraints (3.3)-

(3.5), though sufficient but not necessary, are still at present required to achieve

good performance.

Another limitation of the network coding region is that the input distribution

in theorem 3.1.1 must be independent. In practice, this precludes the nodes from

beamforming their transmissions; their signals will be non-coherent. However, it

is possible using another decode-and-forward scheme called superposition coding

to correlate the signals of each node [19]. In the next section, we examine the

performance of beamforming in the TWORC, and determine whether there are any

improvements over network coding.

3.2 Achievable Rates Using Beamforming

A beamforming coding scheme for the TWORC network was first studied in [20],

where, however, it was incorrectly claimed that (3.1)-(3.5) are achievable for any
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p(x1|x2f )p(x3|x2b)p(x2f )p(x2b). The analysis in [20] was limited to the AWGN chan-

nel, but erred by not distinguishing the signal power sending superimposed “new”

information, from the signal power coherently transmitting “old” information. In

addition to recognizing this error, our contribution is the statement of the correct

achievable region in theorem 3.2.1 and its proof in appendix B. This region is based

on superposition coding and first appeared in [21].

Theorem 3.2.1 For the two-way one-relay problem defined earlier, fix some

p(u1)p(u3)p(x1|u1)p(x2|u1, u3)p(x3|u3). For node 1 and 3 to decode each other’s

message the rate pair (R1, R3) must satisfy the following two inequalities:

R1 < I(X1, X2;Y3|U3, X3) (3.6)

R3 < I(X2, X3;Y1|U1, X1) (3.7)

Furthermore, for node 2 to decode both messages from node 1 and 3, (R1, R3) must

also satisfy:

R1 < I(X1;Y2|U1, X2, X3) (3.8)

R3 < I(X3;Y2|U3, X1, X2) (3.9)

R1 +R3 < I(X1, X3;Y2|U1, U3, X2) (3.10)

3.2.1 Comments on Beamforming

As mentioned earlier, superposition coding (or beamforming) is a type of decode-

and-forward scheme. So our previous observation that decode-and-forward may be

suboptimal also applies to superposition coding. Furthermore, we can notice other

properties about the region in (3.6)-(3.10).

• The transmissions of each node are correlated through U1 and U3. Thus, the

relay and each source can beamform, or communicate coherently at signal

level.

• We pay a price for this coherence; (3.6) and (3.7) are conditioned on U1 and

U3 respectively. The relay essentially divides its transmission power between

the two messages so only a portion of the total power is used to send the

message of interest to each destination (network coding used all the power

for each message). However, this power is coherent at signal level with the

transmission from the other source (unlike network coding).

19



• The beamforming region is not as “nice” as the network coding region. The

constraints (3.6) and (3.7) do not match the cut-set bounds, and (3.8)-(3.10)

does not match the multiple-access region. Therefore remarks 3.1.1 and 3.1.2

do not apply with beamforming.

In the next section we compare the performance of beamforming with network

coding and draw some important conclusions.

3.3 A Comparison of Beamforming and Network

Coding

Of the two decode-and-forward strategies discussed in this chapter, network coding

and beamforming, which is superior to the other? To help answer this question, we

first examine the outer bounds (or cut-set bounds) of the capacity region for the

TWORC.

Theorem 3.3.1 For the two-way one-relay problem defined earlier, any achievable

rate pair (R1, R3) must satisfy the following inequalities: For some p(x1, x2, x3)

R1 < I(X1, X2;Y3|X3) (3.11)

R3 < I(X2, X3;Y1|X1) (3.12)

and

R1 < I(X1;Y2, Y3|X2, X3)

R3 < I(X3;Y1, Y2|X1, X2)

The proof of this theorem follows from the standard cut-set bounds in theorem

15.10.1 of [15]. Now we can use this theorem to answer the question posed at the

beginning of this section. It turns out that of the two strategies we examined in

this chapter, network coding and beamforming, neither strategy is always superior

to the other. This conclusion can be justified by the following two remarks.

Remark 3.3.1 Although some of the cut-set bounds, in particular 3.11 and 3.12

are achievable using network coding, the input distribution of each node must also

be independent.

20



Remark 3.3.2 Superposition coding (or beamforming) allows the nodes to coher-

ently transmit their messages, but the correlation carries a price; none of the cut-set

bounds in theorem 3.3.1 are achievable.

To summarize, remarks 3.3.1 and 3.3.2 tell us that in general, the decode-and-

forward strategy may not be optimal for the TWORC, even for special cases like the

gaussian channel or the degraded channel. To achieve optimality, it is not enough

for the relay to decode both sources; each sender must also completely know the

relay transmission in advance. But since the relay is carrying new information from

the other sender, this requirement may not be feasible. It seems that resolving

this dilemma appears to be “two-way channel hard”, or as difficult as finding a

solution to the two-way channel in chapter 1. However, in relay networks with a

unidirectional flow of information, decode-and-forward has been proven optimal for

degraded channels.

3.4 Final Remarks on the TWORC

We now summarize the main points of this chapter.

• The TWORC illustrates the advantages of network coding in the wireless

setting. Network coding also leads to a nice achievable region for the TWORC

as described in remarks 3.1.1 and 3.1.2.

• Network coding precludes the use of beamforming because the input distribu-

tions must be independent. On the other hand, superposition coding includes

correlated input distributions, allowing the use of beamforming.

• Beamforming and network coding are both decode-and-forward strategies;

the relay must completely decode both source messages in order to help. In

general, there are no desirable alternatives to the decode-and-forward scheme.

Chapter 2 described some failed attempts at finding such alternatives.

• In general, neither beamforming or network coding is always a superior strat-

egy than the other. Furthermore, the decode-and-forward strategy may not

be optimal for the TWORC, even in special cases like the gaussian or de-

graded channel. Proving optimality appears to be as difficult as finding a

solution to the two-way channel.
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Chapter 4

The Two-Way Two-Relay Channel

In this chapter we attempt to extend the analysis and insight of the two-way one-

relay channel to the two-way two-relay channel (hereafter the TWTRC) depicted in

figure 4.1. On the surface, it may appear that there is little incentive to carry out

this extension. After all, decode-and-forward, the only practical coding strategy

presently known, may not be optimal for even specialized cases of the TWTRC. In

any event, it is not clear which of the two decode-and-forward strategies, network

coding or beamforming, is preferable. These issues reflect the core difficulty of

applying information theory to wireless networks; there are so many unresolved

questions. Where do we begin?

We begin by tightening our focus. Instead of looking for the final solution,

which may never be found, we look for a practical solution that has a simple but

insightful interpretation. To that end, we redirect our attention to network coding,

a strategy that had two advantages: first, the scheme could be easily implemented

 Node 1 Node 2 Node 3  Node 4  

Figure 4.1: The Two-Way Two-Relay Channel
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using the XOR function (see section 3.1); secondly, the resulting achievable region

had a nice interpretation (see remarks 3.1.1 and 3.1.2). Hence, the two motivating

questions of this chapter are as follows:

1. Is it possible to easily extend the network coding scheme of the two-way

one-relay channel to the two-relay channel, and if so how do we schedule the

encoding and decoding at each node?

2. Does the simple interpretation of the network coding achievable region for

the two-way one-relay channel (see remarks 3.1.1 and 3.1.2) also apply to the

two-relay channel?

Lets start by attempting to answer the first question. It does not appear that

the network coding scheme of section 3.1 can be trivially extended to the TWTRC.

Due to the network model, there is a delay between the time a source begins sending

a message bit and the time a relay decodes and retransmits the bit (see definition

3.1.2). With two relays, it is now possible to mix (or XOR) bits from different time

intervals. The additional relay introduces a timing problem that was previously

absent from the two-way one-relay channel.

4.1 The Deadlock Problem

Since the answer to our first question is not obvious, we will skip to the second

question, and return to the first later. Our objective is to determine if the net-

work coding achievable region in theorem 3.1.1 extends nicely to the TWTRC.

More specifically, we would like to know if the following rates are achievable in the

TWTRC setting.

Fix some p(x1)p(x2)p(x3)p(x4). For node 1 and 4 to decode their intended

messages,

R1 < I(X1, X2, X3;Y4|X4) (4.1)

R4 < I(X2, X3, X4;Y1|X1) (4.2)

and for relay node 2 to decode node 1 and 4,

R1 < I(X1;Y2|X2, X3, X4) (4.3)

R4 < I(X3, X4;Y2|X1, X2) (4.4)

R1 +R4 < I(X1, X3, X4;Y2|X2) (4.5)
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and for relay node 3 to decode node 1 and 4,

R1 < I(X1, X2;Y3|X3, X4) (4.6)

R4 < I(X4;Y3|X1, X2, X3) (4.7)

R1 +R4 < I(X1, X2, X4;Y3|X3) (4.8)

4.1.1 The Problem Definition

The proposed region above appears reasonable at first. Notice that (4.1) and (4.2)

correspond to the cut-set bounds (without beamforming). Furthermore (4.3)-(4.5)

and (4.6)-(4.8) seem reasonable extensions of the multiple-access region to each

relay node. Unfortunately, there is a fundamental difficulty in achieving (4.1)-(4.8).

To achieve (4.3)-(4.5), node 3 needs to decode before node 2 in order to help, but

the reverse is also needed for (4.6)-(4.8). This “deadlock” problem was identified

in [22] when a backward decoding scheme was tried for achieving (4.1)-(4.8).

4.1.2 The Problem Resolution

In this paper, we resolve the deadlock by adding an additional constraint to (4.1)-

(4.8) that ensures some relay can decode at least one of the sources before the

other relay. This requirement is reasonable, particularly in light of the conclusions

in chapter 2; there is no desirable alternative to a coding strategy in which a node

fully decodes the message intended for it. So to start the flow of information, it is

expected that one of the relays must be able to decode a source message first.

There are two ways in which a coding scheme satisfies the additional constraint:

in the first case some relay decodes one source before the other relay, and in the

second case some relay decodes both sources before the other relay. For each case,

we will develop coding schemes that can recover the region defined by (4.1)-(4.8).

These schemes describe how to schedule the encoding and decoding at each node,

thus resolving the first question we posed at the beginning of this chapter. A key

ingredient is an offset-encoding strategy developed in [23], that gives more flexibility

when combined with sliding-window decoding. As in [18] the schemes presented in

this paper also introduce random binning at the relay nodes.
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4.2 The Main Result

Consider a network of four nodes 1, 2, 3, 4, with the input-output dynamics modeled

by the discrete memoryless channel

(X1 ×X2 ×X3 ×X4, p(y1, y2, y3, y4|x1, x2, x3, x4),Y1 × Y2 × Y3 × Y4)

That is, at any time t = 1, 2, . . . , the outputs y1,t, y2,t, y3,t, and y4,t received by the

four nodes respectively only depend on the inputs x1,t, x2,t, x3,t, and x4,t transmitted

by the four nodes at the same time according to p(y1,t, y2,t, y3,t, y4,t|x1,t, x2,t, x3,t, x4,t).

In the two-way two-relay problem, the source nodes 1 and 4 communicate with

each other at rates R1 and R4 respectively, with the help of the relay nodes 2 and 3.

We are interested in the simultaneously achievable rates (R1, R4). The standard

definitions of codes and achievable rates are by now familiar and omitted, except a

special note that during any time t, each node i can choose its input xi,t based on

the past outputs (yi,t−1, yi,t−2, . . . , yi,1) it has already received.

Theorem 4.2.1 For the two-way two-relay problem defined above, any rates (R1, R4)

satisfying (4.1)-(4.8) are simultaneously achievable, provided that at least one of the

following constraints hold:

R1 < I(X1;Y2|X2, X3) (4.9)

R4 < I(X4;Y3|X2, X3) (4.10)

R1 +R4 < max{I(X1, X4;Y2|X2, X3), I(X1, X4;Y3|X2, X3)} (4.11)

Theorem 4.2.1 first appeared in [21]. Observe that by symmetry, it is only

necessary to consider two mutually exclusive cases in (4.9)-(4.11).

• Case 1 in which (4.10) holds. In this case, the rate of node 4 is low enough

to ensure node 3 can decode the message despite interference from node 1.

More generally, it will be shown that the first case applies when some relay

decodes one source before the other relay.

• Case 2 in which the first part of (4.11) holds but neither (4.9) nor (4.10)

hold. The throughput is low enough to ensure node 2 can decode without

assistance from node 3 but unlike the first case, node 1 does not cause any

interference. More generally, it will be shown that the second case applies

when some relay decodes both sources before the other relay.
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It is emphasized that the rate regions of the first and second cases are different.

That is, there exist rate pairs (R1, R4) that satisfy (4.9) or (4.10) but not (4.11)

and vice-versa.

4.3 Proof of Theorem 4.2.1

Each case is examined separately. In the first case we show there are two coding

strategies that together, obtain the rate region defined by (4.1)-(4.8) and (4.10):

an offset encoding scheme, and a no-offset encoding scheme. In the second case, we

use a multiple-access strategy to recover the rate region defined by (4.1)-(4.8) and

the first part of (4.11).

Proof For any fixed p(x1)p(x2)p(x3)p(x4), choose

R2 ≥ max{I(X2;Y1|X1, X3), I(X2;Y3|X3, X4),

I(X2;Y4|X3, X4)}
R3 ≥ max{I(X3;Y1|X1, X2), I(X3;Y2|X1, X2),

I(X3;Y4|X4)}

We use the Markov block coding argument. Consider B blocks of transmission,

each of n transmission slots. For some fixed K, J ∈ I, a sequence of B−K indices,

w1,b ∈ {1, . . . , 2nR1}, b = 1, 2, . . . , B −K will be sent over from node 1 to node 4 in

nB transmission slots, and at the same time, another sequence of B − J indices,

w4,b ∈ {1, . . . , 2nR4} will be sent over from node 4 to node 1.

Generation of Codebooks

For each node i = 1, . . . , 4 independently generate 2nRi i.i.d n-sequences xi = (xi,1, . . . , xi,n)

in X n
i according to p(xi). Index them as xi(wi), wi ∈ {1, 2, . . . , 2nRi}.

Random Binning

For each relay node i = 2, 3, generate 2nRi bins, indexed by Bi(k) with k =

1, . . . , 2nRi . Independently throw each index pair (w1, w4), w1 ∈ {1, 2, . . . , 2nR1},
w4 ∈ {1, 2, . . . , 2nR4} into the 2nRi bins according to the uniform distribution. Let

ki(w1, w4) be the index of the bin which contains the pair (w1, w4).
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Table 4.1: An offset encoding scheme for case 1

Node Block b− 3 Block b− 2 Block b− 1 Block b

1 x1(w1,b−3) x1(w1,b−2) x1(w1,b−1) x1(w1,b)

2 x2(w1,b−5, w4,b−5) x2(w1,b−4, w4,b−4) x2(w1,b−3, w4,b−3) x2(w1,b−2, w4,b−2)

3 x3(w1,b−6, w4,b−4) x3(w1,b−5, w4,b−3) x3(w1,b−4, w4,b−2) x3(w1,b−3, w4,b−1)

4 x4(w4,b−3) x4(w4,b−2) x4(w4,b−1) x4(w4,b)

4.3.1 Case 1: An Offset Encoding Scheme

Encoding

We use an offset encoding scheme to obtain an achievable rate region consistent

with (4.10). The encoding scheme is depicted in table 4.1. It is assumed that a

message pair transmitted in block b was decoded at the end of block b − 1. An

interesting feature of this coding scheme is that node 2 decodes the message from

node 1 based on the signals received over two blocks (not one block).

Decoding

1. At the end of each block b = 3, . . . , B, node 1 determines the unique index

ŵ4,b−2 that satisfies the joint typicality checks:(
X1,b−2,x2(k2(w1,b−4, w4,b−4)),x3(k3(w1,b−5, w4,b−3)),x4(ŵ4,b−2),Y1,b−2

)
∈ A(n)

ε (X 1,X2,X3,X4,Y1)(
X1,b−1,x2(k2(w1,b−3, w4,b−3)),x3(k3(w1,b−4, ŵ4,b−2)),Y1,b−1

)
∈ A(n)

ε (X1,X2,X3,Y1)(
X1,b,x2(k2(w1,b−2, ŵ4,b−2)),Y1,b

)
∈ A(n)

ε (X1,X2,Y1)

2. At the end of each block b = 2, . . . , B, node 2 determines the unique index

pair (ŵ1,b−1, ŵ4,b−1) that satisfies the joint typicality checks:(
x1(ŵ1,b−1),X2,b−1,x3(k3(w1,b−4, w4,b−2)),x4(ŵ4,b−1),Y2,b−1

)
∈ A(n)

ε (X1,X2,X3,X4,Y2)(
X2,b,x3(k3(w1,b−3, ŵ4,b−1)),Y2,b

)
∈ A(n)

ε (X2,X3,Y2)
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3. At the end of each block b = 1, . . . , B, node 3 determines the unique index

pair (ŵ1,b−2, ŵ4,b) that satisfies the joint typicality checks:(
x1(ŵ1,b−2),x2(k2(w1,b−4, w4,b−4)),X3,b−2,x4(w4,b−2),Y3,b−2

)
∈ A(n)

ε (X1,X2,X3,X4,Y3)(
x2(k2(ŵ1,b−2, w4,b−2)),X3,b,x4(ŵ4,b),Y3,b

)
∈ A(n)

ε (X2,X3,X4,Y3)

4. At the end of each block b = 4, . . . , B, node 4 determines the unique index

ŵ1,b−3 that satisfies the joint typicality checks:(
x1(ŵ1,b−3),x2(k2(w1,b−5, w4,b−5)),x3(k3(w1,b−6, w4,b−4)),X4,b−3,Y4,b−3

)
∈ A(n)

ε (X1,X2,X3,X4,Y4)(
x2(k2(ŵ1,b−3, w4,b−3)),x3(k3(w1,b−4, w4,b−2)),X4,b−1,Y4,b−1

)
∈ A(n)

ε (X2,X3,X4,Y4)(
x3(k3(ŵ1,b−3, w4,b−1)),X4,b,Y4,b

)
∈ A(n)

ε (X3,X4,Y4)

Analysis of Probability of Error

1. In block b, node 1 can decode w4,b−2 with arbitrarily small probability of error

if

R4 < I(X4;Y1|X1, X2, X3) + I(X3;Y1|X1, X2) + I(X2;Y1|X1)

where the three mutual informations follow from the three typicality checks

respectively and their combination leads to (4.2).

2. In block b, node 2 can decode the pair (w1,b−1, w4,b−1) with arbitrarily small

probability of error if

R1 < I(X1;Y2|X2, X3, X4)

R4 < I(X4;Y2|X1, X2, X3) + I(X3;Y2|X2) (4.12)

R1 +R4 < I(X1, X4;Y2|X2, X3) + I(X3;Y2|X2)

= I(X1, X3, X4;Y2|X2)

where each inequality corresponds to one of the three ways a message pair

can be decoded incorrectly.

3. In block b, node 3 can decode the pair (w1,b−2, w4,b) with arbitrarily small

probability of error if
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Table 4.2: A no-offset encoding scheme for case 1

Node Block b− 2 Block b− 1 Block b

1 x1(w1,b−2) x1(w1,b−1) x1(w1,b)

2 x2(k2(w1,b−3, w4,b−4)) x2(k2(w1,b−2, w4,b−3)) x2(k2(w1,b−1, w4,b−2))

3 x3(k3(w1,b−4, w4,b−3)) x3(k3(w1,b−3, w4,b−2)) x3(k3(w1,b−2, w4,b−1))

4 x4(w4,b−2) x4(w4,b−1) x4(w4,b)

R1 < I(X1;Y3|X2, X3, X4) + I(X2;Y3|X3, X4)

= I(X1, X2;Y3|X3, X4)

R4 < I(X4;Y3|X2, X3)

R1 +R4 < I(X1;Y3|X2, X3, X4) + I(X2, X4;Y3|X3)

= I(X1, X2, X4;Y3|X3)

4. In block b, node 4 can decode the message w1,b−3 with arbitrarily small prob-

ability of error if

R1 < I(X1;Y4|X2, X3, X4) + I(X2;Y4|X3, X4) + I(X3;Y4|X4)

where the three mutual informations lead to (4.1).

4.3.2 Case 1: A No-offset Encoding Scheme

Encoding

We use a no-offset encoding scheme to obtain an achievable region consistent with

(4.10). The encoding scheme is depicted in table 4.2.
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Decoding

1. At the end of each block b = 3, . . . , B, node 1 determines the unique index

ŵ4,b−2 that satisfies the joint typicality checks:(
X1,b−2,x2(k2(w1,b−3, w4,b−4)),x3(k3(w1,b−4, w4,b−3)),x4(ŵ4,b−2),Y1,b−2

)
∈ A(n)

ε (X1,X2,X3,X4,Y1)(
X1,b−1,x2(k2(w1,b−2, w4,b−3)),x3(k3(w1,b−3, ŵ4,b−2)),Y1,b−1

)
∈ A(n)

ε (X1,X2,X3,Y1)(
X1,b,x2(k2(w1,b−1, ŵ4,b−2)),Y1,b

)
∈ A(n)

ε (X1,X2,Y1)

2. At the end of each block b = 1, . . . , B, node 2 determines the unique index

pair (ŵ1,b, ŵ4,b−1) that satisfies the joint typicality checks:(
x1(w1,b−1),X2,b−1,x3(k3(w1,b−3, w4,b−2)),x4(ŵ4,b−1),Y2,b−1

)
∈ A(n)

ε (X1,X2,X3,X4,Y2)(
x1(ŵ1,b),X2,b,x3(k3(w1,b−2, ŵ4,b−1)),Y2,b

)
∈ A(n)

ε (X1,X2,X3,Y2)

3. At the end of each block b = 1, . . . , B, node 3 determines the unique index

pair (ŵ1,b−1, ŵ4,b) that satisfies the joint typicality checks:(
x1(ŵ1,b−1),x2(k2(w1,b−2, w4,b−3)),X3,b−1,x4(w4,b−1),Y3,b−1

)
∈ A(n)

ε (X1,X2,X3,X4,Y3)(
x2(k2(ŵ1,b−1, w4,b−2)),X3,b,x4(ŵ4,b),Y3,b

)
∈ A(n)

ε (X2,X3,X4,Y3)

4. At the end of each block b = 3, . . . , B, node 4 determines the unique index

ŵ1,b−2 that satisfies the joint typicality checks:(
x1(ŵ1,b−2),x2(k2(w1,b−3, w4,b−4)),x3(k3(w1,b−4, w4,b−3)),X4,b−2,Y4,b−2

)
∈ A(n)

ε (X1,X2,X3,X4,Y4)(
x2(k2(ŵ1,b−2, w4,b−3)),x3(k3(w1,b−3, w4,b−2)),X4,b−1,Y4,b−1

)
∈ A(n)

ε (X2,X3,X4,Y4)(
x3(k3(ŵ1,b−2, w4,b−1)),X4,b,Y4,b

)
∈ A(n)

ε (X3,X4,Y4)
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Analysis of Probability of Error

1. In block b, node 1 can decode w4,b−2 with arbitrarily small probability of error

if

R4 < I(X4;Y1|X1, X2, X3) + I(X3;Y1|X1, X2) + I(X2;Y1|X1)

where the combination of the three mutual informations leads to (4.2).

2. In block b, node 2 can decode the pair (w1,b, w4,b−1) with arbitrarily small

probability of error if

R1 < I(X1;Y2|X2, X3) (4.13)

R4 < I(X4;Y2|X1, X2, X3) + I(X3;Y2|X1, X2)

= I(X3, X4;Y2|X1, X2)

R1 +R4 < I(X4;Y2|X1, X2, X3) + I(X1, X3;Y2|X2)

= I(X1, X3, X4;Y2|X2)

3. In block b, node 3 can decode the pair (w1,b−1, w4,b) with arbitrarily small

probability of error if

R1 < I(X1;Y3|X2, X3, X4) + I(X2;Y3|X3, X4)

= I(X1, X2;Y3|X3, X4)

R4 < I(X4;Y3|X2, X3)

R1 +R4 < I(X1;Y3|X2, X3, X4) + I(X2, X4;Y3|X3)

= I(X1, X2, X4;Y3|X3)

4. In block b, node 4 can decode the message w1,b−2 with arbitrarily small prob-

ability of error if

R1 < I(X1;Y4|X2, X3, X4) + I(X2;Y4|X3, X4) + I(X3;Y4|X4)

where the combination of the three mutual informations leads to (4.1).

The combined rate region obtained from the offset and no-offset coding schemes

is given by (4.1)-(4.8) and (4.10). This statement is verified by observing that

(4.13) and (4.12) imply (4.5). In other words, we have shown that if (4.10) is true,

there are two coding schemes that together recover the region defined by (4.1)-(4.8).

In both schemes, node 3 decodes w4,b before node 2, which is consistent with the

practical interpretation of case 1.
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Table 4.3: A multiple-access encoding scheme for case 2

Node Block b− 2 Block b− 1 Block b

1 x1(w1,b−2) x1(w1,b−1) x1(w1,b)

2 x2(k2(w1,b−3, w4,b−3)) x2(k2(w1,b−2, w4,b−2)) x2

(
k2(w1,b−1, w4,b−1))

3 x3(k3(w1,b−4, w4,b−4)) x3(k3(w1,b−3, w4,b−3)) x3(k3(w1,b−2, w4,b−2))

4 x4(w4,b−2) x4(w4,b−1) x4(w4,b)

4.3.3 Case 2: A Multiple-access Scheme

Encoding

We present a scheme that obtains an achievable rate region consistent with the first

part of (4.11) given that neither (4.9) nor (4.10) holds. The encoding scheme is

depicted in table 4.3.

Decoding

1. At the end of each block b = 3, . . . , B, node 1 determines the unique index

ŵ4,b−2 that satisfies the joint typicality checks:(
X1,b−2,x2(k2(w1,b−3, w4,b−3)),x3(k3(w1,b−4, w4,b−4)),x4(ŵ4,b−2),Y1,b−2

)
∈ A(n)

ε (X1,X2,X3,X4,Y1)(
X1,b−1,x2(k2(w1,b−2, ŵ4,b−2)),x3(k3(w1,b−3, w4,b−3)),Y1,b−1

)
∈ A(n)

ε (X1,X2,X3,Y1)(
X1,b,x3(k3(w1,b−2, ŵ4,b−2)),Y1,b

)
∈ A(n)

ε (X1,X3,Y1)

2. At the end of each block b = 1, . . . , B, node 2 determines the unique index

pair (ŵ1,b, ŵ4,b) that satisfies the joint typicality check:(
x1(ŵ1,b),X2,b,x3(k3(w1,b−2, w4,b−2)),x4(ŵ4,b),Y2,b

)
∈ A(n)

ε (X1,X2,X3,X4,Y2)

3. At the end of each block b = 2, . . . , B, node 3 determines the unique index
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pair (ŵ1,b−1, ŵ4,b−1) that satisfies the joint typicality checks:(
x1(ŵ1,b−1),x2(k2(w1,b−2, w4,b−2)),X3,b−1,x4(ŵ4,b−1),Y3,b−1

)
∈ A(n)

ε (X1,X2,X3,X4,Y3)(
x2(k2(ŵ1,b−1, ŵ4,b−1)),X3,b,Y3,b

)
∈ A(n)

ε (X2,X3,Y3)

4. At the end of each block b = 3, . . . , B, node 4 determines the unique index

ŵ1,b−2 that satisfies the joint typicality checks:(
x1(ŵ1,b−2),x2(k2(w1,b−3, w4,b−3)),x3(k3(w1,b−4, w4,b−4)),X4,b−2,Y4,b−2

)
∈ A(n)

ε (X1,X2,X3,X4,Y4)(
x2(k2(ŵ1,b−2, w4,b−2)),x3(k3(w1,b−3, w4,b−3)),X4,b−1,Y4,b−1

)
∈ A(n)

ε (X2,X3,X4,Y4)(
x3(k3(ŵ1,b−2, w4,b−2)),X4,b,Y4,b

)
∈ A(n)

ε (X3,X4,Y4)

Analysis of Probability of Error

1. In block b, node 1 can decode w4,b−2 with arbitrarily small probability of error

if

R4 < I(X4;Y1|X1, X2, X3) + I(X2;Y1|X1, X3) + I(X3;Y1|X1)

where the combination of the three mutual informations leads to (4.2).

2. In block b, node 2 can decode the pair (w1,b, w4,b) with arbitrarily small prob-

ability of error if

R1 < I(X1;Y2|X2, X3, X4) (4.14)

R4 < I(X4;Y2|X1, X2, X3) (4.15)

R1 +R4 < I(X1, X4;Y2|X2, X3) (4.16)

where each inequality corresponds to one of the three ways a message pair

can be decoded incorrectly.

3. In block b, node 3 can decode the pair (w1,b−1, w4,b−1) with arbitrarily small

probability of error if

R1 < I(X1;Y3|X2, X3, X4) + I(X2;Y3|X3) (4.17)

R4 < I(X4;Y3|X1, X2, X3) + I(X2;Y3|X3) (4.18)

R1 +R4 < I(X1, X4;Y3|X2, X3) + I(X2;Y3|X3) (4.19)

= I(X1, X2, X4;Y3|X3)

33



where each inequality corresponds to one of the three ways a message pair

can be decoded incorrectly.

4. In block b, node 4 can decode the message w1,b−2 with arbitrarily small prob-

ability of error if

R1 < I(X1;Y4|X2, X3, X4) + I(X2;Y4|X3, X4) + I(X3;Y4|X4)

where the combination of the three mutual informations leads to (4.1).

Observe that node 2 decodes both source messages (w1,b, w4,b) before node 3,

which is consistent with the practical interpretation of case 2. Now from the defi-

nition of this case we know that (R1, R4) satisfies the following inequalities:

R1 ≥ I(X1;Y2|X2, X3) (4.20)

R4 ≥ I(X4;Y3|X2, X3) (4.21)

R1 +R4 < I(X1, X4;Y2|X2, X3) (4.22)

The constraints (4.20)-(4.22) are sufficient to obtain the region defined by (4.1)-

(4.8) using the third coding scheme. This statement is proved by observing that

(4.20) and (4.22) imply (4.15), (4.8) and (4.21) imply (4.17), and (4.7) implies

(4.18). Furthermore, if either (4.20) or (4.21) does not hold, then the rate pair will

be included in case 1.

Therefore it follows from symmetry and the achievable rate regions in case 1 and

2, that one of the constraints (4.9)-(4.11) is sufficient to obtain the region defined

by (4.1)-(4.8). Thus theorem 4.2.1 is proved.

4.4 Summarizing Remarks

We started this chapter looking to extend the analysis of the two-way one-relay

channel to the two-way two-relay channel. In particular, we decided to focus on the

network coding strategy because of its convenient implementation and the simple

interpretation of its achievable region in the one relay case. There were two ques-

tions that motivated our study in this chapter: is it possible to easily extend the

achievable region if we add another relay to the network; and how should we sched-

ule the encoding and decoding in the two-relay case. We found insightful answers

to both questions.
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Our attempt to extend the achievable region to the two-relay case encountered

a fundamental deadlock problem in which each relay needed to decode before the

other in order to enable mutual assistance. However, we resolved this deadlock

problem by adding an additional constraint that ensured some relay could decode

at least one message before the other relay. This resolution is quite natural in the

light of the conclusions in chapter 2; there is no desirable alternative to the present

strategy, in which the relay fully decodes the message intended for the node it is

trying to help.

Furthermore, we also proposed some new encoding schemes to prove that the ad-

ditional constraint was sufficient. These coding schemes described how to schedule

the encoding and decoding at each node, proving that information theory provides

some unique insight into the operation of wireless multi-hop networks.

35



Chapter 5

The Way Forward

Information theory has developed enormously since the 1948 paper that started it.

The more famous results, particularly in multi-user information theory, showcase

some ingenious and creative thinking . Disappointingly, most of these results have

yet to be applied in practice. Although multi-user information theory is a research

intensive area with recent breakthroughs, most modern day communication pro-

tocols are still designed outside of an information theoretic framework. There are

probably many reasons for this dichotomy. For one, it’s possible that information

theory is still ahead of its time; technology has not advanced enough to support

the computational requirements.

Another reason could be that researchers have expended too much of effort

in finding the final solution to every problem. It is now widely accepted that a

final solution is not on the horizon and may never be reached in our lifetime. A

more promising endeavor should play to information theory’s strengths instead of

succumbing to its weaknesses. Perhaps we should refocus on shedding light into the

operation of wireless networks, maybe through innovative coding schemes or simple

achievable regions with insightful and extendable interpretations. That perspective,

in any event, was the motivation underlying the research presented in this thesis.

There is still much work to be done. In the future, we hope to extend our

results further to the two-way multiple-level relay channel, and possibly to general

networks. We may also revisit some of the “old” problems encountered in chapter 2;

sometimes the answers to old problems are found while exploring new opportunities.
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Appendix A

Analysis of Error Probability for

the One-Sided Interference

Channel

By the symmetry of the random code construction, the probability of error does

not depend on which pair of indices is sent by the sources. So, without loss of

generality, we can assume that (i, j) = (1, 1) was sent.

Each row and column in figure 2.1 correspond to the index of sender 1 and

2 respectively and their associated codewords. The decoding strategy determines

which row in figure 2.1 contains the largest number of codewords that are typical

with the received sequence. An error occurs if the “wrong” row contains more

typical codewords than the “correct” row (row 1). Since the codebook is generated

randomly, by symmetry we only need to evaluate the probability that in a given

column, the correct row does not contain a typical codeword pair but some wrong

row does. We define the following events:

• Let E1 be the event that (x1(i), x1(j) belongs to A
(n)
ε for i, j 6= (1, 1); for

a wrong column, any wrong row contains a codeword pair typical with the

received sequence.

• Let E2 be the event that (x1(1), x1(j)) belongs to A
(n)
ε for j 6= 1; for a wrong

column, the correct row contains a codeword pair typical with the received

sequence.

• Let E3 be the event that in a wrong column the correct row does not contain

a typical codeword pair but at least one wrong row does.

38



• Let E4 be the event that for the correct column, the correct row does not

contain a typical pair but at least one row does.

The decoding strategy will succeed if P (E3∪E4)→ 0 as n becomes large. Using

the basic properties of typical sequences in lemma 2.1.1 we make the following

observations:

P (E1) = 2−nI(X1,X2;Y )−4ε (A.1)

P (E2) = 2−n(X2;Y |X1)−3ε (A.2)

P (E4) ≤ ε (A.3)

Now since,

E1 = E1 ∩ (E1 ∪ E2) (A.4)

we have

P (E1) = P (E1 ∪ E2)P (E1|E1 ∪ E2) (A.5)

Now,

P (E1 ∪ E2) = P (E1) + P (E2)− P (E1)P (E2) (A.6)

and

P (E1|E1 ∪ E2) =
P (E1)

P (E1) + P (E2)− P (E1)P (E2)
(A.7)

If we substitute (A.1) and (A.2) into (A.6) and (A.7), and let n become large then

P (E1|E1 ∪ E2) → 2−nI(X1;Y )−7ε (A.8)

P (E1 ∪ E2) → 0 (A.9)

P (E2) → 0 (A.10)

Therefore the probability that in a wrong column, the correct row does not

contain a typical codeword pair but at least one wrong row does, is given by,

P (E3) = [1− (1− P (E1))2nR1−1](1− P (E2)) (A.11)

= [1− (1− P (E1 ∪ E2)P (E1|E1 ∪ E2))2nR1−1](1− P (E2)) (A.12)

≤ e−2n(I(X1;Y )−R1)+7ε

(A.13)
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where (A.12) follows by substituting (A.5) into (A.11). Furthermore (A.13)

follows from lemma 10.5.3 in [15], and by substituting the limits in (A.8), (A.9),

and (A.10) in (A.12). Finally, the probability that in any column, the correct

row does not contain a typical codeword pair but some wrong row does, is upper

bounded by

P (E3 ∪ E4) ≤ P (E3) + P (E4) (A.14)

(A.15)

If we substitute (A.3) and (A.13) into (A.14) and let n become large, we see

that the probability of error goes to zero if

R1 < I(X1;Y ) (A.16)
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Appendix B

Proof of Theorem 3.2.1

We use a block coding argument. We consider B blocks of transmission, each of n

transmission slots. A sequence of B − 1 index pairs, (w1,b, w3,b), b = 1, 2, . . . , B − 1

will be sent over in nB transmission slots. Note that as B →∞, the rate nR(B−1)
nB

is arbitrarily close to R for any n.

B.1 Generation of Codebooks

• At each node i ∈ {1, 3} generate at random 2nRi independent and identi-

cally distributed (i.i.d) n-sequences ui(wi), wi ∈ {1, 2, . . . , 2nRi}, each drawn

according to

Prob(ui) =
n∏
j=1

p(ui, j)

• For each ui(wi), generate 2nRi conditionally independent n-sequences xi(si|wi), si ∈
{1, 2, . . . , 2nRi}, drawn independently according to

Prob(xi|ui(wi)) =
n∏
j=1

p(xi,j|ui,j(wi)).

• At node 2, for each u1(w1) and u3(w3) generate one conditionally independent

n-sequence x2(w1, w3), drawn independently according to

Prob(x2|u1(w1),u3(w3)) =
n∏
j=1

p(x2,j|u1,j(w1), u3,j(w3)).

This defines the joint codebook for nodes 1,2 and 3 as

C0 := {u1(w1),x1(s1|w1),u3(w3),x3(s3|w3),x2(w1, w3)}

41



Table B.1: Encoding process for the TWORC

block 1 block 2 . . . block B

x1(w1,1|1) x1(w1,2|w1,1) . . . x1(w1,B|w1,B−1)

u1(1) u1(w1,1) . . . u1(w1,B−1)

x3(w3,1|1) x3(w3,2|w3,1) . . . x3(w3,B|w3,B−1)

u3(1) u3(w3,1) . . . u3(w3,B−1)

x2(1, 1) x2(w1,1, w3,1) . . . x2(w1,B−1, w3,B−1)

Repeating the above process independently once more, we generate another ran-

dom codebook C1 similar to C0. We will use these two codebooks alternatively as

follows: In block b = 1, 2, . . . , B, the codebook C(bmod2) is used. Hence, in any two

consecutive blocks, codewords from different blocks are independent. This is a prop-

erty we will use in the analysis of the probability of error. Before the transmission,

the joint codebooks C0, C1 are revealed to all the nodes 1,2 and 3.

B.2 Encoding

The encoding process is depicted in table B.1. At the beginning of each block

b ∈ {1, 2, . . . , B}, assume that node 2 has correctly decoded the pair (w1,b−1, w3,b−1)

and sends the following n-sequences from the codebook C(bmod2) in the block:

X2,b = x2(w1,b−1, w3,b−1).

Also, in the same block, node 1 and 3 send the following n-sequences from the same

codebook C(bmod2):

X1,b = x1(w1,b|w1,b−1)

X3,b = x3(w3,b|w3,b−1).

B.3 Decoding

At each node we assume that all previous message estimates are correct.
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1. At the end of each block b = 2, 3, . . . , B, node 1 determines the unique index

ŵ3,b−1 that satisfies the joint typicality checks:(
u1(w1,b−2),x1(w1,b−1|w1,b−2),u3(w3,b−2),x3(ŵ3,b−1|w3,b−2),x2(w1,b−2, w3,b−2),

Y1,b−1

)
∈ A(n)

ε (U1,U3,X1,X2,X3,Y1)(
u1(w1,b−1),x1(w1,b|w1,b−1),u3(ŵ3,b−1),x2(w1,b−1, ŵ3,b−1),Y1,b

)
∈ A(n)

ε (U1,U3,X1,X2,Y1)

2. At the end of each block b = 2, 3, . . . , B, node 2 determines the unique index

pair (ŵ1,b, ŵ3,b) that satisfies the joint typicality check:(
u1(w1,b−1),x1(ŵ1,b|w1,b−1),u3(w3,b−1),x3(ŵ3,b|w3,b−1),x2(w1,b−1, w3,b−1),

Y2,b

)
∈ A(n)

ε (U1,U3,X1,X2,X3,Y2)

3. At the end of each block b = 2, 3, . . . , B, node 3 determines the unique index

ŵ1,b−1 that satisfies the joint typicality checks:(
u1(w1,b−2),x1(ŵ1,b−1|w1,b−2),u3(w3,b−2),x3(w3,b−1|w3,b−2),x2(w1,b−2, w3,b−2),

Y3,b−1

)
∈ A(n)

ε (U1,U3,X1,X2,X3,Y3)(
u1(ŵ1,b−1),u3(w3,b−1),x3(w3,b|w3,b−1),x2(ŵ1,b−1, w3,b−1),Y1,b

)
∈ A(n)

ε (U1,U3,X2,X2,Y3)

B.4 Analysis of Probability of Error

1. In block b, node 1 can decode w3,b−1 with arbitrarily small probability of error

if

R3 < I(X3;Y1|U1, U3, X1, X2) + I(U3, X2;Y1|U1, X1) (B.1)

= I(U3, X2, X3;Y1|U1, X1)

= I(X2, X3;Y1|U1, X1) + I(U3;Y1|U1, X1, X2, X3)

= I(X2, X3;Y1|U1, X1) (B.2)

where the two mutual informations in (B.1) follow from the two typicality

checks, and (B.2) follows from the Markov chain U3 − (U1, X1, X2, X3)− Y1
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2. In block b, node 2 can decode (w1,b, w3,b) with arbitrarily small probability of

error if

R1 < I(X1;Y2|U1, U3, X2, X3) (B.3)

= I(X1;Y2|U1, U3, X2, X3) + I(U3;Y2|U1, X2, X3) (B.4)

= I(U3, X1;Y2|U1, X2, X3)

= I(X1;Y2|U1, X2, X3) + I(U3;Y2|U1, X1, X2, X3) (B.5)

= I(X1;Y2|U1, X2, X3)

R3 < I(X3;Y2|U1, U3, X1, X2) (B.6)

= I(X3;Y2|U1, U3, X1, X2) + I(U1;Y2|U3, X1, X2) (B.7)

= I(U1, X3;Y2|U3, X1, X2)

= I(X3;Y2|U3, X1, X2) + I(U1;Y2|U3, X1, X2, X3) (B.8)

= I(X3;Y2|U3, X1, X2)

R1 +R3 < I(X1, X3;Y3|U1, U3, X2) (B.9)

where the three mutual informations in (B.3) (B.6), and (B.9) follow from

the three ways a message pair can be decoded incorrectly. Furthermore,

(B.4)and (B.5) follow from the Markov chains U3 − (U1, X2, X3) − Y2 and

U3 − (U1, X1, X2, X3) − Y2 respectively. In addition, (B.7) and (B.8) follow

from the Markov chains U1− (U3, X1, X2)−Y2 and U1− (U3, X1, X2, X3)−Y2

respectively

3. In block b, node 3 can decode w1,b−1 with arbitrarily small probability of error

if

R3 < I(X1;Y3|U1, U3, X2, X3) + I(U1, X2;Y3|U3, X2) (B.10)

= I(U1, X1, X2;Y3|U3, X3)

= I(X1, X2;Y3|U3, X3) + I(U1;Y3|U3, X1, X2, X3)

= I(X1, X2;Y3|U3, X3) (B.11)

where the two mutual informations in (B.10) follow from the two typicality

checks, and (B.11) follows from the Markov chain U1 − (U3, X1, X2, X3)− Y3
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