Deciding Second-order Logics using
Database Evaluation Techniques

by

Gulay Unel

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Doctor of Philosophy
in
Computer Science

Waterloo, Ontario, Canada, 2008

©Gulay Unel 2008

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

i

Abstract

We outline a novel technique that maps the satisfiability problems of second-order logics,
in particular WSnS (weak monadic second-order logic with n successors), S1S (monadic
second-order logic with one successor), and of p-calculus, to the problem of query evalu-
ation of Complex-value Datalog queries. In this dissertation, we propose techniques that
use database evaluation and optimization techniques for automata-based decision proce-
dures for the above logics. We show how the use of advanced implementation techniques
for Deductive databases and for Logic Programs, in particular the use of tabling, yields
a considerable improvement in performance over more traditional approaches. We also
explore various optimizations of the proposed technique, in particular we consider variants
of tabling and goal reordering. We then show that the decision problem for S1S can be
mapped to the problem of query evaluation of Complex-value Datalog queries. We explore
optimizations that can be applied to various types of formulas. Last, we propose analogous
techniques that allow us to approach p-calculus satisfiability problem in an incremental
fashion and without the need for re-computation. In addition, we outline a top-down eval-
uation technique to drive our incremental procedure and propose heuristics that guide the
problem partitioning to reduce the size of the problems that need to be solved.

il

Acknowledgements

First of all I would like to thank to my supervisor David Toman for helping me to find
a research topic which produced novel techniques and improved my research perspective
considerably. I also thank him for his encouragement, patience and support during my
PhD studies.

I would like thank to my thesis committee members Grant Weddell, Richard Trefler,
John Thistle, and Stéphane Demri for their valuable comments on my final thesis document.

Last but not least, I would like to thank to my family, former teachers, and friends. I
would not be in this stage, now writing my acknowledgements section as a last touch to
my accepted PhD thesis, without them.

v

Contents

List of Figures vii
1 Introduction 1
1.1 Organization of the Thesis 3
2 Background and Definitions 4
2.1 Logics and Automata 4
2.1.1 Logics 4
2.1.2 Automata 8
2.1.3 Logic-Automata Connection 10
2.2 Datalog for Complex Values 13
2.2.1 Query Evaluation in Datalog®™ 15
2.2.2 Deductive Database Systems supporting Datalog®™ 21

3 Logic Programming Approach to Decision Procedures for Weak Second-
order Logics 25
3.1 Introduction 25
3.2 A Decision Procedure for WSIS 26
3.2.1 Representation of Automata 26
3.2.2 Automata-theoretic Operations 27
3.2.3 Experimental Evaluation 35
3.3 Decision Procedures for WS2S 37
3.3.1 A Decision Procedure based on Bottom-up Automata 37
3.3.2 A Decision Procedure based on Top-down Automata 42
3.4 Heuristics and Optimizations 46
3.4.1 Large Conjunctions of Formulas 46
3.4.2 Negated and Existential Formulas 48

4 Logic Programming Approach to Decision Procedures for S1S

4.1 Introduction
4.2 S1S and Automata Connection
4.3 Representation of Automata
4.4 Automata-theoretic Operations
4.5 Optimization for Formulas with Negated Conjunctions

5 An Incremental Technique for p-Calculus Decision Procedures

5.1 Imntroduction
5.2 From APT to NBT via UCT
52.1 From APT to UCT
52.2 From UCT toNBT
5.3 Decomposition of the APT to NBT Translation
54 The Algorithm L.
5.5 A Top-down Approach to the APT to NBT Translation
5.5.1 Representation of APT
5.5.2 Preprocessing of the Transition Relation
5.5.3 APT to UCT Translation
5.5.4 APT to UCT Decomposition.
5.5.5 UCT to NBT Translation
5.5.6 UCT to NBT Decomposition
5.5.7 NBT Emptiness
5.6 Heuristics
5.6.1 Optimizations in APT to UCT Translation. . .
5.6.2 Optimizations in UCT to NBT Translation. . .

5.6.3 Heuristics for Ordering of Conjunctive Formulas.

6 Conclusions and Future Work

Bibliography

vi

52
52
53
o4
o4
99

65
65
66
67
68
68
72
74
74
74
74
78
78
82
82
83
84
84
85

88

90

List of Figures

2.1
2.2
2.3
24
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

5.1
5.2
2.3
5.4
2.5
5.6

6.1

String representing the interpretation D(z) = {1,2,4},D(y) = {2,3}. . .. 11
Automata representing the formulas x Cy and =(z Cy). 12
Infinite SLD resolution path for @ 20
OLD refutation of TC'on Q 23
OLDT forest for @ 24
Automata representing the formula ¢. 33
Top-down evaluation of the program in Example 3.20. 35
Performance (secs) w.r.t. increasing number of quantifiers 37
Performance (secs) w.r.t. increasing number of variables 37
Performance (secs) w.r.t. increasing number of quantifiers 42
Performance (secs) w.r.t. increasing number of variables 42
Performance (secs) Results w.r.t. Associativity 47
Relation between join ordering and formula rewriting 49
Performance (secs) results on ordering, 50
Performance (secs) results on ordering for negated conjunctions 51
Performance (secs) w.r.t. increasing number of variables 51
Pseudo-code for Incremental Satisfaction Algorithm. 73
Pseudo-code for preprocessing of 6 75
Pseudo-code for process(q,a,¢)o 75
Number of transitions in the NBT automata A”[k] and A”[ky]. 85
Number of transitions in the NBT automata A5 and A7. 86
Number of transitions in the NBT automata A, and A”.. 87
Summary of our results L 89

vil

Chapter 1

Introduction

Logics provide means to specify regular properties of systems in a succinct way. In this
dissertation we consider weak monadic second order logics with one and two successors
(WS1S and WS2S), second order logics with one successor (S1S) and pu-calculus. These
logics are decidable by the virtue of a connection to automata theory. Standard decision
procedures for the satisfiability problem consist of translating a formula to an automaton
accepting the models of the formula and checking whether the automaton is empty or not.
The automata-theoretic approach for monadic logics over finite words was developed
by Biichi, Elgot, and Trakhtenbrot [9, 25, 89]. It was then extended to infinite words by
Biichi [10], to finite trees by Thatcher and Wright [87], and generalized to infinite trees by
Rabin [73]. Another automata theoretic construction was developed for u-calculus [43, 98]
and could be used, in turn, for reasoning in expressive description logics. The practical
use of this connection was investigated for temporal logics and fixed-point logics which
led to the theory of model checking [54, 19, 31, 100]. However, automata-based deci-
sion procedures do not enjoy the success predicted by the accompanying theory and are
mostly used for showing decidability and complexity bounds rather than for implemen-
tation purposes. Indeed, in many cases, theoretically sub-optimal approaches, such as
tableaux equipped with appropriate blocking conditions that prevent infinite expansions,
are more successful [2, 41]. This rather surprising observation can be traced to severe diffi-
culties in implementing automata-based decision procedures, in particular when inherently
infinite models are considered. The main focus of this work is proposing implementation
approaches for automata-based decision procedures for the above logics based on query
evaluation and optimization techniques from database theory and logic programming.
First, we consider the logics WS1S and WS2S and propose an implementation of the de-
cision procedure based on representing automata by logic programs. Given a WS1S/WS2S
formula an automaton can be constructed inductively starting from the atomic subformulas

2 Deciding Second-order Logics using Database Evaluation Techniques

and applying automata operations for the logical connectives and quantifiers. We represent
this construction as a complex-value datalog (Datalog®) program consisting of views. The
emptiness check on the automaton is then reduced to posing a query on these views. This
representation combined with Datalog® program execution techniques, such as Magic Set
transformation [3] and SLG resolution, a top-down resolution-based approach augmented
with memoing [16, 17], guide the automaton construction such that intuitively only the
states needed to show the emptiness are generated. We also conducted experiments that
demonstrate the benefits of the proposed method over more standard approaches.

In our work, we classify formulas as conjunctions, negated and existential formulas and
propose heuristics and optimizations depending on the type of the formulas. Our main
focus is on conjunctive formulas where the standard automata-theoretic approach fails due
to the state space explosion problem as the number of conjunctions increases. The diffi-
culties are especially apparent when determining logical consequences of large theories of
the form {¢1,...¢,} E ¢, are considered. In this case, the automata-theoretic method
constructs the automaton for the formula @1 A o A ... A v, A = which can be quite
large and then checks for its emptiness. However, our approach gives good results since we
only construct the states required for answering the emptiness problem. In addition, these
types of formulas are amenable to optimizations such as formula rewriting and goal reorder-
ing where different formula/view definition rewritings result in different query evaluation
performances.

We show that a similar approach can be used for implementing S1S decision proce-
dures: we provide a mapping for the complementation operation to complex-value datalog
views which differs from the complementation operation in WSnS. Automata-based deci-
sion procedures are relatively simple in WSnS when compared to S1S. The complementa-
tion operation is complicated in the decision procedure for S1S. We propose a solution to
this problem using the method we outlined for WSnS extended with the different comple-
mentation operation for S1S plus an optimization method for negated conjunctions which
need to be adressed because of the exponential overhead of the complementation operation
especially when we need to compute it on large conjunctions.

The automata-based approach for p-calculus is usually based on translating a given
formula to an alternating parity automaton. The emptiness test for alternating parity au-
tomaton, in particular when based on Safra’s determinization approach [78, 79], is difficult
to implement. This issue, for p-calculus formulas, was addressed by using decision proce-
dures that does not use Safra’s construction based on transforming an alternating parity
automaton to a non-deterministic Biichi automaton while preserving emptiness [55]. How-
ever, even this improvement does not yield a practical reasoning procedure.

Unlike the WSnS case, the automata-based decision procedure for p-calculus does not
have an inductive construction. This makes the problem even harder for our approach based

on logic programming. In our work for p-calculus, we explore techniques that attempt to
remedy the mentioned difficulties by proposing an incremental and interleaved approach
to constructing the automaton corresponding to the logical implication problem while
simultaneously testing for satisfiability of the fragments constructed so far. In this work,
we show how the decision problem can be split into a sequence of simpler problems, we
show how the larger problems can be constructed from the simpler ones, and show how the
top-down query evaluation techniques enhanced with memoing can be used to drive such
an incremental computation.
The main contributions of this thesis are as follows:

e We show a connection between the automata based decision procedures and query
evaluation in complex value datalog by proposing decision procedures for WSnS, S1S,
and p-calculus based on mapping the satisfiability problem to a query evaluation
problem on a set of views.

e We present experimental results for WS1S and WS2S that show the benefits of our
approach over an other implementation based on the standard automata based ap-
proach.

e We outline an incremental technique for the automata based decision procedure for
conjunctive p-calculus formulas.

e We propose heuristics and optimizations for different types of formulas for each out-
lined decision procedure.

1.1 Organization of the Thesis

The remainder of the thesis is organized as follows. In Chapter 2 we formally introduce
logics WS1S/WS2S, S1S, p-calculus, their connection to finite automata, and we define
Datalog® queries, state their computational properties, and discuss techniques for query
evaluation. Chapter 3 presents our work on how Datalog® queries and views can be used
to represent finite automata for deciding WS1S and WS2S, how to implement automata-
theoretic operations on the representation, and experimental results for the proposed meth-
ods. In Chapter 4 we show that a similar approach to the one for WSnS can be used for
S1S decision procedures providing a mapping for the negation operation to complex-value
datalog views which differs from the negation operation in WSnS. We present an incre-
mental technique for p-Calculus decision procedures in Chapter 5. Finally, conclusions and
future research directions are given in Chapter 6.

Chapter 2

Background and Definitions

In this chapter, we introduce the necessary theoretical foundations of logics, automata and
database evaluation techniques. We review definitions for logics and automata in section
2.1. We define Datalog for Complex Values and present related query evaluation techniques
in section 2.2.

2.1 Logics and Automata

In this section, we give an overview of several variants of monadic second order logics,
automata on finite and infinite objects, and their connection which in turn provides decision
procedures for the logics.

2.1.1 Logics
We define Monadic Second Order Logics and p-Calculus as follows.

Monadic Second Order Logics

First, we define the syntax and semantics of the second-order logic of one and two succes-
sors.

Definition 2.1 Let Var = {z,y, z, ...} be an (infinite) set of variable names, the formulas
of second-order logics are defined as follows.

e the expressions s(z,y), © C y for x, y second-order variables are atomic formulas,
and

e given formulas ¢ and ¢ and a variable x, the expressions ¢ A ¢, ¢, and Jx : ¢ are
also formulas.

Additional common syntactic features can be defined as follows. Variables for individuals
(first-order variables) can be simulated using second-order variables bound to singleton
sets; a property expressible in WS1S. Thus we allow z € y for + C y whenever we know
that x is a singleton. We also use the standard abbreviations ¢ V4 for =(—p A=), ¢ —
for = V1), and Vx : ¢ for =3z : —¢p.

The semantics of WS1S and S1S is defined w.r.t. the set of natural numbers (successors
of 0); second-order variables are interpreted as finite sets of natural numbers in WS1S
and as (possibly) infinite sets of natural numbers in S1S. The interpretation of the atomic
formula s(x,y) is fixed to relating singleton sets {n} and {n + 1}, n € N.! Similarly, the
semantics of WS2S and S2S are defined over an infinite binary tree T =(0 + 1)* = {e, 0,
1, 00, 01, 10, 11, 000, ...}; first-order variables are interpreted as nodes of the binary tree,
and second order variables are interpreted as finite subsets of the nodes in WS2S and as
(possibly) infinite subsets of the nodes in S2S.

Definition 2.2 The definition of truth of a formula is defined over a transition system 7°
(over N in WS1S/S1S and over T in WS2S/S2S). A valuation is defined as D : Var — 29
where @ = N in WSI1S and S1S and Q@ = T in WS2S and S2S. Given a valuation D and
a transition system 7 we have:

e T,DE=xzCyif D(z) C D(y)

e 7.D k= s(x,y) if D(x) and D(y) are singletons {s,}, {s,} and s, is a successor of s,

T, DEoeNoit T, DEpand T,D ¢
T, DE-pif T,D Wy

e 7,D = Jx : ¢ if there exists M C Q such that D(z) = M and 7,D]zx — M] = .

Note that for IN there is one successor relation and for T there are two successor
relations.

Example 2.3 The formula ¢ = dx,y,2: * C y Ay C z is interpreted as “there exists sets
x,1, z such that x is a subset of y and y is a subset of 2”.

!The atomic formula s(z,y) is often written as y = s(z) in literature, emphasizing its nature as a
successor function.

6 Deciding Second-order Logics using Database Evaluation Techniques

Example 2.4 We can write a formula defining the property: “z is a singleton” as follows:

e we define: “the set x is equal to set y (z = y)” by:
Vz:2Cxr—2CyAVvVt:tCy—tCux

e we define: “z is an empty set (z = 0))” by:
—dy:y#rzAyCux

e then “z is a singleton” can be defined by:
e=0NeCaANTz:((z#£eNzCax)A-Ty: (y#£eANy#zAyCx))

pu~-Calculus

The propositional p-calculus was introduced by Kozen [49] for specifying properties of
concurrent programs following earlier studies of fixpoint calculi [28, 67, 69]. The proposi-
tional p-calculus is augmented with least and greatest fixpoint operators and expressively
subsumes most propositional program logics, including dynamic logics [33, 50, 68, 38, 39]
and temporal logics [72, 71, 70, 27, 42, 102]. The syntax and semantics of u-calculus [7] is
given below:

Definition 2.5 Let Var = {z,y, #,...} be an (infinite) set of variable names, Prop a set of
atomic propositions, and £ = {a,b, ...} a finite set of labels. The set of L, formulas (with
respect to Var, Prop, £) is defined as follows:

e p € Prop and z € Var are formulas.
e If 1 and ¢, are formulas, so is ¢ A ¢s.

e If ¢ is a formula, so are [a]¢, =¢, and pz.¢ provided that every free occurrence of z
in ¢ occurs positively (within the scope of an even number of negations).

A sentence is a formula that does not contain free variables.

If a formula is written as ¢(z), it means that the subsequent writing of ¢(¢) is used for
¢ with ¢ substituted for all free occurences of z.

We use derived operators such as ¢; V ¢o for (¢ A =¢2), (a)¢ for —[a]—¢, vz.¢(z)
for —pz.—¢(—z2), (K¢ for A\ ,cxlalo, [~]¢ for [L]¢, respectively.

Formulas of L, are interpreted with respect to labeled transition systems over Prop in
which nodes are labeled by propositional assignments and edges by elements of L.

Definition 2.6 An L, structure 7 (over Prop, £) is a labeled transition system, namely
a set Q of states and a transition relation —C Q x £ x Q (written as s — t), together
with an interpretation Dpyop, : Prop — 22 for the atomic propositions.

Given a structure 7 and an interpretation D : Var — 29 of the variables, the set ||¢[|%
of states satisfying a formula ¢ is defined as follows:

* [IPlI% = Derop(p)

o ||lzI5 =D(2)

o [-0lI5 =\ l4lI5

o [l61 A &allp = llnllp N [l 627

o |llalollp = {sVt:s —t=1telgllp}
o nzollp =N{S C QIS 29l Fn—g}

where D[z := §] is the valuation which maps z to S and otherwise agrees with D. By
duality, the definitions for the derived operators are as follows:

o [l¢1V éallp = ll41ll5 U llollF
o [a)ollp ={s3t:s —tAte o]}

o [lvz.0lh =U{S € QIS C |9l hp_g’

The semantics of p-calculus is defined with respect to a Kripke structure K = (W, R, L)
over (Var, Prop, £), where W is a set of points, R : £ — 2"W>*W is a labeled transition
relation over W, and L : Prop — 2" assigns each atomic proposition a set of points.

Satisfiable L, formulas enjoy the tree model property which means that if a sentence is
satisfiable then it is satisfiable by a bounded-degree infinite tree structure. A tree structure
is a Kripke structure (W, R, L) where W is a tree and for each label [if (u,v) € R(l), then
v is a successor of u. Hence, N and T (with a valuation D) are also Kripke structures. The
standard way of proving the tree-model property is to take a model and straightforwardly
unravel it [97]. Furthermore, every formula ¢ in L, is equivalent to a formula ¢ in S2S which
means the interpretation of each free proposition p, € Prop in ¢ maps to the valuation for
a free variable x in . Note that Dp,op(p) is the same as D(x) in S2S.

Example 2.7 The formula ¢ = pz.(p V [a]z) is interpreted as “p eventually holds for all
a-paths”. We can also write a second order logic formula ¢ = Vz : ((Vz : z € pV (V2 :
Sq(2,2') = 2/ € x) — 2z € ¥) — y €) to express this property where s, is a successor
relation defined on a-paths.

8 Deciding Second-order Logics using Database Evaluation Techniques

2.1.2 Automata

In this section, we introduce automata on finite and infinite strings and trees.

Definition 2.8 Given a (finite) set D of directions, a D-tree is a set 7' C D* such that if
x-c €T (an extension of x with ¢), where x € D* and ¢ € D, then also z € T. If T = D*,
we say that T is a full D-tree. The empty word € is the root of T and the elements of T’
are called nodes. A path 7 of a tree T is a set m C T such that € € m and for every x € 7
either x is a leaf or there exists a unique ¢ such that z - c € 7. If [D| =1 then W C D* is
a word. The infinite binary tree T =(0+ 1)* = {e, 0, 1, 00, 01, 10, 11, 000, ...} is a full
D-tree where D = {0,1}. Given an alphabet X, a 3-labeled D-tree is a pair (T, 7) where
T is a tree and 7 : T" — X maps each node of T" to a letter in X.

For a set X, BT (X) is the set of positive Boolean formulas over X; for a set Y C X
and a formula ¢ € Bt(X), we say that Y satisfies ¢ iff assigning true to elements in Y
and assigning false to elements in X \ Y makes ¢ true. An alternating tree automaton is
A=(3,D,Q,8S,6,F), where 3 is the input alphabet, D is a set of directions, @ is a finite
set of states, § : Q x ¥ — BT (D x Q) is a transition function, S C @ is a set of initial
states, and F' specifies the acceptance condition.

An alternating automaton A runs on Y-labeled full D-trees. A run of A over a Y-labeled
D-tree (T, 1) is a (T x @Q)-labeled tree (7)., r) such that:

1. e € T, and r(e) = (¢, q;) where ¢; € S.

2. For every y € T, such that r(y) = (z, q) there is a set

{(COa qO)a (017 Ql)7 s (CTL—l? Qn—l)} - D x Q
that satisfies 0(¢, 7(x)), and for all 0 < j <n, y-j €T, r(y-j) = (z- ¢, q;)-

For automata on finite words and trees a run (7., r) is accepting if all its paths end in
a state f € F.

For automata on infinite words and trees, a run (7,,r) is accepting if all its infinite
paths satisfy an acceptance condition. The set of states on a path = C T, that appear
infinitely often is denoted with inf(7) where inf(7) C @ and ¢ € inf(7) if and only if there
are infinitely many y € 7 for which r(y) € T x {q}. The types of acceptance conditions
are defined as follows:

e A path 7 satisfies Biichi acceptance condition F' C Q if inf(7) N F # (.

e A path 7 satisfies co-Biichi acceptance condition F' C @ if inf(w) N F = 0.

e A path 7 satisfies parity acceptance condition F' = {Fy, Fy, ..., Fy} with F; C F, C
. C F), = Q if the minimal index i for which inf(7) N F; # 0 is even. The number
h of sets in F' is called the indez of the automaton.

An automaton accepts a word/tree if there exists a run that accepts it. The set of all
Y-trees that are accepted by A is denoted by L(A).
An alternating automaton is:

e nondeterministic: if the formulas (c1, ¢1) and (¢9, g2) appear in 6 and are conjunctively
related, then ¢; # co,

e universal: if all the formulas that appear in § are conjunctions of atoms in D x @,

e deterministic: if it satisfies the conditions for being nondeterministic and universal
at the same time.

Following shorthand notation is used to describe types of automata on infinite words and
trees. The first letter describes the transition structure and is one of “D” (deterministic),
“N” (nondeterministic),“U” (universal), and “A” (alternating). The second letter describes
the acceptance condition: “P” (parity), “B” (Biichi), and “C” (co-Biichi) are used. The
third letter describes the objects on which the automata run: “W” (infinite words), and
“T” (infinite trees) are used.

Example 2.9 The automaton A = {%, D, Q,{q},, F'} where:

Q= {C]oﬂh}

Y ={a,b}

61(q0, @) = ((1,q0) A (2,01)) V (2, Q)
01(q0,0) = (1, q1) A (2, q1)
01(qr,a) = (1,q0) V (1, 1) A (2, q0))
61(q1,0) = (L,q1) V (2,q1)

is nondeterministic.

Example 2.10 Let the universal Biichi automaton A = {¥, D, Q, {q}, d, F'} where:

Q = {q, 1},

Y ={a,b},

01(qo,a) = (1,q0) A (2, o),
61(q0,0) = (1, q1) A (2, q1),
0i(q1,a) = (1,q0) A (2, q0),
51(ql>b) - (qu) A (Qaql)? and

10 Deciding Second-order Logics using Database Evaluation Techniques

This automaton accepts trees such that each path contains infinitely many bs.

Bottom-up Tree Automata on Finite Trees

Bottom-up tree automata on finite trees is equivalent to nondeterministic (top-down) tree
automata on finite trees given in Definition 2.8. There are two differences with bottom-up
tree automata: first, (); C @, the set of its initial states replaces F'; second, its transition
rules are the converse, that is, § : BT (D x Q) x ¥ — Q. In bottom-up tree automata, a
transition ((co, qo), (¢1,q1), - - -, (¢k, qk), a, q) allows to proceed from states qo, q1, - - ., @ at
the successor nodes u.cq, u.cq, ..., u.c; of a node u to ¢ at u while reading letter a as label
of u. A run of A on an input tree 7" is a mapping p from the nodes of T' to the states of
A. A run p is called successful if p(uy) € F' where ug is the root of the tree.

2.1.3 Logic-Automata Connection

The connection between logic and automata was first considered by Biichi [9] and Elgot [25].
They have shown that monadic second-order logic over finite words and finite automata
have the same expressive power, and we can transform formulas of this logic to finite
automata which means that for every formula ¢ we can construct an automaton accepting
the models of ¢ and vice versa. Later, this connection was extended to monadic second
order logics over finite trees and finite automata [87]. Biichi [10], McNaughton [59], and
Rabin [73] proved that monadic second-order logic over infinite words (and trees) and
automata on infinite words (and trees) also have the same expressive power. The practical
use of this connection was investigated for temporal logics and fixed-point logics [26,
29, 32, 45, 61, 62, 95, 96, 99, 101] which led to the theory of model checking [54, 19,
31, 100]. Efficient algorithms for temporal logics based on logic-automata connection are
proposed [20, 21, 34, 35, 44, 82]. A tutorial and brief survey on constructing automata
from temporal logic formulas can be found in [103]. Automata theoretic construction for
p-calculus [29, 30, 31, 43, 66, 84, 98] could also be used, in turn, for reasoning in expressive
description logics. An extensive survey on automata and logics can be found in [36, 88].

Monadic Second Order Logics and Automata

Computational properties of automata are a basis for solutions to many problems. One of
these problems is building decision procedures for various logics. In this section we outline
the connection between automata and monadic second order logics WS1S/WS2S and focus
on constructing automata from WS1S formulas. The logic-automaton connection can be
generalized to build decision procedures for different logics such as second order logics with

11

< X

1
0
O 1 2 3 4
D

Figure 2.1: String representing the interpretation D(z) = {1,2,4}, D(y) = {2, 3}.

one or two successors (SIS or S2S). Automata that accept infinite regular languages can
be used for this purpose.

The crux of the connection for monadic second order logics lies in an observation that,
for every formula, there is an automaton that accepts exactly the models of a given formula
[88]. Models can be represented by finite strings in WS1S. Since each variable of WSIS is
interpreted by a finite set of natural numbers, such an interpretation can be captured by
a finite string. Satisfying interpretations of formulas (with % free variables) can be repre-
sented as sets of strings over {0, 1}*. The i-th component corresponds to the interpretation
of the i-th variable and is called a track. It turns out that sets of the above strings form reg-
ular languages and thus can be recognized using an automaton. Satisfiability then reduces
to checking for non-emptiness of the language accepted by such an automaton. Similarly,
there is an automaton that accepts the (tree representations of) models of a given formula
for WS2S.

Example 2.11 Suppose we have a formula ¢ = z C y and a valuation D : {z,y} —
2N such that D(z) = {1,2,4}, and D(y) = {2,3} then we can represent this valuation
(interpretation) by the string given in Figure 2.1, the first track of the string is for 2 and
the second track is for y.

Given a WSIS/WS2S formula ¢, the automaton A, can be effectively constructed
starting from automata for atomic formulas using automata-theoretic operations.

Proposition 2.12 Let ¢ be a WS1S/WS2S formula. Then there is an automaton A, that
accepts exactly the (string representations of) models of ¢ and ¢ is satisfiable if and only
if L(Ay,) # 0, where L(A) is the language accepted by A.

Example 2.13 The automaton A, for the formula ¢ = z C y is shown in the left part
of Figure 2.2, the complement automaton A, that represents ¢ = —(x C y) is shown in
the right part of Figure 2.2. The labels on the edges are elements of the alphabet of the
automaton that capture the valuations of variables allowed for a particular transition. The
tracks in the strings accepted by the automata represents the valuation for the variables x
(first track), and y (second track).

12 Deciding Second-order Logics using Database Evaluation Techniques

Figure 2.2: Automata representing the formulas C y and —(z C y).

Similarly, the automaton Ag,ns is the product automaton of A, and A4 and accepts
L(A,) N L(A,), the satisfying interpretations of ¢ A ¢. The automaton As,.,, the pro-
jection automaton of A, accepts satisfying interpretations of dx : ¢. Intuitively, the
automaton Az, acts as the automaton A, for ¢ except that it is allowed to guess the
bits on the track of the variable x. While checking for emptiness can be done in time
polynomial in the size of an automaton, the size of A, is non-elementary in the size of ¢
(more precisely, in the depth of quantifier alternation of). This bound is tight for WSnS
decision problem yielding an overall non-elementary decision procedure.

Similarly, for every S1S formula, there is an automaton on infinite words that accepts
exactly the (string representations of) models of a given formula. Note that the automaton
has an acceptance condition defined for infinite words in this case.

Given a S1S formula ¢, the automaton A, can be effectively constructed starting from
automata for atomic formulas using automata-theoretic operations. As in the case of WS1S
an automaton can be constructed for each atomic formula. The automaton A4 is the
product automaton of A, and Ay and accepts L(A,) N L(Ay), the satisfying interpreta-
tions of ¢ A ¢. The automaton As,.,, the projection automaton of A,, accepts satisfying
interpretations of 3x : . The complementation operation is not as trivial as the one given
for WS1S.

Proposition 2.14 Let ¢ be a S1S formula. Then there is a Bichi automaton A, that

accepts exactly the (string representations of) models of ¢ and ¢ is satisfiable if and only
if L(Ay,) # 0, where L(A) is the language accepted by A.

Theorem 2.15 The complexity of the automata-based decision procedure for monadic sec-
ond order logics is non-elementary [60, 83].
p~-Calculus and Automata

Automata theoretic decision procedures for the p-calculus and its fragments are given
in [31, 43, 84, 99, 98]. Most of these techniques rely on the translation of p-calculus

13

formulas to alternating automata.

The tree model property of p-calculus formulas provides a link to automata theory. If
a formula ¢ is satisfiable then it is satisfiable at the root of a tree whose branching degrees
are bounded by the length of ¢ (||¢||) [98]. Satisfiability of a L, formula is equivalent to
checking whether a corresponding alternating parity automaton that accepts tree models
of the formula is non-empty whose number of states is O(]|¢||).

Example 2.16 Consider a formula ¢ = vx.(¢p A (—)z) where ¢ = py.(bV (—)y) and
Prop = {a, b} models of ¢ are tree models that have at least one path with infinitely many
b’s. An APT (on binary trees) accepting models of ¢ is A = {¥, D, Q, {q:}, 0, F'} where:

Q =1{q ¢}

d(qo,a) = (1,q0) V (2, q0)
6(q0,0) = (1,q1) V (2, q1)
d(q,a) = (1,q0) V (2, 90)
0(q1,0) = (1, q1) V (2,q1)

F={{q} {90, a1}}

The connection between L, formulas and alternating automata is captured by the
following theorem [24, 43, 98].

Theorem 2.17 Let ¢ € L,. Then there is an alternating parity tree automaton A, that
can be constructed effectively from ¢, such that the language of trees accepted by A, is the
set of tree models of .

Theorem 2.18 The complexity of testing emptiness of alternating automata is ExpTime-
complete.

Hence, it remains to solve the emptiness problem for alternating automata to decide the
satisfiability of p-calculus formulas.

2.2 Datalog for Complex Values

In this section we define a query language that serves as the target of our approach to
WS1S/WS2S decision procedure.

14 Deciding Second-order Logics using Database Evaluation Techniques

Complex Data Model.

The complex-value data model is an extension of the standard relational model that allows
tuples and finite sets to serve as values in the place of atomic values [1]. Each value is

assigned a finite type generated by the type grammar “7 := ¢ | [11,...,7%| | {7}", where ¢
stands for the type of uninterpreted atomic constants, [y, ..., 7] for a k-tuple consisting
of values belonging to the types 7y, ..., 7, respectively, and {7} for a finite set of values of

type 7. Relations are interpreted as sets of values of a given type?. The model is equipped
with several built-in relations, e.g., the equality = (extended to all types), the subset
relation C (defined for set types), the tuple constructor (that relates tuples of values to
the individual values), the singleton set constructor (relating values of a type to singleton
sets of the appropriate set type), etc.

Complex-value Queries.

The extended data model induces extensions to relational query languages and leads to the
definition of complez-value relational calculus (calc®™) and a deductive language for complex
values, Datalog®—the language of Horn clauses built from literals whose arguments range
over complex-valued variables and constants [3, 77]. Datalog® programs and queries are
defined as follows:

Definition 2.19 A Datalog® atom is a predicate symbol with variables or complex-value
constants as arguments.

A Datalog® database (program) is a finite collection of Horn clauses of the form h «
g1, -, k, where h (called head) is an atom with an optional grouping specification and
g1, -, gr (called goals) are literals (atoms or their negations).

The grouping is syntactically indicated by enclosing the grouped argument in the (-) con-
structor; the values then range over the set type of the original argument.

We require that in every occurrence of an atom the corresponding arguments have the
same finite type and that the clauses are stratified with respect to negation.

A Datalog® query is a clause of the form « gq,..., g.

Evaluation of a Datalog®™ query (with respect to a Datalog®™ database P) determines
whether P |= g1, . .., gk

Datalog® is equivalent to the complex-value calculus in expressive power [1]. However, the
ability to express transitive closure without resorting to the powerset construction aids our

2We use relations of arity higher than one as a shorthand for sets—unary relations—of tuples of the
same arity.

15

goal of using Datalog® to represent finite automata and to test for emptiness.

Proposition 2.20 The complexity of Datalog®™ query evaluation is non-elementary [51].

Note that the complexity matches that of decision procedures for WS1S/WS2S and thus
mapping of WS1S/WS2S formulas to Datalog® queries can be done efficiently.

To simplify the notation in the following we allow terms constructed of constants,
variables, and finite number of applications of tuple and set constructors to appear as ar-
guments of atoms. For example p({z},y) < q([z,y]) is a shorthand for p(z,y) < ¢(w),w =
[z,y],z = {x}, where w = [z,y] is an instance of a tuple constructor and z = {z} of a
set. constructor built-in relations as discussed in our overview of the complex-value data
model.

Example 2.21 A set can be constructed by listing all of its elements using set enumera-
tion. Consider the following relation which represents the starting node for an automaton:
Start(0)
The following rule generates a singleton set containing the starting node and stores it in a
new relation:
Start?({n}) « Start(n)
As a result the rule generates:

Start?({0})

Example 2.22 A set is constructed by defining a property to be satisfied by its elements
with set grouping. Consider the following facts which represent transitions for an automa-
ton:

Transition(1, 2)
Transition(1, 3)
Transition(2, 3)

The following rule groups all target nodes of a particular node and stores it in a set:
Transition?(ny, (ny)) < Transition(ny, n;)

As a result the rule generates:
Transition®(1, {2, 3})
Transition?(2, {3})

2.2.1 Query Evaluation in Datalog®

The basic technique for evaluation of Datalog® programs is commonly based on a fixed-
point construction of the minimal Herbrand model (for Datalog® programs with stratified
negation the model is constructed w.r.t. the stratification) and then testing whether a

16 Deciding Second-order Logics using Database Evaluation Techniques

ground (instance of the) query is contained in the model. The type restrictions guarantee
that the fixpoint iteration terminates after finitely many steps. While the naive fixed-
point computation can be implemented directly, efficient query evaluation engines use more
involved techniques such as the semi-naive evaluation, goal/join ordering, etc. In addition,
whenever the query is known as part of the input, techniques that allow constructing only
the relevant parts of the minimal Herbrand model have been developed. Among these the
most prominent are the magic set rewriting (followed by subsequent fixed-point evaluation)
[4, 64] and the top-down resolution with memoing—the SLG resolution [16, 17].

Magic-set Evaluation

The main idea behind this approach is to restrict the values derived by a fixpoint com-
putation to those that can potentially aid answering a given query. This is achieved by
program transformation based on adding magic predicates to clauses that limit the breadth
of the fixpoint computation at each step. These predicates are seeded by the values in the
query (as those are the only ones the user desires to derive); more values are added to
the interpretations of the magic predicates by means of additional clauses that relax the
limit depending on what additional subqueries for a particular predicate need to be asked
to answer the original query. This process then becomes a part of the fixpoint evaluation
itself.

Definition 2.23 Let x be a variable and P a Datalog® program. We say that x is free
with respect to P if for a valuation 0 (an assignment of values to variable names) such that
0 = P the valuation f[z/a] = P for all a. Otherwise we say that z is bound in P.

Definition 2.24 (Adornment) Let h be an atom of arity k. An adornment A for this
atom is a string over {b, f} of length k. We say that the ith argument of h is adorned
by b(f) if the ith position in A is b(f), respectively. We say that A is an adornment of h
with respect to P, where P is a Datalog® program, if the ith position of A is b if the ith
argument of h is bound in P or the ith position of A is f if the ith argument of A is free
in P.

Let h —d,q,..., gk, be a clause and A an adornment of h. Then an adornment of the
clause with respect to h and A is the set of adornments {A,,,..., A, } such that A, is an
adornment for g; . The adornment for the atoms in the body of the clause is constructed
as follows: the jth argument of g; is adorned by b in A, if:

1. the jth argument of g; occurs in the head of the clause as an argument adorned by b
in A, or

17

2. jth argument of g; is a variable bound in d, or

3. jth argument of g; occurs as a variable in a subgoal preceding g;.

Otherwise the jth argument of g; is adorned by f. A magic atom for an atom h and an
adornment A is the atom m_h that has only those arguments of h adorned by b in A, i.e.,
the arity of m_h is less or equal to the arity of A depending on how many arguments of h
are adorned by b. Arguments adorned by f are removed.

The magic-set transformation is defined on adorned programs, and is guided by a
sideways information strategy. A sideways information strategy (sips) is a decision on how
to pass information sideways in the body of the rule. A sips determines how bindings in
the head will be used, the order of evaluation for the subgoals in the body (join order),
and how bindings will be passed between predicates in the body. A formal definition of
sips was given by Beeri and Ramakrishnan [4].

The idea behind the magic-set evaluation is to compute an auxiliary predicate for each
predicate in the original program called magic predicate. The magic predicate stores all the
bindings for the associated predicate that would be generated by the top-down evaluation
of the program. The program is rewritten using the magic predicates so that irrelevant
tuples are not generated during the bottom-up evaluation of the program.

Definition 2.25 Given an adorned program AP, an adorned query goal ¢%, and a full
sips for each rule for AP, the magic sets transformation of AP, called M P is derived as
follows:

1. Create a magic predicate m_p for each derived predicate p in AP. The arity of m,, is
the number of bound arguments of p.

2. For each rule r in AP, add a modified version of r to M P. If rule r has head p(#),
where 7 is a shorthand for all arguments of p, the modified version of r is obtained
by adding m_p(t*) to the body of r, where t* represents all the bound arguments of

p().

3. For each rule r in AP with head p(¢), and for each subgoal qi(ﬂ) where ¢; is a derived
predicate, add a magic rule to M P, where the head is m_g;(?) and the body contains
all the subgoals that precede g; in the sips order associated with r, as well as the

literal m_p(t%).

4. Create a seed fact m,(¢), where € is the set of constants in the bound arguments of
the query goal.

18 Deciding Second-order Logics using Database Evaluation Techniques

Example 2.26 Consider the transitive closure program T'C"
P1: TranClos(nf,nt) < Transition(nf, nt)
P2 : TranClos(nf,nt) « Transition(nf, nk), TranClos(nk,nt)
and the query:
Q : < TranClos(1, nk)
Program T'C' and the query () are adorned as:
AP1 : TranClos™ (nf, nt) < Transition; (n.f, nt)
AP2 : TranClos™ (nf,nt) « Transitiony(nf, nk), TranClos’ (nk, nt)
AQ : «+ TranClos™ (1, nk)
Two occurrences of Transition in rules AP1 and AP2 are marked by subscripts. The magic
transformation of T'C' is derived as follows:

1. Create the magic predicate m_TranClos® for the derived predicate
TranClos®/.

2. Modify rules AP1 and AP2:
MP1 : TranClos® (nf,nt) <« m_TranClos’ (nf), Transition; (nf, nt)
M P2 : TranClos" (n.f, nt) « m_TranClos™ (nf), Transitiony(n.f, nk),
TranClos® (nk, nt)

3. From rule AP2 and the subgoal TranClos*/ (nk,nt), derive the magic rule:
M P3 : m_TranClos" (nk) < m_TranClos" (nf), Transitiony(n.f, nk)

4. add the seed fact:
M P4 : m_TranClos" (1)

Extended Magic-set Evaluation

Some implementations of Datalog® such as Relationlog [56] use magic set strategies ex-
tended to be used with nested levels. An extended adornment for an atom A with arity k
is a string of length k on the alphabet {b, f,C, P, T}, where b is for atomic argument and
stands for bound, f is for atomic argument and stands for free, C' is for complete set term
(terms with the set constructor {}), P is for partial set term (terms with the grouping
constructor ()), T is for tuple term. Furthermore, for a complete set term, partial set term
or a tuple term, another string on the alphabet {b, f,C, P, T} is used as a superscript to
represent the status of arguments in it.

Example 2.27 For an argument (a, {z}) where a is a constant and z is an atomic variable
the adornment is bC/.

19

Top-down (SLD) Resolution with Memoing: SLG

Top-down approaches naturally focus attention on relevant facts. Hence, they avoid, to the
extent possible, the production of states that are not needed to be searched. The basic top-
down evaluation procedure is SLD resolution (Linear resolution with Selection function for
Definite programs) [93] which views a program clause as a procedure declaration, and each
literal in the body of the clause as a procedural call. The most serious drawback of this
computational mechanism is that, it is not guaranteed to terminate for logic-programming
oriented recursive languages. In addition to this, SLD has a tendency to rederive the
same fact. An alternative way is a top-down evaluation with memoing strategy called
SLG resolution (Linear resolution with Selection function for General logic programs) [80,
17, 16] which extends SLD resolution by adding tabling to make evaluations finite and
non-redundant, and by adding a scheduling strategy to treat negation efficiently. The idea
behind memoing is to maintain a table of procedure calls and the values to return during
execution. If the same call is made later in the execution, use the saved answer to update
the current state. There are efficient scheduling strategies implemented for tabled logic
programs:

e Batched Scheduling: provides space and time reduction over the naive strategy which
is called single stack scheduling.

e Local Scheduling: provides speedups for programs that require answer subsumption.

Example 2.28 Consider the fact base:

Transition(1, 2)

Transition(2, 1)

Transition(2, 3)
and the transitive closure program T'C"

P1: TranClos(nf,nt) « Transition(nf, nt)

P2 : TranClos(nf,nt) < Transition(n f,nk), TranClos(nk, nt)
for query:

Q : < TranClos(1, 3)
Figure 2.3 shows an infinite sequence of SLD resolution steps for this program and the
given query. Each row in Figure 2.3 is a list of atoms, the first is the query. A pseudoatom
ans[] is added to the end of the query to collect the answer. Each row follows from the
previous row by matching the first atom with the head of a rule (or a fact), replacing the
atom by the body of the matching rule, and applying the match to all the atoms. The rows
are divided into columns to emphasize the procedure-calling nature of the computation.
Each row represents a state of the run time stack growing to the left and each column

20 Deciding Second-order Logics using Database Evaluation Techniques

TranClos(1, 3)
ang]]
Transition(1, nk) ang[]
TranClos(nk, 3)
TranClos(2, 3) ang[]
Transition(2, nt) ang[]
TranClos(nt, 3)
TranClos(, 3) ang]]

Figure 2.3: Infinite SLD resolution path for @)

represents a stack frame when viewing the computation as as execution of a procedural
program. The contents of a frame are the calls of the subprocedures that remain to be
made in that level. Consider the resolution steps in Figure 2.3, the last row shown has the
identical list of atoms as the first, so this cycle can be repeated forever.

The procedural control in SLD resolution handles parameter passing by matching an atom
with the head of a rule and applying the match to every atom in the entire stack. There
are several other extensions of the SLD resolution. Example 2.29 shows an incremental
version which handles passing of parameters into and out of procedures explicitly called
OLD? refutation. The reason for this representation is to make the procedure calls and
returns explicit so that they can be used for memoing. Example 2.30 shows OLDT strategy
which adds memoing to OLD refutation.

Example 2.29 Consider the fact base:

3The letters of the name come from Ordered selection strategy with Linear resolution for Definite clauses

21

Transition(1, 2)
Transition(3, 2)
Transition(2, 4)
and the transitive closure program T'C"
P1: TranClos(nf,nt) « Transition(nf, nt)
P2 : TranClos(nf, nt) < Transition(n f,nk), TranClos(nk, nt)
for query:
Q : < TranClos(1, A)
OLD refutation of T'C' on) which handles passing of parameters into and out explicitly
to be used in memoing is shown in Figure 2.4.

Example 2.30 Consider the fact base:

Transition(1, 2)

Transition(2, 3)

Transition(2, 1)
and the transitive closure program T'C"

P1: TranClos(nf,nt) < Transition(nf, nt)

P2 : TranClos(nf, nt) < Transition(n f,nk), TranClos(nk, nt)
for query:

Q) : < TranClos(1, A)
SLD tree for @ is infinite. OLDT forest for the same query is shown in Figure 2.5 which
is finite.

Each subgoal has a corresponding OLDT tree. A node in an OLDT tree is labeled by
a definite clause. Head of the clause shows relevant variable bindings and body contains
the subgoals to be solved. If the same subgoal occurs later, it is resolved using only the
answers that have been computed or will be computed. The memoing technique both
detects positive loops and avoids redundant computation of identical subgoals.

It can be shown that both of the techniques: Magic-set Evaluation and Top-down (SLD)
Resolution with Memoing: SLG simulate each other and that the magic predicates match
the memoing data structures (modulo open terms). For detailed description of the above
techniques see [4, 64] and [16, 17, 80], respectively.

2.2.2 Deductive Database Systems supporting Datalog®

Deductive database systems are database management systems that use a logical model of
data as a query language and storage structure. There are various deductive database im-

22 Deciding Second-order Logics using Database Evaluation Techniques

plementations that support Datalog®. In this section we examine four different deductive
database systems: LDL, Relationlog, CORAL, and XSB.

LDL (Logical Data Structure) [3, 18, 65, 90] is the first language that supports Datalog®
with well defined semantics. LDL supports tuples indirectly by using functors and it
supports sets directly. It allows the use of member predicate to access the elements in a
set, and provides set enumeration and set grouping mechanisms for the construction of
sets. LDL system uses magic sets technique in query evaluation. LDL has a language with
a first-order syntax and higher-order semantics. There are also logics that have a higher-
order syntax but a first-order semantics such as F-logic (Frame Logic) [46] and HiLog [15]
which support sets.

Relationlog (Relation LOGic) [56] is another Datalog® language with powerful tuple
and set constructors. The main novelty of the language is the use of partial and com-
plete set terms for representing and manipulating both partial and complete information
on nested sets, tuples and relations. They generalize the set enumeration and set group-
ing mechanisms of LDL and allow direct encoding of open and closed world assumptions
on nested sets, tuples and relations. It is argued in [57] that the traditional semi-naive
and magic set rule rewriting techniques cannot be used directly in processing. Hence,
extended semi-naive and magic sets techniques are used for evaluating Relationlog pro-
grams. Extended semi-naive technique uses grouping and difference operators to carry out
the evaluation on sets, while the magic set technique extends the use of adornments on
predicates for set and tuple terms in order to represent the bound and free information in
a nested level.

CORAL (COmbining Relations and Logic) [75, 76, 77] is a declarative language that
supports definite clauses with negation, multiset generation and set grouping. General
matching and unification of sets is not supported [76]. CORAL deductive database system
uses bottom-up evaluation with magic rewriting.

The XSB system [74, 80] uses a language that is very similar to Prolog. XSB supports
tuple constructors, however it does not support sets. Set enumeration and grouping oper-
ations can be implemented on XSB using list constructors. The query evaluation on XSB
is based on SLG resolution [85] that combines SLD resolution with memoing. XSB applies
SLD resolution for non-tabled predicates, and uses memoization for tabled predicates.

TranClos(1, A)
angA]

Transition(1, nk)
TranClos(nk, A)
ret[TranClos(1, A)]

cal[TranClos(1, A)]
angA]

ret[Transition(1, 2)]

cal[Transition(1, nk)]
TranClos(nk, A)
ret[TranClos(1, A)]

cal[TranClos(1, A)]
angA]

TranClos(2, A)
ret[TranClos(1, A)]

cal[TranClos(1, A)]
ans[A]

Transition(2, A)
ret[TranClos(2, A)]

cal[TranClos(2, A)]
ret[TranClos(1, A)]

call[TranClos(1, A)]
angA]

ret[Transition(2, 4)]

cal[Transition(2, A)]
ret[TranClos(2, A)]

cal[TranClos(2, A)]
ret[TranClos(1, A)]

cal[TranClos(1, A)]
ang[A]

ret[TranClos(2, 4)]

cal[TranClos(2, A)]
ret[TranClos(1, A)]

cal[TranClos(1, A)]
angA]

ret[TranClos(1, 4)]

cal[TranClos(1, A)]
ansg[A]

Figure 2.4: OLD refutation of T'C' on @)

23

24 Deciding Second-order Logics using Database Evaluation Techniques

TranClos(1, A) <— TranClos(1, A)

/

TranClos(1, A) <— Transition(1, A) TranClos(1, A) <— Transition(1, B), TranClos(B,A)
TranClos(1, 2) TranClos(1, A) <— TranClos(2, A)
TranClos(1, 3) TranClos(1, 1) TranClos(1, 2)

TranClos(2, A) <— TranClos(2, A)

T T

TranClos(2, A) <— Transition(2, A) TranClos(2, A) <— Transition(2, C), TranClos(C,A)
TranClos(2, 3) TranClos(2, 1) TranClos(2, A) <— TranClos(3, A) TranClos(2, A) <— TranClos(1, A)
TranClos(2, 2) TranClos(2, 3) TranClos(2, 1)

TranClos(3, A) <— TranClos(3, A)

T

TranClos(3, A) <— Transition(3, A) TranClos(3, A) <— Transition(3, D), TranClos(D,A)

Figure 2.5: OLDT forest for @

Chapter 3

Logic Programming Approach to
Decision Procedures for Weak
Second-order Logics

Given a WS1S/WS2S formula ¢ we create a Datalog® program P, such that an answer
to a reachability /transitive closure goal w.r.t. this program proves satisfiability of ¢.

However, we do not attempt to map the formula ¢ itself to Datalog®. Rather, we
represent the construction of A,—the finite automaton that captures models of ¢—as
a Datalog® program P,. This enables the use of the efficient evaluation techniques for
Datalog® discussed in Section 2.2.1.

3.1 Introduction

Tools based on the connection between logic and automata—in particular the MONA sys-
tem [47]—have been developed and shown to be efficient enough for practical applications
[40]. However, for reasoning in large theories consisting of relatively simple constraints,
such as theories capturing UML class diagrams or database schemata, the MONA system
runs into a serious state-space explosion problem—the size of the automaton capturing
the (language of) models for a given formula quickly exceeded the space available in most
computers. The problem can be traced to the automata product operation that is used to
translate conjunction in the original formulas rather than to the projection/determinization
operations needed to handle quantifier alternations.

This work introduces a technique that combats the problem. However, unlike most
other approaches that usually attempt to use various compact representation techniques

25

26 Deciding Second-order Logics using Database Evaluation Techniques

for automata, e.g., based on BDDs [8, 40, 47, 48] or on state space factoring using a guided
automaton [6], our approach is based on techniques developed for query evaluation in
deductive databases, in particular on the Magic Set transformation [3] and the SLG reso-
lution [16, 17]. We also study the impact of using other optimization techniques developed
for Logic Programs, such as goal reordering.

The main contribution of the work we present in this chapter is establishing the con-
nection between the automata-based decision procedures for WS1S (and, analogously, for
WS2S) and query evaluation in Complex-value Datalog (Datalog®). Indeed, the com-
plexity of query evaluation in Datalog® matches the complexity of the WS1S decision
procedure and thus it seems to be an appropriate tool for this task. Our approach is based
on representing automata using nested relations and on defining the necessary automata-
theoretic operations using Datalog® programs. This reduces to posing a closed Datalog®”
query over a Datalog® program representing implicitly the final automaton. This obser-
vation combined with the powerful query evaluation techniques developed for deductive
databases, limit the explored state space to elements needed to show non-emptiness of the
automaton and, in turn, satisfiability of the corresponding formula.

In addition to showing the connection between the automata-based decision procedures
and query evaluation in Datalog®, we have also conducted experiments with the XSB [80]
system that demonstrate the benefits of the proposed method over more standard ap-
proaches.

3.2 A Decision Procedure for WS1S

In this section we outline the decision procedure for WS1S. We first define a representation
and give automata operations as Datalog® views and then show our experimental results.

3.2.1 Representation of Automata

First, we fix the representation for automata A, = (X,, Q,, Sy, 0,, F,) that capture
models of a WS1S formula ¢. Note that we omit the set of directions D, since it is fixed.
Given a WSI1S formula ¢ with free variables x1, ..., z; we define a Datalog® program P,
that defines the following predicates:

1. Node,(n) representing the nodes of A,

2. Start,(n) representing the set of starting states,

3. Final,(n) representing the set of final states, and

27

4. Trans,(nfi,nt1,T) representing the transition function J, as a relation such that
(q,t,0) € 4, if there is a transition in A, from node ¢ to node ¢ with letter o.

where T = {x1,xs,..., 21} is the set of free variables of ¢; concatenation of their binary
valuations represents a letter of A,’s alphabet.

Definition 3.1 P, represents A, iff the interpretation of (Node,, Start,, Trans,, Final,)
in the minimal model of P, is isomorphic to A, = (Q,, Sy, 0y, F,).

First, we define the automata for the atomic formulas.

Definition 3.2 The following program P, represents the automaton A, for ¢ = 2 C y
(shown in the left part of Figure 2.2):

Node,(ng) < Trans,(ng, ng, 0,0) < Trans,(n1,n1,0,0)
Node,(n1) « Trans,(ng, ng, 0,1) < Trans,(n1,n4,1,0)
Start,,(ng) < Trans,(ng, ng, 1,1) < Trans,(ny,n1,0,1)
Final,(ng) < Trans,(ng, ny,1,0) < Trans,(ny,ny,1,1)

Definition 3.3 The following program P, represents the automaton A, for ¢ = s(z,y):

Node, (1) — Trans,(ng, ng, 0,0) < Trans,(n1,n9,1,0)
Trans,(ng, n1,0,1) Trans,(ny,nq,1,1)

Node,(n1) «
Trans,(ng, ng, 1,1) < Trans,(ng2,n2,0,0) «—

Node,(n2) «
Trans,(ng, n2,1,0) < Trans,(ng,n2,0,1)

Start,,(ng) <
Final. (ng) — Trans,(n1,n2,0,0) Trans,(ng, ng, 1,0)
PO Trans,(n1,n2,0,1) Trans,(ng,ng, 1,1)

Note that while for atomic formulas, the values representing nodes are atomic, for
automata corresponding to complex formulas these values become complex.

3.2.2 Automata-theoretic Operations

We define the appropriate automata-theoretic operations: negation, conjunction, projec-
tion, and determinization used in decision procedures for the logics under consideration as
programs in Datalog® as follows.

Definition 3.4 The program P-, consists of the following clauses added to the program
P,:

1. Node_,(n) < Node,(n)

28 Deciding Second-order Logics using Database Evaluation Techniques

2. Start_,(n) « Start,(n)
3. Final_,(n) < Node,(n), —Final,(n)

4. Trans_,(nfi,nt1,T) <« Trans,(nfi,nt, T)

Definition 3.5 Let A, = (2., Qu, Sa, 0o, F.) be a deterministic finite automaton captur-
ing the models of . Then A_, = (Q-u, X-a) S-a, O-a; Fra) Where Q-y = Qu, Yy = Xa,
S—u - Saa 5—|a - 6047 and F—\a = Qa\Fa'

The following lemma is immediate:

Lemma 3.6 If P, represents A, then P-, represents A_.

Proof: Using rules 1, 2, and 4, we can conclude that Q-, = Qu, Yoo = Y, S—a = Sa,
0-a = 0q, and from rule 3, F., = Q,\F, since Node_, relation represents (), Start_,
represents S_,, Final_, represents F.,, and Trans_, represents d_,. Hence, P, represents
A_,, which is the automaton representing —a. O

The proof is straightforward since the complementation operation on a deterministic
finite word automaton is achieved by assigning the nodes that are not final states in the
original automaton as final states in the complementation automaton. The conjunction
automaton which represents the conjunction of the two formulas that original automata
represent is defined as follows.

Definition 3.7 The program P, ., consists of the union of programs P,, and F,, and
the following clauses

1. Nodeg, ras ([121, n2]) «<— Node,, (n1), Node,, (n2)

2. Starta, na, ([n1,n2]) < Start,, (n1), Start,, (ns)

3. Finala,nay ([n1, na]) < Finaly, (n1), Final,, (n2)

4. Transg,nas ([nf1, nfa], [nt1, nts], T, 7, Z) «—

Trans,, (nf1,nt1,T,7), Transa, (nfao, ntse, 7, 2)

The sets of variables 7,y represent the free variables of the formula A,, and 7,z of the
formula A,,.

Definition 3.8 It can be shown that if Ay, = (Xa,, Qays Sars Oars Fay) and Ay, = (Za,,
Qa27 Sa27 60427 Fag) then Aoq/\ag - (Qal/\agu 2&1/\&27 Sa1/\a27 5&1/\&27 Fa1/\a2>7 Where Qal/\ag -
Qal XQQ27 Zal/\OQ - {x—yz ‘ Ty € 20r1 and% S 20!2}7 Sal/\OQ = Sal XSaQu 5041/\0(2 - 50!1 X 6042
(natural join on 64, and &y,), and Fy ey, = Fay X Fa,.

29

Again, immediately from the definition we have:

Lemma 3.9 Let P,, represent A,, and P,, represent A,,. Then P, ra, Tepresents Ao nas -

Proof: Using rules 1, 2, 3, and 4 we can conclude that Qo na, = Qo X Qags Sainay =
Sar X Sags Oairas = 0ay MW 0ay, and Fypa, = Fay, X F,, since Node,, rq, relation represents
Qayinass Starta, na, represents Sy, nas, Finala, aa, TePresents Fy aa,, and Trans,, aa, represents
Doy Aas - O

The proof above is based on the intersection operation on finite automata, where the
starting state, final state and nodes of a conjunction automaton A, ., are represented as
pairs of the starting states, final states and nodes of the automata A,, and A,,, and the
transitions among nodes are computed based on the transition relations and the intersection
of the alphabets of of A,, and A,,. The projection automaton which represents the
existential quantification of a given formula is defined as follows.

Definition 3.10 The program P4 is defined as the union of P, with the clauses

1. Node%_. (n) < Node,(n)
2. Starty, ., (n) < Start,(n)

3. Final4,.,(n) < Final,(n)
Final%.. (no) < Trans,(ng,n1,7,0), Finals.. (n1)

4. Transy. (nfi,nt1,7) < Transy(nfi,nt1, 7, 7)

The sets of variables ¥ and T represent the free variables of the formula a, and o =
{0,0,...,0} where |o| = |7].

Definition 3.11 For an automaton A, = (3,, Qa, Sa, 0o, Fy) the automaton A% =

JT:«

(gf:oﬁ 3:(: a? SH:{: He%) 3:(: a? FH:{: a) where QElzoz Qa’ Elza {y | .Z’y S 2a}7 SEIE:O[= SO”
Fi . =F,UF" where F' = {n € Q, | 3u € L' : n has a path to an f € F, with p}, and
L' = {w € ({0,1}*)* | the j — th track of w is of the form 0* for j # i}, where k is the
number of free variables in «, and ¢ is the track which corresponds to the interpretation of
the quantified variable Z, and (ns, n:,) € 0%, iff (nf,n, 7, 7) € da.

Lemma 3.12 If P, represents A, then P4, represents A% which is a nondeterministic
automaton accepting the models of the formula 37 : «.

Proof:

Using rules 1, 2, and 3, we can conclude that Q%..., = Qa,
from rule 4, Z ={y | 7y € X,}, and (ng,n,y) € 0%

Era SOC? Ema_FaUFia
lﬁ(nf7nt7xay)€5‘ U

Jz:« JT:«

30 Deciding Second-order Logics using Database Evaluation Techniques

The above proof is straightforward except the part about the final states. We need to
update final states because there may be leading zeros at the end of a string representing a
model that should still be accepted. If this is the case then there is a state s in the original
automaton such that a final state can be reached from s on a string of the form given by
the definition of L*. Thus, we need to characterize such states s as final states.

The automaton obtained by the projection operation is nondeterministic. The following
Datalog® program produces the representation of a deterministic automaton which accepts
the same language as the nondeterministic one.

Definition 3.13 The program Pz, consists of the program P3-. and the following clauses

1. Nodesz.o (V) « Startgz.o(N)
NOdegj;a(N> — Trans}f:a(Nla N7 E)
(

2. Startzz..({n}) < Starty,. . (n)
3. Finalsz.o (V) « Nodesz.o(N),Finals_ (n),n € N

4. Transzz.o (N1, (n), T) < Nodegz.,(N1), Nextsz.o (N1, n,T)
Nextsz.o(Ny, 12, T) < ny € Ny, Transy.,(n1,no, T)

Definition 3.14 Let A% = (X%, Q%.0r S%0s 0%.0, F5.,) be a nondeterministic au-
tomaton. Then Az, = (@350, 2370, 9370, 0370, Faz:a), Where Qaz., is a subset of the
power set of 4., that contains only the nodes reachable from S5z., by 037.0, 2374 1S equal

to X% Sa.q 1s a singleton set such that S%. € Sz, Fiza is the set of all states in

Iz
(3z.o containing at least one final state of A%, 03z, is the transition function of Agz.,
where (Qp, Qr,T) € 0350 iff (nfp,ny, @) € 04, for all ny € Qp and n; € Qr.

Jz:a

u

Lemma 3.15 If P represents A%, then Paz., represents the deterministic automaton

AEIE:O[-

Proof: Using rules 1, 2, and 3, we can conclude that (Qsz., is a subset of the power set
of %..,, which contains only the nodes reachable from S3z., by 0370, S350 IS a singleton
set such that S%.., € S3z.a, Faz.q is the set of all states in (J3z., containing at least one
final state of A% . . since relation Nodesz., represents (Qaz.o, Startsz., represents Szz.o, and

Iz
Finalgz., represents Faz.,. Using rule 4, Y3z, is equal to X% . and (Qp, Qr,T) € d3z. iff
(ng,ne,T) € 0%, for all ny € Qp and n; € Qr, since Transgg., represents d3z.q. O

The determinization representation presented here is the Datalog® version of the subset
construction algorithm described below:

31

e create the starting node of the deterministic finite automaton (DFA) by constructing
the set containing starting node of the nondeterministic finite automaton (NFA),

e for the new DFA node and for each possible input symbol, find the set of nodes
reachable by one transition on the input and add those set of nodes as a single node
to the DFA,

e each time we generate a new DFA node we apply the above step to it, and

e the final nodes of the DFA are those which contain any of the final nodes of the NFA.

Last, the test for emptiness of an automaton has to be defined: To find out whether the
language accepted by A, is non-empty and thus whether « is satisfiable, a reachability
(transitive closure) query is used.

Definition 3.16 The following program 7T'C, computes the transitive closure of the tran-
sition function of A4,

1. TransClos,(n,n) «

2. TransClos, (nf1,nt1) < Trans,(nf1,nts, T), TransClos,(nts, nt;)

Note that the use of magic sets and/or SLG resolution automatically transforms the tran-
sitive closure query into a reachability query.

Theorem 3.17 Let ¢ be a WS1S formula. Then ¢ is satisfiable if and only if P,, TC, =
Start,(z), Final,(y), TransClos,(z, y).

Proof: We know that ¢ is satisfiable iff A, has a path from s, € S, to f, € F,. Start,
represents S, and Final, represents F,. There is a path from s, € S, to f, € F, iff

x € Starty,, y € Final,, and (x,y) € TransClos,. Hence, ¢ is satisfiable if and only if
P,,TC, = Start,(z), Final,(y), TransClos,(z,y). O

Example 3.18 Suppose that we have a formula Jy : y C z, let A, be the automaton
for the subformula ¢ = y C z, we can use the following logic program to construct the
automaton Asy.,:

Nodes,. ,(n) < Nodey(n)

Startg, ,(n) < Startg(n)

Finalg, 4 (n) < Finalg(n)

Finalg, 4 (no) < Transy(ng, n1,0,y), Finalg, ,(n1)
Transg, s(n1,n9,) « Transg(ny, n2, 7, y)

32 Deciding Second-order Logics using Database Evaluation Techniques

This part computes the nondeterministic automaton (A§,,) representing the formula (see
Definition 3.10).

NOdegy;¢(N) — Startgy;¢(N)

Nodesy.(NN) < Nodes,.;(N1), Transs,.s(Ny, N, z)

Startg,.,({n}) « Starts, ,(n)

Finals,.s(N) < Nodes,.;(N), Finals,.4(n),n € N

Transsy.s(Ny, (n),) < Nodeg,.,(N1), Nexts,. (N1, n, x)

Nexts,.q (N1, ng, z) < ny € Ny, Transg, ;(n1,n2,)
TransClosgy.s(n,n) <

TransCloszy.s (11, n2) «— Transg,.,(n1, ns,), TransClosg,.4 (13, n2)

This part computes the deterministic automaton (As,.,) representing the formula (see
Definition 3.13), and the transitive closure of its transition relation (see Definition 3.16).
Note that determinization is not needed unless there is a negation operation after this step.
The satisfiability query is:

«— Startsy.4(n), Finalg,.s(m), TransClosgy.,(n, m).

Example 3.19 Consider the formula ¢ = =(z € V) A (3W : (y € W)), the automaton
accepting the models of this formula is shown in Figure 3.1 and its transition relation
in clausal form is given below. In both representations the order of the free variables
represented by the alphabet is x,y, V.

Transy(1,1,0,0,X) «
Transy(1,2,0,1, X) « Trans, (3,3, X,0, X) «
Transg(1,3,1,0,0) «

Transy(3,5, X, 1, X) «
Transy(1,4,1,0,1) «

Trans, (4,4, X,0,X) «
Trans,(1,5,1,1,0) «

Trans, (4,6, X,1,X) «
Transy(1,6,1,1,1) «

Trans, (5,5, X, X, X) «
Trans¢(2,2,0,X>X) — Trans (6 6, X, X X) —
Transy(2,5,1, X,0) < pl0,0, A, A,
Transg(2,6,1, X,1) «

This is a compact representation of the transition relation where X stands for 0 or 1.

The use of SLG resolution to evaluate the transitive closure goal allows us to construct
only the relevant parts of the automaton in a goal-driven way:

33

Figure 3.1: Automata representing the formula ¢.

Example 3.20 For the formula ¢ = =(z € v) V =(Jw : (y € w) A (2 € w)) the bottom-up
evaluation creates 240 transitions, and 16 transitive closure tuples for the starting node
while the top-down evaluation with memoing technique creates only 1 transition, and 1
tuple in the transitive closure for the starting node as shown in Figure 3.2. Let A,¢, be the
automaton for the subformula z € v, A,c,, be the automaton for the subformula y € w,
and A,c, be the automaton for the subformula z € w, we can use the following logic
program to construct the automaton Ag:

Node(ycuw)a(zcw) ([121, n2]) < Nodeyc,,(n1), Node, e,y (n2)

Start(yew)a(zew) ([11, n2]) < Startye, (n1), Start.cw(n2)

Final(yecw)a(zew) ([111, n2]) < Finalye, (1), Final ey (n2)

Trans(yEw IN(zEW) ([nfb an] [ntb nt2]> Y, z, ’lU) — Transyew(nfl’ ntl’ Y w)’
Trans,c, (nf2, nts, 2, w)

This part computes the conjunction automaton (Aecw)r(zcw)) representing the subfor-
mula (y € w) A (z € w).

NOdegw:(yEw /\(zEw)(n> — NOde(yéw)/\(zew)(n)

Startgw:(yew ,\(ZEw)(n) — Start(yew)A(zew) (n)

Finals,. (ycw)n(zew) (M) < Finalyewazew)(n)

Finalgw (yew)A Zew)(n) — Transcun(zew) (10, 71,0, 9), Finalgw:(yew)A(ZEw)(nl)
Transy,, (yEW)A(ZEw)(nl,ng,y, z) «— Transyewa(zew) (N1, N2, Y, 2, W)

34 Deciding Second-order Logics using Database Evaluation Techniques

v representing the sub-

This part computes the projection automaton (A% (yew)A (Zew))

formula Jw : (y € w) A (z € w).

Nodes,,. (yew)A(z€w)
NOdeEIw (yew)A(zew)
StartElw (yew)A(zew

(N) « Startsy: (yew)a(zew) (N)
(N) < Nodesu:(yew)r(zew) (N1); Transzu:(yew)a(zcw) (N1, N, T)
({TL}) A Startﬂw (yew)A(zew) (TL)
Fmalﬂw (yew)A(zew () A NOde3w¢ yEw)/\(zew)(N)u Finalgw(yew)/\(zew)(n>’n €N
Transsy.: (yew)a(zew) (N1, (1), ¥, 2) + Nodegy,: (yew)r(zcw) (N1),
NeXtEw:(yew)A(zew) (Nl, n,y,z
NeXtElw:(yEw)/\(zEw)(va n2,y, Z) —np € N17 Transgw:(yéw)/\(zew) (nh n2,Y, Z)

This part computes the deterministic automaton (As,:yew)a(zcw)) representing the sub-
formula Jw : (y € w) A (2 € w).

NOde(zEv)/\(Hw:(yEw) N(z€w)) ([nlu n2]) — NOdeva(nl) NOdeElw (yEw)/\(zEw)()

Start(zEv)/\(Hw (yew)A(zew))([n17n2]> — Startw@;(”l) Startﬂw (yew)A(zew) (TL)

Final (zev)A(FBw:(yew)A(z€w))([nb 712]) — FmaIzEv(nl) FmaIEIu) (yew)A\(z€w) (n)

Trans(wév)/\(ﬂw (yew)A(z€w)) ([nfban] [nt1>nt2] r,v,Yy,<) — Transer(nfl,ntl,x,v),
Transgu: (yew)n(zcw) (N.f2, Nt2, Y, 2)

This part computes the conjunction automaton (A ey)a(@w:(yew)r(zew))) Tepresenting the
subformula (x € v) A (Jw : (y € w) A (z € w)).

NOde¢(n> A NOde(xEv)/\(EIw'(yEw) (zEw))(n)

Start¢(n) — Start(xev) A(Fw:(yew)A(zew))(n)

Finalg(n) < Node(seva@u:(yew)a(zew)) (1), 7Finalzewa@u: (yew)n(zew)) (1)
Trans¢(nf1, nty, x,v,Y,z) — Trans (z€v)ABw:(yew)A(z€w)) (nfla nty,x,v,y, Z)

This part computes the complementation automaton (A,) representing the formula ¢.

TransClos,(n, n) «—
TransClos,(ny, n2) < Transg(ny, ng, x,v,y, z), TransClos,(ns, ns)

This part computes the transitive closure of the transition relation of the automaton
Ay. The satisfiability query is:

«— Start,(n), Final,(m), TransClos,(n, m).

(0)

? — Start,(n), Finaly(m), TransClos,(n, m).

Clall : Starty(n)?

Emt : Starty([1, {[1, 1]}])?
Call : Finalg(m)?

FExit : Finaly([1, {[1,1]}])?
Call : TransClos,([1,{]
Call : Transy([1,{[1,1]

Ewit : Transy([1, {[1, 1]}], [1, {[1, 1]}],0,0,0,0)?
Exwit : TransClos, ([1, {[1, 1]}], [1, {[1, 1]}])?
AL 1Y

ALY

Figure 3.2: Top-down evaluation of the program in Example 3.20.

35

The top-down evaluation of this query shown in Figure 3.2 first calls the rule(s) for

the conjunct Starty(n), an answer tuple [1,{[1, 1]}] is returned. Refering to the program
P, constructing Ay we see that 1 is an answer tuple for Start,c,(n;), and {[1,1]} is an
answer tuple for Starts,.(yew)a(zcw)(n2). Note that the set value is a result of the subset
constrution representation. Further, [1,1] is an answer tuple for Start(cu)azcw)([n1, n2]).
The rest of the evaluation is completed similarly producing the answer tuples [1,{[1, 1]}]

and [1,{[1,1]}] for n and m.

3.2.3 Experimental Evaluation

We compare the performance of the technique proposed in this chapter and implemented
using the XSB system! with the MONA system [40, 47], one of the most advanced tools
for reasoning in weak second-order logics (WS1S and WS2S).

1XSB supports set operations on lists, hence we simulate the set values in Datalog® by lists in XSB.

36 Deciding Second-order Logics using Database Evaluation Techniques

In the experiments we present thoughout this thesis, we used a machine with 1.80
GHz Intel(R) Pentium 4 processor and 512 RAM. The performance results for a set of
formulas are given in Figures 3.3, 3.4. We present a sample set of size 10 in each case
from the set of formulas we used in the experiments (which is much larger than 10) where
#i represents a particular formula. The response times are measured in seconds; N/A
means “Not Answered” in 120 seconds which is the maximum waiting time we picked. The
formulas are similar to the ones in Tableaux’98 (T98) satisfiability test suite except we
varied their sizes, the number of existential quantifiers, and free variables.

The results show that XSB outperforms MONA for the formulas with many free vari-
ables since it performs large numbers of conjunction operations very efficiently with the
use of top-down query evaluation and pruning techniques. This can be easily traced to
the effects of goal-driven evaluation of P, which become more pronounced for large the-
ories consisting of relatively simple formulas, such as those corresponding to constraints
used in database schemata or UML diagrams. The experiments also compared different
scheduling strategies of XSB namely the batched(XSB B) and the local(XSB L) ones.
Batched scheduling performs better than local since our programs do not require answer
subsumption. Experiments also show that tabling more predicates in addition to the auto-
tabled ones (results in columns XSB B(T) and XSB L(T)) increases space requirements
but enhances the performance substantially. The additional predicates we tabled are the
Trans predicates in the programs that represent the determinization step. Since this step
is critical in automaton construction, tabling the Trans predicate in addition to the Node
predicate gives better results (see formulas 5, 9, 10 in Figures 3.3, 3.4).

On the other hand, MONA usually performs better on formulas that have less free
variables and more quantifiers as it performs the projection operation faster than XSB.
We believe that this is a practical problem caused by the implementation XSB uses for the
evaluation of programs with nested relations and can be avoided using a more sophisticated
implementation of Datalog®. In addition to this MONA uses a compact representation of
automata based on BDDs [40, 47, 48] to enhance its performance, whereas XSB uses tries
as the basis for tables combined with unification factoring [74, 22]. The size of the trie
structures is, in general, larger than the size of a corresponding BDD. However it is easier
to insert tuples to a trie than into a BDD.

In the preliminary experiments [92] we conducted we also used CORAL, a deductive
system that supports Datalog® and Magic sets. Our results showed that CORAL also
performs better than MONA for the same formulas as XSB, however XSB is faster than
CORAL in all cases.

37

HL | F#2 | #3 | #4 | #D5 | #6 | #7 | #8 | #9 | #10

MONA |2.66|4.95| N/A|N/A| 0.42 | 0.01 | 0.01 | 0.05 {0.09 | 0.39
XSB B |0.01]0.01|0.11 | 0.01 |35.72| 1.74 |N/A | 0.01 |6.02|94.64
XSB B(T) |0.01]0.01] 0.01 | 0.01 | 15.88| 0.18 | N/A | 0.01 |0.29 | 10.96
XSBL [0.01]0.01{1.68|0.01|41.33|N/A|N/A |12.59|8.52 | N/A
XSB L(T) |0.01]0.01 | 1.73 | 0.01 | 15.03 | N/A |N/A | 6.63 |0.73| N/A

Figure 3.3: Performance (secs) w.r.t. increasing number of quantifiers

ST | #6 | #8 | #10 | #5 | #9 | #£1 | #£2 | #3 | #4
MONA | 0.01[0.01|0.05 | 0.39 | 0.42 [0.09[2.66|4.95|N/A|N/A
XSBB |N/A|1.74| 0.01 |94.64|35.72|6.02|0.01|0.01| 0.11 | 0.01
XSB B(T) [N/A | 0.18 | 0.01 | 10.96 | 15.880.29|0.01|0.01 | 0.01 | 0.01
XSBL |N/A|N/A|[12.59| N/A |41.33]8.52|0.01]0.01 1.68 | 0.01
XSB L(T) |N/A|N/A| 6.63 | N/A | 15.03|0.73|0.01|0.01| 1.73 | 0.01

Figure 3.4: Performance (secs) w.r.t. increasing number of variables

3.3 Decision Procedures for WS2S

In this section, we propose decision procedures for WS2S. We first outline a decision proce-
dure based on bottom-up automata and present our experimental results where we compare
our implementation with the MONA system [40] which also has a decision procedure for
WS2S based on bottom-up automata, then we give a decision procedure based on top-down
automata.

3.3.1 A Decision Procedure based on Bottom-up Automata

In this section, we outline the decision procedure for WS2S based on bottom-up automata.
We first provide a representation which can be defined analogously to 3.1 and give automata
operations as Datalog® views and then show our experimental results.

Representation of Automata

Similarly to the WS1S case, we fix the representation for automata that capture models
of WS2S formulas. Given a WS2S formula ¢ with free variables x1,...,z; we define a

38 Deciding Second-order Logics using Database Evaluation Techniques

Datalog® program P, that defines the following predicates:

1. Node,(n) representing the nodes of A,

2. Start,(n) representing the starting state,

3. Final,(n) representing the set of final states, and
4.

Trans,(nf1, nfs, nt1, T) representing the transition function d, as a relation such that
(q1,q2,t,0) € d, if there is a transition in A, from nodes ¢; and ¢» to node ¢ with
letter o.

where T = {x1,xs,..., 21} is the set of free variables of ¢; concatenation of their binary
valuations represents a letter of A,’s alphabet.

The automata for the atomic formulas can be defined similarly to the automata for the
atomic formulas in WSI1S.

Automata-theoretic Operations

We define the appropriate automata-theoretic operations: negation, conjunction, projec-
tion, and determinization used in decision procedures based on bottom-up tree automata
for WS2S as programs in Datalog® as follows.

Definition 3.21 The program P-, consists of the following clauses added to the program
P,:

1. Node_,(n) < Node,(n)

2. Start_,(n) < Start,(n)

3. Final_,(n) < Node,(n), —Final,(n)

4. Trans_,(nfi,nfa,nt;,T) < Trans,(nfi,nfa, nt1,T)

This definition is similar to definition 3.4 except for the last rule for the transition
relation. The following lemma is immediate from the definition:

Lemma 3.22 If P, represents A, then P-, represents A_.

The proof is the same as the proof of lemma 3.6. The conjunction automaton which
represents the conjunction of the two formulas that original automata represent is defined
as follows.

Definition 3.23 The program P, s, consists of the union of programs F,, and P,, and
the following clauses

39

1. Node,, na, ([11, n2]) < Node,, (11), Node,, (n2)
2. Starta, na, ([n1,n2]) «— Start,, (n1), Start,, (ns)
3. Finaly, aa, (11, n2]) < Finaly, (1), Final,, (n2)
4

[
- Transg, pa, ([nf11, 1 fo1], (D fi2, nfa], [nt1n, ntn], 7,7, Z)
Transal (nflb nf127 ntll 5 f7 g)a Transocz (anla nf227 nt217 g? z)

The sets of variables 7,7 represent the free variables of the formula A,, and 7,Z of the
formula A,,.

Again the definition is similar to definition 3.7 except for the last rule for the transition
relation and from the definition we have:

Lemma 3.24 Let P,, represent A,, and P,, represent A,,. Then P, ra, rEpresents

Aoq/\ag .

The proof is the same as the proof of lemma 3.9. The projection automaton which
represents the existential quantification of a given formula is defined as follows.

Definition 3.25 The program P%. is defined as the union of P, with the clauses

1. Nodel.. (n) < Node,(n)

2. Start%_ (n) < Start,(n)

3. Final%;.,(n) < Final,(n)
Finals;., (n0) < Trans,(no, n1, 2, 7, 0), Finalg;. , (n2)
Fmalﬂx a(n) — Transa(”Oa ny,Ne, T, 0)7 Flnalﬂz:a(nQ)

4. Transi.. (nfi,nfa,nt1,7Y) < Trans,(nfi,nfa, nt1,7,7)

The sets of variables ¥ and T represent the free variables of the formula a, and 0 =
{0,0,...,0} where 5| = ||

Definition 3.26 For an automaton A, = (3,, Qa, Sa, 0oy) the automaton A% =
(gf:a? Em o’ Sﬂr He% Er a’ Fﬂr a) where QElxa QOH Elxa - {y | Ty € 204}7 SEIT:a = SOH
Fe = F,UF' where F' = {ng € Qo | 3u € L' : there is a reduction from (ng,n;)
where ny € Qq, to an f € F, with u} U {ny € Q, | Iu € L' : there is a reduction from
(no,n1) where ng € Qq, to an f € F, with u}, and L' = {w € ({0,1}%)* | the j — th
track of wis of the form 0% for j # i}, where k is the number of free variables in «,
and 7 is the track which corresponds to the interpretation of the quantified variable Z, and

(nfunfwntlvy) S 639601 iff (nfvnfwntlvE? y) S 604'

40 Deciding Second-order Logics using Database Evaluation Techniques

Lemma 3.27 If P, represents A, then P which is nondeterministic

L., Tepresents A%
automaton for the formula 3T : «.

Jz:«

Proof: Using rules 1, 2, and 3, we can conclude that Q%.., = Qa, S%.. = Sa, [, = Fo U
F' fromrule 4, ¥4 = {y | 7y € Sa}, and (ny,nypy,ny,, Y) € 04, iff (g, np,,ne,,T,7) €
5a. O

The following Datalog® program produces the representation of a deterministic au-
tomaton which accepts the same language as the nondeterministic one obtained by the
projection operation.

Definition 3.28 The program Paz., consists of the program P and the following clauses

JT:«

1. Nodesz.o (V) « Startzz.o(N)
Nodesz.o (V) «— Transzz.o (N1, No, N, T)

2. Startzz..({n}) < Starty,. . (n)
(N) < Nodesgz.(N), Finaly,..(n),n € N

4. Transzz.o (N1, Na, (n),T) < Nodesz.o(V1), Nodegz.o(N2),
NeXtEf:a(Nlu N27 n7f)
Nethg;a(Nl,Ng,TLg,E) — np € Nl, Ng € NQ, Transgf:a(nl,m,ng,f)

3. Finalgz.,

Definition 3.29 Let A% = (X%.., Q%o 5%, 0%.., F5..) be a nondeterministic
automaton. Then Azz., = (Q3zar L3zas S3mas 03m0s Foza), Where Qzz., is a subset of
the power set of ()4, that contains only the nodes ns where there is a reduction from
(ny € nga,ng € Saza) to ng by 0374, Xaz.q is equal to X% | Sz, is a singleton set
such that € S3z.a, F5z.o is the set of all states in (Q3z., containing at least one final
state of A% | 03z, is the transition function of Azz., where (Qr,, Qr,, @1, T) € 030 iff
(ng,np,m, @) € 04, forall ng € Qp,, ny, € Qp, and ny € Q.

Elx'a

Lemma 3.30 If P
AEIz:a-

represents A% then Paz.., represents a deterministic automaton

Ema JT:«

Proof: Using rules 1, 2, and 3, we can conclude that (Qsz., is a subset of the power set
of Q% that contains only the nodes ng where there is a reduction from (ny € Szz.a,n2 €
Szz.a) 10 N3 bY 37,0, Sz 18 a singleton set such that S%. € S3z.., Fiz.a is the set of all
states in (Q3z., containing at least one final state of A%, since relation Nodes;., represents
(37, Startsz., represents Szz.., and Finalsz., represents Fiz.,. Using rule 4, Y5z, is equal
to X4, and (Qp,, Qr, Q1. T) € daz0 UfE (g, ny,, 14, T) € 04, forallng, € Qp, np, € Qp,
and n; € Qr, since Transgz., represents d3z.q. O

41

Last, we define the the test for emptiness of an automaton where we use a reachability
(transitive closure) query.

Definition 3.31 The following program 7'C', computes the transitive closure of the tran-
sition function of A4,

1. TransClos,(n,n,n) <
2. TransClos, (nf1, nfa,nty) < Trans,(nfi, nfs, nts, T), TransClos, (nta, nfs, nty)

3. TransClos, (nfi, nfa,nty) < Transy(nfi, nfa,nts,), TransClos, (n fs, nte, nty)

The following theorem shows our correctness result for the decision procedure we propose
for WS2S based on bottom-up tree automata.

Theorem 3.32 Let ¢ be a WS2S formula such that the models of ¢ are computed by
a bottom-up tree automaton. Then ¢ is satisfiable if and only if P,, TC, = Start,(z),
Start,(y), Final,(z), TransClos,(z,y, z).

Proof: We know that ¢ is satisfiable iff there is a f, € F|, that can be reached from
5, € Sy, and t, € S,. Start, represents S, and Final, represents F,. There is a f, € F,
that can be reached from s, € S,, and t, € S, iff x € Start,, y € Start,, 2z € Final,, and
(x,y, z) € TransClos,. Hence, ¢ is satisfiable if and only if P,, T'C,, = Start,(x), Start,(y),
Final,(2), TransClos,(x,y, 2). O

Experimental Evaluation

We compare the performance of the technique proposed for WS2S in this chapter and
implemented using the XSB system? with the MONA system [40, 47]. The performance
results for a set of formulas are given in Figures 3.5, 3.6. We present a sample set of size
10 in each case from the set of formulas we used in the experiments where #i represents
a particular formula. The response times are measured in seconds; N/A means “Not
Answered” in 120 seconds.

The results show that XSB outperforms MONA for the formulas with many free vari-
ables, on the other hand, MONA usually performs better on formulas that have fewer free
variables and more quantifiers and can be analyzed similarly to the results for WS1S.

2We simulate the set values in Datalog®’ using lists in XSB.

42 Deciding Second-order Logics using Database Evaluation Techniques

HL | F#2 | #3 | H#4 | #HD5 | #6 | #7 | #8 | #9 | #10

MONA |N/A |0.05]|9.22|0.68|0.01 |1.23{0.01|0.01|0.01 | 2.11
XSB B | 0.01 [0.01{0.01/0.02|0.01{0.01|1.42]0.01 [N/A |1.62

Figure 3.5: Performance (secs) w.r.t. increasing number of quantifiers

HT | H#8 | #9 | #10| #2 | #4 | #3 | #5 | #6 | #1

MONA | 0.01]0.01|0.01{2.11]0.05]{0.68]9.22|0.01 | 1.23 | N/A
XSB B|1.42(0.01 | N/A|1.62|0.01|0.02|0.01]0.01{0.01|0.01

Figure 3.6: Performance (secs) w.r.t. increasing number of variables

3.3.2 A Decision Procedure based on Top-down Automata

In this section, we outline the decision procedure for WS2S based on top-down automata.
Automata-based decision procedures for logics with semantics over infinite trees use top-
down automata, hence this section can be thought of an introduction to these procedures.
We provide a representation which can be defined analogously to 3.1 and give automata
operations as Datalog® views.

Representation of Automata

First, we fix the representation for top-down tree automata that capture models of WS2S
formulas. Given a WS2S formula ¢ with free variables 1, ..., z; we define a Datalog®
program P, with the following predicates:

1. Node,(n) representing the nodes of A,

2. Start,(n) representing the starting state,

3. Final,(n) representing the set of final states, and

4.

Trans,(nfi, nt1, nts, T) representing the transition function d, as a relation such that
(q,t1,t2,0) € 6, if there is a transition in A, from node ¢ to nodes t; and ¢, with
letter o.

where T = {x1,xa,..., 21} is the set of free variables of ¢; concatenation of their binary
valuations represents a letter of A,’s alphabet.

43

This representation is the same as that for finite and bottom-up automata except for
the representation of the transition relation. Again, the automata for the atomic formulas
can be defined similarly to the automata for the atomic formulas in WSIS.

Automata-theoretic Operations

As in the cases for finite and bottom-up tree automata we define the appropriate automata-
theoretic operations: negation, conjunction, projection, and determinization used in deci-
sion procedures for WS2S as programs in Datalog® as follows.

Definition 3.33 The program P-, consists of the following clauses added to the program
P,

1. Node_,(n) < Node,(n)

2. Start_,(n))

3. Final_,(n) < Node,(n), —Final,(n)

4. Trans_,(nfi,nty, nty, T) < Trans,(nfi, nty, nts, T)

— Start,(n

This definition is the same as definitions 3.4 and 3.21 except for the last rule. The following
lemma is immediate:

Lemma 3.34 If P, represents A, then P-, represents A_.

The proof of this lemma is the same as the proof of lemma 3.4. The conjunction
automaton is defined as follows.

Definition 3.35 The program P, xq, consists of the union of programs F,, and P,, and
the following clauses

1. Node,, na, ([11, n2]) < Node,, (n1), Node,, (n2)

2. Starta, na, ([n1,n2]) «— Start,, (n1), Start,, (ns)

3. Finala,nay ([N, na]) < Finaly, (n1), Final,, (n2)

4. Transg, nas ([nf11, nf21], [nt11, nta1], [nt1e, ntes], T, 7, Z) «—

Transal (nflb ntll; nt127 Ta y)? Transaz (nf217 nt217 nt227 ga E)

The sets of variables 7,y represent the free variables of the formula A,, and 7,z of the
formula A,,.

44 Deciding Second-order Logics using Database Evaluation Techniques

This definition is same as the definitions 3.7 and 3.23 except for the last rule defining the
transition relation. Again, we have the following lemma immediate from the definition:

Lemma 3.36 Let P,, represent A,, and P,, represent A.,. Then P, ra, TEpresents
Aal/\a2~

The proof of this lemma is the same as the proof of lemma 3.9. The projection au-
tomaton is defined as follows.

Definition 3.37 The program P

4., 1s defined as the union of P, with the clauses

1. Node%_ (n) < Node,(n)
2. Startg;.,(n

(n)
3. Final4,.,(n) < Final,(n)
(

Jz:a
Finaly.. . (ng) < Trans,(ng, n1,ns, T, 0), Final%-. (n1), Final%.. (n9)

7«

«— Start,(n)

4. Transi_ (nfi,nty,nty,) < Trans,(nfi,nty, nts, T, 7)

The sets of variables ¥ and T represent the free variables of the formula a, and o =
{0,0,...,0} where |o| = |y|.

Definition 3.38 For an automaton A, = (X,, Qa, Sa, 0a, Fu) the automaton A% =

Jz:a
(ng:on IHLT:OH S%LT:ON 513%:00 Fﬂuf:a)7 Where Qgﬁ:a = QQH 213%:04 = {y | .Qf_y € 206}7 ng:a = SO“
FL = F,UF" where " = {ng € Q, | 3u € L' : there is a reduction from ng to an
(f1, f2) where f; € F, and f, € F, with pu}, and L' = {w € ({0,1}*)* | the j — th track
of wis of the form 0* for j # i}, where k is the number of free variables in «, and

7 is the track which corresponds to the interpretation of the quantified variable Z, and
u

(nfwntl?ntzay) € 63%:01 iff (nfwntl?ntwfu y) S 50!‘

u

Lemma 3.39 If P, represents A, then P%. ., represents A% which is nondeterministic

automaton for the formula 3T : «.

Proof: Using rules 1, 2, and 3, we can conclude that Q%.., = Qa, S%., = Sa, Fi,, = FoU
F' fromrule 4, X% = {7 | 7y € X.}, and (ng,, ny,, ne,, Y) € 0%, iff (ng,, ney, ey, T,7) €
Og- O

Again, the automaton obtained by the projection operation is nondeterministic. The
following Datalog® program produces the representation of a deterministic automaton

which accepts the same language as the nondeterministic one.

Definition 3.40 The program Paz., consists of the program P and the following clauses

JT:«

45

1. NOdegf;a(N) — Startajza(N)
NOdeElf:a(Nl) — Transﬂf:a(Na Nla N27 T)
Nodesz.o(No) «— Transzz.o (N, Ny, Na, T)

({n}) < Startg;,(n)

3. Finalzz.o (V) < Nodegz.o(N),Finaly.. (n),n € N

4. Transzz.o (N1, (n1), (n2), T) < Nodesz.o (1), Nextaz.o (N1, ny,na, T)
Nextzz.o (N1, n2,n3,T) «— ny € Ny, Transi.. (n1,n9, @), Transy.. (ny,n3, T)

2. Startaz..

Definition 3.41 Let A%, = (X%, Q% .0 S%0s 0%.0, F5.,) be a nondeterministic au-
tomaton. Then Azz., = (@350, 2370, 9370, 0370, Faz.a), Where Qaz. is a subset of the
power set of Q4. , that contains only the nodes ny where there is a reduction from ny € Sz,
to (ng,m3) by d3z.o and ng where there is a reduction from ny € Szz.4 to (n2,n3) by 03z.q,
Yaza I8 equal to X4 | S3z., is a singleton set such that S%. ., € S3z., Fa5.a is the set of all
states in (J3z., containing at least one final state of A%, d37.4 is the transition function of
Asz., where (Qp, Qry, Qry, T) € 370 it (nf, 04y, n4,,7) € 0%, for all ny € Qp, ny, € Qpy
and ny, € Qp,.

Lemma 3.42 If Py represents A%, then P, represents a deterministic automaton

AEIz:a-

Jz:a

Proof: Using rules 1, 2, and 3, we can conclude that (Q3z.., is a subset of the power
set of Q% that contains only the nodes ny where there is a reduction from (n; € Sz,
to (ng,n3) by 03z, and ng where there is a reduction from (n; € Szz.. to (ng,n3) by
0370, S37:0 1S a singleton set such that SY.. € Sgz.q, Faz.a is the set of all states in Qzz.q
containing at least one final state of A% | since relation Nodesz.,, represents Qzz.q, Startaz.q
represents Szz.., and Finalgz,, represents Fiz.,. Using rule 4, ¥z, is equal to X%, and
(QFa QTI? QT2>) € 5395:01 iff (nfa Ty Ny, T) € 537:04 for all ny € QFa Ny € QTI and Ny € QT27
since Transsz., represents 03z.q. O

Last, we define the test for emptiness of an automaton to find out whether the lan-
guage accepted by A, is non-empty and thus whether « is satisfiable using a reachability
(transitive closure) query.

Definition 3.43 The following program 7T'C, computes the transitive closure of the tran-
sition function of A4,

1. TransClos,(ny, N) < Trans,(n, ne, ng,), Final,(ng), Finaly(ns), N = {ny} U {ns}
TransClos, (n1, N) < Trans,(n1, ns, ns,), Final,(ny), TransClos, (ns, Ns),

46 Deciding Second-order Logics using Database Evaluation Techniques

N = {ng} U N5

TransClos, (n1, N) < Trans,(n1, ns, ns,), Final,(ns), TransClos, (ns, Ns),
N = {Tbg} U N5

TransClos,, (n1, N) < Trans,(n1, ns, n3,), TransClos, (nz, Ny), TransClos, (ns, Ns),
N = N, U Nj

We have the following theorem showing how our procedure decides for the satisfiability
of a given WS2S formula.

Theorem 3.44 Let ¢ be a WS2S formula such that the models of ¢ are computed by
a top-down tree automaton. Then ¢ is satisfiable if and only if P,,TC, = Start,(z),
TransClos,(z, N).

Proof: We know that ¢ is satisfiable iff the transition relation can generate a subtree
from a starting state s, € S, such that all the leaves f, € Final,. Start, represents S,
and Final, represents F,. The transition relation generates a subtree from a starting state
s, € S, such that all the leaves f, € Final,, iff x € Start,,, and (x, N) € TransClos,,. Hence,
¢ is satisfiable if and only if P,,T'C,, |= Start,(z), TransClos,(z, V). O

3.4 Heuristics and Optimizations

In this section we give heuristics and optimizations for conjunctions of formulas, negated
formulas, and existential formulas.

3.4.1 Large Conjunctions of Formulas

Representing theories that capture database schemata and/or UML diagrams often leads to
large conjunctions of relatively simple formulas. Hence we develop heuristics that improve
on the naive translation of a formula ¢ to a Datalog®™ program P, presented in this chapter.
Many of these heuristics are based on adapting existing optimization techniques for logic
programs.

First, given a formula ¢ = ¢1 A s A ... A @, we have to decide which way the conjunc-
tions should be associated (parenthesized). Figure 3.7 shows how performance depends
on parenthesizing of a 4-way conjunction. In the experiment we test all permutations of
two sets of 4 formulas w.r.t. all possible parenthesizations. The table reports the best and
average times over all permutations for a given parenthesization. The results show that
left associative parenthesizing is generally preferable.

47

Formula Parenthesizing Best Time | Average Time | # Not Answered

1 ©i A (05 A (o A @r)) 0.56 23.23 5
(i Api) A (o A 1)) 0.77 7.00 4

(i Npj) A k) A @i 0.62 5.67 0

(i A (5 A or)) A 0.61 8.60 1

©i N ((pj AN gr) N @r) 0.59 10.26 6

2 ©i A (05 A (0 A @r)) 0.72 14.56 12
(i Apj) A (o A 1)) 1.26 25.43 8

(i Npj) AN k) A @i 0.94 24.18 2

(i A (95 A o)) A gy 1.65 27.00 5

©i N ((pj AN gr) N\ @r) 0.74 18.96 11

Figure 3.7: Performance (secs) Results w.r.t. Associativity

To take advantage of the structure of the input conjunction, we propose another heuris-
tic that produces a more appropriate goal ordering. We use a structure called a formula
graph: the nodes of the graph G, are the conjuncts of ¢ and the edges connect formulas
that share (free) variables (the edge labels list the shared variables).

Example 3.45 Consider a formula ¢ = p1 A ¢o A p3 A 4 Where:

1 = Frio: (((FYa0 1 (10 € Ya0) A (24 € Y30))) A (FYao : (710 € Yao)))
A=(FY20 1 ((z10 € Yi0) A (23 € Ya0))))

pa = 2(Brr: (21 € Y5) A (22 €Y5))) A (w5 € Y5) A (24 € V5)))

ps = —(z9 €Y5)

ps = (19 €Y5)

The formula graph for ¢ is as follows:

Y5 ¥3
3,24
Y1 —— P2 x9,Ys
Ys
P4

For this heuristic we also need to estimate size of the automaton A,. We use only very
simple estimation rules for the automata operations:

b ‘Awp‘ = |A<p‘

48 Deciding Second-order Logics using Database Evaluation Techniques

® ‘Aso1/\<pz| = ‘Aso1| x |A

-

[] ‘A354p| —= 2|A§0‘

The goal ordering heuristics for a formula p = 1 A@ps A. .. A, constructs a left-associative
permutation as follows: it starts from the conjunct that has the largest estimated automa-
ton and then finds its neighbor with the largest automaton (alternatively selecting another
conjunct if there are no conjuncts left that satisfy this criteria). This step is repeated until
all the conjuncts are processed. Intuitively in the case where a conjunction is applied on a
large automaton and a small automaton, when top-down evaluation is used, for every final
state we find in the first automaton we check all the final states of the second one and see
if they form a final state in the conjunction automaton. Since we iterate on a small sized
automaton in this case, ordering the formulas starting from the large ones is heuristically
better. The experimental results shown in Figure 3.9 support this optimization. In the
table heuristic time is the response time of the program for the rewriting generated by the
proposed heuristics, best time is the fastest response time among all the programs generated
for the formula, and similarly worst time is the slowest response time. The experiments
show that in many cases the heuristic achieves a performance close to the performance of
the program for the best possible ordering.

Heuristics described for conjunctions of formulas can be closely related to join order
optimization [14, 91] as shown by an example in Figure 3.8. The first heuristic which is
choosing left associative parenthesizing can be related to choosing left deep plans in query
optimization for join evaluation. The second heuristic on goal ordering can be related to
join order selection. The proposed approach tries to minimize the number of tuples visited
to find the first answer that satisfies the query.

3.4.2 Negated and Existential Formulas

In addition to conjunctive formulas, we also consider negated and existential formulas.
Negations can be classified as negations of conjunctions and negations of existential for-
mulas. The satisfiability problem for negations of conjunctions can be answered efficiently
since it is reduced to finding a non-final state in a conjunct. The experimental results
in Figure 3.10 show that the ordering of the conjuncts for negated conjunctions does not
have much impact on the performace of the satisfiability query. In the table best time is
the fastest response time among all the programs generated for the formula, and similarly
worst time is the slowest response time.

On the other hand, the satisfiability problem for negations of existential formulas of
the form ¢ = 3% : a can not be answered efficiently especially when the scope of the

49

> A

> Final,, A P4
> Final,, A 3

Final,, Final,, 1 P2

Figure 3.8: Relation between join ordering and formula rewriting

quantifier exceeds a certain limit. This is due to the fact that, we need to find all the
final states of the determinized automaton representing the existential formula, 37 : «,
to find a final state in the negation automaton. To avoid this problem, we extended the
rules for determinization to answer the satisfiability query for these types of formulas more
efficiently. The extensions are given in Definition 3.46 and Definition 3.47.

Definition 3.46 The program P._ consists of the program Pa;., and the following clauses

1. Final_Set%.. . ((n)) < Finaly,..(n)
2. Not_Finalgz.o(N) < Final_Set%...,(N1),Nodegz.o(N), NN N; =0

Definition 3.47 The program P’ consists of the program P-gz., given by Definition
3.4 where the 3rd rule is updated with the following one:

1. Final_gz.o(n) < Not_Finalzz.o(n)

Above extensions allow us to compute the final states in the negation automaton with-
out computing all the final states of the determinization automaton. In Definition 3.46, the
first rule computes the set of all the final states in the projection automaton representing
the existential formula 3% : o and the second rule checks if the intersection of this set and
the set representing a state of the determinized automaton is empty to find a final state in
the negation automaton.

50 Deciding Second-order Logics using Database Evaluation Techniques

of Conjuncts | Formula | Heuristic Time | Best Time | Worst Time
3 1 68.17 67.97 N/A
2 68.45 68.45 N/A
3 7.60 7.60 N/A
4 94.46 1.04 N/A
5 N/A 5.14 N/A
6 0.42 0.42 3.18
4 1 1.06 0.56 N/A
2 3.81 0.72 N/A
3 0.66 0.64 N/A
5) 1 12.61 0.94 N/A
2 15.94 0.92 N/A
3 2.6 0.50 N/A

Figure 3.9: Performance (secs) results on ordering

Experimental results presented in Figure 3.11 show that we have better results using
the extended set of rules for determinization. By the extension, we increase the size of the
set of formulas we can check for satisfiability.

Last, we consider existential formulas. We do not need to perform the determinization
step after projection for these types of formulas which results in up to an exponential
saving in space and time.

Bibliographical Notes

The automata-theoretic approach for monadic logics over finite words was developed by [9,
25, 89]. It was then extended to infinite words in [10], to finite trees in [87], and generalized
to infinite trees in [73]. An extensive survey on automata and logics can be found in [88, 36].
The MONA system [40, 47] is an implementation of automata-based decision procedures
for WS1S and WS2S. The deductive database system used in the experiments presented
in this chapter is XSB [74, 80]. In addition, the query evaluation techniques: magic set
rewriting and SLG resolution used in the decision procedures proposed in this chapter can
be found in [4, 64] and in [17, 16] respectively.

of Conjuncts | Formula | Best Time | Worst Time
4 1 0.01 0.07
2 0.01 0.07
3 0.01 0.07
4 0.01 0.14
5 0.01 0.07
5 1 0.01 0.07
2 0.01 0.07
3 0.01 0.07
6 1 0.01 0.05

Figure 3.10: Performance (secs) results on ordering for negated conjunctions

H1 | #2 | #3 | #4 | #5

Previous | 11.87|10.35| N/A | N/A | N/A
Extended | 16.30 | 10.97 | 10.87 | 22.07 | 44.20

Figure 3.11: Performance (secs) w.r.t. increasing number of variables

Chapter 4

Logic Programming Approach to
Decision Procedures for S1S

We show that an approach similar to the one we introduced in Chapter 3 can be used
for implementing S1S decision procedures. However, in the case of S1S, an automaton on
infinite words must be used. The complementation operation for automata on infinite words
(e.g. Biichi automata) is considerably more complicated than that for automata on finite
words. In this chapter, we provide a mapping for the complementation operation proposed
by Kupferman and Vardi [53] to Datalog® views which differs from the complementation
operation on finite word automata used for deciding WS1S. Hence, given a S1S formula ¢
we create a Datalog®™ program P, such that an answer to a reachability/transitive closure
goal w.r.t. this program proves satisfiability of . We also show that we can use formula
rewriting to transform negated conjunctions to formulas with disjunctions and use union
operation on automata which represents the disjunction operation (when converting the
satisfiability problem to the emptiness problem on automata) to optimize our decision
procedure for various formulas.

4.1 Introduction

The complementation problem on Biichi automata has numerous applications in formal
verification. Specification formalisms such as ETL [102] and pTL [94] involve comple-
mentation of Blichi automata, and the difficulty of complementing Biichi automata is an
obstacle to practical use.

We propose a solution based on expressing the complementation operation for Biichi
automata [53] as Datalog® views which also extends our translation for WSnS to S1S.

52

53

We also propose an optimization for the satisfiability problem of formulas with negated
conjunctions. The method is based on rewriting subformulas of the form = (o1 ApaA. . .Apy)
as (mp1 Ve V...V —pr). We show that such a rewriting considerably reduces the state
space for formulas with large negated conjunctions.

4.2 S1S and Automata Connection

First we show how to construct an automaton on infinite words that accepts models of a
given formula.

Similar to the case of WS1S an automaton can be constructed for each atomic formula.
The automaton A, is the product automaton of A, and A4 and accepts L(A,) N L(Ay),
the satisfying interpretations of ¢ A ¢. The automaton As,.,, the projection automaton of
A, accepts satisfying interpretations of 3z : ¢.

The complementation operation on nondeterministic Biichi automata on infinite words
(NBW) is not as simple as the one for automata on finite words used for deciding WS1S. An
approach to this problem has been proposed by Kupferman and Vardi [53]. The approach
for NBW complementation involves the following steps:

1. Dualize the transition function and the acceptance condition resulting in a Universal
Co-Biichi Word Automaton (UCW) A’

2. Translate the UCW A’ to a Non-deterministic Biichi Word Automaton (NBW) A”.

Theorem 4.1 [37, 53] Let A be a UCW with n states. There is an NBW A" with at most
3" - (2n — 1)™ states such that L(A") = L(A).

Let A = (3,Q,5,0, F) be a UCW where § : Q x ¥ — 29. There is an NBW A’ =
(3,Q',5",, F') such that L(A) = L(A"). For an integer k, let [k] = {0,1,...,k}, and
let [k]°% and [k]**" denote the set of odd and even numbers of [k], respectively. A level
ranking for A is a function g : Q — [2n — 2], such that if g(q) is odd, then ¢ ¢ F'. Let R
be the set of all level rankings. For a subset T of @ and a letter o, §(T,0) = |, 0(5,).

For two level rankings g and ¢’ in R and a letter o, ¢’ covers (g, o) if for all ¢ and ¢ in
Q, if ¢ € d(q,0), then ¢'(¢') < g(q). For g € R, odd(g) = {q : g(q) € [2n — 2]***}.

Now, A" = (3, @', Q, ¢, /), where

e) =29%x29xR
o &'={S} x{0} xR
e 0’ is defined, for all (T, 0, g) € @' and o € ¥ as follows

o4 Deciding Second-order Logics using Database Evaluation Techniques

— IO #0, then §'((T, 0, g),0) = {(6(T,0),5(0,0)\odd(g"),q') : ¢’ covers (g,o)}.
— If O =0, then &'((T, 0, g),0) = {{(6(T,0),5(T,0)\odd(g'), g') : ¢' covers (g,0)}.

o /=29 x {0} xR

Consider a state (T,0,g) € @', since O C T, there are at most 3" pairs of T and O
that can be members of the same state. In addition, there are at most (2n — 1)" level
rankings, hence the number of states in A’ is at most 3" - (2n — 1)".

4.3 Representation of Automata

First, we fix the representation for automata that capture models of S1S formulas. Given a
S1S formula ¢ with free variables 1, ..., z; we define a Datalog®™ program P, that defines
the following predicates:

1. Node,(n) representing the nodes of A,

2. Start,(n) representing the set of starting states,

3. Final,(n) representing the set of final states, and

4. Trans,(nfi,nt1,T) representing the transition relation.

where T = {x1,xs,..., 21} is the set of free variables of ¢; concatenation of their binary
valuations represents a letter of A,’s alphabet.

4.4 Automata-theoretic Operations

In this section, we define the appropriate automata-theoretic operations. Conjunction and
projection operations on Biichi automata can be represented by the Datalog® programs
given in Definition 3.7 and Definition 3.10. Hence we use the Datalog® programs given in
Chapter 3 for WS1S for the automata operations other than complementation.

The negation automaton which represents the negation of a given formula is defined
as follows. Suppose P/ defines the UCW A/, we define the program P! defining its NBW
translation A”.

Definition 4.2 The program P! consists of the following clauses:

1. Node!,(n) « Node,(n)
2. Start] (n) « Start,(n)

95

3. Finall,(n) « Final,(n)

4. Trans, (nf1, (nty),T) < Trans,(nfi,nt,T)

We represent the interval 0 < ¢ < 2n — 2, and the sets of even and odd numbers in the
interval, the set of functions R, and odd defined in Section 4.2 by the following program
R!.

Definition 4.3 The program R/ consists of the following clauses.

1. Number k! (0) <
Number k! (1) «

Number _k (n_val — 1) «
Odd K" (1) —
0dd K" (3) —

Odd k! (nval —2) « (if n — 2 is odd)
Odd k! (n_val — 1) « (if n — 1 is odd)

2. TWO—k/olc(N) — (Q> kl) S N7 (qa k2) € N7 kl 7& k2
Final Odd” (N) — (g, k) € N, Final’,(q), Odd k" (k)
R_Rel” ({(g,k))) < Node! (q), Number_k’ (k)
R_Function) (N) « RRel’ (M), N C M, ~Two_k.(N), =Final_Odd! (N)

3. 0dd! (G, (Q)) < R_Function (G), (Q, X) € G,0dd k! (X)

Here n_val is a constant equal to 2n — 2. We can use arithmetic to compactly represent
the finite set of atomic rules given in the first rule. The value of n_val is given so we can
use the following rules to define the predicates Number_k” and Odd_k”.

Number k! (0) «

Number_k” (N) « Number k! (M), N = M + 1, N < n_val
Odd k! (1) «

0dd K (N) — Odd K'(M), N = M +2, N < n_val

Lemma 4.4 If P, represents the UCW Al then the predicate R_Function! in R! represents
the set of functions R.

Proof: R is the set of functions f :) — [2n — 2] such that if f(g) is odd then ¢ ¢ F.
In R” R.Rel represents Q x [2n — 2]. Also Node!, represents @, Number k. represents
[2n — 2], and R_Function! picks a set N from 29*[27=2 guch that N contains tuples (g, k)

26 Deciding Second-order Logics using Database Evaluation Techniques

where g € Node!,, k¥ € Number k. and if (q,k;) € N and (q, ks) € N then k; # ko, hence

N represents a partial function f : Q — [2n —2|. Further if ¢ € Final/, and (¢, k) € N then
k ¢ Odd_k!, which means if ¢ represents an element from F then f(q) is not odd. O

Lemma 4.5 If the predicate R_Function! in R! represents the set of functions R then the
predicate Odd! in R/ represents the function Odd.

Proof: The predicate Odd! contains tuples G, (Q) such that G € R_Function, (Q, X) € G
and X € Odd_k” hence the set represented by (Q) contains all the nodes ¢ such that
(¢, X) € G where X is odd. As a result the predicate Odd, in R/ represents the function
Odd where (@) represents Odd(g) and G represents g given in the definition of Odd. O

We now represent the covers relation defined in Section 4.2 by the following program

cr.
Definition 4.6 The program C” consists of the following clauses.

1. Not_Covers. (G, (G2, 7)) < R_Function’ (G;), R_Function” (G5), Node/, (q),
Node,, (t), Trans,(q,t,T),
(q,0) € Gy, (t, k) € Go, k> 1

2. Covers. (G1, (G5, T)) < R_Function (G;), R_Function’, (Gs), Trans, (q,t,T),
=Not_Covers. (G1, (G2,T))

The binary relation > is used in this definition which can also be defined using a finite
set of atomic rules since the set of tuples this relation can have is finite.

Lemma 4.7 If P/, represents the UCW Al and the predicate R_Function”. in R/ represents
the set of functions R then the predicate Covers. in C" represents the covers relation.

Proof: The predicate Not_Covers! defines the tuples (Gy, (G, T)) such that for Gy €
R_Function! and G5 € R_Function!, there is a transition (q,¢,7) € Trans,, (¢,1) € Gy,
(t,k) € Gy where k > I. Then Not_Covers, contains (G1,(Gq,T)) pairs such that Gy
does not cover (G, T) according to the definition of covers. The predicate Covers, defines
the tuples (G1, (G, T)) such that G; € R_Function, Go € R_Function), (¢,t,T) € Trans,,
such that (G, (G2,7)) ¢ Not_Covers,, which means G covers (G»,Z) according to the
definition of covers. Hence the predicate Covers! in C” represents the covers relation.
where G represents ¢, (Go,T) represents (g, o). O

Definition 4.8 Suppose P! defines the UCW A/ resulted from dualizing the transition
function and the acceptance condition of the NBW for a.. The program P! consists of the
following clauses added to the program P. U R U CY:

o7

1. Node Set/ ((n)) «— Node/, (n)
Node” ((n1, ng,r)) <+ Node_Set! (n),n; C n,ny C n, R_Function” ()

2. Start! (({ny),{},r1)) < Starty(n1), R_Function (ry)

3. Trans Set) (n, (s),T) < Trans,(ny,s,T),n; €n
Trans! ((ny,n2,71), (51, 82, 91),T) < Node. ((ny,na,71)),
Covers! (g1, (r1,T)), Trans Set, (ny, s1,T),
(ny = 0 — Trans_Set,,(ny, s3,T); Trans_Set, (ns, $3,T)),
Oddg(g1,5),50 = 53\ s

4. Final’((ny,{},r1)) < Node Set, (n),n; C n,R_Function] (r;)

Lemma 4.9 If R_Function in R/ represents the set of functions R, the predicate Odd”,
in R represents the function Odd, and the predicate Covers, in C represents the covers
relation then P! represents AL, which is the automaton representing —c.

o)

Proof: For a UCW A/ = (N., S/, 6., F!) we construct an NBW A” = (N/ S! 6! F).
The construction of A” is given in Theorem 4.1. Given n € Node Set/, n; Cn andny, Cn
iff n, and ny each represent an element from 29, r; € R_Function,, iff r; represents a function
from R, Trans_Set, represents o, where 0,(T,0) = U,cr 04(s,0). Further, (g1, (r1,7)) €
Covers,, iff g; covers (ri,T) according to the definition of covers, and (g;,s) € Odd, iff
s represents Odd(g) and g, represents g given in the definition of Odd, we can conclude
that Node! relation represents N, Start! represents S”, Final” represents F!”, and Trans,,
represents 77. Hence, P! represents A, which is the automaton representing —a. O

Definition 4.10 The program P-, consists of the following clauses:
1. Node_,(n) < Node! (n)
2. Start_,(n) « Start] (n)
3. Final_(n) < Final’(n)
4. Trans_o(nfi,nty,®) « Trans, (nfi,nty,T)

Last, the test for emptiness of an automaton has to be defined: To find out whether
the language accepted by an automaton A, is non-empty and thus whether « is satisfiable,
a reachability (transitive closure) query is used.

Definition 4.11 The following program 7T'C, computes the transitive closure of the tran-
sition function of A,.

1. TransClos,(n,n) «

o8 Deciding Second-order Logics using Database Evaluation Techniques

2. TransClos, (nfi,nty) « Trans,(nf1,nty, T), TransClos, (nts, nty)

Note that the use of magic sets and/or SLG resolution automatically transforms the tran-
sitive closure query into a reachability query.

Theorem 4.12 Let ¢ be a S1S formula. Then ¢ is satisfiable if and only if P,, TC, =
Start,(z), Final,(y), TransClos,(z,y), TransClos,(y, v).

Proof: We know that ¢ is satisfiable iff A, has a path from s, € S, to f, € F, and
f, is visited infinitely often. Start, represents S,, and Final, represents F,. There is
a path from s, € S, to f, € F, iff = € Start,, y € Final,, (z,y) € TransClos,, and
[, is visited infinitely often iff (y,y) € TransClos,. Hence, ¢ is satisfiable if and only if
P,,TC, = Start,(z), Final,(y), TransClos,(z, y), TransClos,(y, v). O

Example 4.13 Suppose that we have an S1S formula o = —(ay A az), let A,, be the
automaton for the subformula oy and A,, be the automaton for the subformula aw, we can
use the following logic program to construct the automaton A”:

Node,, nas ([121, n2]) «<— Node,, (n1), Node,, (n2)
Starty, aa, ([11, n2]) < Start,, (n1), Start,, (ns)
Finala, nay ([121, m2]) < Final,, (n1), Finala, (n2)
Transa, nay ([nf1, nfa], [nt1, nts], T, 7, Z) «—

Trans,, (nf1,nt1, T, 7y), Trans,, (nfs, nts, 7, Z)

This part computes the intersection automaton A, representing the formula a; A as and
its UCT translation A/ is represented by P! as given in Definition 4.2.

Number k (0) «
Number_k (1) «

Number k” (n_val — 1) «
Odd K" (1) —
Odd K" (3)

Odd k! (nval —2) « (if n — 2 is odd)

Odd k! (nval — 1) « (if n — 1 is odd)

TWO_kg(N) — (q, k’l) € N, (q,]{?2) € N,k 7’é ko

Final Odd” (N) — (g, k) € N, Final’.(q), Odd k" (k)

R_Rel” ({(g,k))) < Node! (q), Number_k” (k)

R_Function” (N) < RRel” (M), N C M, ~Two_k/(N), =Final_Odd’ (N)
0dd’ (G, (Q)) < R_Function’ (G), (Q, X) € G,0dd k! (X)

59

This part computes the R and Odd functions for A”.

Not_Covers. (Gy, (G2, T)) < R_Function (G1), R_Function! (G3), Node, (¢),
Node, (t), Trans, (q,t,),
(¢,0) € Gy, (t, k) € Go, k> 1

Covers! (G4, (G9,T)) « R_Function” (Gy), R_Function’ (Gs), Trans. (¢, t,T),
=Not_Covers. (G1, (G2,T))

This part computes the Cowvers relation for A”.

Node Set/ ((n)) « Node/, (n)
Node ((ny,ny, 1)) < Node_Set! (n),n; C n,ny C n, R_Function’ (r)
Start! (({n1), {},r1)) < Start,(n;), R_Function? (r;)
Trans Set! (n, (s),T) < Trans, (ny,s,T),n; €n
Trans, ((ny,ne, 1), (1, 52,91),T) < Node.. ((ny,na,71)),
Covers.. (g1, (r1,T)), Trans_Set, (ny, 51, 7),
(ny = 0 — Trans_Set, (ny, s3,T); Trans_Set, (ns, $3,T)),
0dd! (g1, 5), 82 = 83\ s
Final” ((n1,{},r1)) < Node Set (n),n; C n,R_Function! (r;)

This part computes the negation automaton A” representing a.

4.5 Optimization for Formulas with Negated Conjunc-
tions

The proposed logic programming approach for the satisfiability problem of S1S formulas
has the same advantages over the traditional automata-based algorithms as the approach
for WS1S formulas. Hence the satisfiability questions for formulas with many free variables
(i.e. conjunctions) can be solved more efficiently. On the other hand, the most complex
operation in this case is the complementation operation, hence satisfiability problem for
the formulas with large negated conjunctions is harder to solve.

We propose a method for the satisfiability problem of formulas with large negated
conjunctions. The method is based on the transformation of such formulas to formulas
with disjunction. Hence given a formula we have two transformation steps:

1. Convert the formula to a formula with projection, conjunction and negation opera-
tions

60 Deciding Second-order Logics using Database Evaluation Techniques

2. Convert the subformulas of the form —(p; Apa AL . Apg) to (71 Voo V...V =)

Definition 4.14 The program F,, v, is defined as the union of P,, and FP,, with the
clauses

1. Nodea,va,(n0)-
Node,,va, (1) < Node,, (n)
Node,,va, (1) < Node,,(n)

2. Starty,va,(n0)-

(
3. Fina|a1Va2(n) — Flnalal()
Fina|a1\/a2 (n) — Flna|a2()

4. Transa,va, (1o, nty, €) < Start,, (nt)
Transa,va, (N0, nt1, €) < Start,, (nt)
Trans,,va, (nf1, nt1,T) < Trans,, (nf1,nty, T)
Transa,va, (nf1, nt1,T) < Trans,, (nfi,nty, T)

Since we use nondeterministic automata using disjunction does not add any deter-
minization steps. In addition, this optimization results in large savings in state space for
formulas of this type. Given a formula ¢, for each conversion from subformulas of the form
Od="(p1 Apa Ao Apg) to ¢ = (m1 Voo V...V —y) such that the number of states
in the autamaton accepting models of @7 is nq, @s is N, ..., Y is ng, we can calculate
estimated number of states |A,| and |Ay| of the automata Ay and Ay by the following
formulas:

‘A¢| — 37’L1'7’L2~...~nk . 2(n1 Mg T — 1)”1”27’%
|Ag| = 3" - 2(ng —1)™ 43" - 2(ng — 1) 4 ... + 3™ - 2(ny, — 1)™

The saving in state space is defined as |Ay| / [Aj|. Similarly, we can estimate the number
of transitions T}, in Ay and T,y in Ay where ¥ is the set of free variables in ¢, 29 is the
set of free variables in s, ..., X is the set of free variables in ¢ as follows:

|T¢| = 3Mm2 L Q(ny img Ly — 1) 9IX1UD2U.. US|
Tyl =3™.2(n;—1)™ 91E1l g2 9 ny—1 n2 . 9%l 4 3nk.9 ng—1 ni , 9|Zk]
¢

Theorem 4.15 For each k-way negated conjunction ¢ = —(p1 A pa A ... A @r) where
each conjunct can be represented by an automaton with O(n) states, the conversion to
¢ = (—p1 Ve V...V —y) results in the order of O((ng)"™) saving in state space.

61

Proof: From theorem 4.1, the number of states in ¢ is bounded by |A4| = O(3"" - 2(n* —
1)), the number of states in ¢’ is bounded by |Ag| = O(k-3"-2(n—1)") hence the saving
in state space is O(3"" - 2(n¥ — 1)"")/O(k - 3" - 2(n — 1)) = O((ng)™). m

Example 4.16 Suppose that we have an S1S formula o = —ay V —ag, let A,, be the
automaton for the subformula o and A,, be the automaton for the subformula as, we can
use the following logic program to construct the automaton A”:

Number_k, (0) «—
Number k7, (1) —

Number k[, (n_val — 1) —
Odd K (1) —
Odd_K! (3) —

Odd_k;, (n-val —2) «— (if n — 2 is odd)

Odd_k;, (n-val — 1) « (if n — 1 is odd)

TWO_k/O,é1 (N) — (q, k’l) € N, (q, k’g) € N,k 7é ko

Final_Odd, (N) < (¢, k) € N, Final), (¢), Odd_k_, (k)

R_Rel, ({(q,k))) < Node,, (¢), Number_k, (k)

R_Function], (N) < RRel_ (M), N € M,~Two_k;, (N),—Final_Odd], (N)
Odd, (G,(Q)) < R_Function], (G), (Q, X) € G,0dd_k], (X)

This part computes the R and Odd functions for A}, representing —a.

Not_Covers,, (G1, (G2, T)) < R_Function, (G1), R_Function], (G;), Node,, (q),
Node},, (t), Trans,, (¢, ,7),
(¢,;1) € Gy, (t,k) € Ga, k> 1

Covers,, (G4, (G2,T)) < R_Function], (G), R_Function;, (G3), Trans,, (q,t,T),
—=Not_Covers], (G1, (G2,T))

This part computes the Covers relation for A, .

62 Deciding Second-order Logics using Database Evaluation Techniques

Node_Set, ((n)) < Node, (n)
Node!, ((n1,n2,7)) < Node_Set, (n),n; C n,n, C n, R_Function, (r)
Start;, ((n1,{},r1)) < Starty, (n1), R_Function//,, (1)
Trans_Set,, (n, (s),T) < Trans, (n1,s,T),n €n
Trans,, ((n1,n2,71), (s1, 82, 91), T) < Node,, ((n1,n2,71)),
Covers, (g1, (r1,T)), Trans_Set;, (n1,s1,T),
(ng = 0 — Trans_Set,, (n1, s3,); Trans_Set;, (ns, s3,7)),
. Odd,, (g1,5), 82 = 53\ s .
Final), ((n1,{},71)) < Node_Set], (n),n; C n, R_Function;, (r1)

This part computes the negation automaton Ag, representing —a;.

Number k7, (0) —
Number k(1) —

Number_k;_(n_val — 1) «
Odd_K, (1)
Odd_K" (3)

Odd_k;, (n-val — 2) «— (if n — 2 is odd)

Odd_k, (nwval — 1) « (if n — 1 is odd)

Two_k"_ (N) « (q.k1) € N, (q,k2) € N, ky # ky

TwoK!_(N) — (g, k1) € N, (q,k2) € N, ky # ks

Final_Odd, (N) < (¢, k) € N, Final,(¢), Odd_k_, (k)

R-Rel}, (((¢,k))) < Node],_(g), Number_k;,_(k)

R-Function, (N) < RRel_ (M), N € M,~Two_k;_ (N),—Final_Odd, (N)
Odd], (G, (Q)) < R_Function;, (G), (Q, X) € G,0dd_k, (X)

This part computes the R and Odd functions for A7, .

Not_Covers, (G4, (G2, T)) < R_Function], (G1), R-Function;, (G3), Node/, (q),
Node,,, (t), Trans,, (¢, t, @),
(Q7l) S G17 (tv k) S G27k > 1

Covers,, (G1, (G2, T)) < R_Function, (G:), R-Function,, (G>), Trans,, (¢,t,T),
—Not_Covers;, (Gy, (G2, T))

This part computes the Covers relation for A7, .

63

Node_Set;,, ((n)) < Nodey,, (1)
Nodel, ((n1,n2,7)) Node. Set/,,(n),n1 C n,ny C n, R_Function], (r)
Starty,, (({n1), {},r1)) < Starta,(n1), R-Function//,, (1)
Trans_Set,, (n, (s),T) < Trans,, (n1,s,T),n €n
Trans,,_((n1,n2,71), (s1, 82, 91), T) < Node,, ((n1,n2,71)),
Covers,, (g1, (r1,T)), Trans_ Set ,(n1,51,T),
(ng = 0 — Trans_Set, (n, s3,) Trans_Set;,, (n2, 53, 7)),
. Odda, (g1, 5), 52 =5 \ s o
Finaly,, ((n1,{},r1)) < Node_Set, (n),n; C n, R_Functiong, (r1)

This part computes the negation automaton Ag, representing —a.

Node]. (ng).
Node,(n) < Node, (n)
Node,(n) < Node, (n)
Start no)

N, nt1, €) « Start;,_ (nt;)
nfl, ntl, T) — Trans’O'q (nfl, ntl, T)
nfi,nty,T) «— Trans,, (nfi,nt,T)

This part computes the automaton A! representing o = -y V —as.

Consider the formula —(p1 A p2) given in example 4.13 and —¢; V =y given in this
example such that the number of states in A,, and A, is 3 and X, = ¥y where |¥;] = 2.
Estimated number of states in A_,,rp,) = 3% - 2(32 — 1)** = 3% - 237 whereas estimated
number of states in Ay, vy, = 2-3%-2(3—1)% = 3% 2%, Estimated number of transitions

in Ao (g nps) = 37 - 24! whereas estimated number of transitions in Ay, = 3% - 25

Example 4.17 Consider a S1S formula ¢ = = (1 A 2 A w3 A @4 A p5) where ¢/ = =1 V
—py V 3 V s V s such that the number of states in Ay, Ay, Ag,, Ay, and Ay,
is 2 and ¥y = ¥y = ... = X5 where [3;] = 2. Estimated number of states in Ay =
3%.2(2° —1)% = 2.93% whereas estimated number of states in Ay = 5-32-2(2—1)% = 90.
Estimated number of transitions in A, = 8- 9332 whereas estimated number of transitions
in Ay = 360.

Heuristics we provided for conjunctive WS1S formulas can also be used for S1S formulas.
In addition, we propose an optimization for negations of conjunctions of formulas of the

64 Deciding Second-order Logics using Database Evaluation Techniques

form ¢ = = (o1 Ao A... Apy) which can be thought of breaking the negation operation to
smaller steps such that we can test for the satisfiability of ¢ by checking for the emptiness
of automata, A, , A, ..., Ay, , representing -y, =@, ..., 7@, separately until we
find a non-empty automaton or conclude that A, , A,,, ..., A-,, are all empty.

Bibliographical Notes

The complementation problem for Biichi automata that matches the lower bound has been
solved by Safra [78]. In our work we use an impoved complementation construction pro-
posed by Kupferman and Vardi [53] which also outlines the complementation constructions
for Biichi automata and their complexity results.

Chapter 5

An Incremental Technique for
u~-Calculus Decision Procedures

As in the case of WSnS and S1S conjunctive p-calculus formulas play an important role
in many settings such as reasoning in theories that describe system behavior using a con-
junction of a large number of relatively simple constraints. In this chapter, we provide
a decomposition technique for checking the satisfiability of conjunctive p-calculus formu-
las. The satisfiability problem for a p-calculus formula ¢ can be translated to the emptiness
problem for an alternating parity tree automaton A. Our technique is based on decompos-
ing the emptiness test procedure proposed by Kupferman and Vardi [55] for conjunctive
formulas and, in turn, an incremental algorithm for checking the emptiness of an APT
A constructed from a formula ¢. We also outline a top-down approach that drives this
incremental procedure.

Given a conjunctive p-calculus formula ¢ = @1 Ao A. .. Ap, the incremental technique
first constructs an automaton A; for ¢; and checks for its emptiness, if A; is empty then
the procedure stops. Otherwise it continues with automata for formulas @1 A @9, ..., ©
applying the same technique and reusing the automaton computed in step ¢ for computing
the automaton in step ¢ + 1.

5.1 Introduction

Propositional p-calculus is often considered one of the lingua franca logical formalism
among logics with EXPTIME decision procedures. Indeed, many other modal, dynamic,
temporal, and description logics have been shown to be relatively easily encodable in pu-
calculus [23, 49, 81].

65

66 Deciding Second-order Logics using Database Evaluation Techniques

The key technique to showing decidability and complexity bounds for pu-calculus is
based on capturing the language of models of a given formula using an automaton con-
structed from the formula—usually an alternating parity automaton—that accepts infinite
tree models of the formula [88, 97, 98]. Hence, testing for satisfiability reduces to testing
for non-emptiness of an alternating parity automaton automaton.

The emptiness test for alternating parity automaton, in particular when based on
Safra’s determinization approach [78, 79|, is difficult to implement. This issue, for pu-
calculus formulas, was addressed by using simpler Safraless decision procedures based on
transforming an alternating parity automaton to a non-deterministic Biichi automaton
while preserving emptiness [55].

However, even this improvement does not yield a practical reasoning procedure. The
difficulties inherent in the automata-based approaches are especially apparent when de-
termining logical consequences of moderately large theories of the form {p1,...0n} E ¢,
are considered. Commonly, more local search techniques applied to this problem try to
discover an inconsistency in the set {1, ...¢,, 7@}, which in practice rarely involves all
the formulas ¢; in the input. Hence, the inconsistency can often be detected much more
efficiently than using the automata-theoretic method which is constructing the automaton
for the formula ¢ A s A ... A @, A~ and then checking for its emptiness. This problem
manifests itself in many important settings, in which theories that describe system behav-
ior use a large number of relatively simple constraints, such as database schemes or UML
diagrams specified using, e.g., an appropriate description logic [11, 12, 5, 13].

In our work, we explore techniques that attempt to remedy the above difficulties by
proposing an incremental and interleaved approach to constructing the automaton corre-
sponding to the logical implication problem while simultaneously testing for satisfiability
of the so far constructed fragments. The main contributions of this work are as follows:

e we show how the decision problem can be split into a sequence of simpler problems,

e we show that in this incremental process, the larger problems can be constructed
from the simpler ones, hence avoiding unnecessary recomputation, and

e we show how top-down query evaluation techniques enhanced with memoing can be
used to drive the incremental computation.

5.2 From APT to NBT via UCT

The standard approach for checking the emptiness of an alternating parity tree automaton
(APT) involves Safra’s construction [78] which is complicated and not very suitable for

67

efficient implementation. An alternative approach to this problem has been proposed by
Kupferman and Vardi [55] and involves the following steps:

1. Translate the APT A representing a p-calculus formula ¢ to a Universal Co-Biichi
Tree Automaton (UCT) A,

2. Translate the UCT A’ to a Non-deterministic Biichi Tree Automaton (NBT) A”, and
3. Check for emptiness of A”.

The above transformations only preserve emptiness for the automata, not the actual lan-
guages of trees accepted. This is, however, sufficient for deciding satisfiability. We modify
this procedure to operate in an incremental fashion when the original alternating automa-
ton represents a conjunction of L, formulas. First, we review the two main steps in the
original construction [55]:

5.2.1 From APT to UCT

Consider an APT A= (X, D,Q,S,0,F), where § : Q x ¥ — BY(D x Q). A restriction of
J is a partial function 1 : Q — 2P*@. A restriction 7 is relevant to o € X if for all ¢ € Q
for which d(q, o) is satisfiable, the set 7(q) satisfies d(q,0). Let R be the set of restrictions
of 4.

For A = <2, D, Q, S, 5, F> with S = {qz}, F = {Fl, FQ, .. .,FQ}L}, and F() = @, the UCT
is defined as A’ = (¥, D,Q x {0,...,h — 1}, {{(g;,0)},d’, F') where:

e ' C 3 x R such that 7 is relevant to o for all (o,n) € 3.
e Forevery g € Q, 0 € X, and n € R:

— 0'({¢,0), (o, m)) = /\ogi<h /\(C,s)e(n(q)\(Dngi))(C, (8,14))-
— For every 1 <i < h, §'({(q,),(0,n)) = /\(c,s)E(n(q)\(DXng))(c7 (s,1)).

o I =Upcicn(Faiy1 x {i})

Intuitively, the nondeterminism in A is removed in A’ since ¥’ contains all the pairs (o, n)
for which 7 is relevant to o (n chooses from all the possible sets of atoms that satisfy d).
The automaton A’ consists of h copies of A such that the ith copy checks if a path in a
run of A’ visits Fy; only finitely often then it also visits Fb; 1 only finitely often by making
sure that the run stays in the ith copy unless it has to move to a state from Fy;.

68 Deciding Second-order Logics using Database Evaluation Techniques

5.2.2 From UCT to NBT

Let A = (X, D',Q',S", &, F'), and let k = (2n!)n*"3"(n + 1)/n!. Let R be the set of
functions f : @ — {0,...k} in which f(q) is even for all ¢ € F'. For g € R, let
odd(g) = {q : g(q) is odd}. The definition of A” = (¥', D", Q",S",¢", F") is given as
follows:

o Q' =29 x29" xR
o 5" ={{{q},0,g0)}, where gy maps all states to k.

e Forge @, o€ ¥ andce D' let v (q,0,¢) = §(q,0)N({c} x Q). For two functions
g and ¢’ in R, a letter o, and direction ¢ € D', we say that ¢’ covers (g, o, c) if for all
gand ¢ in @', if ¢ € 7/ (q,0,¢). then ¢'(¢') < g(q). Then for all (S,0,g) € Q" and
o €Y, 0" is defined as follows:

— If O # () then ¢"((S, O, g),0)
= /\ \/ (v (S,0,¢),7(0,0,¢) \ odd(g.), g)

ceD g. covers (g,0,c)

— If O =0 then 0"((S,0, g),0)

= /\ \/ (v'(S,0,¢),7'(S,0,¢) \ odd(g.), g.)

ceD g. covers (g,o,c)
o =29 x{(} xR.

Intuitively, the automaton A” is the result of a subset construction applied to A’ such that
for a run of A’ that satisfies a particular co-Biichi condition it guesses the possible runs
that satisfy its dual Biichi condition. The emptiness problem for NBT is much simpler
than the emptiness problem for APT which is shown to be solved symbolically in quadratic
time [58].

5.3 Decomposition of the APT to NBT Translation

In this section, we describe the proposed decomposition technique for a conjunction of
formulas of the form ¢ = ¢ A o A ... A ¢,. We know that there is an APT A =
(3,D,Q,S,6,F) that accepts tree models of ¢. To define this automaton, we need the
following auxiliary definition:

69

Definition 5.1 The closure of a formula ¢, cl(¢) is the smallest set of formulas that
satisfies the following:

¢ € cl(¢).

If 1 A ¢y € cl(), then ¢y € cl(¢) and ¢, € cl().

o If [a]t) or = € cl(¢) then 1) € cl(¢)).

o If vz.1p € cl(¢), then h(vz.1h) € cl(¢) and ¥ € ().

Now we define an alternating automaton Ay = (X, D, Qg, Sk, Ok, Fx) for a subformula
O =1 ANpa A... Ay of p as follows:

o ¥ = 247 where AP, is the set of atomic propositions in ¢/,
o Sp={¢'},

Qr = cl(¥),

for all 0 € Xy, d(q,0) € & iff ¢ € Qx, and

Fo={FiNQk FoNQp,..., % NQk}.

Emptiness of Ay implies emptiness of A and, in turn, the unsatisfiability of the original
formula ¢, as Ay represents a subformula ¢; A @o A ... A @ of . Hence, we can stop
checking for the emptiness of the automaton A early: whenever we reach an automaton
Ay that is empty. Otherwise we use the following theorem to extend A to A, without
the need to recompute all the transitions from scratch:

Theorem 5.2 Let A) = (X}, D, Qrx{0,...h—1},{(q;,,0)}, 0}, F}) be the UCT translation
of Ax, and A’ = (X', D,Q x {0,...h—1},{(¢;,0)}, 0", F") be the UCT translation of A.
Then for every qi € Qk, 0k € Xk, N € Ry, m € Ry:

8 ({qr, 1), (ok,me Um)) = 0,.({qx, 1), {0k, k) for all 0 < i < h where Ry is the set of
restrictions ny : Qp — 2P*% such that for all (0K, Mk) € X}, My s relevant to oy, and Ry is
the set of restrictions n; : Q \ Qp — 2P*€.

Proof: For every q; € Qk, ox € Xk, e € Ry, m € Ry:

70 Deciding Second-order Logics using Database Evaluation Techniques

o (g 0) o Um) = Mosich Newretm@om@nmxr (& (5,1)
= Nocicn Newrctantaon (o (© (51D
o<i<h N\esyemlanDx R (6 (5:7)
/\O§i<h (¢,8)€ (M (i) \ (DX Fa))(C (s,4))
o<i<h Ne.s)emaN\(Dx (Fain@) (€ (5:9))

= 0,({qx, 0), (ok, 7k)), and

e for all 1 <7 < h we have
0" ({ars 3) s me Um)) - = Nie.oyetmlan)im(@n(Dx o)

y(c:(s,2))
= A (¢, (s,2))A
»(c: (s,

i)

(e:8)E(me(a)\ (DX Fai))
(e.8)€(m (g \(Dx F;))

= Nesemianmxm)(©(s:1)

= Nes)em@nmxEineo) (6 (5:1)

= 8, ({qn, 1), {on,).

O

Thus we can reuse the transitions computed for a UCT A} (i.e., for o1 Awa A... A py)
when computing the transitions of A, for ¢; Ay A... A pgi1. Similar theorem holds for
the UCT to NBT step:

Theorem 5.3 Let A} = (¥, D,Q}, Sy, 0, F) be NBT translation of A}, and A" =
(3 D,Q",S", 8", F") be the NBT translation of A’.

Then for all (S,0,g) € Q}, 0 = (oK, nk) € X, 0 = (Op, M Um) € X/, 8" ((S,0,9U f),0) =
§1((S,0,[gU f/g)),0") where g : @, — {0,..., K'Y (K = 2n)n." 3" (ny, + 1) /ng! where
ny is the number of states in A}.), and f: Q' \ Q) — {0,...,k}.

Proof: If O # () then
0"((S,0,9U f),0)
= NV ((50.0.900,¢)\odd(g.U[), g U f)

ceED gccovers (g,o c)
feceovers (f,o,c)

= /\ \/ <’}/l/€(S, O'/,C),’Y];(O,O’,,C)\Odd(gc)>gcufc>

ceED gc covers {g,o,c)
fe covers (f,o,c)

= 6,((S,0,[gU f/g]), o)

71

If O =0 then
§"((5,0,9U f),0)
= /\ \/ <’y/(S,O',C),’)//(S,O',C)\Odd(gcufc>7gcufc>

ceED gccovers (g,o,c)
fecovers (f,o,c)

= A ViS00, (S, 0" 0) \ 0dd(ge), ge U f)

ceED gec covers {(g,o,c)
fe covers (f,o,c)

= 0,((S,0,[gU f/g]),0")
O

This result shows that we can reuse the transitions we compute for an NBT A} used
for checking the satisfiability of ¢1 A w2 A ... A ¢ when we are computing the transitions
of Ay, for o1 Ao Ao A Qi

Example 5.4 Consider a formula ¢ = ¢; A @9 such that ¢ = va.(¥ A (—)x) @2 =
—wx. (¢ A (—)z) where ¢ = py.(bV (—)y). Let ¥ = {a,b}, and D = {1,2}, an APT
accepting models (which are tree models that have at least one path with infinitely many
b7S) of ¥1 is Al = {2, D, Ql; {ql}, 51, Fl} where:

Q1= 1{q a1}

51(qo, a) = (1,q0) V (2, q)
61(q0,0) = (1, q1) V (2, q1)
o1(qr,a) = (1,90) V (2, q0)
(Q1 b)=(1,q1)V(2,q)

= {{w}. {0, a1}, {0 a1} {0, a1 }}
APT for ¢y, Ay = {27 D, Qs, {CI2}7527 F2}2

Q2= {C_I2,Q3}

(52(q2,a) = (1aq2) A (2aq2)
02(q2,0) = (1,q3) A (2, q3)
02(g3, @) = (1,q2) N (2, 2)
d2(q3,0) = (1,q3) A (2, q3)

B ={} {e} {e 6} {e e}
and the APT for (%2 is Ag = {E, D, Qg, {Q4}, (53, Fg}l

Q3 =Q1UQ2U{q}

03 = 01 U 09 plus the following transitions:

72 Deciding Second-order Logics using Database Evaluation Techniques

53(C]4>a) = (LQO) A (1aq2)
53(C]4>b) = (LQO) A (1aq2)
F3 - {{QO}7 {QO7 q1, q2}7 {q07 q1, 492, Q3}7 {QO7 q1, 492, Q3}}

Note that the index of A3 is 4 and A; and A, have the same index as A3 according to the
definition of Fj (for k=1 and k=2 in this case). As a result some sets in F; and F, are
repeated at the end.

The incremental strategy used for this formula first checks for the emptiness of A;
(which is not empty), then checks for the emptiness of A3 (while re-using the transitions
computed for the UCT A} and the NBT AY), e.g.: 05({(qo, 0), (a,m1Uns)) = &} ({q0, 0), (a,m))
for all §; € R, and 1, € Ry. Here R, is the set of restrictions 7, : Q; — 2P*@1 such that for
all {o1,m1) € 3, m1 is relevant to oy, and R is the set of restrictions 7, : Q3 \ Q; — 2993,

5.4 The Algorithm

Let A; be the APT for @1 A pa A ... A, and let A; be the UCT translation of A;, A7[j]
be the NBT translation of A} where R is the set of functions f : @ — {0,...,j} for
1< <n.

The algorithm outlined in Figure 5.1 incrementally constructs automata A7[j] for 1 <
i < n and looks for the smallest j, j, < k such that A/[j] is not empty reusing the
automaton A7[j] in the computation of AY[j + 1]. If A7[k] is empty it stops, if not it
constructs A7, [jn] reusing the automaton AY[j,,]. Hence we have two directions first we
are checking for the emptiness of a particular automaton A[j] for 1 < j < k, second
we are checking for the emptiness of automata A7[j] for 1 < i < n. We are using the
proposed incremental technique on computing automata reusing the previous automata in
both directions.

Theorem 5.5 If A/[k'] is not empty then A} |[K'] is also not empty where 1 < k' <
(2nhn?"3"(n + 1)/n! and n is the number of states in Al

Proof: Let A, = (X, D,Q,{(q;,0)},9, F), and A,_, = (X1, D, Q1,{{(q;,,0)}, 01, F1). Start-
ing state of A is ¢! = ({(¢;,0)},0, go), and starting state of A7 ; is ¢/ = ({{¢;,,0)},0, g5)
where R is the set of functions f : Q@ — {0,...%'} and gy € R and g} € R map all the
states in @ and @ to k' respectively. Consider a path 7w where ¢/ goes to (S,0,g.). If
we remove all the states @ = @ \ @ from 7 then we get a path my where ¢ goes to
(S2,0s,g.) such that (g;,,0) € S,. Consider a path m where ¢/ goes to (51,01, g.), if m
is accepting then m; is also accepting since {(g;,,0)} C Ss. O

1: initial =1
2: fori=1tondo

3: construct A;

4: if © > 1 then

5: construct A} using A;_,

6: end if

7. k= (2n)n*3"(n + 1)/n! for A} with n states
8 for j =initial to k—1 do
9: construct AY[j]

10: if A7[j] is not empty then
11: if © = n then

12: return not empty

13: else

14: initial = j

15: go to 2

16: end if

17: end if

18: end for

19: if AY[k] is empty then

20: return empty

21: end if

22: end for

Figure 5.1: Pseudo-code for Incremental Satisfaction Algorithm.

73

74 Deciding Second-order Logics using Database Evaluation Techniques

This theorem shows that the smallest j such that A7 ,[j] is not empty is also the smallest
possible j such that A[j] is not empty. As a consequence, when we are constructing A/ [j]
we can start from the last j. Also, this means we can directly reuse the information
computed at stage ¢ — 1.

5.5 A Top-down Approach tothe APT to NBT Trans-
lation

We represent the general construction algorithm as a logic program and check the emptiness
using a goal with respect to the program. The outline of the program for the construction
of an NBT A% from an APT Az = (X, D, Q, 5,0, F) for a formula 3 is as follows:

5.5.1 Representation of APT
The representation for alternating parity tree automata Az with an index h for a formula
3 is a Datalog® program Pz that defines the following predicates:

1. Dirg(n) representing the set of directions D,

2. Nodeg(n) representing the set of nodes @ of A,

3. Startg(n) representing the set of starting states .S,

4

. Finals(i, N) representing the acceptance condition F' where 0 < i < h and N is a set
of nodes such that if we have Finalg(j, V1) and Finalg(j + 1, N2) then Ny C Ny, F is
a finite set, hence the number for atomic rules defining Finalg is also finite.
5. Transg(n, N, a) representing the transition function ¢ where n is a node, N is a set
of direction, node pairs and a is a letter from the alphabet.

5.5.2 Preprocessing of the Transition Relation

We preprocess the transition function ¢ of Ag to transform the B* formulas to sets of nodes
using the algorithm given in Figure 5.2. The procedure process called by the algorithm
code is given in Figure 5.3.

5.5.3 APT to UCT Translation

Suppose P defines the APT Ag, we define the program Pj defining its UCT translation
Aj. First we represent the set of restrictions and the relevant relation by the following
program Rj.

1: index =0
2: for all §(q, a)

= ¢ do

3: process(q, a, p)

4: end for

Figure 5.2: Pseudo-code for preprocessing of §

Lif o = (c1,q1)
2:

3: else

4:

5:

6: else

7

8:

9:

10:

11:

12: else

13: if p=
14:

15:

16: end if
17: end if
18: end if

19: end if

A (c2,q2) N ... A (¢, @) then

add Transﬁ(q> {(617 ql)a (027 q2)7 ey (Cma Qm)}a a’)

if © = (Cl, Q1) then
add Transg(q, {(c1,q1)}, a)

if ¢ = @1 A @y then
add Transg(q, {Qindexs Qindex+1}, @)
process(Qindez > @, P1)

prOC@SS(deemH, a, @2)
index = index + 2

©1 V oy then

pI‘OCGSS(q, a, 901)
process(q, a, ©2)

Figure 5.3: Pseudo-code for process(q, a, ¢)

75

76 Deciding Second-order Logics using Database Evaluation Techniques

Definition 5.6 The program Rj; consists of the following clauses.

1. DN_Set'ﬁ(<(d, q))) < Dirg(d), Nodes(q)

2. Restrict_El;(¢, S) < Nodes(g), DN_Set3(N),S € N
Restrict}s(((g, S))) < Restrict_Ely(q, S)
TWO_S,ﬁ(N) — (q, Sl) € N, (q, Sg) €N, S 7é S
Restrict_Fnjy(M) « Restricty(N), M € N, ~Two_Sj(M)

3. Not_Relavanty(R, a) < Transg(n, S1,a), Restrict_Fnj(R), (n,S2) € R, —(S1 C Sy)
Relevantj;(R, a) <+ —Not_Relavant}(R, a)

Lemma 5.7 If Ps represents Ag then Rj represents the set of restrictions R and the
relevant relation between the letters of the alphabet and the restrictions.

Proof: From the definitions in section 5.2.1 a restriction of § is a partial function n : Q —
2DXQ A restriction 7 is relevant to o € ¥ if for all ¢ € @ for which §(g, o) is satisfiable,
the set 7(q) satisfies 0(q, o). In Ry, DN_Setlﬁ constructs the set D x @ since Dirg represents
D, and Nodeg represents (). The predicate Restrictlﬁ represents @ x 2P*% and Restrict_Fn'ﬁ
represents a restriction n : Q — 2P*%. The predicate Relevant'ﬁ represents the relevant
relation since for all (n,S1,a) € Transg, R € Restrict Fn, (n,5;) € R,S; C S, which
means S satisfies Transg for (n, Sy, a). a

The following program Ij; computes the interval 1 <4 < h and (i, 2i) pairs for 0 <7 < h.

Definition 5.8 The program [j consists of the following clauses.

1. Index;3(0) «
Indext3(1)

Index(y(h-val — 1) <
2. Index_Pair}5(0,0) «
Index_Pairjs(1,2) «

Index_Pair;(hval —2/2, howal — 2) « (if h_val — 2 is even)
Index_Pairj(h-val —1/2, h-val — 1) « (if hoval — 1 is even)

Here, h_val is a constant and its value is the value of h. We can use arithmetic to
compactly represent the finite sets of atomic rules given in the first and second parts of
the definition. The value of h_val is given so we can also use the following rules to define
the predicate Index,.

77

Index(y(1) <
Indexty(n) « Indexz(m),n =m+1,n < h_val

Index_Pair}5(0,0) «
Index_Pair;(n, m) « Index(n), m = 2 x m

Since the set of values satisfying Index’ﬁ is finite then the set of values satisfying Index_Pair'ﬂ
which uses Index’ﬁ in its definition is also finite.

Definition 5.9 The following program Pj consists of the following clauses added to the
program Pz U Ry U I

1. Nodej(n,i) < Nodeg(n), Index;s(h),i = h — 1
2. Startj(n, 0) « Startg(n)

3. Dir_Final3(((t, (c,s)))) « Dirg(c), Finalg(t, S),s € S
Transy((n,0), ((c, (s,))), (a,7)) < Index_Pair'ﬂ(i,t), Relevantj(r, a), (n,m) € 7,
¢,s) € m, —Dir_Finalj(t, (c, 5))
(c, (s,))) (a,r)) « Index’ﬁ(h), Index_Pairj;(h,), Relevantj(r, a),
m) €1, (c,s) € m, =Dir_Finaljy(t, (c, s))

4. Finaly({(n,1))) < Index_Pairy(i,t), I =t + 1, Finalg(l,s), n € s

(
(
Trans((n, h), §

Lemma 5.10 If P defines the APT Ay and Rj represents the set of restrictions R and the
relevant relation between the letters of the alphabet and the restrictions then Pé represents
Al

Proof: Node’ﬁ represents () X {0, ..., h—1} since Nodeg represents () and Index'ﬁ represents

the interval {0,...,h — 1}. Start); represents {(g;,0)} since Startg represents {¢;}. Transj
represents 0": For every ¢ € Q, 0 € X, and n € R:

* 9'({¢,0),{0:1) = Nocich Nesyem@npx i) (€ (8:7))-
e For every I1<:< h7 6/(<Q7 7’>7 <O', 77)) = /\(c,s)e(n(q)\(DXng))(C7 <S7Z>>

In Pj, Index_Pairj; represents (i,2i) pairs for 0 < i < h. The conjunction Relevantj(r,a),
(n,m) € r, (c,s) € m, —Dir_Finaly(t, (¢, s)) compute Nes)ctman(Dx i (6 (8,9)) as a set
of conjuncts. Final represents F', it is given that F' = [y p(Faipa x {i}), (i,1) €
Index_Pair};, [=t + 1 represent a pair (7,2i + 1) and (I, s) € Finalg, n € s represent Fy; ;.
(I

78 Deciding Second-order Logics using Database Evaluation Techniques

5.5.4 APT to UCT Decomposition

Let B=p1 Apa A ANon, B =01 N2 A Agg, and A} = (X1, D, Q x{0,...,h—1},
({q:. },0), o, Fy) be the UCT translation of Ag , A" = (X', D, Q@ x{0,...,h—1}, {{g;,0)},
o', F') be the UCT translation of Ag, and Pg, represents Ag, .

Definition 5.11 The program RDj; consists of the following clauses.
1. DN_Setj(((d, q))) < Dirg(d), Nodes(q)

2. Restrict_El; (¢, S) < Nodes(q), -Nodeg, (¢), DN_Set3(N), S € N
Restrict_I; (((¢,S))) < Restrict_Setj (q, 5)
TWO_S,ﬂk(N) — (q, Sl) €N, (q, 52) €N, S 7é S
Restrict_Fn); (M) « Restricty (N), M € N,=Two_Sj (M)
Restrict_El;3(q, S) < Nodes(q), DN _Set(N), S € N
Restrict}s(((q, 5))) <« Restrict_Ely(q, S)
TWO_S,ﬂ(N) — (q, Sl) € N, (q, SQ) e N,5; 7é So
Restrict_Fn;(M) « Restrict3(N), M € N, ~Two_Sj(M)
3. Not_Relavanty(R, a) < Transg(n, S1,a), Restrict_Fnj(R), (n,S2) € R, —(S1 C Sy)
Relevantj;(R, a) < —Not_Relavant}(R, a)
Not_Relavanty, (R,a) < Transg, (n, S, a), Restrict Fnj (R), (n,52) € R, ~(S; C S5)
Relevant); (R, a) < —Not_Relavantj (R, a)

Definition 5.12 The following program PDj consists of the following clauses added to
the program Pz U RDj U (Pj \ Rj) U Pj.

1. For every g € Nodej; , (ax,7) € Relevantj , 7, € Restrict_I); :
TransDj3((qx, 1), t, (ar, 7 Ury)) < Transg ((qr, h),t, (ax, 7x))

2. For every ¢, € Nodej; — Nodej; , (a,7) € Relevantj:
TransDjs((q1, h),t, (a,7)) < Transg((qi, h), t, (a,7))

If the incremental approach is used the tuples computed for Trans’ﬁk when checking
the emptiness of A} can be reused to compute a part of TransD’ﬁ which represents the
(decomposed) transition relation of Aj.

5.5.5 UCT to NBT Translation

Suppose Pj defines the UCT Aj, we define the program Pj defining its NBT translation
A%, First we represent the interval 0 < < k, the sets of even and odd numbers in the
interval. We then represent the set of functions R, the functions gy and odd defined in
section 5.2.2 by the following program Rj3.

79

Definition 5.13 The program Rj consists of the following clauses.

1. Number_kj(0) «
Number_kj(1) <

Number ki (k_val — 1) «
Even_k7(0) «
Even_k3(2) «

Even_kj(k_val — 2) « (if k — 2 is even)
Even ki (k_val — 1) « (if k — 1 is even)
Odd k(1) —

B
Odd_K/)(3) —

Odd_kjz(k_val — 2) — (if k — 2 is odd)
Odd_kjz(k_val — 1) — (if k — 1 is odd)
2. TWO—kg(N) — (¢, k1) € N,(q,k2) € N, k1 # ks
R_Rel%({(¢,k))) < Nodej(q), Number_k(k)
R_Function3(N) < R_Relj3(M), Final3(S), N € M, ~Two_kj3(N)
((¢,k) € N, (q,k) € S — Even_kj3(k))

3. g-Function(((¢, k-val))) < Nodej(q)
4. 0dd3(G, (Q)) « R_Functionj(G), (Q, X) € G, 0dd_kj(X)

The value of k_val is given so we can also use the following rules to define the predicates
Number k3, Even_kj, and Odd_k7.

Number_k7(0)

Number_kj3(N) < Number k3 (M), N = M + 1, N < k_val
Even_k7(0)

Even_kj(N) < Even kj(M),N = M + 2, N < k_val
Odd_kj(1)

Odd_K/(N) — Odd_K(M), N = M +2, N < k_val

Lemma 5.14 Suppose Py defines the UCT Aj then the predicate R_Functiong in R rep-

resents the set of functions R.

Proof: R is the set of functions f : @ — {0,...,k} in which f(q) is even for all ¢ € F.
In R}, R_Relj represents @ x [k]. Also Nodej; represents @, Number_kj; represents [k], and

80 Deciding Second-order Logics using Database Evaluation Techniques

R_Functiong picks a set N from 29%[¥ such that N contains tuples (g, k) where ¢ € Nodelﬁ,
k € Number_kj and if (¢, k1) € N and (¢,k2) € N then k; # ky, hence N represents a
partial function f : @ — {0,...,k}. Further if S € Finalj and (¢,k) € N and (¢,k) € S
then k € Even_kjj which means if (g, k) represents an element from F' then f(q) is even. O

Lemma 5.15 If Py defines the UCT A} then the predicate g_Function in Rj represents
9o-

Proof: The predicate g_Functiony; is defined as a set with tuples (¢, k_val), for all ¢ € Node;
since k_val contains the value of k defined in the UCT to NBT translation in section 5.2.2,
g_Functiong represents go which maps all nodes to k. O

Lemma 5.16 Let the predicate R_Functiong in R represent the set of functions R then
the predicate Oddg in R} represents the function Odd.

Proof: The predicate Oddg contains tuples G, (@) such that G € R_Functiong, (@, X)eG
and X € Odd_kj hence the set represented by (Q) contains all the nodes ¢ such that
(¢, X) € G where X is odd. As a result the predicate Oddg in R} represents the function
Odd where (@) represents Odd(g) and G represents g given in the definition of Odd. O

We now represent the covers relation defined in section 5.2.2 by the following program
Cy.
B

Definition 5.17 The program C} consists of the following clauses.

1. Not_Covers;(G1, (G2, a,c)) + R_Functions(G1), R_Functions(Gs), Nodejs (g1, d1),
NOde,,B(q27 d2)7 Trans/ﬁ((qla dl)a (qQa d2)a (CL, C))7
((Qb dl)wr) S Gla ((QQ, d2)a y) € G27y >

2. Coversy(GYy, (G2, a, ¢)) < R_Function3(G1), R_Function3(Gs), Transy(q, t, (a, c)),
—Not_Coversy (G, (Ga, a,c))

Lemma 5.18 Let Py defines the A} and the predicate R_Functiong in R represents the
set of functions R then the predicate Coversg in C5 represents the covers relation.

Proof: The predicate Not_Coversy defines the tuples (Gi,(G2,a,c)) such that Gy €
R_Function3, G, € R_Function, there is a transition ((qi,d1), (g2, d2), (a,c)) € Transy,
((q1,d1),) € G1, ((q2,d2),y) € G where y > x. Then Not_Coversj; contains (Gy, (G2, a, c))
pairs such that G does not cover (Gs,a,c) according to the definition of covers. The
predicate Coversy defines the tuples (G, (G2, a,c¢)) such that G € R_Functiony, Gy €
R_Functionj, (q.t,(a,c)) € Transy such that (G1,(Gs,a,c)) ¢ Not_Coversy, which means

81

G1 covers (Gg,a,c) according to the definition of covers. Hence the predicate Coversg in
C}; represents the covers relation where Gy represents ¢', (G2, a, ¢) represents (g,0,c). O

Definition 5.19 The program Pj consists of the following clauses added to the program
P// U R// U C//
B B B

1. Node_Setj;({(n, h))) < Nodej(n, h)
Node(n1, na,7) < Node_Setj(n),n1 C n,ny C n, R[Function(ry)

2. Startg({(n,h)},{},r) « Starty(n, h), g-Functionjs(r)

3. Trans_Setj(n, (s), (a,c)) < Transg(ni, s, (a,c)),n1 €n
Trans}((5,0.9), (1, £, 0c). (a.)) Dir’(c). 0 % 0. Nodey(s. 0. g), Covers}(ge, (9,0,),
Trans_Setj(s, 1, (a,), Trans Setj(0,t2, (a,), Odd}(ge, m), ts = ta—m
Trans((s,0,9), (tl,tg,gc) (a,c)) « Dirj(c), o = 0, Nodej(s, 0, g), Coversﬁ(gc,(g,a c)),
Trans_Set(s, t1, (a,), Trans_Setg(s ta, (a,¢)), 0dd5(ge, m), ts = ta—m
(

4. Finalg((n, {},7)) < Node_Setj(m),n C m, R_Function(r)

Lemma 5.20 Let Pj defines the A}, the predicate R_Functiong in R represents the set
of functions R and the predicate Coversg in Cf represents the covers relation then Pg

represents Aj.

Proof: Nodeg represents Q" since my, and ny represent two subsets of), and r; €
R_Function; represents a function from R. Startj represents S” = {({¢j},0,go)} since
Start}; represents {¢;} and r € g_Function; represents go. For ¢ € @, 0 € ¥', and ¢ € I,
let 7/(¢q,0,¢) = §(q,0) N ({c} x Q). For two functions g and ¢’ in R, a letter o, and
direction ¢ € D', we say that ¢’ covers (g,0,c) if for all ¢ and ¢’ in @', if ¢ € +/(q, 0,¢).
then ¢’(¢') < g(g). Then for all (S,0,g) € Q" and ¢ € X', 0" is defined as follows:

o If O # () then ¢"(({S,0,g),0)
= A \V (/(S.0.0),7(0,0.¢)\ odd(gc), ge)

ceD g covers (g,0,c)

e If O = () then ¢"((S, 0, g),0)
= /\ \/ (+(S,0,¢),7(S,0,¢) \ odd(g.), g.)

ceD g covers (g,o,c)

82 Deciding Second-order Logics using Database Evaluation Techniques

Transg represents 0” where the term c¢ represents a direction c, Trans_Setg represents /',
the term s represents S, o represents O, Coversg represents the covers relation, and Oddg
represents the Odd function. Finalg represents [since n represents a subset of ()’ and
r € R_Functiong represents a function from R. O

5.5.6 UCT to NBT Decomposition

Let A% = (¥}, D, @y, Sy, 6, FY) be NBT translation of A} , and A} = (X', D, Q", 5",
6", F") be the NBT translation of A, and Pj represents Aj .

Definition 5.21 The program PDJ consists of the following clauses to be added to Pj U
P//
B

1. For all (s,0,g) € Nodej , (ax,rx) € Relevanty , r; € Restrictl; , g € R_Functionj
g U f € R_Function’;:
TransD%((s,0,9U f),t, (a,7x Ur)) < Transg ((s,0,9),t,(a,7%))

2. For all (s,0, f) € Nodej; — Nodej; , (a,r) € Relevanty, f € R_Function:
TransD%((s, 0, f),t, (a,r)) < Transg((s, 0, f),t, (a,7))

As in the case of APT to UCT decomposition the tuples computed for Tra nsgk with the
incremental approach can be reused to compute a part of Tranng which represents the
(decomposed) transition relation of Aj.

5.5.7 NBT Emptiness

Definition 5.22 Suppose Pj defines the NBT Aj, the program Ej for deciding on the
emptiness of A% on binary trees consists of the following clauses added to the program Pj:

1. TransB}((s. 0,9),a,n,m) < Trans}((s.0.9).n. (a,0)), Trans((s, 0. 9). m. (a, 1))

2. Sub_Treejy(ny, N) < TransBj(ni, a, ny, ng), Finalg(ny), Finalj(ng), N = {ny} U {ns}
Sub_Treej(ny, N) « TransBj(n1, a, ng, ns), Finalg(ny), Sub_Treef(ns, N5),

N = {ng} U N5

Sub_Treej(n1, N) « TransBj(ny, a, ny, ns), Finalj(ns), Sub_Treej(ny, N5),
N = {Tbg} U N5

Sub_Treejs(n1, N) < TransBj(n1, a, ng, ng), Sub_Treefs(ny, Ny), Sub_Treejy(ns, N5),
N = Ny U Nj

3. GSub_Treej(ny, N3) « Startj(ny), Sub_Treej(ny, Ny)
GSub_Treej(s1, N) < GSub_Treejy(n1, N3), 51 € Ny Sub_Treefy(s1, N)

83

4. Emp_Fj3((n1)) < GSub_Tree(ny, Ny)
Emp_S5((Ns)) < GSub_Treejs(ny, Ny)
Empjs() < Emp_Fj(N1), Emp_S5(Na), M € Noy M C Ny

The proposed NBT emptiness algorithm for a particular automaton checks if subtrees
which have only final nodes in their leaves are repeated infinitely often. The emptiness
query works top-down starting from the transitive closure of the initial state on these types
of subtrees and stops checking when it makes certain that they are repeated infinitely
often. This means that there is a tree accepted by the automaton. We compute only
the transitions that we need to answer the emptiness query. For instance, to answer the
emptiness query on an NBT automaton we only need to compute the transitions that are
reachable from the starting state of the automaton.

Let 8= 1 Apa A...A p,, then the following query answers the satisfiability question
for 3:

Emp, (), Empg,ap, () -, Emp3()

Example 5.23 Consider an NBT automaton A where

Y ={a}, D={1,2},
Q = {Q(b q1, 492, 43, 44, q5}7 S = {QO}v

(g0, @) = (1,q1) A (2, q2),
0(qr,a) = (1,q2) N (2,g3),
d(q2,a) = (L, q1) AN (2,q1),
d(g3,a) = (1, q1) N (2,q3),
0(qu,a) = (1,q5) N (2, 5),
6(g5,a) = (1,q1) A (2, 1), and
F= {Q2,CI3}-

When we are running the emptiness algorithm on this automaton we only compute the
first four transitions.

5.6 Heuristics

In this section, we provide several heuristics and optimizations that can be applied to
the proposed technique. First, we explain the optimizations in translation of an APT A
to a UCT A’ which is an incremental technique on the alphabet we use for A’. Then we
explain the optimizations in translation of a UCT A’ to an NBT A” which is an incremental
technique on the size of the functions in R we use for A” which is proposed in [55]. Finally,

84 Deciding Second-order Logics using Database Evaluation Techniques

we describe the heuristics we can use for rewriting conjunctive formulas (i.e. reordering
the subformulas in a conjunctive formula) so that we have a better chance for detecting
possible contradictions faster.

5.6.1 Optimizations in APT to UCT Translation.

First we introduce an optimization used in the translation of APT to UCT. Since ¥ C ¥ xR
we can start the construction using a subset 3] of ¥'. We proceed with a larger subset,
Y3, if the satisfiability query is empty, and repeat enlarging the alphabet until either the
query becomes non-empty or we reach to the set 3’. We are also able to reuse the results
in the next computation since ¥} C 3.

Theorem 5.24 Let A} = (31, D,Q, 5,91, F) and A, = (¥4, D, Q, S, 04, Fy are UCT trans-
lations of an APT A using ¥} as alphabet of A} and using X5 as alphabet of Af. If ¥ C X,
then 67 C 9).

Proof: Since we define 85({q, i), (oq,12)) for every q € @, o9 € X3, 72 € Rs, and for all
0 <i < h where R, is the set of restrictions such that for all (g9,1,) € i, 79 is relevant
to o9 the same way as d]((q, 1), (o1,m)) for every ¢ € Q, 01 € X1, ;1 € Ry, and for all
0 < i < h where R; is the set of restrictions such that for all (o1,m;) € ¥/, n; is relevant
to oy then if ¥} C 3}, 6] C 9). O
This incremental approach allows us to partition the alphabet ¥’ to a sequence of sets:

Yoy, c...oy

which is especially useful when the alphabet is large such as the exponential alphabet
of UCT in the size of the alphabet of APT after translation.

5.6.2 Optimizations in UCT to NBT Translation.

In the proposed translation of UCT to NBT we start from an initial value k; for k£ and
increase this value up to ks, as long as the satisfiability query is empty. We continue this
process until either the automaton becomes non-empty or we reach the upper bound of
(2n)n?*"3"(n+1)/n! for n the number of states in the UCT automaton. This approach has
been proposed in [55]. Our decomposition, however, allows an incremental implementation
that reuses the transitions computed for k; in the subsequent construction for ks.

Theorem 5.25 Let Al[ki] and Aj[ks] are NBT translations of an APT A, using ki as the
maximum range of functions in Ry for Al and ks as the mazimum range of functions in
Ro for AY. If ky < ko, then 6 C 4.

85

Proof: Since R, is the set of functions f; : Q" — {0,..., k1 } and R is the set of functions
fo:@Q —{0,...,k} and ky < ko then Ry C Ry which means @} C Q4. Thus §f C65. O

Example 5.26 Consider an alternating automaton A such that: ¥ = {a}, D = {1,2},

Q =190, 0,q,6}, S ={q}, 6(q,a) = (1, 1) N (2,q2), 6(q1,a) = (1,43) A (2,q3), 6(qe, a) =
(L,g3) A (2,q3), 0(g3,a) = (1,q3), and F = {{},{qo0, ¢1,q2,q3}} We have calculated the
actual number of transitions in the UCT translation of A, A" and the NBT translation of
A, A”, and the number of transitions we need to answer the satisfiability query after we
apply the above optimizations. The set of restrictions is R and the set of restrictions we
used for answering the satisfiability query is R;. The number of transitions computed for
A’ with R is 4 x 232 and the number of transitions computed for A" with R; is 4. The
results for the NBT translation are given in Figure 5.4 where k = 22 . 42525, and k; = 1.

of transitions computed for A”[k] 256 - k*
of transitions computed for A”[k:] 256

of transitions computed for A”[k;] with top-down evaluation| 70

Figure 5.4: Number of transitions in the NBT automata A”[k| and A”[k,].

5.6.3 Heuristics for Ordering of Conjunctive Formulas.

Consider a logical consequence question {¢1, @9, ..., pn} [¥, such that the formula v is
already inconsistent with a subset of formulas in {¢1, ¥, ..., @, }. As we use an incremental
technique we can use rewriting heuristics to generate a formula ¢ Ap;, Ap;, A...Ayp;, such
that [i1, 42, ...1,] is a permutation of [1,2,...n]|. For instance, the formulas @1, v, ..., ¥,
can be ordered according to the number of free variables they share with). Hence we
improve our chances of finding a possible contradiction faster if we use this formula instead
of the original one in the proposed algorithm. The following examples demonstrate the
effect of ordering of the subformulas of a conjunctive formula.

Example 5.27 Consider a formula ¢ = ¢ A ¢4 where ¢ is the formula given in Example
5.4, oy = vr.(¢Y A (—)z) such that ¢ = py.(aV (—)y), ¥ = {a, b}, and D = {1,2}, an APT
for V4 is A4 = {E, D, Q4, {Q5}, 54, F4} where:

Qs = {45, 6}
d4(g5,a) = (1,q5) V (2, ¢s5)

86 Deciding Second-order Logics using Database Evaluation Techniques

04(qs5,0) = (1,46) V (2, gs)
04(g6,a) = (1,q5) V (2, ¢5)
04(g6,0) = (1,46) V (2, g6)
= {{QG}u {Q57QG}7 {QS7QG}7 {Q57QG}}

APT for 1, As = {D, %, Qs, {¢:}, 05, F5 }:
Qs = Qs UQsU{qr}

05 = 03 U 04 plus the following transitions:

05(qr,a) = (1,q4) A (1, 5)

d5(q7,0) = (1,q1) A (1, gs5)

Fs = {{QO7QG}7 {QO7QI7QQ7Q57(]6}7 {QO,Q1,CI27Q37Q57€16}7 {QO7Q17Q27Q37Q57QG}}

Using the proposed strategy we first check whether A; defined in Example 5.4 is empty
(it is not empty), then we check the emptiness of A3 which is empty and thus we do not
need to construct AL and AZ. The estimated number of transitions is 10 x 259 for A}, and
16 x 2128 for AL. The estimated number of transitions for A} and A% are given in Figure
5.5 where ky = 20! - 10% - 319 . 11 /101, ks = 32! - 2128 . 316 . 17/16].

estimated # of transitions for Afj | 2 x 210 x 219 x E10

estimated # of transitions for A? |2 x 26 x 216 x E16

Figure 5.5: Number of transitions in the NBT automata Aj and A7.

Example 5.28 Consider a logical consequence problem {ys, 3, ¢4, 05} = 1 where ¢y
and o are given in Example 5.4, ¢35 = vz.(¢¥y A (—)z) such that ¢, = uy.(a V (—)y),
Y3 = {a,b}, pg = va.(Po A (—)x) such that ¥y = uy.(cV (—)y), Xy = {c,b}, ¢5 =
va.(3 A (—)x) such that ¥3 = py.(dV (—)y), X5 = {d,b}, and D = {1,2}, an APT for o5
is Ag = {2, D, Qg, {Q5}, (53, Fg} where:

Qs = {C_I5,Q6}

53(%7 a) = (1,q5) V (2,¢)
d3(q5,0) = (1,46) V (2, gs)

03(g6,a) = (1,q5) V (2, ¢5)

53(616 b) = (1,46) V (2, 6)

= {{a},{a5, a6}, 165, a6} {05 a6} }

87

The APT Ay for ¢4 and the APT Aj for 5 are the same as Aj except that the state names
are changed and the letter a is replaced with ¢ in A4 and d in As, respectively.

Using the proposed strategy we first check if A; defined in Example 5.4 is empty (it is
not empty), then we check the emptiness of the intersection automaton A; o of A; and A,
which is empty. Hence, we do not need to construct the complete intersection automaton
A for Ay, Ay, Az, Ag, and As. The estimated number of transitions for A7, and A” are
given in Figure 5.6 where k; = 20! - 10%° - 319. 11/10!, ky = 56! - 2856 . 328 . 29/28!.

estimated # of transitions for A7, |2 x 20 x 219 x k;°

estimated # of transitions for A” |5 x 228 x 228 x |28

Figure 5.6: Number of transitions in the NBT automata A, and A”.

Bibliographical Notes

Safra [78] described an optimal determinization construction for automata on infinite
words. Alternating automata on infinite trees is introduced by [26, 63]. Safra’s con-
struction is shown to be resistant to efficient implementation [86]. The contruction used
in this work which does not use Safra’s contruction is introduced in [55]. An extension
of Safraless decision algorithm that is amenable to implementation was proposed for LTL
formulas [52] which also improved the complexity of the algorithm.

Chapter 6

Conclusions and Future Work

In our work, we introduced a translation technique that maps satisfiability questions for
formulas in WSnS and S1S to query answering in Datalog® and developed an incremental
approach to an automata-based decision procedure for p-calculus. We have also demon-
strated how evaluation techniques used for answering queries on these programs can provide
efficient decision procedures for second order logics. For developing decision procedures for
WSnS and S1S using logic-automata connection we provide a Datalog® representation of
automata and automata-theoretic operations. We represent the automaton for a particular
formula as Datalog®" rules and satisfiability of the formula as a Datalog® query. The basic
idea of our method is to represent our formulas in such a way that we can decide on them
efficiently using the available techniques to construct and search only the part of the state
space needed to answer the satisfiability queries on formulas. In our work, we classify
formulas as ¢ = @1 A@a AL AYp, o= (1 APa A A), o =(TT o1 Apa AL Ay),
o =37 : o1 ANpas A... A p,, and propose heuristics and optimizations depending on the
type of the formula. We study the impact of goal reordering and various other query op-
timization techniques on the performance of the decision procedures we introduce. The
types of formulas we consider for the decision procedures we propose are given in Figure
6.1. Our results for WSnS show that our technique outperforms tools implemented for the
same purpose for various types of formulas.

Future extensions of the proposed approach include extending the translation we pro-
pose for WSnS and S1S to other types of automata on infinite objects, e.g., to Rabin [73]
and Alternating Automata [98], and on improving the upper complexity bounds by restrict-
ing the form of Datalog® programs generated by the translation (when used for decision
problems in, e.g., EXPTIME). In all these cases, the goal is to match the optimal theo-
retical bounds while avoiding the worst-case behavior (inherent in most automata-based
techniques) in as many situations as possible.

88

89

WSnS | S1S | p-calculus
v v

p=p1 NP2 N Ny
©="(p1 N2 A... A py)
=TT : o1 ANpa A ... AN py)
e=3T:p1 Apa A... A\,

SSRNENEN

Figure 6.1: Summary of our results

Future research for the incremental technique we present for pu-calculus will follow
several directions:

1. we attempt to reduce the part of the automaton needed to show satisfiability (or
unsatisfiability) by introducing additional heuristics in the incremental construction,

2. for particular classes of problems, for which other techniques exhibit better perfor-
mance due to reduced search space, we attempt to modify the proposed incremental
approach to mimic those approaches,

3. we study how the proposed incremental technique can take advantage of the structure
of problems formulated in more restricted formalisms such as description logics, and

4. we adopt our decomposition technique for alternating parity automata emptiness to
alternating looping automata.

Bibliography

1]

S. Abiteboul and C. Beeri. The power of languages for the manipulation of complex
values. VLDB Journal, 4(4):727-794, 1995.

F. Baader and U. Sattler. An Overview of Tableau Algorithms for Description Logics.
Studia Logica, 69:5-40, 2001.

C. Beeri, S. Naqvi, O. Shmueli, and S. Tsur. Set construction in a logic database
language. Journal of Logic Programming, 10(3&4):181-232, 1991.

C. Beeri and R. Ramakrishnan. On the power of Magic. Journal of Logic Program-
ming, 10(1/2/3&4):255-299, 1991.

D. Berardi, D. Calvanese, and G. De Giacomo. Reasoning on UML Class Diagrams
using Description Logic Based Systems. In Proc. of the KI’2001 Workshop on Appli-
cations of Description Logics. CEUR FElectronic Workshop Proceedings, hittp://ceur-
ws.orq/Vol-44, 2001.

M. Biehl, N. Klarlund, and T. Rauhe. Algorithms for guided tree automata. In First
International Workshop on Implementing Automata, WIA 96, London, Ontario,
Canada, volume 1260 of LNCS. Springer Verlag, 1997.

J. Bradfield and C. Stirling. Modal Mu-Calculi, chapter 12. Elsevier Science, 2006.

R. E. Bryant. Symbolic boolean manipulation with Ordered Binary Decision Dia-
grams. ACM Computing Surveys, 24(3):293-318, 1992.

J. R. Biichi. Weak second-order arithmetic and finite automata. Z. Math. Logik
Grundl. Math., 6:66-92, 1960.

J. R. Biichi. On a decision method in restricted second-order arithmetic. In Proc.
1960 Int. Congr. for Logic, Methodology and Philosophy of Science, pages 1-11, 1962.

90

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

91

D. Calvanese, G. D. Giacomo, and M. Lenzerini. Reasoning in expressive description
logics with fixpoints based on automata on infinite trees. In Proc. of the 16th Int.
Joint Conf. on Artificial Intelligence (IJCAI’99), pages 84-89, 1999.

D. Calvanese, G. D. Giacomo, and M. Lenzerini. Description logics: Foundations for
class-based knowledge representation. In Proc. of the 17th IEEE Sym. on Logic in
Computer Science (LICS 2002), pages 359-370, 2002.

D. Calvanese, M. Lenzerini, and D. Nardi. Description logics for conceptual data
modeling. In J. Chomicki and G. Saake, editors, Logics for Databases and Information
Systems, pages 229-264. Kluwer, 1998.

S. Chaudhuri. An overview of query optimization in relational systems. In PODS,
pages 34-43, 1998.

W. Chen, M. Kifer, and D. S. Warren. Hilog: A foundation for higher-order logic
programming. J. Log. Program., 15(3):187-230, 1993.

W. Chen, T. Swift, and D. S. Warren. Efficient implementation of general logical
queries. Technical report, SUNY at Stony Brook, 1993.

W. Chen and D.S Warren. Query evaluation under the well-founded semantics.
PODS, pages 168-179, 1993.

D. Chimenti, R. Gamboa, R. Krishnamurthy, S. A. Naqvi, S. Tsur, and C. Zaniolo.
The LDL system prototype. IEEE Trans. Knowl. Data Eng., 2(1):76-90, 1990.

E. Clarke, D. Grumberg, and D. Long. Model Checking and Abstraction. ACM
Transactions on Programming Languages and Systems, 16(5):1512-1542, 1994.

C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakis. Memory efficient algo-
rithms for the verification of temporal properties. Formal Methods in System Design,
1:275-288, 1992.

M. Daniele, F. Giunchiglia, and M. Y. Vardi. Improved automata generation for
linear temporal logic. In Computer-Aided Verification, Proc. 11th Int. Conference,
volume 1633, pages 249-260, July 1999.

S. Dawson, C. R. Ramakrishnan, Steven Skiena, and Terrance Swift. Principles and
practice of unification factoring. TOPLAS, 18(5):528-563, 1996.

92

23]

[24]

[25]

2]

[27]

28]

[29]

Deciding Second-order Logics using Database Evaluation Techniques

S. Demri and U. Sattler. Automata-theoretic decision procedures for information
logics. Fundam. Inform., 53(1):1-22, 2002.

C. S. Jutla E. A. Emerson. Tree automata, mu-calculus and determinacy. In Pro-
ceedings of the 32nd IEEE Symposium on Foundations of Computer Science, pages
368-377, Los Alamitos, CA, USA, 1991. IEEE Computer Society Press.

C. C. Elgot. Decision problems of finite automata design and related arithmetics.
Trans. Amer. Math. Soc., 98:21-52, 1961.

E. A. Emerson. Automata, tableaux and temporal logics (extended abstract). In
Proceedings Conference on Logics of Programs, Brooklyn, volume 193 of LNCS, pages
79-87. Springer-Verlag, 1985.

E. A. Emerson. Temporal and modal logic. In J. Van Leecuwen, editor, Handbook of
theoretical computer science (vol. B): formal models and semantics, pages 995-1072,

Cambridge, MA, USA, 1990. MIT Press.

E. A. Emerson and E. M. Clarke. Characterizing correctness properties of paral-
lel programs using fixpoints. In Proceedings of the 7th Colloguium on Automata,
Languages and Programming, pages 169-181. Springer-Verlag, 1980.

E. A. Emerson and C. S. Jutla. The complexity of tree automata and logics of
programs. In Proceedings of the 29th IEEE Symposium on Foundations of Computer
Science, FOCS’88, White Plains, pages 328-337. IEEE Computer Society Press, Los
Alamitos, CA, October 1988.

E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy. In
Proceedings of the 32nd IEEE Symposium on Foundations of Computer Science, 1991.

E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model checking for the p-calculus
and its fragments. Theor. Comput. Sci., 258(1-2):491-522, 2001.

E. A. Emerson and A. P. Sistla. Deciding full branching time logics. Information
and Control, 61(3):175-201, 1984.

M. Fischer and R. Ladner. Propositional dynamic logic of regular programs. Journal
of Computer and System Sciences, 18:194-211, 1979.

P. Gastin and D. Oddoux. Fast LTL to Biichi automata translation. In Computer
Aided Verification, Proc. 13th Int. Conference, volume 2102 of LNCS, pages 53-65.
Springer, 2001.

[35]

[36]

[37]

[45]

[46]

93

R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic ver-
ification of linear temporal logic. In Proceedings of the 29th IEEE Symposium on
Foundations of Computer Science, Warsaw, October 1988.

E. Gradel, W. Thomas, and T. Wilke. Automata, Logics and Infinite Games: A Guide
to Current Research [outcome of a Dagstuhl seminar, February 2001]. Springer, 2002.

S. Gurumurthy, O. Kupferman, F. Somenzi, and M. Vardi. On complementing non-
deterministic Biichi automata, 2003.

D. Harel. Dynamic logic. In D. Gabbay and F. Guenthner (eds.), Handbook of
Philosophical Logic, Volume II, Dordrecht: D. Reidel, pages 497-604, 1984.

D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. Cambridge, MA: MIT Press,
2000.

J. G. Henriksen, J. L. Jensen, M. E. Jorgensen, N. Klarlund, R. Paige, T. Rauhe, and
A. Sandholm. MONA: Monadic second-order logic in practice. In TACAS, volume
1019 of LNCS, pages 89-110, 1995.

J. Hladik and U. Sattler. A Translation of Looping Alternating Automata into
Description Logics. In International Conference on Automated Deduction (CADE
19), volume 2741 of LNCS, pages 90-105, 2003.

P. Ohrstrgm and P. Hasle. Temporal Logic: From Ancient Ideas to Artificial Intelli-
gence. Boston and London: Kluwer Academic Publishers, 1995.

D. Janin and I. Walukiewicz. Automata for the modal u-calculus and related results.
In MFCS, volume 969 of LNCS, pages 552-562, London, UK, 1995. Springer-Verlag.

J. Jard and T. Jeron. On-line model-checking for finite temporal logic specifications.
In Automatic Verification Methods for Finite State Systems, Proc. Int. Workshop,
Grenoble, volume 407, pages 189-196, Grenoble, June 1989. Lecture Notes in Com-
puter Science, Springer-Verlag.

R. Kaivola. Using Automata to Characterise Fized Point Temporal Logics. PhD
thesis, University of Edinburgh, 1997.

M. Kifer and G. Lausen. F-logic: a higher-order language for reasoning about objects,
inheritance, and scheme. SIGMOD Rec., 18(2):134-146, 1989.

94

[47]

[48]

[49]

Deciding Second-order Logics using Database Evaluation Techniques

N. Klarlund. MONA & FIDO: The logic-automaton connection in practice. In
Computer Science Logic, volume 1414 of LNCS, pages 311-326, London, UK, 1997.
Springer-Verlag.

N. Klarlund, A. Mgller, and M. I. Schwartzbach. MONA implementation secrets.
Int. J. Found. Comput. Sci., 13(4):571-586, 2002.

D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Science,
27:333-354, 1983.

D. Kozen and R. Parikh. An elementary proof of the completeness of PDL. Theo-
retical Computer Science, 14:113-118, 1981.

G. M. Kuper and M. Y. Vardi. The logical data model. ACM Transactions On
Database Systems, 18:86-96, 1993.

O. Kupferman, N. Piterman, and M.Y. Vardi. Safraless compositional synthesis. In
CAV, volume 4144 of LNCS, pages 31-44, 2006.

O. Kupferman and M. Y. Vardi. Weak alternating automata are not that weak. In
Proceedings of the Fifth Israel Symposium on Theory of Computing and Systems,
ISTCS 97, pages 147-158, Los Alamitos, California, 1997. IEEE Computer Society
Press.

O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic approach to
branching-time model checking. Journal of ACM, 47(2):312-360, 2000.

O. Kupferman and M.Y. Vardi. Safraless decision procedures. In Proceedings of
the 46th IEEE Symposium on Foundations of Computer Science, pages 531-540,
Pittsburgh, October 2005.

M. Liu. Relationlog: A typed extension to datalog with sets and tuples. Journal of
Logic Programming, 36(3):271-299, 1998.

M. Liu. Query processing in Relationlog. In DEXA, pages 342-351, 1999.

P. Wolper M. Y. Vardi. Automata theoretic techniques for modal logics of programs:
(extended abstract). In STOC ’84: Proceedings of the sizteenth annual ACM sym-

posium on Theory of computing, pages 446-456, New York, NY, USA, 1984. ACM
Press.

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]
[71]
[72]

95

R. McNaughton. Testing and generating infinite sequences by a finite automaton.
Information and Control, 9:521-530, 1966.

A. R. Meyer. Weak monadic second order theory of successor is not elementary-

recursive. Technical report, Massachusetts Institute of Technology, Cambridge, MA,
USA, 1973.

M. Mukund. Linear-Time Temporal Logic and Biichi Automata. In Tutorial talk,
Winter School on Logic and Computer Science, ISI, Calcutta, 1997.

D. E. Muller, A. Saoudi, and P. E. Schupp. Weak alternating automata give a simple
explanation of why most temporal and dynamic logics are decidable in exponential
time. In Symposium on Logic in Computer Science (LICS '88), pages 422-427,
Washington, D.C., USA, July 1988. IEEE Computer Society Press.

D. E. Muller and P. E. Schupp. Alternating automata on infinite trees. Theoretical
Computer Science, 54(2-3):267-276, 1987.

I. S. Mumick. Query Optimization in Deductive and Relational Databases. PhD
thesis, Department of Computer Science, Stanford University, 1991.

S. Naqvi and S. Tsur. A Logical Language for Data and Knowledge Bases. Computer
Science Press, 1989.

D. Niwinski. Fixed points vs. infinite generation. In Symposium on Logic in Com-
puter Science (LICS ’88), pages 402-409, Washington, D.C., USA, July 1988. IEEE
Computer Society Press.

D. Park. Finiteness is p-ineffable. Theoretical Computer Science, 3(2):173-181, 1976.

V. R. Pratt. A near-optimal method for reasoning about action. Journal of Computer
and System Sciences, 20:231-254, 1980.

V. R. Pratt. A decidable p-calculus: preliminary report. In Proc. 29th IEEE Sym-
posium on Foundation of Computer Science, pages 421-427, 1981.

A. N. Prior. Papers on Time and Tense. Oxford: Clarendon Press, 1957.
A. N. Prior. Past, Present and Future. Oxford: Clarendon Press, 1957.

A. N. Prior. Time and Modality. Oxford: Clarendon Press, 1957.

96

[73]

[74]

[83]

[84]

[85]

Deciding Second-order Logics using Database Evaluation Techniques

M. O. Rabin. Decidability of second-order theories and automata on infinite trees.
Trans. Amer. Math. Soc., 141:1-35, 1969.

I. V. Ramakrishnan, P. Rao, K. F. Sagonas, T. Swift, and D. S. Warren. Efficient
tabling mechanisms for logic programs. In International Conference on Logic Pro-
grammang, pages 697-711, 1995.

R. Ramakrishnan, P. Bothner, D. Srivastava, and S. Sudarshan. CORAL - a database
programming language. In Workshop on Deductive Databases, 1990.

R. Ramakrishnan, D. Srivastava, and S. Sudarshan. CORAL - Control, Relations
and Logic. In VLDB ’92: Proceedings of the 18th International Conference on Very
Large Data Bases, pages 238-250, San Francisco, CA, USA, 1992. Morgan Kaufmann
Publishers Inc.

R. Ramakrishnan, D. Srivastava, S. Sudarshan, and P. Seshadri. The CORAL de-
ductive system. VLDB Journal, 3(2):161-210, 1994.

S. Safra. On the Complexity of w-Automata. In FOCS, pages 319-327, 1988.

S. Safra. Exponential Determinization for omega-Automata with Strong-Fairness
Acceptance Condition (Extended Abstract). In STOC, pages 275-282, 1992.

K. F. Sagonas, T. Swift, and D. S. Warren. XSB as an efficient deductive database
engine. In SIGMOD Conference, pages 442-453, 1994.

U. Sattler and M. Y. Vardi. The Hybrid p-Calculus. In International Joint Confer-
ence on Automated Reasoning (IJCAR), volume 2083 of LNCS, pages 76-91, 2001.

F. Somenzi and R. Bloem. Efficient Biichi automata from LTL formulae. In
Computer-Aided Verification, Proc. 12th Int. Conference, volume 1633, pages 247—
263, 2000.

L.J. Stockmeyer. The complexity of decision problems in automata theory and logic.
PhD thesis, MIT Lab for Computer Science, 1974.

R. S. Streett and E. A. Emerson. An automata theoretic decision procedure for the
propositional mu-calculus. Information and Computation, 81(3):249-264, June 1989.

T. Swift and D. S. Warren. Analysis of slg-wam evaluation of definite programs. In
ILPS °94: Proceedings of the 1994 International Symposium on Logic programming,
pages 219-235, Cambridge, MA, USA, 1994. MIT Press.

[36]

[87]

[38]

[89]

[90]

[91]

[92]

[93]

97

S. Tasiran, R. Hojati, and R. K. Brayton. Language containment of non-deterministic
omega -automata. In Conference on Correct Hardware Design and Verification Meth-
ods, pages 261277, 1995.

J. W. Thatcher and J. B. Wright. Generalized finite automata theory with an ap-
plication to a decision problem of second-order logic. Mathematical System Theory,
2:57-81, 1968.

W. Thomas. Languages, automata, and logic. In Handbook of Formal Languages,
volume 3. Springer-Verlag New York, Inc. New York, NY, USA, 1997.

B. A Trakhtenbrot. Finite Automata and Monadic Second order Logic. Siberian
Math Journal, 3:101-131, 1962. Russian; English translation in: AMS Transl. 59
(1966), 23-55.

S. Tsur and C. Zaniolo. LDL: A Logic-Based Data Language. In VLDB ’86: Proceed-
ings of the 12th International Conference on Very Large Data Bases, pages 33-41,
San Francisco, CA, USA, 1986. Morgan Kaufmann Publishers Inc.

J. D. Ullman. Principles of Database and Knowledge-Base Systems, volume 1&2.
Computer Science Press, 1989.

G. Unel and D. Toman. Deciding weak monadic second-order logics using complex-
value datalog. In Proc. LPAR (Short Paper), 2005.

M. H. van Emden and R. Kowalski. The Semantics of Predicate Logic as Program-
ming Language. Journal of ACM, 23(4):733-743, 1976.

M. Y. Vardi. A temporal fixpoint calculus. In POPL ’88: Proceedings of the 15th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages
250-259, New York, NY, USA, 1988. ACM.

M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In Banff
Higher Order Workshop, pages 238266, 1995.

M. Y. Vardi. Alternating automata: Unifying truth and validity for temporal logics.
In CADE, pages 191-206, 1997.

M. Y. Vardi. What makes Modal Logic so Robustly Decidable. In Descriptive
Complexity and Finite Models. American Mathematical Society, 1997.

98

[98]

[99]

[100]

[101]

[102]

[103]

Deciding Second-order Logics using Database Evaluation Techniques

M. Y. Vardi. Reasoning about the past with two-way automata. In ICALP, volume
1443 of LNCS, pages 628-641, 1998.

M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of
programs (extended abstract). In Proceedings 16th Annual ACM Symp. on the Theory
of Computing, STOC"84, pages 446-456. ACM Press, New York, 1984.

M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program

verification. In Proc. of the First Symposium on Logic in Computer Science, pages
322-331, 1986.

M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Information
and Computation, 115(1):1-37, 1994.

P. Wolper. Temporal logic can be more expressive. Information and Control,
56(1/2):72-99, 1983.

P. Wolper. Constructing automata from temporal logic formulas: A tutorial. Fu-
ropean Educational Forum: School on Formal Methods and Performance Analysis,
pages 261-277, 2000.

